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Abstract

We derive a limit theorem for appropriately centered and scaledmartingale trans-
forms ∑𝑛

𝑖=1 𝜉𝑖𝑉𝑖 to mixed-stable limits when (𝜉𝑖) is an iid sequence in the domain of
attraction of an 𝛼-stable distribution where 𝛼 ∈ (0, 2]. Using the Principle of Condi-
tioning we recover and extend known results in the literature while imposing weaker
conditions. The results are particularly useful in determining the limit theory of the
Gaussian QMLE in conditionally heteroskedastic models when the squared innova-
tions are heavy-tailed. We provide the framework for the QMLE limit theory which in
the ergodic case is based on the stochastic recurrence approach used in the relevant
literature andwe furthermore allow for the parameter vector to lie on the boundary of
the parameter space. Then we show that the QMLE weakly converges to an 𝛼-stable
distribution when 𝛼 ∈ [1, 2] and is inconsistent when 𝛼 < 1. We relax the assump-
tion on ergodicity and provide analogous results for the QMLE in the non-stationary
GARCH(1,1) case. We investigate the limit theory of the usual Wald statistic and pro-
vide with the asymptotic exactness and consistency of the relevant testing procedure
based on subsampling. In the context of the stationary GARCH(1,1) we construct a
testing procedure for weak stationarity and derive its asymptotic properties and nu-
merically evaluate its performance.

*Email address: stelios@aueb.gr
†Email address: loukaalex@aueb.gr
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1 Introduction

It is empirically known that distributions of financial asset returns exhibit fat tail behavior.
Modeling the conditional moments of such processes using GARCH-typemodels has only
partly explained this behavior and therefore considering heavy-tailed distributions for the
innovation process is of particular interest for applications in finance. The use of the Gaus-
sian QMLE for the parameter estimation of such models is very convenient as it has been
shown to be consistent and asymptotically normal under mild conditions and thus reduc-
ing the risk of model misspecification. However, asymptotic normality with the usual

√𝑛
rate breaks down when the fourth moment of the error process is infinite and diverges in
a slowly varying fashion.

In the relative literature, Hall and Yao [18] obtained the asymptotic distribution of the
QMLE inGARCHmodelsbyexamining theasymptoticbehaviorof sumsof the form∑𝑛

𝑖=1𝜉𝑖𝑉𝑖
where (𝜉𝑖)𝑖∈ℕ is an i.i.d. sequence and (𝑉𝑖)𝑖∈ℕ is a stationary ergodic sequence of essen-
tially bounded random variables and the distribution of 𝜉1 lies in the domain of attraction
of an 𝛼-stable distribution (say 𝑆𝛼) with 𝛼 ∈ [1, 2]. Mikosch and Straumann [30] derive a
limit theorem for martingale transforms when 𝜉𝑡 is in 𝑆𝛼 for 𝛼 ∈ (1, 2), and 𝛼 = 1 under
symmetry. They assume 𝔼|𝑉 |𝛼+𝛿 < ∞ and impose a mixing condition for 𝑉𝑖. Then they
use the result to derive the limit theory of the QMLE in GARCH(1, 1). Surgailis [40] derives
an analogous limit theorem using the Principle of Conditioning and uses characteristic
function expansions for distributions (see Ibragimov [25]) in the domain of normal attrac-
tion of 𝛼-stable distributions for 𝛼 ∈ (1, 2). He assumes 𝔼|𝑉1|𝛼+𝛿 < ∞ and stationarity
and ergodicity for (𝑉𝑖)𝑖∈ℕ. Jakubowski [22] shows that Surgailis’ result can be obtained by
assuming 𝔼|𝑉1|𝛼 < ∞ instead.

In this paper we extend the previous results and provide weaker conditions for a limit
theorem for martingale transforms with mixed 𝛼-stable limit. We use Surgailis’ approach
to recover existing results with𝛼 ∈ (0, 2]while allowing for non-normal domains of attrac-
tion. The use of the Principle of Conditioning and the characteristic function expansions
provided by Ibragimov and Linnik [25] for the cases where 𝛼 ∈ (0, 1) ∪ (1, 2] and Aaron-
son and Denker [1] for the case where 𝛼 = 1 enables us to impose relatively weak condi-
tions on the sequence of 𝑉𝑖’s in order to obtain as limits stable distributions. Then the rate
of convergence will be 𝑛1/𝛼𝑟1/𝛼

𝑛 where 𝑟𝑛 depends on the behavior of the slowly varying
function that appears in the characteristic function expansion of 𝜉0 and co-representswith
𝛼 the tail behavior of the distribution.

Next, we provide the framework for the limit theory of the QMLE in conditionally het-
eroskedastic models that relies on Straumann’s [38] stochastic recurrence equation (SRE)
approach while allowing for distributions of the innovation process in the domain of at-
traction of an 𝛼-stable distribution. In doing so, we allow the true parameter vector to lie
on the boundary of the parameter spacemotivated by the work of Andrews [4]. We derive
the weak limit of the QMLE to an 𝛼-stable distribution when 𝛼 ∈ [1, 2] and inconsistency
when 𝛼 < 1.

Finally, we determine the limit behavior of the classical self-normalizedWald test when
𝛼 ∈ (1, 2] by showing the joint convergence of the QMLE in the spirit of Hall and Yao
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[18] and design a testing procedure for the existence of the unconditional variance in the
GARCH(1,1) model using themethod of subsampling (see Politis et al. [34]). Then we eval-
uate the performance of the previous testing procedure by means of Monte Carlo simula-
tions.

The structure of the remaining paper is organized as follows. In the next section, the
martingale limit theorem (MLT) is derived for martingale transforms with mixed 𝛼-stable
limits. In the third section we provide the framework and the limit theory for the QMLE
using the MLT. In the fourth section we investigate the limit theory of the usual Wald test
and provide an example testing procedure and discuss its theoretical properties and its
numerical performance.

2 AMLT with Mixed Stable Limits

Our framework is constructed upon a complete probability space (Ω, 𝒢,ℙ). Inwhat follows
the abbreviation ℙ a.s. stands for an almost sure argument with respect to the underlying
measure. We denote convergence in distribution of sequences of random elements with

⇝, exponential almost sure convergence w.r.t. ℙ with
eas→, and the Painleve-Kuratowski

limit of sequences of sets with PK − lim. All limits are considered as 𝑛 → ∞ unless oth-
erwise specified. We are interested in the asymptotic behavior of the properly translated
and scaled partial sums of a process of the form (𝜉𝑖𝑉𝑖)𝑖∈ℕwhich due to the properties of
the constituent processes (𝜉𝑖)𝑖∈ℕand (𝑉𝑖)𝑖∈ℕ can be abusively perceived as a multiplica-
tive “martingale transform”.1 This transform is directly related to the form of the Quasi-
Likelihood function in GARCH-type models. The following assumptions describe those
properties. The first one specifies the first factor as an iid sequence with stationary dis-
tribution closely related to an 𝛼-stable law.

Assumption1. (𝜉𝑡)𝑡∈ℕ is an iid sequenceof randomvariables, and the log-characteristic func-
tion of the distribution of 𝜉1 has the following local representation around zero:

{𝛾𝑖𝑡 − 𝑐|𝑡|𝛼ℎ(|𝑡|−1) (1 − 𝑖𝛽 sgn(𝑡) tan (1
2𝜋𝛼)) , 𝛼 ∈ (0, 1) ∪ (1, 2]

(𝛾 + 𝐻(|𝑡|−1)) 𝑖𝑡 − 𝑐|𝑡|ℎ(|𝑡|−1) (1 − 2𝐶𝑖𝛽
𝜋 sgn(𝑡)) , 𝛼 = 1 (1)

where ℎ is a slowly varying function at infinity associated with the tail behavior of the cdf, say
𝐹 , of 𝜉0 and𝐻(𝜆) = ∫𝜆

0
𝑥2

1+𝑥2 (1 − 𝐹(𝑥) − 𝐹(−𝑥)) 𝑑𝑥 = ∫𝜆
0

𝑥
1+𝑥2 ℎ(𝑥)(2𝛽𝑐𝜋−1 + 𝑘(𝑥))𝑑𝑥

where 𝑘(𝑥) → 0 as 𝑥 → ∞ (see Theorems 1 and 2 of Aaronson and Denker [1]). Also, 𝛽 ∈
[−1, 1], 𝑐 ∈ ℝ++, 𝛾 ∈ ℝ and−𝐶 is the Euler-Mascheroni constant.

Remark 1. The representations appearing in (1) are equivalent to that the distribution of
𝜉1 lies in the domain of attraction of an 𝛼-stable law, due to Theorem 2.6.5 of Ibragimov
and Linnik [25] for 𝛼 ≠ 1 and Theorem 2 of Aaronson and Denker [1] for 𝛼 = 1, i.e.

1The term is in some cases abusive due to the non-existence of appropriatemoments for any or both the
random variables appearing in the product. We adopt it in the spirit of Mikosch and Straumann [30].
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when appropriately translated and scaled, the partial sums of (𝜉𝑖)𝑛
𝑖=1 weakly converge to

𝛼-stable random variables (see inter alia Remark 2 of the latter paper). This law has in-
dex of stability equal to 𝛼, skewness parameter equal to 𝛽 and scale parameter equal to
𝑐. The parameter 𝛾 appearing in the local representations corresponds to location and it
is equal to 𝔼 [𝜉1] when 𝛼 > 1. The aforementioned Tauberian type theorems imply that
𝛼 and the slowly varying function ℎ represent the asymptotic behavior of the tails of the
distribution of 𝜉1. Hence they determine the form of the scaling in order to obtain the
aforementioned weak limit. More precisely the scaling factor is of the form 1

𝑛1/𝛼𝑟1/𝛼 where

(𝑛𝑟𝑛)−1/𝛼 = inf {𝑥 > 0 ∶ 𝑥𝛼ℎ(𝑥−1) = 1/𝑛}which implies that 𝑟𝑛 = ℎ∗(𝑛) for all 𝑛where
ℎ∗ is also slowly varying, i.e. 𝑟𝑛 defines a slowly varying sequence (see Paragraph 2.2 of
Ibragimov and Linnik [25] and Paragraph 1.9 of Bingham et al. [8]). When ℎ converges
then the distribution of 𝜉0 is said to belong to the domain of normal attraction to the rele-
vant 𝛼-stable law. Notice that when 𝛼 < 2 the possibility of ℎ(𝑥) → 0 as 𝑥 → +∞ is also
allowed, something that permits the consideration of cases where 𝔼 |𝜉1| 𝛼 < +∞ which
is precisely true if and only if ∫+∞

.
ℎ(𝑥)

𝑥 𝑑𝑥 converges, e.g. ℎ(𝑥) = log−2(𝑥). 𝐻 is closely
related to the truncated 𝛼-moment of 𝜉1 (see Remark 1 of Aaronson and Denker [1]). The
location parameter alone when 𝛼 ≠ 1 and all the aforementioned parameters along with
𝐻 and𝐶 when𝛼 = 1 determine the formof the translating constants. Furthermore, when
𝛼 = 2 we have that ℎ is the second truncated moment of 𝜉1, i.e. ℎ(𝑧) = ∫𝑧

−𝑧 𝑥2𝑑𝐹(𝑥).
The second assumption concerns the asymptotic behavior of the partial sums of the

properly transformed scaling process, as those appear inside a product of conditional ex-
pectations of the terms that appear in the local representation of the characteristic func-
tion of the partial sum of the martingale transform, when analogously scaled and trans-
lated.

Assumption 2. (𝑉𝑡)𝑡∈ℕ is a non trivialℝ-valued sequence of random elements. For the filtra-
tion (𝐹 𝑡)𝑡∈ℕ with ℱ𝑡 ≜ 𝜎 (𝜉𝑡𝑉𝑡, 𝜉𝑡−1𝑉𝑡−1, 𝜉𝑡−2𝑉𝑡−2, …), 𝜉𝑡 is independent of ℱ𝑡−1 and 𝑉𝑡 is
measurable w.r.t. ℱ𝑡−1. Furthermore

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 → ̄𝑣𝛼 ℙ a.s. (2)

1
𝑛

𝑛
∑
𝑖=1

sgn(𝑉𝑖)|𝑉𝑖|𝛼 → 𝑣𝛼 ℙa.s. (3)

where 𝑣𝛼, ̄𝑣𝛼 are random variables assuming non-zero valuesℙ a.s.

Remark 2. Eq. (2) Assumption 2 along with uniform integrability, implies that
lim𝜀→∞ lim𝑛→∞ 1𝑛 ∑𝑛

𝑖=1 |𝑉𝑖|𝛼1{|𝑉𝑖| < 𝜀} = ̄𝑣𝛼 ℙ a.s. and analogously for 3. Equiva-
lently, lim𝜀→∞ lim𝑛→∞ 1𝑛 ∑𝑛

𝑖=1 |𝑉𝑖|𝛼1{|𝑉𝑖| ≥ 𝜀} = 0 ℙ a.s. Those results can be the basis
of useful truncation arguments for the proof of the main result of the current section.

Our results do not require the existence of higher than 𝛼 moment for the scaling pro-
cess in the case where this is stationary. Hence, in this respect they generalize the analo-
gous results of Hall and Yao [18], Mikosch and Straumann [30], and Surgailis [40]. However
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it presently seems that we cannot easily get rid of the following assumption which posits
the existence of the 𝛼 moment.

Assumption 3. Assume that (𝑉𝑡)𝑡∈ℕ is strictly stationary and let 𝐼 denote its invariant𝜎-field.
Furthermore

𝔼|𝑉1|𝛼 < ∞. (4)

Remark 3. Note that (2) and (3) can be implied in a variety of cases, notably:

• If Assumption3holds then (2) and (3) holdwith ̄𝑣𝛼 ≡ 𝔼 [|𝑉1|𝛼|𝐼]and𝑣𝛼 ≡ 𝔼 [|𝑉1|𝛼 sgn(𝑉1)|𝐼]
respectively, as Doob’s Theorem applies (see Davidson [11] p. 196).

• If in addition to the above (𝑉𝑡)𝑡∈ℕ is ergodic then (2) and (3) holdwith ̄𝑣𝛼 ≡ 𝔼 [|𝑉1|𝛼]
and 𝑣𝛼 ≡ 𝔼 [|𝑉1|𝛼 sgn(𝑉1)] respectively as Birkhoff’s LLN applies.

• Suppose that 𝑉𝑡 → 𝑣, ℙ a.s. as 𝑡 → ∞ where 𝑣 is a random variable that is not
zero with ℙ probability 1. Then, by the Cesàro mean theorem (2) and (3) hold with
̄𝑣𝛼 ≡ |𝑣|𝛼 and 𝑣𝑎 ≡ |𝑣|𝛼 sgn(𝑣) respectively.

The next assumption essentially bounds the rate atwhich the runningmaximumof the
absolute scaling processmay diverge to infinity, by a rate closely related to the rate thatwe
will acquire for theweak convergence of the partial sums of themartingale transform. This
is amongothers useful for the local representation of the characteristic function appearing
in equation 1, to be asymptotically usable for thederivationof the results, or the facilitation
of several truncation arguments in the proof of the main theorem below.

Assumption 4. Assume that for any𝑀 > 0

ℙ ( max
1≤𝑖≤𝑛

|𝑉𝑖| > 𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 ) → 0. (5)

Remark 4. Assumption 4 implies that ℙ [(max |𝑉𝑖|)−1𝑛1/𝛼𝑟1/𝛼
𝑛 < 𝑀−1] → 0 for any 𝑀 >

0. Since this is true for a general 𝑀 , there exists a sequence 𝑀𝑛 → 0 such that 5 still holds
if we replace 𝑀 by 𝑀𝑛 (see e.g. Lemma 22 of chapter 7 in Pollard [35]). The latter implies
that (max |𝑉𝑖|)−1𝑛1/𝛼𝑟1/𝛼

𝑛 → ∞ in ℙ probability.
The following lemma provides a list of dependent, but sufficient conditions for 4. Es-

sentially all of them work via the appropriate comparison of the tail behavior of the dis-
tribution of |𝑉0| with the one of |𝜉0|. Other sufficient conditions can be established by
restrictions on the dependence structure of the scaling process in conjunction with the
existence of the 𝑎 moment of the scaling process, in the stationary case.

Lemma 1. Each of the following suffices for Assumption 4:

1. Assumptions 2 and 3 alongwith

ℙ (|𝑉0| > 𝑥) = 𝑜 (ℙ(|𝜉0| > 𝑥)) as 𝑥 → ∞. (6)

5



2. Assumptions 1, 2, and 3 alongwith𝔼 |𝜉1|𝛼 = ∞.

3. Assumptions 1, 2, and 3 hold and𝔼|𝑉1|𝛼+𝛿 < ∞ for some 𝛿 > 0.

Proof. 1. Wehave that for𝑀 > 0,ℙ (max1≤𝑖≤𝑛 |𝑉𝑖| > 𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 ) = 𝑃(∪𝑛
𝑖=1 {|𝑉𝑖| > 𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 }) ≤

∑𝑛
𝑖=1 ℙ (|𝑉𝑖| > 𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 ) = 𝑛ℙ (|𝑉1| > 𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 )due to stationarity. Now, sinceℙ(|𝜉0| >

𝑥) = 𝑐1+𝑐2+𝑜(1)
𝑥𝛼 ℎ(𝑥) as 𝑥 → ∞ for some non negative constants 𝑐1, 𝑐2 (see Theorem 2.6.1

of [25]) the latter equals 𝑛𝑐1+𝑐2+𝑜(1)
𝑀𝛼𝑟𝑛𝑛 ℎ(𝑀𝑟 1𝛼𝑛 𝑛 1𝛼 )𝑜(1) = 𝑜(1). 2. Observe that 𝔼|𝑉1|𝛼 ≡

∫∞
0 𝛼𝑡𝛼−1ℙ(|𝑉1| > 𝑡)𝑑𝑡 < ∞ while 𝔼|𝜉1|𝛼 ≡ ∫∞

0 𝛼𝑡𝛼−1ℙ(|𝜉1| > 𝑡)𝑑𝑡 = ∞, which im-

plies Condition 6. 3. Analogously to 2. the result follows by using the fact that 𝔼|𝜉1|𝛼+𝛿 ≡
∫∞
0 (𝛼 + 𝛿)𝑡𝛼+𝛿−1ℙ(|𝜉1| > 𝑡)𝑑𝑡 = ∞.

Remark 5. Notice that if ℎ (𝑥) → 𝑐 > 0 or lim sup ℎ (𝑥) = ∞ as 𝑥 → ∞, then Assumption
3 implies Assumption 5 (see the following lemma). Ifℎ (𝑥) → 0 then (6)wouldbe implied if
𝔼|𝑉1|𝛼+𝛿 < ∞ for some 𝛿 > 0. In the case where the previous does not hold for any 𝛿 > 0,
whenceℙ (|𝑉0| > 𝑥) = 𝑐⋆

1+𝑐⋆
2+𝑜(1)
𝑥𝛼 ℎ⋆(𝑥) for an analogous pair of constants and ℎ⋆ a slowly

varying function such that ℎ⋆ (𝑥) → 0, (6) would be implied by ℎ⋆(𝑥)
ℎ(𝑥) → 0 as 𝑥 → ∞. The

fact that Assumption 4 can hold in cases where 𝔼|𝑉1|𝛼+𝛿 = +∞ for any 𝛿 > 0, essentially
allows the extension of analogous results (see for example Mikosch and Straumann [30],
or Surgailis [40], or Hall and Yao [18]) without the need to impose strict moment existence
conditions.

The followingassumptionposits the existenceof anauxiliary regularly varying function
that is used for asymptotic comparison with the asymptotic behavior of ℎ. Notice that
essentially the existence of such a function, permits the non requirement of the existence
for higher than the 𝑎 moment for the scaling process.

Assumption 5. For any 𝜀 > 0 and some increasing regularly varying function 𝑓 ∶ (0, ∞) →
(0, ∞),

lim sup
𝑛→∞

1
ℎ(𝑛1/𝛼𝑟1/𝛼

𝑛 )
sup

𝑥∈[(max1≤𝑖≤𝑛 |𝑉𝑖|)−1,𝜀−1)

ℎ(𝑛1/𝛼𝑟1/𝛼
𝑛 𝑥)

𝑓(𝑥−1) < ∞ ℙ a.s. (7)

lim sup
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼𝑓(|𝑉𝑖|) < ∞ ℙ a.s. (8)

Remark 6. The fact that 𝑓 is regularly varying and increasing implies that we can substitute
𝑓(𝑥−1) with 𝑓(𝑡𝑥−1) for any 𝑡 > 0 in (7) without affecting its applicability. Notice that
when 𝑓 is an appropriate power function, and Assumption 3 holds, then Assumption 5 is
implied by 𝔼|𝑉1|𝛼+𝛿 < ∞ for some sufficient 𝛿 > 0.

The following lemma is the basic tool we use to prove Theorem 1 below and it relies on
the properties of the slowly varying function ℎ.
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Lemma 2. For any 𝜀 > 0 and any slowly varying function ℎ,

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) 1{|𝑉𝑖| ≤ 𝜀} = 1

𝑛
𝑛

∑
𝑖=1

|𝑉𝑖|𝛼 1{|𝑉𝑖| ≤ 𝜀} + 𝑜(1).

Proof. Let 𝑓(𝑥) = 𝑥−𝛼ℎ(𝑥). Then

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) 1{|𝑉𝑖| ≤ 𝜀}

=
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1)
𝑟𝑛

1
𝑛

𝑛
∑
𝑖=1

𝑓(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1)

𝑓(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1)

1{|𝑉𝑖| ≤ 𝜀}

where
ℎ(𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1)
𝑟𝑛

= ℎ(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1)

ℎ(𝑛1/𝛼𝑟1/𝛼
𝑛 )

ℎ(𝑛1/𝛼𝑟1/𝛼
𝑛 )

𝑟𝑛
→ 1. Also, note that

1
𝑛

𝑛
∑
𝑖=1

∣𝑓(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1)

𝑓(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1)

− |𝑉𝑖|𝛼∣ 1{|𝑉𝑖| ≤ 𝜀}

≤ sup
𝜆∈[𝜀−1,∞)

∣𝑓(𝜆𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1)

𝑓(𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1)

− 𝜆−𝛼∣ 1
𝑛

𝑛
∑
𝑖=1

1{|𝑉𝑖| ≤ 𝜀}

which converges to 0 as 𝑛 → ∞ by the Uniform Convergence Theorem (UCT) for regularly
varying functions (see Theorem 1.5.2 of [8]).

Our last assumption again concerns the asymptotic behavior of partial sumsof the scal-
ing process, as those appear in the relevant terms that occur as conditional expectations
based on the local representation of the characteristic function of 𝜉0 when 𝛼 = 1, as es-
tablished by Aaronson and Decker [1].

Assumption 6. When𝛼 = 1 assume that

lim sup
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖| log |𝑉𝑖| < ∞ ℙ a.s.,

lim sup
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖| log |𝑉𝑖|𝑓(|𝑉𝑖|) < ∞ ℙ a.s..

Remark 7. Again under the premises of Assumption 3, Assumption 6 would follow from
𝔼|𝑉1|𝛼+𝛿 < ∞ for some 𝛿 > 0.

In what follows 𝑆𝛼 (𝛽, 𝑐, 𝛾) denotes an 𝛼-stable distribution with parameters 𝛽, 𝑐, 𝛾.
Furthermore thenotation𝔼𝑆𝛼 (𝛽, 𝑐, 𝛾)denotes themixtureof thedistributionsof𝑆𝛼 (𝛽, 𝑐, 𝛾)
w.r.t. ℙ given since the parameters are generally allowed to be 𝒢-measurable functions.
The main result is presented in the following theorem. It establishes the limiting behavior
of the partial sums of the martingale transform, when appropriate scaled and translated.
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Theorem 1. Suppose that Assumptions 1, 2, 4, 5 and 6 hold.

Then if 𝛼 ≠ 1

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾) 𝑉𝑖 ⇝ 𝔼𝑆𝛼 (𝛽𝑣𝛼
̄𝑣𝛼

, 𝑐 ̄𝑣𝛼, 0) (9)

and if 𝛼 = 1

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖−2𝛽𝑐𝜋−1 (𝐶𝑣1 + 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖 log |𝑉𝑖|) ⇝ 𝔼𝑆1 (𝛽𝑣1
̄𝑣1
, 𝑐 ̄𝑣1, 0) .

(10)

Remark 8. ............

Proof. By the “Main Lemma for Sequences” of Jakubowski [22] the result would follow if
we would prove that for all 𝑡 ∈ ℝ

𝑛
∏
𝑖=1

𝔼 (exp (𝑖𝑡 1
𝑛 1𝛼 𝑟 1𝛼𝑛

𝜌𝑖,𝛼) /ℱ𝑖) (11)

converges in probability to the characteristic function of 𝑆𝛼 (𝛽 sgn(𝑣), 𝑐 ̄𝑣𝛼, 0), where

𝜌𝑖,𝛼 = { (𝜉𝑖 − 𝛾)𝑉𝑖, 𝛼 ≠ 1
(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛))𝑉𝑖 − 𝑟𝑛2𝛽𝑐𝜋−1(𝐶𝑣1 − 1𝑛 ∑𝑛

𝑖=1 𝑉𝑖 log |𝑉𝑖|), 𝛼 = 1

Let the representation described in Assumption 1 hold for all 𝑡 ∈ (−𝑡0, 𝑡0), where 𝑡0 > 0.
Then notice that for any 𝑡 ≠ 0 by defining the event

𝐶𝑛,𝐾 ∶= {𝜔 ∈ Ω ∶ |𝑉𝑖| ≤ 𝐾𝑡 (𝑛𝑟𝑛) 1𝛼 , ∀𝑖 = 1, … , 𝑛}

where 𝐾𝑡 < 𝑡0
|𝑡| , we have that ℙ(𝐶𝑐

𝑛,𝐾) which by Lemma 4 tends to 0 as 𝑛 → ∞. When
𝛼 ≠ 1, due to Assumption 1 if 𝜔 ∈ 𝐶𝑛,𝐾 then

∑𝑛
𝑖=1 log 𝔼 (exp (𝑖𝑡 1

𝑛 1𝛼 𝑟 1𝛼𝑛
(𝜉𝑖 − 𝛾) 𝑉𝑖) /𝒢𝑛)

equals

−𝑐|𝑡|𝛼
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) (1 − 𝑖𝛽 sgn(𝑡𝑉𝑖) tan (1

2𝜋𝛼))

= − 𝑐|𝑡|𝛼
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1)

+ |𝑡|𝛼
𝑛𝑟𝑛

𝑖𝛽𝑐 sgn(𝑡) tan (1
2𝜋𝛼)

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) sgn(𝑉𝑖).
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Notice that

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) = ℎ(𝑛1/𝛼𝑟1/𝛼

𝑛 )
𝑟𝑛

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1 |𝑉𝑖|−1)
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 )
1{|𝑉𝑖| ≤ 𝜀}

+ ℎ(𝑛1/𝛼𝑟1/𝛼
𝑛 )

𝑟𝑛

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1 |𝑉𝑖|−1)
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 )
1{|𝑉𝑖| > 𝜀}.

By Lemma 2, the first term on the right hand side equals 1𝑛 ∑𝑛
𝑖=1 |𝑉𝑖|𝛼 1{|𝑉𝑖| ≤ 𝜀} + 𝑜(1),

which converges to ̄𝑣𝛼 ℙ a.s. if we let 𝜀 → ∞. Regarding the second term we have that

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1 |𝑉𝑖|−1)
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 )
1{|𝑉𝑖| > 𝜀}

= 1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 𝑓(|𝑉𝑖|)1{|𝑉𝑖| > 𝜀}
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 |𝑡|−1 |𝑉𝑖|−1)
ℎ (𝑛1/𝛼𝑟1/𝛼

𝑛 )
1

𝑓(|𝑉𝑖|)

≤ sup
𝑥∈[(max1≤𝑖≤𝑛 |𝑉𝑖|)−1,𝜀−1)

ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡|−1 𝑥)

ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 )

1
𝑓(𝑥−1)

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 𝑓(|𝑉𝑖|)1{|𝑉𝑖| > 𝜀},

which, due to Assumption 5, converges to 0 ℙ a.s. Combining the above results we have
that

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼 ℎ (𝑛1/𝛼𝑟1/𝛼
𝑛 |𝑡𝑉𝑖|−1) → ̄𝑣𝛼 ℙ a.s.

When𝛼 = 1, byAssumption1, if𝜔 ∈ 𝐶𝑛,𝐾 then∑𝑛
𝑖=1 log 𝔼 (exp (𝑖𝑡 1𝑛𝑟𝑛

(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖) /𝒢𝑛)
equals

− 𝑐|𝑡| 1
𝑛𝑟𝑛

∑ |𝑉𝑖|ℎ (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) + 𝑖2𝛽𝑐𝜋−1𝐶𝑡 1
𝑛𝑟𝑛

∑ 𝑉𝑖ℎ (𝑛𝑟𝑛|𝑡𝑉𝑖|−1)

+ 𝑖𝑡 1
𝑛𝑟𝑛

∑ 𝑉𝑖 [𝐻 (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) − 𝐻(𝑛𝑟𝑛)] ,

where the first two terms of the above expression can be treated analogously to obtain
their ℙ a.s. limit as

−𝑐|𝑡| ̄𝑣1 + 𝑖2𝛽𝑐𝜋−1𝐶𝑡𝑣1 = −𝑐 ̄𝑣1|𝑡| [1 − 𝑖2𝛽𝜋−1𝐶 sgn(𝑡)𝑣1
̄𝑣1
] .

Regarding the third term, first notice that

𝐻(𝑘𝜆) − 𝐻(𝜆) = ∫
𝑘𝜆

𝜆

𝑥
1 + 𝑥2 (𝑐1 − 𝑐2 + 𝑘(𝑥)

=𝑜(1)
) ℎ(𝑥)𝑑𝑥

= ∫
𝑘

1

𝜆2𝑥
1 + 𝜆2𝑥2 (𝑐1 − 𝑐2 + 𝑘(𝜆𝑥)) ℎ(𝜆𝑥)𝑑𝑥.
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Then we have that

1
𝑛𝑟𝑛

∑ 𝑉𝑖 [𝐻 (𝑛𝑟𝑛 |𝑡𝑉𝑖|−1) − 𝐻(𝑛𝑟𝑛)]

= ℎ(𝑛𝑟𝑛)
𝑟𝑛

1
𝑛 ∑ 𝑉𝑖 ∫

|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) (2𝛽𝑐

𝜋 + 𝑘(𝑛𝑟𝑛𝑥)) 𝑑𝑥

= ℎ(𝑛𝑟𝑛)
𝑟𝑛

(2𝛽𝑐𝜋−1 + 𝑜(1)) 1
𝑛 ∑ 𝑉𝑖 ∫

|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥,

since for any constant 𝐴, sup𝑥∈[(max |𝑉𝑖|)−1,𝐴] 𝑘(𝑛𝑟𝑛|𝑡|−1𝑥) = 𝑘(𝑛𝑟𝑛|𝑡|−1𝑥∗
𝑛) for some 𝑥∗

𝑛.

Thendue toRemark4𝑘(𝑛𝑟𝑛|𝑡|−1𝑥∗
𝑛) = 𝑜(1). Then,writing𝑉𝑖 as𝑉𝑖1{|𝑉𝑖| ≤ 𝜀}+𝑉𝑖1{|𝑉𝑖| >

𝜀}, first notice that

1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥

= 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 𝑑𝑥

+ 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 (ℎ(𝑥𝑛𝑟𝑛)

ℎ(𝑛𝑟𝑛) − 1) 𝑑𝑥.

Then, towards showing that the second term of the above expression is 𝑜(1), note that for
some 𝐴2 = [𝑎1, 𝑎2] with 0 < 𝑎1 ≤ 𝑎2 and dependent on the choice of 𝜀

1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 (ℎ(𝑥𝑛𝑟𝑛)

ℎ(𝑛𝑟𝑛) − 1) 𝑑𝑥

≤ ∫
𝑥∈𝐴2

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 ∣ℎ(𝑥𝑛𝑟𝑛)

ℎ(𝑛𝑟𝑛) − 1∣ 𝑑𝑥 1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖| 1{|𝑉𝑖| ≤ 𝜀}

→ 0,
using the dominated convergence theorem and Assumption 2. Regarding the first term,
first notice that

∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 𝑑𝑥1{|𝑉𝑖| ≤ 𝜀} = 1

2 [log (1 + 𝑛2𝑟2
𝑛𝑥2)]|𝑡𝑉𝑖|−1

1 1{|𝑉𝑖| ≤ 𝜀}

= 1
2 log (1 + 𝑛2𝑟2

𝑛|𝑡𝑉𝑖|−2

1 + 𝑛2𝑟2𝑛
) 1{|𝑉𝑖| ≤ 𝜀} = log |𝑡𝑉𝑖|−11{|𝑉𝑖| ≤ 𝜀} + 𝑜(1),

where the 𝑜(1) term is also independent of 𝑉𝑖 using the fact that

sup
𝑥∈[(𝑡𝜀)−1,∞)

∣log (1 + 𝜆2𝑥
1 + 𝜆2 ) − log 𝑥∣ → 0 as 𝜆 → ∞.
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Therefore

1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥

= log 1
|𝑡|

1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| ≤ 𝜀} − 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖 log |𝑉𝑖|1{|𝑉𝑖| ≤ 𝜀} + 𝑜(1).

Next, treating the analogous term with 𝑉𝑖1{|𝑉𝑖| > 𝜀}, notice that for |𝑡𝑉𝑖|−1 < 1 (this can
be assumed without loss of generality since 𝜀 can be chosen large enough) we have that

∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥 = ∫

|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

𝑓 (|𝑡|−1𝑥−1)
𝑓 (|𝑡|−1𝑥−1)

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥

≤ 𝑓(|𝑉𝑖|) sup
𝑥∈[(max1≤𝑖≤𝑛 |𝑉𝑖|)−1,|𝑡|)

1
𝑓(|𝑡|−1𝑥−1)

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) ∫

|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 𝑑𝑥

≤ 𝑓(|𝑉𝑖|) sup
𝑥∈[(max1≤𝑖≤𝑛 |𝑉𝑖|)−1,|𝑡|)

1
𝑓(|𝑡|−1𝑥−1)

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) ∫

|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2 𝑑𝑥.

Then, since ∫1
|𝑡𝑉𝑖|−1

𝑥
1

𝑛2𝑟2𝑛
+𝑥2 𝑑𝑥 ≤ log |𝑡𝑉𝑖| and due to Assumptions 5 and 6 we have that

lim
𝜀→∞

lim sup
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖1{|𝑉𝑖| > 𝜀} ∫
|𝑡𝑉𝑖|−1

1

𝑥
1

𝑛2𝑟2𝑛
+ 𝑥2

ℎ(𝑥𝑛𝑟𝑛)
ℎ(𝑛𝑟𝑛) 𝑑𝑥 = 0.

Finally, combining the above results we obtain (10).

Remark 9. For an easy example, consider the case where 𝛼 = 2, whence 𝛽 = 0 and
𝔼𝑆2 (0, 1

2 ̄𝑣𝛼, 0) = 𝔼 [𝑁 (0, 1
2 ̄𝑣𝛼)]. For instance, if 𝜉0 ∼ 𝑡2 then the result is specified as

1√
𝑛 ln 𝑛 ∑𝑛

𝑖=1 𝜉𝑖𝑉𝑖 ⇝ 𝔼 [𝑁 (0, ̄𝑣𝛼)] by a simple calculation. Also the results can be can be

easily extended when 𝑉0 is ℝ𝑑-valued, via the use of the Cramér–Wold theorem. Then
the limits are mixtures of multivariate 𝛼-stable distributions where the spectral measures
are characterized by linear transformations from Theorem 2.3 of Gupta et al. [17]. Notice
though that in such a case the normalizing ratemust be the same across all the elements of
random vector, i.e. our results do not support the case of non-trivial matrix normalization.

The following lemma describes conditions that allow for the non-consideration of the
translating constants in the cases where 𝛼 < 1.

Lemma 3. When𝛼 < 1 the term 1
𝑛1/𝛼𝑟1/𝛼

𝑛
𝛾 ∑𝑛

𝑖=1 𝑉𝑖 can be omitted from 9when either of the

following sufficient conditions hold for any𝑀 > 0:

ℙ ( max
1≤𝑖≤𝑛

|𝑉𝑖| > 𝑀𝑞 1𝛼𝑛 𝑛 1𝛼 ) → 0, (12)
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where 𝑞𝑛 = 𝑂(𝑟1/(1−𝛼)
𝑛 ) , or

lim sup
𝑛→∞

1
𝑛

𝑛
∑
𝑖=1

|𝑉𝑖|𝛼+𝛿 < ∞, (13)

where 𝛿 > 0.

Proof. Under (12), observe that

1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ |𝑉𝑖| = 1

𝑛1/𝛼𝑟1/𝛼
𝑛

∑ |𝑉𝑖|𝛼|𝑉𝑖|1−𝛼 ≤ 1
𝑛1/𝛼−1𝑟1/𝛼

𝑛
max |𝑉𝑖|1−𝛼 1

𝑛 ∑ |𝑉𝑖|𝛼

= 𝑞 1−𝛼𝛼𝑛

𝑟1/𝛼
𝑛

1
𝑞 1−𝛼𝛼𝑛 𝑛1−𝛼𝛼

max |𝑉𝑖|1−𝛼 1
𝑛 ∑ |𝑉𝑖|𝛼 ≤ 𝑞 1−𝛼𝛼𝑛

𝑟1/𝛼
𝑛

𝑀,

with ℙ probability approaching 1 as 𝑛 → ∞. The result follows as we can choose 𝑀 arbi-

trary small. Under (13), Note that for 𝛿 small enough (so that𝛼+𝛿 < 1),( 1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑𝑛

𝑖=1 |𝑉𝑖|)
𝛼+𝛿

≤
1

𝑛 𝛿𝛼 𝑟1+ 𝛿𝛼𝑛

1𝑛 ∑𝑛
𝑖=1 |𝑉𝑖|𝛼+𝛿 and the result follows since 𝑛𝑘𝑟𝑛 → ∞ for any 𝑘 > 0.

Remark 10. Notice that we can choose 𝑞𝑛 = 𝑟𝑛 in (12) to obtain (5) when lim inf𝑛→∞ 𝑟𝑛 >
0, e.g. when 𝑟𝑛 → ∞ or 𝑟𝑛 → 𝑐 > 0.

The following corollary specializes the results of the previous theorem, in cases where
stationarity for the scaling process need not hold. It shows that results such as the one in
Theorem 1 of Arvanitis and Louka [6] are special cases of Theorem 1.

Corollary 1. Suppose that Assumptions 1, 2 and 6 hold. Moreover assume that 𝑉𝑡 → 𝑣,ℙ a.s.
as 𝑡 → ∞where 𝑣 is a random variable. Then if𝛼 ≠ 1

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾) 𝑉𝑖 ⇝ 𝔼𝑆𝛼 (𝛽 sgn(𝑣), 𝑐|𝑣|𝛼, 0) ,

and if𝛼 = 1
1

𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖 − 2𝛽𝑐𝜋−1𝑣 (𝐶 + log |𝑣|) ⇝ 𝔼𝑆1 (𝛽 sgn(𝑣), 𝑐|𝑣|, 0) .

Proof. By theCesàromean theoremwehave thatConditions (2) and (3) holdwith ̄𝑣𝛼 ≡ |𝑣|𝛼
and 𝑣𝑎 ≡ |𝑣|𝛼 sgn(𝑣) respectively. Also, Assumption 4 clearly holds in this case as 𝑉𝑡 → 𝑣
ℙ a.s. Then Theorem 1 applies.

In view of Remark 3 we also have the following result. It subsumes and extends the
analogous results inMikosch and Straumann [30], Surgailis [40], andHall and Yao [18] since
it allows for 𝛼 < 1, non-ergodicity for the scaling process and thereby mixed weak limits,
and 𝔼|𝑉1|𝛼+𝛿 = +∞ for any 𝛿 > 0.
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Corollary 2. Suppose Assumptions 1-6 hold.

Then if 𝛼 ≠ 1

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾) 𝑉𝑖 ⇝ 𝔼𝑆𝛼 (𝛽𝔼 [|𝑉1|𝛼 sgn(𝑉1)|𝐼]
𝔼 [|𝑉1|𝛼|𝐼] , 𝑐𝔼 [|𝑉1|𝛼|𝐼] , 0) ,

and if 𝛼 = 1

1
𝑛𝑟𝑛

𝑛
∑
𝑖=1

(𝜉𝑖 − 𝛾 − 𝐻(𝑛𝑟𝑛)) 𝑉𝑖 − 2𝛽𝑐𝜋−1 (𝐶𝑣1 + 1
𝑛

𝑛
∑
𝑖=1

𝑉𝑖 log |𝑉𝑖|)

⇝ 𝔼𝑆1 (𝛽𝔼 [|𝑉1| sgn(𝑉1)|𝐼]
𝔼 [|𝑉1||𝐼] , 𝑐𝔼 [|𝑉1||𝐼] , 0) .

3 Limit Theory of the QMLE

A major application of the theorem presented in the previous section concerns the char-
acterization of the rate and the asymptotic distribution of the Gaussian QMLE in GARCH
type models. In what follows we briefly describe the framework and derive the results.
The derivations draw heavily on the theory developed by Straumann [38] as well as Win-
tenberger and Cai [44]. The differences correspond first to the fact that we allow for the
centralized squares of the elements of the structuring sequence to lie in the domain of non
normal attraction to an 𝛼-stable distribution and second to the parameter of interest to be
on the boundary of the relevant parameter space.

The framework is structured as follows: first, we define the process as the unique sta-
tionary and ergodic solution of a stochastic recurrence system of equations, second we
are occupied with the issue of existence, uniqueness, stationarity and ergodicity of the so-
lution of a transformation of the aforementioned recurrence, that essentially enables the
invertibility of the volatility process for anyparameter value. This allows the approximation
of the latter process, which is latent, by filters that aremeasurable functions of the observed
heteroskedastic process (this is related to the notion of observable invertibility essentially
appearing in Straumann -see definition 2 of Wintenberger and Cai). Third, we define the
QMLE and given the previous, we describe sufficient conditions (e.g. existence of loga-
rithmic moments and of universal lower bounds for the filtered processes) that establish
its strong consistency. Finally, we are occupied with the issue of existence, uniqueness,
stationarity and ergodicity of the solutions of recurrence equations that emerge by differ-
entiating the previous equations, along with analogous (moment existence, linear inde-
pendence etc.) conditions for those solutions that permit among others the application
of the CLT of the previous section, and are in any case helpful for the establishment of the
rate and the weak limit of the QMLE via the results in the last part of the Appendix.
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The process Suppose that Θ is a compact subset of ℝ and let 𝜃0 be an arbitrarymember
of Θ. Consider the conditionally heteroskedastic process (w.r.t. 𝜃0) defined by

{ 𝑦𝑡 = 𝜎𝑡𝑧𝑡
𝜎2

𝑡 = 𝑔𝜃0
(𝑧𝑡−1, … , 𝑧𝑡−𝑝, 𝜎2

𝑡−1, … , 𝜎2
𝑡−𝑙)

, 𝑡 ∈ ℤ (14)

where the structuring sequence (𝑧𝑡)𝑡∈ℤ is a process of iid random variables such that 𝔼𝑧0 =
0 and 𝔼𝑧2

0 = 1 whenever these quantities exist.

Remark 11. We use the usual convention regarding the first and second moments of 𝑧2
0

whenever they exist, but we do not impose any assumption regarding their existence yet.
As it is shown later, the introduction of such assumptionswill affect the (in)consistency and
asymptotic distribution of the QMLE.

Also, 𝑔⋅ ∈ ℂ (Θ × ℝ𝑝 × ℝ𝑞
+, ℝ++) for any 𝜃 ∈ Θ and 𝑙 = max (𝑝, 𝑞). Let

Φ𝑡,𝜃0
(𝑥) ≑ (𝑔𝜃0

(𝑧𝑡, … , 𝑧𝑡−𝑝+1, 𝑥1, … , 𝑥𝑙) , 𝑥1, … , 𝑥𝑙−1)′
.

Given the definition of (𝑧𝑡)𝑡∈ℤ and the properties of 𝑔𝜃0
, the sequence (Φ𝑡,𝜃0

(𝑥))
𝑡∈ℤ

is

stationary and ergodic for any 𝑥 due to Proposition 2.1.1 of Straumann [38].

Assumption 7. Suppose that

𝔼 log+ ∣𝑔𝜃0
(𝑧0, … , 𝑧−𝑝+1, 𝑦1, … , 𝑦𝑙)∣ < +∞,

for some 𝑦1, … , 𝑦𝑙 ∈ ℝ++,Φ𝑡,𝜃0
isℙ a.s. Lipschitz w.r.t. 𝑥with coefficientΛ (Φ𝑡,𝜃0

) that satis-
fies

𝔼 log+ Λ (Φ0,𝜃0
) < +∞ and for some𝑚 ∈ ℕ∗,𝔼 log Λ (Φ(𝑚)

0,𝜃0
) < 0.

The previous assumption along with Theorem 2.6.1 of Straumann [38], imply that the
stochastic recurrence equation (SRE) in (14) admits a unique (up to indistinguishability)
stationary and ergodic solution (𝜎2

𝑡 )𝑡∈ℤ and furthermore any other solution converges ex-
ponentially almost surely to this one as 𝑡 → ∞. Due to continuity those properties extend
to the heteroskedastic process itself.

Continuous Invertibility and the (ℎ𝑡)𝑡∈ℤ Process Given the described process, the next
part of the framework concerns the issue of continuous invertibility (seeDefinition 4 ofWin-
tenberger and Cai [44]). This is closely connected to the properties of the filtering of the
latent volatility process and thereby to the optimization procedure on the relevant likeli-
hood function. Consider 𝑔𝜃 from before along with the first equation of (14). Given the
process (𝑦𝑡)𝑡∈ℤ consider the following stochastic recursion

ℎ𝑡 (𝜃) = 𝑔𝜃
⎛⎜⎜
⎝

𝑦𝑡−1
√ℎ𝑡−1 (𝜃)

, … , 𝑦𝑡−𝑝−1

√ℎ𝑡−𝑝−1 (𝜃)
, ℎ𝑡−1 (𝜃) , … , ℎ𝑡−𝑞−1 (𝜃)⎞⎟⎟

⎠
, (15)
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where 𝑡 ∈ ℤ and 𝜃 ∈ Θ. Likewise to the previous section consider

Ψ𝑡,𝜃 (𝑥) ≑ (𝑔𝜃 (𝑦𝑡−1√𝑥1
, … , 𝑦𝑡−𝑝−1√𝑥𝑝

, 𝑥1, … , 𝑥𝑙) , 𝑥1, … , 𝑥𝑙−1) .

Analogously, the sequence (Ψ𝑡,𝜃 (𝑥))
𝑡∈ℤ

is stationary and ergodic for any 𝑥, 𝜃. The follow-
ing assumption is essentially condition (CI) of Wintenberger and Cai [44].

Assumption 8. Suppose that

𝔼 log+ (sup
𝜃∈Θ

∣𝑔𝜃 (𝑦𝑡−1√𝑥1
, … , 𝑦𝑡−𝑝−1√𝑥𝑝

, 𝑥1, … , 𝑥𝑙)∣) < +∞,

for some𝑥1, … , 𝑥𝑙 ∈ ℝ++. Ψ𝑡,𝜃 isℙ a.s. Lipschitz w.r.t. 𝑥with coefficientΛ (Ψ𝑡,𝜃) that isℙ a.s.
continuous w.r.t. 𝜃 and satisfies

𝔼 log+ sup
𝜃∈Θ

Λ (Ψ0,𝜃) < +∞ and for some𝑚 ∈ ℕ∗,𝔼 log Λ (Ψ(𝑚)
0,𝜃 ) < 0 for all 𝜃 ∈ Θ.

The following Lemma summarizes some of the implications of the first pair of assump-
tions. It is essentially Theorem 3 of Wintenberger and Cai [44].

Lemma 4. Under assumptions 7 and 8 for any 𝜃 ∈ Θ there exists a unique stationary and
ergodic solution (ℎ𝑡 (𝜃))𝑡∈ℤ to (15). Moreoverℎ𝑡 (𝜃) is continuousw.r.t. 𝜃. Furthermore for any

𝜃 ∈ Θ and any other solution to (15), say (ℎ̂𝑡 (𝜃))
𝑡∈ℤ

, there exists 𝜀 > 0 such that

sup
𝜃′∈𝐵(𝜃,𝜀)∩Θ

∣ℎ𝑡 (𝜃′) − ℎ̂𝑡 (𝜃′)∣ eas→ 0.

.

This is extremelyhelpful since theactual evaluationat eachparameter value, and thereby
the computability of the optimization of the likelihood function, depends on solutions of
(15) based on initial conditions. It implies that any such solution (that is in general non
stationary due to its dependence on initial conditions) will converge to the stationary and
ergodic solution fast enough as 𝑡 → ∞. The local uniformity of the approximation, the sta-
tionarity and ergodicity of the solution, along with some moment existence could imply
the convergence of arithmeticmeans of the (ℎ̂𝑡 (𝜃))

𝑡∈ℤ
process evaluated at a convergent

sequence to the expectation of the ergodic solution evaluated at the limit of the afore-
mentioned sequence. All these will be convenient for the establishment of the asymptotic
properties of the estimator.
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TheQMLE-DefinitionandExistence Givenafinite sample (𝑦𝑡)𝑡=1,…,𝑛 fromtheheteroskedas-
tic process, the following defines the Gaussian quasi likelihood function ̂𝑐𝑛. The term
is used in an abusive manner since the original function would be constructed as −1

2 ∗
̂𝑐𝑛 (𝜃)+const. This form enables the characterization of the QMLE as an approximatemin-

imizer.

Assumption 9. Suppose that 𝜍𝑘,𝜃 ∶ Ω → ℝ++ is measurable for any 𝜃 ∈ Θ and ℙ almost
surely continuousw.r.t. 𝜃 for all𝑘 = 0, … , 𝑙−1 and, 𝜁𝑘,𝜃 ∶ Ω → ℝ ismeasurable for any 𝜃 ∈ Θ
andℙ a.s. continuous w.r.t. 𝜃 for all 𝑘 = 0, … , 𝑝 − 1.

Definition 1. Define the filter (ℎ̂𝑡 (𝜃))
𝑡=1,...,𝑛

for 𝜃 ∈ Θ by

ℎ̂𝑘 (𝜃) = 𝜍𝑘,𝜃 when 𝑘 = 0, … , 𝑙 − 1 and 𝑦𝑘 = 𝜁𝑘,𝜃 when 𝑘 = 0, … , 𝑝 − 1 and

ℎ̂𝑡 (𝜃) = 𝑔𝜃
⎛⎜⎜
⎝

𝑦𝑡−1

√ℎ̂𝑡−1 (𝜃)
, … , 𝑦𝑡−𝑝−1

√ℎ̂𝑡−𝑝−1 (𝜃)
, ℎ̂𝑡−1 (𝜃) , … , ℎ̂𝑡−𝑞−1 (𝜃)⎞⎟⎟

⎠
.

We can now define the Gaussian quasi likelihood function and the subsequent estima-
tor, as a (possibly measurable selection) of its approximate arg min.

Definition 2. The Gaussian quasi likelihood function is

̂𝑐𝑛 (𝜃) = 1
𝑛

𝑛
∑
𝑡=1

̂ℓ𝑡 (𝜃)

where
̂ℓ𝑡 (𝜃) = log ℎ̂𝑡 (𝜃) + 𝑦2

𝑡
ℎ̂𝑡 (𝜃)

.

For 𝜀𝑛 an ℙ almost surely non negative random variable the QMLE 𝜃𝑛 is defined by

̂𝑐𝑛 (𝜃𝑛) ≤ inf
𝜃∈Θ

̂𝑐𝑛 (𝜃) + 𝜀𝑛.

𝜀𝑛 can be perceived as an optimization error, and thereby the definition is wide enough
to include the estimator obtained (as is usually the case) by numerical optimization of ̂𝑐𝑛.
The ℙ almost sure continuity (w.r.t. 𝜃) of the filter, inherited by the definition of 𝑔𝜃 and
assumption 9 along with the compactness and the separability of Θ imply the existence
of 𝜃𝑛 even when 𝜀𝑛 = 0 ℙ a.s. This is rigorously established in the proof of the following
Proposition.

Proposition 1. Suppose that Assumption 9 holds, then the QMLE exists.

Proof. Notice first that ̂𝑐𝑛 is a Caratheodory function, i.e. continuous w.r.t. 𝜃 (due to the
continuity of the filter ℎ̂𝑡 (𝜃)) and point-wise measurable. Then the separability of 𝐾 and
lemma 4.51 of Aliprantis and Border [3] imply that ̂𝑐𝑛 is jointly measurable. Furthermore
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it is proper (i.e. it does not attain the value −∞ and there exists at least one 𝜃 ∈ 𝐾 such
that 𝑐𝑛 (𝜃) ∈ ℝ) since by ̂𝑐𝑛 being a Gaussian quasi likelihood function it ℙ a.s. does not
attain the values ±∞ ℙ a.s. This implies that it is a proper normal integrand in the sense of
definition 3.5 (Ch. 5) ofMolchanov [31] due to Proposition 3.6 (Ch. 5) in the same reference.
The result now follows by the Theorem of Measurable Projections in van der Vaart and
Wellner [42], example 1.7.5 p. 47, Proposition 3.10.i (Ch. 5-by setting 𝑎 = inf𝐾 ̂𝑐𝑛 + 𝜀𝑛)
and the fundamental selection theorem (Theorem 2.13-Ch. 1) of Molchanov [31] (see also
the proof of Theorem 3.24.(i)-Ch. 5 in the same reference).

3.1 Consistency of the QMLE

We turn to the limit theory for the estimator. The aforementioned exponentially fast ap-
proximation of the filter by the stationary and ergodic inverted process (ℎ𝑡)𝑡∈ℤ (locally
uniformly) along with the consequences of Assumption 7 enable the asymptotic approxi-
mation of ̂𝑐𝑛 by an average of ergodic contributions obtained as

𝑐𝑛 (𝜃) = 1
𝑛

𝑛
∑
𝑡=1

ℓ𝑡 (𝜃) ,

with

ℓ𝑡 (𝜃) = log ℎ𝑡 (𝜃) + 𝑦2
𝑡

ℎ𝑡 (𝜃).

We can address 𝑐𝑛 as the “ergodic likelihood”. Several of its properties are appropriate
approximations of analogous properties of ̂𝑐𝑛 and thereby they will be used for the estab-
lishment of the limit theory. In this respect, given the previous, the following Assumptions
provides with sufficient conditions for strong consistency.

Assumption 10. For the innovation process assume that𝔼𝑧2
0 = 1.

Assumption 11. Suppose that:

1. 𝜀𝑛 → 0 ℙ a.s.

2. 𝔼 log+ 𝜎2
0 < +∞.

3. infΘ ℎ0 (𝜃) ≥ 𝐶 > 0 ℙ a.s.

4. For any 𝜃 ∈ Θ:
ℎ0 (𝜃) = 𝜎2

0 ⇔ 𝜃 = 𝜃0.

Condition 11.1 implies that the optimization error vanishes asymptotically. 11.2 requires
the existence of logarithmic moments for the volatility process and due to the properties
of 𝑧0, it also implies that 𝔼 log+ 𝑦2

0 < ∞. By Theorem 2 of Wintenberger and Cai [44] it
follows from Assumption 7 and a condition of the form

𝔼 (log+ ∣𝑔𝜃0
(𝑧0, … , 𝑧−𝑝+1, 𝑦1, … , 𝑦𝑙)∣)2 < +∞
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for some 𝑦 ∈ ℝ++. Condition 11.3 requires the existence of a universal deterministic lower
bound for the volatility processes that is naturally obtained in several GARCH-type mod-
els again due to the form of the recursion, the positivity constraints and the inclusion of
a strictly positive constant. In more complex cases (e.g. the EGARCH model), it could be
obtained by placing further restrictions on the parameter space. 11.4 is an identification
condition that can be obtained by requiring more structure on the support of the distri-
bution of 𝑧0 as well as on the form of the defining recursion. The result is presented in the
following theorem.

Theorem 2. Suppose that Assumptions 7, 8, 9 , 10 and 11 hold. Then the QMLE is strongly
consistent.

Notice that Assumptions 7, 8, 9 along with conditions 11.2-4 are identical to the condi-
tions C.1-C.4 of the relevant Theorem 5.3.1 of Straumann [38] (see the proof of the second
part) or Theorem 4 of Wintenberger and Cai [44]. Hence Theorem 2 is essentially an ex-
tension by allowing the existence of an asymptotically negligible optimization error, and
thereby by providing sufficient conditions for the consistency of approximate optimizers of
the likelihood function.

Proof. Due to Assumptions 7, 8 and 8.C.2, Lemma 4 and Proposition 5.2.12 of Straumann
[38] imply that for any 𝜃 ∈ Θ there exists an 𝜀 > 0 such that

sup
Θ∩𝐵(𝜃,𝜀)

|𝑐𝑛 − ̂𝑐𝑛| → 0 ℙ a.s. (16)

due to Part 1.(i) of the proof of Theorem 5.3.1 of Straumann [38]. This locally uniform
asymptotic approximation implies theanalogousasymptotic approximationw.r.t. the topol-
ogy of epi-convergence by the sequential characterization of the latter (see Definitions 2.1
and 2.2 of Lachout et al. [28]). This in turns implies that if (𝑐𝑛)𝑛∈ℕ epi-converges to a limit
function, then so does ( ̂𝑐𝑛)𝑛∈ℕ to the same limit. To this end, let

𝜌0 ≑ inf
𝜃∈𝐾

(ln ℎ0 (𝜃) + 𝑧2
0𝜎2

0 (𝜃0)
ℎ0 (𝜃) ) ,

and notice that

𝔼 ∣ inf
𝜃∈𝐾

(ln ℎ0 (𝜃) + 𝑧2
0𝜎2

0 (𝜃0)
ℎ0 (𝜃) )∣

= −𝔼𝜌01𝜌0≤0 + 𝔼𝜌01𝜌0>0

≤ −𝔼 inf
𝜃∈𝐾

ln ℎ0 (𝜃) 1𝜌0≤0 + 𝔼 ln 𝜎2
01𝜌0>0 + 𝔼𝜎2

0 (𝜃0)
ℎ0 (𝜃0)1𝜌0>0

≤ 𝐶 + 𝔼 ln 𝜎2
01𝜌0>0,

for some 𝐶 > 0 that exists due to Assumption 11.3-4. Similarly since 𝜎2
0 is bounded away

from zero and due to 11.3, 𝔼 ln 𝜎2
01𝜌0>0 < +∞. Then due to Part 1.(iii) of the proof of

Theorem 5.3.1 of Straumann [38] implies that 𝜃0 = argminΘ 𝔼(lnℎ0 (𝜃) + 𝑦2
0

ℎ0(𝜃)). Hence
taking also into account 11.1 we have that Lemma 6 is applicable.
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In the next section, we derive the rate of convergence and asymptotic distribution of
theQMLEunder the sufficient conditionswe imposedearlier that ensure the consistencyof
theQMLE,which include the condition that𝔼𝑧2

0 < ∞. The latter togetherwithAssumption
14.1 necessarily imposes that 𝛼 ∈ [1, 2]2 in which cases the moment condition can be
satisfied.

3.2 Rate and Asymptotic Distribution

The remaining elements of the limit theory, i.e. the rate and the limiting distribution can
be established by conditions that are local in nature. The results depend crucially on the
asymptotic existenceof a local to 𝜃0 quadratic approximationof 𝑐∗

𝑛, as requiredbyTheorem
5. In accordance with the differentiability properties of ℎ̂𝑡 for a variety of heteroskedastic
models, we will assume that the approximation has the form of a second order Taylor ex-
pansion. Hence due to the possibility of 𝜃0 being on the boundary ofΘwewill need a form
of differentiability for the filter (and the subsequent stationary and ergodic approximation)
that is consistent with this. We will use the notion of left/right (l/r) partial derivatives as in
paragraph 3.3. of Andrews [4]. This requires some further structure on the set on which
𝜃𝑛 at least asymptotically attains its values. The following Assumption takes care of those
concepts.

Assumption 12. Suppose that:

1. For some 𝜂 ≤ 𝜀𝑚 for some 1 < 𝑚 ∈ ℕ and the 𝜀 > 0 that corresponds to 𝜃0 in Lemma 4,
Θ ∩ 𝐵̄ (𝜃0, 𝜂) coincides with the closure of its interior. Furthermore,Θ ∩ 𝐵̄ (𝜃0, 𝜂) − 𝜃0
equals the intersection of a union of orthants and an open cube.

2. The function

(𝜃𝑇 , 𝑥1, … , 𝑥𝑙) → 𝑔𝜃 ( 𝑦1√𝑥1
, … , 𝑦𝑝√𝑥𝑝

, 𝑥1, … , 𝑥𝑙)

hascontinuous secondorder (l/r) partial derivativesdifferentiableonΘ∩𝐵̄ (𝜃0, 𝜂)×ℝ𝑙
++

for every fixed (𝑦1, … , 𝑦𝑝) ∈ ℝ𝑝.

3. The functions 𝜍𝑘,𝜃 and 𝜁𝑘,𝜃 have continuous second order (l/r) partial derivatives onΘ ∩
𝐵̄ (𝜃0, 𝜂),ℙ a.s., for all 𝑘 = 0, … , 𝑙 − 1 and 𝑘 = 0, … , 𝑝 − 1.

12.1 ensures that at any point of Θ ∩ 𝐵̄ (𝜃0, 𝜂), there exists enough space around each
of its elements so that a left and/or right perturbation can be defined, and its second part
is essentially Assumption 22∗.(a) of Andrews [4]. This implies that at any such point a left
and/or right partial derivative could be in principle defined. 12.2 and 12.3 ensure that both
𝑔𝜃 and the initial conditions have well defined and continuous left and/or right second or-
der partial derivatives. Given those, the Taylor approximation is valid on any𝐾 that is a non

2Note that 𝛼 > 1 implies 𝔼𝑧2
0 < ∞.
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empty compact subset ofΘ∩𝐵̄ (𝜃0, 𝜂) even if the coefficients of the relevant polynomials
may depend on randomelements that can take values outside𝐾 with positiveℙ probabil-
ity. Furthermore, since the vector (𝑥1, … , 𝑥𝑙) belongs toℝ𝑙

++ the relevant derivatives w.r.t.
to the elements of this vector are by construction left and right. Due to the chain rule (see
Appendix A. of Andrews [4]), they imply that the analogous derivatives of the filter (w.r.t.
𝜃) are also well defined. In what follows we denote the matrices of first and second order
(l/r) partial derivatives with ⋅′ and ⋅′′ respectively. Their existence along with the form of

̂𝑐𝑛 and Theorem 6 of Andrews [4] imply the ℙ a.s. existence of a second order Taylor ex-
pansion of the likelihood function around 𝜃0. This does not suffice for the second part of
Assumption 17 to hold, and thereby Theorem 5 cannot be directly used. The possibility
of the existence, stationarity and ergodicity of ℎ′

𝑡 and ℎ′′
𝑡 along with the possibility that

they provide geometric approximations of ℎ̂′
𝑡 and ℎ̂′′

𝑡 respectively could enable the verifi-
cation of the aforementioned conditions. The following Assumption and the subsequent
Proposition takes care of this after the establishment of some notation.

Let 𝑘𝑖 be the 𝑖-th element of the vector (𝜃𝑇 , 𝑥1, … , 𝑥𝑙). Then for 𝑖, 𝑗 = 1, … , 𝑑, … , 𝑑+𝑙
define

𝜕𝑖𝜓𝑡 (𝜃𝑇 , 𝑥1, … , 𝑥𝑙) = 𝜕
𝜕𝑘𝑖

𝑔𝜃 ( 𝑦𝑡√𝑥1
, … , 𝑦𝑡−𝑝+1√𝑥𝑝

, 𝑥1, … , 𝑥𝑙)

and

𝜕𝑖,𝑗𝜓𝑡 (𝜃𝑇 , 𝑥1, … , 𝑥𝑙) = 𝜕2

𝜕𝑘𝑖𝜕𝑘𝑗
𝑔𝜃 ( 𝑦𝑡√𝑥1

, … , 𝑦𝑡−𝑝+1√𝑥𝑝
, 𝑥1, … , 𝑥𝑙) .

Assumption 13. Suppose that:

1. for 𝑖 = 1, … , 𝑑, … , 𝑑 + 𝑙

𝔼 [ln+ ( sup
𝜃∈Θ∩𝐵̄(𝜃0,𝜂)

∣𝜕𝑖𝜓0 (𝜃, ℎ0 (𝜃) , … , ℎ−𝑙 (𝜃))∣)] < +∞

Furthermore for every 𝑖 = 1, … , 𝑑, … , 𝑑 + 𝑙, there exist a stationary sequence ( ̄𝐶𝑖,1 (𝑡))
with 𝔼 [ln+ ̄𝐶𝑖,1 (0)] < ∞ and some function 𝑟1 ∶ ℝ → ℝ+ that is continuously differ-
entiable in a compact neighborhood of zero and 𝑟1 (0) = 0 such that

sup
𝜃∈Θ∩𝐵̄(𝜃0,𝜂)

∣𝜕𝑖𝜓𝑡 (𝜃𝑇 , 𝑥1, … , 𝑥𝑙) − 𝜕𝑖𝜓𝑡 (𝜃𝑇 , 𝑥′
1, … , 𝑥′

𝑙)∣ ≤ ̄𝐶𝑖,1 (𝑡) 𝑟1 (|𝑥 − 𝑥′|) ,

(17)
where 𝑥 = (𝑥1, … , 𝑥𝑙) and 𝑥′ = (𝑥′

1, … , 𝑥′
𝑙) in (ℝ𝑙)++.
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2. For 𝑖, 𝑗 = 1, … , 𝑝, … , 𝑝 + 𝑞

𝔼 [ln+ ( sup
𝜃∈𝐵̄(𝜃0,𝜂)

∣𝜕𝑖,𝑗𝜓0 (𝜃𝑇 , ℎ0 (𝜃) , … , ℎ−𝑙 (𝜃))∣)] < +∞,

and𝔼 ln+ ( sup
𝜃∈𝐵̄(𝜃0,𝜂)

|ℎ′
0 (𝜃)|) < +∞.

Furthermore forevery 𝑖, 𝑗 = 1, … , 𝑑, … , 𝑑+𝑙, thereexistsastationary sequence( ̄𝐶𝑖,𝑗,2 (𝑡))
with 𝔼 [ln+ ̄𝐶𝑖,𝑗,2 (0)] < ∞ and some function 𝑟2 ∶ ℝ → ℝ+ that is continuously dif-
ferentiable in a compact neighborhood of zero and 𝑟2 (0) = 0 such that

sup
𝜃∈Θ∩𝐵̄(𝜃0,𝜂)

∣𝜕𝑖,𝑗𝜓𝑡 (𝜃𝑇 , 𝑥1, … , 𝑥𝑙) − 𝜕𝑖,𝑗𝜓𝑡 (𝜃𝑇 , 𝑥′
1, … , 𝑥′

𝑙)∣ ≤ ̄𝐶𝑖,𝑗,2 (𝑡) 𝑟2 (|𝑥 − 𝑥′|) .

(18)

This Assumption essentially implies the existence and uniqueness of stationary and
ergodic solutions to the SRE’s obtained by (l/r) first and second order differentiation of the
secondequation in (14)w.r.t. 𝜃. Furthermore, first those solutions are identifiedwithℎ′

𝑡 and
ℎ′′

𝑡 which are continuous w.r.t the parameter and ℎ̂′
𝑡, ℎ̂′′

𝑡 rapidly converge to their ergodic
version uniformly in a neighborhood of 𝜃0 which without any damage to generality and
for notational simplicity we assume that it coincides with Θ ∩ 𝐵̄ (𝜃0, 𝜂). The derivation of
the previous along with their implications on the asymptotic relation between the Taylor
expansions of ̂𝑐𝑛 and 𝑐𝑛 are obtained in the proof of the following Lemma.

Lemma 5. Suppose that Assumptions 7, 8, 9, 12 and 13 hold. Then

1. ℎ′
𝑡 and ℎ′′

𝑡 are continuous w.r.t. 𝜃, for all 𝑡 ∈ ℤ,

sup
Θ∩𝐵̄(𝜃0,𝜂)

∥ℎ′
𝑡 (𝜃) − ℎ̂′

𝑡 (𝜃)∥ 𝑒.𝑎.𝑠.→ 0 and sup
Θ∩𝐵̄(𝜃0,𝜂)

∥ℎ′′
𝑡 (𝜃) − ℎ̂′′

𝑡 (𝜃)∥ 𝑒.𝑎.𝑠.→ 0, and (19)

𝑛 sup
Θ∩𝐵̄(𝜃0,𝜂)

‖𝑐′
𝑛(𝜃) − ̂𝑐′

𝑛(𝜃)‖ and 𝑛 sup
Θ∩𝐵̄(𝜃0,𝜂)

‖𝑐′′
𝑛 (𝜃) − ̂𝑐′′

𝑛 (𝜃)‖ convergeℙ a.s. (20)

2. If for some (𝑤𝑛)𝑛∈ℕ such that 𝑤𝑛 → +∞, with 𝑤𝑛 = 𝑜 (𝑛) and 𝑤𝑛𝑐′
𝑛(𝜃0) ⇝ 𝑧𝜃0

for
𝑧𝜃0

somewell defined random vector, then𝑤𝑛 ̂𝑐′
𝑛(𝜃0) ⇝ 𝑧𝜃0

, and

3. If 𝔼 sup𝜃∈𝐵̄(𝜃0,𝜂) ‖ℓ′′
0 (𝜃)‖ < +∞ then for any sequence 𝜗𝑛 → 𝜃0 ℙ a.s., ̂𝑐′′

𝑛 (𝜗𝑛) ⇝
𝐉𝜃0

=𝔼ℓ′′
0 (𝜃0) = 𝔼(ℎ′

𝑡(𝜃0)[ℎ′
𝑡(𝜃0)]𝑇

𝜎4
𝑡

).

Proof. 1. The implications in (19) follow in an essentially similar manner to the proofs of
Propositions 5.5.1 and 5.5.2 of Straumann [38] (with the analogous use of the conventions
formulated there in order to describe the SRE’s that are constructed by differentiations).
The differences to those proofs are the following. First Theorem 3 of Wintenberger and
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Cai [44] is used in place of Proposition 5.2.12 of Straumann [38]. Second, (17), (18) are
generalizations of theHölder type continuity conditions imposed in the relevant results by
Straumann. The continuous differentiability around zero also imply the implications of the
conditions of Straumann by an application of themean value theorem around zero. Third,
the identification of the solutions of the SRE’s obtained by differentiation with ℎ′

𝑡 and ℎ′′
𝑡

respectively is obtained by a lemma that prescribes that under uniform convergence and
the existence of a uniform limit of the first derivatives the limit function is differentiable
and the limit of the derivatives is the derivative of the limit. Via the results of Appendix A
of Andrews [4], this can be also seen to hold for (l/r) derivatives. Given those results the first
implication in (20) is obtained by an application of themean value theorem to the function
𝑓 (𝑎, 𝑏) = 𝑎

𝑏 (1 − 𝑦2
𝑡
𝑏 ) , 𝑎 ∈ ℝ, 𝑏 > 0, that in turn implies

sup
𝐾

∥ ̂ℓ𝑡
′(𝜃) − ℓ′

𝑡(𝜃)∥ ≤ 𝑐 (1 + 𝑦2
𝑡 ) [sup

𝐾
∣ℎ𝑡 − ℎ̂𝑡∣ + sup

𝐾
∥ℎ′

𝑡 − ℎ̂′
𝑡∥]

for some 𝑐 > 0, where 𝐾 denotes a non empty compact subset of Θ ∩ 𝐵̄ (𝜃0, 𝜂). The
previous along with 𝔼 ln+ 𝑦2

𝑡 < +∞ and Proposition 2.5.1 of Straumann [38] show that

𝑛 sup
𝐾

‖ ̂𝑐′
𝑛 (𝜃) − 𝑐′

𝑛 (𝜃)‖ ≤
∞

∑
𝑡=1

sup
𝐾

∥ ̂ℓ𝑡
′(𝜃) − ℓ′

𝑡(𝜃)∥ < +∞

For the second implication we have that the triangle inequality and the mean value theo-
rem for the functions 𝑓 (𝑎, 𝑏) = 𝑎

𝑏 (1 − 𝑦2
𝑡
𝑏 ) and 𝑔 (𝑎, 𝑏) = (2𝑦2

𝑡𝑎 − 1) 𝑏
𝑎2 imply

sup
𝐾

∥ ̂ℓ′′
𝑡 (𝜃) − ℓ′′

𝑡 (𝜃)∥ ≤ 𝑐1 (1 + 𝑦2
𝑡 ) [sup

𝐾
∣ℎ𝑡 − ℎ̂𝑡∣ + sup

𝐾
∥ℎ′′

𝑡 − ℎ̂′′
𝑡 ∥]

+ 𝑐2 (1 + 𝑦2
𝑡 ) [sup

𝐾
∣ℎ𝑡 − ℎ̂𝑡∣ + sup

𝐾
∥ℎ̂′

𝑡 (ℎ̂′
𝑡)

𝑇 − ℎ′
𝑡 (ℎ′

𝑡)𝑇 ∥] .

for some 𝑐1, 𝑐2 > 0 which exist due to compactness of 𝐾 and the uniform boundedness
of the volatility filters away from zero. Analogously to the previous and due to the fact

𝑛 sup
𝐾

‖𝑐′′
𝑛 (𝜃) − ̂𝑐′′

𝑛 (𝜃)‖ ≤
∞

∑
𝑡=1

sup
𝐾

∥ℓ′′
𝑡 (𝜃) − ̂ℓ′′

𝑡 (𝜃)∥ < ∞,

we obtain the needed result.
2. It is obtained by the first implication in (20), the convergence in distribution of

𝑟𝑛𝑐′
𝑛 (𝜃0), the assumption that 𝑟𝑛𝑛 → 0 and the triangle inequality.
3. Follows directly form the triangle inequality and the ergodic ULLN.

In order to be able to use the results in 1, 5 and 5 for the characterization of the rate
and the limit distribution we need a final Assumption that takes care of the asymptotic
behavior of 𝑐′

𝑛 and 𝑐′′
𝑛 as well as of the epigraph of the local polynomial approximation of
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the likelihood function. In what follows 𝐾 denotes a compact non empty subset of Θ of
possibly small enough diameter that contains 𝜃0 and is a subset of Θ ∩ 𝐵̄ (𝜃0, 𝜂), such that
𝜃𝑛 ∈ 𝐾 with ℙ-probability that converges to one as 𝑛 → ∞. Given Theorem 2, 𝐾 could
for example be chosen asΘ ∩ 𝐵̄ (𝜃0, 𝜂) itself. Furthermore, letℋ𝑛(𝛼) = 𝑛(𝛼−1)/𝛼

𝑟1/𝛼
𝑛

(𝐾 − 𝜃0)
where 𝑟𝑛 is as in Remark 1. The asymptotic parameter space is defined next as an appro-
priate limit of ℋ𝑛.

Definition 3. ℋ(𝛼) = PK − lim𝑛→∞ ℋ𝑛(𝛼) i.e. it is the set containing any 𝑥 ∈ ℝ𝑑 such
that 𝑥 is a cluster or a limit point of some (𝑥𝑛)𝑛∈ℕ with 𝑥𝑛 ∈ ℋ𝑛(𝛼).

ℋ(𝛼) is essentially the limit in the Painleve-Kuratowski sense of (ℋ𝑛(𝛼))𝑛∈ℕ (see for
example Appendix B of Molchanov [31]). The definition is equivalent to that 𝑥 ∈ ℋ(𝛼)
iff there exists an infinite subset of ℕ (say 𝒩) and a cofinite subset of of ℕ (say 𝒩⋆) such
that for any 𝜀 > 0, ℋ(𝛼) ∩ 𝐵 (𝑥, 𝜀) ≠ ∅ for all 𝑛 ∈ 𝒩 and 𝑛 ∈ 𝒩⋆. Notice that when
ℋ(𝛼) exists then it is a closed subset of ℝ𝑑 (see Proposition 4.4 of Rockafellar and Wets
[36]). In our case, upon existence it always contains 0. When 𝜃0 is an interior point then
ℋ(𝛼) = ℝ𝑑. This definition is not less general compared to Assumption 5 of Andrews [4]
as Lemma 3.8 of Arvanitis and Louka [5] implies.

Assumption 14. Suppose that:

1. 𝑧2
0 lies in the domain of attraction of an (non-degenerate)𝛼-stable distribution. Specifi-
cally, suppose that Assumption 1 holds for 𝜉0 = 𝑧2

0 − 1.

2. 𝔼 ∥ℎ′
0(𝜃0)
𝜎2

0
∥
𝛼

< +∞.

3. For some 𝜂 > 0,𝔼 sup𝜃∈𝐵̄(𝜃0,𝜂) ‖ℓ″
0‖ < ∞.

4. Thecomponentsof thevector 𝜕
𝜕𝜃𝑔𝜃 ( 𝑦𝑡−1

√ℎ𝑡−1(𝜃) , … , 𝑦𝑡−𝑝−1

√ℎ𝑡−𝑝−1(𝜃)
, ℎ𝑡−1 (𝜃) , … , ℎ𝑡−𝑞−1 (𝜃))∣

𝜃=𝜃0
are linearly independent random variables.

5. ℋ(𝛼) is convex.

14.3 also along with Lemma 5, Theorem 2 and the ULLN for stationary and ergodic
sequences imply the convergence in probability of ̂𝑐′′

𝑛 (𝜃𝑛) to 𝔼ℓ′′
0 (𝜃0).

Remark 12. Also, notice that (where ‖⋅‖𝐵 denotes sup𝜃∈𝐵̄(𝜃0,𝑙) ‖⋅‖ for some 𝑙 > 0)

𝔼 ‖ℓ″(𝜃)‖𝐵 = ∥( 2𝑦2
𝑡

ℎ𝑡(𝜃) − 1) ℎ′
𝑡(𝜃)[ℎ′

𝑡(𝜃)]𝑇
[ℎ𝑡(𝜃)]2 + (1 − 𝑦2

𝑡
ℎ𝑡(𝜃)) ℎ″

𝑡 (𝜃)
ℎ𝑡(𝜃) ∥

𝐵

≤ ∥ℎ′
0

ℎ0
∥

2

𝐵
(2𝑧2

0 ∥𝜎2
0

ℎ0
∥

𝐵
+ 1) + ∥ℎ″

0
ℎ0

∥
𝐵

(1 + 𝑧2
0 ∥𝜎2

0
ℎ0

∥
𝐵

) ,
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which implies that a sufficient condition for 14.3 is the existence of 𝜂 > 0 such that

𝔼 ⎡⎢
⎣

sup
𝜃∈𝐵̄(𝜃0,𝜂)

∥ℎ′
0

ℎ0
∥

2𝜆
+ sup

𝜃∈𝐵̄(𝜃0,𝜂)
∥ℎ′′

0
ℎ0

∥
𝜆′

+ sup
𝜃∈𝐵̄(𝜃0,𝜂)

(𝜎2
0

ℎ0
)

𝜆′′

⎤⎥
⎦

< +∞,

with 𝜆 ≥ 1, 𝜆′ > 1, max(𝜆,𝜆′)
max(𝜆,𝜆′)−1 ≤ 𝜆′′ ≤ 2. 14.4 implies that 𝔼ℓ′′

0 (𝜃0) is positive definite.
14.1-2 enable theuseof Theorem1. 14.5 implies theuniquenessof the limit established

in the final theorem and it is analogous to Assumption 6 of Andrews [4]. The following
counterexample implies that condition 14.5 is not trivial by considering a 𝐾 with empty
interior.

Example (𝐾 is comprised by the elements and the limit of a converging sequence.). Let
(𝛾𝑚)𝑚∈ℤ denote a real sequence that converges to zero and suppose without loss of gen-

erality that 𝜃0 = 0. For some𝑥 ∈ ℝ𝑑 and 𝑐 ≠ 0 let𝐾 = 𝐾−𝜃0 = {𝑟1/𝛼
𝑚 𝑚−(𝛼−1)/𝛼𝑐𝑥, 𝑚 ≥ 1}∪

{0}. Then ℋ(𝛼) = { 𝑐√
𝑘𝑥, 𝑘 = 1, 2, …} ∪ {0}, so obviously 14.5 fails if 𝑥 ≠ 0.

If 𝐾 itself contains a set of the form Θ ∩ 𝐵̄ (𝜃0, 𝜂∗) with 0 < 𝜂∗ ≤ 𝜂 then condition
14.5 implies that ℋ(𝛼) coincides with the closure of its interior. This is due to the fact that
𝐾 − 𝜃0 must contain a neighborhood of zero of the form ∏𝑘

𝑖=1 [𝑙𝑖, 𝑢𝑖] where some of the
lower or upper bounds could be zero but not simultaneously for the same 𝑖. Choose an
arbitrary non zero point in the previous set. It is easy to see that this belongs toℋ𝑛(𝛼) for
all 𝑛 and thereby to ℋ(𝛼) which is by construction convex.

We are now ready to state the main result of this section concerning the asymptotic
distribution of the QMLE. First, we treat the case where 𝛼 ∈ (0, 2].
Theorem 3. Suppose that Assumptions 7, 8, 9, 11, 12, 13 and 14.1-4, where𝛼 ∈ (1, 2].

If 𝜀𝑛 = 𝑂𝑝 ( 𝑟2/𝛼
𝑛

𝑛2 𝛼−1𝛼
) then

( 𝑛
𝑟𝑛

)
1𝛼

(𝜃𝑛 − 𝜃0) = 𝑂𝑝 (1) .

If furthermore 14.5 holds and 𝜀𝑛 = 𝑜𝑝 ( 𝑟2/𝛼
𝑛

𝑛2 𝛼−1𝛼
), then

( 𝑛
𝑟𝑛

)
1𝛼

(𝜃𝑛 − 𝜃0) ⇝ ℎ̃𝜃0

where ℎ̃𝜃0
isuniquelydefinedby𝑞 (ℎ̃𝜃0

) = inf
ℎ∈ℋ

𝑞 (ℎ)and𝑞 (ℎ) ∶= (ℎ − 𝐉−1
𝜃0

𝑧𝜃0
)′ 𝐉𝜃0

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
)

for 𝐉𝜃0
=𝔼ℓ′′

0 (𝜃0) = 𝔼 (𝜎−4
0 ℎ′

0 (𝜃0) [ℎ′
0 (𝜃0)]𝑇 ) which is positive definite and 𝑧𝜃0

follows a
multivariate𝛼-stabledistributioncharacterizedbyall itsprojectionsas: 𝜆𝑇 𝑧𝜃0

∼ 𝑆𝛼 (𝛽∗(𝜆), 𝑐∗(𝜆), 0)

where 𝛽∗(𝜆) = 𝛽 𝔼[∣𝜆𝑇 ℎ′
0(𝜃0)∣

𝛼
sgn(𝜆𝑇 ℎ′

0(𝜃0))]
𝔼[∣𝜆𝑇 ℎ′

0(𝜃0)∣
𝛼

]
and 𝑐∗(𝜆) = 𝑐𝔼 [ 1

𝜎2𝛼
0

∣𝜆𝑇 ℎ′
0(𝜃0)∣𝛼].
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Proof. Theorem 2 and Lemma 5 imply that the result would hold via Theorem 5 if the fol-
lowing hold. Firstly, Conditions 14.1-2 and Theorem 1 imply that

𝑤𝑛𝑐′
𝑛 (𝜃0) = 1

𝑛1/𝛼𝑟1/𝛼
𝑛

∑𝑛
𝑡=1 (𝑧2

𝑡 − 1) ℎ′
𝑡 (𝜃0)
𝜎2

𝑡

where 𝑤𝑛 = 𝑛
𝑛1/𝛼𝑟1/𝛼

𝑛
, converges in distribution to 𝑧𝜃0

which is characterized above. Sec-

ondly, 14.3 implies the validity of the result in the third part of Lemma 5. Finally, the last
condition of the second part of Assumption 17 follows from condition 14.3 along with
lemma5.6.3 of Straumann [38]while the thirdpart of Assumption17 is essentially 14.4.

Remark 13. Note that in the case where 𝛼 = 2 we have that 𝑧𝜃0
∼ 𝑁 (0, 𝐉𝜃0

). If fur-

thermore 𝜃0 is an interior point then we have that √ 𝑛𝑟𝑛
(𝜃𝑛 − 𝜃0) ⇝ 𝑁 (0, 𝐉−1

𝜃0
) and if

furthermore 𝔼𝑧4
0 < ∞ the classical result is recovered as 𝑟𝑛 ⇝ 𝔼𝑧4

1 − 1. However, we can
still obtain asymptotic normality with a different rate than

√𝑛. For example consider the
case where

√
2𝑧1 ∼ 𝑡4 where simple calculations show that 𝑟𝑛 ∼ 2

3 log 𝑛.
Next we examine the case where 𝛼 = 1 and 𝔼𝑧2

0 < ∞ assuming that 𝜃0 lies in the
interior of the parameter space.

Theorem 4. Suppose that Assumptions 7, 8, 9, 10, 11, 12, 13 and 14.1-4, where 𝛼 = 1. Also,
suppose that 𝜃0 lies in the interior of Θ and 𝜀𝑛 = 𝑜𝑝 (𝑟2

𝑛). Then, for some ̄𝜃𝑛 between 𝜃𝑛 and
𝜃0:

1
𝑟𝑛

(𝜃𝑛 − 𝜃0) − 𝛾 + 𝐻(𝑛𝑟𝑛)
𝑟𝑛

[𝑐″
𝑛( ̄𝜃𝑛)]−1 1

𝑛
𝑛

∑
𝑖=1

ℎ′
𝑡 (𝜃0)
𝜎2

𝑡
(21)

⇝ 𝐉−1
𝜃0

𝑧𝜃0

where𝐉𝜃0
= 𝔼 [𝜎−4

0 ℎ′
0(𝜃0)[ℎ′

0(𝜃0)]𝑇 ]and𝑧𝜃0
followsamultivariate1-stabledistributionchar-

acterized by all its projections as: 𝜆𝑇 𝑧𝜃0
∼ 𝑆1 (𝛽∗(𝜆), 𝑐∗(𝜆), 𝛾∗(𝜆)) where 𝛽∗(𝜆), 𝑐∗(𝜆) as in

3 and 𝛾∗(𝜆) = 2𝛽𝑐𝜋−1 {𝐶𝔼 [𝜎−2
0 𝜆𝑇 ℎ′

0(𝜃0)] + 𝔼 [𝜎−2
0 𝜆𝑇 ℎ′

0(𝜃0) log ∣𝜎−2
0 𝜆𝑇 ℎ′

0(𝜃0)∣]}.
Proof. Note that the fact that 𝜃0 is an interior point implies that 𝑐′

𝑛(𝜃𝑛) = 𝑂𝑝 (√𝜀𝑛) =
𝑜𝑝 (𝑟𝑛). Then

𝑐′
𝑛(𝜃𝑛) = 𝑐′

𝑛(𝜃0) + 𝑐″
𝑛( ̄𝜃𝑛)(𝜃𝑛 − 𝜃0) ⇒

𝑐″
𝑛( ̄𝜃𝑛)(𝜃𝑛 − 𝜃0) = 1

𝑛
𝑛

∑
𝑡=1

(𝑧2
𝑡 − 1)ℎ′

𝑡 (𝜃0)
𝜎2

𝑡
+ 𝑜𝑝(𝑟𝑛)

= 1
𝑛

𝑛
∑
𝑡=1

(𝑧2
𝑡 − 1 − 𝛾 − 𝐻(𝑛𝑟𝑛))ℎ′

𝑡 (𝜃0)
𝜎2

𝑡

... + (𝛾 + 𝐻(𝑛𝑟𝑛)) 1
𝑛

𝑛
∑
𝑡=1

ℎ′
𝑡 (𝜃0)
𝜎2

𝑡
+ 𝑜𝑝(𝑟𝑛),

and the result follows by an application of Theorem 1.
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Remark 14. The above results show that stable limits for the QMLE can be obtained under
fairlyweak assumptions for a variety of conditionally heteroskedasticmodels. The assump-
tion of ergodicity is easier to verify than themixing conditionwhich is imposed byMikosch
and Straumann [30]. Furthermore, the parameters of the limit distributions are analytically
derived as functions of the parameters of the distribution of the innovation process and
functionals of the volatility process and thus the stable distribution is fully characterized.
Finally, the fact that Theorem 1 allows for 𝔼 (𝑧2

0)𝛼+𝛿 = +∞ for all 𝛿 > 0 allows for the
extension of the set of parameter values for which the results are valid in models such as
the EGARCH (1, 1)-see below.

3.3 Inconsistency and Non-tightness of the QMLE when 𝛼 < 1
Thus far, in order to derive the asymptotic distribution of the QMLE we worked under the
assumption that 𝑧2

0 lies in the domain of attraction of an 𝛼-stable and at the same time
𝔼𝑧2

0 < ∞ which implies that 𝛼 ≥ 1. Below we examine the asymptotic behavior of the
QMLE when 𝛼 < 1. Clearly, Theorem 2 cannot be applied in this case since 𝔼𝑧2

0 = +∞.
Notice that to our knowledge, the following result on the non-tghtness of theQMLE is new
in the relevant literature.

Proposition 2. Suppose that Assumptions 7, 8, 9, 11, 14.1 with 𝛼 < 1 hold. Also let 𝜀𝑛 =
𝑜𝑝(𝑛1−1/𝛼𝑟−1/𝛼

𝑛 ). Furthermore for any 𝜃 ∈ Θ,∃𝜀𝜃 > 0 such that∀𝑡 ∈ ℤ supΘ∩𝐵̄(𝜃,𝜀𝜃)
𝜎2

𝑡
ℎ𝑡(𝜃) <

𝐶𝜃 ℙa.s. and∀𝜃 ∈ Θ∃𝜃′ ∈ Θ such thatℎ0(𝜃′) > ℎ0(𝜃)ℙa.s. then theQMLE isasymptotically
non-tight and thus inconsistent.

Proof. Similarly to the first part of the proof of Theorem 2, due to Eq. 16 it suffices to exam-
ine the asymptotic behavior of 𝑐𝑛 (instead of its non-ergodic counterpart), or equivalently
of

𝐶𝑛(𝜃) ∶= 𝑛
𝑛1/𝛼𝑟1/𝛼

𝑛
𝑐𝑛(𝜃) − 1

𝑛1/𝛼𝑟1/𝛼
𝑛

∑ log 𝜎2
𝑡

= 1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ 𝑧2

𝑡
𝜎2

𝑡
ℎ𝑡(𝜃) − 1

𝑛1/𝛼𝑟1/𝛼
𝑛

∑ log 𝜎2
𝑡

ℎ𝑡(𝜃)

as 𝜃𝑛 is within 𝜀𝑛 distance from inf𝜃∈Θ 𝐶𝑛(𝜃). But, due to the assumed bounds for 𝜎2
𝑡

ℎ𝑡(𝜃)
and since 𝛼 < 1, the ergodic uniform law of large numbers gives

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑡=1

log 𝜎2
𝑡

ℎ𝑡(𝜃) → 0 ℙ a.s.

locally uniformly ∀𝜃 ∈ Θ. Next notice that, by Theorem 1 ∀𝜃 ∈ Θ

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑡=1

𝑧2
𝑡

𝜎2
𝑡

ℎ𝑡(𝜃) ⇝ 𝔼 ∣ 𝜎2
0

ℎ0(𝜃)∣
𝛼

𝑍

26



where 𝑍 ∼ 𝑆𝛼(1, 𝑐, 0) for some 𝑐 > 0 is a random variable with positive support. Finally,
notice that

ℙ ( sup
𝜃′∈𝐵̄(𝜃,𝜀𝜃)

sup
𝜃″∈𝐵̄(𝜃,𝜀𝜃)

1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ 𝑧2

𝑡 𝜎2
𝑡 ∣ 1

ℎ𝑡(𝜃′) − 1
ℎ𝑡(𝜃″) ∣ > 𝜀)

≤ ℙ ( sup
𝜃′∈𝐵̄(𝜃,𝜀𝜃)

sup
𝜃″∈𝐵̄(𝜃,𝜀𝜃)

1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ 𝑧2

𝑡 sup
𝜃∈𝐵̄(𝜃,𝜀𝜃)

𝜎2
𝑡

ℎ𝑡(𝜃)
||ℎ′

𝑡||
ℎ𝑡

||𝜃′ − 𝜃″|| > 𝜀)

≤ ℙ (||𝜃′ − 𝜃″|| 1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ 𝑧2

𝑡 > 𝜀
𝐶2

𝜃
) , (22)

and since by Theorem 1 1
𝑛1/𝛼𝑟1/𝛼

𝑛
∑ 𝑧2

𝑡 is asymptotically tight hence for any 𝜂 > 0 ∃𝑀𝜂 ∶
lim sup𝑛→∞ ℙ (𝑘𝑛 > 𝑀𝜂) ≤ 𝜂 and for a given 𝜀 and 𝜂 choose 𝛿 ∶ 𝜀

𝐶2
𝜃𝛿 ≤ 𝑀𝜂 ⇔ 𝛿 ≤

𝜀
𝐶2

𝜃𝑀𝜂
which is always possible. Hence Eq. 22 and the choice of 𝛿(𝜀, 𝜂) imply stochastic

equicontinuity and therefore the weak convergence of 𝐶𝑛(𝜃) to 𝐶(𝜃) ∶= 𝔼 ∣ 𝜎2
0

ℎ0(𝜃) ∣
𝛼

𝑍 in

ℓ∞ [𝐵̄(𝜃, 𝜀𝜃)], which has no minimizers due to the fact that ∀𝜃 ∈ Θ, ∃𝜃′ ∶ 𝔼 ∣ 𝜎2
0

ℎ0(𝜃′) ∣
𝛼

𝑍 <
𝔼 ∣ 𝜎2

0
ℎ0(𝜃) ∣

𝛼
𝑍 by the monotinicity of the integral. Now, suppose that 𝜃𝑛 is asymptotically

tight. Then by Prokhorov’s Theorem, there exists a random element 𝜗 such that 𝜃𝑘𝑛
⇝ 𝜗

along some subsequence. Due to separability and Skorohod representation there exists a

suitable probability space (say ℙ∗) and random elements 𝐶∗
𝑛

𝑑= 𝑛1− 1𝛼 𝑟− 1𝛼𝑛 𝐶𝑛, 𝐶∗(𝜃) 𝑑=
𝐶(𝜃), 𝜀∗

𝑛 = 𝑜𝑝 (𝑛− 1−𝛼𝛼 𝑟− 1𝛼𝑛 ) and 𝐶∗
𝑛 → 𝐶∗ ℙ∗ a.s.. Also, 𝜃∗

𝑘𝑛

𝑑= 𝜃𝑘𝑛
where 𝜃∗

𝑘𝑛
satis-

fies 𝐶∗
𝑘𝑛 (𝜃∗

𝑘𝑛
) ≤ inf𝜃∈Θ 𝐶∗

𝑘𝑛 (𝜃) + 𝜀∗
𝑘𝑛 and 𝜃∗

𝑘𝑛
→ 𝜃∗ where 𝜃∗ 𝑑= 𝜗 ℙ a.s. But due

to the Theorem 3.4 of Molchanov [?], 𝜃∗ ∈ arg max 𝐶∗. Since 𝜃∗ has a well defined dis-
tribution, there exists a measurable selection say 𝑇 ∶ 𝜃∗ = 𝑇 ∘ arg max ∘𝐶∗. Hence

𝜃∗ = 𝑇 (arg max(𝐶∗)) 𝑑= 𝑇 (arg max(𝐶)). Thereby 𝜗 𝑑= 𝑥 for some 𝑥 ∈ arg max 𝐶 .
But arg max ℓ = ∅ which leads to contradiction. Thus 𝜃𝑛 is non-tight.

3.4 Applications

The examples below concern the verification of the assumption framework above (given
the a priori validity of the Assumption 9 and of the conditions 11.1, 12.3 and 14.3) for the
GQARCH(1,1) model introduced by Sentana [39].

3.4.1 GQARCH(1,1)

Let 𝑝 = 𝑞 = 1, 𝑔𝜃 (𝑧𝑡−1, 𝑥) = 𝜔 + 𝛼 (𝑧𝑡−1
√𝑥 + 𝛾

2𝛼)2 + 𝛽𝑥 and Θ is a compact subset of
ℝ++×ℝ++×ℝ−×[0, 1). The results referencedbelowareestablished inArvanitis andLouka
[5]. Remark R.1 implies that there exist 𝜃0 ≡ (𝜔0, 𝛼0, 𝛾0, 𝛽0) ∈ Θ such that Assumption
7 is satisfied. This is permitted even in cases where 𝛼0 + 𝛽0 > 1 implying the existence
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of solutions with the required properties that are not covariance stationary. Assumption 8
is satisfied since 𝛽 < 1. For Assumption 11.2 and 11.4 see lemma 2.2 and lemma 3.3. For
Assumption11.3 see lemma2.1. The latter holds if thedistributionof 𝑧0 is not concentrated
in two points. For Assumption 12.1 see lemma 3.5 and for the rest of Assumption 12 and
Assumption 13 see the proofs of lemmata 4.7 and 4.8. If ℙ (𝑧2

0 ≤ 𝑡) = 𝑜 (𝑡𝜇) for 𝑡 ↓ 0, then
Assumption 14.2-4 follows from lemmata 4.2, 4.3 and 4.6 due to Remark 12. Examples
of Θ’s that satisfy condition 14.5 of Assumption 14 can also be found in section 3.3. of
Arvanitis and Louka [5].

3.4.2 AGARCH(p,q)

Several other examples can be constructed using thework of Straumann [38]. For instance
the verificationofAssumptions 7, 8, 11, 12, 13 and14.2-4, for theAGARCH(p,q)modelwhen
the parameter space is appropriately restricted and under the condition ℙ (𝑧2

0 ≤ 𝑡) =
𝑜 (𝑡𝜇) as 𝑡 ↓ 0, would follow from the results appearing in examples 5.2.5 and 5.2.11 and
paragraphs 5.4.2 and 5.7.1 of Straumann [38] by noticing first that for the set [𝜔min, +∞)×
[0, +∞)𝑝 × 𝐵 × [−1, 1] for 𝜔max > 0 and 𝐵 = {𝑥 ∈ ℝ𝑞

+ ∶ ∑𝑞
𝑖=1 𝑥𝑖 < 1} Assumption 12.1

follows, second that Lemma 5.7.3 of Straumann [38] can be seen to hold even when 𝜃0
lies on the boundary of Θ which by construction is a compact subset of the previous set
with non empty interior (as long as the conditions 𝑎𝑖0

≠ 0 for some 𝑖 = 1, 2, … , 𝑝 and

(𝑎𝑝0
, 𝛽𝑞0

) ≠ (0, 0)-simply express the linear combination w.r.t. 𝑎𝑖0
instead of 𝑎10

) and
third that this is also true for lemmata 5.1 and 3.2 of Berkes et al. [7] as well as for their ex-
tensions concerning the AGARCH(p,q) case, i.e. lemmata 5.7.4 and 5.7.5 of Straumann [38].
Notice that it is easy to construct examples of Θ for which both the previous assumptions
and condition 14.5 of Assumption 14 hold. Consider for example the case where 𝑝 = 2,
𝑞 = 1 and Θ = [𝜔min, 𝜔max] × [0, 𝑎1max

] × [𝑎2min
, 𝑎2max

] × [𝛽min, 𝛽max] × [−1, 1] with
the obvious notation, where 𝑎20

= 𝑎2max
, 𝛾0 = −1, and the other elements of 𝜃0 lie in the

interior of their defining intervals, in which case ℋ = ℝ2 × (−∞, 0] × ℝ × [0, +∞). In
such a case it is easy to see that ℎ̃𝜃0

= (𝐿′)−1 (𝑧1, 𝑧2, min {0, 𝑧3} , 𝑧4, max {0, 𝑧5})′ where
(𝑧1, 𝑧2, 𝑧3, 𝑧4, 𝑧5)′ ∼ 𝑁 (0, 𝐈5) and 𝐉𝜃0

= 𝐿𝐿′.

3.4.3 EGARCH(1,1)

It is also easy to extend the assumption framework so that the recursions in (14) and 1 de-
fine not the volatility processes per se but their composition with some common bijective
transformation. If Assumptions 7 and 8 hold w.r.t the transformed processes, Assumption
9 incorporates the condition that its inverse (the link function as termed by Wintenberger
and Cai [44]) is continuous, and Assumption 13 is augmented by the condition that the in-
verse has first and second derivatives that are Lipschitz continuous on the bounded away
from zero-due to condition 11.3- domain of the volatilities, then Theorem 3 would also
hold. Furthermore, Assumption 14.3 can be avoided as Lemma 3 in [45] shows.
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3.5 Dropping Stationarity: non-stationary GARCH(1,1)

In this sectionwe showusing amotivating example that the stationarity assumptionwhich
was used above is not crucial in determining the limit theory of the QMLE. We actually
extend the results of Jensen and Rahbek [24], who derive the asymptotic normality of
the QMLE under non-stationarity in the GARCH(1,1) model under the assumption of finite
fourth moments of the innovation process, allowing for 𝛼-stable limits. To this end, given
the GARCH(1,1) model with the time indice taking values in ℕ and the parameter vector
denotedby 𝜃 = (𝑎, 𝛽, 𝜔, 𝛾)3 as in [24]we impose the following assumptionwhich replaces
Assumptions 7-8. To our knowledge this extension is new in the relevant literature.

Assumption 15. 𝔼 log(𝛼0𝑧2
𝑡 + 𝛽0) ≥ 0.

Then Theorem 1 in [24] can be generalized as follows regarding the asymptotic distri-
bution of the QMLE for (𝛼0, 𝛽0).

Proposition 3. Suppose that Assumptions 15 and 14.1,5 hold with 𝛼 > 1. Also fix (𝜔, 𝛾) at
their true values (𝜔0, 𝛾0). Then the results of Theorem 3 holdwith the followingmodifications:

1. 𝐉𝜃0
= (

1𝛼0
𝜇1

𝛼0𝛽0(1−𝜇1)
𝜇1

𝛼0𝛽0(1−𝜇1)
(1+𝜇1)𝜇2

𝛽2
0(1−𝜇1)(1−𝜇2)

) where 𝜇𝑖 = 𝔼(𝛽0/(𝛼0𝑧2
𝑡 + 𝛽0))𝑖, 𝑖 = 1, 2,

and

2. 𝑧𝜃0
follows amultivariate𝛼-stable distribution characterized by all its projections as

𝜆𝑇 𝑧𝜃0
∼ { 𝑆𝛼 (𝛽∗(𝜆), 𝑐∗(𝜆), 0) when 𝛼 > 1

𝑆1 (𝛽∗(𝜆), 𝑐∗(𝜆), 𝛾∗(𝜆)) when 𝛼 = 1

where 𝛽∗(𝜆) = 𝛽 𝔼[∣𝜆𝑇 𝑈∣𝛼 sgn(𝜆𝑇 𝑈)]
𝔼[|𝜆𝑇 𝑈|𝛼] , 𝑐∗(𝜆) = 𝑐𝔼 [∣𝜆𝑇 𝑈∣𝛼],

𝛾∗(𝜆) = 2𝛽𝑐𝜋−1 {𝐶𝔼 [𝜆𝑇 𝑈] + 𝔼 [𝜆𝑇 𝑈 log ∣𝜆𝑇 𝑈∣]}and𝑈 ∶= ( 1𝑎0
, 1

𝛽0
∑∞

𝑗=1 𝛽𝑗
0 ∏𝑗

𝑘=1
1

𝑎0𝑧2
𝑡−𝑘+𝛽0

).

Furthermore, if Assumption 15 holds with strict inequality, then the above holds for
any (𝜔, 𝛾).
Proof. As in the proof of Theorem 3 the result for the case where (𝜔, 𝛾) = (𝜔0, 𝛾0) can be
shown to hold via Theorem 5. Then, exactly as in Jensen and Rahbek [24] (see proof of
Lemma 1 therein) we have that𝑐″

𝑛( ̄𝜃𝑛) ⇝ 𝐉𝜃0
. Then the result follows if we show that for

any 𝜆 = (𝜆1, 𝜆2)′ ∈ ℝ2

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑡=1

(𝑧2
𝑡 − 1)ℎ′

𝑡 (𝜃0)
𝜎2

𝑡
⇝ 𝑧𝜃0

.

3We use 𝑎 to denote the ARCH parameter here as we reserve 𝛼 for the stability parameter of the stable
distribution.
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Analogously to Jensen and Rahbek [24], the main idea is to “asymptotically” replace the
non-stationary 2 × 1 vector ℎ′

𝑡(𝜃0)
𝜎2

𝑡
by stationary versions. ℎ′

𝑡(𝜃0)
𝜎2

𝑡
is (ℎ1𝑡, ℎ∗

1𝑡)′ in Jensen and

Rahbek’s notation and (𝑢1𝑡, 𝑢∗
1𝑡)′ are their ergodic approximations where

𝑢1𝑡 = 1
𝛽0

∑∞
𝑗=1 𝛽𝑗

0 ∏𝑗
𝑘=1

1
𝑎0𝑧2

𝑡−𝑘+𝛽0
and 𝑢∗

1𝑡 is shown to be equal to 1𝑎0
. Then the result fol-

lows by Lemma 4 which implies that

1
𝑛1/𝛼𝑟1/𝛼

𝑛

𝑛
∑
𝑖=1

(𝑧2 − 1)(ℎ1𝑡 − 𝑢1𝑡, ℎ∗
1𝑡 − 𝑢∗

1𝑡)′ → 0,

in 𝐿1 norm.
The fact that the same result holds for arbitrary (𝜔, 𝛾) when Assumption 15 holds with

strict inequality follows by using the exact same arguments as in the proof of Theorem 2
of Jensen and Rahbek [24].

4 SubsamplingWald Tests

4.1 Joint Convergence-Algorithm-Limit Theory

In this section we are interested with the first order limit theory of the Wald-type test that
employ the QMLE examined above in the context of Theorem 3. We examine the asymp-
totic behavior of the usual, self normalized test statistic, commonly employed under the
additional assumption that 𝔼 (𝑧4

0) < +∞, when this does not hold as well as when the
parameter lies on the boundary, and construct a procedure for the determination of the
asymptotic rejection region based on subsampling. We derive asymptotic exactness and
consistency, a result that does not hold in our general framework when the usual 𝜒2 criti-
cal values are used, either due to asymptotic non normality and/or due to the form of the
asymptotic distribution as a non-trivial projection when the parameter lies on the bound-
ary.

The following proposition is the basis onwhich the derivations that follow are founded
and its proof depends on the proof of Theorem 3.1 of Hall and Yao [18]. It is worth men-
tioning that in the latter paper the authors use the same result to construct confidence
regions for the QMLE elementwise based on the bootstrap methods instead.

Proposition 4. Suppose that the Assumptions employed in Theorem 3 hold, 𝜃0 ∈ IntΘ, 𝜀𝑛 =
𝑜𝑝 (𝑛2/𝛼𝑟2/𝛼

𝑛
𝑛2 ), and that𝛼 ∈ (1, 2]. Then

( 𝑛
𝑛1/𝛼𝑟1/𝛼

𝑛
(𝜃𝑛 − 𝜃0) , 1

𝑛2/𝛼𝑟2/𝛼
𝑛

𝑛
∑
𝑡=1

̂𝑧4
𝑡 ) ⇝ (𝐉−1

𝜃0
𝑧𝜃0

, 𝜁)

where 𝜁 = 1 if𝛼 = 2and 𝜁 followsan 𝛼
2 -stabledistributionwith support [0, +∞) if𝛼 ≠ 2. The

distributionof(𝐉−1
𝜃0

𝑧𝜃0
, 𝜁) isabsolutelycontinuous. Furthermore, if𝐹 ∶ ℝ𝑞 → ℝ𝑚, continuous
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and locally around 𝜃0 continuously differentiable with rank [𝐽𝐹 (𝜃0)] = 𝑚, then

𝒲𝑛 (𝐹 (𝜃0)) ⇝ 𝒲 (𝐹 (𝜃0)) ,

where
𝒲𝑛 (𝐹 (𝜃0)) ≑

𝑛 (𝐹 (𝜃𝑛) − 𝐹 (𝜃0))𝑇 [𝐽𝑇
𝐹 (𝜃𝑛) (∑𝑛

𝑡=1
ℎ̂′

𝑡(𝜃𝑛)[ℎ̂′
𝑡(𝜃𝑛)]𝑇

ℎ̂𝑡(𝜃𝑛) )
−1

𝐽𝐹 (𝜃𝑛)]
−1

(𝐹 (𝜃𝑛) − 𝐹 (𝜃0))𝑇

∑𝑛
𝑡=1 ̂𝑧4

𝑡
,

and

𝒲 (𝐹 (𝜃0)) ≑
𝑧𝑇

𝜃0
𝐉−1

𝜃0
𝐽𝑇

𝐹 (𝜃0) [𝐽𝑇
𝐹 (𝜃0) 𝐉−1

𝜃0
𝐽𝐹 (𝜃0)]−1 𝐽𝐹 (𝜃0) 𝐉−1

𝜃0
𝑧𝜃0

𝜁
with absolutely continuous distribution and ̂𝑧𝑡 ≑ 𝑦𝑡

√ℎ̂𝑡(𝜃𝑛)
, 𝑡 = 1, … , 𝑛.

Proof. Firstly, theuniform lawof largenumbers and the fact that allowsus to replace𝔼ℎ′
1(𝜃0)[ℎ′

1(𝜃0)]𝑇

𝜎2
1

with 1𝑛 ∑𝑛
𝑡=1

ℎ̂′
𝑡(𝜃𝑛)[ℎ̂′

𝑡(𝜃𝑛)]𝑇

ℎ̂𝑡(𝜃𝑛) and∑𝑛
𝑡=1 𝑧4

𝑡 with∑𝑛
𝑡=1 ̂𝑧4

𝑡 (see also Remark 5.6.2 of Straumann

[38] and Remark 12 of the current paper). Then given the assumption on 𝐹 , the result fol-
lows exactly as in Hall and Yao [18] (see page as well as the proofs of Theorems 2.1.c,e and
3.1) along with the Continuous Mapping Theorem and the delta method.

Given 𝐹 as in the previous proposition consider for some 𝐹𝜃∗ ∈ Int𝐹 (Θ) the hypothe-
sis structure

𝐇0 ∶ 𝐹 (𝜃0) = 𝐹𝜃∗ ,
𝐇𝐚𝐥𝐭 ∶ 𝐹 (𝜃0) ≠ 𝐹𝜃∗ .

Notice that in our Assumption framework the asymptotic exactness of the usual Wald test
for this structure, based on the asymptotic chi-squared distribution becomes generally in-
validated. Proposition 4 obviously provides with the asymptotic distribution of the self-
normalized Wald test under 𝐇0. Notice that if 𝛼 = 2 the limit distribution is 𝜒2

𝑞 even in
the cases where the secondmoment of 𝑧0 does not exist. Hence in this case the classical test
remains asymptotically exact and consistent.

This ceases tobe truewhen𝛼 ≠ 2. Henceunder our assumption framework in order for
a feasible testing procedure to be established, an approximation of the relevant quantiles
of the aforementioned distribution is needed. The following algorithm provides describes
the well knownmodification based on subsampling.

Algorithm 1. The testing procedure consists of the following steps:

1. Evaluate𝒲𝑛 (𝐹𝜃∗) at the original sample value.

2. For 0 < 𝑏𝑛 ≤ 𝑛 generate subsamples from the original observations (𝑦𝑖)𝑖=𝑡,…,𝑡+𝑏𝑛−1
for all 𝑡 = 1, 2, … , 𝑛 − 𝑏𝑛 + 1.
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3. Evaluate the test statistic on each subsample thereby obtaining 𝒲𝑛,𝑏𝑛,𝑡 (𝐹𝜃∗) for the
subsample indexed by 𝑡 = 1, 2, … , 𝑛 − 𝑏𝑛 + 1.

4. Approximate the cdf of the asymptotic distribution under the null of 𝒲𝑛,𝑏𝑛,𝑡 (𝐹𝜃∗) by
𝐺𝑛,𝑏𝑛

(𝑦) = 1
𝑛−𝑏𝑛+1 ∑𝑛−𝑏𝑛+1

𝑡=1 1 (𝒲𝑛,𝑏𝑛,𝑡 (𝐹𝜃∗) ≤ 𝑦) and for 𝑎 ∈ (0, 1) calculate

𝑞𝑛,𝑏𝑛
(1 − 𝑎) = inf

𝑦
{𝐺𝑛,𝑏𝑛

(𝑦) ≥ 1 − 𝑎} .

5. Reject 𝐇𝟎 at 𝑎 iff 𝒲𝑛 (𝐹𝜃∗) > 𝑞𝑛,𝑏𝑛
(1 − 𝑎) .

In order to derive the asymptotic properties below we finally employ the following
standard assumption that restricts the asymptotic behaviour of (𝑏𝑛)𝑛∈ℕ.

Assumption 16. (𝑏𝑛)𝑛∈ℕ, possibly depending on (𝑦𝑡)𝑡=1,…,𝑛, satisfies

ℙ (𝑙𝑛 ≤ 𝑏𝑛 ≤ 𝑢𝑛) → 1
where (𝑙𝑛) and (𝑢𝑛) aredeterministic sequencesof natural numbers such that1 ≤ 𝑙𝑛 ≤ 𝑢𝑛
for all 𝑛, 𝑙𝑛 → ∞ and 𝑢𝑛𝑛 → 0 as 𝑛 → ∞.

The main result is the following.

Proposition 5. Suppose that the employed in Theorem 3 hold, 𝜀𝑛 = 𝑜𝑝 (𝑛2/𝛼𝑟2/𝛼
𝑛

𝑛2 ), that 𝛼 ∈
(1, 2] alongwith Assumption 16. Furthermore suppose that

𝑎 < 1 − ℙ (
𝐉−1

𝜃0
𝑧𝜃0

𝜁 ∈ Proj−1
ℋ (Ker [𝐴] ∩ Bd[ℋ])) ,

where𝐴 ≑ [𝐽𝑇 𝑟
𝐹 (𝜃0) 𝐉−1

𝜃0
𝐽𝐹 (𝜃0)]− 1

2 𝐽𝐹 (𝜃0) and Projℋ is defined by

Projℋ (𝑥) = inf
𝑦∈ℋ

(𝑥 − 𝑦)𝑇 𝐉−1
𝜃0

(𝑥 − 𝑦) .

Then, for the testing procedure described in Algorithm 1we have that

1. If 𝐇𝟎 is true then
lim

𝑛→∞
ℙ (𝒲𝑛 (𝐹𝜃∗) > 𝑞𝑛,𝑏𝑛

(1 − 𝑎)) = 𝑎.

2. If 𝐇𝐚𝐥𝐭 is true then

lim
𝑛→∞

ℙ (𝒲𝑛 (𝐹𝜃∗) > 𝑞𝑛,𝑏𝑛
(1 − 𝑎)) = 1.

Remark 15. Notice first that if Bd[ℋ] = ∅, i.e. 𝜃0 ∈ Int [Θ] then the confidence level
condition becomes trivial. Second, if Ker [𝐴] = {0} then the condition becomes 𝑎 <
1−ℙ (𝐉−1

𝜃0 𝑧𝜃0
𝜁 ∈ Proj−1

ℋ ({0})) and furthermorewhenℋ is factored asℝ𝑠×𝒦 for0 < 𝑠 ≤ 𝑞
and 𝒦 suitable then it also becomes trivial due to the fact that

𝐉−1
𝜃0 𝑧𝜃0

𝜁 has a density from
Proposition 4.
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Proof. The first result follows by a direct application of Theorem 3.5.1.i of Politis et al. [34]
due to the strong mixing property of the stationary and ergodic GARCH(1,1) model with
asymptotically vanishing mixing coefficients (see for example Theorem 3.4, page 71 of
Francq and Zakoian [16]). The applicability of this theorem follows from Proposition 4 and
the fact that the cdf of the asymptotic distribution of𝒲𝑛 (𝐹𝜃∗) under the null has an atom
at zero of size at most ℙ (𝐉−1

𝜃0 𝑧𝜃0
𝜁 ∈ Proj−1

ℋ (Ker [𝐴] ∩ Bd [ℋ])). This is due to the following

facts. Notice first that from the previous proposition, the fact that Projℋ is continuous and
Lemma 7.13.2-3 of van der Vaart [41] we have that

( 𝑛
𝑛1/𝛼𝑟1/𝛼

𝑛
(𝜃𝑛 − 𝜃0) , 1

𝑛2/𝛼𝑟2/𝛼
𝑛

𝑛
∑
𝑡=1

̂𝑧4
𝑡 ) ⇝ (ℎ̃𝜃0

, 𝜁) .

Second, 𝐴ℋ is convex. Then, due to the fact that
𝐉−1

𝜃0 𝑧𝜃0
𝜁 has a density from the previ-

ous proposition, the distribution of ∥𝐴Projℋ [𝐉−1
𝜃0 𝑧𝜃0

𝜁 ]∥
2
has also a density when restricted

to (0, +∞) and it has an atom at zero when ℙ (𝐉−1
𝜃0 𝑧𝜃0

𝜁 ∈ Proj−1
ℋ (Ker [𝐴] ∩ Bd [ℋ])) > 0.

Hence if 𝑞 (1 − 𝑎) denotes the relevant quantile of the distribution of 𝒲 (𝐹 (𝜃0)), then
the theorem is applicable iff 1 − 𝑎 > ℙ (𝐉−1

𝜃0 𝑧𝜃0
𝜁 ∈ Proj−1

ℋ (Ker [𝐴] ∩ Bd [ℋ])). For the sec-
ond result notice that if 𝐇𝐚𝐥𝐭 is true then, 𝒲𝑛 (𝜃∗) = 𝑘1,𝑛 + 𝑘𝑇 𝑟

2,𝑛 𝑛 𝛼−1𝛼

𝑟
1𝛼𝑛

(𝐹 (𝜃0) − 𝐹𝜃∗) +

(𝑛 𝛼−1𝛼

𝑟
1𝛼𝑛

)
2

‖𝐹 (𝜃0) − 𝐹𝜃∗‖2 where 𝑘1,𝑛, ∥𝑘2,𝑛∥ = 𝑂𝑝 (1) and thereby it diverges to +∞.

4.2 A Subsampling Test For The Existence Of The Unconditional Vari-
ance In GARCH(1,1)

The previous can be accordingly modified so that a subsampling based testing procedure
to be obtained for the issue of the existence of the unconditional variance in the context
of the stationary and ergodic GARCH (1, 1)model. The test is based on the infimum of the
Wald statistic presentedabove,where the relevant optimization is definedby the following
hypotheses structure. To our knowledge no such test has been previously estabished in
the relevant literature.

𝐇0 ∶ 𝑎0 + 𝛽0 ≥ 1,
𝐇𝐚𝐥𝐭 ∶ 𝑎0 + 𝛽0 < 1.

Using the previous notation it is easy to see that for 𝐹 (𝑥1, 𝑥2, 𝑥3) = 𝑥2 + 𝑥3, 𝐹𝜃 = 𝑎 + 𝛽,

𝒲𝑛 (𝑎 + 𝛽) = 𝑛2 [(𝑎𝑛 + 𝛽𝑛) − (𝑎 + 𝛽)]2
̂𝑉𝑛 ∑𝑛

𝑡=1 ̂𝑧4
𝑡

= 1
𝑚𝑛

[𝑛𝛼−1𝛼

𝑟1/𝛼
𝑛

((𝑎𝑛 + 𝛽𝑛) − (𝑎 + 𝛽))]
2

,
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where 𝑚𝑛 ≑ ̂𝑉𝑛
𝑛2/𝛼𝑟2/𝛼

𝑛
∑𝑛

𝑡=1 ̂𝑧4
𝑡 and ̂𝑉𝑛 ≑ ( 0 1 1 )( 1𝑛 ∑𝑛

𝑡=1
ℎ̂′

𝑡(𝜃𝑛)ℎ̂′
𝑡(𝜃𝑛)

ℎ̂𝑡(𝜃𝑛) )
−1 ⎛⎜

⎝

0
1
1

⎞⎟
⎠
. We

readily obtain the following proposition.

Proposition 6. Under the premises of Proposition 4 and if furthermore 𝜃0 ∈ Int [Θ] then,

𝒲∗
𝑛 ≑ inf

𝑎+𝛽≥1
𝒲𝑛 (𝑎 + 𝛽) ⇝ inf

𝑎+𝛽≥1
𝒲⋆ (𝑎 + 𝛽) = 𝜉2

𝑉 𝜁 ,

where

𝒲⋆ (𝑎 + 𝛽) = { +∞, if 𝑎 + 𝛽 ≠ 𝑎0 + 𝛽0
𝜉2
𝑉 𝜁 , if 𝑎 + 𝛽 = 𝑎0 + 𝛽0

,

𝜉 = ( 0 1 1 ) 𝐉−1
𝜃0

𝑧𝜃0
, 𝑉 = ( 0 1 1 ) 𝐉−1

𝜃0
⎛⎜
⎝

0
1
1

⎞⎟
⎠

and 𝜁 as in Proposition 4.

Proof. Follows directly from Proposition 4 and the CMT.

Given this the following algorithm provides with the following testing procedure for
the finiteness of the unconditional variance in the present premises.

Remark 16. Notice that

𝒲∗
𝑛 = { 0, if 𝑎𝑛 + 𝛽𝑛 ≥ 1

𝒲𝑛 (1) , if 𝑎𝑛 + 𝛽𝑛 < 1 .

Algorithm 2. The testing procedure consists of the following steps:

1. Evaluate𝒲∗
𝑛 at the original sample value.

2. For 0 < 𝑏𝑛 ≤ 𝑛 generate subsamples from the original observations (𝑦𝑖)𝑖=𝑡,…,𝑡+𝑏𝑛−1
for all 𝑡 = 1, 2, … , 𝑛 − 𝑏𝑛 + 1.

3. Evaluate the test statisticoneachsubsample therebyobtaining𝒲∗
𝑛,𝑏𝑛,𝑡 for the subsam-

ple indexed by 𝑡 = 1, 2, … , 𝑛 − 𝑏𝑛 + 1.

4. Approximate thecdfof theasymptoticdistributionunder thenullof 𝒲∗
𝑛,𝑏𝑛,𝑡 by𝐺∗

𝑛,𝑏𝑛
(𝑦) =

1
𝑛−𝑏𝑛+1 ∑𝑛−𝑏𝑛+1

𝑡=1 1 (𝒲∗
𝑛,𝑏𝑛,𝑡 ≤ 𝑦) and for 𝑎 ∈ (0, 1) calculate

𝑞∗
𝑛,𝑏𝑛

(1 − 𝑎) = inf
𝑦

{𝐺∗
𝑛,𝑏𝑛

(𝑦) ≥ 1 − 𝑎} .

5. Reject 𝐇𝟎 at 𝑎 iff 𝒲∗
𝑛 > 𝑞𝑛,𝑏𝑛

(1 − 𝑎) .

The final proposition establishes the asymptotic exactness and the consistency of the
previous procedure.
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Proposition 7. Under the assumptions employed in Proposition 5 and for the testing proce-
dure described in Algorithm 2we have that

1. If 𝐇𝟎 is true then
lim

𝑛→∞
ℙ (𝒲∗

𝑛 > 𝑞∗
𝑛,𝑏𝑛

(1 − 𝑎)) = 𝑎.

2. If 𝐇𝐚𝐥𝐭 is true then
lim

𝑛→∞
ℙ (𝒲∗

𝑛 > 𝑞∗
𝑛,𝑏𝑛

(1 − 𝑎)) = 1.

Proof. Both results follow by Proposition 6 along with Theorem 3.5.1 of Politis et al. [34].

Remark 17. Although loosely related, Loretan and Phillips [29] examine methods of test-
ing the hypothesis of non constancy of the unconditional variance of a time series. They
use sample split prediction tests and cusum of squares tests without explicitly modelling
the volatility process and find that the latter have nonstandard limiting distributionswhen
fourth unconditional moments are infinite. They work under the assumption that the dis-
tribution of the squared innovation process lies in the normal domain of attraction of an
𝛼-stable distribution for 𝛼 ∈ [1, 2] assuming additionally symmetry in the case where
𝛼 = 1. Then they estimate the stability parameter𝛼 (themaximal moment exponent) and
compute the critical values of the limit distributions numerically. Instead our test is semi-
parametric aswe assume aGARCH(1,1)model and in this case observe that non-constancy
of the unconditional volatility cannot happen.

Monte Carlo Results We evaluate the performance of Algorithm 2 above by perform-
ing a Monte Carlo experiment. We generate data from a GARCH(1,1) process with con-
stant parameter 𝜔0 = 1, GARCH parameter 𝛽0 = 0.90 and ARCH parameter 𝛼0 = 0.10
(𝛼0 = 0.08) under 𝐇𝟎 (𝐇𝐚𝐥𝐭), where the innovations are drawn from the Student’s t-
distribution with degrees of freedom v=3,4 and 5. The number of simulations is set to
S=1000. In each simulation, we generate a sample path of size n+300 choosing the ini-
tial value for the volatility to be equal to 1 and then we drop the first 300 observations, in
order to eliminate the effect of the initial value. The sample size is chosen as n=500,1000
and 5000. When n=500 we use subsample sizes n_s=200,250,300,350,400, when n=1000
weusen_s=300,400,500,600,700,800,900, whenn=5000weusen_s=1500,2500,4000. Fur-
thermore we use all the possible subsamples that we can construct the number of which
equals n-n_s+1. The experiment was implemented in MATLAB 2010a using a cluster of 10
computers each of which is equipped with an Intel Core i7-3770 processor. The parallel
toolbox was used to utilize all 8 (virtual) cores. Each computer was set to perform 1/10
of the 1000 simulations. For reproducibility each simulation was assigned a specific sub-
stream (equal to the number of the simulation) of the global stream. The results are shown
in Table below.
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Table 1: Size and Power of the Wald Test using Subsampling

v=3 v=4 v=5

n n_s Size Power Size Power Size Power

500 250 .226 .306 .205 .314 .201 .368

300 .239 .304 .203 .329 .190 .356

350 .237 .325 .183 .321 .173 .323

400 .251 .329 .185 .297 .160 .289

1000 400 .212 .359 .185 .473 .152 .500

500 .222 .370 .175 .455 .156 .448

600 .226 .384 .183 .438 .150 .422

700 .238 .380 .170 .425 .153 .389

800 .230 .374 .163 .353 .133 .328

900 .218 .338 .150 .277 .122 .250

5000 1500 .160 .443 .70 .626 .122 .250

2500 .188 .440 .110 .553 .82 .651

4000 .220 .426 .142 .437 .121 .452
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5 Conclusions

In this paper we derived a limit theorem to mixed 𝛼-stable limits for “martingale trans-
forms” for any value of the stability parameter 𝛼 ∈ (0, 2] extending and improving the
existing results. Then we provided a framework which relies on strict stationarity of the
volatility process for the limit theory of the QMLE. We allow for the distribution of the
squared innovation process to lie in the domain of attraction of stable laws and the true
parameter to lie on the boundary of the parameter space. We show that when 𝔼𝑧2

0 < ∞,
which permits 𝛼 ∈ [1, 2], then the rate of convergence of the QMLE is 𝑛

𝑛1/𝛼𝑟1/𝛼
𝑛

where

𝑟(𝑛) ∶= 𝑟𝑛 is a slowly varying function, and the limit distribution is an 𝛼-stable distri-
bution if the true parameter is an interior point; otherwise it is a projection on asymptotic
parameter space. When 𝛼 < 1 and thus 𝔼𝑧2

0 = ∞ we show that the QMLE is inconsis-
tent. Furthermore we show that the stationarity assumption can be relaxed by providing
an example in which we derive the limit theory of the non-stationary GARCH(1,1) model.
Finally we derive the limit theory of the classical Wald test analogously to Hall and Yao [18]
and construct a testing procedure for the existence of the unconditional variance in the
GARCH(1,1)model. We derive its limit behavior and evaluate its finite sample performance
numerically.

As a possible extension regarding the MLT theorem, we could investigate if our results
are affected should we allow for 𝔼|𝑉1|𝛼 = ∞ in the stationary case or the (𝑉𝑡) sequence
to weakly converge to a non-degenerate random variable in the non-stationary case, and
thus possibly generalizing the results of Wang [43] which could be useful in other appli-
cations such as non linear cointegration. Furthermore, it could be of potential interest to
examine possible ways to weaken or possibly avoid Assumption 5.

Anopenquestionwith respect to limit theorem for theQMLE iswhether the asymptotic
distribution of the latter when 𝛼 ≤ 1 can be determined even without it being consistent.
A simple example where this is possible concerns the ARCH(1) model and can be found in
Example 2 of Arvanitis and Louka [6]. Furthermore the determination of the limit distribu-
tion of the QMLE when the true parameter lies on the boundary and 𝛼 = 1 needs further
investigation as it introduced several complexities.
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Appendix

Auxiliary Results: Strong Consistency, Rate of Convergence and Asymp-
totic Distribution

The following are auxiliary results that concern the issues of strong consistency, rate of
convergence and asymptotic distribution for approximate minimizers of appropriate cri-
teria. To this end, suppose that Θ is a compact subset of ℝ𝑑 equipped with the relevant
Euclidean topology. Let 𝑐𝑛 ∶ Ω × Θ → ℝ be jointly measurable, 𝜃𝑛 be defined as a ℙ
a.s. approximate minimizer of 𝑐𝑛 with optimization error 𝜀𝑛 a ℙ a.s. non negative random
variable. The following result provides with sufficient conditions that characterize the rate
of convergence and the asymptotic distribution of 𝜃𝑛 given consistency. Let 𝜃0 ∈ Θ. For
reasons of notational economy we suppress the dependence on 𝜔. The following lemma
provides with sufficient conditions for strong consistency when 𝑐𝑛 has the form of an er-
godic mean, allowing for cases where the analogous expectation does not exist.

Lemma 6. Suppose that 𝑐𝑛 (𝜃) = 1𝑛 ∑𝑛
𝑖=1 𝑚𝑖 (𝜃), (𝑚𝑖 (𝜃))𝑖∈ℤ is ergodic for any 𝜃, 𝑐𝑛 is jointly

continuousℙ a.s., there exists a finite open cover ofΘ, such that 𝔼 |inf𝜃∈𝐴 𝑚0 (𝜃)| < +∞, for
any 𝐴 in the cover, 𝔼𝑚0 (𝜃) assumes values in ℝ for any 𝜃 in a countable dense subset of Θ.
Suppose furthermore that 𝜃0 = arg minΘ 𝔼𝑚0 (𝜃) and that 𝜀𝑛 → 0, ℙ a.s. Then 𝜃𝑛 → 𝜃0 ℙ
a.s.

Proof. The first part of the Assumption framework of the Lemma implies condition 𝒞0
and thereby Theorem 2.3 of Choirat , Hess, and Seri, [10], which implies the joint ℙ a.s.
epi-convergence of 𝑐𝑛 to 𝔼𝑚0. Let 𝐞𝐩𝐢 denote the epigraph of a given function (see e.g.
Paragraph 3.1-Ch.5 of Molchanov [31]). Then the assumed properties of 𝑐𝑛 Proposition
3.6 and Definition 3.5 (Ch. 5) of Molchanov [31] imply that 𝐞𝐩𝐢𝑛 ≑ 𝐞𝐩𝐢 (𝑐𝑛) is a jointly
measurable closed valued correspondence. Conditions 1. and 2. are essentially the se-
quential characterization of 𝑃 a.s. epi-convergence of 𝑐𝑛 to 𝔼𝑚0 (see Definitions 2.1 and
2.2 of Lachout et al. [28]). It follows that 𝔼𝑚0 is an lsc function (see Proposition 7.4.a of
Rockafellar and Wets [36]). Hence 𝐞𝐩𝐢 (𝔼𝑚0) is a closed valued correspondence. Due to
Molchanov [31], paragraph 1.1, and Klein and Thompson [26], Definition 4.5.1 this ℙ a.s.
epi-convergence is equivalent to the following (i)-(ii) conditions. (i) for large enough𝑛, and
for all𝜔 in ameasurable subset ofΩof unitℙ−probability, 𝐞𝐩𝐢𝑛∩Θ×(𝔼𝑚0 (𝜃0) , +∞) ≠ ∅
since Θ × (𝔼𝑚0 (𝜃0) , +∞) is open in the relevant product topology and 𝐞𝐩𝐢 (𝔼𝑚0) ∩
Θ × (𝔼𝑚0 (𝜃0) , +∞) ≠ ∅. Hence infΘ 𝑐𝑛 (𝜃) ≥ 𝔼𝑚0 (𝜃0) for all 𝜔 described previously
which implies that lim inf𝑛 infΘ 𝑐𝑛 ≥ 𝔼𝑚0 (𝜃0) ℙ a.s. Furthermore (ii) for any 𝜀 > 0, we
have that for large 𝑛, and for all 𝜔 in a (possibly different than the previous) measurable
subset of Ω of unit ℙ−probability, 𝐞𝐩𝐢𝑛 ∩ Θ × [𝔼𝑚0 (𝜃0) − 𝜀, 𝔼𝑚0 (𝜃0) − 2𝜀] = ∅ 𝑃 a.s.
since Θ × [𝔼𝑚0 (𝜃0) − 𝜀, 𝔼𝑚0 (𝜃0) − 2𝜀] is compact in the relevant product topology and
𝐞𝐩𝐢 (𝔼𝑚0)∩Θ×[𝔼𝑚0 (𝜃0) − 𝜀, 𝔼𝑚0 (𝜃0) − 2𝜀] = ∅. This implies that lim sup𝑛 infΘ 𝑐𝑛 (𝜃) ≤
𝔼𝑚0 (𝜃0) ℙ a.s. Now let 𝑥𝑛 be a measurable selection from the random compact set

{𝜃 ∈ Θ ∶ 𝑐𝑛 (𝜃) ≤ inf
Θ

𝑐𝑛 + 𝜀𝑛}
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such that for some subsequence (𝑥𝑛𝑘
), 𝑥𝑛𝑘

→ 𝑥 ℙ a.s. Its existence is guaranteed by the
fundamental selection theorem (Theorem 2.13-Ch. 1 of Molchanov [31]). Then

𝔼𝑚0 (𝑥) ≤ lim inf
𝑛𝑘

𝑐𝑛𝑘
(𝑥𝑛𝑘

) ℙ a.s.

≤ lim sup
𝑛𝑘

𝑐𝑛𝑘
(𝑥𝑛𝑘

) ℙ a.s.

= lim sup
𝑛𝑘

(inf
Θ

𝑐∗
𝑛𝑘

+ 𝜀𝑛𝑘
) ℙ a.s.

≤ 𝔼𝑚0 (𝜃0) ℙ a.s.

establishing that any ℙ a.s. cluster point of such a measurable selection coincides with 𝜃0.
The result now follows from the fact that Θ is compact.

For𝑤𝑛 → +∞, we denote with ℋ𝑛 the𝑤𝑛 (Θ − 𝜃0) = {𝑤𝑛 (𝑥 − 𝜃0) , 𝑥 ∈ Θ} and no-
tice thatℋ𝑛 is compact andcontains0. Furthermorewedenotewithℋ = lim sup𝑛→∞ ℋ𝑛
in the sense of the obvious generalization of definition 3.

Consider the following assumption that provides more structure for the asymptotic
properties of 𝑐𝑛.

Assumption 17. Assume that the following hold:

1. For any sequence (𝜗𝑛) with values in Θ such that 𝜗𝑛
𝑝

→ 𝜃0, 𝑐𝑛 (𝜗𝑛) − 𝑐𝑛 (𝜃0) =
(𝜗𝑛 − 𝜃0)′ 𝑞𝑛 + (𝜗𝑛 − 𝜃0)′ 𝑔𝑛 (𝜗𝑛 − 𝜃0), with ℙ probability that converges to 1. 𝑔𝑛
is a random 𝑞 × 𝑞 matrix that can be defined in any point of the aforementioned line
ℙ a.s. 𝑞𝑛 is a random 𝑞 × 1 matrix.

2. For some positive real sequence 𝑤𝑛 → +∞, 𝑤𝑛𝑞𝑛 ⇝ 𝑧𝜃0
which is a random vector

whose distribution can depend on 𝜃0 and 𝑔𝑛
𝑝

→ 𝐉𝜃0
a non singular matrix indepen-

dent of 𝜔 that may depend on 𝜃0.

3. ℋ is convex.

The next theorem is the final result of this section.

Theorem 5. Assume that 𝜃𝑛 →
𝑝

𝜃0. If conditions 17.1,2 hold and 𝜀𝑛 = 𝑂𝑝 (𝑤−2
𝑛 ) then

𝑤𝑛 (𝜃𝑛 − 𝜃0) = 𝑂𝑝 (1) . (23)

If moreover condition 17.3 holds and 𝜀𝑛 = 𝑜𝑝 (𝑤−2
𝑛 ) then

𝑤𝑛 (𝜃𝑛 − 𝜃0) ⇝ ℎ̃𝜃0
(24)

with ℎ̃𝜃0
defineduniquelyby𝑞 (ℎ̃𝜃0

) = inf
ℎ∈ℋ

𝑞 (ℎ)and𝑞 (ℎ) ∶= (ℎ − 𝐉−1
𝜃0

𝑧𝜃0
)′ 𝐉𝜃0

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
).
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Proof. Notice that due to the definition of 𝜃𝑛 we have

𝑐𝑛 (𝜃𝑛) − 𝑐𝑛 (𝜃0) ≤ 𝑂𝑝 (𝑤−2
𝑛 ) .

From 𝜃𝑛 →
𝑝

𝜃0 and employing Assumption 17.1,2

𝜈′
𝑛𝑤𝑛𝑞𝑛 + 𝜈′

𝑛𝑔𝑛 (𝑏∗
𝑛) 𝜈𝑛 ≤ 𝑂𝑝 (1)

where 𝜈𝑛 = 𝑤𝑛 (𝜃𝑛 − 𝜃0) and 𝑏∗
𝑛 as in 17.1. Hence due to consistency

𝜈′
𝑛𝑤𝑛𝑞𝑛 + 𝜈′

𝑛 (𝐉𝜃0
+ 𝑜𝑝 (1)) 𝜈𝑛 ≤ 𝑂𝑝 (1) .

Assumption 17.2 then implies that there exists some positive 𝑐 > 0 such that

‖𝜈𝑛‖ 𝑂𝑝 (1) + 𝑐 ‖𝜈𝑛‖2 + ‖𝜈𝑛‖2 𝑜𝑝 (1) ≤ 𝑂𝑝 (1)

which implies that

‖𝜈𝑛‖2 (1 + 𝑜𝑝 (1)) + 2 ‖𝜈𝑛‖ 𝑂𝑝 (1) (1 + 𝑜𝑝 (1)) + 𝑂𝑝 (1) ≤ 𝑂𝑝 (1)

Hence
‖𝜈𝑛‖ (1 + 𝑜𝑝 (1)) ≤ 𝑂𝑝 (1)

establishing (23). Now given the definition ofℋ consider the following. From consistency
and Assumption 17 we can define 𝜛𝑛 ∶ ℝ𝑞 → ℝ as

𝜛𝑛 (ℎ) ≡ 𝑤2
𝑛 (𝑐𝑛 (𝜃0 + ℎ

𝑤𝑛
) − 𝑐𝑛 (𝜃0))

= ℎ′𝑤𝑛𝑞𝑛 + ℎ′𝑔𝑛 (𝑏∗
𝑛) ℎ

From the first part of the present proof we have that for 𝑈 an arbitrary compact subset of
ℝ𝑞

𝜛𝑛(ℎ) ⇝ ℎ′𝑧𝜃0
+ 1

2ℎ′𝐉𝜃0
ℎ in 𝐶 (𝑈, ℝ) .

Hence for any 𝐴 non-empty subset of ℝ𝑞,

inf
ℎ∈𝐴

𝜛𝑛 (ℎ) ⇝ inf
ℎ∈𝐴

(ℎ′𝑧𝜃0
+ 1

2ℎ′𝐉𝜃0
ℎ) . (25)

Due to (23) ℎ𝑛 ≑ 𝑤𝑛 (𝛽𝑛 − 𝑏 (𝜃𝑛)) ∈ ℋ𝑛 ∩ 𝐵 (0, 𝑤𝑛𝜀) ≑ 𝑀𝑛 with ℙ-probability tending
to 1 for some 𝜀 > 0. If 𝐹 is a closed non empty subset of ℝ𝑞, and ℎ𝑛 ∈ 𝐹 , then for large
enough𝑛, either𝑀𝑛 ⊂ 𝐹 , or𝑀𝑛 ⊈ 𝐹 but𝑀𝑛∩𝐹 ≠ ∅. In either casedue to thedefinitions
of 𝜃𝑛, 𝛽𝑛 𝜛𝑛 and the fact that 𝜀𝑛 = 𝑜𝑝 (𝑤−2

𝑛 )

inf
ℎ∈𝑀𝑛∩𝐹

𝜛𝑛 (ℎ) ≤ inf
ℎ∈𝑀𝑛

𝜛𝑛 (ℎ) + 𝑜𝑝 (1)
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and therefore due to Slutsky’s lemma

ℙ (ℎ𝑛 ∈ 𝐹) ≤ ℙ ( inf
ℎ∈𝑀𝑛∩𝐹

𝜛𝑛 (ℎ) ≤ inf
ℎ∈𝑀𝑛

𝜛𝑛 (ℎ) + 𝑜𝑝 (1))

≤ ℙ ( inf
ℎ∈𝑀𝑛∩𝐹

𝜛𝑛 (ℎ) ≤ inf
ℎ∈𝑀𝑛

𝜛𝑛 (ℎ)) + 𝑜 (1)

Nownotice that𝑀𝑛 = 𝑀𝑛∩ℝ𝑞 andℝ𝑞 is open, lim sup𝑛→∞ 𝑀𝑛 = ℋ, sincePK- lim sup ℋ𝑛 =
ℋ and 𝑟𝑛 → ∞. Furthermore equation (25) and the continuous mapping theorem imply
that Lemma 7.13.2-3 of van der Vaart [41] is applicable, so that the last probability is less
than or equal to

ℙ ( inf
ℎ∈ℋ∩𝐹

𝜛𝑛 (ℎ) ≤ inf
ℎ∈ℋ

𝜛𝑛 (ℎ) + 𝑜𝑝 (1)) ≤ ℙ ( inf
ℎ∈ℋ∩𝐹

𝜛𝑛 (ℎ) ≤ inf
ℎ∈ℋ

𝜛𝑛 (ℎ)) + 𝑜 (1)

due to Slutsky’s Lemma. Now from equation (25), the continuous mapping theorem and
Portmanteau Lemma we have that the lim sup of the probability in the right hand side of
the last display is less than or equal to

ℙ ( inf
ℎ∈ℋ∩𝐹

ℎ′𝑧𝜃0
+ 1

2ℎ′𝐉𝜃0
ℎ ≤ inf

ℎ∈ℋ
ℎ′𝑧𝜃0

+ 1
2ℎ′𝐉𝜃0

ℎ)

which equals

ℙ ( inf
ℎ∈ℋ∩𝐹

ℎ′𝑧𝜃0
+ 1

2ℎ′𝐉𝜃0
ℎ ± 1

2𝑧′
𝜃0

𝐉−1
𝜃0

𝑧𝜃0
≤ inf

ℎ∈ℋ
ℎ′𝑧𝜃0

+ 1
2ℎ′𝐉𝜃0

ℎ ± 1
2𝑧′

𝜃0
𝐉−1

𝜃0
𝑧𝜃0

)

= ℙ ( inf
ℎ∈ℋ∩𝐹

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
)′ 𝐉𝜃0

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
) ≤ inf

ℎ∈ℋ
(ℎ − 𝐉−1

𝜃0
𝑧𝜃0

)′ 𝐉𝜃0
(ℎ − 𝐉−1

𝜃0
𝑧𝜃0

))

Since𝐻∗ is closed and convex and 𝐉𝜃0
is positive definite ℎ̃𝜃0

is unique, and thereby when

inf
ℎ∈ℋ∩𝐹

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
)′ 𝐉𝜃0

(ℎ − 𝐉−1
𝜃0

𝑧𝜃0
) ≤ inf

ℎ∈ℋ
(ℎ − 𝐉−1

𝜃0
𝑧𝜃0

)′ 𝐉𝜃0
(ℎ − 𝐉−1

𝜃0
𝑧𝜃0

)

holds then
ℎ̃𝜃0

∈ ℋ ∩ 𝐹
and therefore the last probability is less than or equal to

ℙ (ℎ̃𝜃0
∈ ℋ ∩ 𝐹) ≤ ℙ (ℎ̃𝜃0

∈ 𝐹)

hence we have proven that

lim sup
𝑛→∞

ℙ (ℎ𝑛 ∈ 𝐹) ≤ ℙ (ℎ̃𝜃0
∈ 𝐹)

and (24) follows from the Portmanteau theoremdue to the fact that𝐹 is chosen arbitrarily.
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