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Abstract

This paper is concerned with some properties of three indirect es-
timators that are known to be (�rst order) asymptotically equivalent.
Speci�cally, for each one of them, we examine a) the issue of validity
of the formal Edgeworth expansion of an arbitrary order. b) Given
the establishment of validity, we are concerned with valid moment ap-
proximations and employ them to characterize the bias structure of
the estimators up to this order. Our motivation resides on the fact
that one of the three is reported by the relevant literature to be second
order unbiased. However, this result is derived without any establish-
ment of validity. We provide this establishment, but we also are able
to massively generalize the conditions under which this second order
property remains true. Validating the expansions at any order and
deriving the second order expansion for the remaining estimators, we
show that the previous result does not apply in these cases. Hence
we essentially derive their higher order inequivalence. We also provide
a further generalization of the indirect estimators by introducing re-
cursive ones emerging from multistep optimization procedures. Upon
strengthening the validity of the aforementioned moment approxima-
tions, we are able to establish higher order unbiaseness for estimators
of this sort.
KEYWORDS: Indirect Estimator, Asymptotic Approximation, Sec-

ond Order Bias Structure, Binding Function, Local Canonical Repre-
sentation, Convex Variational Distance, Recursive Indirect Estima-
tors, Higher order Bias.
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1 Introduction
Indirect Inference (hereafter II), usually applied to parametric statistical
models,1 employs a (possibly) "misspeci�ed", auxiliary model for inference
on the parameter value corresponding to the true unknown measure in which
the relevant sample space is equipped. The motivation is largely computa-
tional, hence the choice of the auxiliary model is primarily driven by numeri-
cal cost considerations. Despite this motivational characteristic, II gives rise
to an enrichment of the theory of parametric statistical inference, due to the
fact that it relies on the local inversion of functions that "bind" (possibly)
di¤erent collections of probability measures de�ned on the same probability
space.
These functions essentially describe relations between classes of random

elements de�ned on each collection, that are typically used for statistical es-
timation (e.g. moment conditions). In this respect, a collection of random
elements used to de�ne an estimation procedure in one model, can be pulled
back to another and therefore used in a similar manner, thereby indirectly
facilitating inference. When these collections of measures have additional
structure (for example, when they are �nite dimensional di¤erentiable mani-
folds, as is the case with di¤erential parametric �nite dimensional statistical
models), the resulting "binding" can be chosen so that (at least locally) it
respects this structure, something that can facilitate the derivation of results
and/or the analysis of the properties of such procedures.
This paper is concerned with the approximation of certain �nite sample

properties of three indirect estimators that are known to be (�rst order) as-
ymptotically equivalent. Speci�cally, for each one of them, we examine a) the
issue of validity of the formal Edgeworth expansion of the its sequence of
distributions, provided by the inversion of the Taylor expansion of any �nite
order, of the �rst order conditions that it satis�es. b) Given the establish-
ment of validity, we explicitly provide conditions that establish the validity
of the approximation of the �rst moment sequence of the estimator by the
relevant sequence of inversion, and c) we explicitly provide the moment ap-
proximation of the second order expansion and use it in order to characterize
the bias structure of the estimators up to this order. Our motivation resides
in the fact that one of the three is reported by the relevant literature to
be second order unbiased under a particular set of conditions. This result,
which is cited bellow, is derived without any establishment of validity. We
provide this establishment, but we also are able to massively generalize the
conditions under which this second order property remains true. There are

1Although it can be extended into a semiparametric framework, see [7].
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no analogous results for the other two estimators. Validating the expansions
at any order and deriving the second order expansion for the remaining es-
timators, we show that the previous result does not apply in these cases.
Hence we essentially derive their higher order inequivalence.
The expansions involved concern the so-called delta method of approxi-

mations of moments of estimator sequences widely used in a formal manner
in statistics.2 This method proceeds into deriving approximations of the an-
alytical functional forms of extremum statistics using the implicit function
theorem, and then approximating the sequence of moments by the moments
of the approximations. Hence the estimator sequence is approximated by a
sequence of random elements (not necessarily de�ned on the same probabil-
ity space), which is generally termed stochastic expansion. These expansions
do not su¢ ce for the approximation of distributional characteristics unless
conditions that ensure some sort of continuity of the map that assigns to a
sequence of random elements the associated sequence of probability distri-
butions are imposed. These conditions usually work through the following
mechanism: both the sequences of distributions of the estimator and the
stochastic expansion sequences are proven to be (in the appropriate manner)
approximated by the same sequence of Edgeworth distributions. Due to the
fact that the underlying space of sequences of distributions is properly topol-
ogized, since both sequences are close to the same sequence of distributions
then a topological form of the triangle inequality must hold: they must also
be close.3

The Binding Function

The central notion of indirect inference procedures is the one of the binding
function. In pure terms this constitutes of a function between the measures
involved in the relevant statistical models. This function can be formed as
the pushover of an automorphism of the underlying probability space. Such
a derivation of the binding function would be in accordance with the generic
e¢ ciency loss of indirect estimators, due to the fact that the observed sample
is not subjected to the underlying automorphism, and/or that the estimating
equation does not constitute a basis of the vector space spanned by the score
at the true parameter values, and/or due to non linearities of the function.
In any case the binding function is denoted by b (�), where � the parameter
vector to be estimated, and what is usually discussed is not the function

2The term formal means "purely algebraic, without concern for topological matters of
convergence".

3Note that this type of argument does not hold in general neighborhood spaces that
are not topological.
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itself, but a parametric representation of it (see the paragraph entitled as
General Assumption Framework).

The Auxiliary and the Indirect Estimators

All three indirect estimators essentially involve two step estimation proce-
dures. In the �rst step, the estimating equation that is part of the structure
of the auxiliary model, is used in order for the statistical information to be
summarized into a statistic with values in the auxiliary parameter space.
This statistic is called an auxiliary estimator. Under the appropriate con-
ditions will (strongly and/or weakly) converge to the value of the binding
function when evaluated at the true parameter value. This remark motivates
the second step. If this function is at least locally invertible, it is inverted
at the value of the auxiliary estimate in order for the indirect estimate to be
computed. The auxiliary estimators are collectively denoted in the paper by
�n whereas �n denote the indirect ones, with n being the sample size.
We consider one type of auxiliary estimator. It is de�ned (at least for large

n) as the global minimizer of a distance function on the auxiliary parameter
space. This distance function is represented by a norm, which in turn is
represented by a positive de�nite matrix. Our set up is the outmost general,
since we allow for this matrix to be stochastic and dependent on the auxiliary
parameter. The last remark makes possible the computation of this matrix
with respect to an initial auxiliary estimator, a situation that mimics the
issue of optimal weighting in the GMM estimation theory. We term this
general framework as stochastic weighting.
The �rst indirect estimator considered here minimizes an analogous gen-

eral distance function between the �n and b (�). It is termed GMR 1 and
it was proposed by [9] in order for the numerical burden of the second es-
timator to be relaxed. The latter is termed GMR 2 and it minimizes the
previous distance between �n and E��n. This is obviously di¤ering from the
previous and is the essential reason for the second order properties of the es-
timator. The third estimator, called GT, was proposed by [12] and minimizes
an analogous distance between the conditional expectation of the auxiliary
estimating vector and zero. Its motivation is obvious. In all three cases we
allow for stochastic weighting in the sense described above. In most realistic
cases, the expectations involved and the binding function are analytically
intractable, hence approximated by simulations. It is easily seen that the
simulation counterpart of the GMR 1 estimator is the one involved with the
maximal numerical burden among the three.
[11] show that the GMR 2 estimator has null, up to second order bias,

since it involves the computation of E��n (called the small sample binding
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function), when i) the dimension of the structural parameter space equals
the dimension of auxiliary and ii) the binding function is a¢ ne. Notice that
ii) is automatically satis�ed, when the auxiliary coincides with the structural
model and the binding function is approximated by a consistent estimator
of the auxiliary parameters. In this case the particular indirect estimator is
said to perform a bias correction of the �rst step one. 4

Notice that each of the indirect estimators, in the framework of stochastic
weighting, are essentially derived from the evaluation of the inverse of a �nite
sample binding function (say bn (�;Wn; �

�
n)) that depends on the weighting

matrix and the initial estimator (see the paragraph entitled as General As-
sumption Framework), on the auxiliary estimator. Each of these functions
generally di¤er across the estimators that are considered here, but under the
appropriate conditions, converge uniformly on b (�). In the special case where
the involved dimensions coincide, and the weighting is non-stochastic, then
in the case of GMR1 and GT (see lemma 1.2) then bn (�;Wn; �

�
n) = b (�),

while in the case of GMR2 bn (�;Wn; �
�
n) = E��n (see the preceding para-

graph). Hence the stochastic weighting, essentially generalizes the structure
of the functions from the inversion of which the Indirect Estimation (IE) are
derived.5

Generalizations to Multistep Procedures

We are able to extend the de�nition of IE (in the particular case of the GMR2
one), through the employment of recursive multistep procedures based on the
existing de�nitions. These are motivated by the bias structure of the GMR2
estimator as obtained later, and the fact that these kind of generalizations can
lead to indirect estimators that are (globally) unbiased for any given order.
We provide the analogous de�nitions and results in the section entitled as
GMR2 recursion. It will be evident but not examined here, that analogous
generalizations can be de�ned in ways that involve any combination of the
aforementioned IE.

4 [11] are occupied with the up to third order
�
O
�
n�1

��
bias structure of the estimator

in question. However the complexity of the third order term, does not lead to general

conclusive statements. Hence we choose to examine terms up to order O
�
n�

1
2

�
as in [8]

(chapter 4).
5These functions are required to be injective, at least locally. In cases where this is not

true, the inversion can be performed with the use of some measurable choice function the
existence of which resides upon the relevant framework. We do not pursue this approach
here.
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Edgeworth and Moment Approximations of Sequences of Distributions

As previously noted we are concerned with the validity of the approximation
of sequences of distributions (namely the ones emerging from the sequences of
the examined estimators). We need some further clari�cation on the notions
that we attribute to the approximations examined. Let M and M� denote
arbitrary �nite measures de�ned on the same measurable topological vector
space. Let BC denote the collection of convex Borel sets of the space. The
convex variational distance between these is de�ned as

CVD(M;M�) = sup
A2BC

jM (A)�M� (A)j

It can be easily seen that the CVD topologizes the set of �nite measures on
the space (sayMF (S)), as a pseudometrizable (hence �rst countable) non
Hausdor¤ space (i). Consider now two arbitrary sequences (sayMn andM�

n)
of the latter space that have the same CVD�limit (say M0). We say that
M�
n provides an asymptotic approximation of order s to Mn i¤

CVD(Mn;M
�
n) = o

�
n�a
�

for some, a = i
2
, i 2 f0; 1; : : :g and s = 2a + 1. Some remarks on these

de�nitions are the following:6

� Due to (i), the set of sequences of �nite measures on S that CVD con-
verge to M0, say

�
(MF (S))N ;M0

�
is topologized by the asymptotic

approximation de�nition as a pseudometrizable non Hausdor¤ space.
In this respect, the asymptotic approximation of order s sequence M�

n

is simply an element of a closed ball with centerMn and an radius that
depends on a.

� If M�
n is a sequence of Edgeworth measures then we say that Mn has a

valid Edgeworth expansion of order s. Remember that the Edgeworth
measures are not probability measures but �nite signed ones.

� In a similar construction, we can consider the set of sequences of el-
ements of a Euclidean space that have the same limit. Due to the
fact that a Euclidean space is metric, then this set can also be topol-
ogized as a pseudometrizable non Hausdor¤ space if, when xn and yn
are two such sequences that converge to x0, we de�ne that yn provides
an asymptotic approximation of order s to xn i¤

kxn � ynk = o
�
n�a
�

6Obviously in this set up this distance could be expressed in the dual notion of measures.
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Again, yn is simply an element of a closed ball with center xn and an
radius that depends on a. This can be helpful in the issue of moment ap-
proximation (of some order) of sequences of measures that are mutually
asymptotic approximations. We are essentially concerned on whether
given CVD(Mn;M

�
n) = o (n

�a), it follows that


R

S
f (dMn � dM�

n)


 =

o (n�a) for a given f 2 (Rq)S. In the case of a bounded f , the afore-
mentioned consequence is valid. When however f is not bounded,
then it generally does not hold, either because the function

R
S
fd� on�

(MF (S))N ;M0

�
does not attain its values in

�
(Rq)N ; x0

�
(e.g. f is

not integrable w.r.t. the limit distribution and/or some elements of the
sequences, or some of the sequence of integrals do not converge), or in

the case that
R
S
fd�:

�
(MF (S))N ;M0

�
!
�
(Rq)N ; x0

�
this function is

not in general distance preserving. This discussion essentially implies
that the asymptotic approximation of distributions does not imply the
asymptotic approximation of moments. We provide conditions that en-
sure the latter given the former in section entitled as "Validity of 1st
moment approximation" in the case where S = Rq and f = idRq . This
conditions are reminiscent of the uniform integrability ones employed
in analogous circumstances, except that in this case we have to also
consider the order of the approximation (i.e. essentially the value of
a).

Outline of the paper

We immediately provide the assumption framework needed for the de�nition
of the examined estimators. We then provide assumptions su¢ cient for and
derive the validity of the Edgeworth approximations. In the following sec-
tions, we provide assumptions that validate the �rst moment approximations
given the previous results, derive the approximations for a = 1

2
, discuss the

bias properties of the estimators, and provide multistep extensions of the
GMR2 estimators that have desirable bias properties of general order. In the
last section we conclude. In the appendix, we provide a series of useful to
our derivations general lemmas.

1.1 General Assumption Framework
We introduce our general assumption framework that facilitate the following
de�nition of the estimators. Any other assumption will be introduced locally.
The symbol O" (�) will denote the "-ball around � in a relevant metric space
and let d = max (2a+ 2; 3).
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Assumption A.1 The results that will be later presented, lie in the premises
of a well-speci�ed, identi�ed (di¤erentially) parametric, and �nite dimen-
sional statistical model that is consisted of a family of probability distributions
with respect to a dominating measure (say �), de�ned on the measurable space
(Rm;BRm).7 We will denote this family of distributions with D. with a global
parameterization, that is a (kth-order) di¤eomorphism (for k � d), say par
to an open subset of Rp for some p 2 N, which we denote by �.8 We de-
note with D0 the unknown true distribution which corresponds to the true
probability measure (say P�0) with which the underlying probability space is
equipped, and with �0 =par(D0).

Let B denote a subset of Rq for some q 2 N and a function b : � ! B,
which is hereafter termed as the binding function.

Assumption A.2 � and B are bounded.

Remark R.1 Since � is a bounded subset of a �nite dimensional Euclidean
space it is also totally bounded.

Remark R.2 D could be extended (restricted) so as to be homeomorphic
to a compact superset (subset) of �, say ��. In this case and in order for
the di¤erentiability properties to be retained the previous assumption could be
completed with �0 2Int(��).

It is evident that the previous remark also applies in the case of B and
that the binding function is by de�nition bounded.

Assumption A.3 b (�0) = b (�) i¤ � = �0, and for some "1 > 0, the restric-
tion bjO"1 (�0) : O"1 (�0)! B is invertible.

7We could easily generalize the form of the underlying measurable space in order to
retain only some desirable structures such as di¤erentiabilty of real functions that are
de�ned on it etc, that could be involved in properties of the statistical model, as well as
in the de�nition and the properties of the binding function, to be later presented.

8This means that D (which by construction obtains the topology of variation norm)
has the structure of a (of k order) di¤erentiable manifold, that could be among others
inherited by a relevant structure on the underlying measurable space, see the previous
note. Since we are not interested in (almost) any geometric properties of our results, the
assumption of a global parametrization is without loss of generality. It is trivial that par
is not unique, since any other autodi¤eomorphism of the same order on �, will produce
another parametrization by composition with par. For further inquiries on the geometry
of smooth statistical models see among others [1].
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Remark R.3 The invertibility of the particular restriction of the binding
function, implies that �0 is inferable from the knowledge of b (�0) and of the
restricted binding function, a property that is a cornerstone for the concept
of indirect inference, hence it is termed as local indirect identi�cation.

We strengthen the previous assumption in our di¤erentiable context as
follows:

Assumption A.4 For some "1 � "2 > 0, the restriction bjO"2 (�0) : O"2 (�0)!
B is a k�di¤eomorphism.

Remark R.4 The previous assumption that q � p and that rank
�
@b
@�0

�
= p,

8� 2 O"2 (�0).

We also consider the function c : Rm �B ! Rl for some l 2 N such that

Assumption A.5 p; q; l are �nite and p � q � l.

The following set of assumptions deal with the structure of the derivatives
of c as well as of the likelihood function.

Assumption A.6 Integration with respect to the measures involved in the
statistical model and derivation with respect to � and � are commutative.

Remark R.5 This assumption can be established upon the existence of ran-
dom elements such that the dominated convergence theorem applies for the
elements involved in the integration and derivation procedures (see for exam-
ple [4], theorem 9.31).

In the following we will denote with Dr, the r-derivative operator that
maps a function to a function that consists of the algebraic element containing
all the rth-order partial derivatives of the �rst. When A is a matrix kAk will
denote a topologically equivalent yet submultiplicative matrix norm, such as
the Frobenius norm (i.e. kAk =

p
trA0A). Also when suprema with respect

to parameters, of derivatives are discussed these are obviously taken where
the di¤erentiated function is di¤erentiable.

Assumption A.7 b (�) is Lipschitz on � and sup� kDrb (�)k < Mr, 8r =
2; : : : ; d+ 1 for � 2 O"3 (�0), for some "3 � "2, with Mr 2 R.

Remark R.6 Notice that Dr (�) denotes the vector containing the partial
derivatives of the relevant order of the di¤erentiated function. The above
assumption is obviously true for r = 1 as b (�) is Lipschitz on � and conse-
quently on O"3 (�0).
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Here after we will not explicitly refer to assumptions 1-8 in the statement
of our results. These will be considered to formalize the most basic frame-
work, on which the assumption bellow will operate. Also note that due to the
fact that the spaces � and B are separable, suprema of real random elements
over these spaces are typically measurable.

Assumption A.8 c(�; �) is BRl=BRm�measurable for every � 2 B, and
c(x; �)jb(O"2 (�0)) is d�continuously di¤erentiable on b (O"2 (�0)) for ��almost
all x 2 Rm with k � d = max (3; 2a+ 2). Also kc(x; �)� c(x; �0)k �
uc (x) k� � �0k, 8�; �0 2 B and sup� E� kuck

q0 ; E� kc(x; �)kq0 <1, for some
q0 � max (2a+ 1; 2) and, 8� 2 b (O"2 (�0)), and E�c(x; �) = 0l�1, i¤ � =

b (�), 8� 2 O"2 (�0). Also, sup�2O�('0)


 @
@�0E� [c (x; �)]



 and sup�2O�('0) 


 @
@�i@�j

E� [c (x; �)]





are bounded 8i; j = 1; : : : p for some � > 0, where '0 =
�
b= (�0) ; �

=
0

�=
.

Remark R.7 The previous assumption implies the identi�cation of b (�0), as
the unique solution of E�0c(x; �) = 0l�1, which along with the required di¤er-

entiability and the assumptions bellow implies that l � q, and rank
�
E�

@c(x;�)
@�0

�
=

q, rank
�
E�

@2�(x;�)
@�@�0

�
= q, 8� 2 b (O"2 (�0)), 8� 2 O"2 (�0).

Remark R.8 Conditions of the form kc(x; �)� c(x; �0)k � uc (x) k� � �0k,
8�; �0 2 B can be termed as global stochastic Lipschitz continuity conditions
and facilitate the convergence of the auxiliary estimators to b (�0).

Remark R.9 The function c and the estimating equations E�c(x; b (�)) =
0l�1 can be derived as part of the structure of a second (potentially mis-
speci�ed), di¤erentiable parametric �-dominated statistical model de�ned on
the same measurable space, say D�, usually termed as auxiliary model,
with B as its parameter space. In this case the restricted binding function
is a parametric representation of a relevant function (with similar proper-
ties) between the two sets of probability measures (properly restricted). For
example, if g : Rm ! Rm is BRm=BRm�measurable, and in the structure of
the auxiliary model are the conditions E�c(x; �) = 0l�1 in some neighbor-
hood of b (�0), then the change of variables formula implies the conditions
E�c(g (x) ; b (�)) = 0l�1 of the previous assumption. It should also be noted
that the binding function can be locally retrieved from the previous conditions
through results of the sort of the implicit function theorem.9

9The binding function is usually in practice anallyticaly unknown and approximated
with numerical simulations. Our results do not concern this case and the rationale of this
choice becomes evident later.
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Remark R.10 Conditions of the sort sup� E� ku�k
q0 < 1, holding globally

on � and locally on B are typically used in the case of the GT estimator.

In the following we denote 1
n

Pn
i=1 c(xi; �) with cn (�).

Remark R.11 Similarly, conditions boundeness of quantities such as
sup�2O�('0)



 @
@�0E� [c (x; �)]



, holding locally on � � B are typically used in
the case of the GT estimator and can be derived from conditions like
limn!1 sup�2O�('0)E� k

p
ncn (�)k2 <1 and limn!1 sup�2O�(�0)E� k

p
nsn (�)k2 <

1 where sn (�) denotes the average score function. Analogously the condition
for the second order derivatives would follow from the condition above and

limn!1 sup�2O�(�0)E�




pnsn (�) s0n (�) +Hn (�)



2 < 1 (see also A.10 and

R.24 for analogous conditions).

Assumption A.9 Let W (x; �), W � (x; �) and W �� (x; �) be l� l, q� q and
l� l (or q�q see the de�nition of the GT estimator) �-almost surely positive
de�nite random matrices such that d-di¤erentiable 8� 2 b (O"2 (�0)), 8� 2
O"2 (�0), such that E�0W (x; b (�0)) = W (b (�0)), E�0W

� (x; �0) = W � (�0)
and E�0W

�� (x; �) =W �� (�0) are well de�ned positive de�nite matrices, and
E�0 kW (x; b (�0))kq0 < 1, E�0 kW � (x; �0)kq0 < 1 and E�0 kW �� (x; �)kq0 <
1 for q0 de�ned above.

Remark R.12 This assumption essentially implies that the aforementioned
matrices will satisfy a L.L.N. at �0 or b (�0), and even more evaluated at
points that converge to the aforementioned.

Analogously, in the following let Wn (�), W �
n (�) and W

��
n (�) denote

1
n

P
W (xi; �), 1n

P
W � (xi; �), and 1

n

P
W �� (xi; �) respectively.

1.2 Definition of Estimators
In this section the set of estimators under examination are de�ned. They
are all minimum distance estimators, whose existence is veri�ed (at least
asymptotically) by the previous assumption framework. In any case their
existence as well de�ned single valued measurable functions on the relevant
sample space (say 
n) can be facilitated by the use of measurable choice
functions.
Denote with PD (k;R) the vector space of positive de�nite matrices of

dimension k�k (with respect to matrix and scalar multiplication). Consider
the following real function on Rk � PD (k � k) for k 2 N

(x;A)! (x0Ax)
1=2

11



for a given matrix the previous function de�nes a norm on Rk. Denote the
function (�; �) jA with k�kA. We denote by 
n the sample space for sample
size of n.

Auxiliary Estimators

The auxiliary estimator (�n) is de�ned next.

De�nition D.1 The auxiliary estimator �n : 
n ! B is de�ned as

�n = argmin
�2B

kcn (�)kWn(�
�
n)

Remark R.13 For large enough n, the estimator is de�ned as an �-almost
sure global minimum.

Remark R.14 When l = q, and under the assumption framework �n be-
comes almost surely independent of the weighting matrix.

Indirect Estimators

Given the de�nition of the auxiliary estimator we de�ne the indirect ones.
The remarks on the de�nition of the auxiliary estimator apply under the
appropriate alterations to the indirect estimators due to their structure as
distance minimizers. We collectively denote them with �n, since in the fol-
lowing context there is not danger of confusion. The �rst and second of thee
indirect estimators were formalized by [9] while the third was introduced by
[12] (see also [8], chapter 4, for a summary).

GMR 1 Estimator The �rst GMR estimator is de�ned as:

De�nition D.2 The GMR 1 estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

k�n � b (�)kW �
n(�

�
n)

Remark R.15 Even the computation of the estimator relies on the analyti-
cal knowledge of the binding function. In this respect this estimator is almost
always intractable. Due to this fact in applications, under the appropriate
conditions, a version of this estimator is de�ned, in which the unknown bind-
ing function is approximated by the computation of �n on a large simulated
path. Notice that the corresponding estimator (sub)sequence is well de�ned
(at least for large enough n) given that b is invertible around �0, and that �n
converges to b (�0).
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GMR 2 Estimator Due to the boundeness of B we have the following lemma.

Lemma 1.1 kE��nk <1

Proof. kE��n � b (�)k � E� k�n � b (�)k � M1, where M1 denotes the di-
ameter of B. The result follows due to the boundeness of b.
Hence the following de�nition becomes possible:

De�nition D.3 The GMR 2 estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

k�n � E��nkW �
n(�

�
n)

Remark R.16 Again in most cases even the computation of �n is analyti-
cally intractable due to the fact that E��n is unknown. Again in applications,
under the appropriate conditions, a version of this estimator is de�ned, in
which the unknown expectation is approximated by the computation of �n on a
large set of simulated paths. Again the corresponding estimator (sub)sequence
is well de�ned (at least for large enough n) given that the function sequence
E��n is invertible around �0, and that �n converges to b (�0).

GT Estimator Due to assumption 5, the de�nition that comes next becomes
possible. We denote by E� (cn (�n)), the quantity E� (cn (�)) j�=�n for nota-
tional simplicity.

Remark R.17 Due to assumption 5 the kE� (cn (�n))k <1, 8�, hence the
following minimization procedure can be de�ned.

De�nition D.4 The GT estimator �n : 
n ! B is de�ned as

�n = argmin
�2�

kE� (cn (�n))kW ��
n (��n)

Remark R.18 The usual de�nition of the aforementioned estimator is given
only when the auxiliary estimator is the M.L.E. of the auxiliary model. The
currently de�ned one is an obvious extension.

Remark R.19 Again the computation of the estimator relies on the analyt-
ical knowledge of the engaged expectation, which is usually intractable. In
this respect this estimator is also almost always intractable. Due to this fact
in applications, under the appropriate conditions, an approximation of this
estimator is de�ned, in which the unknown expectation is approximated by
the computation of cn (�n) on a large simulated path or equivalently on a
large set of simulated paths. The local invertibility of the binding function
implies via the implicit function theorem that E� (cn (�)) = 0l�1 i¤ � = b (�),
8� 2 O (�0; "2), hence the corresponding estimator (sub)sequence is well de-
�ned (at least for large enough n).

13



Remark R.20 The �rst step estimator ��n is again supposed to be de�ned as
any of the indirect estimators with the restriction that the relevant weighting
matrix is deterministic and independent of �.

Relationship between the three indirect estimators As the asymptotic expan-
sions presented in the results section of the paper will show, in accordance
with the relevant literature the three estimators are asymptotically �rst or-
der equivalent (proviso a certain selection of the weighting matrix of GMR 1
and GMR 2 given the weighting matrix of the GT estimator). However, in
the special case where p = q, a special relationship is revealed between the
GMR 1 and the GT estimators by the following lemma.

Lemma 1.2 Given consistency, and p = q = l, with probability 1� o (n�a)

GMR1=GT

Proof. When p = q = l due to consistency, the GT estimator satis�es with
probability 1� o (n�a)

E�ncn (�n) = 0p

yet from assumption A.8 we have that

E�ncn (�) = 0p i¤ � = b (�n)

hence the estimator equivalently satis�es

�n � b (�n) = 0p

which de�nes the GMR 1 estimator in these special circumstances.

Remark R.21 Notice that the previous lemma makes sense for large enough
n, due to the possibility of non-empty boundaries, and/or non existence of
either or both of the estimators.

Remark R.22 Notice that in this framework and in analogy to the particular
relationship between the GMR1 and the GT estimators, we could also de�ne
a variant of the latter (it would be homologous to the GMR2 estimator, hence
could be termed as GT2 estimator), as the solution of cn (E� (�n)) = 0p. Ob-
viously, since cn (�n) = 0p by construction, then GMR2=GT2. This provides
another characterization of the distinction between the GMR1 and GMR2 es-
timators in this particular set up. The two estimators are di¤erent because
cn (E� (�)) and E�cn ((�)) have di¤erent roots and therefore their distinction
lies in non commutativity. This observation gives rise to the next lemma.
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Furthermore the GT2 estimator could also be generalized with the introduc-
tion of di¤erences in the relevant dimensions, stochastic weighting etc. In
this respect it would not generally coincide with the GMR2 estimator hence
should be addressed as a distinct case of an indirect estimator, with which we
are not concerned in the present paper.

Lemma 1.3 When p = q = l and c (xi; �) = f (xi)�E�f (xi) = f (xi)�g (�)
then:

1. the GMR1 estimator is essentially a GMM estimator.

2. If g is linear then GMR1=GMR2.

Proof. In the �rst case we have that �n = g�1 � 1
n
f (xi), b (�) = g�1 �

E�f (xi) = g
�1 �m (�), GMR1= m�1 � g ��n = m�1 � 1

n
f (xi). For the second

case, if g is linear then E��n = g
�1 �E� 1nf (xi) = g

�1 �m (�) = b (�), and the
result follows.

Remark R.23 1. would be valid even if �n = r � g�1 � 1
n
f (!i) for r a

bijection. Hence the GMR1 can be a GMM estimator even in cases that the
auxiliary is an appropriate transformation of a GMM estimator.
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2 Validity of Edgeworth Approximations
In this section we expand the assumption framework, in order to validate the
Edgeworth approximations and using this we derive the validity. Remember
that every estimator considered is an extremum one, and the criterion from
which it emerges is at least locally di¤erentiable. Accommodating this fact,
in order for the derivation of the aforementioned validity we employ the
following steps. First, we prove that the estimators satisfy the �rst order
conditions with probability 1 � o (n�a). Then a justi�ed use of the mean
value theorem proves o(n�a) asymptotic tightness of

p
n transformation of

the estimators. Third, due to the �rst step a local approximation of the
p
n

transformation is obtained by a Taylor expansion of the �rst order conditions
and using the second step it is proven that the relevant remainder is bounded
by an o (n�a) real sequence with probability 1�o (n�a). This due to corollary
AC.1 implies that if valid, the

p
n transformation and the approximation have

the same Edgeworth expansion. Finally, the validity is established from the
validity of the relevant expansion of the aforementioned approximation.
This methodology coincides with the one in [2] an is essentially based

on local di¤erentiability, lemma AL.3 and [3] which provide a theorem of
invariance of validity of Edgeworth approximations with respect to locally
di¤erentiable functions. Notice also that lemma AL.3 enables the extension
of the results in non di¤erentiable case, but this will not be pursued here.

2.1 Assumptions Specific to the Validity of the Edgeworth Approxi-
mations

Let f (x; �) denote the vector that contains stacked all the distinct compo-
nents of c (x; �),W (x; �),W � (x; �) andW �� (x; �) as well as their derivatives
up to the order d = max (3; 2a+ 2).

Assumption A.10 sup�2O"4 (�0) kD
rE��nk < M�

r , for 0 < "4 � "2, for r =
2; : : : ; d+ 1, and M�

r > 0.

Remark R.24 Assumption A.10 along with Assumption A.7 imply that for
r = 2; : : : ; d+ 1, sup�2Omin("3;"4)(�0) kD

r (E��n � b (�))k < Mr +M
�
r , which in

turn means thatDr�1 (E��n � b (�)) are uniformly Lipschitz onOmin("3;"4) (�0),
and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit with respect to n and the derivative operator (of or-
der r�1) uniformly over B (�0;min ("3; "4)). Due to Assumption A.1 for k �
d + 1, this assumption is veri�ed via conditions of the form
sup�2Omin("3;"4)(�0)

E� k
p
n (�n � b (�))k

2
= O (1) and sup�2Omin("3;"4)(�0)E�



pnln (�)

2 =
16



O (1) where ln (�) depends on derivatives of the (well de�ned in our set-
ting) average likelihood function. For example for r = 2, we have that
ln (�) = sn (�) s0n (�) +Hn (�).

Assumption A.11 E� kf(x; �)kq1 < 1, 8� 2 O"2 (�0), 8� 2 b (O"2 (�0))
for q1 = 2a + 3, kf (x; �)� f (x; �0)k � �
 k� � �0k, 8� 2 b (O"2 (�0)), �-
almost surely for an almost surely positive random variable �
, with E��q1
 <
1, 8� 2 O"2 (�0).10

Remark R.25 This condition that could be termed as local stochastic Lip-
schitz continuity condition facilitate the Edgeworth approximations of the
relevant sequences of random elements.

Assumption A.12 The Weak Dependence assumption and the Cramer type
of condition of [2] or [10] hold for the sequence ff (xn; b (�0))gn and the
sequence of characteristic functions of 1

n

P
f (xi; b (�0)) respectively.

Remark R.26 The last two assumptions guarantee that the (unknown) se-
quence of distributions of the sequence of random elementsp
n
�
1
n

P
f (xi; b (�0))� E�0 1n

P
f (xi; b (�0))

�
can be approximated by a se-

quence of Edgeworth distributions of order of error o (n�a) (see [2]). No-
tice that the Cramer condition on the conditional characteristic function of
1
n

P
f (xi; b (�0)) could be implied through controlling the order of magnitude

of tail moments of the relevant partial sum.

Assumption A.13 . The initial estimators are derived from a, relevant to
assumptions 1-11, framework. The relevant sequences of distributions of the
initial estimators, ��n and �

�
n can be approximated by a sequence of Edgeworth

distributions of order of error o (n�a).

Remark R.27 This will be trivially satis�ed when ��n is de�ned via c and
the relevant weighting matrix is independent of � and deterministic. The
analogous argument applies for ��n (see below).

We present the results on the validity of Edgeworth approximations for
any a for any of the four estimators de�ned above. We begin with the
auxiliary estimator.

10Notice the local nature of the moment existence conditions here and in assumption
A.8. These are stronger that the relevant conditions of [2], and facilitate mainly the case
of the GT estimator.
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Auxiliary Estimator

We can prove the following lemma concerning the auxiliary estimator, that
is essentially a direct application of the relevant results in [2].

Lemma 2.1 Under assumptions A.1, A.2, A.5, A.8, A.9, and A.11-A.13
there exists an Edgeworth distribution EDGa (�) such that

sup
A2BC

��P�0 �pn (�n � b (�0)) 2 A�� EDGa (A)�� = o �n�a� :
Proof. Notice that assumptions 1-4 in [2] correspond to assumptions A.1,
A.2, A.5, A.8, A.9, and A.11-A.13. The result follows from Lemmas 5 and 9
of [2].

Indirect Estimators

We next present in a more detailed manner, as described in the introduction
of the present section, the analogous results for the indirect estimators. We
begin �rst with the issue of the rate at which the probability of the event that
the estimator belongs to an arbitrary neighborhood of �0, approaches unity.
We term it o (n�a)-consistency. Then we are occupied with the rate at which
the probability of the event that the

p
n transformation of the estimator

lies in a �-compact subset of Rp, approaches unity. We term it o (n�a)-
tightness. Notice that the latter implies the former. The relevant lemmas
are announced in such manner so that only o (n�a)-tightness is explosively
presented. However the o (n�a)-consistency is established as a �rst step for
the establishment of the tightness and therefore it lies in the proofs of the
lemmas. Then, the validity of the Edgeworth approximation is established
separately.

GMR 1 estimator: o (n�a)-Consistency and o (n�a)-Tightness The results for
the GMR 1 estimator are presented here. These follow directly from the pre-
vious results and the fact that the binding function has bounded derivatives
of any of the supposed orders.

Lemma 2.2 Under the validity of lemmas 2.1, AL.1 and assumption A.7

P�0

 
k�n � �0k > C2

ln1=2 n

n1=2

!
= o

�
n�a
�
for some C2 > 0:
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Proof. The initial estimator, ��n is de�ned in assumption A.9, and by Lemma
AL.1 we have that
P�0 (kW � (��n)�W � (�0)k > ") = o (n�a), 8" > 0. Now notice that p lim (�n � b (�)) =
b (�0)� b (�). Hence 8� 2 � and 8" > 0

P�0

�
sup
�2�

k�n � b (�)� [b (�0)� b (�)]k > "
�
= P�0 (k�n � b (�0)k > ") = o

�
n�a
�

from Lemma 2.1 and consequently, the consistency of �n follows from Lemma
5 of [2].
Hence �n is in the interior of � and @

@�
Jn (�n) = 0 with probability 1�o (n�a),

where Jn (�) = (�n � b (�))
=W �

n (�
�
n) (�n � b (�)). Hence element by ele-

ment mean value expansions of @
@�
Jn (�n) around �0 and rearrangement gives:

�n � �0 = �
�

@2

@�@�=
Jn
�
�+n
���1

@
@�
Jn (�0) with probability 1 � o (n�a), where

�+n lies between �n and �0 and may be di¤erent across rows. Hence it

su¢ ces to show that A) P�0
�

 @

@�
Jn (�0)



 > C� ln1=2 n
n1=2

�
= o (n�a) and B)

P

�



� @2

@�@�=
Jn
�
�+n
���1



 > K� = o (n�a).

For A) notice that P�0
�

 @

@�
Jn (�0)



 > C� ln1=2 n
n1=2

�
=

P�0

�


�2 @@�b (�0)=W �
n (�

�
n) (�n � b (�0))




 > C� ln1=2 nn1=2

�
�

P�0

�
kW �

n (�
�
n)k k�n � b (�0)k > C ln1=2 n

n1=2

�
where C = C�

2k @
@�
b(�0)

=k by the sub-

multiplicative property of the norm and by assumption A.7



 @
@�
b (�0)

=



 > 0.

Hence we have that forK > 0 we have P�0 (kW �
n (�

�
n)k > K) = o (n�a), which

is true from Lemma AL.1 and P�0
�
k�n � b (�0)k > C ln1=2 n

n1=2

�
by Lemma 2.1

and the result follows.
For B) notice that @2

@�@�=
Jn
�
�+n
�
= 2 @

@�
b
�
�+n
�=
W �
n (�

�
n)

@

@�=
b
�
�+n
�

� 2
h

@2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
��i

i;j=1;:::;p
= B1 + B2. It su¢ ces to

show that for K > 0 we have that P�0 (kB1 +B2k > K) = o (n�a). But
P�0 (kB1 +B2k > K) � P�0

�
kB1k > K

2

�
+P�0

�
kB2k > K

2

�
. Now P�0

�
kB1k > K

2

�
=

P�0

�


 @
@�
b
�
�+n
�=
W �
n (�

�
n)

@

@�=
b
�
�+n
�


 > K

4

�
�

P�0

�


 @
@�
b
�
�+n
�=


2 kW �

n (�
�
n)k > K

4

�
=

= P�0

�

 @
@�
b=
�
�+n
�

2 kW �

n (�
�
n)k > K

4
\ kW �

n (�
�
n)�W � (�0)k > "

�
+ P�0

�

 @
@�
b=
�
�+n
�

2 kW �

n (�
�
n)k > K

4
\ kW �

n (�
�
n)�W � (�0)k � "

�
(for any " > 0)
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� P�0 (kW �
n (�

�
n)�W � (�0)k > ") +

P�0

�


 @
@�
b
�
�+n
�=


2 kW �

n (�
�
n)k > K

4
\ kW �

n (�
�
n)k � kW � (�0)k � "

�
�

� o (n�a)+P�0
�


 @

@�
b
�
�+n
�=


2 > K

4("+kW �(�0)k)

�
= o (n�a)+P�0

�


 @
@�
b
�
�+n
�=


2 > K�

�
(where K� = K

4("+kW �(�0)k))

= o (n�a) + P�0

�


 @
@�
b
�
�+n
�=


2 > K� \



�+n � �0

 > "��
+ P�0

�


 @
@�
b
�
�+n
�=


2 > K� \



�+n � �0

 � "�� (for any "� > 0)
� o (n�a) + P�0

�

�+n � �0

 > "��+
P�0

�

 @
@�
b=
�
�+n
�

2 > K� \



�+n � �0

 � "�� =
o (n�a) + P�0

�


 @
@�
b
�
�+n
�=


2 > K� \



�+n � �0

 � "�� (from consistency of

�+n ) . Now as


�+n � �0

 � "� and choosing "� � "4 we have that �+n 2 O" (�0)

with probability 1 � o (n�a), due to assumption A.10. Hence by choos-

ing K� � M�
1 we have that P�0

�

 @
@�
b=
�
�+n
�

2 > K� \



�+n � �0

 � "�� =
o (n�a).
For B2 we need to prove that 9K� > 0 such that

P�0

�



h @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
��i

i;j=1;:::;p





 > K�

2

�
= o (n�a). But

P�0

�



h @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
��i

i;j=1;:::;p





 > K�

2

�
�

P�0

�P
i=1;:::;p

P
j=1;:::;p

��� @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
����� > K�

2

�
� P�0

�
maxi;j

��� @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
����� > K�

4p2

�
. Hence it su¢ ces

P�0

���� @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
����� > K�

4p2

�
= o (n�a) for some speci�c

i; j. In fact we can prove that 8" > 0 we have that
P�0

���� @2

@�i@�j
b
�
�+n
�=
W �
n (�

�
n)
�
�n � b

�
�+n
����� > "� = o (n�a).

This, again, follows �rst, as for "�� > 0 P
�

�n � b ��+n �

 > "���

= P
�

�n � b (�0) + b (�0)� b ��+n �

 > "���

� P
�
k�n � b (�0)k > "��

2

�
+P

�

b (�0)� b ��+n �

 > "��

2

�
= o (n�a) as the �rst

probability is o (n�a) due to Lemma 2.1 and the second is also o (n�a)
due to assumption A.3 and the consistency of �+n . Second, for "��� > 0
P (kW �

n (�
�
n)�W � (�0)k > "���) = o (n�a) from Lemma AL.1 and �nally, for

"���� > 0 P�0

���� @2

@�i@�j
b
�
�+n
�
� @2

@�i@�j
b (�0)

��� > "����� = o (n�a) from assump-
tion A.4 and the result follows.
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GMR 2 Estimator: o (n�a)-Consistency and o (n�a)-Tightness The relevant re-
sults for the GMR 2 estimator are presented here.

Lemma 2.3 Under the validity of Lemma 2.1 and assumption A.10 we have
that

P�0

 
k�n � �0k > C2

ln1=2 n

n1=2

!
= o

�
n�a
�
for some C2 > 0:

Proof. Due to the de�nition of �n and by Lemma AL.1 we have that
P�0 (kW �

n (x; �
�
n)�W � (�0)k > ") = o (n�a), 8" > 0. Now notice that p lim (�n � E��n) =

b (�0)� b (�). Hence 8� 2 � and 8" > 0
P�0 (sup�2� k�n � E��n � [b (�0)� b (�)]k > ") =
P�0 (sup�2� k�n � b (�0)� E��n + b (�)k > ") �
P�0 (k�n � b (�0)k+ sup�2� kE��n � b (�)k > ").
Now we know from Lemma 2.1 above that P�0

�
k�n � b (�0)k > "

2

�
= o (n�a).

Hence it su¢ ces to prove that for

8"� > 0; 9 n� 2 N : sup
�2�

kE��n � b (�)k < "�; 8n > n�:

For this we need to prove that �rst, kE��n � b (�)k ! 0, pointwise on a
dense subset of �, and second kE��n � b (�)k is asymptotically uniformly
equicontinuous (due to Arzella-Ascoli Theorem). For the �rst one notice that
P�0 (k�n � b (�0)k > ") = o (n�a) and �0 is arbirtrary. Hence, P� (k�n � b (�)k > ") =
o (n�a) for any � 2 �. Furthermore, as B is bounded the series �n � b (�)
is uniformly integrable, and as kE��n � b (�)k � E� k�n � b (�)k we get
kE��n � b (�)k ! 0, i.e. kE��n � b (�)k = o (1)
For the second it su¢ ces to prove that E��n � b (�) is uniformly Lipschitz.
But k(E��n � b (�))� (E���n � b (��))k � kE��n � E���nk+kb (�)� b (��)k.
But kb (�)� b (��)k � k k� � ��k by assumption A.7. Further, kE��n � E���nk =
k(E��n � b (�))� (E���n � b (�))k =
=


R

Rn (�n � b (�)) dP� �
R
Rn (�n � b (�)) dP��



 �
dim (B)maxi=1;:::;dim(B)

��R
Rn (�n � b (�))i dP� �

R
Rn (�n � b (�))i dP��

��
� dim (B)maxi=1;:::;dim(B)

R
Rn j(�n � b (�))ij jdP� � dP��j �

dim (B)M1

R
Rn jdP� � dP��j = dim (B)M1TV D (P�; P��) � dim (B)M1C k� � ��k

where M1 is the diameter of B, and TV D (P�; P��) is the Total Variation
Distance between the two measures and the last inequality follows from
the smoothness of the parametrization of the statistical model (assumption
A.1).11 Hence k(E��n � b (�))� (E���n � b (��))k � [k + dim (B)M1C] k� � ��k
11Recall that a distribution 	, on the space of random variables, de�ned on a normed

space S is smooth i¤ for every set A, � > 0, and A� = fx 2 S : miny2A kx� yk < �g,��	 �A���	(A)�� = o (�), A collection of distributions is called smooth if every member of
it is smooth.
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and consequently, P�0 (sup�2� k�n � E��n � [b (�0)� b (�)]k > ") = o (n�a),
and the o (n�a) consistency follows.
Now, let us call Jn (�) = (�n � E��n)

=W � (x; ��n) (�n � E��n) then �n��0 =
�
�

@2

@�@�=
Jn
�
�+n
���1

@
@�
Jn (�0) with probability 1� o (n�a) where @

@�
Jn (�0) =

@
@�
Jn (�)

��
�=�0

and �+n lies between �n and �0 and may be di¤erent across rows.

Hence it su¢ ces to �rst show that P
�

 @

@�
Jn (�0)



 > C ln1=2 n
n1=2

�
= o (n�a) and

second that for some K > 0 P

�



� @2

@�@�=
Jn
�
�+n
���1



 > K� = o (n�a) and

apply Lemma 5 of [2].

Now @
@�
Jn (�)

��
�=�0

= �2@E��
=
n

@�
W �
n (x; �

�
n) (�n � E��n)

���
�=�0

and we know from

Lemma 2.1 above that P�0
�
k�n � b (�0)k > C1 ln

1=2 n
n1=2

�
= o (n�a) for some

C1 > 0. Hence P�0
�
k�n � E�0�nk > C1 ln

1=2 n
n1=2

�
=

P�0

�
k�n � b (�0)� (E�0�n � b (�0))k > C1 ln

1=2 n
n1=2

�
�

P�0

�
k�n � b (�0)k+ kE�0�n � b (�0)k > C1 ln

1=2 n
n1=2

�
. Now

P�0

 
k�n � E�0�nk > C1

ln1=2 n

n1=2

!
= o(n�a);

as for a > 0, we have that kE�0�n � b (�0)k � E�0 k�n � b (�0)k =
E�0

h
k�n � b (�0)k I

�
k�n � b (�0)k > C3 ln

1=2 n
n1=2

�i
+ E�0

h
k�n � b (�0)k I

�
k�n � b (�0)k � C3 ln

1=2 n
n1=2

�i
�

� BE�0
h
I
�
k�n � b (�0)k > C3 ln

1=2 n
n1=2

�i
+C3

ln1=2 n
n1=2

E�0

h
I
�
k�n � b (�0)k � C3 ln

1=2 n
n1=2

�i
(where B is the bound of k�n � b (�0)k, see assumption A.2)
= BP�0

�
k�n � b (�0)k > C3 ln

1=2 n
n1=2

�
+C3

ln1=2 n
n1=2

P�0

�
k�n � b (�0)k � C3 ln

1=2 n
n1=2

�
=

Bo (n�a) + C3
ln1=2 n
n1=2

(1� o (n�a)) = o (n�a) + C3
ln1=2 n
n1=2

= O
�
ln1=2 n
n1=2

�
. In

this case we have that P�0
�
k�n � b (�0)k+ kE�0�n � b (�0)k > C1 ln

1=2 n
n1=2

�
�

P�0

�
k�n � b (�0)k+ o

�
ln1=2 n
n1=2

�
> C1

ln1=2 n
n1=2

�
� P�0

�
k�n � b (�0)k > C4 ln

1=2 n
n1=2

�
for some C4 > 0 and we know that this probability is o (n�a) and the result
follows. For a = 0 we have that the GMR2 is asymptotically equivalent to
GMR1 (Gourieroux et al. 1993).
Further, due to assumption A.10 it follows that

P�0

 



 @@�Jn (�0)




 > C ln1=2 nn

!
= o

�
n�a
�
:
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For the second, 9K > 0 such that P
�



� @2

@�@�=
Jn
�
�+n
���1



 > K� = o (n�a),

notice that @2

@�@�=
Jn
�
�+n
�
= 2

@E
�+n
�
=
n

@�
W �
n (x; �

�
n)

@E
�+n
�n

@�=

�2
�
@E

�+n
�
=
n

@�i@�j
W �
n (x; �

�
n)
�
�n � E�+n �n

��
i;j=1;:::;p

= A+B. It su¢ ces to show that

forK� > 0 we have that P�0 (kA+Bk > K�) = o (n�a). But P�0 (kA+Bk > K�) �
P�0
�
kAk > K�

2

�
+ P�0

�
kBk > K�

2

�
.

Now P�0
�
kAk > K�

2

�
= P�0

�



@E�+n �=n@�
Wn (x; �

�
n)

@E
�+n
�n

@�=





 > K�

4

�
�

P�0

 



@E�+n �=n@�





2 kWn (x; �
�
n)k > K�

4

!
=

= P�0

 



@E�+n �=n@�





2 kWn (x; �
�
n)k > K�

4
\ kW �

n (x; �
�
n)�W � (�0)k > "

!

+ P�0

 



@E�+n �=n@�





2 kWn (x; �
�
n)k > K�

4
\ kW �

n (x; �
�
n)�W � (�0)k � "

!
� (for

any " > 0)
� P�0 (kW �

n (x; �
�
n)�W � (�0)k > ") +

P�0

 



@E�+n �=n@�





2 kWn (x; �
�
n)k > K�

4
\ kW �

n (x; �
�
n)k � kW � (�0)k � "

!
�

� o (n�a)+P�0

 



@E�+n �=n@�





2 > K�

4("+kW �(�0)k)

!
= o (n�a)+P�0

 



@E�+n �=n@�





2 > K��

!
=

(where K�� = K�

4("+kW �(�0)k))

= o (n�a) + P�0

 



@E�+n �=n@�





2 > K�� \


�+n � �0

 > "�

!

+ P�0

 



@E�+n �=n@�





2 > K�� \


�+n � �0

 � "�

!
� (for any "� > 0)

� o (n�a) + P�0
�

�+n � �0

 > "��+

P�0

 



@E�+n �=n@�





2 > K�� \


�+n � �0

 � "�

!
=

o (n�a)+P�0

 



@E�+n �=n@�





2 > K�� \


�+n � �0

 � "�

!
(from consistency of �+n )

. Now as


�+n � �0

 � "� and choosing "� � "4 we have that �+n 2 O" (�0) with

probability 1 � o (n�a), due to assumption A.10. Hence by choosing K�� �
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M�
1 we have that P�0

 



@E�+n �=n@�





2 > K�� \


�+n � �0

 � "�

!
= o (n�a).

For B we need to prove that 9K� > 0 such that

P�0

 





�
@2E

�+n
�
=
n

@�i@�j
W �
n (x; �

�
n)
�
�n � E�+n �n

��
i;j=1;:::;p






 > K�

2

!
= o (n�a). In fact

we can prove that 8" > 0 we have that

P�0

 





�
@2E

�+n
�
=
n

@�i@�j
W �
n (x; �

�
n)
�
�n � E�+n �n

��
i;j=1;:::;p






 > "
!
= o (n�a). This, again,

follows from assumption A.10 and the o (n�a) consistency of �+n and P
�

�n � E�+n �n

 > "��� =

o (n�a), 8"�� > 0.

GT Estimator: o (n�a)-Consistency and o (n�a)-Tightness The relevant results
for the GT estimator are presented here.

Lemma 2.4 Under the validity of Lemma 2.1 we have that

P�0

 
k�n � �0k > C3

ln1=2 n

n1=2

!
= o

�
n�a
�
for some C3 > 0

where �n is the GT estimator.

Proof. For notational convenience we set cn (�) = 1
n

P
c (xi; �) and denote

by E� (cn (�n)), the quantity E� (cn (�)) j�=�n. The de�nition of �n is: �n =
argmin�2� Jn (�) = argmin�2� (E� (cn (�n)))

=W ��
n (�

�
n)E� (cn (�n)) and we

have thatW ��
n (�

�
n) =

1
n

P
iW

�� (xi; �
�
n), where �

�
n as in assumption A.13, and

by Lemma AL.1 we have that P�0 (kW ��
n (x; �

�
n)�W �� (�0)k > ") = o (n�a),

8" > 0. Further,

P�0

�
sup
�
kE�cn (�n)� E�cn (b (�0))k > "

�
= o

�
n�a
�
8" > 0 (1)

as P�0 (sup� kE�cn (�n)� E�cn (b (�0))k > ") � P�0 (sup� (E�uc) k�n � b (�0)k > ") =
o (n�a) due to Lemma 2.1 above and by assumption A.8. (Notice that
E�cn (�n) = E�cn (�)j�=�n and consequently kE�cn (�n)� E�cn (b (�0))k �
E� kcn (�n)� cn (b (�0))k � (E�uc) k�1 � �2kj �1=�n

�2=b(�0)

). Consequently, the

consistency of �n follows from Lemma 5 of [2].
Hence �n is in the interior of � and @

@�
Jn (�n) = 0 with probability 1�o (n�a).

Hence element by element mean value expansions of @
@�
Jn (�n) around �0 and

rearrangement gives: �n��0 = �
�

@2

@�@�=
Jn
�
�+n
���1

@
@�
Jn (�0) with probability
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1�o (n�a), where �+n lies between �n and �0 and may be di¤erent across rows.
Hence it su¢ ces to show that 1st) P�0

�

 @
@�
Jn (�0)



 > C ln1=2 n
n1=2

�
= o (n�a) and

2nd) P

�



� @2

@�@�=
Jn
�
�+n
���1



 > K� = o (n�a).

For 1st) notice that P�0
�

 @

@�
Jn (�0)



 > C� ln1=2 n
n1=2

�
=

P�0

�

2 @
@�
E�0

�
c= (�n)

�
W ��
n (�

�
n)E�0 [c (�n)]



 > C� ln1=2 n
n1=2

�
�

P�0

�

 @
@�
E�0c

= (�n)


 kW ��

n (�
�
n)k kE�0 [c (�n)]k > C ln1=2 n

n1=2

�
where C = C�

2
by

the submultiplicative property of the norm. Hence it su¢ ces to show that
1i) P�0

�
kE�0 [c (�n)]k > C ln1=2 n

n1=2

�
= o (n�a) 1ii) for some K > 0 we have

that P�0
�

 @

@�
E�0

�
c= (�n)

�

 > K� = o (n�a), and 1iii) for K� > 0 we have
P�0 (kW ��

n (�
�
n)k > K�) = o (n�a), which is true from Lemma AL.1. For 1i)

notice that P�0
�
kE�0 [c (�n)]k > C ln1=2 n

n1=2

�
= P�0

�
kE�0 [c (�n)]� E�0 [c (b (�0))]k > C ln1=2 n

n1=2

�
(as E�0 [c (b (�0))] = 0) � P�0

�
E�0 kc (�n)� c (b (�0))k > C ln1=2 n

n1=2

�
� P�0

�
[E�0 kuc (xi)k] k�n � b (�0)k > C ln1=2 n

n1=2

�
= P�0

�
k�n � b (�0)k > C

E�0kuc(xi)k
ln1=2 n
n1=2

�
=

o (n�a) by Lemma 2.1 above. Finally, for 1ii) it su¢ ces to show that 8" > 0 we
have that P�0

�

 @
@�
E�0

�
c= (�n)

�
� @

@�
E�0

�
c= (b (�0))

�

 > "� = o (n�a). Now by
assumption A.8 we have that P�0

�

 @
@�
E�0

�
c= (�n)

�
� @

@�
E�0

�
c= (b (�0))

�

 > "� �
P�0 (M

� kE�0 [c (�n)]� E�0 [c (b (�0))]k > ") = o (n�a) from 1i) above.

For 2nd), i.e. P
�



� @2

@�@�=
Jn
�
�+n
���1



 > K� = o (n�a) notice that @2

@�@�=
Jn
�
�+n
�
=

2
n

@2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

o
i;j=1;:::;p

+2 @
@�
E�+n

�
c= (�n)

�
W ��
n (�

�
n)

@

@�=
E�+n [c (�n)].

We show that 9K� > 0 such that P
�


 @2

@�@�=
Jn
�
�+n
�


 > K�

�
= o (n�a). But

P
�


 @2

@�@�=
Jn
�
�+n
�


 > K�

�
� P

�


2 @@�E�+n �c= (�n)�W ��
n (�

�
n)

@

@�=
E�+n [c (�n)]




 > K�

2

�
+

P

�



2n @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

o
i;j=1;:::;p





 > K�

2

�
Now P�0

�


2 @@�E�+n �c= (�n)�W ��
n (�

�
n)

@

@�=
E�+n [c (�n)]




 > K�

2

�
�

P�0

�

 @
@�
E�+n

�
c= (�n)

�

2 kW ��
n (�

�
n)k > K�

4

�
=

= P�0

�

 @
@�
E�+n

�
c= (�n)

�

2 kW ��
n (�

�
n)k > K�

4
\ kW ��

n (�
�
n)�W �� (�0)k > "

�
+

P�0

�

 @
@�
E�+n

�
c= (�n)

�

2 kW ��
n (�

�
n)k > K�

4
\ kW ��

n (�
�
n)�W �� (�0)k � "

�
(for

any " > 0)
� P�0 (kW ��

n (�
�
n)�W �� (�0)k > ") +

P�0

�

 @
@�
E�+n

�
c= (�n)

�

2 kW ��
n (�

�
n)k > K�

4
\ kW ��

n (�
�
n)�W �� (�0)k � "

�
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� o (n�a)+P�0
�

 @

@�
E�+n

�
c= (�n)

�

2 kW ��
n (�

�
n)k > K�

4
\ kW ��

n (�
�
n)k � kW �� (�0)k � "

�
=

o (n�a) + P�0
�

 @

@�
E�+n

�
c= (�n)

�

 > K��� where K�� =
q

K�

4("+kW �(�0)k) .

Now for P�0
�

 @

@�
E�+n

�
c= (�n)

�

 > K��� = o (n�a) and '0 = �b= (�0) ; �=0�= we
have that
P�0
�

 @

@�
E�+n

�
c= (�n)

�

 > K��� =

P�0

�

 @
@�
E�+n

�
c= (�n)

�

 > K�� \
��

�n
�+n

�
2 O� ('0)

��
+

P�0

�

 @
@�
E�+n

�
c= (�n)

�

 > K�� \
��

�n
�+n

�
=2 O� ('0)

��
�

P�0

�
sup�2O�('0)



 @
@�
E�+n

�
c= (�n)

�

 > K��
�
+

P�0

��
�n
�+n

�
=2 O� ('0)

�
�

P�0
�
f�n =2 O� (b (�0))g [

�
�+n =2 O� (�0)

	�
�

P�0 (�n =2 O� (b (�0))) + P�0 (�n =2 O� (�0)) � o (n�a) where K�� can be cho-
sen as greater than the maximum between the previous choice and an up-
per bound of sup�2O�('0)



 @
@�
E�
�
c= (�)

�

 which exists due to assumption A.8.
Hence @

@�
E�+n

�
c= (�n)

�
W ��
n (�

�
n)

@

@�=
E�+n [c (�n)]!

@
@�
E�0

�
c= (b (�0))

�
W �� (�0)

@

@�=
E�0 [c (b (�0))]

with probability o (n�a) and @
@�
E�0

�
c= (b (�0))

�
W �� (�0)

@

@�=
E�0 [c (b (�0))] non-

singular. This follows from the fact that 8� 2 � we have that E� [c (b (�))] =
0 and by the Implicit Function Theorem we have that @

@�
E�
�
c= (b (�))

�
+

@
@�
b= (�) @

@�
E�
�
c= (b (�))

�
= 0 and it follows that @

@�
E�
�
c= (b (�))

�
= � @

@�
b= (�) @

@�
E�
�
c= (b (�))

�
.

Now @
@�
b= (�) is a p � q matrix and rank

�
@
@�
b= (�)

�
= p, by assumption A.7

above, whereas @
@�
E�
�
c= (b (�))

�
is an q�lmatrix with rank

�
@
@�
E�
�
c= (b (�))

��
=

q, by assumption A.8 above, hence rank
�
@
@�
b= (�) @

@�
E�
�
c= (b (�))

��
= p and

it follows that rank
�
@
@�
E�
�
c= (b (�))

��
= p. It follows that asW �� (�0) is non-

singular, by assumption A.9 above, rank
�
@
@�
E�0

�
c= (b (�0))

�
W �� (�0)

@

@�=
E�0 [c (b (�0))]

�
=

p.
Further we have to prove that

P�0

�



2n @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

o
i;j=1;:::;p





 > K�

2

�
= o (n�a).

But P�0

�



2n @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

o
i;j=1;:::;p





 > K�

2

�
�

P�0

�P
i=1;:::;p

P
j=1;:::;p

��� @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

��� > K�

4

�
� P�0

�
maxi;j

��� @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

��� > K�

4p2

�
. In fact we
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can prove that 8" > 0 we have that
P�0

���� @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

��� > "� = o (n�a). But
P�0

���� @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]

��� > "� =
P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)]




 > "� �
P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW ��
n (�

�
n)k


E�+n [c (�n)]

 > "�

E�+n [c (�n)] ! E�0 [c (b (�0))] = 0 as E� [c (b (�))] = 0 8� 2 O"2 (�0) due to
continuous mapping.
P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW ��
n (�

�
n)k


E�+n [c (�n)]

 > "� =

P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW ��
n (�

�
n)k


E�+n [c (�n)]

 > " \ kW ��

n (�
�
n)�W �� (�0)k > "1

�
+P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW �
n (�

�
n)k


E�+n [c (�n)]

 > " \ kW ��

n (�
�
n)�W �� (�0)k � "1

�
� P�0 (kW ��

n (�
�
n)�W �� (�0)k > "1)

+P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW ��
n (�

�
n)k


E�+n [c (�n)]

 > " \ kW ��

n (�
�
n)k � kW �� (�0)k � "1

�
=

o (n�a) +

P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 kW ��
n (�

�
n)k


E�+n [c (�n)]

 > " \ kW ��

n (�
�
n)k � "1 + kW �� (�0)k

�
� o (n�a)+P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 

E�+n [c (�n)]

 > "�� where "� = "
"1+kW �(�0)k

To prove that P�0
�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 

E�+n [c (�n)]

 > "�� = o (n�a) it

su¢ ces to prove that for K > 0 P�0

�


 @2

@�i@�j
E�+n

�
c= (�n)

�


 > K� = o (n�a)
and for "�� > 0 P�0

�

E�+n [c (�n)]

 > "��� = o (n�a). For the second order
derivatives we have that 8i; j = 1; : : : ; p
P�0

�


 @2

@�i@�j
E�+n [c (�n)]




 > K� =

P�0

�


 @2

@�i@�j
E�+n [c (�n)]




 > K \
��

�n
�+n

�
2 O� ('0)

��
+

P�0

�


 @2

@�i@�j
E�+n [c (�n)]




 > K \
��

�n
�+n

�
=2 O� ('0)

��
�

P�0

�
sup�2O�('0)




 @2

@�i@�j
E�+n

�
c= (�n)

�


 > K�+
P�0

��
�n
�+n

�
=2 O� ('0)

�
�

P�0
�
f�n =2 O� (b (�0))g [

�
�+n =2 O� (�0)

	�
�

P�0 (�n =2 O� (b (�0))) + P�0 (�n =2 O� (�0)) � o (n�a) where again K can be
chosen as greater than the maximum between the previous choice and an
upper bound of sup�2O�('0)




 @2

@�i@�j
E� [c (�)]




 which exists due to assumption
A.8. Further, for "�� > 0 (small) P�0

�

E�+n [c (�n)]

 > "��� =
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P�0
�

E�+n [c (�n)]� E�0 [c (b (�0))]

 > "��� = o (n�a) from above.

It follows that @2

@�i@�j
E�+n

�
c= (�n)

�
W ��
n (�

�
n)E�+n [c (�n)] ! 0 with probability

o (n�a).
Hence @2

@�@�=
Jn
�
�+n
�
! 2 @

@�
E�0

�
c= (b (�0))

�
W �� (�0)

@

@�=
E�0 [c (b (�0))], a non-

singular matrix, with probability o (n�a). It follows that
�

@2

@�@�=
Jn
�
�+n
���1

!�
2 @
@�
E�0

�
c= (b (�0))

�
W �� (�0)

@

@�=
E�0 [c (b (�0))]

��1
with probability o (n�a) and,

for K > 0, P
��

@2

@�@�=
Jn
�
�+n
���1

> K

�
= o (n�a).

Consequently, as P�0
�

 @

@�
Jn (�0)



 > C ln1=2 n
n1=2

�
= o (n�a) the result follows by

Lemma 5 of [2].

Existence of Edgeworth Expansions of Indirect Estimators

Lemma 2.5 Under the validity of Lemmas 2.2, 2.3, 2.4 and assumptions
A.12-A.13 the GMR1, and GT estimators admit valid Edgeworth expansions
of order s = 2a + 1. Furthermore, if the auxiliary estimator has a valid
Edgeworth expansion of order s = 2a + 2, then the GMR2 admits a valid
expansion of order s = 2a+ 1.

Proof. i) For GMR1 we apply lemma AL.2 where �n =GMR1, 'n =
�
�n
��n

�
and the application is justi�ed by the fact that that provision 1 holds due
to 2.1, 2.2, and A.13, 2 follows from A.7, A.9, A.11 and A.13 and 3 follows

from lemma 5 of [2] and A.13. Let Sn =
�

1
n

Pn
i=1 f (xi; b (�0) ; �0)
�n � b (�0)

�
where

f is de�ned in A.11. Denote by S,
�

1
n

Pn
i=1Ef (xi; b (�0) ; �0)

0q�1

�
. By re-

mark R.26 and lemma 2.1
p
n (Sn � S) has an Edgeworth expansion of order

s = 2a+ 1. Hence �� (R�n) = G (Sn) where G (:) smooth. and G (S) = 0 and
from [3]

p
nG (Sn) has an Edgeworth expansion of the same order.

ii) For GT the proof is analogous to (i) apart from the fact that 2.4 has
to be evoked instead of 2.2. The only thing di¤erent is Jn which obeys the
provisions of AL.2 additionally due to assumption A.8.

iii) For GMR2 we apply again lemma AL.2 where �n =GMR2, 'n =
�
�n
��n

�
and the application is justi�ed by the fact that that provision 1 holds due
to 2.1, 2.3, and A.13, 2 follows from A.10, A.9, A.11 and A.13 and 3 fol-
lows from lemma 5 of [2] and A.13. Notice that in this case R�n is expanded
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by

0BBBB@
D1E�0�n

:
:
:

Dd�1E�0�n

1CCCCA. Now. de�ne S�n =
0BBBBBBBB@

1
n

Pn
i=1 f (xi; b (�0) ; �0)
�n � E�0�n
D1E�0�n

:
:
:

Dd�1E�0�n

1CCCCCCCCA
then

p
n (S�n � E�0S�n) =

p
n

0BBBBBBBB@

1
n

Pn
i=1 [f (xi; b (�0) ; �0)� E�0f (xi; b (�0) ; �0)]

�n � E�0�n
0
:
:
:
0

1CCCCCCCCA
has an Edgeworth expansion of order s = 2a+1. This is justi�ed by assump-
tions A.11 and A.12 for

p
n
�

1
n

Pn
i=1 [f (xi; b (�0) ; �0)� E�0f (xi; b (�0) ; �0)]

�
and by Lemma AL.3 of Appendix for

p
n (�n � E�0�n) which is valid ifp

n (�n � b (�0)) has a valid Edgeworth expansion of order s = 2a + 2 (due

to Lemma 3.1 below and remarks R.28 and R.29). S� =

0BBBBBB@
S
0
:
:
:
0

1CCCCCCA and

�� (R�n) = G (S�n) where G (S
�) = 0. Hence again due to the analogous

result of [3]
p
nG (S�n) has an Edgeworth expansion of the same order.

3 Validity of 1st Moment Expansions
Having established the validity of Edgeworth expansions in every case of
the examined estimators, we are concerned with the approximation of their
�rst moment sequences with a view towards the approximation of their bias
structure. We know from the paragraph "Edgeworth and Moment Approx-
imations of Sequences of Distributions" that the validity of the former do
not imply the validity of the latter. We provide a general lemma which, uti-
lizes the Edgeworth expansions along with further assumptions the required
approximations are validated. These assumptions are uniform integrability
ones, and are presented immediately along with remarks that comment on
their applicability.
In the following if A is a measurable set, we denote with Pn (A) =
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P (
p
n (�n � �0) 2 A) where �n is any of the examined estimators (auxiliary

or indirect) and Qn a sequence of distributions such that CVD (Pn; Qn) =
o (n�a).

Assumption A.14

9� > 0 : na+ 1
2�P

�p
n (�n � �0) 2

p
n (�� �0) nOK(lnn)� (0)

�
= o (1) ;

Remark R.28 The above assumption is valid when
p
n (�n � �0) has a valid

Edgeworth expansion of order s = 2a+2 (see Magdalinos (1993), Lemma 2).

Assumption A.15

na
Z
RqnOK(lnn)� (0)

kxk jdQnj = o (1)

Remark R.29 In fact if Qn is the Edgeworth distribution we have that
A = na

R
RqnOK(lnn)� (0)

kxk jdQnj = na
R
RqnOK(lnn)� (0)

kfn (z)k d�+o (1) where �
is the multivariate standard normal cumulative distribution function, and as
fn (z) is a polynomial in z we get: A�o (1) � na

R
RqnOK(lnn)� (0)




P2a
i=0 n

� i
2fi (z)




 d� �P2a
i=0 n

2a�i
2

R
RqnOK(lnn)� (0)

kfi (z)k d� where fi (z) appropriate polynomials in

z. Now n
2a�i
2

R
RqnOK(lnn)� (0)

kfi (z)k d� � Cn
2a�i
2

R
RqnOK(lnn)� (0)

kzk2�i d� =

Cn
2a�i
2

R
RqnOK(lnn)� (0)

�Pq
j=1 z

2
j

��i
d�. Now the lth term in the expansion of

the �thi power will be of the form:
qY
j=1

z
kj;l
j , where

Pq
j=1 kj;l = 2�i.

Hence, A� o (1) � Cn 2a�i
2

Pq�i

l=1

R
RqnOK(lnn)� (0)

qY
j=1

z
kj;l
j d� =

Cn
2a�i
2 (2�)�

q
2
Pq�i

l=1

qY
j=1

R
Rn(�K(lnn)�;K(lnn)�) z

kj;l
j exp

�
� z2j

2

�
dzj =

Cn
2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

R1
K(lnn)�

z
kj;l
j exp

�
� z2j

2

�
dzj as kj;l is even. Now by chang-

ing of variables we get that A� o (1) �

Cn
2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

2
kj;l�1
2

R1
K2(lnn)2�

2

t
kj;l+1

2
�1 exp (�t) dt =

Cn
2a�i
2

�
�
2

�� q
2
Pq�i

l=1

qY
j=1

2
kj;l�1
2 �

�
kj;l�1
2
; K

2(lnn)2�

2

�
where � (�; �) is the incom-

plete Gamma function (see e.g. [13] formula 8.350). For lnn!1 we have
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that �
�
kj;l�1
2
; K

2(lnn)2�

2

�
=
�
K2(lnn)2�

2

� kj;l�3
2
exp

�
�K2(lnn)2�

2

��
1 +O

��
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2

��1��
�

�
K2(lnn)2�

2
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2
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�
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�
(see e.g. [13] formula 8.357). Hence A �

C (�)�
q
2 2

3q
2

Pq�i

l=1

qY
j=1

(lnn)�(kj;l�3)Kkj;l�3 exp
�
(2a�i) lnn�K2(lnn)2�

2

�
+o (1). Now

for � > 1
2
, and K > 0 we have that

C (�)�
q
2 2

3q
2

Pq�i

l=1

qY
j=1

(lnn)�(kj;l�3)Kkj;l�3 exp
�
(2a�i) lnn�(lnn)2�

2

�
! 0 as n !

1.

Lemma 3.1 Given the assumptions A.14 and A.15 above then

na




Z

Rq
x (dPn � dQn)





 = o (1) :
Proof. Assume now that supA2BC jPn (A)�Qn (A)j = O (n�a��), where
BC denote the collection of convex Borel sets of Rq and � > 0. Now
na


R

Rq x (dPn � dQn)


 = na 


RB(0;K(lnn)�) x (dPn � dQn)


+na 


RRqnB(0;K(lnn)�) x (dPn � dQn)




� na



RB(0;K(lnn)�) x (dPn � dQn)


+na 


RRqnB(0;K(lnn)�) xdPn


+na 


RRqnB(0;K(lnn)�) xdQn




� na
R
B(0;K(lnn)�)

kxk jdPn � dQnj+na
R
RqnB(0;K(lnn)�) kxk dPn+n

a
R
RqnB(0;K(lnn)�) kxk jdQnj

� naK (lnn)�
R
B(0;K(lnn)�)

jdPn � dQnj+na
R
RqnB(0;K(lnn)�) kxk dPn+n

a
R
RqnB(0;K(lnn)�) kxk jdQnj

� K (lnn)� supA2BC n
a jPn (A)�Qn (A)j+ na

R
RqnB(0;K(lnn)�) kxk dPn

+ na
R
RqnB(0;K(lnn)�) kxk jdQnj

Let Pn be the distribution of
p
n (�n � �0). Then na

R
RqnB(0;K(lnn)�) kxk dPn =

na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn+n

a
R
[RqnB(0;K(lnn)�)]\(

p
n(���0))

C kxk dPn =

= na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn as the support of Pn is

p
n (�� �0).

na
R
[RqnB(0;K(lnn)�)]\

p
n(���0) kxk dPn = na

R
p
n(���0)nB(0;K(lnn)�) kxk dPn for n

large enough.
Hence na

R
RqnB(0;K(lnn)�) kxk dPn � n

a+ 1
2�
R
p
n(���0)nB(0;K(lnn)�) dPn where � is

such that B (0; �) � � � �0 and � exists as � is bounded by assumption.
Hence na



R
Rq x (dPn � dQn)



 � K (lnn)� supA2BC na jPn (A)�Qn (A)j
+na+

1
2�P (

p
n (�n � �0) 2

p
n (�� �0) nB (0; K (lnn)�))+na

R
RqnB(0;K(lnn)�) kxk jdQnj.

As supA2BC n
a jPn (A)�Qn (A)j = O (n��) for � > 0, we have that

K (lnn)� supA2BC n
a jPn (A)�Qn (A)j = o (1) and the result follows due to

assumptions A.14 and A.15 above.
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Remark R.30 Due to the two previous remarks and Lemma 2 in [14], it
su¢ ces that

p
n (� � �0) has a valid Edgeworth expansion of order s = 2a+2,

since in this case we can choose � > 1
2
and K �

p
2a+ 1 for the above Lemma

to be valid.

Hence we have an analytical procedure that justify the following results
in our assumption framework.

3.1 Valid 2nd order Bias approximation for the Indirect estimators
In this section, given the previous results we are concerned with the bias
structure of second order for each of the examined estimators. In order to
facilitate the presentation, we make the following de�nition.

De�nition D.5 Let fxng and fyng denote two sequence of random elements
with values in an normed space. We denote the relation xn s

a
yn when

kE (xn � yn)k = o (n�a).

Remark R.31 Due to the positive de�niteness of the norm and the triangle
inequality s

a
is an equivalence relation on the set of sequences of random

elements whose �rst moments converge to the same limit.

We are ready to employ the previous results for the case of a = 1
2
. We

essentially invert the Taylor expansion of the �rst order condition that with
high probability satis�es each one of the estimators considered, and are able
to ignore the remainders due to the results of the previous paragraphs. We
have that supA2BC jEDG (A)� � (An)j = o (n�a) for suitable choice of the
sequence fAng emerging from a bijective correspondence A ! An. Hence
supA2BC jP (xn 2 A)� P (z 2 An)j = o (n

�a) where xn denotes the sequence
of random elements that we wish to approximate in the relevant sense, and
z denotes a standard normal random vector. Then, due to the fact that
P (z 2 An) = P ((gn (z) + o (n�a)) 2 A) = P (gn (z) 2 A)+o (n�a) for a suit-
able choice of a polynomial in z function sequence and the smoothness of �
(see [14] for the de�nition of smoothness of a distribution, which is implied
by analytical smoothness in the case where a density exists), we have that
that supA2BC jP (xn 2 A)� P (gn (z) 2 A)j. We then employ lemma 3.1 to
obtain the needed results on the mean approximations. Notice also that if
there exists a qn (z) such that gn (z) = qn (z) + o (n�a), if xn s

a
gn (z), then

xn s
a
qn (z), in the light of remark R.31, something that will be needed in

the case of GMR2. We present the following lemma that concerns approxi-
mations of inverse matrices that will be useful in what follows.
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Lemma 3.2 Let X and Yi (z) be square matrices, with X being non-singular
and Yi (z) has elements of �nite degree polynomials in z, and z � N (0;�).
Then  

X +
2aX
i=1

1

n
i
2

Yi (z)

!�1
= X�1 +

2aX
i=1

1

n
i
2

Ki (z) +Rn (z)

where Rn (z) is such that

P (kRn (z)k > 
n) = o
�
n�a
�

where 
n = o (n
�a).

Proof. For n � n� we have that kRn (z)k � 1

na+
1
2
kR (z)k where the elements

of R (z) are �nite polynomials of z. Then it su¢ ces to �nd c > 0 and " > 0
such that naP (kRn (z)k > cn�a�") = o (1) But naP (kRn (z)k > cn�a�") �
naP

�
1

na+
1
2
kR (z)k > cn�a�"

�
� na EkR(z)k

k�
cn

1
2�"

�k = na� k
2
+k"m where EkR(z)k

k

ck
= m

and any k 2 N, due to the Markov inequality and the normality of z. Hence
we need a � k

2
+ k" < 0 ) " < 1

2
� a

k
and " > 0. This is satis�ed for any

k > 2a.

Assumption A.16 Any initial estimator has an analogous �rst moment ap-
proximation with the one that it de�nes.

Remark R.32 This assumption is in the spirit of assumption A.13 and can
be justi�ed in our set up.

Auxiliary Estimators

We begin with the auxiliary estimator �n. Next lemma summarizes the
results.

Lemma 3.3 If
p
n (�n � b (�0)) has a valid Edgeworth expansion of third

order p
n (�n � b (�0)) s

1=2
k1 +

k2p
n

where
k1 = �Q�1 (�0; b (�0)) c=� (b (�0))W (b (�0)) c (z; b (�0))
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and

k2 = �Q�1 (�0; b (�0)) c=� (b (�0))W (b (�0)) c
� (z; b (�0))�Q�1 (�0; b (�0))A (z; �0; b (�0)) k1

�Q�1 (�0; b (�0))
h
c
=
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i
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2
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where

Q (�0; b (�0)) = E�0
@

@�
c= (x1; b (�0))W (b (�0))E�0

@

@�=
c (x1; b (�0))
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A (z1; z2; �0; b (�0)) = 2Sym
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E�0
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E�0
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#

where Sym[A] = 1
2
(A+ A0),

�
z1
z2

�
� N

��
0
0

�
;

�
�11 �12
�21 �22

��
and

k�1 is the relevant term of the analogous expansion of the �rst step auxiliary
estimator due to assumption A.16.
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z � N (0;�) and the elements of c� (z; b (�0)), w (z; b (�0)) and c (z; b (�0)) are
�nite polynomials in z withO (1) coe¢ cients andE�0c (z; b (�0)) = E (c

� (z; b (�0))) =
0, we get thath
@
@�

1
n

P
c0 (xi; b (�0))

1
n

P
W (xi; b (�0))

@

@�=
1
n

P
c (xi; b (�0))

i�1
=

=

26664
c
=
� (b (�0))W (b (�0)) c� (b (�0))

+ 1p
n

264 c
=
� (b (�0))W (b (�0)) c� (z; b (�0))

+c
=
� (z; b (�0))W (b (�0)) c� (b (�0))

+c
=
� (b (�0))w (z; b (�0)) c� (b (�0))

375
37775
�1

=

26664
Q (�0; b (�0))

+ 1p
n

264 c
=
� (b (�0))W (b (�0)) c� (z; b (�0))

+c
=
� (z; b (�0))W (b (�0)) c� (b (�0))

+c
=
� (b (�0))w (z; b (�0)) c� (b (�0))

375
37775
�1

=

Q�1 (�0; b (�0)) � 1p
n
Q�1 (�0; b (�0))A (z; �0; b (�0))Q

�1 (�0; b (�0)) + o
�
n�

1
2

�
due to lemma 3.2 where

Q (�0; b (�0)) = c
=
� (b (�0))W (b (�0)) c� (b (�0))

and

A (z; �0; b (�0)) = 2Sym

"
c
=
� (b (�0))W (b (�0)) c� (z; b (�0))

+1
2
c
=
� (b (�0))w (z; b (�0)) c� (b (�0))

#

where Sym[A] = 1
2
(A+ A0) see Corollary 1 [14],

@
@�

1
n

P
c0 (xi; b (�0))

1
n

P
W (xi; b (�0)) =

c
=
� (b (�0))W (b (�0)) +

1p
n

h
c
=
� (b (�0))w (z; b (�0)) + c

=
� (z; b (�0))W (b (�0))

i
+

o
�
n�

1
2

�
and @2

@�@�0
1
n

P
cj (xi; b (�0)) = c�;�0 (b (�0))+

1p
n
c�;�0 (z; b (�0)) and

@

@�=
1
n

P
Wrj (xi; b (�0)) =

W�= (b (�0))rj +
1p
n
w�= (z; b (�0))rj due to remark R.26 and lemma 3.1

@
@�

1
n

P
c= (xi; b (�0)) = c

=
� (b (�0)) +

1p
n
c
=
� (z; b (�0)) ;

1
n

P
W (xi; b (�0)) = W (b (�0)) +

1p
n
w (z; b (�0)) ;

1p
n

P
c (xi; b (�0)) = c (z; b (�0)) +

1p
n
c� (z; b (�0))

@2

@�@�0
1
n

P
cj (xi; b (�0)) = c�;�0 (b (�0))j +

1p
n
c�;�0 (z; b (�0))j

@

@�=
1
n

P
Wrj (xi; b (�0)) = W�= (b (�0))rj +

1p
n
w�= (z; b (�0))rj

Hence
p
n
�
�1;n � b (�0)

�
= �Q�1 (�0; b (�0)) c=� (b (�0))W (b (�0)) c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))W (b (�0)) c

� (z; b (�0))

36



+ 1p
n
Q�1 (�0; b (�0))A (z; �0; b (�0))Q

�1 (�0; b (�0)) c
=
� (b (�0))W (b (�0)) c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0))

h
c
=
� (b (�0))w (z; b (�0)) + c� (z; b (�0))W (b (�0))

i
c (z; b (�0))

� 1
2
p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))W (b (�0))

�
hp
n
�
�1;n � b (�0)

�0
c�;�0 (b (�0))j

p
n
�
�1;n � b (�0)

�i
j=1;:::;l

� 1p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))

h
W�= (b (�0))rj k

�
1;n

i
r;i=1;:::;l

c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0))

hp
n
�
�1;n � b (�0)

�0
c�;�0 (b (�0))j

i
j=1;:::;l

W (b (�0)) c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))

h
W�= (b (�0))rj k

�
1

i
r;i=1;:::;l

c� (b (�0))
p
n
�
�1;n � b (�0)

�
� 1p

n
Q�1 (�0; b (�0))

hp
n
�
�1;n � b (�0)

�0
c�;�0 (b (�0))j

i
j=1;:::;l

W (b (�0)) c� (b (�0))

�
p
n
�
�1;n � b (�0)

�
where k�1;n is given in

p
n
�
��1;n � b (�0)

�
s
1=2
k�1 +

k�2p
n
. Now setting

k1 = �Q�1 (�0; b (�0)) c=� (b (�0))W (b (�0)) c (z; b (�0)) we getp
n
�
�1;n � b (�0)

�
= k1 � 1p

n
Q�1 (�0; b (�0)) c

=
� (b (�0))W (b (�0)) c

� (z; b (�0))

� 1p
n
Q�1 (�0; b (�0))A (z; �0; b (�0)) k1

� 1p
n
Q�1 (�0; b (�0))

h
c
=
� (b (�0))w (z; b (�0)) + c� (z; b (�0))W (b (�0))

i
c (z; b (�0))

� 1
2
p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))W (b (�0))

h
k
=
1c�;�0 (b (�0))j k1

i
j=1;:::;l

� 1p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))

h
W�= (b (�0))rj k

�
1

i
r;i=1;:::;l

c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0))

h
k
=
1c�;�0 (b (�0))j

i
j=1;:::;l

W (b (�0)) c (z; b (�0))

� 1p
n
Q�1 (�0; b (�0)) c

=
� (b (�0))

h
W�= (b (�0))rj k

�
1

i
r;i=1;:::;l

c� (b (�0)) k1

� 1p
n
Q�1 (�0; b (�0))

h
k
=
1c�;�0 (b (�0))j

i
j=1;:::;l

W (b (�0)) c� (b (�0)) k1

Remark R.33 It is easy to see that when l = q the results do not depend
on the weighting matrix as expected.

Remark R.34 E�0k1;n is null as this term corresponds to the normal com-
ponent of the estimators which are asymptotically �rst order unbiased. Also
under relevant integrability conditions that are easily derived in the spirit of
lemma 3.1, E�0k2;n will depend on the �rst order asymptotic variance ,on the
non linearity of c with respect to �, on the properties of the weighting matrix
and the initial auxiliary estimator as well as on the relation between l and q
(see [15]).
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Indirect Estimators

We proceed to state the main results concerning the expansions of the three
indirect estimators. These reveal a quite di¤erent behavior of GMR 2 from
the other two, due to the fact that the computation of the particular estimator
is based upon the term E��n.

GMR 1 Estimator We begin with the GMR 1 estimator. The results reveal
aspects of the previous remark. The estimator is generally second order
biased due to the relation between p and q, the general non linearity of the
binding function and the behavior of the weighting matrix and through this
of the initial estimator ��n.
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relevant term of the analogous expansion of the �rst step auxiliary estimator
due to assumption A.16.
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Proof. Utilizing assumption A.16 we have that
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Employing now the moment approximations for the analogous terms of
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Corollary 1 When p = q we obtain
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Remark R.35 From the corollary it is evident that in the case where b (�) =
�, and p = q the estimator essentially retains the structure of the auxiliary
one. Note that a trivial case in which this holds, is when �n is a consistent
estimator of �0. More complex cases in which this is possible are stated below.

GMR 2 Estimator We continue with the case of the GMR 2 estimator. Al-
though the caveat met before, that there are non trivial terms in the expan-
sion due to non linearities, due to the relation of the relevant dimensions and
due to the presence of stochastic weighting, the expansion contains the term
�E�0k2;n something that is not present in the other two, and a fact that is
attributed to the computation of E��n. This result that it is known from
the work of [11] and [8] in the case of equality of dimensions is signi�cantly
generalized here. What is also generalized in the next subsection is the scope
of the representations of the binding functions that ensure (under appropri-
ate conditions) that the particular estimator is second order unbiased due
to the aforementioned term.
The next preliminary to the expansion result, concerns the approximation

of derivatives of E��n. It follows easily under the framework established by
assumption A.10 (see remark R.24) and the results on the auxiliary estima-
tors.

Lemma 3.5 
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 = o (1)
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 = o (1) , j = 1; : : : ; q
Proof. From assumption A.10 and remark R.24 we have that
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 = kDr (E� (�n � b (�))) j�=�0k �M kE�0 (�n � b (�0))k =
o (1), r = 1; 2.
We are now ready to state the expansion.
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expansion of the �rst step auxiliary estimator due to assumption A.16.

Proof. Employing again the procedure as in the relevant proofs before and
utilizing assumption A.16, remark R.26, lemmas 3.1, 3.2 and 3.5 we have that
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with kAnk = o (1).

Remark R.36 As expected the two estimators are �rst order equivalent as
their q1 terms coincide.
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is obtained due to the presence of E��n in the de�nition of the estimator and
not of b (�) or something similar as in the cases of GMR 1 and GT estima-
tors.

Corollary 2 When p = q we obtain
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Proof. Trivial.

Corollary 3 If in addition to the provisions of the previous corollary b is
linear E�0q2 = 0p.

Proof. Trivial.

Remark R.38 In this particular case, the estimator is obviously second
order unbiased a property that is not shared with its other two counterparts.
This result is already known for the case where �n.is a consistent estimator
of �0, whence the GMR 2 obviously performs a second order bias correction.
If in addition E��n is linear, then the estimator is totally unbiased (see [11]).

Remark R.39 The particular analysis on the properties of the present es-
timator provided by the relevant literature restricts to the case of p = q. We
extend it in the most general setup and provide a geometric characterization
of the binding function that sheds light to the circumstances under which this
is linear, thereby extending massively the scope of the last result.
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GT Estimator We conclude the presentation of the expansions with the last
case of the GT estimator. The expansion is more involved since it is ob-
tained from the second order Taylor expansion of the �rst order conditions
that the estimator satis�es with high probability for large enough n, around
(�0; b (�0)). Let sn (�) and Hn (�) denote the gradient (score) and the Hessian
of the loglikelihood function of D respectively. In order for the identi�cation
of terms, the (local) identity E�cn (b (�)) = 0wi is di¤erentiated thus provid-
ing the following useful lemma.
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and q�1 is the relevant term of the analogous expansion of the �rst step aux-
iliary estimator due to assumption A.16.
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Remark R.40 Again it is evident that the structure of the second order
terms depends on the relevant structure of the auxiliary estimator, on non
linearities of the auxiliary �rst order conditions, on the stochastic weighting
and on the relation between l, q and p. This estimating procedure does not
produce the term E�0k2 as is also the case for the GMR 1 counterpart.

We obtain easily the following corollary that con�rms the already known
�rst order relationship between the three estimators.

Corollary 4 GT estimator s
0
(GMR 1 estimator s

0
GMR 2 estimator) i¤

the weighting matrix for GMR 1 and the GMR 2 estimators is chosen as
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� (�0) = E�0
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for a given W �� (xi; �0) for the GT estimator.

Proof. Trivial.
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In the special case of equality between the involved dimensions we obtain

the following corollary which is proven with the help of the following lemma.

Corollary 5 When p = q = l we obtain
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and by the above Lemma we have q2 =
�
@b(�0)
@�0

��1
k2� 1

2
p
n

�
@b(�0)
@�0

��1 h
trq01q1

@2bj(�0)

@�@�0

i
j=1;:::;l

.

Remark R.41 This corollary is in accordance with lemma 1.2. It shows
neither the GT estimator is second order unbiased under the frame-
work imposed by corollary R.41 or any relevant framework.

Local Canonical Representation of the Binding Function

In this paragraph we assume without loss of generality that � and B are
open. By assumption A.1 the underlying statistical model has the structure
of a Ck-di¤erentiable manifold of dimension p. This manifold is globally dif-
feomorphic to �. Assumption A.8 enables the possibility that c (x; �) lies on
a particular bundle (Hilbert bundle, see among others [1]) over an auxiliary
statistical model that analogously has the structure of a Ck-di¤erentiable
manifold of dimension q, globally di¤eomorphic to B topologized again by
the total variation norm. The function b (�) that is the crucial element of
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the inferential procedures described above, is essentially a parametric repre-
sentation of an underlying function (say f) between the manifolds, which
when composed with the aforementioned di¤eomorphisms gives b (�). That
is, using the notation of assumption 1, if the auxiliary statistical mani-
fold is denoted by D� and the relevant di¤eomorphism to B is par�, then
b =par� � f�par�1. The function f shares by construction many properties
with its relevant representation. That is there is a open neighborhood of
P
 say OP
 , such that f is a di¤eomorphism onto f (OP
). It is easy to
see that b (�) is simply a manifestation of this property which extends to
any other representation of f . That is, if �0 is an open bounded subset of
Rp di¤eomorphic to OP
 by par�, and B0 is an open bounded subset of Rq
di¤eomorphic to B by par�� then the relevant representation b

� : �0 ! B0

restricted as b0jOP
 =par
�
� � f jOP
�par

�1
� is a di¤eomorphism. Furthermore,

by theorem 10.2 of [17] (p. 44) if p � q, there always exists an open bounded
subset of Rq, say B00 di¤eomorphic to D� by par��� (hence di¤eomorphic
to B by (say) g), such that the representation b�� : � ! B00 restricts as

b��jpar�1(OP
) =par
�
�� � f jOP
�par

�1 =

0@�1; �2; : : : ; �p; 0; : : : ; 0| {z }
q�p

1A. This rep-
resentation is called canonical immersion around P
. Hence due to the afore-
mentioned theorem and the assumed properties of the binding function the
following is true.

Lemma 3.10 There exists an open bounded subset of Rq, say B00, and a
di¤eomorphism g : B ! B00 such that b��jpar�1(OP
) : O"2 (�0)! B00 is given

by b�� (�) =
�

�
0q�p

�
8� 2 par�1 (OP
).

Proof. See the proof of theorem 10.2 of [17] and note that the target of
the constructed coordinate system of D� that proves the theorem, is di¤eo-
morphic to the one of the initial coordinate system on the same manifold.

Remark R.42 Given �, B can always be chosen so that the binding

function b is of the form
�

�
0q�p

�
at least in a small enough neighbor-

hood of �0. We call this canonical representation of the binding function
around �0, and hereafter we denote it by b (�) hence from this point and un-
til the end of the present paragraph.12 It is easily seen that when b (�) is

12This abuse of notation can not create any problem of confusion until the end of the
current paragraph. Later on ad where needed we will distinguish the notations explicitely.
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on the relevant form the aforementioned expansions simplify in some extend.
We explore some interesting cases. In every one of these we assume that

W � (x; �0) = W � =

�
W1;p�p W3;p�q�p
W 0
3;p�q�p W2;q�p�q�p

�
where W1;W2;W3 are non

stochastic matrices, independent of �, of the relevant dimensions. Consider
�rst the expansion of the GMR 1 estimator.

Corollary 6 Consider lemma 3.4, suppose that b is in local canonical form

and W � (x; �0) =W
� =

�
W1;p�p W3;p�q�p
W 0
3 W2;q�p�q�p

�
then

q1 =
�
Idp�p W�1

1;p�pW3;p�q�p
�
k1

and
q2 =

�
Idp�p W�1

1;p�pW3;p�q�p
�
k2

Proof. Follows from direct substitutions on the results of lemma 3.4 by

noting �rst that @b(�0)
@�0 =

�
Idp�p
0q�p�p

�
,
@b2(�0)j
@�@�0 = 0p�p, 8j = 1; : : : ; q, w� = 0p.

Remark R.43 It is evident that minW3;p�q�p kE�0q2k =









0B@ (E�0k2)1

...
(E�0k2)p

1CA







 for

W3;p�q�p = 0p�q�p where ui denotes the ith element of the particular vector.

The analogous results for the GT estimator are not considered here due
to the fact that they constitute an easy exercise without providing any new
information. The second and �nal case concerns the GMR 2 estimator.

Corollary 7 Consider lemma 3.6, suppose that b is in local canonical form

and W � (x; �0) =W
� =

�
W1;p�p W3;p�q�p
W 0
3 W2;q�p�q�p

�
then

q1;n =
�
Idp�p W�1

1;p�pW3;p�q�p
�
k1;n

and
q2;n =

�
Idp�p W�1

1;p�pW3;p�q�p
�
(k2;n � E�0k2;n)

Proof. Follows from direct substitutions on the results of lemma 3.6 by

noting that @b(�0)
@�0 =

�
Idp�p
0q�p�p

�
,
@b2(�0)j
@�@�0 = 0p�p, 8j = 1; : : : ; q.
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Remark R.44 The GMR 2 estimator is second order unbiased even in cases
where q > p, when there is non stochastic weighting given that the binding
function is in local canonical representation. This is a new result. First it ex-
tends the relevant result of the aforementioned literature to allow for cases of
di¤ering dimensions, as long as the Hessian matrices of the binding function
vanish and the weighting is deterministic. Second, since the binding function
can always be in local canonical form, there always exists a parameterization
of c and �, so that the previous statement holds. This says that given an
admissible auxiliary statistical model, there always exists an auxil-
iary parameterization such that the previous result is valid, proviso
the relevant weighting structure. Hence this result massively generalizes the
one in the relevant literature.

Example

We continue with an example. In this lemma 1.2 holds for any n due to
global invertibility of the corresponding binding functions and the absence
of boundaries.

Example Consider the case in which the true underlying distribution is
described by the following MA(1) speci�cation

xt = ut + �0ut�1; t = :::;�1; 0; 1; :::; ut
iidv N(0; 1)

for some �0 2 (�1; 1), while the auxiliary model is consisted of all the joint
distributions represented by the following parametric AR(1) model

xt = �xt�1 + "t; t = :::;�1; 0; 1; :::; "t
iidv N(0; 1)

where � 2
�
�1
2
; 1
2

�
. Let �n be the conditional maximum likelihood esti-

mator for the previous model, i.e. �n =
Pn
i=2 xixi�1Pn
i=2 x

2
i�1
, which is easily seen

that converges in probability to b (�0) = �0
1+�20

. Hence in this particular case

p = q = l = 1, c (xi; �) =
@�(xi;�)
@�

= xixi�1� �x2i�1, and b : (�1; 1)!
�
�1
2
; 1
2

�
is globally invertible. We obtain from [5]

k1 =

�
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2
1� �20

z

k2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �20 + �0 + 1�
�20 + 1

�3 z2
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In the case of the GMR 1 estimator equal to GT estimator which is �n =
1�
p
�4�2n+1
2�n

we obtain from corollary 1

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z

q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

z2

�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 z2

Notice that when �0 = 0, then q1 = z, and q2 = z2. Finally, for the GMR2
estimator we obtain from corollary 2 that

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z

q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

�
z2 � 1

�
�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 z2

which implies that the estimator is unbiased at �0 = 0 but not locally un-
biased (see bellow). Now, for the issue of the local canonical form of the
binding function, we obtain that the local parametrization of the AR(1)

model arises from the re-parametrization given by �� = 1�
p
1�4�2
2�

, and in
this case b� (�) = �, for any �. Notice that a consistent auxiliary estimator

for b� (�0) = �0 is �
�
n =

1�
p
1�4�2n
2�n

, and the GMR 2 estimator derived by
this is second order unbiased by lemma 7. The particular reparametrization
and the employment of GMR2 on it, coincides (see remark R.45) with the
de�ned below 1�GMR2. The analogous expansion of the auxiliary estima-
tor (or equivalently of �(0n in the language of the next section) coincides with
the one of the GMR1 presented above. For the bias corrector GMR2 (or
equivalently �(1n ) we have that

q1 =

�
1 + �20

�2 �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�2�
1� �20

�2 z
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q2 = �
�
�40 + 2�

3
0 � 2�20 + 2�0 + 1

� �
�20 + �0 + 1

�
1� �40

�
z2 � 1

�
�
�0
�
�20 � 3

� �
�20 + 4�

4
0 + �

6
0 + �

8
0 + 1

�4�
1� �40

� �
1� �20

�2 �
z2 � 1

�
establishing the second order unbiaseness. Notice that due to the global
(hence local) nature of the moment approximation of [5], proposition 8 holds

globally, establishing that
p
n
�
�(1n � �

�
s
1
q1+

q2p
n
, which is also in accordance

with the third order approximation actually employed in [5].

GMR2 Recursion

In this section we are concerned with the generalization of the previous prop-
erties of the GMR2 estimator to arbitrary order. First we make the distinc-
tion between several notions of unbiaseness of a given order. An estimator
(say �n) admitting a moment expansion (say g

�
z; 1p

n
; �0

�
for g a relevant

function) such as the aforementioned, will be termed sth-order unbiased at

�0, if and only if
p
n (�n � �0) s

(s�1)
2

E
�
g
�
z; 1p

n
; �0

��
. Analogously it will

be termed sth-order unbiased locally around �0, if the relevant expansion is
valid, and

p
n (�n � �) s

(s�1)
2

E
�
g
�
z; 1p

n
; �
��

in an open ball with center �0.

Finally, it will be termed sth-order unbiased if the relevant expansion is valid
in every neighborhood of �0, and

p
n (�n � �) s

(s�1)
2

E
�
g
�
z; 1p

n
; �
��

every-

where. Notice that up to the previous section we were essentially concerned
with the �rst notion.
Now, the set up enabling lemma 3.10, concerning the local canonical rep-

resentation of the binding function b (�), implies that if co�nitely E��n is a
local di¤eomorphism, there exists a sequence of local auxiliary parametriza-
tions, for which E� (�n) are in canonical form in a neighborhood of �0. In
this case the GMR2 estimator is, unbiased, i.e. if 8� 2 B (�0; ") we have that

bn (�) = E��
�
n =

�
�
0q�p

�
, and the GMR2 is given by �n = b�1n � ��n and

we have that E�0�n = E�0 (b
�1
n � ��n) = b�1n � E�0 (��n) = b�1n � bn (�0) = �0.

Consequently, a natural question arises whether it is possible to retrieve this
sequence. This question is out of the scope of the present paper.
Instead in an indirect answer to aforementioned question of result gener-

alization, we de�ne recursive indirect estimation procedures as follows. Let
�(0n denote either the GT or the GMR1 estimator.
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De�nition D.6 Let r 2 N, the recursive r�GMR2 estimator (�(rn ) is de�ned
in the following steps:

1. �(1n = argmin�



�(0n � E��(0n 


,

2. for k > 1 and i � r, �(kn = argmin�



�(k�1n � E��(k�1n




.
Remark R.45 In the case where r = 1 we essentially obtain equivalent
results to the ones of the canonical representation paragraph, due to the fact
that this procedure imitates the expression of the binding function in local
canonical form. Hence the case of r = 1, can be perceived as "practically"
equivalent to the procedure described in the previous section. Furthermore,
when p = q, then this equivalence is actually an equality.

In order to establish the validity of the results to be presented, we need
to strengthen in some sense assumptions A.7 and A.10.

Assumption A.17 E (ki (�; z)) are d-di¤erentiable at �0 and
na


Dr

�
E��n � b (�)�

P2a+1
i=1

1
ni=2
E (ki (�; z))

�

 j�=�0 = o (1), r = 1; : : : ; d.
Remark R.46 The assumption above is satis�ed if E��n = b (�)+

P1
i=1

1
ni=2
E (ki (�; z)),

8� 2 B (�0; "5), for some "5 > 0,
P1

i=1 kDrE (ki (�; z)) j�=�0k < M��
r , for

M��
r > 0, since in this case we have that na



E��n � b (�)�P2a+1
i=1

1
ni=2
E (ki (�; z))



 =

P1
i=2a+2

1
ni=2�a

E (ki (�; z))


 and therefore

na


Dr

�
E��n � b (�)�

P2a+1
i=1

1
ni=2
E (ki (�; z))

�

 j�=�0 = 

P1
i=2a+2

1
ni=2�a

DrE (ki (�; z))


 �P1

i=2a+2
1

ni=2�a
kDrE (ki (�; z))k = o (1). Notice that E��n = b (�)+

P1
i=1

1
ni=2
E (ki (�; z))

will follow if the assumptions depending on a are strengthened in order to hold
for any a, due to the fact that �0 is arbitrary, while the derivative summabil-
ity condition will follow from relevant arguments concerning the derivation
of series.

Now, we can prove the following proposition. Notice that the validity
of the approximations rely on the relevant results addressed in the previous
sections and the previous assumption, hence we do not explicitly describe
them.

Proposition 8 With the above notation, let lemma 3.6 or lemma 3.8 hold
locally around �0 , then the r�GMR2 estimator, is of order 2r+ 1 unbiased
at �0.
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Proof. Let the ith element of vector x be denoted by xi. Then we have that
in the assumed neighborhood of �0

p
n
�
�(0n � �

�
i
= (k1)i+

1

n
1
2

(k2)i+
1

n
(k3)i+

1

n
3
2

(k4)i+o
�
n�

3
2

�
; for i = 1; ::p

withE� (k1)i = 0. Now the GMR2 is de�ned as �
(1
n = argmin�

�
�(0n � E��(0n

�2
.

Hence we have that �(0n �E�(1n �
(0
n = 0. Expanding, the i

th element of E
�
(1
n
�(0n ,�

E
�
(1
n
�(0n

�
i
say, around �0 we get:

�
E
�
(1
n
�(0n

�
i
=
�
E�0�

(0
n

�
i
+
Pp

j=1

@
�
E�0�

(0
n

�
i

@�j

�
�(1n � �0

�
j

+ 1
2

Pp
j=1

Pp
m=1

@2@
�
E�0�

(0
n

�
i

@�m@�j

�
�(1n � �0

�
m

�
�(1n � �0

�
j

+ 1
3!

Pp
j=1

Pp
m=1

Pp
l=1

@3@
�
E�0�

(0
n

�
i

@�l@�m@�j

�
�(1n � �0

�
l

�
�(1n � �0

�
m

�
�(1n � �0

�
j
+:::. Hence

as �(0n � E�(1n �
(0
n = 0)

p
n
�
�(0n � E�0�(0n

�
i
=
Pp

j=1

@
�
E�0�

(0
n

�
i

@�j

p
n
�
�(1n � �0

�
j

+ 1
2
p
n

Pp
j=1

Pp
m=1

@2@
�
E�0�

(0
n

�
i

@�m@�j

p
n
�
�(1n � �0

�
m

p
n
�
�(1n � �0

�
j

+ 1
3!n

Pp
j=1

Pp
m=1

Pp
l=1

@3@
�
E�0�

(0
n

�
i

@�l@�m@�j

p
n
�
�(1n � �0

�
l

p
n
�
�(1n � �0

�
m

p
n
�
�(1n � �0

�
j
+

o (n�1)
Now for any � in the assumed open ball at �0, and any i; j;m; l; r = 1; :::p,
we have that due to assumption A.17�

E��
(0
n

�
i
= �i +

1

n
E�k2;i +

1

n
3
2

E�k3;i +
1

n2
E�k4;i + o

�
n�2
�
;

@
�
E��

(0
n

�
i

@�j
= �ij +

1

n

@ (E�k2)i
@�j

+
1

n
3
2

@ (E�k3)i
@�j

+
1

n2
@ (E�k4)i
@�j

+ o
�
n�2
�

@2
�
E��

(0
n

�
i

@�m@�j
=

1

n

@2 (E�k2)i
@�m@�j

+
1

n
3
2

@2 (E�k3)i
@�m@�j

+
1

n2
@2 (E�k4)i
@�m@�j

+ o
�
n�2
�

@3
�
E��

(0
n

�
i

@�l@�m@�j
=

1

n

@3 (E�k2)i
@�l@�m@�j

+
1

n
3
2

@3 (E�k3)i
@�l@�m@�j

+
1

n2
@3 (E�k4)i
@�l@�m@�j

+ o
�
n�2
�

Hence

p
n
�
�(0n � E�0�(0n

�
i
= (k1)i+

(k2 � E�0k2)i
n
1
2

+
(k3 � E�0k3)i

n
+
(k4 � E�0k4)i

n
3
2

+o
�
n�

3
2

�
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Now, for i = j, let
@
�
E��

(0
n

�
i

@�i
= 1 + 1

n
A + 1

n
3
2
B + 1

n2
C then

�
@
�
E��

(0
n

�
i

@�j

��1
=

1
1+ 1

n
A+ 1

n
3
2

B+ 1
n2
C
= 1

1+Ax2+Bx3+Cx4
= f (x), with f (0) = 1, f = (0) = 0,

f == (0) = �2A, and f === (0) = �6B. Expanding f (x) around x = 0 we

get f (x) = 1 � Ax2 � Bx3 + o
�
n�

3
2

�
and consequently

�
@
�
E��

(0
n

�
i

@�i

��1
=

1� 1
n

@(E�k2)i
@�i

� 1

n
3
2

@(E�k3)i
@�i

+ o
�
n�

3
2

�
. Hence

(k1)i +
1

n
1
2

(k2 � E�0k2)i +
1

n
(k3 � E�0k3)i �

1

n

@ (E�k2)i
@�i

(k1)i

+
1

n
3
2

(k4 � E�0k4)i �
1

n
3
2

@ (E�k2)i
@�i

(k2 � E�0k2)i �
1

n
3
2

@ (E�k3)i
@�i

(k1)i

=
p
n
�
�(1n � �0

�
i
+

pX
j 6=i=1

@
�
E�0�

(0
n

�
i

@�j

p
n
�
�(1n � �0

�
j

� 1
n

@ (E�k2)i
@�i

pX
j 6=i=1

@
�
E�0�

(0
n

�
i

@�j

p
n
�
�(1n � �0

�
j

+
1

2
p
n

pX
j=1

pX
m=1

@2@
�
E�0�

(0
n

�
i

@�m@�j

p
n
�
�(1n � �0

�
m

p
n
�
�(1n � �0

�
j

+
1

3!n

pX
j=1

pX
m=1

pX
l=1

@3@
�
E�0�

(0
n

�
i

@�l@�m@�j

p
n
�
�(1n � �0

�
l

p
n
�
�(1n � �0

�
m

p
n
�
�(1n � �0

�
j
+ o

�
n�

3
2

�
Now notice that �rst all the higher order derivatives are of order O (n�1),

i.e.
@2
�
E��

(0
n

�
i

@�m@�j
= O (n�1),

@3
�
E��

(0
n

�
i

@�l@�m@�j
= O (n�1) and

@4
�
E��

(0
n

�
i

@�r@�l@�m@�j
= O (n�1).
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Further the same is true for i 6= j, i.e.
@
�
E�0�

(0
n

�
i

@�j
= O (n�1). Hence we get

(k1)i +
1

n
1
2

(k2 � E�0k2)i +
1

n
(k3 � E�0k3)i �

1

n

@ (E�k2)i
@�i

(k1)i

+
1

n
3
2

(k4 � E�0k4)i �
1

n
3
2

@ (E�k2)i
@�i

(k2 � E�0k2)i �
1

n
3
2

@ (E�k3)i
@�i

(k1)i

=
p
n
�
�(1n � �0

�
i
+

pX
j 6=i=1

�
1

n

@ (E�0k2)i
@�j

+
1

n
3
2

@ (E�0k3)i
@�j

�p
n
�
�(1n � �0

�
j

+
1

2n
3
2

pX
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pX
m=1

@2 (E�0k2)i
@�m@�j

p
n
�
�(1n � �0

�
m

p
n
�
�(1n � �0

�
j
+ o

�
n�

3
2

�
Inverting we get:

p
n
�
�(1n � �0

�
i
= (k1)i +

1

n
1
2

(k2 � E�0k2)i +
1

n
(k3 � E�0k3)i

� 1
n

pX
j=1

@ (E�0k2)i
@�j

(k1)j +
1

n
3
2

(k4 � E�0k4)i

� 1

n
3
2

pX
j=1

@ (E�0k3)i
@�j

(k1)j �
1

n
3
2

pX
j=1

@ (E�0k2)i
@�j

(k2 � E�0k2)j

� 1

2n
3
2

pX
j=1

pX
m=1

@2 (E�0k2)i
@�m@�j

(k1)m (k1)j + o
�
n�

3
2

�

Notice that E�0
�
�(1n

�
i
= (�0)i � 1

2n2

Pp
j=1

Pp
m=1

@2(E�0k2)i
@�m@�j

E�0

�
(k1)m (k1)j

�
which is of order O (n�2), i.e. �(1n is O

�
n�

3
2

�
unbiased. Hence the proposition

is true for r = 1.
Assume now that it is true for r = h, i.e. assume that, for i = 1; ::p we have:

p
n
�
�(hn � �

�
i
= (k1)i +

1

n
1
2

(k2)i +
1

n
(k3)i + :::+

1

n
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2
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2
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2

�
;

with E� (k1)i = E� (k2)i = :: = E� (k2h+1)i = 0, i.e. �(hn is O
�
n�

2h+1
2

�
�0 � unbiased. Now for any � 2 B (�0; "), and any i; j;m; l; r = 1; :::p, we
have that�
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and it follows that
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which establishes the proposition due to the fact that i is arbitrary.

Remark R.47 Consider again the case where r = 1. Then 1�GMR2 is
actually third order unbiased at �0 hence the previous results are essentially
expanded if �(0n has a local moment approximation.

Remark R.48 Proposition 8 essentially holds locally at �0 due to the prop-
erties of open balls as basic sets of neighborhoods (see also the example of the
previous section).
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4 Conclusions
In this section we �rst provide a brief review of our results. These can be
summarized to:

� We provide conditions that ensure the validity of the formal Edgeworth
approximation of the auxiliary and the three indirect estimators for any
�nite order. The aforementioned validation was previously unattained
by the relevant literature. We massively rely on lemma AL.3.

� Given the previous, we provide integrability conditions that validate
moment approximations of the aforementioned estimators. These con-
ditions validate the partial results of the relevant literature. We identify
the approximations up to the second order. In this respect we are able
to provide information on the bias structure of the estimator sequences
up to the second order, in a quite general setup that incorporates frame-
works of random weighting schemes.

� We provide a general de�nition of estimators as the GT one, even when
the auxiliary criterion is not of the likelihood type. Note that this type
of estimators are eligible to more general de�nitions.

� We provide new results on the issue of second order properties of the
three indirect estimators. First the expansions of GMR1 and GT es-
timators are new and reveal a higher order asymptotic inequivalence
with the GMR2.

� We massively generalize the GMR2 expansion. We are able to general-
ize the conditions under which the GMR is second order unbiased (at
�0) even in this set up.

� We characterize the fact that due to the notion of the local canonical
form of the binding function, there always exists a parameterization of
the auxiliary model, under which the GMR2 is second order unbiased
under deterministic weighting.

� In response to the issue of higher order bias correction, we de�ne indi-
rect estimators that emerge from multistep optimization procedures. If
we strengthen the previous results with a view towards local validity of
the relevant moment approximations, we are able to provide recursive
indirect estimators that are locally unbiased at any given order.

We conclude with some possible future extensions:
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� The derivation of the actual Edgeworth approximations, in the sense
that the coe¢ cients of the relevant polynomials are expresses as func-
tions of the approximations of the auxiliary estimators, could be useful
for the derivation of analogous properties of indirect testing procedures.

� The extension of the previous results in the semiparametric case.

� An interesting case lies in the possibility that b (�0) is in the boundary
of B, even if �0 is in the interior of �, due to the fact that the binding
function is not a local homeomorphism. In this case even the �rst order
distribution of the estimator will be non standard.

� The determination of invariant parts of the expansions with respect to
reparametrizations.
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Appendices
The following are a collection of helpful lemmas that are frequently referenced
in the proofs of the main results.
The following lemma concerns weighting matrices and initial estimators

in general, hence it is directly connected to assumptions A.9 and A.11. It
provides a result useful in almost every step of the derivation of validity of
the analogous Edgeworth expansion for any of the estimators examined.

Lemma AL.1 Suppose thatWn (!; �
�
n),W (�0), �

�
n are de�ned as in assump-

tions A.9 and A.13, then

P
 (kWn (!; �
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Proof. Under assumptions A.9 and A.13, Lemmas 3 and 5 of [2], and due
the triangle inequality we have that
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In the following we denote as �n any of the examined (auxiliary or in-

direct) estimators. We denote with 'n either �
�
n or

�
�n
��n

�
as these are
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de�ned in the section concerning the de�nition of the examined estima-
tors. We �nally denote with Jn any of the criteria that are involved in
the aforementioned de�nitions J its probability limit. Remember also that
d = max (2a+ 2; 3). Our next lemma concerns the derivation of the validity
of the Edgeworth expansion in any of the examined cases. It essentially deter-
mines that the local approximation of

p
n (�n � �0) obtained by the inversion

of a polynomial approximation of the �rst order conditions, has an error that
is not greater that any o (n�a)-real sequence with probability 1 � o (n�a).
This result, along with the provisions of corollary AC.1 that follows, estab-
lish that these two sequences have the same Edgeworth expansions if any one
of them has a valid Edgeworth expansion.
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is positive de�nite,
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1
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 > !�n� = o (n�a) with �,Rn, and !�n
analogous to the relevant quantities of the present lemma (see below) that
are derived in an analogous manner with a potentially di¤erent Jn,
then there exists a smooth function �� : Rm ! Rp, that is independent of n
such that
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Proof. By the previous remark, a (d� 1)-Taylor expansion about (�0; '0)
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where the remainder
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The next two results are of great importance in both the validity of Edge-
worth expansions as well as in the validation of moment approximations.
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Corollary AC.1 If a � " then �i (z) = ��i (z), 8i, and therefore the resulting
Edgeworth distribution coincides with the initial.
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