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Extended Abstract

1 Introduction
This paper is concerned with the derivation of higher order asymptotic prop-
erties of indirect estimators with a view towards their characterization in
terms of their approximate bias and mean squared error (MSE).
Indirect estimators (IE) usually emerge from two-step optimization proce-

dures. They were formally introduced by Gourieroux, Monfort and Renault
[4]. They are de�ned as (potentially measurable selections of approximate)
minimizers of criteria (inversion criterion) that are functions of an auxiliary
estimator (denoted by �n), itself derived as an extremum estimator. The
latter minimizes a criterion function (auxiliary criterion), that re�ects (part
of) the structure of a possibly misspeci�ed auxiliary model. The inversion
criterion, depends on a function connecting the underlying statistical models
and termed as the binding function. Minimization of the inversion crite-
rion, which usually has the form of a stochastic norm, essentially inverts the
binding function.
Given an auxiliary estimator, IE di¤er due to di¤erences in the inversion

criteria that hinge on di¤erences between the binding functions that each one
involves. Among the IE involving the same auxiliary estimator, the consistent
ones depend on sequences of binding functions that converge appropriately
to a common limit binding function (denoted by b) that satis�es some iden-
ti�cation condition.1 In these cases, the auxiliary estimator, also converges
in a similar manner to the value of the limit binding function at the true
parameter value, hence consistency follows from identi�cation. More re�ned
asymptotic properties may be di¤erent across the particular IE, essentially
due to di¤erences between the involved sequences of binding functions.

2 The Estimators
For a measurable space (
;F), we suppose that the statistical model (SM) is
a compact family of probability distributions on F when equipped with the
topology of weak convergence. Furthermore, we assume that there exists a
homeomorphism par (�) onto� � Rp for some p 2 N. �0 = par (P0) 2 Int (�),
for P0 in SM.
The auxiliary estimator is de�ned as a minimizer of a criterion formed

as the norm of a measurable function Qn with values on a �nite dimensional

1For example let b be injective.
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Euclidean space.

De�nition D.1 The auxiliary estimator is de�ned as

�n = argmin
�2B

Qn (�)

Qn could be a likelihood function, a GMM or more generally, a distance
type criterion like the ones appearing in the following de�nitions. Given �n
the indirect estimators are de�ned as minimum distance ones. In our setup
the relevant distances are represented by norms with respect to positive def-
inite matrices (denoted by Wn, W �

n and W
��
n ). As in the context of GMM

estimation, we allow these to be stochastic, and/or depend on initial estima-
tors, say ��n or �

�
n. We term this general framework as stochastic weighting.

We consider the following IE.

De�nition D.2 The GMR1 estimator is de�ned as

�n = argmin
�2�

k�n � b (�)kW �
n(�

�
n)

Given appropriate assumptions kE��nk < 1 on �. This enables the
de�nition of GMR2.

De�nition D.3 The GMR2 estimator is de�ned as

�n = argmin
�2�

k�n � E��nkW �
n(�

�
n)

The last one denoted by GT and proposed by Gallant and Tauchen [3]
is de�nable when Qn is di¤erentiable on B for P��almost every ! 2 
.
We denote with cn the derivative of Qn except for the case where Qn =
kcn (�)kWn(�

�
n)
, where cn : 
 � B ! Rl is appropriately measurable. Under

suitable conditions kE� (cn (�n))k is well de�ned. Consequently:

De�nition D.4 The GT estimator is de�ned as

�n = argmin
�2�

kE� (cn (�n))kW ��
n (��n)

The usual de�nition of the aforementioned estimator is given only when
the auxiliary estimator is the MLE of the auxiliary model. The current one
is obviously an extension. The computation of all three estimators relies
on the analytical form of the binding function or the engaged expectations,
which are usually intractable. Hence in applications these estimators are
usually approximated by numerical procedures featuring re-sampling. It is
easily seen that the Monte Carlo (or bootstrap) counterpart of the GMR2
estimator is the one associated with the maximal numerical burden among
the three. In the following �n denotes either GMR1 or GMR2 or GT unless
otherwise speci�ed.
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3 Higher Order Properties
The higher order asymptotic properties of the aforementioned estimators
are established when their distributions are locally (around �0) uniformly,
weakly approximated by Edgeworth measures. The nth element of a sequence
of Edgeworth measures of order s� 2 N, depending on �, is a measure on
Rp that has a density of the form

�
1 +

Xs�

i=1

�i(z;�)

n
i
2

�
'V (�) (z) where �i are

polynomials in z, and 'V (�) is the normal density with zero mean and variance
the p � p matrix V (�).2 If a� = s��1

2
, O (�0) is a closed neighborhood of �0

and B is the Borel algebra on Rp, then the aforementioned locally uniform
weak approximation of order s� is de�ned by

sup
�2O(�0)

����P� �pn (�n � �) 2 A�� Z
A

�
1 +

Xs�

i=1

�i (z; �)

n
i
2

�
'V (�) (z) dz

���� = o �n�a��
for any A 2 B.3 The validity of such approximations can be established by
conditions on the dependence of the random elements involved, the existence
of integrals of appropriate functions w.r.t. the underlying probability mea-
sures and the smoothness of the procedures under which the auxiliary and
the IE are de�ned. Given an assumption framework of this form-denote it as
AFEV (s�)-we prove that:

Lemma 3.1 Under AFEV (s�)
p
n (�n � �) has an Edgeworth approxima-

tion of order s� uniformly on O" (�0).

The Edgeworth measures involved generally di¤er between the employed
IE, thereby establishing di¤ering higher order asymptotic properties. If s� is
large enough and since � is bounded we can prove the following:

Lemma 3.2 Suppose thatK is am-linear real function on Rp, under AFEV (s�)
when s� = 2a+m+ 1 then

sup
�2O(�0)

����Z
Rp
K (zm)

�
dPn (�)�

�
1 +

Xs

i=1

�i (z; �)

n
i
2

�
'V (�)dz

����� = o �n�a�
where Pn (�) denotes the distribution of

p
n (�n � �) under P�.

This enables the approximation of moments of
p
n (�n � �) from the anal-

ogous moments of the Edgeworth measures. We compute these approxima-
tions for a = 1

2
. One case is of particular importance:

2It is not generally a probability measure.
3It is obvious that when it exists, such an approximation is not unique.
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Lemma 3.3 Under AFEV (s�) for s� � 3 when W � is non stochastic and
independent of � and b is a¢ ne then

sup
�2O(�0)

E�pn (�n � �)� � (�)p
n

 = o�n� 1
2

�
where � (�) = 0p i� �n = GMR2.

Hence under these circumstances the GMR2 is second order locally uni-
formly unbiased4 an important property not shared by its counterparts. The
following lemma whose validity also emerges from 3.2 implies that this prop-
erty is not at a cost of an augmented approximate MSE of the same order.

Lemma 3.4 Under AFEV (s�) for s� � 4 when W � is non stochastic and
independent of � and b is a¢ ne then

sup
�2O(�0)

E� �n (�n � �) (�n � �)0��H1 (�)� H2 (�)p
n

 = o�n� 1
2

�
where H1 (�) and H2 (�) do not depend on the IE.

The previous establish the superiority of the GMR2 estimator making it a
suitable candidate for bias correction when the underlying statistical models
coincide and �n is consistent, whence b is the identity function, in which case
the H1 and H2 are equal to the analogous of �n.

4 Recursive GMR2
The previous section highlights the fact that the second order bias of the
GMR2 estimator depends on the local to �0 behavior of the binding func-
tion. Due to theorem 10.2 of Spivak [6] (p. 44) B can always be chosen

so that the binding function b is of the form
�

�
0q�p

�
at least in a small

enough neighborhood of �0. This along with non stochastic weighting imply
that there always exists an auxiliary parametrization such that the GMR2
estimator is second order unbiased. Usually, the re-parametrization of the
auxiliary model is analytically intractable.

4We term an IE locally (around �0) uniformly unbiased of order s, if

sup
�2O(�0)

E�pn (�n � �) = o�n� s�1
2

�
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However there exists at least one indirect estimation procedure that can
be employed in order to approximate this canonical parameterization. Given
the GMR1, let �0n = (GMR1

0; 0q�p)and apply the GMR2 estimator to the lat-
ter. Then the resulting indirect estimator is derived from a three-step proce-

dure, in the last step of which the binding function is obviously

0@�1; �2; : : : ; �p; 0; : : : ; 0| {z }
q�p

1A0

.

An extension of the three step procedure of the previous remark to an arbi-
trary number of steps, where the ith-step auxiliary estimator is the the GMR2
of the previous step embedded to Rq, can provide an unbiased indirect esti-
mator of arbitrary order when i is large enough. Obviously, the embedding
of the auxiliary estimator in any step after the �rst to Rq is irrelevant and
therefore will be dropped.
We de�ne recursive indirect estimation procedures as follows. Let �(0n

denote any estimator of �.

De�nition D.5 Let � 2 N, the recursive � � GMR2 estimator (denoted by
�(�n ) is de�ned in the following steps:

1. �(1n = argmin�
�(0n � E��(0n ,

2. for � > 1 �(�n = argmin�
�(��1n � E��(��1n

.
We prove the following lemma.

Lemma 4.1 Under AFEV (s�) for s� � 2�+3 the ��GMR2 estimator is of
order s = 2� + 1 unbiased and has the same MSE with the (� � 1)�GMR2,
up to 2� order, uniformly on O" (�0).

When � = 1 we partially strengthen the previous results, since 1�GMR2
is actually 3rd order unbiased at �0. Furthermore, the 1�GMR2 has the same
second order MSE as the 1�GMR2 one. Using Andrews [1] and Gourieroux
et al. [5] we obtain a characterization of iterative bootstrap procedures as
approximations of GMR2 type estimators.

5 Further Research
The previous results motivate some possible further extensions. First, the
derivation of the analogous approximations when the true parameter value
and/or its image w.r.t. the binding function lie on the boundary of the pa-
rameter spaces (see Calzolari et al. [2]). This could also imply the �rst order
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asymptotic non-equivalence between the three IE. Second, an application
of the Edgeworth approximations could lay in the derivation of higher order
properties of indirect testing procedures. Third, the introduction of indirect
estimators via the actual use of the Edgeworth approximations for the auxil-
iary one. For example, an indirect estimator could be de�ned by substituting
E��n with

R
Rp z

�2(z;�)
n
'V (�)dz in the de�nition of the of GMR2 estimator. We

leave all these questions for future work.
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