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Abstract

We provide a limit theorem to a normal limit for the standardized sum of a mar-
tingale transform that holds even in cases where the second moments diverge at an
appropriately slow rate. This extends relevant results with stable but non normal limits
to the case of asymptotic normality, as well as results of asymptotic normality by allow-
ing domains of non-normal attraction. In those cases the rate is slower than

√
n and

it contains information for the rate of divergence of the truncated second moments. A
major application concerns the characterization of the rate and the limiting distribution
of the Gaussian QMLE in the case of GARCH type models. By extending the relevant
framework we accommodate for the case of slowly varying and potentially diverging
fourth moments for the innovation process as well as the possibility that the parameter
lies on the boundary. The results are of potential interest to financial econometrics in
view of the conditional leptokurtosis of the empirical distributions of asset returns.
KEYWORDS: CLT, Domain of non normal Attraction, Martingale Transform, Slowly

Varying Second Moment, Stationarity, Ergodicity, Conditional heteroskedasticity, Gaus-
sian quasi likelihood, QMLE, boundary point, infinite fourth moments, leptokurtosis.
JEL: C10, C13.

1 Introduction-Motivation

It is empirically known that distributions of financial asset returns exhibit fat tail behavior.
Modelling the conditional moments of such processes using GARCH-type models has only
partly explained this behavior (the standardized returns exhibit among others, significant
skewness and leptokurtosis-see for example Diebold [11]) and therefore considering heavy-
tailed distributions for the innovation process is of particular interest for applications in finance.
The use of the GaussianQMLE for the parameter estimation of such models is very convenient
as it has been shown to be consistent and asymptotically normal under mild conditions and
thus reducing the risk of model misspecification. However, asymptotic normality with the
usual

√
n rate breaks down when the fourth moment of the error process is infinite. It is

worth noting that, contrary to the QMLE, the MLE estimator can be
√
n-consistent in this

case, which has led to the consideration of the MLE and the QMLE using non-Gaussian
densities that allow fat tail behavior such as the Student’t distribution with unknown degrees
of freedom or the generalized error distribution (see among others Engle and Bollerslev [12],
Calzolari et al. [7], Hansen [14], Hsieh [15], Nelson [26]). However, as the error distribution
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is generally unknown, this could result to the inconsistency of such estimators as Straumann
[28] showed.
In this respect, the relative superiority of the QMLE has led to the construction and use

of limit theorems for sequences with infinite second moments that imply distributional con-
vergence to a-stable distributions with rate of convergence slower than

√
n. Note that for an

a-stable distribution the stability parameter a which takes values in the interval (0, 2] con-
trols the tail behavior of the distribution and a = 2 corresponds to the Gaussian distribution.
Mikosch and Straumann [23], extending the work of Hall and Yao [13], derived a limit theorem
to stable laws with a ∈ (0, 2) for martingale transforms of the form

∑n
t=1 ξtVt where (ξt)t∈Z

is an iid sequence, (Vt)t∈Z is a stationary ergodic sequence with suffi ciently high moments,
that also satisfies a certain mixing condition. Note that the rate is partially characterized but
not analytically obtained. Furthermore, several properties of the limit remain incompletely
specified (with the exception of a itself-see Remark 2.3 of Mikosch and Straumann [23]).
Then applying this limit theorem they derive the convergence in distribution of the QMLE
for the GARCH(p, q) model to an a-stable distribution. Surgailis [30] also derived a limit
theorem for analogous zero mean sums for a ∈ (1, 2) when the distribution of ξ0 lies in the
domain of normal1 attraction of an a-stable distribution, without the need of the mixing con-
dition. Jakubowski [17] improved the result by requiring the existence of lower moments for
V0. Here, the rate is completely specified, and the characteristics of the limit are specified up
to linear transformations. Arvanitis and Louka [4] applied Surgailis’limit theorem to derive
the asymptotic distribution of the QMLE for the GQARCH(1, 1) model with rate n1−1/a. A
detailed comparison with Mikosch and Straumann’s approach can be found in the latter.
Our motivation lies in the fact that, although not evident in the literature, it is possible

to derive asymptotic normality of the QMLE even when the error process has infinite fourth
moment, under conditions regarding the rate of divergence of the truncated second moment
of the squared error. We derive a CLT for sums of (vector) martingale transforms which
essentially extends that of Surgailis for a = 2 allowing for domains of non-normal attraction
to the normal distribution. The latter is used to show the asymptotic normality of the QMLE
estimator with a rate of convergence that is slower than

√
n but faster than the rate that is

implied in the relative literature. Thus, the main purpose of this paper is to enhance the limit
theory of the QMLE by including this intermediate case concerning the distribution of the
errors. The framework we use to examine the asymptotic behavior of the Gaussian QMLE
builds on the application of the Lipschitz stochastic recurrence equation (SRE) theory by
Straumann [28] as well as Wintenberger and Cai [33] and is also closely related to that of
Arvanitis and Louka [4] which allows the parameter of interest to lie on the boundary of
the parameter space. They partially use the methodology of Andrews [3] when it comes to
the asymptotic approximation of the likelihood function by a second order polynomial, but
they depart from the latter by characterizing the asymptotic parameter space using upper
Painleve-Kuratowski limits (see for example van der Vaart [32] Lemma 7.13.2-3). The main
departure with respect to the Arvanitis and Louka [4] paper, is that we extend the results to
allow for a non normal domain attraction, that we restrict our attention to the normal law,
that is when a = 2 and that by using the theory of Wintenberger and Cai [33] we derive the
results by utilizing weaker moment conditions for the derivatives of the ergodic version of the
quasi likelihood function.
The remaining structure of the paper is organized as follows. First, the main result is

1Remember that a distribution lies in the domain of normal attraction of an a-stable distribution (a ∈ (0, 2])
iff the slowly varying function appearing in the local to zero representation of its characteristic function has
a limit. In this case the standardization is of the form 1

n1/a
.
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presented regarding the CLT involving martingale transforms with slowly varying truncated
second moments that could diverge slowly enough. Notice that among others the CLT ex-
tends the results of Abadir and Magnus [1] when ξ0 follows a Student’s t distribution with
four degrees of freedom. Secondly, we provide the framework and the required assump-
tions regarding the consistency and asymptotic normality of the QMLE. We also provide
an extension of the limit theorem that incorporates simple cases that do not conform to the
aforementioned framework. We then perform a Monte Carlo study regarding the QMLE for
the GARCH(1, 1) model which indicates that the asymptotic results approximately carry over
to (suffi ciently large) samples. Finally we conclude.

Notation Let us initially fix a general framework along with some notation. To this end
(Ω,F ,P) denotes an underlying complete probability space and thereby P a.s. denotes that
a property holds for any element in a measurable subset of Ω of unit P probability, →

p
,  

denote convergence in probability and distribution respectively while v denotes asymptotic
equivalence as n → ∞. e.a.s.→ denotes exponentially fast almost sure convergence under P.
Remember that xn

e.a.s.→ 0 iff γnxn → 0 P a.s. for some γ > 1 (see Paragraph 2.5 of
Straumann [28]). ‖·‖ denotes the usual Euclidean norm or the Frobenius matrix norm, the
distinction will be obvious by the context, and B (θ, ε), B̄ (θ, ε) denote the open and the
closed ball respectively, centered at θ and having radii ε > 0 in some relevant metric space.
For a self function (say Φ) on an appropriate space, ·(m) denotes m-fold self composition,
with the convention that for m = 0 we obtain the identity function, while if the function is
Lipschitz then Λ(m) (Φ) denotes the Lipschitz coeffi cient of Φ(m), i.e. (Λ (Φ))m. ·T denotes
transposition and diag(x) denotes the diagonalization of a vector x to a square matrix. Finally,
C denotes a generic positive constant, while tv denotes the Student’s t distribution with v
degrees of freedom and ln+ (x) = 1[1,+∞) (x) lnx.

2 A CLT Involving Martingale Transforms With Slowly
Varying Truncated Second Moments

In this section we present the main probabilistic result which is a direct consequence of
the principle of conditioning-see Jakubowski [16] and [17], Kwapien and Woyczynski [21]-
Theorem 5.8.3 and Surgailis [30]-Theorem B.2. It concerns the convergence in distribution
of a properly standardized sum of (vector) martingale transforms to a normally distributed
random vector. The result nests a special case of the CLT for square integrable stationary
and ergodic martingale differences but it also allows for cases in which second conditional
moments do not exist, as long as their truncated versions diverge slowly enough. In such
cases the rate ceases to be of asymptotic order

√
n but it also contains information on the

speed of divergence of the aforementioned moments.
Remember that if ℘ is a (Lebesgue measurable) real function defined on a neighborhood

of infinity (i.e. on an interval of the form [x0,+∞) for some x0 ∈ R) we say that it varies at
infinity with index a ≥ 0, iff for any t > 0, limx→∞

℘(tx)
℘(x)

= ta. The variation is termed regular
if a 6= 0 otherwise it is termed slow (see among others the Definition and the discussion in
paragraph 1.8 of Bingham et. al. [6]). The Karamata representation (see Theorem 1.3.1 of
Bingham et. al. [6]) of a slowly varying function at infinity (say ℘) has the form

℘(x) = exp

(
c(x) +

∫ x

x0

ε(t)

t
dt

)
3



where c(·), ε(·) are Lebesgue measurable, while c(x) → C, ε(x) → 0 as x → +∞. Consid-
erations of asymptotic equivalence may imply that it is of no loss of generality to restrict our
focus to functions that admit the representation

C exp

(∫ x

x0

ε(t)

t
dt

)
.

The latter is said to belong to the Zygmund class of slowly varying functions (see Theo-
rem 1.5.5 of Bingham et. al. [6]) and this along with the measurability of ε(·) imply that
ε(x)℘(x) = x℘′(x), Lebesgue almost everywhere. We are now ready to state the result.

Theorem 2.1 Let the following hold:

1. (ξt)t∈N is an iid sequence of random variables and (Vt)t∈N is an Rd-valued sequence of
random elements that is point-wise stationary and ergodic. For the filtration (Ft)t∈N
with Ft , σ

(
ξt, Vt, ξt−1, Vt−1, ξt−2, Vt−2, . . .

)
, ξt is independent of Ft−1 and Vt is

measurable w.r.t. Ft−1.

2. For the second truncated moment of the distribution of ξ0, say Fξ0

℘ (x) v
∫ x

−x
ξ2

0dFξ0 ,

where ℘ is a continuously differentiable, slowly varying function of the Zygmund class
such that ε(x)℘(x) is bounded.

3. If ℘ has a limit then E ‖V0‖2 < +∞, otherwise E
∥∥∥diag2(V0) (ln |V0i |)i=1,··· ,d

∥∥∥ < +∞.

Then as n→∞
1√

n℘ (
√
n)

∑n
t=1 ξtVt  N

(
0d,E

(
V0V

T
0

))
.

The first condition describes the martingale transform emerging from a multiplicative
structure between an iid and a stationary and ergodic sequence. This structure is typical
in conditionally heteroskedastic models either for the process itself or for the score process
emerging from the relevant Gaussian quasi likelihood function. From this we derive our
initial motivation. The third condition concerns further restrictions on the distribution of the
(Vn)n∈N in the form of moment conditions. The first case is essentially a special case of
the martingale difference CLT. The stricter moment condition in the second one, would be
satisfied if E ‖V0‖2λ < +∞ for some λ > 1. These conditions can be easily verified in the
background of the Gaussian QML estimation for the score process of several GARCH-type
models.
The second condition imposes a special structure on the form of the slowly varying function

that is asymptotically equivalent to the second truncated moment of ξ0. First notice that if ℘
has a limit then it is always asymptotically equivalent to a function that admits this structure
in a trivial manner. Second, it is easy to see that the condition is satisfied by functions of
the form ℘ (x) = C lnx, an observation that generates the concluding remarks of the present
section. Given this, a non trivial class of slowly varying functions can be built that satisfy the
restrictions of condition 2, as non exhaustively exhibited in the following remark.
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Remark R.1 It is a matter of routine calculations to see that functions of the formC (ln(m1)(x))δ1

(ln(m2)(x))δ2

for δ1 ∈ [0, 1], : δ2 ≥ 0 or of the form C(ln(m)(exp (1) + x))δ for δ ∈ [0, 1], with appropriate
domain, satisfy 2.1.2. Furthermore, if ℘i, : i = 1, · · · , k satisfies the aforementioned condi-
tion then the (appropriately restricted) function ℘(x) =

∏k
i=1(℘i(x))δi for δi ∈ [0, 1] for all i

does too. Notice that counterexamples can be constructed from the previous considerations
by exponentiation. For example a function of the form exp((ln(m1)(x))δ(ln(m2)(x))−1) for
δ ∈ (0, 1] would also be in the Zygmund class and satisfy the differentiability restriction but
it would fail to satisfy the boundedness part of the aforementioned condition if m1 < m2.
The same restriction generally precludes functions of "infinite oscillation" such as those of the
form C exp(ln1/3(x) cos1/3(x)) that also meet the other requirements.

Hence the theorem allows for slower than logarithmic rates of divergence for the truncated
second moment.

Remark R.2 Using the direct and the dual versions of Potter’s Theorem (see Theorem 1.5.6
in Bingham et. al. [6]) it is easy to see that (suppose without loss of generality that d = 1)
for any increasing slowly varying ℘ if E |V0|2λ < +∞ for some λ > 1 then

lim
n→∞

P

sup
m≥n

1

m

m∑
i=1

V 2
i

℘

(√
m℘(

√
m)

|t||Vi|

)
℘ (
√
m)

≤ AE
(
|V0|2 max

{
V −δ0 , V δ

0

})
 = 1

and

lim
n→∞

P

 inf
m≥n

1

m

m∑
i=1

V 2
i

℘

(√
m℘(

√
m)

|t||Vi|

)
℘ (
√
m)

≥ 1

A
E
(
|V0|2 max

{
V −δ0 , V δ

0

})
 = 1

for any A > 1 and any 0 < δ ≤ 2 (λ− 1) (see the previous remark). This is due to the fact

that

√
n℘(
√
n)

|t||Vi| ≥
√
℘(
√
n)

t0
with P probability converging to 1 (see the set Cn,K defined in the

proof of theorem 2.1) and since ℘ (
√
n) → ∞ Potter’s Theorem is applicable. In order to

obtain results such as the one in theorem 2.1 further structure is imposed on ℘ that allows
that limits can simultaneously be considered as A ↓ 1 and δ ↓ 0.

Remark R.3 The convergence rate
√
n√

℘(
√
n)
of the arithmetic mean 1

n

∑n
t=1 ξtVt can for

example be replaced by
√
n√

℘
(√

n℘(
√
n)
) since from the proof of theorem 2.1 we have that any

function satisfying 2.1.2 also satisfies
℘(x
√
℘(x))

℘(x)
→ 1 as x → +∞. More generally, given

a sequence (ηn)n∈N such that ηn ↓ 0 the former is asymptotically equivalent to
√
n
qn
where

qn = maxz

{
z2

℘(
√
nz)
≤ 1 + ηn

}
(see for example the proof of Theorem 2.6.2 of Ibragimov and

Linnik [19]). Given its definition it can be seen that qn must be of the form ℘?(n) where again
℘? is a slowly varying function (see paragraph 2.2 of Ibragimov and Linnik [19]). When and
only when ℘ has a limit, then the rate is of the form C

√
n whereupon we obtain the notion

of the domain of normal attraction to the normal distribution.
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Some special applications of theorem 2.1 are the following.

Remark R.4 The theorem nests as a special case the results of Abadir and Magnus [1]. More
specifically, when d = 1, Vn = 1 P a.s. for all n and ξ0 ∼ t2 then ℘ (x) = 2 lnx and therefore

1√
n lnn

∑n
t=1 ξk  N (0, 1). A more complex case is (among many similar others) the one

where (V 2
n )n∈N is a stochastic volatility sequence, e.g. it satisfies the SV (1, 1) recursion

V 2
t = exp

(
ω + αut−1 + β lnV 2

t−1

)
where (un)n∈Z is iid with E (u0) = 0, the distribution of u0 has a moment generating function
(say M), ut is independent of us for any t, s. If |β| < 1 then Theorem 2.6.1 of Straumann
[28] and the fact that continuous transformations preserve stationarity and ergodicity imply
the validity of condition 1. Furthermore, when |β| < 1 and λa, for some λ > 1, lies in the
interval of absolute convergence of lnM (i.e. the cumulant generating function) then 2.1.3
is valid and thereby some calculations show that

1√
n lnn

∑n
t=1 ξtVt  N

(
0, exp

(
ω

1− β +
∑∞

i=0
lnM

(
αβi
)))

.

In the case where u0 follows the standard normal distribution we have that lnM
(
αβi
)

= a2β2i

2

and the asymptotic variance becomes exp

(
ω

1−β + a2

2(1−β2)

)
.

We distinguish the following result in a separate corollary since it constitutes a special
case of the form of the score for the Gaussian (quasi-) likelihood function in the context of
conditionally heteroskedastic models.

Corollary 2.2 Let ξn = z2
n − 1 where

√
2z0 ∼ t4, and suppose that conditions 2.1.1,3 hold.

Then
1√
n lnn

∑n
t=1 ξtVt  N

(
0d,

3

2
E
(
V0V

T
0

))
.

When ξn = z2
n−1 the aforementioned score has the form of the sum in theorem 2.1. This

is essentially motivation for the considerations in the following section.

3 Limit Theory of the QMLE for GARCH Type Models
With Slowly Varying Fourth Conditional Moments

A major application of the theorem presented in the previous section concerns the character-
ization of the rate and the asymptotic distribution of the Gaussian QMLE in GARCH type
models. In what follows we briefly describe the framework and derive the results. The deriva-
tions draw heavily on the theory developed by Straumann [28] as well as Wintenberger and
Cai [33]. The differences correspond first to the fact that we allow for the centralized squares
of the elements of the structuring sequence to lie in the domain of non normal attraction to
the normal distribution and second to the parameter of interest to be on the boundary of the
relevant parameter space.
The framework is structured as follows: first, we define the process as the unique sta-

tionary and ergodic solution of a stochastic recurrence system of equations, second we are
occupied with the issue of existence, uniqueness, stationarity and ergodicity of the solution of
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a transformation of the aforementioned recurrence, that essentially enables the invertibility of
the volatility process for any parameter value. This allows the approximation of the latter pro-
cess, which is latent, by filters that are measurable functions of the observed heteroskedastic
process (this is related to the notion of observable invertibility essentially appearing in Strau-
mann [28]-see definition 2 of Wintenberger and Cai [33]). Third, we define the QMLE and
given the previous, we describe suffi cient conditions (e.g. existence of logarithmic moments
and of universal lower bounds for the filtered processes) that establish its strong consistency.
Finally, we are occupied with the issue of existence, uniqueness, stationarity and ergodicity of
the solutions of recurrence equations that emerge by differentiating the previous equations,
along with analogous (moment existence, linear independence etc.) conditions for those so-
lutions that permit among others the application of the CLT of the previous section, and are
in any case helpful for the establishment of the rate and the weak limit of the QMLE via the
results in the last part of the Appendix.

The process Suppose that Θ is a compact subset of Rd and let θ0 be an arbitrary member
of Θ. Consider the conditionally heteroskedastic process (w.r.t. θ0) defined by{

yt = σtzt
σ2
t = gθ0

(
zt−1, . . . , zt−p, σ

2
t−1, . . . , σ

2
t−l
) , t ∈ Z (1)

where the structuring sequence (zt)t∈Z is a process of iid random variables with Ez0 = 0 and
Ez2

0 = 1, g· ∈ C (Θ× Rp × (R+)
q
,R++) for any θ ∈ Θ and l = max (p, q). Let

Φt,θ0 (x) + (gθ0 (zt, . . . , zt−p+1, x1, . . . , xl) , x1, . . . , xl−1)′ .

Given the definition of (zt)t∈Z and the properties of gθ0 , the sequence (Φt,θ0 (x))t∈Z is sta-
tionary and ergodic for any x due to Proposition 2.1.1 of Straumann [28].

Assumption A.1 Suppose that

E ln+ |gθ0 (z0, . . . , z−p+1, y1, . . . , yl)| < +∞,

for some y1, . . . , yl ∈ R++, Φt,θ0 is P a.s. Lipschitz w.r.t. x with coeffi cient Λ (Φt,θ0) that
satisfies

E ln+ Λ (Φ0,θ0) < +∞ and for some m ∈ N∗, E ln Λ
(

Φ
(m)
0,θ0

)
< 0.

The previous assumption along with Theorem 2.6.1 of Straumann [28], imply that the
stochastic recurrence equation (SRE) in (1) admits a unique (up to indistinguishability) sta-
tionary and ergodic solution (σ2

t )t∈Z and furthermore any other solution converges exponen-
tially almost surely to this one as t → ∞. Due to continuity those properties extend to the
heteroskedastic process itself.

Continuous Invertibility and the (ht)t∈Z Process Given the described process, the next
part of the framework concerns the issue of continuous invertibility (see Definition 4 of Win-
tenberger and Cai [33]). This is closely connected to the properties of the filtering of the
latent volatility process and thereby to the optimization procedure on the relevant likelihood
function. Consider gθ from before along with the first equation of (1). Given the process
(yt)t∈Z consider the following stochastic recursion

ht (θ) = gθ

(
yt−1√
ht−1 (θ)

, . . . ,
yt−p−1√
ht−p−1 (θ)

, ht−1 (θ) , . . . , ht−q−1 (θ)

)
, (2)

7



where t ∈ Z and θ ∈ Θ. Likewise to the previous section consider

Ψt,θ (x) +
(
gθ

(
yt−1√
x1

, . . . ,
yt−p−1√
xp

, x1, . . . , xl

)
, x1, . . . , xl−1

)
.

Analogously, the sequence (Ψt,θ (x))t∈Z is stationary and ergodic for any x, θ. The following
assumption is essentially condition (CI) of Wintenberger and Cai [33].

Assumption A.2 Suppose that

E ln+

(
sup
θ∈Θ

∣∣∣∣gθ ( yt−1√
x1

, . . . ,
yt−p−1√
xp

, x1, . . . , xl

)∣∣∣∣) < +∞,

for some x1, . . . , xl ∈ R++. Ψt,θ is P a.s. Lipschitz w.r.t. x with coeffi cient Λ (Ψt,θ) that is
P a.s. continuous w.r.t. θ and satisfies

E ln+ sup
θ∈Θ

Λ (Ψ0,θ) < +∞ and for some m ∈ N∗, E ln Λ
(

Ψ
(m)
0,θ

)
< 0 for all θ ∈ Θ.

The following lemma summarizes some of the implications of the first pair of assumptions.
It is essentially Theorem 3 of Wintenberger and Cai [33].

Lemma 3.1 Under assumptions A.1 and A.2 for any θ ∈ Θ there exists a unique stationary
and ergodic solution (ht (θ))t∈Z to (2). Moreover ht (θ) is continuous w.r.t. θ. Furthermore

for any θ ∈ Θ and any other solution to (2), say
(
ĥt (θ)

)
t∈Z
, there exists ε > 0 such that

supθ′∈B(θ,ε)∩Θ

∣∣∣ht (θ′)− ĥt (θ′)
∣∣∣ e.a.s.→ 0.

This is extremely helpful since the actual evaluation at each parameter value, and thereby
the computability of the optimization of the likelihood function, depends on solutions of (2)
based on initial conditions. It implies that any such solution (that is in general non stationary
due to its dependence on initial conditions) will converge to the stationary and ergodic solution
fast enough as t → ∞. The local uniformity of the approximation, the stationarity and
ergodicity of the solution, along with some moment existence could imply the convergence
of arithmetic means of the

(
ĥt (θ)

)
t∈Z

process evaluated at a convergent sequence to the

expectation of the ergodic solution evaluated at the limit of the aforementioned sequence. All
these will be convenient for the establishment of the asymptotic properties of the estimator.

The QMLE-Definition and Existence Given a finite realization (yt)t=1,...,n from the het-
eroskedastic process, the following defines the Gaussian quasi likelihood function ĉn. The
term is used in an abusive manner since the original function would be constructed as
−1

2
∗ ĉn (θ) + const. This form enables the characterization of the QMLE as an approxi-

mate minimizer.

Assumption A.3 Suppose that ςk,θ : Ω → R++ is measurable for any θ ∈ Θ and P almost
surely continuous w.r.t. θ for all k = 0, . . . , l − 1 and, ζk,θ : Ω → R is measurable for any
θ ∈ Θ and P a.s. continuous w.r.t. θ for all k = 0, . . . , p− 1.

8



Definition D.1 Define the filter
(
ĥt (θ)

)
t=1,...,n

for θ ∈ Θ by

ĥk (θ) = ςk,θ when k = 0, . . . , l − 1 and yk = ζk,θ when k = 0, . . . , p− 1 and

ĥt (θ) = gθ

 yt−1√
ĥt−1 (θ)

, . . . ,
yt−p−1√
ĥt−p−1 (θ)

, ĥt−1 (θ) , . . . , ĥt−q−1 (θ)

 .
We can now define the Gaussian quasi likelihood function and the subsequent estimator,

as a (possibly measurable selection) of its approximate arg min.

Definition D.2 The Gaussian quasi likelihood function is

ĉn (θ) =
1

n

n∑
t=1

ˆ̀
t (θ)

where
ˆ̀
t (θ) = ln ĥt (θ) +

y2
t

ĥt (θ)
.

For εn an P almost surely non negative random variable the QMLE θn is defined by

ĉn (θn) ≤ inf
θ∈Θ

ĉn (θ) + εn.

εn can be perceived as an optimization error, and thereby the definition is wide enough to
include the estimator obtained (as is usually the case) by numerical optimization of ĉn. The P
almost sure continuity (w.r.t. θ) of the filter, inherited by the definition of gθ and assumption
A.3 along with the compactness and the separability of Θ imply the existence of θn even when
εn = 0 P a.s. This is rigorously established in the proof of the following proposition.

Proposition 3.2 Suppose that assumption A.3 holds, then the QMLE exists.

Consistency We turn to the limit theory for the estimator. The aforementioned exponen-
tially fast approximation of the filter by the stationary and ergodic inverted process (ht)t∈Z
(locally uniformly) along with the consequences of assumption A.1 enable the asymptotic
approximation of ĉn by an average of ergodic contributions obtained as

cn (θ) =
1

n

n∑
t=1

`t (θ)

with

`t (θ) = lnht (θ) +
y2
t

ht (θ)

We can address cn as the "ergodic likelihood". Several of its properties are appropriate ap-
proximations of analogous properties of ĉn and thereby they will be used for the establishment
of the limit theory. In this respect, given the previous, the following assumption provides with
suffi cient conditions for strong consistency.

Assumption A.4 Suppose that:

9



1. εn → 0 P a.s.

2. E ln+ σ2
0 < +∞.

3. infΘ h0 (θ) ≥ C P a.s.

4. For any θ ∈ Θ:
h0 (θ) = σ2

0 ⇔ θ = θ0.

Condition A.4.1 implies that the optimization error vanishes asymptotically. A.4.2 requires
the existence of logarithmic moments for the volatility process and due to the properties of z0,
it also implies that E ln+ y2

0 <∞. By Theorem 2 of Wintenberger and Cai [33] it follows from
assumption A.1 and a condition of the form E

(
ln+ |gθ0 (z0, . . . , z−p+1, y1, . . . , yl)|

)2
< +∞

for some y ∈ R++. A.4.3 requires the existence of a universal deterministic lower bound for
the volatility processes that is naturally obtained in several GARCH-type models again due
to the form of the recursion, the positivity constraints and the inclusion of a strictly positive
constant. In more complex cases (e.g. the EGARCH model), it could be obtained by placing
further restrictions on the parameter space. A.4.4 is an identification condition that can be
obtained by requiring more structure on the support of the distribution of z0 as well as on the
form of the defining recursion. The result is presented in the following theorem.

Theorem 3.3 Suppose that assumptions A.1, A.2, A.3 and A.4 hold, then the QMLE is
strongly consistent.

Notice that assumptions A.1, A.2, A.3 along with conditions A.4.2-4 are identical to the
conditions C.1-C.4 of the relevant theorem 5.3.1 of Straumann [28] (see the proof of the
second part) or Theorem 4 of Wintenberger and Cai [33]. Hence theorem 3.3 is essentially
an extension by allowing the existence of an asymptotically negligible optimization error, and
thereby by providing suffi cient conditions for the consistency of approximate optimizers of the
likelihood function.

Rate and Asymptotic Distribution The remaining elements of the limit theory, i.e. the
rate and the limiting distribution can be established by conditions that are local in nature. The
results depend crucially on the asymptotic existence of a local to θ0 quadratic approximation
of c∗n, as required by theorem 5.2. In accordance with the differentiability properties of ĥt for
a variety of heteroskedastic models, we will assume that the approximation has the form of
a second order Taylor expansion. Hence due to the possibility of θ0 being on the boundary
of Θ we will need a form of differentiability for the filter (and the subsequent stationary and
ergodic approximation) that is consistent with this. We will use the notion of left/right (l/r)
partial derivatives as in paragraph 3.3. of Andrews [3]. This requires some further structure
on the set on which θn at least asymptotically attains its values. The following assumption
takes care of those concepts.

Assumption A.5 Suppose that:

1. For some η ≤ ε
m
for some 1 < m ∈ N and the ε > 0 that corresponds to θ0 in lemma

3.1, Θ∩B̄ (θ0, η) coincides with the closure of its interior. Furthermore, Θ∩B̄ (θ0, η)−θ0

equals the intersection of a union of orthants and an open cube.
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2. The function (
θT , x1, . . . , xl

)
→ gθ

(
y1√
x1

, . . . ,
yp√
xp
, x1, . . . , xl

)
has continuous second order (l/r) partial derivatives differentiable on Θ ∩ B̄ (θ0, η) ×
(R++)

l for every fixed (y1, . . . , yp) ∈ Rp.

3. The functions ςk,θ and ζk,θ have continuous second order (l/r) partial derivatives on
Θ ∩ B̄ (θ0, η), P a.s., for all k = 0, . . . , l − 1 and k = 0, . . . , p− 1.

A.5.1 ensures that at any point of Θ ∩ B̄ (θ0, η), there exists enough space around each
of its elements so that a left and/or right perturbation can be defined, and its second part
is essentially Assumption 22∗.(a) of Andrews [3]. This implies that at any such point a left
and/or right partial derivative could be in principle defined. A.5.2 and A.5.3 ensure that both
gθ and the initial conditions have well defined and continuous left and/or right second order
partial derivatives. Given those, the Taylor approximation is valid on any K that is a non
empty compact subset of Θ ∩ B̄ (θ0, η) even if the coeffi cients of the relevant polynomials
may depend on random elements that can take values outside K with positive P probability.
Furthermore, since the vector (x1, . . . , xl) belongs to (R++)

l the relevant derivatives w.r.t.
to the elements of this vector are by construction left and right. Due to the chain rule (see
Appendix A. of Andrews [3]), they imply that the analogous derivatives of the filter (w.r.t. θ)
are also well defined. In what follows we denote the matrices of first and second order (l/r)
partial derivatives with ·′ and ·′′ respectively. Their existence along with the form of ĉn and
Theorem 6 of Andrews [3] imply the P a.s. existence of a second order Taylor expansion of
the likelihood function around θ0. This does not suffi ce for the second part of Assumption A.8
to hold, and thereby theorem 5.2 cannot be directly used. The possibility of the existence,
stationarity and ergodicity of h′t and h

′′
t along with the possibility that they provide geometric

approximations of ĥ′t and ĥ
′′
t respectively could enable the verification of the aforementioned

conditions. The following assumption and the subsequent proposition takes care of this after
the establishment of some notation.
Let ki be the i-th element of the vector

(
θT , x1, . . . , xl

)
. Then for i, j = 1, . . . , d, . . . , d+l

define

∂iψt
(
θT , x1, . . . , xl

)
=

∂

∂ki
gθ

(
yt√
x1

, . . . ,
yt−p+1√
xp

, x1, . . . , xl

)
and

∂i,jψt
(
θT , x1, . . . , xl

)
=

∂2

∂ki∂kj
gθ

(
yt√
x1

, . . . ,
yt−p+1√
xp

, x1, . . . , xl

)
.

Assumption A.6 Suppose that:

1. for i = 1, . . . , d, . . . , d+ l

E

[
ln+

(
sup

θ∈Θ∩B̄(θ0,η)

∣∣∂iψ0 (θ, h0 (θ) , . . . , h−l (θ))
∣∣)] < +∞

Furthermore for every i = 1, . . . , d, . . . , d+l, there exist a stationary sequence
(
C̄i,1 (t)

)
11



with E
[
ln+ C̄i,1 (0)

]
<∞ and some function r1 : R→ R+ that is continuously differ-

entiable in a compact neighborhood of zero and r1 (0) = 0 such that

sup
θ∈Θ∩B̄(θ0,η)

∣∣∂iψt (θT , x1, . . . , xl
)
− ∂iψt

(
θT , x′1, . . . , x

′
l

)∣∣ ≤ C̄i,1 (t) r1 (|x− x′|) , (3)

where x = (x1, . . . , xl) and x′ = (x′1, . . . , x
′
l) in

(
Rl
)++

.

2. For i, j = 1, . . . , p, . . . , p+ q

E

[
ln+

(
sup

θ∈B̄(θ0,η)

∣∣∂i,jψ0

(
θT , h0 (θ) , . . . , h−l (θ)

)∣∣)] < +∞,

and E ln+

(
sup

θ∈B̄(θ0,η)

|h′0 (θ)|
)

< +∞

Furthermore for every i, j = 1, . . . , d, . . . , d + l, there exists a stationary sequence(
C̄i,j,2 (t)

)
with E

[
ln+ C̄i,j,2 (0)

]
<∞ and some function r2 : R→ R+ that is contin-

uously differentiable in a compact neighborhood of zero and r2 (0) = 0 such that

sup
θ∈Θ∩B̄(θ0,η)

∣∣∂i,jψt (θT , x1, . . . , xl
)
− ∂i,jψt

(
θT , x′1, . . . , x

′
l

)∣∣ ≤ C̄i,j,2 (t) r2 (|x− x′|) .

(4)

This assumption essentially implies the existence and uniqueness of stationary and ergodic
solutions to the SRE’s obtained by (l/r) first and second order differentiation of the second
equation in (1) w.r.t. θ. Furthermore, first those solutions are identified with h′t and h

′′
t

which are continuous w.r.t the parameter and ĥ′t, ĥ
′′
t rapidly converge to their ergodic version

uniformly in a neighborhood of θ0 which without any damage to generality and for notational
simplicity we assume that it coincides with Θ∩ B̄ (θ0, η). The derivation of the previous along
with their implications on the asymptotic relation between the Taylor expansions of ĉn and cn
are obtained in the proof of the following lemma.

Lemma 3.4 Suppose that assumptions A.1, A.2, A.3, A.5 and A.6 hold. Then

1. h′t and h
′′
t are continuous w.r.t. θ, for all t ∈ Z,

sup
Θ∩B̄(θ0,η)

∥∥∥h′t (θ)− ĥ′t (θ)
∥∥∥ e.a.s.→ 0 and sup

Θ∩B̄(θ0,η)

∥∥∥h′′t (θ)− ĥ′′t (θ)
∥∥∥ e.a.s.→ 0, and (5)

n sup
Θ∩B̄(θ0,η)

‖c′n(θ)− ĉ′n(θ)‖ and n sup
Θ∩B̄(θ0,η)

‖c′′n(θ)− ĉ′′n(θ)‖ converge P a.s. (6)

2. If for some (rn)n∈N such that rn → +∞, with rn = o (n) and rnc′n(θ0)  zθ0 for zθ0
some well defined random vector, then rnĉ′n(θ0) zθ0 , and

3. if E supθ∈B̄(θ0,η) ‖`′′0 (θ)‖2 < +∞ then for any sequence ϑn → θ0 P a.s., ĉ′′n(ϑn)  
Jθ0=E`′′0 (θ0) = E

(
h′t(θ0)[h′t(θ0)]T

σ4t

)
.
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In order to be able to use the results in 2.1, 3.4 and 5.2 for the characterization of the
rate and the limit distribution we need a final assumption that takes care of the asymptotic
behavior of c′n and c

′′
n. In what followsK denotes a compact non empty subset of Θ of possibly

small enough diameter that contains θ0 and is a subset of Θ ∩ B̄ (θ0, η), such that θn ∈ K
with P-probability that converges to one as n→∞. Given theorem 3.3, K could for example

be chosen as Θ ∩ B̄ (θ0, η) itself. Furthermore, let Hn =
√
n
(√

℘ (
√
n)
)−1

(K − θ0) where
the function ℘ is as in Theorem 2.1 and is specified next. The asymptotic parameter space
in defined next as an appropriate limit of Hn.

Definition D.3 H = lim supn→∞Hn i.e. it is the set containing any x ∈ Rd such that x is
a cluster point of some (xn)n∈N with xn ∈ Hn.

H is essentially the upper limit in the Painleve-Kuratowski sense of (Hn)n∈N (see for
example Appendix B of Molchanov [24]). The definition is equivalent to that x ∈ H iff there
exists an infinite subset of N (sayN ) such that for any ε > 0, H∩B (x, ε) 6= ∅ for all n ∈ N .
Notice that H always exists and it is a closed subset of Rd (see Proposition 4.4 of Rockafellar
and Wets [27]). In our case it is always different from ∅ since it contains 0. When θ0 is an
interior point then H = Rd. This definition is not less general compared to Assumption 5 of
Andrews [3] as Lemma 3.8 of Arvanitis and Louka [4] implies.

Assumption A.7 Suppose that:

1. For the second moment of the distribution of (z2
0 − 1), we have that

℘ (x) v
∫ x

−1

(
z2

0 − 1
)2
dFz20−1, as x→ +∞

where ℘ conforms 2.1.2.

2. E
∥∥∥h′0(θ0)

h0(θ0)

∥∥∥2λ

< +∞ with λ ≥ 1 if ℘ has a limit as x → ∞ , otherwise λ > 1.

Furthermore, E supθ∈B̄(θ0,η)

∥∥∥h′0h0∥∥∥2

< +∞, E supθ∈B̄(θ0,η)

∥∥∥h′′0h0 ∥∥∥λ′ < +∞ with λ′ > 1

and E supθ∈B̄(θ0,η)
σ2λ
∗

0

hλ
∗
0

< +∞ for some λ∗ ≥ max
(

2, 1
1− 1

λ′

)
such that E |z0|2λ

∗
< +∞.

3. The components of the vector ∂
∂θ
gθ

(
yt−1√
ht−1(θ)

, . . . , yt−p−1√
ht−p−1(θ)

, ht−1 (θ) , . . . , ht−q−1 (θ)

)∣∣∣∣
θ=θ0

are linearly independent random variables.

4. H is convex.

A.7.1 and the first part of A.7.2 enable the use of theorem 2.1. Notice that when ℘ (x)
has a limit then this is Ez4

0 − 1, while when it diverges as x → +∞ then equivalently

℘ (x) v
∫√2(x+1)

−
√

2(x+1)
z4

0dFz0 as x → +∞, due to the fact that by definition Ez2
0 = 1. The

second part of A.7.2 also along with lemma 3.4, theorem 3.3 and the ULLN for station-
ary and ergodic sequences imply the convergence in probability of ĉ′′n(θn) to E`′′0(θ0). No-
tice also that in a variety of heteroskedastic models (see for example paragraph 5.7.1 of
Straumann [28] concerning the AGARCH(p, q) model) under the appropriate conditions, the
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E supθ∈B̄(θ0,η)

∥∥∥h′0h0∥∥∥λ ,E supθ∈B̄(θ0,η)

∥∥∥h′′0h0 ∥∥∥λ′ < +∞ holds for arbitrarily large λ, λ′. This im-
plies that under additional conditions concerning the behavior of the distribution of z0 in
shrinking neighborhoods of zero (see for example condition 4.5 in Theorem 4.1 of Berkes

et al. [5]) E supK
σ2λ
∗

0

hλ
∗
0

< +∞ holds for λ∗arbitrarily close to 1 and this is also conforming

to E |z0|2λ
∗
< +∞ even when ℘ diverges due to Theorem 2.6.4 of Ibragimov and Linnik

[19]. A.7.3 implies that E`′′0 (θ0) is positive definite. A.7.4 implies the uniqueness of the limit
established in the final theorem and it is analogous to Assumption 6 of Andrews [3]. The
following counterexample implies that condition A.7.4 is not trivial by considering a K with
empty interior.

Example: K is comprised by the elements and the limit of a converging sequence.
Let (γm)m∈Z denote a real sequence that converges to zero and suppose without loss of gen-
erality that θ0 = 0. For some x in Rd let K = K − θ0 = {γmx,m ≥ 1} ∪ {0}. If c =

limm→∞ γm
√
m√

℘(
√
m)
then due to the defining properties of ℘, H =

{
c√
k
x, k = 1, 2, . . .

}
∪{0}.

Obviously A.7.4 fails if x 6= 0.

If K itself contains a set of the form Θ∩ B̄ (θ0, η
∗) with 0 < η∗ ≤ η then condition A.7.4

implies that H coincides with the closure of its interior. This is due to the fact that K − θ0

must contain a neighborhood of zero of the form
∏k

i=1 [li, ui] where some of the lower or
upper bounds could be zero but not simultaneously for the same i. Choose an arbitrary non
zero point in the previous set. It is easy to see that this belongs to Hn for all n and thereby
to H which is by construction convex.
The following theorem is essentially the second main result of the paper.

Theorem 3.5 Suppose that assumptions A.1, A.2, A.3, A.4, A.5, A.6 and A.7.1-3 hold. If

εn = Op

(
℘(
√
n)

n

)
then √

n

℘ (
√
n)

(θn − θ0) = Op (1) .

If furthermore A.7.4 holds and εn = op

(
℘(
√
n)

n

)
, then

√
n

℘ (
√
n)

(θn − θ0) h̃θ0

where h̃θ0 is uniquely defined by q
(
h̃θ0

)
= inf

h∈H
q (h) and q (h) :=

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
)

for Jθ0=E`′′0 (θ0) = E
(
h′t(θ0)[h′t(θ0)]T

σ4t

)
which is positive definite and zθ0 ∼ N (0,Jθ0).

Notice from the proof of theorem 5.2 that in the case that condition A.7.4 fails theorem
3.5 could retain some information for the limit distribution of the estimator, in the sense that
if H is such that arg minH q (h) is non empty, then the limit in distribution of the latter is
"hiding" inside this set of minimizers. Furthermore the issue of the non unique choice of K
is unimportant w.r.t. to the characterization of the limit since the latter is unique. Moreover
if K can be chosen so that it contains a set of the form Θ ∩ B̄ (θ0, η

∗) with 0 < η∗ ≤ η,
then H is essentially independent of the choice of K and thereby this is also true for the
representation of the limit h̃θ0 as a minimizer. This is due to the facts that J

−1
θ0
zθ0 follows
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a non degenerate Normal distribution and that any two convex subsets of Rd that coincide
with the closure of their interior if they are non equal then they must differ at interior points.
Those imply that the function inf

h∈·
q (h) must be bijective when defined on the collection of

closed non empty convex subsets of Rd. Hence any other compatible choice of K would result
to the same asymptotic parameter space.
Now, theorem 3.5 encompasses the results of Theorem 5.6.1 of Straumann [28] when θ0

is an interior point and Ez4
0 < +∞. In this case the rate is

√
n and the limit distribution is

N
(
0, (Ez4

0 − 1)J−1
θ0

)
. In the same case when θ0 is a boundary point then the rate is again√

n and
√
n (θn − θ0)  

√
Ez4

0 − 1h̃θ0 . When ℘ is diverging and θ0 is an interior point,
then

√
n

℘(
√
n)

(θn − θ0)  N
(
0,J−1

θ0

)
a novel result in this framework, that implies that we

can obtain asymptotic normality even in cases where the fourth moments do not exist albeit
at a slower rate. The following corollary, linked with corollary 2.2, handles the case where
z0 follows a normalized Student’s t distribution with 4 degrees of freedom as a prominent
example of a diverging truncated fourth moment.

Corollary 3.6 Suppose that
√

2z0 ∼ t4 and assumptions A.1, A.2, A.3, A.4, A.5, A.6 and
A.7.2-3 hold with δ = 2. If εn = Op

(
lnn
n

)
then√

n

lnn
(θn − θ0) = Op (1) .

If furthermore A.7.4 holds and εn = op
(

lnn
n

)
, then√

n

lnn
(θn − θ0) 

√
3

2
h̃θ0

where h̃θ0 is as in theorem 3.5.

The following example concerns the verification of the assumption framework above (given
the a priori validity of the assumption A.3 and of the conditions A.4.1, A.5.3 and A.7.3) for
the GQARCH (1, 1) model introduced by Sentana [29].

GQARCH(1,1) Let p = q = 1, gθ (zt−1, x) = ω + α
(
zt−1

√
x+ γ

2α

)2
+ βx and Θ is a

compact subset of R++×R++×R−× [0, 1). The results referenced below are established in
Arvanitis and Louka [4]. Remark R.1 implies that there exist θ0 ≡ (ω0, α0, γ0, β0) ∈ Θ such
that Assumption A.1 is satisfied. This is permitted even in cases where α0 + β0 > 1 implying
the existence of solutions with the required properties that are not covariance stationary.
Assumption A.2 is satisfied since β < 1. For assumption A.4.2 and A.4.4 see lemma 2.2
and lemma 3.3. For assumption A.4.3 see lemma 2.1. The latter holds of the distribution
of z0 is not concentrated in two points. For Assumption A.5.1 see lemma 3.5 and for the
rest of Assumption A.5 and Assumption A.6 see the proofs of lemmata 4.7 and 4.8. If
P (z2

0 ≤ t) = o (tµ) for t ↓ 0, then Assumption A.7.2-3 follows from lemmata 4.2, 4.3 and 4.6
which hold even if ℘ is diverging since E |z0|λ < +∞ for any 0 < λ < 4 due to Theorem 2.6.4
of Ibragimov and Linnik [19]. Examples of Θ’s that satisfy condition A.7.4 of Assumption A.7
can also be found in section 3.3. of Arvanitis and Louka [4].

Several other examples can be constructed using the work of Straumann [28]. For instance
the verification of assumptions A.1, A.2, A.4, A.5, A.6 and A.7.2-3, for the AGARCH (p, q)
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model when the parameter space is appropriately restricted and under the condition P (z2
0 ≤ t) =

o (tµ) as t ↓ 0, would follow from the results appearing in examples 5.2.5 and 5.2.11 and para-
graphs 5.4.2 and 5.7.1 of Straumann [28] by noticing first that for the set [ωmin,+∞) ×
[0,+∞)p×B× [−1, 1] for ωmax > 0 and B = {x ∈ (R+)

q
:
∑q

i=1 xi < 1} assumption A.5.1
follows, second that Lemma 5.7.3 of Straumann [28] can be seen to hold even when θ0

lies on the boundary of Θ which by construction is a compact subset of the previous set
with non empty interior (as long as the conditions ai0 6= 0 for some i = 1, 2, . . . , p and(
ap0 , βq0

)
6= (0, 0)-simply express the linear combination w.r.t. ai0 instead of a10) and third

that this is also true for lemmata 5.1 and 3.2 of Berkes et al. [5] as well as for their extensions
concerning the AGARCH (p, q) case, i.e. lemmata 5.7.4 and 5.7.5 of Straumann [28]. Notice
that it is easy to construct examples of Θ for which both the previous assumptions and con-
dition A.7.4 of Assumption A.7 hold. Consider for example the case where p = 2, q = 1 and
Θ = [ωmin, ωmax]× [0, a1max ]× [a2min , a2max ]× [βmin, βmax]× [−1, 1] with the obvious notation,
where a20 = a2max, γ0 = −1, and the other elements of θ0 lie in the interior of their defining
intervals, in which case H = R2 × (−∞, 0] × R × [0,+∞). In such a case it is easy to see
that h̃θ0 = (L′)−1 (z1, z2,min {0, z3} , z4,max {0, z5})′ where (z1, z2, z3, z4, z5)′ ∼ N (0, Id5)
and Jθ0 = LL′.
It is also easy to extend the assumption framework so that the recursions in (1) and 3.2

define not the volatility processes per se but their composition with some common bijective
transformation. If assumptions A.1 and A.2 hold w.r.t the transformed processes, assumption
A.3 incorporates the condition that its inverse (the link function as termed by Wintenberger
and Cai 3.1) is continuous, and assumption A.6 is augmented by the condition that the
inverse has first and second derivatives that are Lipschitz continuous on the bounded away
from zero-due to condition A.4.3- domain of the volatilities, then theorem 3.5 would also hold.
This however would not suffi ce for the full scope of theorem 3.5 to incorporate a model such

as the EGARCH one, at least using the approach adopted in paragraph 5.7.2 of Straumann
[28], or in Demos and Kyriakopoulou [10]. This is due to the fact that given the aforementioned
results, the second part of assumption A.7.2 would not hold if E (z4

0) = +∞, even though the
remaining conditions would be easily validated. The results in paragraph 4 of Wintenberger
and Cai [33] or in lemma 3 of Wintenberger [34] could indicate a possible alternative route
via the substitution of this condition by a much weaker one. We are not pursuing this line of
reasoning any further since it is out of the scope of the present paper.

Dropping the Stationarity Assumption: A Simple ARCH(1) Example The conditions
imposed for the validity of theorem 2.1 incorporate first the restriction that the stochastic
sequence (Vt)t∈N is stationary and ergodic and second that it is also appropriately integrable.
It is easy to see from the proof of the theorem that these restrictions essentially facilitate
the use of a local representation of an appropriate conditional characteristic function and
the convergence of some random series. If these results can be established without those
conditions, then analogues of the theorem can be obtained even in cases of non stationarity.
The following theorem provides with such an example that essentially exhibits the analytical
strength of the principle of conditioning. Remember that the filtration (Ft)t∈N is defined by
Ft , σ

(
ξt, Vt, ξt−1, Vt−1, ξt−2, Vt−2, . . .

)
.

Theorem 3.7 Let the following hold:

1. (ξt)t∈N is an iid sequence of random variables and (Vt)t∈N is an real valued sequence of
random elements such that ξt is independent of Ft−1 and Vt is measurable w.r.t. Ft−1.
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2. For the second truncated moment of the distribution of ξ0,

℘ (x) v
∫ x

−x
ξ2

0dFξ0 ,

where ℘ is slowly varying.

3. V 2
n → v > 0, P a.s. as n→∞.

Then as n→∞
1√

n℘? (n)

∑n
t=1 ξtVt  N (0, v) .

where ℘? is a slowing varying function satisfying ℘ (
√
x℘? (x)) v (℘? (x))2.

Remark R.5 For the definition of ℘?see remark R.3. Furthermore, notice from the same

remark that if ℘ satisfies
℘(x
√
℘(x))

℘(x)
→ 1 then ℘? (x) can be chosen to be

√
℘ (
√
x).

Comparing theorem 3.7 with 2.1 we have that the existence of a P a.s. (strictly positive)
limit for the (V 2

t )t∈N substitutes the stationarity and ergodicity condition, the existence of
appropriate moments for (Vt)t∈N as well as the restrictions on the asymptotic behavior of ℘.
The result holds for any slowly varying function. A simple application of this concerns the
limit theory of the QMLE in the case of a simple non stationary ARCH (1) model. Notice
that under the assumption of the existence of a limit for ℘, this theory was established by
Jensen and Rahbek [18].
To this end, let p = q = 1, gθ (zt−1, x) = 1 + αzt−1

√
x and Θ = [al, au] where al ≥

exp (−2E ln |z0|) > 0. Notice that due to the results in Nelson [25] any solution to the
previous recursion is non stationary. Suppose without loss of generality that θ0 ∈ (al, au)
and consider the QMLE (with zero optimization error) for the θ0. We obtain the following
proposition that is a direct consequence of theorem 3.7 in conjunction with lemmata 1 and 2
in Jensen and Rahbek [18].

Proposition 3.8 Suppose that for the second moment of the distribution of (z2
0 − 1), we

have

℘ (x) v
∫ x

−1

(
z2

0 − 1
)2
dFz20−1, as x→ +∞

where ℘ conforms to condition 3.7.2, that the conditions described in the previous paragraph
hold, as well as that εn = 0 P a.s. Then

√
n

℘? (n)
(θn − θ0) N

(
0, θ2

0

)
.

Obviously this is an extension of Theorem 1 of Jensen and Rahbek [18] that establishes
the asymptotic normality (in the interior case) of the QMLE in this simple model even when
stationarity fails. It could be interesting to explore analogous results in more complex models.
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4 Monte Carlo Evidence

In this section we perform two Monte Carlo experiments to assess the quality of the ap-
proximation of the limit distribution of the QMLE in finite samples. Using the framework
described in section 3 we examine the simple GARCH (1, 1) model

√
2z0 ∼ t4, thus let-

ting σ2
t = gθ0

(
zt−1, σ

2
t−1

)
= ω0 +

(
α0z

2
t−1 + β0

)
σ2
t−1 in (1). In the first experiment we

let θ0 be an interior point and choose ω0 = 0.5, α0 = 0.05, β0 = 0.90, while in the sec-
ond case we examine the case where θ0 is a boundary point choosing ω0 = 0.5, α0 = 1,
β0 = 0 pertaining to the ARCH(1) case. In each experiment we consider n = 100, 1000,
10000 and 100000 and the number of Monte Carlo simulations is 1000. For every sample
we plot the Kaplan-Meier estimate of the cumulative distribution function over the Monte
Carlo simulations separately for each element of the θn − θ0 multiplied by

√
n

lnn
. By Corol-

lary 3.6 in the first case h̃θ0 ∼ N
(
0,J−1

θ0

)
and in the second case calculations show that

h̃θ0 = (L′)−1 (z1, z2,max {0, z3})′ where (z1, z2, z3)′ ∼ N (0, 3/2 Id) and Jθ0 = LL′. Fur-
thermore, in the first case Jθ0 is approximated by computing the simulated average of the
outer product of the gradient of lnhT (θ) at θ0 via numerical procedures over samples of size

T = 1000. In the second case h′t(θ0)[h′t(θ0)]T

σ4t
has a simple analytical expression which depends

on yt−1 and σt−1. We approximate its expectation by using a double average across samples of
size 10000000 and over 1000 simulations for increased precision. Then the limit distributions
are constructed for each element of θ by plotting the Kaplan-Meier estimate of the cumulative
distribution function of independent draws of the latter distributions. The relevant figures are
presented in the Appendix. For economy of space, in the first case we provide only the figures
concerning β, as the rest are similar, and in the second case we present the figures concerning
α and β due to the analogous similarity of the results concerning a and ω. We observe that
although the empirical distributions in question seem to show some heavy tail behavior, they
resemble those of the theoretical limits as the sample size increases.

5 Conclusions

We have provided a CLT to a normal limit for the standardized sum of a martingale transform,
constructed by point-wise multiplication between an iid and a stationary and ergodic sequence
that holds even in cases where the relevant second moments diverge at an appropriately slow
rate. This extends relevant results with stable but non normal limits to the case of asymptotic
normality, as well as the results concerning asymptotic normality but allowing domains of
non-normal attraction. In those cases the rate is slower that

√
n and it contains information

for the rate of divergence of the truncated second moments of the relevant sequence.
A major application concerns the characterization of the rate and the limiting distribution

of the score vector of the Gaussian quasi likelihood function in the case of GARCH type
models, and the subsequent characterization of the limit theory for the QMLE. Given this we
have also reviewed the analogous framework for the establishment of the relevant limit theory
and extended it, so that it can accommodate the case of slowly varying fourth moments for
the innovation process by an application of the aforementioned theorem and the possibility
that the parameter of interest lies on the boundary of the parameter space.
Possible probabilistic extensions concern, first, the establishment of analogous results if

we allow the rate of divergence of the second moments to be described by larger classes of
slowly varying functions. Second, the extension of the results when the truncated moment
of order a is slowly varying, for a ∈ (1, 2) whereby the limit would be a multivariate a-stable
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distribution and the complete characterization of which could be achieved by considering the
set of non trivial linear transformations of the relevant random vector. This could provide with
special cases of the results of Mikosch and Straumann [23], without the need for verification
of the mixing condition that they are using, in which both the rate and the characteristics of
the limit are completely described. In such cases we also expect that the rate would be slower

than the one obtained in the normal case and to be of the form n
a−1
a

℘1/a(n1/a)
.

Finally, a possible statistical application would concern the issue of the existence of ap-
propriate studentizations of the Wald statistic that is based on the QMLE considered before,
under the maintained hypothesis of the domain of (normal or not) attraction to the normal
distribution. This could be useful in the cases of the non normal domain for the obvious
asymptotic size corrections, while retaining consistency in the normal domain case.
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Appendix

Proofs

Proof of Theorem 2.1. When ℘ has a limit the result follows directly form the CLT for
squared integrable stationary and ergodic martingale difference sequences (see for example
the more general Theorem 24.3 of Davidson [9]) along with the Cramer-Wold device (see
Theorem 25.5 of Davidson [9]). When ℘ does not have a limit, consider first the case where
d = 1. Consider (ξ∗k)k∈Z to be an independent copy of (ξk)k∈Z that is also independent of
(Vk)k∈Z and without loss of generality adopted to (Fk)k∈Z, by possibly enlarging Fk since
even in this case the original sequences would satisfy the same properties w.r.t. the enlarged
filtration. Using the notation of Kwapien and Woyczynski [21] define Yn,k = 1√

n℘(
√
n)
ξ∗kVk,

Xn,k = 1√
n℘(
√
n)
ξkVk, Fn,k , Fk, Gn = σ {Vk, k ≤ n} and notice that the tangency condition

w.r.t. (Fn,k)n∈N,k∈Z and the conditional independence condition w.r.t. Gn of Kwapien and
Woyczynski [21] (see their Definitions 4.3.1 and 4.3.2. respectively) are valid for the sequences
(Yn,k)n∈N,k∈Z, (Xn,k)n∈N,k∈Z, (Fn,k)n∈N,k∈Z and (Gn)n∈N. Hence by Theorem 5.8.3 of Kwapien
and Woyczynski [21] the result would follow if we prove that for all t ∈ R

E

(
exp

(
it

1√
n℘ (
√
n)

∑n
k=1 ξ

∗
kVk

)
/Gn

)
→
p

exp

(
−t

2E (V 2
0 )

2

)
.

Then notice that due to the assertion 2.6.21 and Theorem 2.6.1 of Ibragimov and Linnik
[19] we have that the characteristic function f(t) of ξ0 and thereby of ξ

∗
0 has the following

representation for t ∈ (−t0, t0), and some t0 > 0

ln f(t) = −6

2
|t|2℘(|t|−1).

Now, fix t 6= 0 and define the event

Cn,K := {ω ∈ Ω : |Vi| ≤ Kt

√
n℘
(√

n
)

,∀i = 1, . . . , n}

where Kt <
t0
|t| . Then

P(Cc
n,K) ≤

n∑
i=1

P[|Vi| > Kt

√
n℘
(√

n
)
]

≤
n∑
i=1

E[V 2
0 ]

K2
t n℘ (

√
n)

=
EV0

2]

K2
t ℘ (
√
n)
→ 0,
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due to the third condition and Markov’s inequality. Combining the previous, if ω ∈ Cn,K then

lnE

(
exp

(
it 1√

n℘(
√
n)

∑n
k=1 ξkVk

)
/Gn
)
equals

− t2

2n℘ (
√
n)

n∑
i=1

V 2
i ℘

(√
n℘ (
√
n)

|t||Vi|

)

= − t
2

2n

n∑
i=1

V 2
i

℘

(√
n℘(
√
n)

|t||Vi|

)
℘ (
√
n)

= − t
2

2n

n∑
i=1

V 2
i


℘

(√
n℘(
√
n)

|t||Vi|

)
℘ (
√
n)

− 1

− t2

2n

n∑
i=1

V 2
i .

It suffi ces to prove that the last term in the previous display converges in probability to
− t2

2
EV 2

0 . Due to the first condition (V 2
n )n∈N is stationary and ergodic and EV 2

0 exists. Hence
from the continuous mapping theorem and Birkhoff’s LLN − t2

2n

∑n
i=1 V

2
i →

p
− t2

2
EV 2

0 . It

suffi ces that the remaining term converges in probability to zero. From the properties if ℘ (x),
its Karamata representation and the mean value theorem we have that for any x ∈ R

℘

(√
n℘ (
√
n)

|t| exp (x)

)

= ℘

(√
n℘ (
√
n)

|t|

)
+ ℘′

(√
n℘ (
√
n)

|t| exp (x∗)

)√
n℘ (
√
n)

|t| exp (x∗)x

= ℘

(√
n℘ (
√
n)

|t|

)
+ ε(

√
n℘ (
√
n)

|t| exp (x∗))℘(

√
n℘ (
√
n)

|t| exp (x∗))x

where x∗ lies between x and zero. Thereby letting x = − ln |Vi| we obtain for any ω ∈ Cn,K
and any i ∣∣∣∣∣∣∣∣∣

℘

(√
n℘(
√
n)

|t||Vi|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣+

∣∣∣∣ε(√n℘(√n)|t| exp (x∗))℘(

√
n℘(
√
n)

|t| exp (x∗)

∣∣∣∣
℘ (
√
n)

|ln |Vi||

≤

∣∣∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣+
C

℘ (
√
n)
|ln |Vi||
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due to the fact that ε(x)℘ (x) is by assumption bounded. Hence

P(
t2

2n

n∑
i=1

V 2
i

∣∣∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t||Vi|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣ > ε) ≤

P(

∣∣∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣
t2

2n

n∑
i=1

V 2
i >

ε

2
) + P(

C

℘ (
√
n)

t2

2n

n∑
i=1

V 2
i |ln |Vi|| >

ε

2
).

Due to stationarity and ergodicity and the assumed existence of moments the 1
n

∑n
i=1 V

2
i and

1
n

∑n
i=1 V

2
i |ln |Vi|| are bounded in P-probability. Using again a mean value expansion we have

that for any y large enough

℘

(
xy

|t|

)
= ℘

(
x

|t|

)
+ ε

(
xy∗

|t|

)
℘

(
xy∗

|t|

)(
y

y∗
− 1

y∗

)
where y∗ is similarly between y and 1 and thereby letting x =

√
n and y =

√
℘ (
√
n) using

again the boundedness of ε(x)℘ (x) we have that∣∣∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t|

)
℘ (
√
n)

− 1

∣∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
℘
(√

n
|t|

)
℘ (
√
n)
− 1

∣∣∣∣∣∣+ C

(
1

y∗
√
℘ (
√
n)

+
1

y∗℘ (
√
n)

)

and the last term in the previous display converges to zero as n→ +∞ due to the fact that ℘

is diverging and that it is slowly varying at infinity. Hence

∣∣∣∣∣∣∣
℘

(√
n℘(
√
n)

|t|

)
℘(
√
n)

− 1

∣∣∣∣∣∣∣ converges to zero
and and so does C

℘(
√
n)
establishing the result. For the case where d > 1 repeat the previous

proof by replacing Vi with λ
′Vi for λ an arbitrary non zero d dimensional vector. The result

would then follow from the Cramer-Wold device and the identification of the multivariate
normal distribution via the use of linear transformations.
Proof of Corollary 2.2. Notice first that for z > −1,

E
(
z2

0 − 1
)2
1(z20−1≤z)

= 12

∫ √2(z+1)

−
√

2(z+1)

(
x2

2
− 1

)2 (
4 + x2

)−5/2
dx

= −12
(1.5 + 0.75z)

√
(1 + z) (3 + z)

(3 + z)2 + 6 ArcSinh

(√
z + 1

2

)
,

where the expression of the right hand-side is asymptotically equivalent to 3 ln z. Then the
result follows from theorem 2.1 for ℘ (z) = 3 ln z.
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Proof of Proposition 3.2. Notice first that ĉn is a Caratheodory function, i.e. continuous
w.r.t. θ (due to the continuity of the filter ĥt (θ)) and point-wise measurable. Then the sepa-
rability of K and lemma 4.51 of Aliprantis and Border [2] imply that ĉn is jointly measurable.
Furthermore it is proper (i.e. it does not attain the value −∞ and there exists at least one
θ ∈ K such that cn (θ) ∈ R) since by ĉn being a Gaussian quasi likelihood function it P a.s.
does not attain the values ±∞ P a.s. This implies that it is a proper normal integrand in the
sense of definition 3.5 (Ch. 5) of Molchanov [24] due to Proposition 3.6 (Ch. 5) in the same
reference. The result now follows by the Theorem of Measurable Projections in van der Vaart
and Wellner [32], example 1.7.5 p. 47, Proposition 3.10.i (Ch. 5-by setting a = infK ĉn + εn)
and the fundamental selection theorem (Theorem 2.13-Ch. 1) of Molchanov [24] (see also
the proof of Theorem 3.24.(i)-Ch. 5 in the same reference).
Proof of Theorem 3.3. Due to assumptions A.1, A.2 and A.2.C.2, 3.1 and lemma
Proposition 5.2.12 of Straumann [28] imply that for any θ ∈ Θ there exists an ε > 0 such
that

sup
Θ∩B(θ,ε)

|cn − ĉn| → 0 P a.s.

due to Part 1.(i) of the proof of Theorem 5.3.1 of Straumann [28]. This locally uniform
asymptotic approximation implies the analogous asymptotic approximation w.r.t. the topology
of epi-convergence by the sequential characterization of the latter (see Definitions 2.1 and 2.2
of Lachout et al. [22]). This in turns implies that if (cn)n∈N epi-converges to a limit function,

then so does (ĉn)n∈N to the same limit. To this end, let ρ0 + infθ∈K

(
lnh0 (θ) +

z20σ
2
0(θ0)

h0(θ)

)
and notice that

E
∣∣∣∣ inf
θ∈K

(
lnh0 (θ) +

z2
0σ

2
0 (θ0)

h0 (θ)

)∣∣∣∣
= −Eρ01ρ0≤0 + Eρ01ρ0>0

≤ −E inf
θ∈K

lnh0 (θ) 1ρ0≤0 + E lnσ2
01ρ0>0 + E

σ2
0 (θ0)

h0 (θ0)
1ρ0>0

≤ C + E lnσ2
01ρ0>0

for some C > 0 that exists due to assumption A.4.3-4. Similarly since σ2
0 is bounded away

from zero and due to A.4.3, E lnσ2
01ρ0>0 < +∞. Then due to Part 1.(iii) of the proof of

Theorem 5.3.1 of Straumann [28] implies that θ0 = arg minΘ E
(

lnh0 (θ) +
y20

h0(θ)

)
. Hence

taking also into account A.4 A.4.1 we have that lemma 5.1 is applicable.
Proof of Lemma 3.4. 1. The implications in (5) follow in an essentially similar manner
to the proofs of Propositions 5.5.1 and 5.5.2 of Straumann [28] (with the analogous use
of the conventions formulated there in order to describe the SRE′s that are constructed
by differentiations). The differences to those proofs are the following. First Theorem 3 of
Wintenberger and Cai [33] is used in place of Proposition 5.2.12 of Straumann [28]. Second,
(3), (4) are generalizations of the Holder type continuity conditions imposed in the relevant
results by Straumann. The continuous differentiability around zero also imply the implications
of the conditions of Straumann by an application of the mean value theorem around zero.
Third, the identification of the solutions of the SRE′s obtained by differentiation with h′t and
h′′t respectively is obtained by a lemma that prescribes that under uniform convergence and
the existence of a uniform limit of the first derivatives the limit function is differentiable and
the limit of the derivatives is the derivative of the limit. Via the results of Appendix A of
Andrews [3], this can be also seen to hold for (l/r) derivatives. Given those results the first
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implication in (6) is obtained by an application of the mean value theorem to the function

f (a, b) = a
b

(
1− y2t

b

)
, a ∈ R, b > 0, that in turn implies

sup
K

∥∥∥ˆ̀
t
′(θ)− `′t(θ)

∥∥∥ ≤ c
(
1 + y2

t

) [
sup
K

∣∣∣ht − ĥt∣∣∣+ sup
K

∥∥∥h′t − ĥ′t∥∥∥]
for some c > 0. The previous along with E ln+ y2

t < +∞, Proposition 2.5.1 of Straumann
[28] and

n sup
K
‖ĉ′n (θ)− c′n (θ)‖ ≤

∞∑
t=1

sup
K

∥∥∥ˆ̀
t
′(θ)− `′t(θ)

∥∥∥ < +∞

imply the first result. For the second we have that the triangle inequality and the mean value
theorem for the functions f (a, b) = a

b

(
1− y2t

b

)
and g (a, b) =

(
2y2t
a
− 1
)

b
a2
imply

sup
K

∥∥∥ˆ̀′′
t (θ)− `′′t (θ)

∥∥∥ ≤ c1

(
1 + y2

t

) [
sup
K

∣∣∣ht − ĥt∣∣∣+ sup
K

∥∥∥h′′t − ĥ′′t ∥∥∥]
+c2

(
1 + y2

t

) [
sup
K

∣∣∣ht − ĥt∣∣∣+ sup
K

∥∥∥∥ĥ′t (ĥ′t)T − h′t (h′t)
T

∥∥∥∥] .
for some c1, c2 > 0 which exist due to compactness of K∗ and the uniform boundedness
of the volatility filters away from zero. Analogously to the previous and due to the fact

n sup
K
‖c′′n(θ)− ĉ′′n(θ)‖ ≤

∞∑
t=1

sup
K

∥∥∥`′′t (θ)− ˆ̀′′
t (θ)

∥∥∥
K∗

<∞

we obtain the needed result. 2. It is obtained by the first implication in (6), the convergence in
distribution of rnc′n (θ0), the assumption that rn

n
→ 0 and the triangle inequality. 3. Follows

directly form the triangle inequality and the ergodic ULLN.
Proof of Theorem 3.5. The theorem 3.3 and lemma 3.4 imply that the result would
hold via theorem 5.2 if the following hold. First rnc′n (θ0) = 1√

n℘(
√
n)

∑n
t=1 (z2

t − 1)
h′t(θ0)

σ2t

converges in distribution for rn =
√

n

℘(
√
n)
. Conditions A.7.1-2 and theorem 2.1 imply that

this holds with limit zθ0 ∼ N (0,Jθ0) since it is easy to see that ℘ (x) v
∫ x
−x (z2

0 − 1)
2
dFz0 .

Second A.7.2 implies the validity of the result in the third part of 3.4. Finally, the last condition
of the second part of assumption A.8 follows from condition A.7.3 along with lemma 5.6.3 of
Straumann [28] while the third part of assumption A.8 is essentially A.7.4.
Proof of Corollary 3.6. Combine theorem 3.5 with the proof of corollary 2.2 and the
continuous mapping theorem.
Proof of Theorem 3.7. The result follows in the same lines with the proof of theorem 2.1
with the following modifications. First due to third condition of the theorem and Egoroff’s
Theorem we have that for some ε > 0, there exists a Nε that is P a.s. independent of ω
for which |Vn| ∈ (

√
v − ε,

√
v + ε) P a.s. for any n ≥ Nε. Hence we have that for any

i ≥ max (
√
v + ε,Nε), |Vi| ≤ Kt

√
n℘? (n) P a.s. Hence we can without loss of generality

assume that the condition appearing in theorem 2.1 P(Cc
n,K) → 0 holds, due to the P

a.s. asymptotic negligibility of the terms |Vi|
n
in the series under examination for all i <

max (
√
v + ε,Nε). Then due to condition 3 and the Cezaro sum theorem we have that

1
n

∑n
i=1 V

2
i → v P a.s. Finally, using the argument above for the P a.s. confinement of
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the (|Vi|)i∈N sequence in a compact interval for large enough i, we have that as n → ∞,[
℘
(√

n℘?(n)
|t||Vi|

)
(℘?(n))2

− 1

]
=

[
℘
(√

n℘?(n)
|t||Vi|

)
℘(
√
n℘?(n))

℘(
√
n℘?(n))

(℘?(n))2
− 1

]
→ 0 P a.s. due to the Uniform Convergence

Theorem (see Theorem 1.2.1 of Bingham et al. [6]) and the definition of ℘?. Using again the
confinement argument along with the previous and the asymptotic negligibility of the terms
|Vi|
n

[
℘
(√

n℘?(n)
|t||Vi|

)
(℘?(n))2

− 1

]
we obtain that the series 1

n

∑n
i=1 V

2
i

[
℘
(√

n℘?(n)
|t||Vi|

)
(℘?(n))2

− 1

]
→ 0 P a.s.

Proof of Proposition 3.8. The result follows exactly as in the proof of Theorem 1 of
Jensen and Rahbek [18] except for the replacement of their Lemma 3 by a use of Theorem
3.7. To this end consider equation (4) in Jensen and Rahbek [18] and evaluate the score at θ0.
Due to Lemma 2 of Jensen and Rahbek [18], Theorem 3.7 is applicable with ξt = (z2

t − 1),

Vt = 1
2

y2t−1
1+θ0y2t−1

and v = 1
4θ20
. This implies that 1

2
√
n℘∗(n)

∑n
t=1 (z2

t − 1)
y2t−1

1+θ0y2t−1
 N

(
0, 1

4θ20

)
and the rest follow via the use of Lemmata 4 and 5 of Jensen and Rahbek [18].

Helpful: Strong Consistency, Rate of Convergence and Asymptotic
Distribution

Suppose that Θ is a compact subset of Rd equipped with the relevant Euclidean topology.
Let cn : Ω×Θ→ R be jointly measurable, θn be defined as a P a.s. approximate minimizer
of cn with optimization error εn a P a.s. non negative random variable. The following
result provides with suffi cient conditions that characterize the rate of convergence and the
asymptotic distribution of θn given consistency. Let θ0 ∈ Θ. For reasons of notational
economy we suppress the dependence on ω. The following lemma provides with suffi cient
conditions for strong consistency when cn has the form of an ergodic mean, allowing for cases
where the analogous expectation does not exist.

Lemma 5.1 Suppose that cn (θ) = 1
n

∑n
i=1mi (θ), (mi (θ))i∈Z is ergodic for any θ, cn is

jointly continuous P a.s., there exists a finite open cover of Θ, such that E |infθ∈Am0 (θ)| <
+∞, for any A in the cover, Em0 (θ) assumes values in R for any θ in a countable dense
subset of Θ. Suppose furthermore that θ0 = arg minΘ Em0 (θ) and that εn → 0, P a.s. Then
θn → θ0 P a.s.

Proof. The first part of the assumption framework of the lemma implies condition C0 and
thereby Theorem 2.3 of Choirat , Hess, and Seri, [8], which implies the joint P a.s. epi-
convergence of cn to Em0. Let epi denote the epigraph of a given function (see e.g.
Paragraph 3.1-Ch.5 of Molchanov [24]). Then the assumed properties of cn Proposition
3.6 and Definition 3.5 (Ch. 5) of Molchanov [24] imply that epin + epi (cn) is a jointly
measurable closed valued correspondence. Conditions 1. and 2. are essentially the sequen-
tial characterization of P a.s. epi-convergence of cn to Em0 (see Definitions 2.1 and 2.2
of Lachout et al. [22]). It follows that Em0 is an lsc function (see proposition 7.4.a of
Rockafellar and Wets [27]). Hence epi (Em0) is a closed valued correspondence. Due to
Molchanov [24], paragraph 1.1, and Klein and Thompson [20], Definition 4.5.1 this P a.s.
epi-convergence is equivalent to the following (i)-(ii) conditions. (i) for large enough n, and
for all ω in a measurable subset of Ω of unit P−probability, epin∩Θ× (Em0 (θ0) ,+∞) 6= ∅
since Θ × (Em0 (θ0) ,+∞) is open in the relevant product topology and epi (Em0) ∩ Θ ×
(Em0 (θ0) ,+∞) 6= ∅. Hence infΘ cn (θ) ≥ Em0 (θ0) for all ω described previously which
implies that lim infn infΘ cn ≥ Em0 (θ0) P a.s. Furthermore (ii) for any ε > 0, we have
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that for large n, and for all ω in a (possibly different than the previous) measurable sub-
set of Ω of unit P−probability, epin ∩ Θ × [Em0 (θ0)− ε,Em0 (θ0)− 2ε] = ∅ P a.s.
since Θ × [Em0 (θ0)− ε,Em0 (θ0)− 2ε] is compact in the relevant product topology and
epi (Em0)∩Θ×[Em0 (θ0)− ε,Em0 (θ0)− 2ε] = ∅. This implies that lim supn infΘ cn (θ) ≤
Em0 (θ0) P a.s. Now let xn be a measurable selection from the random compact set{

θ ∈ Θ : cn (θ) ≤ inf
Θ
cn + εn

}
such that for some subsequence (xnk), xnk → x P a.s. Its existence is guaranteed by the
fundamental selection theorem (Theorem 2.13-Ch. 1 of Molchanov [24]). Then

Em0 (x) ≤ lim inf
nk
cnk (xnk) P a.s.

≤ lim sup
nk

cnk (xnk) P a.s.

= lim sup
nk

(
inf
Θ
c∗nk + εnk

)
P a.s.

≤ Em0 (θ0) P a.s.

establishing that any P a.s. cluster point of such a measurable selection coincides with θ0.
The result now follows from the fact that Θ is compact.
For rn → +∞, we denote with Hn the rn (Θ− θ0) = {rn (x− θ0) , x ∈ Θ} and notice

that Hn is compact and contains 0. Furthermore we denote with H = lim supn→∞Hn in the
sense of the obvious generalization of definition D.3.
Consider the following assumption that provides more structure for the asymptotic prop-

erties of cn.

Assumption A.8 Assume that the following hold:

1. For any sequence (ϑn) with values in Θ such that ϑn
p→ θ0, cn (ϑn) − cn (θ0) =

(ϑn − θ0)′ qn + (ϑn − θ0)′ gn (ϑn − θ0), with P probability that converges to 1. gn is a
random q× q matrix that can be defined in any point of the aforementioned line P a.s.
qn is a random q × 1 matrix.

2. For some positive real sequence rn → +∞, rnqn  zθ0 which is a random vector whose
distribution can depend on θ0 and gn

p→ Jθ0 a non singular matrix independent of ω
that may depend on θ0.

3. H is convex.

The next theorem is the final result of this section.

Theorem 5.2 Assume that θn →
p
θ0. If A.8.1,2 hold and εn = Op (r−2

n ) then

rn (θn − θ0) = Op (1) . (7)

If moreover A.8.3 holds and εn = op (r−2
n ) then

rn (θn − θ0) h̃θ0 (8)

with h̃θ0 defined uniquely by q
(
h̃θ0

)
= inf

h∈H
q (h) and q (h) :=

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
)
.
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Proof. Notice that due to the definition of θn we have

cn (θn)− cn (θ0) ≤ Op

(
r−2
n

)
.

From θn →
p
θ0 and employing assumption A.8.1,2

ν ′nrnqn + ν ′ngn (b∗n) νn ≤ Op (1)

where νn = rn (θn − θ0) and b∗n as in A.8.1. Hence due to consistency

ν ′nrnqn + ν ′n (Jθ0 + op (1)) νn ≤ Op (1) .

Assumption A.8.2 then implies that there exists some positive c > 0 such that

‖νn‖Op (1) + c ‖νn‖2 + ‖νn‖2 op (1) ≤ Op (1)

which implies that

‖νn‖2 (1 + op (1)) + 2 ‖νn‖Op (1) (1 + op (1)) +Op (1) ≤ Op (1)

Hence
‖νn‖ (1 + op (1)) ≤ Op (1)

establishing (7). Now given the definition of H consider the following. From consistency and
assumption A.8 we can define $n : Rq → R as

$n (h) ≡ r2
n

(
cn

(
θ0 +

h

rn

)
− cn (θ0)

)
= h′rnqn + h′gn (b∗n)h

From the first part of the present proof we have that for U an arbitrary compact subset of Rq

$n(h) h′zθ0 +
1

2
h′Jθ0h in C (U,R) .

Hence for any A compact subset of Rq,

inf
h∈A

$n (h) inf
h∈A

(
h′zθ0 +

1

2
h′Jθ0h

)
. (9)

Due to (7) hn + rn (βn − b (θn)) ∈ Hn ∩ B (0, rnε) + Mn with P-probability tending to 1
for some ε > 0. If F is a closed non empty subset of Rq, and hn ∈ F , then for large enough
n, either Mn ⊂ F , or Mn * F but Mn ∩ F 6= ∅. In either case due to the definitions of θn,
βn $n and the fact that εn = op (r−2

n )

inf
h∈Mn∩F

$n (h) ≤ inf
h∈Mn

$n (h) + op (1)

and therefore due to Slutsky’s lemma

P (hn ∈ F ) ≤ P
(

inf
h∈Mn∩F

$n (h) ≤ inf
h∈Mn

$n (h) + op (1)

)
≤ P

(
inf

h∈Mn∩F
$n (h) ≤ inf

h∈Mn

$n (h)

)
+ o (1)
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Now notice that Mn = Mn ∩ Rq and Rq is open, lim supn→∞Mn = H, since
lim supn→∞Hn = H and rn → ∞. Furthermore equation (9) and the continuous map-
ping theorem imply that Lemma 7.13.2-3 of van der Vaart [31] is applicable, so that the last
probability is less than or equal to

P
(

inf
h∈H∩F

$n (h) ≤ inf
h∈H

$n (h) + op (1)

)
≤ P

(
inf

h∈H∩F
$n (h) ≤ inf

h∈H
$n (h)

)
+ o (1)

due to Slutsky’s Lemma. Now from equation (9), the continuous mapping theorem and
Portmanteau Lemma we have that the lim sup of the probability in the right hand side of the
last display is less than or equal to

P
(

inf
h∈H∩F

h′zθ0 +
1

2
h′Jθ0h ≤ inf

h∈H
h′zθ0 +

1

2
h′Jθ0h

)
which equals

P
(

inf
h∈H∩F

h′zθ0 +
1

2
h′Jθ0h±

1

2
z′θ0J

−1
θ0
zθ0 ≤ inf

h∈H
h′zθ0 +

1

2
h′Jθ0h±

1

2
z′θ0J

−1
θ0
zθ0

)
= P

(
inf

h∈H∩F

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
)
≤ inf

h∈H

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
))

Since H∗ is closed and convex and Jθ0 is positive definite h̃θ0 is unique, and thereby when

inf
h∈H∩F

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
)
≤ inf

h∈H

(
h− J−1

θ0
zθ0
)′
Jθ0
(
h− J−1

θ0
zθ0
)

holds then
h̃θ0 ∈ H ∩ F

and therefore the last probability is less than or equal to

P
(
h̃θ0 ∈ H ∩ F

)
≤ P

(
h̃θ0 ∈ F

)
hence we have proven that

lim sup
n→∞

P (hn ∈ F ) ≤ P
(
h̃θ0 ∈ F

)
and (8) follows from the Portmanteau theorem due to the fact that F is chosen arbitrarily.
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Figure 1: Empirical CDF for beta in the first case
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Figure 2: empirical CDF for alpha in the second case
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Figure 3: empirical CDF for beta in the second case
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