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Abstract

We consider non parametric tests for Prospect Stochastic Dominance Efficiency (PSDE)

and Markowitz Stochastic Dominance Efficiency (MSDE) based on block bootstrap resam-

pling schemes. The PSDE and the MSDE criteria determine stochastic dominance of bench-

mark portfolios over any other portfolio with respect to the set of prospect S-shaped utility

functions and the set of reverse S-shaped utility functions analogously. We first derive

consistency and then formulate algorithms for the computation of the test statistics and

the approximation of the asymptotic critical values by the use of linear and mixed integer

programs. We engage into Monte Carlo experiments. Empirical results indicate that the

market portfolio is only prospect stochastic dominance efficient. This implies that there are

S-shaped utility functions that rationalize the market portfolio, while the market portfolio

is not efficient relative to reverse S-shaped utility functions.
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1 Introduction

The portfolio problem is essentially an optimal choice problem between probability measures.

The theory of the choice under uncertainty conditions has been mainly developed under the

assumption that investors maximize their expected utility. In particular, many studies assume

that investors act as non satiable and risk averse agents and thus they should have increasing

and concave utility functions. For this reason most of the criteria to verify the efficiency of a

given portfolio (see, among others, Gibbons, Ross, and Shenken (1989)) are based on the first

and second stochastic dominance rules, see e.g. the papers by Kroll and Levy (1980) and Levy

(1992), and the excellent monograph on the theory of stochastic dominance by Levy (2006).

In the literature several parametric methods have been proposed to test the mean risk effi-

ciency of a given portfolio. However, the return distributions could depend on many parameters.

In addition, the investor’s behavior is not known, except in some obvious circumstances. As a

matter of fact, while it is obvious that investors should prefer more to less, several behavioral

finance analysis indicate that investors are neither risk preferring nor risk averting. Furthermore,

it is not clear that the preferences of investors remain constant under periods of financial distress,

in which the likelihood of adverse events is bound to increase. On the other hand, economic

theory gives only minimal guidance for selecting the appropriate risk measure.

Examples of risk orderings are the dominance rules of behavioral finance (see Friedman and

Savage (1948), Baucells and Heukamp (2006), Edwards(1996), and the references therein).

Markowitz (1952) suggests that individuals are risk averse for losses and risk seeking for gains,

as long as the outcomes are not very extreme. Kahneman and Tversky (1979) proposed prospect

theory for decision making under ucncertainty. The theory was further developed by Tversky

and Kahneman (1992) into cumulative prospect theory in order to be consistent with first-order

stochastic dominance. Levy and Levy (2002) tested prospect theory using an experimental

design with risky gambles that involved both gains and losses (mixed gambles). They found

severe violations of cumulative prospect theory and they argue that the choices of their subjects

suggest risk aversion for losses and risk seeking for gains. This is captured by their Markowitz

stochastic dominance criterion. It should be noted that Levy and Levy (2002) assumed linear

weighting function. Hence, their notion of SD cannot be properly called prospect stochastic
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dominance (see Wakker (2003)).

In the context of financial asset allocation, investors evaluate assets in comparison with cer-

tain benchmarks, such as the market portfolio, rather than on final wealth positions. Moreover,

it is now true that investors behave differently on gains and losses, they are not uniformly risk

averse or risk lovers, and one can say that they are more sensitive to losses than to gains. In

addition, the value function (or utility function) could be either concave for gains and convex

for losses (such as the S-shaped function) or convex for gains and concave for losses (such as

the reverse S-shaped function).

All these observations motivate the use of prospect stochastic dominance (PSD) and Markowitz

stochastic dominance (MSD) to analyze investor behavior. In this paper we develop non-

parametric tests for Prospect Stochastic Dominance Efficiency (PSDE) and Markowitz Stochas-

tic Dominance (MSDE). PSDE is a criterion that determines the dominance of the benchmark

portfolio over any other portfolio that can be constructed from a set of assets for all prospect

S-shaped utility functions. MSDE is a criterion that determines the dominance of the bench-

mark portfolio over any other portfolio that can be constructed for all reverse S-shaped utility

functions.

The two testing procedures developed, allow us to infer whether a given portfolio lying on a

set of portfolios can be considered as an optimal choice if investor preferences are characterized

by the Prospect theory or the Markowitz paradigms respectively. In an empirical application, we

test whether the market portfolio is efficient under PSD and MSD criteria, relative to benchmark

portfolios formed on size and book-to-market equity ratio (BE/ME). Given that all individual

investors hold efficient portfolios, it is under question whether the market, which is the weighted

average of all individual portfolios, is efficient. The motivation to test for the efficiency of the

market portfolio is that many institutional investors invest in Exchange-Traded Funds (ETFs)

and mutual funds. These funds track stocks, commodities and bonds, or value-weighted equity

indices which strongly resemble the market portfolio. Thus, it is interesting to ask what kind of

utility functions could rationalize such behavior.

The goal of this paper is to develop consistent tests for prospect and Markowitz stochastic

dominance efficiency for time-dependent data. Serial correlation is known to pollute finan-

cial data (see the empirical section), and to alter, often severely, the size and power of test-
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ing procedures when neglected. We rely on statistics that are maxima between elementwise

Kolmogorov-Smirnov type statistics on vector valued processes. They are inspired by the consis-

tent procedures developped by Barrett and Donald (2003) and extended by Horvath, Kokoszka,

and Zitikis (2006) to accommodate non-compact support. Scaillet and Topaloglou (2012) de-

velop consistent tests for stochastic dominance efficiency at any order for time-dependent data

(see also Linton, Post and Wang (2005)), relying on weighted Kolmogorov-Smirnov type statis-

tics in testing for stochastic dominance. Post and Levy (2005) test for SSD, PSD and MSD

efficiency of the market portfolio relative to portfolios formed on size, BE/ME, and momentum.

They find that the market portfolio is only MSD efficient.

The paper is organized as follows. In Section 2, having in mind the notion of stochastic

dominance efficiency introduced by Kuosmanen (2004) and Post (2003), we discuss the general

hypotheses for testing prospect and Markowitz stochastic dominance efficiency. We describe

the test statistics, and analyse the asymptotic properties of the testing procedures. We also

use simulation based procedures to compute p-values. We rely on a block bootstrap method,

and explain this in Section 3. Note that other resampling methods such as subsampling are

also available (see Linton, Maasoumi and Whang (2005) for the standard stochastic dominance

tests). Linton, Post and Whang (2005) follow this route in the context of testing procedures for

stochastic dominance efficiency. They use subsampling to estimate the p -values, and discuss

power issues of the testing procedures. We prefer block bootstrap to subsampling since the

former uses the full sample information. The block bootstrap is better suited to samples with

a limited number of time-dependent data: we have 996 monthly observations in our empirical

application.

The test statistics for both prospect and Markowitz stochastic dominance efficiency are

formulated in terms of linear as well as mixed integer programming. Widely available algorithms

can be used to compute both test statistics. We discuss in detail the computational aspects of

mathematical programming formulations corresponding to the test statistics in Section 4.

In Section 5 we design a Monte Carlo study to evaluate actual size and power of the proposed

tests in finite samples. In Section 6 we provide an empirical illustration. We analyze whether

the Fama and French market portfolio can be considered as efficient according to prospect and

Markowitz stochastic dominance criteria when confronted to diversification principles made of
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six Fama and French benchmark portfolios formed on size and book-to-market equity ratio.

We find that the market portfolio is prospect stochastic dominance efficient but Markowitz

stochastic dominance inefficient. We give some concluding remarks in Section 7. Proofs and

detailed mathematical programming formulations are gathered in an appendix.

2 Consistent Tests for Prospect and Markowitz Stochastic Dom-

inance Efficiency

2.1 Assumption Framework and Hypotheses Structures

Consider a strictly stationary process (Y t)t∈Z taking values in Rn. The observations consist

of a realization of the random element (Y t)t=1,...,T . They correspond to observed returns of n

financial assets. Let F denote the cdf of Y 0 and F̂T the empirical cdf associated to with the

random element (Y t)t=1,...,T .

Assumption A.1. F is everywhere continuous. Furthermore, (Y t)t∈Z is a-mixing with mixing

coefficients at such that aT = O(T−a) for some a > 1 as T → ∞ (see Doukhan (1994) for

relevant definition and examples).

Assumption A.2. Assumption A.1 holds and for some δ > 0, E ∥Y 0∥2+δ < +∞. Furthermore

a > 1 + 2
δ .

Let L be an infinite and compact subset of {λ ∈ Rn
+ : e′λ= 1, } with e = (1, . . . , 1)′.

For F ∗ the distribution function of some probability measure on Rn denote by G(z, λ;F ∗) the∫
Rn I{λ′u ≤ z}dF ∗(u). The following are functionals that are useful for the definition and the

derivation of the properties of the testing procedures that we later implement. Let

J2(z, λ;F
∗) :=

∫ z

−∞
G(u, λ;F ∗)du. (1)

These are finite if E∗ [(−λ′Y 0)+
]
exists, where (x)+ = max(x, 0) (Horvath, Kokoszka, and

Zitikis (2006)) and E∗ denotes the expectation operator w.r.t. F ∗. From Davidson and Duclos

(2000) Equation (2), we know that

J2(z, λ;F
∗) =

∫ z

−∞
(z − u)dG(u, λ, F ∗),
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which can be rewritten as

J2(z, λ;F
∗) =

∫
Rn

(z − λ′u)I{λ′u ≤ z}dF ∗(u) (2)

J2 is associated with the notion of second order stochastic dominance. Let also

J (z, λ, τ, F ∗) + J2(0, τ ;F
∗)− J2(z, τ ;F

∗)− (J2(0, λ;F
∗)− J2(z, λ, F

∗)) (3)

For the following, let τ ∈ L. Let

J c
2 (z, λ,τ ;F

∗) :=

∫ +∞

z
(G (u, λ;F ∗)−G (u, τ ;F ∗)) du (4)

It is easy to see (Lemma AL.1 in the Appendix) that J c
2 (z,λ;F

∗) is finite if E∗ [λ′Y 0] and

E∗ [τ ′Y 0] exist. When E [Y 0] exists let µλ′Y = E [λ′Y 0].

Prospect Stochastic Dominance Efficiency

Definition D.1. τ is PSD-efficient (see Levy and Levy (2002), equation (3)) iff

J (z, λ, τ, F ) ≤ 0, for all (z, λ) ∈ R− × L, (5)

and J (z, λ, τ, F ) ≥ 0, for all (z, λ) ∈ R++ × L.

Any statistical test on the PSD-efficiency of τ must comply to the hypothesis structure

consisted of 5 as the null (say H
(PSD)
0 ), with alternative H

(PSD)
1 :

J (z, λ, τ, F ) > 0, for some (z, λ) ∈ R− × L, (6)

or J (z, λ, τ, F ) < 0, for some (z, λ) ∈ R++ × L.

Markowitz Stochastic Dominance Efficiency

Definition D.2. τ is MSD-efficient (see Levy and Levy (2002), equation (4) iff

J2(z,λ;F ) ≥ J2(z, τ ;F ), for all (z, λ) ∈ R− × L (7)

and J c
2 (z,λ,τ ;F ) ≥ 0, for all (z, λ) ∈ R++ × L.

Similarly any statistical test on the MSD-efficiency of τ must comply to the hypothesis

structure consisted of 7 as the null (say H
(MSD)
0 ), with alternative H

(MSD)
1 :

J2(z,λ;F ) < J2(z, τ ;F ), for some (z, λ) ∈ R− × L, (8)

or J c
2 (z,λ,τ ;F ) < 0, for some (z, λ) ∈ R++ × L.
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2.2 Infeasible K-S type Tests

Prospect Stochastic Dominance Efficiency Consider the following random variable, in the

form of the maximum between a pair of Kolmogorov-Smirnov type statistics. It constitutes the

statistic for an infeasible consistent test for the first form of efficiency studied here.

ŜT (τ) = max
(
Ŝα
T (τ) , Ŝβ

T (τ)
)
. (9)

where

Ŝα
T (τ) = sup

z≥0,λ∈L

√
TJ

(
z,−λ,−τ, F̂T

)
. (10)

and

Ŝβ
T (τ) = sup

z≥0,λ∈L
−
√
TJ

(
z, λ, τ, F̂T

)
, (11)

Furthermore for some cPSD > 0 consider the decision rule

rejectH
(PSD)
0 iff ŜT (τ) > cPSD. (12)

The following proposition demonstrates the consistency of the test based on 12.

Proposition 1. Suppose that Assumption A.1 holds and that G satisfies∫
R

√
G (u,λ, F ) (1−G (u,λ, F ))du < +∞, for all λ ∈ L. (13)

Then for the test based on decision rule 12, there exists a random variable S̄ (τ) such that:

1. if H
(PSD)
0 is true, then

lim
T→∞

P
(
reject H

(PSD)
0

)
≤ lim

T→∞
P
(
S̄ (τ) > cPSD

)
+ α (cPSD) ,

2. if H
(PSD)
0 is false, then

lim
T→∞

P
(
reject H

(PSD)
0

)
= 1.

Markowitz Stochastic Dominance Efficiency Analogously to the previous paragraph, con-

sider the following random variable that has a similar form to the one used in the prospect theory

testing procedure.

Υ̂T (τ) = max
(
Υ̂α

T (τ) , Υ̂β
T (τ)

)
. (14)
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where

Υ̂α
T (τ) = sup

z≤0,λ∈L

√
T
(
J2(z, τ ; F̂T )− J2(z,λ, F̂T )

)
, (15)

and

Υ̂β
T (τ) = sup

z≥0,λ∈L

[
1√
T

∑T

i=1

(
λ′Yi − τ ′Yi

)
−

√
TJ

(
z, λ, τ, F̂T

)]
, (16)

Furthermore for some cMSD > 0 consider the decision rule

rejectH
(MSD)
0 iff Υ̂T (τ) > cMSD. (17)

The following proposition demonstrates the consistency of the test based on 17.

Proposition 2. Suppose that Assumption A.2 holds. Then for the test based on decision rule

17, there exists a random variable Ῡ (τ) such that:

1. if H
(MSD)
0 is true, then

lim
T→∞

P
(
reject H

(MSD)
0

)
≤ lim

T→∞
P
(
Ῡ (τ) > cMSD

)
+ α (cMSD) ,

2. if H
(MSD)
0 is false, then

lim
T→∞

P
(
reject H

(MPSD)
0

)
= 1.

2.3 K-S type Tests Based on Block Bootstrap

The previous testing procedures are generally non implementable due to the fact that in most

cases the critical values are unknown. In this section we consider approximations based on

bootstrap resampling techniques that incorporate the dependence that the data may exhibit.

This is done in an analogous manner to the procedures described in section 3 of Scaillet and

Topaloglou (2012).

Block bootstrap methods are based on “blocking” arguments, in which data are divided into

blocks and those, rather than individual data, are resampled in order to mimick the time depen-

dent structure of the original data. Let bT , lT denote integers such that T = bT lT . bT denotes

the number of blocks and lT the block size. The following assumption rests on Theorem 2.2 of

Peligrad (1998).
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Assumption A.3. For some 0 < ρ < 1
3 and some 0 < h < 1

3 − ρ, T h ≪ lT ≪ T
1
3
−ρ and

lT = l2k for 2k ≤ T < 2k+1.

Presently we only allow for the case of non-overlapping the blocks (see the section on

the numerical implementation). Let (Y ∗
t )t=1,...,T denote a bootstrap sample arising by either

methodology and let F̂ ∗
T denote its empirical distribution. Denote with E∗

T the expectation oper-

ator with respect to the probability measure induced by the sampling scheme. Under the current

metodology we have that E∗
TJ2

(
z, λ; F̂ ∗

T

)
= J2

(
z, λ; F̂T

)
and E∗

T
1
T

∑T
i=1 Y

∗
i = 1

T

∑T
i=1 Yi

(see Scaillet and Topaloglou(2012)). Hence we are able to define and study the consistency of

the following approximations to the testing procedures defined previously.

Prospect Stochastic Dominance Efficiency Consider the bootstrapped analogues of the

random variables appearing in the infeasible testing procedure for the PSD efficiency.

Ŝ∗
T (τ) = max

(
Ŝα∗
T (τ) , Ŝβ∗

T (τ)
)
, (18)

where

Ŝα∗
T (τ) = sup

z≥0,λ∈L

√
T
(
J
(
z,−λ,−τ, F̂T

)
− J

(
z,−λ,−τ, F̂ ∗

T

))
, (19)

and

Ŝβ∗
T (τ) = sup

z≥0,λ∈L
−
√
T
(
J
(
z, λ, τ, F̂ ∗

T

)
− J

(
z, λ, τ, F̂T

))
, (20)

Define p∗PSD := P [Ŝ∗
T (τ) > ŜT (τ)] and consider the decision rule

reject H
(PSD)
0 iff p∗PSD < α. (21)

The following proposition demonstrates the consistency of the test based on 21.

Proposition 3. Suppose that Assumptions A.1 and A.3 hold, G satisfies the condition 13 in

Proposition 1 and α < 1
2 . Then the test based on decision rule 21 is consistent.

Markowitz Stochastic Dominance Efficiency Again we consider the bootstrapped analogues

of the random variables appearing in the infeasible testing procedure for the MSD efficiency.

Υ̂∗
T (τ) = max

(
Υ̂α∗

T (τ) , Υ̂β∗
T (τ)

)
, (22)
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where

Υ̂α∗
T (τ) = sup

z≤0,λ∈L

√
T
(
J2

(
z, τ ; F̂ ∗

T

)
− J2

(
z, τ ; F̂T

)
− J2

(
z,λ, F̂ ∗

T

)
+ J2

(
z,λ, F̂T

))
,

(23)

and

Υ̂β∗
T (τ) = sup

z≥0,λ∈L

[
(λ′ − τ ′)√

T

∑T

i=1
(Y ∗

i − Yi)−
√
T
(
J
(
z, λ, τ, F̂ ∗

T

)
− J

(
z, λ, τ, F̂T

))]
,

(24)

Define p∗MSD := P [Υ̂∗
T (τ) > Υ̂T (τ)] and consider the decision rule

reject H
(MSD)
0 iff p∗MSD < α. (25)

The following proposition demonstrates the consistency of the test based on 25.

Proposition 4. Suppose that Assumptions A.2 and A.3 hold, and α < 1
2 . Then the test based

on decision rule 25 is consistent.

3 Implementation with mathematical programming

In this section we present the final mathematical programming formulations corresponding to

the test statistics for prospect and Markowitz stochastic dominance efficiency. In the appendix

we provide the detailed derivation of the formulations.

3.1 Formulation for prospect stochastic dominance

We have a total number of T monthly return observations. The return on the benchmark

portfolio τ ′Yt is positive in Tp and negative in Tn = T − Tp observations.

For the derivation of the test statistic Ŝα
T (τ) for prospect stochastic dominance efficiency,

we only consider positive values of τ ′Y. It is proven in the appendix that the optimal value of

z is one of the ranked values of τ ′Yt, t = 1, ..., Tp. We can see that there is a set of at most

Tp values, say R+ = {r1, r2, ..., rTp}, containing the optimal value of the variable z. A direct

consequence is that we can solve prospect stochastic dominance efficiency by solving the smaller

problems P (r), r ∈ R+, in which z is fixed to rThen we can take the value for z that yields

the best total result. The advantage is that the optimization model is linear.
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The reduced form of the problem is as follows (see the appendix for the derivation of this

formulation and details on practical implementation):

λ ∈ L
1√
T

Tp∑
t=1

(Lt −Wt)

s.t. Wt ≥ r − λ′Yt, ∀t ∈ Tp

Lt = (r − τ ′Yt)+, ∀t ∈ Tp

e′λ = 1,

λi ≥ 0, ∀i,

λ′Yt ≥ 0, ∀ t ∈ Tp,

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tp.

(26a)

This is a linear program. The optimal portfolio λ and the optimal value r of variable z are

those that give the maximum objective value. It takes less than a minute to solve a number of

Tp optimization problems and get the optimal solution.

Analogously, for the derivation of the test statistic Ŝβ
T (τ) for prospect stochastic dominance

efficiency, we only consider negative values of τ ′Y. Similarly, the optimal value of z is one

of the ranked values of τ ′Yt, t = 1, ..., Tn. There is a set of at most Tn values, say R− =

{r1, r2, ..., rTn}, containing the optimal value of the variable z. Thus, solve prospect stochastic

dominance efficiency by solving the smaller problems P (r), r ∈ R−, in which z is fixed to r.

The reduced form of the problem is as follows:
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λ ∈ L
1√
T

Tn∑
t=1

(Lt −Wt)

s.t. Wt ≥ λ′Yt − r, ∀t ∈ Tn

Lt = (r − τ ′Y)−, ∀t ∈ Tn

e′λ = 1,

λi ≥ 0, ∀i,

λ′Yt ≤ 0, ∀ t ∈ Tn,

Wt ≥ 0, ∀t ∈ Tn.

(27a)

This is again a linear program. The optimal portfolio λ and the optimal value r of variable z

are those that give the maximum objective value. It takes less than a minute to solve a number

of Tn optimization problems and get the optimal solution.

3.2 Formulation for Markowitz stochastic dominance

As before, to derive the test statistic Υ̂α
T (τ) for Markowitz stochastic dominance efficiency we

solve a number of Tn smaller problems P (r), r ∈ R−, in which z is fixed to r. Then we can

take the value for z that yields the best total result. The reduced form of the problems is as

follows:

max
λ∈L

√
T

Tn∑
t=1

(Lt −Wt)

s.t. Wt ≥ r − λ′Yt, ∀t ∈ Tn

Lt = (r − τ ′Y)+, ∀t ∈ Tn

e′λ = 1,

λi ≥ 0, ∀i,

Wt ≥ 0, ∀t ∈ Tn.

(28a)
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This is a linear program. The optimal portfolio λ and the optimal value r of variable z are

those that give the maximum objective value. It takes less than a minute to solve a number of

Tn optimization problems and get the optimal solution.

Finally, for the test statistic Υ̂β
T (τ) for Markowitz stochastic dominance efficiency we solve

Tp smaller problems P (r), r ∈ R+, in which z is fixed to rThe model to derive the is the

following:

max
λ∈L

1√
T
[

T∑
t=1

(λ′Yt − τ ′Yt) +

Tp∑
t=1

(Wt − Lt)]

s.t. M(Ft − 1) ≤ r − λ′Yt ≤ MFt, ∀ t ∈ Tp,

−M(1− Ft) ≤ Wt − (r − λ′Yt) ≤ M(1− Ft), ∀ t ∈ Tp,

−MFt ≤ Wt ≤ MFt, ∀ t ∈ Tp,

Lt = (r − τ ′Y)+, ∀t ∈ Tp

Wt = z − λ′Yt, ∀ t ∈ Tp,

e′λ = 1,

λ′Yt ≥ 0, ∀ t ∈ Tp,

λ ≥ 0,

Ft ∈ {0, 1}, ∀ t ∈ Tp.

(29a)

with M being a large constant. This is a Mixed Integer program. The optimal portfolio λ

and the optimal value r of variable z are those that give the maximum objective value. It takes

about two hours to solve a number of Tp optimization problems and get the optimal solution.

4 Monte Carlo study

In this section we design two sets of Monte Carlo experiments to evaluate actual size and power of

the proposed tests in finite samples. In the first one the (Y t)t∈Z process is constructed as a vector

MA(1) process and in the second as a vector GARCH(1,1) one. Because of the computational

burden of evaluating bootstrap procedures in a highly complex optimization environment, we
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implement the suggestion of Davidson and McKinnon (2006a,b) to get approximate rejection

probabilities.

4.1 MA Processes

Suppose that

(z1t , z2t , z3t)
′ iid∼ N (0,Id3)

and let θ1, θ2, θ3 ∈ R, µ1, µ2, µ3 ∈ R+, n = 3, Yt = (y1t , y2t , y3t)
′ where for all t ∈ Z and

i = 1, 2, 3

yit = µi + θizit−1 + zit .

The normality assumption along with the 1-dependence specified by the MA (1) structures

immediately imply that (Yt)t∈Z conforms to assumptions A.1 and A.2. Suppose moreover that

τ =(0, 0, 1) and L = {(λ, 1− λ, 0) , λ ∈ [0, 1]}. The first proposition establishes a portfolio

that is efficient w.r.t. the Markowitz stochastic dominance criterion.

Proposition 5. If µi = 0 for i = 1, 2, 3 and min
(
θ21, θ

2
2

)
>
(
1 + 2θ23

)
then τ is MSD-efficient

(w.r.t. L).

Proof. τ is distributed with N (0, vτ ) and any λ portfolio in L is distributed with N (0, vλ) with

vτ = 1 + θ23 < λ2
(
1 + θ21

)
+ (1− λ)2

(
1 + θ22

)
+ vλ. Hence for z ≤ 0 we have that

J2(z,λ, F )− J2(z, τ, F )

=

∫ z

−∞

∫ u

−∞

(
1√
2πvλ

exp

(
−1

2

s2

vλ

)
− 1√

2πvτ
exp

(
−1

2

s2

vτ

))
dsdu

=

∫ z

−∞

(
Φ

(
u

√
vλ

)
− Φ

(
u

√
vτ

))
du.

Due to the relation between the variances, the fact that u assumes non positive values and the

monotonicity of Φ(·) we have that the integrand in the last integral is non negative establishing

the first part of definition D.2. For the second part notice that for any z > 0 due to lemma

AL.1

J c
2 (z,λ,τ ;F ) =

∫ z

0

(
Φ

(
u

√
vτ

)
− Φ

(
u

√
vλ

))
du.

Using the previous along with the fact that u assumes positive values we have that Φ
(

u√
vτ

)
>

Φ
(

u√
vλ

)
implying that J c

2 (z,λ,τ ;F ) > 0 for all z > 0 and λ ∈L.
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The following proposition establishes a portfolio that is efficient according to the Prospect

Stochastic Dominance Efficiency.

Proposition 6. If µ1, µ2 > 0, µ3 > µ1 + µ2 and min
(
θ21, θ

2
2

)
>
(
1 + 2θ23

)
then τ is PSD-

efficient (w.r.t. L).

Proof. Consider first the definition D.2. Obviously the τ is distributed with N (µτ , vτ ) and any

λ portfolio in L is distributed with N (µλ, vλ) with µλ + λµ1 + (1− λ)µ2 < µτ + µ3 and

vτ = 1 + θ23 < λ2
(
1 + θ21

)
+ (1− λ)2

(
1 + θ22

)
+ vλ. Hence for z ≤ 0 we have that

J (z, λ, τ, F )

=

∫ 0

z

∫ u

−∞

(
1√
2πvτ

exp

(
−1

2

(s− µτ )
2

vτ

)
− 1√

2πvλ
exp

(
−1

2

(s− µλ)
2

vλ

))
dsdu

=

∫ 0

z

(
Φ

(
u− µτ√

vτ

)
− Φ

(
u− µλ√

vλ

))
du.

The fact that µλ
√
vτ < µτ

√
vλ, along with the monotonicity of Φ(·) implies the first part of

definition D.1. For the second part notice that for any z > 0

J (z, λ, τ, F )

=

∫ z

0

∫ u

−∞

(
1√
2πvλ

exp

(
−1

2

(s− µλ)
2

vλ

)
− 1√

2πvτ
exp

(
−1

2

(s− µτ )
2

vτ

)
−

)
dsdu

=

∫ z

0

(
Φ

(
u− µλ√

vλ

)
− Φ

(
u− µτ√

vτ

))
du.

and the result follows analogously.

The final proposition establishes a portfolio that is inefficient w.r.t. both criteria.

Proposition 7. If µi = 0 for i = 1, 2, 3 and θ21 < θ23 then τ is PSD and MSD-inefficient

(w.r.t. L).

Proof. Let λ = 1 whence vτ = 1 + θ23 > 1 + θ21 = v1. Hence for z ≤ 0 we have that

J2(z,1, F )− J2(z, τ, F )

=

∫ z

−∞

(
Φ

(
u

√
v1

)
− Φ

(
u

√
vτ

))
du < 0,

due to the monotonicity of Φ(·) which implies that the first part of definition D.2 is not valid.

Analogously

J (z,1, τ, F )

=

∫ 0

z

(
Φ

(
u

√
vτ

)
− Φ

(
u

√
v1

))
du > 0
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invalidating the first part of definition D.1.

Furthermore the existence of exponential moments for the normal distribution implies the

validity of 13 for any of the considered portfolios. Given the above we perform experiments for

size and power considerations.

4.2 GARCH Processes

We construct another set of experiments that is based on GARCH type processes. Suppose that

zit
iid∼ D for all t ∈ Z and i = 1, 2, 3

where D has strictly increasing distribution function, Ezi0 = 0, Ez2i0 = 1, and zit is independent

of zjt′ for i ̸= j and all (t, t′). Suppose furthermore that ωi, ai, βi ∈ R++, µ1, µ2, µ3 ∈ R+,

n = 3, Yt = (y1t , y2t , y3t)
′ where for all t ∈ Z and i = 1, 2, 3

yit = µi + zit−1h
1/2
it

,

hit = ωi +
(
aiz

2
it−1

+ βi

)
hit−1 , E

(
aiz

2
it−1

+ βi

)δ
< 1.

Then, Corollary 1 and Theorem 8 of Lindner (2003) imply that assumptions A.1 and A.2 hold

for (Yt) for any a. As before suppose that τ =(0, 0, 1) and L = {(λ, 1− λ, 0) , λ ∈ [0, 1]}. The

following propositions are completely analogous to propositions 5, 6 and 7 respectively in the

previous section.

Proposition 8. If µi = 0 for i = 1, 2, 3,min (ω1, ω2) > ω3,min (a1, a2) > a3 andmin (β1, β2) >

β3, then τ is MSD-efficient (w.r.t. L).

Proposition 9. If µ3 > µ1 + µ2 min (ω1, ω2) > ω3, min (a1, a2) > a3 and min (β1, β2) > β3

then τ is PSD-efficient (w.r.t. L).

Proposition 10. If µi = 0 for i = 1, 2, 3 ω1 < ω3, a1 < a3 and β1 < β3 then τ is PSD and

MSD-inefficient (w.r.t. L).

Proof. The proofs follow from the ones of propositions 5, 6 and 7 respectively, by simply noticing

that in the present cases we have that vτ = h3t and vλ = λ2h1t + (1− λ)2 h2t , by replacing

Φ
(
u−µτ√

vτ

)
and Φ

(
u−µλ√

vλ

)
by E

(
D
(
u−µτ√

vτ

))
and E

(
D
(
u−µλ√

vλ

))
respectively and by noticing

16



that the monotonicity of D and of the integral imply the required monotonicity of E (D (·)).

Finally, the existence of moments of order 2+δ implies the validity of 13 for any of the considered

portfolios.

Approximate rejection probabilities

According to Davidson and MacKinnon (2006a,b), a simulation estimate of the rejection proba-

bility of the bootstrap test of PSD and for significance level α is R̂PPSD(α) =
1

R

R∑
r=1

I{ŜT,r (τ) <

Q̂∗
PSD(α)} where the test statistics ŜT,r (τ) are obtained under the true data generating process

on R subsamples, and Q̂∗
PSD(α) is the α-quantile of the bootstrap statistics Ŝ∗

T,r (τ).

Analogously, for MSD we have R̂PMSD(α) =
1

R

R∑
r=1

I{Υ̂T,r (τ) < Q̂∗
MSD(α)} where the

test statistics Υ̂T,r (τ) are obtained under the true data generating process on R subsamples,

and Q̂∗
MSD(α) is the α-quantile of the bootstrap statistics Υ̂∗

T,r (τ).

So, for each one of the two cases, the data generating process DGP0 is used to draw

realizations of the three asset returns, using either the autoregressive process or the GARCH

process described above (with different parameters for each case to evaluate size and power).

We generate R = 300 original samples with size T = 500. For each one of these original

samples we generate a block bootstrap (nonoverlapping case) data generating process D̂GP .

Once D̂GP is obtained for each replication r, a new set of random numbers, independent of

those used to obtain D̂GP , is drawn. Then, using these numbers we draw R original samples

and R block bootstrap samples to compute ŜT,r (τ), Ŝ
∗
T,r (τ), Υ̂T,r (τ) and Υ̂∗

T,r (τ) to get the

estimates R̂PPSD(α) and R̂PMSD(α) respectively.

Results

MA Experiment. To evaluate for actual size, we test for PSE and MSD efficiency of portfolio τ

containing the third asset (τ =(0, 0, 1)) with respect to all other possible portfolios λ containing

the first two assets, when θ1 = 0.5, θ2 = 0.4, and θ3 = 0.1. In this case, we have that

min
(
θ21, θ

2
2

)
>
(
1 + 2θ23

)
. For the PSD case we set µi = 0 for i = 1, 2, 3, while for the

Markowitz case we set µ1 = 0.2, µ2 = 0.3 and µ3 = 1, so that µ3 > µ1 + µ2.

We set the significance level α equal to 5%, and the block size to l = 10. We get
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R̂PPSD(5%) = 3.8% for the prospect stochastic dominance efficiency test, while we get

R̂PMSD(5%) = 4.6% for the Markowitz stochastic dominance efficiency test. Hence we may

conclude that both bootstrap tests perform well in terms of size properties.

To evaluate for actual power, we take an inefficient portfolio as the benchmark portfolio τ ,

and we compare it to all other possible portfolios λ with positive weights summing to one. We

compare portfolio (τ =(0, 0, 1)) with respect to all other possible portfolios λ containing the

first two assets, when θ1 = 0.5, θ2 = 0.4, and θ3 = 1. In this case, we have that θ21 < θ23.

We find that the power of both tests is large. Indeed, we find R̂PPSD(5%) = 97.2% for the

prospect stochastic dominance efficiency test when we take wrongly as efficient the portfolio

(τ =(0, 0, 1)). Similarly we find R̂PMSD(5%) = 95.4% for the Markowitz stochastic dominance

efficiency.

GARCH Experiment. To evaluate for actual size, we test for PSE and MSD efficiency of

portfolio τ containing the third asset (τ =(0, 0, 1)) with respect to all other possible portfolios

λ containing the first two assets. We set ω1 = 0.3, ω2 = 0.2, and ω3 = 0.1, a1 = 0.3,

a2 = 0.2, and a3 = 0.1 and β1 = 0.3, β2 = 0.2, and β3 = 0.1. In this case, we have that

min (ω1, ω2) > ω3, min (a1, a2) > a3 and min (β1, β2) > β3. For the PSD case we set µi = 0

for i = 1, 2, 3, while for the Markowitz case we set µ1 = 0.2, µ2 = 0.3 and µ3 = 1, so that

µ3 > µ1 + µ2.

As before, we set the significance level α equal to 5%, and the block size to l = 10. We

get R̂PPSD(5%) = 3.6% for the prospect stochastic dominance efficiency test, while we get

R̂PMSD(5%) = 3.0% for the Markowitz stochastic dominance efficiency test. Hence we may

conclude that both bootstrap tests perform well in terms of size properties.

To evaluate for actual power, we compare the inefficient portfolio (τ =(0, 0, 1)) with respect

to all other possible portfolios λ containing the first two assets, when We set µi = 0 for i = 1, 2, 3

and ω1 = 0.1, ω2 = 0.2, and ω3 = 0.3, a1 = 0.1, a2 = 0.2, and a3 = 0.3 and β1 = 0.1,

β2 = 0.2, and β3 = 0.3. In this case, we have that ω1 < ω3, a1 < a3 and β1 < β3.

We find that the power of both tests is large. Indeed, we find R̂PPSD(5%) = 96.6% for the

prospect stochastic dominance efficiency test when we take wrongly as efficient the portfolio

(τ =(0, 0, 1)). Similarly we find R̂PMSD(5%) = 96.8% for the Markowitz stochastic dominance
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efficiency.

Finally we present Monte Carlo results in Table 1 on the sensitivity to the choice of block

length. We investigate block sizes ranging from l = 4 to l = 12 by step of 4. This covers the

suggestions of Hall, Horowitz, and Jing (1995), who show that optimal block sizes are multiple

of T 1/3, T 1/4, T 1/5, depending on the context. According to our experiments the choice of the

block size does not seem to dramatically alter the performance of our methodology.

MA Process

Block size l : 4 8 10 12

Size:

R̂PPSD 4.0% 3.6% 3.8% 4.4%

R̂PMSD 4.2% 2.8% 4.6% 3.8%

Power:

R̂PPSD 96.0% 97.0% 97.2% 96.6%

R̂PMSD 95.8% 97.8% 95.4% 98.6%

GARCH Process

Block size l : 4 8 10 12

Size:

R̂PPSD 4.2% 4.0% 3.6% 3.8%

R̂PMSD 3.6% 3.4% 3.0% 4.6%

Power:

R̂PPSD 97.6% 98.0% 96.6% 98.4%

R̂PMSD 97.2% 98.6% 96.8% 98.0%

Table 1: Sensitivity analysis of size and power to the choice of block length using the MA and

Garch processes for the asset returns. We compute the actual size and power of the prospect and

Markowitz stochastic dominance efficiency tests for block sizes ranging from l = 4 to l = 12.
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5 Empirical application

In this section we present the results of an empirical application. To illustrate the potential of

the proposed test statistics, we test whether different stochastic dominance efficiency criteria

(Prospect and Markowitz) rationalize the market portfolio. Thus, we test for the stochastic

dominance efficiency of the market portfolio with respect to all possible portfolios constructed

from a set of assets, namely six risky assets (n = 6).

5.1 Description of the data

We use six Fama and French benchmark portfolios as our set of risky assets. They are con-

structed at the end of each June, and correspond to the intersections of two portfolios formed

on size (market equity, ME) and three portfolios formed on the ratio of book equity to mar-

ket equity (BE/ME). The size breakpoint for year t is the median NYSE market equity at

the end of June of year t. BE/ME for June of year t is the book equity for the last fiscal

year end in t − 1 divided by ME for December of t − 1. Firms with negative BE are not

included in any portfolio. The annual returns are from January to December. We use data

on monthly excess returns (month-end to month-end) from January 1930 to December 2012

(996 monthly observations) obtained from the data library on the homepage of Kenneth French

(http://mba.turc.dartmouth.edu/pages/faculty/ken.french). The test portfolio is the Fama and

French market portfolio, which is the value-weighted average of all non-financial common stocks

listed on NYSE, AMEX, and Nasdaq, and covered by CRSP and COMPUSTAT.

First we analyze the statistical characteristics of the data covering the period from January

1930 to December 2012 (996 monthly observations) that are used in the test statistics. As we

can see from Table 2, portfolio returns exhibit considerable variance. Moreover, the skewness and

kurtosis indicate that normality cannot be accepted for the majority of them. These observations

suggest adopting the stochastic dominance efficiency tests which account for the full return

distribution and not only the mean and the variance.

One interesting feature is the comparison of the behavior of the market portfolio with that

of the individual portfolios. Scaillet and Topaloglou(2012) show that the Fama and French

market portfolio is not mean-variance efficient, compared to the 6 benchmark portfolios.Thus,
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Descriptive Statistics (January 1930 to December 2012)

No. Mean Std. Dev. Skewness Kurtosis Minimum Maximum

Market Portfolio 0.604 2.413 0.237 7.593 -29.98 37.77

1 1.016 7.825 1.026 7.270 -32.32 65.63

2 1.288 7.139 1.310 11.660 -31.10 64.12

3 1.493 8.367 2.175 18.810 -33.06 85.24

4 0.847 5.308 -0.023 2.231 -28.08 32.55

5 0.936 5.823 1.303 14.227 -28.01 51.52

6 1.161 7.327 1.547 14.926 -35.45 68.25

Table 2: Descriptive statistics of monthly returns in % from January 1930 to December 2012

(996 monthly observations) for the Fama and French market portfolio and the six Fama and

French benchmark portfolios formed on size and book-to-market equity ratio. Portfolio 1 has

low BE/ME and small size, portfolio 2 has medium BE/ME and small Size, portfolio 3 has high

BE/ME and small size, ..., portfolio 6 has high BE/ME and large size.

If the investor utility function is not quadratic, then the risk profile of the benchmark portfolios

cannot be totally captured by the variance of these portfolios. Generally, the variance is not

a satisfactory measure. It is a symmetric measure that penalizes gains and losses in the same

way. Moreover, the variance is inappropriate to describe the risk of low probability events. This

motivates us to test whether the market portfolio is efficient when different preferences are taken

into account.

5.2 Results of the stochastic dominance efficiency tests

We find a significant autocorrelation of order one at a 5% significance level in benchmark

portfolios 1 to 3, while ARCH effects are present in benchmark portfolio 4 at a 5% significance

level. This indicates that a block bootstrap approach should be favoured over a standard i.i.d.
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bootstrap approach. Since the autocorrelations die out quickly, we may take a block of small

size to compute the p-values of the test statistics. We choose a size of 10 observations following

the suggestions of Hall, Horowitz, and Jing (1995), who show that optimal block sizes are

multiple of T 1/3, where in our case, T = 996. We use the nonoverlapping rule because we need

to recenter the test statistics in the overlapping rule. The recentering makes the test statistics

very difficult to compute, since the optimization for Markowitz stochastic dominance involves

a large number of binary variables. The p-values are approximated with an averaging made on

R = 300 replications. This number guarantees that the approximations are accurate enough,

given time and computer constraints.

For the prospect stochastic dominance efficiency, we cannot reject that the market portfolio

is efficient. The p-value p̃ = 0.443 is way above the significance level of 5%. We divide the full

period into two subperiods, the first one from January 1930 to June 1971, a total of 498 monthly

observations, and the second one from July 1971 to December 2012, 498 monthly observations.

We test for prospect stochastic dominance of the market portfolio to each subperiod. We find

that the p-value for the first subperiod is p̃1 = 0.403 and the p-value for the second subperiod

is p̃2 = 0.526. The results indicate that the market porfolio is prospect stochastic dominance

efficient in each subperiod as well as in the whole period. This implies that there are S-shaped

utility functions that rationalize the market portfolio. Risk seeking for losses and risk aversion

for gains helps to explain the pattern of stock returns.

Experimental evidence suggests that decision makers subjectively transform the true return

distribution and use subjective decision weights that overweight or underweight the true proba-

bilities.The most common pattern of probability transformation overweights small probabilities

of large gains and losses, and underweights large and intermediate probabilities of small and

intermediate gains and losses (Tverskyand Kahneman, (1992)). The prospect stochastic domi-

nance efficiency of the market portfolio we found here, is not affected by transformations that

are increasing and convex over losses and increasing and concave over gains,thatis, S-shaped

transformations. Moreover, if the market portfolio is undominated by PSDE, then it is also

undominated by the weaker condition given by Baucells and Heukamp (2006).

On the other hand, we find that the MSD criterion is rejected. The p-value p̃ = 0.013 is

below the significance level of 5%. Additionaly, the p-value p̃1 = 0.003 for the first subperiod
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and p-value p̃2 = 0.006 for the second subperiod indicate that the market porfolio is not

Markowitz stochastic dominance efficient in each subperiod as well as in the full period. No

reverse S-shaped utility function can rationalize the market portfolio. This implies that we can

form portfolios of the six benchmark portfolios that dominate the market.

Our efficiency finding cannot be attributed to a potential lack of power of the testing

procedures. Indeed, we use a long enough time series of 996 return observations, and a relatively

narrow cross-section of six benchmark portfolios. Further even if our test concerns a necessary

and not a sufficient condition for optimality of the market portfolio (Post (2005)), this does not

influence the output of our results.

5.3 Rolling window analysis

We carry out an additional test to validate the prospect and Markowitz stochastic dominance

efficiency of the market portfolio and the stability of the model results. It is possible that the

efficiency of the market portfolio changes over time, as the risk and preferences of investors

change. Therefore, the market portfolio may be efficient in the total sample, but inefficient in

some subsamples. Moreover, the degree of efficiency may change over time, as pointed by Post

(2003). To control for that, we perform a rolling window analysis, using a window width of 20

years. The test statistic is calculated separately for 62 overlapping 20-year periods, (January

1930-December 1949), (January 1931-December 1951),...,(January 1993-December 2012).

Figure 1 shows the corresponding p-values for the prospect stochastic dominance efficiency.

Interestingly, we observe that the market portfolio is prospect stochastic dominance efficient in

the total sample period. The prospect stochastic dominance efficiency is not rejected on any

subsamples. The p-values are always greater than 18%, and in some cases they reach the 60%.

This result confirms the prospect stochastic dominance efficiency that was found in the previous

subsection, for the full period. This means that we cannot form an optimal portfolio from the

set of the six benchmark portfolios that dominates the market portfolio by prospect stochastic

dominance. The line exhibits large fluctuations; thus the degree of efficiency is changing over

time, but remains always above the critical level of 5%.

The time series in this case is smaller (240 onthly observations) so that a maintained as-

sumption of stationarity is credible.
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Figure 1: p-values for the prospect stochastic dominance efficiency test using a rolling window of

20 years. The test statistic is calculated separately for 62 overlapping 20-year periods, (January

1930-December 1949), (January 1931-December 1951),...,(January 1993-December 2012). The

prospect stochastic dominance efficiency is not rejected.

Figure 2 shows the corresponding p-values for the Markowitz stochastic dominance efficiency.

We observe that the market portfolio is not Markowitz stochastic dominance efficient. The

Markowitz stochastic dominance efficiency is rejected on 58 out of 63 subsamples. The p-values

are almost always lower than 5%. This result confirms the rejection of the Markowitz stochastic

dominance efficiency that was found in the previous subsection. This means that every year, a

new optimal portfolio λ is obtained from the set of the six benchmark portfolios that dominates

the market portfolio by Markowitz stochastic dominance.
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Figure 2: p-values for the Markowitz stochastic dominance efficiency test using a rolling window

of 20 years. The test statistic is calculated separately for 62 overlapping 20-year periods,

(January 1930-December 1949), (January 1931-December 1951),...,(January 1993-December

2012). The Markowitz stochastic dominance efficiency is rejected.

6 Concluding remarks

In this paper we develop consistent tests for prospect and Markowitz stochastic dominance

efficiency for time-dependent data. We study tests for stochastic dominance efficiency of a

given portfolio with respect to all possible portfolios constructed from a set of risky assets. We

justify block bootstrap approaches to achieve valid inference in a time series setting. Linear as

well as mixed integer programs are formulated to compute the test statistics.

To illustrate the potential of the proposed test statistics, we test whether the two stochastic

dominance efficiency criteria rationalize the Fama and French market portfolio over six Fama

and French benchmark portfolios constructed as the intersections of two ME portfolios and three

25



BE/ME portfolios. Empirical results indicate that the market portfolio is prospect stochastic

dominance efficient. Morover, the market portfolio is not Markowitz stochastic dominance

efficient. The results are also confirmed in a rolling window analysis. This implies that there

are S-shaped utility functions that rationalize the market portfolio, while the market portfolio is

not efficient relative to reverse S-shaped utility functions.
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APPENDIX

Helpful Lemmata and Proofs

In what follows  denotes weak convergence and
p (conditional) weak convergence in proba-

bility (see among others Paragraph 3.6.1 of van der Vaart and Wellner (1996)). Analogously
p→

denotes convergence in probability. CMT abbreviates the continuous mapping theorem in the

relevant context.

Lemma AL.1. If E [λ′Y 0] and E [τ ′Y 0] exist then J c
2 (z, λ, F ) is finite and equals

µτ ′Y − µλ′Y + J2(z, τ, F )− J2(0, τ, F )− J2(z,λ, F ) + J2(0,λ, F ).

Proof. Remember that iff E [|λ′Y |] < +∞ then we have that µλ′Y , E [λ′Y ] =
∫ +∞
0 (1−G (u, λ, F )) du

and therefore ∫ +∞

z
(G (u,λ, F )−G (u, τ, F )) du

=

∫ +∞

z
(1−G (u, τ, F ))− (1−G (u,λ, F )) du

= µτ ′Y − µλ′Y +

∫ z

0
G (u, τ, F ) du−

∫ z

0
G (u, λ, F ) du.

In the following let

xT =

 √
T supz≥0,λ∈L

(
J
(
z,−λ,−τ, F̂T

)
− J (z,−λ,−τ, F )

)
√
T supz≥0,λ∈L

(
J (z, λ, τ, F )− J

(
z, λ, τ, F̂T

))
 ,

yT =

 √
T supz≤0,λ∈L

(
D2

(
z, τ ;λ, F̂T

)
−D2 (z, τ ;λ, F )

)
supz≥0,λ∈L

[
(λ−τ)′√

T

∑T
i=1 (Yi − EY0)−

√
T
(
J
(
z, λ, τ, F̂T

)
− J (z, λ, τ, F )

)]
 ,

where

D2 (z, τ ;λ, F
∗) = J2(z, τ ;F

∗)− J2(z,λ, F
∗).

Lemma AL.2. 1. Suppose that for any λ ∈ L, E
[
(−λ′Y 0)+

]
< +∞, G satisfies the condition

13 in Proposition 1 and assumption A.1 holds. Then as T → ∞

xT  

 supz≥0,λ∈L J (z,−λ,−τ,B◦F )

supz≥0,λ∈L−J (z, λ, τ,B◦F )

 (30)

28



where B◦F denotes a zero mean Gaussian process with well defined covariance kernel, in the

space of continuous functions on Rn. 2. Suppose that G satisfies the condition 13 in Proposition

1 and assumption A.2 holds. Then as T → ∞

yT  

 supz≤0,λ∈LD2 (z, τ ;λ,B◦F )

supz≥0,λ∈L
[
(λ− τ)′Z − J (z, λ, τ,B◦F )

]
 (31)

where B◦F is as before, and Z denotes a zero mean Gaussian random vector.

Proof. 1. Notice first that due to assumption A.1 we have that
√
T
(
F̂T − F

)
 B◦F (see

e.g. the multivariate functional central limit theorem for stationary strongly mixing sequences

stated in Rio (2000)). Then we have that due to the previous, the relations 1, 2, 3 and the

CMT, for any (z, λ) ∈ R+ × L,

√
T
(
J
(
z,−λ,−τ, F̂T

)
− J (z,−λ,−τ, F )

)
 J (z,−λ,−τ,B◦F )

and,
√
T
(
J (z, λ, τ, F )− J

(
z, λ, τ, F̂T

))
 −J (z, λ, τ,B◦F ) .

Due to linearity both limits are well defined Gaussian processes. Then an analysis similar to the

one in the proof of the first part of Proposition 2.2 of Scaillet and Topaloglou (2012) (which

evolves along the lines of the proof of Theorem 1 of Horvath, Kokoszka, and Zitikis (2006)) im-

plies that

x1,T  supz≥0,λ∈L J (z,−λ,−τ,B◦F ) and x2,T  supz≥0,λ∈L−J (z, λ, τ,B◦F ). Then the

limiting property in 30 follows from Theorem 1.4.8 of van der Vaart and Wellner (1996)vaart. 2.

Again assumption A.2 implies that
√
T
(
F̂T − F

)
 B◦F and that 1√

T

∑T
i=1 (Yi − EY0) Z

(see e.g. the multivariate functional central limit theorem for stationary strongly mixing se-

quences stated in Rio (2000), or combine the Martingale approximation in Gordin (1969) with

tha CLT for stationary squared integrable m.d. processes to obtain the second result). Then

the previous along with linearity implied by 1, 2, 3, and the CMT guarantee that for any

(z, λ) ∈ R+ × L,
√
T
(
D2

(
z, τ ;λ, F̂T

)
−D2 (z, τ ;λ, F )

)
 D2 (z, τ ;λ,B◦F ) and for any

(z, λ) ∈ R+ × L,
√
T
(
J
(
z, λ, τ, F̂T

)
− J (z, λ, τ, F )

)
 J (z, λ, τ,B◦F ). Theorem 1.4.8

of van der Vaart and Wellner (1996) implies that this convergence holds jointly with well de-

fined covariances due to the previous and the moment condition in A.2. The fact that y1,T  
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supz≤0,λ∈LD2 (z, τ ;λ,B◦F ) follows from Proposition 2.2 of Scaillet and Topaloglou (2012) and

the CMT. Again an analysis similar to the one in the proof of the first part of Proposition 2.2 of

Scaillet and Topaloglou (2012) implies that for any λ ∈ L

supz≥0

[
−
√
T
(
J
(
z, λ, τ, F̂T

)
− J (z, λ, τ, F )

)]
 supz≥0 [−J (z, λ, τ,B◦F )]. Again the

CMT along with Theorem 1.4.8 of van der Vaart and Wellner (1996) imply that this convergence

holds jointly with

(λ−τ)′√
T

∑T
i=1 (Yi − EY0)  (λ− τ)′Z. The compactness of L implies then that

y3,T  supz≥0,λ∈L
[
(λ− τ)′Z − J (z, λ, τ,B◦F )

]
. The limiting property in 31 follows from

another application of the aforementioned Theorem.

Proof of Proposition 1. First notice that

Ŝa
T (τ) = sup

z≥0,λ∈L

√
TJ

(
z,−λ,−τ, F̂T

)
=

1√
T

sup
z≤0,λ∈L

∑T

i=1

((
z − τ ′Yi

)
Iz≤τ ′Yi≤0 −

(
z − λ′Yi

)
Iz≤λ′Yi≤0

)
= sup

z≤0,λ∈L

√
TJ

(
z, λ, τ, F̂T

)
.

Then notice that

Ŝa
T (τ) =

√
T sup

z≥0,λ∈L

(
J
(
z,−λ,−τ, F̂T

)
− J (z,−λ,−τ, F ) + J (z,−λ,−τ, F )

)
≤ x1,T + sup

z≥0,λ∈L

√
TJ (z,−λ,−τ, F ) .

and

Ŝβ
T (τ) =

√
T sup

z≥0,λ∈L

(
J (z, λ, τ, F )− J

(
z, λ, τ, F̂T

)
− J (z, λ, τ, F )

)
≤ x2,T + sup

z≥0,λ∈L
−
√
TJ (z, λ, τ, F )

1. If H
(PSD)
0 holds then the previous imply that

Ŝa
T ≤ x1,T and Ŝβ

T (τ) ≤ x2,T

and thereby

ŜT (τ) ≤ max (x1,T , x2,T )

and due to the CMT and lemma AL.2.1 max (x1,T , x2,T ) converges in distribution to

S̄ (τ) + max


 supz≥0,λ∈L J (z,−λ,−τ,B◦F )

supz≥0,λ∈L−J (z, λ, τ,B◦F )

′ ,
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and the result follows. 2. If H
(PSD)
0 is not true then supz≥0,λ∈L−

√
TJ (z, λ, τ, F ) and/or

supz≥0,λ∈L
√
TJ (z,−λ,−τ, F ) converge to +∞. If any of them does not then it does not also

contribute to the relevant supremum. Due to Gaussianity and the non finite cardinality of L we

therefore obtain that

Ŝa
T ≥ sup

z≥0,λ∈L

√
TJ (z,−λ,−τ, F ) and/or Ŝβ

T (τ) ≥ sup
z≥0,λ∈L

−
√
TJ (z, λ, τ, F )

and thereby ŜT (τ) is greater than or equal to the maximum of the right hand sides of the

previous display and the result follows.

Proof of Proposition 2. First notice that the moment condition in assumption A.2 implies that

G satisfies the condition 13 in Proposition 1. Then from 15 and lemma AL.1 we obtain that

Υ̂β
T (τ) = sup

z≥0,λ∈L
−
√
TJ c

2

(
z, λ, τ, F̂T

)
= sup

z≥0,λ∈L
−
√
T
(
J c
2

(
z, λ, τ, F̂T

)
− J c

2 (z, λ, τ, F )
)
−

√
TJ c

2 (z, λ, τ, F )

≤ sup
z≥0,λ∈L

−
√
T
(
J c
2

(
z, λ, τ, F̂T

)
− J c

2 (z, λ, τ, F )
)
+ sup

z≥0,λ∈L
−
√
TJ c

2 (z, λ, τ, F )

= y1,T + sup
z≥0,λ∈L

−
√
TJ c

2 (z, λ, τ, F ) .

Analogously

Υ̂a
T (τ) =

√
T sup

z≤0,λ∈L

(
D2

(
z, τ ;λ, F̂T

)
±D2 (z, τ ;λ, F )

)
≤ y1,T + sup

z≤0,λ∈L

√
T (J2(z, τ ;F )− J2(z,λ;F )) .

1. If H
(MSD)
0 holds then the previous imply that

Υ̂a
T ≤ y1,T and Υ̂β

T (τ) ≤ y2,T

and thereby

ŜT (τ) ≤ max (y1,T , y2,T )

and due to the CMT and lemma AL.2.2 max (y1,T , y2,T ) converges in distribution to

Ῡ (τ) + max


 supz≤0,λ∈LD2 (z, τ ;λ,B◦F )

supz≥0,λ∈L
[
(λ− τ)′Z − J (z, λ, τ,B◦F )

]
′ ,

31



and the result follows. 2. IfH
(MSD)
0 is not true then supz≤0,λ∈L

√
T (J2(z, τ ;F )− J2(z, λ;F ))

and/or supz≥0,λ∈L−
√
TJ c

2 (z, λ, τ, F ) converge to +∞. If any of them does not then it does

not also contribute to the relevant supremum. Due to Gaussianity and the non finite cardinality

of L we therefore obtain that

Υ̂a
T ≥ sup

z≤0,λ∈L

√
T (J2(z, τ ;F )− J2(z,λ;F )) and/orΥ̂β

T (τ) ≥ sup
z≥0,λ∈L

−
√
TJ c

2 (z, λ, τ, F )

and thereby Υ̂T (τ) is greater than or equal to the maximum of the right hand sides of the

previous display and the result follows.

Proof of Proposition 3. From assumptions A.1 and A.3 and Theorem 2.3 of Peligrad (1998) we

have that conditionally on the sample

√
T
(
F̂ ∗
T − F̂T

)
p B∗◦F

where B∗◦F is an independent version of the Gaussian process in lemma AL.2. From relations

3, 2, 3 the Delta method the CMT and the results of lemma AL.2 we obtain that Ŝα∗
T (τ)

Ŝβ∗
T (τ)

 p 

 supz≥0,λ∈L J (z,−λ,−τ,B∗◦F )

supz≥0,λ∈L−J (z, λ, τ,B∗◦F )


and due to the CMT we finally obtain

Ŝ∗
T (τ)

p max


 supz≥0,λ∈L J (z,−λ,−τ,B∗◦F )

supz≥0,λ∈L−J (z, λ, τ,B∗◦F )

′ .

1. Due to Gaussianity we have that med
(
supz≥0,λ∈L J (z,−λ,−τ,B∗◦F )

)
and

med
(
supz≥0,λ∈L−J (z, λ, τ,B∗◦F )

)
are finite and positive. By the relevant property of quan-

tile functions the same is true for the median of the weak limit (in probability) of Ŝ∗
T (τ). Fur-

thermore since the function (a, b) → max (sup (a) , sup (b)) is a norm on the space of bounded

functions defined on R+×L with values in R+×R+, Corollary 4.4.2.(i)-(ii) of Bogachev (1991)

implies that the cdf of the max

 supz≥0,λ∈L J (z,−λ,−τ,B∗◦F )

supz≥0,λ∈L−J (z, λ, τ,B∗◦F )

 restricted to (0,+∞)

is absolutely continuous. Furthermore using (among others) the proposition A.2.7 of van deer

Vaart and Wellner (1996) and the relevant property of quantile functions we have that cPSD as

defined in proposition 1 is finite and strictly positive for a < 1
2 . Then the result follows exactly
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as in the proof of Proposition 3.1 of Scaillet and Topaloglou (2012) (or Propositions 2 or 3 of

Barrett and Donald (2003)). 2. follows directly from the second part of proposition 1 and the

fact that cPSD is finite.

Proof of Proposition 4. From assumptions A.1 and A.3, Theorems 2.3 of Peligrad (1998), 2.4

of Shao and Yu (1993) and 1.4.8 of van der Vaart and Wellner (1996) we have that conditionally

on the sample

√
T

 F̂ ∗
T − F̂T

1
T

∑T
i=1 (Y

∗
i − Yi)

 p 

 B∗◦F

Z∗


where B∗◦F and Z∗ are independent versions of the Gaussian process and random vector in

lemma AL.2. The rest follow as in the proof of proposition 3.

Mathematical programming formulations

Formulation for prospect stochastic dominance

The test statistic Ŝα
T (τ) for prospect stochastic dominance efficiency is given by

Ŝα
T (τ) = sup

z≥0,λ∈L

√
TJ

(
z,−λ,−τ, F̂T

)
, (32)

which is equivalent to

Ŝα
T (τ) = sup

z≥0,λ∈L

1√
T

∑Tp

t=1

((
z − τ ′Yt

)
+
I0≤τ ′Yt −

(
z − λ′Yt

)
+
I0≤λ′Yt

)
(33)

The mathematical formulation is the following:
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max
z≥0,λ∈L

Ŝα
T (τ) =

1√
T

Tp∑
t=1

(Lt −Wt) (34)

s.t. M(Ft − 1) ≤ z − τ ′Yt ≤ MFt, ∀ t ∈ Tp, (35)

−M(1− Ft) ≤ Lt − (z − τ ′Yt) ≤ M(1− Ft), ∀ t ∈ Tp, (36)

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tp, (37)

Wt ≥ z − λ′Yt, ∀ t ∈ Tp, (38)

τ ′Yt ≥ 0, ∀ t ∈ Tp, (39)

λ′Yt ≥ 0, ∀ t ∈ Tp, (40)

e′λ = 1, (41)

λ ≥ 0, (42)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tp. (43)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the sum over all

scenarios of two variables,

Tp∑
t=1

Lt and

Tp∑
t=1

Wt which represent the difference between (z − τ ′Yt)+

and (z − λ′Yt)+ respectively. This is difficult to solve since it is the maximization of the dif-

ference of two convex functions. We use a binary variable Ft, which, according to Inequalities

(58b), equals 1 for each scenario t ∈ Tp for which z ≥ τ ′Yt, and 0 otherwise. Then, Inequalities

(36) and (58d) ensure that the variable Lt equals z − τ ′Yt for the scenarios for which this

difference is positive, and 0 for all the other scenarios. Inequalities (58e) and (58h) ensure that

Wt equals exactly the difference z − λ′Yt for the scenarios for which this difference is positive,

and 0 otherwise. Inequalities (39) and (40) ensure that both τ ′Yt and λ′Yt are greater than

zero. Equation (58f) defines the sum of all portfolio weights to be unity, while Inequality (58g)

disallows for short positions in the available assets.

The model is easily transformed to a linear one, which is very easy to solve. The steps are

the following:

Proposition 11. There is a set of at most Tp positive values, say R = {r1, r2, ..., rTp}, con-

taining the optimal value of the variable z.
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Proof. Vectors τ and Yt, t = 1, ..., Tp being given, we can rank the values of τ ′Yt, t = 1, ..., Tp,

by increasing order. Let us call r1, ..., rTp the possible different values of τ ′Yt, with r1 < r2 <

... < rTp (actually there may be less than Tp different values). Now, for any z such that

ri ≤ z ≤ ri + 1,
∑

t=1,...,Tp

Lt is constant (it is equal to the number of t such that τ ′Yt ≤ ri).

Further, when ri ≤ z ≤ ri + 1, the maximum value of −
∑

t=1,...,Tp

Wt is reached for z = ri.

Hence, we can restrict z to belong to the set R.

A direct consequence is that we can solve prospect stochastic dominance efficiency by solving

the smaller problems P (r), r ∈ R, in which z is fixed to r. Then we take take the value for z

that yields the best total result. The advantage is that the optimal values of the Lt variables

are known in P (r). Precisely,
∑

t=1,...,Tp

Lt is equal to the number of t such that τ ′Yt ≤ r. Hence

problem P (r) boils down to the linear problem (26).

The test statistic Ŝβ
T (τ) for prospect stochastic dominance efficiency is given by

Ŝβ
T (τ) = sup

z≥0,λ∈L
−
√
TJ

(
z, λ, τ, F̂T

)
, (44)

which is equivalent to

Ŝβ
T (τ) = sup

z≤0,λ∈L

1√
T

∑Tp

t=1

((
z − τ ′Yt

)
− I0≥τ ′Yt −

(
z − λ′Yt

)
− I0≥λ′Yt

)
(45)

The mathematical formulation is the following:
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max
z≤0,λ∈L

Ŝβ
T (τ) =

1√
T

Tn∑
t=1

(Lt −Wt) (46)

s.t. M(Ft − 1) ≤ τ ′Yt − z ≤ MFt, ∀ t ∈ Tn, (47)

−M(1− Ft) ≤ Lt − (τ ′Yt − z) ≤ M(1− Ft), ∀ t ∈ Tn, (48)

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tn, (49)

Wt ≥ λ′Yt − z, ∀ t ∈ Tn, (50)

τ ′Yt ≤ 0, ∀ t ∈ Tn, (51)

λ′Yt ≤ 0, ∀ t ∈ Tn, (52)

e′λ = 1, (53)

λ ≥ 0, (54)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tn. (55)

with M being a large constant.

The model is a mixed integer program maximizing the distance between the sum over all

scenarios of two variables,
Tn∑
t=1

Lt and
Tn∑
t=1

Wt which represent the difference between (z − τ ′Yt)−

and (z − λ′Yt)− respectively. We use a binary variable Ft, which, according to Inequalities (47),

equals 1 for each scenario t ∈ Tn for which z ≤ τ ′Yt, and 0 otherwise. Then, Inequalities (48)

and (49) ensure that the variable Lt equals z − τ ′Yt for the scenarios for which this difference

is negative, and 0 for all the other scenarios. Inequalities (50) and (55) ensure that Wt equals

exactly the difference z − λ′Yt for the scenarios for which this difference is negative, and 0

otherwise. Inequalities (51) and (52) ensure that both τ ′Yt and λ′Yt are lower than zero.

Equation (53) defines the sum of all portfolio weights to be unity, while Inequality (54) disallows

for short positions in the available assets.

Analogusly, we can solve a number of smaller problems P (r), r ∈ R, in which z is fixed to

r, and the above problem boils down to the linear problem (27).

Formulation for Markowitz stochastic dominance

The test statistic Υ̂α
T (τ) for Markowitz stochastic dominance efficiency is given by
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Υ̂α
T (τ) = sup

z≤0,λ∈L

√
T
(
J2(z, τ ; F̂T )− J2(z,λ, F̂T )

)
, (56)

which is equivalent to

Υ̂α
T (τ) = sup

z≤0,λ∈L

1√
T

∑Tn

t=1

((
z − τ ′Yt

)
+
−
(
z − λ′Yt

)
+

)
(57)

The mathematical formulation is the following:

max
z≤0,λ

Υ̂α
T (τ) =

1√
T

Tn∑
t=1

(Lt −Wt) (58a)

s.t. M(Ft − 1) ≤ z − τ ′Y t ≤ MFt, ∀ t ∈ Tn, (58b)

−M(1− Ft) ≤ Lt − (z − τ ′Y t) ≤ M(1− Ft), ∀ t ∈ Tn, (58c)

−MFt ≤ Lt ≤ MFt, ∀ t ∈ Tn, (58d)

Wt ≥ z − λ′Y t, ∀ t ∈ Tn, (58e)

e′λ = 1, (58f)

λ ≥ 0, (58g)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tn. (58h)

with M being a large constant.

The model is a mixed integer program. We use a binary variable Ft, which, according to

Inequalities (58b), equals 1 for each scenario t ∈ Tn for which z ≥ τ ′Y t, and 0 otherwise. Then,

Inequalities (58c) and (58d) ensure that the variable Lt equals z − τ ′Y t for the scenarios for

which this difference is positive, and 0 for all the other scenarios. Inequalities (58e) and (58h)

ensure that Wt equals exactly the difference z−λ′Y t for the scenarios for which this difference

is positive, and 0 otherwise. Equation (58f) defines the sum of all portfolio weights to be unity,

while Inequality (58g) disallows for short positions in the available assets.

We can solve a number of smaller problems P (r), r ∈ R, in which z is fixed to r, and the

above problem boils down to the linear problem (28).

The test statistic Υ̂β
T (τ) for Markowitz stochastic dominance efficiency is given by

Υ̂β
T (τ) = sup

z≥0,λ∈L

[
1√
T

∑T

i=1

(
λ′Yi − τ ′Yi

)
−

√
TJ

(
z, λ, τ, F̂T

)]
, (59)
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which is equivalent to

Υ̂β
T (τ) =

1√
T

sup
z≥0,λ∈L

[∑T

t=1

(
λ′Yt − τ ′Yt

)
+
∑Tp

t=1

((
z − λ′Yt

)
+
Iλ′Yt≥0 −

(
z − τ ′Yi

)
+
Iτ ′Yt≥0

)]
(60)

The mathematical formulation is the following:

max
z≥0,λ

Υ̂β
T (τ) =

1√
T
[

T∑
t=1

(λ′Y t − τ ′Y t) +

Tp∑
t=1

(Wt − Lt)] (61a)

s.t. M(Ft − 1) ≤ z − λ′Y t ≤ MFt, ∀ t ∈ Tp, (61b)

−M(1− Ft) ≤ Wt − (z − λ′Y t) ≤ M(1− Ft), ∀ t ∈ Tp, (61c)

−MFt ≤ Wt ≤ MFt, ∀ t ∈ Tp, (61d)

Lt ≥ z − τ ′Y t, ∀ t ∈ Tp, (61e)

e′λ = 1, (61f)

τ ′Y t ≥ 0, ∀ t ∈ Tp, (61g)

λ′Y t ≥ 0, ∀ t ∈ Tp, (61h)

λ ≥ 0, (61i)

Wt ≥ 0, Ft ∈ {0, 1}, ∀ t ∈ Tp. (61j)

with M being a large constant.

The model is again a mixed integer program. We use a binary variable Ft, which, according

to Inequalities (61b), equals 1 for each scenario t ∈ Tp for which z ≥ τ ′Y t, and 0 otherwise.

Then, Inequalities (61c) and (61d) ensure that the variable Lt equals z−τ ′Y t for the scenarios

for which this difference is positive, and 0 for all the other scenarios. Inequalities (61e) and (61j)

ensure that Wt equals exactly the difference z−λ′Y t for the scenarios for which this difference

is positive, and 0 otherwise. Inequalities (61g) and (61h) ensure that both τ ′Y t and λ′Y t are

greater than zero. Equation (61f) defines the sum of all portfolio weights to be unity, while

Inequality (61i) disallows for short positions in the available assets.

We can solve a number of smaller problems P (r), r ∈ R, in which z is fixed to r, and the

above problem boils down to the linear problem (29).
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