



# **Economics Research Workshop March 2018**

How much bargaining power does a worker have?

Targets, uncertainty and informational heterogeneity in a Nashbargaining wage-determination framework, with a Two-tier Stochastic

Frontier model to measure them all.

Chapter of PhD Thesis

Alecos Papadopoulos
PhD Candidate (supervisor: prof. Plut. Sakellaris)
Athens University of Economics and Business
School of Economic Sciences / Dpt of Economics
papadopalex@aueb.gr
https://alecospapadopoulos.wordpress.com/

### What

- A Nash-bargaining wage-determination model under uncertainty and informational heterogeneity, based on target-wages rather than on reservation wages.
- A new Two-tier Stochastic Frontier model, with statistical dependence inside the error term, and allowing for regressor endogeneity.
- An empirical application.

## The two-player Nash Bargaining model

#### Nash (1950, 1953)

- Two self-interested Expected Utility maximizers: 1,2
- A strictly positive GAIN, if they collaborate.
- A non-negative payoff if they don't collaborate
  - (So No Penalty in case of no agreement).
- The issue: if agreement is reached, how to split the gain?

## The two-player Nash Bargaining model

#### FORMALITIES

• Players' "no-agreement" payoffs:  $s_0(1), s_0(2) \ge 0$  (these are the "credible threats" of the game)

• Players' split of the pie:

• (decision variables somewhere in here)

• Players' "Surplus" functions : 
$$S_1 = s(1) - s_0(1)$$
 
$$S_2 = s(2) - s_0(2)$$

## The two-player Nash Bargaining model

The Nash bargaining Solution (see Roth 1979):

$$\arg\max\{S_1 \cdot S_2\} = \arg\max\{(s(1) - s_0(1)) \cdot (s(2) - s_0(2))\}$$

is the unique equilibrium that satisfies the axioms of Expected Utility Theory and is Pareto optimal.

• The "asymmetric case"

$$\arg\max\left\{S_{1}^{\eta}\cdot S_{2}^{1-\eta}\right\} = \arg\max\left\{\left(s\left(1\right) - s_{0}\left(1\right)\right)^{\eta}\cdot\left(s\left(2\right) - s_{0}\left(2\right)\right)^{1-\eta}\right\}, \quad 0 < \eta < 1$$

is still the "Nash bargaining solution"

#### Map to wage determination (deterministic set up)

- Players: Firm (f) and employee (e)
- GAIN: the worker's output,

p

(certain magnitude)

- Employee surplus function:
  - No-agreement payoff:

$$s_0(e) = \underline{\omega}$$
 ("reservation wage")

• Split of the pie:

$$s(e) = \omega$$

(actual wage)

• Surplus function:

$$S_e = \omega - \underline{\omega}$$

Firm surplus function:

$$s_0(f) = 0$$

• Split of the pie:

$$s(e) = p - \omega$$

• Surplus function:

$$S_e = p - \omega$$

#### Map to wage determination (deterministic set up)

• Set also  $0 < \eta < 1$  to reflect "relative bargaining power of the employee"

• Then, objective function:  $S_e^{\eta} \cdot S_f^{1-\eta} = (\omega - \underline{\omega})^{\eta} \cdot (p - \omega)^{1-\eta}$ 

and Nash Bargaining solution:

$$\omega^* = \eta p + (1 - \eta) \underline{\omega}$$

... a convex combination of "maximum willingness to pay" (  ${\cal P}$  )

and "reservation wage" (minimum acceptable wage)  $\underline{\omega}$ 

#### **Productivity/output uncertainty**

- Assume now that the output of the worker is uncertain.
- An immediate thought is to substitute an expected value for the previously certain amount. In such a case
- Objective function:  $S_e^{\eta} \cdot S_f^{1-\eta} = (\omega \underline{\omega})^{\eta} \cdot (E(p|I_f) \omega)^{1-\eta}$

where  $I_f$  is the Information Set of the firm.

#### **Nash Bargaining solution:**

$$\omega^* = \eta E(p|I_f) + (1-\eta)\underline{\omega}$$

It appears trivial... BUT

#### **Productivity/output uncertainty**

$$\omega^* = \eta E(p|I_f) + (1-\eta)\underline{\omega}$$

...has issues regarding econometric implementation (and not only)

- 1) The conditional expectation function relates to many variables that are never available as data (so a lot of "omitted variables" issues).
- 2) The unobservable  $\eta$  will differ from transaction to transaction, it is a random variable: varying coefficients per observation.
- 3) Also  $(1-\eta)\underline{\omega}$  is unobservable and will go into the "error term": non-zero mean, correlation with the regressors.
- 4) It does not take into account **how the surplus functions change during** the negotiation process itself.
- 5) Last but not least, it does not give us a Two-tier stochastic frontier model, which is what I am doing in my PhD.

#### **Start with:**

"It does not take into account how the surplus functions change during the negotiation process itself".

- Think of the negotiation process as a sequence of arguments, offers and counter-offers.
- At some point in the negotiation process, the firm makes an offer,  $\omega_f^T$
- Since we will be working econometrically with completed transactions (realized matches), an offer in this sequence eventually will exceed the reservation wage of the worker.
- Freeze the frame: at that point the options for the worker are NOT anymore
  - ullet "Walk away and take payoff  $\underline{\omega}$  " OR "continue bargaining"

They have now have become

• "Agree and take payoff  $\omega_f^T > \underline{\omega}$  OR "continue bargaining"

Which is better. The new "credible threat" of the worker is to accept the firm's offer.

## The surplus function of the worker is now $S_e = \omega - \omega_f^T$

$$S_e = \omega - \omega_f^T$$

Analogously the firm will face a counter-offer  $\omega_e^T < E(p|I_f)$ 

and its "credible threat" has now become to accept this counter-offer. The options now are

"Agree and take payoff  $E(p|I_f) - \omega_e^T$ "

OR "continue bargaining" 
$$E\!\left(pig|I_f
ight)\!-\!\omega$$

#### The surplus function of the firm is now

$$S_{f} = \left[ E(p|I_{f}) - \omega \right] - \left[ E(p|I_{f}) - \omega_{e}^{T} \right] \Rightarrow S_{f} = \omega_{e}^{T} - \omega$$

Since offers of the one party become credible threats of the other party, they are **credible commitments**, and so must be guided by some self-interested overall strategy/target (that may shift during the negotiation process), some pivotal magnitude.

Condense the sequential procedure into this focal point, treating now the offers / counter-offers as these encompassing targets.

We have transformed the objective function into

$$S_e^{\eta} \cdot S_f^{1-\eta} = \left(\omega - \omega_f^T\right)^{\eta} \cdot \left(\omega_e^T - \omega\right)^{1-\eta}$$

and the Nash Bargaining solution into

$$\omega^* = \eta \omega_e^T + (1 - \eta) \omega_f^T$$

and the issue now becomes...

#### ...HOW THESE TARGETS ARE FORMED/CAN BE MODELED?

Enter: The information Set of the worker  $I_e,\ I_e \neq I_f,\ I_e \cap I_f \neq \emptyset$ 

- Information heterogeneity (private information etc).
- But also, some common knowledge.

Consider the symmetric-information/common-knowledge expected output

$$E(p|I_e\cap I_f)$$

What is common (and relevant) knowledge here?

Things like the worker's "official" attributes, say, her resumé.

Also, this is updated/changed during the negotiation process, by some

$$v, E(v) = 0$$

and we have the equilibrium common-knowledge expected output

$$\mu(\mathbf{x}) = E(p|I_e \cap I_f) + v$$

Can we relate the worker's and the firm's equilibrium targets to this conditional expectation?

WORKER: "I am not just that. I am MORE than that", because

- Individualism
- ullet  $\mu(\mathbf{x})$  does not use all the information the worker possesses

"MORE" = 
$$g \ge 0$$
 "self-evaluation premium"

$$\omega_e^T = \mu(\mathbf{x}) + g$$

#### FIRM: "It is NEVER AS GOOD as it looks on paper", because

- "Potential" is not realized production
- Credentials cannot guarantee efficiency

• "NEVER AS GOOD" = 
$$d \ge 0$$
 "prudential discount"

$$\omega_f^T = \mu(\mathbf{x}) - d$$

$$\omega^* = \eta \omega_e^T + (1 - \eta) \omega_f^T$$

$$\omega^* = \eta \left[ \mu(\mathbf{x}) + g \right] + (1-\eta) \left[ \mu(\mathbf{x}) - d \right]$$

$$\omega^* = \eta \Big[ E\Big(p \Big| I_e \cap I_f\Big) + v + g \Big] + (1 - \eta) \Big[ E\Big(p \Big| I_e \cap I_f\Big) + v - d \Big]$$

$$\omega^* = E(p|I_e \cap I_f) + [v + \eta g - (1-\eta)d]$$



#### We achieved:

- The conditional expected value is more closely related to, and so better approximated by, the data usually available.
- No varying coefficients in sight.
- The composite error term has the Two-Tier Stochastic Frontier (2TSF) structure.

$$\omega_{i}^{*} = E\left(p_{i} \middle| I_{e} \cap I_{f}\right) + \left[v_{i} + \eta_{i} g_{i} - (1 - \eta_{i}) d_{i}\right], \quad i = 1, ..., n$$

$$y_{i} = \mathbf{x}_{i}^{\prime} \boldsymbol{\beta} + \varepsilon_{i}$$

$$\varepsilon_i = v_i + w_i - u_i, \quad w_i, u_i \ge 0$$

| REMAINING ISSUE                                 | SOLUTION                                          |
|-------------------------------------------------|---------------------------------------------------|
| w,u are (negatively) correlated by construction | A new 2TSF specification with internal dependence |
| ${\mathcal V}$ may be correlated with ${f X}$   | A Copula to account for regressor endogeneity     |

### The 2TSF Correlated Exponential specification

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \quad \varepsilon_i = v_i + w_i - u_i, \quad w_i, u_i \ge 0$$

 $v_i \sim N(0, \sigma_v^2)$ ,  $w_i, u_i \sim$  Freund's Bivariate Exponential Extension (Freund 1961)

Then the density and distribution function of the composite error term are

$$f_{\varepsilon}(\varepsilon) = \sqrt{2\pi}\phi(\varepsilon/\sigma_{v}) \cdot \left[mb' \exp\left\{\frac{1}{2}\omega_{2}^{2}\right\}\Phi(-\omega_{2}) + (1-m)a' \exp\left\{\frac{1}{2}\omega_{3}^{2}\right\}\Phi(\omega_{3})\right]$$

$$F_{\varepsilon}(\varepsilon) = \Phi(\varepsilon/\sigma_{v}) + \sqrt{2\pi}\phi(\varepsilon/\sigma_{v}) \Big[ m \exp\{\frac{1}{2}\omega_{2}^{2}\}\Phi(-\omega_{2}) - (1-m)\exp\{\frac{1}{2}\omega_{3}^{2}\}\Phi(\omega_{3}) \Big]$$

$$\omega_{2} \equiv \frac{\varepsilon}{\sigma_{v}} + b'\sigma_{v}, \quad \omega_{3} \equiv \frac{\varepsilon}{\sigma_{v}} - a'\sigma_{v}, \quad a', b' > 0, \quad 0 < m < 1$$

 $\phi,\Phi$  are the Standard Normal density and distribution functions

#### The 2TSF Correlated Exponential specification

$$y_i = \mathbf{x}_i' \boldsymbol{\beta} + \varepsilon_i, \quad \varepsilon_i = v_i + w_i - u_i, \quad w_i, u_i \ge 0$$

$$f_{\varepsilon}(\varepsilon) = \sqrt{2\pi}\phi(\varepsilon/\sigma_{v}) \cdot \left[mb'\exp\left\{\frac{1}{2}\omega_{2}^{2}\right\}\Phi(-\omega_{2}) + (1-m)a'\exp\left\{\frac{1}{2}\omega_{3}^{2}\right\}\Phi(\omega_{3})\right]$$

#### The specification:

- Nests the independence case -when mb' = (1-m)a'
- Has a respectable range for Pearson's correlation coefficient  $\left(-1/3, 1\right)$
- The marginal moments of w, u are not identifiable
- The moments of their difference  $z \equiv w u$  are identifiable (And this is what we really care about)
- It is rather easy-going with Maximum Likelihood Estimation.

#### Regressor endogeneity and Copulas

- A "Copula", denoted by C, is a multivariate joint distribution function whose marginals are all **Uniform (0,1)**
- Sklar's theorem (essense):

Let  $X_i, i=1,...,m$  be random variables with marginal distribution functions  $F_i(x_i), i=1,...,m$ , marginal density functions  $f_i(x_i), i=1,...,m$  and let  $H(X_1,...,X_m)$  be their joint distribution function. Then there exists a Copula such that

$$H(X_1,...,X_m) = C_{X_1...X_m}(F_1(X_1),...,F_m(X_m))$$

The joint density can then be written

$$h(x_1,...,x_m) = c_{X_1...X_m}(F_1(x_1),...,F_m(x_m)) \cdot \prod_{i=1}^m f_i(x_i)$$

where  $c_{X_1\cdots X_m}\left(F_1(x_1),...,F_m(x_m)\right)$  is the copula density, capturing all of dependence.

#### Maximum Likelihood with a copula

The joint density of the regressors and the error term can therefore be written

$$h(x_1,...,x_m,\varepsilon) = c_{X_1...X_m}(F_1(x_1),...,F_m(x_m),F_{\varepsilon}(\varepsilon)) \cdot \prod_{i=1}^m f_i(x_i) \cdot f_{\varepsilon}(\varepsilon)$$

The marginals of the regressors can be ignored in the log-likelihood, no parameters of interest there. So , the effective likelihood per observation is

$$\ln \ell = \ln c \left( F_1(x_1), ..., F_m(x_m), F_{\varepsilon}(\varepsilon) \right) + \ln f_{\varepsilon}(\varepsilon)$$

#### The Gaussian copula and the Log-likelihood

We will use the Gaussian copula density which is

$$\ln c_i^G = -\frac{1}{2} \ln \det(\mathbf{R}) - \frac{1}{2} \mathbf{q}_i' \left( \mathbf{R}^{-1} - I_{m+1} \right) \mathbf{q}_i$$

Where **R** is a **correlation** matrix, and **q** contains the transformed regressors

$$\Phi^{-1}\left(\hat{F}_i\left(x_i\right)\right)$$

and the transformed CDF of the error term. After one more simplification, the log-likelihood becomes

$$\widetilde{L} = -\frac{n}{2} \ln \det \left( \widetilde{\mathbf{R}} \right) - \frac{1}{2} \sum_{i=1}^{n} \mathbf{q}_{i}' \widetilde{\mathbf{R}}^{-1} \mathbf{q}_{i} + \frac{1}{2} \sum_{i=1}^{n} \left[ \Phi^{-1} \left( F_{\varepsilon} \left( y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}; \boldsymbol{\theta} \right) \right) \right]^{2} + \sum_{i=1}^{n} \ln f_{\varepsilon} \left( y_{i} - \mathbf{x}_{i}' \boldsymbol{\beta}; \boldsymbol{\theta} \right)$$

**DATA:** Koop and Tobias (2004), using the regression specification of Tsionas (2012)

- National Longitudinal Survey of Youth (NLSY), USA.
- 2,178 white males 17,919 observations (panel)
- 1979-1993 (fifteen years),
- Tsionas (2012) specification: data pooling.
- **Regressors**: Education (in years) and its square, "potential experience" and its square, a time-invariant measure of "ability", a constant term, a deterministic time trend and its square.
- **Dependent variable**: log hourly wage in 1993-real terms, (semi-log specification).
- Regressors to be included in the copula density: Education, Potential Experience, Ability.

| Regressor                   | OLS      | Ind. Exp.<br>2TSF | Corr. Exp.<br>2TSF | Corr. Exp.<br>2TSF with<br>Copula |
|-----------------------------|----------|-------------------|--------------------|-----------------------------------|
| constant                    | 0.3356   | 0.3363            | 0.1980             | -0.0087                           |
|                             | (0.1168) | (0.1139)          | (0.0976)           | (0.1480)                          |
| Residual Skewness           | -0.4638  | -0.4773           | -0.4763            | -0.5087                           |
| Residual Excess<br>Kurtosis | 1.5552   | 1.5808            | 1.5798             | 1.6062                            |
| $\sigma_arepsilon$          | 0.4722   | 0.4716            | 0.4728             | 0.4748                            |

Estimates are rounded to 4th decimal. Heteroskedasticity robust standard errors (HC2) are provided in parentheses.

- The regression coefficient estimates (not shown) are close in all cases (not identical), and estimated with high accuracy.
- The variance of the composite error term is virtually the same
- So it appears that OLS is consistent except for the constant term.
- BUT
- Skewness and Excess Kurtosis point towards the use of a 2TSF specification.
- The benchmark Independence 2TSF Exponential Specification or the 2TSF
   Correlated Specification?

| Param eter | Corr. Exp.<br>2TSF | Corr. Exp.<br>2TSF with<br>Copula |
|------------|--------------------|-----------------------------------|
| a'         | 4.7140             | 4.6355                            |
| b'         | 2.8857             | 2.9226                            |
| m          | 0.3104             | 0.36478                           |

$$mb' = 0.89 \neq 3.25 = (1-m)a'$$

• So **Correlated** specification (consistent with the theoretical model)

#### Regressor endogeneity

|                                                             | Corr. Exp.<br>2TSF with<br>Copula | Std error |
|-------------------------------------------------------------|-----------------------------------|-----------|
| $\hat{C}orr(Education, \varepsilon)$                        | -0.0232                           | (0.0157)  |
| $\hat{C}orr(Potential\;Exper,arepsilon)$                    | -0.0802***                        | (0.0298)  |
| $\hat{	ext{Corr}}ig(	ext{Ability}, oldsymbol{arepsilon}ig)$ | -0.0047                           | (0.0250)  |

- The "Potential Experience" regressor appears endogenous (a little)
- **This makes sense**: it is "Actual Experience" measured with error and the error resides in the composite error term of the regression, creating correlation.
- So OLS will be inconsistent (a little).

- So we adopt the 2TSF Correlated Exponential Specification with a Copula
- What can we learn about our sample?

| Average net effect of bargaining performance | $E(\exp\{w-u\})$   | +8,17%  | On initial commoninformation expected output $E\!\left(p\middle I_f\cap I_e\right)$ |
|----------------------------------------------|--------------------|---------|-------------------------------------------------------------------------------------|
| Average total effect of Negotiation process  | $E(\exp\{v+w-u\})$ | +12,65% | On initial commoninformation expected output $E\!\left(p\middle I_f\cap I_e\right)$ |

• It appears that on average the negotiation process benefits the workers, they do get some of their self-evaluation premium.

REALITY CHECK: Going down to transaction level:

| 1993 USD (levels)  Conditional mean  values | $\hat{\varepsilon} < 0$ $n = 8229$ | $\hat{\varepsilon} > 0$ $n = 9690$ |
|---------------------------------------------|------------------------------------|------------------------------------|
| $\hat{E}ig(pig I_f\cap I_e, arepsilonig)$   | 10.37                              | 10.06                              |
| Actual Hourly wage                          | 7.39                               | 14.81                              |
| $\%\Delta$                                  | -28.7%                             | +47.2%                             |

 No systematic relation between "typical credentials" and wage outcomes.

Temporal evolution

 $\hat{E}\left(\exp\{w_i-u_i\}|\varepsilon\right) \exp\{\hat{\varepsilon}_i\}$ 

A downward trend in the Effect of the Negotiation process

|      |      | $\hat{E}ig(pig I_f\cap I_eig)$ | (Gross |             | Actual hourly |
|------|------|--------------------------------|--------|-------------|---------------|
|      | n    | , ,                            | mark-  | Gross mark- | wage          |
| Year |      | (1993 USD)                     | up)    | up)         | (1993 USD)    |
| 1979 | 454  | 7.40                           | 1.11   | 1.19        | 8.81          |
| 1980 | 615  | 7.51                           | 1.13   | 1.21        | 9.02          |
| 1981 | 745  | 7.73                           | 1.12   | 1.19        | 9.17          |
| 1982 | 964  | 7.94                           | 1.12   | 1.21        | 9.49          |
| 1983 | 1034 | 8.16                           | 1.10   | 1.17        | 9.45          |
| 1984 | 1093 | 8.57                           | 1.04   | 1.06        | 9.03          |
| 1985 | 1248 | 8.97                           | 1.06   | 1.09        | 9.68          |
| 1986 | 1284 | 9.47                           | 1.08   | 1.11        | 10.47         |
| 1987 | 1398 | 9.93                           | 1.11   | 1.16        | 11.42         |
| 1988 | 1443 | 10.44                          | 1.12   | 1.16        | 12.06         |
| 1989 | 1520 | 10.90                          | 1.11   | 1.13        | 12.30         |
| 1990 | 1535 | 11.42                          | 1.12   | 1.13        | 12.92         |
| 1991 | 1570 | 11.92                          | 1.10   | 1.10        | 13.23         |
| 1992 | 1517 | 12.45                          | 1.08   | 1.06        | 13.08         |
| 1993 | 1499 | 13.11                          | 1.10   | 1.08        | 14.08         |

Percentage of transactions with wage BELOW ABOVE

common-information expected output

| Year | $\exp\{\varepsilon_i\} < 1$ | $\exp\{\varepsilon_i\} > 1$ |
|------|-----------------------------|-----------------------------|
| 1979 | 40%                         | 60%                         |
| 1980 | 38%                         | 62%                         |
| 1981 | 39%                         | 61%                         |
| 1982 | 39%                         | 61%                         |
| 1983 | 42%                         | 58%                         |
| 1984 | 52%                         | 48%                         |
| 1985 | 49%                         | 51%                         |
| 1986 | 47%                         | 53%                         |
| 1987 | 44%                         | 56%                         |
| 1988 | 43%                         | 57%                         |
| 1989 | 44%                         | 56%                         |
| 1990 | 46%                         | 54%                         |
| 1991 | 48%                         | 52%                         |
| 1992 | 51%                         | 49%                         |
| 1993 | 52%                         | 48%                         |

#### References

- Freund, J. E. (1961). A bivariate extension of the exponential distribution. *Journal of the American Statistical Association*, 56(296), 971-977.
- Koop, G., & Tobias, J. L. (2004). Learning about heterogeneity in returns to schooling. Journal of Applied Econometrics, 19(7), 827-849.
- Kumbhakar SC, Parmeter CF (2009) The effects of match uncertainty and bargaining on labor market outcomes: evidence from firm and worker specific estimates.

  Journal of Productivity Analysis 31(1):1-14
- Nash Jr, J. F. (1950). The Bargaining Problem. Econometrica. 18(2): 155-162.
- Nash, Jr, J. F. (1953). Two-person cooperative games. Econometrica, 21(1): 128-140.
- Polachek SW, Yoon BJ (1987) A two-tiered earnings frontier estimation of employer and employee information in the labor market. The Review of Economics and Statistics 69(2):296-302
- Roth, A. E. (1979). Axiomatic models of bargaining. Springer-Verlag.
- Tsionas EG (2012) Maximum likelihood estimation of stochastic frontier models by the Fourier transform. *Journal of Econometrics* 170: 234-248
- Trivedi, P. K., & Zimmer, D. M. (2005). Copula modeling: an introduction for practitioners. *Foundations and Trends in Econometrics*, 1(1), 1-111.

#### **Economics Research Workshop**

**March 2018** 

How much bargaining power does a worker have?

Targets, uncertainty and informational heterogeneity in a Nash-bargaining wage-determination framework, with a Two-tier Stochastic Frontier model to measure them all.

Alecos Papadopoulos
PhD Candidate (supervisor: prof. Plut. Sakellaris)

## THANK YOU!