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0.1 Abstract

It is common practice for insurance companies to give dividends to their shareholders. Many
papers have been written on dividends policies. It has been found that under some reasonable
assumptions the optimal policy is to follow the so called constant barrier dividends policy also
known in Risk theory as de Finetti model. However soon become apparent that this model is
not "perfect" as questions and problems emerge from its application and that some "kind" of
modi�cations are necessary.

In this spirit, this thesis extends the de Finetti model in order to include cases with barriers
dividends policies which are modeled by di¤usions. The approach is axiomatic and was motivated
by the classical de Finetti model. We show that the de Finetti models with general (di¤usion)
barriers are well posed that is they exist and are unique, or in other words that there exist unique
stochastic processes that evolve according to our conditions. When we say unique stochastic
processes we mean up to the degree of indistinguishability.

We consider de Finetti models with one general barrier meaning that when the reserves of the
insurance company reach a "particular" level, which also depends upon a di¤usion process, then
the company goes bankrupt. We also consider de Finetti models with two general barriers, that
is when the reserves of the insurance company reach the level of the lower barrier, which also
depends on a di¤usion process, then the insurance company has the option to borrow money and
continue it�s function.

We derive di¤erential equations with appropriate boundary conditions, the solution of which
gives the quantities for which we are interesting. More speci�cally we �nd di¤erential equations
with appropriate boundary conditions, the solution of which gives the moments of the discounted
dividends, the moments of the discounted �nancing, the Laplace transform of the time of ruin, the
Laplace transform of the joint distribution of the time of ruin and the discounted dividends and
the Laplace transform of the joint distribution of the discounted dividends and the discounted
�nancing.

We apply the formulas in special cases and more speci�cally in cases where the reserves process
follows a Brownian motion, a Geometric Brownian motion and an Ornstein�Uhlenbeck process
(also see Gerber, H.U. and Shiu, E.S.W.([71],[72])).

Next we work on another important issue, which is the situation of insurance companies
cooperation. We consider this issue from the perspective of a particular insurance company. We
are interesting to look at parameters which are vital to the decisions of the company. Among
these parameters very important role we consider to play the probability of survival in a particular
cooperation and the shares that will be given to the shareholders during this cooperation. We
�nd di¤erential equations with appropriate boundary conditions the solution of which will give:

� The moments of the discounted dividends and the discounted �nancing.

� The Laplace transform of the joint distribution of the time of ruin and the discounted
dividends.

� The Laplace transform of the discounted dividends.

v



0.1 Abstract vi

� The Laplace transform of the time of ruin.

� The Survival probability for one of the two insurers.

We apply these results in two models:

(I) The Lundberg - de Finetti model.

(II) The de Finetti - de Finetti model.

We show how an insurance company can use the above results for policy making purposes. We
also mention possible ways to extend the above considerations to various other models.



0.2 Notation

MOST COMMON DESCRIPTION
NOTATION

I. Sets and Spaces
(
;F ; P ) Probability space
(
;F ; F; P ) a �ltered complete probability space
R+ Positive real numbers
Rn the n�dimensional Euclidean space
N the natural numbers
Rn�m the n�m matrices (real entries)
C(U) the space of continuous functions from U into R
Cn(U) the space of continuous functions from U into R

with continuous derivatives up to order n.
C0(U) the space of continuous functions from U into R

with compact support
Cn0 (U) the space of functions from U into R with compact

support and continuous derivatives up to order n.
Cnb (U) the space of continuous, bounded functions

from U into R with continuous, bounded derivatives
up to order n.

SV see De�nition 2.5.10
SK see De�nition 2.5.11
SM see De�nition 2.5.12
SN see De�nition 2.5.13
SV

(�)
see De�nition 2.5.18

SK
(�)

see De�nition 2.5.19
SL see De�nition 2.5.20

II. Functions
�t Right shift operator, see De�nition 1.3.27
�(x; a; b) see De�nition 2.5.4
'(x; a; b) see De�nition 2.5.4
�(x; a; b) see De�nition 2.5.4

vii



0.2 Notation viii

III. Greek notation

� interest rate
� drift coe¢ cient, see De�nition 1.3.23
� di¤usion coe¢ cient, see De�nition 1.3.23
�xa correlation of the Brownian motions Bx

and Ba, see (2.1.4)
�2xa see De�nition 2.5.3

IV. General notation
FXt the �-algebra generated by fXs : s � tg
f+(�) max(f(�); 0); the positive part of the real function f(�)
f�(�) max(�f(�); 0); the negative part of the real function f(�)

sign(x)

�
1
�1

if x � 0
if x < 0

Ax the generator of an Ito di¤usion X
(see de�nition 1.3.29)

a:s: almost surely
x ^ y min(x; y) for x; y 2 R
x _ y max(x; y) for x; y 2 R
t time
T Ruin time

de Finetti model with one general re�ecting barrier
U Dividends
U Discounted Dividends, see (2.1.18)
U(t) Discounted Dividends starting at time t

(see de�nition 2.5.6)
N(x; a; b; �1; �2) The Laplace transform of the joint distribution of

the time of ruin and the discounted dividends,
see (2.1.20)

K(x; a; b; �) The Laplace transform of the discounted dividends,
see (2.1.21)

M(x; a; b; �) The Laplace transform of the time of ruin,
see (2.1.22)

V (x; a; b;n) The Moments of the discounted dividends,
see (2.1.23)

V (x; a; b) Equals with V (x; a; b; 1) by de�nition.



0.2 Notation ix

de Finetti model with two general re�ecting barriers
U (�) We refer simultaneously to dividends and �nancing

(whenever we use the symbol � we use it with
analogous logic)

U (+) Dividends
U (�) Financing
U (�) We refer simultaneously to the discounted dividends

and the discounted �nancing
U (+) Discounted Dividends, see (2.1.24)
U (+)(t) Discounted Dividends starting at time t

(see (2.5.22))
U (�) Discounted Financing, see (2.1.25)
U (�)(t) Discounted �nancing starting at time t

(see (2.5.23))
L(x; a; b; �1; �2) The Laplace transform of the joint distribution of

the discounted dividends and
the discounted �nancing, see (2.1.29)

K(+)(x; a; b; �) The Laplace transform of the discounted dividends,
see (2.1.30)

K(�)(x; a; b; �) The Laplace transform of the discounted �nancing
V (+)(x; a; b;n) The Moments of the discounted dividends,

see (2.1.31)
V (+)(x; a; b) Equals with V (+)(x; a; b; 1) by de�nition.
V (�)(x; a; b;n) The Moments of the discounted �nancing
V (�)(x; a; b) Equals with V (�)(x; a; b; 1) by de�nition.
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Two Insurers (T.I.)
M(x; y; �) The Laplace transform of the time of ruin

see (4.1.10)
(T.I.)One re�ecting barrier
V(x; y;n) The Moments of the discounted dividends,

see (4.1.7)
V(x; y) Equals with V(x; y; 1) by de�nition.
K(x; y; �) The Laplace transform of the discounted dividends,

see (4.1.9)
N (x; y; �1; �2) The Laplace transform of the joint distribution of

the time of ruin and the discounted dividends
see (4.1.12).

(T.I.)Two re�ecting barriers
V(+)(x; y;n) The Moments of the discounted dividends

see (4.1.6).
V(+)(x; y) Equals with V(+)(x; y; 1) by de�nition.
V(�)(x; y;n) The Moments of the discounted �nancing
V(�)(x; y) Equals with V(�)(x; y; 1) by de�nition.
K(+)(x; y; �) The Laplace transform of the discounted dividends

see (4.1.8)
K(�)(x; y; �) The Laplace transform of the discounted �nancing
N (x; y; �1; �2; �3) The Laplace transform of the joint distribution of

the time of ruin , the discounted dividends and
the discounted �nancing. (see (4.1.11))



0.2 Notation xi

Two Insurers (T.I.): de Finetti -de Finetti model
(T.I.)One re�ecting barrier
Vi(x; y;n) The Moments of the discounted dividends,

for the i - insurer (i = 1; 2)
Vi(x; y) Equals with Vi(x; y; 1) by de�nition.
Ki(x; y; �) The Laplace transform of the discounted dividends,

for the i - insurer (i = 1; 2)
(T.I.)Two re�ecting barriers
V(+)i (x; y;n) The Moments of the discounted dividends

for the i - insurer (i = 1; 2)

V(+)i (x; y) Equals with V(+)i (x; y; 1) by de�nition.

V(�)i (x; y;n) The Moments of the discounted �nancing
for the i - insurer (i = 1; 2)

V(�)i (x; y) Equals with V(�)i (x; y; 1) by de�nition.

K(+)i (x; y; �) The Laplace transform of the discounted dividends
for the i - insurer (i = 1; 2)

K(�)i (x; y; �) The Laplace transform of the discounted �nancing
for the i - insurer (i = 1; 2)

Stochastic Processes
t see De�nition 2.5.1
ht see De�nition 2.5.1
Yt see De�nition 2.5.1
Zt see De�nition 2.5.1
Bt Brownian motion
Bxt Brownian motion driving the process Xt



Chapter 1

Risk Theory, Dividends, and the
Stochastic Analysis perspective

1.1 Introduction

In this �rst chapter, collective risk theory is introduced together with the concept of dividends pol-

icy. We are more interested to consider the above concepts from a stochastic analysis perspective.

We give the necessary notations, de�nitions and existing results.

Collective risk theory is concerned with the random �uctuations of the total assets of an

insurance company. The so called risk process, models the time evolution of the reserves of an

insurance company. The quantities that describe the risk process are: the initial capital, the

premiums, the claims, the risk reserve, the economic environment and the reinsurance. For more

information one can see texts on risk theory such as for example: T. Rolski, H. Schmidli, V.

Schmidt and J. Teugels [160], Asmussen [6], Grandell [80], Daykin, T Pentikainen, M Pesonen

[42] and Bühlmann [32] .

For each of the quantities of the risk process many choices are possible. As a consequence of

this there are many models available in the literature. The most important of them which have

been studied extensively are: The Sparre-Andersen model, (see for example Gerber [75], Albrecher

[9], Cai[33]), the Markov-modulated risk model, (see for example Lu [125], Reinhard [154]) and

the Cramer�Lundberg model (see for example Embrechts [56], Klüppelberg [114]). Next we will

describe brie�y the Cramer�Lundberg model.

We assume a complete probability space (
;F ; P ). The classical Cramer�Lundberg model
consists of the risk process X = fXt : t � 0g which models the reserves of an insurance company

1



1.1 Introduction 2

and which is described by a point process N = fNt : t � 0g with initial condition N0 = 0 a.s.

and mean ENt = �t and a sequence fYk : k 2 Ng of independent and identically distributed
random variables, with common distribution F , with F (0) = 0, mean �, and variance �2. More

speci�cally the risk process X is described by

Xt = x0 + ct�
NtX
k=1

Yk (1.1.1)

where c = ��(1 + �) is the so called gross risk premium, � is the so called safety loading factor

and x0 is the initial capital of the company.

Many modi�cations of the above model has been proposed. We will mention two of them

which fall in the category of the so called perturbed risk models.

The �rst model is an extension of the reserves process by the addition of a di¤usion component

and is described by

Xt = x0 + ct�
NtX
k=1

Yk + �1Bt (1.1.2)

where B = fBt : t � 0g is a standard Brownian motion and �1 > 0.

The second model consists of the addition of an a-stable Lévy process instead of a Brownian

motion, that is

Xt = x0 + ct�
NtX
k=1

Yk + �2Zt (1.1.3)

with Z = fZt : t � 0g an a�stable Lévy process and �2 > 0. For more information on perturbed
risk models one can see for example Dufresne [50], Furrer [65], Wang [182], Schlegel [163], and

Schmidli [167].

A central goal of risk theory is to obtain information on the ruin probability associated with

a risk process, where the event of �ruin� is de�ned as the �rst time epoch where the reserves of

the insurance company drop below the level 0. The ruin probability is therefore de�ned as

P (Xt < 0 for some t � 0) (1.1.4)

and the corresponding time to ruin, as

T := infft � 0 : Xt < 0g (1.1.5)

(with the understanding of the in�mum of the empty set is +1). Many approaches are available
to compute the ruin probability including exact solutions, numerical methods, approximations,

bounds and inequalities, statistical methods and simulation (see Asmussen [6]).
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In this thesis we will focus in di¤usion approximation techniques. The classical Cramer�

Lundberg model can be approximated (see Harrison [88]) by a Brownian motion with drift, that

is we can model the risk process as

Xt = �t+ �Bt (1.1.6)

X0 = x0 a.s.

where B = fBt : t � 0g is standard Brownian motion.

Di¤usion approximations of the risk process are very popular because they can be applied to

quite general models deviating from the usual restrictive assumptions. In particular distinguished

are three types of approximations: Di¤usion approximations (see Iglehart [97], Ruohonen [161],

Schmidli [164],Asmussen [7]), Corrected Di¤usion approximations (see Fuh [63], Siegmund [171])

and Lévy process approximations (see Furrer, Michna, and Weron [64]).

The approximation approach is a link between Risk theory and Stochastic Analysis. This

connection gave a great boost on risk theory. The techniques of Stochastic Analysis are very

important because they enable one to consider more complex and more realistic risk models.

Some of the texts relevant to the methods and principles of stochastic analysis are Chung and

Williams [40], Durrett [52], Klebaner [113], Oksendal [141], Revuz and Yor [156], Steele [174].

Stochastic Analysis and Risk theory make an excellent combination as one can see for example

in the paper of Hipp[92]. The main advantage of the cooperation of Stochastic Analysis and

Risk theory is that particularly di¢ cult problems for risk theory can and already have been

solved under the contexts of: Optimal stopping (see Jensen [106], Schottl [169], Ferenstein [58],

Karpowicz [110], Bassan [20]) and Stochastic Control (see Ishikawa [101], Kushner [120]). Also

extensive use of the methods of Stochastic Analysis have been applied in the �eld of optimal

reinsurance (see Azuce [13]).

Continuing now with the classical Cramer�Lundberg model we mention that under the as-

sumption that the premium income per unit time c is larger than the average amount claimed

�� then the reserves in the Cramer-Lundberg model has positive �rst moment and has there-

fore the unrealistic property that it converges to in�nity with probability one. In answer to this

objection de Finetti [44] introduced the dividends barrier model, in which all surpluses above a

given level are transferred to a bene�ciary. This approach resembles more closely the �real�world

but unfortunately has the drawback that under the barrier dividends model the risk process will

down-cross the level zero with probability one.

In this dissertation we focus on dividends policies and for this reason we describe brie�y in the

next section the main components of the de Finetti model.



1.2 de Finetti model. 4

1.2 de Finetti model.

The de Finetti model is usually followed in practice by an insurance company and the main idea

of it is that the insurance company pays some of its surplus to the shareholders as dividends, until

ruin occurs, i.e. until the capital is negative for the �rst time. When ruin occurs, the company

is bankrupt and no more dividends can be paid to the existing shareholders. Many papers have

been written on dividends policies. It has been found that under some reasonable assumptions

the optimal policy is that whenever the surplus goes above a �barrier�b the excess is immediately

paid out as dividends and this policy is known as dividends barriers policy.

In the case of an insurance company which applies a dividends policy the model (1.1.1) is

modi�ed as

Zt := Xt � Ut (1.2.1)

where with Ut we denote the accumulated dividends until time t. It is well known that the process
fUt : t � 0g is unique and is given a.s. by

Ut = sup
0�s�t

(Xs � b)+ (1.2.2)

(For a real number x we denote by x+ := max(x; 0) its positive part and by x� := max(�x; 0) its
negative part.) Also

(I)

fUt : t � 0g is nondecreasing a.s. (1.2.3)

(II)

Zt = Xt � Ut � bt for all t � 0 a.s. (1.2.4)

(III) The process fUt; t � 0g increases only when Zt = bt, i.e.Z t

0
1(Zs < b)dUs = 0; for all time t � 0 a.s. (1.2.5)

A variation of the above model is to allow for the possibility that when the reserve fund

becomes zero then the company does not go bankrupt but has the possibility to be �nanced and

continue its operation. This is the so called de Finetti model with two barriers of re�ection. It

can be described by the model:

Zt := Xt � U (+)t + U (�)t (1.2.6)

where with U (+)t we denote the accumulated dividends and with U (�)t we denote the accumulated

�nancing of the company until time t. It is well known (see Harrison [89]) that the process
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f(U (+)t ;U (�)t ); t � 0g is unique and is given a.s. by

U (+)t = sup
0�s�t

�
b�Xs � U (�)s

��
(1.2.7)

U (�)t = sup
0�s�t

�
Xs � U (+)s

��
(1.2.8)

and also that

(I)

fU (+)t : t � 0g and fU (�)t : t � 0g are nondecreasing a.s. (1.2.9)

(II)

0 � Zt = Xt � U (+)t + U (�)t � bt for all time t � 0 a.s. (1.2.10)

(III) The process fU (+)t ; t � 0g increases only when Zt = bt, i.e.Z t

0
1(Zs < b)dU (+)s = 0; for all time t � 0 a.s. (1.2.11)

and the process fU (�)t ; t � 0g increases only when Zt = 0, i.e.Z t

0
1(Zs > 0)dU (�)s = 0; for all time t � 0 a.s. (1.2.12)

In the mathematical �nance and actuarial literature there is a good deal of work on divi-

dend barrier models and the problem of �nding an optimal policy for paying out dividends. In

connection with a dividends policy we distinguish the papers as relevant to

(I) Optimal dividend payouts (see Paulsen [146], Gerber [71], Gerber and Shiu [72], Dickson

and Waters [46], [47], Gerber and Shiu [73],[74]).

(II) Optimal reinsurance (see Azcue and Muler [12], Schmidli [165], Schmidli [166], Asmussen

[8]).

(III) Optimal investment (see Hipp and Plum [93]).

(IV) Stochastic control (see Hipp and Taksar [94]).

In practice however the above model may fail to �t with all the requirements. That is, it might

be the case that there exist requirements imposed on the company by the regulatory authorities,

and it is possible that the insurance company will not be allowed to pay dividends according to

the optimal scheme, and it will have to look for the optimal allowed dividend policy, or it might
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be the case that the company do not want to make the probability of bankruptcy in the near

future unacceptably high and so it will probable alter its dividends policy.

In addition even if we suppose that the insurance company will be allowed to pay dividends

according to the optimal scheme, which let us suppose that it is a constant dividends barriers

policy then it might be the case that due to random �uctuations in the accuracy of the �ow of

information the barriers can not be determined exactly to have a �correct�constant deterministic

value but rather the random �uctuations passed to the value of barriers and so in reality the

barriers instead of being constant they evolve in some di¤usion way.

In the dissertation we will try to handle the above situation by considering barriers strategies,

with barriers that are some general di¤usion processes. In the following section we will present

the necessary theory, notions and notations in order to formulate our models.

1.3 Preliminaries.

We assume as given a complete probability space (
;F ; P ). In addition we assume a given

�ltration fFt : t � 0g. A �ltration F = fFt : t � 0g is a non-decreasing family of sub-�-algebras
of F. A stochastic process on (
; F; P ) is a collection of Rd�valued random variables fXt : t � 0g,
where (d � 1). The functions t �! Xt(!) mapping [0;1) into Rd are called the sample paths
of the stochastic process X. The stochastic process X is said to be measurable if for every

A 2 B(Rd), the set f(t; !);Xt(!) 2 Ag belongs to the product ���eld B([0;1)) 
 F , where

B([0;1)) and B(Rd) are the smallest ���elds containing all the open sets of the topological
spaces [0;1) and Rd respectively. The stochastic process X is said to be adapted if Xt 2 Ft (that
is, is Ft measurable) for each t � 0. The �ltration generated by a process X is called the natural

�ltration, is de�ned by FXt := �fXs : s � tg and is the smallest �ltration for which the process
X is adapted.

De�nition 1.3.1 A �ltered complete probability space (
; F; F; P ) is said to satisfy the usual

hypotheses if

1. F0 contains all the P -null sets of F .

2. The �ltration F is right continuous, that is

Ft =
\
s>t

Fs; 8t � 0
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In order to avoid technical di¢ culties in this thesis we always assume that the usual hypotheses

hold.

The risk process as a function for �xed ! 2 
 evolves continuously until some claim occurs

and makes it jump. This behavior is described with the notions of right continuous process and

càdlàg process.

De�nition 1.3.2 A process X = fXt : t � 0g is called right continuous i¤

(I) The trajectories Xt are right continuous.

(II) The �ltration F is right continuous, i.e.

Ft =
\
s>t

Fs for t � 0

De�nition 1.3.3 A stochastic process X is said to be càdlàg if it a:s: has sample paths which

are right continuous, with left limits. We will denote the space of càdlàg processes with D. A

stochastic process X is said to be càglàd if it a:s: has sample paths which are left continuous, with

right limits. We will denote the space of càglàd processes with L.

The notion of stopping time is central in risk theory.

De�nition 1.3.4 (Stopping Time) A random variable T : 
 �! [0;1]; is an F�stopping time
i¤ fT � tg 2 Ft for each t � 0.

Usually there is the need of studying a process until some stopping time. For this reason we

give now the de�nition of the so called stopped process.

De�nition 1.3.5 (Stopped Process) Let X be a stochastic process and let T be a random time.

A process XT is said to be the process X stopped at T if XT
t := Xt^T .

If X is adapted and càdlàg and if T is a stopping time then the stopped process XT which is

given by

XT
t := Xt^T = Xt1ft < Tg+XT 1ft � Tg (1.3.1)

is also adapted.

The following three de�nitions will be useful.
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De�nition 1.3.6 Let � denote a �nite sequence of �nite stopping times:

0 = T0 � T1 � : : : � Tk <1

The sequence � is called a random partition.

De�nition 1.3.7 A sequence of random partitions �n,

�n : T
n
0 � Tn1 � : : : � Tnkn

is said to tend to the identity if

(I)

lim
n
sup
k
Tnk =1 a.s.

(II)

k�nk := sup
k
jTnk+1 � Tnk j converges to 0 as n!1 a.s.

De�nition 1.3.8 A sequence of processes fHngn�1 converges to a process H uniformly on com-

pacts in probability if, for each t > 0 the sup0�s�t jHn
s �Hsj converges to 0 in probability.

One often faces the need to describe that in some sense two stochastic processes say X and Y;

are the �same�. To this end the notion of indistinguishability is needed.

De�nition 1.3.9 Two stochastic processes X and Y are modi�cations of each other if PfXt =
Ytg = 1, (8t � 0). Two processes X and Y are indistinguishable if PfXt = Yt;8t � 0g = 1

The next proposition is very useful.

Proposition 1.3.10 Let X and Y two stochastic processes, with X a modi�cation of Y . If X

and Y have right continuous paths a.s., then X and Y are indistinguishable.

Fundamental role in stochastic analysis and risk theory has the so called martingale property.

An extension of the notion of martingale is the notion of local martingale. It arises from the need

to study a process in a local mode.

De�nition 1.3.11 An F�martingale (resp. F -supermartingale, F -submartingale) M = fMt :

t � 0g is a real valued process such that
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(I) Mt is Ft�measurable.

(II) E(jMtj) <1 for all t � 0:

(III) If s � t, then E(MtjFs) =Ms P�a.s. (resp.E(MtjFs) �Ms, resp. E(MtjFs) �Ms)

De�nition 1.3.12 An adapted, càdlàg process X is a local martingale if there exists a sequence

of increasing stopping times, fTngn2N , with lim
n�!1

Tn = 1 a.s. such that Xt^Tn is a martingale

for each n 2 N . Such a sequence fTngn2N of stopping times is called a fundamental sequence.

We note here that a (local) martingale stopped at a stopping time is still a (local) martingale.

Useful results on martingales there are in many texts (see for example Neveu [136], Wall [181]).

One of the �rst martingales that have been studied and a process that plays a fundamental

role in the stochastic analysis is the Brownian motion.

De�nition 1.3.13 Consider the �ltered probability space (
; F; P ). An F�adapted process B =

fBt : t � 0g taking values in Rn is called an n-dimensional Brownian motion if

(I) Increments are independent of the past, that is for 0 � s < t < 1, Bt � Bs is independent

of Fs

(II) For 0 � s < t, Bt�Bs is a Gaussian random variable with mean zero and covariance matrix
(t� s)C, for a given, non-negative de�nite matrix C.

A vast literature exists on Brownian motion and stochastic integration. See e.g. Karatzas and

Schreve [109], Revuz and Yor [156], Yeh [189], Durrett [53], and Hida [90]).

The notion of stochastic integral which gives meaning to the so called Stochastic Di¤erential

Equations has a fundamental role in stochastic analysis (see Gikhman [78], Freedman [61], Ikeda

[99], Gard [68], Sobczyk [173], Bass [17],[18], Cherny [38]). The classical de�nition of the integral

is given with the use of an increasing process.

De�nition 1.3.14 Let A = fAt : t � 0g be a càdlàg process. The process A is an increasing

process if the paths of A : t �! At(!) are non-decreasing for almost all !. The process A is called

a �nite or bounded variation process (BV) if almost all of the paths of A are of �nite variation

on each compact interval of R+.
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Let A be an increasing process. It is well known from the theory of Lebesque-Stieljes integration

that for a �xed ! the function t ! At(!) induces a measure �A(!; ds) on R
+. For a bounded

measurable process H the stochastic integral is de�ned byZ t

0
Hs(!)dAs(!) :=

Z t

0
Hs(!)�A(!; ds)

If the process H is a.s. continuous then it holdsZ t

0
HsdAs = lim

n!1

X
tk;tk+12�n

Hsk(Atk+1 �Ak)

where the convergence is a.s. and �n is a sequence of partitions of [0; t] with

lim
n!1

mesh(�n) = 0

where

mesh(�n) := sup
k
jtk � tk�1j

and tk � sk � tk+1. (see Protter [152]).

It soon became apparent that it would be very desirable to de�ne the stochastic integral for

other processes also. At �rst this goal was achieved using as integrator the Brownian motion,

which is a.s. an in�nite variation process. Later the stochastic integral was extended to have

martingales, local martingales, and semimartingales as integrators.

De�nition 1.3.15 An adapted, càdlàg process X is a semimartingale if there exist processes M ,

A, with M0 = A0 = 0 such that

Xt = X0 +Mt +At (1.3.2)

where M is a local martingale and A is a BV process.

In order to describe the stochastic integral with semimartingales as integrator we follow

Protter[152] and we need the notions of stopping time �-algebra, simple predictable process,

and predictable process.

De�nition 1.3.16 Let T be a stopping time. The stopping time �-algebra, denoted by FT , is the
smallest �-algebra containing all adapted càdlàg processes sampled at T . That is

FT := �fXT ;X is adapted càdlàg processg
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De�nition 1.3.17 A process H is said to be simple predictable if H has a representation

Ht = H01f0g(t) +
nX
i=1

Hi1(Ti;Ti+1](t) (1.3.3)

where 0 = T1 � � � � � Tn+1 < 1 is a �nite sequence of stopping times, Hi 2 FTi with jHij < 1
a.s., 0 � i � n. We denote the collection of simple predictable processes with S.

It is well known that the space S is dense in L under the topology induced by the uniform

convergence on compacts in probability.

De�nition 1.3.18 The predictable �-algebra on R+ � 
, denoted by P , is he smallest �-algebra
making all càglàd processes measurable. We will denote with bP the bounded processes that are P

measurable.

De�nition 1.3.19 For a simple process H 2 S with representation as in (1.3.3) and X a càdlàg

process the stochastic integral is de�ed to be the linear mapping JX : S ! D given by

JX(H) :=

Z t

0
HdX := H0X0(t) +

nX
i=1

Hi(X
Ti+1
t �XTi

t ) (1.3.4)

For a semimartingale X the mapping JX : S ! D is continuous when both spaces have the

topology induced by the uniform convergence on compacts in probability. Thus the continuous

linear mapping JX : S ! D can be extended to JX : L! D.

The stochastic integral with semimartingales as integrator extends to all predictable and locally

bounded integrands, in a unique way. In general, the stochastic integral can be de�ned even in

cases where the predictable process H is not locally bounded.

One of the �rst papers concerning the use of semimartingales in stochastic integration is the

paper of Meyer [132]. For relevant references one can also see Dellacherie [45], Lenglart [122],

Bichteler [23], Protter [153].

A very important special class of semimartingales is the so called Lévy processes. They have

been used extensively in the context of Risk theory and a lot of papers have been written on them.

For some recent and very interesting papers one can see for example in: Vandaele [180], Kluppel-

berg [115], Albin [3], Hainaut [87], Kassberger [111], Kostadinova [116], Jang [105], Morales [133],

Riesner [157], Bollerslev [26], Xing [185], Ngwira [138], Irgens [100], Nakano [135], Zhang [193],

Gerber [76].

Fundamental for the theory of semimartingales is the notion of quadratic covariation.
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De�nition 1.3.20 Let X;Y semimartingales. The quadratic covariation of X;Y , denoted by

[X;Y ] = f[X;Y ]t : t � 0g, is de�ned to be the unique process that satis�es the following:

(I)

[X;Y ]0 = X0Y0 (1.3.5)

(II)

�[X;Y ] = �X�Y (1.3.6)

(III) If �n is a sequence of random partitions tending to the identity, then

[X;Y ] = X0Y0 + lim
n!1

X
i

�
XTni+1 �XTni

��
Y T

n
i+1 � Y Tni

�
(1.3.7)

where convergence is uniformly on compacts in probability and �n is the sequence

0 = Tn0 � Tn1 � � � � � Tni � � � � � Tnkn

with Tni stopping times and where

�Xt := Xt �Xt�

and

Xt� := lim
s�!t

Xs for s < t.

De�nition 1.3.21 The quadratic variation of a semimartingale X, denoted by [X;X] =

f[X;X]t : t � 0g, is de�ned to be the unique càdlàg, increasing, adapted process that satis�es
the following

(I)

[X;X]0 = X2
0 (1.3.8)

(II)

�[X;X] = (�X)2 (1.3.9)

(III) If �n is a sequence of random partitions tending to the identity, then

[X;X] = X2
0 + lim

n!1

X
i

�
XTni+1 �XTni

�2
(1.3.10)

where convergence is uniformly on compacts in probability and �n is the sequence

0 = Tn0 � Tn1 � � � � � Tni � � � � � Tnkn

with Tni stopping times.
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Because the quadratic covariation [X;Y ] of the semimartingales X;Y is of bounded variation

we can distinguish it in continuous and discontinuous part. For semimartingales X, Y the process

[X;Y ]c denotes the path-by-path continuous part of [X;Y ]. We can then write

[X;Y ]t = [X;Y ]
c
t +

X
0�s�t

(�Xs)(�Ys) (1.3.11)

where X0� = 0 and Y0� = 0.

One of the most important results in stochastic analysis is the so called Itô formula.

Theorem 1.3.22 (Itô formula) Let X = (X1; : : : ; Xn) be a n�tuple of semimartingales and let

f : Rn �! R have continuous second order partial derivatives. Then f(X) is a semimartingale

and the following formula holds:

f(Xt)� F (X0) (1.3.12)

=
nX
i=1

Z t

0+

@f

@xi
(Xs�)dX

i
s +

1

2

X
1�i;j�n

Z t

0+

@2f

@xi@xj
(Xs�)d[X

i; Xj ]cs +

+
X
0<s�t

 
f(Xs)� f(Xs�)�

nX
i=1

@f

@xi
(Xs�)�X

i
s

!

The use of Itô formula for semimartingales is also very useful in the study of jump di¤usions

or Lévy Processes ( see Applebaum [11], Bertoin [21], Jacod [104], Oksendal [142], Protter [152]).

As we saw in the previous section the classical Cramer-Lundberg model can be approximated

by a Brownian motion with drift. This is an example that shows the important role that the so

called Itô di¤usion processes have in risk theory.

De�nition 1.3.23 (Itô di¤usions)A stochastic process X = fXt : t � 0g is an Itô di¤usion if
it is adapted and can be expressed as the sum of an integral with respect to Brownian motion

B = fBt : t � 0g and an integral with respect to time, that is

Xt = X0 +

Z t

0
�sdBs +

Z t

0
�sds (1.3.13)

where � is a predictable B-integrable process and � is predictable and (Lebesgue) integrable, that

is Z t

0
(�2s + j�sj)ds <1

for each time t > 0.
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In this dissertation we will be mostly concerned with stochastic di¤erential equations (SDE)

of the form

dXt = �(t;Xt)dt+ �(t;Xt)dBt (1.3.14)

where Xt(!) : [0;1) � 
 ! Rn, �(�; �) : [0;1) � Rn ! Rn, �(�; �) : [0;1) � Rn ! Rn�m and

Bt is an m�dimensional Brownian motion. The solution of the SDE (1.3.14) is an Itô di¤u-

sion. The function �(�; �) is called the drift coe¢ cient and the function �(�; �) the di¤usion or
volatility coe¢ cient. If �(t;Xt) = �(Xt) and �(t;Xt) = �(Xt) then the Itô di¤usion is called

time-homogeneous.

In this dissertation we assume that the drift coe¢ cient �(�; �) and the di¤usion coe¢ cient �(�; �)
always satisfy the following two conditions.

Condition 1.3.24 (Linear growth condition). For every x 2 Rn and every t 2 [0;1) it holds
that

k�(t; x)k+ k�(t; x)k � C(1 + kxk)

for some constant C, where k�(t; x)k is the Euclidean norm and

k�(t; x)k :=

0@ nX
i=1

mX
j=1

�2ij(t; x)

1A1=2

Condition 1.3.25 (Lipschitz condition) For every x; y 2 Rn and every t 2 [0;1) it holds
that

k�(t; x)� �(t; y)k+ k�(t; x)� �(t; y)k � Dkx� yk

for some constant D.

Under the above two conditions there is an unique stochastic process that satis�es the di¤er-

ential equation (1.3.14) (see Oksendal[141], Karatzas and Shreve [109]).

For the theory on di¤usion processes one can see many texts, as for example the texts of Itô

[103], Rogers [158], Stroock [175].

Next we will describe a very useful property of the Itô di¤usions. This is the so called Markov

property and we will de�ne it with the aid of the canonical space and the right shift operator.

De�nition 1.3.26 The canonical space is the space C[0;1), the set of all continuous functions
! : [0;1)! R, with metric

d(!1; !2) :=

1X
n=1

1

2n
max
0�t�n

(j!1(t)� !2(t)j ^ 1)
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where a ^ b := minfa; bg.

The canonical space under the metric d is a complete, separable metric space.

De�nition 1.3.27 (Right shift operator) The right shift operator �t on the canonical space 
 is
given by �t : 
 �! 
 and �t(!) := !(t+ :) for all t � 0.

Theorem 1.3.28 (Markov property) Let f(�) be a bounded Borel function from Rn to R. We
say that a process X = fXt : t � 0g has the Markov property, if for t; h � 0 holds

Ex[�hf(Xt)jFt](!) = EXt(!)(f(Xh)) P x � a:s: (1.3.15)

where Ex denotes the expectation with respect to the probability measure P x which gives the dis-

tribution of the process fXt : t � 0g assuming X0 = x and EXt(!)(f(Xh)) means the function

Ey(f(Xh)) evaluated at y = Xt(!).

A time-homogeneous Itô di¤usion satis�es the Markov property (see Oksendal [141]). Generally

speaking we say that a stochastic process has the Markov property if the evolution of the stochastic

process after a deterministic time t does not depend on the evolution before t, given the value of

the process at time t. (i.e. the �future�and �past�of the process are conditionally independent

of each other given the �present�). A stochastic process that has the Markov property is called

Markov process. For an in�depth treatment of Markov processes and the Markov property see the

texts of Dynkin [54], Freidlin [62], Blumenthal [25], Chung [41] and Kurtz [119].

In connection with the di¤usion processes comes the notion of generator operator. The gener-

ator is very useful in the study of di¤usion processes.

De�nition 1.3.29 (Generator) Let X = fXt : t � 0g be an Itô di¤usion in Rn. The (in�nitesi-
mal) generator Ax of X is the operator de�ned by

Axf(x) := lim
t#0

E[f(Xt)]� f(x)
t

(1.3.16)

with x 2 Rn. We also denote by DA the set of functions for which the limit exists for all x 2 Rn.

This operator can be thought of as the generator of the Markov semigroup associated with a

Markov process X. (For very interesting results on generator operators and the semigroup theory

see Hille [91], Krein[117] and Pazy [147]).

In this dissertation we often work on the function space C2b (R
n).
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De�nition 1.3.30 The space C2b (R
n) is the space of functions which are continuous, bounded

and have continuous bounded derivatives up to second order.

Another important space is the function space C20 (Rn).

De�nition 1.3.31 The space C20 (Rn) is the space of functions which are continuous, have com-
pact support, and continuous derivatives up to second order.

The next theorem plays a key role in the formulation of the de Finetti models with general

barriers.

Theorem 1.3.32 Let X be the Itô di¤usion

dXt = �(Xt)dt+ �(Xt)dBt (1.3.17)

If f(�) 2 C20 (Rn) then f(�) 2 DA and

Af(x) =
X
i

�i(x)
@f

@xi
+
1

2

X
i;j

(��T )ij(x)
@2f

@xi@xi
(1.3.18)

where �T is the converse matrix of �.

Also if f(�) 2 C2b (R
n) and the drift �x(�) and volatility �x(�) coe¢ cients satisfy the linear

growth condition (1.3.24) and the Lipschitz continuity condition (1.3.25), then f(�) 2 DA and the
above formula holds.

One may consider the de Finetti model as a process re�ected at a boundary (case with one

re�ected barrier) or as a process re�ected at two boundaries (case with two re�ected barriers).

From this point of view it is appropriate to close this �rst chapter with the following theorem

which also is needed for the proof of uniqueness in the de Finetti model with general barriers.

Theorem 1.3.33 (The Skorohod Theorem, see Karatzas and Shreve [109]). Let X = fXt; 0 �
t < 1g be a continuous stochastic process. There exist a unique continuous stochastic process
K = fKt; 0 � t <1g such that a.s.

Yt := Xt +Kt � 0 0 � t <1 (1.3.19)

K0 = 0 and Kt is nondecreasing (1.3.20)Z 1

0
1fYs>0gdKs = 0 (1.3.21)
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The process Kt is given by

Kt = 0
tW
(�Xs); 0 � t <1: (1.3.22)

where
tW
(�Xs) := sup

0�s�t
(�Xs):

The Skorohod Theorem can be used for the construction of the so called re�ected processes.

For example let us suppose a process X = fXt; 0 � t <1g with state space (0;1). In order from
X to construct a process Y re�ected at some boundary b > 0, that is a process Y with state space

(0; b), we can use the Skorohod Theorem and construct the process Y from the relation (1.3.19)

with

Kt = 0
tW
(Xs � b); 0 � t <1



Chapter 2

de Finetti model with general
barriers

2.1 Introduction

Starting this chapter we owe to mention that the realization of this chapter has became possible

thanks to the papers of Gerber, H.U. and Shiu, E.S.W., on the subject of risk models with

dividends. Our inspiration stems from their work. Specially we want to mention the papers ( [71]

, [72] ) in which we �nd most of the ideas of this chapter. We found their approach on this subject

most fruitful and gave us the proper set up, helping us in our e¤ort of introducing a generalization

on risk models with dividends.

In the literature there are a lot of studies on the de Finetti model with constant dividend

barriers policies. However we feel that it would resemble more closely the �real�world and the

random environment in which evolves an insurance company, if we suppose that the barriers are

subject to random e¤ects as well. One should allow for �uctuations in the barriers in order to

re�ect possible �uctuations in the accuracy of information.

We want to extend the de Finetti model in order to include general barriers policies. With this

we mean that we would like to treat a di¤usion process b = fbt; t � 0g as an upper barrier. We
assume that the dynamics of the process b are described by the stochastic di¤erential equation

(SDE)

dbt = �b(bt)dt+ �b(bt)dB
b
t (2.1.1)

with �b(bt) denoting the drift and �b(bt) the di¤usion component, and with initial condition b0 = b

a.s.. The process Bb = fBbt ; t � 0g is standard Brownian motion.

18
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We also assume a reserves process that evolves according to a di¤usion model, that is it has

dynamics

dXt = �x(Xt)dt+ �x(Xt)dB
x
t (2.1.2)

where �x(Xt) denotes the drift and �x(Xt) the di¤usion component and with initial condition for

the process fXt; t � 0g, x0 = x a.s.. The process Bx = fBxt ; t � 0g is again standard Brownian
motion.

Finally we would also like to treat the lower barrier as a di¤usion process a = fat; t � 0g. We
assume that the dynamics of the process a are described by the stochastic di¤erential equation

(SDE)

dat = �a(at)dt+ �a(at)dB
a
t (2.1.3)

where �a(at) denotes the drift and �a(at) the di¤usion coe¢ cient and with initial condition for

the process fat; t � 0g, a0 = a a.s.. The process Ba = fBat ; t � 0g is a standard Brownian motion.

The three Brownian motions driving the above SDE�s are not assumed independent. Instead,

they are correlated and we denote these correlations by �. Thus

�xadt := d[Bx; Ba]t; (2.1.4)

�xbdt := d[Bx; Bb]t;

�abdt := d[Ba; Bb]t:

The process b will play the role of a re�ecting barrier for the reserves process X: When

the reserves process is above the level of the process b, dividends are going to be paid to the

shareholders. We would also like to treat the process a as a lower barrier. We will consider two

scenaria concerning this lower barrier. In the �rst scenario the process a will play the role of an

absorbing barrier (we call this model de Finetti with one re�ecting barrier), that is the insurance

company will be ruined when the surplus process reaches the level of the process a: In the second

scenario the process a will play the role of a re�ecting barrier (we call this model de Finetti

with two re�ecting barriers), that is when the surplus process reaches the level of a the insurance

company has the option of borrowing money and continuing its operation.

In order for the above model to make sense it is necessary that the sample paths of the lower

barrier process, a = fat; 0 � t < 1g, are with probability 1 below those of the upper barrier

process b = fbt; 0 � t <1g. Thus we need to impose the following condition.

Condition 2.1.1 We assume that

at < bt; 0 � t <1 a:s:: (2.1.5)
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The process (b � a)�1 = f(bt � at)
�1; 0 � t < 1g will play a critical role in our model. To

ensure that this process is bounded we impose the following

Condition 2.1.2 Through this chapter we will always assume that there exists " > 0 such that,
w.p. 1

at + " < bt 0 � t <1: (2.1.6)

Of course condition 2.1.2 implies the condition 2.1.1.

The condition 2.1.2 we pose includes itself in a more general context of stochastic analysis

which manifest itself under the context Stochastic Comparison theorems. For relevant results on

this subject one can see Anderson [10], N. Ikeda, S. Watanabe [98], Yamada [186], O�Brien [31],

L.I. Galcuk and M.H.A. Davis [67], Hajek [85], Yan [187], Mao [126], Ferreyra [59], [60], Tudor

[178], Borkar [29], Geiss [70], Kroger [118], S. Peng and X. Zhu[148],Yang [188], Ding [48].

In the next proposition we mention conditions under which the condition 2.1.2 holds (see

Karatzas and Shreve [109]).

Proposition 2.1.3 Consider two processes, a = fat; t � 0g with a0 = a a.s., and b = fbt; t � 0g
with b0 = b a.s., which satisfy the SDE (2.1.3) and (2.1.1) respectively, with drift and di¤usion

coe¢ cients that satisfy the linear growth condition (1.3.24) and the Lipschitz condition (1.3.25).

We assume that

(I) The coe¢ cients �a(x), �a(x), �b(x), �b(x) are continuous, real functions on R.

(II) PfBat = Bbt ;8t � 0g = 1.

(III) �a(x) = �b(x), for each x 2 R.

(IV) �a(x) < �b(x), for each x 2 R.

(V) a+ " < b, for some " > 0.

Then the condition 2.1.2 holds.

We now proceed with the de�nition of the De Finetti models with general barriers. Certainly

the general model should be reducible to the classical de Finetti model in the case we would like

to consider constant barriers.
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De�nition 2.1.4 de Finetti model with one general re�ecting barrier (b) and one ab-
sorbing barrier (a). Given three continuous stochastic processes X = fXt; 0 � t < 1g,
a = fat; 0 � t < 1g and b = fbt; 0 � t < 1g we will call a pair (Z;U) of continuous stochastic
processes a de Finetti model with general re�ecting�absorbing barriers corresponding to the process

(X;b;a) if and only if this pair of processes satis�es

Zt := Xt � Ut; 0 � t <1 (2.1.7)

at � Zt � bt; 0 � t <1 a.s. (2.1.8)

U0 = 0 and Ut is nondecreasing a.s. (2.1.9)

tZ
0

1fZs<bsgdUs = 0; 0 � t <1a.s. (2.1.10)

In the above de�nition of the de Finetti model with one general re�ecting barrier we interpret

the process X as the risk process, the process a as the lower barrier which is an absorbing barrier,

the process b as the upper barrier which is a re�ecting barrier, the process U as the accumulated
dividends and the process Z as the modi�ed risk process that is the process Z equals the risk

process X minus the dividends process U .

De�nition 2.1.5 de Finetti model with two general re�ecting barriers the processes b

and a. Given three continuous stochastic processes X = fXt; 0 � t < 1g, a = fat; 0 � t < 1g
and b = fbt; 0 � t < 1g we will call a triple (Z;U (+);U (�)) a de Finetti model with two general
re�ecting barriers corresponding to the process (X;b;a) if and only if this triple of processes

satis�es

Zt := Xt � U (+)t + U (�)t ; 0 � t <1 (2.1.11)

at � Zt � bt; 0 � t <1 a.s. (2.1.12)

U (+)0 = 0 and U (+)t is nondecreasing a.s (2.1.13)

U (�)0 = 0 and U (�)t is nondecreasing a.s. (2.1.14)Z t

0
1fZs<bsgdU

(+)
s = 0; 0 � t <1 a.s. (2.1.15)Z t

0
1fZs>asgdU

(�)
s = 0; 0 � t <1 a.s. (2.1.16)

In the above de�nition of the de Finetti model with two general re�ecting barriers we interpret

the process X as the risk process, the process a as the lower re�ecting barrier, the process b as

the upper re�ecting barrier, the process U (+) as the accumulated dividends, the process U (�) as



2.1 Introduction 22

the accumulated �nancing and the process Z as the modi�ed risk process that is the process Z

equals the risk process X minus the dividends process U (+) and plus the �nancing process U (�).

Now that we have de�ned the general de Finetti models we can formulate our questions more

clearly. We are interested in studying the discounted dividends and the discounted �nancing of an

insurance company which adopts a dividends policy according to a de Finetti model with general

barriers. Moreover we suppose that the reserves of the insurance company evolve in an economic

environment in which there is some interest rate which we denote by �.

With regards to a dividends policy which follows a de Finetti model with one general re�ecting

barrier, it is appropriate to consider that there is the possibility that the insurance company goes

bankrupt. For this reason we must consider the time of ruin for the insurance company which we

denote by T and which depends on the initial state (x; a; b) of the process (X;a;b) and is de�ned

by

T := T (x; a; b) := infft > 0 : Zt = atg (2.1.17)

Taking into account the economic environment, we are primary interested in the discounted

dividends, denoted by U which are depending on the initial state (x; a; b) of the process (X;a;b)

and given by

U := UT := U(x; a; b) :=

Z T

0
e��sdUs (2.1.18)

Here the following notation remark is in order.

Remark 2.1.6 Let f(U; T ) be a function of the discounted dividends U = U(x; a; b) and the time

of ruin T = T (x; a; b): The expected value E(f(U; T )) will depend on the initial state (x; a; b): In

order to express this dependence we will use the notation E(x;a;b), that is we de�ne

E(x;a;b)(f(U; T )) := E(f(U(x; a; b); T (x; a; b))) (2.1.19)

The main quantities we are going to study in the de Finetti model with one general re�ecting

barrier are

� The Laplace transform of the joint distribution of the time of ruin and the discounted divi-

dends, denoted N(x; a; b; �1; �2) and given by

N(x; a; b; �1; �2) := E(x;a;b)
�
e��1T��2U

�
(2.1.20)

� The Laplace transform of the discounted dividends, denoted K(x; a; b; �) and given by

K(x; a; b; �) := E(x;a;b)(e��U ) (2.1.21)
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� The Laplace transform of the time of ruin, denoted M(x; a; b; �) and given by

M(x; a; b; �) := E(x;a;b)(e��T ) (2.1.22)

� The moments of the discounted dividends, denoted V (x; a; b;n) and given by

V (x; a; b;n) := E(x;a;b)(Un) (2.1.23)

Turning now our attention to the de Finetti model with two general barriers and taking into

account the economic environment, we focus on the discounted dividends, denoted by U (+) which

depend on the initial state (x; a; b) of the process (X;a;b) and given by

U (+) := U (+)(x; a; b) := lim
t!1

U
(+)
t := lim

t!1

Z t

0
e��sdU (+)s =

Z 1

0
e��sdU (+)s (2.1.24)

and to the discounted �nancing, denoted by U (�) which depends on the initial state (x; a; b) of

the process (X;a;b) and given by

U (�) := U (�)(x; a; b) := lim
t!1

U
(�)
t := lim

t!1

Z t

0
e��sdU (�)s =

Z 1

0
e��sdU (�)s (2.1.25)

where

U
(+)
t :=

Z t

0
e��sdU (+)s (2.1.26)

U
(�)
t :=

Z t

0
e��sdU (�)s (2.1.27)

are the discounted dividends and the discounted �nancing until time t.

Here it is appropriate to make the following remark concerning notation.

Remark 2.1.7 The expected value E(f(U (+); U (�))) will depend on the initial state (x; a; b). In
order to express this dependence we will use the notation E(x;a;b), that is we de�ne

E(x;a;b)(f(U (+); U (�))) := E(f(U (+)(x; a; b); U (�)(x; a; b))) (2.1.28)

We proceed to de�ne

� The Laplace transform of the joint distribution of the discounted dividends and the discounted
�nancing, denoted L(x; a; b; �1; �2) and given by

L(x; a; b; �1; �2) := E(x;a;b)(e��1U
(+)��2U(�)) (2.1.29)
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� The Laplace transforms of the discounted dividends and the discounted �nancing, denoted
K(+)(x; a; b; �) and K(�)(x; a; b; �) respectively and given by

K(�)(x; a; b; �) := E(x;a;b)(e��U
(�)
) (2.1.30)

� TheMoments of the discounted dividends and the discounted �nancing denoted V (+)(x; a; b;n)
and V (�)(x; a; b;n) respectively and given by

V (�)(x; a; b;n) := E(x;a;b)
��
U (�)

�n�
(2.1.31)

We will denote by A(x;a;b) the generator of the process f(Xt; at; bt); t � 0g. It is well known
that the generator coincides with the di¤erential operator L(x;a;b) given by

L(x;a;b) :=
1

2
�2x(x)

@2

@x2
+
1

2
�2a(a)

@2

@a2
+
1

2
�2b(b)

@2

@b2

+�x(x)�a(a)�xa
@2

@x@a
+ �x(x)�b(b)�xb

@2

@x@b
+ �a(a)�b(b)�ab

@2

@a@b

+�x(x)
@

@x
+ �a(a)

@

@a
+ �b(b)

@

@b

where f(�) 2 C2b (R
3) and the drift coe¢ cients �x(�); �a(�); �b(�) and volatility coe¢ cients �x(�);

�a(�); �b(�) satisfy the linear growth condition (1.3.24) and the Lipschitz continuity condition
(1.3.25).

Up to this point we have constructed the �environment� in which will evolve the general de

Finetti models and we have clari�ed what we are going to study. Now it is time to describe the

course we are going to follow in the next sections.

After the de�nition of the de Finetti model with general barriers the �rst question which

naturally arises is the question of existence and uniqueness, that is, if there exist processes which

satisfy the requirements we pose and, if they do, whether they are unique or not. We answer

these questions in the a¢ rmative in the following section. This enables us to proceed with the

consideration of the more general de Finetti models and with the study of the quantities we

de�ned in this introduction.

In section 2.3 we show that these models have a property, which we call �scale property�,

which turns out to be very useful in order to formulate our results. In section 2.4 we state results

that will help us to derive the boundary conditions of the di¤erential equations we are going to

derive. In section 2.5 we derive some useful results of the generator operator. Finally in section

2.6 we apply the previous results in order to formulate di¤erential equations the solution of which

will give us the quantities de�ned in (2.1.20)-(2.1.23) and (2.1.29)-(2.1.31).
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2.2 The de Finetti models with general barriers are well de�ned.

As we mentioned in the introduction of this chapter the �rst question we must address is whether

the classical de Finetti model with constant barriers can be extended to a model having as barriers

di¤usion processes while preserving the desirable properties (1.2.1)-(1.2.5) and (1.2.6)-(1.2.12).

We will show that this is the case and that, in fact, there exist unique processes which satisfy

the requirements of the de�nitions of the de Finetti models with general barriers, as stated in the

De�nition 2.1.4 and in the De�nition 2.1.5. The uniqueness of these processes is actually easier to

prove than the existence and so we proceed by assuming existence and establishing uniqueness.

2.2.1 Uniqueness

In this section we will prove that if there are exists a pair of processes (Z;U) which satisfy the
de�ning conditions (2.1.7)-(2.1.10) of the de Finetti model with one general re�ecting barrier then

this pair is unique. Similarly, we will prove that if there exists a triple of processes (Z;U (+);U (�))
which satisfy the de�ning conditions (2.1.11)-(2.1.16) of the de Finetti model with two general

re�ecting barriers then this triple is unique.

We consider �rst the de Finetti model with one general re�ecting barrier. The main idea of

the proof of Proposition 2.2.1 is that if there exists a process that satis�es the conditions (2.1.7)-

(2.1.10) of the de Finetti model with one general re�ecting barrier then this process satis�es all the

conditions of the Skorohod Theorem 1.3.33. Because of this we can �rst conclude the expression

(2.2.1) and then conclude uniqueness for the de Finetti model with one general re�ecting barrier

by the uniqueness guaranteed by the Skorohod Theorem.

Proposition 2.2.1 The dividends process U = fUt; 0 � t <1g is unique for the de Finetti model
with one general re�ecting barrier and is given a.s. by

Ut = 0
tW
(Xs � bs) (2.2.1)

Proof. Consider a process (Z;U) which satis�es the conditions (2.1.7)-(2.1.10) of the De�nition
2.1.4.

From the condition (2.1.10) in De�nition 2.1.4 we conclude that for every time 0 � t < 1
holds a.s.

0 =

Z t

0
1fZs<bxgdUs =

Z t

0
1f0<bs�ZsgdUs =

Z t

0
1f0<bs�Xs+UsgdUs (2.2.2)

De�ning the stopping time

Ta := infft > 0;Zt = atg
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and the process

Yt :=

(
bt �Xt + Ut; t 2 [0; Ta]

0; t > Ta

relation (2.2.2) can be written as Z 1

0
1fYs>0gdUs = 0 (2.2.3)

From the above relation (2.2.3) we conclude that the dividends process U satis�es the condition
(1.3.21) of the Skorohod Theorem 1.3.33.

Also from the condition (2.1.9) of the De�nition 2.1.4 the dividends process U satis�es the

condition (1.3.20) of the Skorohod Theorem 1.3.33.

Finally from the condition (2.1.8) we deduce that for every time 0 � t <1 holds a.s.

Zt � bt =) bt �Xt + Ut � 0 =) Yr � 0

and so the dividends process U satis�es the condition (1.3.19) of the Skorohod Theorem 1.3.33.

Since the dividends process U corresponding to the process

fbt �Xt; 0 � t <1g

satis�es all the requirements of the Skorohod Theorem 1.3.33 we conclude that the dividends

process U = fUt; 0 � t <1g is unique for the process

fbt �Xt; 0 � t <1g

and from the Skorohod Theorem 1.3.33 we conclude that the dividends process U is unique and
given a.s. by

Ut = 0
tW
(Xs � bs)

Next we consider the de Finetti model with two general re�ecting barriers. The main idea of

the proof of proposition 2.2.2 is that if for a given �nancing process U (�) there exists a dividends
process U (+) that satis�es the conditions of De�nition 2.1.5, then this process satis�es all the
conditions of the Skorohod Theorem 1.3.33. Because of this we can �rst conclude the expression

(2.2.4) and second by the uniqueness result of the Skorohod Theorem 1.3.33 we conclude that

for each �nancing process U (�) there is a unique dividends process U (+) such that the process
(U (+);U (�)) satisfy the de�ning conditions (2.1.11)-(2.1.16) we pose on the de Finetti model with
two general re�ecting barriers. After the proof of uniqueness of the dividends process U (+) for
each �nancing process U (�) we repeat the same arguments to prove that for each dividends process
U (+) there is a unique �nancing process U (�) that satis�es the conditions of de�nition 2.1.5.
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Proposition 2.2.2 The pair of processes (U (+);U (�)) = f(U (+)t ;U (�)t ); 0 � t < 1g of the de
Finetti model with two general re�ecting barriers is unique and is given a.s. by

U (+)t = 0
tW�

Xs + U (�)s � bs
�
; 0 � t <1 (2.2.4)

U (�)t = 0
tW�
U (+)s �Xs + as

�
; 0 � t <1 (2.2.5)

Proof. We �x a �nancing process U (�) and we consider a triple of processes (Z;U (+);U (�))
which satisfy the de�ning conditions (2.1.11)-(2.1.16).

From condition (2.1.15) we conclude that for every time 0 � t <1 holds a.s.

0 =

Z t

0
1fZs<bxgdU

(+)
s =

Z t

0
1fbs�Zs>0gdU

(+)
s (2.2.6)

If we de�ne for every time 0 � t <1 the process

Y
(+)
t := bt � Zt = bt �Xt + U (+)t � U (�)t

then relation (2.2.6) can be written asZ t

0
1fY (+)s >0gdU

(+)
s = 0; for each t 2 [0;1):

Therefore taking limits Z 1

0
1fY (+)s >0gdU

(+)
s = 0: (2.2.7)

From the above relation (2.2.7) we conclude that the dividends process U (+) = fU (+)t ; 0 � t <1g
satis�es the condition (1.3.21) of the Skorohod Theorem 1.3.33.

Also from the condition (2.1.13) the dividends process U (+) satis�es the condition (1.3.20) of
the Skorohod Theorem 1.3.33.

Finally from condition (2.1.12) we have that for every time 0 � t <1

Zt � bt =) bt �Xt + U (+)t � U (�)t � 0 =) Y
(+)
t � 0 a.s.

and so the dividends process U (+) satis�es the condition (1.3.19) of the Skorohod Theorem 1.3.33.

Since the dividends process U (+) = fU (+)t ; 0 � t <1g corresponding to the process

fbt �Xt � U (�)t ; 0 � t <1g

satis�es all the requirements of the Skorohod Theorem 1.3.33 we conclude that the dividends

process U (+) = fU (+)t ; 0 � t <1g is unique for the process

fbt �Xt � U (�)t ; 0 � t <1g
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and is given a.s. by

U (+)t = 0
tW�

Xs + U (�)s � bs
�
; 0 � t <1

From the above we see that if there is another dividends process which together with the �nancing

process U (�) also satis�es the requirements of the de Finetti model then if must also satisfy the
requirements of the Skorohod Theorem 1.3.33 for the same process fbt �Xt � U (�)t , 0 � t <1g
and this is a contradiction. So we conclude that the dividends process U (+) is unique for the
�nancing process U (�) and is given by (2.2.4). Finally we conclude that to a �xed �nancing
process U (�) corresponds a unique triple of processes

�
Z;U (+);U (�)

�
which satisfy the de�ning

conditions (2.1.11)-(2.1.16).

We turn now our attention to the �nancing process U (�) and we will prove that for each
dividends process U (+) corresponds a unique �nancing process U (�). In order to prove this we �x
a dividends process U (+) and we consider a triple of processes (Z;U (+), U (�)) which satisfy the
de�ning conditions (2.1.11)-(2.1.16).

From the condition (2.1.16) we conclude that for every time 0 � t <1 a.s. holds

0 =

Z t

0
1fZs>axgdU

(�)
s =

Z t

0
1fZs�as>0gdU

(�)
s (2.2.8)

If we de�ne the process

Y
(�)
t := Zt � at = Xt � U (+)t + U (�)t � at; 0 � t <1

then relation (2.2.8) can be written asZ t

0
1fY (�)s >0gdU

(�)
s = 0; for each 0 � t <1

So taking limit as t!1 Z 1

0
1fY (�)s >0gdU

(�)
s = 0 (2.2.9)

From relation (2.2.9) we conclude that the �nancing process U (�) = fU (�)t ; 0 � t < 1g satis�es
the condition (1.3.21) of the Skorohod Theorem 1.3.33.

Also from condition (2.1.14) the �nancing process U (�) = fU (�)t ; 0 � t < 1g satis�es the
condition (1.3.20) of the Skorohod Theorem 1.3.33.

Finally from the condition (2.1.12) we conclude that for every time 0 � t <1 a.s. holds

Zt � at =) Xt � U (+)t + U (�)t � at � 0 =) Y
(�)
t � 0

and so the �nancing process U (�) = fU (�)t ; 0 � t < 1g satis�es the condition (1.3.19) of the
Skorohod Theorem 1.3.33.
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Since the �nancing process U (�) = fU (�)t ; 0 � t <1g corresponding to the process

fXt � U (+)t � at; 0 � t <1g

satis�es all the requirements of the Skorohod Theorem 1.3.33, we conclude that the �nancing

process U (�) is unique for the process

fXt � U (+)t � at; 0 � t <1g

and is given a.s. by

U (�)t = 0
tW�
U (+)s �Xs + as

�
; 0 � t <1:

From the above we see that if there is another �nancing process which together with the dividends

process U (+) also satis�es the requirements of the de Finetti model with two general re�ecting
barriers then it must also satisfy the requirements of the Skorohod Theorem 1.3.33 for the same

process fXt �U (+)t � at, 0 � t <1g and this is contradiction. So we conclude that the �nancing
process U (�) is unique for the dividends process U (+) and is given by (2.2.4). Finally we conclude
that to a �xed dividends process U (+) corresponds an unique triple of processes (Z;U (+), U (�))
which satisfy the de�ning conditions (2.1.11)-(2.1.16) we pose on the de Finetti model with two

general re�ecting barriers.

Let us suppose now that we have two triples of processes (Z;U (+), U (�)) and ( eZ; eU (+), eU (�))
which satisfy the de�ning conditions (2.1.11)-(2.1.16). We will show that it holds

Pf(Zt;U (+)t ;U (�)t ) = (fZt; eU (+)t ; eUt(�)); for each 0 � t <1g = 1 (2.2.10)

Let us suppose the contrary. Then because U (�)0 = fU0(�) = 0 we can consider the �rst point in
time in which these processes are di¤erent, that is we consider the stopping time � de�ned by

� := infft > 0; U (�)t > eUt(�) or U (�)t < eUt(�)g (2.2.11)

We will show that

Pf� <1g = 0 (2.2.12)

By what we have found so far for the processes (Z;U (+), U (�)) and ( eZ; eU (+), eU (�)) it holds that
U (+)t = 0

tW�
Xs + U (�)s � bs

�
; 0 � t <1 (2.2.13)

U (�)t = 0
tW�
U (+)s �Xs + as

�
; 0 � t <1 (2.2.14)

eU (+)t = 0
tW�

Xs + eU (�)s � bs
�
; 0 � t <1 (2.2.15)

eU (�)t = 0
tW�eU (+)s �Xs + as

�
; 0 � t <1 (2.2.16)



2.2.2 Existence of the de Finetti model with general barriers. 30

On the event f� <1g it holds

1[0;�)(t)U
(�)
t = 1[0;�)(t) eUt(�) (2.2.17)

From the above relation (2.2.17) and the relations (2.2.13),(2.2.15) we conclude that also

1[0;�)(t)U
(+)
t = 1[0;�)(t) eUt(+) (2.2.18)

By relation (2.2.17) we conclude that on the event fU (�)� > fU� (�)g we must have
dU (�)� > 0 (2.2.19)

which implies that

PfZ� = a�g = 1 (2.2.20)

because by the de�ning property (2.1.16) the process U (�) is �at outside of the set fZt = atg.

On the other hand by (2.2.18) and (2.2.14),(2.2.16) we conclude that

dU (+)� > 0 (2.2.21)

which implies that

PfZ� = b�g = 1 (2.2.22)

because by the de�ning property (2.1.15) the process U (+) is �at outside the set fZt = btg. That
is we have arrived at a contradiction and we conclude that

PfU (�)� > fU� (�)g = 0 (2.2.23)

Working similarly we can also conclude that

PfU (�)� < fU� (�)g = 0 (2.2.24)

and this �nishes the proof.

Now that we have proved the uniqueness we turn our attention to the existence of the de

Finetti model with general barriers.

2.2.2 Existence of the de Finetti model with general barriers.

In this subsection we prove the existence of the de Finetti model with general barriers. We start by

�rst considering the de Finetti model with two general re�ecting barriers, denoted (Z;U (+);U (�))
with de�ning properties (2.1.11)-(2.1.16).
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Proposition 2.2.3 There exists a de Finetti model with two general re�ecting barriers, (Z;U (+);U (�))
with the properties (2.1.11)-(2.1.16).

Proof. The idea behind the proof is the construction of the De Finetti model with two general
re�ecting barriers (Z;U (+);U (�)) as a limiting process of some suitable sequence of stochastic
processes. After that, with the aid of the sequence of stochastic processes we will show that the

limiting process (Z;U (+);U (�)) satis�es the de�ning properties (2.1.11)-(2.1.16) of the De Finetti
model with two general re�ecting barriers.

We split up the proof into several steps.

Step 1. (Construction of the process (Z;U (+);U (�)) as a limit of some suitable
sequence of processes)

Step 1.(I) We de�ne the families of processes un = funt ; 0 � t <1g; ln = flnt ; 0 �
t <1g with n = 0; 1; 2; 3; :::::by:

u0t := 0 , t � 0 (2.2.25)

l0t := 0 , t � 0 (2.2.26)

unt := 0
tW�
Xs + l

n�1
s � bs

�
; 0 � t <1 (2.2.27)

lnt := 0
tW�
un�1s �Xs + as

�
; 0 � t <1 (2.2.28)

Observe that the sequences of processes fung and flng are sequences of continuous processes
and so in the following steps of the proof and when it is needed, in order to prove that a relation

about these processes holds with probability one, it is enough to prove the relation for a �xed

time t � 0; because if we prove that the relation holds for a �xed time t � 0 outside a set Nt with
P (Nt) = 0 we can consider the set

N =
[

t2Q\[0;1)
Nt

with P (N) = 0 and using the continuity of the processes un and ln we can take the limit through

the rationals t 2 Q \ [0;1) and show that the relation holds for each t � 0 a:s:
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Step 1.(II) We will show that the families of the processes fung and flng are increasing
in n for each �xed time t: We will prove this by induction.

Let time t � 0 be �xed.

We observe that a:s:

u1t = 0
tW�
Xs + l

0
s � bs

�
= 0

tW
(Xs + 0� bs) � 0 = u0t

and

l1t = 0
tW
(u0s �Xs + as) = 0

tW
(0�Xs + as) � 0 = l0t

We assume that it holds

ukt � uk�1t

lkt � lk�1t

for k = 1; 2; :::; n .

We conclude that a:s:

un+1t = 0
tW
(Xs + l

n
s � bs) � 0

tW
(Xs + l

n�1
s � bs) = unt

and

ln+1t = 0
tW
(uns �Xs + as) � 0

tW
(un�1s �Xs + as) = lnt

By the above relations we conclude that the families of the processes fung and flng are
increasing in n for each �x time t:

Step 1.(III) We de�ne the stopping times

�1 := infft > 0 : l1t > l0t g (2.2.29)

�n := infft > �n : u
n
t > un�1t g , n = 1; 2; 3; :: (2.2.30)

�n+1 := infft > �n : l
n+1
t > lnt g , n = 1; 2; 3; :: (2.2.31)

The above are indeed stopping times. To see this let us suppose that it is given a �ltration

F = fFt : t � 0g in which the process f(Xt; bt; at) , 0 � t <1g is adapted and with Q denoting
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the set of rational numbers we �rst observe that the processes fung and flng are adapted. Indeed
let O be an open set of the [0;1) then we have�

u1t 2 O
	
=

[
0�s�t
s2Q

fmax(0; Xs � bs) 2 Og 2 Ft

because fmax(0; Xs � bs) 2 Og 2 Fs � Ft for s � t:

Similarly �
l1t 2 O

	
=

[
0�s�t
s2Q

fmax(0;�Xs + as) 2 Og 2 Ft

because fmax(0;�Xs + as) 2 Og 2 Fs � Ft for s � t:

Suppose now that the processes funt , 0 � t <1g and flnt , 0 � t <1g are adapted. Then we
have �

un+1t 2 O
	
=

[
0�s�t
s2Q

fmax(0; (Xs + lns � bs)) 2 Og 2 Ft

because fmax(0; (Xs + lns � bs)) 2 Og 2 Fs � Ft for s � t:

Similarly we have�
ln+1t 2 O

	
=

[
0�s�t
s2Q

fmax(0; (uns �Xs + as)) 2 Og 2 Ft

because fmax(0; (uns �Xs + as)) 2 Og 2 Fs � Ft for s � t: Thus we have proved that the

processes fung and flng are adapted.

Next and taking into account the continuity of the process l1t := 0
tW
(�Xs + as) we conclude

f�1 � tg =
�
l1t > 0

	
=

[
0�s�t

�
l1s > 0

	
=

[
0�s�t
s2Q

�
l1s > 0

	
2 Ft

because
�
l1s > 0

	
2 Fs � Ft for s � t:

Taking into account the continuity of the process u1t := 0
tW
(Xs � bs) we conclude

f�1 � tg =
[

0�s�t
s2Q

�
f�1 < sg \

�
u1s > 0

	�
2 Ft

because f�1 < sg 2 Fs and
�
u1s > 0

	
2 Fs � Ft for s � t:

Assuming now that �n and �n are stopping times we conclude that

f�n+1 � tg =
[

0�s�t
s2Q

�
f�n < sg \

�
ln+1s > lns

	�
2 Ft
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because f�n < sg 2 Fs and
�
ln+1s > lns

	
2 Fs � Ft for s � t:

Finally we conclude

f�n+1 � tg =
[

0�s�t
s2Q

�
f�n < sg \

�
un+1s > uns

	�
2 Ft

because f�n < sg 2 Fs and
�
un+1s > uns

	
2 Fs � Ft for s � t:

Next we will prove that �n " 1 and �n " 1 a:s: as n " 1:

By the de�nition (2.2.29)-(2.2.31) we observe that it holds

�n < �n < �n+1 < �n+1 (2.2.32)

for n = 1; 2; 3; ::: From (2.2.32) we conclude that the sequence f�ngn2N of stopping times is

increasing and also that the sequence f�ngn2N of stopping times is increasing.

Let time t > 0: The event f�n+1 > tg by de�nition implies

lns = ln+1s ; 0 � s � t (2.2.33)

The event f�n+1 > tg also implies the event f�n+1 > tg and from the de�nition (2.2.30) we

conclude

uns = un+1s ; 0 � s � t (2.2.34)

The event f�n+1 > tg also implies the event f�n+2 > tg and from the de�nition (2.2.31) we

conclude

ln+1s = ln+2s ; 0 � s � t (2.2.35)

The event f�n+1 > tg also implies the event f�n+2 > tg and from the de�nition (2.2.30) we

conclude

un+1s = un+2s ; 0 � s � t (2.2.36)

Continuing with the same logic we can conclude that the event f�n+1 > tg implies

lms = lns ; 0 � s � t and m � n (2.2.37)

ums = uns ; 0 � s � t and m � n (2.2.38)

and also that it holds

f�n+1 > tg � f�m > tg , m � n+ 1 (2.2.39)
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f�n+1 > tg � f�m > tg , m � n+ 1 (2.2.40)

Similarly we can conclude that the event f�n+1 > tg implies

lms = ln+1s ; 0 � s � t and m � n+ 1 (2.2.41)

ums = uns ; 0 � s � t and m � n (2.2.42)

and also that it holds

f�n > tg � f�m > tg , m � n+ 1 (2.2.43)

f�n > tg � f�m > tg , m � n+ 1 (2.2.44)

Let us suppose that �n " t1 and �n " t2 for some times t1; t2 > 0: If t1 < t2 then there exist

a stopping time �n such as

�n > t1 (2.2.45)

But the above relation (2.2.45) in conjunction with (2.2.40) will lead to a contradiction. Sim-

ilarly if t2 < t1 we conclude a contradiction. Hence t1 = t2 .

We suppose now that �n " t and �n " t for some time t > 0. First of all observe that by

taking into account the condition (2.1.6) we have that it holds

at + " < bt , 0 � t <1 a:s: (2.2.46)

for some " > 0: Let us suppose that all the stochastic processes live on the probability space

(
;F ; P ) and let 
1 � 
 the set in which the relation (2.2.46) holds. Let also 
2 � 
 be the

set in which the process fXt , 0 � t <1g is continuous, 
3 � 
 be the set in which the process
fbt , 0 � t <1g is continuous and 
4 � 
 be the set in which the process fat , 0 � t <1g is
continuous. Then of course holds that P (
i) = 1 with i = 1; 2; 3; 4: We de�ne the set e
 =


1 \
2 \
3 \
4 and it is obvious that it holds P (e
) = 1: Let ! 2 e
: Then the function bt(!) ,
0 � t <1 is continuous and hence uniformly continuous on compact time intervals which implies

that for any �1 > 0 we can choose time h1 > 0 such as that it holds

jbt2(!)� bs1(!)j < �1 (2.2.47)

for every times s1; t2 2 (t � h1; t): Combining the relations (2.2.46),(2.2.47) and choosing �1 < "

we conclude

bt2(!)� as1(!) = (bt2(!)� bs1(!)) + (bs1(!)� as1(!)) > ��1 + "

or equivalently

bt2(!)� as1(!) > c (2.2.48)
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for some constant c > 0 which is de�ned by c := "� �1 and every times s1; t2 2 (t� h1; t):

Next observe that the functionXt(!) , 0 � t <1 is continuous and hence uniformly continuous

on compact time intervals and so for any � > 0 we can choose time h2 > 0 such as that it holds

jXt2(!)�Xs1(!)j < � (2.2.49)

for any times s1; t2 2 (t� h2; t):

In the rest of the proof we choose h = min(h1; h2) and � < c where c is the constant of the

relation (2.2.48) and of course for this choice the relations (2.2.48),(2.2.49) hold simultaneously.

The hypothesis we made, that is �n(!) " t and �n(!) " t for some time t > 0; means that for
any time h > 0 there is a n0 2 N such as that it holds

�n(!); �n(!) 2 (t� h; t) , for any n � n0 (2.2.50)

The above is equivalent to saying that for any n � n0 there are times t1; t2 2 (t � h; t), t1 � t2;

such as

ln+1t1
(!) > lnt1(!) (2.2.51)

and

un+1t2
(!) > unt2(!) (2.2.52)

The relation (2.2.51) re�ects the fact that �n+1(!) 2 (t � h; t) and the relation (2.2.52) re�ects

the fact that �n+1(!) 2 (t � h; t) and the relation t1 � t2 comes from �n+1(!) < �n+1(!) (see

(2.2.32)).

From (2.2.51),(2.2.52) and taking into account the relations (2.2.27),(2.2.28) of the de�nition

of the sequences of processes fung and flng and the fact that these processes are increasing in
time t for �xed n, we conclude the representations

un+1t2
(!) = Xt2(!) + l

n
t2(!)� bt2(!) (2.2.53)

and

ln+1t1
(!) = unt1(!)�Xt1(!) + at1(!) (2.2.54)

Because the process
�
ln+1t , 0 � t <1

	
is continuous assumes a maximum on the compact

time interval [0; t2] and because of the relation (2.2.54) and the fact that the process
�
ln+1t , 0 � t <1

	
is increasing we conclude that there is a time s1 in the time interval [t1; t2] such as

ln+1t2
(!) = uns1(!)�Xs1(!) + as1(!) (2.2.55)
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Because the sequence of the processes flng is increasing in n for each �xed time t we also
have

ln+1t2
(!) � lnt2(!) (2.2.56)

Combining the relations (2.2.55)-(2.2.56) we conclude

uns1(!)�Xs1(!) + as1(!) � lnt2(!) (2.2.57)

Taking into account the fact that the process funt , 0 � t <1g is increasing with respect to
time t and that s1 � t2 the relation (2.2.57) becomes

unt2(!)�Xs1(!) + as1(!) � lnt2(!) (2.2.58)

Combining the relations (2.2.52),(2.2.53) we conclude

Xt2(!) + l
n
t2(!)� bt2(!) > unt2(!) (2.2.59)

Combining the relations (2.2.58),(2.2.59) we conclude

Xt2(!)�Xs1(!) > bt2(!)� as1(!) (2.2.60)

Thus taking into account (2.2.48) the relation (2.2.60) becomes

Xt2(!)�Xs1(!) > c (2.2.61)

Considering the relation (2.2.49) with � > 0 such as � < c , where c is the constant of the

relation (2.2.48), we �nd that

� > Xt2(!)�Xs1(!) > c (2.2.62)

which is a contradiction. Hence we conclude that

f! 2 
 : �n(!) " t and �n(!) " t for some t 2 [0;1)g �
n
! 2 
 : ! =2 e
o =)

0 � P (f! 2 
 : �n(!) " t and �n(!) " t for some t 2 [0;1)g) � P
�n
! 2 
 : ! =2 e
o� = 0

and we have proved that �n " 1 and �n " 1 a:s: as n " 1:

Step 1.(IV) By what we found on Step 1.(II) we easily conclude that there are processes
U (+) = fU (+)t ; 0 � t <1g and U (�) = fU (�)t ; 0 � t <1g such that

unt " U
(+)
t and lnt " U

(�)
t a:s: as n " 1 (2.2.63)
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By what we found on Step 1.(III) we conclude that the limiting processes are �nite on compact

time intervals.

Step 1.(V) In this step we will �nd the limiting processes.

For m � n we observe that a:s:

umt = unt if �n � t < �n+1 (2.2.64)

and

lmt = lnt if �n � t < �n+1 (2.2.65)

and so from the relations (2.2.64),(2.2.65) we conclude that the limiting processes are given a:s:

by:

U (+)t = unt if �n � t < �n+1 (2.2.66)

and

U (�)t = lnt if �n � t < �n+1 (2.2.67)

Observe that the process U (+) is a:s: continuous on the intervals [�n; �n+1) with possible jumps
on the times f�ngn2N . But we have �U (+)�n := U (+)�n � U (+)�n� = un�n � un�1�n� = un�n � un�n� = 0

(using relation (2.2.64) and also the a:s: continuity of the process un). Thus the process U (+) is
a:s continuous. Similarly we conclude that the process U (�) is a:s continuous.

We de�ne a process

Z
(n;m)
t := Xt � unt + lmt , if �n � t < �n+1 and �m � t < �m+1 (2.2.68)

and a limiting process

Zt := lim
n;m�!1

Z
(n;m)
t = Xt � U (+)t + U (�)t (2.2.69)

which is given by

Zt = Xt � unt + lmt , if �n � t < �n+1 and �m � t < �m+1 (2.2.70)
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By relation (2.2.69) and the a:s: continuity of the processes U (+);U (�) and X we conclude that

the process Z is a:s: continuous.

Step 2. We will show that the process (Z;U (+);U (�)) satis�es the requirements (2.1.11)-

(2.1.16) of the de�nition of the de Finetti model with two general re�ecting barriers.

Step 2.(I) It is obvious that the process (Z;U (+);U (�)) satis�es the condition (2.1.11) of the
de�nition of the de Finetti model with two general re�ecting barriers.

Step 2.(II) We will show that the process (Z;U (+);U (�)) satis�es the condition (2.1.12) of
the de�nition of the de Finetti model with two general re�ecting barriers.

Indeed from the relations (2.2.27),(2.2.28) we have that a:s:

unt � Xt + l
n�1
t � bt , n = 1; 2; :: (2.2.71)

and

lmt � um�1t �Xt + at , m = 1; 2; :: (2.2.72)

If m � n then from the relations (2.2.72),(2.2.64),(2.2.65) we have a:s:

lm+1t � umt �Xt + at
lm+1t = lmt on �m � t < �m+1

umt = unt on �n � t < �n+1

9>=>; =)

lmt � unt �Xt + at =) lmt � unt +Xt � at =) Z
(n;m)
t � at

and

um+1t � Xt + l
m
t � bt

um+1t = unt on �n � t < �n+1

)
=)

unt � Xt + l
m
t � bt =) lmt � unt +Xt � bt =) Z

(n;m)
t � bt

By symmetry we conclude the same in the case m < n:

That is we found that a:s:

at � Z
(n;m)
t � bt , if �n � t < �n+1 and �m � t < �m+1
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and taking limits we conclude (2.1.12) that is a:s:

at � Z
(n;m)
t � bt =) at � lim

n;m�!1
Z
(n;m)
t � bt =) at � Zt � bt:

Step 2.(III)We will show that the process (Z;U (+);U (�)) satis�es the conditions (2.1.13),(2.1.14)
of the de�nition of the de Finetti model with two general re�ecting barriers.

Indeed it is easy one to see that for every �xed n 2 N the processes un = funt ; 0 � t <1g and
ln = flnt ; 0 � t <1g are nondecreasing and so are the limiting processes U (+);U (�) and also
we have U (+)0 = 0 and U (�)0 = 0 a:s:

Step 2.(IV) We will show that the process (Z;U (+);U (�)) satis�es the conditions (2.1.15),(2.1.16)
of the de�nition of the de Finetti model with two general re�ecting barriers.

Indeed from (2.2.70) we have that a:s:

tZ
0

1fZs<bsgdU
(+)
s =

1X
n=1

t^�nZ
�n�1

1fXs�uns+U
(�)
s <bsg

duns = 0

because if Xs � bs + U (�)s < uns then duns = 0 by the De�nition (2.2.27) of the process un.

Also we have a:s:

tZ
0

1fZs>asgdU
(�)
s =

1X
n=1

t^�nZ
�n�1

1fXs�U(+)s +lns>asg
dlns = 0:

because if lns > as �Xs + U (+)s then dlns = 0 by the De�nition (2.2.28) of the process ln.

Working as above we can immediately conclude the existence of the de Finetti model with

one general re�ecting barrier by similar arguments and by taking in the proof of the previous

proposition lnt := 0 for each n 2 N and each time t 2 [0;1).

We have come to the end of this section having proved that the de Finetti models with general

barriers are well de�ned. We move now into the next section in which we will derive a very useful

property which we call the "scaling property". This property will help us to proceed with later

calculations.
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2.3 Scaling Property.

We start this section by posing a question. Let us suppose that we have the reserves process of

an insurance company, which moves between two boundaries which are described by two general

di¤usion processes and dividends are paid to the shareholders according to the de Finetti model

with general re�ecting barriers. How will the discounted dividends be a¤ected if we move up or

down, by the same amount, the reserve process and the two boundaries processes? How will the

discounted dividends be a¤ected if we multiple the above processes by the same amount? In our

e¤ort to answer these questions we will derive a property which proves to be very useful. We call

this property "scaling property".

More speci�cally we proceed by de�ning two auxiliary processes in a way as to express the

changes induced in the original processes, that is the changes induced by adding a constant and

the changes induced by multiplying by a constant.

De�nition 2.3.1 We de�ne the following processes

� For a real number c 2 (�1;1) and for t � 0� bXt;bat;bbt� := (Xt � c; at � c; bt � c) : (2.3.1)

� For a real number c > 0 and for t � 0� eXt;eat;ebt� := �Xtc�1; atc�1; btc�1� : (2.3.2)

With these de�nitions, we proceed with the general idea of this section, which is to derive the

discounted dividends and the discounted �nancing for the de Finetti model with general barriers

of the above processes and to compare how these are related to the discounted dividends and

the discounted �nancing for the de Finetti model of the initial processes. In order to accomplish

this, we �rst will consider the de Finetti model with one general re�ecting barrier and next the

de Finetti model with two general re�ecting barriers.

Starting with the de Finetti model with one general re�ecting barrier we note that the as-

sociated de Finetti models with one general re�ecting barrier for the processes ( eX;ea;eb) =
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f( eXt;eat;ebt); 0 � t <1g, ( bX;ba;bb) = f( bXt;bat;bbt); 0 � t <1g are described by

beUt = sup
0�s�t

�cfXs � bebs�+ (2.3.3)

cfZt := cfXt � beUt (2.3.4)beT := infft > 0 :cfZt = beatg (2.3.5)beU := Z bT
0
e��sd

cfUs (2.3.6)

Next we will consider the initial process (X;a;b) and the above two auxiliary processes

( eX; ea; eb) and ( bX; ba; bb) and proceed to examine relations between the respective times of ruin
and the respective dividends. We conclude the following lemma which proves to be very useful.

Lemma 2.3.2 For the de Finetti models with one general re�ecting barrier corresponding to the
processes (X;a;b); ( bX; ba; bb) and ( eX; ea; eb) it holds a.s. that
(I)

fUt; 0 � t <1g = f bUt; 0 � t <1g = fc eUt; 0 � t <1g (2.3.7)

(II)

T = bT = eT (2.3.8)

(III)

U = bU = c eU (2.3.9)

Proof.

(I) Because the dividends processes U , bU and eU for the de Finetti models with one general re-

�ecting barrier corresponding to the processes (X;a;b); ( bX; ba; bb) and ( eX; ea; eb) respectively,
are continuous processes, by using the Proposition 1.3.10 in order to prove the claim it is

enough to prove that the dividends processes are modi�cations of each other. For this con-

sider the �xed time t � 0: Taking into account Proposition 2.2.1, for the dividends processes
U and bU we can see that a.s.

Ut = sup
0�s�t

(Xs � bs)+ = sup
0�s�t

[(Xs � c)� (bs � c)]+ = sup
0�s�t

( bXs �bbs)+
hence

Ut = bUt:
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Similarly for �xed time t � 0; for the dividends processes U and eU we have that a.s.

Ut = sup
0�s�t

(Xs � bs)+ = c sup
0�s�t

(Xsc
�1 � bsc�1)+ = c sup

0�s�t
( eXs �ebs)+ = c eUt

hence

Ut = c eUt:
(II) Using relation (2.3.7) we conclude for the stopping times T and bT that a.s.

T := infft > 0 : Zt = atg = infft > 0 : Xt = Ut + atg

= infft > 0 : Xt � c = Ut + at � cg = infft > 0 : bXt = bUt + batg
= infft > 0 : bZt = batg = bT

Similarly for the stopping times T and eT a.s. holds that

T := infft > 0 : Zt = atg = infft > 0 : Xt = Ut + atg

= infft > 0 : Xtc�1 = Utc�1 + atc�1g = infft > 0 : eXt = eUt + eatg
= infft > 0 : eZt = eUtg = eT

(III) Using the relations (2.3.7), (2.3.8) we �nd that for the discounted dividends U , bU and eU a.s.
holds that

U =

Z T

0
e��sdUs =

Z bT
0
e��sdcUs = bU

and

U =

Z T

0
e��sdUs = c

Z eT
0
e��sdfUs = cfU

Next with the aid of Lemma 2.3.2 we are ready to prove the scaling property.

Proposition 2.3.3 (Scaling property for the de Finetti model with one general re�ecting barrier).
For the moments of the discounted dividends V (x; a; b;n); the Laplace transform of the discounted

dividends K(x; a; b; �); the Laplace transform of the time of ruin M(x; a; b; �) and the Laplace

transform of the joint distribution of the time of ruin and the discounted dividends N(x; a; b; �1; �2)

it holds that
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(I) For each real number c 2 (�1;1)

V (x; a; b;n) = V (x� c; a� c; b� c;n) (2.3.10)

K(x; a; b; �) = K(x� c; a� c; b� c; �) (2.3.11)

M(x; a; b; �) = M(x� c; a� c; b� c; �) (2.3.12)

N(x; a; b; �1; �2) = N(x� c; a� c; b� c; �1; �2) (2.3.13)

(II) For each real number c > 0

V (x; a; b;n) = cnV (xc�1; ac�1; bc�1;n) (2.3.14)

K(x; a; b; �) = K(xc�1; ac�1; bc�1; �c) (2.3.15)

M(x; a; b; �) = M(xc�1; ac�1; bc�1; �) (2.3.16)

N(x; a; b; �1; �2) = N(xc�1; ac�1; bc�1; �1; �2c) (2.3.17)

Proof. The proposition is obvious if we take into account the relations (2.3.8),(2.3.9) and we
will only prove here the properties (2.3.13) and (2.3.17), while the other statements are proved

similar.

(I) From the relations (2.3.8) and (2.3.9) we conclude that

N(x; a; b; �1; �2) := E(x;a;b)(e��1T��2U )

= E(x�c;a�c;b�c)(e��1
bT��2 bU )

= N(x� c; a� c; b� c; �1; �2):

(II) Similarly from the relations (2.3.8) and (2.3.9) we conclude that

N(x; a; b; �1; �2) := E(x;a;b)(e��1T��2U )

= E(xc
�1;ac�1;bc�1)(e��1

eT��2ceU )
= N(xc�1; ac�1; bc�1; �1; �2c)

The following remarks will be useful.

Remark 2.3.4 For a function V (x; a; b;n) which is C1(R3) and satisfy the scaling property
(2.3.14) we can see by di¤erentiating with respect of c that�

x
@

@x
+ a

@

@a
+ b

@

@b

�
V (xc�1; ac�1; bc�1;n) = ncV (xc�1; ac�1; bc�1;n) (2.3.18)
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Remark 2.3.5 For a function K(x; a; b; �) which is C1(R4) and satisfy the scaling property
(2.3.15) we have that

K(x; a; b; �c�1) = K(xc�1; ac�1; bc�1; �) (2.3.19)

and by di¤erentiating with respect of c we conclude that

�
@

@(�c�1)
K(x; a; b; �c�1) =

�
x

@

@(xc�1)
+ a

@

@(ac�1)
+ b

@

@(bc�1)

�
K(xc�1; ac�1; bc�1; �)

(2.3.20)

Remark 2.3.6 For a function M(x; a; b; �) which is C1(R4) and satisfy the scaling property
(2.3.16) we can see by di¤erentiating with respect of c that�

x
@

@(xc�1)
+ a

@

@(ac�1)
+ b

@

@(bc�1)

�
M(xc�1; ac�1; bc�1; �) = 0 (2.3.21)

Remark 2.3.7 For a function N(x; a; b; �1; �2) which is C1(R5) and satisfy the scaling property
(2.3.17) we have that

N(x; a; b; �1; �2c
�1) = N(xc�1; ac�1; bc�1; �1; �2) (2.3.22)

and by di¤erentiating with respect of c we conclude that

�2
@

@(�2c�1)
N(x; a; b; �1; �2c

�1) (2.3.23)

=

�
x

@

@(xc�1)
+ a

@

@(ac�1)
+ b

@

@(bc�1)

�
N(xc�1; ac�1; bc�1; �1; �2)

Next we consider the de Finetti model with two general re�ecting barriers. We proceed by

following analogous arguments as above.

The associated de Finetti models with two general re�ecting barriers for the processes ( eX; ea; eb);
( bX; ba; bb) are described for every time 0 � t <1 by

dgU (�)t = sup
0�s�t

 cfXs � dgU (+)s � beas!� (2.3.24)

dgU (+)t = sup
0�s�t

 bebs � cfXs � dgU (�)s

!�
(2.3.25)

cfZt :=
cfXt � dgU (+)t +

dgU (�)t (2.3.26)

[]U (+) :=

Z 1

0
e��sd

dgU (+)s (2.3.27)

[]U (�) :=

Z 1

0
e��sd

dgU (�)s (2.3.28)
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Proceeding now with the de Finetti model with two general re�ecting barriers in an analogous

manner as we did before in the de Finetti model with one general re�ecting barrier, we �rst derive

the following useful lemma.

Lemma 2.3.8 For the de Finetti models with two general re�ecting barriers corresponding to
the processes (X;a;b); ( bX; ba; bb) and ( eX; ea; eb) it holds a.s. that:
(I)

fU (+)t ; 0 � t <1g = fdU (+)t ; 0 � t <1g = fc gU (+)t ; 0 � t <1g (2.3.29)

(II)

fU (�)t ; 0 � t <1g = fdU (�)t ; 0 � t <1g = fc gU (�)t ; 0 � t <1g (2.3.30)

(III)

U (+) = [U (+) = c ]U (+) (2.3.31)

U (�) = [U (�) = c ]U (�) (2.3.32)

Proof. For the process (X; a; b) as we have seen in the Proposition 2.2.2, the discounted

�nancing and the discounted dividends are given from the relations (2.2.5) and (2.2.4) respectively,

that is for every time t � 0 it holds a.s.:

U (�)t = sup
0�s�t

�
Xs � U (+)s � as

��
(2.3.33)

U (+)t = sup
0�s�t

�
bs �Xs � U (�)s

��
(2.3.34)

Because the dividends processes U (+), dU (+) and gU (+) and the �nancing processes U (�), dU (�)
and gU (�) for the de Finetti models with two general re�ecting barriers corresponding to the
processes (X; a; b); ( bX; ba; bb) and ( eX; ea; eb) respectively, are continuous processes, by using the

Proposition 1.3.10 in order to prove assertions (I) and (II) of the lemma it is enough to prove that

the dividends processes and the �nancing processes are modi�cations of each other. For this we

will consider a �xed time t � 0:

(I) From the relations (2.3.33) and (2.3.34) we conclude that for �xed time t � 0 it holds a.s.

U (�)t = sup
0�s�t

�
Xs � U (+)s � as

��
U (+)t = sup

0�s�t

�
bs �Xs � U (�)s

��
9>>=>>; =)
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U (�)t = sup
0�s�t

�
(Xs � c)� U (+)s � (as � c)

��
U (+)t = sup

0�s�t

�
(bs � c)� (Xs � c)� U (�)s

��
9>>=>>; =)

U (�)t = sup
0�s�t

�cXs � U (+)s � bas�� (2.3.35)

U (+)t = sup
0�s�t

�bbs � cXs � U (�)s

��
(2.3.36)

Because the process (dU (+); dU (�)) is unique we conclude from relations (2.3.35), (2.3.36)

and (2.3.24), (2.3.25) that for every time t � 0

U (+)t =
dU (+)t

U (�)t =
dU (�)t a.s.

(II) From the relations (2.3.33), (2.3.34) we have that for every time t � 0

U (�)t = sup
0�s�t

�
Xs � U (+)s � as

��
U (+)t = sup

0�s�t

�
bs �Xs � U (�)s

��
9>>=>>; =)

c�1U (�)t = sup
0�s�t

�
c�1Xs � c�1U (+)s � c�1as

��
c�1U (+)t = sup

0�s�t

�
c�1bs � c�1Xs � c�1U (�)s

��
9>>=>>; =)

c�1U (�)t = sup
0�s�t

�fXs � c�1U (+)s � eas�� (2.3.37)

c�1U (+)t = sup
0�s�t

�ebs � fXs � c�1U (�)s

��
a.s. (2.3.38)

Because the process (gU (+); gU (�)) is unique we conclude from the relations (2.3.37), (2.3.38)

and (2.3.24), (2.3.25) that for every time t � 0

c�1U (+)t =
gU (+)t

c�1U (�)t =
gU (�)t a.s.

(III) Using the relations (2.3.29) and (2.3.30) we �nd that a.s. holds



2.3 Scaling Property. 48

U (�) =

Z 1

0
e��sdU (�)s =

Z 1

0
e��sd

dU (�)s =[U (�)

and

U (�) =

Z 1

0
e��sdU (�)s = c

Z 1

0
e��sd

gU (�)s = c ]U (�)

Now we are ready to prove the scaling property for the de Finetti model with two general

re�ecting barriers.

Proposition 2.3.9 (Scaling property for the de Finetti model with two general re�ecting barri-
ers).

For the moments of the discounted dividends V (+)(x; a; b;n); the moments of the discounted

�nancing V (�)(x; a; b;n); the Laplace transform of the discounted dividends K(+)(x; a; b; �); the

Laplace transform of the discounted �nancing K(�)(x; a; b; �) and the Laplace transform of the

joint distribution of the discounted dividends and the discounted �nancing L(x; a; b; �1; �2) it holds

that:

(I) For every real number c 2 (�1;1)

V (�)(x; a; b;n) = V (�)(x� c; a� c; b� c;n) (2.3.39)

K(�)(x; a; b; �) = K(�)(x� c; a� c; b� c; �) (2.3.40)

L(x; a; b; �1; �2) = L(x� c; a� c; b� c; �1; �2) (2.3.41)

(II) For every real number c > 0

V (�)(x; a; b;n) = cnV (�)(xc�1; ac�1; bc�1;n) (2.3.42)

K(�)(x; a; b; �) = K(�)(xc�1; ac�1; bc�1; �c) (2.3.43)

L(x; a; b; �1; �2) = L(xc�1; ac�1; bc�1; c�1; c�2) (2.3.44)

Proof. The proposition is obvious if we take into account the relations (2.3.31), (2.3.32) and
we will only prove here the properties (2.3.41) and (2.3.44), while the other statements are proved

in a similar manner.
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(I) From relations (2.3.31) and (2.3.32) we conclude that:

L(x; a; b; �1; �2) := E(x;a;b)(e��1U
(+)��2U(�))

= E(x�c;a�c;b�c)(e��1
[U(+)��2[U(�))

= L(x� c; a� c; b� c; �1; �2)

(II) Similarly from relations (2.3.31) and (2.3.32) we conclude that

L(x; a; b; �1; �2) := E(x;a;b)(e��1U
(+)��2U(�))

= E(xc
�1;ac�1;bc�1)(e��1ĉU

(+)��2c]U(�))

= L(xc�1; ac�1; bc�1; c�1; c�2)

The following remarks will be useful.

Remark 2.3.10 For a function L(x; a; b; �1; �2) which is C1(R5) and satisfy the scaling property
(2.3.44) we have that

L(x; a; b; �1c
�1; �2c

�1) = L(xc�1; ac�1; bc�1; �1; �2) (2.3.45)

and by di¤erentiating with respect of c we conclude that�
�1

@

@(�1c�1)
+ �2

@

@(�2c�1)

�
L(x; a; b; �1c

�1; �2c
�1) (2.3.46)

=

�
x

@

@(xc�1)
+ a

@

@(ac�1)
+ b

@

@(bc�1)

�
L(xc�1; ac�1; bc�1; �1; �2)

Remark 2.3.11 For a function K(�)(x; a; b; �) which is C1(R4) and satisfy the scaling property
(2.3.43) we have that

K(�)(x; a; b; �c�1) = K(�)(xc�1; ac�1; bc�1; �) (2.3.47)

and by di¤erentiating with respect of c we conclude that

�
@

@(�c�1)
K(�)(x; a; b; �c�1) (2.3.48)

=

�
x

@

@(xc�1)
+ a

@

@(ac�1)
+ b

@

@(bc�1)

�
K(�)(xc�1; ac�1; bc�1; �)

The scaling properties for the de Finetti models with general barriers which we establish in

this section in the Proposition 2.3.3 and Proposition 2.3.9 will be very useful because we will use

them in order to derive di¤erential equations, the solution of which gives the quantities we are

interested in. These quantities are:
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(I) For the de Finetti model with one general re�ecting barrier:

The moments of the discounted dividends, the Laplace transform of the discounted divi-

dends, the Laplace transform of the time of ruin and the Laplace transform of the joint

distribution of the time of ruin and the discounted dividends (see (2.1.20)-(2.1.23)).

(II) For the de Finetti model with two general re�ecting barriers:

The moments of the discounted dividends and the discounted �nancing, the Laplace trans-

form of the discounted dividends, the Laplace transform of the discounted �nancing and the

Laplace transform of the joint distribution of the discounted dividends and the discounted

�nancing (see (2.1.29)-(2.1.31)).

2.4 Boundary conditions.

We proceed in this section to �nd results that will help us later to �nd out the boundary conditions

of the di¤erential equations we are going to derive. The general idea is to consider two stochastic

processes which we agree that they represent the evolution of the reserves of an insurance company

in two scenarios. In the �rst scenario we consider the �original�reserve process which will start

at some of the two boundaries and in the other scenario the reserve process will start a little

above of the upper barrier or a little below the lower barrier. The important point is that the two

stochastic processes are the same in the sense that they satisfy the same stochastic di¤erential

equation except from the fact that they have di¤erent initial conditions. We will try to �nd what

relations might have the times of ruin, the dividends and the �nancing in the de Finetti models

with general barriers for these two processes.

Before proceed with the main task of this section we want to mention that as we will see in next

section, the quantities we are interesting for and which have been de�ned in (2.1.20)-(2.1.23) and

(2.1.29)-(2.1.31) in the context of de Finetti models with general barriers, satisfy some di¤erential

equations. In the proposition that follows we derive relations that will be used in the derivation

of boundary conditions for the di¤erential equations.

We proceed now with the proposition by taking into account the following simplifying notation

remark.

Remark 2.4.1 For this section only, because in the two scenarios that we assume only the process
X alters it�s initial state, we drop the dependence from a and b. For example instead of writing

E(x;a;b) we simply write Ex or instead of writing U(x; a; b) we write U(x):

Proposition 2.4.2 (Boundary conditions). Consider functions f; g : R+ � R+ ! R+, with
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f; g 2 C1(R+ � R+) such that

Eb
�
@

@U
f (U; T )

�
< 1

Eb
�

@

@U (+)
g(U (+); U (�))

�
< 1

E0
�

@

@U (�)
g(U (+); U (�))

�
< 1

where T is the time of ruin and U is the discounted dividends in the de Finetti model with one

general re�ecting barrier and U (+) is the discounted dividends and U (�) is the discounted �nancing

in the de Finetti model with two general re�ecting barriers. Then the following hold

(I)

lim
"!0

Eb+"
�
f(U; T ))� Eb(f(U; T )

�
"

= Eb
�
@

@U
f(U; T )

�
(2.4.1)

(II)

E0 (f(U; T )) = f(0; 0) (2.4.2)

(III)

lim
"!0

Eb+"
�
g(U (+); U (�)))� Eb(g(U (+); U (�))

�
"

= Eb
�

@

@U (+)
g(U (+); U (�))

�
(2.4.3)

(IV)

lim
"!0

E�"
�
g(U (+); U (�)))� E0(g(U (+); U (�))

�
"

= �E0
�

@

@U (�)
g(U (+); U (�))

�
(2.4.4)

Proof.

(I) We assume the de Finetti model with one general re�ecting barrier and we consider two

processes which we agree to represent the evolution of the reserves of an insurance company

in two scenarios. The �rst scenario is that the insurance company starts with initial capital

b+ " and the second scenario is that the insurance company starts with initial capital b. In

other words these stochastic processes are similar except that the �rst process has initial

state b+" and the second process has initial state b. The �rst stochastic reserve process will

give immediately amount " on dividends and from there and on the two reserve processes will

evolve in the same way (they become indistinguishable) and will give the same dividends.

In mathematical language the above is expressed as

Ut(b+ ") = "+ Ut(b) (2.4.5)
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From the previous relation (2.4.5) we easily conclude that:

U(b+ ") = "+ U(b) (2.4.6)

By taking expectations on the random variable f(U; T ) and using the above relation (2.4.6)

we conclude

Eb+"(f(U; T ))� Eb(f(U; T )) = E(f(U(b+ "); T ))� E(f(U(b); T ))

= E(f("+ U(b); T ))� E(f(U(b); T ))

and taking limits as " tends to zero we have

lim
"!0

Eb+"(f(U; T ))� Eb(f(U; T ))
"

= lim
"!0

E(f("+ U(b); T ))� E(f(U(b); T ))
"

= E(lim
"!0

(f("+ U(b); T ))� (f(U(b); T ))
"

) =)

lim
"!0

Eb+"(f(U; T ))� Eb(f(U; T ))
"

= E

�
@

@U(b)
f(U(b); T )

�
= Eb

�
@

@U
f(U; T )

�
(II) We assume the de Finetti model with one general re�ecting barrier and that the reserves

process has it�s initial state at 0: Then the ruin is immediate and of course the dividends

are zero, that is it holds that:

E0 (f(U; T )) = f(0; 0) (2.4.7)

(III) We assume the de Finetti model with two general re�ecting barriers and let two processes

which represent the reserves of an insurance company in the two scenarios and which are

similar except that the �rst has initial state b+ " and the second has initial state b. The

�rst will give immediately amount " on dividends and from there and on the two processes

will be �nancing by the same amount and will give the same dividends, that is

U (+)t (b+ ") = "+ U (+)t (b) (2.4.8)

U (�)t (b+ ") = U (�)t (b) (2.4.9)

from which we conclude that:

U (+)(b+ ") = "+ U (+)(b) (2.4.10)

U (�)(b+ ") = U (�)(b) (2.4.11)
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By taking expectations on the random variable g(U (+); U (�)) we have that:

Eb+"(g(U (+); U (�)))� Eb(g(U (+); U (�)))

= E(g(U (+)(b+ "); U (�)(b+ ")))� E(g(U (+)(b); U (�)(b))) =

= E(g("+ U (+)(b); U (�)(b)))� E(g(U (+)(b); U (�)(b)))

Dividing by " and taking limits as " tends to zero we have:

lim
"!0

Eb+"(g(U (+); U (�)))� Eb(g(U (+); U (�)))
"

= lim
"!0

E(g("+ U (+)(b); U (�)(b)))� E(g(U (+)(b); U (�)(b)))
"

= E

 
lim
"!0

(g("+ U (+)(b); U (�)(b)))� (g(U (+)(b); U (�)(b)))
"

!
=)

lim
"!0

Eb+"(g(U (+); U (�)))� Eb(g(U (+); U (�)))
"

= E

�
@

@U (+)(b)
g(U (+)(b); U (�)(b))

�
= Eb

�
@

@U (+)
g(U (+); U (�))

�
(IV) We assume the de Finetti model with two general re�ecting barriers and let two stochastic

processes which represent the reserves of an insurance company in the two scenarios and

which are similar except that the �rst has initial state �" and the second has initial state
0. Then the �rst will be �nancing immediately by amount " and from there and on the two

processes will be �nancing by the same amount and will give the same dividends, that is

U (�)t (�") = �"+ U (�)t (0) (2.4.12)

U (+)t (�") = U (+)t (0) (2.4.13)

from which we conclude that:

U (�)(�") = �"+ U (�)(0) (2.4.14)

U (+)(�") = U (+)(0) (2.4.15)

By taking expectations on the random variable g(U (+); U (�)) and using the above relations

(2.4.14) and (2.4.15) we conclude that

E�"(g(U (+); U (�)))� E0(g(U (+); U (�)))

= E(g(U (+)(�"); U (�)(�")))� E(g(U (+)(0); U (�)(0)))

= E(g(U (+)(0);�"+ U (�)(0))))� E(g(U (+)(0); U (�)(0)))
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Dividing by " and taking limits as " tends to zero we have:

lim
"!0

E�"(g(U (+); U (�)))� E0(g(U (+); U (�)))
"

= lim
"!0

E(g(U (+)(0);�"+ U (�)(0))))� E(g(U (+)(0); U (�)(0)))
"

= E

 
lim
"!0

g(U (+)(0);�"+ U (�)(0)))� g(U (+)(0); U (�)(0))
"

!
=)

lim
"!0

E�"(g(U (+); U (�)))� E0(g(U (+); U (�)))
"

= �E
�

@

@U (�)(0)
g(U (+)(0); U (�)(0))

�
= �E0

�
@

@U (�)
g(U (+); U (�))

�

2.5 Expressions for the generator.

In this section we will �nd expressions for the generator operator when it is applied to some

particular functions. These expressions will be useful in Section 2.6.

First we will �nd expressions for the generator operator when it is applied to the quantities

we are interesting in and have de�ned in the context of de Finetti models with general barriers

(see (2.1.20)-(2.1.23) and (2.1.29)-(2.1.31)).

Second we will �nd expressions for the generator operator when it is applied to functions which

belong to some special functions spaces which we will de�ne in the De�nitions 2.5.10-2.5.13 and

2.5.18-2.5.20.

Studying the de Finetti models with general barriers it turns out that we need to de�ne some

auxiliary processes.

De�nition 2.5.1 We de�ne for 0 � t <1 the processes:

t := bt � at (2.5.1)

ht := �1t = (bt � at)�1 (2.5.2)

Yt := (Xt � at)ht (2.5.3)

Zt := (t;Yt) (2.5.4)
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Remark 2.5.2 For reasons of simplicity and when there is no possibility of confusion we adopt
the convention to write �x, �a and �b instead of �x(x); �a(a) and �b(b) and �x, �a and �b instead

of �x(x), �a(a) and �b(b) respectively.

De�nition 2.5.3 We de�ne

�2xa := �2xa(x; a) := �2x � 2�xa�x�a + �2a (2.5.5)

�2xb := �2xb(x; b) := �2x � 2�xb�x�b + �2b (2.5.6)

�2ab := �2ab(a; b) := �2b � 2�ab�a�b + �2b (2.5.7)

De�nition 2.5.4 We de�ne

� := �(x; a; b) := (b� a)�x(x) + (x� b)�a(a) + (a� x)�b(b) (2.5.8)

� := '(x; a; b) := (b� x)(b� a)�2xa(x; a) + (x� a)(x� b)�2ab(a; b) +

+(a� x)(a� b)�2xb(x; b) (2.5.9)

� := �(x; a; b) := (a+ b� 2x)�2ab(a; b)�

�(a� b)(�2xa(x; a)� �2xb(x; b)) (2.5.10)

However before proceed with the main task of this section we will make the following remark

about the generators of the auxiliary processes , Y and Z. This remark will be useful later in

this section.

Remark 2.5.5 (I) By an application of the Itô rule (see Theorem 1.3.22) one can see that the

process  = ft; 0 � t <1g has dynamics:

dt = (�b � �a)dt+ (�bdBbt � �adBat ) (2.5.11)

or written in a matrix style form:

dt = (�b � �a)dt+
�
��a �b

�
:

�
dBat
dBbt

�
(2.5.12)

and we easily conclude that the generator A of the process  is given by:

A=(�b � �a)
@

@
+
1

2
�2ab

@2

@2
(2.5.13)

for a function f 2 C20 (R) or for a function f 2 C2b (R).
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(II) Also by an application of the Itô rule (see Theorem 1.3.22) one can see that the process

Y = fYt; 0 � t <1g has dynamics

dYt = fht(�x � �a) + (Xt � at)(�h2t (�b � �a) + h3t�2ab)� (2.5.14)

�h2t (�x�b�xb � �x�a�xa � �a�b�ab + �2a)gdt+

ht(�xdB
x
t � �adBat )� (Xt � at)h2t (�bdBbt � �adBat )

or written in a matrix style form:

dYt = fht(�x � �a) + (Xt � at)(�h2t (�b � �a) + h3t�2ab)� (2.5.15)

�h2t (�x�b�xb � �x�a�xa � �a�b�ab + �2a)gdt+�
�xht �a(Xt � at)h2t � �aht ��b(Xt � at)h2t

�
:

0B@ dBxt

dBat

dBat

1CA
and we easily conclude that the generator Ay of the process Y is given by

Ay=
�
�(x; a; b)

(b� a)2 �
�(x; a; b)

2(b� a)3

�
@

@y
+
1

2

'(x; a; b)

(b� a)4
@2

@y2
(2.5.16)

for a function f 2 C20 (R) or for a function f 2 C2b (R).

(III) Finally again by an application of the Itô rule (see Theorem 1.3.22) one can see that the

process Z = fZt; 0 � t <1g has dynamics:

dZt :=

 
dt

dYt

!
=

 
�b � �a
�y(t;Yt)

!
dt+ (2.5.17)

+

 
�bdB

b
t � �adBat

ht(�xdB
x
t � �adBat )� (Xt � at)h2t (�bdBbt � �adBat )

!
or written in a matrix style form:

dZt :=

 
dt

dYt

!
=

 
�b � �a
�y(t;Yt)

!
dt+ (2.5.18)

+

 
0 ��a �b

�xht �a(Xt � at)h2t � �aht ��b(Xt � at)h2t

!
:

0B@ dBxt

dBat

dBbt

1CA
with

�y(t;Yt) := ht(�x � �a) + (Xt � at)(�h2t (�b � �a) + h3t�2ab)�

�h2t (�x�b�xb � �x�a�xa � �a�b�ab + �2a) (2.5.19)
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and we easily conclude that the generator Az of the process Z is given by

Az = (�b � �a)
@

@
+
1

2
�2ab

@2

@2
+ (2.5.20)

+
�(x; a; b)

2(b� a)2
@2

@@y
+

+

�
�(x; a; b)

(b� a)2 �
�(x; a; b)

2(b� a)3

�
@

@y
+
1

2

'(x; a; b)

(b� a)4
@2

@y2

for a function f 2 C20 (R) or for a function f 2 C2b (R).

Also we will need the following de�nition.

De�nition 2.5.6 For the de Finetti model with one general re�ecting barrier and time t smaller
than the time of ruin T , that is t < T we de�ne the discounted dividends U(t) from time t to the

time of ruin T to be given by:

U(t) :=

Z T

t
e��sdUs (2.5.21)

Similarly for the de Finetti model with two general re�ecting barriers we de�ne the discounted

dividends U (+)(t) and the discounted �nancing U (�)(t) starting from the time t to be given by:

U (+)(t) :=

Z 1

t
e��sdU (+)s (2.5.22)

U (�)(t) :=

Z 1

t
e��sdU (�)s (2.5.23)

Finally before we proceed to derive the main results of this section we make the following

useful remark.

Remark 2.5.7 (I) For the de Finetti model with one general re�ecting barrier it holds that:

�tU
n =

(
en�tUn(t); for t � T

0; for t > T
(2.5.24)

with n = 1; 2; 3; : : :

Indeed by considering a sequence of partitions ftmk gm2N;k2N of [0;1) such that:

0 � tm0 � tm1 � � � � � tmkm <1

with

lim
m!1

sup
k
tmk =1
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and

jj�mjj := sup
k
jtmk+1 � tmk j ! 0 as m!1

we can approximate the discounted dividends U by:

U =

Z T

0
e��sdUs = lim

jj�mjj!0

X
e��t

m
i 1ftmi <Tg�Utmi

where 1f�g is the indicator function. Applying the right shift operator to the above relation

we conclude:

�tU
n = ( lim

jj�mjj!0

X
e��t

m
i 1ftmi +t<Tg�Utmi +t)

n =

= en�t( lim
jj�mjj!0

X
e��(t

m
i +t)1ftmi +t<Tg�Utmi +t)

n

=

(
en�tUn(t); for t � T

0; for t > T

Also it is easy to see that:

�tT =

(
T � t for t � T

0 for t > T
(2.5.25)

(II) For the de Finetti model with two general re�ecting barriers it holds that:

�t(U
(�))n = en�t

�
U (�)(t)

�n
(2.5.26)

with n = 1; 2; 3; : : :and time t � 0:

Indeed working similarly as in (I) we have that

�t(U
(�))n = �t

�Z 1

0
e��sdU (�)s

�n
=

�
e�t
Z 1

t
e��sdU (�)s

�n
= en�t

�
U (�)(t)

�n

Now we are ready to derive the main results. We start with the De Finetti model with one

general re�ecting barrier in the section 2.5.1 and we continue with the de Finetti model with two

general re�ecting barriers in the section 2.5.2.

2.5.1 Generator expressions for the one Re�ecting barrier case.

We start this subsection by proving a useful proposition, concerning the generator operator applied

to a regular function of the discounted dividends and the time of ruin in the context of de Finetti

model with one general re�ecting barrier.
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Proposition 2.5.8 Let f(x; a; b) := E(x;a;b)(g(U; T )) with g(�) 2 C1b (R2): Then it holds that:

A(x;a;b)f(x; a; b) = E(x;a;b)
�
@

@t
g(e�tU(t); T � t)jt=0

�
(2.5.27)

Proof. Using the relations (2.5.24),(2.5.25) of the Remark (2.5.7) we have that:

A(x;a;b)f(x; a; b) = lim
t!0

E(x;a;b)(f(Xt; at; bt))� f(x; a; b)
t

=

= lim
t!0

E(x;a;b)
�
E(Xt;at;bt)(g(U; T ))

�
� E(x;a;b)(g(U; T ))

t
=

= lim
t!0

E(x;a;b)(E(x;a;b)(�tg(U; T )jFt))� E(x;a;b)(g(U; T ))
t

=

= lim
t!0

E(x;a;b)(g(�tU; �tT ))� E(x;a;b)(g(U; T ))
t

=

= lim
t!0

E(x;a;b)
�
1fT�tg

g(e�tU(t); T � t)� g(U; T )
t

�
+

+lim
t!0

E(x;a;b)
�
1fT<tg

g(0; 0)� g(U; T )
t

�
= E(x;a;b)

�
1fT�0glim

t!0

g(e�tU(t); T � t)� g(U; T )
t

�
+

+E(x;a;b)
�
1fT�0glim

t!0

g(0; 0)� g(U; T )
t

�
where we have explicitly used the Markov property of the di¤usion process (X;a;b) (see Theorem

1.3.28).

Because the process (X;a;b) is continuous we have that

T > 0 a:s:

(that is the process X does not jump to the process a to be ruined and neither the reverse) and

so the above relation becomes:

A(x;a;b)f(x; a; b) = E(x;a;b)
�
lim
t!0

g(e�tU(t); T � t)� g(U; T )
t

�
=)

A(x;a;b)f(x; a; b) = E(x;a;b)
�
@

@t
g(e�tU(t); T � t)jt=0

�

Next we will use Proposition 2.5.8 in order to �nd relations with regards to the generator

operator applied to the quantities we are interested in, that is for the Laplace transform of the

discounted dividends K(x; a; b; �); the Laplace transform of the time of ruin M(x; a; b; �) and

the Laplace transform of the joint distribution of the time of ruin and the discounted dividends

N(x; a; b; �1; �2), as they have de�ned at (2.1.20)�(2.1.22).
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The following proposition clari�es the action of the operator on the aforementioned quantities.

Proposition 2.5.9 (Relations with regards to the generator operator applied to the quantities
(2.1.20)�(2.1.23) in the de Finetti model with one general re�ecting barrier). It holds that:

(i)

A(x;a;b)N(x; a; b; �1; �2) = �1N(x; a; b; �1; �2) + ��2
@

@�2
N(x; a; b; �1; �2) (2.5.28)

where �1; �2 > 0:

(II)

A(x;a;b)K(x; a; b; �) = ��
@

@�
K(x; a; b; �) (2.5.29)

where � > 0:

(III)

A(x;a;b)M(x; a; b; �) = �M(x; a; b; �) (2.5.30)

where � > 0:

Proof. The claims (I),(II) and (III) follow immediately by applying Proposition 2.5.8 to the
functions: g1(U; T ) = e��1T��2U with �1; �2 > 0, g2(U; T ) = e��U with � > 0 and g3(U; T ) =

e��T with � > 0 respectively.

We turn our attention now to some special function spaces.

De�nition 2.5.10

SV :=
�
f 2 C2b (R3) j f satisfy the scaling properties (2.3.10), (2.3.14)

	
De�nition 2.5.11

SK :=
�
f 2 C2b (R4) j f satisfy the scaling properties (2.3.11), (2.3.15)

	
De�nition 2.5.12

SM :=
�
f 2 C2b (R4) j f satisfy the scaling properties (2.3.12), (2.3.16)

	
De�nition 2.5.13

SN :=
�
f 2 C2b (R5) j f satisfy the scaling properties (2.3.13), (2.3.17)
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Next we �nd a set of expressions with regard of the generator operator applied to functions

which belong to the above function spaces.

Lemma 2.5.14 It holds that

(I)

A(x;a;b)
eN(x; a; b; �1; �2(b� a)�1) = Ay eN((x� a)(b� a)�1; 0; 1; �1; �2) (2.5.31)

(II)

A(x;a;b)
eV (x; a; b) = Az eV (y; 0; 1) (2.5.32)

(III)

A(x;a;b)
eK(x; a; b; (b� a)�1�) = Ay eK((x� a)(b� a)�1; 0; 1; �) (2.5.33)

(IV)

A(x;a;b)
fM(x; a; b; �) = AyfM((x� a)(b� a)�1; 0; 1; �) (2.5.34)

Proof. The proof constitutes of two steps.

Step 1

We apply the scaling property (see Proposition 2.3.3) to the functions eV (�) 2 SV ; eK(�) 2 SK ;fM(�) 2 SM and eN(�) 2 SN and we easily conclude that:

eN(Xt; at; bt; �1; ht�2) = eN((Xt � at)ht; 0; 1; �1; �2) (2.5.35)eV (Xt; at; bt) = eV (Xt � at; 0; bt � at) = t eV ((Xt � at)ht; 0; 1)
(2.5.36)eK(Xt; at; bt; ht�) = eK((Xt � at)ht; 0; 1; �) (2.5.37)fM(Xt; at; bt; �) = fM(Xt � at; 0; bt � at; �) = fM((Xt � at)ht; 0; 1; �)
(2.5.38)

Step 2

We prove the relations (2.5.31)-(2.5.34) between the generator A(x;a;b) of the process (X;a;b)

and the generators Ay of the process Y and Az of the process Z:
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(I) It holds that:

A(x;a;b)
eN(x; a; b; �1; �2(b� a)�1)

= lim
t!0

E( eN(Xt; at; bt; �1; �2(b� a)�1))� eN(x; a; b; �1; �2(b� a)�1)
t

= lim
t!0

E( eN((Xt � at)(bt � at)�1; 0; 1; �1; �2))� eN((x� a)(b� a)�1; 0; 1; �1; �2)
t

= Ay eN((x� a)(b� a)�1; 0; 1; �1; �2) =)
A(x;a;b)

eN(x; a; b; �1; �2(b� a)�1) = Ay eN((x� a)(b� a)�1; 0; 1; �1; �2)
(II)

A(x;a;b)
eV (x; a; b) = lim

t!0

E(eV (Xt; at; bt))� eV (x; a; b)
t

= lim
t!0

E(t eV (Yt; 0; 1))�  eV (y; 0; 1)
t

= Az eV (y; 0; 1) =)
A(x;a;b)

eV (x; a; b) = Az eV (y; 0; 1)
(III)

A(x;a;b)
eK(x; a; b; (b� a)�1�)

= lim
t!0

E( eK(Xt; at; bt; (b� a)�1�))� eK(x; a; b; (b� a)�1�)
t

= lim
t!0

E( eK((Xt � at)(bt � at)�1; 0; 1; �))� eK((x� a)(b� a)�1; 0; 1; �)
t

= Az eK((x� a)(b� a)�1; 0; 1; �) =)
A(x;a;b)

eK(x; a; b; (b� a)�1�) = Ay eK((x� a)(b� a)�1; 0; 1; �)
(IV)

A(x;a;b)
fM(x; a; b; �)

= lim
t!0

E(fM(Xt; at; bt; �))� fM(x; a; b; �)
t

= lim
t!0

E(fM((Xt � at)(bt � at)�1; 0; 1; �))� fM((x� a)(b� a)�1; 0; 1; �)
t

= AzfM((x� a)(b� a)�1; 0; 1; �) =)
A(x;a;b)

fM(x; a; b; �) = AyfM((x� a)(b� a)�1; 0; 1; �)
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Proposition 2.5.15 (Relations with regard of the generator operator A(x;a;b) of the process (X;a;b)

when it is applied to functions which belong to the functions spaces SV ; SK ; SM and SN (see De-

�nition 2.5.10-De�nition 2.5.13)).

Let functions eV (�) 2 SV ; eK(�) 2 SK ; fM(�) 2 SM and eN(�) 2 SN : It holds that
(I)

A(x;a;b)
eN(x; a; b; �1; �2) = (2.5.39)

=
'(x; a; b)

2(b� a)2
@2

@x2
eN(x; a; b; �1; �2) + ��(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
eN(x; a; b; �1; �2)

(II)

A(x;a;b)
eK(x; a; b; �) (2.5.40)

=
'(x; a; b)

2(b� a)2
@2

@x2
eK(x; a; b; �) + ��(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
eK(x; a; b; �)

(III)

A(x;a;b)
fM(x; a; b; �) (2.5.41)

=
'(x; a; b)

2(b� a)2
@2

@x2
fM(x; a; b; �) + ��(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
fM(x; a; b; �)

(IV)

A(x;a;b)
eV (x; a; b;n) =

�b(b)� �a(a)
b� a

eV (x; a; b;n) + (2.5.42)

+
�(x; a; b)

b� a
@

@x
eV (x; a; b;n) + '(x; a; b)

2(b� a)2
@2

@x2
eV (x; a; b;n)

Proof. The general idea of the proof is to apply Remark 2.5.5 and Lemma 2.5.14 in order to
�nd the expressions (2.5.39)-(2.5.42).

(I) By relation (2.5.31) in Lemma 2.5.14 we have that:

A(x;a;b)
eN(x; a; b; �1; ��2(b� a)�1) = Ay eN((x� a)(b� a)�1; 0; 1; �1; ��2) (2.5.43)

By relation (2.5.16) in Remark 2.5.5 we have that:

Ay eN((x� a)(b� a)�1; 0; 1; �1; ��2) = (2.5.44)

=

�
�(x; a; b)

(b� a)2 �
�(x; a; b)

2(b� a)3

�
@

@x
eN((x� a)(b� a)�1; 0; 1; �1; ��2) +

+
1

2

'(x; a; b)

(b� a)4
@2

@x2
eN((x� a)(b� a)�1; 0; 1; �1; ��2)
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and after some calculations relation (2.5.44) can be written as

Ay eN((x� a)(b� a)�1; 0; 1; �1; ��2) = (2.5.45)

=

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@x
eN(x; a; b; �1; ��2(b� a)�1) +

+
1

2

'(x; a; b)

(b� a)2
@2

@x2
eN(x; a; b; �1; ��2(b� a)�1)

By the relation (2.5.43) the above expression (2.5.45) is equivalent to

A(x;a;b)
eN(x; a; b; �1; ��2(b� a)�1) = (2.5.46)

=

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@x
eN(x; a; b; �1; ��2(b� a)�1) +

+
1

2

'(x; a; b)

(b� a)2
@2

@x2
eN(x; a; b; �1; ��2(b� a)�1)

and setting �2 := ��2(b� a)�1 we conclude the result.

(II) As in (I) by setting �1 = 0 and �2 = �:

(III) As in (I) by setting �1 = � and �2 = 0:

(IV) By relation (2.5.32) in Lemma 2.5.14 we have that:

A(x;a;b)
eV (x; a; b;n) = Az eV (y; 0; 1;n) (2.5.47)

By relation (2.5.20) in Remark 2.5.5 we have that:

Az eV (y; 0; 1;n) = (�b � �a)eV (y; 0; 1;n) (2.5.48)

+

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@y
eV (y; 0; 1;n) +

+
1

2

'(x; a; b)

(b� a)3
@2

@y2
eV (y; 0; 1;n) + �(x; a; b)

2(b� a)2
@

@y
eV (y; 0; 1;n)

and simplifying we get

Az eV (y; 0; 1;n) = (�b � �a)eV (y; 0; 1;n) (2.5.49)

+
�(x; a; b)

(b� a)
@

@y
eV (y; 0; 1;n) + 1

2

'(x; a; b)

(b� a)3
@2

@y2
eV (y; 0; 1;n)

Using relation (2.5.47) and simplifying relation (2.5.49) can be written as

A(x;a;b)
eV (x; a; b;n) =

�b � �a
b� a

eV (x; a; b;n) (2.5.50)

+
�(x; a; b)

(b� a)
@

@x
eV (x; a; b;n) + 1

2

'(x; a; b)

(b� a)2
@2

@x2
eV (x; a; b;n)

This concludes the proof.

In the next subsection we consider the de Finetti model with two general re�ecting barriers

and with the same logic as in this subsection we �nd analogous results.
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2.5.2 Generator expressions for the two general re�ecting barriers case.

We start this subsection by proving a proposition about the generator operator applied to a

regular function of the discounted dividends and the discounting �nancing in the context of de

Finetti model with two general re�ecting barriers.

Proposition 2.5.16 Let f(x; a; b) := E(x;a;b)(h(U (+); U (�))) with h 2 C1b (R2): Then it holds that:

A(x;a;b)f(x; a; b) = E(x;a;b)
�
@

@t
h(e�tU (+)(t); e�tU (�)(t))jt=0

�
(2.5.51)

Proof. Using relation (2.5.26) in Remark 2.5.7 and the Markov property of the di¤usion

process (X;a;b) (see Theorem 1.3.28) we have that:

A(x;a;b)f(x; a; b)

= lim
t!0

E(x;a;b)(f(Xt; at; bt))� f(x; a; b)
t

=

= lim
t!0

E(x;a;b)(E(Xt;at;bt)(h(U (+); U (�))))� E(x;a;b)(h(U (+); U (�)))
t

=

= lim
t!0

E(x;a;b)(E(x;a;b)(�th(U
(+); U (�))jFt))� E(x;a;b)(h(U (+); U (�)))

t
=

= lim
t!0

E(x;a;b)(E(x;a;b)(h(�tU
(+); �tU

(+))jFt))� E(x;a;b)(h(U (+); U (�)))
t

=

= lim
t!0

E(x;a;b)(E(x;a;b)(h(e�tU (+)(t); e�tU (�)(t))jFt))� E(x;a;b)(h(U (+); U (�)))
t

=

= lim
t!0

E(x;a;b)(h(e�tU (+)(t); e�tU (�)(t)))� E(x;a;b)(h(U (+); U (�)))
t

=

= E(x;a;b)

 
lim
t!0

h(e�tU (+)(t); e�tU (�)(t))� h(U (+); U (�))
t

!
=)

A(x;a;b)f(x; a; b) = E(x;a;b)
�
@

@t
h(e�tU (+)(t); e�tU (�)(t))jt=0

�

Next we will use Proposition 2.5.16 in order to �nd relations with regards to the generator

operator applied to functions we are interesting in, that is for the Laplace transforms of the

discounted dividends K(+)(x; a; b; �) and the discounted �nancing K(�)(x; a; b; �) and the Laplace

transform of the joint distribution of the discounted dividends and the discounted �nancing

L(x; a; b; �1; �2), as they were de�ned at (2.1.29)-(2.1.30).

We conclude the following proposition
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Proposition 2.5.17 (Relations with regard of the generator operator applied to the quantities
(2.1.29)-(2.1.31) in the de Finetti model with two general re�ecting barriers). It holds that

(I)

A(x;a;b)L(x; a; b; �1; �2) = �

�
�1

@

@�1
L(x; a; b; �1; �2) + �2

@

@�2
L(x; a; b; �1; �2)

�
(2.5.52)

where �1; �2 > 0.

(II)

A(x;a;b)K(�)(x; a; b; �) = ��
@

@�
K(�)(x; a; b; �) (2.5.53)

where � > 0.

Proof. The claims (I) and (II) follow immediately by applying Proposition 2.5.16 to the

functions: (I) h1(U (+); U (�)) := e��1U
(+)��2U(�) with �1; �2 > 0 and (II) h2(U (+); U (�)) :=

e��U
(+)
with � > 0 and h3(U (+); U (�)) := e��U

(�)
with � > 0.

We turn our attention now to some special function spaces.

De�nition 2.5.18

SV
(�)
:=
�
f 2 C2b (R3) : f satis�es the scaling properties (2.3.39),(2.3.42)

	
De�nition 2.5.19

SK
(�)
:=
�
f 2 C2b (R4) : f satis�es the scaling properties (2.3.40),(2.3.43)

	
De�nition 2.5.20

SL :=
�
f 2 C2b (R5) : f satis�es the scaling properties (2.3.41), (2.3.44)

	
Next we �nd a set of expressions with regard of the generator operator applied to functions

which belong to the above function spaces.

Lemma 2.5.21 It holds that

(I)

A(x;a;b)
eL(x; a; b; �1(b� a)�1; �2(b� a)�1) = AyeL((x� a)(b� a)�1; 0; 1; �1; �2) (2.5.54)
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(II)

A(x;a;b)
eV (�)(x; a; b) = Az eV (�)(y; 0; 1) (2.5.55)

(III)

A(x;a;b)
eK(�)(x; a; b; (b� a)�1�) = Ay eK(�)((x� a)(b� a)�1; 0; 1; �) (2.5.56)

Proof. The proof constitutes of two steps.

Step 1

We apply the scaling property (see Proposition 2.3.9) to the functions eV (�)(�) 2 SV
(�)
,eK(�)(�) 2 SK(�)

and eL(�) 2 SL and we easily conclude that
eL(Xt; at; bt; ht�1; ht�2) = eL((Xt � at)ht; 0; 1; �1; �2) (2.5.57)eV (�)(Xt; at; bt) = t eV (�)((Xt � at)ht; 0; 1) (2.5.58)eK(�)(Xt; at; bt; ht�) = eK(�)((Xt � at)ht; 0; 1; �) (2.5.59)

Step 2

We prove the relations (2.5.54)-(2.5.56) between the generator A(x;a;b) of the process (X; a; b)

and the generators Ay of the process Y and Az of the process Z.

(I)

A(x;a;b)
eL(x; a; b; �1�2(b� a)�1; �2(b� a)�1)

= lim
t!0

E(eL(Xt; at; bt; �1�2(b� a)�1; �2(b� a)�1))� eL(x; a; b; �1�2(b� a)�1; �2(b� a)�1)
t

= lim
t!0

E(eL((Xt � at)(bt � at)�1; 0; 1; �1; �2))� eL((x� a)(b� a)�1; 0; 1; �1; �2)
t

= AyeL((x� a)(b� a)�1; 0; 1; �1; �2) =)
A(x;a;b)

eL(x; a; b; �1�2(b� a)�1; �2(b� a)�1) = AyeL((x� a)(b� a)�1; 0; 1; �1; �2)
(II)

A(x;a;b)
eV (�)(x; a; b) =

= lim
t!0

E(eV (�)(Xt; at; bt))� eV (�)(x; a; b)
t

= lim
t!0

E(t eV (�)(Yt; 0; 1))�  eV (�)(y; 0; 1)
t

= Az eV (�)(y; 0; 1) =)
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A(x;a;b)
eV (�)(x; a; b) = Az eV (�)(y; 0; 1)

(III)

A(x;a;b)
eK(�)(x; a; b; (b� a)�1�)

= lim
t!0

E( eK(�)(Xt; at; bt; (b� a)�1�))� eK(�)(x; a; b; (b� a)�1�)
t

= lim
t!0

E( eK(�)((Xt � at)(bt � at)�1; 0; 1; �))� eK(�)((x� a)(b� a)�1; 0; 1; �)
t

= Az eK(�)((x� a)(b� a)�1; 0; 1; �) =)

A(x;a;b)
eK(�)(x; a; b; (b� a)�1�) = Ay eK(�)((x� a)(b� a)�1; 0; 1; �)

Proposition 2.5.22 (Relations with regard to the generator operator A(x;a;b) of the process (X;a;b)

when it is applied to functions which belong to the functions spaces SV
(�)
; SK

(�)
and SL (see De-

�nition 2.5.18-De�nition 2.5.20)).

Let functions eV (�)(�) 2 SV (�), eK(�)(�) 2 SK(�)
and eL(�) 2 SL. It holds that

(I)

A(x;a;b)
eL(x; a; b; �1; �2) = (2.5.60)

=
'(x; a; b)

2(b� a)2
@2

@x2
eL(x; a; b; �1; �2) + ��(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
eL(x; a; b; �1; �2)

(II)

A(x;a;b)
eK(�)(x; a; b; �) =

'(x; a; b)

2(b� a)2
@2

@x2
eK(�)(x; a; b; �) + (2.5.61)

+

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
eK(�)(x; a; b; �)

(III)

A(x;a;b)
eV (�)(x; a; b;n) (2.5.62)

=
�b(b)� �a(a)

b� a
eV (�)(x; a; b;n) +

+
�(x; a; b)

b� a
@

@x
eV (�)(x; a; b;n) + '(x; a; b)

2(b� a)2
@2

@x2
eV (�)(x; a; b;n)
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Proof. The general idea of the proof is to apply Remark 2.5.5 and Lemma 2.5.21 in order to
�nd the expressions (2.5.60)-(2.5.62).

(I) By relation (2.5.54) in Lemma 2.5.21 we have that

A(x;a;b)
eL(x; a; b; ��1(b� a)�1; ��2(b� a)�1) = AyeL((x� a)(b� a)�1; 0; 1; ��1; ��2) (2.5.63)

By relation (2.5.16) in Remark 2.5.5 we have that:

AyeL((x� a)(b� a)�1; 0; 1; ��1; ��2) = (2.5.64)

=

�
�(x; a; b)

(b� a)2 �
�(x; a; b)

2(b� a)3

�
@

@x
eL((x� a)(b� a)�1; 0; 1; ��1; ��2) +

+
1

2

'(x; a; b)

(b� a)4
@2

@x2
eL((x� a)(b� a)�1; 0; 1; ��1; ��2)

After some calculations relation (2.5.64) can be written as

AyeL((x� a)(b� a)�1; 0; 1; ��1; ��2) = (2.5.65)

=

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@x
eL(x; a; b; �1(b� a)�1; ��2(b� a)�1) +

+
1

2

'(x; a; b)

(b� a)2
@2

@x2
eL(x; a; b; ��1(b� a)�1; ��2(b� a)�1)

By relation (2.5.63) the expression (2.5.65) is equivalent to

A(x;a;b)
eL(x; a; b; ��1(b� a)�1; ��2(b� a)�1) = (2.5.66)

=

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@x
eL(x; a; b; ��1; ��2(b� a)�1) +

+
1

2

'(x; a; b)

(b� a)2
@2

@x2
eL(x; a; b; ��1(b� a)�1; ��2(b� a)�1)

and setting �1 := ��1(b� a)�1, �2 := ��2(b� a)�1 we conclude the result.

(II) As in (I) by considering �1 = � and �2 = 0.

(III) By relation (2.5.55) in Lemma 2.5.21 we have that

A(x;a;b)
eV (�)(x; a; b;n) = Az eV (�)(y; 0; 1;n) (2.5.67)
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By relation (2.5.20) in Remark 2.5.5 we have that:

Az eV (�)(y; 0; 1;n) = (�b � �a)eV (�)(y; 0; 1;n) + (2.5.68)

+

�
�(x; a; b)

(b� a) �
�(x; a; b)

2(b� a)2

�
@

@y
eV (�)(y; 0; 1;n) +

+
1

2

'(x; a; b)

(b� a)3
@2

@y2
eV (�)(y; 0; 1;n) +

+
�(x; a; b)

2(b� a)2
@

@y
eV (�)(y; 0; 1;n)

and using relation (2.5.67) and simplifying relation (2.5.68) can be written as

A(x;a;b)
eV (�)(x; a; b;n) =

�b � �a
b� a

eV (�)(x; a; b;n) + (2.5.69)

+
�(x; a; b)

(b� a)
@

@x
eV (�)(x; a; b;n) + 1

2

'(x; a; b)

(b� a)2
@2

@x2
eV (�)(x; a; b;n)

This concludes the proof.

Proposition 2.5.22 is the last result for this section. We have now in our disposal all the

necessary ingredients in order to derive the �nal result, which are the di¤erential equations. We

proceed now with the next section in which we will combine the results of the previous sections

and conclude the �nal results.

2.6 Partial di¤erential equations for the Laplace transforms and
the moments.

As we mention in the previous section we are now in position to conclude the �nal results about

the de Finetti model with general barriers. We will do that in this section and we start �rst with

the de Finetti model with one general re�ecting barrier.

2.6.1 PDEs for the de Finetti model with one general re�ecting barrier.

In this subsection we provide propositions concerning the Laplace transform of the joint distribu-

tion of the time of ruin and the discounted dividendsN(x; a; b; �1; �2), the Laplace transform of the

discounted dividends K(x; a; b; �), the Laplace transform of the time of ruin M(x; a; b; �) and the

moments of the discounted dividends V (x; a; b;n), as they have been de�ned at (2.1.20)-(2.1.23).
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Proposition 2.6.1 (The Laplace transform of the joint distribution of the time of ruin and the

discounted dividends). Let the function N(x; a; b; �1; �2) 2 C2b (R
5) satisfy the scaling properties

(2.3.13),(2.3.17). If the function N(x; a; b; �1; �2) solves the PDE

'(x; a; b)

2(b� a)2
@2

@x2
N(x; a; b; �1; �2) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
N(x; a; b; �1; �2)

= �1N(x; a; b; �1; �2) + ��2
@

@�2
N(x; a; b; �1; �2) (2.6.1)

with boundary conditions:

N(a; a; b; �1; �2) = 1 (2.6.2)
@

@x
N(x; a; b; �1; �2)jx=b = ��2N(b; a; b; �1; �2) (2.6.3)

then

N(x; a; b; �1; �2) = E(x;a;b)(e��1T��2U ): (2.6.4)

Proof. First we observe that because the function N(x; a; b; �1; �2) is in C2b (R
5) and satisfy

the scaling properties (2.3.13),(2.3.17) then by the relation (2.5.39) we must have

L(x;a;b)N(x; a; b; �1; �2) (2.6.5)

= A(x;a;b)N(x; a; b; �1; �2)

=
'(x; a; b)

2(b� a)2
@2

@x2
N(x; a; b; �1; �2) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
N(x; a; b; �1; �2)

By relation (2.6.5) and the fact that the function N(x; a; b; �1; �2) solves the PDE (2.6.1) we

conclude

L(x;a;b)N(x; a; b; �1; �2) = �1N(x; a; b; �1; �2) + ��2
@

@�2
N(x; a; b; �1; �2) (2.6.6)

Applying the Itô formula to the process

e��1(t^T )��2Ut^TN
�
e��(t^T )Zt^T ; e

��(t^T )at^T ; e
��(t^T )bt^T ; �1; �2

�
taking expectations and using the condition (2.6.3) we have

E(x;a;b)
�
e��1(t^T )��2Ut^TN

�
e��(t^T )Zt^T ; e

��(t^T )at^T ; e
��(t^T )bt^T ; �1; �2

��
= N(x; a; b; �1; �2) +

+E(x;a;b)

0@ t^TZ
0

e��1s��2Us (L(x;a;b) � �1�

��e��s
�
Xs

@

@ (e��sz)
+ as

@

@ (e��sa)
+ bs

@

@ (e��sb)

��
N
�
e��sZs; e

��sas; e
��sbs; �1; �2

�
ds

�
+

+�2E
(x;a;b)

�Z t^T

0
e��se��1s��2UsN

�
e��sZs; e

��sas; e
��sbs; �1; �2

�
dUs
�
�

��2E(x;a;b)
�Z t^T

0
e��1s��2UsN

�
e��sZs; e

��sas; e
��sbs; �1; �2

�
dUs

�
(2.6.7)
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By taking into account that by the relation (2.1.18) we have that

dUt = e��tdUt (2.6.8)

and also considering the relation (2.3.23) the above expression (2.6.7) becomes

E(x;a;b)
�
e��1(t^T )��2Ut^TN

�
e��(t^T )Zt^T ; e

��(t^T )at^T ; e
��(t^T )bt^T ; �1; �2

��
= N(x; a; b; �1; �2) +

+E(x;a;b)

0@ t^TZ
0

e��1s��2Us
�
(L(x;a;b) � �1)N(e��ss Zs; e

��sas; e
��sbs; �1; �2)�

���2e��s
@

@ (�2e��s)
N
�
Zs; as; bs; �1; �2e

��s
��

ds

�
Using the relation (2.3.22) we conclude

E(x;a;b)
�
e��1(t^T )��2Ut^TN

�
e��(t^T )Zt^T ; e

��(t^T )at^T ; e
��(t^T )bt^T ; �1; �2

��
= N(x; a; b; �1; �2) +

+E(x;a;b)
�Z t^T

0
e��1s��2Us

�
L(x;a;b) � �1 � ��2e��s

@

@ (�2e��s)

�
N
�
Zs; as; bs; �1; �2e

��s
�
ds

�
Applying the PDE (2.6.6) with �2e��s instead of �2 the above simpli�es to

E(x;a;b)
�
e��1(t^T )��2Ut^TN

�
e
��(t^T )
t^T Zt^T ; e

��(t^T )at^T ; e
��(t^T )bt^T ; �1; �2

��
= N(x; a; b; �1; �2)

Taking limit as t!1 (using the dominated convergence theorem as by hypotheses we have that

N(x; a; b; �1; �2) 2 C2b (R5)) and taking into account that

T := inf ft > 0 : Zt = atg

and the condition (2.6.2) we conclude:

N(x; a; b; �1; �2) = E(x;a;b)
�
e��1T��2U

�

Working as for the proof of Proposition 2.6.1, setting �rst �1 = 0 and �2 = � and second

�1 = � and �2 = 0 the following two propositions can be proved.

Proposition 2.6.2 (Laplace transform of the discounted dividends). Let the function K(x; a; b; �)
2 C2b (R4) satisfy the scaling properties (2.3.11), (2.3.15). If the function K(x; a; b; �) solves the
PDE

'(x; a; b)

2(b� a)2
@2

@x2
K(x; a; b; �) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
K(x; a; b; �)

= ��
@

@�
K(x; a; b; �) (2.6.9)
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with boundary conditions:

K(a; a; b; �) = 1 (2.6.10)
@

@x
K(x; a; b; �)jx=b = ��K(b; a; b; �) (2.6.11)

then

K(x; a; b; �) = E(x;a;b)
�
e��U

�
(2.6.12)

Proposition 2.6.3 (Laplace transform of the time of ruin). Let the function M(x; a; b; �) 2
C2b (R

4) satisfy the scaling properties (2.3.12), (2.3.16). If the function M(x; a; b; �) solves the

ODE

'(x; a; b)

2(b� a)2
@2

@x2
M(x; a; b; �) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
M(x; a; b; �)

= �M(x; a; b; �) (2.6.13)

with boundary conditions:

M(a; a; b; �) = 1 (2.6.14)
@

@x
M(x; a; b; �)jx=b = 0 (2.6.15)

then

M(x; a; b; �) = E(x;a;b)
�
e��T

�
(2.6.16)

The next proposition concerns with the moments of the discounted dividends.

Proposition 2.6.4 (Moments of the discounted dividends). Let the functions V (x; a; b;n) , n 2
N belonging to C2b (R

3) satisfy the scaling properties (2.3.10),(2.3.14). If the functions V (x; a; b;n)

, n 2 N solve the ODEs

'(x; a; b)

2(b� a)2
@2

@x2
V (x; a; b;n) +

�(x; a; b)

b� a
@

@x
V (x; a; b;n) +

+

�
�b(b)� �a(a)

b� a � n�
�
V (x; a; b;n)

= 0 (2.6.17)

with boundary conditions:

V (a; a; b;n) = 0; n = 1; 2; : : : (2.6.18)
@

@x
V (x; a; b; 1)jx=b = 1 (2.6.19)

@

@x
V (x; a; b;n)jx=b = nV (b; a; b;n� 1); n = 2; 3; : : : (2.6.20)

then

V (x; a; b;n) = E(x;a;b)(Un) (2.6.21)



2.6.1 PDEs for the de Finetti model with one general re�ecting barrier.74

Proof. First we observe that because V (x; a; b;n) 2 C2b (R3) and satis�es the scaling properties
(2.3.10), (2.3.14) then by the (2.5.42) we must have

L(x;a;b)V (x; a; b;n) (2.6.22)

= A(x;a;b)V (x; a; b;n)

=
�b(b)� �a(a)

b� a V (x; a; b;n) +
�(x; a; b)

b� a
@

@x
V (x; a; b;n) +

'(x; a; b)

2(b� a)2
@2

@x2
V (x; a; b;n)

By relation (2.6.22) and the fact that the function V (x; a; b;n) solves the ODE (2.6.17) we conclude

that

(L(x;a;b) � n�)V (x; a; b;n) = 0 (2.6.23)

We consider the time instants h and t with t � h: Applying the Itô formula to the process

e�n�((t�h)^T )V (Zt^T ; at^T ; bt^T ;n)

taking conditional expectations and using the fact that the process V (Zh; ah; bh;n) is Fh measur-
able we have:

E
�
e�n�((t�h)^T )V (Zt^T ; at^T ; bt^T ;n) jFh

�
= V (Zh; ah; bh;n) + E

��Z t^T

h
e�n�(s�h) (L(x;a;b) � n�)V (Zs; as; bs;n) ds

�
jFh
�
�

�E
��Z t^T

h
e�n�(s�h)

@

@z
V (Zs; as; bs;n) dUs

�
jFh
�

Using relation (2.6.23) and condition (2.6.18) the above becomes

V (Zh; ah; bh;n) = E

��Z t^T

h
e�n�(s�h)

@

@z
V (Zs; as; bs;n) dUs

�
jFh
�

(2.6.24)

Next we apply relation (2.6.24) with n = 1, taking into account that by relation (2.5.21) we have

dU(t) = �e��tdUt (2.6.25)

and also considering relation (2.6.19) and taking the limit as t!1 (using the monotone conver-

gence theorem) we conclude that

E
�
e�hU(h)jFh

�
= V (Zh; ah; bh; 1) <1 (2.6.26)

We will use the method of induction. Suppose that for n� 1 we have

E
�
e(n�1)�hUn�1(h)jFh

�
= V (Zh; ah; bh;n� 1) <1 (2.6.27)

Next by applying the relation (2.6.24) for n and taking into account the relations (2.6.20), (2.6.27),

the fact that fs < Tg 2 Fs (because T is a stopping time) and interchange expectation and integral
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(using the Fubini theorem) because

E

�Z t^T

h
e�n�(s�h)V (Zs; as; bs;n� 1) dUsjFh

�
� sup

s
V (Zs; as; bs;n� 1) en�hE (U(h)jFh) <1

we conclude

V (Zh; ah; bh;n) = nE

�Z t^T

h
e�n�(s�h)V (Zs; as; bs;n� 1) dUsjFh

�
= nE

�Z t

h
1fs<Tge

�n�(s�h)E
�
e(n�1)�sUn�1(s)jFs

�
dUsjFh

�
= nE

�Z t

h
e�n�(s�h)E

�
1fs<Tge

(n�1)�sUn�1(s)jFs
�
dUsjFh

�
= n

Z t

h
e�n�(s�h)E

�
E
�
1fs<Tge

(n�1)�sUn�1(s)dUsjFs
�
jFh)

�
= n

Z t

h
e�n�(s�h)E

�
1fs<Tge

(n�1)�sUn�1(s)dUsjFh
�

= nE

0@en�h tZ
h

1fs<Tge
��sUn�1(s)dUsjFh

1A
= �E

�
en�h

Z t^T

h
nUn�1(s)dU(s)jFh

�
Therefore

V (Zh; ah; bh;n) = �E
�
en�h

Z t^T

h
nUn�1(s)dU(s)jFh

�
(2.6.28)

Taking the limit in relation (2.6.28) as t!1 (using the monotone convergence theorem) we have

V (Zh; ah; bh;n) = �E
�
en�h

Z T

h
nUn�1(s)dU(s)jFh

�
= �E

�
en�h(Un(s)jTh )jFh

�
Therefore

V (Zh; ah; bh;n) = E(en�hUn(h)jFh) (2.6.29)

Finally by taking h = 0 in the relation (2.6.29) we conclude the relation (2.6.21).

Next adopting the same logic we conclude analogous results for the De Finetti model with two

general re�ecting barriers.

2.6.2 PDEs for the de Finetti model with two general re�ecting barriers

In this subsection we provide propositions concerning the moments of the discounted dividends

V (+)(x; a; b;n) and the discounted �nancing V (�)(x; a; b;n), the Laplace transform of the dis-
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counted dividends K(+)(x; a; b; �) and the discounted �nancing K(�)(x; a; b; �) and the Laplace

transform of the joint distribution of the discounted dividends and the discounted �nancing

L(x; a; b; �1; �2), as they have been de�ned at (2.1.29)�(2.1.31).

Proposition 2.6.5 (Laplace transform of the joint distribution of the discounted divi-
dends and the discounted �nancing). Let the function L(x; a; b; �1; �2) 2 C2b (R5) satisfy the
scaling properties (2.3.41),(2.3.44) and also

L(x; a; b; 0; 0) = 1 (2.6.30)

for any (x; a; b) 2 R3. If the function L(x; a; b; �1; �2) solves the PDE:

'(x; a; b)

2(b� a)2
@2

@x2
L(x; a; b; �1; �2) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
L(x; a; b; �1; �2)

= �

�
�1

@

@�1
L(x; a; b; �1; �2) + �2

@

@�2
L(x; a; b; �1; �2)

�
(2.6.31)

with boundary conditions:

@

@x
L(x; a; b; �1; �2)jx=a = �2L(a; a; b; �1; �2) (2.6.32)

@

@x
L(x; a; b; �1; �2)jx=b = ��1L(b; a; b; �1; �2) (2.6.33)

then

L(x; a; b; �1; �2) = E(x;a;b)(e��1U
(+)��2U(�)) (2.6.34)

Proof. First we observe that because function L(x; a; b; �1; �2) is in C2b (R
5) and satisfy the

scaling properties (2.3.41), (2.3.44) then by relation (2.5.60) we must have

L(x;a;b)L(x; a; b; �1; �2) (2.6.35)

= A(x;a;b)L(x; a; b; �1; �2)

=
'(x; a; b)

2(b� a)2
@2

@x2
L(x; a; b; �1; �2) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
L(x; a; b; �1; �2)

By the relation (2.6.35) and the fact that the function L(x; a; b; �1; �2) solves the PDE (2.6.31)

we conclude

L(x;a;b)L(x; a; b; �1; �2) = �1L(x; a; b; �1; �2) + ��2
@

@�2
L(x; a; b; �1; �2) (2.6.36)

We �x a number n 2 N . Applying the Itô formula to the process

e��1U
(+)
t^n��2U

(�)
t^nL

�
e��(t^n)Zt^n; e

��(t^n)at^n; e
��(t^n)bt^n; �1; �2

�
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taking expectations and using the conditions (2.6.32), (2.6.33) we have:

E(x;a;b)(e��1U
(+)
t^n��2U

(�)
t^nL(e��(t^n)Zt^n; e

��(t^n)at^n; e
��(t^n)bt^n; �1; �2))

= L(x; a; b; �1; �2) +

+E(x;a;b)
�Z t^n

0
e��1U

(+)
s ��2U(�)s (L(x;a;b)�

��e��s
�
Zs

@

@ (e��sz)
+ as

@

@(e��sa)
+ bs

@

@(e��sb)

��
L
�
e��sZs; e

��sas; e
��sbs; �1; �2

�
ds

�
+

+�1E
(x;a;b)

�Z t^n

0
e��se��1U

(+)
s ��2U(�)s L(e��sZs; e

��sas; e
��sbs; �1; �2)dU (+)s

�
�

��1E(x;a;b)
�Z t^n

0
e��1U

(+)
s ��2U(�)s L(e��sZs; e

��sas; e
��sbs; �1; �2)dU

(+)
s

�
+

+�2E
(x;a;b)

�Z t^n

0
e��se��1U

(+)
s ��2U(�)s L(e��sZs; e

��sas; e
��sbs; �1; �2)dU (�)s

�
�

��2E(x;a;b)
�Z t^n

0
e��1U

(+)
s ��2U(�)s L(e��sZs; e

��sas; e
��sbs; �1; �2)dU

(�)
s

�
(2.6.37)

Taking into account that by relations (2.1.26) and (2.1.27) we have that

dU
(+)
t = e��tdU (+)t

dU
(�)
t = e��tdU (�)t

and also relation (2.3.46), expression (2.6.37) becomes

E(x;a;b)(e��1U
(+)
t^n��2U

(�)
t^nL(e��(t^n)Zt^n; e

��(t^n)at^n; e
��(t^n)bt^n; �1; �2))

= L(x; a; b; �1; �2) +

+E(x;a;b)
�Z t^n

0
e��1U

(+)
s ��2U(�)s

�
L(x;a;b)L(e��ss Zs; e

��sas; e
��sbs; �1; �2)

��
�
�1e

��s @

@(�1e��s)
+ �2e

��s @

@(�2e��s)

�
L(Zs; as; bs; �1e

��s; �2e
��s)

�
ds

�
(2.6.38)

Applying relation (2.3.45) to expression (2.6.38) we conclude

E(x;a;b)
�
e��1U

(+)
t^n��2U

(�)
t^nL(e��(t^n)Zt^n; e

��(t^n)at^n; e
��(t^n)bt^n; �1; �2)

�
= L(x; a; b; �1; �2) +

+E(x;a;b)

0@ t^nZ
0

e��1U
(+)
s ��2U(�)s

�
L(x;a;b) � ��1e��s

@

@(�1e��s)
�

���2e��s
@

@ (�2e��s)

�
L(Zs; as; bs; �1e

��s; �2e
��s)ds

�
(2.6.39)
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Applying the PDE (2.6.6) with �1e��s instead of �1 and �2e��s instead of �2 the above expression

(2.6.39) simpli�es to

E(x;a;b)
�
e��1U

(+)
t^n��2U

(�)
t^nL

�
e��(t^n)Zt^n; e

��(t^n)at^n; e
��(t^n)bt^n; �1; �2

��
= L(x; a; b; �1; �2)

(2.6.40)

Applying relation (2.3.45) in expression (2.6.40) we have

L(x; a; b; �1; �2) = E(x;a;b)
�
e��1U

(+)
t^n��2U

(�)
t^nL

�
Zt^n; at^n; bt^n; �1e

��(t^n); �2e
��(t^n)

��
(2.6.41)

Taking limit as t!1 (using the dominated convergence theorem as by hypotheses we have that

L(x; a; b; �1; �2) 2 C2b (R5)) the relation (2.6.41) becomes

L(x; a; b; �1; �2) = E(x;a;b)
�
e��1U

(+)
n ��2U(�)n L(Zn; an; bn; 0; 0)

�
(2.6.42)

Taking into account the condition (2.6.30) the above expression (2.6.42) simpli�es to

L(x; a; b; �1; �2) = E(x;a;b)
�
e��1U

(+)
n ��2U(�)n

�
(2.6.43)

Finally taking limit as n!1 we conclude:

L(x; a; b; �1; �2) = E(x;a;b)
�
e��1U

(+)��2U(�)
�
:

Working as for the proof of Proposition 2.6.5, setting �rst �1 = 0, �2 = � and second �1 = �,

�2 = 0 the following proposition can be proved.

Proposition 2.6.6 (Laplace transforms of the discounted dividends and the discounted �nanc-
ing). Let the functions K(+)(x; a; b; �) and K(�)(x; a; b; �) belonging to C2b (R

4) which satisfy the

scaling properties (2.3.40), (2.3.43). If the functions K(+)(x; a; b; �) and K(�)(x; a; b; �) solves

the PDEs :

'(x; a; b)

2(b� a)2
@2

@x2
K(�)(x; a; b; �) +

�
�(x; a; b)

b� a � �(x; a; b)

2(b� a)2

�
@

@x
K(�)(x; a; b; �)

= ��
@

@�
K(�)(x; a; b; �) (2.6.44)

with boundary conditions:

@

@x
K(+)(x; a; b; �)jx=a = 0 (2.6.45)

@

@x
K(+)(x; a; b; �)jx=b = ��K(+)(b; a; b; �) (2.6.46)

@

@x
K(�)(x; a; b; �)jx=b = 0 (2.6.47)

@

@x
K(�)(x; a; b; �)jx=a = �K(�)(a; a; b; �) (2.6.48)
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then

K(+)(x; a; b; �) := E(x;a;b)
�
e��U

(+)
�

(2.6.49)

K(�)(x; a; b; �) := E(x;a;b)
�
e��U

(�)
�

(2.6.50)

The next proposition concerns with the moments of the discounted dividends and the dis-

counted �nancing.

Proposition 2.6.7 (Moments of the discounted dividends and the discounted �nancing). Let

the functions V (+)(x; a; b;n) and V (�)(x; a; b;n) , n 2 N belonging to C2b (R
3) satisfy the scaling

properties (2.3.39), (2.3.42). If the functions V (+)(x; a; b;n) and V (�)(x; a; b;n) solve the ODEs

:

'(x; a; b)

2(b� a)2
@2

@x2
V (�)(x; a; b;n) +

�(x; a; b)

b� a
@

@x
V (�)(x; a; b;n) +

+

�
�b(b)� �a(a)

b� a � n�
�
V (�)(x; a; b;n)

= 0 (2.6.51)

with boundary conditions:

@

@x
V (+)(x; a; b;n)jx=a = 0; n = 1; 2; : : : (2.6.52)

@

@x
V (+)(x; a; b; 1)jx=b = 1 (2.6.53)

@

@x
V (+)(x; a; b;n)jx=b = nV (+)(b; a; b;n� 1); n = 2; 3; : : : (2.6.54)

@

@x
V (�)(x; a; b;n)jx=b = 0; n = 1; 2; : : : (2.6.55)

@

@x
V (�)(x; a; b; 1)jx=a = �1 (2.6.56)

@

@x
V (�)(x; a; b;n)jx=a = nV (�)(a; a; b;n� 1); n = 2; 3; : : : (2.6.57)

then

V (+)(x; a; b;n) = E(x;a;b)
�
(U (+))n

�
(2.6.58)

V (�)(x; a; b;n) = E(x;a;b)((U (�))n) (2.6.59)

Proof. We will prove the result only for the function V (+)(x; a; b;n) because the proof for the
function V (�)(x; a; b;n) is similar. First we observe that because the function V (+)(x; a; b;n) is

in C2b (R
3) and satis�es the scaling properties (2.3.39),(2.3.42) then by relation (2.5.62) we must
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have

L(x;a;b)V (+)(x; a; b;n) (2.6.60)

= A(x;a;b)V (+)(x; a; b;n)

=
�b(b)� �a(a)

b� a V (+)(x; a; b;n) +
�(x; a; b)

b� a
@

@x
V (+)(x; a; b;n) +

+
'(x; a; b)

2(b� a)2
@2

@x2
V (+)(x; a; b;n)

By the above relation (2.6.60) and the fact that the function V (+)(x; a; b;n) solves the ODE

(2.6.51) we conclude

(L(x;a;b) � n�)V (+)(x; a; b;n) = 0 (2.6.61)

We consider the time instants h and t with t � h: Applying the Itô formula to the process

e�n�(t�h)V (+)(Zt; at; bt;n)

taking conditional expectations, taking into account the condition (2.6.52) and using the fact that

the process V (+)(Zh; ah; bh;n) is Fh measurable we have:

E
�
e�n�(t�h)V (+)(Zt; at; bt;n)jFh

�
= V (+)(Zh; ah; bh;n) + E

0@0@ tZ
h

e�n�(s�h) (L(x;a;b) � n�)V (+)(Zs; as; bs;n)ds

1A jFh
1A�

�E

0@0@ tZ
h

e�n�(s�h)
@

@z
V (+)(Zs; as; bs;n)dU (+)s

1A jFh
1A (2.6.62)

Using relation (2.6.61) expression (2.6.62) becomes :

V (+)(Zh; ah; bh;n) = E

0@0@ tZ
h

e�n�(s�h)
@

@z
V (+)(Zs; as; bs;n)dU (+)s

1A jFh
1A (2.6.63)

Next we apply relation (2.6.63) with n = 1, taking into account that by the relation (2.5.22) we

have

dU (+)(t) = �e��tdU (+)t (2.6.64)

and also considering the relation (2.6.53) and taking the limit as t ! 1 (using the monotone

convergence theorem) we conclude that

E(e�hU (+)(h)jFh) = V (+)(Zh; ah; bh; 1) <1 (2.6.65)

We will use the method of induction. Suppose that for n� 1 we have

E
�
e(n�1)�h(U (+)(h))n�1jFh

�
= V (+)(Zh; ah; bh;n� 1) <1 (2.6.66)
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Next applying the relation (2.6.63) for n and taking into account the relations (2.6.54), (2.6.66)

and interchange expectation and integral (using the Fubini theorem) because

E

0@ tZ
h

e�n�(s�h)V (+) (Zs; as; bs;n� 1) dU (+)s jFh

1A
� sup

s
V (+) (Zs; as; bs;n� 1) en�hE((U (+)(h))jFh) <1

we conclude

V (+)(Zh; ah; bh;n) = nE

0@ tZ
h

e�n�(s�h)V (Zs; as; bs;n� 1)dU (+)s jFh

1A
= nE

0@ tZ
h

e�n�(s�h)E
�
e(n�1)�s(U (+)(s))n�1jFs

�
dU (+)s jFh

1A
= n

tZ
h

e�n�(s�h)E(E(e(n�1)�s(U (+)(s))n�1dU (+)s jFs)jFh)

= n

tZ
h

e�n�(s�h)E(e(n�1)�s(U (+)(s))n�1dU (+)s jFh)

= nE

0@en�h tZ
h

e��s(U (+)(s))n�1dU (+)s jFh

1A
= �E

0@en�h tZ
h

n(U (+)(s))n�1dU (+)(s)jFh

1A
Therefore

V (+)(Zh; ah; bh;n) = �E

0@en�h tZ
h

n(U (+)(s))n�1dU (+)(s)jFh

1A
Taking the limit in the above relation as t ! 1 (using the monotone convergence theorem) we

have

V (+)(Zh; ah; bh;n) = �E

0@en�h 1Z
h

n(U (+)(s))n�1dU (+)(s)jFh

1A
= �E

�
en�h((U (+)(s))nj1h )jFh

�
Therefore

V (+)(Zh; ah; bh;n) = E
�
en�h(U (+)(h))njFh

�
(2.6.67)

Finally by taking h = 0 in the expression (2.6.67) we conclude the relation (2.6.58).
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With the end of the previous proposition we come to the end of this section and also at the

end of this chapter. We accomplish our goal which was to extend the classical de Finetti model

with constant barriers to the more general de Finetti model with general barriers. The PDEs of

this section can be used in order one to �nd expectations about the discounted dividends, the

discounted �nancing and the time of ruin in the context of de Finetti model with general barriers.

2.7 Conclusions.

We extended the de Finetti model in order to include cases with �uctuating barriers dividends

policies which are modelled as di¤usions. We made the extension in an axiomatic manner by pos-

ing particular properties which were motivated by the classical de Finetti model. We showed that

the de Finetti models with general barriers are well de�ned that is there exist unique stochastic

processes that evolve according to the conditions dictated by our axioms.

We considered de Finetti models with one general barrier meaning that when the reserves of

the insurance company reach a "particular" level which depends upon a di¤usion process then

the company goes bankrupt. We also considered de Finetti models with two general barriers, that

is when the reserves of the insurance company reach the level of the lower barrier, which also

depends upon a di¤usion process, then the insurance company has the option to borrow money

and continue it�s function.

We derived di¤erential equations with appropriate boundary conditions, the solution of which

gives the moments of the discounted dividends, the moments of the discounted �nancing, the

Laplace transform of the time of ruin, the Laplace transform of the joint distribution of the time

of ruin and the discounted dividends and the Laplace transform of the joint distribution of the

discounted dividends and the discounted �nancing.



Chapter 3

Applications on de Finetti models.

3.1 Introduction.

We will devote this chapter to particular applications of the formulas of chapter 2. More speci�-

cally we want to consider three particular cases for the reserve process of an insurance company

which are of great interest in the literature. These include the Ornstein-Uhlenbeck, the Geometric

Brownian Motion and the Brownian motion process. We choose to apply the formulas of this

section in an insurance model which follows a constant dividends barriers policy in order our

results to be comparable to the results available in the literature on dividends barriers policy.

3.2 Ornstein-Uhlenbeck process.

The Ornstein�Uhlenbeck process is a fundamental process that plays very important role in �nan-

cial and insurance mathematics. For example if one wants to study risk models and to consider

also an investment of the reserves in the stock market then soon will �nd himself in the realm

of the Ornstein�Uhlenbeck process. As a consequence a lot of papers have been written on this

process. ( see for example the papers of Eie[55], Jacobsen[66], Schobel[168], Barndor and Nielsen

[15], [16], Ward[183], Gillespie [77], NG [137], Aquilina [5], Cai [34], Alili [4], Going [79], Patie

[144], Shiga [170], Graversen [83], Chojnowska [39], Nicolato [139], Lladser [124], Bishwal [24],

Simao [172])

In this subsection we suppose that the reserves X = fXt : t � 0g of an insurance company
follow the Ornstein-Uhlenbeck (OU) process, with dynamics that are described by

83
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dXt = �aXtdt+ �dBt (3.2.1)

with initial capital X0 = x. If A is the generator of X then

Af(x) = �ax @
@x
f(x) +

1

2
�2

@2

@x2
f(x)

for a function f(�) 2 DA, (where DA is the domain of the generator A (see De�nition 1.3.29)).

The insurance company follows the de Finetti model with upper barrier the constant b, that

is for each time t � 0
bt = b

and lower barrier the zero constant, that is for each time t � 0

at = 0

We consider �rst the de Finetti model with one general re�ecting barrier (1RB) and we �nd

the expected value of discounted dividends, the Laplace transform of the discounted dividends

and the Laplace transform of time of ruin. Next we consider the de Finetti model with two

general re�ecting barriers (2RB) and we �nd the expected discounted dividends and the expected

discounted �nancing, the Laplace transforms of the discounted dividends and the discounted

�nancing and the Laplace transform of the joint distribution of the discounted dividends and the

discounted �nancing.

The following special function will play an important role for the calculations of this section.

De�nition 3.2.1 De�nition of the function H(�1; �2; x) which is known as con�uent hypergeo-
metric function of Kummer (�rst kind). The function H(�1; �2; x) is de�ned by

H(�1; �2; x) :=
1X
k=0

(�1)k
(�2)k

xk

k!

where (�1)k; (�2)k are the rising factorials, that is

(�1)k =
(�1 + k � 1)!
(�1 � 1)!

(�2)k =
(�2 + k � 1)!
(�2 � 1)!
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3.2.1 Expected value of the discounted dividends. (OU-1RB)

By Proposition 2.6.4 the Expected value of the discounted dividends V (x) is given by the solution

of:
1

2
�2

@2

@x2
V (x)� ax @

@x
V (x) = �V (x) (3.2.2)

with boundary conditions:

V (0) = 0 (3.2.3)
@

@x
V (x)jx=b = 1 (3.2.4)

The solution of (3.2.2)-(3.2.4) is

V (x) =
xH

�
1
2 +

�
2a ;

3
2 ;
ax2

�2

�
3�2

3�2H
�
1
2 +

�
2a ;

3
2 ;
ab2

�2

�
+ 4ab2

�
1
2 +

�
2a

�
H
�
3
2 +

�
2a ;

5
2 ;
ab2

�2

� (3.2.5)

3.2.2 The Laplace transform of the discounted dividends.(OU-1RB)

By Proposition 2.6.2 the Laplace transform of the discounted dividends K(x; �) is given by the

solution of:
1

2
�2

@2

@x2
K(x; �)� ax @

@x
K(x; �)� �� @

@x
K(x; �) = 0 (3.2.6)

with boundary conditions:

K(0; �) = 1 (3.2.7)
@

@x
K(x; �)jx=b = ��K(b; �) (3.2.8)

In order to solve (3.2.6) with boundary conditions (3.2.7), (3.2.8) we consider the moment of

the discounted dividends V (x; k) which is given by

V (x; k) = Ex(Uk); k = 1; 2; 3; : : : (3.2.9)

We have that

K(x; �) = 1 +

1X
k=1

(��)k
k!

Ex(Uk) = 1 +
1X
k=1

(��)k
k!

V (x; k) (3.2.10)

Substituting (3.2.10) to (3.2.6) and comparing the coe¢ cients of (��)k we have the di¤erential
equations:

1

2
�2

@2

@x2
V (x; k)� ax @

@x
V (x; k)� �k @

@x
V (x; k) = 0; k = 1; 2; 3; : : : (3.2.11)
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From condition K(0; �) = 1 we have that

V (0; k) = 0; k = 1; 2; 3; : : : (3.2.12)

and from the condition @
@xK(x; �)jx=b = ��K(b; �) we have that

@

@x
V (x; 1)jx=b = 1 (3.2.13)

and
@

@x
V (x; k)jx=b = kV (b; k � 1); k = 2; 3; 4; : : : (3.2.14)

The solutions of (3.2.11) are of the form:

V (x; k) = ck(b)gk(x); k = 1; 2; 3; : : : (3.2.15)

where

gk(x) = xH

�
1

2
+
�k

2a
;
3

2
;
ax2

�2

�
; k = 1; 2; 3; : : :

In order to �nd the ck(b) we have from (3.2.15), (3.2.13) and (3.2.14) that

c1(b) =
1

@
@xg1(x)jx=b

(3.2.16)

and

ck(b)

�
@

@x
gk(x)jx=b

�
= kck�1(b)gk�1(b); (3.2.17)

for k = 2; 3; 4; : : : . So we �nd that

ck(b) = k!
g1(b) � � � gk�1(b)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.2.18)

and the k�th moment V (x; k) of the discounted dividends U about the origin is

V (x; k) = Ex(Uk) = k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� ; (3.2.19)

k = 1; 2; 3; : : :, and the Laplace transform K(x; �) of the discounted dividends U is

K(x; �) = 1 +
1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
3.2.3 The Laplace transform of the time of ruin. (OU-1RB)

By Proposition 2.6.3 the Laplace transform of time of ruin M(x; �) is given by the solution of:

1

2
�2

@2

@x2
M(x; �)� ax @

@x
M(x; �)� �M(x; �) = 0 (3.2.20)
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with boundary conditions:

M(0; �) = 1 (3.2.21)
@

@x
M(x; �)jx=b = 0 (3.2.22)

The solution of (3.2.20)-(3.2.22) is

M(x; �) = H

�
�

2a
;
1

2
;
ax2

�2

�
� xH

�
1

2
+

�

2a
;
3

2
;
ax2

�2

� ef(a; b; �; �) (3.2.23)

where

ef(a; b; �; �) := 6�bH
�
1 + �

2a ;
3
2 ;
ab2

�2

�
�
3�2H

�
1
2 +

�
2a ;

3
2 ;
ab2

�2

�
+ 4ab2

�
1
2 +

�
2a

�
H
�
3
2 +

�
2a ;

5
2 ;
ab2

�2

��

Remark 3.2.2 We found that the function V (x) := ExU is given by (3.2.5) and it is of the form

V (x) = g(x)
g0(b) , with g(x) = xH

�
1
2 +

�
2a ;

3
2 ;
ax2

�2

�
: Let b� be the value of the barrier b which gives

the maximum dividends. Then the optimal barrier b� can be found from the solution of equation

g00(b�) = 0 (3.2.24)

The above equation is di¢ cult to be solved analytically in general and has to be addressed using

numerical methods.

Remark 3.2.3 If the initial state is x = b� then it holds that

V (b�) =
g(b�)

g0(b�)

which implies

V
00
(b�) = 0 (3.2.25)

Substituting (3.2.25) in (3.2.2) we �nd that

1

2
�20� ab�1� �V (b�) = 0

which leads to

V (b�) = �ab
�

�
(3.2.26)

That is (3.2.26) gives the maximum value of the dividends when the initial state is x = b� .

Remark 3.2.4 The optimal barrier b� is independent from the initial state of the process and for

known values of the parameters can be calculated with numerical methods.
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3.2.4 Expected discounted dividends and expected discounted �nancing. (OU-
2RB)

By Proposition 2.6.7 the expected discounted dividends V (+)(x) and expected discounted �nanc-

ing V (�)(x) are given by the solutions of:

1

2
�2

@2

@x2
V (�)(x)� ax @

@x
V (�)(x)� �V (�)(x) = 0 (3.2.27)

with boundary conditions:

@

@x
V (+)(x)jx=0 = 0 (3.2.28)

@

@x
V (+)(x)jx=b = 1

@

@x
V (�)(x)jx=0 = �1

@

@x
V (�)(x)jx=b = 0

The solutions of (3.2.27) with boundary conditions (3.2.28) are

V (+)(x) =
�2

2�bH
�
1 + �

2a ;
3
2 ;
ab2

�2

�H � �

2a
;
1

2
;
ax2

�2

�
(3.2.29)

V (�)(x) = H

�
�

2a
;
1

2
;
ax2

�2

�
Q(a; b; �; �)� xH

�
1

2
+

�

2a
;
3

2
;
ax2

�2

�
(3.2.30)

where

Q(a; b; �; �) :=
3�2H

�
1
2 +

�
2a ;

3
2 ;
ab2

�2

�
+ 4a

�
1
2 +

�
2a

�
b2H

�
3
2 +

�
2a ;

5
2 ;
ab2

�2

�
6�bH

�
1 + �

2a ;
3
2 ;
ab2

�2

�

3.2.5 The Laplace transforms of the discounted dividends and the discounted
�nancing. (OU-2RB)

By Proposition 2.6.6 the Laplace transform of the discounted dividends K(+)(x; �) is given by the

solution of:
1

2
�2

@

@x2
K(+)(x; �)� ax @

@x
K(+)(x; �)� �� @

@�
K(+)(x; �) = 0 (3.2.31)

with boundary conditions:

@

@x
K(+)(x; �)jx=0 = 0 (3.2.32)

@

@x
K(+)(x; �)jx=b = ��K(+)(b; �)
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and the Laplace transform of the discounted �nancing K(�)(x; �) is given by the solution of:

1

2
�2

@

@x2
K(�)(x; �)� ax @

@x
K(�)(x; �)� �� @

@�
K(�)(x; �) = 0 (3.2.33)

with boundary conditions:

@

@x
K(�)(x; �)jx=b = 0 (3.2.34)

@

@x
K(�)(x; �)jx=0 = �K(�)(0; �)

In order to solve (3.2.31) with boundary conditions (3.2.32) let

V (+)(x; k) = Ex((U (+))k); k = 1; 2; 3; : : : (3.2.35)

Then we have

K(+)(x; �) = 1 +

1X
k=1

(��)k
k!

Ex((U (+))k) = 1 +

1X
k=1

(��)k
k!

V (+)(x; k) (3.2.36)

Substituting (3.2.36) to (3.2.31) and comparing the coe¢ cients of (��)k we have the di¤erential
equations

1

2
�2

@2

@x2
V (+)(x; k)� ax @

@x
V (+)(x; k)� �k @

@x
V (+)(x; k) = 0 (3.2.37)

for k = 1; 2; 3; : : :. From the condition @
@xK

(+)(x; �)jx=0 = 0 we have that

@

@x
V (+)(x; k)jx=0 = 0; k = 1; 2; 3; : : : (3.2.38)

and from the condition @
@xK

(+)(x; �)jx=b = ��K(+)(b; �) it follows that

@

@x
V (+)(x; 1)jx=b = 1 (3.2.39)

and
@

@x
V (+)(x; k)jx=b = kV (+)(b; k � 1); k = 2; 3; 4; : : : (3.2.40)

The solutions of (3.2.37) are of the form

V (+)(x; k) = ck(b)gk(x); k = 1; 2; 3; : : : (3.2.41)

where

gk(x) = H

�
�k

2a
;
1

2
;
ax2

�2

�
:

In order to �nd the ck(b) we have from (3.2.41), (3.2.39) and (3.2.40) that

c1(b) =
1

@
@xg1(x)jx=b

(3.2.42)
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and

ck(b)

�
@

@x
gk(x)jx=b

�
= kck�1(b)gk�1(b) (3.2.43)

for k = 2; 3; 4; : : : .So we �nd that

ck(b) = k!
g1(b) � � � gk�1(b)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.2.44)

and the k�th moment V (+)(x; k) of the discounted dividends U (+) about the origin is

V (+)(x; k) = k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.2.45)

for k = 1; 2; 3; : : : . The Laplace transform K(+)(x; �) of the discounted dividends U (+) is

K(+)(x; �) = 1 +
1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
In order to solve (3.2.33) with boundary conditions (3.2.34) we proceed in analogous manner.

Let

V (�)(x; k) = Ex((U (�))k); k = 1; 2; 3; : : : (3.2.46)

Then we have

K(�)(x; �) = 1 +
1X
k=1

(��)k
k!

Ex((U (�))k) = 1 +
1X
k=1

(��)k
k!

V (�)(x; k) (3.2.47)

Substituting (3.2.47) to (3.2.33) and comparing the coe¢ cients of (��)k we have the di¤erential
equations

1

2
�2

@2

@x2
V (�)(x; k)� ax @

@x
V (�)(x; k)� �k @

@x
V (�)(x; k) = 0 (3.2.48)

for k = 1; 2; 3; : : :. From the condition

@

@x
K(�)(x; �)jx=b = 0

we have that
@

@x
V (�)(x; k)jx=b = 0; k = 1; 2; 3; : : : (3.2.49)

and from the condition
@

@x
K(�)(x; �)jx=0 = ��K(�)(0; �)

we obtain
@

@x
V (�)(x; 1)jx=0 = �1 (3.2.50)

and
@

@x
V (�)(x; k)jx=0 = �kV (�)(0; k � 1) k = 2; 3; 4; : : : (3.2.51)
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The solutions of (3.2.48) are of the form

V (�)(x; k) = ck(0)mk(x) k = 1; 2; 3; : : : (3.2.52)

where

mk(x) = H

�
�k

2a
;
1

2
;
ax2

�2

�
� xH

�
1

2
+
�k

2a
;
3

2
;
ax2

�2

�
S(a; b; k; �; �) (3.2.53)

and

S(a; b; k; �; �) :=
6�bkH

�
1 + �k

2a ;
3
2 ;
ab2

�2

�
3�2H

�
1
2 +

�k
2a ;

3
2 ;
ab2

�2

�
+ 4ab2

�
1
2 +

�k
2a

�
H
�
3
2 +

�k
2a ;

5
2 ;
ab2

�2

�
In order to �nd the ck(0) we have from (3.2.52), (3.2.50) and (3.2.51) that

c1(0) =
�1

@
@xm1(x)jx=0

(3.2.54)

and

ck(0)

�
@

@x
mk(x)jx=0

�
= �kck�1(0)mk�1(0) for k = 2; 3; 4; : : : (3.2.55)

So we �nd that

ck(0) = (�1)kk!
m1(0) � � �mk�1(0)�

@
@xm1(x)jx=0

�
� � �
�
@
@xmk�1(x)jx=0

� �
@
@xmk(x)jx=0

� (3.2.56)

and the k�th moment of U (�) about the origin is

V (�)(x; k) = (�1)kk! m1(0) � � �mk�1(0)mk(x)�
@
@xm1(x)jx=0

�
� � �
�
@
@xmk�1(x)jx=0

� �
@
@xmk(x)jx=0

� (3.2.57)

k = 1; 2; 3; : : :

and the Laplace transform of U (�) is

K(�)(x; �) (3.2.58)

= 1 +
1X
k=1

�k
m1(0) � � �mk�1(0)mk(x)�

@
@xm1(x)jx=0

�
� � �
�
@
@xmk�1(x)jx=0

� �
@
@xmk(x)jx=0

�
3.2.6 The Laplace transform of the joint distribution of the discounted divi-

dends and the discounted �nancing. (OU-2RB)

By Proposition 2.6.5 the Laplace transform of the joint distribution of the discounted dividends

and the discounted �nancing is given by the solution of:

1

2
�2

@2

@x2
N(x; �1; �2)� ax

@

@x
N(x; �1; �2) (3.2.59)

= �

�
�1

@

@�1
N(x; �1; �2) + �2

@

@�2
N(x; �1; �2)

�
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with boundary conditions:

@

@x
N(x; �1; �2)jx=0 = �2N(0; �1; �2) (3.2.60)

@

@x
N(x; �1; �2)jx=b = ��1N(b; �1; �2) (3.2.61)

In order to solve (3.2.59) with boundary conditions (3.2.60), (3.2.61) let

Wk(x; �1; �2) = Ex
�
(��1U (+) � �2U (�))k

�
(3.2.62)

k = 1; 2; 3 : : : :

Then we have

N(x; �1; �2) = 1 +
1X
k=1

Ex
��
��1U (+) � �2U (�)

�k�
k!

= 1 +
1X
k=1

Wk(x; �1; �2)

k!
(3.2.63)

Substituting (3.2.63) to (3.2.59) it follows that

1

2
�2

1X
k=1

W
00
k (x; �1; �2)

k!
� ax

1X
k=1

W
0
k(x; �1; �2)

k!
=

= �

0@�1 1X
k=1

Ex
��
�U (+)

� �
��1U (+) � �2U (�)

�k�1�
(k � 1)! +

+�2

1X
k=1

Ex
�
(�U (�))(��1U (+) � �2U (�))k�1

�
(k � 1)!

!

which implies

1

2
�2

1X
k=1

W
00
k (x; �1; �2)

k!
� ax

1X
k=1

W
0
k(x; �1; �2)

k!

= �

1X
k=1

Ex
�
(��1U (+) � �2U (�))k

�
(k � 1)! = �

1X
k=1

Wk(x; �1; �2)

(k � 1)! =)

1X
k=1

1
2�

2W
00
k (x; �1; �2)� axW

0
k(x; �1; �2)� �kWk(x; �1; �2)

k!
= 0 (3.2.64)

and because (3.2.64) holds for every �1; �2 we conclude that

1

2
�2W

00
k (x; �1; �2)� axW

0
k(x; �1; �2)� �kWk(x; �1; �2) = 0 (3.2.65)
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k = 1; 2; 3 : : : :

The solution of (3.2.65) is

Wk(x; �1; �2) = ck1H(

�
�k

2a
;
1

2
;
ax2

�2

�
+ ck2xH

�
1

2
+
�k

2a
;
3

2
;
ax2

�2

�
(3.2.66)

k = 1; 2; 3; : : : :

From the condition @
@xN(x; �1; �2)jx=0 = �2N(0; �1; �2) we have that :

W
0
1(0; �1; �2) = �1 (3.2.67)

W
0
k(0; �1; �2) = �kWk�1(0; �1; �2) (3.2.68)

and from the condition @
@xN(x; �1; �2)jx=b = ��1N(b; �1; �2) we have that :

W
0
1(b; �1; �2) = 1 (3.2.69)

W
0
k(b; �1; �2) = kWk�1(b; �1; �2) (3.2.70)

From the relations (3.2.66), (3.2.67), (3.2.69) we �nd that

W1(x; �1; �2) = T (a; b; �; �)H
�
�

2a
;
1

2
;
ax2

�2

�
� xH

�
1

2
+
�k

2a
;
3

2
;
ax2

�2

�
(3.2.71)

where

T (a; b; �; �) :=
3�2

�
1 +H(a+�2a ;

3
2 ;
ab2

�2
)
�
+ 2(a+ �)b2H

�
1
2(3 +

�
a);

5
2 ;
ab2

�2

�
6�bH

�
1 + �

2a ;
3
2 ;
ab2

�2

�
From the relations (3.2.66), (3.2.68), (3.2.70) we �nd that

Wk(x; �1; �2) (3.2.72)

= �kWk�1(0; �1; �2)xH

�
1

2
+
�k

2a
;
3

2
;
ax2

�2

�
+

+

0@D(a; b; �; k; �)Wk�1(0; �1; �2) +
3�2Vk�1(b; �1; �2)

6�bH
�
1 + �k

2a ;
3
2 ;
ab2

�2

�
1AH

�
�k

2a
;
1

2
;
ax2

�2

�

where

D(a; b; �; k; �) :=

�
3�2H

�
a+�k
2a ; 32 ;

ab2

�2

��
+ 2(a+ �k)b2H

�
1
2(3 +

�k
a );

5
2 ;
ab2

�2

�
]

6�bH
�
1 + �k

2a ;
3
2 ;
ab2

�2

�
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3.3 Geometric Brownian motion.

The Geometric Brownian motion is a fundamental process for stochastic analysis. Sooner or later

anyone who involves with Risk theory will come across to this process. For this reason we consider

as important the study of the properties of this process. Someone who is interesting in recent

developments relevant to this process might see for example the papers of: Graversen [82], Donati

[49], Dufresne [51], Ishiyama [102], Masamitsu [128], [129], Bhattacharya [22], Lefebvre [121], Carr

[37], Matsumoto [130], [131], Marathe [127], Gushchin [84], Cai [35], Yor [190], Takatsuka [176].

In this subsection we suppose that the reserves X = fXt : t � 0g of an insurance company
follow the Geometric Brownian motion (GBM) process, with dynamics that are described by

dXt = �Xtdt+ �XtdBt (3.3.1)

with X0 = x > 0: If A is the generator of X then

Af(x) = �x
@

@x
f(x) +

1

2
�2x2

@2

@x2
f(x)

for a function f(�) 2 DA, (where DA is the domain of the generator A (see De�nition 1.3.29)).

The insurance company follows the de Finetti model with upper barrier the constant b, that

is for each time t � 0
bt = b

and lower barrier the zero constant, that is for each time t � 0

at = 0

We consider �rst the de Finetti model with one general re�ecting barrier (1RB) and we �nd the

expected value of the discounted dividends, the Laplace transform of the discounted dividends,

and the Laplace transform of the time of ruin. Next we consider the de Finetti model with two

general re�ecting barriers (2RB) and we �nd the expected discounted dividends and the expected

discounted �nancing, the Laplace transforms of the discounted dividends and the discounted

�nancing, and the Laplace transform of the joint distribution of the discounted dividends and the

discounted �nancing (also see Gerber, H.U. and Shiu, E.S.W.([72])).

Before we start studying the case of one general re�ecting barrier, we �rst de�ne the quantities

sk;� :=
�2 � 2�+

p
(�2 � 2�) + 8�k�2
2�2

(3.3.2)

rk;� :=
�2 � 2��

p
(�2 � 2�) + 8�k�2
2�2

(3.3.3)
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for k = 1; 2; : : : : We observe that rk;� � 0 � sk;�:

3.3.1 Expected value of the discounted dividends. (GBM-1RB)

By Proposition 2.6.4 the expected value of the discounted dividends V (x) is given by the solution

of
1

2
�2x2

@2

@x2
V (x) + �x

@

@x
V (x) = �V (x) (3.3.4)

with boundary conditions

V (a) = 0; (3.3.5)
@

@x
V (x)jx=b = 1: (3.3.6)

The solution of (3.3.4) is

V (x) =
g(x)

g0(b)
(3.3.7)

where

g(x) := xs1;� � as1;��r1;�xrk;� (3.3.8)

3.3.2 The Laplace transform of the discounted dividends. (GBM-1RB)

By Proposition 2.6.2 the Laplace transform of the discounted dividends K(x; �) is given by the

solution of
1

2
�2x2

@2

@x2
K(x; �) + �x

@

@x
K(x; �)� �� @

@x
K(x; �) = 0 (3.3.9)

with boundary conditions

K(a; �) = 1 (3.3.10)
@

@x
K(x; �)jx=b = ��K(b; �) (3.3.11)

Working as in section 3.2 we �nd that the k�th moment of the discounted dividends U;for

k = 1; 2; 3; : : :

V (x; k) = Ex(Uk) = k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� ;
and the Laplace transform of the discounted dividends K(x; �) is given by

K(x; �) = 1 +
1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.3.12)

with

gk(x) := xsk;� � ask;��rk;�xrk;� (3.3.13)
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3.3.3 The Laplace transform of the time of ruin. (GBM-1RB)

By Proposition 2.6.3 the Laplace transform of the time of ruin M(x; �) is given by the solution

of:
1

2
�2x2

@2

@x2
M(x; �) + �x

@

@x
M(x; �)� �M(x; �) = 0 (3.3.14)

with boundary conditions

M(a; �) = 1 (3.3.15)
@

@x
M(x; �)jx=b = 0 (3.3.16)

The solution of (3.3.14) with boundary conditions (3.3.15), (3.3.16) is

M(x; �) =
xs1;� � s1;�

r1;� b
s1;��r1;�xr1;�

as1;� � s1;�
r1;�

b
s1;��r1;�a

r1;�
(3.3.17)

Remark 3.3.1 (Maximum dividends barrier). Let b� be the value of the barrier b which gives the

maximum dividends V (�). Then the b� can be found from the solution of equation g00(b�) = 0, and

from the solution of this equation we found that the optimal value for the barrier is

b� = a

�
r1;�(r1;� � 1)
s1;�(s1;� � 1)

� 1
s1;��r1;�

(3.3.18)

3.3.4 Expected discounted dividends and expected discounted �nancing. (GBM-
2RB)

By Proposition 2.6.7 the expected discounted dividends V (+)(x) and expected discounted �nanc-

ing V (�)(x) are given by the solutions of:

1

2
�2x2

@2

@x2
V (�)(x) + �x

@

@x
V (�)(x)� �V (�)(x) = 0 (3.3.19)

with boundary conditions

@

@x
V (+)(x)jx=a = 0 (3.3.20)

@

@x
V (+)(x)jx=b = 1 (3.3.21)

@

@x
V (�)(x)jx=a = �1 (3.3.22)

@

@x
V (�)(x)jx=b = 0 (3.3.23)



3.3.5 The Laplace transforms of the discounted dividends and the
discounted �nancing. (GBM-2RB) 97

The solutions of (3.3.19) with boundary conditions (3.3.20)-(3.3.23) are

V (+)(x) =
b

ar1;�bs1;� � as1;� br1;�

 
asxs1;�

s1;�
� a

s1;�
x
r1;�

r1;�

!
(3.3.24)

V (�)(x) =
�

�r1;�bs1;� � �s1;�br1;�

�
br1;�xs1;�

s1;�
� bs1;�xr1;�

r1;�

�
(3.3.25)

3.3.5 The Laplace transforms of the discounted dividends and the discounted
�nancing. (GBM-2RB)

By Proposition 2.6.6 the Laplace transform of the discounted dividends K(+)(x; �) is given by the

solution of:
1

2
�2x2

@

@x2
K(+)(x; �) + �x

@

@x
K(+)(x; �)� �� @

@�
K(+)(x; �) = 0 (3.3.26)

with boundary conditions:

@

@x
K(+)(x; �)jx=a = 0 (3.3.27)

@

@x
K(+)(x; �)jx=b = ��K(+)(b; �) (3.3.28)

and the Laplace transform of the discounted �nancing K(�)(x; �) is given by the solution of

1

2
�2x2

@

@x2
K(�)(x; �) + �x

@

@x
K(�)(x; �)� �� @

@�
K(�)(x; �) = 0 (3.3.29)

with boundary conditions

@

@x
K(�)(x; �)jx=b = 0 (3.3.30)

@

@x
K(�)(x; �)jx=a = �K�(a; �) (3.3.31)

Working as in section 3.2.5 we �nd that the solutions of (3.3.26) with boundary conditions

(3.3.27), (3.3.28) and (3.3.29) with boundary conditions (3.3.30), (3.3.31) are:

� The k�th moment V (+)(x; k) of the discounted dividends U (+) about the origin is

V (+)(x; k) = Ex((U (+))k) (3.3.32)

= k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
for k = 1; 2; 3; : : :
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� The Laplace transform K(+)(x; �) of the discounted dividends U (+) is

K(+)(x; �) = 1 +

1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.3.33)

where

gk(x) := xsk;� � sk;�
rk;�

ask;��rk;�xrk;� (3.3.34)

� The k-th moment V (�)(x; k) of the discounted �nancing U (�) about the origin is

V (�)(x; k) = Ex((U (�))k) (3.3.35)

= (�1)kk! m1(a) � � �mk�1(a)mk(x)�
@
@xm1(x)jx=a

�
� � �
�
@
@xmk�1(x)jx=a

� �
@
@xmk(x)jx=a

�
for k = 1; 2; 3; : : :

� The Laplace transform K(�)(x; �) of the discounted �nancing U (�) is:

K(�)(x; �) = Ex
�
e��U

(�)
�

(3.3.36)

= 1 +
1X
k=1

�k
m1(a) � � �mk�1(a)mk(x)�

@
@xm1(x)jx=a

�
� � �
�
@
@xmk�1(x)jx=a

� �
@
@xmk(x)jx=a

�
where

mk(x) := xsk;� � sk;�
rk;�

bsk;��rk;�xrk;� (3.3.37)

3.3.6 The Laplace transform of the joint distribution of the discounted divi-
dends and the discounted �nancing. (GBM-2RB)

By Proposition 2.6.5 the Laplace transform of the joint distribution of the discounted dividends

and the discounted �nancing L(x; �1; �2) is given by the solution of:

1

2
�2x2

@2

@x2
L(x; �1; �2) + �x

@

@x
L(x; �1; �2) (3.3.38)

= �

�
�1

@

@�1
L(x; �1; �2) + �2

@

@�2
L(x; �1; �2)

�
with boundary conditions:

@

@x
L(x; �1; �2)jx=a = �2L(a; �1; �2) (3.3.39)

@

@x
L(x; �1; �2)jx=b = ��1L(b; �1; �2) (3.3.40)
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Working as in section 3.2.6 we �nd that the solution is

L(x; �1; �2) = 1 +
1X
k=1

Ex
��
��1U (+) � �2U (�)

�k�
k!

= 1 +
1X
k=1

Wk(x; �1; �2)

k!
(3.3.41)

with

Wk(x; �1; �2) = Ex
��
��1U (+) � �2U (�)

�k�
; k = 1; 2; 3; : : : (3.3.42)

W1(x; �1; �2) =
1

ar1;�bs1;� � as1;� br1;�

 
a
r1;�

b+ abr1;�

s1;�
x
s1;� � as1;�b+ abs1;�

r1;�
x
r1;�

!
(3.3.43)

Wk(x; �1; �2) (3.3.44)

=

�
abrk;�Wk�1(a; �1; �2) + a

rk;�bWk�1(b; �1; �2)

sk;�
xsk;��

�ab
sk;�Wk�1(a; �1; �2) + a

sk;�bWk�1(b; �1; �2)

rk;�
xrk;�

�
k

ark;�bsk;� � ask;�brk;�

Remark 3.3.2 Let b� the value of the barrier that gives the maximum of the expected dividends

V (+)(�). Then from (3.3.24) we can �nd that the optimal value for the barrier is

b� = a

�
s1;� � 1
r1;� � 1

� 1
r1;��s1;�

: (3.3.45)

Remark 3.3.3 If we consider the di¤erence of the expected discounted dividends minus the ex-
pected discounted �nancing V +(�)�V �(�) then if we denote by b�� the barrier that maximizes the
above di¤erence, we can see that the b�� can be found from the solution of the equation

(s1;� � 1)ar1;�bs1;�+1 � (s1;� � r1;�)abs1;�+r1;� � (r1;� � 1)as1;�br1;�+1 = 0: (3.3.46)

Remark 3.3.4 The barrier which equalizes pro�ts and loses is given from the solution of equation

b

�
ar1;�xs1;�

s1;�
� as1;�xr1;�

r1;�

�
= a

�
br1;�xs1;�

s1;�
� bs1;�xr1;�

r1;�

�
: (3.3.47)

3.4 Brownian motion.

There is no need to mention the importance of Brownian motion in Stochastic Analysis. We

only want to mention here for someone who is interesting for recent developments relevant to this

process the papers of Graversen [81], Peskir [150], Promislow [151], Han [86], Kalashnikov [108],

Huzak [96], Lifshits [123], DeBlassie [43], Bass [19], Palle [143], Uemura [179], Salminen [162],
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Najnudel [134], Hubalek [95], Weso÷owski [184], Kager [107], Roslki [159], Taksar [177], Paulsen

[145], Bai [14], Ren [155], Cai [36], Yuen [191], Gaier [69], Norberg [140], Pergamenshchikov [149].

In this section we suppose that the reserves X = fXt : t � 0g of an insurance company follow
the Brownian motion (BM) process, with dynamics that are described by

dXt = �dt+ �dBt (3.4.1)

with X0 = x. If A is the generator of Xt then

Af(x) = �
@

@x
f(x) +

1

2
�2

@2

@x2
f(x) (3.4.2)

for a function f(�) 2 DA, (where DA is the domain of the generator A (see De�nition 1.3.29)).

The insurance company follows the de Finetti model with upper barrier the constant b, that

is bt = b for all t � 0 and lower barrier the zero constant, that is at = 0 for all t � 0.

We consider �rst the de Finetti model with one general re�ecting barrier (1RB) and we �nd

the expected value of the discounted dividends, the Laplace transform of the discounted dividends

and the Laplace transform of the time of ruin. Next we consider the de Finetti model with two

general re�ecting barriers (2RB) and we �nd the expected discounted dividends and the expected

discounted �nancing, the Laplace transforms of the discounted dividends and the discounted

�nancing and the Laplace transform of the joint distribution of the discounted dividends and the

discounted �nancing.

We �rst de�ne the following quantities

mk;� :=
��+

p
�2 + 2�k�2

�2
(3.4.3)

lk;� :=
���

p
�2 + 2�k�2

�2
(3.4.4)

for k = 1; 2; : : :. We observe that

lk;� � 0 � mk;�

3.4.1 Expected value of the discounted dividends. (BM-1RB)

By Proposition 2.6.4 the expected value of the discounted dividends is given by the solution of

1

2
�2

@2

@x2
V (x) + �

@

@x
V (x) = �V (x) (3.4.5)

with boundary conditions

V (0) = 0; (3.4.6)
@

@x
V (x)jx=b = 1: (3.4.7)
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The solution of (3.4.5)-(3.4.7) is

V (x) =
1

l1;�e
l1;�b �m1;�e

m1;�b

�
el1;�x � em1;�x

�
(3.4.8)

(also see Gerber, H.U. and Shiu, E.S.W.([71])).

3.4.2 The Laplace transform of the discounted dividends. (BM-1RB)

By Proposition 2.6.2 the Laplace transform of the discounted dividends is given by the solution

of
1

2
�2

@2

@x2
K(x; �) + �

@

@x
K(x; �)� �� @

@x
K(x; �) = 0 (3.4.9)

with boundary conditions

K(0; �) = 1 (3.4.10)
@

@x
K(x; �)jx=b = ��K(b; �) (3.4.11)

Working as in section 3.2.2 we �nd the k�th moment of U about the origin is

V (x; k) = Ex(Uk) = k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

� (3.4.12)

k = 1; 2; 3; : : :

and the Laplace transform of U is

K(x; �) = Ex
�
e��U

�
= (3.4.13)

= 1 +
1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
where

gk(x) := xlk;� � xmk;�

for k = 1; 2; 3; : : :

3.4.3 The Laplace transform of the time of ruin. (BM-1RB)

By Proposition 2.6.3 the Laplace transform of the time of ruin is given by the solution of:

1

2
�2

@2

@x2
M(x; �) + �

@

@x
M(x; �)� �M(x; �) = 0 (3.4.14)
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with boundary conditions:

M(0; �) = 1 (3.4.15)
@

@x
M(x; �)jx=b = 0 (3.4.16)

The solution of (3.4.14)-(3.4.16) is

M(x; �) =
1

m1;�e
m1;�b � l1;�el1;�b

�
m1;�e

m1;�bel1;�x � l1;�el1;�bem1;�x
�

(3.4.17)

(also see Gerber, H.U. and Shiu, E.S.W.([71])).

Remark 3.4.1 (Maximum dividends barrier). Let b� be the value of the barrier b which gives the

maximum value for the dividends V (�). Then the b� can be found from the solution of equation

g00(b�) = 0 , and from the solution of this equation we found that the optimal value for the barrier

is

b� =
2 log

�l1;�
m1;�

m1;� � l1;�
(3.4.18)

3.4.4 Expected discounted dividends and expected discounted �nancing. (BM-
2RB)

By Proposition 2.6.7 the expected discounted dividends and the expected discounted �nancing

are given by the solutions of:

1

2
�2

@2

@x2
V (�)(x)� ax @

@x
V (�)(x)� �V (�)(x) = 0 (3.4.19)

with boundary conditions:

@

@x
V (+)(x)jx=0 = 0 (3.4.20)

@

@x
V (+)(x)jx=b = 1 (3.4.21)

@

@x
V (�)(x)jx=0 = �1 (3.4.22)

@

@x
V (�)(x)jx=b = 0 (3.4.23)

The solutions of (3.4.19) with boundary conditions (3.4.20)-(3.4.23) are

V (+)(x) =
1

el1;�b � em1;�b

�
el1;�x

l1;�
� em1;�x

m1;�

�
(3.4.24)

V (�)(x) =
el1;�x

l1;�
�
e(l1;��m1;�)b � 1

� � em1;�x

m1;�(1� e(m1;��l1;�)b)
(3.4.25)
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3.4.5 The Laplace transforms of the discounted dividends and the discounted
�nancing. (BM-2RB)

By Proposition 2.6.6 the Laplace transform of the discounted

@

@x
K(+)(x; �)jx=0 = 0 (3.4.26)

@

@x
K(+)(x; �)jx=b = ��K(+)(b; �) (3.4.27)

and the Laplace transform of the discounted �nancing is given by the solution of:

1

2
�2

@

@x2
K(�)(x; �)� ax @

@x
K(�)(x; �)� �� @

@�
K(�)(x; �) = 0 (3.4.28)

with boundary conditions:

@

@x
K(�)(x; �)jx=b = 0 (3.4.29)

@

@x
K(�)(x; �)jx=0 = �K(�)(0; �) (3.4.30)

Working as in section 3.2.5 we �nd the k-th moment of U (+) about the origin is

V (+)(x; k) = Ex((U (+))k) (3.4.31)

= k!
g1(b) � � � gk�1(b)gk(x)�

@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
for k = 1; 2; 3; : : :

The Laplace transform of U (+) is:

K(+)(x; �) = Ex
�
(U (+))k

�
(3.4.32)

= 1 +

1X
k=1

(��)k g1(b) � � � gk�1(b)gk(x)�
@
@xg1(x)jx=b

�
� � �
�
@
@xgk�1(x)jx=b

� �
@
@xgk(x)jx=b

�
where

gk(x) := emk;�x � mk;�

lk;�
elk;�x (3.4.33)

The kth moment of U (�) about the origin is

V (�)(x; k) = Ex((U (�))k) (3.4.34)

= (�1)kk! m1(0) � � �mk�1(0)mk(x)�
@
@xm1(x)jx=0

�
� � �
�
@
@xmk�1(x)jx=0

� �
@
@xmk(x)jx=0

�
for k = 1; 2; 3; : : :
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The Laplace transform of U (�) is:

K(�)(x; �) = Ex((U (�))k) = (3.4.35)

= 1 +
1X
k=1

�k
m1(0) � � �mk�1(0)mk(x)�

@
@xm1(x)jx=0

�
� � �
�
@
@xmk�1(x)jx=0

� �
@
@xmk(x)jx=0

�
where

mk(x) := emk;�x � mk;�

lk;�
e(mk;��lk;�)belk;�x (3.4.36)

3.4.6 The Laplace transform of the joint distribution of the discounted divi-
dends and the discounted �nancing. (BM-2RB)

By Proposition 2.6.5 the Laplace transform of the joint distribution of the discounted dividends

and the discounted �nancing is given by the solution of:

1

2
�2

@2

@x2
N(x; �1; �2)� ax

@

@x
N(x; �1; �2) (3.4.37)

= �

�
�1

@

@�1
N(x; �1; �2) + �2

@

@�2
N(x; �1; �2)

�
with boundary conditions

@

@x
N(x; �1; �2)jx=0 = �2N(0; �1; �2) (3.4.38)

@

@x
N(x; �1; �2)jx=b = ��1N(b; �1; �2) (3.4.39)

With

Wk(x; �1; �2) = Ex(��1U (+) � �2U (�))k (3.4.40)

k = 1; 2; 3 : : : :

Working as in section 3.2.6 we �nd

N(x; �1; �2) = 1 +

1X
k=1

Ex
�
(��1U (+) � �2U (�))k

�
k!

= 1 +

1X
k=1

Wk(x; �1; �2)

k!
(3.4.41)

with

W1(x; �1; �2) =
1

ebl1;� � ebm1;�

�
1 + ebm1;�

l1;�
el1;�x � 1 + e

bl1;�

m1;�
em1;�x

�
(3.4.42)

Wk(x; �1; �2) =
k
�
ebmk;�Wk�1(0; �1; �2) +Wk�1(b; �1; �2)

�
eblk;� � ebmk;�

�
elk;�x

lk;�
� emk;�x

mk;�

�
(3.4.43)

Remark 3.4.2 Let b� the value of the barrier that gives the maximum of the expected dividends

V (+)(�). Then from (3.4.24) we �nd that

b� =
log

�l1;�
m1;�

m1;� � l1;�
(3.4.44)
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Remark 3.4.3 If we consider the di¤erence V +(�)�V �(�) that is pro�ts minus loses then if b��

is the barrier that maximizes the above di¤erence, it can be found from the solution of equation

m1;�e
b��m1;� � l1;�eb

��l1;� + (l1;� �m1;�)e
b��(m1;�+l1;�) = 0 (3.4.45)

Remark 3.4.4 The barrier which equalizes pro�ts and loses is given from the solution of equation

m1;�e
l1;�x �m1;�e

bm1;�+l1;�x � l1;�em1;�x + l1;�e
bl1;�+m1;�x = 0 (3.4.46)

3.5 Conclusions.

We applied the formulas of chapter 2 in examples where the reserves process follows a Brownian

motion, a Geometric Brownian morion and an Orstein-Uhlenbeck process.

We considered the de Finetti model with one general re�ecting barrier (1RB) and we found

the expected value of discounted dividends, the Laplace transform of the discounted dividends

and the Laplace transform of time of ruin. We also considered the de Finetti model with two

general re�ecting barriers (2RB) and we found the expected discounted dividends and the expected

discounted �nancing, the Laplace transforms of the discounted dividends and the discounted

�nancing and the Laplace transform of the joint distribution of the discounted dividends and the

discounted �nancing.



Chapter 4

Aspects on Insurance companies
consortium.

4.1 Introduction.

In this chapter we deal with the situation of insurance companies cooperation. There are a

lot of reasons as to way insurance companies want to cooperate with each other. One basic

reason is to become more competitive to the general market. One way to achieve this is by

sharing administrative expenses and common features and thus reducing in this way their running

costs. Another way to become more competitive is by o¤ering a lower premium via the tool

of reinsurance. Relevant towards this direction are the papers of Aase [1] , Borch [27], [28] ,

Za�ropoulos, Y.D. and M.A. Zazanis [192].

Our interest is to look at the issue from the perspective of a particular insurance company.

Obviously, a number of issues and questions arise and must be resolved by the insurance company

in this kind of situation. What criteria must be used by the insurance company in order to

collaborate with other insurance companies, choosing a set of companies among the total number

of available insurance companies? Certainly the criteria should maximize it�s prospects. Among

many other questions, there are two critical questions that must be answered. The �rst concerns

the probability to survive in a particular cooperation, that is not to go bankrupt and the second

concerns the future prospects of the capital of the company.

As the insurance company will become part of a dynamic and renewable cooperation how this

dynamic situation will in�uence its reserves as other companies depart from the cooperation

because bankruptcy and new companies entering the insurance shape?

106
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In this chapter we are interested in looking at two quantities which are very vital to all the

decisions of the company. These are the probability of survival in a particular cooperation and

with the shares that will be given to its shareholders during this cooperation.

In order to formulate our model we assume a complete probability space (
; F; P ) as given.

In addition we assume a given �ltration fFt : t � 0g: Let f(Xt; Yt); t � 0g be a two dimensional
di¤usion with SDE given by:

dXt = �x(Xt)dt+ �x(Xt)dB
x
t

dYt = �y(Yt)dt+ �y(Yt)dB
y
t

where the drift coe¢ cients �x(�); �y(�) and the volatility coe¢ cients �x(�); �y(�) satisfy the condi-
tions (1.3.24), (1.3.25).

Each of the two components of the process f(Bxt ; B
y
t ); t � 0g is standard Brownian motion and

the correlation between them is given by:

�xydt := d [Bx; By]t

We consider the process X = fXt; t � 0g as describing the reserves of the insurance company
in which we are interesting for. In a two dimensional representation we will consider it as the

horizontal movement and we will refer to this insurance company as the �rst insurer or as the

X-insurer. We want to include in our study a practice which is usual in the insurance which is

to be given dividends to the shareholders according to a strategy. In this chapter we consider

a constant barrier strategy, that is when the process X is above from level b then dividends are

paid to the shareholders. When the process reaches level 0 we will consider two cases:

(I) In the �rst case the company goes bankrupt and we will call this case as de Finetti model

with one re�ecting barrier. We denote by fUt; t � 0g the dividends that are paid until ruin
occurs.

(II) In the second case the company has the option to borrow money and continue it�s function

and we will call this case as de Finetti model with two re�ecting barriers. We denote by

fU (�)t ; t � 0g the �nancing of the company and fU (+)t ; t � 0g the dividends that are paid.

We consider a process Z given by

Z = fZt; t � 0g

:=

(
fXt � Ut; t � 0g

fXt � U (+)t + U (�)t ; t � 0g
for the de Finetti with one re�ecting barrier

for the de Finetti with two re�ecting barriers
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which represents the �nances of the �rst insurer afterwards the abstraction of the dividends and

the possible addition of the �nancing.

For the de Finetti models it is well known that the dividends and �nancing processes fUt; t � 0g;
fU (+)t ; t � 0g; fU (�)t ; t � 0g respectively, are unique processes and also that have the following
properties

(i) The processes fUt; t � 0g; fU (+)t ; t � 0g; fU (�)t ; t � 0g are nondecreasing.

(ii) It holds that

0 � Zt = Xt � U (+)t + U (�)t � b

for the two re�ecting barriers case and

Zt = Xt � Ut � b

for the one re�ecting barrier case, for every time t � 0:

(iii) The processes fU (+)t ; t � 0g and fUt; t � 0g increase only when Zt = b, i.e.

Z t

0
1(Zs < b)dU (+)s = 0

and Z t

0
1(Zs < b)dUs = 0

for all time t � 0:

(iv) The process fU (�)t ; t � 0g increases only when Zt = 0, i.e.

Z t

0
1(Zs > 0)dU (�)s = 0

for all t � 0.

It is also well known that the dividends processes U ; U (+) are given by:

Ut = sup
0�s�t

(Xs � b) _ 0

U (+)t = sup
0�s�t

�
Xs � b+ U (�)s

�
_ 0
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and the �nancing process U (�) by:

U (�)t = sup
0�s�t

�
U (+)s �Xs

�
_ 0

for time t � 0:

We would also like to consider another process fYt; t � 0g as describing the reserves of an-
other insurance company. In a two dimensional representation we will consider it as the vertical

movement and we will refer to this insurance company as the second insurer or as the Y-insurer.

We don�t include dividend�s policy for this insurance company. In other words this portfolio is

described by the so called classical risk model with an absorbing barrier at 0 (we also call this

model as Lundberg model).

The process f(Zt; Yt) ; t � 0g is considering as the �total�reserve process of the group or else
as the two members consortium of insurance companies. We are interested in the study of the

cooperation until the time of ruin of some of the two companies. In order to study the problem

we de�ne two stopping times. The time of ruin for the �rst insurer (this has meaning only for the

de Finetti with one re�ecting barrier case), which depends on the initial state x of the process Z

and is de�ned by

T z := T z(x) := infft > 0 : Zt = 0g

and the time of ruin for the second insurer, which depends on the initial state y of the process Y

and is de�ned by

T y := T y(y) := infft > 0 : Yt = 0g

We assume that the insurance companies cooperation fails at the random time

T := T (x; y) :=

(
T z ^ T y

T y
for the de Finetti with one re�ecting barrier

for the de Finetti with two re�ecting barriers

Assuming an interest-rate �, the total discounted dividends and total discounted �nancing

until some ruin occurs are given by

U := UT := U(x; y) :=

Z T

0
e��sdUs (4.1.1)

U (+) := U
(+)
T := U (+)(x; y) :=

Z T

0
e��sdU (+)s (4.1.2)

U (�) := U
(�)
T := U (�)(x; y) :=

Z T

0
e��sdU (�)s (4.1.3)

Here the following notation remarks are in order.
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Remark 4.1.1 (de Finetti with one re�ecting barrier). Consider a function f(U; T ) of the dis-
counted dividends U = U(x; y) and the time of ruin T = T (x; y). The expected value E(f(U; T ))

will depend on the initial state (x; y). In order to express this dependence we will use the notation

E(x;y), that is we de�ne

E(x;y)(f(U; T )) := E(f(U(x; y); T (x; y))) (4.1.4)

Remark 4.1.2 (de Finetti with two re�ecting barriers). Consider a function g(U (+); U (�); T ) of
the discounted dividends U (+) = U (+)(x; y), the discounted �nancing U (�) = U (�)(x; y) and the

time of ruin T = T (x; y). The expected value E
�
g(U (+); U (�); T )

�
will depend on the initial state

(x; y): In order to express this dependence we will use the notation E(x;y), that is we de�ne

E(x;y)
�
g(U (+); U (�); T )

�
:= E

�
g(U (+)(x; y); U (�)(x; y); T (x; y))

�
(4.1.5)

Next we de�ne the quantities which are the subject of our study, which are

N The Moments of the discounted dividends and the discounted �nancing. (Two re�ecting

barriers case).

V(�)(x; y;n) := E(x;y)
�
(U (�))n

�
(4.1.6)

� The Moments of the discounted dividends. (One re�ecting barrier case).

V(x; y;n) := E(x;y)(Un) (4.1.7)

N The Laplace transforms of the discounted dividends and the discounted �nancing. (Two

re�ecting barriers case).

K(�)(x; y; �) := E(x;y)
�
e��U

(�)
�

(4.1.8)

� The Laplace transforms of the discounted dividends. (One re�ecting barrier case).

K(x; y; �) := E(x;y)
�
e��U

�
(4.1.9)

N The Laplace transform of the time of ruin .

M(x; y; �) := E(x;y)(e��T ) (4.1.10)

N The Laplace transform of the joint distribution of the time of ruin, the discounted dividends

and the discounted �nancing. (Two re�ecting barriers case).

N (x; y; �1; �2; �3) := E(x;y)
�
e��1T��2U

(+)��3U(�)
�

(4.1.11)
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� The Laplace transform of the joint distribution of the time of ruin and the discounted

dividends. (One re�ecting barrier case).

N (x; y; �1; �2) := E(x;y)
�
e��1T��2U

�
(4.1.12)

For simplicity we write V (�)(x; y) for V (�)(x; y; 1) and V (x; y) for V (x; y; 1).

In order to study the quantities (4.1.6)-(4.1.12) we de�ne the processes

fV (�)(Xt; Yt); t � 0g; fK(�)(Xt; Yt; �); t � 0g;
fM(Xt; Yt; �); t � 0g fN(Xt; Yt; �1; �2; �3); t � 0g
fV (Xt; Yt); t � 0g; fK(Xt; Yt; �); t � 0g;
fN(Xt; Yt; �1; �2); t � 0g

(4.1.13)

We will denote by A(x;y) the generator of the process f(Xt; Yt); t � 0g. It is well known that
the generator coincides with the di¤erential operator L(x;y)

L(x;y) :=
�2x(x)

2

@2

@x2
+
�2y(y)

2

@2

@y2
+ �x(x)�y(y)�xy

@2

@x@y
+ �x(x)

@

@x
+ �y(y)

@

@y
(4.1.14)

for a function f(�) 2 C2b (R � R) and for drift coe¢ cients �x(�); �y(�) and volatility coe¢ cients
�x(�); �y(�) that satisfy the linear growth condition (1.3.24) and the Lipschitz continuity condition
(1.3.25).

Remark 4.1.3 When we want to consider the X-insurer alone, that is the case when there is no
cooperation between the X-insurer and the Y -insurer (1- dimensional case), we write the functions

in (4.1.6)-(4.1.12) as

V(�)(x;n) := Ex((U (�))n) (4.1.15)

V(x;n) := Ex(Un) (4.1.16)

K(�)(x; �) := Ex
�
e��U

(�)
�

(4.1.17)

K(x; �) := Ex(e��U ) (4.1.18)

M(x; �) := Ex(e��T ) (4.1.19)

N (x; �1; �2; �3) := Ex
�
e��1T��2U

(+)��3U(�)
�

(4.1.20)

N (x; �1; �2) := Ex
�
e��1T��2U

�
(4.1.21)

In the following sections let the function �t : 
 �! 
 denote the right shift operator de�ned

by �t(!) := !(t+ :) for all times t � 0.

After the introduction, in which we set the background, we proceed with the next section in

which we will �nd expressions for the generator A(x;y) of the process f(Xt; Yt); t � 0g.
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4.2 Expressions for the generator.

In this section we prove two useful propositions. The �rst proposition concerns the action of the

generator operator to a regular function of the discounted dividends and the time of ruin for the

de Finetti model with one re�ecting barrier. The second proposition concerns the action of the

generator operator to a regular function of the discounted dividends and the discounting �nancing

for the de Finetti model with two re�ecting barriers.

In order to prove these propositions we will need the discounted dividends U(t); U (+)(t) after

time t and the discounted �nancing U (�)(t) after time t; that is:

U(t) :=

Z T

t
e��sdUs (4.2.1)

U (+)(t) :=

Z 1

t
e��sdU (+)s (4.2.2)

U (�)(t) :=

Z 1

t
e��sdU (�)s (4.2.3)

With similar arguments as in the proof of the Remark 2.5.7 also is proving the next remark.

Remark 4.2.1 1. It holds that

�tU
n =

(
en�tUn(t)

0

for t � T

for t > T
(4.2.4)

with n = 1; 2; 3; : : :

Also observe that:

�tT =

(
T � t
0

for t � T

for t > T
(4.2.5)

2. It holds that:

�t(U
(�))n =

(
en�t

�
U (�)(t)

�n
0

for t � T

for t > T
(4.2.6)

with n = 1; 2; 3; : : :

Proposition 4.2.2 Let f(x; y) := E(x;y)(g(U; T )) with g 2 C1b (R2): Then it holds that

A(x;y)f(x; y) = E(x;y)
�
@

@t
g(e�tU(t); T � t)jt=0

�
(4.2.7)
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Proof. We have

A(x;y)f(x; y) = lim
t!0

E(x;y)(f(Xt; Yt))� f(x; y)
t

= lim
t!0

E(x;y)(E(Xt;Yy)(g(U; T )))� E(x;y)(g(U; T ))
t

= lim
t!0

E(x;y)(E(x;y)(�tg(U; T )jFt))� E(x;y)(g(U; T ))
t

= lim
t!0

E(x;y)(E(x;y)(g(�tU; �tT )jFt))� E(x;y)(g(U; T ))
t

= lim
t!0

E(x;y)(g(�tU; �tT ))� E(x;y)(g(U; T ))
t

= lim
t!0

E(x;y)
�
1fT�tg

g(e�tU(t); T � t)� g(U; T )
t

�
+

+lim
t!0

E(x;y)
�
1fT<tg

g(0; 0)� g(U; T )
t

�
= E(x;y)

�
1fT�0glim

t!0

g(e�tU(t); T � t)� g(U; T )
t

�
+

+E(x;y)
�
1fT�0glim

t!0

g(0; 0)� g(U; T )
t

�
where we have explicitly used the Markov property of the di¤usion process (X;Y ) (see Theorem

1.3.28).

Because the process (X;Y ) is continuous we have that

T > 0 a:s:

(that is the process X does not jump to 0 to be ruined and neither the process Y ) and so the

above relation becomes:

A(x;y)f(x; y) = E(x;y)
�
lim
t!0

g(e�tU(t); T � t)� g(U; T )
t

�
=)

A(x;y)f(x; y) = E(x;y)
�
@

@t
g(e�tU(t); T � t)jt=0

�

We now proceed to prove the second proposition.

Proposition 4.2.3 Let f(x; y) := E(x;y)(h(U (+); U (�))) with h 2 C1b (R2): Then it holds that:

A(x;y)f(x; y) = E(x;y)
�
@

@t
h(e�tU (+)(t); e�tU (�)(t))jt=0

�
(4.2.8)
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Proof. We have

A(x;y)f(x; y)

= lim
t!0

E(x;y)(f(Xt; Yt))� f(x; y)
t

= lim
t!0

E(x;y)(E(Xt;Yt)(h(U (+); U (�))))� E(x;y)(h(U (+); U (�)))
t

= lim
t!0

E(x;y)(E(x;y)(�th(U
(+); U (�))jFt))� E(x;y)(h(U (+); U (�)))

t

= lim
t!0

E(x;y)(E(x;y)(h(�tU
(+); �tU

(+))jFt))� E(x;y)(h(U (+); U (�)))
t

= lim
t!0

E(x;y)(h(�tU
(+); �tU

(+)))� E(x;y)(h(U (+); U (�)))
t

= lim
t!0

E(x;y)

 
1fT�tg

h(e�tU (+); e�tU (�))� h(U (+); U (�))
t

!
+

+lim
t!0

E(x;y)

 
1fT<tg

h(0; 0)� h(U (+); U (�))
t

!

= E(x;y)

 
1fT�0glim

t!0

h(e�tU (+); e�tU (�))� h(U (+); U (�))
t

!
+

+E(x;y)

 
1fT�0glim

t!0

h(0; 0)� h(U (+); U (�))
t

!

Because the process Y is continuous we have that

T > 0 a:s:

(that is the process Y does not jump to 0 to be ruined ) and so the above relation becomes:

A(x;y)f(x; y) = E(x;y)

 
lim
t!0

h(e�tU (+); e�tU (�))� h(U (+); U (�))
t

!
=)

A(x;y)f(x; y) = E(x;y)
�
@

@t
h(e�tU (+)(t); e�tU (�)(t))jt=0

�

If we suppose that the quantities (4.1.6)-(4.1.12) for which we are interested in can be found

as a solution of some partial di¤erential equations (PDE) then the above two propositions might

give us a suggestion about these PDEs.

In the next section we derive a very useful property, which we call "scaling property", and

which will help us to proceed with later calculations.
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4.3 Scaling property.

As in the section 2.3 we start this section by setting a question. Let us suppose that we have the

reserves process of an insurance company, X-insurer, which moves between two boundaries and

dividends are paid to the shareholders according to the de Finetti model and we also have another

insurance company, Y-insurer , which follows no dividend�s policy or in other words follows the

so called classical risk model. How the discounted dividends will be a¤ected if we move up or

down, by the same amount, the reserve process and the two boundaries of the X-insurer and the

reserve process of the Y-insurer? How the discounted dividends will be a¤ected if we consider

some multiple by the same amount of the above processes and boundaries?

Working as in the section 2.3 we conclude that the model with the two insurers corporation

satisfy analogous scaling properties as in chapter 2. The following propositions can be proved

along the same lines as proposition 2.3.3 and proposition 2.3.9.

Proposition 4.3.1 (Scaling property for the De Finetti model with one re�ecting barrier). For

the moments of the discounted dividends V (x; y;n); the Laplace transform of the discounted div-

idends K(x; y; �); the Laplace transform of the time of ruin M(x; y; �) and the Laplace transform

of the joint distribution of the time of ruin and the discounted dividends N(x; y; �1; �2) it holds

that:

(I) For each real number c 2 (�1;1)

V(x; y;n) = V(x� c; y � c;n) (4.3.1)

K(x; y; �) = K(x� c; y � c; �) (4.3.2)

M(x; y; �) = M(x� c; y � c; �) (4.3.3)

N (x; y; �1; �2) = N (x� c; y � c; �1; �2) (4.3.4)

(II) For each real number c > 0

V(x; y;n) = cnV(xc�1; yc�1;n) (4.3.5)

K(x; y; �) = K(xc�1; yc�1; �c) (4.3.6)

M(x; y; �) = M(xc�1; yc�1; �) (4.3.7)

N (x; y; �1; �2) = N (xc�1; yc�1; �1; �2c) (4.3.8)

Proposition 4.3.2 (Scaling property for the De Finetti model with two re�ecting barriers).

For the moments of the discounted dividends V (+)(x; y;n); the moments of the discounted

�nancing V (�)(x; y;n); the Laplace transform of the discounted dividends K(+)(x; y; �); the
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Laplace transform of the discounted �nancing K(�)(x; y; �); the Laplace transform of the time

of ruin M(x; y; �) and the Laplace transform of the joint distribution of the time of ruin, the

discounted dividends and the discounted �nancing N(x; a; b; �1; �2) holds that:

(I) For every real number c 2 (�1;1)

V(�)(x; y;n) = V(�)(x� c; y � c;n) (4.3.9)

K(�)(x; y; �) = K(�)(x� c; y � c; �) (4.3.10)

M(x; y; �) = M(x� c; y � c; �) (4.3.11)

N (x; y; �1; �2; �3) = N (x� c; y � c; b� c; �1; �2; �3) (4.3.12)

(II) For every real number c > 0

V(�)(x; y;n) = cnV(�)(xc�1; yc�1;n) (4.3.13)

K(�)(x; y; �) = K(�)(xc�1; yc�1; �c) (4.3.14)

M(x; y; �) = M(xc�1; yc�1; �) (4.3.15)

N (x; y; �1; �2; �3) = N (xc�1; yc�1; �1; c�2; c�3) (4.3.16)

The following remarks will be useful.

Remark 4.3.3 For a function N(x; y; �1; �2) which is C1(R4) and satisfy the scaling property
(4.3.8) holds that

N (x; y; �1; �2c�1) = N (xc�1; yc�1; �1; �2) (4.3.17)

and by di¤erentiating with respect of c we conclude that it holds

�2
@

@(�2c�1)
N (x; y; �1; �2c�1) =

�
x

@

@(xc�1)
+ y

@

@(yc�1)

�
N (xc�1; yc�1; �1; �2) (4.3.18)

Remark 4.3.4 For a function N(x; y; �1; �2; �3) which is C1(R5) and satisfy the scaling property
(4.3.16) holds that

N (x; y; �1; �2c�1; �3c�1) = N (xc�1; yc�1; �1; �2; �3) (4.3.19)

and by di¤erentiating with respect of c we conclude that it holds�
�2

@

@(�2c�1)
+ �3

@

@(�3c�1)

�
N (x; y; �1; �2c�1; �3c�1)

=

�
x

@

@(xc�1)
+ y

@

@(yc�1)

�
N (xc�1; yc�1; �1; �2; �3) (4.3.20)

We proceed now with the next section in which we derive the moments of the discounted

dividends and the discounted �nancing as solutions of some partial di¤erential equations.
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4.4 Moments of the discounted dividends and the discounted �-
nancing.

We start this section with the following proposition which concerns with the moments of the

discounted dividends and discounted �nancing in the case in which the X-insurer follows the de

Finetti model with one re�ecting barrier.

Proposition 4.4.1 (Moments of the discounted dividends). Let functions V (x; y;n) , n 2 N

belonging to C2b (R
2) which satisfy the scaling properties (4.3.1), (4.3.5). If the functions V (x; y;n)

solve the PDEs :

(L(x;y) � n�)V(x; y;n) = 0 (4.4.1)

with boundary conditions:

V(0; y;n) = 0 (4.4.2)
@

@x
V(x; y; 1)jx=b = 1 (4.4.3)

@

@x
V(x; y;n)jx=b = nV(b; y;n� 1) for n = 1; 2; 3; : : : (4.4.4)

V(x; 0;n) = 0 (4.4.5)

V(x;1;n) := lim
y!1

V(x; y;n) = V(x;n) (4.4.6)

then

V(x; y;n) = E(x;y)(Un) (4.4.7)

Proof. We consider the time instants h and t with t � h: Applying the Itô formula to the

process

e�n�((t�h)^T )V(Zt^T ; Yt^T ;n)

taking conditional expectations and using the fact that the process V (Zh; Yh;n) is Fh measurable

we have:

E
�
e�n�((t�h)^T )V(Zt^T ; Yt^T ;n)jFh

�
= V(Zh; Yh;n)� E

0@ t^TZ
h

e�n�(s�h)
@

@z
V(Zs; Ys;n)dUsjFh

1A+
+E

0@ t^TZ
h

e�n�(s�h)(L(x;a;b) � n�)V(Zs; Ys;n)dsjFh

1A
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Using the relation (4.4.1) and taking limit as t ! 1 (using the dominated convergence theorem

as by hypotheses we have that V (x; y;n) 2 C2b (R2)) the above becomes :

V(Zh; Yh;n) (4.4.8)

= E
�
e�n�TV (ZT ; YT ;n)jFh

�
+ E

0@ TZ
h

e�n�(s�h)
@

@z
V(Zs; Ys;n)dUsjFh

1A
We observe by taking into consideration the conditions (4.4.2), (4.4.5) that

E(e�n�TV(ZT ; YT ;n)jFh)

= E(e�n�TV(ZT z ; YT z ;n)1fT z � T ygjFh) + E(e�n�TV(ZT y ; YT y ;n)1fT z > T ygjFh)

= E(e�n�TV(0; YT z ;n)1fT z � T ygjFh) + E(e�n�TV(ZT y ; 0;n)1fT z > T ygjFh)

= 0

that is

E
�
e�n�TV(ZT ; YT ;n)jFh

�
= 0 (4.4.9)

Applying the relation (4.4.9) into the expression (4.4.8) we conclude

V(Zh; Yh;n) = E

0@ TZ
h

e�n�(s�h)
@

@z
V(Zs; Ys;n)dUsjFh

1A (4.4.10)

for n = 1; 2; 3; : : : Next we apply the relation (4.4.10) with n = 1, taking into account that by the

relation (4.2.1) we have

dU(t) = �e��tdUt (4.4.11)

and also considering the relation (4.4.3) we conclude

V(Zh; Yh; 1) = E(e�hU(h)jFh) (4.4.12)

We will use the method of induction. Suppose that for n� 1 we have

V(Zh; Yh;n� 1) = E
�
e(n�1)�hUn�1(h)jFh

�
(4.4.13)
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Next applying the relation (4.4.10) for n and taking into account the relations (4.4.4) and (4.4.13)

we conclude

V(Zh; Yh;n) = nE

0@ TZ
h

e�n�(s�h)V(Zs; Ys;n� 1)dUsjFh

1A
= nE

0@ TZ
h

e�n�(s�h)E
�
e(n�1)�sUn�1(s)jFs

�
dUsjFh

1A
= n

TZ
h

e�n�(s�h)E(E(e(n�1)�sUn�1(s)dUsjFs)jFh)

= n

TZ
h

e�n�(s�h)E(e(n�1)�sUn�1(s)dUsjFh)

= nE

0@en�h TZ
h

e��sUn�1(s)dUsjFh

1A
= �E

0@en�h TZ
h

nUn�1(s)dU(s)jFh

1A
= �E(en�h(Un(s)jTh )jFh) =)

V(Zh; Yh;n) = E(en�hUn(h)jFh) (4.4.14)

By taking h = 0 in the relation (4.4.14) we conclude the relation (4.4.7).

Finally the condition (4.4.6) arises by taking into account that :

lim
y!1

T y =1 a:s:

which, with the use of the monotone convergence theorem, implies that

lim
y!1

V(x; y;n)

= lim
y!1

E

 �Z T z^T y

0
e��sdUs

�n!

= E

 �Z T z

0
e��sdUs

�n!
= V(x;n)

Next we will consider the case in which the x�insurer follows the de Finetti model with two

re�ecting barriers.
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Proposition 4.4.2 (Moments of the discounted dividends and the discounted �nancing). Let
functions V (+)(x; y;n) and V (�)(x; y;n) , n 2 N belonging in C2b (R

2) which satisfy the scal-

ing properties (4.3.9), (4.3.13). If the functions V (+)(x; y;n) and V (�)(x; y;n) solve the PDEs

:

(L(x;y) � n�)V(�)(x; y;n) = 0 (4.4.15)

with boundary conditions:

@

@x
V(+)(x; y;n)jx=0 = 0 (4.4.16)

@

@x
V(+)(x; y; 1)jx=b = 1 (4.4.17)

@

@x
V(+)(x; y;n)jx=b = nV(+)(b; y;n� 1) for n = 1; 2; 3; : : : (4.4.18)

V(+)(x; 0;n) = 0 (4.4.19)

V(+)(x;1;n) := lim
y!1

V(+)(x; y;n) = V(+)(x;n) (4.4.20)

and

@

@x
V(�)(x; y;n)jx=0 = �nV(�)(0; y;n) (4.4.21)

@

@x
V(�)(x; y;n)jx=b = 0 (4.4.22)

V(�)(x; 0;n) = 0 (4.4.23)

V(�)(x;1;n) := lim
y!1

V(�)(x; y;n) = V(�)(x;n) (4.4.24)

then

V(+)(x; y;n) = E(x;y)((U (+))n) (4.4.25)

V(�)(x; y;n) = E(x;y)((U (�))n) (4.4.26)

Proof. We will prove the result only for the function V (+)(x; y;n) because the proof for the
function V (�)(x; y;n) is similar. We consider the time instants h and t with t � h: Applying the

Itô formula to the process

e�n�((t�h)^T
y)V(+)(Zt; Yt;n)

taking conditional expectations, taking into account the condition (4.4.16) and using the fact that

the process V (+)(Zh; Yh;n) is Fh measurable we have:

E(e�n�((t�h)^T
y)V(+)(Zt; Yt;n)jFh)

= V(+)(Zh; Yh;n)� E

0@ t^T yZ
h

e�n�(s�h)
@

@z
V(+)(Zs; Ys;n)dU (+)s jFh

1A+
+E

0@ t^T yZ
h

e�n�(s�h)(L(x;y) � n�)V(+)(Zs; Ys;n)dsjFh

1A (4.4.27)
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Using the relation (4.4.15) and taking limit as t!1 (using the dominated convergence theorem

as by hypotheses we have that V (+)(x; y;n) 2 C2b (R2)) the above expression (4.4.27) becomes

V(+)(Zh; Yh;n) = E(e�n�T
yV(+)(ZT y ; YT y ;n)jFh) + (4.4.28)

+E

0@ T yZ
h

e�n�(s�h)
@

@z
V(+)(Zs; Ys;n)dU (+)s jFh

1A
We observe by taking into consideration the condition (4.4.19) that

E(e�n�T
yV(+)(ZT y ; YT y ;n)jFh) = E(e�n�T

yV(+)(ZT y ; 0;n)jFh) = 0 (4.4.29)

Applying the relation (4.4.29) into the expression (4.4.28) we conclude

V(+)(Zh; Yh;n) = E

0@ T yZ
h

e�n�(s�h)
@

@z
V(+)(Zs; Ys;n)dUsjFh

1A (4.4.30)

for n = 1; 2; 3; : : : Next we apply the relation (4.4.30) with n = 1, taking into account that by the

relation (4.2.2) we have

dU (+)(t) = �e��tdU (+)t (4.4.31)

and also considering the relation (4.4.17) we conclude

V(+)(Zh; Yh; 1) = E(e�hU (+)(h)jFh) (4.4.32)

We will use the method of induction. Suppose that for n� 1 we have

V(+)(Zh; Yh;n� 1) = E(e(n�1)�h(U (+)(h))n�1jFh) (4.4.33)

Next applying the relation (4.4.30) for n and taking into account the relations (4.4.18) and (4.4.33),

(4.4.31) we conclude

V(+)(Zh; Yh;n) = nE

0@ T yZ
h

e�n�(s�h)V(+)(Zs; Ys;n� 1)dU (+)s jFh

1A
= nE

0@ T yZ
h

e�n�(s�h)E(e(n�1)�s(U (+)(s))n�1jFs))dU (+)s jFh

1A
= n

T yZ
h

e�n�(s�h)E(E(e(n�1)�s(U (+)(s))n�1dU (+)s jFs)jFh)

= n

T yZ
h

e�n�(s�h)E(e(n�1)�s(U (+)(s))n�1dU (+)s jFh)
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= nE

0@en�h T yZ
h

e��s(U (+)(s))n�1dU (+)s jFh

1A
= �E

0@en�h T yZ
h

n(U (+)(s))n�1dU (+)(s)jFh

1A
= �E(en�h((U (+)(s))njT yh )jFh) =)

V(+)(Zh; Yh;n) = E(en�h(U (+)(h))njFh) (4.4.34)

By taking h = 0 in the relation (4.4.34) we conclude the relation (4.4.25).

Finally the condition (4.4.20) arises by taking into account that :

lim
y!1

T y =1 a.s.

which, with the use of the monotone convergence theorem, implies that

lim
y!1

V(+)(x; y;n) = lim
y!1

E

�Z T y

0
e��sdUs

�n
= E

�Z 1

0
e��sdUs

�n
= V(+)(x;n)

Remark 4.4.3 The functions V (x;n); V (+)(x;n) and V (�)(x;n) can be founded from the PDEs

(4.4.1) and (4.4.15) respectively by taking �y(y) = 0 and �y(y) = 0, and boundary conditions only

the (4.4.2),(4.4.4) and (4.4.16),(4.4.18) and (4.4.21), (4.4.22) respectively that is regarding the

second insurer still during time.

Remark 4.4.4 The uniqueness and existence of solutions of the PDEs (4.4.1) and (4.4.15) sub-
ject for example to mixed boundary conditions (4.4.2)-(4.4.6), (4.4.16)-(4.4.20) and (4.4.21)-

(4.4.24) respectively depends upon the coe¢ cients of the di¤erential operator L(x;y). For the case

of constant coe¢ cients one can consult for example W. Boyce and R. Diprima [30] and L.C.

Evans [57].

Next we consider an example in which we apply the Proposition 4.4.1.

Example 1 Let us suppose the two dimensional di¤usion f(Xt; Yt); t � 0g which has dynamics
that are described by:

dXt = �1dt+ �1dB
x
t

dYt = �2dt+ �2dB
y
t
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The correlation between the Brownian motions Bx; By them is given by:

�dt := d [Bx; By]t

We assume X to represent the reserves of an X-insurance company which follows a dividends

policy with one re�ecting barrier and Y the reserves of an Y -insurance company which follows

no dividends policy. We want to �nd the expected value of the discounted dividends for the

X-insurance company.

By Proposition 4.4.1 the expected value of the discounted dividends is given by the solution of

�21
2
Vxx(x; y) +

�22
2
Vyy(x; y) + �1�2�Vxy(x; y) + �1Vx(x; y) + �2Vy(x; y) = �V(x; y) (4.4.35)

with boundary conditions (4.4.2)-(4.4.6).We assume the transform:

V(x; s) =
1Z
0

e�syV(x; y)dy (4.4.36)

Applying (4.4.36) to (4.4.35) we have:

1

2
Vxx(x; s)�21 + (�1 + s��1�2)Vx(x; s) +

�
1

2
s2�22 + s�2 � �

�
V(x; s) = 0 (4.4.37)

and the boundary conditions (4.4.2),(4.4.4) become:

V(0; s) = 0 (4.4.38)

Vx(b; v) =
1

s
(4.4.39)

The solution of (4.4.37)-(4.4.39) is :

V(x; s) = 2 exp

�
(A(s) + 2B(s)) (b� x)

2�21

�
(4.4.40)

�

�
�1 + exp

�
A(s)x
�21

��
�21

(A(s) + 2B(s)) + (A(s)� 2B(s)) exp
�
A(s)b
�21

� 1
s

where :

A(s) = 2
q
(�2 � 1)�21�22s2 + 2�1 (��1�2 � �2�1) s+ (�21 + 2��21) (4.4.41)

B(s) = s��1�2 + �1 (4.4.42)

Remark 4.4.5 From the relation (4.4.40) we see that :

lim
s!0

sV(x; s) = 1

r2er2b � r1er1b
(er2x � er1x) (4.4.43)
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where

r1 =
��1 +

p
�21 + 2��

2
1

�21

r2 =
��1 �

p
�21 + 2��

2
1

�21

a result which we already have found before and which is what was expected as:

lim
s!0

sV(x; s) = lim
y!1

V(x; y) = V(x)

by the condition (4.4.6).

4.5 The Laplace transform of the joint distribution of the time of
ruin, the discounted dividends and the discounted �nancing.

We consider �rst the case in which the X-insurer follows the de Finetti model with one re�ecting

barrier.

Proposition 4.5.1 (The Laplace transform of the joint distribution of the time of ruin and the

discounted dividends). Let function N(x; y; �1; �2) 2 C2b (R
4) which satisfy the scaling properties

(4.3.4), (4.3.8). If the function N(x; y; �1; �2) solves the PDE

L(x;y)N (x; y; �1; �2) = �1N (x; y; �1; �2) + ��2
@

@�2
N (x; y; �1; �2) (4.5.1)

with boundary conditions:

N (0; y; �1; �2) = 1 (4.5.2)
@

@x
N (x; y; �1; �2)jx=b = ��2N (x; y; �1; �2) (4.5.3)

N (x; 0; �1; �2) = 1 (4.5.4)

N (x;1; �1; �2) := lim
y!1

N (x; y; �1; �2) = N (x; �1; �2) (4.5.5)

then

N (x; y; �1; �2) = E(x;y)
�
e��1T��2U

�
(4.5.6)

Proof. Applying the Itô formula to the process

e��1(t^T )��2Ut^TN (e��(t^T )Zt^T ; e��(t^T )Yt^T ; �1; �2)
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taking expectations and using the condition (4.5.3) we have:

E
�
e��1(t^T )��2Ut^TN (e��(t^T )Zt^T ; e��(t^T )Yt^T ; �1; �2)

�
= N (x; y; �1; �2) +

+E

0@ t^TZ
0

e��1s��2Us(L(x;y) � �1�

��e��s
�
Xs

@

@ (e��sz)
+ Ys

@

@(e��sy)

��
N (e��sZs; e��sYs; �1; �2)ds

�
+

+�2E

0@ t^TZ
0

e��se��1s��2UsN (e��sZs; e��sYs; �1; �2)dUs

1A�
��2E

0@ t^TZ
0

e��1s��2UsN (e��sZs; e��sYs; �1; �2)dUs

1A
Taking into account that by the relation (4.1.1) we have

dUt = e��tdUt (4.5.7)

and also considering the relation (4.3.18) we conclude

E(e��1(t^T )��2Ut^TN (e��(t^T )Zt^T ; e��(t^T )Yt^T ; �1; �2))

= N (x; y; �1; �2) +

+E

0@ t^TZ
0

e��1s��2Us
�
(L(x;y) � �1)N (e��ss Zs; e

��sYs; �1; �2)�

���2e��s
@

@(�2e��s)
N (Zs; Ys; �2e��s)

�
ds

�
(4.5.8)

Applying the relation (4.3.17) in the above expression (4.5.8) we conclude

E(e��1(t^T )��2Ut^TN (e��(t^T )Zt^T ; e��(t^T )Yt^T ; �1; �2)) (4.5.9)

= N (x; y; �1; �2) +

+E

0@ t^TZ
0

e��1s��2Us
�
L(x;y) � �1 � ��2e��s

@

@(�2e��s)

�
N (Zs; Ys; �1; �2e��s)ds

1A
Applying the PDE (4.5.1) with �2e��s instead of �2 the above expression (4.5.9) simpli�es to

E(e��1(t^T )��2Ut^TN (e��(t^T )Zt^T ; e��(t^T )Yt^T ; �1; �2)) = N (x; y; �1; �2) (4.5.10)

Taking limit as t!1 (using the dominated convergence theorem as by hypotheses we have that

N(x; y; �1; �2) 2 C2b (R4)) and taking into account the conditions (4.5.2), (4.5.4) we conclude:

N (x; y; �1; �2) = E
�
e��1T��2U

�
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Finally the condition (4.5.5) arises by taking into account that

lim
y!1

T y =1 a.s.

which implies that

lim
y!1

T = lim
y!1

T z ^ T y = T z a.s.

and with the use of the bounded convergence theorem we conclude

lim
y!1

N (x; y; �1; �2)

= lim
y!1

E(e��1T��2U )

= E(e��1T
z��2U ) = N (x; �1; �2)

We consider next the case in which the X-insurer follows the de Finetti model with two

re�ecting barriers.

Proposition 4.5.2 (Laplace transform of the joint distribution of the time of ruin, the discounted
dividends and the discounted �nancing). Consider the function N(x; y; �1; �2; �2) 2 C2b (R5) which
satisfy the scaling properties (4.3.12), (4.3.16). If the function N(x; y; �1; �2; �3) solves the PDE

:

L(x;y)N (x; y; �1; �2; �3) = �1N (x; y; �1; �2; �3) + ��2
@

@�2
N (x; y; �1; �2; �3) +

+��3
@

@�3
N (x; y; �1; �2; �3) (4.5.11)

with boundary conditions

@

@x
N (x; y; �1; �2; �3)jx=0 = �3N (0; y; �1; �2; �3) (4.5.12)

@

@x
N (x; y; �1; �2; �3)jx=b = ��2N (b; y; �1; �2; �3) (4.5.13)

N (x; 0; �1; �2; �3) = 1 (4.5.14)

N (x;1; �1; �2; �3) := lim
y!1

N (x; y; �1; �2; �3) (4.5.15)

= 0

then

N (x; y; �1; �2; �3) := E(x;y)(e��1T��2U
(+)��3U(�)) (4.5.16)

Proof. Applying the Itô formula to the process

e��1(t^T
y)��2U(+)t^Ty��3U

(�)
t^TyN (e��(t^T y)Zt^T y ; e��(t^T

y)Yt^T y ; �1; �2; �3)
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taking expectations and using the conditions (4.5.12), (4.5.13) we have:

E
�
e��1(t^T

y)��2U(+)t^Ty��3U
(�)
t^TyN (e��(t^T y)Zt^T y ; e��(t^T

y)Yt^T y ; �1; �2; �3)
�

= N (x; y; �1; �2; �3) +

+E

0@ t^T yZ
0

e��1s��2U
(+)
s ��3U(�)s (L(x;y) � �1�

��e��s
�
Xs

@

@(e��sz)
+ Ys

@

@(e��sy)

��
N (e��sZs; e��sYs; �1; �2; �3)ds

�
+

+�2E

0@ t^T yZ
0

e��se��1s��2U
(+)
s ��3U(�)s N (e��sZs; e��sYs; �1; �2; �3)dU (+)s

1A�
��2E

0@ t^nZ
0

e��1s��2U
(+)
s ��3U(�)s N (e��sZs; e��sYs; �1; �2; �3)dU (+)s

1A+

+�3E

0@ t^T yZ
0

e��se��1s��2U
(+)
s ��3U(�)s N (e��sZs; e��sYs; �1; �2; �3)dU (�)s

1A�
��3E

0@ t^T yZ
0

e��1s��2U
(+)
s ��3U(�)s N (e��sZs; e��sYs; �1; �2; �3)dU (�)s

1A (4.5.17)

Taking into account that by the relations (4.1.2) and (4.1.3) we have that

dU
(+)
t = e��tdU (+)t

dU
(�)
t = e��tdU (�)t

and also the considering relation (4.3.20), the expression (4.5.17) becomes

E
�
e��1(t^T

y)��2U(+)t^Ty��3U
(�)
t^TyN (e��(t^T y)Zt^T y ; e��(t^T

y)Yt^T y ; �1; �2; �3)
�

= N (x; y; �1; �2; �3) +

+E

0@ t^T yZ
0

(e��1s��2U
(+)
s ��3U(�)s

�
(L(x;y) � �1)N (e��ss Zs; e

��sYs; �1; �2; �3)�

��
�
�2e

��s @

@(�2e��s)
+ �3e

��s @

@(�3e��s)

�
N (Zs; Ys; �1; �2e��s; �3e��s)

�
ds

�
(4.5.18)
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Applying the relation (4.3.19) in the expression (4.5.18) we conclude

E(e��1(t^T
y)��2U(+)t^Ty��3U

(�)
t^TyN (e��(t^T y)Zt^T y ; e��(t^T

y)Yt^T y ; �1; �2; �3))

= N (x; y; �1; �2; �3) +

+E

0@ t^T yZ
0

e��1s��2U
(+)
s ��3U(�)s (L(x;y) � �1�

��
�
�2e

��s @

@(�2e��s)
+ �3e

��s @

@(�3e��s)

��
N (Zs; Ys; �1; �2e��s; �3e��s)ds

�
(4.5.19)

Applying the PDE (4.5.11) with �2e��s instead of �2 and �3e��s instead of �3 the above expression

(4.5.19) simpli�es to

E
�
e��1(t^T

y)��2U(+)t^Ty��3U
(�)
t^TyN (e��(t^n)Zt^T y ; e��(t^n)Yt^T y ; �1; �2; �3)

�
= N (x; y; �1; �2; �3) (4.5.20)

Taking limit as t!1 (using the dominated convergence theorem as by hypotheses we have that

N(x; y; �1; �2; �3) 2 C2b (R5)) the relation (4.5.20) becomes

N (x; y; �1; �2; �3) = E
�
e��1T

y��2U(+)Ty
��3U(�)Ty N (e��T yZT y ; e��T

y
YT y ; �1; �2; �3)

�
(4.5.21)

Taking into account the condition (4.5.14) we conclude:

N (x; y; �1; �2; �3) = E
�
e��1T

y��2U(+)Ty
��3U(�)Ty

�
(4.5.22)

Finally the condition (4.5.15) arises by taking into account that

lim
y!1

T y =1 a:s:

which, with the use of the bounded convergence theorem, implies that

lim
y!1

N (x; y; �1; �2; �3) = lim
y!1

E
�
e��1T

y��2U(+)Ty
��3U(�)Ty

�
= 0

Next we turn our attention to the Laplace transform of the discounted dividends and the

discounted �nancing.

4.6 The Laplace transform of the discounted dividends and the
discounted �nancing.

Following the proof of Proposition 4.5.1 with �1 = 0 and �2 = � we may also prove the next

proposition.
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Proposition 4.6.1 (Laplace transform of the discounted dividends-1 re�ecting barrier). Consider
the function K(x; y; �) 2 C2b (R

3) which satisfy the scaling properties (4.3.2), (4.3.6). If the

function K(x; y; �) solve the PDE :

L(x;y)K(x; y; �) = ��
@

@�
K(x; y; �) (4.6.1)

with boundary conditions

K(0; y; �) = 1 (4.6.2)
@

@x
K(x; y; �)jx=b = ��K(b; y; �) (4.6.3)

K(x; 0; �) = 1 (4.6.4)

K(x;1; �) := lim
y!1

K(x; y; �) = K(x; �) (4.6.5)

then

K(x; y; �) = E(x;y)(e��U ) (4.6.6)

Following the proof of Proposition 4.5.2 �rst with �1 = 0, �2 = �, �3 = 0 and second with

�1 = 0, �2 = 0, �3 = � we may also prove the next proposition.

Proposition 4.6.2 (Laplace transforms of the discounted dividends and the discounted �nancing-
2 re�ecting barriers). Consider the functions K(+)(x; y; �) and K(�)(x; y; �) belonging inC2b (R

3)

which satisfy the scaling properties (4.3.10), (4.3.14). If the functions K(+)(x; y; �) and K(�)(x; y; �)

solves the PDEs

L(x;y)K(�)(x; y; �) = ��
@

@�
K(�)(x; y; �) (4.6.7)

with boundary conditions:

@

@x
K(+)(x; y; �)jx=0 = 0 (4.6.8)

@

@x
K(+)(x; y; �)jx=b = ��K(+)(b; y; �) (4.6.9)

K(+)(x; 0; �) = 1 (4.6.10)

K(+)(x;1; �) := lim
y!1

K(+)(x; y; �) = K(+)(x; �) (4.6.11)

and

@

@x
K(�)(x; y; �)jx=0 = �K(�)(0; y; �) (4.6.12)

@

@x
K(�)(x; y; �)jx=b = 0 (4.6.13)

K(�)(x; 0; �) = 1 (4.6.14)

K(�)(x;1; �) := lim
y!1

K(�)(x; y; �) = K(�)(x; �) (4.6.15)
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then

K(+)(x; y; �) = E(x;y)(e��U
(+)
) (4.6.16)

K(�)(x; y; �) = E(x;y)(e��U
(�)
) (4.6.17)

We continue with the next section in which we �nd the Laplace transform of the time of ruin.

4.7 The Laplace transform of time of ruin.

Following the proof of Proposition 4.5.1 with �1 = � and �2 = 0 we may also prove the next

proposition.

Proposition 4.7.1 (Laplace transform of the time of ruin-1 re�ecting barrier). Consider the

function M(x; y; �) 2 C2b (R3) which satisfy the scaling properties (4.3.3), (4.3.7). If the function
M(x; y; �) solves the PDE :

L(x;y)M(x; y; �) = �M(x; y; �) (4.7.1)

with boundary conditions:

M(0; y; �) = 1 (4.7.2)
@

@x
M(x; y; �)jx=b = 0 (4.7.3)

M(x; 0; �) = 1 (4.7.4)

M(x;1; �) := lim
y!1

M(x; y; �) =M(x; �) (4.7.5)

then

M(x; y; �) = E(x;y)(e��T ) (4.7.6)

Following the proof of Proposition 4.5.2 with �1 = � , �2 = 0 and �3 = 0 we may also prove

the next proposition.

Proposition 4.7.2 (Laplace transform of the time of ruin-2 re�ecting barriers). Consider the

functionM(x; y; �) 2 C2b (R3) which satisfy the scaling properties (4.3.11 ),(4.3.15). If the function
M(x; y; �) solves the PDE :

L(x;y)M(x; y; �) = �M(x; y; �) (4.7.7)
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with boundary conditions:

@

@x
M(x; y; �)jx=0 = 0 (4.7.8)

@

@x
M(x; y; �)jx=b = 0 (4.7.9)

M(x; 0; �) = 1 (4.7.10)

M(x;1; �) := lim
y!1

M(x; y; �) = 0 (4.7.11)

then

M(x; y; �) = E(x;y)(e��T ) (4.7.12)

4.8 Survival probability for one of the two insurers.

We are interested in the probability of survival of one of the two insurers, that is for the probability

P (T y < T z): To this direction we prove the next proposition.

Proposition 4.8.1 Consider the function P (x; y) 2 C2b (R+�R+). If the function P (x; y) solves
the PDE :

L(x;y)P(x; y) = 0 (4.8.1)

with boundary conditions

P (0; y) = 0 (4.8.2)

P (x; 0) = 1 (4.8.3)
@

@x
P (x; y)jx=b = 0 (4.8.4)

lim
y!1

P (x; y) = 0 (4.8.5)

then

P (x; y) = P (T y < T z) (4.8.6)

Proof. Applying the Itô formula to the process P (Zt^T z^T y ; Yt^T z^T y), taking expectations
and using the condition (4.8.4) we have:

E(P (Zt^T z^T y ; Yt^T z^T y)) = P (x; y) + E

0@ t^T z^T yZ
0

L(x;y)P (Zs; Ys)ds

1A
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By the conditions (4.8.1), (4.8.2), (4.8.3) and taking limit as t ! 1 (using the dominated con-

vergence theorem as by hypotheses we have that P (x; y) 2 C2b (R+ � R+)) the above becomes

P (x; y) = E(P (ZT z^T y ; YT z^T y))

= E(P (ZT z ; YT z)1fT z � T yg) + E(P (ZT y ; YT y)1fT z > T yg)

= E(P (0; YT z)1fT z � T yg) + E(P (ZT y ; 0)1fT z > T yg)

= E(0 � 1fT z � T yg) + E(1 � 1fT z > T yg)

so that

P (x; y) = P (T y < T z)

It is also obvious that it must hold the condition (4.8.5) which arises from :

lim
y!1

T y =1 a.s.

Next we consider an example of Proposition 4.8.1.

Example 2 We consider the two dimensional di¤usion f(Xt; Yt); t � 0g of the example 1, with
X to represent the reserves of the X-insurance company which follows a dividends policy with

one re�ecting barrier and Y the reserves of the Y-insurance company which follows no dividends

policy. We want to �nd the probability of survival of the X-insurance company. We will consider

two cases: (I) There are no correlations (� = 0) and (II) There are correlations (� 6= 0).

(I) Case with � = 0.

By (4.8.1) the probability of survival of the X-insurer is given by the solution of the PDE

�21
2
Pxx +

�22
2
Pyy + �1Px + �2Py = 0 (4.8.7)

subject to the boundary conditions:

P (0; y) = 0 (4.8.8)

P (x; 0) = 1 (4.8.9)
@

@x
P (x; y)jx=b = 0 (4.8.10)

lim
y!1

P (x; y) = 0 (4.8.11)

We consider a solution of the form P (x; y) = u(x)w(y). Substituting into (4.8.7) we have

�21
2
uxx(x)w(y) +

�22
2
u(x)wyy(y) + �1ux(x)w(y) + �2u(x)wy(y) = 0:
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Dividing through with u(x)w(y) we obtain, after separating variables,

�21
2

uxx(x)

u(x)
+ �1

ux(x)

u(x)
= � = ��

2
2

2

wyy(y)

w(y)
� �2

wy(y)

w(y)
: (4.8.12)

The general solution of
�21
2

uxx(x)

u(x)
+ �1

ux(x)

u(x)
= �

is then

u(x) = c1 exp

�
x

�
��1 �

q
�21 + 2��

2
1

�
��21

�
+ c2 exp

�
x

�
��1 +

q
�21 + 2��

2
1

�
��21

�
where c1; c2 arbitrary constants. We observe that if � � � �21

2�21
then the only solution is the trivial

zero solution. So in order to have non-trivial solutions we must consider:

� < � �21
2�21

(4.8.13)

and then the solution becomes

u(x) = sin(x'1(�)) exp(�x�1=�21)

with

'i(�) := ��2i

q
(�1)i�2i � 2��2i ; i = 1; 2:

In view of the condition u0(b) = 0 we also have

�21'1(�) cos (b'1(�))� �1 sin (b'1(�)) = 0 =)

tan (b'1(�)) =
�21'1(�)

�1
(4.8.14)

Consider the equation

tan (b�) =
�21�

�1
(4.8.15)

This is a transcendental equation and can be solved numerically. Let f�n;n 2 Zg, be the set of its
solutions. We consider only strictly positive solutions since from (4.8.13) we conclude '1(�) > 0.
Also holds that

0 < �1 < �2 < � � �

Asymptotically the solutions can be approximated by

�n �
�
n+ 1

2

�
�

b
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From the set of solutions we obtain the eigenvalues �n via

�n = �
�2n�

4
1 + �

2
1

2�21

for n = 1; 2; 3; : : :

We now turn to the second equation obtained from (4.8.12), namely

��
2
2

2

wyy(y)

w(y)
� �2

wy(y)

w(y)
= �n:

Its general solution is

w(y) = c1 exp

�
y

�
��2 �

q
�22 � 2�n�22

�
��22

�
+c2 exp

�
y

�
��2 +

q
�22 � 2�n�22

�
��22

�
Because of condition (4.8.11) the solution is

w(y) = c1 exp

�
y

�
��2 �

q
�22 � 2�n�22

�
��22

�

Thus (4.8.7) has solutions of the form

P (x; y) = cn sin(x�n) exp(�x�1��21 ) exp(�y
�
�2�

�2
2 + '2(�n)

�
)

Using the relationship

'2(�n) = ��22

s
�22 +

�
�2n�

4
1 + �

2
1

�
�22

�21

and the principle of superposition the solution becomes:

P (x; y) =

1X
n=1

cn sin(x�n) exp
�
�x�1��21

�
(4.8.16)

� exp

0@�y
0@�2��22 + ��22

s
�22 +

�
�2n�

4
1 + �

2
1

�
�22

�21

1A1A
Finally we will �nd the coe¢ cients cn so that the solution satis�es the condition (4.8.9). The

eigenfunctions un(x) are orthogonal with respect to the weight function

q(x) :=
2

�21
e2x�1�

�2
1
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and thus, from the requirement P (x; 0) = 1 we have

1X
n=1

cn sin(x�n) exp(�x�1��21 ) = 1: (4.8.17)

From the relation (4.8.17) we �nd that the coe¢ cients cn are given by

cn =

R b
0 sin(x�n)exp(x�1�

�2
1 )dxR b

0 sin
2(x�n)dx

which gives

cn =
�n�

4
1 + e

b�1
�21

�
sin (b�n)�1 � cos (b�n) �n�21

�
�21

b
2

�
1� sin(2b�n)

2b�n

� �
�2n�

4
1 + �

2
1

�
and by taking into account the relation (4.8.14) we conclude

cn =
�n�

4
1

b
2

�
1� sin(2b�n)

2b�n

� �
�2n�

4
1 + �

2
1

� n = 1; 2; 3; : : : :

(II) Case with � 6= 0.

By (4.8.1) the probability of survival of the X-insurer is given by the solution of the PDE:

�21
2
Pxx +

�22
2
Pyy + ��1�2Pxy + �1Px + �2Py = 0 (4.8.18)

Subject to the boundary conditions:

P (0; y) = 0 (4.8.19)

P (x; 0) = 1 (4.8.20)
@

@x
P (x; y)jx=b = 0 (4.8.21)

lim
y!1

P (x; y) = 0 (4.8.22)

Using the transformation:

s = x

t = x� �1
��2

y

and the conditions (4.8.19) and (4.8.22) we �nd a solution of the form:

P (x; y) (4.8.23)

= ce
�x�1

�21 sin (x'1(�)) exp

�
� �2

(1� �2)�21

�
x� y �1

��2

�
R(�1; �1; �2; �2; �; �)

�
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where

R(�1; �1; �2; �2; �; �)

:=

0@�1 � �2 �1��2 � sign(�)
s�

�1 � �2
�1
��2

�2
� 2� (1� �2)�21��2

1A
In order the solution to satisfy the condition (4.8.21) we must have:

tan(b�n) =

�
1� �2

�
�n�

2
1�2

�1�2 � ��2�1 � �
q
(�2�1 � ��1�2)2 � 2� (1� �2)�21�22

(4.8.24)

for n = 1; 2; 3; : : :.

The transcendental equation (4.8.24) can be solved numerically and for large values of n we

observe that

lim
�!�1

�
1� �2

�
�n�

2
1�2

�1�2 � ��2�1 � �
q
(�2�1 � ��1�2)2 � 2� (1� �2)�21�22

=

s
1� �2
�2

that is for large values of n the �n can be approximated by the solution of tan(b�n) =
q

1��2
�2

which gives

�n =
1

b

 
arctan

 s
1� �2
�2

!
+ n�

!
and the eigenvalues vi

�n = �
�2n�

4
1 + �

2
1

2�21
Thus the solution of (4.8.24) if of the form:

P (x; y) = cn sin(x�n) exp(�x�1��21 )

� exp

0B@��x� y �1
��2

�
�1 � �2 �1��2
(��2 � 1)�21

0B@1� sign(�)vuut1� 2�(��2 � 1)�21�
�1 � �2 �1��2

�2
1CA
1CA

By the principle of superposition the solution becomes:

P (x; y) =

1X
n=1

cn sin(x�n) exp(�x�1��21 )

� exp

0B@��x� y �1
��2

�
(�1 � �2 �1��2 )
(��2 � 1)�21

0B@1� sign(�)vuut1� 2�(��2 � 1)�21�
�1 � �2 �1��2

�2
1CA
1CA

Unfortunately we are not able to repeat the last step as we did on the previous pde (case with

� = 0) and �nd the coe¢ cients cn in order the solution to satisfy the condition (4.8.20), because

we can not �nd a weight function such that the eigenfunctions un(x) to be orthogonal with respect

to the weight function.
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4.9 Some Variations and Extensions.

In this section we want to mention some possibilities for variations and extensions of the model

we have proposed.

(I) Dividends also for the second insurer.

We can assume a model in which the second insurer (Y -insurer) gives also dividends if his

reserves go beyond an upper level, but he is ruined if his reserves reaches the zero level, that is he

is following one re�ecting barrier policy. We can again consider for the �rst insurer (X-insurer)

dividends policies in two cases: (a) To follow one re�ecting barrier policy and (b) To follow two

re�ecting barriers policy. We start by considering the �rst case.

(a) One re�ecting barrier case.

Let U1; U2 to be the total discounted dividends for the �rst and the second insurer. With

analogous manner as in the previous sections one can conclude the following propositions:

� Expected value of the discounted dividends.

Proposition 4.9.1 Let n 2 N and functions V1(x; y;n) and V2(x; y;n) belonging in C2b (R2) which
satisfy the scaling properties (4.3.1), (4.3.5). If the functions Vi(x; y;n), i = 1; 2 solve the PDEs

:

(L(x;y) � n�)Vi(x; y;n) = 0; i = 1; 2

with boundary conditions

V1(0; y;n) = 0; n = 1; 2; 3; : : :

@

@x
V1(x; y; 1)jx=b1 = 1

@

@x
V1(x; y;n)jx=b1 = nV1(b1; y;n� 1); n = 2; 3; : : :

V1(x; 0;n) = 0; n = 1; 2; 3; : : :

@

@y
V1(x; y;n)jy=b2 = 0; n = 1; 2; 3; : : :
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and

V2(x; 0;n) = 0; n = 1; 2; 3; : : :

@

@y
V2(x; y; 1)jy=b2 = 1

@

@y
V2(x; y;n)jy=b2 = nV2(x; b2;n� 1) ; n = 2; 3; : : :

V2(0; y;n) = 0; n = 1; 2; 3; : : :

@

@x
V2(x; y;n)jx=b1 = 0; n = 1; 2; 3; : : :

then

Vi(x; y;n) := E(x;y)(Uni )

i = 1; 2 and n 2 N.

The total expected discounted dividends for the insurance as a total (that is considering the two

insurers establishing one company) are:

V(x; y) = V1(x; y) + V2(x; y)

where Vi(x; y) := Vi(x; y; 1), i = 1; 2.

� The Laplace transform of the discounted dividends.

Proposition 4.9.2 Consider the functions K1(x; y; �) and K2(x; y; �) belonging in C2b (R
3) which

satisfy the scaling properties (4.3.2), (4.3.6). If the functions Ki(x; y; �) , i = 1; 2 solve the PDEs

:

L(x;y)Ki(x; y; �) = ��
@

@�
Ki(x; y; �) , i = 1; 2

with boundary conditions

K1(0; y; �) = 1

@

@x
K1(x; y; �)jx=b1 = ��K1(b1; y; �)

K1(x; 0; �) = 1

@

@y
K1(x; y; �)jy=b2 = 0

and

K2(x; 0; �) = 1

@

@y
K2(x; y; �)jy=b2 = ��K2(x; b2; �)

K2(0; y; �) = 1

@

@x
K2(x; y; �)jx=b1 = 0
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then

Ki(x; y; �) := E(x;y)(e��Ui)

i = 1; 2:

� The Laplace transform of time of ruin.

Proposition 4.9.3 Consider the function M(x; y; �) 2 C2b (R
3) which satis�es the scaling prop-

erties (4.3.3),(4.3.7). If the function M(x; y; �) solves the PDE :

A(x;y)M(x; y; �) = �M(x; y; �)

with boundary conditions

M(0; y; �) = 1

@

@x
M(x; y; �)jx=b1 = 0

M(x; 0; �) = 1

@

@y
M(x; y; �)jy=b2 = 0

then

M(x; y; �) := E(x;y)(e��T )

� The Laplace transform of the joint distribution of the time of ruin and the discounted

dividends.

Proposition 4.9.4 Consider the functions N1(x; y; �1; �2) and N2(x; y; �1; �2) belonging in C2b (R
4)

which satisfy the scaling properties (4.3.4), (4.3.8). If the functions Ni(x; y; �1; �2) , i = 1; 2 solve

the PDEs :

L(x;y)Ni(x; y; �1; �2) = �1Ni(x; y; �1; �2) + ��2
@

@�2
Ni(x; y; �1; �2) , i = 1; 2

with boundary conditions

N1(0; y; �1; �2) = 1

@

@x
N1(x; y; �1; �2)jx=b1 = ��2N1(x; y; �1; �2)

N1(x; 0; �1; �2) = 1

@

@y
N1(x; y; �1; �2)jy=b2 = 0
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and

N2(x; 0; �1; �2) = 1

@

@y
N2(x; y; �1; �2)jy=b2 = ��2N2(x; y; �1; �2)

N2(0; y; �1; �2) = 1

@

@x
N2(x; y; �1; �2)jx=b1 = 0

then

Ni(x; y; �1; �2) := E(x;y)(e��1T��2Ui)

i = 1; 2:

� Survival Probability.

Proposition 4.9.5 Consider the function P (x; y) 2 C2b (R+�R+). If the function P (x; y) solves
the PDE :

L(x;y)P(x; y) = 0

with boundary conditions

P (0; y) = 0

P (x; 0) = 1

@

@x
P (x; y)jx=b1 = 0

@

@y
P (x; y)jy=b2 = 0

then

P (x; y) = P (T z2 < T z1)

(b) Two re�ecting barriers case.

Let U (+)1 ; U
(+)
2 to be the total discounted dividends for the �rst and the second insurer and

U
(�)
1 to be the total discounted �nancing for the �rst insurer. With arguments similar to

the previous sections one can conclude the following proposition.

Proposition 4.9.6 Let n 2 N and functions V (+)1 (x; y;n); V
(�)
1 (x; y;n) and V (+)2 (x; y;n) belong-

ing in C2b (R
2) which satisfy the scaling properties (4.3.9),(4.3.13). If the functions V (+)1 (x; y;n);

V
(�)
1 (x; y;n) and V (+)2 (x; y;n) solve the PDEs :

(L(x;y) � n�)V(�)1 (x; y;n) = 0

(L(x;y) � n�)V(+)2 (x; y;n) = 0
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with boundary conditions

V(+)1 (0; y;n) = 0; n = 1; 2; 3; : : :

@

@x
V(+)1 (x; y; 1)jx=b1 = 1

@

@x
V(+)1 (x; y;n)jx=b1 = nV(+)1 (b1; y;n� 1) ; n = 2; 3; : : :

V(+)1 (x; 0;n) = 0; n = 1; 2; 3; : : :

@

@y
V(+)1 (x; y;n)jy=b2 = 0; n = 1; 2; 3; : : :

@

@x
V(�)1 (x; y;n)jx=0 = �nV(�)1 (0; y;n� 1)

@

@x
V(�)1 (x; y;n)jx=b1 = 0

V(�)1 (x; 0;n) = 0

@

@y
V(�)1 (x; y;n)jx=b2 = 0

n = 1; 2; 3; : : :

and

V(+)2 (x; 0;n) = 0 ; n = 1; 2; 3; : : :

@

@y
V(+)2 (x; y; 1)jy=b2 = 1

@

@y
V(+)2 (x; y;n)jy=b2 = nV(+)2 (x; b2;n� 1) ; n = 2; 3; : : :

V(+)2 (0; y;n) = 0 ; n = 1; 2; 3; : : :

@

@x
V(+)2 (x; y;n)jx=b1 = 0 ; n = 1; 2; 3; : : :

then

V(+)1 (x; y;n) = E(x;y)((U
(+)
1 )n)

V(�)1 (x; y;n) = E(x;y)((U
(�)
1 )n)

V(+)2 (x; y;n) = E(x;y)((U
(+)
2 )n)

(II) General Barriers.

One can consider general barriers policies and try to study the model in this set up.

(III) n dimensions.
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It is interesting to extend the above models in n-dimensions. For example let us consider

a model with n-insurers all of which give dividends and they follow the one re�ecting barrier

dividends policy. We are interested in the total expected discounted dividends until ruin occurs.

Let Ui to be the total discounted dividends for the i = 1; : : : ; n insurer. Working as in the

previous sections one can conclude the following proposition.

Proposition 4.9.7 Let functions Vi(x1; x2; : : : ; xn) , i = 1; 2 : : : ; n belonging in C2b (R
n) which

satisfy the scaling properties

(I)

Vi(x1; x2; : : : ; xn) = Vi(x1 � c; x2 � c; : : : ; xn � c)

for each real number c 2 (�1;1) and i = 1; 2 : : : ; n:

(II)

Vi(x1; x2; : : : xn) = cVi(c�1x1; c�1x2; : : : ; c�1xn)

for each real number c > 0 and i = 1; 2 : : : ; n:

If the functions Vi(x1; x2; : : : ; xn) , i = 1; 2 : : : ; n solve the PDEs :

(L(x1;x2;:::;xn) � �)Vi(x1; x2; : : : xn) = 0 ; i = 1; 2; : : : ; n

with boundary conditions

Vi(x1; x2; : : : ; xj�1; 0; xj+1 : : : ; xn) = 0 , i; j = 1; 2; : : : ; n
@

@xi
Vi(x1; x2; : : : ; xi�1; xi; xi+1 : : : ; xn)jxi=bi = 1 , i = 1; 2; : : : ; n:

@

@xj
Vi(x1; x2; : : : ; xj�1; xj ; xj+1 : : : ; xn)jxj=bj = 0 , i 6= j; i; j = 1; 2; : : : ; n

then

Vi(x1; x2; : : : xn) := E(x1;x2;:::;xn)(Ui) , i = 1; 2 : : : ; n

The total expected discounted dividends for the insurance as a total (that is considering the n

insurers establishing one company) are:

V(x1; x2; : : : xn) =
nX
i=1

Vi(x1; x2; : : : xn)
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4.10 Conclusions.

In this chapter we worked on the situation of insurance companies cooperation. We examined

the issue from the perspective of a particular insurance company. We were interested to look

at parameters which are vital to the decisions of the company. Among these parameters very

important role we consider to play the probability of survival in a particular cooperation and

the shares that will be given to the shareholders during this cooperation. We found di¤erential

equations with appropriate boundary conditions the solution of which will give:

� The moments of the discounted dividends and the discounted �nancing.

� The Laplace transform of the joint distribution of the time of ruin and the discounted

dividends.

� The Laplace transform of the discounted dividends.

� The Laplace transform of the time of ruin.

� The Survival probability for one of the two insurers.

We also mentioned possible ways to extend the above considerations to various other models.



Chapter 5

Applications on Insurance companies
consortium.

5.1 Introduction.

In this chapter we apply the formulas of chapter 4 in the case of two insurance companies cooper-

ation. We consider a process X = fXt; t � 0g as describing the reserves of an insurance company
and we will refer to this insurance company as the �rst insurer or as the X-insurer. We would

also like to consider another process fYt; t � 0g as describing the reserves of another insurance
company and we will refer to this insurance company as the second insurer or as the Y-insurer.

When the insurance company (�rst insurer or second insurer) follows dividends policy according

to the de Finetti model we will refer to this insurance as de Finetti model. When the insurance

company follows no dividends policy we will refer to this insurance as Lundberg model.

We consider two insurance companies in cooperation and we study two models.

(I)

The de Finetti - Lundberg model. (5.1.1)

(II)

The de Finetti - de Finetti model. (5.1.2)

That is, in the case (I) we consider that the �rst insurer follows the de Finetti model and the

second insurer follows the Lundberg model and in the case (II) we consider that the �rst insurer

follows the de Finetti model and the second insurer follows the de Finetti model.

144
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In section 5.4 we study the situation in which an insurer, say X; has to choose to collaborate

with one out of n other insurers, say Yi; i = 1; : : : ; n: We concern with the problem of how the

X-insurer can make the best choice in terms of maximizing his survival probability or in terms of

maximizing his expected discounted dividends. We provide a method on how he can construct a

policy, that is to rank his available choices from the best choice to the worst choice.

5.2 One Re�ecting barrier.

In this section we study the models (5.1.1)-(5.1.2) considering that if an insurance company (�rst

insurer or second insurer) follows the de Finetti model then it follows a dividends policy with a

constant upper re�ecting barrier and a constant lower absorbing barrier which is the zero constant.

5.2.1 Survival Probability for the de Finetti - de Finetti model.

By Proposition 4.9.5 in order to �nd the survival probability for the �rst insurer (X-insurer) in

a de Finetti - de Finetti model we have to solve the pde:

�21
2
Pxx(x; y) +

�22
2
Pyy(x; y) + �1Px(x; y) + �2Py(x; y) = 0 (5.2.1)

Subject to the boundary conditions:

P (0; y) = 0 (5.2.2)

P (x; 0) = 1 (5.2.3)
@

@x
P (x; y)jx=b1 = 0 (5.2.4)

@

@y
P (x; y)jy=b2 = 0 (5.2.5)

By (5.A.31)-(5.A.33), (5.A.1)-(5.A.5) and the principle of superposition the solution is:

P (x; y) =
1X
n=0

exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2�n�21

�21

!

�

0@cn exp
0@y

�
��2 �

p
�22 � 2�n�22

�
�22

1A+ dn exp
0@y

�
��2 +

p
�22 � 2�n�22

�
�22

1A1A
where �n are calculated by the solution of (5.A.3) with b replaced by b1 and for large values are

approximated by (5.A.4). By the condition (5.2.5) we have:

@

@y
P (x; y)jx=b2 = 0 =)
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dn

�q
�22 � 2�n�22 � �2

�
exp

 
2b2
p
�22 � 2�n�22
�22

!
� cn

�
�2 +

q
�22 � 2�n�22

�
= 0

(5.2.6)

Finally by the condition (5.2.3) and taking into account that the eigenfunctions un(x) are

orthogonal with respect to the weight function

q(x) :=
2

�21
exp

�
2x�1
�21

�
we have P (x; 0) = 1

1X
n=0

(cn + dn) exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2�n�21

�21

!
= 1

which gives

cn + dn =

bZ
0

exp
�
�x�1
�21

�
sin

�
x
p
��21�2�n�21
�21

�
q(x)dx

bZ
0

�
exp

�
�x�1
�21

�
sin

�
x
p
��21�2�n�21
�21

��2
q(x)dx

=)

cn + dn =

bZ
0

exp
�
x�1
�21

�
sin

�
x
p
��21�2�n�21
�21

�
dx

bZ
0

�
sin

�
x
p
��21�2�n�21
�21

��2
dx

=)

cn + dn = �
2
�p

��21 � 2�n�21 (1�A1(�1; �1; b; �n)) +A2(�1; �1; b; �n)
�

A3(�1; �1; b; �n)
(5.2.7)

where

A1(�1; �1; b; �n) := exp

�
b�1
�21

�
cos

 
b
p
��21 � 2�n�21

�21

!

A2(�1; �1; b; �n) : = exp

�
b�1
�21

�
sin

 
b
p
��21 � 2�n�21

�21

!
�1

A3(�1; �1; b; �n) : = 2b�n �
�n�

2
1p

��21 � 2�n�21
sin

 
2b
p
��21 � 2�n�21

�21

!
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5.2.2 Expected Discounted Dividends in the case of the De Finetti -Lundberg
model.

By Proposition 4.4.1 in order to �nd the Expected Discounted Dividends for the �rst insurer

(X-insurer) in a de Finetti - Lundberg model we have to solve the pde

�21
2
Vxx(x; y) +

�22
2
Vyy(x; y) + �1Vx(x; y) + �2Vy(x; y) = �V(x; y) (5.2.8)

subject to the boundary conditions:

V(0; y) = 0 (5.2.9)
@

@x
V(x; y)jx=b1 = 1 (5.2.10)

V(x; 0) = 0 (5.2.11)

V(x;1) := lim
y!1

V(x; y) = V(x) (5.2.12)

� Step 1.

We consider the ODE
�21
2
Vxx(x) + �1Vx(x) = �V(x) (5.2.13)

with boundary conditions:

V(0) = 0 (5.2.14)
@

@x
V(x)jx=b = 1 (5.2.15)

The solution of (5.2.13)�(5.2.15) is

V(x) = exp

0@(b� x)
�
�1 +

p
�21 + 2��

2
1

�
�21

1A er1(x;�1; �1; 0; 1; �)er2(b;�1; �1; 0; 1; �) (5.2.16)

where er1(x;�1; �1; 0; 1; �) and er2(b;�1; �1; 0; 1; �) are given by (5.A.10) and (5.A.11) respectively.
� Step 2.

Now it is enough to solve the pde (5.2.8) with boundary conditions:bV(0; y) = 0 (5.2.17)
@

@x
bV(x; y)jx=b = 0 (5.2.18)bV(x; 0) = �V(x) (5.2.19)bV(x;1) : = lim

y!1
bV(x; y) = 0 (5.2.20)
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By (5.A.31)-(5.A.33), (5.A.1)-(5.A.5), (5.2.20) and the principle of superposition the solution

is:

bV(x; y) =
1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2�n�21

�21

!

� exp

0@y
�
��2 �

p
�22 � 2(�n � �)�22

�
�22

1A
where the eigenvalues �n are given by (5.A.3), (5.A.4). Finally we will �nd the coe¢ cients cn in

order the solution to satisfy the condition (5.2.19). We have:

bV(x; 0) = �V(x) =)
1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2�n�21

�21

!
= �V(x) =)

cn = �

bZ
0

V (x) exp
�
x�1
�21

�
sin

�
x
p
��21�2�n�21
�21

�
dx

bZ
0

�
sin

�
x
p
��21�2�n�21
�21

��2
dx

Thus the solution of the initial problem (5.2.8)-(5.2.12) is:

V(x; y) = bV(x; y) + V(x) =)

V(x; y) =

1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2�n�21

�21

!

� exp

0@y
�
��2 �

p
�22 � 2(�n � �)�22

�
�22

1A+ V(x)
Remark 5.2.1 The quantity V (x; y)�V (x) can be interpreted as losses on dividends for the �rst
insurer (X-insurer) due to the presence of the second insurer (Y -insurer or Lundberg), that is

the X-insurer could have earned V (x)� V (x; y) more dividends if he has not cooperated with the
Y -insurer.
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5.2.3 Expected Discounted Dividends for the de Finetti - de Finetti model.

By Proposition 4.9.1 in order to �nd the Expected Discounted Dividends for the �rst insurer

(X-insurer) in a de Finetti - de Finetti model we have to solve the PDE:

�21
2
V1xx(x; y) +

�22
2
V1yy(x; y) + �1V1x(x; y) + �2V1y(x; y) = �V1(x; y) (5.2.21)

subject to the boundary conditions:

V1(0; y) = 0 (5.2.22)
@

@x
V1(x; y)jx=b1 = 1 (5.2.23)

V1(x; 0) = 0 (5.2.24)
@

@y
V1(x; y)jy=b2 = 0 (5.2.25)

By (5.A.31)-(5.A.33), (5.A.1)-(5.A.5), (5.A.7)-(5.A.9), (5.2.21) and the principle of superposi-

tion the solution is:

V1(x; y) =
1X
n=0

exp

0@(b1 � x)
�
�1 +

p
�21 + 2�n�

2
1

�
�21

1A er1(x;�1; �1; �n; 0; 0)er2(b1;�1; �1; �n; 0; 0)
� exp

�
�y�2
�22

�
sin

 
y
p
��22 � 2(�n � �)�22

�22

!

where er1(x;�1; �1; �n; 0; 0) and er2(b1;�1; �1; �n; 0; 0) are given by (5.A.10) and (5.A.11) respec-
tively and the eigenvalues �n are calculated by the solution of (5.A.3) (with b replaced by b2, �1
by �2, �1 by �2) and for large values of n are approximated by (5.A.4).

Working similarly we can �nd that the expected discounted dividends for the second insurer

(Y -insurer) are

V2(x; y) =
1X
n=0

exp

0@(b2 � y)
�
�2 +

p
�22 + 2�n�

2
2

�
�22

1A er1(y;�2; �2; �n; 0; 0)er2(b2;�2; �2; �n; 0; 0) �
� exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2(�n � �)�21

�21

!

where er1(y;�2; �2; �n; 0; 0) and er2(b2;�2; �2; �n; 0; 0) are given by (5.A.10) and (5.A.11) respec-
tively and the eigenvalues �n are calculated by the solution of (5.A.3) (with b replaced by b1 )

and for large values of n are approximated by (5.A.4).
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5.2.4 Moments of the Discounted Dividends in the case of the de Finetti -
Lundberg model.

By Proposition 4.4.1 in order to �nd the Expected Discounted Dividends for the �rst insurer

(X-insurer) in a de Finetti - Lundberg model we have to solve the PDE:

�21
2
Vxx(x; y; k) +

�22
2
Vyy(x; y; k) + �1Vx(x; y; k) + �2Vy(x; y; k) = k�V(x; y; k) (5.2.26)

subject to the boundary conditions:

V(0; y; k) = 0 (5.2.27)
@

@x
V(x; y; k)jx=b = kV(b; y; k � 1) (5.2.28)

V(x; 0; k) = 0 (5.2.29)

V(x;1; k) : = lim
y!1

V(x; y; k) = V(x; k) (5.2.30)

� Step 1.

We consider the ODE

�21
2
Vxx(x; k) + �1Vx(x; k) = k�V(x; k) (5.2.31)

with boundary conditions

V(0; k) = 0 (5.2.32)
@

@x
V(x; k)jx=b = kV(b; k � 1) (5.2.33)

The solution of (5.2.31)-(5.2.33) is

V(x; k) = exp

0@(b� x)
�
�1 +

p
�21 + 2k��

2
1

�
�21

1A er1(x;�1; �1; 0; k; �)er2(b;�1; �1; 0; k; �) kV(b; k � 1)
where er1(x;�1; �1; 0; k; �) and er2(b;�1; �1; 0; k; �) are given by (5.A.10) and (5.A.11) respectively.
� Step 2.

In this step we will solve the pde (5.2.26) with boundary conditions

W(0; y; k) = 0 (5.2.34)
@

@x
W(x; y; k)jx=b = kbV(b; y; k � 1) (5.2.35)

W(x;1; k) : = lim
y!1

W(x; y; k) = 0 (5.2.36)
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By (5.A.31)-(5.A.33) and (5.2.34)- (5.2.36 ) we consider a solution of the form:

W(x; y; k)

=

1X
n=0

c�k;n

0@� exp
0@x

�
��1 �

q
�21 + 2�

2
1�
�
k;n

�
�21

1A+
+exp

0@x
�
��1 +

q
�21 + 2�

2
1�
�
k;n

�
�21

1A1A exp
0@y

�
��2 �

q
�22 � 2(��k;n � k�)�22

�
�22

1A
where ��k;n are the separation of variables constants. Now because of the condition (5.2.35) we

take

��k;n = �k�1;n + �

and so we have
@

@x
W(x; y; k)jx=b = kbV(b; y; k � 1) =)

which after some algebra leads to

c�k;n = kck�1;n

sin

�
b
p
��21�2�n�21

�21

�
e�(b;�1; �1; �k�1;n; �)�21

where

e�(b;�1; �1; �k�1;n; �)
:= 2 cosh

0@b
q
�21 + 2�

2
1(�k�1;n + �)

�21

1Aq�21 + 2�21(�k�1;n + �)�
�2 sinh

0@b
q
�21 + 2�

2
1(�k�1;n + �)

�21

1A�1

� Step 3.

Now it is enough to solve the pde (5.2.26) with boundary conditions

bV(0; y; k) = 0 (5.2.37)
@

@x
bV(x; y; k)jx=b = 0 (5.2.38)bV(x; 0; k) = �V(x; k)�W(x; 0; k) (5.2.39)bV(x;1; k) := lim

y!1
bV(x; y; k) = 0 (5.2.40)
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By (5.A.31)-(5.A.33) , (5.A.1)-(5.A.5) , (5.2.37), (5.2.40) and the principle of superposition the

solution is

bV(x; y; k) =
1X
n=0

ck;n exp

�
�x�1
�21

�
sin

0@x
q
��21 � 2�k;n�21

�21

1A
� exp

0B@y
�
��2 �

q
�22 � 2(�k;n � k�)�22

�
�22

1CA
where the eigenvalues �k;n are calculated by the solution of (5.A.3) and for large values of n are

approximated by (5.A.4). Finally we will �nd the coe¢ cients ck;n in order the solution to satisfy

the condition (5.2.39). We have bV(x; 0; k) = �V(x; k)�W(x; 0; k) =)
1X
n=0

ck;n exp

�
�x�1
�21

�
sin

0@x
q
��21 � 2�k;n�21

�21

1A = �V+(x; k)�W+(x; 0; k) =)

ck;n = �

bZ
0

(V(x) +W(x; 0; k)) exp
�
x�1
�21

�
sin

�
x
p
��21�2�k;n�21

�21

�
dx

bZ
0

�
sin

�
x
p
��21�2�k;n�21

�21

��2
dx

Thus the solution of the initial problem (5.2.26)-(5.2.30) is

V(x; y; k) = bV(x; y; k) +W(x; y; k) + V(x; k)
5.2.5 Moments of the Discounted Dividends for the de Finetti - de Finetti

model.

By Proposition 4.9.1 in order to �nd the Expected Discounted Moments for the �rst insurer

(X-insurer) in a de Finetti - de Finetti model we have to solve the PDE

�21
2
V1xx(x; y; k) +

�22
2
V1yy(x; y; k) + �1V1x(x; y; k) + �2V1y(x; y; k) = k�V1(x; y; k) (5.2.41)

subject to the boundary conditions

V1(0; y; k) = 0 (5.2.42)
@

@x
V1(x; y; k)jx=b1 = kV1(b1; y; k � 1) (5.2.43)

V1(x; 0; k) = 0 (5.2.44)
@

@y
V1(x; y; k)jy=b2 = 0 (5.2.45)
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By (5.A.31)-(5.A.33) and (5.2.42)- (5.2.44) the solution is:

V1(x; y; k)

=
1X
n=0

ck;n � exp
�
�y�2
�22

�
sin

0@y
q
��22 � 2(�k;n � k�)�22

�22

1A�
�

0B@� exp
0B@x

�
��1 �

q
�21 + 2�

2
1�k;n

�
�21

1CA+ exp
0B@x

�q
�21 + 2�

2
1�k;n � �1

�
�21

1CA
1CA

where the eigenvalues �k;n are calculated by the solution of (5.A.3) (with b replaced by b2 , �1 by

�2, �1 by �2) and for large values of n are approximated by (5.A.4). By the condition (5.2.43)

and using (5.A.6) we have

@

@x
V1(x; y; k)jx=b1 = kV1(b1; y; k � 1)

which give

ck;n exp

�
�b1�1

�21

� e2(b1;�1; �1; �k;n)
�21

= kck�1;ne1(b1;�1; �1; �k�1;n)
or

ck;n = kck�1;n exp

�
b1�1
�21

� e1(b1;�1; �1; �k�1;n)e2(b1;�1; �1; �k;n) �21
where

e1(b1;�1; �1; �k�1;n) : = � exp

0B@b1
�
��1 �

q
�21 + 2�

2
1�k�1;n

�
�21

1CA+
+exp

0B@b1
�q

�21 + 2�
2
1�k�1;n � �1

�
�21

1CA (5.2.46)

e2(b1;�1; �1; �k;n) : = 2 cosh

0@b1
q
�21 + 2�

2
1�k;n

�21

1Aq�21 + 2�21�k;n �
�2 sinh

0@b1
q
�21 + 2�

2
1�k;n

�21

1A�1 (5.2.47)

Similar by the Proposition 4.9.1 in order to �nd the Expected Discounted Moments for the

second insurer (Y-insurer) in a de Finetti - de Finetti model we have to solve the pde:

�21
2
V2xx(x; y; k) +

�22
2
V2yy(x; y; k) + �1V2x(x; y; k) + �2V2y(x; y; k) = k�V2(x; y; k) (5.2.48)

subject to the boundary conditions:
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V2(x; 0; k) = 0 (5.2.49)
@

@y
V2(x; y; k)jy=b2 = kV2(x; b2; k � 1) (5.2.50)

V2(0; y; k) = 0 (5.2.51)
@

@x
V2(x; y; k)jx=b1 = 0 (5.2.52)

Working as before we �nd that the discounted moments for the second insurer (Y-insurer) in

a de Finetti - de Finetti model are given by

V2(x; y; k)

=

1X
n=0

ck;n exp

�
�x�1
�21

�
sin

0@x
q
��21 � 2(�k;n � k�)�21

�21

1A
�

0B@� exp
0B@y

�
��2 �

q
�22 + 2�

2
2�k;n

�
�22

1CA+ exp
0B@y

�
��2 +

q
�22 + 2�

2
2�k;n

�
�22

1CA
1CA

with

ck;n = kck�1;n exp

�
b2�2
�22

� e1(b2;�2; �2; �k�1;n)e2(b2;�2; �2; �k;n) �22
where e1(b2;�2; �2; �k�1;n) and e2(b2;�2; �2; �k;n) are given by (5.2.46),(5.2.47) respectively and
the eigenvalues �k;n are calculated by the solution of (5.A.3) (with b replaced by b1 ) and for large

values of n are approximated by (5.A.4).

5.2.6 The Laplace Transform of the discounted dividends.

The Laplace transform of the discounted dividends can be found from:

K(x; y; �) = 1 +
1X
k=0

�k

k!
V(x; y; k)

5.2.7 The Laplace transform of the time of ruin for the De Finetti - Lundeberg
model.

By Proposition 4.7.1 in order to �nd the Laplace transform of the time of ruin in a de Finetti -

Lundberg model we have to solve the pde:

�21
2
Mxx(x; y; �) +

�22
2
Myy(x; y; �) + �1Mx(x; y; �) + �2My(x; y; �) = �M(x; y; �) (5.2.53)
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subject to the boundary conditions

M(0; y; �) = 1 (5.2.54)
@

@x
M(x; y; �)jx=b = 0 (5.2.55)

M(x; 0; �) = 1 (5.2.56)

M(x;1; �) := lim
y!1

M(x; y; �) =M(x; �) (5.2.57)

� Step 1.

We consider the ODE

�21
2
Mxx(x; �) + �1Mx(x; �) = �M(x; �) (5.2.58)

with boundary conditions

M(0; �) = 1 (5.2.59)
@

@x
M(x; �)jx=b = 0 (5.2.60)

The solution of (5.2.58)-(5.2.60) is

M(x; �) =

exp
�
�x�1

�21

��p
�21 + 2��

2
1 + �1 tanh

�
(b�x)

p
�21+2��

2
1

�21

��
p
�21 + 2��

2
1 � �1 tanh

�
b
p
�21+2��

2
1

�21

� (5.2.61)

� Step 2.

Now it is enough to solve the pde (5.2.53) with boundary conditions

cM(0; y; �) = 0 (5.2.62)
@

@x
cM(x; y; �)jx=b = 0 (5.2.63)cM(x; 0; �) = 1�M(x; �) (5.2.64)cM(x;1; �) := lim

y!1
cM(x; y; �) = 0 (5.2.65)
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By (5.A.31)-(5.A.33), (5.A.1)-(5.A.5), (5.2.65) and the principle of superposition the solution

is:

cM(x; y; �)

=

1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2��n�21

�21

!

� exp

0@y
�
��2 �

p
�22 � 2(��n � �)�22

�
�22

1A
and the eigenvalues ��n are calculated by the solution of (5.A.3) (with b replaced by b1 ) and for

large values of n are approximated by (5.A.4). Finally we will �nd the coe¢ cients cn in order the

solution to satisfy the condition (5.2.64). We have

cM(x; 0; �) = 1�M(x; �) =)
1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2��n�21

�21

!
= 1�M(x; �) =)

cn =

bZ
0

(1�M(x; �)) exp
�
x�1
�21

�
sin

�
x
p
��21�2�

�
n�

2
1

�21

�
dx

bZ
0

�
sin

�
x
p
��21�2�

�
n�

2
1

�21

��2
dx

Thus the solution of the initial problem (5.2.8)-(5.2.12) is

M(x; y; �) = cM(x; y; �) +M(x; �) =)

M(x; y; �) =

1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2��n�21

�21

!

� exp

0@y
�
��2 �

p
�22 � 2(��n � �)�22

�
�22

1A+M(x; �)
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5.2.8 The Laplace transform of the time of ruin for the de Finetti - de Finetti
model.

By Proposition 4.9.3 in order to �nd the Laplace transform of the time of ruin in a de Finetti

- de Finetti model we have to solve the pde:

�21
2
Mxx(x; y; �) +

�22
2
Myy(x; y; �) + �1Mx(x; y; �) + �2My(x; y; �) = �M(x; y; �) (5.2.66)

subject to the boundary conditions

M(0; y; �) = 1 (5.2.67)
@

@x
M(x; y; �)jx=b1 = 0 (5.2.68)

M(x; 0; �) = 1 (5.2.69)
@

@y
M(x; y; �)jy=b2 = 0 (5.2.70)

It is enough to solve the pde (5.2.66) with boundary conditions

cM(0; y; �) = 0 (5.2.71)
@

@x
cM(x; y; �)jx=b1 = 0 (5.2.72)cM(x; 0; �) = 1�M(x; �) (5.2.73)

@

@y
cM(x; y; �)jy=b2 = 0 (5.2.74)

where M(x; �) is the solution of (5.2.58)-(5.2.60) and is given by (5.2.61). By (5.A.31)-(5.A.33),

(5.A.1)-(5.A.5), (5.2.74) and the principle of superposition the solution is:

cM(x; y; �)

=

1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2��n�21

�21

!

� exp
 
�
p
�22 � 2�22 (��n + �) (y � 2b2) + y�2

�22

!

�

�p
�22 � 2�22 (��n + �)

�
1 + eB�+ ��1 + eB��2�

�2 +
p
�22 � 2�22 (��n + �)

where eB := eB(y; �2; �2; b2; �; ��n) := exp
 
2 (y � b2)

p
�22 � 2�22 (��n + �)
�22

!
and the eigenvalues ��n are calculated by the solution of (5.A.3) (with b replaced by b1 ) and for

large values of n are approximated by (5.A.4). Finally we will �nd the coe¢ cients cn in order

the solution to satisfy the condition (5.2.73). We have:

cM(x; 0; �) = 1�M(x; �) =)
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1X
n=0

cn exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2��n�21

�21

! e�(�2; �2; b2; �; ��n) = 1�M(x; �) =)

cn =

bZ
0

(1�M(x; �)) exp
�
x�1
�21

�
sin

�
x
p
��21�2�

�
n�

2
1

�21

�
dx

e�(�2; �2; b2; �; ��n) bZ
0

�
sin

�
x
p
��21�2�

�
n�

2
1

�21

��2
dx

where

e� := e�(�2; �2; b2; �; ��n) := exp
 
2b2
p
�22 � 2�22 (��n + �)

�22

!

e� := e�(�2; �2; b2; �; ��n) :=
p
�22 � 2�22 (��n + �)

�
1 + e��+ �1� e���2

�2 +
p
�22 � 2�22 (��n + �)

Thus the solution of our original problem (5.2.8)-(5.2.12) is

M(x; y; �) = cM(x; y; �) +M(x; �)

Next we proceed with the two re�ecting barriers case.

5.3 Two Re�ecting barriers.

In this section we study the models (5.1.1)-(5.1.2) considering that if an insurance company (�rst

insurer or second insurer) follows the de Finetti model then it follows a dividends policy with a

constant upper re�ecting barrier and a constant lower re�ecting barrier which is the zero constant.

5.3.1 Expected Discounted Dividends and Financing for the de Finetti - Lund-
berg model.

� Discounted Dividends.

By Proposition 4.4.2 in order to �nd the expected discounting dividends for the �rst insurer

(X-insurer) in a de Finetti - Lundberg model we have to solve the pde:

�21
2
V(+)xx (x; y) +

�22
2
V(+)yy (x; y) + �1V(+)x (x; y) + �2V(+)y (x; y) = �V(+)(x; y) (5.3.1)
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subject to the boundary conditions:

@

@x
V(+)(x; y)jx=0 = 0 (5.3.2)

@

@x
V(+)(x; y)jx=b1 = 1 (5.3.3)

V(+)(x; 0) = 0 (5.3.4)

V(+)(x;1) := lim
y!1

V(+)(x; y) = V(+)(x) (5.3.5)

� Step 1.

We consider the ODE
�21
2
V(+)xx (x) + �1V(+)x (x) = �V(+)(x) (5.3.6)

with boundary conditions

@

@x
V(+)(x)jx=0 = 0 (5.3.7)

@

@x
V(+)(x)jx=b = 1 (5.3.8)

The solution of (5.3.6)-(5.3.8) is

V(+)(x) =
exp

�
(b�x)�1
�21

��p
�21 + 2��

2
1 cosh

�
x
p
�21+2��

2
1

�21

�
+ sinh

�
x
p
�21+2��

2
1

�21

�
�1

�
2� sinh

�
b
p
�21+2��

2
1

�21

� (5.3.9)

� Step 2.

Now it is enough to solve the pde (5.3.1) with boundary conditions

@

@x
dV(+)(x; y)jx=0 = 0 (5.3.10)

@

@x
dV(+)(x; y)jx=b = 0 (5.3.11)dV(+)(x; 0) = �V(+)(x) (5.3.12)dV(+)(x;1) := lim

y!1
dV(+)(x; y) = 0 (5.3.13)

By (5.A.31)�(5.A.33), (5.A.12)�(5.A.15), (5.3.13) and the principle of superposition the solution

is

dV(+)(x; y) =
1X
n=0

c(+)n exp

0@y
�
��2 �

p
�22 � 2 (�n � �)�22

�
�22

1A�
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
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where by (5.A.14) we have

�n = �
n2�2�41 + b

2�21
2b2�21

+ �

Finally we will �nd the coe¢ cients c(+)n in order the solution to satisfy the condition (5.3.12). We

have

dV(+)(x; 0) = �V(+)(x) =)
1X
n=0

c(+)n exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
= �V(+)(x) =)

c(+)n = �

bZ
0

V(+)(x) exp
�
x�1
�21

��
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��
dx

bZ
0

�
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��2
dx

Thus the solution of the initial problem (5.3.1)-(5.3.5) is

V(+)(x; y) = dV(+)(x; y) + V(+)(x) =)
V(+)(x; y) =

1X
n=0

c(+)n exp

0@y
�
��2 �

p
�22 � 2 (�n � �)�22

�
�22

1A�
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
+ V(+)(x)

� Discounted Financing.

By Proposition 4.4.2 in order to �nd the expected discounted �nancing for the �rst insurer

(X-insurer) in a de Finetti - Lundberg model we have to solve the PDE

�21
2
V(�)xx (x; y) +

�22
2
V(�)yy (x; y) + �1V(�)x (x; y) + �2V(�)y (x; y) = �V(�)(x; y) (5.3.14)

subject to the boundary conditions

@

@x
V(�)(x; y)jx=0 = �1 (5.3.15)

@

@x
V(�)(x; y)jx=b = 0 (5.3.16)

V(�)(x; 0) = 0 (5.3.17)

V(�)(x;1) := lim
y!1

V(�)(x; y) = V(�)(x) (5.3.18)
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� Step 1.

We consider the ODE
�21
2
V(�)xx (x) + �1V(�)x (x) = �V(�)(x) (5.3.19)

with boundary conditions

@

@x
V(�)(x)jx=0 = �1 (5.3.20)

@

@x
V(�)(x)jx=b = 0 (5.3.21)

The solution of (5.3.19)-(5.3.21) is

V(�)(x) =  1(x;�1; �1; b; 0; 1; �)

 2(�1; �1; b; 0; 1; �)
exp

0@x
�p

�21 + 2��
2
1 � �1

�
�21

1A (5.3.22)

where  1(x;�1; �1; b; 0; 1; �) and  2(�1; �1; b; 0; 1; �) are given by (5.A.24) and (5.A.25) respec-

tively.

Step 2.

Now it is enough to solve the pde (5.3.14) with boundary conditions

@

@x
dV(�)(x; y)jx=0 = 0 (5.3.23)

@

@x
dV(�)(x; y)jx=b = 0 (5.3.24)dV(�)(x; 0) = �V(�)(x) (5.3.25)dV(�)(x;1) := lim

y!1
dV(�)(x; y) = 0 (5.3.26)

By (5.A.31)�(5.A.33), (5.A.12)�(5.A.15), (5.3.26) and the principle of superposition the solution

is:

dV(�)(x; y) =

1X
n=0

c(�)n exp

0@y
�
��2 �

p
�22 � 2 (�n � �)�22

�
�22

1A�
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
where by (5.A.14) we have:

�n = �
n2�2�41 + b

2�21
2b2�21

+ �



5.3.2 Expected Discounted Dividends and Financing for the De Finetti
-de Finetti model. 162

Finally we will �nd the coe¢ cients c(�)n in order the solution to satisfy the condition (5.3.25).

We have

dV(�)(x; 0) = �V(�)(x) =)
1X
n=0

c(�)n exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
= �V(�)(x) =)

c(�)n = �

bZ
0

V (�)(x) exp
�
x�1
�21

��
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��
dx

bZ
0

�
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��2
dx

Thus the solution of the initial problem (5.3.14)-(5.3.18) is

V(�)(x; y) = dV(�)(x; y) + V(�)(x) =)
V(�)(x; y) =

1X
n=0

c(�)n exp

0@y
�
��2 �

p
�22 � 2 (�n � �)�22

�
�22

1A
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
+ V(�)(x)

5.3.2 Expected Discounted Dividends and Financing for the De Finetti -de
Finetti model.

� Discounted Dividends.

By Proposition 4.9.6 in order to �nd the expected discounted dividends for the �rst insurer

(X-insurer) in a de Finetti - de Finetti model we have to solve the PDE

�21
2
V(+)1xx(x; y) +

�22
2
V(+)1yy (x; y) + �1V

(+)
1x (x; y) + �2V

(+)
1y (x; y) = �V(+)1 (x; y) (5.3.27)

subject to the boundary conditions

@

@x
V(+)1 (x; y)jx=0 = 0 (5.3.28)

@

@x
V(+)1 (x; y)jx=b1 = 1 (5.3.29)

V(+)1 (x; 0) = 0 (5.3.30)
@

@y
V(+)1 (x; y)jy=b2 = 0 (5.3.31)
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By (5.A.31)�(5.A.33), (5.A.16)�(5.A.18), (5.A.1)�(5.A.5), (5.3.27) and the principle of superposi-

tion the solution is

V(+)1 (x; y) =

1X
n=0

e!1(x;�1; �1; �n; 0; 0)e!2(b1;�1; �1; �n; 0; 0) exp
�
(b1 � x)�1

�21

�

� exp
�
�y�2
�22

�
sin

 
y
p
��22 + 2(�n � �)�22

�22

!

where e!1(x;�1; �1; �n; 0; 0) and e!2(b1;�1; �1; �n; 0; 0) are given by (5.A.19) and (5.A.20) respec-
tively.

The eigenvalues �n are calculated by the solution of (5.A.3) (with b replaced by b2 , �1 by �2
, �1 by �2) and for large values of n are approximated by (5.A.4).

Similarly in order to �nd the discounting dividends for the second insurer (Y-insurer), by the

Proposition 4.9.6 we must solve the PDE

�21
2
V(+)2xx(x; y) +

�22
2
V(+)2yy (x; y) + �1V

(+)
2x (x; y) + �2V

(+)
2y (x; y) = �V(+)2 (x; y) (5.3.32)

subject to the boundary conditions

@

@x
V(+)2 (x; y)jx=0 = 0 (5.3.33)

@

@x
V(+)2 (x; y)jx=b1 = 0 (5.3.34)

V(+)2 (x; 0) = 0 (5.3.35)
@

@y
V(+)2 (x; y)jy=b2 = 1 (5.3.36)

By (5.A.31)�(5.A.33), (5.A.12)�(5.A.15), (5.A.7)�(5.A.9) and the principle of superposition the

solution is:

V(+)2 (x; y) =
1X
n=0

exp

�
�x�1
�21

��
cos

�
n�x

b1

�
+
b1�1
n��21

sin

�
n�x

b1

��

� exp

0@�(y � b2)
�
�2 +

p
�22 � 2 (�n � �)�22

�
�22

1A er1(y; �2; �2; �n; �)er2(�2; �2; b2; �n; �)
where er1(y;�2; �2; �n; 1; �) and er2(b2;�2; �2; �n; 1; �) are given by (5.A.10) and (5.A.11) respec-
tively and by (5.A.14) we have

�n = �
n2�2�41 + b

2�21
2b2�21

+ �

� Discounted Financing.
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By Proposition 4.9.6 in order to �nd the expected discounted �nancing for the �rst insurer

(X-insurer) in a de Finetti - de Finetti model we have to solve the PDE:

�21
2
V(�)1xx(x; y) +

�22
2
V(�)1yy (x; y) + �1V

(�)
1x (x; y) + �2V

(�)
1y (x; y) = �V(�)1 (x; y) (5.3.37)

subject to the boundary conditions

@

@x
V(�)1 (x; y)jx=0 = �1 (5.3.38)

@

@x
V(�)1 (x; y)jx=b1 = 0 (5.3.39)

V(�)1 (x; 0) = 0 (5.3.40)
@

@y
V(�)1 (x; y)jy=b2 = 0 (5.3.41)

By (5.A.31)-(5.A.33), (5.A.21)-(5.A.23), (5.A.1)-(5.A.5) and the principle of superposition the

solution is:

V(�)1 (x; y) =
1X
n=0

exp

�
�y�2
�22

�
sin

 
y
p
��22 + 2(�n � �)�22

�22

!
�

� exp

0@x
�p

�21 + 2�n�
2
1 � �1

�
�21

1A  1(x;�1; �1; b1; �n; 0; 0)

 2(�1; �1; b1; �n; 0; 0)

where  1(x;�1; �1; b1; �n; 0; 0) and  2(�1; �1; b1; �n; 0; 0) are given by (5.A.24) and (5.A.25) re-

spectively. The eigenvalues �n are calculated by the solution of (5.A.3) (with b replaced by b2 ,

�1 by �2 , �1 by �2) and for large values of n are approximated by (5.A.4).

5.3.3 Moments of the Discounted Dividends and Financing for the de Finetti
- Lundberg model.

� Discounted Dividends.

By Proposition 4.4.2 in order to �nd the moments of the discounted dividends for the �rst

insurer (X-insurer) in a de Finetti - Lundberg model we have to solve the PDE

�21
2
V(+)xx (x; y; k) +

�22
2
V(+)yy (x; y; k) + �1V(+)x (x; y; k) + �2V(+)y (x; y; k) = k�V(+)(x; y; k) (5.3.42)

subject to the boundary conditions

@

@x
V(+)(x; y; k)jx=0 = 0 (5.3.43)

@

@x
V(+)(x; y; k)jx=b = kV(+)(b; y; k � 1) (5.3.44)

V(+)(x; 0; k) = 0 (5.3.45)

V(+)(x;1; k) := lim
y!1

V(+)(x; y; k) = V(+)(x; k) (5.3.46)
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� Step 1.

We consider the ODE

�21
2
V(+)xx (x; k) + �1V(+)x (x; k) = k�V(+)(x; k) (5.3.47)

with boundary conditions:

@

@x
V(+)(x; k)jx=0 = 0 (5.3.48)

@

@x
V(+)(x; k)jx=b = kV(+)(b; k � 1) (5.3.49)

The solution of (5.3.47)�(5.3.49) is

V(+)(x; k) = exp

0@(b� x)
�
�1 +

p
�21 + 2k��

2
1

�
�21

1A er1(x;�1; �1; 0; k; �)er2(b;�1; �1; 0; k; �) kV(+)(b; k � 1)
where er1(x;�1; �1; 0; k; �) and er2(b;�1; �1; 0; k; �) are given by (5.A.10) and (5.A.11) respectively.
� Step 2.

In this step we will solve the pde (5.3.42) with boundary conditions

@

@x
W(+)(x; y; k)jx=0 = 0 (5.3.50)

@

@x
W(+)(x; y; k)jx=b = kdV(+)(b; y; k � 1) (5.3.51)

W(+)(x;1; k) := lim
y!1

W(+)(x; y; k) = 0 (5.3.52)

By (5.A.31)-(5.A.33) and (5.3.50)- (5.3.52) we consider a solution of the form

W(+)(x; y; k)

=
1X
n=0

c
�;(+)
k;n b�(x; �1; �1; ��k;n) exp��x�1�21

�
exp

0@y
�
��2 �

q
�22 � 2(��k;n � k�)�22

�
�22

1A
where

b�(x; �1; �1; ��k;n) := sin

0@x
q
��21 � 2��k;n�21

�21

1A+
+

q
��21 � 2��k;n�21

�1
cos

0@x
q
��21 � 2��k;n�21

�21

1A
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and ��k;n are the constants of the separation of variables. Now because of the condition (5.3.51)

we take

��k;n = �k�1;n + �

and so we have
@

@x
W(+)(x; y; k)jx=b = kdV(+)(b; y; k � 1) =)

c
�;(+)
k;n

2 exp
�
� b�1
�21

�
(�k�1;n + �) sin

�
b
p
��21�2(�k�1;n+�)�21

�21

�
�1

= kc
(+)
k�1;n

exp
�
� b�1
�21

� �
n� cos

�
n�b
b

�
�21 + b sin

�
n�b
b

�
�1
�

n��21
=)

c
�;(+)
k;n = kc

(+)
k�1;n

(�1)nb�1

2n��21(�k�1;n + �) sin

�
b
p
��21�2(�k�1;n+�)�21

�21

�

� Step 3.

Now it is enough to solve the pde (5.3.42) with boundary conditions

@

@x
dV(+)(x; y; k)jx=0 = 0 (5.3.53)

@

@x
dV(+)(x; y; k)jx=b = 0 (5.3.54)dV(+)(x; 0; k) = �V(+)(x; k)�W(+)(x; 0; k) (5.3.55)dV(+)(x;1; k) : = lim

y!1
dV(+)(x; y; k) = 0 (5.3.56)

By (5.A.31)-(5.A.33), (5.A.12)-(5.A.15), (5.3.53), (5.3.56) and the principle of superposition

the solution is

dV(+)(x; y; k) =

1X
n=0

c
(+)
k;n exp

0B@y
�
��2 �

q
�2 � 2(�k;n � k�)�22

�
�22

1CA
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
where the eigenvalues �k;n are given by (5.A.14). Finally we will �nd the coe¢ cients c

(+)
k;n in order

the solution to satisfy the condition (5.3.55). We havedV(+)(x; 0; k) = �V(+)(x; k)�W(+)(x; 0; k)
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which leads to
1X
n=0

c
(+)
k;n exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
= �V (+)(x; k)�W (+)(x; 0; k)

or

c
(+)
k;n = �

bZ
0

(V(+)(x) +W(+)(x; 0; k)) exp
�
x�1
�21

��
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��
dx

bZ
0

�
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��2
dx

Thus the solution of the initial problem (5.3.42)-(5.3.46) is:

V(+)(x; y; k) = dV(+)(x; y; k) +W(+)(x; y; k) + V(+)(x; k)

� Discounted Financing.

By Proposition 4.4.2 in order to �nd the moments of the discounted �nancing for the �rst

insurer (X-insurer) in a de Finetti - Lundberg model we have to solve the PDE

�21
2
V(�)xx (x; y; k) +

�22
2
V(�)yy (x; y; k) + �1V(�)x (x; y; k) + �2V(�)y (x; y; k) = k�V(�)(x; y; k) (5.3.57)

subject to the boundary conditions

@

@x
V(�)(x; y; k)jx=0 = �kV(�)(0; y; k � 1) (5.3.58)

@

@x
V(�)(x; y; k)jx=b = 0 (5.3.59)

V(�)(x; 0; k) = 0 (5.3.60)

V(�)(x;1; k) := lim
y!1

V(�)(x; y; k) = V(�)(x; k) (5.3.61)

� Step 1.

We consider the ODE

�21
2
V(�)xx (x; k) + �1V(�)x (x; k) = k�V(�)(x; k) (5.3.62)

with boundary conditions

@

@x
V(�)(x; k)jx=b = 0 (5.3.63)

@

@x
V(�)(x; k)jx=0 = �kV(�)(0; k � 1) (5.3.64)
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The solution of (5.3.62)-(5.3.64) is

V(�)(x; k) = exp

0@x
�p

�21 + 2k��
2
1 � �1

�
�21

1A  1(x;�1; �1; b; 0; k; �)

 2(�1; �1; b; 0; k; �)
kV(�)(0; k � 1)

where  1(x;�1; �1; b; 0; k; �) and  2(�1; �1; b; 0; k; �) are given by (5.A.24) and (5.A.25) respec-

tively.

� Step 2.

In this step we will solve the PDE (5.3.57) with boundary conditions

@

@x
W(�)(x; y; k)jx=0 = �kdV(�)(0; y; k � 1) (5.3.65)

@

@x
W(�)(x; y; k)jx=b = 0 (5.3.66)

W(�)(x;1; k) := lim
y!1

W(�)(x; y; k) = 0 (5.3.67)

By (5.A.31)-(5.A.33) and (5.3.50)- (5.3.52) we consider a solution of the form

W(+)(x; y; k)

=
1X
n=0

c
�;(�)
k;n exp

�
�x�1
�21

�
exp

0@y
�
��2 �

q
�22 � 2(��k;n � k�)�22

�
�22

1A
�

0@e�cos
0@x
q
��21 � 2��k;n�21

�21

1A+ sin
0@x
q
��21 � 2��k;n�21

�21

1A1A
where

e� := e�(�1; �1; b; ��k;n) :=
q
��21 � 2��k;n�21 � �1 tan

 
b
q
��21�2�

�
k;n�

2
1

�21

!

�1 +
q
��21 � 2��k;n�21 tan

 
b
q
��21�2�

�
k;n�

2
1

�21

!
and ��k;n are the separation of variables constants. Now because of the condition (5.3.65) we take

��k;n = �k�1;n + �

and so we have
@

@x
W(�)(x; y; k)jx=0 = �kdV(�)(0; y; k � 1)

which leads to

c
�;(�)
k;n = kc

(�)
k�1;n

�1 +
q
��21 � 2(�k�1;n + �)�21 tan

�
b
p
��21�2(�k�1;n+�)�21

�21

�
2(�k�1;n + �) tan

�
b
p
��21�2(�k�1;n+�)�21

�21

�
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� Step 3.

Now it is enough to solve the PDE (5.3.57) with boundary conditions

@

@x
dV(�)(x; y; k)jx=0 = 0 (5.3.68)

@

@x
dV(�)(x; y; k)jx=b = 0 (5.3.69)dV(+)(x; 0; k) = �V(�)(x; k)�W(�)(x; 0; k) (5.3.70)dV(�)(x;1; k) := lim

y!1
dV(�)(x; y; k) = 0 (5.3.71)

By (5.A.31)�(5.A.33), (5.A.12)�(5.A.15), (5.3.68), (5.3.71) and the principle of superposition

the solution is

dV(�)(x; y; k) =

1X
n=0

c
(�)
k;n exp

0B@y
�
��2 �

q
�22 � 2(�k;n � k�)�22

�
�22

1CA
� exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
where the eigenvalues �k;n are given by (5.A.14). Finally we will �nd the coe¢ cients c

(�)
k;n in order

the solution to satisfy the condition (5.3.70). We have

dV(�)(x; 0; k) = �V(�)(x; k)�W(�)(x; 0; k)

which gives

1X
n=0

c
(�)
k;n e

�x�1
�21

�
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
= �V(�)(x; k)�W(�)(x; 0; k)

or

c
(�)
k;n = �

bZ
0

�
V (�)(x) +W (�)(x; 0; k)

�
exp

�
x�1
�21

��
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��
dx

bZ
0

�
cos
�
n�x
b

�
+ b�1

n��21
sin
�
n�x
b

��2
dx

:

Thus the solution of the initial problem (5.3.57)-(5.3.61) is

V(�)(x; y; k) = dV(�)(x; y; k) +W(�)(x; y; k) + V(�)(x; k)
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5.3.4 Moments of the Discounted Dividends and Financing for the de Finetti
- de Finetti model.

� Discounted Moment of Dividends.

By Proposition 4.9.6 in order to �nd the moments of the discounted dividends for the �rst

insurer (X-insurer) in a de Finetti - de Finetti model we have to solve the pde:

�21
2
V(+)1xx(x; y; k) +

�22
2
V(+)1yy (x; y; k) + �1V

(+)
1x (x; y; k) + �2V

(+)
1y (x; y; k) = k�V(+)1 (x; y; k) (5.3.72)

subject to the boundary conditions

@

@x
V(+)1 (x; y; k)jx=0 = 0 (5.3.73)

@

@x
V(+)1 (x; y; k)jx=b1 = kV(+)1 (b1; y; k � 1) (5.3.74)

V(+)1 (x; 0; k) = 0 (5.3.75)
@

@y
V(+)1 (x; y; k)jy=b2 = 0 (5.3.76)

By (5.A.31)-(5.A.33), (5.A.1)-(5.A.5), (5.3.27) and the principle of superposition the solution

is

V(+)1 (x; y; k) =
1X
n=0

c
(+)
k;n exp

�
�y�2
�22

�
sin

0@y
q
��22 + 2(�k;n � k�)�22

�22

1A
� exp

0B@�x
�
�1 +

q
�21 + 2�

2
1�k;n

�
�21

1CA q(x;�1; �1; �k;n)

�1 +
q
�21 + 2�

2
1�k;n

where

q(x;�1; �1; �k;n) :=

0@�1 + exp
0@2x

q
�21 + 2�

2
1�k;n

�21

1A1A�1

+
q
�21 + 2�

2
1�k;n

0@1 + exp
0@2x

q
�21 + 2�

2
1�k;n

�21

1A1A
and the eigenvalues �k;n are calculated by the solution of (5.A.3) (with b replaced by b2 , �1 by

�2, �1 by �2) and for large values of n are approximated by (5.A.4). By the condition (5.3.74)

and using (5.A.6) we have

@

@x
V(+)1 (x; y; k)jx=b1 = kV(+)1 (b1; y; k � 1)
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which leads to

c
(+)
k;n = kc

(+)
k�1;n exp

0B@�b1
�
�1 +

q
�21 + 2�

2
1�k�1;n

�
�21

1CA �

�e"(b1;�1; �1; �k�1;n; �k;n) �1 +
q
�21 + 2�

2
1�k;n

�1 +
q
�21 + 2�

2
1�k�1;n

where

e"(b1;�1; �1; �k�1;n; �k;n)
:=

q(b1;�1; �1; �k�1;n)

2 exp

 
�
b1
�
�1+
p
�21+2�

2
1�k;n

�
�21

!�
�1 + exp

�
2b1
p
�21+2�

2
1�k;n

�21

��
�k;n

Similarly in order to �nd the discounted dividends for the second insurer (Y-insurer) we would

like to solve the PDE

�21
2
V(+)2xx(x; y) +

�22
2
V(+)2yy (x; y) + �1V

(+)
2x (x; y) + �2V

(+)
2y (x; y) = �V(+)2 (x; y) (5.3.77)

subject to the boundary conditions

@

@x
V(+)2 (x; y; k)jx=0 = 0 (5.3.78)

@

@x
V(+)2 (x; y; k)jx=b1 = 0 (5.3.79)

V(+)2 (x; 0; k) = 0 (5.3.80)
@

@y
V(+)2 (x; y; k)jy=b2 = kV(+)2 (x; b2; k � 1) (5.3.81)

By (5.A.31)�(5.A.33), (5.A.12)�(5.A.15) and the principle of superposition the solution is

V(+)2 (x; y; k)

=
1X
n=0

c+k;n exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
�

�

0B@� exp
0B@y

�
��2 �

q
�22 + 2�

2
2�k;n

�
�22

1CA+ exp
0B@y

�
��2 +

q
�22 + 2�

2
2�k;n

�
�22

1CA
1CA

where by (5.A.14) we have

�k;n = �
n2�2�41 + b

2�21
2b2�21

� k�
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By condition (5.3.81) we have

@

@y
V(+)2 (x; y; k)jy=b2 = kV(+)2 (x; b2; k � 1)

from which follows that

c
(+)
k;n exp

�
�b2�2

�22

� e�2(�2; �2; b2; �k;n)
�22

= kc
(+)
k�1;n

e�1(�2; �2; b2; �k�1;n)
or

c
(+)
k;n = kc

(+)
k�1;n exp

�
b2�2
�22

� e�1(�2; �2; b2; �k�1;n)e�2(�2; �2; b2; �k;n) �22
where e�1(�2; �2; b2; �k�1;n)

:= � exp

0B@b2
�
��2 �

q
�22 + 2�

2
2�k�1;n

�
�22

1CA+ exp
0B@b2

�
��2 +

q
�22 + 2�

2
2�k�1;n

�
�22

1CA
e�2(�2; �2; b2; �k;n)

: = 2 cosh

0@b2
q
�22 + 2�

2
2�k;n

�22

1Aq�22 + 2�22�k;n � 2 sinh
0@b2

q
�22 + 2�

2
2�k;n

�22

1A�2

� Discounted Financing.

By Proposition 4.9.6 in order to �nd the moments of the discounted �nancing for the �rst

insurer (X-insurer) in a de Finetti - de Finetti model we have to solve the PDE

�21
2
V(�)1xx(x; y; k) +

�22
2
V(�)1yy (x; y; k) + �1V

(�)
1x (x; y; k) + �2V

(�)
1y (x; y; k) = k�V(�)1 (x; y; k) (5.3.82)

subject to the boundary conditions

@

@x
V(�)1 (x; y; k)jx=0 = �kV(�)1 (0; y; k � 1) (5.3.83)

@

@x
V(�)1 (x; y; k)jx=b1 = 0 (5.3.84)

V(�)1 (x; 0; k) = 0 (5.3.85)
@

@y
V(�)1 (x; y; k)jx=b2 = 0 (5.3.86)

By (5.A.31)�(5.A.33), (5.A.1)�(5.A.5) and the principle of superposition the solution is

V(�)1 (x; y; k) =
1X
n=0

c
(�)
k;n exp

�
�y�2
�22

�
sin

0@y
q
��22 + 2(�k;n � k�)�22

�22

1A�
� exp

0B@x
�q

�21 + 2�
2
1�k;n � �1

�
�21

1CA e�(x;�1; �1; b1; �k;n)
�1 +

q
�21 + 2�

2
1�k;n
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where

e�(x;�1; �1; b1; �k;n) :=
0@1� exp

0@2 (b1 � x)
q
�21 + 2�

2
1�k;n

�21

1A1A�1 +

+
q
�21 + 2�

2
1�k;n

0@1 + exp
0@2 (b1 � x)

q
�21 + 2�

2
1�k;n

�21

1A1A
and the eigenvalues �k;n are calculated by the solution of (5.A.3) (with b replaced by b2, �1 by

�2, �1 by �2) and for large values of n are approximated by (5.A.4). By the condition (5.3.83)

and using (5.A.6) we have

@

@x
V(�)1 (x; y; k)jx=0 = �kV(�)1 (0; y; k � 1)

hence we obtain

c
(�)
k;n

2

�
1� exp

�
2b1
p
�21+2�

2
1�k;n

�21

��
�k;n

�1 +
q
�21 + 2�

2
1�k;n

= �kc(�)k�1;n
e�(0;�1; �1; b1; �k�1;n)
�1 +

q
�21 + 2�

2
1�k�1;n

=)

c
(�)
k;n = �kc

(�)
k�1;n

�1 +
q
�21 + 2�

2
1�k;n

�1 +
q
�21 + 2�

2
1�k�1;n

e�(0;�1; �1; b1; �k�1;n)
2

�
1� exp

�
2b1
p
�21+2�

2
1�k;n

�21

��
�k;n
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5.4 Policy Making.

We start this section with a question. We suppose that an insurer, say X; has to choose to

collaborate with one out of n other insurers, say Yi; i = 1; :::; n: How the X-insurer can make the

best choice in terms of maximizing his survival probability or in terms of maximizing his expected

discounted dividends? He wants to be able to conclude that the cooperation with, say the Y4-

insurer, is the cooperation that gives him the maximum expected discounted dividends from all

the other cooperations. Also if the best cooperation is not possible then he wants to be able

to move to the next best cooperation, for example he wants to be in position to conclude that

the cooperation, say with the Y8-insurer gives him the maximum expected discounted dividends

excluding the Y4-insurer. How he can construct a policy, that is to rank his available choices from

the best choice to the worst choice?

The results we �nd in the previous sections can be used in order to answer these questions and

help an insurance company to construct a policy.

De�nition 5.4.1 Let us suppose that we have a X-insurer who has to choose to collaborate with
one out of n other insurers Yi; i = 1; :::; n: We will call best policy for the X-insurer with respect

of his survival probability, and denote it by �P (X); the vector

�P (X) :=
�
Y(1); Y(2); :: Y(i) Y(i+1) ::: Y(n)

�
with the property

P (x; y(i)) � P (x; y(j)) , for i < j; i; j = 1; 2; :::; n:

where P (x; y(i)) is the survival probability for the X-insurer when he collaborates with the Y(i)-

insurer.

We will call best policy for the X-insurer with respect of his expected discounted dividends,

and denote it by �V (X); the vector

�V (X) :=
�
Y(1); Y(2); :: Y(i) Y(i+1) ::: Y(n)

�
with the property

V (x; y(i)) � V (x; y(j)) , for i < j; i; j = 1; 2; :::; n:

where V (x; y(i)) is the expected discounted dividends for the X-insurer when he collaborates with

the Y(i)-insurer.
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In order to proceed with the analysis of how to construct a policy, it is preferable in this

section to show the dependency of all the parameters of the problem and thus we write the

survival probability P (x; y) as

P (x; y) � P ((x; �x; �x; b); (y; �y; �y))

and the expected discounted dividends V (x; y) as

V (x; y) � V ((x; �x; �x; b); (y; �y; �y))

We think that it would be better to present the method of constructing a policy for an insurance

company with the aid of an example.

Example 3 Let us consider an insurer which we call X-insurer which follows a dividends policy
with one re�ecting barrier at b = 8 and one absorbing barrier at 0. He has initial capital x = 5

and his reserves are described by a di¤usion process with drift coe¢ cient �x = 1 and volatility

coe¢ cient �x = 3:

Suppose that the X-insurer has to choose to collaborate with one out of ten other insurance

companies, each one of them follows the Lundberg model with initial capital, drift and volatility

coe¢ cients as in the following table

Y-insurer y �y �y P ((5; 1; 3; 8); (y; �y; �y)) V ((5; 1; 3; 8); (y; �y; �y))

1 2 1 2 0.326795 8.67359

2 2 2 5 0.690534 4.0308

3 3 1 7 0.797428 2.74389

4 1 1 4 0.844774 2.06148

5 4 3 4 0.206494 10.1494

6 2 3 6 0.693488 3.96526

7 5 2 4 0.245622 9.70484

8 3 2 4 0.43425 7.30096

9 2 4 3 0.165838 10.6374

10 2 3 5 0.598884 5.16358

How to choose the best company to collaborate in terms of maximizing his survival probability

and in terms of maximizing his expected discounted dividends ?

In order to �nd the best choice in terms of maximizing the survival probability we will make

use of the results of the example 2 in section 4.8. We make the calculations and present the
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results, that is the respective survival probabilities, in the �fth column of the above table. We

conclude that the best choice for the X-insurer in terms of maximizing his survival probability is

to collaborate with the Y-insurer numbered with 4. If this is not possible then his next best choice

is the Y-insurer numbered with 3. In this way the X-insurer has ordered the possible collaborations

according to the maximization of his survival probability and thus he has constructed his policy

for choosing the best partner, which is

�P (X) =
�
Y4; Y3; Y6; Y2; Y10; Y8; Y1; Y7; Y5; Y9

�
In the following �gures (Figure 3.1-Figure 3.6) we plot the survival probability as a function

of one or two of the parameters y; �y and �y while having all the other parameters �xed.

Figure 3.1: Survival Probability P ((5; 1; 3; 8); (2; 1; �y))
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Figure 3.2: Survival Probability P ((5; 1; 3; 8); (2; �y; 3))

Figure 3.3: Survival Probability P ((5; 1; 3; 8); (y; 1; 2))
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Figure 3.4: Survival Probability P ((5; 1; 3; 8); (2; �y; �y))

Figure 3.5: Survival Probability P ((5; 1; 3; 8); (y; 2; �y))
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Figure 3.6: Survival Probability P ((5; 1; 3; 8); (y; �y; 3))

Next in order to �nd the best choice for the X-insurer in terms of maximizing his expected

discounted dividends we consider the section 5.2.2. We make the calculations and present the

results, that is the respective expected discounted dividends, in the sixth column of the above

table. We conclude that the best choice for the X-insurer in terms of maximizing his expected

discounted dividends is to collaborate with the Y-insurer numbered with 9. If this is not possible

then his next best choice is the Y-insurer numbered with 5. In this way the X-insurer has ordered

the possible collaborations according to the maximization of his expected discounted dividends

and thus he has constructed his policy for choosing the best partner, which is

�V (X) =
�
Y9; Y5; Y7; Y1; Y8; Y10; Y2; Y6; Y3; Y4

�
In the following �gures (Figure 3.7-Figure 3.12) we plot the expected discounted dividends as

a function of one or two of the parameters y; �y and �y while having all the other parameters

�xed.



5.4 Policy Making. 180

Figure 3.7: Expected Discounted Dividends V ((5; 1; 3; 8); (2; 1; �y))

Figure 3.8: Expected Discounted Dividends V ((5; 1; 3; 8); (2; �y; 3))
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Figure 3.9: Expected Discounted Dividends V ((5; 1; 3; 8); (y; 1; 2))

Figure 3.10: Expected Discounted Dividends V ((5; 1; 3; 8); (2; �y; �y))
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Figure 3.11: Expected Discounted Dividends V ((5; 1; 3; 8); (y; 2; �y))

Figure 3.12: Expected Discounted Dividends V ((5; 1; 3; 8); (y; �y; 3))
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From the above example we observe that the policy of an insurance company who wants to

maximize the survival probability is di¤erent from the policy of maximizing the expected dis-

counted dividends. We see that in this example the policy of maximizing the survival probability

is the opposite from the policy of maximizing the expected discounted dividends.

5.5 Conclusions.

We applied the formulas of chapter 4 in the case of two insurance companies cooperation. We

considered two models:

� The de Finetti - Lundberg model.

� The de Finetti - de Finetti model.

We found the moments of the discounted dividends and the discounted �nancing and the

Laplace transform of the time of ruin. We also found the survival probability for the �rst insurer

(X-insurer) in a de Finetti - de Finetti model.

We showed how an insurance company can use the formulas of chapter 4 for policy making

purposes.
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5.A Appendix of chapter 5.

In applying the formulas we found it is needed to be solved particular types of di¤erential equa-

tions. For this reason we summarize �rst some results on some particular types of di¤erential

equations and boundary conditions in order to reference to them later.

� ODE-1.

The ode :
�21
2
Qxx(x) + �1Qx(x)� (�k � k�)Q(x) = 0 (5.A.1)

with boundary conditions:

Q(0) = 0 (5.A.2)

Qx(b) = 0

has general solution :

Q(x;�1; �1; �; b) = c1 exp

0@x
�
��1 �

p
�21 � 2(�k � k�)�21

�
�21

1A+
+c2 exp

0@x
�p

�21 � 2(�k � k�)�21 � �1
�

�21

1A
Because of the boundary condition Q(0) = 0 the solution becomes :

Q(x;�1; �1; �) = exp

�
�x�1
�21

�
sin

 
x
p
��21 � 2(�k � k�)�21

�21

!
In order the above solution to be in the real numbers without to be trivial it must hold that

� (�k � k�) >
�21
2�21

By the condition Qx(b) = 0 we have

tan

 
b
p
��21 � 2 (�k � k�)�21

�21

!
=

p
��21 � 2 (�k � k�)�21

�1
(5.A.3)

The above transcendental equation can be solved numerically and for large values of n the

eigenvalues are can be approximated by

� (�k;n � k�) �
(2n+ 1)2�2�41 + 4b

2�21
8b2�21

(5.A.4)
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So the general solution of (5.A.1) is

Q(x;�1; �1; �; b) =
1X
n=0

ck;n exp

�
�x�1
�21

�
sin

0@b
q
��21 � 2 (�k;n � k�)�21

�21

1A (5.A.5)

Remark 5.A.1 From (5.A.3) we see that 8 k1; k2 2 R it holds that:

�k1;n � k1� = �k2;n � k2� (5.A.6)

� ODE-2.

The ODE
�21
2
Rxx(x) + �1Rx(x)� (�k � k�)R(x) = 0 (5.A.7)

with boundary conditions

R(0) = 0 (5.A.8)

Rx(b) = f(b)

has solution

R(x;�1; �1; �; b) (5.A.9)

= exp

0@(b� x)
�
�1 +

p
�21 � 2 (�k � k�)�21

�
�21

1A er1(x;�1; �1; �k; k; �)er2(b;�1; �1; �k; k; �) f(b)
where

er1(x;�1; �1; �k; k; �) :=

 
�1 + exp(2x

p
�21 � 2 (�k � k�)�21

�21
)

!
�21 (5.A.10)

er2(b;�1; �1; �k; k; �) :=
q
�21 � 2 (�k � k�)�21

 
1 + exp

 
2b
p
�21 � 2 (�k � k�)�21

�21

!!
+

+

 
1� exp

 
2b
p
�21 � 2 (�k � k�)�21

�21

!!
�1 (5.A.11)

� ODE-3.

The ODE
�21
2
Fxx(x) + �1Fx(x)� (�k � k�)F (x) = 0 (5.A.12)
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with boundary conditions

Fx(0) = 0 (5.A.13)

Fx(b) = 0

has general solution

F (x;�1; �1; �)

= exp

�
�x�1
�21

��
c cos

�
x
p
��21�2(�k�k�)�21

�21

�
+ d sin

�
x
p
��21�2(�k�k�)�21

�21

��

By the condition Fx(0) = 0 we have

F (x;�1; �1; �; b)

= c exp

�
�x�1
�21

�0BB@cos�xp��21�2(�k�k�)�21�21

�
+

�1 sin

�
x
p
��21�2(�k�k�)�21

�21

�
p
��21 � 2(�k � k�)�21

1CCA
By the condition Fx(b) = 0 we have Fx(b) = 0 which implies

2 exp
�
� b�1
�21

�
(�k � k�)c sin

�
b
p
��21�2(�k�k�)�21

�21

�
p
��21 � 2(�k � k�)�21

= 0

or

sin

 
b
p
��21 � 2(�k � k�)�21

�21

!
= 0

whence we obtain

� (�k � k�) =
n2�2�41 + b

2�21
2b2�21

(5.A.14)

and by the principle of superposition the solution becomes

F (x;�1; �1; �; b) =

1X
n=0

cn exp

�
�x�1
�21

��
cos
�n�x

b

�
+

b�1
n��21

sin
�n�x

b

��
(5.A.15)

� ODE-4.

�21
2
Gxx(x) + �1Gx(x)� (�k � k�)G(x) = 0 (5.A.16)

with boundary conditions

Gx(0) = 0 (5.A.17)

Gx(b) = f(b)
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has solution

G(x;�1; �1; �k; b; k; �) = exp

�
(b� x)�1

�21

� e!1(x;�1; �1; �k; b; k; �)e!2(b;�1; �1; �k; k; �) f(b) (5.A.18)

where

e!1(x;�1; �1; �k; b; k; �) :=
q
�21 � 2 (�k � k�)�21 cosh

 
x
p
�21 � 2 (�k � k�)�21

�21

!
+

+sinh

 
x
p
�21 � 2 (�k � k�)�21

�21

!
�1 (5.A.19)

e!2(b;�1; �1; �k; k; �) := 2(�k � k�) sinh
 
b
p
�21 � 2 (�k � k�)�21

�21

!
(5.A.20)

� ODE-5.

�21
2
Hxx(x) + �1Hx(x)� (�k � k�)H(x) = 0 (5.A.21)

with boundary conditions

Hx(0) = �f(0) (5.A.22)

Hx(b) = 0

has solution

H(x;�1; �1; �k; b; k; �) (5.A.23)

= exp

 
x

 p
�21 � 2 (�k � k�)�21 � �1

�21

!!
 1(x;�1; �1; b; �k; k; �)

 2(�1; �1; b; �n; k; �)
f(0)

where

 1(x;�1; �1; b; �k; k; �) := �21 + �1

q
�21 � 2 (�k � k�)�21 � (5.A.24)

�
 
1 + exp(2(b� x)

p
�21 � 2 (�k � k�)�21

�21

!
(k� � �k)�21

 2(�1; �1; b; �n; k; �) : =

 
1� exp(2b

p
�21 � 2 (�k � k�)�21

�21
)

!
�

� (k� � �k)
�
�1 +

q
�21 � 2 (�k � k�)�21

�
(5.A.25)

� ODE-6.
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�21
2
Jxx(x) + �1Jx(x)� (�k � k�)J(x) = 0 (5.A.26)

with boundary conditions

J(0) = f(0) (5.A.27)

Jx(b) = 0

has solution

J(x;�1; �1; �k; b) = exp

�
�x�1
�21

�
Q1(x;�1; �1; b; �k; �; k)

Q2(�1; �1; b; �k; �; k)
f(0) (5.A.28)

where

Q1(x;�1; �1; b; �k; �; k) (5.A.29)

:=
q
�21 � 2(�k � k�)�21 + �1 tanh

 
(b� x)

p
�21 � 2(�k � k�)�21

�21

!
Q2(�1; �1; b; �k; �; k) (5.A.30)

:=
q
�21 � 2(�k � k�)�21 � �1 tanh

 
b
p
�21 � 2(�k � k�)�21

�21

!

� PDE-1

We consider the PDE

�21
2
Pxx(x; y) +

�22
2
Pyy(x; y) + �1Px(x; y) + �2Py(x; y) = k�P (x; y) (5.A.31)

We consider a solution of the form P (x; y) = u(x)w(y). Substituting into (5.A.31) we have

�21
2
uxx(x)w(y) +

�22
2
u(x)wyy(y) + �1ux(x)w(y) + �2u(x)wy(y) = k� =)

�21
2

uxx(x)

u(x)
+
�22
2

wyy(y)

w(y)
+ �1

ux(x)

u(x)
+ �2

wy(y)

w(y)
= k� =)

�21
2

uxx(x)

u(x)
+ �1

ux(x)

u(x)
= �k = �

�22
2

wyy(y)

w(y)
� �2

wy(y)

w(y)
+ k�

and we conclude the ODE�s
�21
2

uxx(x)

u(x)
+ �1

ux(x)

u(x)
= �k (5.A.32)

�22
2

wyy(y)

w(y)
+ �2

wy(y)

w(y)
= k� � �k (5.A.33)

Now we are ready to proceed and we will start with the one re�ecting barrier case and continue

with the two re�ecting barriers case.



Chapter 6

Conclusions and Further Research

In this thesis we extended the de Finetti model in order to include barriers dividends policies

with barriers that are di¤usions. We made the extension in axiomatic manner by posing par-

ticular properties which was motivated by the classical de Finetti model. We showed that the

de Finetti models with general barriers are well de�ned that is they are exists and are unique,

or to say it in other words that there are exist unique stochastic processes that evolve accord-

ing to our conditions. When we say unique stochastic processes we mean up to the degree of

indistinguishability.

We considered de Finetti models with one general barrier meaning that when the reserves of

the insurance company reach a "particular" level which depends upon a di¤usion process then

the company goes bankrupt. We also considered de Finetti models with two general barriers, that

is when the reserves of the insurance company reach the level of the lower barrier, which also

depends upon a di¤usion process, then the insurance company has the option to borrow money

and continue its operation.

We derived di¤erential equations with appropriate boundary conditions, the solution of which

gives the quantities for which we are interesting. More speci�cally we found di¤erential equations

with appropriate boundary conditions, the solution of which gives the moments of the discounted

dividends, the discounted �nancing, the Laplace transform of the time of ruin, the Laplace trans-

form of the joint distribution of the time of ruin and the discounted dividends and the Laplace

transform of the joint distribution of the discounted dividends and the discounted �nancing.

We applied the formulas in special cases and more speci�cally in cases where the reserves

process follows a Brownian motion, a Geometric Brownian motion and an Orstein-Uhlenbeck

process.
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Next we worked on another important issue, which is the situation of insurance companies

cooperation. We considered this issue from the perspective of a particular insurance company.

We were interesting to look at parameters which are vital to the decisions of the company. Among

these parameters very important role we consider to play the probability of survival in a particular

cooperation and the shares that will be given to the shareholders during this cooperation. We

found di¤erential equations with appropriate boundary conditions the solution of which will give:

� The moments of the discounted dividends and the discounted �nancing.

� The Laplace transform of the joint distribution of the time of ruin and the discounted

dividends.

� The Laplace transform of the discounted dividends.

� The Laplace transform of the time of ruin.

� The Survival probability for one of the two insurers.

We applied the formulas we found in two models:

(I) The de Finetti - Lundberg model.

(II) The de Finetti - de Finetti model.

We showed how an insurance company can use the above results for policy making purposes.

We also mentioned possible ways to extend the above considerations to various other models.

An interesting point for future research is to consider a de Finetti model with barriers that

are continuous di¤usions and reserve process which is Levy process. Also one could consider

barriers that are semimartingales and an intermediate step to this direction is to consider �rst

Levy processes as barriers. Another possibility is the inclusion of more economic aspects into the

model as for example the case of investing the reserves in the stock market.

Also point for further research is the consideration of insurance companies cooperation in

more general context, for example considering an insurer which follows the de Finetti model with

general barriers. One could then try to extend the model in n-dimensions.
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