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ABSTRACT

Credit risk refers the possibility the borrower can’t afford to pay his loans
back,which causes financial loss to the lender.The risk is inherent in varius
financial products such as loans,bonds.The losses that the investor may be
face are lost funds,interest not received and reduced cash flow.

In this project will focus on fundamental and statistical machine learning
models for the measurement,modelling and management of credit risk as
well as the study of derivative contracts so to alleviate and manage the credit
risk.

Some important properties which make their quantitative modeling difficult
are defaults events are rare, they may occur unexpectedly, default events in-
volve significant losses, size of the losses are unknown before default.

There are several machine learning models and each case is different based
on the variables that we have.Algorithm selection depends on various fac-
tors such as data type,features transparency and interoperability.
The statistical machine learning algorithms that we selected for analysis are
the Logistic regression,which is a statistical model uses logit function to
model probabilities [0,1], in some causes uses regularization techniques to
avoid over fitting(lasso,ridge,elastic net).The next model is the SVM uses
a hyperplane in a multidimensional surface to separate two classes in the
data set.Using kernel functions,allowing to model non linearity classification
problems. Naive Bayes classification is based on Bayes theorem that need to
hold a strong assumption about the independence,in practice the assumption
is often violated.This technique is easy to implement but due to assumption
in independence has poor performance. Decision Tree model prediction is
obtained through a sequence of nodes and branches.While are very flexible
tool,the result often drive to a poor performnace due to overfitting.To avoid
overfiting usually we use the Random forest.The Random forest model uses
a number of decision tree,each tree using a random subset from the data set,
to measure a random subset of features in each partition. This randomness
introduces variability among individual trees, reducing the risk of overfitting
and improving overall prediction performance.
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Περίληψη

Ο πιστωτικός κίνδυνος αναφέρεται στην πιθανότητα ο δανειολήπτης να μην έχει

την οικονομική δυνατότητα να αποπληρώσει τo δάνειά του, γεγονός που προκαλεί
οικονομική ζημία στον δανειστή.Οκίνδυνος είναι εγγενής σε διάφορα χρηματοοικονομικά
προϊόντα όπως δάνεια, ομόλογα.Οι απώλειες που μπορεί να αντιμετωπίσει ο επεν-
δυτής είναι τα χαμένα κεφάλαια, οι τόκοι που δεν εισπράττονται και οι μειωμένες
ταμειακές ροές.

Σε αυτό το έργο θα επικεντρωθούμε σε θεμελιώδη και στατιστικά μοντέλα μηχανικής

μάθησης για τη μέτρηση, μοντελοποίηση και διαχείριση του πιστωτικού κινδύνου,
καθώς και στη μελέτη των συμβάσεων παραγώγων για την άμβλυνση και διαχείριση

του πιστωτικού κινδύνου.

Ορισμένες σημαντικές ιδιότητες που καθιστούν δύσκολη την ποσοτική μοντελοποίησή

τους είναι οπως τα γεγονότα αθέτησης πληρωμών είναι σπάνια, μπορεί να εμφανισ-
τούν απροσδόκητα, τα γεγονότα αθέτησης περιλαμβάνουν σημαντικές απώλειες, το
μέγεθος των ζημιών είναι άγνωστο πριν από την αθέτηση.

Υπάρχουν διάφορα μοντέλα μηχανικής μάθησης και κάθε περίπτωση είναι διαφορε-

τική με βάση τις μεταβλητές Η επιλογή του αλγορίθμου εξαρτάται από διάφορους

παράγοντες, όπως ο τύπος των δεδομένων, η διαφάνεια των χαρακτηριστικών και
η διαλειτουργικότητα. Οι αλγόριθμοι μηχανικής μάθησης που επιλέξαμε για την
ανάλυση είναι οι Logistic regression,ο οποίος είναι ένα στατιστικό μοντέλο που
χρησιμοποιεί συνάρτηση logit για τη μοντελοποίηση πιθανοτήτων [0,1], σε ορισ-
μένες περιπτώσεις χρησιμοποιεί τεχνικές κανονικοποίησης για την αποφυγή υπ-

ερβολικής προσαρμογής(lasso,ridge,elastic net). Το επόμενο μοντέλο είναι το
SVM χρησιμοποιεί ένα υπερεπίπεδο σε μια πολυδιάστατη επιφάνεια για να διαχωρί-
σει δύο κλάσεις στο σύνολο δεδομένων. Χρησιμοποιώντας συναρτήσεις πυρήνα,
επιτρέπει τη μοντελοποίηση προβλημάτων ταξινόμησης μη γραμμικότητας. Η ταξ-
ινόμηση Naive Bayes βασίζεται στο θεώρημα Bayes που χρειάζεται να κρατήσει
μια ισχυρή υπόθεση σχετικά με την ανεξαρτησία,στην πράξη η υπόθεση συχνά
παραβιάζεται.Αυτή η τεχνική είναι εύκολη στην εφαρμογή αλλά λόγω της υπόθεσης
της ανεξαρτησίας έχει κακή απόδοση. Μοντέλο Δέντρο αποφάσεων Η πρόβλεψη
λαμβάνεται μέσω μιας ακολουθίας κόμβων και κλάδων.Ενώ είναι πολύ ευέλικτο ερ-
γαλείο, το αποτέλεσμα συχνά οδηγεί σε κακή απόδοση λόγω υπερβολικής προσαρ-
μογής.Για να αποφύγουμε την υπερβολική προσαρμογή συνήθως χρησιμοποιούμε
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το μοντέλο Random forest.Το μοντέλο Random forest χρησιμοποιεί έναν αρι-
θμό δέντρων απόφασης, κάθε δέντρο χρησιμοποιεί ένα τυχαίο υποσύνολο από το
σύνολο δεδομένων, για να μετρήσει ένα τυχαίο υποσύνολο χαρακτηριστικών σε
κάθε διαμέρισμα. Αυτή η τυχαιότητα εισάγει μεταβλητότητα μεταξύ των μεμον-
ωμένων δέντρων, μειώνοντας τον κίνδυνο υπερπροσαρμογής και βελτιώνοντας τη
συνολική απόδοση πρόβλεψης.



6

ACKNOWLEDGMENTS

I would like to express my thanks to my supervisor professor Athanasios
giannakopoulos, whose precious advices lead me to the completion of this
Thesis. Her guidance was constant. In addition, I would like to thank all of
my professors in the MSc in Statistics program, who managed to provide us
high quality knowledge. Last but not least, I owe much to my family and my
friends whose support was non-negotiable.



7

Contents

I Introduction 9
1.1 Expected loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.1.2 The exposure at default (EAD) . . . . . . . . . . . . . . 13
1.1.3 The loss given default . . . . . . . . . . . . . . . . . . . 16

1.2 Unexpected Loss . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.1 The loss Distribution . . . . . . . . . . . . . . . . . . . . 19
1.2.2 Monte Carlo Simulation of Losses . . . . . . . . . . . . 19
1.2.3 Analytical Approximation . . . . . . . . . . . . . . . . . 20
1.2.4 Modeling Correlations by Means of Factor Models . . . 23

II The CreditRisk+ Model 29
2.1 The Modeling Framework of CreditRisk+ . . . . . . . . . . . . 29
2.2 Construction Step 1: Independent Obligors . . . . . . . . . . . 32
2.3 Construction Step 2: Sector Model . . . . . . . . . . . . . . . . 33

III Machine Learning Models For Credit Risk 37
3.1 Logistic regression . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Decision Tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . 43

3.4.1 Linear SVM . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.2 Non-linear SVM . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.6 Naive Bayes Algorithm . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Linear Discriminant Analysis LDA . . . . . . . . . . . . . . . . 53

3.7.1 A practical application of LDA . . . . . . . . . . . . . . 53
3.7.2 Properties and assumptions of LDA . . . . . . . . . . . 54
3.7.3 Applying LDA with an example in credit risk . . . . . . 55

IV Model performance evaluation 57



8

4.1 Cross Validation in Machine Learning . . . . . . . . . . . . . . 57
4.2 Types of Cross-Validation . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 K-fold cross-validation . . . . . . . . . . . . . . . . . . . 58
4.2.2 Holdout cross-validation . . . . . . . . . . . . . . . . . . 59
4.2.3 Stratified k-fold cross-validation . . . . . . . . . . . . . 60
4.2.4 Leave-p-out cross-validation . . . . . . . . . . . . . . . 61
4.2.5 Leave-one-out cross-validation . . . . . . . . . . . . . . 61
4.2.6 Monte Carlo cross-validation . . . . . . . . . . . . . . . 62
4.2.7 Time series (rolling cross-validation / forward chaining

method) . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.3 Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.4 AUC-ROC Curve . . . . . . . . . . . . . . . . . . . . . . . . . . 66

V Credit Derivatives 67
5.1 Total Return Swaps . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Credit Default Products . . . . . . . . . . . . . . . . . . . . . . 71
5.3 Basket Credit Derivatives . . . . . . . . . . . . . . . . . . . . . . 75
5.4 Credit Spread Products . . . . . . . . . . . . . . . . . . . . . . . 79
5.5 Credit-Linked Notes . . . . . . . . . . . . . . . . . . . . . . . . 82



9

Chapter I

Introduction

In today’s world, with the rapid growth of technology, credit risk analysis
can be effectively approached through quantitative methods, as well as the
study of derivative contracts, to manage and mitigate credit risk. This project
aims to introduce and apply machine learning models to predict whether
a borrower will be able to repay their loans. We will evaluate the perfor-
mance of these models using metrics such as Receiver Operating Character-
istics (ROC), accuracy, and more.

Additionally, we will explore the implementation credit risk+ models

Following this, we will analyze credit derivatives, which are financial instru-
ments used to manage or transfer credit risk between parties. Credit deriva-
tives are crucial tools for risk management, enabling institutions to hedge
against potential losses or speculate on changes in credit risk. Some common
types of credit derivatives include Credit Default Swaps (CDS), Total Return
Swaps (TRS), Credit Linked Notes (CLN), and Collateralized Debt Obliga-
tions (CDOs).

By integrating machine learning models with traditional credit risk assess-
ment methods and exploring the role of credit derivatives, this project aims to
provide a comprehensive approach to managing and mitigating credit risk.
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1.1 Expected loss

The need of a loss protection in terms of an insurance, as one knows it from
car or health insurances. Moreover, history shows that even good customers
have a potential to default on their financial obligations, such that an insur-
ance for not only the critical but all loans in the bank’s credit portfolio makes
much sense. The basic idea behind insurance is always the same. For ex-
ample, in health insurance the costs of a few sick customers are covered by
the total sum of revenues from the fees paid to the insurance company by all
customers. Therefore, the fee that a man at the age of thirty has to pay for
health insurance protection somehow reflects the insurance company’s expe-
rience regarding expected costs arising from this particular group of clients.
For bank loans one can argue exactly the same way: Charging an appropriate
risk premium for every loan and collecting these risk premiums in an inter-
nal bank account called expected loss reserve will create a capital cushion for
covering losses arising from defaulted loans.
The basic idea is as follows: The bank assigns to every customer a probability
of default (PD), a loss fraction called the loss given default (LGD), describing
the fraction of the loan’s exposure expected to be lost in case of default, and
the exposure at default (EAD) subject to be lost in the considered time period.
The loss of any obligor is then defined by a loss variable.

L̃ = EAD× LGD× L with L = 1D, P(D) = PD (1.1)

Note that the quantities PD, LGD, EAD and all quantities derived from those
three are measured w.r.t. a specified time horizon. We drop the time aspect
for now but will come back to it later in the text.
In the setup we just described it is very natural to define the expected loss
(EL) of any customer or, more general, credit-risky asset as follows
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Definition

Given a loss variable L̃ as in (1.1), its expectation

EL = E[L̃]

is called the expected loss of the underlying credit-risky asset.

Proposition

If the constituents of L̃ in (1.1) are independent, the expected loss can be
written as

EL = E[EAD]×E[LGD]× PD. (1.2)

Moreover, if EAD and LGD are constant values, the formula reads as

EL = EAD× LGD× PD.

Note that making the assumption that EAD and LGD are constant values
can be a good starting point for a back-of-the-envelope calculation to assign
fixed values to EAD and LGD. However, in realistic situations EAD has to be
modeled as a random variable due to uncertainties in payment profiles like,
for instance, amortization, usage, and other drivers of EAD up to the chosen
planning horizon.
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1.1.1 Ratings

Originally ratings were not developed for the derivation of PDs but only for
the discrimination of credit quality on an ordinal scale. And in case of rat-
ing agencies which we will introduce later it still is the case that they do not
assign PDs directly to rated clients.So one has to be careful to put ratings
and PDs in one bucket without keeping in mind that they are in fact differ-
ent objects, as we will point out in a moment. However, because PDs are
assigned to ratings and PDs are a main driver of the portfolio loss as well as
all kinds of important ratios in banking, including regulatory capital related
quantities, it is a common pattern that ratings and PDs are associated. Hav-
ing said that, we continue our presentation from the viewpoint of the practi-
tioner who uses ratings in the sense explained in the sequel. The assignment
of default probabilities to clients typically functions via so-called rating sys-
tems. A rating system can be thought of as a discretization of PDs on an
ordinal scale which is called the rating scale. Discretization of a continuous
metric quantity like a PD to an ordinal scale makes life in large organiza-
tions easier although one could argue that discretization seems a bit artificial
and in the context of pricing introduces unnecessary jumps in pricing grids.
Well-known discretizations of PDs are the rating scales by the rating agencies
Moody’s, Standard & Poor’s, and Fitch.
Rating scales of rating agencies look as follows. Standard & Poor’s and Fitch
use AAA, AA, A, BBB, BB, B, CCC, CC, C as a rating scale for rating best
credit quality (AAA), 2nd-best credit quality (AA), and so on, until worst
credit quality (C). The default state indicating that a company already failed
in some payment obligation is denoted by D. Moody’s uses Aaa, Aa, A, Baa,
Ba, B, Caa, etc. to denote a comparable rating scale, again in decreasing order
of credit quality. Each of the rating agencies has a finer rating scale in place
to allow for a finer distinction of credit quality among obligors. Standard &
Poor’s and Fitch.
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1.1.2 The exposure at default (EAD)

EAD is the quantity in specifying the exposure the bank does have to its bor-
rower. In practice, banks grant to obligors so called credit lines which func-
tion like a credit limit for the single-obligor exposure For the sake of a better
understanding let us introduce a working example which will accompany us
through this whole section on EAD. Let us assume that a credit analyst as-
signs to a borrower, say, a medium sized firm, a credit line with a total limit
of EUR 20m. Let us assume that the credit line is structured in the following
way:
• Total credit line is EUR 20m.
• The borrower can draw EUR 12m as cash and can use the remaining EUR
8m of the credit line for so-called contingent liabilities, e.g., guarantees or
comparable credit constructs but not for cash.
Now let us assume the borrower has drawn EUR 10m already. This part of
the credit line is then called the outstandings of the client’s exposure. The
remaining open EUR 10m of the credit line are called commitments. In other
words, the outstandings refer to the portion of the overall client exposure the
obligor is already using. There is no randomness involved, drawn is drawn,
and if the obligor defaults then the outstandings are subject to recovery and
in a worst case situation could potentially be lost in total.
Of course, there is some time dynamics involved in outstandings. For in-
stance, if the obligor pays back borrowed amounts over time then it makes a
big difference whether an obligor defaults today or sometime in the future.
Especially in mortgages where one often finds pre-determined amortization
schemes the timing of default has a direct impact on the EAD. In our exam-
ple one would need to accurately evaluate incoming cash from repayments
versus newly opened parts of the credit line of the obligor which are subject
to be drawn again, depending on the lending contract framework the bank
and the obligor agreed to and signed.
The commitments, i.e., the remaining open EUR 10m of the borrower’s credit
line, are rather tricky to take into account. There is no other way than consid-
ering the exposure arising from the open part of the credit line as a random
variable. So in our particular example we have EUR 10m open in the credit
line but only EUR 2m can be drawn as cash. The other 8m can only be used
for contingent liabilities. The two parts of the open line address different ran-
dom effects:
• The EUR 2m which can be drawn as cash are driven by the likelihood that
the borrower draws on them as well as by the fraction
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Quantifying how much of the 2m she or he draws. Describing the situation
by a simple equation, we could write

EADcash = 1D × X× [2 m] (EUR) (1.5)

for the random exposure adding to current outstandings. Here, D describes
the event (in the σ-field F ) that the obligor draws on the open cash credit
line, and X is a random variable defined on the underlying probability space
(Ω,F , P), with X(ω) ∈ [0, 1] for each ω ∈ Ω, quantifying the random frac-
tion describing how much of the open 2m line is drawn.

Altogether, we are dealing with two random variables here. The equation
could be made significantly more complex if one wants to take a stepwise
drawing behavior into account, say, the obligor draws a partial amount in
the future and another amount even later, and so on.
The remaining EUR 8m, which can be used for contingent liabilities, is also
subject to various random effects. First of all, there are again one or more in-
dicator variables reflecting the optionality of usage of free parts of the credit
line. Second, there is randomness in the fact that contingent liabilities do not
necessarily lead to cash exposure. A guarantee has no real exposure as of
today but might convert into exposure in the future. Such random effects are
typically treated by so-called conversion factors.

Let us put the pieces together for the EAD calculation. We assume that the
bank has a huge loss database useful for the calibration of exposure param-
eters. One common exposure parameter is the so-called drawdown factor
(DDF). In our example, it could be the case that the bank is able to say that
the given type of obligor tends to draw on the free part of the credit line
(EUR 2m) in 80% of the cases and on average uses 60% of the available cash.
In other words, based on historic experience, the bank obtains parameters in
(1.5) like

P(D) = 80% and E[X] = 60%.

Assuming independence of 1D and X, this leads to an expected cash exposure
for the unused part of the cash credit line of

E[EADcash] = P(D)×E[X]× [2 m] (EUR) = 48%× [2 m] (EUR).
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The 48% would then be used as the DDF for this particular situation. Note
that the DDF is one particular common example of conversion factors. For
the contingent liability part of the credit line, we assume again the existence
of a rich database that allows for the calibration of a DDF of, say, 40% for
the contingent liability part and a so-called cash equivalent exposure factor
(CEEF) of 80%, which is another conversion factor quantifying the conver-
sion of the specific contingent liability, say, a guarantee, into a cash exposure.
Altogether we obtain (assuming independence) the following representation
for the EAD in our example:

E[EAD] = [10 m] + 48%× [2 m] + 32%× [8 m] (EUR) (1.6)

= [10 m + 0.96 m + 2.56 m] (EUR)

= [13.52 m] (EUR)

where 32% =40% times 80%. So altogether, our (expected) EAD is between
the already utilized 10m and the overall committed 20m but higher than the
committed cash line of 12m.

Our example provided some flavor of how complicated EAD calculations
can be, and in real life, it is even more complex. For example, commitments
of banks to clients often include various so-called covenants, which are em-
bedded options that may force an obligor, in times of financial distress, to
provide more collateral or renegotiate the terms of the loan.

A problem is that often the obligor has some informational advantage in that
the bank recognizes the financial distress of its borrowers with some delay.
In case of covenants allowing the bank to close committed lines triggered
by some early default indication, it really is a matter of timing whether the
bank picks up such indications early enough to react before the customer
has drawn on their committed lines. Bankers often speak of a race to de-
fault, which addresses the problem that distressed clients tend to exhaust
their lines just before they default as much as possible.

The Basel Committee on Banking Supervision provides conversion factors
for banks that are unable or not allowed by their regulator to use their own
internal models.
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1.1.3 The loss given default

A first distinction we need to make when it comes to LGDs is that of LGD
as an amount of money and LGD as a percentage quote. The former is often
denoted as $LGD, which means loss given default in monetary units. The
concept of LGD is best demonstrated by means of an example similar to how
we proceeded for EAD.

Let us assume that a client has m credit products with the bank and pledged
n collateral securities to the bank, which can, in case of default, be used for re-
covery purposes in order to mitigate the realized loss arising from the client’s
default. Each credit product is assigned an Exposure at Default (EAD), such
that for m credit products we get EAD1, EAD2, . . . , EADm, as well as expected
recovery proceeds from the n collateral securities. We denote such recovery
proceeds by $REC1, $REC2, . . . , $RECn. This constellation, having m credit
products and n collateral securities, is called an m-to-n situation.

It can be difficult to get the interdependence and relation between products
and collateral right, especially in cases where we have to deal with dedicated
collateral which can be used for certain purposes under certain circumstances
only. Here we assume that we can simply collect “good cash” (recovery pro-
ceeds) and “bad cash” (loss exposure) together in two separate buckets which
we then compare to obtain our net balance with the defaulted client. What
we get from that approach is the following:

$LGD = max (0, (EAD1 + EAD2 + · · ·+ EADm)− ($REC1 + $REC2 + · · ·+ $RECn))

which leads to a percentage LGD of

LGD% =
$LGD

EAD1 + EAD2 + · · ·+ EADm

Note that we easily wrote down the quantities $RECi, but in fact, their deriva-
tion can be quite complex and needs a rich database storing historic proceeds
from collateral security categories. sufficient granularity. A typical discus-
sion point in such calculations is, for instance, the time value of money. Re-
covery proceeds coming in later in time should be discounted in order to
reflect the time value of money. The determination of an appropriate dis-
count rate is just one out of many questions one has to solve in this context.
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Summarizing one can say that LGD calibration is a long story and far from
being trivial. The current regulatory framework forces banks with approval
to use their internal PD, EAD and LGD calibrations to come up with good
ideas on LGD calibration but we believe there is still a lot of ground to cover.

1.2 Unexpected Loss

At the beginning of this chapter, we introduced the Expected Loss (EL) of a
transaction and imagined it as an insurance or loss reserve to cover losses the
bank expects from historical default experience. However, focusing solely
on expected losses is not enough. In addition to the expected loss, the bank
should also ensure they have a good understanding of how much money
would be necessary for covering unexpected losses, where the attribute ‘un-
expected’ addresses losses exceeding the historic average observed in the
past.

As a measure for the magnitude of the deviation of losses from the EL, the
standard deviation of the loss variable L̃ as defined in (1.1) is a natural first
choice.

1.2.1 Definition

The standard deviation

UL =
√

V[L̃]

where

V[L̃] = V(EAD× LGD× L),

of the loss variable L̃ from (1.1) is called the unexpected loss of the underlying
loan or asset. One can prove the following representation formula for the UL
of a loan.

UL = EAD×
√

V[LGD]× PD + E[LGD]2 × PD(1− PD) (1.2)

where:

• EAD is the Exposure at Default.
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• V[LGD] is the variance of the Loss Given Default.

• E[LGD] is the expected Loss Given Default.

• PD is the Probability of Default.

So far, we have always looked at the credit risk of a single facility, although
banks have to manage large portfolios consisting of many different products
with different risk characteristics. We will now indicate how one can model
the total loss of a credit portfolio.

For this purpose, we consider a family of m loans:

L̃i = EADi × LGDi × Li (1.3)

where

Li = 1Di , P(Di) = PDi. (1.4)

This family of loans is referred to as a portfolio from now on.
A portfolio is a collection of loss variables L̃i. The portfolio loss is then de-
fined as the random variable L̃P, which is the sum of the individual loan
losses:

L̃P =
m

∑
i=1

L̃i =
m

∑
i=1

EADi × LGDi × Li (1.5)

where

L̃i = EADi × LGDi × Li (1.6)

with Li = 1Di and P(Di) = PDi.

1.2.6 Proposition

Given a portfolio of m loss variables as in equation (1.9) with deterministic
EADs, the portfolio unexpected loss (UL) is given by

ULPF =

√√√√ m

∑
i=1

m

∑
j=1

EADi × EADj ×Cov[LGDi × Li, LGDj × Lj] (1.7)
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1.2.1 The loss Distribution

All risk quantities on a portfolio level are based on the portfolio loss variable
L~ P F . Therefore it does not come much as a surprise that the distribution of
L~ P F , the so-called loss distribution of the portfolio, plays a central role in
credit risk management.All risk quantities of the credit portfolio can be iden-
tified by means of the loss distribution of the portfolio. This is an important
observation, because it shows that in cases where the distribution of the port-
folio loss can only be determined in an empirical way one can use empirical
statistical quantities as a proxy for the respective “true” risk quantities

1.2.2 Monte Carlo Simulation of Losses

In a Monte Carlo simulation, losses are simulated and tabulated in the form
of a histogram in order to obtain an empirical loss distribution of the un-
derlying portfolio. The empirical distribution function can be determined as
follows:

Assume we have simulated n potential portfolio losses L̃(1)
PF , L̃(2)

PF , . . . , L̃(n)
PF ,

taking into account the driving distributions of the single loss variables and
their correlations. Then the empirical loss distribution function is given by

F(x) =
1
n

n

∑
j=1

1[0,x](L̃(j)
PF)

where 1[0,x](·) is the indicator function that equals 1 if the argument is in
the interval [0, x] and 0 otherwise. From the empirical loss distribution, we
can derive all of the portfolio risk quantities introduced in the previous para-
graphs. For example, the α-quantile of the loss distribution can directly be
obtained from our simulation results L̃(1)

PF , . . . , L̃(n)
PF as follows:

Starting with the order statistics of L̃(1)
PF , . . . , L̃(n)

PF , say

L̃(i1)
PF ≤ L̃(i2)

PF ≤ · · · ≤ L̃(in)
PF ,

the α-quantile q̂α of the empirical loss distribution for any confidence level α

is given by

q̂α =

αL̃
(i[nα])

PF + (1− α)L̃
(i[nα]+1)

PF if nα ∈N

L̃
(i[nα])

PF if nα/ ∈N
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1.2.3 Analytical Approximation

Another approach to the portfolio loss distribution is by analytical approx-
imation. Roughly speaking, the analytical approximation maps an actual
portfolio with unknown loss distribution to an equivalent portfolio with known
loss distribution.
In practice this is often done as follows. Choose a family of distributions
characterized by its first and second moment, showing the typical shape (i.e.,
right-skewed with fat tails13) of loss distributions From the known character-
istics of the original portfolio (e.g., rating distribution, exposure distribution,
maturities, etc.) calculate the first moment (EL) and estimate the second (cen-
tered) moment (UL2 ).
Note that the EL of the original portfolio usually can be calculated based on
the information from the rating, exposure, and LGD distributions of the port-
folio.
Unfortunately the second moment can not be calculated without any as-
sumptions regarding the default correlations in the portfolio; Therefore, one
now has to make an assumption regarding an average default correlation ρ
However, applying by setting all default correlations ρij equal to ρ will pro-
vide an estimated value for the original portfolio’s UL Obviously the most
critical part of an analytical approximation is the determination of the av-
erage asset correlation. Here one has to rely on practical experience with
portfolios where the average asset correlation is known.
For example, one could compare the original portfolio with a set of typical
bank portfolios for which the average asset correlations are known. In some
cases there is empirical evidence regarding a reasonable range in which one
would expect the unknown correlation to be located. For example, if the
original portfolio is a retail portfolio, then one would expect the average as-
set correlation of the portfolio to be a small number, maybe contained in the
interval [1%, 5%]. If the original portfolio contains loans given to large firms,
then one would expect the portfolio to have a high average asset correlation,
maybe somewhere between 40% and 60%. Just to give another example, the
new Basel Capital Accord assumes an average asset correlation of 20% for
corporate loans.We estimate the average asset correlation in Moody’s uni-
verse of rated corporate bonds to be around 25%. Summarizing, we can
say that calibrating14 an average correlation is on one hand a typical source
of model risk, but on the other hand nevertheless often supported by some
practical experience.
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We will introduce a typical family of two-parameter loss distributions used
for analytical approximation. Here, we want to approximate the loss distri-
bution of the original portfolio by a beta distribution, matching the first and
second moments of the original portfolio. In other words, we are looking for
a random variable X ∼ β(a, b), representing the percentage portfolio loss,
such that the parameters a and b solve the following equations:

0.003 = E[X] =
a

a + b

and

0.002252 = V[X] =
ab

(a + b)2(a + b + 1)
.

Recall that the probability density function ϕX of X is given by

ϕX(x) = βa,b(x) =
Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1

for x ∈ [0, 1], with first moment and second (centered) moment

E[X] =
a

a + b

and

V[X] =
ab

(a + b)2(a + b + 1)
.
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Equations represent the moment matching addressing the “correct” beta dis-
tribution matching the first and second moments of our original portfolio. It
turns out that a = 1.76944 and b = 588.045 solve equations.
The analytical approximation takes the random variable X as a proxy for the
unknown loss distribution of the portfolio we started with. Following this
assumption, the risk quantities of the original portfolio can be approximated
by the respective quantities of the random variable X.
For example, quantiles of the loss distribution of the portfolio are calculated
as quantiles of the beta distribution. Because the “true” loss distribution is
substituted by a closed-form, analytical, and wellknown distribution, all nec-
essary calculations can be done in fractions of a second. The price we have
to pay for such convenience is that all calculations are subject to significant
model risk. Admittedly, the beta distribution has the shape of a loss dis-
tribution, but there are various two-parameter families of probability den-
sities having the typical shape of a loss distribution. For example, some
gamma distributions, the F-distribution, and also the distributions have such
a shape. Unfortunately they all have different tails, such that in case one of
them would approximate really well the unknown loss distribution of the
portfolio, the others automatically would be the wrong choice. Therefore,
the selection of an appropriate family of distributions for an analytical ap-
proximation is a remarkable source of model risk. Nevertheless there are
some families of distributions that are established as best practice choices for
particular cases.
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1.2.4 Modeling Correlations by Means of Factor Models

Factor models are a well established technique from multivariate statistics,
applied in credit risk models, for identifying underlying drivers of correlated
defaults and for reducing the computational effort regarding the calculation
of correlated losses. We start by discussing the basic meaning of a factor.
Assume we have two firms A and B which are positively correlated. For
example, let A be DaimlerChrysler and B stand for BMW. Then, it is quite
natural to explain the positive correlation between A and B by the correla-
tion of A and B with an underlying factor;.In our example we could think of
the automotive industry as an underlying factor having significant impact on
the economic future of the companies A and B. Of course there are probably
some more underlying factors driving the riskiness of A and B. For example,
DaimlerChrysler is to a certain extent also influenced by a factor for Ger-
many, the United States, and eventually by some factors incorporating Aero
Space and Financial Companies. BMW is certainly correlated with a coun-
try factor for Germany and probably also with some other factors. However,
the crucial point is that factor models provide a way to express the correla-
tion between A and B exclusively by means of their correlation with common
factors. As already mentioned in the previous section, we additionally wish
underlying factors to be interpretable in order to identify the reasons why
two companies experience a down- or upturn at about the same time. For
example, assume that the automotive industry gets under pressure. Then we
can expect that companies A and B also get under pressure, because their
fortune is related to the automotive industry. The part of the volatility of
a company’s financial success (e.g., incorporated by its asset value process)
related to systematic factors like industries or countries is called the system-
atic risk of the firm. The part of the firm’s asset volatility that can not be
explained by systematic influences is called the specific or idiosyncratic risk
of the firm.
Following Merton’s model, the Global Correlation Model™ focuses on the
asset value log-returns ri of counterparties (i = 1, . . . , m) at a certain plan-
ning horizon (typically 1 year), admitting a representation

ri = βiΦi + ϵi (i = 1, . . . , m).
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Here, Φi is called the composite factor of firm i, because in multi-factor mod-
els Φi is typically a weighted sum of several factors. Equation (1.22) is a stan-
dard linear regression equation, where the sensitivity coefficient βi captures
the linear correlation of ri and Φi.

In analogy to the Capital Asset Pricing Model (CAPM) βi is called the beta of
counterparty i. The variable ϵi represents the residual part of ri, essentially
meaning that ϵi is the error one makes in estimating ri using Φi. When sub-
stituting ri by βiΦi, Merton’s model operates in a log-normal world, so that
r = (r1, . . . , rm) ∼ N(µ, Γ) is multivariate Gaussian with a correlation matrix
Γ. The composite factors Φi and ϵi are accordingly also normally distributed.
Another basic assumption is that ϵi is independent of the Φi’s for every i.
Additionally, the residuals ϵi are assumed to be uncorrelated. Therefore, the
returns ri are exclusively correlated by means of their composite factors. This
is why Φi is considered the systematic part of ri, whereas ϵi, due to its inde-
pendence from all other involved variables, can be seen as a random effect
relevant only for counterparty i.

In regression theory, one usually decomposes the variance of a variable into
a systematic and a specific part. Taking variances on both sides of Equation
(1.22) yields

V[ri] = β2
i V[Φi] (systematic) + V[ϵi] (specific)

for i = 1, . . . , m.

Because the variance of ri captures the risk of unexpected movements of the
asset value of counterparty i, the decomposition above can be seen as a split-
ting of the total risk of firm i into systematic and specific risk. The former
captures the variability of ri coming from the variability of the composite
factor, which is β2

i V[Φi]; the latter arises from the variability of the residual
variable, V[ϵi]. Note that some people refer to this as idiosyncratic risk in-
stead of specific risk.

Alternatively to the beta of a firm, one could also look at the coefficient of
determination of the regression . The coefficient of determination quantifies
how much of the variability of ri can be explained by Φi. This quantity is
usually called the R2 of counterparty i and constitutes an important input
parameter in all credit risk models based on asset values. It is usually defined
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as the systematic part of the variance of the standardized returns r̃i =
ri−E[ri]√

V[ri]
,

namely

R2
i =

β2
i V[Φi]

V[ri]

for i = 1, . . . , m. The residual part of the total variance of the standardized
returns r̃i is then given by 1− R2

i , thereby quantifying the percentage value
of the specific risk of counterparty i. Now we will look more carefully at
the composite factors. The decomposition of a firm’s variance into a system-
atic and a specific part is the first of three levels in the Global Correlation
Model™;

The subsequent level is the decomposition of the firm’s composite factor Φi

into industry and country indices. This allows us to further break down the
systematic component into contributions from different sources, reflecting
how the firm’s performance is influenced by broader economic factors.
For the second level, the Global Correlation Model™ decomposes every Φi

with respect to an industry and country breakdown as follows:

Φi =
K

∑
k=1

wi,kΨk (i = 1, . . . , m),

where Ψ1, . . . , ΨK0 are industry indices and ΨK0+1, . . . , ΨK are country in-
dices. The coefficients wi,1, . . . , wi,K0 are called the industry weights, and the
coefficients wi,K0+1, . . . , wi,K are called the country weights of counterparty i.

It is assumed that wi,k ≥ 0 for all i and k, and that

K0

∑
k=1

wi,k =
K

∑
k=K0+1

wi,k = 1 (i = 1, . . . , m).

At the third and last level, a representation by a weighted sum of indepen-
dent global factors is constructed for representing industry and country in-
dices as follows:

Ψk =
N

∑
n=1

bk,nΓn + δk (k = 1, . . . , K),
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where δk denotes the Ψk-specific residual. Such a decomposition is typically
performed by a principal components analysis (PCA) of the industry and
country indices.

In vector notation, this becomes

Ψ = BΓ + δ

where B = (bk,n)k=1,...,K; n=1,...,N denotes the matrix of industry and country
betas, ΓT = (Γ1, . . . , ΓN) is the global factor vector, and δT = (δ1, . . . , δK) is
the vector of industry and country residuals.

Combining the previous decomposition with this representation, we finally
obtain

r = βW(BΓ + δ) + ϵ.

In the Global Correlation Model™, the vector of the portfolio’s returns rT =

(r1, . . . , rm) can conveniently be written by means of underlying factors. Note
that for computational purposes, Equation (1.30) is the most convenient one,
because the underlying factors are independent.

In contrast, for an economic interpretation and for scenario analysis, because
the industry and country indices are easier to interpret than the global factors
constructed by PCA. In fact, the industry and country indices have a clear
economic meaning, whereas the global factors arising from a PCA are of syn-
thetic type. Although they admit some vague interpretation, their meaning
is not as clear as is the case for the industry and country indices.
The calculation of asset returns in the model as introduced above is now
straightforward. First of all, we standardize the asset value log-returns,

r̃i =
ri − E[ri]

σi
(i = 1, . . . , m)

where σi denotes the volatility of the asset value log-return of counterparty
i.We then obtain a representation of standardized log-returns,

r̃i =
βi

σi
Φ̃i +

ϵ̃i

σi

where E[Φ̃i] = E[ϵ̃i] = 0. (1.31)
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Now, the asset correlation between two counterparties is given by

Corr[r̃i, r̃j] = E[r̃i r̃j] =
βi

σi

β j

σj
E[Φ̃iΦ̃j] (1.32)

because the Global Correlation Model™ assumes the residuals ϵ̃i to be uncor-
related and independent of the composite factors. For calculation purposes,
it is convenient to get rid of the volatilities σi and the betas βi . This can
be achieved by replacing the betas with the R-squared parameters of the in-
volved firms.

R2
i =

β2
i

σ2
i

V[Φi] (i = 1, . . . , m). (1.33)

Corr[r̃i, r̃j] =
√

RiV[Φi]
√

RjV[Φj]E[Φ̃iΦ̃j].

because by construction we have V[Φi] = V[Φ̃i].
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Chapter II

The CreditRisk+ Model

The popularity of CreditRisk+ has two major reasons:

• It seems easier to calibrate data to the model than is the case for multi-
factor asset value models. Here we intentionally said “it seems” be-
cause from our point of view the calibration of bank-internal credit data
to a multi-sector model is in general neither easier nor more difficult
than the calibration of a multi-factor model on which an asset value
model can be based.

• The second and maybe most important reason for the popularity of
CreditRisk+ is its closed-form loss distribution. Using probability gen-
erating functions, the CreditRisk+ model offers (even in case of more
than one sector) a full analytic description of the portfolio loss of any
given credit portfolio. This enables users of CreditRisk+ to compute
loss distributions in a quick and still “exact” manner. For many ap-
plications of credit risk models, this is a “nice-to-have” feature, e.g., in
pricing or ABS structuring.

2.1 The Modeling Framework of CreditRisk+

Crucial in CreditRisk+ is the use of probability-generating functions. Recall
that the generating function of a Poisson random variable L′ with intensity λ

is given by

G(z) =
∞

∑
k=0

P[L′ = k]zk = e−λ
∞

∑
k=0

λk

k!
zk = eλ(z−1). (4.1)
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In order to reduce the computational effort, CreditRisk+ groups the individ-
ual exposures of the obligors in a considered portfolio into exposure bands.
This is done as follows:

Choose an exposure unit amount E.Denote for any obligor i its Expected Loss
by ELi, its Exposure At Default by EADi, and its Loss Given Default by LGDi.
The exposure that is subject to be lost after an obligor’s default is then

Ei = EADi × LGDi, (4.2)

assuming a nonrandom LGD. The exposure νi respectively the Expected Loss
ϵi of obligor i in multiples of the exposure unit E is given by

νi =
Ei

E
, ϵi =

ELi

E
.

From this point on, CreditRisk+ “forgets” the exact exposures from the orig-
inal portfolio and uses an approximation by means of exposure bands by
rounding the exposures νi to the nearest integer number. In other words,
every exposure Ei is replaced by the closest integer multiple of the unit expo-
sure E.

Already one can see that an appropriate choice of E is essential in order to
end up at an approximation that is, on one hand, “close” enough to the origi-
nal exposure distribution of the portfolio in order to obtain a loss distribution
applicable to the original portfolio, and on the other hand, efficient enough
to really partition the portfolio into mE exposure bands, such that mE is sig-
nificantly smaller than the original number of obligors m.

An important “rule-of-thumb” for making sure that not too much precision
is lost is to at least take care that the width of exposure bands is “small” com-
pared to the average exposure size in the portfolio. Under this rule, large
portfolios (containing many loans) should admit a good approximation by
exposure bands in the described manner.
In the sequel, we write i ∈ [j] whenever obligor i is placed in the exposure
band j. After the exposure grouping process, we have a partition of the port-
folio into mE exposure bands, such that obligors in a common band [j] have
the common exposure ν[j]E, where ν[j] ∈ N0 is the integer multiple of E rep-
resenting all obligors i with

min{|νi − n| : n ∈N0} = |νi − ν[j]|,
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where i = 1, . . . , m; i ∈ [j]; j = 1, . . . , mE.
In cases where νi is an odd-integer multiple of 0.5, the above minimum is not
uniquely defined. In such cases (which are obviously not very likely), one has
to make a decision whether up- or down-rounding would be appropriate. In
the sequel, we only consider ν[j] ∈N, excluding 0.

Now let us discuss how to assign a default intensity to a given exposure
band. Because CreditRisk+ operates in a Poissonian framework, every obligor
in the portfolio has its individual (one-year) default intensity λi, which can be
calibrated from the obligor’s one-year default probability PDi by application
of (2.12),

λi = − log(1− PDi), (i = 1, . . . , m).

Because the expectation of L′i ∼ Pois(λi) is E[L′i] = λi, the expected number
of defaults in exposure band [j] (using the additivity of expectations) is given
by

λ[j] = ∑
i∈[j]

λi. (4.4)

The Expected Loss in band [j] will be denoted by ϵ[j] and is calculated by
multiplying the expected number of defaults in band [j] with the band’s ex-
posure,

ϵ[j] = λ[j]ν[j]. (4.5)

Here, the CreditRisk+ Technical Document suggests making an adjustment
of the default intensities λi (which so far have not been affected by the expo-
sure band approximation process) in order to preserve the original value of
the obligor’s Expected Losses. This could be done by defining an adjustment
factor γi for every obligor i by

γi =
Ei

ν[j]E
(i ∈ [j], j = 1, . . . , mE). (4.6)

Replacing for every obligor i the original default intensity λi by γiλi with
γi as defined in (4.6) preserves the original Expected Losses (ELs) after ap-
proximating the portfolio’s exposure distribution by a partition into expo-
sure bands. In the following, we assume without loss of generality that the
default intensities λi already include the adjustment (4.6). From (4.4) and
(4.5) it is straightforward to write down the portfolio’s expected number of
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default events (respectively the portfolio’s overall default intensity), namely

λPF =
mE

∑
j=1

λ[j] =
mE

∑
j=1

ϵ[j]

ν[j]
. (4.7)

After these preparations, we are now ready to describe the construction of
the CreditRisk+ loss distribution. We will proceed in two steps, starting with
a portfolio of independent obligors and then mixing the involved Poisson
distributions by means of a sector model.

2.2 Construction Step 1: Independent Obligors

We begin with a portfolio of m independent obligors whose default risk is
modeled by Poisson variables L′i. As already mentioned in Section 2.2.1, Pois-
son models allow for multiple defaults of a single obligor. This is an unpleas-
ant, but due to the small occurrence probability, mostly ignored feature of all
Poisson approaches to default risk.

Involving the (nonrandom) exposures Ei as defined in (4.2), we obtain loss
variables EiL′i, where

L′1 ∼ Pois(λ1), . . . , L′m ∼ Pois(λm) (4.8)

are independent Poisson random variables. Grouping the individual expo-
sures Ei into exposure bands [j] and assuming the intensities λi incorporate
the adjustments by the factors γi as described earlier, we obtain new loss
variables ν[j]L′i, where losses are measured in multiples of the exposure unit
E. Because obligors are assumed to be independent, the number of defaults
L′ in the portfolio, respectively L′[j] in exposure band j, also follow a Poisson
distribution, since the convolution of independent Poisson variables yields a
Poisson distribution.

We obtain
L′[j] = ∑

i∈[j]
L′i ∼ Pois(λ[j]), λ[j] = ∑

i∈[j]
λi, (4.9)

for the number of defaults in exposure band [j], j = 1, . . . , mE, and

L′ =
mE

∑
j=1

∑
i∈[j]

L′i ∼ Pois

(
mE

∑
j=1

λ[j]

)
= Pois(λPF) (4.10)
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(see (4.7)), for the portfolio’s number of defaults. The corresponding losses
(counted in multiples of the exposure unit E) are given by

L̃′[j] = ν[j]L
′
[j],

respectively

L̃′ =
mE

∑
j=1

ν[j]L
′
[j] =

mE

∑
j=1

L̃′[j]. (4.11)

Due to grouping the exposures ν[j] ∈ N together, we can now conveniently
describe the portfolio loss by the probability-generating function of the ran-
dom variable L̃′ defined in (4.11), applying the convolution theorem for gen-
erating functions. The probability-generating function is given by

GL̃′(z) =
mE

∏
j=1

GL̃′
[j]
(z) =

mE

∏
j=1

∞

∑
k=0

P[L̃′[j] = ν[j]k]z
ν[j]k (4.12)

=
mE

∏
j=1

∞

∑
k=0

P[L′[j] = k]zν[j]k =
mE

∏
j=1

∞

∑
k=0

e−λ[j]
λk
[j]

k!
zν[j]k

=
mE

∏
j=1

e−λ[j]+λ[j]z
ν[j]

= exp

(
mE

∑
j=1

λ[j](z
ν[j] − 1)

)
.

So far we assumed independence among obligors and were rewarded by the
nice closed formula (4.12) for the generating function of the portfolio loss. In
the next section we drop the independence assumption, but the nice feature
of CreditRisk+ is that, nevertheless, it yields a closed-form loss distribution,
even in the case of correlated defaults.

2.3 Construction Step 2: Sector Model

A key concept of CreditRisk+ is sector analysis. The rationale underlying
sector analysis is that the volatility of the default intensity of obligors can be
related to the volatility of certain underlying factors incorporating a common
systematic source of credit risk.

Associated with every such background factor is a so-called sector, such that
every obligor i admits a breakdown into sector weights wis ≥ 0, where
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mS

∑
s=1

wis = 1,

expressing for every s = 1, . . . , mS that sector s contributes with a fraction wis

to the default intensity of obligor i. Here mS denotes the number of involved
sectors. Obviously, the calibration of sectors and sector weights is the crucial
challenge in CreditRisk+. For example, sectors could be constructed with
respect to industries, countries, or rating classes.
In order to approach the sector model of CreditRisk+, we rewrite Equation
(4.12):

GL̃′(z) = exp

(
mE

∑
j=1

λ[j](z
ν[j] − 1)

)
(4.13)

= exp

(
λPF

(
mE

∑
j=1

λ[j]

λPF
zν[j] − 1

))
,

where λPF is defined as in (4.7). Defining functions

GL′(z) = eλPF(z−1) and GN(z) =
mE

∑
j=1

λ[j]

λPF
zν[j] , (4.14)

we see that the generating function of the portfolio loss variable L̃′ can be
written as

GL̃′(z) = GL′ ◦ GN(z) = eλPF(GN(z)−1). (4.15)

Therefore, the portfolio loss L̃′ has a so-called compound distribution, essen-
tially meaning that the randomness inherent in the portfolio loss is due to
the compound effect of two independent sources of randomness. The first
source of randomness arises from the uncertainty regarding the number of
defaults in the portfolio, captured by the Poisson random variable L′ with
intensity λPF defined in (4.10). The function GL′(z) is the generating function
of L′; recall (4.1).

The second source of randomness is due to the uncertainty about the expo-
sure bands affected by the L′ defaults. The function GN(z) is the generating
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function of a random variable N taking values in {ν[1], . . . , ν[mE]} with distri-
bution

P[N = ν[j]] =
λ[j]

λPF
(j = 1, . . . , mE). (4.16)

For some more background on compound distributions, refer to the litera-
ture. For example, in [86] the reader will find theory as well as Some inter-
esting examples will be provided later, where we will obtain the generating
function of sector losses in a form that, conditional on the sector’s default
rate, replicates Equation (4.15).

Let us assume that we have parameterized our portfolio by means of mS

sectors. CreditRisk+ assumes that a gamma-distributed random variable

Λ(s) ∼ Γ(αs, βs) (s = 1, . . . , mS)

is assigned to every sector; see Figure 2.2 for an illustration of gamma densi-
ties. The number of defaults in any sector s follows a gamma-mixed Poisson
distribution with random intensity Λ(s); see also Section 2.2.2. Hereby, it is
always assumed that the sector variables Λ(1), . . . , Λ(mS) are independent.

For the calibration of Λ(s), recall from (2.38) that the first and second mo-
ments of Λ(s) are

E[Λ(s)] = αsβs, V[Λ(s)] = αsβ2
s . (4.17)

We denote the expectation of the random intensity Λ(s) by λ(s). The volatility
of Λ(s) is denoted by σ(s). Altogether, we have from (4.17)

λ(s) = αsβs, σ(s) =
√

αsβs. (4.18)

Knowing the values of λ(s) and σ(s) determines the parameters αs and βs of
the sector variable Λ(s).

For every sector, we now follow the approach that has taken us to Equation
(4.15). More explicitly, we first find the generating function of the number of
defaults in sector s, then obtain the generating function for the distribution of
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default events among the exposures in sector s, and finally get the portfolio-
loss-generating function as the product of the compound sector-generating
functions.



37

Chapter III

Machine Learning Models For
Credit Risk

In this section, we introduce how machine learning models can play an effec-
tive role in credit risk analysis. These models were discovered many decades
ago but have resurfaced in recent years due to the evolution of computers
and the availability of vast amounts of data. With the large datasets avail-
able today, these models can be trained to learn from the data, becoming
more effective and intelligent in their decision-making processes.
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3.1 Logistic regression

Despite being a traditional statistical model, logistic regression is often used
as a baseline in credit risk modeling. It estimates the probability that a bor-
rower will default the loan.Models the log odds of the event as a linear com-
bination of one or more variables.There is a single binary dependent variable
and where are labeled as "0" not to pay of the dept and "1" to pay the dept.The
logistic regression models the probability of outputs in term of inputs,it is
not a statistical classification model,but we can use it as a classifier if we put
a threshold and say above this probability classify to class 1 or below this
probability classify to class 0.

p(x) =
1

1 + e−(β0+β1x)
(3.1)

where β0 = −µ
s is the intercept (also known as the vertical or y-intercept of

the line y = β0 + β1x), and β1 = 1
s is the inverse scale parameter or rate

parameter. These parameters represent the y-intercept and slope of the log-
odds as a function of x. Conversely, µ and s can be expressed in terms of the
parameters β0 and β1 as follows:

µ = −β0

β1
(3.2)

s =
1
β1

(3.3)

The use the measurement of the goodness of fit we use the log loss

ℓk =

− ln pk if yk = 1,

− ln(1− pk) if yk = 0.
(3.4)

The loss function can be interpreted as the surpisonal of the actual value yk
relative to the probability of this value.The loss function is often greater from
zero and in perfect prediction it is zero,it aprroaches infinity as the prediction
gets worst.This can be written as

ℓk = −yk ln pk − (1− yk) ln(1− pk). (3.5)

The (2.5) expression it is called and cross entropy between the actual value
(yk,1-yk) and the predicted value (pk,1-pk).The purpose is minimaze the
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cross entropy. Alternatively we we can maximaze the inverse.

ℓ = ∑
k:yk=1

ln(pk) + ∑
k:yk=0

ln(1− pk) =
K

∑
k=1

(yk ln(pk) + (1− yk) ln(1− pk))

(3.6)
In the case that the model we have multiple explanatory variables we can
write it as follow

log
(

p
1− p

)
= β0 + β1x1 + β2x2 + · · ·+ βmxm (3.7)

and
p =

1
1 + e−(β0+β1x1+β2x2+···+βmxm)

(3.8)

The dependent variable can be describe as a binomial distribution variable
with two outcome "0" for the not pay the loan and "1" pay the loan.

Yi | x1,i, . . . , xm,i ∼ Bernoulli(pi)

E[Yi | x1,i, . . . , xm,i] = pi

Pr(Yi = y | x1,i, . . . , xm,i) =

pi if y = 1

1− pi if y = 0

Pr(Yi = y | x1,i, . . . , xm,i) = py
i (1− pi)

(1−y)

(3.9)

FIGURE 3.1: Logistic-curve
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3.2 Decision Tree

Decision tree is a non-parametric algorithm,which can be used for classifi-
cation and regression method.In our cause to conclude if a borrower will
pay or not his loan we will use it for classification purpose.It is a hierar-
chical tree structure which consists root nodes,branches,internal nodes and
leaf nodes.The decision tree start with root node,which does not consist any
branches.The outgoing branches from the root node then feed into the inter-
nal nodes, also known as decision nodes. Based on the available features,
both node types conduct evaluations to form homogeneous subsets, which
are denoted by leaf nodes, or terminal nodes. The leaf nodes represent all the
possible outcomes within the dataset. In this mini example we can see how

FIGURE 3.2: Example of Decision Tree in Credit Scoring

the decision tree can work in credit scoring.We see base on variable income
education and age how we can give a score about the borrower to give his
loan back.Now the question that arises is how slip the nodes and which vari-
able should be first.For this question can be answered where gini index and
information gain can help to splitting criterion for decision tree models. First
we need to discuss entropy,which is a measure,which measures the impurity
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of the sample values. It is defined with by the following formula, where

H(X) = −
n

∑
i=1

p(xi) log2 p(xi) (3.10)

Entropy takes values between 0 and 1,if all samples in dataset belong to
one class then takes the value 0,if in splits fifty fifty then in takes the value
1.In order to find the best feature to split on and find the optimal decision
tree,should have the smallest amount of entropy.Information gain is the dif-
ference in entropy before and after split on a given attribute.The highest the
information gain the best split it is doing resulting in the best classification.

IG(T, A) = H(T)− ∑
v∈Values(A)

|Tv|
|T| H(Tv) (3.11)

• H(T) is the entropy of the original dataset T.

• Tv is the subset of T for which attribute A has value v.

• |Tv|
|T| is the proportion of the subset Tv to the entire dataset T.

• H(Tv) is the entropy of the subset Tv.

• Values(A) is the set of all possible values of attribute A.

Gini impurity is the probability of incorrectly classifying random data point
in the dataset if it were labeled based on the class distribution of the dataset.
Similar to entropy, if set, S, is pure—i.e. belonging to one class) then, its
impurity is zero

G = 1−
n

∑
i=1

p2
i (3.12)

• pi is the probability of an element being classified into class i.

The advantages are easily easy to interpret,little data preparation required
and more flexible.The disadvantages are that are prone to overffiting it means
that has good result in training data and bad result at test data,high variance
estimators and is more costly.
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3.3 Random Forest

Random Forest it works by creating numbers of Decision Trees,each tree is
constructed used random sample from the data.This randomness introduces
variability among trees where it helps to avoid over fitting and improving
prediction performance.

FIGURE 3.3: Example of Random Forest

The random Forest has three main hyper-parameters that need to specify,which
needs to specify before set.This includes nodes,the number of trees and the
number of feature to sample.The random forest algorithm is made up of a
collection of decision trees, and each tree in the ensemble is comprised of
a data sample drawn from a training set with replacement, called the boot-
strap sample. Of that training sample, one-third of it is set aside as test data,
known as the out-of-bag (oob) sample.To summarize the step need to follow
are the following.

1. Select random K data points from the training set.

2. Build the decision trees associated with the selected data points (Sub-
sets).

3. Choose the number N for decision trees that you want to build.
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4. Repeat Steps 1 and 2.

5. For new data points, find the predictions of each decision tree, and as-
sign the new data points to the category that wins the majority votes.

The benefits are that Reduced risk of overfitting,Provides flexibility and Easy
to determine feature importance.Challenges need to face time-consuming
process,Requires more resources and More complex

3.4 Support Vector Machine

SVM is a supervised Machine Learning Algorithm that classify data,finds an
optimal hyperline or line that maximizes the distance between each class in
N-dimensional space.The number of features in the input data, determine
if the hyperline is a plane in 2D space,or a plane in N-dimensional space.It
can handle non-linear and linear task.When the data are non-linear spread-
able,transform the data into higher space with kernel functions

No. Kernel Type Formula
1 Linear K(xi, xj) = xT

j xi

2 Polynomial K(xi, xj) = (xT
j xi + 1)p

3 Gaussian/RBF (Radial Basis Function) K(xi, xj) = exp
(
− ∥xi−xj∥2

2σ2

)
4 Sigmoid K(xi, xj) = tanh(αxT

j xi + θ)

TABLE 3.1: SVM Kernels

3.4.1 Linear SVM

The equation for the linear hyperplane can be written as:

wTx + b = 0 (3.13)

The vector w represents the normal vector to the hyperplane, i.e., the di-
rection perpendicular to the hyperplane. The parameter b in the equation
represents the offset or distance of the hyperplane from the origin along the
normal vector w.
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The distance between a data point xi and the decision boundary can be cal-
culated as:

di =
wTxi + b
∥w∥

where ∥w∥ represents the Euclidean norm of the weight vector w. For a
Linear SVM classifier:

ŷ =

1 : wTx + b ≥ 0

0 : wTx + b < 0
(3.14)

There are two approaches to calculate the margin or the maximum distance
between classes which are soft margin classification and hard margin clas-
sification.If we use hard margin classification the data points will be perfect
separable outside of the support vectors.
For a Hard Margin Linear SVM classifier:

min
w,b

1
2

wTw = min
W,b

1
2
∥w∥2 (3.15)

subject to

yi(wTxi + b) ≥ 1 for i = 1, 2, 3, . . . , m (3.16)

The target variable or label for the i-th training instance is denoted by the
symbol ti in this statement. And ti = −1 for negative occurrences (when
yi = 0) and ti = 1 for positive instances (when yi = 1) respectively. Because
we require the decision boundary that satisfies the constraint:

ti(wTxi + b) ≥ 1 (3.17)

For a Soft Margin Linear SVM classifier:

min
w,b

1
2

wTw + C
m

∑
i=1

ζi (3.18)

subject to

yi(wTxi + b) ≥ 1− ζi and ζi ≥ 0 for i = 1, 2, 3, . . . , m (3.19)
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Dual Problem: A dual problem of the optimization problem that requires lo-
cating the Lagrange multipliers related to the support vectors can be used to
solve SVM. The optimal Lagrange multipliers αi that maximize the following
dual objective function:

max
α

(
1
2

m

∑
i=1

m

∑
j=1

αiαjtitjK(xi, xj)−
m

∑
i=1

αi

)
(3.20)

where,

- αi is the Lagrange multiplier associated with the i-th training sample. -
K(xi, xj) is the kernel function that computes the similarity between two sam-
ples xi and xj. It allows SVM to handle nonlinear classification problems by
implicitly mapping the samples into a higher-dimensional feature space. -
The term ∑ αi represents the sum of all Lagrange multipliers.

The SVM decision boundary can be described in terms of these optimal La-
grange multipliers and the support vectors once the dual issue has been
solved and the optimal Lagrange multipliers have been discovered. The
training samples that have αi > 0 are the support vectors, while the deci-
sion boundary is supplied by:

w =
m

∑
i=1

αitiK(xi, x) + b (3.21)

ti(wTxi − b) = 1 ⇔ b = wTxi − ti (3.22)
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FIGURE 3.4: Expanation of SVM

3.4.2 Non-linear SVM

Much of the real word scenarios are that the data are non-linear.So we need
non-linear svm .In order to make the data separable we transform the data
into higher dimensional space,but this can cause the problem of the overfit-
ting and computational complexity.The kernel trick comes to reduce some
of this complexity,making the computation more efficient and it does this by
replacing dot product calculations with an equivalent kernel function.Some
of this kernel function are the polynomial,radial basis function RDF and sig-
moid
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3.5 Neural Networks

Neural network is a machine learning algorithm that takes decision man-
ner similar to human brain.Every neural layer consists one or more input
layer,one or more hidden layer and an ouput layer.Each node connects to
others, and has its own associated weight and threshold.If the output of an
individual node is above a specific threshold the node is activated, sending
data to the next layer of the network.Neural also called and activation func-
tion.

FIGURE 3.5: Neural network example

In this illustration it will be explained how the neural networks work.We
have the

1. an Input layer whose nodes represent observation variables,

2. an Output layer whose nodes represent the prediction,

3. one or two Hidden layers used to capture the non-linearity of the data.

The number of input layers are equal to the number of features,the ouput
layer holds a value between zero and one and base on a given threshold we
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can classify whether the borrower will default or no the borrow amount.The
hidden layers are responsible for holding the pattern between them.The con-
nection of every pair of neurons are called layers,these weights help deter-
mine the importance of any given variable, with larger ones contributing
more significantly to the output compared to other inputs. all inputs are then
multiplied by their respective weights and then summed,it is called weighted
sum

∑ wixi + bias = w1x1 + w2x2 + w3x3 + bias (3.23)

The bias variable determine how large the weighted sum will be.If the bias
is negative the weighted sum will be low,or if it will be high then it the
weighted sum will be high.
This weighted sum it is passed inside the activation function. One commonly
used activation function is the Sigmoid function,

sigma(Z) =
1

1 + exp(−Z)
. (3.24)

xi,j = σ

(
∑
k

wk,jxi,k + b

)
, (3.25)

which is the prediction of X[1]. The forward propagation it refers that it start
from the input layer to the final output layer,the procedure is that we start
from random weights,train the model and then put the trained weights back-
ward.To be this more clearly we present the following graph.

FIGURE 3.6: Caption
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We try to minimize the cost function,which refer to the error representation
between the predicted and the actual value.For example if we put randomly
the weights the error will be high,so we need to find the heights that mini-
mize the loss as we see in the figure 2.6.To achieve a minimal cost, the gradi-
ent descent method updates all parameters backward.
article amsmath

1. Initialize the weights.

2. Forward propagation:

z[1] = W [1]a[0] + b[1],

a[1] = f (z[1])

z[2] = W [2]a[1] + b[2],

a[2] = f (z[2])

3. Find the cost value:

J =
1
n

n

∑
i=1

L(Yi, Ŷi)

4. Backward propagation (gradient descent procedure to update the weights):

• Compute the error for the output layer:

δ[2] = a[2] −Y

• Compute the gradient with respect to W [2] and b[2]:

dW [2] =
1
n

n

∑
i=1

(a[1])T
i δ

[2]
i , db[2] =

1
n

n

∑
i=1

δ
[2]
i

• Compute the error for the hidden layer:

δ[1] = (W [2])Tδ[2] · f ′(z[1])

• Compute the gradient with respect to W [1] and b[1]:

dW [1] =
1
n

n

∑
i=1

(a[0])T
i δ

[1]
i , db[1] =

1
n

n

∑
i=1

δ
[1]
i
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• Update the weights and biases:

W [2] ←W [2] − ηdW [2], b[2] ← b[2] − ηdb[2]

W [1] ←W [1] − ηdW [1], b[1] ← b[1] − ηdb[1]

5. Repeat steps 2, 3, and 4 until convergence.
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3.6 Naive Bayes Algorithm

Naive Bayes is a probabilistic machine learning model based on bayes theo-
rem where is used for classification.In the context of credit risk Naive Bayes
can be employed to give the probability a borrower will default on a loan.Bayes
theorem works as the probability of event based on the prior knowledge.

P(A | B) =
P(B)× P(B | A)× P(A)

P(B)
(3.26)

• P(A | B): The probability of event A occurring given that B is true
(posterior probability).

• P(B | A): The probability of event B occurring given that A is true
(likelihood).

• P(A): The probability of event A occurring (prior probability).

• P(B): The probability of event B occurring (marginal likelihood).

The Naive Bayes algorithm to apply,it needs to hold a assumption that all
the predictors are independent of each other given the class label.This as-
sumption allows the model to handle high dimensional data,the predictors
can be Borrower’s income level,Employment status,Loan amount,Debt-to-
income ratio.
To understand better how the algorithm works we have the classes and the
predictors.
Classes: The target variable (class) in credit risk is typically binary: Default
or Non-Default.

Features: The model takes various borrower attributes as input features to
predict the probability of default. The model calculates

P(Default = Yes | Features) and P(Default = No | Features)

The steps are the following.
Calculate Prior Probabilities: Determine the prior probability of a borrower
defaulting (P(Default = Yes)) and not defaulting (P(Default = No)), based
on the training data.
Calculate Likelihoods: For each feature, calculate the likelihood of observ-
ing that feature value given that the borrower defaults and given that the
borrower does not default.
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Apply Bayes’ Theorem: Use Bayes’ Theorem to calculate the posterior prob-
ability of default given the observed feature values.
Prediction: Compare the posterior probabilities for default and non-default.
The class with the higher probability is chosen as the model’s prediction.
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3.7 Linear Discriminant Analysis LDA

To mitigate risk, financial institutions must identify and minimize credit de-
fault. LDA can help identify applicants who might be likely to default on
loans from those who are creditworthy by sifting through financial factors
and behavior data.
Linear discriminant analysis (LDA) is an approach used in supervised ma-
chine learning to solve multi-class classification problems. LDA separates
multiple classes with multiple features through data dimensionality reduc-
tion. This technique is important in data science as it helps optimize machine
learning models.
LDA works by identifying a linear combination of features that separates or
characterizes two or more classes of objects or events. LDA does this by pro-
jecting data with two or more dimensions into one dimension so that it can
be more easily classified. The technique is, therefore, sometimes referred to
as dimensionality reduction.

3.7.1 A practical application of LDA

Suppose that a bank is deciding whether to approve or reject loan applica-
tions. The bank uses two features to make this decision: the applicant’s credit
score and annual income.

Here, the two features or classes are plotted on a 2-dimensional (2D) plane
with an X-Y axis. If we tried to classify approvals using just one feature,
we might observe overlap. By applying LDA, we can draw a straight line
that completely separates these two class data points. LDA achieves this by
using the X–Y axis to create a new axis, separating the different classes with
a straight line and projecting data onto the new axis.

To create this new axis and reduce dimensionality, LDA follows these criteria:

Maximize the distance between the means of two classes.
Minimize the variance within individual classes.
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3.7.2 Properties and assumptions of LDA

Linear Discriminant Analysis (LDA) operates by projecting a feature space,
i.e., a dataset with n-dimensions, onto a smaller space k, where k ≤ n − 1,
without losing class information. An LDA model comprises the statistical
properties that are calculated for the data in each class. When there are multi-
ple features or variables, these properties are calculated over the multivariate
Gaussian distribution.

The multivariates are:

• Means

• Covariance matrix, which measures how each variable or feature re-
lates to others within the class

The statistical properties that are estimated from the data set are fed into
the LDA function to make predictions and create the LDA model. There are
some constraints to bear in mind, as the model assumes the following:

1. The input dataset has a Gaussian distribution, where plotting the data
points gives a bell-shaped curve.

2. The data set is linearly separable, meaning LDA can draw a straight
line or a decision boundary that separates the data points.

3. Each class has the same covariance matrix.

For these reasons, LDA may not perform well in high-dimensional feature
spaces.

FIGURE 3.7: LDA
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3.7.3 Applying LDA with an example in credit risk

Let’s use the equation to work through a loan approval example. To recap,
the bank is deciding whether to approve or reject loan applications. The bank
uses two features to make this decision: the applicant’s credit score (x) and
annual income. The bank has collected historical data on previous loan ap-
plicants and whether the loans were approved.

Class ω0 represents "Loan rejected."
Class ω1 represents "Loan approved."

Using the linear discriminant function, the bank can calculate a score (δ(x))
for each loan application.

The equation for the linear discriminant function might look like this:

δ(x) = x×
(

σ2 × (µ0 − µ1)− 2× σ2 × (µ2
0 − µ2

1) + ln
(

P(ω0)

P(ω1)

))
where:

• x represents the applicant’s credit score and annual income.

• µ0 and µ1 are the means of these features for the two classes: "Loan
rejected" and "Loan approved."

• σ2 is the common within-class variance.

• P(ω0) is the prior probability of "Loan rejected".

• P(ω1) is the prior probability of "Loan approved".

The bank computes the linear discriminant function for each loan applica-
tion.

• If δ(x) is positive, it suggests that the loan application is more likely to
be approved.

• If δ(x) is negative, it suggests that the loan application is more likely to
be rejected.

The bank can thus automate its loan approval process, making quicker and
more consistent decisions while minimizing human bias.
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Chapter IV

Model performance evaluation

In this chapter, we will explore various techniques for evaluating model per-
formance. Since different datasets may require different approaches, it’s cru-
cial to identify the model that offers the best accuracy and minimizes pre-
diction errors. By applying these evaluation techniques, we can ensure that
the most suitable model is selected for each dataset, ultimately improving
prediction quality and reliability.

4.1 Cross Validation in Machine Learning

Cross validation is a technique used in machine learning to evaluate the per-
formance of a model on unseen data. It involves dividing the available data
into multiple folds or subsets, using one of these folds as a validation set,
and training the model on the remaining folds. This process is repeated mul-
tiple times, each time using a different fold as the validation set. Finally, the
results from each validation step are averaged to produce a more robust es-
timate of the model’s performance. Cross validation is an important step in
the machine learning process and helps to ensure that the model selected for
deployment is robust and generalizes well to new data.
The main purpose of cross validation is to prevent overfitting, which occurs
when a model is trained too well on the training data and performs poorly on
new, unseen data. By evaluating the model on multiple validation sets, cross
validation provides a more realistic estimate of the model’s generalization
performance, i.e., its ability to perform well on new, unseen data.
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4.2 Types of Cross-Validation

There are several types of cross validation techniques, including k-fold cross
validation, leave-one-out cross validation, and Holdout validation, Stratified
Cross-Validation. The choice of technique depends on the size and nature of
the data, as well as the specific requirements of the modeling problem.

4.2.1 K-fold cross-validation

In this technique, the whole dataset is partitioned in k parts of equal size and
each partition is called a fold. It’s known as k-fold since there are k parts
where k can be any integer - 3,4,5, etc.

One fold is used for validation and other K-1 folds are used for training the
model. To use every fold as a validation set and other left-outs as a training
set, this technique is repeated k times until each fold is used once. The image

FIGURE 4.1: Enter Caption

above shows 5 folds and hence, 5 iterations. In each iteration, one fold is the
test set/validation set and the other k-1 sets (4 sets) are the train set. To get
the final accuracy, you need to take the accuracy of the k-models validation
data.

This validation technique is not considered suitable for imbalanced datasets
as the model will not get trained properly owing to the proper ratio of each
class’s data.
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4.2.2 Holdout cross-validation

Also called a train-test split, holdout cross-validation has the entire dataset
partitioned randomly into a training set and a validation set. A rule of thumb
to partition data is that nearly 70% of the whole dataset will be used as a
training set and the remaining 30% will be used as a validation set. Since
the dataset is split into only two sets, the model is built just one time on the
training set and executed faster.

FIGURE 4.2: Holdount cross-validation

In the image above, the dataset is split into a training set and a test set. You
can train the model on the training set and test it on the testing dataset. How-
ever, if you want to hyper-tune your parameters or want to select the best
model, you can make a validation set like the one below.

FIGURE 4.3: Holdount cross-validation
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4.2.3 Stratified k-fold cross-validation

As seen above, k-fold validation can’t be used for imbalanced datasets be-
cause data is split into k-folds with a uniform probability distribution. Not
so with stratified k-fold, which is an enhanced version of the k-fold cross-
validation technique. Although it too splits the dataset into k equal folds,
each fold has the same ratio of instances of target variables that are in the
complete dataset. This enables it to work perfectly for imbalanced datasets,
but not for time-series data. In the example above, the original dataset con-

FIGURE 4.4: Stratified k-fold cross-validation

tains females that are a lot less than males, so this target variable distribution
is imbalanced. In the stratified k-fold cross-validation technique, this ratio of
instances of the target variable is maintained in all the folds.
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4.2.4 Leave-p-out cross-validation

An exhaustive cross-validation technique, p samples are used as the valida-
tion set and n-p samples are used as the training set if a dataset has n samples.
The process is repeated until the entire dataset containing n samples gets di-
vided on the validation set of p samples and the training set of n-p samples.
This continues till all samples are used as a validation set.

The technique, which has a high computation time, produces good results.
However, it’s not considered ideal for an imbalanced dataset and is deemed
to be a computationally unfeasible method. This is because if the training set
has all samples of one class, the model will not be able to properly generalize
and will become biased to either of the classes.

4.2.5 Leave-one-out cross-validation

In this technique, only 1 sample point is used as a validation set and the
remaining n-1 samples are used in the training set. Think of it as a more
specific case of the leave-p-out cross-validation technique with P=1.

To understand this better, consider this example: There are 1000 instances in
your dataset. In each iteration, 1 instance will be used for the validation set
and the remaining 999 instances will be used as the training set. The pro-
cess repeats itself until every instance from the dataset is used as a validation
sample. The leave-one-out cross-validation method is computationally ex-

FIGURE 4.5: Leave-one-out cross-validation

pensive to perform and shoudnt be used with very large datasets. The good
news is that the technique is very simple and requires no configuration to
specify. It also provides a reliable and unbiased estimate for your model per-
formance.
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4.2.6 Monte Carlo cross-validation

Also known as shuffle split cross-validation and repeated random subsam-
pling cross-validation, the Monte Carlo technique involves splitting the whole
data into training data and test data. Splitting can be done in the percentage
of 70-30% or 60-40% - or anything you prefer. The only condition for each
iteration is to keep the train-test split percentage different.

The next step is to fit the model on the train data set in that iteration and
calculate the accuracy of the fitted model on the test dataset. Repeat these
iterations many times - 100,400,500 or even higher - and take the average of
all the test errors to conclude how well your model performs.

For a 100-iteration run, the model training will look like this You can see that

FIGURE 4.6: Monte carlo cross-validation

in each iteration, the split ratio of the training set and test set is different. The
average has been taken to get the test errors.
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4.2.7 Time series (rolling cross-validation / forward chaining

method)

Before going into the details of the rolling cross-validation technique, it’s im-
portant to understand what time-series data is.

Time series is the type of data collected at different points in time. This
kind of data allows one to understand what factors influence certain vari-
ables from period to period. Some examples of time series data are weather
records, economic indicators, etc.

In the case of time series datasets, the cross-validation is not that trivial. You
can’t choose data instances randomly and assign them the test set or the train
set. Hence, this technique is used to perform cross-validation on time series
data with time as the important factor.

Since the order of data is very important for time series-related problems, the
dataset is split into training and validation sets according to time. Therefore,
it’s also called the forward chaining method or rolling cross-validation.

To begin: Start the training with a small subset of data. Perform forecasting
for the later data points and check their accuracy. The forecasted data points
are then included as part of the next training dataset and the next data points
are forecasted. The process goes on.

The image below shows the method.

FIGURE 4.7: Time series cross validation
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4.3 Confusion Matrix

A confusion matrix is a table that is used to define the performance of a clas-
sification algorithm. A confusion matrix visualizes and summarizes the per-
formance of a classification algorithm.

FIGURE 4.8: Confusion Matrix

The confusion matrix consists of four basic characteristics (numbers) that are
used to define the measurement metrics of the classifier. These four numbers
are:

1. TP (True Positive): TP represents the number of patients who have been
properly classified to have malignant nodes, meaning they have the disease.

2. TN (True Negative): TN represents the number of correctly classified pa-
tients who are healthy.

3. FP (False Positive): FP represents the number of misclassified patients with
the disease but actually they are healthy. FP is also known as a Type I error.

4. FN (False Negative): FN represents the number of patients misclassified
as healthy but actually they are suffering from the disease. FN is also known
as a Type II error.

Performance metrics of an algorithm are accuracy, precision, recall, and F1
score, which are calculated on the basis of the above-stated TP, TN, FP, and
FN.
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Accuracy of an algorithm is represented as the ratio of correctly classified
patients (TP+TN) to the total number of patients (TP+TN+FP+FN).

Accuracy =
TP + TN

TP + FP + FN + TN
(4.1)

Precision of an algorithm is represented as the ratio of correctly classified pa-
tients with the disease (TP) to the total patients predicted to have the disease
(TP+FP).

Precision =
TP

TP + FP
(4.2)

Recall metric is defined as the ratio of correctly classified diseased patients
(TP) divided by total number of patients who have actually the disease.

Recall =
TP

TP + FN
(4.3)

F1 score is also known as the F Measure. The F1 score states the equilibrium
between the precision and the recall.

F1 Score = 2 · precision · recall
precision + recall

(4.4)
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4.4 AUC-ROC Curve

AUC - ROC curve is a performance measurement for the classification prob-
lems at various threshold settings. ROC is a probability curve and AUC rep-
resents the degree or measure of separability. It tells how much the model
is capable of distinguishing between classes. Higher the AUC, the better the
model is at predicting 0 classes as 0 and 1 classes as 1. By analogy, the Higher
the AUC, the better the model is at distinguishing between patients with the
disease and no disease.

The ROC curve is plotted with TPR against the FPR where TPR is on the
y-axis and FPR is on the x-axis.

FIGURE 4.9: ROC Curve
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Chapter V

Credit Derivatives

Credit derivatives are instruments that help banks, financial institutions, and
debt security investors to manage their credit-sensitive investments. Credit
derivatives insure and protect against adverse movements in the credit qual-
ity of the counterparty or borrower. For example, if a borrower defaults, the
investor will suffer losses on the investment, but the losses can be offset by
gains from the credit derivative transaction.

One might ask why both banks and investors do not utilize the well-established
insurance market for their protection. The major reasons are that credit deriva-
tives offer lower transaction costs, quicker payment, and more liquidity. Credit
default swaps, for instance, often pay out very soon after the event of default;
in contrast, insurances take much longer to pay out, and the value of the pro-
tection bought may be hard to determine.

Finally, as with most financial derivatives initially invented for hedging, credit
derivatives can now be traded speculatively. Like other over-the-counter
derivative securities, credit derivatives are privately negotiated financial con-
tracts. These contracts expose the user to operational, counterparty, liquidity,
and legal risk. From the viewpoint of quantitative modeling, we are here
only concerned with counterparty risk.

One can think of credit derivatives being placed somewhere between tra-
ditional credit insurance products and financial derivatives. Each of these
areas has its own valuation methodology, but neither is wholly satisfactory
for pricing credit derivatives. The insurance techniques make use of histor-
ical data, as, e.g., provided by rating agencies, as a basis for valuation. This
approach assumes that the future will be like the past and does not take into
account market information about credit quality.
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In contrast, derivative technology employs market information as a basis for
valuation. Derivative securities pricing is based on the assumption of risk-
neutrality, which assumes arbitrage-free and complete markets, but it is not
clear whether these conditions hold for the credit market or not. If a credit
event is based on a freely observable property of market prices, such as credit
spreads, then we believe that conventional derivative pricing methodology
may be applicable.

Credit derivatives are bilateral financial contracts that isolate specific aspects
of credit risk from an underlying instrument and transfer that risk between
two counterparties. By allowing credit risk to be freely traded, risk man-
agement becomes far more flexible. There are many different types of credit
derivatives, but we shall only treat the most commonly used ones.

They could be classified into two main categories according to valuation,
namely the replication products and the default products. The former are
priced off the capacity to replicate the transaction in the money market, such
as credit spread options. The latter are priced as a function of the exposure
underlying the security, the default probability of the reference asset, and the
expected recovery rate, such as credit default swaps.

Another classification could be along their performance as protection-like
products, such as credit default options, and exchange-like products, such
as total return swaps. In the next sections, we describe the most commonly
used credit derivatives and illustrate simple examples. For a more elaborate
introduction to the different types of credit derivatives and their use for risk
management
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5.1 Total Return Swaps

A total return swap (TRS), is a mean of duplicating the cash flows of either
selling or buying a reference asset, without necessarily possessing the asset
itself. The TRS seller pays to the TRS buyer the total return of a specified
asset and receives a floating rate payment plus a margin. The total return
includes the sum of interest, fees, and any change in the value with respect
to the reference asset, the latter being equal to any appreciation (positive) or
depreciation (negative) in the market value of the reference security. Any net
depreciation in value results in a payment to the TRS seller. The margin, paid
by the TRS buyer, reflects the cost to the TRS seller of financing and servicing
the reference asset on its own balance sheet. Such a transaction transfers the
entire economic benefit and risk as well as the reference security to another
counterparty.
A company may wish to sell an asset that it holds, but for tax or political rea-
sons may be unable to do so. Likewise, it might hold a view that a specific
asset is likely to depreciate in value in the near future, and wish to short it.
However, not all assets in the market are easy to short in this way. Whatever
the reason, the company would like to receive the cash flows which would
result from selling the asset and investing the proceeds. This can be achieved
exactly with a total return swap. Let us give an example: Bank A decides
to get the economic effect of selling securities (bonds) issued by a German
corporation, X. However, selling the bonds would have undesirable conse-
quences, e.g., for tax reasons. Therefore, it agrees to swap with bank B the
total return on one million 7.25% bonds maturing in December 2005 in return
for a six-month payment of LIBOR plus 1.2% margin plus any decrease in the
value of the bonds.
Total return swaps are popular for many reasons and attractive to different
market segments .One of the most important features is the facility to obtain
an almost unlimited amount of leverage. If there is no transfer of physical as-
set at all, then the notional amount on which the TRS is paid is unconstrained.
Employing TRS, banks can diversify credit risk while maintaining confiden-
tiality of their client’s financial records. Moreover, total return swaps can also
give investors access to previously unavailable market assets. For instance,
if an investor can not be exposed to the Latin American market for various
reasons, he or she is able to do so by doing a total return swap with a counter-
party that has easy access to this market. Investors can also receive cash flows
that duplicate the effect of holding an asset while keeping the actual assets
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away from their balance sheet. Furthermore, an institution can take advan-
tage of another institution’s back-office and documentation experience, and
get cash flows that would otherwise require infrastructure, which it does not
possess.
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5.2 Credit Default Products

Credit default swaps are bilateral contracts in which one counterparty pays
a fee periodically, typically expressed in basis points on the notional amount,
in return for a contingent payment by the protection seller following a credit
event of a reference security. The credit event could be either default or
downgrade; the credit event and the settlement mechanism used to deter-
mine the payment are flexible and negotiated between the counterparties. A
TRS is importantly distinct from a CDS in that it exchanges the total economic
performance of a specific asset for another cash flow. On the other hand, a
credit default swap is triggered by a credit event. Another similar product is
a credit default option. This is a binary put option that pays a fixed sum if and
when a predetermined credit event (default/downgrade) happens in a given
time. Let us assume that bank A holds securities (swaps) of a low-graded
firm X, say BB, and is worried about the possibility of the firm defaulting.
Bank A pays to firm X floating rate (Libor) and receives fixed (5.5%). For
protection bank A therefore purchases a credit default swap from bank B
which promises to make a payment in the event of default. The fee reflects
the probability of default of the reference asset, here the low-graded firm.
Credit default swaps are almost exclusively inter-professional transactions,
and range in nominal size of reference assets from a few millions to billions of
euros. Maturities usually run from one to ten years. The only true limitation
is the willingness of the counterparties to act on a credit view. Credit default
swaps allow users to reduce credit exposure without physically removing an
asset from their balance sheet. Purchasing default protection via a CDS can
hedge the credit exposure of such a position without selling for either tax
or accounting purposes. When an investor holds a credit-risky security, the
return for assuming that risk is only the net spread earned after deducting
the cost of funding. Since there is no up-front principal outlay required for
most protection sellers when assuming a CDS position, they take on credit
exposure in off-balance sheet positions that do not need to be funded. On
the other hand, financial institutions with low funding costs may fund risky
assets on their balance sheets and buy default protection on those assets. The
premium for buying protection on such securities may be less than the net
spread earned over their funding costs.
For modeling purposes, let us reiterate some basic terminology.We consider a
frictionless economy with a finite horizon [0, T]. We assume that there exists
a unique martingale measure Q making all the default-free and risky security
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prices martingales, after renormalization by the money market account. This
assumption is equivalent to the statement that the markets for the riskless
and credit-sensitive debt are complete and arbitrage-free [89].

A filtered probability space (Ω,F , (Ft)t≥0, Q) is given, and all processes are
assumed to be defined on this space and adapted to the filtration Ft (where
Ft describes the information observable until time t). We denote the con-
ditional expectation and the probability with respect to the equivalent mar-
tingale measure by Et(·) and Qt(·), respectively, given information at time
t.

Let B(t, T) be the time t price of a default-free zero-coupon bond paying a
sure currency unit at time T. We assume that forward rates of all maturities
exist; they are defined in continuous time by

f (t, T) = − ∂

∂T
log B(t, T).

The default-free spot rate is defined by

r(t) = lim
T→t

f (t, T).

Spot rates can be modeled directly as by Cox et al. [34] or via forward rates
as in Heath et al. [90]. The money market account that accumulates return at
the spot rate is defined as

A(t) = e
∫ t

0 r(s)ds.

Under the above assumptions, we can write default-free bond prices as the
expected discount value of a sure currency unit received at time T, that is,

B(t, T) = Et

[
A(t)
A(T)

]
= Et

[
e−
∫ t

T r(s)ds
]

.

Now, let Be(t, T) be the time t price of a credit risky zero-coupon bond promis-
ing to pay a currency unit at time T. This promised payment may not be
made in full if the firm is bankrupt at time T, i.e., only a fraction of the out-
standing will be recovered in the event of default. Here we assume that the
event premium is the difference between par and the value of a specified ref-
erence asset after default. Let again τ represent the random time at which
default occurs, with a distribution function F(t) = P[τ ≤ t] and 1{τ<T} as
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the indicator function of the event. Then the price of the risky zero-coupon
bond can be written in two ways:

Be(t, T) = Et

[
e−
∫ t

T r(s)ds
(

1{τ>T} + REC(T)1{τ<T}

)]
(7.1)

= Et

[
e−
∫ t

T r(s)ds1{τ>T} + e−
∫ t

τ r(s)dsREC(τ)1{τ<T}

]
. (7.2)

In the first expression, the recovery rate REC(T) is thought of as a payout
received at maturity, whereas in the second expression, we think of REC(τ)

as the payment made at the time of default. Given the existence of the money
market account, we can easily translate from one representation of the recov-
ery to the other by

REC(T) = REC(τ)e
∫ τ

T r(s)ds.

A credit default swap now has a default leg and a premium leg. The present
value of the contingent payment 1− REC(τ) is then given by

Adef,t = Et

[
e−
∫ τ

t r(u)du(1− REC(τ))1{τ<T}

]
.

The present value of the spread payments s is given by:

Afee,t = sEt

[
e−
∫ t

T r(u)du1{τ>T}

]
.

From arbitrage-free arguments, the value of the swap should be zero when
it is initially negotiated. In the course of time, its present value from the
protection buyer’s point of view is Adef,t − Afee,t. In order to calculate the
value of the CDS, it is required to estimate the survival probability, S(t) =

1− F(t), and the recovery rates REC(t).

Swap premiums are typically due at prespecified dates, and the amount is
accrued over the respective time interval. Let 0 ≤ T0 ≤ T1 ≤ . . . ≤ Tn denote
the accrual periods of the default swap, i.e., at time Ti, i ≥ 1 the protection
buyer pays s∆i, where ∆i is the day count fraction for the period [Ti−1, Ti],
provided that there is no default until time Ti.

Assuming furthermore a deterministic recovery rate at default, REC(τ) =

REC, and no correlation between default and interest rates, we arrive at

Adef,t = (1− REC)
∫ Tn

T0

B(T0, u)F(du), (7.3)
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Afee,t =
n

∑
i=1

s∆iB(T0, Ti)(1− F(Ti)). (7.4)

The integral describes the present value of the payment (1−REC) at the time
of default. For a default “at” time u, we have to discount with B(T0, u) and
multiply with the probability F(du) that default happens “around” u.

In some markets, a plain default swap includes the feature of paying the ac-
crued premium at default, i.e., if default happens in the period (Ti−1, Ti), the
protection buyer is obliged to pay the already accrued part of the premium
payment. In this case, the value of the premium leg changes to

Afee,t =
n

∑
i=1

s
[

∆B(T0, Ti)(1− F(Ti)) +
∫ Ti

Ti−1

(u− Ti−1)B(T0, u)F(du)
]

, (7.5)

where the difference u− Ti−1 is according to the given day count convention.
Both reduced-form models (intensity models) and structural models can in
principle be applied to price default swaps. In the reduced-form model
framework, the relation between the intensity process ht and the random
survival probabilities at future times t provided τ > t is given by

q(t, T) = P[τ > T|Ft] = Et

[
e−
∫ t

T h(s)ds
]

.

If we assume a deterministic recovery rate REC and understand the recovery
as a fraction of a corresponding riskless zero with the same maturity, we can
write the price for a risky zero bond as (on {τ > t}):

Be(t, T) = REC Et

[
e−
∫ t

T r(s)ds
]
+ (1− REC) Et

[
e−
∫ t

T(r(s)+h(s))ds
]

. (7.6)

In the case of zero correlation between the short rate and the intensity pro-
cess, both processes in the exponent would factorize when taking the expec-
tation value. However, a truly sophisticated default swap model would call
for correlated default and interest rates, which leads us beyond the scope of
this presentation. Instead, we turn in the following section back to correlated
defaults and their application to basket swaps.
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5.3 Basket Credit Derivatives

Basket default swaps are more sophisticated credit derivatives that are linked
to several underlying credits. The standard product is an insurance contract
that offers protection against the event of the kth default on a basket of n
underlying names, where n ≥ k. It is similar to a plain default swap, but
now the credit event to insure against is the occurrence of the kth default, not
specified to a particular name in the basket.

Again, a premium, or spread, s is paid as an insurance fee until maturity or
the event of the kth default. We denote by skth the fair spread in a kth-to-
default swap, i.e., the spread that makes the value of this swap equal to zero
at inception.

If the n underlying credits in the basket default swap are independent, the
fair spread s1st is expected to be close to the sum of the fair default probabil-
ities of the underlying credits.
Swap spreads si over all underlyings i = 1, . . . , n can be summarized as fol-
lows: if the underlying credits are in some sense "totally" dependent, the first
default will be the one with the worst spread; therefore,

s1st = max
i

(si).

The question now is how to introduce dependencies between the underly-
ing credits into our model. The concept of copulas, as introduced in Section
2.6, can be used here.Was the first to apply copulas to valuing basket swaps
by generating correlated default times as random variables via a correlation
model and a credit curve. For more on copulas,the literature referenced there.
Denote by τi, i = 1, . . . , n the random default times for the n credits in the bas-
ket, and let furthermore (Fi(t))t≥0 be the curve of cumulative (risk-neutral)
default probabilities for credit i:

Fi(t) = P[τi ≤ t], t ≥ 0,

with Si(t) = P[τi > t] = 1− Fi(t). It is assumed that F(t) is a strictly in-
creasing function of t with F(0) = 0 and limt→∞ F(t) = 1. This implies the
existence of the quantile function F−1(x) for all 0 ≤ x ≤ 1.
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From elementary probability theory, we know that for any standard uni-
formly distributed U:

U ∼ U(0, 1) =⇒ F−1(U) ∼ F. (7.7)

This gives a simple method for simulating random variates with distribution
F, i.e., random default times in our case. The cash flows in a basket default
swap are functions of the whole random vector (τ1, . . . , τn), but in order to
model and evaluate this basket swap, we need the joint distribution of the
τi’s:

F(t1, . . . , tn) = P[τ1 ≤ t1, . . . , τn ≤ tn].

Similarly, we define the multivariate survival function S by

S(t1, . . . , tn) = P[τ1 > t1, . . . , τn > tn].

Note that

Si(ti) = S(0, . . . , 0, ti, 0, . . . , 0),

and

S(t1, . . . , tn) ̸= 1− F(t1, . . . , tn).

We exploit again the concept of copula function where, for uniform random
variables U1, U2, . . . , Un,

C(u1, u2, . . . , un) = P[U1 ≤ u1, U2 ≤ u2, . . . , Un ≤ un]

defines a joint distribution with uniform marginals. The function C(u1, u2, . . . , un)

is called a Copula function. Remember that Ui = Fi(τi) admits a uniform dis-
tribution on the interval [0, 1]; so, the joint distribution of (τ1, . . . , τn) can be
written as:

F(t1, . . . , tn) = C(F1(t1), . . . , Fn(tn)). (7.8)
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Hence, the Copula function introduces a mutual correlation by linking uni-
variate marginals to their full multivariate distribution, thereby separating
the dependency structure C, i.e., the ingredients are some credit curve for
each credit as marginal distribution functions for the default times and a suit-
ably chosen copula function. Observe that by Sklar’s theorem (Section 2.6),
any joint distribution can be reduced to a copula and the marginal distribu-
tions, although it may be difficult to write down the copula explicitly.

One of the most elementary copula functions is the multivariate normal dis-
tribution:

C(u1, u2, . . . , un) = Nn

(
N−1(u1), N−1(u2), . . . , N−1(un); Γ

)
, (7.9)

where Nn is the cumulative multivariate normal distribution with correlation
matrix Γ and N−1 is the inverse of a univariate normal distribution. Clearly,
there are various different copulas generating all kinds of dependencies, and
the choice of the copula entails a significant amount of model risk [68, 70].
The advantage of the normal copula, however, is that, as we have seen in
Chapter 2, it relates to the latent variable approach to model dependent de-
faults.

Assume that the default event of credit i up to time T is driven by a single
random variable ri (ability-to-pay variable) being below a certain threshold
ci(T):

τi < T ⇐⇒ ri < ci(T).

If the Zi’s admit a multivariate standard normal distribution with correlation
matrix Γ, then to be consistent with our given default curve, we set ci(T) =
N−1(Fi(T)). The pairwise joint default probabilities are now given in both
representations by:

P[τi ≤ T, τj ≤ T] = P[ri ≤ ci(T), rj ≤ cj(T)] = N2[N−1(Fi(T)), N−1(Fj(T)); Γeij ].

. We see that these probabilities (7.10) only coincide with those from the
normal copula approach (7.8) and (7.9) if the asset correlation matrix Γe and
the correlation matrix Γ in the normal copula are the same. However, since
the asset value approach can only model defaults up to a single time horizon
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T, calibration between the two models can only be conducted for one fixed
horizon. Thus, we observe again that the factor model approach to generate
correlated defaults based on standard normal asset returns is tantamount to
a normal copula approach.

Remark: Analogously to the default distribution, we can apply Sklar’s theo-
rem to the survival function. When S is a multivariate survival function with
margins S1, . . . , Sn, there exists a copula representation:

S(t1, . . . , tn) = CS(S1(t1), . . . , Sn(tn)). (7.11)

There is an explicit, albeit rather complex, relation between the survival cop-
ula CS and the distribution copula C [76]. In the two-dimensional case, we
obtain:

CS(u1, u2) = S(S−1
1 (u1), S−1

2 (u2)) = S(t1, t2) = 1− F1(t1)− F2(t2)+ F(t1, t2) = S1(t1)+S2(t2)− 1+C(1−S1(t1), 1−S2(t2)).

This simplifies to:

CS(u1, u2) = u1 + u2 − 1 + C(1− u1, 1− u2).

It can be easily shown that CS is indeed a copula function. At this point, we
note that a copula is radially symmetric if and only if C = CS (proof [76]).
The normal copula is radially symmetric. Thus, in two dimensions, we find:

CS(u1, u2) = u1 +u2− 1+C(1−u1, 1−u2) = u1 +u2− 1+ N2

(
N−1(1− u1), N−1(1− u2); Γ

)
= N2

(
N−1(u1), N−1(u2); Γ

)
.

This property is particularly interesting for computational purposes, as in the
radially symmetric case, it is equivalent to work with either the distribution
copula or the survival copula.
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5.4 Credit Spread Products

Credit spread is the difference between the yield on a particular debt secu-
rity and a benchmark yield, usually on a government bond. Credit spread
options (CSO) can be based on various types of credit spreads, such as the
asset-swap spread, the default-swap spread, and the yield spread (? ). These
options allow investors to express a directional view on credit spreads or to
hedge risk.

In the case of options on CDS spreads, one speaks of a credit default swap-
tion. The “put/call” terminology is sometimes confusing here. Credit default
swaptions use the lingo of payer and receiver instead (similar to interest rate
swaptions). A payer option is the right to buy credit default protection at a
pre-specified strike level K on a future date, with a payoff equal to:

max(S(T)− K, 0)

at maturity, where S(T) denotes the credit spread at time T.
A payer option is both a put on credit quality – a bet that credit will dete-
riorate – and a call on spreads – a bet that spreads will widen. Likewise, a
receiver option is the right to sell credit default protection at a pre-specified
strike level K on a future date, with a payoff equal to:

max(K− S(T), 0).

A receiver option is both a call on credit (the buyer profits when credit quality
improves) and a put on spreads.

One of the key characteristics of these products is that the return is not de-
pendent on a specific credit event. It merely depends on the value of one
reference credit spread against another. If the credit rating of the reference
asset owner declines (increasing the default probability), the credit spread
widens, and vice versa.

A debt issuer can use payer options (a put on credit) to hedge against a rise
in the average credit spread. On the other hand, a financial institution hold-
ing debt securities can purchase receiver options (a call on credit) to hedge
against a fall in the credit spread.
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Credit spread derivatives are priced using various models. One approach is
to model the spread itself as an asset price, which offers simplicity. Longstaff
and Schwartz (? ) developed a simple framework for pricing credit spread
derivatives, which we summarize below. Their model captures key empirical
properties of observed credit spreads and provides closed-form solutions for
call and put CSOs.

Let x denote the logarithm of the credit spread, i.e., xt = log(S(t)). The
dynamics of x are described by the stochastic differential equation (SDE):

dx = (a− bx)dt + s dB1,

where a, b, and s are parameters, and B1 is a Wiener process. This implies
that changes in x are mean-reverting and homoscedastic, which aligns with
empirical observations.

We assume the default-free term structure is determined by a one-factor model
(? ), given by:

dr = (α− βr)dt + σdB2,

where α, β, and σ2 are parameters, and B2 is a Wiener process. The correlation
coefficient between dB1 and dB2 is ρ̂. We assume that market prices of risk
are incorporated into a and α, so both a and α are risk-adjusted parameters,
consistent with Vasicek (? ) and Longstaff and Schwartz.
The risk-adjusted process for x is given by Longstaff and Schwartz (? ) as:

dx =

(
a− bx− ρσs

β̂

(
1− e−β(T−t)

))
dt + s dB1. (7.14)

This SDE can be solved by making a change of variables and then integrating.
The resulting solution implies that xT is conditionally normally distributed
with respect to (7.14) with mean µ and variance η2, where:

µ = e−bTx +
1
b

(
a− ρσs

β̂

) [
1− e−bT

]
+

ρσs
β̂(b + β)

[
1− e−(b+β)T

]
,

η2 =
s2 (1− e−2bT)

2b
.



81

Note that as T → ∞, the values of µ and η2 converge to fixed values, and the
distribution of xT converges to a steady-state stationary distribution.

With this framework, we can find the price of a European call credit spread
option (CSO). Let C(x, r, T) denote the value of the option. The payoff func-
tion for this option is simply H(x) = max(ex − K, 0). The closed-form solu-
tion for the call CSO is given by:

C(x, r, T) = p(r, T)
[
eµ+η2/2N(d1)− KN(d2)

]
,

where N(·) is the cumulative standard normal distribution, p(r, T) is a risk-
less discount bond, and:

d1 =
− log(K) + µ + η2

η
, d2 = d1 − η.

The value of a European put CSO is:

P(x, r, T) = C(x, r, T) + p(r, T)
[
K− eµ+η2/2

]
.

The option formula has some similarities with the Black-Scholes option pric-
ing formula. However, the value of a call option can be less than its intrinsic
value, even when the call is slightly in the money. This surprising result is
due to the mean reversion of the credit spreads. When the spread is above
the long-run mean, it is expected to decline over time. This cannot happen in
the Black-Scholes model because the underlying asset must appreciate at the
riskless rate in the risk-neutral.The delta for a call is always positive, as in the
Black-Scholes (B-S) framework, but the delta of a credit spread option (CSO)
call decreases to zero as the time until expiration increases. A change in the
current credit spread is heavily outweighed by the effects of mean reversion
if the expiration date of the call is far in the future.

An investor may combine a payer and a receiver option to create a straddle,
which is a bet on spread volatility. The buyer of the straddle makes money if
spreads either widen or tighten by more than the breakeven level. Investors
can also insure against rising credit spreads by buying a payer option and
reduce the cost by selling a receiver option.

In a credit spread forward (CSF), counterparty A pays at time T a pre-agreed
fixed payment and receives the credit spread of the reference asset at time T.
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Conversely, counterparty B receives the fee and pays the credit spread. The
fixed payment is chosen at time t < T to set the initial value of the credit
spread forward to zero. The credit spread forward can also be structured
around the relative credit spread between two different defaultable bonds.
Credit spread forwards can be combined to a credit spread swap, in which
one counterparty pays periodically the relative credit spread, S1(t)− S2(t),
to the other.

5.5 Credit-Linked Notes

Credit-linked notes exist in various forms in the credit derivatives market;.
In its most common form, a credit-linked note (CLN) is a synthetic bond with
an embedded default swap.
CLNs are initiated in several ways. In the following we outline four exam-
ples of typical CLN structures. The first case we present is the situation of
an (institutional) investor who wants to have access to a credit exposure (the
reference asset) for which by policy, regulation, or other reasons he has no
direct access. In such cases, a CLN issued by another institution (the issuer)
which has access to this particular credit exposure offers a way to evade the
problems hindering the investor to purchase the exposure he is interested in.
The issuer sells a note to the investor with underlying exposure equal to the
face value of the reference asset. He receives the face value of the reference
asset as cash proceeds at the beginning of the transaction and in turn pays
interest, including some premium for the default risk, to the investor. In case
the reference asset experiences a credit event, the issuer pays to the investor
the recovery proceeds of the reference asset. The spread between the face
value and the recovery value of the reference asset is the investor’s exposure
at risk. In case no credit event occurred during the lifetime of the reference
note, the issuer pays the full principal back to the investor. So in this ex-
ample one could summarize a CLN as a synthetic bond with an embedded
default swap. In our second example, an investor, who has no access to the
credit derivatives market or is not allowed to do off-balance sheet transac-
tions, wants to invest in a credit default swap, selling protection to the owner
of some reference asset. This can be achieved by investing in a CLN in the
same way as described in our first example. Note that from the investor’s
point of view the CLN deal differs from a default swap agreement by the
cash payment made upfront. In a default swap, no principal payments are
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exchanged at the beginning. Another common way to set up a CLN is pro-
tection buying. Assume that a bank is exposed to the default risk of some
reference asset. This could be the case by means of an asset on the balance
sheet of the bank or by means of a situation where the bank is the protec-
tion seller in a credit default swap. The bank can now issue a CLN to some
investor who pays the exposure of the reference asset upfront in cash to the
bank and receives interest, including some premium reflecting the riskiness
of the reference asset, during the lifetime of the note. If the reference asset
defaults, the bank suffers a loss for its balance sheet asset (funded case) or
has to make a contingent payment.
For the default swap (unfunded case), the CLN then compensates the bank
for the loss, such that the CLN functions as an insurance. In this example,
the difference between a CLN and just another default swap arises from the
cash proceeds the bank receives upfront from the CLN investor. As a con-
sequence, the bank is not exposed to the counterparty risk of the protection
selling investor. Therefore, the credit quality of the investor is of no rele-
vance2 . The proceeds from the CLN can be kept as a cash collateral or be
invested in high-quality collateral securities, so that losses on the reference
asset will be covered with certainty.
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