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Abstract

This paper is concerned with some properties of three indirect es-
timators that are known to be (first order) asymptotically equivalent.
Specifically, for each one of them, we examine a) the issue of validity
of the formal Edgeworth expansion of an arbitrary order. b) Given
the establishment of validity, we are concerned with valid moment ap-
proximations and employ them to characterize the bias structure of
the estimators up to this order. Our motivation resides on the fact
that one of the three is reported by the relevant literature to be second
order unbiased. However, this result is derived without any establish-
ment of validity. We provide this establishment, but we also are able
to massively generalize the conditions under which this second order
property remains true. Validating the expansions at any order and
deriving the second order expansion for the remaining estimators, we
show that the previous result does not apply in these cases. Hence
we essentially derive their higher order inequivalence. We also provide
a further generalization of the indirect estimators by introducing re-
cursive ones emerging from multistep optimization procedures. Upon
strengthening the validity of the aforementioned moment approxima-
tions, we are able to establish higher order unbiaseness for estimators
of this sort.

KEYWORDS: Indirect Estimator, Asymptotic Approximation, Sec-
ond Order Bias Structure, Binding Function, Local Canonical Repre-
sentation, Convex Variational Distance, Recursive Indirect Estima-
tors, Higher order Bias.



1 Introduction

Indirect Inference (hereafter II), usually applied to parametric statistical
models,E] employs a (possibly) "misspecified", auxiliary model for inference
on the parameter value corresponding to the true unknown measure in which
the relevant sample space is equipped. The motivation is largely computa-
tional, hence the choice of the auxiliary model is primarily driven by numeri-
cal cost considerations. Despite this motivational characteristic, II gives rise
to an enrichment of the theory of parametric statistical inference, due to the
fact that it relies on the local inversion of functions that "bind" (possibly)
different collections of probability measures defined on the same probability
space.

These functions essentially describe relations between classes of random
elements defined on each collection, that are typically used for statistical es-
timation (e.g. moment conditions). In this respect, a collection of random
elements used to define an estimation procedure in one model, can be pulled
back to another and therefore used in a similar manner, thereby indirectly
facilitating inference. When these collections of measures have additional
structure (for example, when they are finite dimensional differentiable mani-
folds, as is the case with differential parametric finite dimensional statistical
models), the resulting "binding" can be chosen so that (at least locally) it
respects this structure, something that can facilitate the derivation of results
and/or the analysis of the properties of such procedures.

This paper is concerned with the approximation of certain finite sample
properties of three indirect estimators that are known to be (first order) as-
ymptotically equivalent. Specifically, for each one of them, we examine a) the
issue of validity of the formal Edgeworth expansion of the its sequence of
distributions, provided by the inversion of the Taylor expansion of any finite
order, of the first order conditions that it satisfies. b) Given the establish-
ment of validity, we explicitly provide conditions that establish the validity
of the approximation of the first moment sequence of the estimator by the
relevant sequence of inversion, and c) we explicitly provide the moment ap-
proximation of the second order expansion and use it in order to characterize
the bias structure of the estimators up to this order. Our motivation resides
in the fact that one of the three is reported by the relevant literature to
be second order unbiased under a particular set of conditions. This result,
which is cited bellow, is derived without any establishment of validity. We
provide this establishment, but we also are able to massively generalize the
conditions under which this second order property remains true. There are

! Although it can be extended into a semiparametric framework, see [7].



no analogous results for the other two estimators. Validating the expansions
at any order and deriving the second order expansion for the remaining es-
timators, we show that the previous result does not apply in these cases.
Hence we essentially derive their higher order inequivalence.

The expansions involved concern the so-called delta method of approxi-
mations of moments of estimator sequences widely used in a formal manner
in statisticsE] This method proceeds into deriving approximations of the an-
alytical functional forms of extremum statistics using the implicit function
theorem, and then approximating the sequence of moments by the moments
of the approximations. Hence the estimator sequence is approximated by a
sequence of random elements (not necessarily defined on the same probabil-
ity space), which is generally termed stochastic expansion. These expansions
do not suffice for the approximation of distributional characteristics unless
conditions that ensure some sort of continuity of the map that assigns to a
sequence of random elements the associated sequence of probability distri-
butions are imposed. These conditions usually work through the following
mechanism: both the sequences of distributions of the estimator and the
stochastic expansion sequences are proven to be (in the appropriate manner)
approximated by the same sequence of Edgeworth distributions. Due to the
fact that the underlying space of sequences of distributions is properly topol-
ogized, since both sequences are close to the same sequence of distributions
then a topological form of the triangle inequality must hold: they must also
be closeF]

The Binding Function

The central notion of indirect inference procedures is the one of the binding
function. In pure terms this constitutes of a function between the measures
involved in the relevant statistical models. This function can be formed as
the pushover of an automorphism of the underlying probability space. Such
a derivation of the binding function would be in accordance with the generic
efficiency loss of indirect estimators, due to the fact that the observed sample
is not subjected to the underlying automorphism, and /or that the estimating
equation does not constitute a basis of the vector space spanned by the score
at the true parameter values, and/or due to non linearities of the function.
In any case the binding function is denoted by b (6), where 6 the parameter
vector to be estimated, and what is usually discussed is not the function

2The term formal means "purely algebraic, without concern for topological matters of
convergence".

3Note that this type of argument does not hold in general neighborhood spaces that
are not topological.



itself, but a parametric representation of it (see the paragraph entitled as
General Assumption Framework).

The Auxiliary and the Indirect Estimators

All three indirect estimators essentially involve two step estimation proce-
dures. In the first step, the estimating equation that is part of the structure
of the auxiliary model, is used in order for the statistical information to be
summarized into a statistic with values in the auxiliary parameter space.
This statistic is called an auxiliary estimator. Under the appropriate con-
ditions will (strongly and/or weakly) converge to the value of the binding
function when evaluated at the true parameter value. This remark motivates
the second step. If this function is at least locally invertible, it is inverted
at the value of the auxiliary estimate in order for the indirect estimate to be
computed. The auxiliary estimators are collectively denoted in the paper by
B,, whereas 6,, denote the indirect ones, with n being the sample size.

We consider one type of auxiliary estimator. It is defined (at least for large
n) as the global minimizer of a distance function on the auxiliary parameter
space. This distance function is represented by a norm, which in turn is
represented by a positive definite matrix. Our set up is the outmost general,
since we allow for this matrix to be stochastic and dependent on the auxiliary
parameter. The last remark makes possible the computation of this matrix
with respect to an initial auxiliary estimator, a situation that mimics the
issue of optimal weighting in the GMM estimation theory. We term this
general framework as stochastic weighting.

The first indirect estimator considered here minimizes an analogous gen-
eral distance function between the 3, and b(#). It is termed GMR 1 and
it was proposed by [9] in order for the numerical burden of the second es-
timator to be relaxed. The latter is termed GMR 2 and it minimizes the
previous distance between 3, and Ey/3,. This is obviously differing from the
previous and is the essential reason for the second order properties of the es-
timator. The third estimator, called GT, was proposed by [12] and minimizes
an analogous distance between the conditional expectation of the auxiliary
estimating vector and zero. Its motivation is obvious. In all three cases we
allow for stochastic weighting in the sense described above. In most realistic
cases, the expectations involved and the binding function are analytically
intractable, hence approximated by simulations. It is easily seen that the
simulation counterpart of the GMR 1 estimator is the one involved with the
maximal numerical burden among the three.

[11] show that the GMR 2 estimator has null, up to second order bias,
since it involves the computation of Eyf3, (called the small sample binding



function), when i) the dimension of the structural parameter space equals
the dimension of auxiliary and ii) the binding function is affine. Notice that
ii) is automatically satisfied, when the auxiliary coincides with the structural
model and the binding function is approximated by a consistent estimator
of the auxiliary parameters. In this case the particular indirect estimator is
said to perform a bias correction of the first step one. [

Notice that each of the indirect estimators, in the framework of stochastic
weighting, are essentially derived from the evaluation of the inverse of a finite
sample binding function (say b, (0, W,,0")) that depends on the weighting
matrix and the initial estimator (see the paragraph entitled as General As-
sumption Framework), on the auxiliary estimator. Each of these functions
generally differ across the estimators that are considered here, but under the
appropriate conditions, converge uniformly on b (). In the special case where
the involved dimensions coincide, and the weighting is non-stochastic, then
in the case of GMRI1 and GT (see lemma then b, (6, W,,0;) = b(6),
while in the case of GMR2 b, (0,W,,,0;) = Eyf, (see the preceding para-
graph). Hence the stochastic weighting, essentially generalizes the structure
of the functions from the inversion of which the Indirect Estimation (IE) are
derived Pl

Generalizations to Multistep Procedures

We are able to extend the definition of IE (in the particular case of the GMR2
one), through the employment of recursive multistep procedures based on the
existing definitions. These are motivated by the bias structure of the GMR2
estimator as obtained later, and the fact that these kind of generalizations can
lead to indirect estimators that are (globally) unbiased for any given order.
We provide the analogous definitions and results in the section entitled as
GMR2 recursion. It will be evident but not examined here, that analogous
generalizations can be defined in ways that involve any combination of the
aforementioned IE.

4[11] are occupied with the up to third order (O (nil)) bias structure of the estimator
in question. However the complexity of the third order term, does not lead to general
conclusive statements. Hence we choose to examine terms up to order O (n_%) as in [§]
(chapter 4).

5These functions are required to be injective, at least locally. In cases where this is not
true, the inversion can be performed with the use of some measurable choice function the
existence of which resides upon the relevant framework. We do not pursue this approach
here.



Edgeworth and Moment Approximations of Sequences of Distributions

As previously noted we are concerned with the validity of the approximation
of sequences of distributions (namely the ones emerging from the sequences of
the examined estimators). We need some further clarification on the notions
that we attribute to the approximations examined. Let M and M* denote
arbitrary finite measures defined on the same measurable topological vector
space. Let Bo denote the collection of convex Borel sets of the space. The
convex variational distance between these is defined as
CVD(M,M*) = sup |M (A) — M* (A)|
A€B¢

It can be easily seen that the CVD topologizes the set of finite measures on
the space (say MF (S)), as a pseudometrizable (hence first countable) non
Hausdorff space (i). Consider now two arbitrary sequences (say M, and M)
of the latter space that have the same CVD—limit (say M,). We say that
M provides an asymptotic approximation of order s to M,, iff

CVD(M,, M) =0 (n™%)

for some, @ = £, 7 € {0,1,...} and s = 2a + 1. Some remarks on these

definitions are the following{f]

e Due to (i), the set of sequences of finite measures on S that CVD con-
verge to My, say <(/\/l]-" (S))N , M0> is topologized by the asymptotic
approximation definition as a pseudometrizable non Hausdorff space.
In this respect, the asymptotic approximation of order s sequence M
is simply an element of a closed ball with center M,, and an radius that
depends on a.

o If M* is a sequence of Edgeworth measures then we say that M, has a
valid Edgeworth expansion of order s. Remember that the Edgeworth
measures are not probability measures but finite signed ones.

e In a similar construction, we can consider the set of sequences of el-
ements of a Euclidean space that have the same limit. Due to the
fact that a Euclidean space is metric, then this set can also be topol-
ogized as a pseudometrizable non Hausdorff space if, when z,, and y,
are two such sequences that converge to xy, we define that y,, provides
an asymptotic approximation of order s to z,, iff

70 = yall =0 (n7")

6Obviously in this set up this distance could be expressed in the dual notion of measures.
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Again, y,, is simply an element of a closed ball with center z,, and an
radius that depends on a. This can be helpful in the issue of moment ap-
proximation (of some order) of sequences of measures that are mutually
asymptotic approximations. We are essentially concerned on whether
given CVD(M,,, M}) = o(n™?), it follows that || [ f (dM, — dMy)|| =
o(n~®) for a given f € (R?)°. In the case of a bounded f, the afore-
mentioned consequence is valid. When however f is not bounded,
then it generally does not hold, either because the function |, gJd-on

((Mf(S))N : MO) does not attain its values in ((RQ)N,%) (e.g. fis

not integrable w.r.t. the limit distribution and/or some elements of the
sequences, or some of the sequence of integrals do not converge), or in
the case that [, fd-:((M]—“(S))N : M0> — ((]Rq)N : xo) this function is
not in general distance preserving. This discussion essentially implies
that the asymptotic approximation of distributions does not imply the
asymptotic approximation of moments. We provide conditions that en-
sure the latter given the former in section entitled as "Validity of 1st
moment approximation" in the case where S = R? and f = idg.. This
conditions are reminiscent of the uniform integrability ones employed
in analogous circumstances, except that in this case we have to also
consider the order of the approximation (i.e. essentially the value of

a).

Outline of the paper

We immediately provide the assumption framework needed for the definition
of the examined estimators. We then provide assumptions sufficient for and
derive the validity of the Edgeworth approximations. In the following sec-
tions, we provide assumptions that validate the first moment approximations
given the previous results, derive the approximations for a = %, discuss the
bias properties of the estimators, and provide multistep extensions of the
GMR2 estimators that have desirable bias properties of general order. In the
last section we conclude. In the appendix, we provide a series of useful to
our derivations general lemmas.

1.1 General Assumption Framework

We introduce our general assumption framework that facilitate the following
definition of the estimators. Any other assumption will be introduced locally.
The symbol O, (#) will denote the e-ball around 6 in a relevant metric space
and let d = max (2a + 2, 3).



Assumption A.1 The results that will be later presented, lie in the premises
of a well-specified, identified (differentially) parametric, and finite dimen-
sitonal statistical model that is consisted of a family of probability distributions
with respect to a dominating measure (say ), defined on the measurable space
(R™, BRm)E] We will denote this family of distributions with D. with a global
parameterization, that is a (k'™-order) diffeomorphism (for k > d), say par
to an open subset of RP for some p € N, which we denote by OF We de-
note with Dqy the unknown true distribution which corresponds to the true
probability measure (say Py, ) with which the underlying probability space is
equipped, and with 0y =par(Dy).

Let B denote a subset of RY for some ¢ € N and a function b : © — B,
which is hereafter termed as the binding function.

Assumption A.2 © and B are bounded.

Remark R.1 Since © is a bounded subset of a finite dimensional Euclidean
space it is also totally bounded.

Remark R.2 D could be extended (restricted) so as to be homeomorphic
to a compact superset (subset) of O, say ©*. In this case and in order for
the differentiability properties to be retained the previous assumption could be
completed with 0y € Int(©*).

It is evident that the previous remark also applies in the case of B and
that the binding function is by definition bounded.

Assumption A.3 b(6y) =0b(0) iff 0 = by, and for some £, > 0, the restric-
tion blo, (00) : O, (0o) — B is invertible.

"We could easily generalize the form of the underlying measurable space in order to
retain only some desirable structures such as differentiabilty of real functions that are
defined on it etc, that could be involved in properties of the statistical model, as well as
in the definition and the properties of the binding function, to be later presented.

8This means that D (which by construction obtains the topology of variation norm)
has the structure of a (of k order) differentiable manifold, that could be among others
inherited by a relevant structure on the underlying measurable space, see the previous
note. Since we are not interested in (almost) any geometric properties of our results, the
assumption of a global parametrization is without loss of generality. It is trivial that par
is not unique, since any other autodiffeomorphism of the same order on O, will produce
another parametrization by composition with par. For further inquiries on the geometry
of smooth statistical models see among others [IJ.



Remark R.3 The invertibility of the particular restriction of the binding
function, implies that 0y is inferable from the knowledge of b(0y) and of the
restricted binding function, a property that is a cornerstone for the concept
of indirect inference, hence it is termed as local indirect identification.

We strengthen the previous assumption in our differentiable context as
follows:

Assumption A.4 For somee; > g9 > 0, the restriction 6]052(90) : O, (0y) —
B is a k—diffeomorphism.

Remark R.4 The previous assumption that ¢ > p and that rank (%) =p,
Vo € O, (6y).

We also consider the function ¢ : R™ x B — R! for some [ € N such that
Assumption A.5 p,q,l are finite and p < q < [.

The following set of assumptions deal with the structure of the derivatives
of ¢ as well as of the likelihood function.

Assumption A.6 Integration with respect to the measures involved in the
statistical model and derivation with respect to 0 and [ are commutative.

Remark R.5 This assumption can be established upon the existence of ran-
dom elements such that the dominated convergence theorem applies for the

elements involved in the integration and derivation procedures (see for exam-
ple [{)], theorem 9.31).

In the following we will denote with D", the r-derivative operator that
maps a function to a function that consists of the algebraic element containing
all the r'"-order partial derivatives of the first. When A is a matrix ||A|| will
denote a topologically equivalent yet submultiplicative matrix norm, such as
the Frobenius norm (i.e. ||A|| = vtrA’A). Also when suprema with respect
to parameters, of derivatives are discussed these are obviously taken where
the differentiated function is differentiable.

Assumption A.7 b(0) is Lipschitz on © and sup, ||D"b(0)| < M,, Vr =
2,...,d+1 for0 € O (by), for some e3 < &5, with M, € R.

Remark R.6 Notice that D" () denotes the vector containing the partial
derivatives of the relevant order of the differentiated function. The above
assumption is obviously true for r =1 as b(0) is Lipschitz on © and conse-
quently on O, (6)).



Here after we will not explicitly refer to assumptions 1-8 in the statement
of our results. These will be considered to formalize the most basic frame-
work, on which the assumption bellow will operate. Also note that due to the
fact that the spaces © and B are separable, suprema of real random elements
over these spaces are typically measurable.

Assumption A.8 c¢(-, ) is Bgri/Brm—measurable for every f € B, and
c(x, ')|b(052(90)) is d— continuously differentiable on b (O, (6o)) for u—almost
all z € R™ with k > d = max(3,2a+2). Also ||c(x,p) —c(z,B)|| <
ue (2) |8 = B, VB, 8" € B and supy Ey |[uc|™ , g ||c(x, B)||*" < oo, for some
do > max (2a+ 172) (J/fld, vﬁ € b(oaz (00))7 and EGC(:E7B) = Ol><1; Zﬂ‘ﬁ -

b(6), V0 € O, (0y). Also, SUPgeo, (¢y) H%Eg [ (x,ﬁ)]H and SUPpeo, (o) Hﬁa&E@ e (x, B)]H

/
are bounded ¥i,j = 1,...p for some n > 0, where ¢, = <b/ (0o) ,66) )

Remark R.7 The previous assumption implies the identification of b (6), as
the unique solution of Eg,c(x, 5) = 0;x1, which along with the required differ-

entiability and the assumptions bellow implies that | > q, and rank (E@ %Z’,ﬁ)) =
q, rank <E6’ 82%%» =4q, Vﬂ €b (OEQ (60)): Vo € 052 (90)

Remark R.8 Conditions of the form ||c(x, ) — c(z, B)|| < ue(z) |8 — B']],
V3, € B can be termed as global stochastic Lipschitz continuity conditions
and facilitate the convergence of the auziliary estimators to b(0).

Remark R.9 The function ¢ and the estimating equations Egc(z,b(0)) =
0,1 can be derived as part of the structure of a second (potentially mis-
specified), differentiable parametric p-dominated statistical model defined on
the same measurable space, say D*, usually termed as auxiliary model,
with B as its parameter space. In this case the restricted binding function
is a parametric representation of a relevant function (with similar proper-
ties) between the two sets of probability measures (properly restricted). For
example, if g : R™ — R™ is Bgrm /Brm —measurable, and in the structure of
the auxiliary model are the conditions Egc(x, ) = 0«1 in some neighbor-
hood of b(0y), then the change of variables formula implies the conditions
Egc(g (x),b(0)) = 011 of the previous assumption. It should also be noted
that the binding function can be locally retrieved from the previous conditions
through results of the sort of the implicit function theorem/)

9The binding function is usually in practice anallyticaly unknown and approximated
with numerical simulations. Our results do not concern this case and the rationale of this
choice becomes evident later.
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Remark R.10 Conditions of the sort supy Eg [|u,||* < oo, holding globally
on © and locally on B are typically used in the case of the GT estimator.
In the following we denote = >"" | ¢(z;, ) with ¢, (8).

n

Remark R.11 Similarly, conditions boundeness of quantities such as

SUPpeo, (o) ||%E9 [c(z, B)]||, holding locally on © x B are typically used in

the case of the GT estimator and can be derived from conditions like

1iMy 00 SUPge0, (o) Bo 1v/Men (B)° < 00 and limy, oo SuDseo, a0y Bo lv/m5n (0)])7 <
oo where 5, (0) denotes the average score function. Analogously the condition

for the second order derivatives would follow from the condition above and

R 2
limy, 00 SUPgeo, (65) Lo H\/ﬁsn (0)s! (0)+ H, (Q)H < o0 (see also |A.10 and
for analogous conditions).

Assumption A.9 Let W (z,3), W* (z,0) and W** (z,0) bel x 1, g x q and
[ X1 (or qxq see the definition of the GT estimator) u-almost surely positive
definite random matrices such that d-differentiable V3 € b(O, (6y)), Vb €
O, (6o), such that Eg,W (x,b(6y)) = W (b(6o)), Eg,W* (x,00) = W*(0)
and EgyW** (x,0) = W** (0y) are well defined positive definite matrices, and
Egy W (2,b(00)) | < 00, Egy [W* (z,00) | < 00 and Egy [IW** (z,0)]® <
oo for qo defined above.

Remark R.12 This assumption essentially implies that the aforementioned
matrices will satisfy a L.L.N. at 0y or b(6y), and even more evaluated at
points that converge to the aforementioned.

Analogously, in the following let W, (8), W) (0) and W;*(f) denote
LS W (23,8), £ > W* (2;,0), and L 3" W** (z;,0) respectively.

1.2 Definition of Estimators

In this section the set of estimators under examination are defined. They
are all minimum distance estimators, whose existence is verified (at least
asymptotically) by the previous assumption framework. In any case their
existence as well defined single valued measurable functions on the relevant
sample space (say €2,) can be facilitated by the use of measurable choice
functions.

Denote with PD (k,R) the vector space of positive definite matrices of
dimension k x k (with respect to matrix and scalar multiplication). Consider
the following real function on R* x PD (k x k) for k € N

(z,A) — (2/Az)"?

11



for a given matrix the previous function defines a norm on R*. Denote the
function (-,-) |4 with [|-||,. We denote by Q" the sample space for sample
size of n.

Auxiliary Estimators

The auxiliary estimator (5,,) is defined next.

Definition D.1 The auxiliary estimator (3, : Q" — B 1is defined as
B, = argmin [lcu (8)llw, sy

Remark R.13 For large enough n, the estimator is defined as an p-almost
sure global minimum.

Remark R.14 When | = ¢, and under the assumption framework (3, be-
comes almost surely independent of the weighting matriz.

Indirect Estimators

Given the definition of the auxiliary estimator we define the indirect ones.
The remarks on the definition of the auxiliary estimator apply under the
appropriate alterations to the indirect estimators due to their structure as
distance minimizers. We collectively denote them with 6,,, since in the fol-
lowing context there is not danger of confusion. The first and second of thee
indirect estimators were formalized by [9] while the third was introduced by
[12] (see also [§], chapter 4, for a summary).

GMR 1 Estimator The first GMR estimator is defined as:
Definition D.2 The GMR 1 estimator 0,, : Q" — B 1is defined as
0n = argmin {5, = b (0) [l )

Remark R.15 FEven the computation of the estimator relies on the analyti-
cal knowledge of the binding function. In this respect this estimator is almost
always intractable. Due to this fact in applications, under the appropriate
conditions, a version of this estimator is defined, in which the unknown bind-
ing function is approximated by the computation of 3, on a large simulated
path. Notice that the corresponding estimator (sub)sequence is well defined
(at least for large enough n) given that b is invertible around 0y, and that (3,
converges to b (6p).

12



GMR 2 Estimator Due to the boundeness of B we have the following lemma.
Lemma 1.1 || EyS,, || < 0o

Proof. [|[EyB, —b(0)|| < Ey||B,, —b(0)|| < M;, where M; denotes the di-
ameter of B. The result follows due to the boundeness of b. ®
Hence the following definition becomes possible:

Definition D.3 The GMR 2 estimator 0,, : Q" — B 1is defined as
0 = argmin |5, — Eof3, [l o1,

Remark R.16 Again in most cases even the computation of 0,, is analyti-
cally intractable due to the fact that Eyf,, is unknown. Again in applications,
under the appropriate conditions, a version of this estimator is defined, in
which the unknown expectation is approximated by the computation of 3, on a
large set of simulated paths. Again the corresponding estimator (sub)sequence
is well defined (at least for large enough n) given that the function sequence
EypB,, is invertible around 0y, and that 3, converges to b ().

GT Estimator Due to assumption 5, the definition that comes next becomes
possible. We denote by Ejy (¢, (5,,)), the quantity Ep (¢, (8))|s=p, for nota-
tional simplicity.

Remark R.17 Due to assumption 5 the ||Ep (¢, (8,,))]] < oo, V0, hence the
following minimization procedure can be defined.

Definition D.4 The GT estimator 0, : Q" — B is defined as
0, = arg {ofgg | E6 (cn (5n))||w,;*(9;;)

Remark R.18 The usual definition of the aforementioned estimator is given
only when the auxiliary estimator is the M.L.E. of the auziliary model. The
currently defined one is an obvious extension.

Remark R.19 Again the computation of the estimator relies on the analyt-
ical knowledge of the engaged expectation, which is usually intractable. In
this respect this estimator is also almost always intractable. Due to this fact
in applications, under the appropriate conditions, an approximation of this
estimator is defined, in which the unknown expectation is approximated by
the computation of ¢, (5,) on a large simulated path or equivalently on a
large set of simulated paths. The local invertibility of the binding function
implies via the implicit function theorem that Eg (¢, (6)) = Oix1 iff 5 =0(0),
VO € O (0o, e2), hence the corresponding estimator (sub)sequence is well de-
fined (at least for large enough n).

13



Remark R.20 The first step estimator 6, is again supposed to be defined as
any of the indirect estimators with the restriction that the relevant weighting
matrix is deterministic and independent of 6.

Relationship between the three indirect estimators As the asymptotic expan-
sions presented in the results section of the paper will show, in accordance
with the relevant literature the three estimators are asymptotically first or-
der equivalent (proviso a certain selection of the weighting matrix of GMR 1
and GMR 2 given the weighting matrix of the GT estimator). However, in
the special case where p = ¢, a special relationship is revealed between the
GMR 1 and the GT estimators by the following lemma.

Lemma 1.2 Given consistency, and p = q = 1, with probability 1 — o (n=%)
GMRI1=GT

Proof. When p = ¢ = [ due to consistency, the GT estimator satisfies with
probability 1 — o (n™%)
Eencn (ﬁn) = Op

yet from assumption we have that
Ey,c, (B) =0, iff 5=10(0,)

hence the estimator equivalently satisfies

which defines the GMR 1 estimator in these special circumstances. m

Remark R.21 Notice that the previous lemma makes sense for large enough
n, due to the possibility of non-empty boundaries, and/or non existence of
either or both of the estimators.

Remark R.22 Notice that in this framework and in analogy to the particular
relationship between the GMR1 and the GT estimators, we could also define
a variant of the latter (it would be homologous to the GMR2 estimator, hence
could be termed as GT2 estimator), as the solution of ¢, (Eg (5,)) = 0,. Ob-
viously, since ¢, (8,,) = 0, by construction, then GMR2=GT2. This provides
another characterization of the distinction between the GMR1 and GMRZ2 es-
timators in this particular set up. The two estimators are different because
cn (Eg (+)) and Eycy, ((+)) have different roots and therefore their distinction
lies in non commutativity. This observation gives rise to the next lemma.
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Furthermore the GT2 estimator could also be generalized with the introduc-
tion of differences in the relevant dimensions, stochastic weighting etc. In
this respect it would not generally coincide with the GMRZ2 estimator hence
should be addressed as a distinct case of an indirect estimator, with which we
are not concerned in the present paper.

Lemma 1.3 Whenp =q=1andc(x;,5) = f(x;)—Esf (x:) = f (z:)—g (5)
then:

1. the GMRI1 estimator is essentially a GMM estimator.

2. If g is linear then GMR1=GMR2.

Proof. In the first case we have that 3, = g¢
Eof (z;) =g tom(#), GMRl1=m logo, =m
case, if g is linear then Epf3, = g~ o By f (z;) =
result follows. m

“ho Lf(x), b(0) =g to
Lo lf(z;). For the second
g tom(0) =b(0), and the

Remark R.23 1. would be valid even if 5, = rogto %f(wl) forr a
bijection. Hence the GMR1 can be a GMM estimator even in cases that the
auziliary is an appropriate transformation of a GMM estimator.
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2 Validity of Edgeworth Approximations

In this section we expand the assumption framework, in order to validate the
Edgeworth approximations and using this we derive the validity. Remember
that every estimator considered is an extremum one, and the criterion from
which it emerges is at least locally differentiable. Accommodating this fact,
in order for the derivation of the aforementioned validity we employ the
following steps. First, we prove that the estimators satisfy the first order
conditions with probability 1 — o (n~®*). Then a justified use of the mean
value theorem proves o(n~%) asymptotic tightness of \/n transformation of
the estimators. Third, due to the first step a local approximation of the y/n
transformation is obtained by a Taylor expansion of the first order conditions
and using the second step it is proven that the relevant remainder is bounded
by an o (n~%) real sequence with probability 1—o (n~). This due to corollary
AC.1/implies that if valid, the y/n transformation and the approximation have
the same Edgeworth expansion. Finally, the validity is established from the
validity of the relevant expansion of the aforementioned approximation.
This methodology coincides with the one in [2] an is essentially based
on local differentiability, lemma and [3] which provide a theorem of
invariance of validity of Edgeworth approximations with respect to locally
differentiable functions. Notice also that lemma [AL.3 enables the extension
of the results in non differentiable case, but this will not be pursued here.

2.1 Assumptions Specific to the Validity of the Edgeworth Approxi-
mations

Let f (x,() denote the vector that contains stacked all the distinct compo-

nents of ¢ (z, 8), W (x, 8), W* (z,0) and W** (z, 0) as well as their derivatives
up to the order d = max (3, 2a + 2).

Assumption A.10 supco,, (g, [|D"EoB, | < M, for 0 < ey < &3, forr =
2,...,d+1, and M > 0.

Remark R.24 Assumption[A.1( along with Assumption[A.7 imply that for
r=2,...,d+1, suppco (90) | D™ (Egf,, — b(0))|| < M, + M}, which in

min(eg,e T’
turn means that D" ! (E95n3—4 b(0)) are uniformly Lipschitz on Omin(es.e,) (00),
and therefore uniformly equicontinuous on the same ball. This implies the
commutativity of the limit with respect to n and the derivative operator (of or-
der r—1) uniformly over B (0, min (3,£4)). Due to Assumption[A.1] for k >

d + 1, this assumption 1is wverified wvia conditions of the form

— 2
SUPEO incy e (00) 26 IV (B, — b(0))]° = O (1) and supyee (60) 0 |vnl, ()] =

min(ez,eq
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O (1) where I, () depends on derivatives of the (well defined in our set-
ting) average likelihood function. For example for r = 2, we have that

1, (0) =s,(0)s, (0)+ H,(0).

Assumption A.11 Ey ||f(z,B)||*" < oo, VO € O, (60), V8 € b(O., (6y))
fO?“ q1 = 2a + 37 ”f(xa6> - f(x>ﬁl>H < Ky Hﬁ _6/“7 Vﬁ S b(OEQ (90))7 M-
almost surely for an almost surely positive random variable k., with Eprl <

oo, Vo S 052 (GO)F_U]

Remark R.25 This condition that could be termed as local stochastic Lip-
schitz continuity condition facilitate the Edgeworth approximations of the
relevant sequences of random elements.

Assumption A.12 The Weak Dependence assumption and the Cramer type
of condition of [2] or [10] hold for the sequence {f (z,,b(6o))}, and the
sequence of characteristic functions of £ 3 f (x;,b(0y)) respectively.

Remark R.26 The last two assumptions quarantee that the (unknown) se-
quence of  distributions of the sequence of random  elements
VI (23 f (2,0 (60)) — Ego= > f (24,0 (0o))) can be approzimated by a se-
quence of Edgeworth distributions of order of error o(n=*) (see [2]). No-
tice that the Cramer condition on the conditional characteristic function of
L5 F (23,0 (00)) could be implied through controlling the order of magnitude
of tail moments of the relevant partial sum.

Assumption A.13 . The initial estimators are derived from a, relevant to
assumptions 1-11, framework. The relevant sequences of distributions of the
initial estimators, (5, and 8, can be approximated by a sequence of Edgeworth
distributions of order of error o(n=%).

Remark R.27 This will be trivially satisfied when 3, is defined via ¢ and
the relevant weighting matriz is independent of B and deterministic. The
analogous argument applies for 0, (see below).

We present the results on the validity of Edgeworth approximations for
any a for any of the four estimators defined above. We begin with the
auxiliary estimator.

ONotice the local nature of the moment existence conditions here and in assumption
A.8l These are stronger that the relevant conditions of [2], and facilitate mainly the case
of the GT estimator.

17



Auxiliary Estimator

We can prove the following lemma concerning the auxiliary estimator, that
is essentially a direct application of the relevant results in [2].

Lemma 2.1 Under assumptions [A.1, [A.9, [A.5, [A.8, [A.9, and
there exists an Edgeworth distribution EDG, (e) such that

sup |Py, (v/n (8, —b(6o)) € A) — EDG, (A)| =0 (n7%).

A€eBe

Proof. Notice that assumptions 1-4 in [2] correspond to assumptions
(A2 [A.5] [A.8 [A.9, and [A.11HA.13] The result follows from Lemmas 5 and 9
of 2]. m

Indirect Estimators

We next present in a more detailed manner, as described in the introduction
of the present section, the analogous results for the indirect estimators. We
begin first with the issue of the rate at which the probability of the event that
the estimator belongs to an arbitrary neighborhood of 6y, approaches unity.
We term it o (n~%)-consistency. Then we are occupied with the rate at which
the probability of the event that the /n transformation of the estimator
lies in a o-compact subset of R, approaches unity. We term it o (n=%)-
tightness. Notice that the latter implies the former. The relevant lemmas
are announced in such manner so that only o (n~%)-tightness is explosively
presented. However the o (n~%)-consistency is established as a first step for
the establishment of the tightness and therefore it lies in the proofs of the
lemmas. Then, the validity of the Edgeworth approximation is established
separately.

GMR 1 estimator: o (n~*)-Consistency and o (n~“)-Tightness The results for
the GMR 1 estimator are presented here. These follow directly from the pre-
vious results and the fact that the binding function has bounded derivatives
of any of the supposed orders.

Lemma 2.2 Under the validity of lemmas and assumption [A.7]

In/2n
Py, | 1|05 — 6ol > ng =o0(n"") for some Cy > 0.

18



Proof. The initial estimator, ¢} is defined in assumption , and by Lemma
[AT.1] we have that

Py, (W= (0r) —W*(6y)]| >¢) =0(n"*), Ve > 0. Now notice that plim (3,, — b (0)) =
b(0g) —b(0). Hence V0 € © and Ve > 0

z%(wmwn—wm—wwa—bwmww)=f%m@fwwwn>a=owﬂ)
fcO

from Lemma[2.T and consequently, the consistency of 6,, follows from Lemma
5 of [2].

Hence 0, is in the interior of © and % J, (6,,) = 0 with probability 1 —o (n™%),
where J, (0) = (8, —b(0)) Wz (0%) (8, —b(0)). Hence element by ele-
ment mean value expansions_olf %Jn (0,,) around 0y and rearrangement gives:
0, — 0y = (3969/‘] («9+)) 2. Jn (69) with probability 1 — o (n™*), where
9: lies between 6, and 6, and may be different across rows. Hence it
suffices to show that A) Py, ( (0o) H > C* 1“11//22 ) = o(n™*) and B)

P (| (s 00))

For A) notice that Pgo (

(20
> K) =o(n™%).

L (60)|| > ¢l ) -

Pao (| -2t (Hﬁ—b%H>omﬁ)g
(wwwwwﬁ—b%M>OM¢ﬂwmmo

m by the sub-

multiplicative property of the norm and by assumption |A.7 H—b (6o) H > 0.
Hence we have that for K > 0 we have Py, (||[W, (6;)|| > K) = o(n~%), which

/2,

is true from Lemma [AL.1land Py, (Hﬂn —b(bp)]| > Ot ) by Lemma
and the result follows.

For B) notice that aeaae/'] (07) =22b (9*)/ W (07) az/b (67)
—2 [89 d0; b (9+) Wy (0r,) (5 - b(9+))} - = B; + B,. It suffices to
1,7=1,...,

show that for K > 0 we have that Pgo (| B1 —|—B2|| > K) = o(n"*). But
P9o 1B1 +B2|| > K) < Py, (1Bill > 5)+Po, (1 Ball > 5). Now Py, (| Bul| > 5) =

Po, (|| 0 6) W 03) 3370 (6) K) <

m (|4 bW!\W”WW>—)=
= Po (150 ) 1” IW5 @)1 > % 0 |5 (03) = W™ (8o)]| > <

+4%m%w@mwmqHW>zmwm<a—wmeSe
(for any € > 0)

N——"——
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< Py, (W, (07) = W™ (0o)|| > ¢) +
(H sat (0) H W (00)]] > X 0w (0] — W= (6o) ] <€) <

< oo} 4P (Hgb 6> st ) = oty ([0 @) | > )

(where K* = qk )

<—Q+R%Qpb@n¢;>mew+_%u>g)

+P90(‘8b (67) H > K o) - 90H<5)(forany5*>0)
<0( )—l—PgO H9+ 90H>€ +

P (1 @1 > 0oz =0l ) -
o(n™%) + Py, <H 2 (0)) H > K* N0} — 6o < 5*> (from consistency of
0,)) . Now as |0} — 6o|| < &* and choosing e* < &4 we have that 0. € O. (0o)
with probability 1 — o(n™?), due to assumption Hence by choos-
ing K* > M we have that Py, (|| 50/ (67)[* > K" n[|of — 6] <) =
o(n=).

For By we need to prove that 3K* > 0 such that
P (| [t 05) Wi 020 (5, -0 6))]

P (| [t 00) W ) (5, - 0 0],

2
o (Bt T [ 02) 500 (5 =0 00| > )
S P90 <maxw 90,00, 89 b(6’+) W* (Q*) (6 —b g-i- ‘ > K2> Hence it suffices

Ly ( 99,8, (9+) Wy () (8, —b (9:{))’ 4{22) = 0(n~*) for some specific

7,7. In fact we can prove that Ve > 0 we have that

Poy (|t (63) Wi (63) (B, = b (67))| > ) =0 (n7®).

This, again, follows first, as for ¢** > 0 P (HB —-b 6’+ || > 5**)

=P (Hﬁ — b 90) + b(eo) —b <9+)H > 5**>

<P (|8, = b)) >5)+P(||b (o) —é&f{)“ > £2) = o0(n™") as the first
probability is o(n™*) due to Lemma and the second is also o(n™)
due to assumption and the consistency of 6. Second, for £** > 0
P(||Wr(0;)—W* (90)” > ) = 0( =) from Lemma [AL.1] and finally, for
e > 0 Py (| 55,00, ae b () — 75 ae
tion [A.4] and the result follows. m

155

b(@o)’ > 5****) = 0(n~%) from assump-
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GMR 2 Estimator: o (n~)-Consistency and o (n—“)-Tightness The relevant re-
sults for the GMR 2 estimator are presented here.

Lemma 2.3 Under the validity of Lemmal2.1] and assumption[A.10 we have
that

1 1/2
<||9 — 6] > Cs 1 n> =o0(n"%) for some Cy > 0.

Proof. Due to the definition of #,, and by Lemma [AL.1I] we have that

Py, (||W (x,607) — W*(0p)]| >¢) =0(n"%), Ve > 0. Now notice that plim (5,, — Epf3,,) =

b(6y) —b(#). Hence VO € © and Ve > 0

Byy (supgee |15, = Eol,, — [0 (60) = b(O)]]| > ) =

By, (supgee |16, — 0 (60) = Eof, +b(0)]| > ¢) <

Py, (18, = 0 (60) || + suppee [|EoB, = (0)]| > €).

Now we know from Lemma above that Py, (||, — b (6o)] > 5) =0 (n™?).
Hence it suffices to prove that for

Ve* >0, dn*eN:sup|EyS, —b(0)] <e*, Yn>n".
60

For this we need to prove that first, ||Eyf,, —b(0)| — 0, pointwise on a
dense subset of O, and second | Ey3, —b(0)| is asymptotically uniformly
equicontinuous (due to Arzella-Ascoli Theorem). For the first one notice that
Py, (|8, —0(00)]] > ¢) = 0(n~?) and 0, is arbirtrary. Hence, Py (||5,, —b(0)|| > ¢) =
o(n=?) for any § € ©. Furthermore, as B is bounded the series (3, — b ()

is uniformly integrable, and as ||EpB,, —b(0)|] < Eql|5, —b(0)| we get
1E6f, = 0(O)] — 0, ie. [[EpfB, —b(0)]| =0 (1)

For the second it suffices to prove that Eyf3, — b(0) is uniformly Lipschitz.

But [[(EoB, — b(8)) — (Ey B, — b(0)I| < | EoB, — Eo-B, 116 (8) — b (8")]|.

But ||b (0) — b (0)|| < k|6 — 6*|| by assumption[A.7] Further, |Epf3, — Eof3,,| =
IEig, (0 (B~ 0] -

=l 0,00 b0y

dim (B) max;_1,.._dim(n \ fRn — b(0 ); APy = [ou (B — b(6)),; dPp-|

< dim (B) max,_;.. . b P <

dim (B) M, fRn |dP9 — dPg* d1m (B) MiTV D (Fy, Pp<) < dim (B) M,C'||0 — 67|
where M is the diameter of B, and TV D (Fy, Pp-) is the Total Variation
Distance between the two measures and the last inequality follows from

the smoothness of the parametrization of the statistical model (assumption

[A.T) [ Hence [[(Eyf3, — b(0)) — (Eg B, — b (07))|| < [k + dim (B) MC] || — 67|

" Recall that a distribution ¥, on the space of random variables, defined on a normed
space S is smooth iff for every set A, § > 0, and A° = {z € S: minyea ||z — y| < 6},
|\Il (A%) -V (A)‘ = 0(9d), A collection of distributions is called smooth if every member of
it is smooth.
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and consequently, By, (supgeg |18, = Eof, — [0 (60) —b(O)]] > €) = o(n™),
and the o (n~*) consistency follows.
Now, let us call J, (6) = (8, — Esf3,) W* (z,6%) (8, — Eof3,) then 6, — 6y =

)
(8980/J (9+)> 21, (8y) with probability 1 — o (n"%) where 2.J, (6) =

K
80 Jn |9:90
Hence it suffices to first show that P (

and QI lies between #,, and 6y and may be different across rows.
/2,

H%Jn 00 H Clr;l/z ) = 0(n_a) and

(aeae/‘] (9+)> IH > K> = 0(n™) and

second that for some K > 0 P ('

apply Lemma 5 of [2)].

Now 26E“)ﬁn W (x,07) (8, — Eob,, ) and we know from

Lemma [2.1{ above that Py, <Hﬂ —b(bo)] > C1 1n11//22 ) ) for some
Cy > 0. Hence P, <||5 — Ep B, |l > C’llnll//z2 ) =

Py (118, = b (80) = (EaiB, = b (0))| > Cr22 ) <
/2,

Py (118, = b (00)| + | Eag3, = b (60)]| > C112572 ). Now

1n1/2n
Py, (Hﬁ = BooBull > Cr= 75~ ) = o(n™"),

as for a > 0, we have that |Ey,[3,, — b (6o)|| < Eg, ||5,, — b (00)|| =
By (18, = b @)1 T (118, — b (00)ll > Cstipze)]
+ By (18, = @)1 (18, = b (00| < G )| <

/2, nl/2

< BE, [1 (118, = b(8o)ll > Cs22) |+ 22 g, [1 (18, — b (00) | < o2t
(where B is the bound of |3, — b (o), see assumption [A.2)

= BPy, (118, — b(00)]| > Cs272 ) +Cs2z2 Pay (118, = b (B0)l| < G527 ) =
Bo(n™) + G2 (L—0(n™) = o(n™®) + G2t = O (272). In

this case we have that Py, (||/3n — b (00)| + || Esy B, — b (60)]| > Cymn ) <

/2, Inl/2n nl/2p

Pau (118, =060}l + 0 (157t ) > 1t ) < P (118, = 060 > Caiz)
for some Cy > 0 and we know that this probability is o (n~*) and the result
follows. For a = 0 we have that the GMR2 is asymptotically equivalent to
GMR1 (Gourieroux et al. 1993).

Further, due to assumption it follows that

0
o ([0

% ‘00




-1
For the second, 3K > 0 such that P (‘ 8080/ (0:{)) > K) =o0(n"%),
+/8n % * oE A—ﬁn
notice that W‘] (07) = 2—5—W; (2,6;) —a—
Bl
-2 [ 89059 Wy (z,0;) (8, — Ey+ 3, )] = A+ B. It suffices to show that

5,5=1,..., p

for K* > 0 we have that P, (| A+ Bl = K) = o(n-%). But Py, (| A+ B|| > K*) <

2o (14 > &)+ 2 (181> %)
* 8E ﬂ'n *

Now Py (141 > ) = 7, (|4 -8 <

aEQ’j; Bn
a6/

90 W, (x> 9;)

2

OF +B/ o*
|| 1Wa (z,07)

W (2, ;)1 > £ W3 (2,67) — W™ (60) ] > 8)

IIW (z,67,)

n (2,0,) = W= (6o)|| < 6) < (for

< Fa, (W5 (2, 9*) =W (0o)l > ) +

oF. . Bl
Pao( L

w (@ 00| > 5 0 W (2, 0) [ = W (0o)[| < e | <

2 2
—a 6E0;fﬁ{l K* —a BEexﬁn "
= ot ( o0 || > aermrEon | = o)+ s || > K] =
k¥ K*
(where K** = —4(€+”W*(90)”))
2
OE, | i,
=o0(n™) + Py, ?9 > K* N ||9:[—90|| >5*>
OE, . ), 2
+ By, 955 . >K**ﬂ||9;—90|| Ss*) < (for any £* > 0)

<o(n™) + Py, (|0} — 6o]| > &) +

2
OE, ;. B},
GTL
Py, (

96
0(n~%) 4+ Py, ‘

> K |of — 6] < e*) _

Egiﬁ{L
o0

> K™ N0} — 6o < €*> (from consistency of 61)

. Now as ||6;f — 6o|| < &* and choosing e* < 4 we have that 6, € O, (6,) with
probability 1 — o (n™?), due to assumption |A.10, Hence by choosing K** >
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OE 1 Bl
n
00

M7 we have that Py, (

2 > K™ |6) — 6] < 5*> =o0(n™).

For B we need to prove that 3K* > 0 Such that

[ Bl .
Fo ( aeege Wi (@,07) (B, — Egt B, ) > £ ) =o0(n" ). In fact
di,j=1,...p
we can prove that Ve > 0 we have that
Bl
Py, agegg W (x,0,,) (B, — Eejﬁn) >¢e | =o0(n*). This, again,
ij=1,..,

follows %rom assumptionand the o ( ) consmtency of 0 and P (||8, — Ey+ B3, | >e™) =
o(n™®),Ve* >0. =

GT Estimator: o (n~)-Consistency and o (n~“)-Tightness The relevant results
for the GT estimator are presented here.

Lemma 2.4 Under the validity of Lemma [2.1] we have that
1 1/2
<||9 — 6] > Cs t n) =o0(n") for some C3 >0

where 0,, is the GT estimator.

Proof. For notational convenience we set ¢, (8) = £ 3" ¢(x;, ) and denote

by Ey (¢, (B,)), the quantity Ey (¢, (3)) |s=p,- The definition of 0, is: 0,, =
arg mingee J, (/) = argmingeo (Ey (cn (8,))) W2 (0%) Ep (¢, (8,)) and we
have that W* (0;) = = >, W** (;, 0}, where 6, as in assumption|A.13, and
by Lemma we have that Py, (||W** (x,0%) — W** (6y)|| > €) = o(n™%),
Ve > 0. Further,

Py, (sgp | Egcn (B,,) — Egcn (b(00))]] > 5) =0 (n_“) Ve >0 (1)

as Py, (supy || Egcn (8,,) — Eecn( (Go))ll > €) < Py, (supy (Eeuc) 18, = b (Bo)ll > &) =
0(n~®) due to Lemma [2.1] above and by assumption (Notice that
Epc, (B,) = Epcn (B)|s—p, and consequently | Epcy (5,) — E@Cn (b(0))| <

Eplen (B8,) = e (b(00))]] < (Eguc) ||51_52H|661:6n ). Consequently, the

=b(60)
consistency of ,, follows from Lemma 5 of [2]. ’

Hence 0, is in the interior of © and 2 .J, (6,,) = 0 with probability 1—o(n™%).
Hence element by element mean value expansions of 2 53n (05,) around 6y and

-1
rearrangement gives: 6, —fy = — ( o007 I (9:{)) 2T, (6) with probability
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1—o0(n~?), where 6, lies between 6,, and 6y and may be different across rows.

Hence it suffices to show that 15%) Py, (o) H Ch;l]_//z ) =o0(n™") and

(1157

2nd) P( (aeae/ (0*)) ‘ > K) =o0(n™%).
For 1°%) notice that Py, ( o (0o)|| > C* 1‘;;//22 ) =
Pay (11285 B [¢/ (BI] Wi (82) Eag e (8,)]]] > €252 ) <

/2,

Py (1185 Evoe! (8, 1 G211 1B, [e (B > Oz ) where € = & by
the submultiplicative property of the norm. Hence it suffices to show that
1;) Py, (”E@O[ B > C“;;I//Qg”) = o(n™*) 1) for some K > 0 we have
that Py, (H(%,Ego [c/ B, ]H > K) = o(n™%), and 1;;) for K* > 0 we have
Py, (W (67)]| > K*) = o(n™*), which is true from Lemma [AL.1l For 1,)

notice that Py, (|1 Eay e (3,)]11 > O ) = Pay (|1 Eag [e (8,)] = Ea, e (b (6| > C2572)
(3 Egy e (6(60))] = 0) < Py, (Eny e (8,) = (b (60))l| > C2472)

/2,

< oy (1B, e ) 1180 — 0 0)| > C2202) = By (18, — b @) > gy ) =
0 (n~*) by Lemmal[2.1]above. Finally, for 1,;) it suffices to show that Ve > 0 we

have that Py, (|| 2 Es, [¢/ (B,)] — ZEq, [¢/ (b(60))]|| > €) = 0(n™). Now by

assumption A.8iwe have that P, Hd9E9o [/ (B,)] = ZEqg, [¢/ (b(60))]|| > ¢) <

Fog (M| e (30)] = Bl e (b (Bo))ll| > £) = 0 (n™?) from 1;) above.

For 2", i.e. P <H<3939/ (9*)) H > K) = 0(n™") notice that -2

aeae/ I (‘9+) -

2 (ot Eug [/ (B) W (00 Eug e8]} 285y [e! (B)] Wy (63) 3 B [e(5,)

We show that JK* > 0 such that P (Haeam )] > K7) = o). But

P (|52 63)|| > K7) < P (|25 Eos [/ (B Wi (82) 2 Bay [e(8,)]]| > %)+
P (o (s [ Gl W @ By fe)} 5 %)
Now Puy (|24 Eos [/ (8] Wit (63) 2 By [e 8, > &) <

Py (15Es: [/ G W5 811> 57 ) =
= oy (I8 Es [ B 173 G > 55 0 0 (62) — W (60)] > <) +
Py (1 Eas [/ B W3 @] > 5= [ Wy (63) — W (@o)| < <) (or

any ¢ > 0)
< P90 (W (0 *) =W (0o)l| > ) +

Py (1B [/ G I3 @)1 > 5 0wy (63) = W (0o)]] < <)
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<o(n )+ Py, (|4 Bsg [ B |* IW5 (03)

Wi (@l = W™ (0)]] < <) =

0(n™") + Puy (|| 55 Eoz [¢/ (8,)]|| > K**) where K™ =\ | 1o

/
Now for Py, (HagEHJr [/ (B)]]| > K™) = 0(n™*) and ¢, = (b/ (6o) ,06) we
have that
%HM%%anbKﬂ -

P (IE 10 001> 0 { () 0,6} ) ¢
" )

80 [ @l >k n { (5 ) # Outon) <
Py (39Paco o) | 55 Eot [/ (8] ]| > K+*) +
Pi (@)¢O<%Q <
Pay (18, ¢ O, (b (00))} U {6 ¢ O, (60)}) <

Py, (B, & O, (b(60))) + Py, (0, & O, (0p)) < 0(n™*) where K** can be cho-

sen as greater than the maximum between the previous choice and an up—

per bound of supyce, () H 50 Fo [c/ || which exists due to assumption

Hence %Eez [C/ (6 )] W** (9*) 207 E9+ [ (ﬁn)] - %an [C/ (b (00»] w= (00) 207 E@O [ (b (00))]
with probability o (n=*) and & Ejp, [c/ (b(6o))] W** (6o) a%/Ego [c(b(6p))] non-

singular. This follows from the fact that V0 € © we have that Ej [c (b(0))] =

0 and by the Implicit Function Theorem we have that % Ejy [¢/ (b 0))] +

2/ (0) %E@ [/ (b(6))] = 0and it follows that & Ep [¢/ (b(0))] = —Zb/ (6) ZEy [/ (b(8))].
Now %b/ (0) is a p x ¢ matrix and rank (aab/ (9)) = p, by assumptlon

above, whereas %E@ [¢/ (b(6))] is an gx! matrix with rank (a—aﬁEg [/ (b(0)]) =

¢, by assumption [A.8 above, hence rank <%b/ (0) %Eg [/ (b (0))}) = p and

it follows that rank (% Ep [¢/ (b(0))]) = p. It follows that as W** (6,) is non-

singular, by assumption [A.9above, rank (%E@O [/ (b(60))] W** (6) 2 507 Eoo [c (b (90))]> =

.
Further we have to prove that

%(QQM%JWWWWm&w@M,

%JEAPLLP%%%kwmem@wwM>T) ,,,,,
< P90 (maXi,j 90,00, E0+ [C/ (ﬁn)] W;* (‘9:;) EG;‘[ [C (ﬁn)] > 4122) In fact we
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can prove that Ve > 0 we have that

P, (|7 Bo [/ (B)) W (63) By [e(8,)
Pur (|t Bog ¢ (8.0 Wi (6) Euy (5,
( 96,00; EH* [ (ﬁn)] Wy (9*)Ee+[

(|15 Bor [/ ] || 1w @301 152 5, > ‘)

Ey+ c(ﬂn)] — Fy, [c(b(6p))] = 0 as Eylc(b ( )] =0V € O, (0y) due to
contin uous mapping.

Poo (|| a5 Bt [/ (B || IW5* 01| By [e (B > 2) =

Poy (|| 555 Bog [/ B || IWr @I |[Bay [ (BI] > =0 [W3e (6) = W (86) | > 1)
+Pao (|| 55 B [¢/ B[ IW5 @)1 | B e (81| > 2 0 [W3 (83) = W (60)]] < 1)

< Puy (W (05) = W Oyl > 1)

+ oy (|| 35 o [/ B IWze @ | By e B > £ 0 IWze @)1 = 1w B0)]| < 1) =

> &?) =o0(n"*). But

>5>:

=9

o(n=) +

Py, ( i 89 g5 Eo+ [ (B W ((9;;)|| | Egs [c(B)]]] > en W (07)]] < ey + [[W* (90)||)
< 0 () Foo <’ 90,00, E9+ [/ (8 c(Bu)]| > 5*) where & =

To prove that Py, <H‘99 o; By [c/ [C ]H > 5*) = o(n7") it

suffices to prove that for K > 0 P, <H‘99 o5, Loy [/ (B,)] ‘ > K> =o(n™%)
and for e > 0 Py, (HEOI [c(8,)]]| > ™) = o(n™*). For the second order

derivatives we have that Vi,j=1,...,p
Pon (|t i e ) -
(8939E9+ (>Kn{<§f)e@n(%)}>+
(8080E9+ (>Kn{ §§)¢0n(%)}> <
Py, (Supeeo (o) 59 a0, E9+ [c /(571)} ) > K) +

m ()0 w) <

Foy ({5, ¢ Oy (0(80))} U {0 ¢ O, (60)}) <
Py, (B, & O (b(60))) + Py, (0, & O, (0y)) < 0o(n™*) where again K can be
chosen as greater than the maximum between the previous choice and an

upper bound of supyco, () H 79,00, [c(B)] H which exists due to assumption
Further, for ¢** > 0 (small) B, (HEQZ [c(B]]| > &™) =
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Foy (”Ee:; [c (B, )] Eg, [c (b 90))”! > ™) = o0(n™) from above.
It follows that 89 80 Egy+ |c [/ (B,)] W (67) Ey+ [c(B,)] — 0 with probability

—a

o(n
Henee =227, (07) — 225 Eu, [¢/ ((06))] W™ (65) 2 Eag [c (5 (60))). a non-

-1
singular matrix, with probability o (n=%). It follows that ( o507 I (9;)) —
—1
(2%%0 [¢/ (b (60))] W™ (6g) -2 o Eg, [c (b (90))]) with probability o (=) and,

for K > 0, P((am/J 03)) >K) = o(n™).

/2,

Consequently, as Py, (H% (0o) || > .YE ) = 0(n™%) the result follows by

Lemma 5 of [2]. m

Existence of Edgeworth Expansions of Indirect Estimators

Lemma 2.5 Under the validity of Lemmas and assumptions
the GMR1, and GT estimators admit valid Edgeworth expansions
of order s = 2a + 1. Furthermore, if the auziliary estimator has a valid
Edgeworth expansion of order s = 2a + 2, then the GMR2 admits a valid
expansion of order s = 2a + 1.

Proof. i) For GMR1 we apply lemmal|AL.2{where 6,, =GMRL1, ¢,, = gl‘

and the application is justified by the fact that that provision 1 holds due
to 2.1} 2.2 and [A.13], 2 follows from [A.7] |ﬂ| [A 11| and [A.13] and 3 follows

from lemma 5 of [2] and |A.13, Let S,, = ( w Lis bf (xz(be(H)g) 0o) ) where
n 0

1 n
f is defined in |A.11 Denote by S, ( w 2int Efo(xil,b(ﬁo) +0o) ) By re-
[0S

mark [R.26|and lemma [2.1] . /1 (S, — S) has an Edgeworth expansion of order
s =2a+ 1. Hence 7* (R}) = G (S,) where G (.) smooth. and G (S) =0 and
from [3] \/nG (S,) has an Edgeworth expansion of the same order.

ii) For GT the proof is analogous to (i) apart from the fact that has
to be evoked instead of 2.2 The only thing different is .J,, which obeys the
provisions of additionally due to assumption

iii) For GMR2 we apply again lemma |AL.2{ where 6,, =GMR2, ¢, = gl‘
and the application is justified by the fact that that provision 1 holds 7Ziue

to [2.1], 2.3, and [A.13] 2 follows from [A.10] [A.9] [A.11] and [A.13] and 3 fol-
lows from lemma 5 of 2] and |A.13 m Notice that in this case R* is expanded
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7 2 [ (wi,b(60) , 6o)

D'Ey, (3, B - Egy 5,
. D Ey, 53,
by . . Now. define S} = . then

Di1E, 8, .

N .

%Z?:l [f (951', b (90) ,90) - Eeof (ﬂ% b (90) »90)}
ﬁn - E@oﬁn
0

\/E(S;:_EGOS;) = \/ﬁ

0
has an Edgeworth expansion of order s = 2a+ 1. This is justified by assump-
tions|A.11|and[A.12{for v/n ( L 377 [f (25,6 (60) ,600) — Eg f (w:,b(60) ,00)] )
and by Lemma [AL.3| of Appendix for /n (5, — Ep,3,) which is valid if
Vn (B8, —b(6p)) has a valid Edgeworth expansion of order s = 2a + 2 (due

] S
0

to Lemma |3.1| below and remarks |[R.28| and [R.29)). S* = ' and
n 0

™ (RY) = G(Sf) where G (S*) = 0. Hence again due to the analogous

result of [3] /nG (S;) has an Edgeworth expansion of the same order. m

3 Validity of 1st Moment Expansions

Having established the validity of Edgeworth expansions in every case of
the examined estimators, we are concerned with the approximation of their
first moment sequences with a view towards the approximation of their bias
structure. We know from the paragraph "Edgeworth and Moment Approx-
imations of Sequences of Distributions" that the validity of the former do
not imply the validity of the latter. We provide a general lemma which, uti-
lizes the Edgeworth expansions along with further assumptions the required
approximations are validated. These assumptions are uniform integrability
ones, and are presented immediately along with remarks that comment on
their applicability.

In the following if A is a measurable set, we denote with P, (A) =
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P (/n (0, — 6y) € A) where 6,, is any of the examined estimators (auxiliary
or indirect) and @, a sequence of distributions such that CVD (P,,Q,) =
o(n=?).

Assumption A.14
Je>0: na+%pp (\/ﬁ(en — ) € \/ﬁ(@ — o) \OK(lnnf (0)) =o0(1),

Remark R.28 The above assumption is valid when v/n (0,, — 6y) has a valid
Edgeworth expansion of order s = 2a+2 (see Magdalinos (1993), Lemma 2).

Assumption A.15

w [ ol 14Qul = 0(1)
Rq\oK(ln n)e(o)

Remark R.29 In fact if Q, is the Edgeworth distribution we have that

A=n° fR‘I\OK(lnn)E(O) | x| |[dQy] = n® qu\OK(lnn)E(O) | fr (2)|| d®+0 (1) where @
s the multivariate standard normal cumulative distribution function, and as

fn (2) is a polynomial in z we get: A—o (1) < n® qu\OK(lnn)E(o) HZin n7sf; (z)” dd <
2a—1
SxonT qu\OK(lnn)e(o | fi (2)]| d® where f; (z) appropriate polynomials in

2a—1

2\

2. Now n’3 qu\oK<l ||fz< )[dd < Cn™z qu\oK(lnn)e(O) [2[]* d® =
on*s* qu\OK(IM)e( 0 < ;1.:1 zf) d®. Now the I term in the expansion of
“

the A" power will be of the form: H zj“, where 25:1 ki =2\;.
=1
2 A j o
a—1 q 7 .,l _
Hence, A—o(1) < Cn™2 Y 1| qu\OK(lnn)e(O) szj dd =
=1
2 A 4 k ’ 2
a i '3 il z o
Cn™z (2m)" : i H fR\(—K(lnn)E,K(lnn)e) z;" exp <_?J> dzj =
j 1
2a—1 P
Cn™z g H fK e ! exp (—%) dz; as kj; is even. Now by chang-
ing of variables we get that A — 0( ) <
a—i — i k +1
on*s (3) ?1H2 15 exp (—t) dt =
anaz : (2) 2 H2 = (Ll K2(1+")) where T (o, @) is the incom-

plete Gamma functzon (see e.g. [13] formula 8.350). For lnn — oo we have
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k:7—3

€ le -1
thatF< Rzt KA(nm* ): (—K2<1;">2> ’ exp( K2 (nm™ ){1+O<(—K2 1) ) >] <

k] -3
(M) ’ exp( M) (see e.g. [13] formula 8.357). Hence A <

q

q
o (71')75 2%:1 Z?:l H (ln n>€(kj,l*3) Kki1—3 exp <(2a—i) 1“”_K2(1n")26>_|_0 (1) Now

2

J=1
for e > —, and K > 0 we have that

q
C (7?)_% 2% Z?:l H (In n)e(kj,l—?)) KF*i173 exp <(2a_i) ln;_(lnn)2€> — 0 asn —

J=1
o0,

Lemma 3.1 Given the assumptions|A.14| and|A.15 above then

| w(ar.~aq.)

Proof. Assume now that supacp, |Pn(A) — Qn (4)] = O (n7%7"), where
Be denote the collection of convex Borel sets of R? and n > 0. Now

na

=o(1).

n|| foo (P, — dQy)|| = n H Js0xmmy (AP0 = dQy) || +n° 0Ky T ([APn — dQn)

<n" HfB (0,K (Inn)°) z (dP, — dQn)|+n" qu\B(o K(inny) T4 ¢ ‘ qu\B (0,K (Inn)°) den‘
fB 0,K (Inn) |a:|] ]dP dQn|+n o Izl dPptnt qu\B(OK Inn)¢ |9C” ’dQn|

S n*K (lnn fB(O,K Inn)¢ dQn|+n ntn? f]Rq\B(OK Inn)° |

gK(lnn)esupAGBcnﬂP( ) @Qn (A)] +n* qu\BOKlnn

+nt qu\B (0,K (Inn)°) |:E|| |dQy]
Let P, be the distribution of v/n (6,, — 6y). Then n® qu\B(O K(nn)®

7 s xmninyae-o 7l dPatn® f[Rq\B(O,K(lnn) )]ﬂ(\/ﬁ(®—eo)) ||x||dP B

= n® f[Rq\B(o K (Inn))]n/m(O—0o) ||x|| dP, as the support of P, is \/n (0 — 6,).

nt f[Rq\B(o,K(lnn) )Nv/n(©—6p) Ha:||dP = n? ff(@ 00)\B(0,K (Inn)°)
large enough.

Hence n® qu\B(OK I m)° “+2pff 600\ B(0.K (1nm)) A0 Where p is
such that B(0,p) D @ — b and p exists as © is bounded by assumption.
Hence n® Hqu (dP, — dQn)H < K (Inn) supep, n®| Py (A) — Qn (A)]
+n%T2pP (Vi (0, — 0) € Vi (© — 0) \B (0, K (Inn)))+n® qu\B(OK )"
As sup 45, 1% | Py (A) — Qn (A)] = O (n™") for n > 0, we have that

K (Inn) sup g, n®|Pn (A) — Qn (A)] = 0(1) and the result follows due to
assumptions [A.14] and [A. 15| above. =
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Remark R.30 Due to the two previous remarks and Lemma 2 in [T, it
suffices that /n (6 — 0y) has a valid Edgeworth expansion of order s = 2a+2,
since in this case we can choose € > % and K > \/2a + 1 for the above Lemma
to be valid.

Hence we have an analytical procedure that justify the following results
in our assumption framework.

3.1 Valid 2nd order Bias approximation for the Indirect estimators

In this section, given the previous results we are concerned with the bias
structure of second order for each of the examined estimators. In order to
facilitate the presentation, we make the following definition.

Definition D.5 Let {z,} and {y,} denote two sequence of random elements
with values in an normed space. We denote the relation x, ~ vy, when

1E (@0 = ya)l| = 0 (n77).

Remark R.31 Due to the positive definiteness of the norm and the triangle
inequality ~ is an equivalence relation on the set of sequences of random

elements whose first moments converge to the same limit.

We are ready to employ the previous results for the case of a = % We
essentially invert the Taylor expansion of the first order condition that with
high probability satisfies each one of the estimators considered, and are able
to ignore the remainders due to the results of the previous paragraphs. We
have that sup,cp. |EDG (A) — @ (An)| = o(n™?) for suitable choice of the
sequence {A,} emerging from a bijective correspondence A — A,,. Hence
SUp gep,. | P (vn € A) = P(z € A,)| = o(n™*) where z,, denotes the sequence
of random elements that we wish to approximate in the relevant sense, and
z denotes a standard normal random vector. Then, due to the fact that
P(z€ A,) =P (9. (2)+0(n™ ) € A) =P (g, (2) € A)+0(n™?) for a suit-
able choice of a polynomial in z function sequence and the smoothness of ®
(see [14] for the definition of smoothness of a distribution, which is implied
by analytical smoothness in the case where a density exists), we have that
that sup g, |P (2, € A) — P (gn (2) € A)|. We then employ lemma [3.1] to
obtain the needed results on the mean approximations. Notice also that if
there exists a g, (z) such that g, (2) = ¢, (2) + o(n™?), if x, ~ Gn (2), then

Ty ~ ¢y (2), in the light of remark [R.31], something that will be needed in

the case of GMR2. We present the following lemma that concerns approxi-
mations of inverse matrices that will be useful in what follows.

32



Lemma 3.2 Let X andY;(z) be square matrices, with X being non-singular
and Y; (z) has elements of finite degree polynomials in z, and z ~ N (0,%).
Then

2a -1 2a
1
<X+Z m<z>> =X+ ) o Ki(2) + Ra(2)
where R, (2) is such that

P (|Ry (2)| > 7,) = 0 (n™7)

where 7, = o (n=%).

Proof. For n > n* we have that || R, (2)|| < — || R (2)|| where the elements

na+%
of R (z) are finite polynomials of z. Then it suffices to find ¢ > 0 and € > 0
such that 1P (| R, ()] > cn %) = o(1) But n*P (| R, (2)]| > en~*-%) <

—a— E|R()|* _k E|R()|"
nap ( a1+1 IR (2)|| > en~® a) < pe Ll 1(Z)Hk — o 5+k where Zl cgf)” —m
n"Tz cn2 ¢

and any k € N, due to the Markov inequality and the normality of z. Hence
we need a — % +hke<0=¢e< % — # and ¢ > 0. This is satisfied for any
k>2a. m

Assumption A.16 Any initial estimator has an analogous first moment ap-
proximation with the one that it defines.

Remark R.32 This assumption is in the spirit of assumption[A.13 and can
be justified in our set up.
Auxiliary Estimators

We begin with the auxiliary estimator 3,,. Next lemma summarizes the
results.

Lemma 3.3 If \/n (83, —b(0y)) has a valid Edgeworth expansion of third
order

Vi (B, —b (b)) > ky+ —=

where
ki = —Q 7 (B0,b (60)) ¢ (b (60)) W (b (o)) ¢ (2, (6))
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and

ky = —Q " (00,b(00)) c (b(00)) W (b (B0)) c* (2,b(60)) — Q" (00, b (00)) A (2,0, b (00)) b
~Q7 (00,1 (09)) [ (b (60)) w (2, (60)) + s <z,b<eo>>w<bwo>>} ¢ (2, (00))

.....

and

A(z1,29,00,b(0p)) = 2Sym

Egy ! (21,0 (00)) W (b(60)) s (21,0 (65))
+5 B, 55¢/ (21,6 (00)) w (22,0 (00)) Egy 557¢ (21,0 (6p))

where Sym[A] = 5 (A + A'), ( 2 > ~ N (( 8 ) ’ ( gi glz )) "

kY is the relevant term of the analogous expansion of the first step auxiliary
estimator due to assumption[A.16,

Proof. f, = argmingeg > c (z, ) > W(Ii,BZ)%ZZ-C/ (x;,8) =

_%% ¢ (i, 3 )} > W, B )\FZ c(zi, B,) =0, =

a5 2 ¢ (23,0(69)) + [\/_ (Bin = b(60)) g5 25 (i, b (0 >)]j—l J g

=1,...,

LW (a0 (00) + 2 [ S (o l’(@o))ﬁm‘b“)‘”]m J

-----

T
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¢ (21,5 (00) 2 W (21, (60)) 374 Yo ¢ i, b (60)) v/ (B, = b (0)
b L S (@b (00)) W (w1, b(00) X
1 = 0(00)) 5572 3¢ (w1, b (00)) VA (Br — b (00) |
X %%z ¢ (w0b(00)) Jr |55 h X Wy (b (60)) Vi (3, = b (60))] )
2 (VA (B = b(00) 55t Yo (b (60))] LYW (ai,b (6)

-----

(b)) + 2 @b (b)) Vit (B —b00)| = 0,
As thetermT[\/_(ﬁl’n_ (90»’%;6/\/5%20]-(;@, C ))]]_1 ..... l><

S [ A S W @b () Vi (8 - b(00)] | A e(mb (o) = o (n7H)

=1,...,

Vi (B = b(60)) = — [ B2 ¢ (@b (00)) 2 T W (i, (80)) 522 Se (b (6))] %

ZLS (@1,b(00) 2 W (0,5 (00)) = X 1,5 (60))
ot [BE S b (B0) ESW (w1, b (80) g S (b (00))] B2 (b (60)
lzwm, (096)) [V (B = b(00) 5252 s (2,5 (60) v/ (B0 — b (60))]
~[gis e >>izw<xz b (B0)) 522 e b (00)]
B0 (@b (00) Jr [ T Woy (b (80)) VT (8, — b(60)]
( %[ <51n b(60) 5t S (@b (Ba)] | ATW (wb (60)
> )

=1,...,

rb (00)) LW (2, (60) 22 L T <x@,b<eo>>} x

B /
(mz (0, (60)) & [ 22 5 Wey (0.0 (60) v/ (55 —b(%))}m__l)x
LS e (w0 b (00)) Vi (Br, — b (600) o
[ BE S (b (00) LS W (b <eo>>%
&= [V (B = 0 (00)) 555 s (3,6 (60)
2L S e (i, b (60) Vi (B, — b(60))

oying now the moment approximations for the analogous terms of
(f (23,6 (00),00) — E(f (2:,0(00),60))), due to remark [R.26/and lemma,
holdlng terms up to the relevant order,

a%%z (3,0 (60)) = ¢ (b (90)>+fcﬁ (2, 5(90)) w2 W (i, b(00)) = W (b (60))+
w(z,b(0)), and = = 2. (@i, b(00)) = c(z, b(Gg)) + \/Lﬁc* (2,b(0p)) where

L el b(00)] %
] LW (1,6 (60) x

77777
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z ~ N (0,X) and the elements of ¢5 (2,5 (0o)), w (2,0 (6p)) and ¢ (2,b (b)) are
finite polynomials in z with O (1) coefficients and Eg,c (2,0 (6g)) = E (¢* (2,b(0p))) =
0, we get that 1
[%%ZC’(% (00)) 5 W (w3, b (60) 5575 (@i, b ()| =
OO W b0 es b))
) & (5(60)) W (5 (60)) e (2, (60))
(25 00) W (b (80)) 5 (b 60)
¢ (b (B0)) w (2,5 (B0)) 5 (b (6) |
Q (60,0 (6)

{/a)(eo)) (b(60)) ¢s (2, <e>>] _
+= 0 b
)

+cy (2,0 (60)) W (b (6o)) ¢ (b (60))
+¢ (b (6o)) w (2,b(00)) cs (b (6))

Q! (B0.b(00)) — Q" (B0.b(00)) A (=00, (00)) @ (60,1 (60)) + 0 (™)

due to lemma Where

Q (80,5 (60)) = ¢ (b (60)) W (b(60)) ¢5 (b (60))

1
T

and

¢ cg (2,0 (0
A(z,emb(eo)):gsym[ﬁg 60N 6600 ) ]
208 ’

where Sym([A] = 1 (A + A’) see Corollary 1 [14],
857120 (i, b (90)) > Wz, b(00)) =
(b (00)) W (5(80)) + 2= 5 (b.(B0)) w (2B (00)) + ¢ (2,5 (06) W (b (60)) | +
and %{;ﬁ,% Y. ¢j(x3,b(00)) = cgpr (b (90))+fc/3ﬁ (z,b(6p)) and 86/ = LS W (24,0 (00)) =
Wy (0(60)),; + Jrwss (z b (6p)),; due to remark [R.26 and lemma
DL (23, b(00)) = ¢ (b(0)) + 2= (2, (60)) ,
2o W (23,0 (60) = W (b (60)) + Jzw (2,0 (o)),
%5220(%1)(90)) =c(2,b(00)) + J5c* (z b (6o))
aﬁaaﬁ 711201 (23,0 (0o)) = cs5 (b ))] + Cﬂﬁ (2, (90))]
o7 w22 W (1,0.(00)) = Wy (b (6o)),; + wgz (2,0(60)),;
Hence f(ﬂln—b( 0)) = —Q (60, b (6)) ¢ (b (60)) W (b(68s)) ¢ (2, b (6))
Q7 (00,0 (80)) ¢ (b (80)) W (b (80)) ¢ (2, b(60)

n
(¢
(60)),;
0,
0o)
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w~§%

QIWmM 0)) A (2,005 (66)) @ (6.1 (60)) ¢ (b (60)) W (b (60)) ¢ (2. b (6))
2@ (00,0 (00)) |5 (9(00)) w (2B (60)) + 5 (2,5 (60)) W (b (680))| (2,0 (6)
—5=Q wm<>nﬂ< 0)) W (b (60))

[V (Br = b (00) o (5(60)), v (B = b(600)) |
~ J2Q7 (00,5 (80)) ¢ (0 (00) [Wy (B (O0)) s ia|  e(2.b(60)

X

.....

,,,,,

Vi (B = (00) e (000)),| W (b (o)) s (6(60))

=1,...,

Q7 B0, (00)) [V (51~ b(00) e (b G0)),] W (B G0)) ez, (0n)
—ﬁ@ (00 (00)) ¢ (b (60)) [ Wy (b (00), k] e (b(00)) v (81— D (00)
(0)) |

__ 007 60
xJ%mﬁ—M%» i
where ki, is given in v/n (83,, — b (6))) % ki + % Now setting

ki Wm(%né((»WWM%Dd&M%DW%%
men— 00)) = k1 — Q7" (60, b (60)) c (b(00) W (b(6o)) c* (2, b ()
nQ (00,0 (60)) A (2, ( 0)) k1

90,

—ﬁQAWm())H (80))w (2, (60)) + 5 (2,5 (66)) W (b (80))| e (2, (60))
~am @ (00.5(00)) & (0 (00) W (b (00)) [Kesr (b00)) k]

~ Q7 (60,0 (00))
—%Q4%,(»VWM%()H,1lewmcwb%D

(b
(v
(b(00)) Wy (b (00 k| - e(zb(00)

.....

-----

(
- \/LEQ_I (60,0 (¢ 0)) (0 (o)) [Wg/ (b (60))7~j kf] rin lCﬁ (b(00)) k1
~JRQ 7 (00,b (0 >>[k oy (0 (00));) W (b (00)) 5 (b (00)) by

.....

Remark R.33 It is easy to see that when | = q the results do not depend
on the weighting matriz as expected.

Remark R.34 Eyk;,, is null as this term corresponds to the normal com-
ponent of the estimators which are asymptotically first order unbiased. Also
under relevant integrability conditions that are easily derived in the spirit of
lemma Eyy ko, will depend on the first order asymptotic variance ,on the
non linearity of ¢ with respect to 3, on the properties of the weighting matriz
and the initial auxiliary estimator as well as on the relation between | and q

(see [15]).
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Indirect Estimators

We proceed to state the main results concerning the expansions of the three
indirect estimators. These reveal a quite different behavior of GMR 2 from
the other two, due to the fact that the computation of the particular estimator
is based upon the term Ejpf3,,.

GMR 1 Estimator We begin with the GMR 1 estimator. The results reveal
aspects of the previous remark. The estimator is generally second order
biased due to the relation between p and ¢, the general non linearity of the
binding function and the behavior of the weighting matrix and through this
of the initial estimator ;.

Lemma 3.4 If \/n (6, — 6y) has a valid Edgeworth expansion of third order

q2
v (0, — 6o) A Ry

where

W= (b(6o))

0= (55" W (b (00) .

ab(B)\ " ab (6y)
a9 )

a0’ 00

w = (P o) )

B (abf (QO)W* (b(00) ob (90)>1 o’ (eo)w* (2. 00)

0 a6’ 0
o0’ a0 T a0 0/
(2 ) 200) Oy 0
v (o) .., Ab (0)\ oV (0y).. . 9%b,
5 (Fagm oo T ) O 000 [t
(g o P ) 2w 6o o

-----

(St een ) T o

Ly

A = Idgy, — 20 (%W (b(6y)) ‘%(90)) WO+ (b (0p)), and g is the

00 ¢’
relevant term of the analogous expansion of the ﬁrst step auxiliary estimator

due to assumption[A.16.
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Proof. Utilizing assumption we have that
B ! 977, * *
EGLL S W (2:,65) /i (B, — b(6)) = 0, =

86(9) 1 82b;(6o)
; +f [\/_(9 90) 8686’ ]j:l ...p) X

-----

\/ﬁ(ﬁn—b(ﬁo))—agff”\/ﬁ(@n—@o)—ﬁﬁ[\/ﬁ(%— o>’ s B = 00| ) =

0, =

TNT T
M
I
&
;%
-
|_|
q&
3|
M
<
*
&
s
<
|
Sy

.L
T
s}
~—
X

8b’ 90 1 E W* (.T“ 90)
1 0b' (o) 0 0* — ¢
+\f a0 ae/nz ('Il? 0)\/_( n 0)
5 [V 0.~ o) %f;zgzw}jl AW (. 60)

,,,,,

</€1 + ki ag:j’)\/—( 0o) — ﬁﬁ [\/ﬁ (0, — 6o)’ 38’;]'(3(3}))\/5(6” N 90>]j:1 q) N

.....

Op
abao - = W (24,00) Ky +2 90) 1 S W <I1790) B
1 (3, ) 2 Vo, —%)—%% e S o) g %
Te=1,..., q

S (0, = 0o)

T W (2 b0) [V (0 — o) T/ (6 — 00)]
+\1ﬁaba(go [agan (%790)(]?} - k1

+\/—ﬁ[\/_(9 — ) 88’;839)]j1 q%ZW*(mi,Ho)kl

77777

_\/Lﬁ [\/_ (0n 90)/ aabeae' )]j—l . E W (4, 00) 82:/0 Vn (0, —0) = 0, =

\/ﬁ(é’n o 6()) _ ((% (60) 1 Z W* (‘r“ 0 ) 81(;(09/0)> 81;/(6’0 )1 Z W* (l.“ 00) ki +
<8b (60) 1 ZW* (s, 60) db(69) ) ab' 90 )1 ZW* (%90) Ky

06/
ov' (0 " db(0o) ov' (0 " 9%b;(0
e (e 5) " e )],
v (00) % db(00) ab 9 "
+\/Lﬁ ( baao s > W* (i, 00) a(e/o ) . [ae/n W, <xi’00>q1i|ri:1 g %
|:qu><(1 . 8((;(90/0) (61)’ 00) 1 Z W (CUZ, 00) 8290/0 ) ab’ 90) 1 Z W* (xw 00):| kl

—1
* 0b(6o) 04b; (0 %
+\/Lﬁ < 39 1 Z w ('xla 60) 8(9/0 ) |:q,1 89]8(9’0)]]1 1 Z %% (l’i, 90) X

77777

|:qu><q _ 9b(0p) <6b/ 6o) 1 Z W* (x“ 90) Ob(0o) ) ' ( 90) 1 Z W* (x“ 90):| kl _

a6/ o0/
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Employing now the moment approximations for the analogous terms of

LS (F (24,0(00),60) — E(f (25,0 (o) ,60))), due to remark|R.26{and lemma
1] and holding terms up to the relevant order,

(ab’ (60) 1 LS W+ (z7, 6) agg)/o ) - <8b’ (60) <W* (b(6o)) + Jiﬁw* (2,90)> 82(;9/0))—1 —

-1

b’ (60) 11/ * ob(0 b’ (0 9b(0

( 0) W* (b (6)) 8(0/0)+\1f 8(60)w (2,60) 8(0/0)> _
-1

b’ (00) 11/ * ob(0

(%5 (o 00) %)
-1
ob' (00) 117 ab(0 av’ (6 ab(0 ov' (6 * ob(0

% (—590 W7 (b (B0)) 02) " 20 () 0% (2 (b (60)) 22

due to lemma 3.2 Further ,
<8b/(¢90 1 Z W* (xz 90) 0b(6o) ) ab/ 490 1 Z W+ (x“ 00)

a0/

= (2folvv (b (0)) 2em)) 8"83°>W* (b (60))

-1 .,
o (22w (b(00)) 202 ) 2w (21, 00)

71 ,
_% <8b¢9(090 wW* (b (9 )) 32(;/0)) 358(990),(0* (2’1, 00) 31;((5/0)

71 ,
% ( b(GO)W* (b (6o)) ag(;/@) 8b§§°)W* (b(6y))
It follows that
O (00) 117+ (3 (0. 2200) _1e%%9@ b (0N
VT (6 — 00) = ( W (b (0) sl W (b (00)) i +
o ( S0 (5 (00) Bt it 00
! / _]‘

-7 (—8"5? W (0 (60)) 02 ) ™ 2200 e () 20D (2Ll i ) 200)

WGl yy= (b (0o)) k
av/ ((90( 02) l ab(00)\ " 00 00) 17+
+7( UMAUNES W (b (60)) ks

a0 a6/
( * % 9%b;(0
z\lf <6b3960)w (b (9 )) 81;?’/0)) oy’ (00 W (b (90)) [ (qlq{ 8%(9(0?))]j_1 »
—1
+\/Lﬁ (abago W* 81)3(99'0) 2 (90 |:69/ n Z ('r”h 00) QTi|Ti:1 " X
qu £<mewwm%&)8”www%wm
-1
1 9 (00) Tr7x 8b(00) 1 9%b;( / “ (b (9
o (2w (b (00) 29 ) [] _____ W (0) ¢
Idyxy = 7 (%W* (b (00)) 22 ) 2ty <b<eo>>} ki

The following corollary is trivial.
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Corollary 1 When p = q we obtain

_(Ob(0)\ !
QI( 80, ) kl
_(Ob(0)\ 1 /0b(0)\ 9°b;
QQ_( o0 ) AT ‘-"haeae’ ..... l

Proof. Simply notice that abia(go) (abl fo) L = W (24, 00) 8%3,0)> 8bla(g°)W* (6) =
Idyywg whenp=¢q. m

Remark R.35 From the corollary it is evident that in the case where b(0) =
0, and p = q the estimator essentially retains the structure of the auxiliary
one. Note that a trivial case in which this holds, is when B, is a consistent
estimator of 8y. More complex cases in which this is possible are stated below.

GMR 2 Estimator We continue with the case of the GMR 2 estimator. Al-
though the caveat met before, that there are non trivial terms in the expan-
sion due to non linearities, due to the relation of the relevant dimensions and
due to the presence of stochastic weighting, the expansion contains the term
—Fy, k2, something that is not present in the other two, and a fact that is
attributed to the computation of Fyf3,. This result that it is known from
the work of [I1] and [8] in the case of equality of dimensions is significantly
generalized here. What is also generalized in the next subsection is the scope
of the representations of the binding functions that ensure (under appropri-
ate conditions) that the particular estimator is second order unbiased due
to the aforementioned term.

The next preliminary to the expansion result, concerns the approximation
of derivatives of Eyf3,. It follows easily under the framework established by
assumption (see remark and the results on the auxiliary estima-
tors.

Lemma 3.5

0 ob (0
Hagl (Eo,) lo=0, — GLQ’O) o(1)

0? 9%b; (0o)
— (F N, — Z3NTY
H 8969/ ( G/Bn)] |0700 6969/
Proof. From assumption [A. 10| and remark [R.24] we have that
|07 (£ (.~ 5(6) = 259 loca | = 157 (o (B, — b (6)) locaol < M sy (5, — b (60))] =

o(l),r=1,2. =
We are now ready to state the expansion.
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Lemma 3.6 If \/n (0, — 6y) has a valid Edgeworth expansion of third order,
then

q2
b (0)\'
QI:BI< 0(9'0)) o

where

#7t (Z0) W 000 (1 B

o (B v )]

oW ()T O T
5 {ww (b(90))ql]m_l q
0 0

7E906nB 1%1/ (00) W* (b (00))} k1

+B7!

.....

X {quxq -

[azb o W= (b(00))

o008 @ |

ob (0 o (6
X {quxq— 8(9,0)31 a(e O)W* (b(@o))} kq,

!/
B = (8139(2?)) W*(b(6o)) 8%(3, , and q; is the relevant term of the analogous

expansion of the first step auziliary estimator due to assumption [A.16.

Proof. Employing again the procedure as in the relevant proofs before and

utilizing assumption [A.16], remark [R.26] lemmas and [3.5] we have that
Eo, (81) 12W*<xz, )V (5, — En,B,) = 0, =

=1l,...

<1ZW*(%90) [Wz <xi,eo>ﬁ<e*—eo>],

ri=1,..., q

Vi (8= b(00)) = v/ (BayfB, = b (00)) = 57 BB,/ (0 — b)
v [V 00— 00) 5255 Eay (8,); v (6 00)|
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B E W (50, 00) + s BBl [ 22 W (0 0) v/ 6, — )] q
3= Lyeeny X
+f [aeaa' (EooBn)j V1 (0 — 90)] o LYW (w3, 00)

.....

k1 + k2 530@ 39/ Epo B3/ (0 — 0o)
: —0,=—>
M V0= 00) i By (B,); v/ (0, — 00)]
20 Z W (fl?z; 60) ki + =5 E@QB Z W (.731, 60) T —
aeE%B >SS W* (w4, 00) 5, 207 Eéoﬁn\/_(en — o)
S G B W (i, 00) [tr (VA (0 — 00) vt (60 = 00) 57 Eu, (8,),)]

"’fa&E%ﬁ/ [ag/nZ (i, 00) QT] - k1 +

T7Z: 7777 q

\Lﬁ [8989’ (E6'05 ) \/ﬁ (9n - 90)} L % Z w (SC@', 90) k1

~~~~~~

/ R
- \F‘%’ 006 [69/ " Z (x“ 90) ql]rvil 77777 q %Eeoﬁn\/ﬁ(en - 90) —
+f [8989’ (anﬁ ) \/ﬁ (en - 90)]3' . % Z w (l‘i, 90) 09

------

=1,...

0, =>

BBl S W (4, 00) 597 EooB, S (00— 60)
* n(v, — =
+\1f80E905/ |:39/n > W, ($i>90) Qj 80/E005 0
ko—Egyks

o EayBLE ST W (w1, 00) ky + 2 E, 32 ZW*(@,GO) f
3 G Enn B L S W (i, 00) [t <\/ﬁ(0n — 00) VT (0 — 00)/ 5207 By (8,);)|

+\f89 Ey,f3, [ag/nz (%‘%)ﬁ] , k1
+ f [8989’ (Eoon ) V(0 — QO)L . %ZW* (x4,00) ky

......
b Lo (B0, v (6= 00)] AW (i 0) BB/ (6, ) =
-1
V(0 = 00) = == (G Eo, B2 S W* (21, 60) 22 Euuf3, )
2 Esl3., [an (:ci,eo)q’{] . qa%Egoﬁn\/ﬁ(en_eo)

MR
n (%Eeoﬂni S (0, 00) 2 EauB) 5 Enn Bk S W* (@1, 00) by
. -1 . k k
+ <%E905{w% ZW (xiaeo) 207 Ey,[3,, ) QE@oﬁ ZW (:EZ,QO) : \J/Eﬁo :
1
_#ﬁ (%E%Bé%ZW* (‘Ti?eo) 39/E905 ) QEGOﬂTLEZW* (:Ci;e[))

X [tr (\/ﬁ (8 — 00) /1 (6, — 60) =2 By, (5,) -)]jz

=—1,...

==1,...
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+\/L5 (%Eeoﬁé% > W™ (4, 00) ae/Eeoﬁ ) agEﬁoﬁ/ [89/ n > W (xi,eo) Qf] . k1

+%ﬁ (aoEeoﬁ S W* (4,00) 2 507 E0 P )1
|: 9006" Eeoﬁn) j \/ﬁ (‘9n - 80)] i=1 % Z w= (l’i, (90) k1

.....

X Z w (% ‘90) a%/Eeoﬁn\/_(en - 90) =>
-1
Vn(6n —bo) = (%Eeoﬁq/l% > W™ (4,00) 557 Eoo B ) BBl YW (5, 00) by
1
+\/Lﬁ (%Eooﬁ/l S W (24, 00) 2 507 005 ) 1@Eeoﬁn% > W (w4,00) (k2 — Epy k)
Q\If (agEGOB S W (24, 00) 2 507 E00 B ) %Eeoﬂé X
%Z W (i, 60) [ (‘hq{aeae/ Ep, (8,) ')]j_l

=1,...,

+\/L5 (%EQOBQ%ZW* (i, 00) ae/Eeoﬁ ) agEQOB/ [ 207 n W, i (24, 00) QT]le q><

.....

-1
|:qu><q 39/ Ey, 3, <%E905£% > W (4, 00) B%/anﬁn) %anﬁﬁ > W (s, 90)} k1

-1
"‘\/Lﬁ <%E60ﬂé% Z W+ (l‘i; 90) (;%Egoﬁn) [86‘89’ (Egoﬁ ) ql] i % Z W (l,i, QO)X

-------

—1
[quxq 27 Eool3,, (%Eeoﬁ/l > W™ (4, 00) %Eeoﬁ’» i EaBLE W (%’790)1 ky

Now %Egoﬁé = (8%(90,0 ) (8 ) + B, with ||B,| = o(1) and

o0’
LS W™ (34,600) = W* (b (00)) fw (2,6p), where z ~ N (0,%) and the
elements of w* (z, ) are finite polynomials in z, it follows that

(0 — 6)) = (((%) + Bn) (W* (b(80)) + L (=, 90)) (% + Bn>> B

x ((mgg,w + Bn) (W (b (60)) + L (2,00) ) Fy

+L <((3’;§§P>)' + Bn> (W (b (00)) + S (2,00)) (292 + B ))_1

x (2090) W (b (60)) (h — Eooho)
(22" 30 ) (3 060) + G ) (252 + 5 ))_1 (%52)

X W* (b (00) [tr (a0l 52 Eau (8.);)] _
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v (((2592) ) (7 000 + o o) (%0048, )

b/ (o) *
X 8(490 [39/ n Z (l’i, 00) 4

’ -1
N 1dixa = 357 EoB, (((%ﬁ’) —I—Bn) <W* (b(60)) + =w* (2,00)) <% +Bn>) "
/ 0 *
W (b (0))
-1

() ) (00000 + v 200) (5905 sl s

. Idyyq — 81:9(3,0) <(<3ba(g,o)>/ +Bn) (W* (b(6o)) + fw (2, 90)> (% +Bn>)_1 ks

QLW (b (6o))
’ -1
As now (((3§§,°>) + Bn) (W (b (00)) + L (2.00)) (2402 + Bn>> _
, -1
— ( (22w 00 20
-1

i () W 000 288) o) (22 0 20
where || K,|| = o(1), we get:

Vi (00— 00) = ((6@39 ) W (6600 8@3@) (2 kA
(2w %z,o) 8@3@ (2 b0) b
o .0 ((29) W 000y 20 ) (20
(%02) W (b (00)) (k2 = Enoke)
~gt ( 200 VW (b (0) 6%3@)_1 (2600Y 1 (b (80)) [t (10 52270 (00), )|

-1
0 ! * 0 /0 * *
ﬁ((a%‘ﬁ/)) W (b (6h)) 8%5,’) L Wy 0@t

.....

/ -1
quxq—%@oﬁn((a‘gg?)) W (b(60)) 81;;3,0)) 20/ (00) W* (b (60)) | K

() w e ‘9%3?))1) Taa] W 0(00) x

77777




-1
/
[ xq — 8!:93/0 < 81:93/0 (b (00)) aba(g'())> > 8b8(990)W* (b (00))] /‘Cl

where A, ((( ) 9))%leﬁKn((8‘;3(;’?))'+Bn>>W*<b<90)>

with || Au]| = o (

Remark R.36 As expected the two estimators are first order equivalent as
their ¢, terms coincide.

Remark R.37 The term (81’ ©o) 17+ (b () %g,o)) ROV (b (60)) (ka — Egyks)

15 obtained due to the presence of Fy[3,, in the deﬁm’tion of the estimator and
not of b(0) or something similar as in the cases of GMR 1 and GT estima-
tors.

Corollary 2 When p = q we obtain

_(Ob(00)\
g1 = ( 09/ > kl

(b (0)\ ! 1 /0b(0)\ " , 0%,
‘h_( o0 ) (ke = Eook2) =5\ =5 Tt 5550 P

.....

Proof. Trivial. =

Corollary 3 If in addition to the provisions of the previous corollary b is
linear Eg,q2 = 0,.

Proof. Trivial. =

Remark R.38 In this particular case, the estimator is obuviously second
order unbiased a property that is not shared with its other two counterparts.
This result is already known for the case where (3,,.1s a consistent estimator
of 0y, whence the GMR 2 obviously performs a second order bias correction.
If in addition Eyf3,, is linear, then the estimator is totally unbiased (see [11)]).

Remark R.39 The particular analysis on the properties of the present es-
timator provided by the relevant literature restricts to the case of p = q. We
extend it in the most general setup and provide a geometric characterization
of the binding function that sheds light to the circumstances under which this
is linear, thereby extending massively the scope of the last result.
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GT Estimator We conclude the presentation of the expansions with the last
case of the GT estimator. The expansion is more involved since it is ob-
tained from the second order Taylor expansion of the first order conditions
that the estimator satisfies with high probability for large enough n, around
(0o,b(6p)). Let s, (#) and H,, (f) denote the gradient (score) and the Hessian
of the loglikelihood function of D respectively. In order for the identification
of terms, the (local) identity Eyc, (b(0)) = 0,, is differentiated thus provid-
ing the following useful lemma.

Lemma 3.7 If \/n (0, — 0y) has a valid Edgeworth expansion of third order

Ey acngg/(e)) agé,e) — —Eyc, (b(0)) 5, (0)
Ee—ajﬁﬁ’ 0 (0(0), = 5 By 8586’6” (5(0)), = ~Eosa 0) 0 5(9)),

08'(0) ( , Fen (0(0)), 86(0)__{E7acn<b<9njéﬂb<e>
a0 " apap o’ o8 000, |,

= Eycn (b(9)); Hy (0) + Egcy (b(0)), 50 (0) 57, (0)

Proof. Notice that for all 6 in O., (6y) the following identity is well defined
Vi=1,2
Eyc, (b(0)) =0,
using assumptions [A.7] H Taking derivatives -2, Eyc,, (b(0)) = Oy =
Ea%gwgg,m;gcn (b(6)) 5., (6) = Oy = Fpe ( < DO — _ Eye, (b(8)) s, (6).
Also, since 05E9cn (B) = E@%Cn (B), we have BBOO’EQC"( (0)); = qup =
2
SO,E%BC” (b(0)); = Ogxp = Eozzcn (0(0)), B2 + By, (b(9)); 5, (0) =
qxp

= Evgiron (00)); 7" = Bz o0 (0(0); 5 = ~Faggca (6 0)) 51,0
and therefore the second result of the lemma follows. Then 7 a9, EgCn (b (9

Ocn (b(0
2 ( Eogcn (b (9))j> - o < B2 | e )
+

= BTt | g, 2Dy (0) 4 Eys, () &ng;@% + Bycy (b (9)) H, (e)
Egcy (0(0)); 50 (0) 57, ()

82%c,, (b(0 Ocn (b 2 /

- 250 (5, Z5000) 20 [ U G]  OE, L, 0(0),
+Epcn (b(0)); Hn (0) + Eecn(b(ﬁ)) n (0) 57, (0)
08B0 9%cn(b(9)); ) ab(6) den (b(9)); 925(6)

— 20 (B, ™ ) B+ | B g 8080T]T_1mp+Egcn(b(9))an(9)+

47




EgCn (0(0)); sn (0) s, (0) by the second part of the lemma and therefore since

n

8089, Eyc, (b(0)); = Opx, the third result follows. m

Lemma 3.8 If /n (0, — 0y) has a valid Edgeworth expansion of third order,

then g
\/ﬁ(en — 6o) 1’72 Q1 + \/—%
where
O (0o) L, e (D(60)) dcy (b (00))
=J! 50 Ey, a3 w (b(eo))EeoTkla
b (6 . (b(60))) dc, (b (0
G = Jfla 8(0 0)E008<C (aﬁ( 0))) W (b (90)) E90 C (aﬁ(/ 0)>k2
—}—J_lAEgo%ﬁ(,eo))Bkl
OV (B0) O (cn (b(60))) [ D .. .
+J7t 5 Ey, a9 {@W (b(eo))%Lj_l ..... l
n (b (6 0
2000 ()

ab/ (8o) E, 8%cn(b(60)); Ab(6,) /
_ 00 0o 9808 06’ Hk
I gy s, e W (b(6))
| F0T 88 96,00 1 ,
=1,...p 7j=1,...,1

« 7y, 2 0 100)) (,ﬁ ab (eo)ql> -----

a5 00/
A/ (6) . 9 (cn (b(60)))
2J o 5o o5 W= (b(6o))
/ 820n(b(90))j
) [trklklE%WLﬂ ..... I
1 (0(00)); 52b(6
|:tTQ1Q{ |:E90 ap’ 00 (89,)]7“=1,.~P j=1,...,0
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Remark R.40 Again it is evident that the structure of the second order
terms depends on the relevant structure of the auxiliary estimator, on non
linearities of the auxiliary first order conditions, on the stochastic weighting
and on the relation between [, q and p. This estimating procedure does not
produce the term Eg ko as is also the case for the GMR 1 counterpart.

We obtain easily the following corollary that confirms the already known
first order relationship between the three estimators.

Corollary 4 GT estimator ~ (GMR 1 estimator ~ GMR 2 estimator) iff
the weighting matriz for GMR 1 and the GMR 2 estzmators is chosen as

dcy, (b(00)) Jey, (b(0))
0 86 0 aﬁ/
for a given W** (z;,00) for the GT estimator.

W* (I’Z‘, 80) = W* (00) = E@ W** (iL’Z‘, 00) E@

Proof. Trivial. =

Lemma 3.9 For A, M € M9, and M invertible

[ (o)) = [ (4552) |

i=1,...,q

.....
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82b; (60)
Proof. Let u = [tr <A 89899 >L:1

L im 82b; (0 400 82b; (8
Then v; = 21 ZIM’ My, jtr (A 6969’0)> Z O tr ( 3933(9’0)> =tr (A 69699)> -
j=1m=
u, Vi=1,...q. m
In the special case of equality between the involved dimensions we obtain
the following corollary which is proven with the help of the following lemma.

o 92b;(00)
,and v = Mt [tr <A e >:|i:1 ,

Corollary 5 When p = q = | we obtain

_(9b(0)\ !
q1 = ( 89, ) kl

C(Ob(0)\ ! 1/0b(B)\ [, , 0% ()
QQ_( o0 > 25\ "o T 5008 |,

.....

and

06’

-1 —
ab(0 ab(0 dcrn (b(6 Ocn (b(60)); 62b(0
(%) s () (502 a0, ] -

—1 —
9b(00) 1 [ 9b(%) den (b(00)) 8cn 60)); 9%b,.(00)
( ae’o> 2_2\/ﬁ< ae/0> (E o ) [Z Eyy =5 traia [ 9600 ]Til p] -
[ARR ]7

Ly

-1
Proof. By direct substitution we obtain that ¢; = (ab(9°)> ki, and g =

-1
and by the above Lemma we have ¢, = (82}(3,0)) ko —Lf <a§g,°)> [trqiql %LZI I
]

Remark R.41 This corollary is in accordance with lemma [1.4. It shows

neither the GT estimator is second order unbiased under the frame-

work imposed by corollary [R.41] or any relevant framework.

Local Canonical Representation of the Binding Function

In this paragraph we assume without loss of generality that © and B are
open. By assumption the underlying statistical model has the structure
of a C*-differentiable manifold of dimension p. This manifold is globally dif-
feomorphic to ©. Assumption enables the possibility that ¢ (x, ) lies on
a particular bundle (Hilbert bundle, see among others [1]) over an auxiliary
statistical model that analogously has the structure of a C*-differentiable
manifold of dimension ¢, globally diffeomorphic to B topologized again by
the total variation norm. The function b () that is the crucial element of
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the inferential procedures described above, is essentially a parametric repre-
sentation of an underlying function (say f) between the manifolds, which
when composed with the aforementioned diffeomorphisms gives b (). That
is, using the notation of assumption 1, if the auxiliary statistical mani-
fold is denoted by D* and the relevant diffeomorphism to B is par*, then
b =par* o fopar—!. The function f shares by construction many properties
with its relevant representation. That is there is a open neighborhood of
Py say Op,, such that f is a diffeomorphism onto f (Op,). It is easy to
see that b(0) is simply a manifestation of this property which extends to
any other representation of f. That is, if ©" is an open bounded subset of
RP diffeomorphic to Op, by par,, and B’ is an open bounded subset of R?
diffeomorphic to B by par! then the relevant representation b* : ©' — B’
restricted as ¢’ |(9PQ =pario f |@PQ opar; ! is a diffeomorphism. Furthermore,
by theorem 10.2 of [17] (p. 44) if p < ¢, there always exists an open bounded
subset of RY, say B” diffeomorphic to D* by par?, (hence diffeomorphic
to B by (say) g), such that the representation b** : © — B’ restricts as

b**|parl(opg) =par}, o flop, opar ! = [ 61,0s,...,6,,0,...,0|. This rep-

q—p
resentation is called canonical immersion around Pn. Hence due to the afore-
mentioned theorem and the assumed properties of the binding function the

following is true.

Lemma 3.10 There exists an open bounded subset of R?, say B”, and a
diffeomorphism g : B — B" such that b**| : O, (0p) — B" is given

by b (0) — ( Of_p ) V6 € par~! (On,).

par_l(OPQ)

Proof. See the proof of theorem 10.2 of [I7] and note that the target of
the constructed coordinate system of D* that proves the theorem, is diffeo-
morphic to the one of the initial coordinate system on the same manifold.
]

Remark R.42 Given ©, B can always be chosen so that the binding

function b is of the form ( ) at least in a small enough meighbor-

04—p
hood of 0y. We call this canonical representation of the binding function
around 6y, and hereafter we denote it by b(0) hence from this point and un-
til the end of the present pamgmphm It is easily seen that when b(0) is

12This abuse of notation can not create any problem of confusion until the end of the
current paragraph. Later on ad where needed we will distinguish the notations explicitely.
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on the relevant form the aforementioned expansions simplify in some extend.
We explore some interesting cases. In every one of these we assume that

W*(z,00) = W* = V[,/l’po Wapxq-p where Wy, Wy, W5 are non
W&qu—p Wa.q—pxq—p

stochastic matrices, independent of 0, of the relevant dimensions. Consider
first the expansion of the GMR 1 estimator.

Corollary 6 Consider lemmal[3.4], suppose that b is in local canonical form

(ZTLd W* (.’L’, 90) = W* o ( WluPXP W3,p><q—p

then
Wé WQ,q—qu—p

q1 = ( Idyxp Wl_,plXpW37p><q_P )kl

and
q2 = ( [dpxp Wl_,plxz)W&quw )k2
Proof. Follows from direct substitutions on the results of lemma by

. I 2(6o) ; .
noting first that 3%(3,0) = ( quppxxpp >, % =0,xp, Vi=1,...,¢, w" =0,.

(E90k2)1
Remark R.43 It is evident that minyy, .. || Eg,q| = : for
(EQOkQ)p
W3 pxq—p = Opxq_p where u; denotes the i element of the particular vector.

The analogous results for the GT estimator are not considered here due
to the fact that they constitute an easy exercise without providing any new
information. The second and final case concerns the GMR 2 estimator.

Corollary 7 Consider lemma 3.0, suppose that b is in local canonical form

Wy W3 psco—
dW*(z,00) = W* = DXP PXA=P th
an (x,0) ( W Way o en

qin = ( [dep Wi, W3,qufp )kl,n

1,pxp

and
q2,n = ( ]dpxp Wl_,plxpw&pxq—p ) <k2,n - EGOkQ,n)

Proof. Follows from direct substitutions on the results of lemma by

9b(6o) _( [dpxp ) 0b?(0o);
06’ T ' 06006’

noting that =0pup, Vj=1,...,¢q. ®

Oq—pxp

o7



Remark R.44 The GMR 2 estimator is second order unbiased even in cases
where ¢ > p, when there is non stochastic weighting given that the binding
function is in local canonical representation. This is a new result. First it ex-
tends the relevant result of the aforementioned literature to allow for cases of
differing dimensions, as long as the Hessian matrices of the binding function
vanish and the weighting is deterministic. Second, since the binding function
can always be in local canonical form, there always exists a parameterization
of ¢ and p, so that the previous statement holds. This says that given an
admissible auxiliary statistical model, there always exists an auxil-
tary parameterization such that the previous result is valid, proviso
the relevant weighting structure. Hence this result massively generalizes the
one in the relevant literature.

Example

We continue with an example. In this lemma holds for any n due to
global invertibility of the corresponding binding functions and the absence
of boundaries.

Example Consider the case in which the true underlying distribution is
described by the following MA(1) specification

T = w4 o1,  t=..,—1,0,1,.., wu 2N(0,1)

for some 0y € (—1,1), while the auxiliary model is consisted of all the joint
distributions represented by the following parametric AR(1) model

iid

xtzﬁmt,l—i—st, t= ...,—1,0,1,..., Et N(O,l)
where [ € (—%, %) Let 3, be the conditional maximum likelihood esti-
mator for the previous model, i.e. 3, = 1?#;_1, which is easily seen
=2 "i—1
that converges in probability to b (6y) = %. Hence in this particular case
0
b=q= l= 17 C(xiaﬂ) = %éﬂ) = T;T;—1 _Bx?—b and b : <_1a 1) - (_%7 %)

is globally invertible. We obtain from [5]

(62 + 408 + 05 + 65 +1)°
162

z

ky =

0p+0p+1 ,

ko = — (0 + 203 — 205 + 20, + 1) @1y z
0
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In the case of the GMR 1 estimator equal to GT estimator which is 6, =

1—y/—467+1

55, we obtain from corollary

(14 62)° (62 + 462 + 05 + 05 + 1)
(1-63)°

g1 = z

(542605 — 205+ 200+ 1) (05 + 60+ 1)

Q2 = - 1 z
1—-6,
0o (02— 3) (02 + 408+ 05+ 05 +1)"
z
(1—6;) (1-—-6(2))2

Notice that when 0y = 0, then ¢; = 2, and ¢» = 2%. Finally, for the GMR2
estimator we obtain from corollary [2| that

(14 62)° (62 + 462 + 65 + 05 +1)*

= (1-062) :
0% + 203 — 20% + 20, + 1) (6>
@ = L+ 2 O+1_Oe§ otoo+] (2> =1)

0o (62— 3) (62 + 408+ 05+ 05 +1)"
z
(1-65) (1-65)°
which implies that the estimator is unbiased at 6y = 0 but not locally un-

biased (see bellow). Now, for the issue of the local canonical form of the
binding function, we obtain that the local parametrization of the AR(1)

a1 2
model arises from the re-parametrization given by g* = %, and in

this case b* (0) = 0, for any 0. Notice that a consistent auxiliary estimator
for b* (0y) = 6y is B = 172‘+45’21, and the GMR 2 estimator derived by
this is second order unbiased by lemma [7l The particular reparametrization
and the employment of GMR2 on it, coincides (see remark with the
defined below 1-GMR2. The analogous expansion of the auxiliary estima-
tor (or equivalently of 920 in the language of the next section) coincides with
the one of the GMR1 presented above. For the bias corrector GMR2 (or
equivalently 6') we have that

(14 62)° (62 + 462 + 65 + 05 +1)*
(1-63)°

q1 = <
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0" - _(93+203—203+29011) (65 + 60+ 1) (1)
165
00 (05— 3) (65 + 465 + 65 + 65 + 1
(1-05) (1-65)°

establishing the second order unbiaseness. Notice that due to the global
(hence local) nature of the moment approximation of [5], proposition [8 holds

globally, establishing that \/n (021 — 9) o~ ql—i-fj—%, which is also in accordance

with the third order approximation actually employed in [5].

L (21

GMR2 Recursion

In this section we are concerned with the generalization of the previous prop-
erties of the GMR2 estimator to arbitrary order. First we make the distinc-
tion between several notions of unbiaseness of a given order. An estimator

(say 0,) admitting a moment expansion (say g (z, \/Lﬁ, 90) for g a relevant
function) such as the aforementioned, will be termed s*-order unbiased at
6o, if and only if \/n (6, — 6,) ot E (g (z, \%,90)). Analogously it will

s—1
=
be termed s'"-order unbiased locally around 6, if the relevant expansion is

valid, and /n (0, —0) ~ E <g (z, \%,«9)) in an open ball with center 6.

(s=1)

Finally, it will be termed s*"-order unbiased if the relevant expansion is valid
in every neighborhood of 0y, and \/n (0,, — 0) ot E <g (z, \/iﬁ, 0)) every-
2

where. Notice that up to the previous section we were essentially concerned
with the first notion.

Now, the set up enabling lemma |3.10|, concerning the local canonical rep-
resentation of the binding function b (6), implies that if cofinitely Fyf3,, is a
local diffeomorphism, there exists a sequence of local auxiliary parametriza-
tions, for which Ey (3,,) are in canonical form in a neighborhood of #,. In
this case the GMR2 estimator is, unbiased, i.e. if V0 € B (0y, ) we have that

b, (0) = EyfB, = ( 09 ), and the GMR2 is given by 6, = b, o 3" and
q—p
we have that Fy,0,, = Fp, (b, 0 5%) = b, o Ey, (B85) = b,,' 0 b, (6y) = by.

n n
Consequently, a natural question arises whether it is possible to retrieve this
sequence. This question is out of the scope of the present paper.
Instead in an indirect answer to aforementioned question of result gener-
alization, we define recursive indirect estimation procedures as follows. Let

0\ denote either the GT or the GMRI1 estimator.

60



Definition D.6 Letr € N, the recursive r— GMR2 estimator (0" ) is defined
in the following steps:

1. HS = argming 7(10 — EQG,SO ,

2. fork>1andi<r, 9;’“ = argming

n

55:—1 _ Egg(k:—lH_

Remark R.45 In the case where r = 1 we essentially obtain equivalent
results to the ones of the canonical representation paragraph, due to the fact
that this procedure imitates the expression of the binding function in local
canonical form. Hence the case of 1 = 1, can be perceived as "practically”
equivalent to the procedure described in the previous section. Furthermore,
when p = q, then this equivalence is actually an equality.

In order to establish the validity of the results to be presented, we need
to strengthen in some sense assumptions [A.7] and [A.10]

Assumption A.17 E (k; (0, z2)) are d-differentiable at 6y and
n® || D7 (EgB, — b (0) — X301 E (ki (0,2))) ]| lo=gy = 0(1), r=1,....d.

Remark R.46 The assumption above is satisfied if Egf3,, = b(0)+> > == E (ki (0,2)),
VO € B (0y,c5), for some e5 > 0, Y2 |D"E (k; (0, 2)) lo=o,|| < M}*, for
M;* > 0, since in this case we have that n® || Egf3, — b (0) — Y iet" B (k; (6,2))| =
HZSO2Q+2 nl/ﬁ -F (k; (6 z))H and therefore

n® || D (Eaﬁ —b(0) = 330 B (ki (0,2))|] lo=so = || 220010 gs== D7 E (K (6, 2))|| <
ZZ 2042 n2/2 - ||D"E (k; (0, 2))|| = o(1). Notice that Eg3,, = b (0)+> oo, }/QE(/@( ,2))
will follow if the assumptions depending on a are strengthened in order to hold
for any a, due to the fact that 0y is arbitrary, while the derivative summabil-
ity condition will follow from relevant arguments concerning the derivation
of series.

Now, we can prove the following proposition. Notice that the validity
of the approximations rely on the relevant results addressed in the previous
sections and the previous assumption, hence we do not explicitly describe
them.

Proposition 8 With the above notation, let lemma or lemma hold
locally around 6y, then the r—GMR2 estimator, is of order 2r + 1 unbiased
at 90.
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Proof. Let the i"* element of vector x be denoted by ;. Then we have that
in the assumed neighborhood of 6

Vi (09— 8) = (k) +

1

1
nz

3

(kz)ﬁ-% (k3),4+—5 (ka),+0 (n_§> , fori=1,.p

3
W[w =

2
with Fy (k1), = 0. Now the GMR2 is defined as 0! = arg min, (9510 — Eg@;o) .
Hence we have that 07(10 —Eu 9510 = 0. Expanding, the i"* element of F o1 0510,

<E9(19;0) “say, around 6, we get: <E9(1€§ZO>‘ = < ) >0 M («9511 Qo) .
n i " i j
Pry o P (g0 ) (660 - 6,)
m j

A DI RD DAY Y i 8;91(59;7239) (9(1 90)1 (9%1 - 90) (9,(11 — 6’o> +.... Hence
as 0" — EG'(le?(.LO =0= " J
Vi (00 = Ea0) = 30, S (00— 00)

Mz m1%f(9 =) V(05 = 6n),

ORG

939( By 0

L By %\/ﬁ (05} (9(1 eo)m Jn (05} _ 90>j+
0 (n_l)

Now for any # in the assumed open ball at 6y, and any ¢, j, m,l,r = 1,...p,

we have that due to assumption [A.17]

1 1 1
<E99$10>A = 0; + —Eghky; + —5 Egks; t3 — Egksi +0(n7?),
) n n2
©
0 (EbY). oy 1O, 1O, 1Ok,
89j “ 693 n% &9] n? 893
0
o (Eee’("” >1 _ 182 (EQkQ)i + i82 (E9k3>i + iaQ (E9k4>i o (n72)
96,00, 0 00,00, 3 00,00, @ n® 96,00,
3 (0
0 <E99n>i _ 1 0°(Eohy), L 0° (Eoks); L 0° (Eoka); +o(n?)
06,00,00,  106,00,00,  nt00,00,,00,  n® 06,00,,00,
Hence

NG E590k2)i_’_(k3 — Boks); | (ka — E§60k4)¢+0 (n—g>

nz n n2
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- ; a(E"e&‘O)v 1 1 1 a(%eﬁ?)v B
NOW, for 7 = 7, let 26, i= 14 EA + _%B + mc then a0, * =

e - s — @), vt 70) = 1 /0 = 0

f7(0 ) = —2A, and f///(0) = —6B. Expanding f (z) around z = 0 we
5 o(Ea0) \

get f(x) = 1— A2? — Bx® + o (n’5> and consequently | ——— =

1 _ 19(Eeks); _ Lsa(Ef)kB)z + 0< 3) Hence

1 0 (Egks),
(k1); + n% (ko — Egokn); + (k?s Egoks); — na—ez (k1);
! 1 8(E9k2) 10 (Eghs),
n—% (ks — Egoka); — 9, (ko — Egoka); — e, (k1),
. a(Egoem)
_ 1 _ i 1 _
= V(e 9°>i+j;i_:1 a6, Vi (06— 0o) )
0
_l% ; M\/ﬁ <9(1 —0 )
no, = o S

p_ 020 (Fp0L)
+ﬁ JZ agm—(;ej)z\/ﬁ (9511 - 90>m vn (97(11 - 90)j

=1 m=1

P » p 330 <E9097(10)

EINNI

=1 [=1

96,00,,00; Vn (97(11 N 90>l v (95} N 9°)m v (97(11 N 90) ;O (”)

Now notice that first all the higher order derivatives are of order O (n™1),

82<E09(0) 93(E995LO>Z_ _ (n—l) nd 84<E99$9)i _ O(n_l)'

1. —5g.00, — O(n™), 96,00,,00, 90,.00,00,,00;
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0(Fo01)

Further the same is true for i # j, i.e. —g = O (n™1). Hence we get
1 1 10 (Eyk
(k1); + — (k2 = Egoks); + — (ks — Egyks); — % (F1);
n2 i
1 1 8(E9k2) 1 0 (Egks);
(kg — By k), — — 220i g TS (ky),
+7’L% (k4 90k4)z n% ael (k’g 90k2) n2 ael (kl)z
P (10 (Epks), 1 0(Ep,ks),
- 1_ 22\ F002)i  ~ T\ 003 a_
V(o2 =)+ 30 (GHG e ) v (o - ),

LSS PR ) () o (o)

Inverting we get:

1
Vi (0 =0s) = (), + =5 Oy = Byglo) - (ks = B k)
1 <= 0 (Egyks) 1
0 — (ks — E,
n ]Zl ae] (k1> n% (k4 90k4)

-1
p
E@okQ _3

Z ae 96, (F1)m (k1) o (” ')

j=1m

. 02(Eggkz).

Notice that By, () = (), — 4= 0, S0, 250 gy, (k) (), )
which is of order O (n"2), i.e. A is O <n_%> unbiased. Hence the proposition

is true for r = 1.
Assume now that it is true for » = h, i.e. assume that, for i = 1, ..p we have:

V(00 =0) = (k) ()4 ()b ot g (o),

1
nz2 n 2

1 1 _ 2h+43
+ 2h+1 (k2h+2)i + “2ht2 <k2h+3)i + T 2hi3 <k2h+4)i +o0 <n 2

n 2 n 2 n 2

with By (k1), = Ep(ks), = .. = Ep(kans1), = 0, ie. 0% is O (m””z* )
0o — unbiased. Now for any 0 € B (0, ¢), and any i, j,m,l,r = 1,...p, we
have that

(Ee)@q(zh) 0; + 2h+z —sizz By (kanya); + @Ea (konss); + @Ea (Konta); +

n n
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_ 2h+4

oln "z ),
(h

8(E99” >l o 5+ 1 8E9(k2h+2)i+ 1 an(k2h+3)i+ 1 OFEg(kanta); +o n—2h2+4

a0, — Uij n2h2+2 90, n2h2+3 90, n2h2+4 a0,

2 (h
g (EGG" >1 1 32E0(k2h+2)i_’_ 1 82E9(k2h+3)i+ 1 82E9(l€2h+4)i_’_0 n—2h2+4
907,00, L TFT 00,00, ' TFS 00,00, | FT  06,,00,

3 (h
o (EGG" )1 _ 1 33E9(’$2h+2)i_’_ 1 83E9(k2h+3)i+ 1 83E9(k2h+4),;_’_0 n—2h2+4 etec
90,:00,00; — TFE 00,00,,00; | T8 00,00,00, | T 00,00,,00; - Ele.

_ 2h+42

Notice that all higher order derivatives are of O (n 2 ) and the same ap-

_ o(E0\"). o
plies for —g, for i # 7.
2
Then the h+1%'—step GMR2 estimator is defined as #"*! = arg min, <9$Lh - E@H;h) .
Hence we have that 97(1’1 — E9<h+197(1h = 0. Expanding, the i"* element of
Eeggﬁl%h, (EG’ELIerle,ELh)' say, around 0, we get: (EegLH%h) — <E909$Lh>‘ +
O(Eo), ( pnst 1 00 (Eag01'), ( pns h+1
e T (92 T 90>j+§ 21 2m=1 00,00, (‘951 - 90>m (951 - 90>j+
R, where R includes 3¢ and higher order derivatives. Hence as Gflh —E o =
0 we get

)

0(Eoy0\")

vn (91(1]1 - Eeogfqh)i =2 Tiﬁ (9&:”1 - Go)j
92 (Ey 04"
ke Syt T (0 ) i (00 ) o ()
J m j
as the 3" and higher order derivatives are O (n_%>
Further,

Vi (08 —00) = (k) +

1 1
(kQ)i + - (k3)z +..+ T 2n (k2h+1)i
n n 2

S
[NIES =

+ 2h+1 (k2h+2 - E60k2h+2)z‘ + “ohto <k2h+3 — E90k2h+3)i
n-2 g2
1 _ 2h43
sis (Kanta — Eookonya); +0 <n 2 )
2

+

n
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and it follows that

1 1 1
(kv); + — (ka); + — (ks); - + —5¢ (Kanea);
n-2 n n 2
1 1 1
+ izt (kons2 — Eookonyo); + —zizz (Fanys — Eogkonys); + —migs (Fanra — Eookanya);
n 2 n 2 n-_ 2z
o (Ea,0) v, 0 (E,0l)
_ i (h+1 i (h+1 _
poVn (007 = 80) + 3 pg, V" (007 = 80) )

j#i=1
h
+ﬁ Jif il %\/ﬁ (041 —00) v (04 eo)j +o(n )

6, 2T 00;

o(Ea) \ a(Ee0l) \ !
Expanding (u) as before we get (u) —1__ 1 _OB(kny2);

OEg(kny3), OEg(knia), 244 .
e 02)9?3)1 _ 2}1?4 "éa’;“)z +o0 (n 2 ) Hence solving for \/n (9%’”1 — 00) '
n

n 2 7
we get:

Vi (B0 = 0), = ()it 2 Gk (ke i )
+ 2h+1 (kant2 — Egokonta); + 2h+2 (kants — Egokants);

OEqg, (kan
2h+2 Z M (k1> 2}11+3 <k2h+4 - E00 k2h+4)i
2h+3 Z M (kz), — 2h+3 > M (k1)

82E, (k 2h43
~d g S e 1—;;;; 22 (k) (k) + (n ),
and 1t follows that

p
0? 2h+4
E (egwrl)i - ( i 9 2h+4 ;mzjl Ea@; ];25+2 (kl)j (kl)j + o0 (ni h; > )

which establishes the proposition due to the fact that ¢ is arbitrary. m

J

Remark R.47 Consider again the case where r = 1. Then 1—GMRZ2 is
actually third order unbiased at 0y hence the previous results are essentially
expanded if 9;0 has a local moment approximation.

Remark R.48 Proposition[§ essentially holds locally at 0y due to the prop-

erties of open balls as basic sets of neighborhoods (see also the example of the
previous section).
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4 Conclusions

In this section we first provide a brief review of our results. These can be
summarized to:

e We provide conditions that ensure the validity of the formal Edgeworth
approximation of the auxiliary and the three indirect estimators for any
finite order. The aforementioned validation was previously unattained
by the relevant literature. We massively rely on lemma

e Given the previous, we provide integrability conditions that validate
moment approximations of the aforementioned estimators. These con-
ditions validate the partial results of the relevant literature. We identify
the approximations up to the second order. In this respect we are able
to provide information on the bias structure of the estimator sequences
up to the second order, in a quite general setup that incorporates frame-
works of random weighting schemes.

e We provide a general definition of estimators as the GT one, even when
the auxiliary criterion is not of the likelihood type. Note that this type
of estimators are eligible to more general definitions.

e We provide new results on the issue of second order properties of the
three indirect estimators. First the expansions of GMR1 and GT es-
timators are new and reveal a higher order asymptotic inequivalence
with the GMR2.

e We massively generalize the GMR2 expansion. We are able to general-
ize the conditions under which the GMR is second order unbiased (at
0p) even in this set up.

e We characterize the fact that due to the notion of the local canonical
form of the binding function, there always exists a parameterization of
the auxiliary model, under which the GMR2 is second order unbiased
under deterministic weighting.

e In response to the issue of higher order bias correction, we define indi-
rect estimators that emerge from multistep optimization procedures. If
we strengthen the previous results with a view towards local validity of
the relevant moment approximations, we are able to provide recursive
indirect estimators that are locally unbiased at any given order.

We conclude with some possible future extensions:
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The derivation of the actual Edgeworth approximations, in the sense
that the coefficients of the relevant polynomials are expresses as func-
tions of the approximations of the auxiliary estimators, could be useful
for the derivation of analogous properties of indirect testing procedures.

The extension of the previous results in the semiparametric case.

An interesting case lies in the possibility that b (6p) is in the boundary
of B, even if 0 is in the interior of ©, due to the fact that the binding
function is not a local homeomorphism. In this case even the first order
distribution of the estimator will be non standard.

The determination of invariant parts of the expansions with respect to
reparametrizations.
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Appendices

The following are a collection of helpful lemmas that are frequently referenced
in the proofs of the main results.

The following lemma concerns weighting matrices and initial estimators
in general, hence it is directly connected to assumptions [A.9 and [A. 1T} Tt
provides a result useful in almost every step of the derivation of Vahdlty of
the analogous Edgeworth expansion for any of the estimators examined.

Lemma AL.1 Suppose that W,, (w,07), W (6y), 0, are defined as in assump-

tions [A.9 and[A.13, then
Po (|W (w,07) =W (0o)| > e) =0(n™"), Ve>0

and

Po (| D"Wi, (w,0) [g—gz — D"W (0) |o=go|| > ¢) =0(n™*), Ve >0, and r < d+1.

Proof. Under assumptions and [A.13, Lemmas 3 and 5 of [2], and due
the triangle inequality we have that
Po (W (w,8;,) = W (0o)]| > ¢)
Po ([[Wh (w,00) = W (60)[| + [Wn (w, 07) = Wi (w, o) > )
5 . 5
[Wa (,00) = W (B)ll > 5 ) + o (I (w,02) = W (,00)]| > 2 )

IAIA

< o (n—a) + Py (un 167 — 6ol > g) — 0 (n—a)
and
Po (||[D"W,, (w, ) lg=gz — D"W (0) g, || > )
< Po(ID"Wa (w,0) lo=gy — D"W (0) lo=go || + [| D"War (w,0) lo=g;, — D"War (w,0) lo=go || > €)
< Po (| D"Wa (.6 locsr = D" W (,6) loan] | > 3)

9
+Pa (D" Wa (,0) lo=ay = D'W (6) loanll > )

* € —a —a
< Py (an||9n—90|| > 5) +0(n ) :O<n )
|
In the following we denote as 6,, any of the examined (auxiliary or in-
direct) estimators. We denote with ¢, either 3 or < gf ) as these are
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defined in the section concerning the definition of the examined estima-
tors. We finally denote with J, any of the criteria that are involved in
the aforementioned definitions J its probability limit. Remember also that
d = max (2a + 2,3). Our next lemma concerns the derivation of the validity
of the Edgeworth expansion in any of the examined cases. It essentially deter-
mines that the local approximation of v/n (6,, — 6p) obtained by the inversion
of a polynomial approximation of the first order conditions, has an error that
is not greater that any o(n~%)-real sequence with probability 1 — o(n™%).
This result, along with the provisions of corollary that follows, estab-
lish that these two sequences have the same Edgeworth expansions if any one
of them has a valid Edgeworth expansion.

Lemma AL.2 1. B, <Hn% (6, — HO)H > C'ln'/? n> =o0(n"%),

Py, ( ’n% (pp — <p0)H > C*In'/? n) =o(n=%) for C,C* >0,

2. % is differentiable of order d—1 in a neighborhood of (0o, ¢,) and the
d — 1 order derivative is Lipschitz in this neighborhood (or in a subset of it)
the Lipschitz coefficient is bounded with probability 1 — o (n™%), and W8+59’,‘P0)
is positive definite,

5. Poy (|03 (6 = 20) = mbm (Ry)
analogous to the relevant quantities of the present lemma (see below) that
are derived in an analogous manner with a potentially different J,,

then there exists a smooth function ©* : R™ — RP, that is independent of n
such that

>w;§> = o(n™*) with m,R,, and w}

o ([[# (00 = 80) = nia ()

> wn> =0 (n_“)

where R} is the sequence of random elements with values on R™, with compo-

9Jn(00,90) 91,52 [ 0JIn(0.9)
nents the distinct components of =557, and { D = ) | (0=60,0=¢0) tiamisieldt’
1 2=1,1=1,..,a—

where D132 (%) = Diz o D}! <6‘7"6—g)>, m = dim (R:) and w, =

o(n=") deterministic.

Proof. By the previous remark, a (d — 1)-Taylor expansion about (6, ;)

on the conditions % = 0, would obtain

gn_HOa"'aen_em

a.J, 90 01, (6o, 00) | — 1( ) (aJn«eo %))) A
) - D']l j2 —7 j1 1mes +T* — O
Z i 00 O — Por" " 3 Pn — Po nor

S/

~
]1+]2 g Jo times

J1,J2=0
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where the remainder

» _ _ 4 8]77492’7;1" 4 81107
=y » (d_ll)! (djll) (Dﬁ’d o < (aew )) — Divdmimn ( : ((ag S00»))

J1=0

en_607”' 79n_997

-

o g (00,0 : . ;
% j1 times and each D2 (W) 1s an 121 + 19 tensor
éOn—QOO,"' 7§0n_(pg

72 ?i?nes
defined on R? ® -+ @ RPQR? ® - - - ® R? with values in R, with coefficients

vV vV
i1 times 12 times

the i{" derivatives of 8‘7"8—099) with respect to the components of the initial 6

0 (0,
and the it" derivatives of 8; ?)

@ at (0o, py). Hence the previous can be rewritten as ([2], lemma 8)

with respect to the components of the final

v* (en - 907 Pn — o> R; + 6:1) - OP

*

where v : R? x R? x R™ — R™ is smooth and € = OT” . If we denote
m—p

with R* the probability limit of R}, and with R the probability limit of

R, then it is trivial that U(Op,Oq,R*) = 0,, and that v Z’x’y)| (0,,00,R%) =

% which is positive definite by 2. Hence the implicit function theorem

applies and dictates that Uy, C R? an open neighborhood of R?, 3Vq, r) C
R? x R™ an open neighborhood of (0,, R*), and a unique smooth function
7 : Vio,r*) — Up, such that v(7* (z,y),z,y) = 0, V(z,y) € Vo, r")-
But we know that Py, (6, — 0o € Up,) =1 — 0( ), Poo (¢, — o € Up,) =
l—o(n™) Py, (Rt + € — R* € U,,)=1—0(n"*) and ¢, — ¢y = 7 (R,) + €,
where Py, (v/n ||€n] > wn) =o0(n"%), w, =0(n"*) and 7 (.) is a smooth we
obtain that for large enough n

0 — o = 7" (91 — 0, B+ €4) = 7 (7 (Ra) + 0, B+ €3) = 7° (1,9)
with 7* (0,, R*) = 0,. Now due to the smoothness of 7*, we have that

|7 (7 (Rp) + €n, By + €,) — 77 (7 (Rn) , 1) |
H or* (m (R,) + €F, R + €:L+)e N or* (m (Ry) + €5, RY + €T,

€

- ox’ " ay’ "
on* (m(R,) + €, R + €:L+)e N or* (r (R,) + €, R + e,ﬁ*)e*
- oz’ " oy’ "

where € is in the line segment between 0y and ¢, and €:* is in the line
segment between 0,, and €, we have that Py, (||e,]| > €) = 0(n™*) and from
continuous mapping theorem (applicable due to smoothness of 7* and )
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or* (7T(Rn)+e,1L R} +62§+)
oz’

o

and P, (

know

>K1)—0( ) for some K; >0

on* (ﬂ(Rn)—i—e:{ JRY +EZ+)
oy’

‘ > KQ) = o0(n~*) for some Ky > 0. Also we

Py, (n1/2 16, — 60| > Qlnz n) =o0(n™%)
Py, ( Pl = poll > C.In2 n) =o(n™)

and we choose w, = Cn3~%In?n = o (n=*), where C' > 0, to be determined,
since d = max (2a + 2, 3). Now, from above

%Jﬁwﬁwwm+%Rywm—w<<R>ww > Cndini )
* + * *—+
< P00 (né om (71' (Rn) —(; Gln ) Rn + €, )en %7% % )
T
* —+ * *—4
—|-P90 (n; om (71' (R") —g in?Rn + 6, ) 0271%7% n% )
Y

with C and C’z due to 3, given C. Now let & (n) = Cyn2~2 In? n then

Rn)+en R} +ert
Jerll > & (n)) <

nz o

P (vt |
( P ) | o ||e;:||>g<n)) _
i
i

on (W(Rn)+€n ,R;‘L+e;‘L+)

5 nz |z > e(n) ) =

on (W(Rn)JrEn R +e;‘,+)
oy’

or* (W(Rn)Jre;f Ry, +e;‘,,+)

nd sl > e (n) 0 -

> KQ)

+ px *+ * + px *+
i (| L) ) | ) | < ) <
on* (m(Rn)+en Ry ten” 1
P, ( () et el | Kg) + By, (Kon [ > = (n) <
o(n=) +
nd—1—jy [ 0In(0F0%)
D J1 o
_ pivd-1-j M)
i i1 (dJ?) 00
Py, | Kon2 3200 0n —0o,- -+, 0, — 0y, >e(n) | <
% J1 a:Iles
?n_SOOa"' 7Q0n_909
J2 t‘i,mes
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d—1 1
KQ” Zh d 1' J1
. . +
Ditd—1-j1 ‘”n 0 % H

0 (n_a> + P90
X _ pird=1=j1 (9Jn( 90 9Jn((60,0)) )

X (16— 6ol Nl %II

(jl)
<o(n *)+F K2n2 Zd L S | L | [H@TL - 90” + ey ﬁ%”] > e (n)
' e X 10 = G0l [l — ol

()

{ Sk 1167 - 00+ st ol }>g(n)
X (|0 = B0l |00 — @oll ™"

Assuming there are K, > 0 such that Py, (|L, | > Kj) = o(n™®) , some-

thing true in our case due to 2,we can find K > 0 such P, (max;, |L, ;| > K) =

O(H_a)' But Fp, (manl ’an’ > K) = by, (Ujl ‘Ln,jl‘ > K) < Zjl Py, (‘Ln,j1| > K) =

Jj1=0

<o(n™")+Fy, (sz > i
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> 0(n™) for K = max;, {K,, }. Hence

P,90 (né

O (w (Rn) + €, By, + 622*)

N\&.
[NJIsH

l\)\)—l

In

> CQ’I?,

)

« | & Lugi) [[[6 = 0ol + lloi — oll]
< o(n %)+ P Kon? (dl( )|M1 0 om0 >e(n
() + o | Ko 2;{ <16, — 0ol i, — ooll 8
d—1 1 +
a 0, — 0ol + llow — ol
< o(n7) + Py, Kon? 1rnax|L,”1|hZO { ”0 [QOHJl |’¢ZH_ 900”‘111'10 ] > e(n)
1 + +
1 d—1 (d— 1)!( ) [He 90“ + ”Son - (POM
= 0 (n_a) + P90 KQ” maxi, |Lnj1’ ZJl =0 { H@ — 90”]1 ngn . SOOdelfjl > € (TL)
Nmax;, |Ln ;| > K
1 +
d—1 ( ) [H@ 90” + ||SOZ - %m
+ﬂo-&mmﬂﬂ%nﬁao{dww B S R
ﬂmale ’Ln,ﬁ’ < K
<

(n™%) + Py, maX|Ln]1\ > K)

o (KW%KZ 1 d-1 [H9+ 90H + ||90§_1__f0|” } > e (n)

||9 —QOII” 1n = ol

Jj1=0
roresit { @) [nd 107 = ool + ket =] 1
= o(n™") + Py, = X [0, — o7 Il — ol
1 1
Mg, = eoll > Con~2nd n
{ o (5 [ 167 6o + ¥ llgt — ol } e (n)

X (100 = G0l 10 — 1900||1d_1_j1
Nle, = @ol| < Cin~2Inzn

KoK S
+5p 20

0
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IN

0 (n™%) + Fa, <||90n — o]l > Cun 2 In? n)

d—1 1 d—1 Lilp+ _ 1
+E, KQKZ{ @ () [ 65 —n] « .o }>€(n)
n

1 — Bl €1~

j1=0

d-1y [ 1 1
. KK Zd—_lo { (d_ll)! ( j1 ) '[Tw HQ;— 93H1+j C, ldnlﬂ } > £ (n)
= o(n™") + Py T X 1n = G| O I 2 on

N6, — 0o]| > n~2Q1InZ n

1 d-1y [ L+ _ >
e 5 N o
X n

+P90

P % (10, — |t Qi T

N6, — 6o|| < n~2QInzn

IN

o(n™) + Py, <||(9n — O] > n"2QIn? n)

d—1 d—1
+Py, | KoKy { (;f 1))! [Q In? n+ C, In? n} QICi T T n} > ¢ (n)

= o(w)

for Cy > KoK 307 {ﬁ(dj_ll) 0 +C.) leCf—l—jl}'
When now J,, (6, ) = Q4 (0,) W () Qn (0, ) and consequently 2202 —

a0
/
YW (0) Qn (6, ) then
en_e[):"' 76n_907

N J/
-~

Diviz <8Jn((907<ﬂo))> ju times B
¢

2 n = %o s Pn T Po
72 ?i?nes
en_907"' 70n_607
. / R
= D2 (MW > Jj1 times (o,
90 (900) Pn = Port " 00— P Q (0900)
J2 ?i;les
en_907”' 76n_007
aQé(eoﬂpo) 1,7 J1 ?i;nes
4= N D2 (Q),, (6, . Then when
00 (900) (Q ( 0 900)) Epn_goo,... >80n—<Pg
72 mles

j1+j2=d—1, then
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en_e()u"' 7971_007
. / Y
P | /|| Div (2botnlyy () i times w (B0, 00) || > wa | =
Vn 00 (¢0) G0 =P P — By @n (0o, ©p)

-
J2 times

0(n~*) where w, = o(n~*) (to be determined) are not included in 7* (R}).
Consequently, they are included in €. The determination of w,, is achieved
since:

HH_HOJH'ven_e()?

N J/
-

71,42 aQé(Ho,goo) j1 times _
P |+/n||D (—80 W(gpo)) Cn— 0 Pu— Py Qn (00, o) || > wn
72 ?i?nes
ﬁ(en_e())a 7\/5(071_6027
. / R
o iz aQn(Go,goO)W j1 times
— P | (ym) @Y (L= @) | o, — ol i ten—a) | || >
J2 times
X\/_Qn (907 900
_(d_l) 11,72 aQn 90 900
< P( (V) . | Do (P A (v0) | )
X |Iv/n (¢, — o)l [V (0n — 90)|| ||x/_Qn (0o, ©o)ll > wn
<o )+P (Vi) KV (9, = o)l IV 0 = 00) I [V/0Qn (B0, 90) | > wn )

<o) +P((va) VK (Co)" (Co" Co I n > w,)

which is true for w, = Cn~"% In? n where C' > K (CL)2 (Cy)* Cpp.
The next two results are of great importance in both the validity of Edge-
worth expansions as well as in the validation of moment approximations.

Lemma AL.3 Suppose that /n (5, —b(60y)) admits a valid Edgeworth ea-
pansion of order s = 2a + 1. Let {x,} denote a sequence of random vectors
and there ezists an € > 0 and a real sequence {a,}, such that a, = o(n=°)
and P (\/n||z,|| > an) = o(n™*). Then /n (5, — b(0y) + x,) admits a valid
Edgeworth expansion of the same order.

Proof.

By definition sup 45, ‘ (v/n (8, —b(6p)) - /4 (1 3 o (2 )) o (2)dz
o(n~*) where B¢ denotes the collection of convex Borel sets of R? and

7; (2) = O(1). Then, P (y/n (8, —b(0o) + x,) € A)

< P(yn(B,—0b(b0)) € A—a,)+o(n*). Also,

supAeBC‘ (Vn (B, =b(0o) +xn) € A) = [, (1—1—2Z . “a7; (y ))qﬁ(y)dy‘g

PV (B = b(00) € A=ay) = [, (1+Z2 0w 4)) 6 (v) dy| +

SUP AeB.
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o(n ) =o0(n"*) as A — a, is convex.

Now, [, . (1—1—2Z e (y )) y)dy = [, (1—1—21 no 27rz(z—an))¢(z—an)dz.

Therefore, if Hj, (2) denotes the k* order Hermite multivariate polynomial,
L (Hg (2),an,1) and z -linear function of a,, with coefficients from Hj, (z), and
(2 —an) = 6(2) Yo 5L (Hy (2) , an, k) + p, (2) where

P, (2) = (2K1+1) (=D)L (Hy (2 — a2) ,an, K +1) ¢ (2 — a,), and a, lies be-
tween a,,. If a < e set K = 0, else, choose some natural K > 2 —1.

Then, ( 3 2m(z—an))q§(z—an)
(1+2“n imi(z—an) (¢(2) (1+ DI A0 k) + p, (2)
o(z )<1+Z2“1n*§7r*( )) + @, (2) where the 7 ( ) s are O (1) polyno-
mials in z and ¢, (2) = < e o (z—an)> P (2)-
Hence [, (1—1—22“ nam; (z—an)>gz5(z—an) dz
—fA[ (1—1—21171 27‘(’())4-(]”}6&:
Jio( (1+2:Z noemk(z )) dz
+ [, ¢ (2) ¢n (2) dz and supAeBCUAqn(z)dz|
< supyep, [, ¢ (2 —a )‘(14_2?&1 n-im (z—an)) O (z)‘dz
< [ 6(z—ay) (1+z nohm (2 an)>pn(z)‘dz < % = o(n9) for

some C, 6 > o. Hence
SUP sce | R — [y n ( dz! = o(n *), and therefore sup sep,. | Rn — [, qn dz’

2 SUP 4eB. ‘R }fA d’ZH = ‘SupAGBc ’R | SupAEBc ‘fA dZH -
o(n~ )andsupAeBC’ (\/_(ﬂ —b(6) +x,) € A)— [, 0( (1+ZZ 1n’§7r*( ))dz‘:
o (n~%) due to the fact that the transformation from =; (2) to 7} (2) does not

depend on A but only on a,, and R, = P (v/n (8, —b(0o) + x,) € A)

_fA <1+22“1n 2l (2 )) dz. n

Corollary AC.1 Ifa < e thenn; (z) = 7} (2), Vi, and therefore the resulting
Edgeworth distribution coincides with the initial.

79



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
DEPARTMENT OF ECONOMICS

DISCUSSION PAPERS

(An electronic version of the paper may be downloaded from: www.econ.aueb.gr )

191. Nicholas C. Baltas. AN ANALYSIS OF INVESTMENT ACTIVITY IN THE GREEK
AGRICULTURAL PRODUCTS AND FOOD MANUFACTURING SECTOR.
Forthcoming in: Journal of Economic Asymmetries, 2008.

192. George C. Bitros, AUEB. THE PROPORTIONALITY HYPOTHESIS IN
CAPITAL THEORY: AN ASSESSMENT OF THE LITERATURE. (March 2008).

193. George C. Bitros, AUEB. AGGREGATION OF PRODUCER DURABLES WITH
EXOGENOUS TECHNICAL CHANGE AND ENDOGENOUS USEFUL LIVES.
Published in: Journal of Economic and Social Measurement, 34 (2009), 133-158.

194. Efthymios Tsionas, AUEB, Nicholas C. Baltas, AUEB and Dionysios P. Chionis,
Democritus Univ. of Thrace. COST STRUCTURE, EFFICIENCY AND
PRODUCTIVITY IN HELLENIC RAILWAYS. Published in: Journal of Economic
Asymmetries, VVol. 5, No.1, pp. 39-52, 2008.

195. George C. Bitros, AUEB. THE THEOREM OF PROPORTIONALITY IN
MAINSTREAM CAPITAL THEORY: AN ASSESSMENT OF ITS
CONCEPTUAL FOUNDATIONS. (This paper has evolved from Discussion Paper No.192
under the title “The Hypothesis of Proportionality in Capital Theory: An Assessment of the Literature”.
The present covers only the theoretical literature and it will be supplemented by another paper covering
the empirical literature.) [Sept. 2009].

196. George C. Bitros, AUEB. THE THEOREM OF PROPORTIONALITY IN
MAINSTREAM  CAPITAL THEORY: AN ASSESSMENT OF ITS

APPLICABILITY. (This paper has evolved from Discussion Paper No.192 under the title “The Hypothesis
of Proportionality in Capital Theory: An Assessment of the Literature”. It surveys the empirical literature and
accompanies Discussion Paper No. 195 under the title “The theorem of Proportionality in Mainstream Capital
theory: An Assessment of its Conceptual Foundations.) Forthcoming in a slightly revised version in the Journal of
Economic and Social Measurement.

197. George D. Demopoulos, European Chair Jean Monnet and AUEB, Nicholas A.
Yannacopoulos, University of Piraeus, and Athanassios N. Yannacopoulos,
AUEB. THEORY AND POLICY IN MONETARY UNIONS: INDETERMINACY
AND OPTIMAL CONTROL. (Feb. 2010).

198.  Stelios Arvanitis and Antonis Demos, AUEB. STOCHASTIC EXPANSIONS AND
MOMENT APPROXIMATIONS FOR THREE INDIRECT ESTIMATORS. (June
2010).



	Introduction
	The Binding Function
	The Auxiliary and the Indirect Estimators
	Generalizations to Multistep Procedures
	Edgeworth and Moment Approximations of Sequences of Distributions
	Outline of the paper

	General Assumption Framework
	Definition of Estimators
	Auxiliary Estimators
	Indirect Estimators


	Validity of Edgeworth Approximations
	Assumptions Specific to the Validity of the Edgeworth Approximations
	Auxiliary Estimator
	Indirect Estimators
	Existence of Edgeworth Expansions of Indirect Estimators


	Validity of 1st Moment Expansions
	Valid 2nd order Bias approximation for the Indirect estimators
	Auxiliary Estimators
	Indirect Estimators
	Local Canonical Representation of the Binding Function
	Example
	GMR2 Recursion


	Conclusions

