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Abstract

We derive a limit theorem for appropriately centered and scaled martingale trans-
forms Z?Zl &,V to mixed-stable limits when (&, ) is an iid sequence in the domain of
attraction of an «-stable distribution where e € (0, 2]. Using the Principle of Condi-
tioning we recover and extend known results in the literature while imposing weaker
conditions. The results are particularly useful in determining the limit theory of the
Gaussian QMLE in conditionally heteroskedastic models when the squared innova-
tions are heavy-tailed. We provide the framework for the QMLE limit theory which in
the ergodic case is based on the stochastic recurrence approach used in the relevant
literature and we furthermore allow for the parameter vector to lie on the boundary of
the parameter space. Then we show that the QMLE weakly converges to an a-stable
distribution when o € [1, 2] and is inconsistent when o« < 1. We relax the assump-
tion on ergodicity and provide analogous results for the QMLE in the non-stationary
GARCH(1,1) case. We investigate the limit theory of the usual Wald statistic and pro-
vide with the asymptotic exactness and consistency of the relevant testing procedure
based on subsampling. In the context of the stationary GARCH(1,1) we construct a
testing procedure for weak stationarity and derive its asymptotic properties and nu-
merically evaluate its performance.
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1 Introduction

It is empirically known that distributions of financial asset returns exhibit fat tail behavior.
Modeling the conditional moments of such processes using GARCH-type models has only
partly explained this behavior and therefore considering heavy-tailed distributions for the
innovation process is of particular interest for applications in finance. The use of the Gaus-
sian QMLE for the parameter estimation of such models is very convenient as it has been
shown to be consistent and asymptotically normal under mild conditions and thus reduc-
ing the risk of model misspecification. However, asymptotic normality with the usual \/n
rate breaks down when the fourth moment of the error process is infinite and diverges in
a slowly varying fashion.

In the relative literature, Hall and Yao [18] obtained the asymptotic distribution of the
QMLE in GARCH models by examining the asymptotic behavior of sums of the form Z” &V
where (¢;)._ isaniid. sequence and (V)i6 is a stationary ergodic sequence of essen—
tially bounded random variables and the distribution of &, lies in the domain of attraction
of an a-stable distribution (say S,,) with « € [1,2]. Mikosch and Straumann [30] derive a
limit theorem for martingale transforms when &, isin S, for « € (1,2), and @ = 1 under
symmetry. They assume E|V|**° < oo and impose a mixing condition for V. Then they
use the result to derive the limit theory of the QMLE in GARCH(1, 1). Surgailis [40] derives
an analogous limit theorem using the Principle of Conditioning and uses characteristic
function expansions for distributions (see Ibragimov [25]) in the domain of normal attrac-
tion of a-stable distributions for o € (1,2). He assumes E|V;|*™® < oo and stationarity
and ergodicity for (Vi)iew' Jakubowski [22] shows that Surgailis’ result can be obtained by
assuming E|V;|* < oo instead.

In this paper we extend the previous results and provide weaker conditions for a limit
theorem for martingale transforms with mixed a-stable limit. We use Surgailis’ approach
to recover existing results with a € (0, 2] while allowing for non-normal domains of attrac-
tion. The use of the Principle of Conditioning and the characteristic function expansions
provided by Ibragimov and Linnik [25] for the cases where a € (0,1) U (1, 2] and Aaron-
son and Denker [1] for the case where a = 1 enables us to impose relatively weak condi-
tions on the sequence of Vs in order to obtain as limits stable distributions. Then the rate

of convergence will be nl/arn where r,, depends on the behavior of the slowly varying
function that appearsin the characterlstlc function expansion of ; and co-represents with
« the tail behavior of the distribution.

Next, we provide the framework for the limit theory of the QMLE in conditionally het-
eroskedastic models that relies on Straumann’s [38] stochastic recurrence equation (SRE)
approach while allowing for distributions of the innovation process in the domain of at-
traction of an a-stable distribution. In doing so, we allow the true parameter vector to lie
on the boundary of the parameter space motivated by the work of Andrews [4]. We derive
the weak limit of the QMLE to an a-stable distribution when « € [1, 2] and inconsistency
when a < 1.

Finally, we determine the limit behavior of the classical self-normalized Wald test when
a € (1,2] by showing the joint convergence of the QMLE in the spirit of Hall and Yao

2



[18] and design a testing procedure for the existence of the unconditional variance in the
GARCH(1,1) model using the method of subsampling (see Politis et al. [34]). Then we eval-
uate the performance of the previous testing procedure by means of Monte Carlo simula-
tions.

The structure of the remaining paper is organized as follows. In the next section, the
martingale limit theorem (MLT) is derived for martingale transforms with mixed a-stable
limits. In the third section we provide the framework and the limit theory for the QMLE
using the MLT. In the fourth section we investigate the limit theory of the usual Wald test
and provide an example testing procedure and discuss its theoretical properties and its
numerical performance.

2 A MLT with Mixed Stable Limits

Our framework is constructed upon a complete probability space (2, G,P). In what follows
the abbreviation P a.s. stands for an almost sure argument with respect to the underlying
measure. We denote convergence in distribution of sequences of random elements with

~», exponential almost sure convergence w.r.t. P with e—>as and the Painleve-Kuratowski
limit of sequences of sets with PK — lim. All limits are considered as n — oo unless oth-
erwise specified. We are interested in the asymptotic behavior of the properly translated
and scaled partial sums of a process of the form (@Vi)ierhich due to the properties of
the constituent processes (;)._, and (V). can be abusively perceived as a multiplica-
tive “martingale transform”! This transform is directly related to the form of the Quasi-
Likelihood function in GARCH-type models. The following assumptions describe those
properties. The first one specifies the first factor as an iid sequence with stationary dis-
tribution closely related to an a-stable law.

Assumption 1. (¢, )., is aniid sequence of random variables, and the log-characteristic func-
tion of the distribution of &, has the following local representation around zero:

yit — c[t|*h([t| ™) (1 — iBsgn(t) tan (7)) ,a € (0,1)U(1,2] M
(y+ H(|t| ™)) it = cltla(lt] ") (1 — 2CiZsgn(t)) o =1

where h is a slowly varying function at infinity associated with the tail behavior of the cdf, say
A

F,oféyand H(\) = J;) HwQ (1—F(x)—F(— dm—f Zzh z)(28er™! + k(z))dx

where k(x) — 0asxz — oo (see Theorems 1 and 2 oanronson and Denker [1]). Also, 5 €

[—1,1], c € R, , v € Rand —C is the Euler-Mascheroni constant.

Remark 1. The representations appearing in (1) are equivalent to that the distribution of
&, lies in the domain of attraction of an a-stable law, due to Theorem 2.6.5 of Ibragimov
and Linnik [25] for & # 1 and Theorem 2 of Aaronson and Denker [1] for a = 1, i.e.

"The term is in some cases abusive due to the non-existence of appropriate moments for any or both the
random variables appearing in the product. We adopt it in the spirit of Mikosch and Straumann [30].
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when appropriately translated and scaled, the partial sums of (£;)?_; weakly converge to
a-stable random variables (see inter alia Remark 2 of the latter paper). This law has in-
dex of stability equal to «, skewness parameter equal to 5 and scale parameter equal to
c. The parameter vy appearing in the local representations corresponds to location and it
is equal to E [¢;] when « > 1. The aforementioned Tauberian type theorems imply that
« and the slowly varying function h represent the asymptotic behavior of the tails of the
distribution of £;. Hence they determine the form of the scaling in order to obtain the
aforementioned weak limit. More precisely the scaling factor is of the form m where
(nr,) Y =inf { > 0 : 2*h(z~!) = 1/n} which implies that r,, = h*(n) for all n where
h* is also slowly varying, i.e. r,, defines a slowly varying sequence (see Paragraph 2.2 of
Ibragimov and Linnik [25] and Paragraph 1.9 of Bingham et al. [8]). When h converges
then the distribution of ; is said to belong to the domain of normal attraction to the rele-
vant a-stable law. Notice that when a < 2 the possibility of h(x) — 0as x — +oc is also
allowed, something that permits the consideration of cases where E |£;| ¢ < 400 which
is precisely true if and only if f+°° M=) 12 converges, e.g. h(z) = log ?(x). H is closely
related to the truncated a-moment of &, (see Remark 1 of Aaronson and Denker [1]). The
location parameter alone when « # 1 and all the aforementioned parameters along with
H and C' when a = 1 determine the form of the translating constants. Furthermore, when
a = 2 we have that & is the second truncated moment of &, i.e. h(z) = sz 22dF (z).

The second assumption concerns the asymptotic behavior of the partial sums of the
properly transformed scaling process, as those appear inside a product of conditional ex-
pectations of the terms that appear in the local representation of the characteristic func-
tion of the partial sum of the martingale transform, when analogously scaled and trans-
lated.

Assumption 2. (V). is a non trivial R-valued sequence of random elements. For the filtra-
tion (F'y)en With F, = 0 (§,V,,&1Vi_1, &9V o, ...), & isindependent of F,_, and V, is
measurable w.r.t. ,_,. Furthermore

1 n
-3 |Vil* - v, Pas. 2)
nz’zl
1 n
= sgn(V)|Vi|® = v, Pas. (3)
nizl

where v, , v, are random variables assuming non-zero values P a.s.

Remark 2. Eq. (2) Assumption 2 along with uniform integrability, implies that

lim__  lim, , 4 ?:1 [V.|*1{|V,] < ¢} = v, P as. and analogously for 3. Equiva-
lently, lim__,  lim,, , & ?:1 |V;|*1{|V;| > €} = 0 P a.s. Those results can be the basis

of useful truncation arguments for the proof of the main result of the current section.

Our results do not require the existence of higher than & moment for the scaling pro-
cess in the case where this is stationary. Hence, in this respect they generalize the analo-
gous results of Hall and Yao [18], Mikosch and Straumann [30], and Surgailis [40]. However
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it presently seems that we cannot easily get rid of the following assumption which posits
the existence of the « moment.

Assumption 3. Assumethat (V,),.,, is strictly stationary and let I denote its invariant o-field.
Furthermore
E|V;|* < oo. (4)

Remark 3. Note that (2) and (3) can be implied in a variety of cases, notably:

« If Assumption 3 holds then (2) and (3) hold with v, = E [|V;|¢|I]and v, = E[|V;|* sgn(V;)|]]
respectively, as Doob’s Theorem applies (see Davidson [11] p. 196).

- Ifin addition to the above (V}),., is ergodic then (2) and (3) hold with v, = E [|V;]¢]
and v, = E[|V;|* sgn(V;)] respectively as Birkhoff’s LLN applies.

« Suppose that V, — v, P a.s. ast — oo where v is a random variable that is not
zero with P probability 1. Then, by the Cesaro mean theorem (2) and (3) hold with
v, = |v|* and v, = |v|*sgn(v) respectively.

The next assumption essentially bounds the rate at which the running maximum of the
absolute scaling process may diverge to infinity, by a rate closely related to the rate that we
will acquire for the weak convergence of the partial sums of the martingale transform. This
isamong others useful for the local representation of the characteristic function appearing
in equation 1, to be asymptotically usable for the derivation of the results, or the facilitation
of several truncation arguments in the proof of the main theorem below.

Assumption 4. Assume that forany M > 0

[P(max |VZ|>M7“7%n%> — 0. (5)

1<i<n

Remark 4. Assumption 4 implies that P [(max V) "It/ et/ < M‘l] — 0forany M >
0. Since this is true for a general M, there exists a sequence M, — 0 such that 5 still holds
if we replace M by M,, (see e.g. Lemma 22 of chapter 7 in Pollard [35]). The latter implies
that (max |V;|)"1n'/ry/* — oo in P probability.

The following lemma provides a list of dependent, but sufficient conditions for 4. Es-
sentially all of them work via the appropriate comparison of the tail behavior of the dis-
tribution of |V;| with the one of [¢,|. Other sufficient conditions can be established by
restrictions on the dependence structure of the scaling process in conjunction with the
existence of the a moment of the scaling process, in the stationary case.

Lemma 1. Each of the following suffices for Assumption 4:

1. Assumptions 2 and 3 along with

P (|Vp| > x) = o (P(|&y| > z)) asz — oc. (6)



2. Assumptions 1,2, and 3 along with I |£,|* = oc.

3. Assumptions 1, 2, and 3 hold and |V, |**% < oo for some § > 0.

Proof. 1. Wehavethatfor M > 0, P (max, ., |V;| > Mrin®) = P(Uj, {|V;| > Mrin# }) <
> P (M| > Mr,%né) = nP (|V1| > Mn%n%) due to stationarity. Now, since P(|£,| >
x) = aterolp(y) asz — oo for some non negative constants ¢, , ¢, (see Theorem 2.6.1

of [25]) the latter equals n%"}jﬂh(Mrﬁn%)o(l) = o(1). 2. Observe that E|V;|* =

BT at P[] > t)dt < oo while El&|* = [ at*'P(|&] > t)dt = oo, which im-
plies Condition 6. 3. Analogously to 2. the result follows by using the fact that E|¢, [*+° =
S (@40t IP(|& | > t)dt = oo

[

Remark 5. Notice thatif h (z) — ¢ > 0 orlimsup h (x) = 0o as x — oo, then Assumption
3implies Assumption 5 (see the following lemma). If & () — 0then (6) would be implied if
E|V;|*"® < oo forsome § > 0. In the case where the previous does not hold for any § > 0,
whence P (|V,| > x) = %ﬂ“’(”h*(m) for an analogous pair of constants and ~* a slowly

varying function such that 2* (z) — 0, (6) would be implied by ’;:(%) — 0asz — oo. The

fact that Assumption 4 can hold in cases where E|V;|**® = 400 forany § > 0, essentially
allows the extension of analogous results (see for example Mikosch and Straumann [30],
or Surgailis [40], or Hall and Yao [18]) without the need to impose strict moment existence
conditions.

The following assumption posits the existence of an auxiliary regularly varying function
that is used for asymptotic comparison with the asymptotic behavior of 4. Notice that
essentially the existence of such a function, permits the non requirement of the existence
for higher than the a moment for the scaling process.

Assumption 5. Forany e > 0 and some increasing regularly varying function f : (0,00) —
(0,00),

) 1 h(nl/o‘r}/ax)
lim sup e sup —_—

N < oo [Pa.s. (7)
n—o00 h(nl/a’r‘n >x€[(maxlgign‘vﬂ)il,€fl> f(x*l)

1 n
lim sup — Vi“f(lV;)) < oo Pas. (8)
moup S VI F(IVI)

Remark 6. The fact that f is regularly varying and increasing implies that we can substitute
f(x=1) with f(tx=1) forany ¢t > 0 in (7) without affecting its applicability. Notice that
when f is an appropriate power function, and Assumption 3 holds, then Assumption 5 is
implied by E|V;|*9 < oo for some sufficient § > 0.

The following lemma is the basic tool we use to prove Theorem 1 below and it relies on
the properties of the slowly varying function h.



Lemma 2. Forany e > 0 and any slowly varying function h,
1 . « 1/a.l/a -1 o 1 & «
m;!%! b (n/or [tV )1{|‘G|S€}—g;|‘6| Vil <&} +o(1).
Proof. Let f(x) = x~*h(x). Then
1 n
_ YR 1/O¢711/0‘t._11 | <
o 2 VI B (o V) 1V <€)

(el 1) 1 g fnt e v )

= - KV < e}
T, n f(nl/arrlz/a|t|_1>
nl/ar}/a -1 nl/ark/a -1 nl/ari/‘l
where h< - v ) = h< llt\ >h< - ) — 1. Also, note that
n h(nl/arn/a) n
R P AT (474 i NN
=Y T Ve 1|y <€)
A fntery )
by 1/« 711/04 t -1 1 n
< f(An 7“1/a|| )_)\—a —21{\‘/}\§5}
A€le1,00) f(nl/o‘rn |t|_1) ni=3

which converges to 0 as n — oo by the Uniform Convergence Theorem (UCT) for regularly
varying functions (see Theorem 1.5.2 of [8]). O]

Our last assumption again concerns the asymptotic behavior of partial sums of the scal-
ing process, as those appear in the relevant terms that occur as conditional expectations
based on the local representation of the characteristic function of {, when o = 1, as es-
tablished by Aaronson and Decker [1].

Assumption 6. When oo = 1 assume that

limsup—Z|Vi|log|Vi| < oo Pas,

1
n—oo N 7

n—oo

1 n
limsupEZH/i]log]Vi]f(]Vi]) < oo Pas.
=1

Remark 7. Again under the premises of Assumption 3, Assumption 6 would follow from
E|V,|*" < oo for some 6 > 0.

In what follows S, (3, ¢,y) denotes an a-stable distribution with parameters 3, ¢, ~.
Furthermore the notation ES, (3, ¢, v) denotes the mixture of the distributionsof S, (53, ¢, )
w.rt. P given since the parameters are generally allowed to be G-measurable functions.
The main result is presented in the following theorem. It establishes the limiting behavior
of the partial sums of the martingale transform, when appropriate scaled and translated.
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Theorem 1. Suppose that Assumptions 1, 2,4, 5 and 6 hold.
Thenifa # 1
1 gn (& YV, w ES ﬁ—vo‘ 0.0 (9)
, — . CU
nl/o‘r}/a g % Y) Vi « 1—)(17 a

andifa=1

1 & 1 &
_ Z (& —~—H(nr,))V,—2Bcr! (Cvl + — Z V. log |VZ|> w £S5 <51_)—1, cvy, 0) .
Wy = gt U1
(10)
Remark 8. ............

Proof. By the “Main Lemma for Sequences” of Jakubowski [22] the result would follow if
we would prove that forall t € R

d 1
H E <exp (it—lpi a) /3"1) (11)
i=1 nary
converges in probability to the characteristic function of S, (8sgn(v), cv,,0), where

o &=V a#l
Pra = (& =7 — H(nr,))V; = r2en ! (Cvy = £ 107 Vilog Vi), a=1

Let the representation described in Assumption 1 hold for all t € (—t,, t,), where t, > 0.
Then notice that for any ¢ # 0 by defining the event

C

n

K= {we Q: V| <K, (m"n)é ,Vi= 1,...,n}

where K, < % we have that P(Cy, ;) which by Lemma 4 tends to 0 as n — oo. When

a # 1, due to Assumption 1ifw € C,, f then

S lost (e (it (6= V) /9, )

nary

equals

C‘ﬂa = o 1/a -1 . 1
— Vi|“ b (ntor, |tV (1— tV)t (- ))
iy D VI (n e ) (1= i san(tV;) tan  Gra

n =

clt* §

== s VIR (el v )

nr
|t > 1 & « 1/ 1/ -1
" ifBcsgn(t) tan (§Wa> ; V.| h (n fepy @tV ) sgn(V;).

n 4=1
n

_|_



Notice that

n /o 1/a 1/a 1/« e Z_
%;‘”‘“W”Oﬁ“ ;) = M) Z|V| ak h(m/l:;/J) igvi<a)
PYer®) 1 ah(n“a Wl Vi)

+TE;IVZ-I o GatrertT 1{|V;] > e}.

By Lemma 2, the first term on the right hand side equals £ >=" |V;|* 1{|V;| < €} + o(1),
which converges to v,, P a.s. if we let ¢ — oco. Regarding the second term we have that

e O I
w2 ey )

n

h(
:_Zyvi (IV:D1{Vi] > e} h (nt/er®) F(ViD)

h (nl/arl/a |t|71 x) 1 1
< sup - —— ) _IViIT fIViDH{IV;| > e},
we[(maxy e, Vi) e t) h (nl/arl/ ) fla=h)n ;

nVer/ VT

which, due to Assumption 5, converges to 0 P a.s. Combining the above results we have
that

1 & o
—Z|Vi|ah(n1/ar3/ 1tV 1)—>17a P a.s.
nr,, =1
When o = 1,by Assumption 1,ifw € C,, i then 3" logE (exp (itmk- (&, — v — H(nr,) V;) /G,,)
equals
1 T 1
—clt|— Vi|h tV, 2Bcr 1Ct— Y V.h tV,| 7t
cltl o D WVilh (i (Vi)  2em™ Ct o 37 Vi (nr V)

it SV o V)~ H o],

where the first two terms of the above expression can be treated analogously to obtain
their P a.s. limit as

—c|t|vy + i2Ber Ctvy = —cu, |t| [1 —i2pn1C sgn(t)ﬁ] :
Lt

Regarding the third term, first notice that

H(kN) — HO\) = / " e (cl — eyt k(m)) h(z)da
A

1+a? ~o(1)

ko2
_ /1 s (01— e + k() h(Aa)da.



Then we have that
1 1
—N"v. [H V) —H
e 2 Vi [H (nrn [tVF) = Hnry)|
[tV
_ h(nrn)lzvz/ x h(xnr,) (250 +k(m’nx)> dx
1

r, n 212 + a2 h(nr,) \ w
h(nr,,) Vil h(znr,)
= "L (2Bem~t 4 V d
T (26 l/l + 22 h(nr,) o

since for any constant A, sup e[( Vi)tAl k(nrn\t|—1x) = k(nr, |t|"1z*) for some z*.
)

ax|V;[)~
ThenduetoRemark4 k(nr, |t|tak) = o(1). Then,writing V; as V,1{|V,| < e}+V;1{|V;| >
e}, first notice that

Vil h(znr,)
_ZV1{|V|<5}/ “HQ s
£V
:—ZV1{]V]<5}/ = +x2d3:

1 < Vil x h(znr,)
- 14|V < o —1)dx.
+n;Vz {vil _5}/1 L, +a? ( h(nr,) ) v

Then, towards showing that the second term of the above expression is o(1), note that for
some A, = [a,ay] With 0 < a; < a, and dependent on the choice of ¢

[tV

1 & h
Syvagvisa [ s (G )
n =1 1 n2r% + €z h(nrn)

x h(xnr,,) I
< = —1|de— ViIIH{|V| <e
[ = s e i < 2
— 0,

using the dominated convergence theorem and Assumption 2. Regarding the first term,
first notice that

i X 1 22 ;2 [tV
| 1 +x2dx1{|Vi| <e}= ) [log (1 + n?r )]1 K[V < e}

n2r2

1+ n2r2|tV,| 2 1
= — n i < = N <
3108 (T ) LIV < 2) = Iog VLIV < 2} + (),

where the o(1) term is also independent of V; using the fact that
| 1+ Xz 1
Gl o8t

10
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z€[(te) 1 00)




Therefore

Vi x h(znr,)

1 n
— V.1V < "od
nZ M Z’_g}/ 212—1—3:2 h(nr,) o

1og——ZV1{yV| <g}_—Zv1og\vu{yvy <e}+o(1).

Next, treating the analogous term with V;1{|V;| > ¢}, notice that for |tV;|~! < 1 (this can
be assumed without loss of generality since € can be chosen large enough) we have that

N v -
/ T h(xm‘n)dx :/ T F(t~ ) acm“n)dx
1 1

nZrZ + 22 h(nr,) n2rZ + 22 f(|t[~tz71) h(nr,)
1 h(znr, Vi
< f(|vi)) sup — / ——dx
Z me[(maxlgign\‘m)de) f<‘t| 'z 1 1 n r2 + 2
1 h(znr,) Vil x
< f(Vi) sup S e
Z CCE[(maXlsianiDilJtD F(t~1a™h) hinry,) 1 n217”% + 2
Then, since f v 1 de < log [tV;| and due to Assumptions 5 and 6 we have that

[tV A
lim lim sup — ZV1{|V| > 6}/ - (xm“n)dx =0.
1

E—0 1300 nzlrz +$2 h(nrn)
n

Finally, combining the above results we obtain (10). [

Remark 9. For an easy example, consider the case where « = 2, whence § = 0 and
[ES2 (0,1v,,0) = E[N(0,1v,)]. Forinstance, if £, ~ t, then the result is specified as
m Zi:l &V, w» E[N (0,v,)] by a simple calculation. Also the results can be can be
easily extended when V, is R-valued, via the use of the Cramér-Wold theorem. Then
the limits are mixtures of multivariate a-stable distributions where the spectral measures
are characterized by linear transformations from Theorem 2.3 of Gupta et al. [17]. Notice
though thatin such a case the normalizing rate must be the same across all the elements of

random vector, i.e. our results do not support the case of non-trivial matrix normalization.

The following lemma describes conditions that allow for the non-consideration of the
translating constants in the cases where o < 1.

Lemma 3. When o < 1 the term v Z V; can be omitted from 9 when either of the

oy 1/a

following sufficient conditions hold for any M > O.

[P<max V| > Mgs %>%o, (12)

1<i<n
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where q, = O(rt/ ")), or

lim sup — Z V|90 < oo, (13)

n—oo i=1

whered > 0.

Proof. Under (12), observe that

1
1/QZ\ z\_ . l/aZ’V’ V|t Wmax\wlﬂﬁzmla

l?Ta 1 17—0‘
= max |V Zma
[ 15E 1o
Tn n n—a

nl/a

M,

l/a

with P probability approaching 1 as n — oo. The result follows as we can choose M arbi-

trary small. Under (13), Note that for § small enough (so that a+9 < 1), ( T ZZ L Z])

5
W% ., [Vi|*7? and the result follows since n¥r, — oo forany k > 0. O
Remark 10. Notice that we can choose g,, = r,, in (12) to obtain (5) when lim inf,, ,__r, >

0,e.9. whenr, — ooorr, —c> 0.

The following corollary specializes the results of the previous theorem, in cases where
stationarity for the scaling process need not hold. It shows that results such as the one in
Theorem 1 of Arvanitis and Louka [6] are special cases of Theorem 1.

Corollary 1. Suppose that Assumptions 1, 2 and 6 hold. Moreover assume that V, — v, P a.s.
ast — oo where v is arandom variable. Then if o« # 1

LS (&) Vi ES, (Bsga(v), el 0),

nt/er) " =
andifa =1

1 n
p— Y (& == H(nr,)V; = 26er v (C + log|v]) ~» ES (Bsgn(v),clo],0).
n =1
Proof. By the Cesaro mean theorem we have that Conditions (2) and (3) hold with v, = |v|*
and v, = |v|* sgn(v) respectively. Also, Assumption 4 clearly holds in this case as V, — v

P a.s. Then Theorem 1 applies. O

In view of Remark 3 we also have the following result. It subsumes and extends the
analogous results in Mikosch and Straumann [30], Surgailis [40], and Hall and Yao [18] since
it allows for o < 1, non-ergodicity for the scaling process and thereby mixed weak limits,
and E|V;|**° = 400 forany § > 0.
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Corollary 2. Suppose Assumptions 1-6 hold.

Thenifa # 1
e E (14 sgn(Vi) 1]
_— (fi—’y W%[SOC(ﬁ ,cE{|V,|¢1],0 ],
ey 2 6 ) ENV, 1T hday
andifa=1

1 & 1 <&
— > (& —v—H(nr,))V, — 28cr! <0v1 +=> Vlog w)
nrn =1 n =1

El[Vilsgn(Vi)|]
EVi[l]

v ES, (ﬁ ,ctﬁnvmn,o) .

3 Limit Theory of the QMLE

A major application of the theorem presented in the previous section concerns the char-
acterization of the rate and the asymptotic distribution of the Gaussian QMLE in GARCH
type models. In what follows we briefly describe the framework and derive the results.
The derivations draw heavily on the theory developed by Straumann [38] as well as Win-
tenberger and Cai [44]. The differences correspond first to the fact that we allow for the
centralized squares of the elements of the structuring sequence to lie in the domain of non
normal attraction to an a-stable distribution and second to the parameter of interest to be
on the boundary of the relevant parameter space.

The framework is structured as follows: first, we define the process as the unique sta-
tionary and ergodic solution of a stochastic recurrence system of equations, second we
are occupied with the issue of existence, uniqueness, stationarity and ergodicity of the so-
lution of a transformation of the aforementioned recurrence, that essentially enables the
invertibility of the volatility process for any parameter value. This allows the approximation
of the latter process, which is latent, by filters that are measurable functions of the observed
heteroskedastic process (this is related to the notion of observable invertibility essentially
appearing in Straumann -see definition 2 of Wintenberger and Cai). Third, we define the
QMLE and given the previous, we describe sufficient conditions (e.g. existence of loga-
rithmic moments and of universal lower bounds for the filtered processes) that establish
its strong consistency. Finally, we are occupied with the issue of existence, uniqueness,
stationarity and ergodicity of the solutions of recurrence equations that emerge by differ-
entiating the previous equations, along with analogous (moment existence, linear inde-
pendence etc.) conditions for those solutions that permit among others the application
of the CLT of the previous section, and are in any case helpful for the establishment of the
rate and the weak limit of the QMLE via the results in the last part of the Appendix.
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The process Suppose that O is a compact subset of R and let 6, be an arbitrary member
of ©. Consider the conditionally heteroskedastic process (w.r.t. §,) defined by

= z
{ ) yt Ut t 9 9 ,t c Z (14)
O-t :geo <Zt717”'72t*p70-t—17”'70-t—l>

where the structuring sequence (Zt>tez is a process of iid random variables such that Ez, =
0 and Ez3 = 1 whenever these quantities exist.

Remark 11. We use the usual convention regarding the first and second moments of 22
whenever they exist, but we do not impose any assumption regarding their existence yet.
As itis shown later, the introduction of such assumptions will affect the (in)consistency and
asymptotic distribution of the QMLE.

Also,g. € C(© x RP x R1,R, ) forany § € © and I = max (p, q). Let

/
<I>t790 (x) = (990 (zt, s Zpi 1y Ty e ,wl) Ly e ,xl_1> )

Given the definition of (z,),_, and the properties of g, , the sequence <<I>t 0, (:1:)) . is
’ te

stationary and ergodic for any = due to Proposition 2.1.1 of Straumann [38].

Assumption 7. Suppose that
[Elog+ ’990 (207 cee 7Z_p+17y1, ee ,yl)‘ < —|—OO,

forsomeyy, ...,y € R, ®, g isP as. Lipschitzw.r.t. x with coefficient A (‘I)t,oo) that satis-
fies
+ * (m)
Elog™ A (@0’90) < +oo and for somem € N*, Elog A (‘I’(wo) < 0.

The previous assumption along with Theorem 2.6.1 of Straumann [38], imply that the
stochastic recurrence equation (SRE) in (14) admits a unique (up to indistinguishability)
stationary and ergodic solution (af)tez and furthermore any other solution converges ex-
ponentially almost surely to this one as ¢ — co. Due to continuity those properties extend

to the heteroskedastic process itself.

Continuous Invertibility and the (ht>tez Process Given the described process, the next
part of the framework concerns the issue of continuous invertibility (see Definition 4 of Win-
tenberger and Cai [44]). This is closely connected to the properties of the filtering of the
latent volatility process and thereby to the optimization procedure on the relevant likeli-
hood function. Consider g, from before along with the first equation of (14). Given the
process (yt)teZ consider the following stochastic recursion

Y0y
e ht—l <9> [ ht—q—l (9) ' (15)

Yi—1
g& PR 3
Ve (0 by, (0)
14

hy (9) =



where t € Z and 6 € O. Likewise to the previous section consider

. Y1 Ye—p—1
U.,(x)=1g yeers Sy s Xy | Ty, |
t,G( ) ( 0 <\/33_1 /T, 1 l> 1 ! 1)

Analogously, the sequence (‘I’t,e (:15))tEZ is stationary and ergodic for any z, 6. The follow-
ing assumption is essentially condition (ClI) of Wintenberger and Cai [44].
ytfpfl

Y
9o yeens N SR ] < +09,

forsomex,,...,x; € R, . ¥, yisPas. Lipschitzw.r.t. x with coefficient A (¥, o) thatis P a.s.
continuous w.r.t. @ and satisfies

Assumption 8. Suppose that

Elog™ | sup
0cO

Elog” sup A (¥, ,) < +ocandforsomem € N, Elog A (¥(7) < 0forall 6 € ©.
0cO ’

The following Lemma summarizes some of the implications of the first pair of assump-
tions. It is essentially Theorem 3 of Wintenberger and Cai [44].

Lemma 4. Under assumptions 7 and 8 for any 6 € © there exists a unique stationary and
ergodic solution (h (9)), _, to (15). Moreover h, (8) is continuous w.r.t. . Furthermore for any

6 € © and any other solution to (15), say (ﬁt (9)) S there exists ¢ > 0 such that
te

eas

sup |k, (0) — Ry (0)] = 0.

0’eB(0,e)NO

This is extremely helpful since the actual evaluation at each parameter value, and thereby
the computability of the optimization of the likelihood function, depends on solutions of
(15) based on initial conditions. It implies that any such solution (that is in general non
stationary due to its dependence on initial conditions) will converge to the stationary and
ergodic solution fast enough as ¢t — co. The local uniformity of the approximation, the sta-
tionarity and ergodicity of the solution, along with some moment existence could imply
the convergence of arithmetic means of the (ht (9))15GZ process evaluated at a convergent

sequence to the expectation of the ergodic solution evaluated at the limit of the afore-
mentioned sequence. All these will be convenient for the establishment of the asymptotic
properties of the estimator.

15



The QMLE-Definitionand Existence ~ Givenafinite sample (y,),_,

tic process, the following defines the Gaussian quasi likelihood function ¢,,. The term
is used in an abusive manner since the original function would be constructed as —1 *
¢,, (0) + const. This form enables the characterization of the QMLE as an approximate min-
imizer.

Assumption 9. Suppose that, 4 : Q — R, is measurable for any ¢ € © and P almost
surely continuous w.r.t. f forallk = 0, ... ,|—1and, (;, 4 - 2 — Rismeasurable forany € ©
and P a.s. continuous w.r.t. @ forallk =0, ... ,p — 1.

Definition 1. Define the filter (7, (6)) for g € © by

77777

~

hy (0) =<, owhenk =0,...,l —1andy, = (;, ywhenk =0,...,p—1and

7 Y1 Yt—p—1 7 7
ht (0) = 0Gg ~ JERE) = 9 ht—l (‘9) [ERE) ht—q—l (0)
Vi1 (0) A\l pr (0)

We can now define the Gaussian quasi likelihood function and the subsequent estima-
tor, as a (possibly measurable selection) of its approximate arg min.

Definition 2. The Gaussian quasi likelihood function is
~ 1 ¢~
6, (0) ==Y 1, 0)
t—1

where

2
l,(0) =logh, (0) + = :
hy (0)

For €,, an P almost surely non negative random variable the QMLE 6,, is defined by

~

Cn () < Inf ¢, (0) + e,

g,, can be perceived as an optimization error, and thereby the definition is wide enough
to include the estimator obtained (as is usually the case) by numerical optimization of ¢,,.
The P almost sure continuity (w.r.t. 6) of the filter, inherited by the definition of g, and
assumption 9 along with the compactness and the separability of © imply the existence
of #,, even when ¢,, = 0 P a.s. This is rigorously established in the proof of the following
Proposition.

Proposition 1. Suppose that Assumption 9 holds, then the QMLE exists.

Proof. Notice first that c,, is a Caratheodory function, i.e. continuous w.r.t. § (due to the

continuity of the filter ?zt (0)) and point-wise measurable. Then the separability of K and
lemma 4.51 of Aliprantis and Border [3] imply that ¢,, is jointly measurable. Furthermore

16
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it is proper (i.e. it does not attain the value —oo and there exists at least one § € K such
that ¢, (#) € R) since by ¢,, being a Gaussian quasi likelihood function it P a.s. does not
attain the values +o0o P a.s. This implies that it is a proper normal integrand in the sense of
definition 3.5 (Ch. 5) of Molchanov [31] due to Proposition 3.6 (Ch. 5) in the same reference.
The result now follows by the Theorem of Measurable Projections in van der Vaart and
Wellner [42], example 1.7.5 p. 47, Proposition 3.10.i (Ch. 5-by setting a = infy ¢, + ¢,,)
and the fundamental selection theorem (Theorem 2.13-Ch. 1) of Molchanov [31] (see also
the proof of Theorem 3.24.(i)-Ch. 5 in the same reference). O

3.1 Consistency of the QMLE

We turn to the limit theory for the estimator. The aforementioned exponentially fast ap-
proximation of the filter by the stationary and ergodic inverted process (ht)tez (locally
uniformly) along with the consequences of Assumption 7 enable the asymptotic approxi-
mation of ¢,, by an average of ergodic contributions obtained as

NOBESWACY

with

0, (8) =logh, (6) + %

We can address c,, as the “ergodic likelihood". Several of its properties are appropriate
approximations of analogous properties of ¢,, and thereby they will be used for the estab-
lishment of the limit theory. In this respect, given the previous, the following Assumptions
provides with sufficient conditions for strong consistency.

Assumption 10. For the innovation process assume that Ez2 = 1.
Assumption 11. Suppose that:

1. ¢, +0Pas.

2. Elog™ 02 < +<.

3. infg hy(0) >C >0 Pas.

4. Forany 6 € ©:

Condition 11.1 implies that the optimization error vanishes asymptotically. 11.2 requires
the existence of logarithmic moments for the volatility process and due to the properties
of 2, it also implies that Elog™ y2 < oo. By Theorem 2 of Wintenberger and Cai [44] it
follows from Assumption 7 and a condition of the form

E <logJr ‘990 (zo, ey 2 i1 Y1 e ,yl)’)z < 400
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forsomey € R, . Condition 11.3 requires the existence of a universal deterministic lower
bound for the volatility processes that is naturally obtained in several GARCH-type mod-
els again due to the form of the recursion, the positivity constraints and the inclusion of
a strictly positive constant. In more complex cases (e.g. the EGARCH model), it could be
obtained by placing further restrictions on the parameter space. 11.4 is an identification
condition that can be obtained by requiring more structure on the support of the distri-
bution of z, as well as on the form of the defining recursion. The result is presented in the
following theorem.

Theorem 2. Suppose that Assumptions 7,8, 9, 10 and 11 hold. Then the QMLE is strongly
consistent.

Notice that Assumptions 7, 8, 9 along with conditions 11.2-4 are identical to the condi-
tions C.1-C.4 of the relevant Theorem 5.3.1 of Straumann [38] (see the proof of the second
part) or Theorem 4 of Wintenberger and Cai [44]. Hence Theorem 2 is essentially an ex-
tension by allowing the existence of an asymptotically negligible optimization error, and
thereby by providing sufficient conditions for the consistency of approximate optimizers of
the likelihood function.

Proof. Due to Assumptions 7, 8 and 8.C.2, Lemma 4 and Proposition 5.2.12 of Straumann
[38] imply that for any 6 € O there exists an € > 0 such that

sup ¢, —¢,| = 0Pas. (16)

©ONnB(0,e)

n

due to Part 1.(i) of the proof of Theorem 5.3.1 of Straumann [38]. This locally uniform
asymptotic approximation implies the analogous asymptotic approximation w.r.t. the topol-
ogy of epi-convergence by the sequential characterization of the latter (see Definitions 2.1
and 2.2 of Lachout et al. [28]). This in turns implies that if (C”)neh\l epi-converges to a limit
function, then so does (¢,,)  _, to the same limit. To this end, let

2 9
. 205 (0p)
and notice that
2 9
. 2504 (0p)
tlint (1mho o)+ 2 )‘
= —Epol, <o+ Epol,, =0

: 2
< —[Eeléllf(hl ho(0)1,,<o+Elnogl, .o+ By (0g) 700

<C+ [Elnaglpo>0,
for some C > 0 that exists due to Assumption 11.3-4. Similarly since 02 is bounded away
from zero and due to 11.3, Eln 031p0>0 < +o0. Then due to Part 1.(iii) of the proof of
Theorem 5.3.1 of Straumann [38] implies that §, = argming E <ln hy (0) + hy—(‘%)) Hence
0
taking also into account 11.1 we have that Lemma 6 is applicable.
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In the next section, we derive the rate of convergence and asymptotic distribution of
the QMLE under the sufficient conditions we imposed earlier that ensure the consistency of
the QMLE, which include the condition that [Ez% < oo. The latter together with Assumption
14.1 necessarily imposes that a € [1,2]? in which cases the moment condition can be
satisfied.

3.2 Rate and Asymptotic Distribution

The remaining elements of the limit theory, i.e. the rate and the limiting distribution can
be established by conditions that are local in nature. The results depend crucially on the
asymptotic existence of alocal to 6, quadratic approximation of c;,, as required by Theorem
5. In accordance with the differentiability properties of ?zt for a variety of heteroskedastic
models, we will assume that the approximation has the form of a second order Taylor ex-
pansion. Hence due to the possibility of 6, being on the boundary of © we will need aform
of differentiability for the filter (and the subsequent stationary and ergodic approximation)
that is consistent with this. We will use the notion of left/right (I/r) partial derivatives as in
paragraph 3.3. of Andrews [4]. This requires some further structure on the set on which
6,, at least asymptotically attains its values. The following Assumption takes care of those
concepts.

Assumption 12. Suppose that:

1. Forsomen < & forsome1l < m € Nandthee > 0 that corresponds to QQ inLemma 4,
© N B (6,,n) coincides with the closure of its interior. Furthermore, © N B (64, m) — 6,
equals the intersection of a union of orthants and an open cube.

2. The function

Y Yy
<9T’xl,... ,.fl?l) — Jg (\/—;_1, RN \/—;_p,il?l,... ,.CL’Z>

has continuous second order (I/r) partial derivatives differentiable on ©N B (6, n) x RY.,
for every fixed (y,, ... ,y,) € RP.

3. Thefunctions g, , and (; 4 have continuous second order (I/r) partial derivatives on © N
B(0y,n),Pas, forallk=0,...,l —1andk =0,...,p — 1.

12.1 ensures that at any point of © N B (6, 1), there exists enough space around each
of its elements so that a left and/or right perturbation can be defined, and its second part
is essentially Assumption 22*.(a) of Andrews [4]. This implies that at any such point a left
and/or right partial derivative could be in principle defined. 12.2 and 12.3 ensure that both
gp and the initial conditions have well defined and continuous left and/or right second or-
der partial derivatives. Given those, the Taylor approximationis valid on any K thatisanon

Note that o > 1 implies E22 < oo.
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empty compact subset of © N B (6, ) even if the coefficients of the relevant polynomials
may depend on random elements that can take values outside K with positive P probabil-
ity. Furthermore, since the vector (z, ..., z;) belongs to R, . the relevant derivatives w.r.t.
to the elements of this vector are by construction left and right. Due to the chain rule (see
Appendix A. of Andrews [4]), they imply that the analogous derivatives of the filter (w.r.t.
0) are also well defined. In what follows we denote the matrices of first and second order
(I/r) partial derivatives with - and -”’ respectively. Their existence along with the form of
¢,, and Theorem 6 of Andrews [4] imply the P a.s. existence of a second order Taylor ex-
pansion of the likelihood function around §,,. This does not suffice for the second part of
Assumption 17 to hold, and thereby Theorem 5 cannot be directly used. The possibility
of the existence, stationarity and ergodicity of h; and h;" along with the possibility that
they provide geometric approximations of 71; and 711’5’ respectively could enable the verifi-
cation of the aforementioned conditions. The following Assumption and the subsequent
Proposition takes care of this after the establishment of some notation.

Let k, be the i-th element of the vector (67, x4, ..., z;). Thenfori,j = 1,...,d,...,d+1

define
; 0 Y Y
O, (0T 2y, . ) = 5596 ( ;1,..., i ;H,a:l,...,a:l)
7 V VP
and

. 0? Y Yt—p+1
O, (07 zy, ... ;) = g L A Tl I

Assumption 13. Suppose that:

1. fori=1,...,d,....,d+1

< +00

0cONB(64,m)

E [ln+ ( sup \3%0 (0, ho (0),....,h_; (6))‘)

Furthermoreforeveryi = 1, ..., d, ... ,d + 1, there exist a stationary sequence (@-’1 (t))

with E [In* C; ; (0)] < oo and some functionr, : R — R__that is continuously differ-
entiable in a compact neighborhood of zero and r (0) = 0 such that

sup [0y (07, @y, 1p) — 0y (07, 20,y 2)| < Ciq () (2 — 7)),
6cONB(6,,1)
(17)
wherex = (z,, ..., ;) andx’ = (z}, ..., z])in (R))" .
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2. Fori,j=1,....p,....p+q

E [ln+ ( sup  |0%91pg (07, by (0) ... ,h_, (9))|>] < 400,

GEB(90777>

andEln* sup |h{(0)] | < 4o0.
6€B(0,,n)

Furthermoreforeveryi,j =1, ...,d, ..., d+l, thereexists astationary sequence (Oi, 2 (t))

with E [In* C, ; , (0)] < oo and some functionr, : R — R, that is continuously dif-
ferentiable in a compact neighborhood of zero and r,, (0) = 0 such that

sup |09y (07, 2y, .., ap) — 0W9, (07,21, ..., 2])| < Ci o (t) 1y (|l — 2')).
00N B(6y,n)
(18)

This Assumption essentially implies the existence and uniqueness of stationary and
ergodic solutions to the SRE’s obtained by (//r) first and second order differentiation of the
second equationin (14) w.r.t. 6. Furthermore, first those solutions are identified with /; and
h;" which are continuous w.r.t the parameter and h, ?L;’ rapidly converge to their ergodic
version uniformly in a neighborhood of 6, which without any damage to generality and
for notational simplicity we assume that it coincides with © N B (6, n)). The derivation of
the previous along with their implications on the asymptotic relation between the Taylor
expansions of ¢,, and c,, are obtained in the proof of the following Lemma.

Lemma 5. Suppose that Assumptions 7,8, 9, 12 and 13 hold. Then

1. hiand hy’ are continuous w.r.t. 6, forallt € Z,

sup ||y (0) — Ry (0)|| = Oand  sup |
@ﬂB(Go,n) @ﬁB(GO,n)

hy (0) —hy' (9)]| "= 0,and (19)

n sup |c (0)—¢. (0)]| andn sup | (0) — ¢/ (6)| convergeP a.s. (20)
enB(6y,n) ©nB(0y,n)

2. Iffor some (w,,) _ suchthatw, — +oo, withw, = o(n)andw,c;(0y) ~» z for
zp, some well defined random vector, then w,,c;, (6,) > 2o, and

3. If[EsupoeB(e o) 145 ()| < oo then for any sequence ¥,, — 6, Pa.s., ¢,/ (9,,) ~»

0>
’ ’ T
JOOZ[E%/ (0,) =E (ht(%);}t(eo) )
Proof. 1. The implications in (19) follow in an essentially similar manner to the proofs of
Propositions 5.5.1 and 5.5.2 of Straumann [38] (with the analogous use of the conventions
formulated there in order to describe the SRE’s that are constructed by differentiations).
The differences to those proofs are the following. First Theorem 3 of Wintenberger and
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Cai [44] is used in place of Proposition 5.2.12 of Straumann [38]. Second, (17), (18) are
generalizations of the Holder type continuity conditions imposed in the relevant results by
Straumann. The continuous differentiability around zero also imply the implications of the
conditions of Straumann by an application of the mean value theorem around zero. Third,
the identification of the solutions of the SRE’s obtained by differentiation with h; and A}’
respectively is obtained by a lemma that prescribes that under uniform convergence and
the existence of a uniform limit of the first derivatives the limit function is differentiable
and the limit of the derivatives is the derivative of the limit. Via the results of Appendix A
of Andrews [4], this can be also seen to hold for (I/r) derivatives. Given those results the first
implication in (20) is obtained by an application of the mean value theorem to the function

f(a,b)=1¢ (1 — %) , a € R, b>0,thatinturnimplies

for some ¢ > 0, where K denotes a non empty compact subset of © N B (6,,7). The
previous along with EIn™ y? < +o0 and Proposition 2.5.1 of Straumann [38] show that

hy — b

supHZt’(e) — é;(@)” <c(1+y?) [sup ‘ht - ﬁt’ - sup‘
K K K

nsup|&, (0) — ¢, (0)] < Y_sup|[£,/(6) — £;(6)]| < +oo
K = K

For the second implication we have that the triangle inequality and the mean value theo-
rem for the functions f (a,b) = ¢ (1 — y—f) and g (a,b) = (% — 1) £ imply

for some ¢, ¢, > 0 which exist due to compactness of K and the uniform boundedness
of the volatility filters away from zero. Analogously to the previous and due to the fact

7 T2
ht - ht

Z;/(G) — gé/(Q)H <c¢ (1+9?) [sup ‘ht — Bt‘ + sup‘
K K

sup
K

+ey (14 92) {Sup |, — By| + sup \ AR (h;)TH] .
K K

nsup e/ (0) —&,(0)] < Y_sup |6y (0) — & (0)] < oo,
K 7 K

we obtain the needed result.

2. It is obtained by the first implication in (20), the convergence in distribution of
r,.Cr (8y), the assumption that 2z — 0 and the triangle inequality.

3. Follows directly form the triangle inequality and the ergodic ULLN. ]

In order to be able to use the results in 1, 5 and 5 for the characterization of the rate
and the limit distribution we need a final Assumption that takes care of the asymptotic
behavior of ¢, and ¢;, as well as of the epigraph of the local polynomial approximation of
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the likelihood function. In what follows K denotes a compact non empty subset of © of
possibly small enough diameter that contains 6, and is a subset of © N B (6,,, n), such that
0,, € K with P-probability that converges to one as n — co. Given Theorem 2, K could
for example be chosen as © N B (6, n) itself. Furthermore, let 7, (o) = 2“2 (K — §,))

1/
rn/

where 7, is as in Remark 1. The asymptotic parameter space is defined next as an appro-
priate limit of 7 ,.

Definition 3. #(a) = PK — lim,, .. 7, () i.e. itis the set containing any z € R? such
that z is a cluster or a limit point of some (z,,) | withz, € 7, (a).

I () is essentially the limit in the Painleve-Kuratowski sense of (/. («)) _, (see for
example Appendix B of Molchanov [31]). The definition is equivalent to that z € H («)
iff there exists an infinite subset of N (say V) and a cofinite subset of of N (say N*) such
thatforanye > 0, H(a) N B(x,e) #+ Oforalln € N andn € N*. Notice that when
J(a) exists then it is a closed subset of R? (see Proposition 4.4 of Rockafellar and Wets
[36]). In our case, upon existence it always contains 0. When 6, is an interior point then
H (o) = RY. This definition is not less general compared to Assumption 5 of Andrews [4]
as Lemma 3.8 of Arvanitis and Louka [5] implies.

Assumption 14. Suppose that:

1. 22 lies in the domain of attraction of an (non-degenerate) a-stable distribution. Specifi-
cally, suppose that Assumption 1 holds for £, = 22 — 1.

, le'
2. [Hﬁ%g?ﬁ < 4o0.
0

3. Forsomen > 0, Esup, g, €G] < oo.

4. The components ofthevector 9,g, (\/gt;(m, s \/;lltp1<9)7ht1 (0), s hy g (9))
t— t—p—1

are linearly independent random variables.
5. H(«)is convex.

14.3 also along with Lemma 5, Theorem 2 and the ULLN for stationary and ergodic
sequences imply the convergence in probability of ¢;; (6,,) to E£{'(6,).

Remark 12. Also, notice that (where ||-| , denotes SUDp. 59, 1) |-|| for some I > 0)
o). - H< 2 ) HGIAC) N (1- v ) hé’(@”
5 e 0) 7 (O h(0)) 10|
/(12 2 " 2
< o (222 1) +|Pof (1+22|[2f ).
ho ho ho ho
B B B B
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which implies that a sufficient condition for 14.3 is the existence of > 0 such that

77

2\

+ sup
0€B(0,,m)

’
0

hg

’7/

A 0'2
0 0
+ sup ( ) < +00,
hy 6cB(0,,m) hy

E sup
0cB(0y,m)

with A > 1, )\ > 1, % < N < 2,144 implies that E4 (6,) is positive definite.

14.1-2 enable the use of Theorem 1. 14.5 implies the uniqueness of the limit established
in the final theorem and it is analogous to Assumption 6 of Andrews [4]. The following
counterexample implies that condition 14.5 is not trivial by considering a K with empty
interior.

Example (K is comprised by the elements and the limit of a converging sequence.). Let
(Vm) denote a real sequence that converges to zero and suppose without loss of gen-

erahtythat@0 = (. Forsomex € R%andc # Olet K = K—0, = { Hem—e=Dlacy m > l}U
{0}. Then H (« { cr k=1,2,. } U {0}, so obviously 14.5 fails if x # 0.

If K itself contains a set of the form © N B (6,,n*) with 0 < n* < 7 then condition
14.5 implies that 7 («) coincides with the closure of its interior. This is due to the fact that
K — 6, must contain a neighborhood of zero of the form Hle [1;,u;] where some of the
lower or upper bounds could be zero but not simultaneously for the same i. Choose an
arbitrary non zero point in the previous set. It is easy to see that this belongs to #,, («) for
all n and thereby to A («) which is by construction convex.

We are now ready to state the main result of this section concerning the asymptotic
distribution of the QMLE. First, we treat the case where « € (0, 2].

Theorem 3. Suppose that Assumptions 7,8,9, 11,12, 13 and 14.1-4, where o € (1, 2].
Ife,, =0 ( 7) then

n\#

() (6, —8,) =0, (1).

rn
If furthermore 14.5 holds and ¢,, = =0, (22—> then

1

n & ~
(Tn) (0, — 0y) ~ hy,

where hy_isuniquely defined by q (h90> = hlgjf[q (h)andq (h) == (h - Jgolzeo) Jo, (h — Jgolzgo)
for Jo =Ely (0,) = E (ag 4hy (6y) [hy (00)]T> which is positive definite and z,_follows a
multivariate a-stable distribution characterized by all its projections as: )‘TZ% ~ S, (6*(N),c*(N),0)

vy RE[PTRo(00)] sen (TR (00))]
where 5*(\) = [EHAThé(OO)\a]

and ¢*(\) = cE [% \AThg(e())\“]
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Proof. Theorem 2 and Lemma 5 imply that the result would hold via Theorem 5 if the fol-
lowing hold. Firstly, Conditions 14.1-2 and Theorem 1 imply that

1 hy (6y)
w, c (0) = ———5 " (22—1)10
n-n ( 0) nl/ar}/a Zt:l < t ) 0_?
where w,, = —7a converges in distribution to z, which is characterized above. Sec-
n-/er

ondly, 14.3 impliegthe validity of the result in the third part of Lemma 5. Finally, the last
condition of the second part of Assumption 17 follows from condition 14.3 along with
lemma 5.6.3 of Straumann [38] while the third part of Assumption 17 is essentially 14.4. [

Remark 13. Note that in the case where & = 2 we have that z; ~ N (O, Joo)- If fur-

. . . . —1 .
thermore 6, is an interior point then we have that , /72(6,, — 0,) » N (0"]90 ) and if
furthermore Ez3 < oo the classical result is recovered as r,, «» E2{ — 1. However, we can
still obtain asymptotic normality with a different rate than /n. For example consider the
case where /22, ~ t, where simple calculations show that r,, ~ 2 logn.

Next we examine the case where a = 1 and Ez5 < oo assuming that 6, lies in the
interior of the parameter space.

Theorem 4. Suppose that Assumptions 7,8, 9, 10, 11, 12, 13 and 14.1-4, where o = 1. Also,
suppose that 6, lies in the interior of © and e,, = o, (7). Then, for some 0,, between 6,, and
0o:

1 v+ H(nr,) S RN ACH)

—(6, —0) — ——2= | (0 — 21

Tn( n 0) r, [Cn( n)] n ; O'? ( )
> Jgolzgo

whereJ, = [ [0y YRy (0,)[he(0)] ] and zp, follows amultivariate 1-stable distribution char-
acterized by all its projections as: /\ng0 ~ 51 (B*(N), c*(N),v*(N)) where 5*(X), c*(N) asin
3and~*(\) = 28er {CE [052ATho(09)] + E [052AThy (6) log |og 2XT e (6,)|] }-

Proof. Note that the fact that 6, is an interior point implies that c;,(6,,) = O, (\/&,) =
0, (1,)- Then

cn(0n) = cn(b) +cr(0,,)(0, — 0p) =
152 yPeo)

7(0.)(0, —0,) = — _ 1t
Cn( n)( n 0) n = (Zt ) O'? +0p(rn>
1 <& h; (0
= L1y - Hr ) M)
ni= Ot
1<~ h; (0
b HOr ) S ) )
iz Ot
and the result follows by an application of Theorem 1. ]
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Remark 14. The above results show that stable limits for the QMLE can be obtained under
fairly weak assumptions for a variety of conditionally heteroskedastic models. The assump-
tion of ergodicity is easier to verify than the mixing condition which is imposed by Mikosch
and Straumann [30]. Furthermore, the parameters of the limit distributions are analytically
derived as functions of the parameters of the distribution of the innovation process and
functionals of the volatility process and thus the stable distribution is fully characterized.
Finally, the fact that Theorem 1 allows for E (= O)QH = o0 forall 6 > 0 allows for the

extension of the set of parameter values for which the results are valid in models such as
the EGARCH (1, 1)-see below.

3.3 Inconsistency and Non-tightness of the QMLE when o < 1

Thus far, in order to derive the asymptotic distribution of the QMLE we worked under the
assumption that 22 lies in the domain of attraction of an a-stable and at the same time
Ez2 < oo which implies that o > 1. Below we examine the asymptotic behavior of the
QMLE when a < 1. Clearly, Theorem 2 cannot be applied in this case since E22 = +oo.
Notice that to our knowledge, the following result on the non-tghtness of the QMLE is new
in the relevant literature.

Proposition 2. Suppose that Assumptions 7, 8, 9, 11, 14.1 with o < 1 hold. Also let¢,, =

0p<n1,1/ar;1/a)_ Furthermoreforany 6 € ©, 3¢, > OsuchthatVt € Z SUPgBg.c,) h"—(%) <
CyPas.andvVl € ©30" € ©suchthath,(0’) > hy(0) P a.s. thenthe QMLE is asymptotically

non-tight and thus inconsistent.

Proof. Similarly to the first part of the proof of Theorem 2, due to Eq. 16 it suffices to exam-
ine the asymptotic behavior of ¢,, (instead of its non-ergodic counterpart), or equivalently
of

n
Cn<0) T nl/a'rl/a n( nl/arl/a Zlog Ut

_ 1 5 0%

- nl/arl/a Zzt h,(6) o nl/aqnl/o‘ Z AN h

as 0, is within ¢, distance from inf,_g C,,(6). But, due to the assumed bounds for
and since a < 1, the ergodic uniform law of large numbers gives

o}
h(0)

1 n 2
— 0 [Pa.s.

o
_— E lo ¢
nl/opy/® = g hy(6)

locally uniformly V6 € ©. Next notice that, by Theorem 1 V6 € ©




where Z ~ S (1, ¢, 0) for some ¢ > 0 is a random variable with positive support. Finally,

notice that
. )

1 1
P ( sup sup - ———— - Z 2202
1 o} IIh |
<P sup sup ——— > 22 sup 0 —0"|| >¢
( 1/ Z t ht<0) H ||

h(0)  hy(67)

0'€B(0,cy) 07€B(0,e4) N 1y,
0'€B(0,29) 0€B(6,e4) N/ T 0€B(0.,)
5
P (H@’ 0”||— 22 > —) : (22)
fay 1/a 092
and since by Theorem 1 ﬁ S~ 22 is asymptotically tight hence for any n > 0 M, -
limsup P (k,> M,) < nand for a given ¢ and 7 choose § : &= < M, & § <

25
WhICh is always possible. Hence Eq. 22 and the choice of §(¢, 7739 imply stochastic

C2M
equicontinuity and therefore the weak convergence of C, (#) to C'(0) := ﬂ@’ Z in
> [B(6, £4)], which has no minimizers due to the fact that V6 € ©,3¢’ : E ’ o "7 <

E|.-% ’

ho(0)
tight. Then by Prokhorov’s Theorem, there exists a random element ¢ such that 6, - ¢
along some subsequence. Due to separability and Skorohod representation there exists a

Z by the monotinicity of the integral. Now, suppose that 6,, is asymptotically

suitable probability space (say P*) and random elements C} = n arn"‘C’ C’*(H) =
c(0), e, = o, (n_l?Tar;é> and C;, — C" P as.. Also, 0 - Gkn where 6 satis-

fies C}, (9* ) < infyee Cf, (0) + £}, and 0 — 6" where 6 = o P as. But due
to the Theorem 3.4 of Molchanov [?], 6* € arg max C*. Since 6* has a well defined dis-
tribution, there exists a measurable selection say 7' : 6* = T o argmaxoC*. Hence
0* = T (arg max(C*)) 4 T (argmax(C)). Thereby L 2 forsomex € arg max C.
But arg max ¢ = () which leads to contradiction. Thus 6,, is non-tight. ]

3.4 Applications

The examples below concern the verification of the assumption framework above (given
the a priori validity of the Assumption 9 and of the conditions 11.1, 12.3 and 14.3) for the
GQARCH(1,1) model introduced by Sentana [39].

3.4.1 GQARCH(1,1)

Letp = q¢ = 1,99 (2,_1,7) = w+ a(z_ VT + %)2 + Sz and O is a compact subset of
Rt xR*tT xR~ x]0, 1). Theresults referenced below are established in Arvanitis and Louka
[5]. Remark R.1 implies that there exist 6, = (wg, @y, 79, Bp) € © such that Assumption
7 is satisfied. This is permitted even in cases where oy + 5, > 1 implying the existence
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of solutions with the required properties that are not covariance stationary. Assumption 8
is satisfied since 5 < 1. For Assumption 11.2 and 11.4 see lemma 2.2 and lemma 3.3. For
Assumption 11.3 seelemma 2.1. The latter holds if the distribution of 2, is not concentrated
in two points. For Assumption 12.1 see lemma 3.5 and for the rest of Assumption 12 and
Assumption 13 see the proofs of lemmata 4.7 and 4.8. If P (zg < t) = o (t*)fort | 0, then
Assumption 14.2-4 follows from lemmata 4.2, 4.3 and 4.6 due to Remark 12. Examples
of ©’s that satisfy condition 14.5 of Assumption 14 can also be found in section 3.3. of
Arvanitis and Louka [5].

3.4.2 AGARCH(p.q)

Several other examples can be constructed using the work of Straumann [38]. For instance
the verification of Assumptions 7,8, 11, 12, 13 and 14.2-4, for the AGARCH(p,q) model when
the parameter space is appropriately restricted and under the condition P (23 <t¢) =
o(t*)ast | 0, would follow from the results appearing in examples 5.2.5 and 5.2.11 and
paragraphs 5.4.2 and 5.7.1 of Straumann [38] by noticing first that for the set [w,,;,,, +00) X
[0, +00)” x B x [-1,1]forw,,,. > 0and B = {:z: eRL: T x4 < 1} Assumption 12.1
follows, second that Lemma 5.7.3 of Straumann [38] can be seen to hold even when 6,
lies on the boundary of © which by construction is a compact subset of the previous set
with non empty interior (as long as the conditions a; # 0 for some = 1,2,...,p and

(apo, qu) # (0,0)-simply express the linear combination w.rt. a, instead of a; ) and
third that this is also true for lemmata 5.1 and 3.2 of Berkes et al. [7] as well as for their ex-
tensions concerning the AGARCH(p,q) case, i.e. lemmata 5.7.4 and 5.7.5 of Straumann [38].
Notice that it is easy to construct examples of © for which both the previous assumptions
and condition 14.5 of Assumption 14 hold. Consider for example the case where p = 2,
q = land © = [wminvwmax] X [07a1max] X [a2min’a2max] X [Brnin?ﬁmax] X [_17 1] with
the obvious notation, where a, = a, , 7, = —1,and the other elements of 6, lie in the
interior of their defining intervals, in which case # = R? x (—o00,0] x R x [0, +00). In
such a case it is easy to see that 7L90 = (L") " (2, 29, min {0, 23} , 24, max {0, z: })” where
(217 225 %3 %4, Z5)/ ~ N (07 15) and J00 =LL".

3.4.3 EGARCH(1,1)

It is also easy to extend the assumption framework so that the recursions in (14) and 1 de-
fine not the volatility processes per se but their composition with some common bijective
transformation. If Assumptions 7 and 8 hold w.r.t the transformed processes, Assumption
9 incorporates the condition that its inverse (the link function as termed by Wintenberger
and Cai [44]) is continuous, and Assumption 13 is augmented by the condition that the in-
verse has first and second derivatives that are Lipschitz continuous on the bounded away
from zero-due to condition 11.3- domain of the volatilities, then Theorem 3 would also
hold. Furthermore, Assumption 14.3 can be avoided as Lemma 3 in [45] shows.
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3.5 Dropping Stationarity: non-stationary GARCH(1,1)

In this section we show using a motivating example that the stationarity assumption which
was used above is not crucial in determining the limit theory of the QMLE. We actually
extend the results of Jensen and Rahbek [24], who derive the asymptotic normality of
the QMLE under non-stationarity in the GARCH(1,1) model under the assumption of finite
fourth moments of the innovation process, allowing for a-stable limits. To this end, given
the GARCH(1,1) model with the time indice taking values in N and the parameter vector
denoted by 0 = (a, 8,w, v)? as in [24] we impose the following assumption which replaces
Assumptions 7-8. To our knowledge this extension is new in the relevant literature.

Assumption 15. Elog(ag2Z + 3,) > 0.

Then Theorem 1 in [24] can be generalized as follows regarding the asymptotic distri-
bution of the QMLE for («, ;).

Proposition 3. Suppose that Assumptions 15 and 14.1,5 hold with o« > 1. Also fix (w,~y) at
their true values (wy, 7, ). Then the results of Theorem 3 hold with the following modifications:

1
@ § .
I Joo - ( “(1) ,6‘)8111 521 ) where Ky = [E<60/<&Ozt2 + 60))172 = 172/
aoBo(l=p1)  Bg(1—py)(A—py)

and

2. zg, follows a multivariate a-stable distribution characterized by all its projections as

AT (B*(\),c*(N),0) when a>1
0 N{S( B*(A),c*(A), 7" (A)) when a=1

where (v = BHREEEOTUL ey = (W07

Y*(A) = 2B8er H{CE [NTU] + E[MUlog |N'U|| }and U := (é,ﬁ%z 50Hk e Fern k%)

Furthermore, if Assumption 15 holds with strict inequality, then the above holds for
any (w,v).

Proof. As in the proof of Theorem 3 the result for the case where (w,y) = (w, ) can be
shown to hold via Theorem 5. Then, exactly as in Jensen and Rahbek [24] (see proof of
Lemma 1 therein) we have thatc/(6,,) +» Jy,- Then the result follows if we show that for
any A = (A, \y) € R?

1 - h; (0,)
——7a Z(zf — 1)—t020 2, -

nl/or/* = t

3We use a to denote the ARCH parameter here as we reserve « for the stability parameter of the stable
distribution.
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Analogously to Jensen and Rahbek [24], the main idea is to asymptotically” replace the
non-stationary 2 x 1 vector 2:(%) by stationary versions. hi <9 Vis (hy4, hi,) inJensen and

Rahbek’s notation and (ult,ult) are their ergodlc approximations where

Z k . ﬁ and uj, is shown to be equal to 7. Then the result fol-
t

Iows by Lemma 4 which implies that

1 = ,
a Z(Zz — 1)(hyy — uyy, by —uiy)” — 0,

nl/epr /" =

in L! norm.

The fact that the same result holds for arbitrary (w, ) when Assumption 15 holds with
strict inequality follows by using the exact same arguments as in the proof of Theorem 2
of Jensen and Rahbek [24]. O

4 Subsampling Wald Tests

4.1 Joint Convergence-Algorithm-Limit Theory

In this section we are interested with the first order limit theory of the Wald-type test that
employ the QMLE examined above in the context of Theorem 3. We examine the asymp-
totic behavior of the usual, self normalized test statisticc commonly employed under the
additional assumption that E (z5) < +oo, when this does not hold as well as when the
parameter lies on the boundary, and construct a procedure for the determination of the
asymptotic rejection region based on subsampling. We derive asymptotic exactness and
consistency, a result that does not hold in our general framework when the usual x? criti-
cal values are used, either due to asymptotic non normality and/or due to the form of the
asymptotic distribution as a non-trivial projection when the parameter lies on the bound-
ary.

The following proposition is the basis on which the derivations that follow are founded
and its proof depends on the proof of Theorem 3.1 of Hall and Yao [18]. It is worth men-
tioning that in the latter paper the authors use the same result to construct confidence
regions for the QMLE elementwise based on the bootstrap methods instead.

Proposition 4. Suppose that the Assumptions employed in Theorem 3 hold, 6, € Int©, ¢,, =
0, (%) andthat o € (1,2]. Then

n 1 =
— (0, —0y), ———— ZH v (It
(nl/arl/a (6, 0) 7%2/0‘7“2/a ; t) ( o <0 C)
where ( = lifa = 2and ( follows an ¢-stable distribution with support [0, +occ) ifa # 2. The
distribution of (J 501290, ¢ ) is absolutely continuous. Furthermore, if F' : R? — R™, continuous
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and locally around 6, continuously differentiable with rank [J  (6,))] = m, then

W, (F(0y)) »» W (F(6))),

where
W, (F(0)) =
1 -1
n hy(0,) hi(0,

n(F(6,)~ F6,)" [Jz: ) (i, MBS ) 0| 6 - F )

D At ’
and .

T -1 7T T —1 - 1
. %6,30, I (00) | (90)']90 Jp (o) I (90)']90 20,
W (F(6,)) = | ¢ |
with absolutely continuous distributionand z, = % t=1,...,n.
h’t(en)

/ ’ T
Proof. Firstly, the uniform law of large numbers and the fact that allows us to replace EM
1

77 77 T
with 137" W and " | zfwith}7" 2} (seealso Remark 5.6.2 of Straumann

[38] and Remark 12 of the current paper). Then given the assumption on F/, the result fol-
lows exactly as in Hall and Yao [18] (see page as well as the proofs of Theorems 2.1.c,e and
3.1) along with the Continuous Mapping Theorem and the delta method. O

Given F' as in the previous proposition consider for some Fj,. € IntF' (©) the hypothe-
sis structure
H, : F'(0y) = Fy.,
Halt : F(HO) # FG*'

Notice that in our Assumption framework the asymptotic exactness of the usual Wald test
for this structure, based on the asymptotic chi-squared distribution becomes generally in-
validated. Proposition 4 obviously provides with the asymptotic distribution of the self-
normalized Wald test under H,,. Notice that if &« = 2 the limit distribution is Xg even in
the cases where the second moment of z, does not exist. Hence in this case the classical test
remains asymptotically exact and consistent.

This ceases to be true when a # 2. Hence under our assumption framework in order for
a feasible testing procedure to be established, an approximation of the relevant quantiles
of the aforementioned distribution is needed. The following algorithm provides describes
the well known modification based on subsampling.
Algorithm 1. The testing procedure consists of the following steps:

1. Evaluate W, (Fy.) at the original sample value.

n(
2. For0 < b, < n generate subsamples from the original observations (y,);—, 41 —
forallt =1,2,....n—0, + 1.
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3. Evaluate the test statistic on each subsample thereby obtaining W,, ,, , (F,.) for the
subsample indexed byt =1,2,...,n—b,, + 1.

4. Approximate the cdf of the asymptotic distribution under the null of W, ,, , (Fj.) by
G, (Y) = 7z b FI Zn S| <Wn,bn,t (Fpe) < y) and fora € (0, 1) calculate

G, (1= a) =if{Gyp () >1—af.

5. RejectHg ataiff W, (Fy.) > q,, (1—a).
In order to derive the asymptotic properties below we finally employ the following

standard assumption that restricts the asymptotic behaviour of (bn)neN.

Assumption 16. (b,,) _ , possibly dependingon (y,),_ . . satisfies
P, <b, <u,) —1

where ([,,) and (u,,) are deterministic sequences of natural numbers suchthat1 </, < u
foralln,l, = ocoand 5= — 0asn — oo.

The main result is the following.

Proposition 5. Suppose that the employed in Theorem 3 hold, ¢,, = o, (Z/Z—/> that a €
(1, 2] along with Assumption 16. Furthermore suppose that

J501290 1
a<l—"P — € Proj,, (Ker[A] N Bd[H]) |,

—1
where A = [JPTT (00) Iy} T (90)} * Jr (6,) and Proj,, _is defined by
. s T 1—-1
Proj, () = inf (z—y)" Jg, (x—y).
Then, for the testing procedure described in Algorithm 1 we have that

1. If Hy is true then
lim P (W, (Fp) > q,, (1—a))=a.

n—oo

2. If H,,, is true then

lim P (W, (Fp) > q,, (1—a))=1.

n—oo

Remark 15. Notice first that if BA[#] = (), i.e. 6, € Int[O] then the confidence level
condition becomes trivial. Second, if Ker[A] = {0} then the condition becomes a <

1-P ( %700 ¢ PrOJj{ ({0})) and furthermore when 7 is factored as R* x X for0 < s < ¢

o I,k .
and X suitable then it also becomes trivial due to the fact that QOTZ"O has a density from
Proposition 4.
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Proof. The first result follows by a direct application of Theorem 3.5.1.i of Politis et al. [34]
due to the strong mixing property of the stationary and ergodic GARCH(1,1) model with
asymptotically vanishing mixing coefficients (see for example Theorem 3.4, page 71 of
Francq and Zakoian [16]). The applicability of this theorem follows from Proposition 4 and
the fact that the cdf of the asymptotic distribution of W, (F}.) under the null has an atom

at zero of size at most P <J53C290 € Proj,! (Ker [A] N Bd [ﬂ])). This is due to the following

facts. Notice first that from the previous proposition, the fact that Proj . is continuous and
Lemma 7.13.2-3 of van der Vaart [41] we have that

(ot 558 < )

nt/or

Second, A% is convex. Then, due to the fact that Jgéczgo has a density from the previ-
1 2

AProj,. [J"OCZGO] has also a density when restricted

to (0, +00) and it has an atom at zero when P ( 93{ % ¢ PrOj% (Ker[A] N Bd [}[])) > 0.

Hence if ¢ (1 — a) denotes the relevant quantlle of the distribution of W (F' (6,)), then

the theorem is applicable iff 1 —a > P < 90( % ¢ PrOJ% (Ker [A] N Bd [J[])) For the sec-

ond result notice that if H,;; is true then, W, (6*) = k; , + kg’;"%l (F(6y) — Fy.) +

T
T

ous proposition, the distribution of‘

2
(ﬁ;i) |F (65) — Fy.|* where ky ., |[ky .|| = O, (1) and thereby it diverges to +co. [

4.2 A Subsampling Test For The Existence Of The Unconditional Vari-
ance In GARCH(1,1)

The previous can be accordingly modified so that a subsampling based testing procedure
to be obtained for the issue of the existence of the unconditional variance in the context
of the stationary and ergodic GARCH (1, 1) model. The test is based on the infimum of the
Wald statistic presented above, where the relevant optimization is defined by the following
hypotheses structure. To our knowledge no such test has been previously estabished in
the relevant literature.
Hy:ag+ 5y 21,
Halt * Qg ‘l‘ﬁo < 1.

Using the previous notation it is easy to see that for ' (x, x4, x3) = x4 + x5, Fy = a + [,

W, ) = T = G = IR (G0, ) @)
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0
’ 77 -1
where m,, = n2/a T > 1zt andV,=(0 1 1 )(%thlwgtw) ( 1 ).We
readily obtain the following proposition.

Proposition 6. Under the premises of Proposition 4 and if furthermore 0, € Int [O] then,

2
W*nia}r_‘%glw (a+ B) 1nf W*(a+ﬁ) ég
where fat B+ 8
. [ oo, ifa+ ag + By
W (a+/8)_ Vcalfa+ﬁ_a0+/80
0
£=(0 1 1)J5l2,V=(0 1 1)J,1| 1 |and(asinProposition4.
1
Proof. Follows directly from Proposition 4 and the CMT. ]

Given this the following algorithm provides with the following testing procedure for
the finiteness of the unconditional variance in the present premises.

Remark 16. Notice that

{ ,Ifa +6,>1
w,Q),ifa,+5,<1°

Algorithm 2. The testing procedure consists of the following steps:
1. Evaluate W7, at the original sample value.

2. For0 < b,, < n generate subsamples from the original observations (y,),_,
forallt =1,2,...,n—0b, + 1.

3. Evaluate the test statistic on each subsample thereby obtaining W*,, ,, , for the subsam-
pleindexedbyt =1,2,...,n —b, + 1.

4. Approximate the cdf of the asymptotic distribution under the null of W*n’bmt by Gj%b (y) =
n— b ) Zn AR (W*n,bmt < y) and fora € (0, 1) calculate

Iy, (1 —a) = igf {Grp. () 2 1—a}.

5. RejectHg ataiff Wy, > q,, (1—a).

The final proposition establishes the asymptotic exactness and the consistency of the
previous procedure.
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Proposition 7. Under the assumptions employed in Proposition 5 and for the testing proce-
dure described in Algorithm 2 we have that

1. If Hy is true then

lim P (W;, > g, (1—a)) =a.
2. If H,,, is true then

lim P (W, >q;, (1—a)) =1

Proof. Both results follow by Proposition 6 along with Theorem 3.5.1 of Politis et al. [34].
O

Remark 17. Although loosely related, Loretan and Phillips [29] examine methods of test-
ing the hypothesis of non constancy of the unconditional variance of a time series. They
use sample split prediction tests and cusum of squares tests without explicitly modelling
the volatility process and find that the latter have nonstandard limiting distributions when
fourth unconditional moments are infinite. They work under the assumption that the dis-
tribution of the squared innovation process lies in the normal domain of attraction of an
a-stable distribution for & € [1,2] assuming additionally symmetry in the case where
a = 1. Then they estimate the stability parameter o (the maximal moment exponent) and
compute the critical values of the limit distributions numerically. Instead our test is semi-
parametric as we assume a GARCH(1,1) model and in this case observe that non-constancy
of the unconditional volatility cannot happen.

Monte Carlo Results We evaluate the performance of Algorithm 2 above by perform-
ing a Monte Carlo experiment. We generate data from a GARCH(1,1) process with con-
stant parameter w, = 1, GARCH parameter 5, = 0.90 and ARCH parameter o, = 0.10
(o = 0.08) under H, (H,,;), where the innovations are drawn from the Student’s t-
distribution with degrees of freedom v=3,4 and 5. The number of simulations is set to
S=1000. In each simulation, we generate a sample path of size n+300 choosing the ini-
tial value for the volatility to be equal to 1 and then we drop the first 300 observations, in
order to eliminate the effect of the initial value. The sample size is chosen as n=500,1000
and 5000. When n=500 we use subsample sizes n_s=200,250,300,350,400, when n=1000
we use n_s=300,400,500,600,700,800,900, when n=5000 we use n_s=1500,2500,4000. Fur-
thermore we use all the possible subsamples that we can construct the number of which
equals n-n_s+1. The experiment was implemented in MATLAB 2010a using a cluster of 10
computers each of which is equipped with an Intel Core i7-3770 processor. The parallel
toolbox was used to utilize all 8 (virtual) cores. Each computer was set to perform 1/10
of the 1000 simulations. For reproducibility each simulation was assigned a specific sub-
stream (equal to the number of the simulation) of the global stream. The results are shown
in Table below.
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Table 1: Size and Power of the Wald Test using Subsampling

V:3 V:4 V:5

n n_s | Size Power Size Power Size Power

500 250 | .226 306 .205 314 201 .368
300 | .239 304 203 329 .190 356
350 | .237 325 183 321 173 323
400 | .251 329 .18 297 160 .289
1000 400 |.212 359 .185 473 152 .500
500 |.222 370 175 455 156 448
600 | .226 384 183 438 .150 422
700 | .238 .380 .170 425 153 389
800 | .230 374 163 353 .133 328
900 |.218 338 .150 .277 122 250
5000 1500 | .160 443 .70 .626 .122 .250
2500 | .188 440 .110 553 .82  .651

4000 | .220 426 142 437 121 452
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5 Conclusions

In this paper we derived a limit theorem to mixed a-stable limits for “martingale trans-
forms” for any value of the stability parameter o € (0, 2] extending and improving the
existing results. Then we provided a framework which relies on strict stationarity of the
volatility process for the limit theory of the QMLE. We allow for the distribution of the
squared innovation process to lie in the domain of attraction of stable laws and the true
parameter to lie on the boundary of the parameter space. We show that when Ez2 < oo,
which permits a € [1,2], then the rate of convergence of the QMLE is — e where

@

r(n) := r, is a slowly varying function, and the limit distribution is an a-stable distri-
bution if the true parameter is an interior point; otherwise it is a projection on asymptotic
parameter space. When o < 1 and thus Ez2 = oo we show that the QMLE is inconsis-
tent. Furthermore we show that the stationarity assumption can be relaxed by providing
an example in which we derive the limit theory of the non-stationary GARCH(1,1) model.
Finally we derive the limit theory of the classical Wald test analogously to Hall and Yao [18]
and construct a testing procedure for the existence of the unconditional variance in the
GARCH(1,1) model. We derive its limit behavior and evaluate its finite sample performance
numerically.

As a possible extension regarding the MLT theorem, we could investigate if our results
are affected should we allow for E|V; |* = oo in the stationary case or the (V,) sequence
to weakly converge to a non-degenerate random variable in the non-stationary case, and
thus possibly generalizing the results of Wang [43] which could be useful in other appli-
cations such as non linear cointegration. Furthermore, it could be of potential interest to
examine possible ways to weaken or possibly avoid Assumption 5.

An open question with respect to limit theorem for the QMLE is whether the asymptotic
distribution of the latter when o < 1 can be determined even without it being consistent.
A simple example where this is possible concerns the ARCH(1) model and can be found in
Example 2 of Arvanitis and Louka [6]. Furthermore the determination of the limit distribu-
tion of the QMLE when the true parameter lies on the boundary and o = 1 needs further
investigation as it introduced several complexities.
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Appendix

Auxiliary Results: Strong Consistency, Rate of Convergence and Asymp-
totic Distribution

The following are auxiliary results that concern the issues of strong consistency, rate of
convergence and asymptotic distribution for approximate minimizers of appropriate cri-
teria. To this end, suppose that © is a compact subset of R? equipped with the relevant
Euclidean topology. Letc, : 2 x © — R be jointly measurable, 6,, be defined as a P
a.s. approximate minimizer of ¢,, with optimization error ¢,, a P a.s. non negative random
variable. The following result provides with sufficient conditions that characterize the rate
of convergence and the asymptotic distribution of ,, given consistency. Let §, € ©. For
reasons of notational economy we suppress the dependence on w. The following lemma
provides with sufficient conditions for strong consistency when c,, has the form of an er-
godic mean, allowing for cases where the analogous expectation does not exist.

n

Lemma 6. Supposethatc,, (6) = 3 > m; (0), (m; (0)),_, is ergodic for any 6, c,, is jointly
continuous P a.s., there exists a finite open cover of ©, such that E |inf,. 4 m,, (6)| < +o0, for
any A in the cover, Em,, () assumes values in R for any 6 in a countable dense subset of ©.
Suppose furthermore that 6, = arg ming Em (0) and thate,, — 0, P a.s. Then6,, — 6, P
as.

Proof. The first part of the Assumption framework of the Lemma implies condition €,
and thereby Theorem 2.3 of Choirat , Hess, and Seri, [10], which implies the joint P a.s.
epi-convergence of ¢,, to Em,. Let epi denote the epigraph of a given function (see e.g.
Paragraph 3.1-Ch.5 of Molchanov [31]). Then the assumed properties of c,, Proposition
3.6 and Definition 3.5 (Ch. 5) of Molchanov [31] imply that epi = epi(c,) is a jointly
measurable closed valued correspondence. Conditions 1. and 2. are essentially the se-
quential characterization of P a.s. epi-convergence of c,, to Em,, (see Definitions 2.1 and
2.2 of Lachout et al. [28]). It follows that Em,, is an Isc function (see Proposition 7.4.a of
Rockafellar and Wets [36]). Hence epi (Em,,) is a closed valued correspondence. Due to
Molchanov [31], paragraph 1.1, and Klein and Thompson [26], Definition 4.5.1 this P a.s.
epi-convergence is equivalent to the following (i)-(ii) conditions. (i) for large enough n, and
forallwin a measurable subset of (2 of unit P—probability, epi N© x (Emy () , +00) #
since © x (Emy (6,) ,+0o0) is open in the relevant product topology and epi (Em,) N
© x (Emg (0y),4+00) # 0. Hence infg ¢, (6) > Em, (6,) for all w described previously
which implies that lim inf,, infg ¢,, > Em, (6,) P a.s. Furthermore (ii) for any ¢ > 0, we
have that for large n, and for all w in a (possibly different than the previous) measurable
subset of 2 of unit P—probability, epi N © x [Emq (6y) — ¢, Emy (6y) —2¢] = 0 P as.
since © x [Emy (6,) — €, Emy (6,) — 2¢] is compact in the relevant product topology and
epi (Emy)NO x[Emg (0y) — &, Emyg (0) — 2¢] = (. Thisimplies thatlim sup_infg c,, (0) <
Em, (6,) P a.s. Now let x,, be a measurable selection from the random compact set

{0€®:cn(9)§i%fcn+sn}
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such that for some subsequence (a:nk) z, — x[Pas. Its existence is guaranteed by the
fundamental selection theorem (Theorem 2.13-Ch. 1 of Molchanov [31]). Then

Emg (z) < liminfe, (:Unk) P a.s.

ng

< lim sTLL1kp Cp, (.CL‘nk> P a.s.

= lim sup <iI@1)f Cp, T+ snk) P a.s.

ng

< Emy (6,) Pas.

establishing that any P a.s. cluster point of such a measurable selection coincides with 6,,.
The result now follows from the fact that © is compact. ]

For w,, — 400, we denote with 7, the w,, (© — 6,) = {w,, (x — 0,) ,z € ©} and no-
ticethat 7¢, is compactand contains 0. Furthermore we denote with /' = limsup 7,
in the sense of the obvious generalization of definition 3.

Consider the following assumption that provides more structure for the asymptotic
properties of c,,.

Assumption 17. Assume that the following hold:

1. For any sequence (1,,) with values in © such that 9, it 0o, ¢, (0,,) — ¢, (0y) =
(9, —0y) q,, + (9, —0,) g, (¥, — 6,), with P probability that converges to 1. g,,
isarandom ¢ x ¢ matrix that can be defined in any point of the aforementioned line
P as. g,, isarandom ¢ x 1 matrix.

2. For some positive real sequence w,, — +00, w,q,, *» z5 Which is a random vector

p
whose distribution can depend on ¢, and g,, — J5_a non singular matrix indepen-
dent of w that may depend on 6.

3. K is convex.

The next theorem is the final result of this section.

Theorem 5. Assume that 6, — 0. If conditions 17.1,2 hold and ,, = O,, (w,,?) then
p
w,, (0, —0y) = 0, (1). (23)
If moreover condition 17.3 holds and <,, = o,, (w;,*) then
W, (en o 90) v %90 (24)
with h, defineduniquely by q (7190> = hgljf[q (h)andq (h) := (h - Jgolzeo) Jo, (h - J0_01290>.
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Proof. Notice that due to the definition of §,, we have
Cn <9n) —Cp (90> < Op (’LU;Q) .

From 6,, — 6, and employing Assumption 17.1,2
p

YWy + Vg (07) v, < O (1)
where v, = w,, (6,, — 0,) and b}, as in 17.1. Hence due to consistency
v w,q, + v, (J9o + o, (1)) v, < Op (1).
Assumption 17.2 then implies that there exists some positive ¢ > 0 such that
[l O (1) + ¢ [vl* + v, 0, (1) < O, (1)
which implies that
[l (140, (1) + 2, O, (1) (140, (1)) + O, (1) < O, (1)

Hence
lv, (140, (1) <O, (1)

establishing (23). Now given the definition of / consider the following. From consistency
and Assumption 17 we can define w,, : R? — R as

w,, (h) = w? (Cn (90 + wi> —c, (90)>

n

= h'w,q, +1g, (b)) h

From the first part of the present proof we have that for U an arbitrary compact subset of
R4
/ 1 / H
@, (h) 2> bz, + §h Jo hinC(U,R).

Hence for any A non-empty subset of R?,

1
inf inf (A —h’ . 2
inf @, (h) ~» inf (h zZg, T 2h J90h> (25)
Dueto (23) h,, = w,, (B, —b(0,,)) € H,, N B(0,w,e) = M, with P-probability tending
to 1 forsome e > 0. If F'is a closed non empty subset of RY, and h,, € F, then for large
enoughn, either M,, C F,or M,, ¢ F but M, NF + (. In either case due to the definitions
of 0, B, w,, and the fact thate,, = o, (w,,?)
inf w, (h) < inf w, (h)+ 0, (1)

heM,nF " heM,

n
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and therefore due to Slutsky’s lemma

< i <
P(h, e F)<P (he]l\?fﬂFwn (h) hleIll\fj @, (h) + o, (1))

< i <

Now noticethat M, = M,,NR?and R?isopen, limsup , M, = H,sincePK-limsup K, =

J and r,, — oo. Furthermore equation (25) and the continuous mapping theorem imply
that Lemma 7.13.2-3 of van der Vaart [41] is applicable, so that the last probability is less
than or equal to

i < < i <
Pt () < Jof ()40, ) <P (gt 0 () < 2, ) +0(0)

due to Slutsky’s Lemma. Now from equation (25), the continuous mapping theorem and
Portmanteau Lemma we have that the lim sup of the probability in the right hand side of
the last display is less than or equal to

[P(hlnf h'zg + h’JQ h < 1nfh2’9 + h’JQ h)
eI

which equals

1 1
[P f / / < f / /
(helél[m Wz, + 5 h Jo b £ 5 Ze Ja Zg, 1n hzg + 5 h Jo, £ 5 29 Jo, z90>

=P (hei%% . (h— Jgolzg(J) Jo, (h—J5lz,) < jof (h— J501z90> g, (h— J901290)>

Since H™ is closed and convex and J_is positive definite 71,60 is unique, and thereby when

ynt (= 35020,) 3o, (0= 3)5,) < it (h=35!25,) 3y, (h=35)2,)

holds then B
hg, € H N F

and therefore the last probability is less than or equal to
P (hy, € HNF) <P (hy €F)
hence we have proven that

lim sup P (h,, € F) < [P(?L@O EF)

n—oo

and (24) follows from the Portmanteau theorem due to the fact that F'is chosen arbitrarily.
N
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