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Abstract

We derive the continuity properties of the cdf of a random variable deϐined as a saddle-type
point of a real valued continuous stochastic process on a compact metric space. This result
facilitates the derivation of ϐirst order asymptotic properties of tests for stochastic spanning
w.r.t. some stochastic dominance relation based on subsampling. As an illustrationwe deϐine
the concept of Markowitz stochastic spanning, derive an analytic representation upon the
empirical analog of which we construct a relevant statistical test. The aforementioned result
enables derivation of asymptotic exactness for the relevant procedure based on subsampling,
when the metric space has the form of a simplicial complex, the spanning set is a compact
subset and the signiϐicance level is chosen according to the number of extreme points of the
complex inside the spanning set. Consistency is also derived. Such tests are of interest in
ϐinancial economics since they can provide reductions of portfolio sets.

Keywords: Continuous Process, Malliavin Derivative, Nested Optimizations, Saddle-Type
Point, ConnectedSupport, Atom, AbsoluteContinuity,Markowitz StochasticDominance, Stochas-
tic Spanning, Spanning Test, Subsampling, Gaussian Process, Brownian Bridge, Asymptotic
Exactness, Consistency.

1 Introduction

We derive the continuity properties of the cdf of a random variable deϐined by a
saddle-type functional of a real valued continuous stochastic process deϐined on a
compact metric space. Our motivation stems from the fact that the limit theory of
tests for stochastic spanning usually involves weak limits represented as a ϐinite re-
cursion of optimization functionals applied on some relevant Gaussian process. The
possibility of the existence of atoms in this distribution directly affects the issue of
asymptotic exactness of the aforementioned tests when those are based on resam-
pling procedures such as bootstrap and subsampling.
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1 Introduction 2

The notion of stochastic spanning is a brilliant idea of Thierry Post, inϐluenced by
the notion of M-V spanning in Huberman and Kandell [6], that was formulated in the
context of second order stochastic dominance in Arvanitis et al. [1]. It can be easily
generalized on the framework of an arbitrary preorder deϐined on some set of proba-
bility distributions. Given such a preorder, and if the efϐicient set of the preorder, the
set that maximal elements is, non-empty, a spanning subset of the preorder is essen-
tially any superset of the efϐicient set.1 As such a spanning set can either be used to
provide an ”outer approximation” of the underlying efϐicient set, and/or, when small
enough, to provide with a desirable reduction of the initial set of distributions which
could be very large. In such a case the issue of optimal choice could be reduced to a
potentially computationally easier problem. Both issues could be of great interest to
ϐinancial economics since in the usual applications the underlying distributions rep-
resent returns of ϐinancial assets and the preorders are stochastic dominance rules
that reϐlect classes of utility functions (e.g. for the ϐirst and second order, as well as
the Prospect andMarkowitz stochastic dominance rules and their relations to classes
of utilities see Levy and Levy [7]). Obviously those notions could also be of potential
interest in any ϐield of economic theory or decision science that examines optimal
choice under uncertainty.

Given the previous a natural question arises. Assume that we are given some
subset of the underlying set of distributions and we want to ascertain whether the
former spans the latter w.r.t. the preorder. When the two sets are not equal, it is
in some cases the fact that spanning occurs if and only if a functional deϐined by a
complex recursion of optimizations w.r.t. the given sets is zero (see for example the
discussion in page 6 of Arvanitis et al. [1] for the case of second order stochastic
dominance, or Proposition 1 below for the case of Markowitz stochastic dominance).
The veriϐication of the above is usually analytically intractable due to the dependence
of the functional on the generally unknown underlying distributions and/or due to
the complexity of the optimizations involved. Hence this cannot be directly used.
However using the principle of analogy statistical tests can be designed for testing
the null hypothesis of spanning. Due to analogous difϐiculties the asymptotic critical
values are not analytically tractable, but can be approximated by resampling proce-
dures, whence the usefullness of the core result of the paper arises, since it becomes
relevant for the establishment of asymptotic exactness.2

In this respect the second section of the paper sets up the probabilistic framework
and derives the aforementioned result about properties of the law of a random vari-
able deϐined by a ϐinite number of nested optimizations on a continuous processw.r.t.
possibly interdependent parameter spaces. More speciϐically, underweak conditions
involving Malliavin differentiability, existence of moments for suprema as well as a
countability property for the singular points of the derivative, we derive connected-
ness for the support of the law, a countable number of atoms, and absolute conti-
nuity when restricted between successive atoms. The present result is a non-trivial

1 The exact deϐinition of spanning, enables the existence of spanning sets even if the preorder has
no maximal elements.

2 Notice that spanning tests subsume as special cases the relevant test of efϐiciency w.r.t. the un-
derlying preorder. Hence procedures developed in papers such as Post and Versijp [12], Scaillet and
Topaloglou [14], Arvanitis and Topaloglou [2] etc, can be considered as spanning tests for singleton
spanning sets.
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extension that can be used for the derivation of analogous results w.r.t. more com-
plex preorders and it simultaneously extends relevant results concerning suprema
of analogous stochastic processes (see section 2 for references).

As an illustration of the previous remark, in the third section of the paper we
derive a testing procedure along with its ϐirst order limit theory for the concept of
spanning w.r.t. the Markowitz stochastic dominance preorder. We are doing so, by
deϐining the notion and providing with an original characterization of spanning by
the zero of an analogous to the aforementioned functionals. Using this, we deϐine
the test statistic, derive its limit distribution under the null, deϐine a subsampling
algorithm for the approximation of the asymptotic critical values and among oth-
ers use the main result for the derivation of asymptotic exactness. We also derive
consistency. Notice that the arguments for the derivation of the limit theory involve
among others the determination of the asymptotic behavior of several random ele-
ments when restricted to complex partitions of the parameter spaces involved. In
this respect the arguments are similar, though not the same, to the ones used in Ar-
vanitis, Hallam and Post [1]. One major difference is the fact that in the present case
we do not need the assumption of the boundendess of the support of the involved
distributions. Hence in this sense the present results could also be considered as
generalizations to the ones derived in the aforementioned paper. In the ϐinal section
we conclude.

2 Assumption Framework and Main Result

Suppose that Λ1, Λ2, … , Λ𝑠 are compact metric spaces, and consider Λ = ∏𝑠
𝑖=1 Λ𝑖

equipped with the product topology. Furthermore, consider the functional oper ≑
opt1 ∘ opt2 ∘ ⋯ ∘ opt𝑠 where opt𝑖 = sup or inf w.r.t. to some non-empty compact
Λ⋆

𝑖 ⊆ Λ𝑖 for 𝑖 = 1, … , 𝑠. When 𝑖 > 1 then Λ⋆
𝑖 is allowed to depend on the elements of

∏𝑖−1
𝑗=1 Λ⋆

𝑖−𝑗, 𝑖 > 1.
The probabilistic framework follows closely Chapter 2 of Nualart [10]. In this

respect it consists of (Ω, ℱ, ℙ), a complete probability space,whereℱ is generatedby
some isonormal Gaussian process 𝑊 = {𝑊 (ℎ) , ℎ ∈ 𝐻} where 𝐻 is an appropriate
Hilbert space. 𝑋 is some real valued stochastic process onΛwith continuous sample
paths (i.e. its paths are ℙ a.s. elements of 𝐶 (Λ, ℝ)). In many applications 𝑋 is a
Gaussian weak limit for some net of appropriate processes. 𝐷 denotes the Malliavin
derivative operator and 𝔻1,2 the completion of the family of Malliavin differentiable
random variables w.r.t. the norm √𝔼 (𝑧2 + (𝐷𝑧)2).

We are interested in the form of the support and the continuity properties of the
cdf of the law of the random variable 𝜉 ≔ oper𝑋𝜆. The following assumption de-
scribes sufϐicient conditions for the aforementioned law to have a countable number
of atoms while being absolutely continuous when restricted between their succe-
sive pairs. Given this, the result to be established below, allows, ϐirst for the random
variable at hand to be deϐined by complex saddle type functionals,3 and second for
discontinuities. Hence it generalizes established results concerning the absolute con-

3 The term ”saddle-type” is obviously used in an abusive manner, since in general commutativity
between the successive optimization functionals does not hold.
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tinuity of the distribution of suprema of stochastic processes. For an excellent treat-
ment of those results see, inter alia, Propositions 2.1.7 and 2.1.10 of Nualart[10] as
well as the literature on the ϐibering method and its probabilistic applications, e.g.
Lifshits [8].

Assumption 1. For the stochastic process 𝑋 ∶ Ω → 𝐶 (Λ, ℝ) suppose that:

1. 𝔼 [supΛ𝑋2
𝜆] < +∞.

2. For all 𝜆 ∈ Λ, 𝑋 (𝜆) ∈ 𝔻1,2, and the 𝐻 -valued process 𝐷𝑋 has a continuous
version and

𝔼 [sup
Λ

‖𝐷𝑋𝜆‖2] < +∞.

3. There exists a countable subset of ℝ, say 𝑇 , such that the relation

ℙ ({𝜉 = 𝑡} ∩ Ω𝑡) ≥ 0

holds if and only if 𝑡 ∈ 𝑇 , where

Ω𝑡 = {𝜔 ∈ Ω ∶ 𝐷𝑋𝜆 (𝜔) = 0 for some 𝜆 such that 𝑡 = 𝑋𝜆 (𝜔)} .

Remark 1. In the usual case, i.e. where 𝑋 is zero-mean Gaussian, the ϔirst condition
can be established by strong results that imply the subexponentiality of the distribution
of supΛ𝑋𝜆, such as Lemma A.2.7 of Van Der Vaart and Wellner [16]. This would fol-
low from conditions that restrict the packing numbers of Λ × ℝ metrized as a totally
bounded metric space by the use of the covariance function of 𝑋, to be polynomially
bounded, something that is easily established if the Λ𝑖 are subsets of Euclidean spaces
for all 𝑖. In the same respect, the second condition is easily established as in Nualart
[10] (see page 110). More speciϔically, if 𝐾 (𝜆1, 𝜆2) is the aforementioned covariance
function, then 𝐻 is the closed span of {ℎ𝜆 (⋅) = 𝐾 (𝜆, ⋅) , 𝜆 ∈ Λ}, with inner product
⟨ℎ𝜆1

, ℎ𝜆2
⟩

𝐻
= 𝐾 (𝜆1, 𝜆2), whence 𝐷𝑋𝜆 = 𝐾 (𝜆, 𝜆). In this case the previous along

with dominated convergence would imply the existence of 𝔼 [supΛ ‖𝐷𝑋𝜆‖2]. The third
condition is the most difϔicult to establish. In the cases that we have in mind, ”outer
approximations” of 𝑇 can be derived by analogous, as well as easier to establish, prop-
erties of random variables that are stochastically dominated by 𝜉, see for example the
corollary below.

We are now able to state and prove the main result.

Theorem2. Under Assumption 1 the law of 𝜉 has connected support, say supp (𝜉), that
contains𝑇 . If 𝑡 ∈ 𝑇 then the cdf of the law evaluated at 𝑡has a jumpdiscontinuity of size
at most ℙ (Ω𝑡). If 𝑡1, 𝑡2 are successive elements of 𝑇 then the law restricted to (𝑡1, 𝑡2)
is absolutely continuous w.r.t. the Lebesgue measure. If 𝑇 has inϔimum then the law
restricted to (−∞, inf 𝑇 ) is absolutely continuous w.r.t. the Lebesgue measure. Dually
if𝑇 has supremumthen the law restricted to (sup 𝑇 , +∞) is absolutely continuousw.r.t.
the Lebesgue measure.



2 Assumption Framework and Main Result 5

Proof. First notice that that 𝜉 ∈ 𝔻1,2. This follows by the use of similar arguments
to the ones in the proof of Proposition 2.1.10 of Nualart [10]. Precisely, consider a
countable dense subset of Λ , say Λ∞ as well as 𝜉𝑛 ≔ oper𝑋𝜆 where opt𝑖 is con-
sidered w.r.t. Λ⋆

𝑖,𝑛 (𝜆𝑖−1) = {the ϐirst 𝑛elements of Λ⋆
𝑖 (𝜆𝑖−1) ∩ pr𝑖Λ∞} and 𝜆𝑖−1 ∈

Λ⋆
𝑖−1,𝑛 when 𝑖 > 1. The function oper ∶ 𝐶 (Λ, ℝ) → ℝ is Lipschitz, hence due to

Proposition 1.2.4 of Nualart [10] 𝜂𝑛 ∈ 𝔻1,2. Furthermore, due to Assumption 1.1
𝜉𝑛 → 𝜉 in𝐿2 (Ω) and therefore thepreliminary resultwill follow if (𝐷𝜉𝑛)𝑛∈ℕ is𝐿2 (Ω)
bounded. Deϐine

𝐴𝑛 = {𝜔 ∈ Ω ∶ 𝜉𝑛 = 𝑋𝜆𝑛
, 𝜉𝑛 ≠ 𝑋𝜆𝑘

, ∀𝑘 < 𝑛} .

Using the local property of 𝐷 we have that

𝐷𝜉𝑛 = ∑
𝑛∈ℕ

1𝐴𝑛
𝐷𝑋𝜆𝑛

and thereby
𝔼‖𝐷𝜉𝑛‖2

𝐻 < +∞
due to Assumption 1.2. Then Assumption 1.3 as well as Proposition 2.1.7 of Nualart
[10] imply the ϐirst part of the Theorem. For the rest assume ϐirst that 𝑇 is empty.
Then the result will follow from a series of arguments almost identical to the ones in
the proof of Proposition 2.1.11 of Nualart[10]. Speciϐically, consider the set

𝐺 = {𝜔 ∈ Ω ∶ there exists 𝜆 ∈ Λ such that 𝐷𝑋𝜆 ≥ 𝐷𝜉 and 𝑋𝜆 = 𝜉}

and using Λ∞ above 𝐻∞ a countable dense subset of the unit ball of 𝐻 , and 𝐵𝑟 (𝜆)
the ball in Λ with center 𝜆 and radius 𝑟 > 0 we have that

𝐺 ⊆ ∪𝜆∈Λ∞,𝑟∈ℚ++,𝑘∈ℕ0,ℎ∈𝐻∞
𝐺𝜆,𝑟,𝑘,ℎ

i.e. a countable union, where

𝐺𝜆,𝑟,𝑘,ℎ ≔ {𝜔 ∈ Ω ∶ ⟨𝐷𝑋𝜆′ − 𝐷𝜂, ℎ⟩ > 1
𝑘 for all 𝜆′ ∈ 𝐵𝑟 (𝜆)}

∩ {oper𝑋𝜆′ = 𝜉}
For some 𝜆, 𝑟, 𝑘, ℎ as above, deϐine 𝜉′ = oper𝑋𝜆′ , where now opt𝑖 is considered w.r.t.Λ⋆

𝑖 (𝜆𝑖−1)∩pr1𝐵𝑟 (𝜆) choose a countable dense subset of𝐵𝑟 (𝜆), say𝐵∞
𝑟 (𝜆) andusing

Λ∞
𝑖,𝑛 (𝜆𝑖−1) = {the ϐirst 𝑛elements of Λ⋆

𝑖 (𝜆𝑖−1) ∩ pr𝑖𝐵∞
𝑟 (𝜆)}

deϐine 𝜉′
𝑛 = oper𝑋𝜆 analogously. We have that as 𝑛 → ∞ 𝜉′

𝑛 → 𝜉′ in 𝐿2 (Ω) norm
due to 1.1. Due to Lemma 1.2.3 of Nualart [10] and 1.2 we also have that 𝐷𝜉′

𝑛 → 𝐷𝜉′

in the weak topology of 𝐿2 (Ω, 𝐻). Using again the local property argument as above
we have that for any 𝜔 ∈ 𝐺𝜆,𝑟,𝑘,ℎ 𝐷𝜉′

𝑛 = 𝐷𝑋𝜆′ for some 𝜆′ ∈ 𝐵∞
𝑟 (𝜆). But for such 𝜔

we have that⟨𝐷𝜉′
𝑛 − 𝐷𝜉′, ℎ⟩ > 1

𝑘 for all 𝑛. This directly implies that ℙ (𝐺𝜆,𝑟,𝑘,ℎ) = 0
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which due to the countability implies that ℙ (𝐺) = 0. Then the result follows from
Theorem 2.1.3 of Nualart [10]. Now suppose that 𝑡 ∈ 𝑇 and consider

ℙ (𝜉 = 𝑡) = ℙ ({𝜉 = 𝑡} ∩ Ω𝑡) + ℙ ({𝜉 = 𝑡} ∩ Ω𝑐
𝑡)

If for some 𝑡 ∈ 𝑇 , ℙ (Ω𝑐
𝑡) > 0 notice that
ℙ ({𝜉 = 𝑡} ∩ Ω𝑐

𝑡) = ℙ (𝜉=t/Ω𝑐
𝑡) ℙ (Ω𝑐

𝑡) ,
and consider the process 𝑋⋆ ≔ 𝑋 ∣Ω−∪𝑡∈𝑇Ω𝑐

𝑡
that obviously satisϐies Assumption 1

with 𝑇 ⋆ = ∅ along with the obvious change of notation. Hence 𝜉⋆ has an absolutely
continuous law something that implies that ℙ (𝜉=t/Ω𝑐

𝑡) = ℙ (𝜉⋆=t) = 0. If ℙ (Ω𝑐
𝑡) = 0

then trivially ℙ ({𝜉 = 𝑡} ∩ Ω𝑐
𝑡) = 0 establishing that ℙ (𝜉 = 𝑡) = ℙ ({𝜉 = 𝑡} ∩ Ω𝑐

𝑡) in
any case. Now suppose that 𝑡1, 𝑡2 are successive elements of 𝑇 and consider Ω𝑡1,𝑡2

=
{𝜔 ∈ Ω ∶ 𝜉 ∈ (𝑡1, 𝑡2)}. The previous imply that ℙ (Ω𝑡1,𝑡2

) > 0, hence the process
𝑋⋆ ≔ 𝑋 ∣Ω𝑡1,𝑡2

satisϐies Assumption 1 with 𝑇⋆ = ∅ and thereby 𝜉⋆ has an absolutely
continuous law. The other cases follow analogously when the intersections apperar-
ing in the Theorem are non empty. When empty the results are trivial.

Notice that the previous result encompasses the standard absolute continuity
results in the aforementioned literature that hold when oper is a composition of
suprema, the parameter spaces are independent, and ℙ (Ω𝑡) = 0 for all 𝑡 ∈ 𝑇 . Even
in the special case where 𝑇 is a singleton, the result is a generalization of Theorem
2 of Lifshits [8] since it allows for non-Gaussianity, dependence between the factors
of the parameter space, as well as saddle-type functionals. The following corollary
focuses on this particular case and estimates the size of the potential jump disconti-
nuity by assuming the existence of an auxiliary ϐirst order stochastically dominated
random variable.
Corollary 1. Suppose that Assumption 1 is satisϔied. Furthermore suppose that 𝑇 =
{𝑐}, 𝜉 ≥ 𝜂 ℙ a.s. and that supp (𝜂) = [𝑐, +∞). Then, supp (𝜉) = [𝑐, +∞), its cdf is
absolutely continuous on (𝑐, +∞) and it may have a jump discontinuity of size at most
ℙ (𝜂 = 𝑐) at 𝑐.
Proof. It follows simply by Theorem 2 by noticing that the relation between 𝜉, 𝜂 im-
plies that supp (𝜉) is the closure of (𝑐, +∞) and also that ℙ (𝜉 = 𝑐) ≤ ℙ (𝜂 = 𝑐).

The latter corollary is to our view the most useful result for the establishment of
the limit theory for tests of stochastic spanning. In such frameworks, it is usually the
case that𝑋 is Gaussian, that it is derived as aweak limit of processes used in the deϐi-
ition of the test statistics while 𝜉 can be conveniently deϐined as a difference between
inϐima of 𝑋 deϐined on different regions of Λ with easily derivable properties.

3 Application: A Test for Stochastic Spanning of the Markowitz
Type

In this section we introduce the concept of stochastic spanning for the Markowitz
dominance rule. We ϐirst provide some order theoretic characterization of the con-
cept, and derive an analytical representation using a functional deϐined by recursive
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optimizations. We then deϐine a statistical testing procedure using the principle of
conditioning based on subsampling, and derive its ϐirst order limit theory, among
others via the use of the corollary 1.

3.1 Markowitz Stochastic Dominance and Stochastic Spanning

Given (Ω, ℱ, ℙ) suppose that 𝐹 denotes the cdf of some probability measure on ℝ𝑛

with ϐinite ϐirst moment. Let 𝐺(𝑧, 𝝀, 𝐹) be ∫ℝ𝑛 𝕀{𝜆𝑇 𝑟𝑢 ≤ 𝑧}𝑑𝐹(𝑢), i.e. the cdf of the
linear transformation ℝ𝑛 ∋ 𝑥 → 𝜆𝑇 𝑟𝑥 where 𝜆 assumes its values in 𝕃 which is a
closed non-empty subset of 𝕊 = {𝝀 ∈ ℝ𝑛

+ ∶1𝑇 𝑟𝜆= 1, }. Analogously let 𝕂 denote
some distinguished subcollection of 𝕃. In the context of ϐinancial econometrics, 𝐹
usually represents the joint distribution of 𝑛 asset returns, and 𝕊 the space of lin-
ear portfolios that can be constructed upon the previous, if shortselling is prohib-
ited. The parameter set 𝕃 represents the portfolio collection at hand, consisted for
example by, in some particular sense, economically feasible portfolios. We will de-
note generic elements of 𝕃 by 𝜆, 𝜅 etc. In order to deϐine the concepts of Markowitz
stochastic dominance and subsequently of spanning consider

𝒥(𝑧1, 𝑧2, 𝜆; 𝐹 ) ∶= ∫
𝑧2

𝑧1

𝐺 (𝑢, 𝜆, 𝐹) 𝑑𝑢. (1)

Notice that the existence of the mean of the underlying distribution implies that we
can allow the limits of integration above to assume extended values, hence we can
obtain the following deϐinition.

Deϐinition 1. 𝜅 weakly Markowitz-dominates 𝜆, denoted by 𝜅 ≽𝑀 𝜆, iff

Δ1 (𝑧, 𝜆, 𝜅, 𝐹) ≑ 𝒥 (−∞, 𝑧, 𝜅, 𝐹) − 𝒥 (−∞, 𝑧, 𝜆, 𝐹) ≤ 0 ∀𝑧 ∈ ℝ−

and
Δ2 (𝑧, 𝜆, 𝜅, 𝐹) ≑ 𝒥 (𝑧, +∞, 𝜅, 𝐹) − 𝒥 (𝑧, +∞, 𝜆, 𝐹) ≤ 0 ∀𝑧 ∈ ℝ++.

Levy and Levy [7] show that 𝜅 ≽𝑀 𝜆 iff the expected utility of 𝜅 is greater than or
equal to the expected utility of 𝜆 for any utility function in the set of increasing and,
concave on the negative part and convex on the positive part real functions (termed
as reverse S-shaped (at zero) utility functions).

It is easy to see that ≽𝑀 is a preorder on 𝕃 since it does not generally satisfy
antisymmetry due to the fact that ϐirst 𝐺(𝑢, 𝜅, 𝐹) = 𝐺(𝑢, 𝜆, 𝐹) does not imply that
𝜅 = 𝜆 and second, even if the inequalities appearing in the previous deϐinition are
satisϐied as equalities the relation 𝐺(⋅, 𝜅, 𝐹) = 𝐺(⋅, 𝜆, 𝐹) is not guaranteed. If the
inequalities above are satisϐied as equalities then the pair (𝜅, 𝜆) belongs to the gen-
erally non-trivial equivalence part of the preorder. Strict dominance 𝜅 ≻𝑀 𝜆 is the
irreϐlexive part of the preorder and it holds iff at least one of the previous inequalities
holds strictly for some 𝑧 ∈ ℝ. Finally notice that since it is possible for some 𝑧 ∈ ℝ at
least one of the inequalities deϐining the preorder to change orientation, the relation
is not generally total. When this is the case 𝜅 and 𝜆 are incomparable w.r.t. ≽𝑀 . The
following deϐinition and the subsequent lemma clarify the concept of spanning and
part of its structure.
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Deϐinition 2. 𝕂 Markowitz-spans 𝕃 (say 𝕂 ≽𝑀 𝕃with abuse of notation) iff for any
𝜆 ∈ 𝕃, ∃𝜅 ∈ 𝕂 ∶ 𝜅 ≽𝑀 𝜆. If 𝕂 = {𝜅} then 𝜅 is termed as Markowitz super-efϐicient.

It is easy to see that if the set of maximal elements of the preorder is non-empty,
i.e. the efϐicient set ℰ𝑀 of the preorder, then 𝕂 ⊇ ℰ𝑀 implies that 𝕂 ≽𝑀 𝕃. Since
𝕃 ≽𝑀 𝕃 the existence of a spanning set needs not the non-emptyness of the efϐicient
set. If 𝕂 ≽𝑀 𝕃 then the optimal choice of every agent with preferences represented
by a reverse S-shaped utility function lies nessecarily inside 𝕂. Hence if 𝕂 ⊂ 𝕃 and
spanning occurs, then the problem of optimal choice within 𝕃 can be reduced to the
analogous problem within 𝕂, and the latter could be less complex than the former.
Therefore the interest in the veriϐication of spanning can be motivated by reasons of
tractability to the problem of optimal choice in such frameworks. Furthermore, in
cases where ℰ𝑀 is non-empty, any spanning set can be perceived as an outer approx-
imation of the efϐicient set. Hence the notion becomes relevant to the problem of the
examination of the properties of the efϐicient set, which in most cases is also com-
plex. The above, naturally raise the following question. Given 𝕂 a non empty subset
of 𝕃, is 𝕂 ≽𝑀 𝕃? The following lemma provides with an analytical characterization
by means of nested optimizations.
Lemma 1. Suppose that 𝕂 is closed and there exists a 𝑧⋆ ∈ ℝ which is a continuity
point for 𝐺 (𝑧, 𝜅, 𝐹) for any 𝜅 ∈ 𝕂 and that sup𝜅∈𝕂 ∫𝐴(𝑧⋆) 𝐺 (𝑢, 𝜅, 𝐹) 𝑑𝑢 < +∞, where

𝐴 (𝑧⋆) = {(−∞, 𝑧⋆], 𝑧 ∈ ℝ−
[𝑧⋆, +∞), 𝑧 ∈ ℝ++

. Then 𝕂 ≽𝑀 𝕃 iff

𝜉 (𝐹) ≑ sup
𝜆∈𝕃

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) = 0, (2)

where 𝐴1 = ℝ−, 𝐴2 = ℝ++.

Proof. (⇐) If𝕂 ≽𝑀 𝕃 then for any𝜆 there exists some𝜅 such that sup𝑧≤0 Δ1 (𝑧, 𝜆, 𝜅, 𝐹) ≤
0 and sup𝑧>0 Δ2 (𝑧, 𝜆, 𝜅, 𝐹) ≤ 0 which implies that

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) ≤ 0. (3)

Supposewithout loss of generality that 𝑧⋆ ∈ ℝ−. Its existence implies that𝐺 (𝑧⋆, 𝜅, 𝐹 )
is continuousw.r.t. 𝜅 ∈ 𝕂.The condition sup𝜅∈𝕂 ∫𝑧⋆

−∞ 𝐺 (𝑢, 𝜅, 𝐹) 𝑑𝑢 < +∞ alongwith
theDominated Convergence Theorem imply that𝒥 (−∞, 𝑧⋆, 𝜅, 𝐹 ) is continuousw.r.t.
𝜅. This alongwith the compactness of𝕂 imply that arg min𝜅∈𝕂 𝒥 (−∞, 𝑧⋆, 𝜅, 𝐹 ) is non
empty. Let 𝜅⋆ be an element of the latter. Then, the ϐirst equality follows from that

𝜉 (𝐹) ≥ inf
𝜅∈𝕂

𝒥 (−∞, 𝑧, 𝜅, 𝐹) − 𝒥 (−∞, 𝑧, 𝜅⋆, 𝐹 ) = 0.

(⇒) Suppose now that 𝜉 (𝐹) = 0 and consider an arbitrary 𝜆. This implies that 3
holds and thereby there exists some element of 𝕂 for which Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) ≤ 0 for
every 𝑧 ∈ 𝐴𝑖, 𝑖 = 1, 2.

Notice that the existence of a common point of continuity for the underlying set
of cdf’s will be implied if the support of 𝐹 has no atomes. Furthermore, the case of
super-efϐiciency is trivially implied by the previous result via the commutativity of
max − sup.
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Corollary 2. Under the scope of the previous lemma, 𝜅 is Markowitz super-efϔicient iff

max
𝑖=1,2

sup
𝜆∈𝕃

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝝀, 𝜅, 𝐹) = 0.

The previous lemma cannot be directly used if 𝐹 is unknown and/or the opti-
mizations involved are infeasible as is usually the case. However in conjunction with
the principle of analogy it provides the backbone for the construction of statistical
inferential procedures for the question above.

3.2 An Asymptotically Exact and Consistent Statistical Test

We employ Lemma 1 in order to construct a statistical test for the question above.
If 𝕂 ≽𝑀 𝕃 is chosen as the null hypothesis, then in the framework of the aforemen-
tioned result, the hypothesis structure takes the following form:4

𝐇𝟎 ∶ 𝜉 (𝐹) = 0,
𝐇𝐚 ∶ 𝜉 (𝐹) > 0.

In order to proceed with the development of the decision process we extend our
framework as follows. Consider a process (𝑌𝑡)𝑡∈ℤ taking values inℝ𝑛. 𝑌𝑡𝑖

denotes the
𝑖𝑡ℎ element of 𝑌𝑡. The sample is the randomelement (𝑌𝑡)𝑡=1,…,𝑇 . In a ϐinancial frame-
work it usually represents returns of 𝑛 ϐinancial basis assets upon which portfolios
can be constructed via convex combinations. 𝐹 is the cdf of 𝑌0 and ̂𝐹𝑇 the empirical
cdf associated with the random element (𝑌𝑡)𝑡=1,…,𝑇 . Given the previous and using
the principle of analogy we consider the following random variable that will assume
the role of the test statistic

𝜉𝑇 ≑ 𝜉 (
√

𝑇 𝐹𝑇 ) = sup
𝜆∈𝕃

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝝀, 𝜅,
√

𝑇 𝐹𝑇 ) ,

which is obviously the empirical analog of 𝜉 (𝐹). Notice again that when 𝕂 is a sin-
gleton then the test statistic coincides with the one used in Arvanitis and Topaloglou
[2]. Now, the following assumption enables the derivation of the limit distribution of
𝜉𝑇 under 𝐇𝟎.5

Assumption 2. (𝑌𝑡)𝑡∈ℤ is strictly stationary and 𝑎-mixing with mixing coefϔicients 𝑎𝑡
such that 𝑎𝑇 = 𝑂(𝑇 −𝑎) for some 𝑎 > 1 + 2

𝛿 . 𝐹 is absolutely continuous with convex
support and such that for some 𝛿 > 0,

𝔼 ‖𝑌 0‖2+𝛿 < +∞.
Furthermore,

𝕍 = 𝔼 [(𝑌0 − 𝔼𝑌0) (𝑌0 − 𝔼𝑌0)𝑇 ] + 2
∞

∑
𝑡=1

𝔼 [(𝑌0 − 𝔼𝑌0) (𝑌𝑡 − 𝔼𝑌𝑡)𝑇 ]

is positive deϔinite.
4 Notice that corollary 2 implies that the hypotheses are, in the special case of superefϐiciency, as in

Arvanitis and Topaloglou [2].
5 (𝑥)+ = max {𝑥, 0} and (𝑥)− = min {𝑥, 0} and when 𝑥 is a vector they are to be interpreted in

the coordinatewise sense.
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Remark 3. The mixing part of the previous assumption is readily implied by concepts
such as geometric ergodicity which holds for many stationary models used in the con-
text of ϔinancial econometrics under parameter restrictions and restrictions on theprop-
erties of the innovation processes involved. Prominent examples are the strictly station-
ary versions of (possiblymultivariate) ARMA or several GARCHand stochastic volatility
type ofmodels (see for example Francq and Zacoian [4]). Counter-examples are station-
ary models that exhibit long memory, etc. The moment condition enables the validity
of a mixing CLT. It is readily established in models such as the ones mentioned above
usually in the form of stricter restrictions on the properties of building blocks and the
parameters of the processes involved. The condition on the deϔinition of 𝕍 can be easily
established via parameter restrictions on models such as the aforementioned. Notice
that due to the compactness of Λ, the previous imply that

sup
𝜆∈Λ

∫
+∞

−∞
√𝐺 (𝑢, 𝜆, 𝐹) (1 − 𝐺 (𝑢, 𝜆, 𝐹))𝑑𝑢 < +∞,

which is a uniform version of the analogous condition used in Horvath, Kokoszka, and
Zitikis [5]. It also implies that sup𝜅∈𝕂 ∫𝑧⋆

−∞ 𝐺 (𝑢, 𝜅, 𝐹) 𝑑𝑢 < +∞, hence it conforms
with the relevant restriction appearing in Lemma 1.

The derivation of the limit theory of 𝜉𝑇 under the null, is crucially based on par-
titions of the ”parameter sets” 𝕂 and 𝕃 and the approximation of the test statistic by
auxiliary random elements in the context of this hypothesis. Given those, the limit
theory can be readily based on standard results and the application of the Contin-
uous Mapping Theorem. We describe the partitioning and then present the result.
Consider

𝕃= = {𝜆 ∈ 𝕃 ∶ inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝝀, 𝜅, 𝐹) = 0} ,

and notice that under 𝐇𝟎 it is non-empty. Furthermore for an arbitrary 𝜆 consider

𝕂⩽ (𝜆) = {𝜅 ∈ 𝐾 ∶ max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝝀, 𝜅, 𝐹) ≤ 0} .

Again for any 𝜆 and under 𝐇𝟎, 𝕂⩽ (𝜆) is also non empty. In what follows ⇝ denotes
convergence in distribution.

Proposition 1. Suppose that𝕂 is closed, Assumption 2 holds and that 𝐇𝟎 is true. Then
as 𝑇 → ∞

𝜉𝑇 ⇝ 𝜉∞,
where

𝜉∞ ≑ sup
𝜆∈𝕃=

inf
𝜅∈𝕂≤(𝜆)

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝝀, 𝜅, 𝒢𝐹 ) ,

and𝒢𝐹 is a centeredGaussianprocesswith covariancekernel givenbyCov(𝒢𝐹 (𝑥), 𝒢𝐹 (𝑦)) =
∑𝑡∈ℤ Cov (𝕀𝑋0≤𝑥, 𝕀𝑋𝑡≤𝑦) andℙ almost surely uniformly continuous sample paths de-
ϐined on ℝ𝑛.6

6 see Theorem 7.3 of Rio [13].
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Proof. The result follows directly from Lemmata 3, 4 and 5 in the Appendix.
In the case of superefϐiciency we obtain the limit distribution of 𝜉𝑇 directly from

above in the following corollary. This is an improvement of the relevant results in Ar-
vanitis andTopaloglou [2]whoonly derive anupper bound that leads to an asymptot-
ically conservative test based on block-bootstrap. Hence our present results can also
beused toprovidewith anasymptotic improvementof theArvanitis andTopaloglou[2]
testing procedure.

Corollary 3. In the case of super-efϔiciency

𝜉∞ ≑ max
𝑖=1,2

sup
𝜆∈𝕃=

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 ) .

Notice that one cannot directly use the results of the previous lemma, in order
to construct an asymptotic decision procedure since 𝜉∞ depends on the generally
unknown 𝐹 . However, a feasible decision rule can be established by the use of some
resampling procedure. We consider resampling using the method of subsampling,
exactly as in Linton, Post and Wang [9].

Algorithm. The testing procedure consists of the following steps:

1. Evaluate 𝜉𝑇 at the original sample value.

2. For0 < 𝑏𝑇 ≤ 𝑇 generate subsamples from theoriginal observations (𝑌𝑖)𝑖=𝑡,…𝑡+𝑏𝑇 −1
for all 𝑡 = 1, 2, … , 𝑇 − 𝑏𝑇 + 1.

3. Evaluate the test statistic on each subsample thereby obtaining 𝜉𝑇 ,𝑏𝑇 ,𝑡 for all 𝑡 =
1, 2, … , 𝑇 − 𝑏𝑇 + 1.

4. Approximate the cdf of theasymptotic distributionunder thenull of 𝜉𝑇 by 𝑠𝑇 ,𝑏(𝑦) =
1

𝑇 −𝑏𝑇 +1 ∑𝑇 −𝑏𝑇 +1
𝑡=1 1 (𝜉𝑇 ,𝑏𝑇 ,𝑡 ≤ 𝑦) and calculate

𝑞𝑇 ,𝑏𝑇
(1 − 𝛼) = inf

𝑦
{𝑠𝑇 ,𝑏(𝑦) ≥ 1 − 𝛼} .

5. Reject 𝐇𝟎 iff 𝜉𝑇 > 𝑞𝑇 ,𝑏𝑇
(1 − 𝛼).

Wederive asymptotic exactness and consistency for this testing procedure by uti-
lizing Theorem 3.5.1.i of Politis et al. [11]. In order to do so we ϐirst use the following
standard assumption that restricts the asymptotic behaviour of 𝑏𝑇 .

Assumption 3. Suppose that (𝑏𝑇 ), possibly depending on (𝑌𝑡)𝑡=1,…,𝑇 , satisϐies

ℙ (𝑙𝑇 ≤ 𝑏𝑇 ≤ 𝑢𝑇 ) → 1

where (𝑙𝑇 ) and (𝑢𝑇 ) are real sequences such that 1 ≤ 𝑙𝑇 ≤ 𝑢𝑇 for all 𝑇 , 𝑙𝑇 → ∞ and
𝑢𝑇
𝑇 → 0 as 𝑇 → ∞.

The Politis et al. [11] 3.5.1.i Theorem also requires continuity of the limit cdf at
the relevant quantile. In order to achieve this we use the following assumption that
restricts the form of 𝕃 as a simplicial complex.
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Assumption 4. 𝕃 is a simplicial complex comprised of a ϔinite number of subsimplices
of 𝕊 = {𝜆 ∈ ℝ𝑛

+ ∶ 𝐞′𝜆= 1, }. It contains all the extreme points of 𝕊. 𝕂 contains
0 ≤ 𝑚 < 𝑛 extreme points of 𝕊.

Theassumption generalizes the ”parameter space” structure compared toArvani-
tis et al. [1], where 𝕂 is simply a strict subcomplex of 𝕃. The ϐirst part of the assump-
tion is trivially satisϐied when 𝕃 = 𝕊 which is usually the case in most applications.
Furthermore, mainly due to reasons of computational facilitation, 𝕂 is usually also
a subcomplex of 𝕃 something that implies that 𝑚 < 𝑛 for in the opposite case we
would have that 𝕂 = 𝕃, whence the null hypothesis would be trivially satisϐied. As
we show in the auxiliary results in the appendix, proposition 1 implies parts 1 and 2
of assumption 1. The previous assumption along with proposition 1 imply that the
third part of the particular assumption is satisϐied with 𝑇 = {0}, and ℙ(Ω0) ≤ 𝑚𝑛 .
Theorem 2 then implies that the cdf of the null limit distribution is (absolutely) con-
tinuous at the quantile evaluated on 1−𝛼when 1−𝛼 > 𝑚𝑛 . This is essentially the part
of the asymptotic exactness derivation for which the main theorem 2 (actually Corol-
lary 1) becomes useful. Given this we obtain the folowing result that establishes the
required limit theory.

Theorem 4. Suppose that 𝕂 is closed, Assumptions 2, 3 and 4 hold and that 𝛼 < 𝑛−𝑚𝑛 .
For the testing procedure described in 3.2 we have that

1. If 𝐇𝟎 is true then
lim

𝑇 →∞
ℙ (𝜉𝑇 > 𝑞𝑇 ,𝑏𝑇

(1 − 𝛼)) = 𝛼.

2. If 𝐇𝐚 is true then
lim

𝑇 →∞
ℙ (𝜉𝑇 > 𝑞𝑇 ,𝑏𝑇

(1 − 𝛼)) = 1.

Proof. The ϐirst result follows by a direct application of Theorem 3.5.1.i of Politis et
al. [11] enabled by the results of Lemma 6. For the second result notice that if 𝐇𝐚 is
true then the set

𝕃> = {𝜆 ∈ 𝕃 ∶ inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) > 0}

is non empty. Then we have that

𝜉𝑇 ≥ 𝜉⋆
𝑇 ≑

√
𝑇 sup

𝜆∈𝕃>
inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹𝑇 ) ,

and due to Lemma 2 we have that

sup
𝜆∈𝕃>

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹𝑇 ) ⇝ sup
𝜆∈𝕃>

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹)

which implies that under 𝐇𝐚, 𝜉⋆
𝑇 diverges to +∞ in probability. The result follows.
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The restriction on the signiϐicance level is in usual applications non-binding. For
examplewhen𝕂 is a singleton, i.e. when the test is applied for super-efϐiciency, then it
implies that𝛼 < 1/2 something that is most usually satisϐied. Notice that the restric-
tion becomes closer to binding the more extreme points exist inside 𝕂. An example
of an extreme case, is when 𝑛 is large,𝕂 is ϐinite and contains 𝑛−1 extreme points. In
such cases the result leads to subsampling tests that tend to asymptotically favor the
spanning null. Such cases could be partially handled presently, by breaking up 𝕂 is
”smaller pieces” and iterating the testing procedurew.r.t. them. For example the pro-
cedure could be applied for any subset of 𝕂 that contains 𝑚 points, for 𝑚 sufϐiciently
small in order to obtain a meaningful signiϐicance level. If for some subset, spanning
cannot be rejected, then it can be infered that spanning cannot be rejected for the
initial 𝕂, since supersets of spanning sets are due to Deϐinition 2 spanning sets.

4 Conclusions

We have derived properties of the cdf of a random variable deϐined by recursive op-
timizations applied on a continuous stochastic process w.r.t. possibly dependent pa-
rameter spaces. Those properties extend previous results and can be useful for the
derivation of the limit theory of tests for stochastic spanning w.r.t. preorders de-
ϐined by stochastic dominance rules. As an illustration we have deϐined the concept
of spanning, constructed an analogous test based on subsampling, and derived the
ϐirst order limit theory for the case of the Markowitz stochastic dominance.

The scope of the present paper does not contain the issue of the numerical imple-
mentation of the test. The optimizations involved on the computation of the statistic
aswell as the critical values are not trivial. Given the representation of theMarkowitz
dominance by the set of the reverse S-shaped utilities, we conjecture that there ex-
ists a representation of the test statistic involving this class of utilities that is similar
to the representation by utilities of the spanning test for the second order stochastic
dominance appearing in Proposition 3.2 of Arvanitis, Hallam and Post [1]. If this is
true it is possible that a feasible numerical algorithm can be designed via the use of
empirical supports and piecewise linear approximations of the aforementioned util-
ities deϐined by a ϐinite number of parameters in the spirit of Section 7 of the afore-
mentioned paper.

The preorder used is simply illustrative. Analogous results can be derived for
other forms of stochastic dominance rules, such as ϐirst or third order, or Prospect
stochastic dominance. We leave issues such as the derivation of such results, and/or
the numerical implementation of testing procedures such as the above for future re-
search.
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Appendix-Auxiliary Lemmata

The following are auxiliary lemmata used for the derivation of the proofs of Proposi-
tion 1 and Theorem 4.

Lemma 2. Under Assumption 2

( Δ1 (𝑧, 𝜆, 𝜅,
√

𝑇 (𝐹𝑇 − 𝐹))
Δ2 (𝑧, 𝜆, 𝜅,

√
𝑇 (𝐹𝑇 − 𝐹)) ) ⇝ ( Δ1 (𝑧, 𝜆, 𝜅, 𝒢𝐹 )

Δ2 (𝑧, 𝜆, 𝜅, 𝒢𝐹 ) )

as random elements deϔined on the space of bounded functions on 𝕃 × 𝕂 × ℝ equiped
with the sup-norm.

Proof. Given the compactness of 𝕂 × 𝕃, the proof follows by a trivial extension of the
proof of Lemma AL.2 of Arvanitis and Topaloglou [2].

Lemma 3. Under Assumption 2

sup
𝕃=

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) ⇝ sup
𝕃=

inf
𝕂≤(𝜆)

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 ) .

Proof. Consider 𝕂> (𝜆) = {𝜅 ∈ 𝕂 ∶ max𝑖=1,2 sup𝑧∈𝐴𝑖
Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) > 0}. For any

𝜆 ∈ 𝕃= for which 𝕂> (𝜆) ≠ ∅

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 )

= min { inf
𝕂≤(𝜆)

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 (𝐹𝑇 − 𝐹)) , 𝑅𝑇 (𝜆)}

where 𝑅𝑇 (𝜆) = max𝑖=1,2 sup𝑧∈𝐴𝑖
Δ𝑖 (𝑧, 𝜆, 𝜅,

√
𝑇 (𝐹𝑇 − 𝐹)) for any element of the

underlying probability space for which inf𝕂>(𝜆) max𝑖=1,2 sup𝑧∈𝐴𝑖
Δ𝑖 (𝑧, 𝜆, 𝜅,

√
𝑇 𝐹𝑇 )

is achievedon theboundaryof𝕂≤ (𝜆)or𝑅𝑇 (𝜆) = max𝑖=1,2 sup𝑧∈𝐴𝑖
Δ𝑖 (𝑧, 𝜆, 𝜅𝑇 ,

√
𝑇 𝐹𝑇 )

for 𝜅𝑇 measurable and inside 𝕂> (𝜆). Using a Skorokhod representation argument
(see inter alia Theorem 1.10.4 of van der Vaart and Wellner [16]), for any such el-
ement of the underlying (or potentially enlarged) probability space, the sequence
(𝑅𝑇 (𝜆)) can be partitioned to subsequences which (if any) nessecarily diverge to
+∞, and to subsequences which (if any) converge to the limit of

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 (𝐹𝑇 − 𝐹))

evaluated on the boundary of 𝕂≤ (𝜆). In any case the minimum above weakly con-
verges to

inf
𝕂≤(𝜆)

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 )

and then the CMT and Lemma 2 establish the required result.
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Lemma 4. For 𝜖𝑇 → 0,
√

𝑇 𝜖𝑇 → +∞, as 𝑇 → ∞, consider the set

𝕃<
𝜖𝑇

= {𝜆 ∶ inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) ≤ −𝜖𝑇 }

and deϔine the random variable

𝜉𝜖
𝑇 = sup

𝕃=∪𝕃<𝜖𝑇

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) .

Then under Assumption 1 and if the null hypothesis is true, for any 𝜀 > 0
lim

𝑇 →∞
ℙ (𝜉𝑇 − 𝜉𝜖

𝑇 > 𝜀) = 0.

Proof. For an arbitrary 𝜆 and 0 < 𝛿 < 1 consider the subset of 𝕂≤ (𝜆)

𝕂≤ (𝜆)𝛿𝜖𝑇 = {𝜅 ∈ 𝐾 ∶ max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) ≤ −𝛿𝜖𝑇 } .

Furthermore deϐine

𝕃< = {𝜆 ∈ 𝕃 ∶ inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝐹) < 0}

and notice that under the null, 𝕃 = 𝕃= ∪ 𝕃<. Pick 𝜀 > 0 as before and under the null
hypothesis consider

ℙ (𝜉𝑇 − 𝜉𝜖
𝑇 > 𝜀) = ℙ (max {𝜉𝜖

𝑇 , sup
𝕃<−𝕃<𝜖𝑇

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 )} − 𝜉𝜖
𝑇 > 𝜀)

≤ ℙ (𝜉𝜖
𝑇 < sup

𝕃<−𝕃<𝜖𝑇

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ))

≤ ℙ (sup
𝕃=

inf
𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) < sup
𝕃<

sup
𝕂≤(𝜆)𝛿𝜖𝕋

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 )) .

(4)
From Lemmas 2, 3 the lhs of the inequality inside the previous probability weakly
converges to sup𝕃= inf𝕂≤(𝜆) max𝑖=1,2 sup𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, ℬ ∘ 𝐹). For the rhs we ob-
tain
sup
𝕃<

sup
𝕂≤(𝜆)𝛿𝜖𝕋

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) ≤ sup
𝕃<

sup
𝕂≤(𝜆)𝛿𝜖𝕋

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 (𝐹𝑇 − 𝐹))

+ sup
𝕃<

sup
𝕂≤(𝜆)𝛿𝜖𝕋

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹) .

Due to Lemma 2 and the CMT the ϐirst term on the rhs of the last display weakly
converges to

sup
𝕃<

sup
𝕂≤(𝜆)

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 )

and the second diverges to −∞ due to the construction of 𝕂≤ (𝜆)𝛿𝜖𝑇 and the proper-
ties of 𝜖𝑇 . Hence the probability in 4 converges to zero.
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Lemma 5. Under Assumption 2 and for 𝜖𝑇 , 𝕃<
𝜖𝑇

, 𝜉𝜖
𝑇 as in Lemma 4

∣ℙ (𝜉𝜖
𝑇 ≤ 𝑦) − ℙ (sup

𝕃=
inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) ≤ 𝑦)∣ → 0.

Proof. For any 𝑦 ∈ ℝ we have that

lim sup
𝑇 →∞

∣ℙ (𝜉𝜖
𝑇 ≤ 𝑦) − ℙ (sup

𝕃=
inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) ≤ 𝑦)∣

≤ lim sup
𝑇 →∞

ℙ (sup
𝕃<𝜖𝑇

inf
𝜅∈𝕂

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 ) > 𝑦) ,

due to the elementary inequality |ℙ (max(𝑌 , 𝑍) ≤ 𝑦) − ℙ (𝑌 ≤ 𝑦)| ≤ ℙ (𝑍 > 𝑦). Now,
the previous limsup is less than or equal

lim sup
𝑇 →∞

ℙ (sup
𝕃<𝜖𝑇

max
𝑖=1,2

sup
𝑧∈𝐴𝑖

Δ𝑖 (𝑧, 𝜆, 𝜅,
√

𝑇 (𝐹𝑇 − 𝐹)) > 𝑦 +
√

𝑇 𝜖𝑇 )

and the latter is zero due to Lemma 2 and the assumed properties of 𝜖𝑇 as deϐined in
the statement of Lemma 4.

Lemma 6. Under Assumptions 2 and 4 the distribution of 𝜉∞has support [0, +∞), its
cdf is absolutely continuous on (0, +∞) and it may have a jump discontinuity of size at
most 𝑚𝑛 at zero.

Proof. The result stems from Corollary 1 as long as the requirements of Assumption
1 are satisϐied and an appropriately bounding 𝜂 is found. First notice that

𝔼 sup
Λ

‖𝑋𝜆‖2 = sup
𝜆∈𝕃=

sup
𝜅∈𝕂≤(𝜆)

sup
𝑧∈𝐴𝑖

max
𝑖=1,2

Δ2
𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 )

≤ ∑
𝑖=1,2

𝔼 sup
𝜆∈𝕃

sup
𝜅∈𝕂

sup
𝑧∈𝐴𝑖

Δ2
𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 )

which is less than or equal to a positive constant times

𝔼 ( sup
𝜆∈𝕃,𝑧<0

∫
𝑧

−∞
(𝑧 − 𝜆𝑇 𝑟𝑢)+ 𝑑𝒢𝐹 (𝑢))

2

+𝔼 ( sup
𝜆∈𝕃,𝑧<0

∫
𝑧

−∞
− (𝑧 − 𝜆𝑇 𝑟𝑢)+ 𝑑𝒢𝐹 (𝑢))

2

+𝔼 ( sup
𝜆∈𝕃,𝑧≥0

∫
+∞

𝑧
(𝑧 − 𝜆𝑇 𝑟𝑢)+ 𝑑𝒢𝐹 (𝑢))

2

+𝔼 ( sup
𝜆∈𝕃,𝑧≥0

∫
+∞

𝑧
− (𝑧 − 𝜆𝑇 𝑟𝑢)+ 𝑑𝒢𝐹 (𝑢))

2

.

Due to zero mean Gaussianity of the processes involved, the fact that the packing
numbers ofΛ×ℝ are bounded by a polynomial w.r.t. the inverted radii, Lemma A.2.7
of Van Der Vaart and Wellner [16] implies the subexponentiality of the distributions
of the suprema above, and thereby the existence of their secondmoments. Hence hy-
pothesis 1 of Assumption 1 holds. Using the discussion in Nualart [10], immediately
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after the proof of Proposition 2.1.11 (p. 109) we have that hypothesis 2 of Assump-
tion 1 also holds due to Assumption 2. Notice now that due to the convexity of the
sets

{𝑦 ∈ supp𝐹 ∶ 𝜆𝑇 𝑦 ≥ 𝑥} , {𝑦 ∈ supp𝐹 ∶ 𝜆𝑇 𝑦 < 𝑥}
for all 𝜆 ∈ Λ and 𝑥 we have that excluding ℙ-negligible events Δ𝑖 (𝑧, 𝜆, 𝜅, 𝒢𝐹 ) is zero
onlywhen𝜅 = 𝜆 and it is atmost only then that 𝜉∞ has degenerate variance. Thereby
𝑇 = {0} andwewill try to obtain a lower bound for 𝜉∞. Wehave that due toDavidson
and Duclos [3] Equation (2), Arvanitis and Topaloglou [2] Lemma AL.1 and due to
Assumption 2

𝜉𝑇 ≥ sup
𝜆∈𝕃

inf
𝜅∈𝕂

max
𝑖

Δ𝑖 (0, 𝜆, 𝜅,
√

𝑇 𝐹𝑇 )

≥ 1
2

1√
𝑇

(sup
𝜆∈𝕃

𝜆𝑇 𝑟 − sup
𝜅∈𝕂

𝜅𝑇 𝑟)
𝑇

∑
𝑖=1

(𝑌𝑖 − 𝔼 (𝑌0))

⇝ 1
2 sup

𝜆∈𝕃
𝜆𝑇 𝑟𝑍 − 1

2 sup
𝜅∈𝕂

𝜅𝑇 𝑟𝑍

where 𝑍 ∼ 𝑁 (0𝑛×1, 𝕍). Hence

𝜉∞ ≥ 𝜂 ≑ sup
𝜆∈𝕃

𝜆𝑇 𝑟𝑍 − sup
𝜅∈𝕂

𝜅𝑇 𝑟𝑍 ≥ 0.

The previous inequality implies the applicability of Corollary 1 for 𝑐 = 0. We ob-
tain the result by estimating an upper bound for ℙ (𝜂 = 0). Due to Assumption 2 and
the non-degeneracy of 𝕍 the latter probability equals exactly the probability that the
minimum of the random vector 𝑍 occurs at a coordinate that corresponds to a com-
mon extreme point for 𝕃 and 𝕂. Using Theorem 2 in chapter 3 (p. 37) of Sidak et al.
[17] by (in their notation) letting 𝑝 be the density of the 𝑛-variate standard normal
distribution it is easy to see that

ℙ (𝜂 = 0) ≤ 𝑚
𝑛 .
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