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Abstract

The purpose of the present thesis is the application of statistical process control
(SPC) techniques, specifically control charts in Gaussian affine term structure mod-
els (ATSM). In recent years SPC methods have been widely popular not only in
industrial applications but also in several non-industrial scientific areas such as in
finance. Gaussian ATSMs under no-arbitrage conditions have been a very important
research tool in the area of term structure of interest rates. Financial time series are
usually subject to changes at unknown time points and the detection of these change
points are of great importance.

In our work we propose several control chart procedures that develop the ATSMs
from the change point perspective. First, we extent the class of term structure
models estimated using the minimum chi square estimation (MCSE) method by
constructing fixed-income government bond portfolios. The proposed bond portfolio
strategies from the ATSM in most of the cases perform better than traditional bond
portfolio strategies. Next, the control charts are applied for monitoring the optimal
portfolio weights. Second, we construct control chart procedures for monitoring the
parameters of an ATSM and examine their ability of detecting changes for various
types of shifts in the yield curve. Also, we propose a technique for reestimating the
target process of the control chart procedure in case of a detection of a change. The
results show that there is no single chart that performs well in all types of shifts but
a combination of control chart is needed. Third, we propose and construct control
charts for monitoring shifts in the autoregressive and moving average matrix of a
VARMA ATSM. The estimation procedure of the model is a two-step process where
in the first step among standard estimation procedures we apply a minimum distance
estimation method based on the impulse responses and define its advantages in the
forecasting of the yield curve. In the second step, we estimate the market prices of
risk given the estimates of the first step by minimizing the sum of squared fitting
errors of bond yields.
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ITEPIAHVH

O oxomndg tne mapoloug diatenc etvan 1 epapuoyT| TEYVIX®Y Tou LtaTioTixol EXEyyou
[owotnTog, ouyxexptuéva Ty dtaypopudtwy eréyyou oc Gaussian affine term struc-
ture models (ATSM). Ta teleutaia ypovia uedodoroyiec tou Etatiotinol Eréyyou
Howtnrag 0ev etvar uévo dnuogihnc oe Brounyavixec EQUpUOYES ahhd xaL O APAETES
Un- PLopnyovités EQUpUOYES OTWS Yo TORADELY IO GTaL Yenuatootxovouxd. Ta Gaus-
sian ATSMs ywelc arbitrage eivon éva okl onuavtind epyoleio otny xatnyoplo Twv
HOVTEAWY Yol T OYECT) EMTOX{WY %ol ATOBOCEWY TWV XEATWY OporGYwY. Ot Xernuo-
TOOWOVOUXES OELREC GUY VA UTOXEWVTAUL OE 0ANUYES OE AyVwoTo Ypovixd orueia xat o
EVTOTUOUOC aUTWY TwV onueiwy eivon ueydhng onupactag.

Y1y napoloa gpyacia pag TEOTEVOUUE Btdpopa DlayRAUUATY EAEYYOU UE To OTtola &-
nextetvoupe T ATSMs xdtw and v ontxd| twv onuelwy ahhayrc. Koptor atdyol
e St ebvon ov e€nc: Tlpwroy, va enexteivouye tnyv xoatnyoplo twv ATSM ta
omolo. exTiwdvTar pe TN YEYodo erayloTwy 2 (MCSE), xataoxeudlovtog yopToQu-
Ao oTadepol ELCOBAUATOC XPATIXMY OPOAOYWY. O TPOTEWVOUEVES CTPATNYIXES Yid
YopToQUAdXKLA opoldYwy and To ATSM 0TI TEPIOGOTERES TEPITTOCELS TapOUGIALoUY
A(UNOTEPA ATOTENECUAUTA ATO TUPADOCLUAES TEYVIUES AATUOUEUTC Y AQTOPUAUXIWY OUO-
AOYWV. TN cUVEYEL ToL Loty pduuaTo EAEY Y0 EQapuOlovTaL Yo TNV Topaxohovinom
TV BEATIOTWY Bap®y Tou yaptoguloxiou. AcUTEpov, Vo XATUOKEVACOUUE Loy pdUo-
To ehéYyou Yo TNV Tapaxololinon Twy Topauétewy evog ATSM xau va eetdoouye
NV XavoTNTd Toug Vo evTomilouy Tic aAlayéc Yl Slpopous TUTOUC UETATOTIOEWY
OTNV XOUTOAY TWY ATOOOCEWY TWV XPATXOY OUOAOYwY. Emmiéov, mpoteivouue wa
TEYVIXT YloL TNV ETavEXTIUNOY NG dadixactiog 6TOYoU Yol To Dty dpuaTa EAEYYOU O
nep{nTwon mou To ddypauua evtonioet éva onpeio adhayric. Ta anoteréopara delyvouv
OTL OV UTdipyEel €va Sdypouua EAEYYOU TOU Vo amodidel xahd oE GAoug Toug TUTOUG
TWV PETATOTUCEWY ARG EVag GUVBLAGUOC amd BLory pduaTa EAEYYOU Elvan amapaiTrTog.
Tpttov, va TEOTEVOUYE XAl XATAGHEUAGOUUE OLOYPAUUATO EAEYYOU YLOL TNV TARUXONO-
OVinon ahhoy @V oE £VoL BAVUOHUATIXG AUTOTUAVOPOHOVUEVO UOVTERD XIVOUUEVOU UEGOU
(VARMA) ATSM. H extiunon tou yovtéhou eivan pa Srodixooio ue duo Bruata dmou
070 TeWTo Briua e@upudlovue exToC and cuvniouévee pedodoug oty BiSAtoypapion xat



v

wa pedodo extiunomng eEAdyoTAC anOGTUOTG BUCIOUEVT GTIC APVIDIES aVTLOPAOELS (im-
pulse responses) xou AVUPEQOUUE TA TAEOVEXTHUATA TNG OTNY TROYVWOT) TNG XOUUTOANG
ATOBOCEWY TV opohoYwy. To deltepo Prua mepthaufdver Ty extiunon twv market
price of risk ehayloToTOWOVTOG TO AVEOICUA TWY TETEAYWOVWY TV CHUMIATWY TWY d-
TOOOCEWY TWY OUOAOYWV.
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Chapter 1

Introduction

1.1 Gaussian affine term structure models

Gaussian affine term structure models (ATSMs) have been a very popular research
tool in the area of term structure of interest rates mainly due to the fact that provide
closed-form solutions for bond pricing under no arbitrage conditions. The class of
ATSMs developed by Vasicek (1977), Duffie and Kan (1996), Dai and Singleton
(2000) have been used among others for measuring risk premia (see e.g Duffee (2002),
Cochrane and M. Piazzesi (2009)), characterize the monetary policy rule (Wu and
Rudebusch (2004),) exploring the effect of macroeconomic developments on the term
structure (Ang and Piazzesi (2003), Bauer (2009)) and to infer market expectations
of inflation from the spread between nominal and inflation-indexed Treasury yields
(Christensen et al. (2010)). Ang and Piazzesi (2003) first mentioned the importance
of including macroeconomic factors in the model in order to explain the yield curve
dynamics and improve its forecasting ability.

The fundamental works of Vasicek (1977) and Cox et al. (2005) referred to one-
factor state variable models. However, this single-factor specification is not sufficient
to describe the dynamics of the yield curve. This drawback led to the introduction of
multifactor ATSMs. The inclusion of macroeconomic factors in the model improves
the fit of the model estimates and can explain a substantial amount of variation in the
future bond yields. Another drawback of one-factor affine models is the implication
that interest rates with different maturities are perfectly correlated. One-factor affine
models, such as the Vasicek model, do not have a large range of shapes and will
provide a poor fit to some initial yield curves. Multifactor ATSMs, which are the
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focus of our work, generalized these models and improve the goodness of fit and the
forecasting performance by including macro factors as state variables.

The yield curve has been found to be a good predictor of future real activity and in-
flation (Harvey (1988), Mishkin (1990) and Estrella and Hardouvelis (1991)). Since
the work of Harvey (1988) the slope of the yield curve, defined as the difference
between long-term and short-term interest rates, has been documented as an indi-
cator for future economic activity. The behavior of the yield curve variates across
the business cycles. For example, during recessions, long-term bond yields tend to
be high in contrast with yields on short-term bonds which tend to be low. As a
result in recessions we have upward sloping yield curve activity (Ang et al. (2006)).
Estrella and Hardouvelis (1991) and Estrella and Mishkin (1996) focused on the US
yield curve as a predictor of real economic activity and recessions. Estrella and Tru-
bin (2006) provided evidence that the yield curve slope can be used in forecasting
recessions in real-time. We remind that an inverted yield curve is being thought of
as a precursor of a recession. Macroeconomic and financial time series are subject
to various structural breaks and ignoring them may lead to estimation problems and
this has a significant impact in the out-of-sample forecasts. As a result the detection
of change points is of great importance for the description of the dynamic term struc-
ture models (see e.g Hamilton (1988), Bansal and Zhou (2002), Dai et al. (2007)).
Regime shifts in yield curve could be due to several reasons such as business cycles
(Bansal and Zhou (2002)), changes in monetary policy (Ang et al. (2011)), inflation
(Ang et al. (2008)) and the risk premium (Dai et al. (2007)).

1.2 Sequential process monitoring

In recent years statistical process monitoring (SPM) techniques, specially control
charts, have been applied to non-industrial fields such as the surveillance of optimal
portfolio weights. A control chart should provide to the investor a signal that there is
a possibly change in the process of portfolio weights (Golosnoy and Schmid (2007)).
The control chart procedure is consisted of the control statistic and a rejection area
(Montgomery (2013)). If the value of the control statistic lies in the rejection area
then the control chart gives a signal that the monitoring process is out-of-control. A
control chart statistic is computed from the quality characteristics that we observe
and is plotted against an upper control limit (UCL) and a lower control limit (LCL).
If the value of the control chart statistic exceeds the specified control limits then a
signal is given that the process has been changed. A basic component of a control
chart procedure is the average run length (ARL), which is the average number of
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subgroups before a signal from the control chart is given in order to indicate that
the process is out-of-control. Suppose that Z; is the control chart statistic and ¢ a
control limit that determines the rejection area of the process. The run length which
is the number of samples before a signal is given, is

N=inf{te N: Z; > ¢} (1.2.1)

and the ARL is equal to E(N). In the in-control state the ARL (ARLy) should be
large and in the out-of-control-state (ARLy) it has to be small. Alternatively someone
can use the median run length (MRL), the median number of sample points before
the first out-of-control signal is detected. Since the development of control charts
by Shewhart in 1924 (Montgomery (2013)), various charts and procedures are being
proposed and used in order to monitor processes. Roberts (1959) introduced the
exponentially weighted moving average (EWMA) control chart. Multivariate process
control techniques were introduced by Hotelling (1947). For more details about
multivariate Exponentially Weighted Moving Average (MEWMA) see e.g. Lowry
et al. (1992).

1.3 Thesis overview and our contribution

The research we present in this dissertation deal with monitoring and detecting
structural changes in multivariate Gaussian ATSMs using SPM techniques, specif-
ically control charts. In Chapter 2 we present an overview of the applications of
control chart procedures in finance. In Chapter 3 we monitor the parameters of an
ATSM via control charts and we propose a technique for the reestimation of the
monitoring procedure when a change point is detected. Next, in Chapter 4 first we
extent the class of ATSMs estimated with the the MCSE approach introduced by
Hamilton and Wu (2012) in the construction of fixed-income portfolios consisted of
government bonds. Second, we construct appropriate control charts for monitoring
the optimal portfolio weights. Finally, in Chapter 5 we refer to Vector autoregressive
moving average (VARMA) affine models for the term structure and monitoring the
autoregressive and moving average parameter of the state factor evolution process.
Also, we propose an estimation approach based on impulse responses previously ap-
plied on Dynamic stochastic general equilibrium (DSGE) models in order to improve
forecasts for medium and long end yields. Conclusions and suggestions for future
research can be found in Chapter 6.



Chapter 2

Control charts 1n financial
applications: An overview

2.1 Introduction

Statistical process control (SPC) has been used for many decades to monitor one
or several quality characteristics of a process simultaneously (Montgomery (2013)).
Control charts are one of the major tools of SPC. The main goal of a control chart
is to monitor the underlying process, based on information observed from individual
items or subgroups of items. The use of a control chart helps not only to monitor a
process but also to improve its performance. The monitoring of several quality char-
acteristics of a process simultaneously is called multivariate statistical process control
(MSPC) or in case of one quality characteristic we have univariate SPC (Woodall
and Montgomery (2014), Montgomery (2013)). Bersimis et al. (2007) presented the
basic procedures that use control charts for the implementation of MSPC.

A control chart statistic is computed from the quality characteristics that we observe
and plotted against an upper control limit (UCL) and a lower control limit (LCL).
If the control chart statistic exceeds the specified control limits then a signal is given
that the process has been changed. Statistical processes are usually implemented in
the following two phases: 1) Phase I, where control charts are used for retrospectively
testing whether the process was in control when the first samples were being drawn.
This phase includes the determination of the process being statistically in control.
Also, the historical data of Phase T is used for estimating the parameters of the
monitoring process. 2) Phase II, where control charts are used for monitoring the
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new observations of the process for any change from the in-control state (see e.g.
Bersimis et al. (2007), Woodall (2000)). In financial applications in contrast to
industrial applications the distinction between Phase I and Phase II control charts
is difficult (Golosnoy et al. (2007)).

A basic component of a control chart procedure is the ARL, which is the average
number of subgroups before a signal from the control chart is given in order to
indicate that the process is out-of-control. The ARL is often used to compare the
performance between control charts. Suppose that Z; is the control chart statistic
and h a control limit that determines the rejection area of the process. The run
length which is the number of observations before a signal is given, is denoted by:

N =inf{t e N: Z; > h}, (2.1.1)

and the ARL is equal to E(N). In the in-control state the ARL (ARLy) should be
large but in the out-of-control-state it has to be small. Alternatively someone can use
the MRL, the median number of sample points before the first out-of-control signal
is detected. Since the development of control charts by Shewhart (1931), various
charts and procedures are being proposed and used in order to monitor processes.
We remind that in the Shewhart procedure only the last observation is taken into
consideration. Multivariate process control techniques were introduced by Hotelling
(1947). Roberts (1959) introduced the EWMA control chart. The EWMA control
chart is a good alternative to the Shewhart control chart when we are interested in
detecting small shifts, because these control charts are very effective against small
process shifts (Montgomery (2013)). The control statistic in the univariate case is
based on exponentially weighted moving average defined as:

Zt - (1 - A)Zt—l + AXt, (212)

where t = 1,2,..., 0 < A < 1 is a smoothing constant parameter and Z; is the
target value with Zy = Ey(X;). The notation Fy denotes the mean calculated when
the process is in-control. The control chart gives a signal at time t > 1 if Z; > h.
The constant h > 0 is chosen such as ARLy to be equal to a certain value. Large
values of the smoothing parameter A give more weight to recent observations and
small values give more weight to past observations. If A = 1 then the EWMA chart
reduces to the Shewhart chart.

Lowry et al. (1992) generalized the univariate EWMA control chart procedure to the
multivariate case. MEWMA control charts are constructed by applying a multivari-
ate EWMA recursion directly to the components of the monitoring characteristic Xj.
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The advantage of this approach is that each characteristic element obtains its own

smoothing factor and as a result allows more flexibility compared to the univariate
EWMA (Golosnoy and Schmid (2007)). The MEWMA statistic is given by:

Z,= (I-R)Z, , +RX,, (2.1.3)

where Zo = Ey(Xy), Iis the (k— 1) x (k — 1) identity matrix and R = diag(ry, ...,
rr—1) is a diagonal matrix with elements 0 < r; <1 fori € {1,....k — 1}. A signal is
given if:

Z, - Covg(Zy) ™ - Zy > h, (2.1.4)

where the control limit A~ > 0 is chosen so as to achieve a specified ARLy and
Couvg is the covariance matrix when the process is in-control. The EWMA is used
extensively in time series modeling and forecasting and since it can be viewed as a
weighted average of all past and current observations, it is very insensitive to the
normality assumption.

The CUSUM chart was proposed by Page (1954) for monitoring small shifts. The
CUSUM control chart is used to monitor a process based on samples taken from
the process at given time periods. The measurements of the samples at given times
constitute a subgroup. The CUSUM chart shows the accumulated information of
current and previous samples. CUSUM control charts are a good alternative when
small shifts are important (Montgomery (2013)). CUSUM control charts can be
constructed for individual observations or for groups of observations. Suppose g is
the target of the process when the process is in-control for the quality characteristic X.
The statistics C* and O~ are the one sided upper and lower cusum limit respectively.
Defined by the iterative scheme:

C:_ = max[O,C;r_l +Xt — Mo — ]{3]

C; =max([0,C; | + po — k — X4,

7

where k is the reference value or else the control chart constant parameter. A signal
from the CUSUM scheme is given for upward shift if C;" > h and for downward
shifts if C; < h. The multivariate cumulative sum control chart (MCUSUM) is
an extension of the univariate CUSUM control chart analysis. It is a procedure that
uses the cumulative sum of deviations of each random vector previously observed
compared to the nominal value to monitor the vector of means of a multivariate
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process (Cunha et al. (2013)). This chart was proposed by Crosier (1988). The
scalar quantities of the univariate case are now replaced by vectors:

Cy = \/(St + Xy — o) B7HSy + Xy — o), (2.1.5)

where X is the variance matrix of the data and S; are the cumulative sums defined

as:
S — 0, if Ct S K
DS+ X ) (- E), iG>k,

where the reference value x > 0 is related to the magnitude of change and Sy =
0. An out of control signal is given if Z, > h, with h being the control limit,
Z, = (S,X7'S,). An alternative way to construct a vector accumulating multivariate
CUSUM is given by Pignatiello and Runger (1990) . The CUSUM and EWMA are
control charts with memory which means that a parameter controls the impact of
the past values. For more details about MEWMA and MCUSUM control charts see
for example Lowry et al. (1992) and Ncube and Woodall (1985) respectively.

SPC tools are used in various industrial and non-industrial areas such as medicine,
environment, chemical analysis, healthcare and public-health surveillance (Tsui et
al. (2008), Frisén (2011)), network monitoring and change-point problems. For a
review in non-industrial application of MSPC see Bersimis et al. (2018). In recent
years SPC methods have also gained popularity in many financial applications such
as stock trading and portfolio monitoring (Frisén (2008), Golosnoy et al. (2010)).
Jumah et al. (2012), among other quality control techniques referred to SPC methods
in the improvement of trading, banking and service sectors. Bock et al. (2007)
provided a comparison of surveillance methods and decision rules for finance. Various
other applications of control charts include for example that of Schmid and Tzotchev
(2004) that applied multivariate EWMA control charts in order to detect a change in
the parameters of the Cox—Ingersoll-Ross (CIR) model for the evolution of interest
rates. Yousefi et al. (2019) implemented control chart techniques on non-normal and
autocorrelated data for monitoring the performance of a project. Berlemann et al.
(2012) applied EWMA and CUSUM charts for the detection of U.S. house price
bubbles and especially the estimation of their likely starting points. Freese (2015) is
focused on the detection of U.S. regional bubbles having data from different markets.
Rebisz (2015) applied control charts for country risk monitoring for various countries
using the credit ratings. Golosnoy and Roestel (2019) used CUSUM control charts
for real time monitoring of shifts in inflation expectations and specially to forward
break-even inflation (FBI) series.
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In financial applications the underlying data are in most cases no longer indepen-
dent and as a result control charts for dependent data have to be considered. Knoth
and Schmid (2004) presented a review for control charts in time series generally.
Therein, the case of dependent data is taken into consideration and the new control
chart schemes that are presented are based on the time series structure, specially
for autoregressive (AR) and autoregressive moving average processes (ARMA). Con-
trol charts for dependent data are usually residual-based or modified control charts.
Residual-based charts are constructed from a transformation of the original data
so that the resulting data are independent and standard control charts can now
be applied (see e.g. Alwan and Roberts (1988), Harris and Ross (1991), Pan and
Jarrett (2007)). Modified control charts use standard control chart procedures but
the control limits are adjusted in order to account for the autocorrelation (see e.g.
Vasilopoulos and Stamboulis (1978), Schmid (1995)). Another category of control
charts, in order to overcome the problem of dependent data, is based on the differ-
ence between two subsequent values of the measured characteristic and it is known
as difference control charts (see Golosnoy and Schmid (2007)).

Okhrin and Schmid (2007) presented a review of the methods used for monitoring
univariate and multivariate linear time series. They discussed various modified and
residual control charts with focus on the monitoring of the variance of financial
series. Okhrin and Schmid (2007) reviewed EWMA and CUSUM control charts for
the surveillance of univariate and multivariate generalized autoregressive conditional
heteroskedasticity (GARCH) processes. The authors considered a local measure
of the variance based on the squared observations, the forecasts of the conditional
variance and on the residuals. In a comparison study when the performance measure
is the ARL both the EWMA and the CUSUM type charts based on the conditional
volatility performed better. In contrast, in terms of maximum average delay the
residual charts are preferred. Garthoff et al. (2014) introduced control charts for
simultaneous monitoring of the mean and the variance of multivariate nonlinear
time series. Owlia et al. (2017) applied residual Shewhart control charts to monitor
time dependent GARCH financial processes in the presence of outliers in the data.
The existence of outliers in the sample data can cause problems in the design of the
control charts. A thorough discussion of control charts for dependent data in finance
is given in the book of Frisén (2008).

The aim of this work is to present the basic economic and financial application fields
of statistical process monitoring from the perspective of control charts with focus on
portfolio monitoring and stock markets. The application of control chart schemes
in finance can be seen as a three-step procedure. In the first step the main purpose
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is the definition or the construction of the monitoring process. The second step
refers to the choice of the appropriate control chart and depends on the data of
the monitoring process. Finally, the third step is related with the interpretation
of the signals obtained from the control charts. The challenge in this step is the
economic interpretation of these signals specially in monitoring of optimal portfolio
weights as we will see later. The transfer of sequential monitoring methods such as
control charts from industrial applications to finance it is not always obvious and
many difficulties arise. For example in some applications of SPC in industry when
the first false alarm signal appears, it is possible that the whole process is stopped.
In applications such as portfolio monitoring as we will see later the process can not
be stopped or the reasons of the change to be eliminated (Golosnoy et al. (2011)).
Another issue is the structure of the monitoring process which in most financial cases
is more complicated than in the industrial applications.

The research papers reviewed in our work are presented thematically according to
their application area in finance. Specifically, in Section 2 we review some specific
applications of control charts in stock markets and stock trading. Section 3 is devoted
to applications of SPC in portfolio monitoring with focus in multivariate control
charts. In conclusion, we point out some issues for further research.

2.2 Control Charts and Stock Markets

Control charts have been applied in recent years in the decision process for stock
trading and investigate the behaviour of stock markets. In this section, we review
several research papers with focus firstly on applications of control charts in the filter
trading rule and later on applications of Shewhart and other procedures generally in
stock markets.

2.2.1 Filter trading rule and control charts

The use of SPC methods for the study of changes in stock market price levels was
first proposed by Roberts (1959). Next, Hubbard (1967) constructed control charts
so as to to determine the stock price trend and compare it with the gross national
product (GNP) and personal income trends. Also, Hubbard (1967) sets up decision
rules for buying or holding stocks. The data used are logarithmic monthly values of
Moody’s Composite 200 Stock Average from 1950 to 1967.

Alexander (1961) and Alexander (1964) introduced filter trading rules followed by
the work of Fama and Blume (1966). The filter trading rule is a mechanical trading
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rule, defined as a sequence of signals for buying and selling stocks. Briefly, the buy
signal is given if for example the daily closing price of an observed stock moves up
at least a certain percent z from a subsequent low. The investor sells the stock
when a signal is given,i.e., when the closing prices drops at least a certain percent y
from a subsequent high. The values z and y are the filter sizes for the trading rule
and represent the minimum acceptable percentage change of the stock value for the
investor.

Lam and Yam (1997) motivated by the filter trading rule used CUSUM techniques
to create a trading strategy in the stock market equivalent to the filter trading rule.
Starting from a sell signal at time ¢ = 0 the filter trading rule is to generate a buy
signal at day n if mi’;pi >x,1=1,...,n, where x is the filter size of the trading rule
and p; the closing stock price. The CUSUM procedure for the filter trading rule has
as reference value k = 0, the control limit is A = log(1 + x) and has the following

form:

Sn = Ui =an— q, (2.2.1)
=1

with the difference of the current stock log price from a historical low S, defined
recursively as:

Sy =0
Sy = max(S,_; + ¥, 0),

where ¢, = log(p;) 1is the logarithm of the closing stock prices p, and vy, =
G — qi—1, t = 1,2,... is the continuously compounded daily return from a stock
investment. A signal is given if S, > h. The filter size of the trading rule is 2 =
el — 1. Lam and Yam (1997) generalized the classical filter trading rule by setting
the reference value k # 0. First they consider the general CUSUM procedure with
k > 0 and h = 0 which means that such a general filter trading rule will give a buy
signal to the investor when the one-day return exceeds k. This happens when:

Pt — Pt _k

>e v —1, 2.2.2
Pr—1 ( )

and the opposite when this general filter trading rule generates a sell signal to the
investor. This procedure can be an investment strategy if we believe that a rising
trend in the stock market starts with a large single day rise and a downward trend
that usually starts with a large drop in a single day. However, Lam and Yam (1997)
mentioned that a main drawback of this general filter trading rule (with h = 0, k£ > 0)
is the absence of a stop-loss mechanism.
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Yi et al. (2006) applied CUSUM techniques in predicting regime shifts in stock
market indices but in contrast with Lam and Yam (1997) , they take into account
transaction fees. The same CUSUM technique is used in 30 different stock markets
and its performance is compared. Suppose that z; is the daily index of a certain stock
market and r the logarithmic return with r; = log(zfjl). Define y; = r; — k, where k
is the reference value in the CUSUM procedure, then an upward or downward shift
is detected by the following rule:

C; > h, upward shift and C; < —h, downward shift,

where h is the threshold value of the CUSUM procedure and C; = max(C;_1 +
y;,0), C; = max(C;_; + 1;,0), i = 1,--- ,n. The starting values are Cy = 0 and
C’{) = 0. The result of different values for the parameters k, h is different trading
cycles and CUSUM performances. We mention that the performance of each trading
cycle is measured using the total profit (TP) or the daily profit (DP). The total profit
(TP) and daily profit (DP) of the CUSUM procedure that contains n trading cycles,
the time between a buy and a sell signal, for the case of not taking into account
transaction fees are given by:

SP SP SP, TP -1

. DP

TP = . —
BP, BP, BP, Di+Dy+---+D,’

with SP the selling price and BP the buying price. After taking the transaction fees

into consideration, the total profit and the daily profit of the CUSUM procedure are:
TP —1

Dy + Dy + -+ Dy’

Tp =2 .22 ... ._.(1_0[)271’ DP —

where 0 < a < 1, TP' < TP, DP' < DP, « is the proportion of the total trading
amount charged as the trading fee for each stock buying or selling and D;, ¢ =
1,2,...,n, are the days in which the stock is held in the ith trading cycle. The result
of taking transaction fees into consideration is the deterioration of the performance
of the CUSUM procedures. Yi et al. (2006) concluded that if transaction fees are
included they find no acceptable values of £ and h. In this situation the performance
of the CUSUM procedure is not so good as when the transaction fees are very small
or excluded.

Zmuk (2016) in the spirit of the work of Alexander (1961) and Alexander (1964) ap-
plied residual-based control charts to improve the decision-making process in short-
and long-run stock trading. The empirical application included open and average
prices of CROBEX10 index stocks on the Zagreb Stock Exchange and three types of
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control charts: individual units (I-chart), EWMA and CUSUM. The possible pres-
ence of autocorrelation in open and average stock prices is dealt with the Autore-
gressive Integrated Moving Average (ARIMA) models. Like Lam and Yam (1997)
no transaction fees are taken into consideration but also the simulation of the stock
trading scenarios excluded the existence of outliers. In the long-term trading analysis
based on opening prices the stocks showed a higher variability level than in the short
term. The use of the residual-based CUSUM control charts resulted in the highest
investor trading score in most of the cases. The results of using average prices are
almost similar to that of opening prices. Generally, higher profits for the investor are
achieved with the use of opening prices than average prices in the short-run analysis.
Additionally, the total portfolio profit in the short-run was achieved by using the
residual-based CUSUM control chart in all possible stock trading cases. In the long-
run, the residual-based CUSUM control chart achieved the highest portfolio profit
except for the case with the average trading stock prices and the use of 2-sigma
control limits. In the short run stock trading based on average prices and using
different control limit levels outperformed overall portfolio profits and individually
profits based on that from opening prices. In the long run, stock trading based on
opening prices outperformed the trading based on average prices.

Xin et al. (2013) used CUSUM control charts under the spectrum of filter trading
rule in a two-regime Markov switching model (MSM) for the returns of the underly-
ing security. The parameters of the control scheme are the decision interval A and
the reference value £, which are the filter size and the filter trading rule respectively.
The two-regime model has the regime I and regime II in which the security returns
follow different distributions. Under the two-regime model, the market transits be-
tween bear and bull state. Generally, the transition probability matrix of a hidden
Markov chain for two regimes has the following form:

M — (pll P12> '
P21 D22
This transition probability matrix has the constraints that the four probabilities
should be all nonzero and it is invertible. The reference value is set equal to zero
which means that the filter trading rule monitors whether the stock return series
belongs to a bull or bear market. The four states of the proposed system are: long
position under a bull market, long position under a bear market, short position under
a bull market and short position under a bear market. An extension of this scheme
included the values of the filter trading rule S,”, S; which are the up-sided and
down-sided CUSUM statistics respectively with stating values equal to zero. At the
empirical application, the performance of the filter trading rule under the filter size
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that gives the largest expected unit time profit, is profitable. Also in many cases
the annualized log-returns of filter trading rule outperforms the log-returns of the
buy-and-hold strategy.

Cooper and Van Vliet (2012) dealt with high frequency trading (HFT) data and
developed statistical techniques and tests alternative to traditional SPC that examine
each trading event using the generalized lambda distribution (GLD). The need for
their proposed control schemes is due to the fact that in high frequency trading
systems large amount of trades per minute or per second are executed, something
that makes difficult their real-time control. Also, traditional SPC methods usually
assume normality in contrast with HF'T systems that produce skewed outputs with
long tails which supports the selection of the generalized lambda distribution. The
suggested statistical tests applied on the distribution of sample means and ranges
like in traditional SPC and the distribution of the actual trading profits using the
GLD. The distribution of the actual trading profits is called whole distribution of the
SPC. The monitored procedure with the whole distribution SPC and the generalized
lambda distribution refers to the actual data and each observation is tested rather
than each sample mean or range, like in traditional SPC. Every observation now is
compared to the presumed underlying distribution. As a result the whole distribution
SPC method does not rely on the central limit theorem in order to generate the
required statistics. The comparison analysis between traditional SPC and the whole
distribution SPC is done through a simulation study. The results, according to
Cooper and Van Vliet (2012) , showed that the whole distribution SPC reacts quicker
than traditional SPC to changes even if new single events differ from the reference
distribution. However, there is a trade-off between the number of observations used
in the tests and their sensitivity. A small number of observations can give more
quickly the change detection in contrast with a large number which can lead to false
signals.

Kumiega et al. (2014) following the work of Cooper and Van Vliet (2012) used the
generalized lambda distribution and SPC methods in high frequency trading so as to
assess the performance of the investments. A basic issue in high-frequency trading
is if a trading system will generate sufficient profits so as to cover its costs. The
traditional financial tools appear to have problems to correctly quantify the ability
of an HFT system for algorithmic trading firms (ATFs) to cover that costs. The
traditional risk measures compared with SPC methods are the Sharpe, Information
and Sortino ratios. Drawbacks for their use in assessing the performance of the
system is for example that they ignore costs such as research and development (R&D)
and operating expenses or fail to capture a series of operations of a ATF such as
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capital reallocation to other trading systems. The authors examined the performance
of in-control HFT systems so as to meet ATF specifications for profitability. After
the definition of investor’s trading strategy and the lower limit of capability of the
system, a backtesting was performed and the capability of the system to meet returns
on investment (ROI) requirements it was verified. We remind that the capability of
a process measures the ability to satisfy some specifications. The simulation example
and the use of X-bar chart for sample mean returns and an R chart of simulated HF'T
returns identify that the process is in-control. The capability study is necessary so
as ATFs know if an HFT system will cover its own R&D costs. The capability of the
trading system is measured with the quantity C,; defined as:

= L, LSL’
30,
where 1, is the mean of all the samples, o, is the standard deviation of the sample
means and LSL is the lower specification limit of the costs that a capable firm must
satisfy. Lower values of C; of a system may require the firm to reduce costs or reduce
variation through trading process improvement.

Cooper et al. (2015) extended the work of Kumiega et al. (2014) and developed a
new robust performance measurement methodology for algorithmic trading without
any assumption for normality. Except for taking into account that returns may not
necessarily follow the normal distribution they introduced the concept of multi-scale
capability of the system. The notion of multi-scale capability refers to the fact that
different time scales may be applied to the operation of the algorithm, the capital
allocation decision to the trading strategy and the funding decisions of investors and
there is a need for a framework for unifying measurement of capability. The authors
defined a set of conditions for the definition of which trading strategy is consider to
be good for the investor and a methodology for ranking trading strategies according
to a term structure of capability. The applied trading strategy at each time must
generate a stable distribution of returns and HFT operate when the distribution of
returns are in-control. An important part of the methodology is the definition of the
expected loss when a left tail event happens when the process is in-control and the
trading strategy needs to be changed. The purpose of the firm is not only to achieve
profits in the long run but to perform in an acceptable level in the short run so as
to cover its costs. The authors provided a framework for the relationship between
the performance of the system in the short run and the distribution in the long run.
The process in order to be capable uses a generalization of the C),; value that must
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satisty the following condition:
GCu(n) = —t2—° >, (2.2.3)

where c is the allocated fixed and variable costs so as to research, build and operate
the trading system, the distance from the mean to the proxy for the left tail endpoint
30, is replaced by the non-normal pu, — Q(a), for some level a. The mean u,
follows the generalized lambda distribution and (.) is the percentile function of
the generalized lambda distribution. The acceptable value of n in order GCp(n) > 1
is the time for which the trading strategy is profitable and may vary across firms.
Also the level of the percentile « is the risk tolerance of the trading firm. Low
values mean that c is believed to be exceeded and high values mean that the desired
profitability is not believed to be achieved. Generally, the values of n that equation
(2.2.3) is valid are related with the financing decision that the firm face. Possible
serial correlation in the time series of returns is dealt with using differences in an
EWMA recursion of returns and the new control limits can be computed using the
moving range (MR) method.

Dumici¢ and Zmuk (2015) mentioned in their work difficulties for using statistical
control charts for making decisions about trading on the stock market on short
term period. They applied univariate control schemes in opening and average prices
of stocks from the CROBEX10 market index from the Zagreb Stock Exchange. No
additional payments (such as dividends) for the investors are taken into consideration.
The control schemes are the individual (I), the EWMA and CUSUM control charts.
For the case of taking open stock prices they find for the various control schemes
too many observations out of the control limits. An observation out-of-control will
give a signal to the investor to perform a trading action. The authors indicate
that many of these signal are probably false alarms. The same problem, many
out-of-control limits observations, appears and in the case of using average stock
prices making the use of control charts in portfolio analysis, according to the authors
dubious. Possible explanations for this problem, according to Dumic¢i¢ and Zmuk
(2015), may be the fact that stock prices show non-normal distribution and exhibit
autocorrealtion. More appropriate control chart procedures could be a solution to
this problem. In recent year many procedures have been developed for non-normal
and autocorrelated data.

An interest application of control charts is on the algorithm-controlled finance (ACF)
trading machines. ACF trading machines consist not only of the interacting trade
selection algorithms for taking positions in the financial markets but also with the
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technology required to automate some or all of the processes required for trade
selection and execution (Hassan et al. (2010)). Hassan et al. (2010) mentioned the
problems of traditional risk measurement techniques and the need for SPC methods
such as control charts in order to describe, monitoring and improve the performance
of ACF systems. Between industrial systems and ACF systems there are some basic
differences. In ACF systems risk managers can inspect the entire set of data, input
and output, and more importantly in finance systems the process is assumed to
be normal in contrast to industrial that normality is achieved through sampling
methodology. Also in finance the process it can not be stopped in case of out-of-
control situations but it can continue only to close existing open trading positions.
The authors among others apply X-bar and R charts so as to monitor the performance
in a trading machine. They use an X-bar on the returns and define appropriate
criteria for the out-of-control situation. The stochastic variables of a trading machine
are the mean and the variation of the inputs and outputs. It is obvious that any
change to the algorithm of the trading machine applied in order to bring the machine
into the in-control condition should lead to rebacktesting of the system and define
the new benchmark values. Hassan et al. (2010) compared the results from classical
risk control measures with these of SPC such as the control charts we previously
mentioned. For the statistical arbitrage pairs trading investment example traditional
risk measures such as average annual return, volatility and Sharpe ratio for the in-
sample period indicate that this trading machine could be acceptable for an investor.
However, quality techniques applied on the outputs (specifically the returns), such
as an X-bar chart, do not support this result and give signals where the trading
algorithm is out-of-control. Additionally, out-of-sample results show that the ACF
system performed poorly in term of returns and more volatile in contrast with the in-
sample backtesting of the system. The signals of the SPC tools helped the immediate
correction and improvement of the trading system. Also, the authors dealt with serial
correlation, a common problem in financial data and mention as a possible drawback
of the SPC methods the sensitivity due to noisy financial data which led to false
alarms. They removed the serial correlation from the return distribution applying
EWMA techniques and re-performed the SPC methods. The purpose of designing
an ACF trading system is the absence of autocorrelation and the repeatability in the
results. The examined system generated a white noise and after testing on the error
terms the monitoring results were found the same with the serially correlated data.

Bilson et al. (2010) examined the use of SPC methods in trading systems. They
apply X-bar and R charts on the returns of two applications of trading systems,
the first in a Long-Short pairs trading strategy using statistical arbitrage and the
second in a foreign currency trading strategy. Their results are compared with those
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of traditional quantitative risk management methods trying to find differences in
the decisions an investor makes based on these approaches. Another task is if the
proposed SPC methods predict better the poor performance of the system and reduce
the potential losses of the investor. The results are in accordance with that of Hassan
et al. (2010) and SPC methods generate signals contrary to the signals generated by
the traditional risk measures. Both applications referred to risk due to unknown
probability distributions of the outputs. The first application referred to the risk
of creating a finance trading model that over-fits the data and the results measured
with traditional methods show that came from a known probability distribution.
The second application is the risk of running a trading model after the model faces
uncertainty and stops working according to to a market structure shift. SPC methods
identified the change in the outputs of the trading model in contrast with the results
using backtesting and traditional risk measures that the trading system produced
acceptable returns.

2.2.2 Shewhart procedures and volatility in stock market re-
turns

Govindaraju and Godfrey (2011) explored the volatility of a stock market using
Shewhart procedures. Following Shewhart (1931) they broke down volatility into
common (C) causes and special (S) causes volatility. In financial applications it may
be difficult the distinction between special and common causes. Common causes
are responsible for the controlled variation while special causes for the uncontrolled
variation. Short term variability mainly is due to common causes and usually can be
estimated. In addition, long-term variability includes all the variation due to special
causes. Govindaraju and Godfrey (2011) used rational subgrouping so as to check
if a variation is common or special cause. The distribution function F' of a variable
of interest X can be written as a mixture of the distribution functions of X under
common and special causes:

F(X) = (1—-a)Fc(X|common causes) + aFg(X |special causes), (2.2.4)

where F(.) and Fg(.) are the distribution functions of X under common and special
causes respectively. In case that the process is in-control then the mixing proportion
« is zero. The sample standard deviation of the entire data {z;}, t =1,...,n con-
tains both common and special causes standard deviations and is given by:

op = Z(x — )2, (2.2.5)



2.2. Control Charts and Stock Markets 18

and suppose the sample standard deviation of the jth subgroup is given by:

(=2}

0j = \/(flfzj —1)” + (w21 — T,)*, (2.2.6)

where z; = %(xgj + 2;_1) is the mean of the jth subgroup, j =1,...,m and m = ,
of the observations and adjusting for the bias using a correction factor ¢, we have:

1 m
o = —— i 227
oc cam ;UJ ( )

When the time-dependent effect of special causes is removed the estimated standard
deviation is an estimate of the persistent volatility. The results of the empirical
application show that much of the volatility in stock returns is due to common
causes and can be considered as the permanent risk. Also the concept of common
cause variability can be applied to the portfolio selection. The trade-off between
risk and return in a portfolio will depend on the choice of total risk or special cause
variation used. Long term investors are interested for special cause variation and
analogously define their investment choices.

Premarathna et al. (2016) extended the work of Govindaraju and Godfrey (2011)
and examined the risk/return and skewness/kurtosis trade-offs in a stock market
using Shewhart methodology. The data are separated into rational subgroups and
expected in each subgroup to be as homogeneous as possible. The subgroups are
partitioned for common and special causes variation.

The decision rule for determining variation subject to special causes, is based on the
trimmed mean of subgroup standard deviation:

m—ka

S, = ﬁ{ 3 g] (2.2.8)

i=ma-+1

where « denotes the percentage of subgroup data that has to be trimmed, [.] denotes
the ceiling function and §; is the ith subgroup corrected average standard deviation.
When a rational subgroup has a within-subgroup standard deviation that exceeds a
certain limit, then in that time period a special cause of variation affects the volatility
in the process and this subgroup should be removed from the calculation of S,. The
control limit using the new S, is recalculated. This procedure is repeated until they
get an upper control limit that is based solely on subgroups whose variation is based
only on common cause variation. Premarathna et al. (2016) in order to ensure the
termination of the decision process set that if the number of subgroups is below the
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Poisson upper control limit then the subgroup removal process is stopped. From
the empirical application they found negative mean/standard deviation trade-off in
periods of special cause variation and positive trade-off in common cause periods. As
a result the proposed method cleared up trade-offs that were not observed in the total
periods of data. The negative trade-offs in the special cause periods are connected
with increase in market volatility. The skewness/kurtosis trade-off is negative in both
total and special cause periods and has not been observed before. Also the overall
trade-off is mainly driven by events during the special cause periods.

2.2.3 Other financial applications

Severin and Schmid (1998) introduced and compared univariate modified and residual-
based control schemes for monitoring GARGH processes applied to daily stock mar-
ket returns. The modified control schemes are the modified Shewhart, EWMA and
CUSUM chart. The results from the simulation and empirical study favor the use
of modified EWMA chart. Severin and Schmid (1996) proposed control charts for
GARCH processes in order to detect changes in the volatility of financial asset re-
turns. They focused on modified Shewhart, EWMA, CUSUM and residual control
charts. An important prerequisite for the application of these control schemes is the
existence of second moments. For the modified Shewhart and EWMA chart various
properties for the distribution of the run length are proved. These methods are com-
pared in a simulation study with the target process to be an ARCH(1) process and
an empirical study is made on stock market data.

Schipper and Schmid (2001) mentioned that in the presence of variance changes, the
opinion that EWMA and CUSUM control charts are suitable to detect small shifts
rather than large is not always true. Schipper and Schmid (2001) presented EWMA
and CUSUM charts for detecting changes in the variance of a GARCH process and
applied them to monitor stock market returns. Suppose that Y; is the GARCH target
process with mean o and variance v, and X, is the observed process of the data.
The observed process in connection with the target process is modeled as follows:

Y, for 1<t<r
o o + A(Y; — o), for t >,

with A > 1 and 7 € N. The distribution of Y; is assumed to be known. The ex-
ponential weighted moving average and the cumulative sum, for the construction
of the EWMA and CUSUM chart respectively, are applied to the residuals of the
process, the squared observations, the logarithm of the squared observations and the
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conditional variance. Next we present the EWMA recursions for the four cases we
mentioned previously:

X2
Residual Chart : Z; = (1 — \)Z—1 + )\A—;,
O
Squared observations : Z; = (1 — A\)Z,_1 + MX; — po)?,
. . o (X; — M0)2
Logarithm of the Squared Observations : Z; = (1 — A\)Z;_1 + A In ———,
Yo

Conditional Variance : Z, = (1 — \)Z;_1 + )\5t2+1a

for t>1, A€ (0,1], o isthe conditional variance and Var(X;) =y for t < 7. In
a comparison simulation study of these control schemes with the cases of the target
processes to be a GARCH(1,1), the EWMA control chart based on the conditional
variance outperforms the other schemes and provides in almost all cases the minimal
ARL;. A suggested value for the smoothing parameter is A = 0.1.

Sliwa and Schmid (2005) were the first that applied control chart procedures for
monitoring multivariate nonlinear time series and cross-covariances in particular.
The underlying target process is assumed to be a GARCH(1,1) process. Two dif-
ferent types of MEWMA and univariate EWMA control charts are proposed for the
surveillance of the multivariate GARCH processes. The first type is based on the
exponential smoothing of each component for various examples of local measures for
the covariances of the observed and the residual process. In the second type the
Mahalanobis distance between the local covariance measure and its in-control mean
is calculated and then the univariate EWMA recursion is estimated. The proposed
control schemes are applied to stock markets data.

Golosnoy et al. (2012) applied Shewahart and CUSUM control charts for monitoring
the daily integrated volatility. The dynamics of daily integrated log-volatility are
modeled through a linear state-space representation. This state-space representation
links the observable volatility measure to the unobservable log-daily volatility. The
daily integrated volatility o? is not directly observable and the authors use three
alternative estimators: the realized volatility RV; measure, the bipower variations
BV, measure and the staggered bipower variations SBV;. The proposed state-space
representation for the log-volatility w; = log(o?) is:

w1 —a=¢(w —a)+ €41, €11~ N(0,q) (2.2.9)

Sy = wy + Yy Ve O N(O, Ut), (2210)
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where the measure s, is log(RV;), log(BV;) or log(SBV;), a is the unconditional ex-
pectation of the log integrated volatility, ¢ is the innovations variance and |¢| < 1.
Additionally, the innovations ¢;,y; are assumed to be uncorrelated with each other
and not autocorrelated. The volatility modeled with this state-space representa-
tion assumes that there is no jumps in the price equation of the underlying asset.
Jumps and changes in the parameters may have as a result changes in the distri-
bution of volatility forecasting errors. The authors mentioned the need for differ-
entiation of this two sources of change. The validity of this state-space model and
its ability to provide proper volatility forecasts is tested via statistical monitoring
techniques.These techniques are applied on the standardized volatility forecasting

errors:
Ui

(Deje—1 + Ut>% 7

where 7; = s; — sy;—1 the forecasting errors and the conditional variance is py;—1 =
var(w;—wiy1). The observable forecasting errors 7, follow a normal distribution with
mean 0 and variance py;—1+v;. When the control chart on the forecasting errors or the
standardized forecasting errors give a signal then the model described in the previous
state-space representation does not provide proper volatility forecasts and action
needs to be taken. In addition to the Shewhart chart, CUSUM-type control schemes
are applied such as the CUSUM, the fluctuation sum and the recursive residual chart
(for more see Andreou and Ghysels (2008) and Horvath et al. (2006)). The detecting
ability of the proposed control schemes is examined through a simulation and an
empirical study. In the simulation study also it is investigated the case of forecasting
errors that do not follow normal distribution but t-distribution. The results in the
simulation study showed that changes causing the largest average forecasting losses
are detected with relative ease from all control charts. When detecting changes
in the mean the CUSUM, the fluctuation sum and the recursive residual control
schemes showed similar abilities and performed better than the Shewhart chart. The
opposite happened when the authors detected increases in the variance g. The use of
innovations that follow the t-distribution led to lower ARLq. The empirical example
consisted of daily data of four highly liquid stocks traded on the New York Stock
Exchange (NYSE). The Shewhart charts based on all volatility measures provided
similar number of signals for both in- and out-of-sample case. An interesting fact
is that the majority of signals in the control charts occurred at the same days for
all volatility measures. The authors mention that the signals could be categorized
as isolated and clustered. The isolated signals can often be interpreted as outliers
and clustered signals which are of the main interest indicate possibly problems with
the model adequacy. The fact that obtained signals occur at different times from

n
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detected jumps may be an indicator to possible structural changes in the volatility
model. This application of control chart techniques needs to be expanded for more
complicated volatility models and to be examined in the case of reestimation of the
model when a signal is detected and how this affects the number and time of signals.

The use of classic control charts has as a prerequisite that the data are known exactly.
Kaya et al. (2017) examined the case in monitoring the volatility in a financial market
when the data cannot be fully determined. They overcame this problem by applying
the so called fuzzy control charts for monitoring the variability of a process. The
authors introduced two new fuzzy control charts the fuzzy individual measurements
control chart (FIMCC) and the fuzzy moving range control chart for (FMRCC). For
this purpose the fuzzy set theory (FST) (see e.g. Zadeh (1965)) has been used along
with control charts. For more about fuzzy control charts see Raz and Wang (1990),
Wang and Raz (1990), Giilbay and Kahraman (2006), Erginel (2008) and Morabi et
al. (2015). In the empirical example stock prices are forecasted using the exponential
smoothing method for the BIST-30 Index. Next, the fuzzy values of stock prices are
calculated. The proposed control schemes not only detect small shifts of stock prices
but also increase the flexibility of control limits to analyze the variability of stock
prices.

Doroudyan et al. (2017) used Shewhart control charts so as to monitor and detect
changes in a financial processes modeled with ARMA-GARCH time series structure
and apply their method to monitor Tehran Stock Exchange price index (TEPIX).
The control statistic is based on the residuals of the model. According to the type
of shifts in Tehran Stock Exchange trends, Shewhart control charts was proposed
for monitoring TEPIX. Simulation studies reveal the robustness and the change de-
tection power of the proposed monitoring method. Suppose X, Xs,..., X,, denote
the observations of the financial process with ARMA(p,q)-GARCH (p,q) structure.
They estimated the parameters of the model with maximum likelihood estimation
(MLE) and subsequently the residuals ¢, and h,. The control statistic is denoted as:

(2.2.11)

The process is assumed to be in control state until

2y > UCL or zZ < LCL.

The control limits UCL and LCL are determined such that the ARLg is equal to some
predetermined values. According to Doroudyan et al. (2017) the financial process
goes to out-of-control state when at least one of the model parameters deviates from
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the in-control state. They found that the Shewhart method is almost symmetric in
the changes in the parameters of the ARMA process which means that positive and
negative shifts have almost the same ARL,. For the GARCH part only the positive
shifts are considered.

Garthoff and Schmid (2017) developed control chart procedures for simultaneously
monitoring the mean and the covariance matrix of multivariate financial non-linear
time series with heavy tails. The examined financial time series are the constant
conditional correlation model (CCC), the extended constant conditional correlation
model (ECCC), the dynamic conditional correlation model (DCC) and the gener-
alized dynamic conditional correlation model (GDCC). The proposed EWMA or
CUSUM type control charts are based on residuals that follow t-distribution.The
data are daily logarithmic returns of the stock market indices FTSE and CAC. The
p-dimensional target process Y; is assumed to be a conditional correlation model and
has the following form:

Y = p+ %€, (2.2.12)

where p is the constant overall mean, ¥, = D, R, D, is the covariance matrix with
the diagonal matrix D; = diag(oyy, ..., o) that includes conditional standard devi-
ations and the conditional correlation matrix R; of Y;. The proposed EWMA and
CUSUM control charts are applied on some characteristic quantities of non linear
processes of the data. The two characteristic quantities are:

(1 _ gl
T\ = (wch(nm;)) , (2.2.13)

and

T® = ( " ) : (2.2.14)

Nt 77;

where 7, is a transformation of the residuals and vech the half-vectorization. In the
in control state the variables 7, are independent and t-distributed and in the out-of-
control state they are neither independent nor identically distributed. From the ARL
point of view the simulation study for the first characteristic quantity favours the
MCUSUM based on the cumulative sum of the quantity. For the second characteristic
quantity, the MEWMA chart based on the recursion of the characteristic quantity,
has the best performance for detecting small changes in covariances. For larger
changes in covariances the Mahalanobis EWMA outperforms the other control charts.
For larger changes in both the mean and covariance the control schemes on the second
characteristic quantity perform better. The use of maximum conditional expected
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delay (MCED) as a measure of performance has as a result the MEWMA chart based
on the EWMA recursion outperforms the other control charts. Omitting covariances
and monitoring the variances can improve the performance of the control schemes.
The MCUSUM is appropriate for shifts in the mean. The empirical application
confirms that neglecting covariances in the monitoring procedure reduces the number
of full-sample signals. Li (2016) among other methods for detection of structural
breaks in multivariate normally distributed intraday stock data for a relative short
time period use control charts. Specifically, a modification of the control statistic of a
univariate EWMA chart that contains the singular value decomposition (SVD) of the
covariance matrix. The results are compared with other methods for the detection
of structural breaks and advantages and disadvantages of the proposed control chart
procedure are presented. This is an area that more advanced control charts could be
more useful.

2.3 Control Charts and Portfolio Monitoring

The modern portfolio theory introduced by Markowitz (1952) focuses on the trade-off
between the expected return and the risk of an investment. The investors through the
asset allocation try to maximize their returns every time by taking the best decisions.
Portfolio optimization has attracted the interest of academia and practitioners alike,
with the theory of stochastic optimal control in its various forms playing a domi-
nant role. For example, in the area of continuous time stochastic models (see e.g.
Korn and Korn (2001)) we have various extensions along the lines of jump diffusion,
Markov switching models or hybrid systems (see e.g. Azevedo et al. (2014) or Savku
and Weber (2018), Savku and Weber (2021)) as well as extensions using inside in-
formation or model uncertainty (see e.g. Baltas and Yannacopoulos (2019), Baltas
et al. (2018), Papayiannis and Yannacopoulos (2018)). Furthermore, in recent years
SPC techniques, which are the main interest of this section, have been applied to
the portfolio diversification problem as tool for decision making. Possible structural
breaks in the distribution of the asset returns may result in changes in the optimal
portfolio weights and action needs to be taken from the investor’s point.

2.3.1 Portfolio optimization framework

Consider n risky assets in the financial market and suppose that X, is the k-
dimensional vector of asset returns at a certain time t. Denote F(X) = p and
var(X) = X the expected returns and the variance of the returns distribution re-
spectively. Also we assume that the asset returns are identically and independently
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distributed following a multivariate normal distribution. The Markowitz portfolio
theory assumes that portfolios can be completely characterized by their expected
return and variance. The formulation of mean-variance portfolio is:

o ‘5 1,
minimize w Yw — —w
v g H (2.3.1)
subject to w'l = 1,

where w is the vector of portfolio weights, 1 is a vector of ones and ¢ is the risk
aversion coefficient.

The global minimum variance portfolio (GMVP) is the portfolio with the lowest
possible variance given the assets covariance matrix. For its estimation only the
knowledge of the covariance matrix of the asset returns is required and as a result
the GMVP weights do not suffer from estimation risk in the mean asset returns.The
vector of optimal weights is the solution to the following minimization problem:
minimize w Xw
w , (2.3.2)
subject to w1l =1,

The vector of optimal weights w is given by:

>

1'¥-11 ( )
The covariance matrix 3 is usually estimated from the sample covariance matrix.
Suppose that Xy,..., X, are the n-period asset returns, then:

. 1 )
Sin=—7 Y (X5 — pun) (X — pen) (2.3.4)
j=t—m+1
1 t
fn =~ > X, (2.3.5)
v=t—n+1

2.3.2 Portfolio monitoring

Yashchin et al. (1997) used a three-step CUSUM procedure for monitoring and de-
tecting changes in the performance of actively managed portfolios compared to a
defined benchmark performance. In contrast to the performance measurement ap-
proach the portfolio monitoring can identify regime changes or shifts in performance.
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Investors estimate their current portfolio performance every time and take action ac-
cording to the results from the control schemes. The information ratio, the ratio
of a portfolio’s returns that exceed a particular benchmark to its tracking error, is
chosen as a measure of the portfolio performance and monitored from the CUSUM
procedure. The generated sequence of excess returns is uncorrelated and follows ap-
proximately the normal distribution. The current information ratio of the portfolio
is given as:

12
IR = 2%

5 (2.3.6)
where e; and og; is the logarithmic excess return and the annualized tracking
error of the portfolio in month 7 respectively. Next, the log-likelihood ratio based
on the k£ most recent observation is estimated. The estimation of the value of k£ that
maximizes the log-likelihood ratio defines the optimum performance measurement
interval. The log-likelihood ratio is defined as the natural logarithm of the ratio of
the probability that the observed sequence of returns was generated by a bad portfolio
manager to the probability that it was generated by a good portfolio manager. The
maximization of the log-likelihood ratio is of great importance because it makes the
CUSUM procedure robust to the distribution of portfolio returns and fast to detect a
change in the portfolio performance. Finally, the log-likelihood ratio is compared to a
threshold value and if it exceeds this value means that the performance has changed
from good to bad and action is need to be taken. If the investigation shows that
this is a false alarm the likelihood ratio is set to 0 and the procedure is restarted.
The empirical findings of Yashchin et al. (1997) indicate that it takes on average
41 months to detect a bad performance, which is much faster than a t-test. For a
good portfolio manager the average time between false alarms is 84 months. The
probability that it will outperform its benchmark over any specified horizon is simply
related to its information ratio.

Gandy (2012) monitored the performance of credit portfolios using survival analysis
approach in CUSUM procedures. The credit portfolio changes either by the addition
of new credits or when current credits leave the portfolio in case of default or full
payment. Three scenarios are examined for the arrival of new customers and for the
changes in the portfolio. Specifically, the customer’s arrival rate follow a Poisson
process or the arrival rate is doubled at time t = 1 or the arrival rate is reduced to
half at time t = 1. The credit portfolio can have no change during the monitoring
period (No-change condition), the default rate at t=1.5 increases by 50% (Crisis
condition) and the default rate from t=1.5 and onwards for all new customers is
50%. The proposed survival analysis CUSUM procedure is compared through a
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simulation study for the portfolio monitoring of default rate using sliding window
with CUSUM control charts based on default rates and CUSUM control charts based
on defaults within a given time after customer’s arrival. The alternative strategies,
with the exception of the CUSUM charts using a fixed follow-up time, are sensitive
to changes in the portfolio population. This has as a result the increase of the
default rates and the number of false alarms. The survival analysis of the CUSUM
procedure detect faster the alarm times because they can use the information about
credit defaults without any delay.

Golosnoy (2018) proposed Shewhart and Hotelling control schemes for the surveil-
lance of the portfolio characteristic beta from the one factor capital asset pricing
model (CAPM). The Shewhart control chart is appropriate for the case of the uni-
variate quantity beta when we have a single portfolio. Hotelling schemes are relevant
when there is a set of portfolios and the monitoring quantity beta is a multivariate
vector.

Riegel Sant’Anna et al. (2019) used EWMA procedures in order to monitor the
rebalancing process of index tracking (IT) portfolio. When a signal is given then
the portfolio composition is changed and the portfolio needs to be updated us-
ing a rebalancing strategy. The EWMA control charts are applied on portfolio’s
daily returns and daily volatility. The measure of daily returns is the tracking error
(TE), which is the difference between portfolio daily returns and index daily returns.
The surveillance of index tracking portfolios is implemented on cointegration-based
and optimization-based portfolios. The empirical study on data from the Brazilian
Ibovespa stock index and the US S&P 100 index compares the SPC rebalancing ap-
proach with portfolios with the traditional fixed rebalancing windows. The results
showed similar findings for both techniques in terms of returns and volatility. In
markets with large volatility the SPC approach is more consistent than the fixed
rebalancing window approach.

2.3.3 Monitoring optimal portfolio weights

Markowitz’s portfolio theory is a single-period myopic portfolio allocation problem
where the investor in every time period tries to maximize its quadratic utility func-
tion. Okhrin and Schmid (2006) examined several distributional properties for opti-
mal portfolio weights of four mean-variance portfolio strategies: expected quadratic
utility optimal portfolio, global minimum variance portfolio, tangency portfolio and
sharpe ratio portfolio. The assumption is that asset returns follow a stationary
normal distribution. The estimation of optimal weights depends on the mean and
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variance of the asset returns but because the true values are unknown instead of
these quantities their sample counterparts are used. Okhrin and Schmid (2006) de-
rived the exact and asymptotic distribution along with the first two moments of the
optimal portfolio weights for the various cases. The asymptotic distributions are
estimated both when asset returns are uncorrelated and correlated. For example,
in the case of uncorrelated k risky asset returns for n time periods, the vector of
the first k-1 optimal weights (w*) in the GMVP follows a multivariate t-distribution
with n — k + 1 degrees of freedom. The choice of use of k-1 elements instead of £ in
every vector of optimal weights is because the sums of the elements are equal to one,
their covariance matrices are not regular and the rank of all covariance matrices is
equal to k-1. The mean and the variance are given by:

1 Q
n—k—11%-11’

E(;,) =w and Var(w,) = (2.3.7)

respectively, where Q = X7 — %};f/ (see Bodnar and Schmid (2008), Golosnoy
and Schmid (2009)).

Bodnar and Schmid (2008) investigated the distributional properties of the expected
return and the variance of various portfolio strategies. The knowledge of the distribu-
tional properties and the first two moments is of crucial interest for the construction
of control charts for the surveillance of optimal portfolio weights. Caution should be
taken when somebody relies on asymptotic results of the asymptotic counterparts
of the exact moments because they can differ significantly from the exact moments
and the results to be inaccurate. The observed process is considered to be in control
if E(w;,) = w holds for all ¢ > 1, otherwise the observed process is denoted to be
out-of-control. The first approach is directly based on the process of the estimated
weights W, ,. The second one considers the process of the first differences {A;,}, de-
fined as A, = Wy, —W;_1, and its disadvantage is that depends on the estimation
window length n.

Under the assumption that asset returns { X;} are independent and identically nor-
mally distributed, with mean g and covariance matrix 3, Golosnoy and Schmid
(2007) proposed several EWMA control charts for monitoring the weights of the
GMVP. The estimation of optimal weights require the knowledge of the covariance
matrix of asset returns. Since the true covariance matrix is unknown, the sam-
ple covariance is used for the estimation.The estimated sample weights are highly
autocorrelated and for this reason the proposed control schemes are the modified
EWMA charts as well as control charts based on the differences of one time lag of
the sample weights. The use of differences has as a result to reduce the high autocor-
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relation within the original portfolio weight series. For each control scheme control
charts based on the multivariate EWMA recursion and Mahalanobis distance are
constructed. For ¢ <0 it is assumed that there are no changes in the underlying
process and for t > 1 the observed process is in control if it is equal to the tar-
get process, otherwise it is said to be out-of-control. The out-of-control situation is
modeled by changing the main diagonal or the off-diagonal elements of the covari-
ance matrix or both. Golosnoy and Schmid (2007) examined two types of changes
in the covariance matrix of asset returns. The first type affects only the mean of
the optimal portfolio weights. The second type which is appropriate for financial
applications the changes are modeled in a way that represent the change of a bull
market to a bear market. The first category of control charts monitors the process of
the estimated weights w;,, and the second the process of the first differences of the
portfolio weights: A, = W, — W;_1,. For example, in the case of modified con-
trol charts, the distance between the estimated GMVP weights w;,, and the target
weights w* = Ey(w;,,) are measured by the Mahalanobis distance. Fy is the mean
of optimal portfolio weights estimated when the process is in-control. This leads to:

Ty = (W}, — w*) Q7 (w],, — w*),t > 1. (2.3.8)
The EWMA recursion is given by:
Zt,n — (1 — )\>Zt—1,n + )\7—;5771, (239)

for t > 1. The starting value Z;,, is set equal to Ey(7;) = k — 1. In the case of the
multivariate EWMA control chart, the vector Z;,, can be presented as:

t—1
Zy,=(I—R)'Zy,+RY (I-R)"%;,,, (2.3.10)
v=0

where R = diag(ry, - ,7-1) isa (k—1)x (k—1) diagonal matrix with diagonal
elements 0 < r; <1, 7€ {1,---,k — 1}. Consequently it holds that Ey(Z;,) = w*.
The covariance matrix of the multivariate EWMA statistic Z;,, in the in-control
state is given by:

t—1
Covg(Zin) = R(Y_ (I = R)'Couvg(w_;,,, @,  )(I—R)")R. (2.3.11)
4,7=0

A signal is given if:

(Zyy — Fo(Zy,)) Covg(Z) N2y — Eo(Zi)) > c.
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The control limit ¢ which defines the rejection area in every control scheme is es-
timated through a simulation study for a predetermined value of the ARL (usually
in financial applications is equal to 120 days or 1/2 year of daily observations, see
Golosnoy et al. (2007)). After a signal is given the financial analyst should exam-
ine it and decide for further actions in concern with the portfolio allocation. The
estimation of the covariance of the control statistic Z;,, when the process is in con-
trol requires the estimation of the covariance matrix between the weights. Golosnoy
and Schmid (2007) studied and approximated the limit behavior of Covy(Z;,,) as n
tends to infinity. An alternative method is through Monte Carlo Simulation study.
The empirical application study of a portfolio favoured the use of difference control
charts in practice because they are able to give an alarm almost immediately with
high probability for large changes. However, the proposed control schemes showed
poor detection ability for some out-of-control situations such as in the case of mod-
ified charts when the variances but not the covariances are changed. Due to these
poor detection abilities, Golosnoy et al. (2010) proposed some new characteristics
for monitoring optimal portfolio weights in a GMVP. They suggested an alterna-
tive process {g;} to the optimal weight process and a process {p;,} alternative to
the difference process. For a sequence of independent and normally distributed k-
dimensional random vectors X; it holds that in the in-control state as n — oo,
N, — Pin LN 0, where:

Pin = —Q(X: — ) ( Xy — ) — (Xin — p)(Ximn — ) )w, (2.3.12)
and Q =X — %};f/ An alternative quantity for monitoring the process of
optimal weights is:

@ =—Q(X: —p)(X; —p) —D)w = -Q(X; — p)(X, — ), (2.3.13)

and Ey(q;) = 0, Covp(q;) = Q with p;,, = 0 and 1'q; = 0.

Suppose that the process {X;} of asset returns for ¢ > 1 when it is out-of -control,
then the out-of-control mean of the characteristic p;, for ¢ >1is given by:

—QElfw, 1 S t S n

(2.3.14)
0, t>n+1,

Ey (pt,n> = {

and the covariance matrix is defined as:

2Q(21’UJU}/21 + (w/21w>21)Q, t Z n—+1

_Q(Elww'Zh + (wlﬁlw)El)Q + ﬁ, 1 S t S n.
(2.3.15)

Covy(pin) = {
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Control charts for the characteristic processes p; and g; are constructed for both uni-
variate and multivariate EWMA recursion. The recursion equations are applied to
the first k-1 components of the respective characteristic in each case. In a simulation
study the performance of the charts is compared in various out-of-control situations
with performance measures the ARL and the worst case conditional expected delay
(WED). The results favoured the opinion that for the detection of the changes a
combination of control charts should be applied. Control charts based on the first
differences are those with the worst overall performance. Also control procedures
based on the characteristic quantity g; performed better than those based on p,. If
the type of change in the GMVP optimal weights is an increasing variance then the
charts based on the characteristic q; performed better than any other. A disadvan-
tage of these control schemes is that they fail to detect changes due to a decreasing
variance. Additionally, changes caused by an increase in correlation, the charts that
monitor the quantity w,, outperformed the other control schemes. For changes in
both the variances and the correlations the charts for the characteristic g; had the
best performance.

Golosnoy et al. (2011) developed directionally invariant CUSUM control charts for
monitoring the GMVP estimated optimal weights w;,, and the characteristic process
g;, the multivariate CUSUM-w and CUSUM-q charts respectively. Changes in the
GMVP composition are due to changes in the covariance matrix of asset returns.
The MCUSUMI1 and MCUSUM2 charts of Pignatiello and Runger (1990) and the
projection pursuit (PPCUSUM) scheme of Ngai and Zhang (2001) are applied for
monitoring these processes. Simulation and empirical study compared the detection
ability of the CUSUM schemes with the EWMA schemes for two types of changes.
First, only in the variance matrix, which are responsible for large changes in optimal
weights, and second in both the variance and the correlation matrix of asset returns,
which had as a result small changes in optimal weights. The performance measures
of the control charts are the ARL; and the worst-case conditional expected delay
(WED). The results supported the opinion that the simultaneous use of both w-
charts and g-charts is appropriate for the detection of the different types of changes.
In the case of changes in the variance, the best performance can be observed for
the MCUSUM1-q and the MCUSUM2-w control charts. If the variances of the as-
set returns are increasing then CUSUM-q charts perform better than the CUSUM-w
charts. If the variances are decreasing then the w-charts are more appropriate for the
detection of changes in the weights. For changes in both the variances and the corre-
lations the best control scheme is the MEWMA-q control chart. The MCUSUM2-q
chart performs better among the CUSUM-q control schemes. The CUSUM-w charts
are appropriate for detecting changes which are the result of increasing correlation.
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Olha (2007) monitored optimal weights of a GMVP following a different approach
by using the distribution of the estimator of the covariance matrix of asset returns
in order to construct multivariate and simultaneous control charts. A significant
benefit of this approach is that the proposed multivariate and simultaneous control
schemes are independent of the covariance matrix of asset returns. The covariance
matrix of asset returns is monitored for possible changes that may affect the mean
and the covariance of a transformation of the vector of optimal weights. Suppose that
Xy, ..., X, the vector of asset returns, Bodnar and Schmid (2004) showed that linear
combinations of the components of the GMVP weights, Lw, follow a multivariate
t-distribution with mean Lw and covariance nf %, where L is the (¢ x p)-
dimensional matrix of constants. Olha 2007 proposed the following transformation
of the vector of the optimal weights:

= ey LEX1'SL
D= \n—pV1E- (LD — 2= )2 L(w — w), (2.3.16)
1'¥-111
and 0 ~ t,_,(0, ;2E5T). Structural breaks in the covariance matrix of asset returns

have as a result changes in the mean vector and the covariance matrix of the vector
U. If a change in the covariance matrix happens then the composition of the optimal
weights changes and a new vector ¥ is estimated with known mean and covariance.

Five types of control charts for multivariate surveillance are constructed: The multi-
variate Shewhart control chart, the MC1 control chart of Pignatiello and Runger
(1990), the multivariate CUSUM control chart, the PPCUSUM control chart of
Pignatiello and Runger (1990), and the MEWMA control chart. The proposed
control schemes monitor changes in the covariance matrix by testing if the mean
of the vector 7; differs significantly from the target value p,. The quantity »; is
the ¢ + g(q + 1)/2 dimensional vector of the sequence of the independent covari-
ance matrix estimators of the subsamples that occur if we divide the entire sample
of asset returns in m subsets of size ny;. The expected value of the vectors 7; in
case of no structural breaks in the covariances of the asset returns has at positions
g+ 1,2+ 1,3q,49 —2,5¢ —3,...,q+q(qg+ 1)2 value equal to n?i—;fz and other-
wise is zero. Additionally simultaneous monitoring procedures for detecting shifts
in the mean and variance for each component of the vector of optimal weights are
constructed. The simulation study supports the opinion that the MEWMA and the
simultaneous MEWMA control charts outperform the other control schemes because
they have the smallest out-of-control average run lengths.

Golosnoy (2007) monitored the change in the optimal weights of a GMVP by monitor-
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ing the unconditional covariance matrix of the £ assets returns under the assumption
of the locally constant volatility approach. The locally constant volatility approach
(Hsu et al. (1974)) suggests that the covariance matrix between sudden changes
remains constant. The covariance matrix is estimated through a time-varying esti-
mation window. If the control charts give a signal then we choose a shorter estimation
window or if there is no signal we increase the length of the window. The result of
this approach is the reduction of the out-of-sample variance of the GMVP which is
used as a performance measure. The two applied control schemes are proposed by
Golosnoy and Schmid (2007) for the vector of k-1 returns. The modified EWMA
based on Mahalanobis distance and the EWMA difference control chart based on
Mahalanobis distance, designed for detection of mean changes in the weights. The
in-control mean Ey(w) and covariance matrix Covy(w) of optimal weights are es-
timated with a time varying approach. The time-varying length m; > n is defined
from the signal of the control charts. At time ¢ = 1 the estimation window m; is
chosen to have a small value m days. In the next time period ¢ = 2 if no alarm has
occurred, the length of the window increases by one observation my—o = m + 1. If
now an alarm occurs at time ¢ = t + 7 then we restart the control charts setting
my, = m. For the evaluation of portfolio performance the out-of-sample variance of
realized portfolio returns V' (RP) is used. The proposed portfolio monitoring method
based on the estimation of the covariance matrix is compared with strategies that
contain five alternative covariance matrix estimators: sample estimator, single-index
model, shrinkage estimation, exponential smoothing estimator and estimation with
GARCH approach. The empirical study on stocks from the the German stock market
index DAX shows that the portfolio monitoring strategies with time-varying estima-
tion window achieve smaller out-of- sample GMVP variance than the alternatives in
most of cases.

Golosnoy et al. (2020) estimated the optimal GMVP weights following a different
approach than previously described with the sample volatility estimators. They esti-
mated the so called realized GMVP weights by using the realized volatility measures
computed from intraday data. The benefit of using this approach according to the
authors is the better incorporation of the new daily information in the markets to the
estimation of the covariance matrix of asset returns. The realized covariance matrix

is given by:
m

Rpp = ) Tejrg;, (2.3.17)

Jj=1

where 7, ; are the m uniformly spaced intraday return vectors for day t. The vector
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of the realized GMVP weights w,  is given by:

R,: '1

_ - 2.3.18
1R, '1 ( )

Wrt

Similar to the work of Okhrin and Schmid (2006) the authors derived both finite sam-
ple and asymptotic distributional properties of the realized GMVP weights. Suppose
that the realized covariance matrix R, follows the conditional Wishart distribution
with degrees of freedom m; and covariance matrix X /m,, 3 is the true daily co-
variance matrix of asset returns. The result is that the vector w, ¢ follows an (k—1)-
elliptical t-distribution. In addition to the finite sample properties under certain
conditions as m; — oo the vector w, is asymptotically normally distributed. The
proposed control chart is the univariate EWMA for A = 1 which is the Shewhart
control chart and it is applied to the differences between the target portfolio weights
Or ¢ from the GMVP weights of the current day, Ar,t = w,¢ — 0,¢. The vector of
the target weights could be either deterministic or stochastic. As a consequence the
Mahalanobis distance of these differences is:

Top = (Are) Cov(Arg) " (Ary), (2.3.19)

where Cov(A,4) is the (K — 1) x (k — 1) -dimensional positive definite covariance
matrix of A,¢. The performance of the control chart is tested through a simulation
and empirical example study. Taking into advantage the distributional properties of
the optimal weights for this approach of portfolio monitoring further work needs to
be done and additional control chart procedures to be applied.



Chapter 3

Control Charts and Affine Term
Structure Models

3.1 Introduction

In this chapter we focus on monitoring the parameters of a Gaussian ATSM in or-
der to detect possible changes. Our work is based on the approach of Schmid and
Tzotchev (2004) in which monitoring the stability of the vector of the parameters
of the ATSM is transformed to monitoring the stability of bond yields. In the Cox-
Ingersoll-Ross (CIR) term structure model used by Schmid and Tzotchev (2004) the
short rate process has a conditional non-central chi-square distribution in contrast
with our affine model that follows a Gaussian process. The change can be either to
one parameter, here the factor loadings of the state evolution process, or to the entire
set of parameters of the state factor process. Additionally, we simulate parallel and
non-parallel shifts in the yield curve and monitoring them in order to detect change
points for large and small shifts. For the sequential monitoring of the parameters
of our term structure model we use the following control chart procedures: modified
EWMA control charts based on the Mahalanobis distance and the MEWMA recur-
sion, MCUSUM, residual control charts based on the Mahalanobis distance and the
MEWMA recursion and the multivariate modified EWMA (MMOEWMA) chart.
The proposed control chart techniques have been applied empirically to the U.S.
term structure and structural break points have been documented.

Kramer and Schmid (1997) extended the MEWMA in monitoring multivariate time
series. Rosotowski and Schmid (2003) in addition to modified EWMA control charts

35
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developed control charts based on the residuals instead of the original data for Gaus-
sian processes. Patel and Divecha (2011) and Patel and Divecha (2013) proposed
a modified EWMA chart for the univariate and multivariate case respectively for
monitoring small and large shifts in a autoregressive AR (1) and a vector autoregres-
sive VAR(1) process. The Multivariate Modified EWMA (MMOEWMA) chart is a
modification in MEWMA (see Lowry et al. (1992)) control chart statistic and has
the ability to detect small and large shifts in the monitoring process. Their work
is applied to chemical and other industrial applications. Here we adapt their work
in the multivariate case in financial applications, specifically in interest rate models.
Khan et al. (2017) under the assumption that the monitoring quality characteristic
follows the normal distribution proposed a control chart which is a generalization of
the modified EWMA proposed by Patel and Divecha (2011). The efficiency of their
modified EWMA chart is compared with other control charts in terms of the ARL
in an industrial example. Their simulation study results showed that the proposed
chart has the ability to detect shifts quicker than the traditional EWMA chart of
Roberts (1966) and the modified EWMA of Patel and Divecha (2011). Saghir et al.
(2020) following the work of KKhan et al. (2017) constructed a modified EWMA for
monitoring the process variation. The performance of the proposed control chart
is evaluated using the average run length (ARL) and the standard deviation of run
length (SDRL). The results indicated the quick detection of the out-of-control process
when monitoring the process dispersion.

Chib and Kang (2013) examined for possible structural breaks the U.S. yield curve
by using an arbitrage-free ATSM applying Bayesian techniques. They assumed when
the economy is in one regime can move only forward to another regime or remain to
the same regime. This assumption is different from that in Markov regime switching
models where the economy can return to a previous condition (regime). All model
parameters are subject to changes at unknown time points. For the determination of
the number of regimes and the change points in the data set they followed a “backward
looking” approach. They compared various term structure models assuming their
number of change points, via their marginal likelihood estimates. In our study we
follow a different, “forward looking”, approach using sequential monitoring techniques
for the detection of change points at each time ¢.

The rest of this chapter is organized as follows. In section 2 we present our data set.
In section 3 we briefly present the main framework of our term structure model and
the estimation method. Next, section 4 presents the control chart procedures that
we apply in our work. Section 5 and section 6 refer to the simulation study and the
empirical example along with their results.
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3.2 Data

3.2.1 Government Bonds

The U.S. Treasury yields data are monthly continuously compounded spot rates at
maturities 3 months and 2,3,4,5 and 10 years from April 1991 to December 2009,
provided from the FED St. Louis. The in-control period is defined from April 1991
to December 2000 in total 117 months. The period from January 2001 to December
2009 is the out-of-control period in total 120 months. Figure 3.2.1 plots the time
series of the U.S. Treasury yields for the in-control period. With the exception of
the 3-month Treasury yield the rest of the yields exhibit similar patterns during the
sample period. There are three periods of low bond yields, 1993, at the end of 1995
and in the middle of 1998. The 3-month Treasury bill mimics the other bond yields
but in lower level until the end of 1995. For the period until September 1998 behaves
smoother than the other yields of our sample and for the rest of the period exhibits
the same pattern again in lower levels. Table 3.2.1 presents the autocorrelations for
the time series of treasury yields for the first four lags. The results confirm the strong
persistence of the bond yields. The summary statistics are displayed in table 3.2.3.

——-3m
24m
36m
agm ||
——-60m
120m

Figure 3.2.1: U.S. Treasury Yields.
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3.2.2 Economic variables

In our work we consider two economic variables the Consumer Price Index (CPI)
as a proxy for the inflation and the Industrial Production (IP) index growth rate.
Data are provided from the FED St. Louis. Figure 3.2.2 plots the CPI for the period
1991:04 to 2000:12. The CPI rates peak at the beginning of our sample, in early 1991,
and has a downward trend until the last quarter of 1991 where it stabilizes until April
of 1993. The peak at the beginning is mainly due to the inflation pressure generated
by oil shocks during the first Gulf War. In the subsequent period, the CPI factor
remains at low levels and shows a downward trend from the end of 1996 and reaches
the low and at February of 1998 following next an upward trend.

Figure 3.2.3 plots the IP index growth rate. The IP index growth rate factor steadily
grows in the period before the first quarter of 1993 starting from negative levels.
Until the end of the period the IP index growth remains in positive levels following
opposite patterns from the CPI factor. Table 3.2.2 presents the autocorrelations
for the two observable factors. The time series of macroeconomic factors exhibit
high and medium autocorrelation for the first four lags. The summary statistics are
presented in table 3.2.4. All the data used for the model estimation are demeaned.

CPI
»

Figure 3.2.2: Consumer Price Index for the period 1991:04 to 2000:12.
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IP Index

1
DATE

Figure 3.2.3: Industrial Production Index growth for the period 1991:04 to 2000:12.

Lagl Lag2 Lag3 Lag4

3m  0.9693 0.9262 0.8763 0.8163

24m  0.9382 0.8415 0.7357 0.6295
36m  0.9175 0.8003 0.6729 0.5486
48m  0.9077 0.7856 0.6591 0.5299
60m  0.907 0.7844 0.6553 0.5243
120m  0.9294 0.8478 0.7647 0.6759

Table 3.2.1: Autocorrelation of U.S. Treasury yields with maturities 3-,24-,36-,48-,60-

and 120-months.

Term premium

Figure 3.2.4: Yields Term Premia for the period 1991:04 to 2000:12.
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Lagl Lag2 Lag3 Lag4

CPI 0.9046 0.7927 0.7088 0.6167

IP  0.9001 0.8111 0.7235 0.6428

Table 3.2.2: Autocorrelation of macroeconomic factors.

Yields 3m 24m 36m 48m 60m  120m
Mean 4.6496 5.4823 5.7203 5.9175 6.0157 6.5375
Skewness -0.6261 -0.2581 -0.0421 0.1037 0.1879 0.2146
Kurtosis 22861 2.4623 2.5806 2.6712 2.6975 2.4887
Std deviation  0.9202 0.8553  0.7918 0.7722 0.7723 0.8213
Maximum 6.17 7.496 7.671 7.695 7.862 8.44
Minimum 2.86 3.774 4.2 4.305 4.344 4.691
Range 3.31 3.722 3.471 3.39 3.518 3.749

Table 3.2.3: Descriptive Statistics for U.S. Treasury yields.

CPI IP
Mean 2.6260 1.9482
Skewness -0.1167 -1.8123
Kurtosis 3.5512  7.8923
Std deviation 1.3761  3.9873
Maximum 6.3796  8.5440
Minimum -1.9615 3.774
Range 8.3411  23.788

Table 3.2.4: Descriptive Statistics for observable factors.

3.3 Gaussian Affine Term Structure Models

3.3.1 General Framework

We consider a (N x 1) vector of state variables X that describes the state of the
economy. The dynamic evolution process of the state variables has the following
Gaussian vector autoregressive form:
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Xir1 = p+ ¢X¢ + Xugy g, (3.3.1)

with ugpq ~ N(0,I). From equation (3.3.1) it follows that X qjs ~ N(px,EX).
The dynamic evolution under the physical probability measure P is

Xii1 = pF + ¢F Xy + Zug 4, (3.3.2)
and under the risk-neutral pricing measure ) is
X1 = u? + ¢9X, + Sug ;. (3.3.3)

The time-varying market prices of risk, \¢, are affine functions of the underlying
state variables X;:

}‘t = )\0 + )\1Xt. (334)

Suppose 7; is the continuously compounded short term interest rate. The short rate
is an affine function of the state variables:

re = 0o + 0, Xs. (3.3.5)

The stochastic discount factor (SDF) M, ; is exponentially affine in the evolution
process and is defined as

1.
Mt+1 = exp(—i)\t)\t — Ty — Alut_H)
1.
= pr(_gAt/\t — 0o — 01X — AqU¢q1).

From the parameters of the P-measure we can obtain the corresponded parameters
under the @-measure and reversely by the following equations:

p® = puf — 3, (3.3.6)

% = ¥ — T, (3.3.7)

The zero-coupon bonds are priced using the stochastic discount factor from the
following recursive relation:

P = Et(Mt+1PtTL+_11)7 (3.3.8)
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where P/ is the price of a zero-coupon bond of maturity n periods at time £. Equation
(3.3.8) means that the bond prices are exponential affine functions of the underlying

state variables:
P = exp(a, + b, Xy). (3.3.9)

The continuously compounded yield on an n-period zero-coupon bond at time ¢ is
n 1 n
Yy = _EZOQPt . (3.3.10)

From equation (3.3.9) we have that

Y = A, + B, Xq, (3.3.11)
with A, = —2 and B, = —bT“. The parameters «,, and b, are estimated from the
set of recursive equations

g1 = an + b, (1 — TAo) + %b’nzz’bn — b0, (3.3.12)
bui1 = by (¢ — ZAy) — 85, (3.3.13)
with starting values A; = —dy, By = —67. Yield risk premia is the difference between

the observed yields and the hypothetical yields given by the expectations hypothesis:

1= .

yry = - ;(MPZ —InP/™ — Ey(y.))- (3.3.14)
In order to estimate our term structure model we follow the approach of Chen and
Scott (1993) and assume that a subset of the yields are estimated without a mea-
surement error. This holds for for [ linear combinations of observed yields, where [
is the number of latent factors in the model and the remaining N — [ linear combina-
tions differ from the predicted value by a small measurement error. Let Y} denotes
the [ x 1 vector consisting of those linear combinations of yields that are treated as
priced without error and Y? the remaining (N — [) x 1 linear combinations. Then,
the measurement specification of government yields is

il _ [ A B, X 01, .
|: 5/;2 :| = |:A? + Bt2 + in Ee Uy (3315)
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where X, is taken to be diagonal and we denote as uy = [0 X.J'us. Al and B! for
1 = 1,2 are calculated by stacking 3.3.12 and 3.3.13 respectively for the appropriate
maturity n and ¥, determines the variance of the measurement error with ug ~
N(0,I). We impose in our model the following parameter restrictions Xy, = 0, X =
I,01; > 0, ,u,lQ = 0 and X, is a lower triangular matrix.

The structure of the factor loading ¢l(°l2 is that proposed by Hamilton and Wu (2012).
The reduced form parameters, i.e. the parameters of a restricted vector autoregres-
sion for the yields, are collected in vector 7w and can be conveniently estimated by
least squares methods. Given 7, the structural parameter vector @ can be esti-
mated by the MCSE method. The MCSE estimator is based on the assumption that
the reduced form parameters coincide with a function of the structural parameters,

7« = g(0).

3.3.2 Model Identification

The structural form of the affine model that we previously presented can be changed
to a reduced form according to Hamilton and Wu (2012).We briefly present the set
of equations for the reduced form (for more details see Hamilton and Wu (2012)):

¢:nm = Pmm — pmlBl_llBlma
z/flkm = Blm7

X' = A+ Opn X+ G Yol + iy, (3.3.16)

Y = A 6, X0+ S Y U X (3:3.17)

Y = A5+ 05, X{ 051, Y+ u, (3.3.18)
where

A} = Ay + Buc, — BupuBy,' Ay, (3.3.19)

Ay = Ay — By By Ay, (3.3.20)

Ay, = o — p By A, (3.3.21)

¢11 = BupuBy,', (3.3.22)

Ot = Bupu — BupuBy;' Bim, (3.3.23)

O3 = Bom — Ba By Bim, (3.3.24)

¢ = BBy, (3.3.25)

Gt = P By’ (3.3.26)

(3.3.27)

(3-3.28)
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and

’

ut, Q. 0 0 SrmZom 0 0
Var | ui, | =1 0 QF 0 | = 0 BuB;, 0 |. (3.3.29)
ws, 0o 0 O 0 0 XX

Full information maximum likelihood estimation is obtained by treating the three
blocks,uj,, u3,, u;,, separately since they are independent. Also Jp cannot be esti-
mated separately from the OLS regression (3.3.5) because the risk-free rate serves
a dependent variable not only in the regression (3.3.5) but also but also in the re-
gression (3.3.19). Following the technique of Hamilton and Wu (2012) in order the
model to be just identified we take three further restrictions on the matrix of the
factor loadings ¢<.

Table B.0.1 presents the mapping between structural and reduced form parameters
with Ny = N;+ N,,, where N; is the number of unobserved pricing factors and NV, the
number of observable factors. When the number of parameters in the structural form
of the model is equal to the number of reduced-form parameters then the model is
just-identified. Also, when the reduced form parameters are more than those in the
structural form, the case where the model imposes overidentifying restrictions, one
can still estimate structural parameters as functions of the unrestricted reduced-form
estimates. The problem arises when more than one value for the parameter vector
in the structural form is associated with the same reduced-form parameter vector,
then the model is unidentified. As a result, there is no way to use the observed data
to distinguish between the alternative possibilities of parameters (Hamilton and Wu
(2012)).

3.3.3 Estimation of the Gaussian term structure model

The main idea of the MCSE method is to use the Wald test to test the hypothesis
that w = ¢(0), where 0 is a known vector of parameters. As we mentioned earlier we
denote by 7 the vector consisting of all reduce-form parameters. Suppose L(7; Yy)
is the log-likelihood for the entire sample and # = arg mazL(m;Yy) is the vector of
full information maximum likelihood (FIML) estimates. Also, we assume that R. is
a consistent estimate of the information matrix, which satisfies the following equation

1 _[9?L(m;Y)
R=—_F {W} . (3.3.30)
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The MCSE is then given by:

/

mein T(7 —g(0)) R(7 — g(0)), (3.3.31)

where R is the information matrix of the full information maximum likelihood func-
tion £(0;Y) . The minimal value that is found by this estimator would have an
asymptotic x%(g) distribution under the null hypothesis where q is the dimension of
7. According to Rothenberg (1973) from (3.3.31) we can choose an estimate 6 which
minimizes the chi-square statistic for the estimation.

In the case of a just identified model the minimum value attainable for (3.3.31) is
zero. Then equation (3.3.31) equivalently become

min (7 — g(6))

i (% — ¢(8)). (3.3.32)

When the objective function (3.3.34) is equal to zero the estimators that result
from the maximum likelihood estimation and the MCSE method are asymptotically
equivalent. The information matrix for all reduced-form parameters takes the form

R, 0 0
R=| 0 R 0 (3.3.33)
0 0 Ry
where
- QTS 2y 0
R, = ! =1t A A , 3.3.34
0 LD (@ @ D, (3:3.34

for Dy the N?x N(N+1)/2 duplication matrix satisfying Dyvech(2) = vec(2). The
structural measurement errors 3, only exist in the block €25 and these parameters
are just-identified by the diagonal elements of Q;. Then the minimum chi square
estimates of X, are obtained from the square roots of diagonal elements of €23. The
factor loadings submatrix for the latent factors takes the following form

¢33 0 0
o = | ¢z du a5 |, (3.3.35)
P53 P50 D5

where ¢4 = ¢55 and @45 < ¢Ps4.In order to optimize the objective function,we need to
estimate 66 unknown parameters, 5 in 81,1 in dy, 25in ¢, 221in ¢, 6in X, 5 in p and
2 in Q. Since we estimate the model parameters we can estimate the coefficients
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Qy, by from the recursive equations (3.3.12), (3.3.13). Based on these estimations
from equation (3.3.11) and the yields that are measured with no error we can solve
numerically for the unknown latent factors. The results of the parameter estimation
under the risk-neutral and historical probability measure are presented in table 4.3.1.

3.4 Sequential monitoring of the term structure model

3.4.1 General framework

For the monitoring of the Gaussian ATSM we use the control chart procedures de-
scribed in this chapter. Before we proceed in the sequential monitoring analysis it is
essential first to introduce some basic concepts of our analysis.

Following the approach of Schmid and Tzotchev (2004) instead of monitoring di-
rectly the vector of parameters & = (u, @, u?, »?,X) we monitor the bond yield
process Y since a change in the entire vector of parameters or in a part of it could
affect the yield curve using the set of equations described in section 4.3. When the
process is in-control we assume that there is no change in the vector of the model
parameters €. The theoretical bond yields are estimated through equation (3.3.11)
and are affine non-linear functions of the state variables X;. As a result, under the
in-control condition at every time ¢ the expected value of the observed zero coupon
bond yields Y* will be equal to the expected value of the target bond yields Y}
estimated from equation (3.3.11). This means that when the process is in-control we

want
Eo(Y{") = Eo(Y"),

or else
Eo(Y?) = A, +B, X,
a, b,
=—— — —Xoy,
n n

for ever maturity n. The notion 0 means that the underlying quantity refers to the
in-control condition. The selection of the period where the process is in-control could
be quite challenging in finance.

At every time point ¢ a control statistic is appropriately constructed. In order to
decide if the process is out-of-control at time t, it is necessary the determination of
a control limit A that defines the rejection area. If the value of the control statistic
lies within the acceptance area then the monitoring process is considered to be in
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the in-control state. The critical value A is determined in such a way that the ARL
to be equal to a predetermined value &, via a simulation study. When the process is
in the in-control state, the average run length (ARLg) denotes the average number
of observations or samples until a signal is obtained. In our analysis we assume that
the value of the ARLj is equal to 11 months. In order to find the control limit a
starting value of the control limit is chosen. Under the assumption that the process
is in-control and the target values are identified, the data for the state evolution
process and the bond yields are generated for their distributions are presented at
section 4.3. These simulated values are applied to each control chart procedure and
the stopping times, when the control statistic exceeds the control limit, of the control
chart are recorded. This procedure is repeated for 10 iterations and the estimated
run length in the in-control state is the average of simulated stopping times. If now
the estimated ARLg is greater or lower from its prespecified value by an error equal
to 1% a new value for the control limit is chosen. Using this new control limit a
new iteration procedure is performed so as to estimate the stopping times and the
ARLg. This procedure is repeated for 10* iterations. The control limits that fulfill
the error condition are chosen as the appropriate control limits. The detection ability
of a control chart can be evaluated and compared with other control charts via the
ARL;. The ARL; indicates the average number of observations or samples that is
required until the control chart provides a signal when there is a change in the target
process. It is obvious that we desire the value of ARL; to be as small as it can be
and the opposite for the ARLy.

3.4.2 Control chart procedures

For the sequential monitoring we use six categories of control chart procedures: Mod-
ified EWMA control chart based on the Mahalanobis distance (ModMah), modified
chart based on the Multivariate EWMA Statistic (ModMEWMA), EWMA Resid-
ual chart based on the Mahalanobis Distance (ResidMah), Residual chart Based
on the multivariate EWMA Statistic (ResidMEWMA), Multivariate Cumulative
Sum control chart (MCUSUM) and Multivariate Modified EWMA control chart
(MMOEWMA).

3.4.2.1 EWMA control charts

The EWMA control charts are very effective for the detection of small shifts in
the monitoring process (Montgomery (2013)). Lowry et al. (1992) generalized the
univariate EWMA control chart procedure for the multivariate case.
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Suppose that Yi* = [V;"*,...,Y;""*] is the vector of observed zero-coupon bond
yields at time ¢ with maturity n = 1,2,..., N. The univariate EWMA control chart
is based on the (univariate) EWMA recursion applied on the Mahalanobis distance.
The Mahalanobis distance is referred to be the distance of observed yields from to
its in-control mean iy = Eo(Y"") and is measured by

Tin = (Y2 — ) Covo (Y)Y — ), t > 1. (3.4.1)
The univariate EWMA statistic based on the Mahalanobis distance is given by

Zin =1 =NZi—1n+ i, (3.4.2)

for t > 1. The starting value Z,, is set equal to Ey(7},) = N. A signal is given if
Zin > h. The control limit h > 0 that determines the rejection area, is estimated
through simulation for a predetermined value of the in-control average run length
(ARLy). For the calculation of the control statistic we need to estimate the moments
for the observed yields when the process is in-control (for details see Appendix A.1).
The in-control mean p; is defined as

Eo(Y§") = An + B (u? + ¢9Ey(Xes1)). (3.4.3)
The in-control covariance matrix Covo(Yy™) is
Covo(Y!) = B, (¢®Vare(Xy )¢9 + X)B, + U, (3.4.4)

where ¥ is the covariance matrix in equation (3.3.1) and U = E(usuy).

MEWMA control charts are constructed by applying a multivariate EWMA recursion
directly to the components of the monitoring characteristic Y{"*. The advantage of
this approach is that each characteristic element obtains its own smoothing factor and
as a result allows for more flexibility compared to the univariate EWMA (Golosnoy
and Schmid (2007)). The multivariate EWMA statistic has the following form

Zin=1-R)Zi1, +RYP > 1, (3.4.5)
or else
t—1
Zin=(1-R)Zo, +R) (I-R)"Y}", (3.4.6)
v=0

where I is the k X k identity matrix and R = diag(ry,rs, ..., %) is k X k diagonal
matrix with diagonal elements 0 < r; < 1,7 € {1,2,...,k}, k is the total number of
bond yields at each time ¢. The starting value Z, is Eo(T:,) = A, + BnEo(Xy),
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with Ej is denoted the mean value when the monitoring process is in-control. The
covariance matrix of the multivariate EWMA statistic Z,, in the in-control state is
given by

t—1
Covo(Zin) = R( > (I-R)'Coup(YP™)I - R)J) R. (3.4.7)
i,j=0
Assuming that Covy(X¢,u;) = 0, E(ug) = 0, E(uguy) = U, E(ugug) = 0,1 # s,
then

/ I
COUo(Ztm) = R(BH(NQNO,X + ¢QO'(2)7X)BH + U) mR (348)

A signal is given if

(Zin — Eo(Zy.2)) Covo(Zy) ™ (Zyy — Eo(Zy)) > R

where the expected value of the control statistic when the process is in-control is
Eo(Z) =I-R)*'Zo+A+B,(I-(I-R)uox. (3.4.9)

where po x = Eyp(X¢). The EWMA is used extensively in time series modeling and
since it can be viewed as a weighted average of all past and current observations,
it is very insensitive to the normality assumption of the monitoring process. Small
values of the smoothing parameter give more weight to recent values. For the proof
of the previous equations see appendix A.1.1 and appendix A.1.2.

3.4.2.2 Residual based control charts

For the residual control charts the procedures based on the Mahalanobis distance
and the multivariate EWMA statistic for the series of the observed zero-coupon
bond yields are now replaced by the residuals. We assume that the vector of resid-
uals is defined as the deviations of the observed yields at time ¢ from their con-
ditional expectations when the process is in-control, Fo(Y{™ /Y™ ). We suppose
that the vector of the residuals is dy = V"™ — Fo(Y{™ /Y ). Also we assume that
Covg(Xy,ug) = 0, E(ug) =0, E(ugug) = U and E(ugug) = 0, for all £ # s, then
Ey(dy) = 0 and Ey(dy,ds) = 0, for all ¢ # s. The control statistic for the Residual
EWMA chart based on the Mahalanobis distance is

Zy= (1= N2y + Ny, t > 1, (3.4.10)
with the Mahalanobis distance
Ty = d; 274,
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Also, the in-control covariance matrix of the vector of the residuals is
Covp(dg) = BL(¢p%Vy(X_1)9? + Z¢)By + U, (3.4.11)
For the residual chart based on MEWMA statistic the control statistic is
Z;=(I—-—R)Z, 1+ Rd;, t > 1, (3.4.12)

with Z; = 0. The covariance matrix of the control statistic is given by

/ I
Covo(Zt) = R(anan + U) WR (3413)

For the proof of the previous equations see appendix A.1.3.

3.4.2.3 Multivariate CUSUM control charts

The CUSUM control chart is used to monitor a process based on samples taken
from the process at given time periods. The CUSUM chart shows the accumulated
information of current and previous samples. CUSUM control charts are a good alter-
native when small shifts are important (Montgomery (2013)) and can be constructed
for individual observations or for groups of observations. Now we consider the case
of individual observations and monitoring the process mean. The MCUSUM is an
extension of the univariate CUSUM control chart. It is a procedure that uses the
cumulative sum of deviations of each random vector previously observed, compared
to the nominal value to monitor the vector of means of a multivariate process (Cunha
et al. (2013)). In our analysis we follow the MCUSUM control chart proposed by
Crosier (1988). The MCUSUM procedure can be derived as

Ct = \/(St + Yil’* - /L())/E_I(St + Ytr:l’* — ,LL()), (3414)

where X is the variance-covariance matrix of the data, pg is the in-control mean of
the bond yields and S; are the cumulative sums defined as

g _ )0 if Cy <k,
(S YR =) (1= &) i >k,

Ct
where the reference value x > 0 is related to the magnitude of change and Sg = 0.
An out-of-control signal is given if Z; > h, with h being the control limit estimated
for a pre-defined ARL; and Z;, = (S;X7'S,).
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3.4.2.4 Multivariate Modified EWMA (MMOEWMA) control charts

Patel and Divecha (2013) introduced the MMOEWMA control chart for detecting
both large and small shifts in a first order vector autoregressive VAR(1) process.
Their approach is an extension of their univariate Modified EWMA chart (Patel
and Divecha (2011)). The MMOEWMA control chart statistic is a correction of the
MEWMA chart statistic by adding the sum of the last change in the monitoring
process. An advantage of the Modified MEWMA chart is that corrects MEWMA
statistic from the inertia problem. The MMOEWMA control statistic takes into
consideration each current change in the underlying process by giving full weight in
addition to the past observations. In our work we adapt and extend their work in a
financial application estimating appropriately the expected value and the covariance
of the control statistic.

The control statistic for the MMOEWMA control chart based on the multivariate
EWMA recursion is

Zt - (I - R)Zt_l + RYt_]_ + (Yt - Yt_]_), 4 Z 1, (3415)

It can be proved by repeated substitution in equation (3.4.15) that

Zy = (I—R)'Zo + Ri I-R)Y,+ i(] —RY(Ye_;— Yey1). (34.16)

§=0 5=0
The expected value of the statistic is
Eo(Z4) = (1 - R)Zo + A, + By (I — (I - R)'4o,x.,

where px = FEy(X¢). Under the assumption that Covy(Xy,ug) = 0, E(uy) =
0, E(utut)' = U, we estimate the covariance matrix of the control statistic Z;
is

1

I
= —— —y.
—a-me R RO RYY

Covy(Zy) = R((B,ZyB, + U)
The MMOEWMA control chart gives an out-of-control signal when
(Zt — Eo(Zt))/(COU()(Zt))_l(Zt — E()(Zt)) > h,

where h > 0 is estimated for a determined value of ARL through a simulation study.
For the proof of the previous equations see appendix A.1.4.
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3.5 Simulation Study

In this section we define the various shifts in the yield curve and eventually the
out-of-control situations. Also, we analyse the detection power of the different types
of control charts in order to detect changes in the parameters of the term structure
model and the yield curve through simulations.

3.5.1 Basic framework

The performance and the detection ability of the proposed control charts is ana-
lyzed through a simulation study for different shocks in the parameters of the term
structure model. The out-of-control simulation study that determines the ability of
a control chart to detect the changes in the monitoring process is divided in three
cases using an estimation window of n = 40. First, we examine changes in the factor
loadings of the state evolution process that as we know from (3.3.11) affect the yield
curve equation. Second, we simulate a shift in the set of parameters of our model that
has as a result a parallel shift in the yield curve. Finally, we simulate non-parallel
shifts in the yield curve and for all cases we consider both positive and negative
shocks. The smoothing parameter X in the univariate EMWA control charts based
on the Mahalanobis distance is A = {0.1,0.2,0.25,0.35, 0.45,0.5,0.75,0.9}. The mul-
tivariate EWMA control charts are constructed with all smoothing parameters in the
main diagonal equal r =1y =ry = --- = ry = Al. The reference parameter for the
MCUSUM control charts takes the values ¢ = {0.1,0.3,0.5,0.7,1,1.5,2,2.5}. For
each control chart scheme for positive or negative shocks we have 5000 iterations.

For the simulation of the in-control process in each control chart procedure, specifi-
cally the mean and the covariance matrix of the state evolution process and the bond
yields, we use the following procedure:

Step 1 Generate data from the state evolution process X ~ N(u, BX') with known
p and 3.

Step 2 Generate residual data for the bond yield process U ~ N(0,1).

Step & Estimate the covariance matrix of the filtered states X¢¢—; using equation
3.3.1.

Step 4 Estimate the covariance matrix of zero-coupon bond yields at time ¢ condi-
tional on the information until t — 1, Yy¢¢_1, using equation (3.3.11).
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3.5.2 Modeling the out-of-control cases
3.5.2.1 Change in the factor loadings of the state evolution process

We assume for the out-of-control situation that there is a change in the matrix of the
factor loadings @@ of the state evolution process X¢. A change in the factor loadings
affects the yields of all maturities and causes a shift in the yield curve. Suppose that
the new value after the change is

62" = (I + D)"

where D is the size of the shock which can be positive or negative. The change D in
the parameter ¢ is a diagonal matrix which takes the values d = {£0.05, 0.1, 0.15,
+0.2,40.25,40.3, £0.35, £0.4}, in total 16 proportional changes. Here we assume
that the changes are equal. We examine and analyze the results for positive and neg-
ative changes separately for convenience. Also we assume that the change it happens
at time ¢ = 1. The in-control mean and covariance matrix of the control statistic in
each control chart are estimated using the results from section 4.4. For every control
scheme we have in total 64 cases.

3.5.2.2 Parallel shifts in the Yield curve

The second out-of-control situation is when we assume changes in the entire parame-
ter set & = {u, @, uQ, 2, X} of the target process. The new values after the changes
are

& ={u'. 9" no, %, 2}

or

¢ ={I+D)u,(I+D)¢,(I+D)u% (I+D)$? (I+D)x}

where d = {£0.05,+0.1, £0.15, +0.2, £0.25, +0.3, £0.35, 0.4} the size of the shocks.
The modeling of the changes we described has as a result the observed yield curve to
shift in a parallel way. Litterman and Scheinkman (1991) show that the parallel shift
explains on average around 89 percent of the variation of the U.S. yield curve. We
follow the assumption of Schmid and Tzotchev (2004) that the parallel shift holds
even for the shorter maturities. A parallel shift in the yield curve is a shift in in
the yields on all maturities of the same size. The shocks in the parameters of the
state process Xy are incorporated in the yield curve equation through (3.3.11). The
new observed yields are estimated by adding to the theoretical yields the error term
u; ~ N(0,I). For every control scheme that we examine parallel shifts we have in
total 64 cases.
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3.5.2.3 Non-parallel shifts in the Yield Curve

In reality, bond yields does not always have parallel shifts, an argument that Litter-
man and Scheinkman (1991) mention in their work. A non-parallel shift in the yield
curve indicates that the yields do not change by the same number of basis points
across the curve for all maturities (Fabozzi (2007)).We have two types of non-parallel
yield curve shifts: First a twist in the slope of the yield curve and second a change in
the curvature of the yield curve. A twist in the yield curve can be a either a flattening
or a steepening of the yield curve. The flattening indicates that the spread between
the short-term and the long-term yield has decreased. This can happen when either
the short-term yields are increasing more than longer-term yields or long-term rates
declining more than the short-term rates. A reason for this behavior may be that the
market expects the FED to increase the Fed Funds rate (FFR) or due to lower longer
term inflation expectations. A steepening of the yield curve occurs when the yield
spread between the long-term and the short-term Treasury has increased. This hap-
pens when long-term yields increase more than short-term yields, or long-term yields
decline by less than short-term yields. The steepening of the yield curve usually is a
result of the market’s increase expectation for inflation or if the market demands a
higher risk premium.

The second type of non-parallel shifts is a change in the curvature of the yield
curve known as butterfly shifts. The changes on yields of the short-term and long-
term maturities differ from the changes on the yields in the intermediate maturities.
Butterfly shifts are divided into positive and negative shifts. A positive butterfly
means that the yield curve has less curvature. Specifically, when bond yields increase,
the yields with the short-term and long-term maturities increase more than the
yields with intermediate maturities. If now bond yields decrease, the yields with
the short- and long-term maturities decrease less than the intermediate maturities.
In the opposite, a negative butterfly means the yield curve has more curvature. If
now, bond yields in the short- and long-term maturities increase, then yields in
the intermediate maturities will increase more. Finally, when yields with short- and
long-term maturity decrease, then yields in the intermediate maturities decrease less.

Fabozzi (2007) mentioned that these types of shifts in the yield curve have not been
found to be independent and that yields in the short-end tend to be more volatile
than yields in the long-end of the yield curve. In our simulation approach even
though there is a large number of cases, we present some examples for steepening
and change in the curvature of the yield curve, having positive and negative shocks.
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Steepening of the Yield Curve

For the steeping of the yield curve we assume in the case of the increase of the
yield curve that the increase in the 10-year Treasury bond yield is greater than
the increase in the 3-month bond yield. Also, we assume that the increase d; of
the bond yield with maturity ¢ = 1,...,n months has the following restriction:
ds < doy < dzg < dyg < dgy < di29. The second case we consider is when the decrease
in the longer-end maturity bond, the 10-year bond, is greater than the decrease in
the shorter-end maturity bond yield, the 3-month bond. The restriction in this sit-
uation is: —d3z < —doy < —dzg < —dys < —dgy < —dy99. For simplicity we assume
that the change happens in the slope of the yield curve equation and each yield with
maturity ¢ has from his previous ¢ — 1 maturity a shift of 3 percent. The opposite
happens for negative shocks. As a result the change in each vector of zero-coupon
bond yields at time ¢ has the following form for positive shocks

[ 1+ds 0 0 0 0 0
0 1+ do 0 0 0 0
B 0 0 1 + dsg 0 0 0
D=1 0 0 l+4ds 0 0o |
0 0 0 0 1 + dgo 0
|0 0 0 0 0 1+ dizo |
and for negative shocks
1—ds 0 0 0 0 0 i
0 1 —dyy 0 0 0 0
B 0 0 1 —dsg 0 0 0
I-b= 0 0 0 l—dg O 0
0 0 0 0 1 — dgo 0
0 0 0 0 0 1 —dizo |

The new theoretical bond yields Y7, after the positive shift are
Y7, = A, + (I+D)B,Xq,

and after the negative shift
Y5, = A, + (I-D)B X;.

The starting shocks for the 3-month Treasury bond yield are seven:{£5%,
+10%, £15%, £20%, +25%, £30% and =+ 35%}. The rest of the bond yield shocks
are estimated as previously described. For this simulation example we have for each
control chart procedure 56 out-of-control cases.
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Change in Curvature of the Yield Curve

For the case when we have changes in the curvature of the yield curve we examine
two situations. First, in negative butterfly shifts when the bond yields decrease,
the 3-month and the 10-year bond decrease more than the 2-,3-,4- 5-year bond. For
simplicity we assume that changes in the 10-year bond are less than these on 3-month
bond, —dy99 < —ds. The shocks for the 3-month yield are —d3 = {—0.05 — 0.1 —
0.15— 0.2 — 0.25 — 0.3} and for the 10-year yield are —dj50 = {—0.03 — 0.06 — 0.1 —
0.12 — 0.16 — 0.22}. Finally the shocks in the intermediate yields are modeled as
follows

1 — doy 0 0 0
B 0 1 — dsg 0 0
I-Dy = 0 0 1 — dys 0 '

0 0 0 1 — dgo

where d; = (1 — dy)d;_1, i = 3,4,5. The vector of the starting shocks is d; =
{0.01,0.03,0.06,0.08,0.1,0.16} and each subsequent shock for the intermediate ma-
ture that occurs from a yield with maturity ¢ to ¢+ 1 is 3 percent. The total number
of the out-of-control cases are 48 in each control chart scheme.

Second, for the positive butterfly shifts the 3-month and 10-year bond yields decrease
less than yields in the intermediate maturities. The shocks for the 3-month yield are
—ds = {—0.03 — 0.06 — 0.09 — 0.12 — 0.15 — 0.2} and for the 10-year yield are
—dyz0 = {—0.05 - 0.1 — 0.12 — 0.15 — 0.2 — 0.25}.

1 — doy 0 0 0
B 0 1 — dsg 0 0
=Dy = 0 0 1 — dys 0 '

0 0 0 1 — dgo

where d; = (1 — dy)d;—1, i = 3,4,5, the vector of the starting shocks are d; =
{=0.07 - 0.12 - 0.14 — 0.18 — 0.25 — 0.30}.

3.5.3 Simulation study results

In this section we present the simulation results for the changes in the yield curve
that we described in the previous section. We demonstrate the best ARLs; for each
case and the appropriate smoothing parameters. In addition, we briefly discuss for



3.5. Simulation Study 57

the proposed control charts how the detection of the out-of-control situation evolves

for the various values of the smoothing parameter or reference values (in the case of
MCUSUM procedure).

3.5.3.1 Change in the factor loading of the state factor process

The results from the simulation study when we have positive shocks in the fac-
tor loading of the state process are summarized in table 3.5.1. Among the control
chart procedures the best performing charts are the chart based on the multivari-
ate MEWMA (ModMEWMA), the residual chart based on the multivariate EWMA
statistic (ResMEWMA) and the MMOEWMA chart. Large shifts in the factor load-
ings p? are detected faster in the ModMEWMA and MMOEWMA control charts.
In contrast the ResMEWMA control chart is not performing very well. However, it
detects faster the small shifts specially when shocks are 5%. All these three charts
detect with relative ease the intermediate shifts. Appendix B.1.1 presents the ana-
lytical results for the simulation study in case of positive shocks. The results support
small values for the smoothing parameter, specifically less than 0.35.

Analyzing now the best performing charts, in the ModMEWA chart as we see in
table B.1.2 for a given smoothing parameter value as the shock increases the ARL;
decreases. The same behavior has the MMOEWMA control chart. The opposite
happens for the ResMEWMA chart (see table B.1.4) which makes it unsuitable for
detecting large shifts.

Table 3.5.2 presents the best ARLs; when we have negative shocks in the factor
loading of the state process. Again the best performing control charts are the Mod-
MEWMA, the ResMEWMA and the MMOEWMA. Small shifts are detected faster
from the ModMEWMA chart, medium shocks from the ResMEWMA control chart
and all three charts detect large shifts. The best smoothing parameters values for
the ModMEWMA chart are A = {0.1,0.45}, for the ResMEWMA and medium and
large shifts, the appropriate values of A are less than 0.5. In general, negative shocks
in the matrix of factor loadings are detected faster than positive shocks.

In ModMEWMA and MMOEWMA control chart procedures for a certain level of
the smoothing parameter A\, the ARL; decreases as the size of the negative shock
increases. However, in the ResMEMWA control chart this happens only for A < 0.5
and for values greater than 0.5 the ARL; remains relatively constant despite the size
of the negative shock (see table B.1.10).
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d | ModMah ModMEWMA  ResMah  ResMEWMA MCUSUM MMOEWMA
0.05 | 9.97 (0.5) 512 (0.35)  9.38 (0.45)  1.01 (0.1) 8(2) 6.66 (0.1)
0.1 | 9.99(0.5)  3.52 (0.1) 9.7(0.45)  1.04(0.1)  822(2) 3.36 (0.1)
0.15 | 10.17 (0.5)  2.07 (0.1)  9.68 (0.45)  1.08 (0.1)  8.17 (2) 2.02(0.1)
0.2 |10.32 (0.5)  1.45(0.1)  9.94(0.25)  1.26 (0.1)  8.25 (2) 1.41(0.1)
0.25|10.33 (0.5)  1.17 (0.1)  10.17 (0.75)  1.86 (0.1)  8.48 (2) 1.17(0.1)
0.3 | 10.65 (0.5)  1.06 (0.1)  10.32 (0.75)  3.18 (0.1) 8.23(2) 1.05 (0.1)
0.35 | 10.86 (0.3)  1.02 (0.1)  10.54 (0.75)  6.06 (0.1)  8.79 (2) 1.01(0.1)
0.4 1096 (0.5)  1.00 (0.1)  10.73 (0.25) 10.25 (0.9)  8.78 (2) 1 (%)

Table 3.5.1: Best out-of-control ARLs values for each positive shock in factor loadings,
for n=40 and in-control ARL=11. The corresponding smoothing parameter values are
given in parentheses.

d [ ModMah ModMEWMA  ResMah ResMEWMA MCUSUM MMOEWMA
0.05 | 9.43(0.5)  5.69 (0.45) 855 (0.25)  9.87 (0.5) 7.99(2) 7 (0.35)
0.1 [929(0.5) 459 (0.45) 853 (0.2)  5.66 (0.1) 857 (0.7)  4.06 (0.1)
-0.15 | 8.92 (0.5) 3 7(045)  7.84(02)  1.38 (0.1) 7.85 (2) 2.35(0.1)
0.2 | 8.73 (0.5) 8 (0.45)  6.290.25)  1.01 (0.1) 7.74 (2) 1.62(0.1)
-0.25 | 8.77 (0.5) 2 17 (0.1)  5.98 (0.25) 1(0.1) 7.46 (2) 1.25(0.1)
0.3 | 8.6 (0.5) L7(0.1)  6.72(0.25) 1 (*) 7.57(2) 1.1 (0.1)
-0.35 | 8.38 (0.3) 4(0.1)  5.56 (0.25) 1 (%) 7.35 (2) 1.03(0.1)
0.4 [824(05)  1.26(0.1)  5.98 (0.25) 1 (%) 7.6 (2) 1(0.1)

Table 3.5.2: Best out-of-control ARLs values for each negative shock in factor load-
ings, for n=40 and in-control ARL=11. The corresponding smoothing parameter values
are given in parentheses.

3.5.3.2 Parallel shifts in the Yields curve

The results from the simulation study when we impose parallel shifts in the yield
curve for positive and negative shifts are summarized in tables 3.5.3 and 3.5.4 respec-
tively. Regarding to positive shifts all control charts detect large shifts with relative
ease. For small shifts the best performing chart is the MCUSUM for value of the
reference parameter equal to 0.1. Also, with the exception of the ModMehal chart,
medium shifts are detected from all chart procedures. All control chart procedures
display the same behavior in terms of ARL;. As the positive shock in the yield
curve increases the ARL; decreases for each level of the smoothing parameter or the
reference value in the case of the MCUSUM chart.
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For negative parallel shifts in the yield curve the best performing charts are the Mod-
MEWMA, ResMah, ResMEWMA and the MMOEWMA. The ModMahal performs
well only for negative shifts greater than 20%. The MMOEWMA control scheme
is appropriate for medium and large negative shifts with proposed smoothing pa-
rameter values less than 0.35. Finally, for negative shocks less than 20% in the
MMOEWMA control charts we propose A = {0.1,0.2,0.25}. All control charts have
a problem in detecting very small negative shifts with the ResMah performing better
for A = 0.1. Comparing the result for positive and negative parallel shifts for the
detection of positive parallel shifts we have an additional control chart scheme that
can be useful, the MCUSUM control chart, and small positive shifts are detected
faster than the negative ones. Also, for both types of shifts the charts are on average
on the same level to detect medium and large shifts. In comparison with changes in
the factor loadings of the state process parallel shifts are detected faster.

The results for the ResMah control chart procedure except for one subcase are all
under or equal to six months. Also, in all control charts for a given smoothing param-
eter value as the shock increases the ARL; decreases. For the Mahal, ModMEWMA
and ResMah positive shifts in the factor loading of the state process are detected
faster than those due to parallel shifts in the yield curve. Positive parallel shifts in
the yield curve in RessMEWMA, MCUSUM and MMOEWMA are generally detected
faster than positive shifts in the state evolution process.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.05 | 16.48 (0.9)  4.38 (0.45) 3.97 8.04(0.9) 281 (0.1) 3.68 (0.35)

0.1 | 14.09 (0.9) 3.5 (0.45) 2.38 575 (0.1)  1.02(0.1)  4.68 (0.2)
0.15 | 10.89 (0.9)  2.69 (0.45) 1.44 1.35 (0.1) 1 (%) 2.82 (0.2)
0.2 | 7.39 (0.5)  1.98 (0.1) 1.07 1.01 (0.1) 1(%) 1.9 (0.2)
0.25| 2.84 (0.1)  1.41(0.1) 1 (%) 1 (*) 1 (*) 1.4(%)
0.3 | 11.23 (0.1)  1.19 (0.1) (*) 1 (%) 1 (*) 117(%)
0.35 | 1.01(0.1)  1.07 (0.1) 1 (%) 1(¥) 1(%) 1.06(*)
04 | 1(0.1) 1.02(0.1) 1 (%) 1(*) 1 (*) 1(%)

Table 3.5.3: Best out-of-control ARLs values for each positive shock in the case of
parallel shift in the yield curve , for n=40 and in-control ARL=11. The corresponding
smoothing parameter values are given in parentheses.

In every control chart procedure for negative parallel shifts the larger values of ARL;s
are concentrated in small shifts. Except for the MCUSUM control chart where its
detection ability seems not to be affected from the size of the shock and fails to
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detect any change from the in-control condition quickly. Negative parallel shifts are
detected slower than the positive ones in almost all the control charts.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
-0.05 | 16.59 (0.9) 444 (0.45) 3.9 (0.1) 811 (0.9) 8.07(2) 7.07 (0.35)
0.1 | 14.34 (0.9)  3.55 (0.45)  2.53 (0.1) 5.5 (0.1) 8.09 (2) 4.29 (0.1)
0.15 | 10.8 (0.9)  2.66 (0.45)  1.46 (0.1)  1.4%0.1) 7.94 (2) 2.51(0.1)
0.2 | 7.13(0.2) 194 (0.1)  1.07 (0.1)  1.01(0.1) 8.16 (2) 1.7 (0.1)
0.25 | 2.68 (0.1)  1.44 (0.1) 1(0.1) 1(0.1) 8.14 (2) 1.31 (0.1)
0.3 | 1.24(0.1) 1.19 (0.1) 1(0.1) 1 (*) 8.01 (2) 1.12 (0.1)
035 | 1(0.1) 1.07 (0.1) 1 (%) 1(%) 8.05(2) 1.04 (0.1)
04 | 1(0.1) 1.05(0.1) 1 (%) 1 (*) 7.95 (2) 1.02(0.1)

Table 3.5.4: Best out-of-control ARLs values for each negative shock in the case of
parallel shift in the yield curve , for n—40 and in-control ARL—11. The corresponding
smoothing parameter values are given in parentheses.

3.5.3.3 Non-parallel shifts in the Yield curve

The results for a twist in the yield curve considering positive and negative shifts
are introduced in tables 3.5.5 and 3.5.6 respectively. For both cases the best overall
performance have the ResMah and the MCUSUM control charts. Also for medium
and large positive shocks the ModMah, the ModMEWMA and the ResMEWMA
perform very well. The appropriate values for the smoothing parameter are for the
ModMah 0.1, for the ModMEWMA chart less than 0.5, and for the rest of the control
schemes we have various choices as we can see from the results in Appendix B.3.1.

The ModMah chart for shocks of the size 5% and 10% detects the changes, with very
few exceptions, very slowly. The ResMah chart detects the out-of-control situation
for every combination of shock and smoothing parameter relatively fast since no
ARL, exceeds the period of five months. For the negative shifts again the best
performance have the ResMah and the MCUSUM control charts with the first to
detect faster the small shifts. However, when we have medium and large shifts the
ModMEWMA and the ResMEWMA perform very well and the ModMah detects
fast only the large negative shifts.
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d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.05 | 11.17 (0.05)  5.23 (0.45)  1.57 (0.1) 11.36 (0.9)  2.15 (0.1)  11.08(0.75)
0.1 | 2.95(0.1)  3.82(0.45)  1.1(0.1) 4.5 (0.1) 1 (%) 11.3(0.5)
0.15| 1 (0.1) 2.71 (0.45) 1(0.1) 1.06 (0.1) 1 (%) 11.14 (0.35)
02 | 1(0.1) 1.72 (0.1) 1(0.1) 1(0.1) 1 (%) 11.06 (0.75)
025| 1(0.1) 1.31 (0.1) 1 (*) 1 (%) 1 (%) 11.13 (0.75)
0.3 1 (%) 1.13 (.1) 1 (%) 1 (%) 1 (%) 11.2 (0.75)
0.35 1 (*) 1.04 (0.1) 1 (*) 1 (%) 1 (¥) 11.4 (0.35)

Table 3.5.5: Best out-of-control ARLS values for each positive shock in the case of non-
parallel shift in the yield curve , for n=40 and in-control ARL=11. The corresponding
smoothing parameter values are given in parentheses.

The ModMEWMA control chart detects faster the medium and large negative shifts
than the positive ones. In both types of shifts the MMOEWMA chart fails to detect
fast the changes in the yield curve even the large ones. Again, as in the case of
positive shocks, the ResMah gives a signal quickly for every combination of shock
and \ with values less than five months. The MMOEWMA chart on the opposite,
despite the choice of the shock and the the smoothing parameter fails to detect fast
the non-parallel shifts with the values of the ARL; to remain above the level of ten
months. In general, negative shocks are detected in most of the cases faster than the
positive ones.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.05 | 21.87 (0.9)  5.59 (0.45)  1.58 (0.1) 11.22 (0.9) 225 (0.1)  11.35 (0.9)

0.1 | 431(0.2)  4.26 (0.45)  1.11(0.1)  4.41 (0.1) 1 (%) 11.27 (0.75)
0.15 | 14.18 (0.9) 238 (0.1) 1(0.1) 1.05 (0.1) 1 (*) 11.21 (0.75)
0.2 | 975 (0.5) 154 (0.1) 1 (%) 1(0.1) 1(*) 11.02 (0.75)
0.25 | 418 (0.2)  1.23(0.1) 1 (%) 1 (*) 1 (*) 11.28 (0.75)
0.3 | 1.74(0.2) 107 (0.1) 1 (%) 1 (*) 1(*) 11.12 (0.75)
2035 | 1.07(0.2)  1.02 (0.1) 1(% 1(%) 1 (%) 10.99 (0.75)

Table 3.5.6: Best out-of-control ARLs values for each negative shock in the case of
parallel shift in the yield curve , for n=40 and in-control ARL=11. The corresponding
smoothing parameter values are given in parentheses.

Table 3.5.7 summarizes the best ARLs; when we have negative shocks in positive
butterfly shifts in the yield curve. Good performance in small negative shocks has
only the ResMah control charts in contrast with the other control schemes that
detect slowly the out-of-control situation. Large shifts are detected without delay
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from ModMEWMA, ResMEWMA and MCUSUM. The ModMah detects large shifts
with relative ease and the MMOEWMA control chart has the worst performance for
detection of large shifts. Better performance in medium shift have the ResMEWMA
and the MCUSUM control chart. The ModMah fails to detect quick the small and
medium shifts. Except for the ModMah and the MMOEWMA chart which generally
have their best results for large values of A (greater than 0.75), the other control
chart procedures favor small values.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
-0.05 | 21.73(0.9) 592 (0.45)  1.75(0.1)  12.16 (0.9)  6.75 (0.1)  11.11 (0.35)
0.1 | 18.83 (0.9)  5.33(0.45)  1.38 12.4 (0.75)  1.86 (0.1)  11.1 (0.75)

(0.1)
-0.15 | 16.59 (0.9) 4.2 (0.45)  1.17(0.1)  6.83 (0.1) 1(0.1)  11.27 (0.75)
0.2 | 13.32(0.9)  3.02(0.1) 1.05(0.1) 2 (0.1) 1(%) 11.19 (0.75)
025 | 7.72(0.2)  2.04 (0.1) 1(0.1) 1.1 (0.1) 1(% 11.42 (0.75)
0.3 | 3.11(0.2) 1.43 (0.1) 1(% 1(0.1) 1(%) 11.15 (0.75)

Table 3.5.7: Best out-of-control ARLs values for each negative shock in the case of
positive butterfly the yield curve, for n=40 and in-control ARL=11. The corresponding
smoothing parameter values are given in parentheses.

The best results in terms of ARLs; for positive shocks when we have positive butterfly
shifts in the yield curve are presented in table 3.5.8. The best performing control
charts are the ResMah and the MCUSUM control chart. They detect any shift small
or big very fast. The detection power of ResMEWMA is very good for intermediate
and big shifts where the ModMEWMA chart is a good alternative for big shifts only.
We mention that in the ModMEWMA chart for A > 0.5 the chart fails to detect
intermediate and small shifts.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.05 | 21.66 (0.9)  10.62 (0.1)  1.18 (0.1)  11.07 (.9)  1.23(0.1)  11.41 (0.75)
0.1 | 19.08 (0.9) 5.6 (0.1) 1(0.1) 3.74 (0.1) 1(%) 11.26 (0.75)
0.15 | 16.27 (0.9)  4.06 (0.1) 1(0.1) 1.64 (0.1) 1 (*) 11.2 (0.5)
0.2 | 13.46 (0.9)  2.64 (0.1) 1 (%) 1.02 (0.1) 1 (*) 11.4 (0.35)
025 | 7.52 (0.2)  1.56 (0.1) 1 (%) 1 (*) 1 (*) 11.4 (0.35)
0.3 | 3.05(0.2)  1.23(0.1) 1 (%) 1 (*) 1(*) 11.01 (0.5)

Table 3.5.8: Best out-of-control ARLs values for each positive shock in the case of
non-parallel shift in positive butterfly the yield curve, for n=40 and in-control ARL=11.
The corresponding smoothing parameter values are given in parentheses.
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Table 3.5.9 presents the best ARL,s for negative butterfly shifts when the yields
decrease or else for negative shocks. The chart with the best overall performance
detecting very fast small, medium and large shifts is the ResMah control charts with
suggested smoothing parameter equal to 0.1. Also, the MCUSUM chart performs
almost equally with the ResMah but expect with the detection of small shifts where
the latter performs better. The ModMEWMA and the ResMEWMA chart detect
relatively fast the large shifts.

d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.03 [ 14.61 (0.2) 6 (0.45) 165 (0.1) 1219(0.9)  6.62(0.1)  11.11(0.75)
0.06 | 13.25(0.2)  5.27 (0.45)  1.39(0.1)  11.08(0.9)  1.97 (0.1)  11.35 (0.9)
0.09 | 10.93 (0.2)  4.29 (0.45)  1.16(0.1) 6.9 (*) 1(0.1) 1119 (0.75)
-0.12 | 8.96(0.2) 3.07 (0.1)  1.06 (0.1)  2.21 (0.1) 1 (%) 11.42 (0.9)
0.15 | 6.56(0.2) 2.07 (0.1) 1(0.1) 1.11 (0.1) 1(%) 11.31 (0.75)
0.2 | 434(0.2)  1.43(0.1) 1 (%) 1(0.1) 1(*) 11.37(0.75)

Table 3.5.9: Best out-of-control ARLs values for each negative shock in the case
of negative butterfly shift in the yield curve, for n=40 and in-control ARL=11. The
corresponding smoothing parameter values are given in parentheses.

Finally, table 3.5.10 presents the best results for negative butterfly shifts when we
have positive shifts in the yields. The best overall performance in terms of ARL;s
has the MCUSM control chart except for small shifts where the ResMah detect the
shifts faster. Additionally, ModMEWMA, ResMEWMA detect quickly large shifts
for values of the smoothing parameter A = 1. In comparison with table 3.5.9 negative
shocks are detected faster than positive ones for almost all control chart procedures.
The ModMah, the ResMah and the MCUSUM control chart fail in many occasion to
detect the changes in the yield curve. The first two charts fail to detect small shifts
and in the third chart this problems extends to intermediate shifts.

In conclusion, we have simulated various parallel and non-parallel shifts in the yield
curve and examined the detection power of various control charts for a variety of
smoothing parameters. There is no single chart that performs well in all the cases
but many detects the changes in a large number of occasions. As a result we pro-
pose the use of more than one control charts in order to detect the shifts. Another
important aspect is the size of shock and as we see from the results the performance
of many charts fluctuate and depends if the shock is small, intermediate or large.
The shocks due to a change in the factor loading of the state evolution process of
the term structure model are detected faster than parallel shifts in the yield curve.
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d | ModMah ModMEWMA ResMah ResMEWMA MCUSUM MMOEWMA
0.03]2273(0.9) 581 (0.45) 4.8 (0.9) 4818(0.9) 6.93 (0.1)  11.42(0.9)
0.06 | 20.88 (0.9)  4.94(0.45)  4.52 (0.9)  32.73(0.2)  1.97 (0.1)  11.25(0.9)
0.09 | 17.93 (0.9)  4.07 (0.45)  4.05 (0.9)  12.89(0.1)  1.01 (0.1)  11.39(0.9)
0.12 | 14.92 (0.9)  3.18 (0.45)  3.65 (0.9)  5.69(0.1) 1(0.1) 11.25(0.35)
0.15 | 11.55 (0.9)  2.18 (0.1)  2.99 (0.9)  2.72(0.1) 1(% 11.28(0.9)
02 | 7.77(0.1)  1.49 (0.1) 245 (0.9)  1.16(0.1) 1(% 11.19(0.9)

Table 3.5.10: Best out-of-control ARLs values for each positive shock in the case
of negative butterfly shift in the yield curve, for n=40 and in-control ARL=11. The
corresponding smoothing parameter values are given in parentheses.

The MMOEWMA chart is appropriate for changes in the factor loadings and par-
allel shifts but fails to detect non-parallel shifts in the yield curve. In contrast, the
MCUSUM chart performs better when detects non-parallel shifts than parallel or
changes in the factor loadings. The control chart procedure with the worst over-
all performance is the univariate EWMA based on the Mahalanobis distance. The
residual chart based on Mahalanobis distance is more appropriate for the detection
of parallel and non-parallel shifts in the yield curve. Finally, the best overall perfor-
mance have the MEWMA and the residual chart based on the MEWMA statistic.

3.6 Empirical example

The control chart procedures that we previously proposed are applied to a Gaussian
ATSM of the U.S. yield curve for the detection of structural breaks. We assume
that the in-control period of the term structure is from April 1991 to December
2000. The results from this class of affine model estimated from historical data are
obtained from section 3.3 under the no arbitrage assumption. The out-of-sample
and monitoring process is from January 2001 to December 2009 which contains the
global financial crisis of 2007-08.

We have used the six proposed control chart procedures for various values of the
smoothing parameters. Specifically, for the univariate EWMA control chart based
on the Mahalanobis distance we have chosen the smoothing parameters 0.1,0.75,0.9.
The MEWMA control chart is constructed for A = {0.25,0.5,0.75}. The smoothing
parameter values for the Residual EWMA control chart based on the Mahalanobis
distance are 0.25,0.35 and 0.5. Also, the Residual MEWMA chart is constructed
for A = {0.25,0.45}. The MMOEWMA control chart for A\ = {0.45,0.9} and the
reference value of the MCUSUM is chosen to be equal to 2.5.
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When the control chart gives a signal then the financial analyst should examine and
evaluate it. We remind that as in many financial applications even if a signal is given
the process in contrast to industrial applications can not be stopped. The statistical
monitoring processes we use do not give more insight to the causes of an out-of-control
condition. One of the main problems is what happens in the statistical monitoring
procedure when the control chart gives a signal. Golosnoy and Schmid (2007) in their
work for monitoring optimal weights in a GMVP referred to an analogous problem.
They apply two procedures the first without reestimation of the target process and
the second with reestimation. In our work we follow this approach and estimate
after a signal a new target process for the yield curve. Golosnoy and Schmid (2007)
mentioned a series of problems in order to reestimate the target process such as
if the data remain under the assumption of normality and if they are identically
and independent distributed. Their new target process is estimated taking into
consideration the last 250 observation of their daily data.

In our work we estimate first the control charts under no reestimation of the target
process when a signal happens and second we reestimate it under the assumption that
the normality of the data we assumed in section 3.3 continues to be valid. However,
instead of using the last observations prior to the signal that is given from the control
chart we apply the following procedure: First after a signal is detected we let the
process run and collect the data for a small period after and apply a two sample T-
test for the means with unequal variances. The two samples we test is one with data
before the signal when the process is in-control and the second is the small period
afterwards the signal. The null hypothesis is that there is no-change in the means.
If we reject the null hypothesis then we estimate the new target process. The data
set we use for the estimation contains not only data prior to the signal but also for
a small period afterwards, here six months. A serious disadvantage of this approach
could be if a second change happens in that time period. So, we think this type of
approach could be more appropriate for detecting more permanent shocks such as
those connected with business cycles. The National Bureau of Economic Research
(NBER) estimates the mean duration of contractions to be above 10 months (for
more see ).

thttps://www.nber.org/cycles.html
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3.6.1 Control charts without reestimation of the target pro-
cess

For the case without reestimation of the target process the control statistics are
presented in Appendix C.0.1, for the smoothing parameters we previously men-
tioned, from January 2001 to December 2009. The control statistics for the univariate
EWMA based on the Mahalanobis distance for A = {0.75,0.9} show similar pattern
and which is less smoother than this for A = {0.1}. Also, we mention that all control
statistics for the charts selected, with the exception for those for the MMOEWMA
chart, show an increasing trend after 2007. Additionally, control statistics for EWMA
and Residual charts based on Malahanobis distance as long as for the MMOEWMA
chart begin from a high level and show a downward trend for a certain period.The
control statistic for the MCUSUM chart and reference value equal to 2.5 exhibits
less fluctuations in comparison with the other charts.

Next we present the control chart under no reestimation for the control limits ob-
tained from a simulation study as described in section 5.5.2 and the dates of their
signals. This approach do not use the information obtained from each change point
in the control charts (Schmid and Tzotchev (2004)). The EWMA chart based on
the Mahalanobis distance and A = 0.9, detects six changes (see figure 3.6.1). The
dates of the signals are September 2002, December 2002, February 2003, March 2004,
December 2007 and November 2008. The other univariate EWMA control charts for
A = 0.1 and A = 0.75 detect two changes. The first chart in December 2002 and
March 2008 and the latter in September 2002 and in January 2008. We remind
that according to NBER the early 2000s recession started from March 2001 until
November 2001. Also the Great recession that started in December 2007 and ended
in June 2009 was a consequence of the global financial crisis of 2007-08. The charts
that detect the early 2000s recession are that for A = 0.1,0.75. However, all three
charts detects with delay the crisis of 2007. The financial crisis represents a period
of increased yield volatility. The change at the beginning of 2003 follows the internet
bubble bursting and the stock market downturn of 2002.
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Figure 3.6.1: Control chart for the case of EWMA control chart based on Mahalanobis
distance when A = 0.9. The sample period is 2001:01 to 2009:12.

The MEWMA control chart for A\ = 0.25 provides two signals, the first in September
2002 and the second in December 2007 (see figure 3.6.2). The MEWMA chart with
the choice for smoothing parameter equal to 0.5 gives three signals in September 2002,
in June 2005 and in January 2008. The residual chart based on the Mahalanobis
distance for A = 0.25 detects three structural changes (see figure 3.6.3). The first
is at the beginning of the monitoring period in January 2001 and the next two in
October 2002 and in February 2008. The residual chart based on the Mahalanobis
distance for A = 0.2 detects the first change at the same time as the chart for
A = 0.25 but the other two a month later in each case. The residual chart based on
the Mahalanobis distance for A = 0.35 in comparison with that for A = 0.25 detects
an additional change in October 2008. All three charts of this class give a signal near
the beginning of the recession of 2001 but detect with delay the crisis of 2007.

The residual chart based on MEWMA statistic and A = 0.25 gives a signal in August
2002 and the other in December 2007 (see figure 3.6.4). The chart with A = 0.45
detects five changes: March and October 2003, March 2004, September 2008 and

December 2008.
The MCUSUM control charts for reference parameter equal to 2.5 detects three

structural changes (see figure 3.6.5), in September and December of 2002 and in
January 2008. The MMOEWMA chart detects changes in February 2001, in October
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2002, in March 2004, in March 2005 and finally in November 2008 (see figure 3.6.6).
In all charts the control statistics of the monitoring process after the signals they
detect in 2007 or 2008 remain clearly in the out-of-control condition and , except
from MMOEWMA chart, exhibit an upward trend. Only in MEWMA control chart
when A = 0.75 the process returns to the in-control case.
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Figure 3.6.2: Control chart for the case of MEWMA control chart when A = 0.25.
The sample period is 2001:01 to 2009:12.
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Figure 3.6.3: Control chart for the case of Residual EWMA control chart when
A = 0.25. The sample period is from 2001:01 to 2009:12.
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Figure 3.6.4: Control chart for the case of Residual MEWMA control chart when
A = 0.45. The sample period is from 2001:01 to 2009:12.

We mention that Chib and Kang (2013) for the sample period between 1972:Q1 and
2007:QQ4 supported the existence of three change-points. However, their model do not
capture the early 2000’s recession and the stock crash after the events at September
11, 2001. Most of the control charts we propose in the practical example give a signal
either in earlier 2001 or during 2002 in various dates. Only the MEWMA chart for
A = 0.75 does not give a signal in the beginning of our monitoring period and the
ResMEWMA for smoothing parameter equal to 0.75 detect a change at the early
2003.

For the financial crisis of 2007-2008 beginning in August 2007 and the Great Reces-
sion of 2007-2009 that lead to, all control charts detect changes during the years 2007
and 2008 in different dates. The ResMEWMA chart for A = 0.45 and the MEWMA
chart for A = 0.25 detect a structural change at December 2007. The rest of the
charts detects a change or two during the 2008. We remind that on September 15,
2008 we have Lehman Brothers bankruptcy. The following changes detected: in the
MEWMA chart for A = 0.5 in June 2006, in ResMah chart for A = 0.5 in February
2004, in ResMEWMA for A = 0.5 in March 2004 and in MMOEWMA chart for
A = 0.45 in March 2004 and March 2005 are not attributed to a certain economic
activity.
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Figure 3.6.5: Control chart for the case of MCUSUM control chart when g = 2.5.
The sample period is from 2001:01 to 2009:12.
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Figure 3.6.6: Control chart for the case of MMOEWMA control chart when A = 0.45.
The sample period is from 2001:01 to 2009:12.

Bech and Lengwiler (2012) analyzed the dynamics of the U.S. yield curve from 1998
to 2011 and they identified four phases. The first is the so called "normal" phase
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from 1998 to mid-2004. Next, is the "moderation’ phase that ends in August 2007
connected to the BNP Paribas’s announcement that it was freezing three funds in-
vested in subprime securities. which is commonly taken to mark the beginning of
the financial crisis. Next is the “liquidity crisis phase” that begins on August 9,2007
and ends on December 16, 2008. This period is characterized by increased volatility
in yields of short and medium maturity and liquidity problems. The last phase is
the “zero lower bound phase” that begins after the Federal Reserve has reached the
zero lower bound until 2011. In this period it is observed large volatility in the long
maturities of the yield curve. Chen and Niu (2014) proposed an adaptive dynamic
Nelson-Siegel (ADNS) model that improves forecasts of the yield curve and detect
structural breaks in level, slope and curvature of the yield curve. They detect among
others break in the yield curve at the beginning of 2003 and the financial crisis and
recession in 2008.

3.6.2 Control charts with reestimation of the target process

A basic problem after the control chart gives a signal and a change is verified from
the financial analyst, is the estimation of the new target process and eventually the
new control limits. For the estimation of the new target process after a change is
detected we follow the next procedure: First when the control chart gives a signal
we perform a two sample t-test for the equality of the means with unequal variances
for the observed yields in order to confirm if a change in the mean process happened.
Before we perform the test we need to define the size of the data sample we need
in order to reestimate the control limits. A main drawback of the data we use in
the term structure model is their low frequency since we have monthly data. The
difficulty is that for the estimation of the quantities we described in the previous
section we need enough data. So as to overcome this problem after a signal is given
we observed the process for a limited time period for example until six months and
collect the appropriate data. If a signal is given and the monitoring process returns
in a very short period (e.g. after one or two months) again under control this is
may due to the fact that the change is not persistent. We perform the two sample
T-test for the equality of the means with unequal variance having in the one sample
this six-month data set. If the results of the test confirm the change we estimate the
term structure model for an estimation window equal to 25 months that contains this
period of up to six months after the signal. We remind that Golosnoy and Schmid
(2007) for the portfolio monitoring estimated the new target process based on the
last 250 observations an approach that may do not capture the change in the model
parameters when the shock in the monitoring process is large. In our approach we
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include in the estimation period and a small time period after the change hoping
to improve the estimation results. We maintain the normality assumptions for the
interest rate model as introduced in section 3.3. This approach could be helpful in
cases of detecting changes due to business cycles where changes are persistent for a
relative large time period. However, the task of control limits reestimation after a
change is detected for low frequency data remains quite difficult and challenging.

After the reestimation of the target process and the calculation of the new control
limits the univariate EWMA control charts based on the Mahalanobis distance detect
less changes than in the case without estimating the new control limits. Specifically
when A = 0.9, the control chart now detects after the reestimation four changes:
September,2002, February and October 2005 and October 2008. For A = 0.1 we
have instead of previously three now two changes January, 2001 and December,
2008. The last of the univariate EWMA charts for A = 0.75 detects four changes:
February 2003, August 2005 and May 2006 and January 2008. We remind that
the early 2000s recession in United Stated according to NBER lasted eight months,
March to November 2001. Except for the chart with smoothing parameter equal to
0.1 the other two control charts detect changes after that period. Stock indices after
recovering from the September 11,2001 attacks then starting in March 2002 the stock
indices reach a low in October of the same year. The chart with A = 0.9 gives a

signal in September.
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Figure 3.6.7: Control chart for the case of EWMA control chart based on Mahalanobis
distance when A = 0.9 and reestimation of the target process. The sample period is
2001:01 to 2009:12.
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The MEWMA control charts for A = 0.25,0.5 detect more changes than the case
without reestimating the target process. At the first occasion with smoothing pa-
rameter equal to 0.25 a change happens at September 2002, June 2006 and December
2007. For A = 0.5 additional to the first change which is at the same time as previous
we have signals for changes at July 2003, April 2006 and March 2008. The change in
April 2006 can not be associated with some specific economic event. The remaining
MEWMA procedure gives no other signal than that at December 2008 and fails to
detect any change during the recession of 2001 or the subsequent stock market crash.
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Figure 3.6.8: Control chart for the case of MEWMA control chart when A = 0.25
and reestimation of the target process. The sample period is from 2001:01 to 2009:12.

The residual EWMA control charts for A = 0.2, 0.25 detect more changes than previ-
ously without reestimation and the opposite for A = 0.35,0.5. Figure 3.6.9 presents
the four change points for A = 0.25: January 2001, October 2002, January 2006 and
January 2008 a month after the beginning of the Great Recession of 2007-2009. The
rest three residual EWMA charts based on the Mahalanobis distance that we ex-
amine all detect a change at the beginning of the monitoring period (January 2001)
and a change in the year 2008. The chart with A = 0.2 in June and the other two a
change in December. The charts for A = 0.35 and A = 0.5 detect the same changes
in numbers and dates.

The residual MEWMA control chart with A = 0.45 detects, as the corresponding
chart without reestimation discussed in the previous section, a change in August
2002 and two additional in December 2004 and August 2007. Now the MCUSUM
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chart detects a change in December 2002 and a change in January 2008. Finally the
MMOEWMA chart gives three signals for change: February 2001, April 2006 and
February 2007. House prices in the U.S. reached at the peak and start to decline
in the middle of 2006 (Baker (2008)) that eventually lead to the subprime mortgage
crisis of 2007 and 2010, and contributed significantly to the U.S. financial crisis.

In general, the choice of the appropriate control scheme depends on the size and the
type of the shifts in the yield curve and a combination of control charts is suggested.
Schmid and Tzotchev (2004) mentioned that the use of control charts in a one-
factor CIR model that uses historical data for estimation may be problematic. In
contrast, we conclude that control chart procedure could be a useful tool for detecting
structural breaks in multifactor interest rate models and specially ATSM taking
into advantage the richer structure they have from the one-factor models. Also the
MMOEWMA control chart, applied for the first time in a term structure setting,
can be appropriate for detecting parallel shifts in the yield curve.
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Figure 3.6.9: Control chart for the case of Residual EWMA control chart based on
Mahalanobis distance when A = 0.25 and reestimation of the target process. The
sample period is 2001:01 to 2009:12.
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Figure 3.6.10: Control chart for the case of Residual MEWMA control chart when
A = 0.45 and reestimation of the target process. The sample period is 2001:01 to
2009:12.
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Figure 3.6.11: Control chart for the case of MCUSUM control chart when g = 2.5
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure 3.6.12: Control chart for the case of MMOMEWMA control chart when
A = 0.45 and reestimation of the target process. The sample period is 2001:01 to
2009:12.



Chapter 4

Affine Term Structure Models:
Applications in Portfolio
Optimization and Change Point
Detection

4.1 Introduction

In this chapter first we estimate the term structure model for yield curve with data
form the United States following the MCSE method proposed by Hamilton and Wu
(2012). Next, we construct a fixed-income portfolio using the results obtained from
the term structure model. Dynamic factor models for the yield curve are used to
generate yield forecasts for a set of selected maturities and subsequently used to
compute expected fixed-income returns. The main problem for fixed-income port-
folios is the prediction of the distribution of returns for a number of maturities.
Caldeira et al. (2016) selected the optimal vector of portfolio weights conditional on
the investor’s expected returns and risk preferences. Following the estimation of the
yield curve model we generate forecasts of bond returns, which subsequently used for
the mean-variance optimization problem. We mention that an important element of
this procedure is the ability to obtain good forecast results from the term structure
model. The incorporation of macroeconomic factors into term structure models has
the advantage of increasing the model’s predictive ability. In our analysis we perform
forecasts of one-period ahead estimates of fixed-income returns. The distribution of

7
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bond returns follows that of the ATSM, which is the multivariate normal distribu-
tion. The estimated mean-variance bond portfolios are compared with traditional
bond portfolio strategies and we show that can be a reasonable alternative to them.

Dynamic term structure models play an important role in fixed-income asset pric-
ing and strategic asset allocation. However, the connection between dynamic factor
models and portfolio optimization only in recent years has been explored. Fabozzi
and Fong (1994) used fixed-income portfolios in order to approximate the duration
of a benchmark portfolio or to replicate the performance of this benchmark. The
literature is mainly focused on the construction and performance of equity portfo-
lios under the mean-variance approach (see for example DeMiguel et al. (2009) and
DeMiguel et al. (2009)).

The main difficulty in portfolio optimization using dynamic factor models is the
estimation of the bond expected returns and the covariance matrix of bond returns.
If we can estimate expected bond returns and their variance-covariance matrix, the
portfolio optimization procedure is similar to that of equity portfolios (Fabozzi and
Fong (1994)). According to Meucci (2010) since both bond price and bond return
are non-ergodic processes the traditional statistical techniques cannot be used to
directly model the expected return and volatility of bond yields. Following the work
of Caldeira et al. (2016) we obtain closed-form solutions for the expected bond returns
and the covariance matrix of bond returns but for a different class of dynamic factor
models, the ATSM of Hamilton and Wu (2012). Puhle (2008) and Korn and Koziol
(2006) proposed the use of the Vasicek (1977) model for the yield curve for the mean-
variance bond portfolios optimization. The main drawback of their approach is that
that the one-factor Vasicek model has limited forecasting power in contrast with the
forecasting ability of dynamic factor models (Duffee (2002)).

The structure of this chapter is as follows. In section 2 we describe our data set.
In section 3 we estimate the term structure model, the one- period ahead expected
returns and the variance of the bond yields for a specified out-of-sample period. In
section 4 we present the results for the fixed-income portfolio optimization. Section 5
deals with the application of control charts to optimal weights of a GMVP. Sections 6
and 7 present the results of a simulation study and an empirical example, respectively.

4.2 Data

Our data set consists of fixed-maturity, end-of-month continuously compounded
yields on U.S. zero-coupon bonds from January 1981 to December 2009, totally
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348 monthly observations. This data set of monthly time series of yields was con-
structed from Jungbacker et al. (2012) from the Center for Research in Security
Prices (CRSP) unsmoothed Fama and Bliss (1987) forward rates and is publicly
available in the Journal of Applied Econometrics Data Archive. For our work we
have chosen yields with maturities 3,48,60,72,84 and 120 months for the time period
from January 1981 to December 2009. Figures 4.2.1, 4.2.2 plot the time series of
US Treasury yields. The average yield curve is downward sloping. It is known that
usually periods where the yield curve displays a downward trend then bond returns
exhibit good performance.

Treasury Yields
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Figure 4.2.1: U.S. Treasury Yields. The graph illustrates annualized monthly zero-
coupon bond yields of maturity 3 months, 5 years, and 10 years. The sample period is
1981:01 to 2009:12.
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Figure 4.2.2: U.S. Treasury Yields. The graph illustrates annualized monthly zero-
coupon bond yields of maturity 4 months, 6 years, and 7 years. The sample period is
1981:01 to 2009:12.
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Figure 4.2.3: Macroeconomic factors. The figure illustrates the two macroeconomic
factors Industrial Production Index and Consumer Price Index for the sample period
1981:1 to 2009:12

As we mention earlier we follow the recent literature in the term structure models and
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we use both macroeconomic and latent factors. The incorporation of macroeconomic
factors contributes to the improvement of yield curve forecasting. Good yield curve
predictions are important in order to achieve better results in terms of fixed-income
portfolio performance. We use two macroeconomic factors, the CPI monthly time
series seasonally adjusted and as a proxy for the monthly GDP the monthly Industrial
Production (IP) growth. IP is almost 80% of the GDP and so can be used as a proxy.
The CPI measures the average changes in the price level of a basket of goods. The
IP growth measures the growth rate of the production of goods. The IP growth rates
and the CPI time series are obtained from the Federal Reserve St. Luis database.
The data series for all the sample period are displayed in figure 4.2.3. The CPI
starts from a high level and in average falls during the recession of 1981-82. In the
subsequent period follows a upward trend before the fall in the fourth quarter of
1990. Next, the CPI stays mainly in the same level until an upward trend during
the period from the end of 1999 until March 2008. For the period from the third
quarter 2008 until middle of 2009 we have a period of economic downturn due to
the recent global financial crisis. IP Index growth rate is seasonally adjusted. Most
of the movements of the IP Index growth rate follows that of the business cycles.
However, the time series of CPI has more smooth fluctuations.

Table 4.2.1 presents some descriptive statistics for the yields and table 4.2.2 for the
macroeconomic observable factors. The yield levels show mild excess kurtosis at
short maturities which decreases with maturity and positive skewness at all matu-
rities. Also in tables 4.2.3 and 4.2.4 we present the autocorrelations of these time
series for lags 1,5,12,20 and 24. An important fact is that, the time series of all
bond yields are highly autocorrelated showing strong persistence. IP growth rates
exhibit medium level autocorrelation and the CPI low autocorrelation. Also, figures
C.0.1,C.0.2 and C.0.3 show the autocorrelograms of our data series. In figure C.0.4
we have plot the yields term premia, the difference between the 10-year yield and the
3-month yield. The term premia at the beginning of our sample period starts from
a negative position and continuously increases from 1981:09 to 2009:12 and remains
to positive levels with the exception of time periods 1989:05 to 1989:07, 1989:10 to
1989:11, 2000:07 to 2000:12 and 2006:07 to 2007:04. During the recession periods
the term premia exhibits an upward trend. The estimation procedure is performed
for the in-sample period from 1981:01 to 1999:12 while the out-of-sample period is
from 2000:01 to 2009:12.
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3m 48m 60m 72m 84m 120m

Mean 5.3335 6.4689 6.5854 6.7159 6.8025 6.9385
Skewness 0.8014 0.7117 0.7477 0.7597 0.8143 0.8817
Kurtosis 4.0964 3.111 3.0446 2.9959 3.0382 3.0774
Std deviation | 3.1443 3.0252 2.9415 2.9185 2.8444 2.724
Maximum 16.019 15.599 15.129 15.108 15.024 15.194
Minimum 0.041 1.019 1.556 1.525 2.179 2.679
Range 15.978 14.58 13.573 13.583 12.845 12.515

Table 4.2.1: Descriptive statistics of U.S. Treasury yields. The table reports summary
statistics of Treasury yields with maturities 3-,48-,60-,72-,84-,120-months.

CPI 1IP Index

Maximum
Minimum
Mean
Median
Mode
St. Deviation
Variance
Skewness
Kurtosis
Range
Sum
Sem

1.4 2.7841
-1.8  -3.5293
0.3 0.1875
0.3 0.2343
0.0 -3.5293
0.3 0.7770
0.1 0.6037
-1.0  -0.7906
12.8  6.7616
3.1 6.3134
92.5 65.2391
0.0 0.0416

Table 4.2.2: Descriptive Statistics of Macroeconomic factors. The macroeconomic
factors are the Consumer Price Index (CPI) and the Industrial Production Index (IP)
seasonally adjusted.The sample period is 1981:01 to 2009:12.

Macro Factors | Lag 1

Lag 5

Lag 12 Lag 20 Lag 24

CPI
IP Index

0.4730 0.0049
0.2852 0.2249

-0.0616  0.0107  0.0268
-0.0107 -0.0028 -0.1105

Table 4.2.4: Autocorrelation of macroeconomic factors, Consumer Price Index and
Industrial Production Index.The sample period is 1981:01 to 2009:12.
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Yields Lag1l Lagb Lagl2 Lag20 Lag?24
3month | 0.9724 0.8597 0.6538 0.4385 0.3848
48 month | 0.9833 0.9025 0.7497 0.6009 0.5681
60 month | 0.9834 0.9056 0.7593 0.6209 0.5915
72 month | 0.9841 0.9108 0.771 0.6381  0.609
84 month | 0.984 0.9099 0.7676 0.639 0.6159
120 month | 0.9844 0.9123 0.7701 0.6504 0.6321

Table 4.2.3: Autocorrelation of U.S. Treasury yields for the sample period 1981:01
to 2009:12.

4.3 A No-Arbitrage Affine Term Structure Model

4.3.1 Model specification

In general, we adopt the modeling approach of Pericoli and Taboga (2008) but under
the estimation method proposed by Hamilton and Wu (2012). Here we present the
equations of Hamilton and Wu (2012) that are most relevant for our model and
retain mostly of their notation for simplicity. The state variables evolution process
X follows a vector autoregressive process:

Xt+1 =K + PXt + Eut+1, (431)

with u;,1 a Gaussian standard error term. We consider two representations of equa-
tion (4.3.1) which represent two different specifications of the risk-neutral pricing
measure () and the pricing measure of a risk-averse investor under the physical
probability measure P. As a result equation (4.3.1) takes the following form under

these two measures:
Xt+1 = [,LQ + pQXt + Eugrl, (432)

Xii1 = pb + pP X + Zuf,,. (4.3.3)

The time-varying market prices of risk, A, are affine functions of the underlying

state variables X;:
At == A(] + A]_Xt. (434)

The relation of the parameters of the P-measure to the (J-measure are given by:
pu® = pf — 3, (4.3.5)

p® = pf — T, (4.3.6)
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Also, we assume that the short rate is an affine function of the state variables:
re = 0o + 0, X (4.3.7)

The pricing kernel in the ATSM is
1 ’ ’
Mt,t+1 = e:cp(—rt — §At>‘t — At? ut+1) (438)

with Ay = 0 in the case of risk neutrality. The pricing kernel allows us to price any
asset in the economy such as nominal bond prices. Substituting equation (4.3.3) in
(4.3.7) we have that

7 1 ’ 7’
Mt,t-i—l = BZEp(—(S() — 61Xt - 5 - AtAt - )\tut+1). (439)
Bond prices can be estimated recursively as follows
P = E/(My1 P, (4.3.10)

P! is the price of a zero-coupon bond with maturity n periods at time ¢. It can be
shown that solving equation (4.3.10) is equivalent to solving equation

n—1
P = EP {exp(— Z Ttﬂ-)} : (4.3.11)
i=0

where EtQ is the expectation under the risk-neutral probability measure ). From
equation (4.3.10) we derive that bond prices are exponential affine functions of the
state variables:

P = exp(an + b, Xy), (4.3.12)
where )
%H:%ﬁbgu—gm+EMEEm—%, (4.3.13)
bui1 =b,(p — A1) — 85, (4.3.14)
with starting values a; = —dy and by = —d;. Also, yield risk premia is the difference

between the observed yields and the hypothetical yields given by the expectations
hypothesis:

n—1
1 . |
wﬁZEE(mH—Mﬁ“—&&L». (4.3.15)

i=1
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Now, the yield of a n-period zero coupon bond is:

log P!
n

Y = = A, + B, X,. (4.3.16)
where A, = 2 and B, = bT“. If we knew X; and the values of u? and p? along
with 0y, 61 and 3 we could use (4.3.13), (4.3.14) and (4.3.16) to predict the yield for
any maturity n.

To estimate our model, we follow the approach of Chen and Scott (1993) and equation
(4.3.16) holds exactly for as many yields as the number [ of latent factors. The
remaining N, = T, —1 linear combinations of observed yields differ from the predicted
value by a small measurement error, 7, is the total number of yields. The choice of
the maturity sets measured with error or not is driven by the interest in obtaining a
very good estimate of the 10-year yield. Let Y} denote the [ x 1 vector consisting
of those linear combinations of yields that are priced without error and Y2 the
remaining (V. x 1) linear combinations that are priced with measurement error. The
measurement specification is defined as

y! Al B 07 .
|: }/? :| = |: A2 :| + |: BQ :| Xt + |: Ee :| Uy (4317)
where X, is typically taken to be diagonal. A’ and B?, i = 1,2, are calculated by

stacking (4.3.13) and (4.3.14), respectively, for the appropriate n. X, determines the
variance of the measurement error with uf ~ N (0, Iy, ).

In our model we assume that yields maturing at 3,60,120 months are priced without
error Y§ = (y2,y%0,y/?°) and yields with maturities of 48,72 and 84 months are
priced with error, Y2 = (y/%, y/?, y3*). Overall, we have six different maturities from
which N, = 3 are priced with error. Following Hamilton and Wu (2012) for the

model description, equation (5.3.14) has the following form

— - — - — / -

Y;S as b3

Yt60 Qg0 béso 0

Ytuo o @120 bl120 0 e

Y, ar brs e
_Y;t84_ | 84 | _bé4_

The latent factors X} are estimated from equation (5.3.14) from the yields measured
without error and the observed factors X¢ since they are known and X; = [X? X¥]
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as follows
X =B>Y(Y! - A' - B'X?). (4.3.19)

We also maintain the parameter restrictions imposed by Pericoli and Taboga (2008)
and Hamilton and Wu (2012). These are X, = 0, ¥ = I, , 611 > 0 and u? =0,
where X, is a lower triangular matrix.

Ang and Piazzesi (2003) assumed that there is no interaction between macro dynam-
ics and the unobserved latent factors. This means that py,; and py, are set equal to
zero. In our study we allow the interaction between the macroeconomic and latent
factors. The structure of the loadings of the latent factors, pﬁ, is that proposed by
Hamilton and Wu (2012).

The log-forward rate at time ¢ for prices between time n — 1 and n is given by

fi=p""-P (4.3.20)

We denote the log-holding period return (HPR) from buying an n-year bond at time
¢t and selling it as an n — 1 year bond at time ¢ + 1 as

r =PI — PP, (4.3.21)
and the excess log-returns as

n n 3
Tl = T — Yt( )7 (4.3.22)
where Y is the 3-month U.S. Treasury bill rate.

4.3.2 Identification

The structural form of the affine model that we previously presented can be changed
to a reduced form according to Hamilton and Wu (2012). We briefly present the set
of equations for the reduced form (for more details see Hamilton and Wu (2012)):

X" = AL+ bpm X1+ Cb;ﬂy;rl—l + Uppy (4.3.23)
V' = A} + 01, X + o Yl + UL X+ g, (4.3.24)
VE = A5+ 05, X" + 05, Y + uy, (4.3.25)

with

AT = A1 + Bll,ul - BllpllBl_llAla (4326)
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Ay = Ay — By B Ay, (4.3.27)
Ay, = o — pra By Ar, (4.3.28)
¢11 = BupuBy', (4.3.29)
O = Bupu — BupuBy;' Bim, (4.3.30)
O3 = Bom — BBy Bim, (4.3.31)
¢31 = BBy, (4.3.32)
Ora = P By (4.3.33)
Gram = Pmm — Pt By Bim, (4.3.34)
Ui = Bim, (4.3.35)
and
Uy Q:; 0 0 SmZm 0 0
Var | ul, | =] 0 Q@ 0 |= 0 BuB;, 0 |, (4.3.36)
Uy 0 0 0 0 %3

Full information maximum likelihood (FIML) estimation is obtained by treating the
three blocks, uj,, us,, uy,, separately since they are independent. Also, dy can not be
estimated separately from the OLS regression (4.3.7) because the risk-free rate is the
dependent variable in the regression (4.3.7) and in the regression (4.3.3). Following
the approach of Hamilton and Wu (2012) in order the model to be just identified we
take three further restrictions on the matrix of the factor loadings p<.

Table B.0.1 presents the mapping between structural and reduced form parameters.
When the number of parameters in the structural form of the model is equal to the
number of reduced-form parameters then the model is just identified. Also, when the
reduced form parameters are more that those in the structural form, this is the case
where the model imposes overidentifying restrictions but one can still estimate the
structural parameters as functions of the unrestricted reduced-form estimates. The
problem arises when more than one value for the parameter vector in the structural
form is associated with the same reduced-form parameter vector, then the model is
unidentified. As a result, there is no way to use the observed data to distinguish
between the alternative parameter values (Hamilton and Wu (2012)).

4.3.3 Estimation of the Affine term structure model

The reduced form parameters are collected in a vector 7 and can be estimated by least
squares methods. Then, the vector of the structural parameters @ can be estimated
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by the minimum chi square method. The main assumption of the method is that
the reduced form parameters are equal to a function of the structural parameters,
7 = ¢g(0). The MCSE method uses the Wald test in order to test the hypothesis
that @ = ¢g(@). Suppose now that L(7;Y) is the log- likelihood for the entire sample
and ## = argmaxzL(m;Y) is the vector of the full information maximum likelihood
estimates. Also, we assume that R is a consistent estimate of the information matrix
that satisfies the following equation

1 [92L(m;Y)
R=——F|—————|. 4.3.37
T [ v’ ] ( )
The minimum chi square estimation is then given by:
min T(# — g(0)) R(& — g()), (4.3.38)

6

where R is the information matrix of the full information maximum likelihood func-
tion £(0;Y). The minimal value that is found by this estimator would have an
asymptotic x%(g) distribution under the null hypothesis where q is the dimension of
.

In the case of a just identified model the minimum value attainable for (4.3.38) is
zero. Then equation (4.3.38) equivalently becomes

mein (& —g(0)) (7t — g(0)). (4.3.39)
When the objective function (4.3.38) is equal to zero the estimators that result
from the maximum likelihood estimation and the minimum chi square estimation
are asymptotically equivalent (Hamilton and Wu (2012). The information matrix R
for all reduced-form parameters takes the following form (Pollock (1989))

R, 0 0
R=| 0 R 0 |, (4.3.40)
0 0 Ry
where
- G leT 'S 0
R; = ! t=1 b ;o A , 4.3.41
0 LD (@ @ 0D, (4:3.41)

for Dn the N? x N(N + 1)/2 duplication matrix satisfying Dnvech(Q) = vec(Q).
The structural measurement errors 3¢ only exist in the block €25 and these parame-
ters are just identified by the diagonal elements of 5. Then the minimum chi square
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estimates of ¥, are obtained from the square roots of diagonal elements of €25. The
factor loadings submatrix takes for the latent factors under the risk-neutral measure
Q@ has the following form

pu, 0 0
= Plaly Plals Plals , (4342)
Pisly  Plsla Plsls

where pj,1, = pry1, and pr,i, < pii,- In order to optimize the objective function, we
need to estimate 66 unknown parameters, 5 in d1,1 in dy, 25 in p, 22 in p?, 6 in X,
5in p and 2 in u@. Since we estimate the model parameters we can estimate the
coefficients ay,, by, from the recursive equations (4.3.13), (4.3.14). The results of the
parameter estimation under the risk-neutral and historical probability measure are
presented in table 4.3.1.

Q
Pu

In addition, for a preliminary view of the response of Treasury yields to macroe-
conomic factors we run unrestricted OLS regressions. Table B.0.2 reports the es-
timation results from the regressions of Treasury yields with maturities 3 months,
60 months and 120 months on the two macreconomic factors. The adjusted R? is
from 11% to 22%. This result suggests that macroeconomic factors should help ex-
plain the dynamics of bond yields. Also we observe that the adjusted R? and so the
explanatory power of the macro factors, increases as bond maturity increases.

4.3.3.1 Forecasts

After the estimation we try to test the forecasting ability of our yield curve model.
The yield curve could provide information about the future path of the economy
(Cochrane and M. Piazzesi (2009)). The estimation of forecasts for the model is a
crucial procedure for the estimation of the moments of bond returns and consequently
for the portfolio optimization. We implement an out-of sample forecast for a period
of 120 monthly time series of yields, from 2000:01 to 2009:12, for various forecast
horizons in order to examine whether our model provides a good forecast of the yield
curve dynamics. Also, in order to examine the forecasting ability of our model we
calculate the root mean square errors (RMSE) and the mean absolute error (MAE).
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pQ | 1.1564 0.0417 -0.0513 0.0379 -0.0803
(0.0015) (0.0005) (0.0029) (0.0009) (0.0002)
-0.1827 0.9415 -0.0693 0.0282 0.0112
(10.0018) (0.0028) (0.0019) (0.0038) (0.0012)
0.3301 -0.0839 0.5979 0 0
(0.0018) (0.0034) (0.0012)
-0.0830 -0.0584 -0.0633 0.9775 0.0476
(0.0016) (0.0004) (0.0010) (0.0003) (0.0000)
0.0766 0.0277 -0.0494 0.1284 0.9775
(0.0011) (0.0021) (0.0019) (0.0030 ) (0.0003)

do | -0.0036
(1.2126e-05)

61 | 1.3367e-05 2.3692e-6 3.5697e-04 2.1568e-4 1.6369e-4
(7.4344e-06)  (7.0254e-06) (4.1176e-06)  (5.2728e-06) (4.7532¢-06)

p@ 05151 0.7697 0 0 0
(2.3627e-05)  (2.8129¢-06)

3 | 0.2388 0 0 0 0
(2.3552¢-06)
0.0637 0.7076 0 0 0
(2.4858¢-06)  (2.2066e-6)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

p | -0.0208 0.6422 0.7131 -0.0605 -0.4171
(3.9700e-04)  (3.4757e-04) (3.7405e-04) (4.3087e-04)  (3.7323e-04)

p | 0.4025 -0.0032 0.0264 0.0099 0.0191
(2.3839¢-04)  (9.7510e-04) (0.0031) (0.0048)  (0.0058)
0.3538 0.1414 -0.1949 0.0548 0.0239
(1.0182¢-04) (7.1410e-05) (0.0028) (0.0016) (0.0012)
0.5871 0.0545 0.7882 0.0482 0.0263
(1.3142e-04)  (3.4708¢-04)  (0.0020) (0.0037) (10.0037)
0.8148 -0.1672 0.0443 0.9668 0.0017
(1.4495¢-04)  (5.6863¢-04) (0.0023) (0.0051) (0.0038
-1.2708 0.1074 0.1000 -0.0227 0.9346
(8.8173e-05)  (2.4898¢-04) (0.0029) (0.0030 ) (0.0023)

Table 4.3.1: Parameter estimates under both risk neutral measure and historical
probability measure along with their with asymptotic standard errors (in parentheses).

Table 4.3.2 presents the results for RMSEs and MAEs for the yields with maturities
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3 months and 4,5,6,7 and 10 years. Lower values of root mean square error and
mean absolute error denote better forecasts. Root mean square errors are estimated
according to the following equation

T

1 ~
RMSE = | = ; (Y —Y)? (4.3.43)

where fft” and Y," are the predicted and the actual yields respectively of a bond with
maturity n months and T indicates the total length of the forecasting period, here
120 months. Mean absolute errors are estimated as

S Y -V

T .
From table 4.3.2 we can generally conclude that our term structure model with the
two macroeconomic factors and three latent factors gives satisfactory forecasting

results for the six maturities that we have. The results presented are for annualized
data.

MAFE =

(4.3.44)

Yields | 3-month 48month 60-month 72-month 84-month 120-month
RMSE | 0.0102 -0.7085 0.4968 -0.3315 -0.3312 -0.3470
MAE 0.2850 0.2647 0.4547 0.2778 0.2652 0.3148

Table 4.3.2: Forecast comparisons. The table presents the comparisons of the out-
of-sample forecasts. The out-of-sample forecasting period is from 2000:01 to 2009:12,
a total of 120 months. The root mean square error (RMSE) and the mean absolute
error (MAE) for annualized data are calculated.

Figure C.0.7 presents the actual bond yields versus the estimated bond yields for
the out-of-sample period 2000:01 to 2009:12.For the 3-,48- 72-month yield the fitting
is almost identical. The fitted 60-month bond yield is very close to the actual and
mimics its course. The 84-month bond yield is almost identical to the actual except
for the period 2002:03 to 2005:10 when there is a small deviation. Finally, for the
120-month yield the deviation between the fitted and the actual yields is larger than
the 84-month yield but generally performs well.
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4.3.4 Impulse Responses

Impulse response functions (IRFs) are used in order to represent the dynamic effect
over time of an unanticipated shock. Specifically, we are interest to know the response
of one variable to an impulse in another variable in a system that involves a number of
variables. An impulse response is a function of forecasts at distant horizons. Figure
C.0.11 plots impulse responses for the observable factors and figure C.0.12 plots
impulse responses for the latent factors from equation (4.3.1). Impulse responses are
estimated for one standard deviation shock and for forecasting period of 16 months
ahead. Impulse responses are estimated for the sample period 1981:01 to 2009:12.
We can see from figure C.0.11 that a shock in IP Index has a negative impact in CPI
showing a U-shaped pattern with reaching the low after 12 months. The response of
the IP Index to a shock in Consumer Price Index shows a peak after 7 months but
after 12 months has a negative impact.

Fig. 4.3.1 shows the factor weights B,, of the yield curve (equation (4.3.16)). The
weight on the most persistent factor (Latent 1) is almost horizontal after a period of
15 months. This means that the first latent factor affects bond yields of all maturities
in the same way. The coefficient of the second factor (Latent 2) is downward sloping
and it mainly moves the short end of the yield curve. The coefficient on the third
latent factor (Latent 3) affect yields at the short end of the yield curve and middle
and long-end of the yield curve with different signs (Ang and Piazzesi (2003)). Figure
4.3.2 presents the A, coefficients of the term structure models for a period of 120
months. The coefficients for a starting period of 10 periods (months) exhibit a
downward trend but subsequently increase and stabilize for the rest of the time
periods.

4.3.5 The distribution and estimation of bond returns

The main problem of fixed-income portfolios is the prediction of the distribution of
asset returns for a set of maturities and the selection of the optimal portfolio weights
conditional on expected returns and risk preferences. As a consequence this requires
the estimation of the expected asset return for each maturity and their covariance
matrix. The ATSM that we previously presented can be used for the construction
of a fixed-income portfolio. In this section we derive closed-form expressions for the
one-period ahead expected log-returns of bonds and their covariance matrix based
on the affine dynamic factor model. These estimates are key concepts to the problem
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Bn coefficients of ATSM
T T T T

Yield Maturity

Figure 4.3.1: Factor weights B,, of the yield curve annualized. The figure displays
yield weights as a function of maturity n = 120 months.

of bond portfolio optimization. Following the discussion in Caldeira et al. (2016) we
can obtain expressions for expected bond returns and their covariance matrix based
on the distribution of the yield curve model. Specifically, we are interested in the
distribution of one-step-ahead forecasts of continuously compounded zero-coupon
bond yields.

The Gaussian ATSM presented in equations (4.3.1) and (4.3.16) implies that the
distribution of one-step-ahead forecasts of continuously compounded zero-coupon
bond yields, is the normal distribution.

The one-step ahead forecasts of bond yields Y ¢ ~ N(l‘l'yt+1|t7 by
and variance given by

pese) DAVE mean

WYypape = An + B, X¢1p, (4.3.45)

and

D = B,S¢11:B, + =, (4.3.46)

Kttt

respectively, where Xt+1|t = F[Xy11] denotes the expected value of the state factors
X based on the estimates from the term structure model of equation (4.3.1). Sgyqp¢
is the covariance matrix not of the true factors X, but of the filtered states based
on the predicted state factors Xtﬂ‘t (Caldeira et al. (2016)). The covariance of the
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Figure 4.3.2: A, coefficients of the yield curve annualized. The figure displays coef-
ficients as a function of maturity n = 120 months.

predicted states is given by St+1|t =Q+ BnEB'n. As we mentioned earlier, in order
to apply the mean-variance (MV) optimization approach we need the estimation of
expected bond returns and their covariance matrix. For this procedure we need to
estimate the one-period ahead of log-bond returns. We assume that the investor’s
one-period return comes from either holding the bond for a fixed maturity or either
holding a bond from period ¢ to t + 1 while its maturity decreases. For the first case
of fixed maturities the log-return of holding a bond from period ¢ to t+1 is given by

P
rtt+1 = lOg( ];Jrl) = lOg(Pt+1) — lOg(Pt) = _Yt-‘rl + Yt- (4347)

t

One-period-ahead forecasts of log-returns of bonds, 7t:,1;, are normally distributed
with mean fi,¢, e and covariance matrix 3¢, e The mean i, e is given by:

Portygne = 10 My, 70 Y. (4.3.48)

The elements of the positive definite covariance matrix ¢, L1 AT€ given by:
O-Ttt+1|t = HQ(B;StJrHtBn + Uninj)7 (4349)

where n = 2,..., N is the number of yield maturities, o,,,; is the (7,j) element of
3.
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For the second case, the log-return r; of holding a bond from period ¢ to ¢+1 while
its maturity decreases from ¢ to ¢ — 1 is

Pifl . ) ) . .
riy = 1og(—£$1) =log(Pi;}) —log(P}) = —(i— 1)Y{ ] +iY]. (4.3.50)
t
One-step-ahead forecasts of log-returns of bonds are normally distributed with mean
given by .
Porppy = (0= 1) -y, 4y, Hi- Yy (4.3.51)

The out-of-sample expected returns are presented in figure C.0.13. The positive

definite covariance matrix 3, ¢ has diagonal elements given by:

Or; = (i— 1)2<b;—1st+1|tbi71 + 01-2_1), (4.3.52)

i1t

and non-diagonal elements

Orery = (i = DG~ DB 1Seraebjr + 011, (1.3.53)

where o7 | is the (i — 1)th diagonal element of ¥ and (b,,,_;Se+1/tbn,—10n,—1n,-1) 18
the (i — 1,7 — 1) element of the covariance matrix 3, of expected bond yields.
The choice of the set of maturities depends among others on the investment horizon
of the investor. Here, we present the results for the second investment case.

Figure C.0.5 presents the one-step-ahead holding period returns for the out-of-sample
period. Figures C.0.6 and C.0.8 present the excess holding period returns without or
with risk-free rate, respectively. Excess holding period returns in both cases exhibit
the same patern. The risk-free rate is the Federal Funds rate (FFR). Figure C.0.9
shows the five-by-ten year forward rate for the sample period 1982:01 to 2009:12.
We see that for the most time of the out-of-sample period remains positve. Figure
C.0.10 presents the forward spreads for the entire period from 1982:01 to 2009:12 for
holding a bond from period t to t+1 while its maturity decreases from 7; to 7,_; .We
mention that for the entire period the forward spread holding a 3-month bond and
a 10-year bond follows a downward trend.

4.4 Fixed-income portfolio optimization

In this section, we adopt the MV and GMYV portfolio optimization approach for the
construction of optimal bond portfolios based on the Gaussian ATSMs proposed by
Hamilton and Wu (2012). The results for the expected bond yield returns and the
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covariance obtained in the previous section are used for the bond portfolio optimiza-
tion. The proposed MV and GMV bond portfolios are compared with traditional
yield curve strategies and its performance is evaluated. For every portfolio strategy
we examine the cases of allowing or not short selling.

4.4.1 Mean-variance framework

The portfolio theory introduced by Markowitz (1952), provides a basis for portfolio
selection and optimization in a single-period set up. The Markowitz’s approach
assumes an investor that needs two main key ingredients in order to construct an
investment portfolio: 1) the estimated expected return for each investment and ii) the
covariance matrix of returns. Even if the mean-variance approach is a myopic single-
period portfolio strategy, investors can have potentially utility gains in comparison
with dynamic multi-period investment horizons (see for example W. Brandt (2010)
and Caldeira et al. (2016)).

Cheng (1962) adapted the mean-variance model for use in bond portfolio optimiza-
tion by analyzing the effect of re-investment risk on bond portfolios. He modeled
the trade-off between rolling-over short term investments and investing at the spot
rate until the end of the investment horizon using probability beliefs on future rein-
vestment rates (and thus the term structure) as inputs.These beliefs were based on
empirical data on historical interest rate movements. Bradley and Crane (1972) pro-
vided an improvement on this approach by using a dynamic bond portfolio selection
formulation. Korn and Koziol (2006) examined the applicability of term structure
models to bond portfolio selection.

The fixed maturity of bonds means that all bonds having maturities less than the
investment horizon 77 will not exist at time 7. Bond prices are functions of time and
interest rates (4.3.11) and so they become non-random at maturity date. Fabozzi
and Fong (1994) consider that the major problem of a fixed-income portfolio opti-
mization is that of constructing the variance-covariance matrix of bond returns. As
a consequence traditional portfolio optimization models like the Markowitz portfolio
method cannot be used directly for the construction of fixed-income portfolios and
modifications should be used.

We assume, at the time of the portfolio selection, that investors are only concerned
with the expected returns of U.S. Treasury yields for the one-step-ahead forecast
horizon and its variance-covariance matrix, with rebalancing every 3 months. Then
the mean-variance portfolio problem can be formulated by minimizing the portfolio
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variance for a particular one-step-ahead expected bond return, subject or not to a
set of additional restrictions on the vector of optimal weights w;. The mean-variance
framework in case that short selling is not allowed (constrained portfolio), has the
following form

. e . / ’
minimize w3, W — OW Mty |t

wi
subject to W;l =1 (4.4.1)
Wt Z 0
where g, 18 a N x 1 vector of expected returns of maturities n;,7 = 1,..., N,

N is the number of yield maturities. X, is a N x N variance-covariance matrix
of expected returns estimated from equations (4.3.52) and (4.3.53) and 1isa N x 1
vector of ones, and ¢ is the risk aversion coefficient. In case where short selling is
allowed in the last restriction in equation (4.4.1) w, can take and negative values.
The optimization problem is subject to a budget constraint, which ensures that all
wealth is invested in the investment assets. The mean-variance portfolio problem as
we see from equation (4.4.1) solves a quadratic utility function. The result of this
optimization gives the vector of the optimal weights for each time period. In case
we want to include an additional constraint about the duration of the fixed-income
portfolio, then the optimization problem in (4.4.1) takes the following form:

. . . / !
mlnzll)inlze Wtzrtt+1‘twt - 5wtl’l"rtt+1|t

subject to w,1 =1 (4.4.2)
Wt 2 0
T4 = W;T

where 7 is the vector of individual bond durations and 7, is the target portfolio du-
ration. Alternatively, the mean-variance problem can be stated as a myopic single-
period problem where portfolio weights are calculated based on one-step-ahead bond
return forecasts. In addition, when an investor changes the composition of its port-
folio over time, then faces with transaction costs and these costs are a function of
frequency and magnitude of asset allocation changes in the portfolio. The portfolio
turnover is estimated as

!

-1 N
|

T,=r— D ([Wie1 — wiel). (4.4.3)

t=1 =1
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The transaction costs is set to 3 basis points (bps) per transaction. Then, the cost
of a trade over all assets is

T-1 N

T, =0.003) 3 (|Wir1 — wial). (4.4.4)

t=1 =1

4.4.2 Global Minimum Variance Portfolio

The GMVP is the portfolio with the the smallest variance for a given covariance
matrix (Kempf and Memmel (2006)). The optimal portfolio weights are determined
independently from the expected asset returns. This has the advantage that the op-
timization depends completely on the covariance matrix of asset returns. The covari-
ance matrix can be estimated with more reliability than expected returns (Golosnoy
et al. (2011)). The GMVP is given from the following minimization

minimize w,Xw;
wt
subject to w,1 =1 (4.4.5)

WtEO

where the last inequality is valid when short selling is not allowed. The optimal
weights for the GMV portfolio when short selling is allowed are given by

¥ 1
Vs
The GMYV portfolio is the only portfolio of the efficient frontier that does not depend
on the expected returns. In our work also we estimate the GMV portfolio under
the assumption of allowing short selling on assets. This has as a result a better

portfolio performance in terms of expected return and volatility compared to the
case of constrained GMVP.

4.4.3 Benchmark portfolio strategies and Portfolio evaluation
performance

The relative performance of the proposed bond portfolio strategy based on the
Markowitz’s portfolio theory is compared with a set of yield curve strategies (for more
information about traditional yield curve strategies see Fabozzi and Fong (1994) and
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Fabozzi (2018)). We consider the following yield curve strategies: barbell strategy,
bullet strategy and ladder or equally weighted portfolio strategy. The main purpose
of these strategies is to reduce yield volatility and risk. Also, we assume that the
investor invests either in a 48-month or either in a 60-month bond. In the barbell
portfolio strategy, the maturity of the bonds included in the portfolio is equally-
weighted in the two extreme maturities, the 3-month and the 10-year bond. In the
bullet strategy, the maturity of the bonds in the portfolio is concentrated at one
point on the bond yield curve. This strategy has means that we can invest either to
48-month or 60-month or 72-month or 84-month bond, totally four alternative port-
folios. Finally, in the equally weighted portfolio strategy the portfolio is constructed
so as to has equal amount of each yield maturity.

Even if the tangency portfolio offers the best possible combinations of portfolio risk
and expected return, the GMVP often yields better out-of-sample results than does
an investment in the tangency portfolio (KKempf and Memmel (2006)). The empiri-
cal implementation of the mean-variance optimization problem defined by (4.4.1) is
performed by using one- step-ahead estimates of the vector of expected returns and
its covariance matrix, considering alternative values for the risk aversion coefficient
0, 0.0001, 0.01, 0.1 ,0.5,1,2 and 4.

The performance of optimal MV and GMVPs is evaluated using the average portfolio
return (p,.), the average excess return with respect to the risk-free rate (fre,) and
the Sharpe Ratio (SR). We consider the risk-free rate to be the Federal Funds rate.
These statistics are calculated as

1 T-1
/:\l, = ﬁ Wi,thJrl’ (446)
t=1
1 T-1
,ae:c = ﬁ Z(Wth-i-l - T’{+1), (447)
t=1
SR="=, (4.4.8)
g

where r/ is the risk-free rate which in our case is the federal feds rate, w; is the
vector of weights in the portfolio in period t. Ry = [rig,. .. ,rN,t]' is a vector with
the bond returns of all maturities and o is the standard deviation of the portfolio’s
excess return.
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4.4.4 Results for MV and GMYV portfolios

We now present the optimal MV portfolios for the out-of-sample period, totally 120
months, for the JKV data set and for different levels of the risk aversion coefficient
0. Optimal portfolio compositions are rebalanced on a 3-month basis. First, we
estimate the optimal weights under the mean-variance framework for both allowing
or not short selling and subsequently the optimal weights for the GMVP. The excess
return is calculated using the Federal Funds rate as the risk-free asset and the level
of transaction costs is set to 3 bps. The results presented here for the mean-variance
portfolio are for risk aversion 6 = 0.001. The excess return is calculated using the
Federal Feds rate as a risk free rate.

Table 4.4.1 reports the following monthly performance measures: mean gross return,
mean net excess return, portfolio standard deviation and the Sharpe ratio of the pro-
posed portfolio strategy for both the cases allowing short selling or not. The table
includes the results for the barbell strategy, the portfolio strategy of investing in the
maturities remaining after excluding the 3-month and the 10-year bond (portfolio
strategy A). Table 4.4.2 reports the performance measures for the ladder portfolio
strategy and a bullet strategy investing either in a 4-year, 5-year, 6-year or 7-year
bond. The results show that our portfolio strategy (MV) based on the ATSM pro-
duces returns and Sharpe ratios higher from many of the other benchmark strategies.
Table 4.4.1 shows that the optimal mean-variance portfolio of U.S. Treasury bonds
achieved a mean monthly average gross return of 9.83% for unconstrained portfo-
lio and 5.36% when short selling is not allowed. The monthly standard deviation
is 0.3602% and 0.3610% respectively. The risk-adjusted performance is measured
by the Sharpe ratio which is equal to 5.88% and 2.90% for unconstrained and con-
strained portfolio respectively. The results indicate that the mean-variance bond
portfolios can be very good alternatives to many traditional portfolio strategies.

Figure C.0.20 presents the evolution of optimal mean variance portfolio weights for
the out-of-sample period under the assumption that short selling is not allowed and
figure C.0.19 the evolution of optimal weights for each bond when short selling is
allowed. In both cases the investor’s position is concentrated in levels higher than
55% holding a 48-month bond at time ¢ and a 3-month bond at time ¢+1. Figure
4.4.1 illustrates for the case of no short selling the cumulative returns of optimal
portfolios estimated through our term structure model in comparison with some basic
benchmark portfolio strategies. Specifically we have estimated the cumulative returns
following the Barbell, A and Ladder portfolio strategy. The cumulative returns of the
mean variance portfolios obtained from the term structure model using the minimum
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chi-square method outperforms the other strategies for the out-of-sample period. In
case of short selling (see figure 4.4.2) again our method outperforms the others.

Portfolio | Mean monthly return  Mean net excess return  Std (%) Sharpe ratio (%)
MV 0.0983 0.0959 0.3602 0.8861
Barbell | 0.1658 0.1634 0.3931  5.3485
A 0.0741 0.0717 0.5171 4.2990
MV 0.0989 0.0965 0.3610  2.9036
Barbell* | 0.1658 0.1634 0.3931 3.6206
A* 0.0536 0.0512 0.2946  1.9334

Table 4.4.1: Performance of MV yield curve strategies for both allowing and not
short selling (with * are denoted the results when short selling is not allowed).

Portfolio Mean monthly return  Mean net excess return  Std (%) Sharpe ratio (%)
Ladder 0.0764 0.0740 0.1228  5.4280
4-year Bond | 0.0342 0.0317 0.1032  3.3209
5-year Bond | 0.0131 0.0107 0.1325  0.8870
6-year Bond | 0.0531 0.0507 0.1159  4.7890
7-year Bond | 0.1415 0.1390 0.1971 7.7157

Table 4.4.2: Performance of benchmark portfolio strategies

The evolution of MV optimal portfolio weights in the out of sample period for the
case of unconstrained and constrained portfolio for risk aversion § equal to 0.001
is presented in figures C.0.19 and C.0.20 respectively. In the constrained case the
weights are concentrated in investing in the first three maturities at time ¢ and
moving to a bond of the next maturity at time ¢t + 1. The portfolio turnover in
both case shows a large increase at the end of 2008 during the global financial crisis
(figure C.0.21 and figure C.0.22). The realized returns net of transaction costs for
unconstrained and constrained MV portfolios, figures C.0.23 and C.0.24 respectively,
show the same pattern for the out-of-sample period 2000:01 to 2009:12.

In table 4.4.3 the performance measures are presented for the unconstrained and con-
strained GMVP. The results show that our portfolio strategy based on the ATSM
performs quite well in terms of mean returns, since only the barbell portfolio out-
performs our strategy but with higher portfolio standard deviation.
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Portfolio | Mean monthly return Mean net excess return  Std (%) Sharpe ratio (%)
GMV 0.0858 0.0833 0.3481 4.5956
Barbell 0.1404 0.1380 0.4114  3.6206
A 0.0255 0.0230 0.1296 1.9334
GMV* 0.0917 0.0893 0.2124  2.8861
Barbellx | 0.1404 0.1380 0.2564  3.6206
Ax 0.0287 0.0263 0.3136  2.6072

Table 4.4.3: Performance of GMVP yield curve strategies for both allowing and not

short selling (with * are denoted the results when short selling is not allowed).

The performance of the portfolio constructed via an ATSM is compared in terms
of cumulative returns, for the entire out-of-sample period, with other benchmark
portfolio strategies (see figures 4.4.3 and 4.4.4). The results favor our method for
case of mean-variance optimal portfolios either with short selling or not. In the GMV
portfolio strategy the term structure based method performs quite satisfactory and

only the barbell strategy outperforms ours.
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Figure 4.4.1: Cumulative MV portfolio returns for the out-of-sample period 2000:1
to 2009:12. Short selling is not allowed.

The results for the GMVP show that in terms of Sharpe ratio, mean gross and excess
returns only the barbel strategy performs better than our strategy. A comparative
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Figure 4.4.2: Cumulative MV portfolio returns for the out-of-sample period 2000:1
to 2009:12. Short selling is allowed.

analysis of the performance of mean-variance and GMVPs shows that the first gen-
erates higher Sharpe ratios but the latter exhibit lower standard deviation. The
evolution of portfolio allocation (see figures C.0.15 and C.0.14) shows that as in the
MYV portfolio optimization the position of the investor is concentrated in in holding
a 48-month bond at time ¢ and a 3-month bond at time ¢+1 but now in lower lev-
els. Also, our portfolio strategy for the entire out-of-sample period produce lower
standard deviation from the barbell, bullet and ladder portfolio strategy (see figures
C.0.16 and C.0.17).

In conclusion, the results obtained from the construction of optimal portfolios from
the affine term structure presented in section 4 can be summarized as follows. The
proposed bond portfolio strategies for the MV potfolio (ATSM-MV) and the GMV
portfolio (ATSM-GMYV) in most of the cases produce better mean returns and Sharpe
ratios with lower risk, in comparison with traditional bond portfolio strategies. The
results are valid regardless or not of the choice of allowing short selling.

4.5 Control charts and optimal weights monitoring

In this section, we construct control chart procedures for monitoring optimal portfolio
weights obtained from the method described in the previous section. Our sequential
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Figure 4.4.3: Cumulative GMV portfolio returns for the out-of-sample period 2000:1
to 2009:12. Short selling is not allowed.

monitoring analysis is restricted to GMV optimal portfolio weights. In contrast with
the MV portfolio, the GMVP weights depend only on the covariance matrix of yield
returns but not on the mean yield returns which increases the estimation risk of
the portfolio. Since the investment decisions are mainly made in terms of portfolio
weights we choose to monitor the vector of optimal weights each time period. Also,
monitoring optimal weights in government bond portfolios can be very helpful in
cases of liquidity problems.

4.5.1 Sequential Monitoring of optimal portfolio weights

Structural changes in the distribution of assets returns may have as a result changes
is the optimal asset portfolio allocation. A very common assumption in the finance
literature is that asset returns follow an independent and identically distribution
which is usually normal. In our case bond expected returns due to their construc-
tion from the same dynamic term structure model exhibit correlation. Table B.0.3
presents the correlation coefficients for the bond expected returns. The results show
that expected returns in most of the cases show correlation greater than 0.68. Okhrin
and Schmid (2006) following the normality assumption for asset returns, examined
the distribution and the asymptotic distribution properties of optimal weights in a
GMYV portfolio . They find that the optimal portfolio weights w; follow an elliptical
multivariate ¢-distribution with mean and variance:
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Figure 4.4.4: Cumulative GMV portfolio returns for the out-of-sample period 2000:1
to 2009:12. Short selling is allowed.

1 Q
n—k—1 1211’

E(W)=wand Q =Var(w) =
respectively, where
'y
1'X-11
The observed monitoring process of optimal portfolio weights is considered to be in
control if E(W;,) = w holds for all t > 1, n is the size of the estimation window,

otherwise the observed process is denoted to be out-of-control. We assume that the
covariance matrix X remains unchanged between two consecutive change points.

Q=% -

Golosnoy and Schmid (2007) applied sequential control procedures for monitoring
the optimal GMV portfolio weights. Specifically these procedures are applied to the
random vector w;,, that contains the first k-1 components of W;,. 2" denotes the
(k — 1) x (k — 1) matrix obtained by dropping the k-th row and the k-th column
of the matrix €2. The proposed control charts are based either on the estimated
sample optimal weights W, ,, or either on the first differences of the optimal weights
D¢n = Wen — We_1n . Portfolio weights are highly correlated and the use of dif-
ferences has as a result the reduction of the correlation. The variables w; — wy_;
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are asymptotically independent. A possibly disadvantage is that it depends on the
estimation window length n (Golosnoy and Schmid (2007)). The control charts
on sample weights are based on the univariate EWMA recursion applied on Maha-
lanobis distance and the MEWMA statistic. The Mahalanobis distance is referred to
be the distance of optimal weight to its in-control (when there in no change) mean
w* = Ey(W7,) and is measured by

Ty = (W, — W) Q7 (W), —w"),t > L. (4.5.1)
The univariate EWMA recursion is given by
Zmn == (1 - )\)thl,n + )\Ttml, (452)

for ¢ > 1. The starting value Z,, is set equal to Ey(1;,) = k — 1. A signal is given
it Z;, > c¢;. The control limit ¢;, which determines the rejection area, is estimated
for a predetermined value of the ARLy.

The multivariate EWMA recursion can be written as
Zt,n = (I — R)tthl,n + RvAvfﬂn,t Z 1,

or

t—1

Zin=(I-R)Zy, +RY I-R)"W/ . (4.5.3)
v=0

where I is the (k—1) x (k — 1) identity matrix and R = diag(ry,72,...,7%_1) is (k —
1) x (k — 1) diagonal matrix with diagonal elements 0 < r; < 1,7 € {1,2,...,k—1}.
The starting value Zg ,, is Eo(Z,) = w*, with Ej is denoted the mean value when the
monitoring process is in-control. The covariance matrix of the multivariate EWMA
statistic Z;, in the in-control state is given by

t—1
*

Covy(Zen) = R( > @-R)'Cov(W;_,,. W, . JI- R)J) R. (4.5.4)

t—j,n
1,j=0

A signal is given if

(Zin — Eo(Zy ) Covo(Zy) " (Zy — Eo(Zy0)) > c.
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Golosnoy and Schmid (2007) constructed analogously the control charts based on
the first differences of optimal portfolio weights. The Mahalanobis distance of the
first differences from the mean when the process is in control, is defined as

T/, = (Dgn — Ey(Dgy)) Q% (Dew — Eo(Dyn)), (4.5.5)

with Q} = Covg(Dg ). When the process is in-control we have E,(D¢yn) = 0, then
the Malanobis distance takes the following form

T, = D¢n€) 'Din. (4.5.6)

The univariate EWMA recursion is given by

Zt =1 =Nz, + T

t.,n t,n?

(4.5.7)
where ¢t > 1 and A € (0, 1]. The starting value is
Zél,n = Eo(Dt,n’Covo(Dtm)*lDt’n) = E0<th’ln) — k1.

The monitoring process is out of control if Zgn > cg4, Cq 18 a chosen control limit. For
the difference control charts based on the multivariate EWMA recursion the control

statistic is
Zgn = (I_R) Zzlfl,n + R Dt,nat 2 17 (458)

with starting value ng = Ey(D¢n) = 0. The process is out of control if

& d \—1rpd
ZMCOUO(ZM) Z;, > ca

The control limit of a control chart defines the rejection area in every control scheme
and is estimated through a simulation study for a predetermined value of the ARL
(usually in financial applications is equal to 120 days or 1/2 year of daily observations
Golosnoy and Schmid (2007)). After a signal is given the financial analyst should
examine it and decide for further actions about the portfolio allocation. The control
limit of each control chart is determined through a simulation study for a prespecified
value ¢ for ARLy. Because of the monthly sequence of our data, we chose in-control
average run length to be equal to 6 months. This means that on average the first false
signal comes after six months of observations. The critical value ¢, is the solution of
the equation (1.2.1). After a starting value of the control limit is chosen, 5x10* values
of the difference process are simulated. These simulated values are applied to the
control chart procedure and the stopping times of the control charts are simulated.
Again, 5 x 10* values of the difference process are simulated and the stopping times
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are recorded. This simulation procedure is iterated 5 x 10* times. The estimated
ARL in the in-control state is the average of simulated stopping times. The iterations
are stopped if the absolute deviation from the prespecified ARLy is less than 0.002.
For the estimation of the control limit using the MRL we follow the same technique
as described with the ARL and the MRLj is chosen equal to 6 months.

4.5.2 Estimation of the covariance matrix

The optimal portfolio weights depend on the unknown parameters of the asset re-
turns distribution which are subject to unknown structural breaks. In the GMVP
framework the expected portfolio return and the portfolio risk depends through the
optimal weights composition on the variance of asset returns. Because the variance
of asset return is unknown in practice, it has to be estimated. The parameter estima-
tion causes estimation risk in the optimal portfolio selection and ignoring it may have
negative consequences in optimal portfolio selection (Frisén (2008)). Various meth-
ods have been applied in order to reduce the estimation risk (see for example Brandt
(2010) and DeMiguel et al. (2009)). A very common estimator of the covariance
matrix of asset returns is the sample covariance matrix. In our work the covariance
matrix of asset returns is estimated through the affine term structure model.

The main problem in order to estimate the control statistics for the difference charts
we presented in the previous section, is the estimation of the covariances when the
process is in control of the differences of the optimal weights. Suppose a portfolio
consisting of risky assets under the assumption of independent and normally dis-
tributed returns. Since the exact estimation of these autocovariances we previously
mentioned is difficult, Golosnoy and Schmid (2007) based on the work of Okhrin and
Schmid (2006) proposed an approximation for large n. However, in our case due the
high correlation of the asset returns we have we choose to estimate these quanti-
ties through a simulation study. Golosnoy et al. (2010) mentioned as an alternative
method for the covariance estimation could be a Monte Carlo approach. In our work
we try to approximate the covariance matrix through a simulation study. The esti-
mation of the covariance of the control statistic Zf’n , when the process is in control,
requires the estimation of the covariance matrix between the weights. Golosnoy and
Schmid (2007) studied and approximated the limit behavior of Covy(Z{,,) as n tends
to infinity.

For the estimation of the autocovariance matrix of the first differences of optimal
weights we use the following iterative procedure:
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1) Generate data from the state evolution process X ~ N(u, £X") when the process
is in-control.

2) Generate residual data for the state evolution process U ~ N(0,1I).

3) Estimate the covariance matrix of the filtered states Xgj¢41.

4) Estimate the covariance matrix of one-period ahead bond yields Yij¢11.

5) Estimate one-period ahead realized returns according to section 4.5.

6) Estimate optimal global minimum variance portfolio weights.

7) Estimate the first differences of optimal weights.

8) Estimate variance of first differences of optimal weights.

9) Repeat the above procedure for 5 x 10? iterations.

After the estimation of the autocovariances of optimal weights from equations (4.5.7)
and (4.5.8) we can estimate the control statistics for the first difference procedures
of the univariate EWMA based on the Mahalanobis distance and the multivariate
EWMA.

4.6 Simulation study

The proposed difference control schemes for correlated data along with their detection
ability are analyzed within a simulation study. At first, the control limits for all
charts are determined in such a way that the control charts provide the same in-
control average run lengths, here assumed to be equal to a period of six months.
After obtaining the control limits through simulation as described previously, the
performance of control charts assuming that a change point happens at the beginning
the performance is evaluated by computing the ARL,; and the MRL.

4.6.1 Modeling the out-of-control state

In our simulation study we follow the approach of Golosnoy et al. (2011) for mod-
elling the asset variance. We suppose that we have k=6 assets, government bond
yields, that follow the normal distribution with mean g and variance 3 which has
the following form

¥=S-C-5S,
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where S is a diagonal matrix that contains the standard deviations and C is the
correlation matrix. In our study we assume that the in-control variance is
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Here we assume changes only in the variance of the bond yield returns, so v = 1. The
standard deviation parameter /i can take values from the set {1.5,2,2.5,3,3.5,4,4.5}.
The estimation window n is equal to 25 and the smoothing parameter in the univari-
ate EMWA based on the Mahalanobis distance is A € {0.05,0.1,0.15,0.2,0.25, 0.3,

0.35,0.4,0.45,0.5,0.75,0.9}. The MEWMA control charts are constructed with all
smoothing parameters in the main diagonal equal, r =
our simulation study there are totally 84 different out-of-control cases. We mention
that ARL; is calculated under the restrictive assumption that the change happens
at time t = 1.

reo= ‘-

=11 = M. In
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4.6.2 Simulation study results

Okhrin and Schmid (2006) under the assumption that the asset returns are inde-
pendent and identically normally distributed, they derived the exact distribution
of optimal weights W¢ and prove they are asymptotically normal. In our work the
independence of asset returns is not valid because bond yields are estimated via a
common dynamic factor model. In order to overcome this problem we choose to fol-
low a simulation approach for estimating the necessary moments of optimal weights.
We mention that for the distribution of optimal weights in a GMVP when asset
returns are dependent and identically distributed a possible approach could be the
logistic distribution but with larger kyrtosis (see figure C.0.18) and this topic re-
mains for further research. We remind that the logistic distribution is very similar
in shape to the normal distribution and has roughly the same shape as the Student’s
t-distribution.

The simulation study compares the results for the out-of-sample period of four control
chart cases: the univariate EWMA control charts based on Mahalanobis distance for
unconstrained (Mahalu) and constrained portfolio (Mahalc), the control charts based
on the MEWMA statistic for unconstrained (MEWMAu) and constrained portfolio
(MEWMACc). We remind that small values of the smoothing parameter A give more
weight to older data and for A = 1 the EWMA chart is a Shewhart chart. For
the first case (Mahalu) (table B.0.4) the ARL, is reduced for each certain level of
the smoothing parameter \ as the variance increases. For values A = {0.05,1} and
A = {0.75,9} we observe large values for the ARL;. In parentheses we present
the MRLys which they follow the same pattern as the ARLs;. The results for the
second case (table B.0.6) show that the strategy of not allowing short selling gives
smaller out-of-sample ARL;s. Again for a given value of the smoothing parameter
as the shock in variance increases the ARL; decreases. Control charts based on the
MEWMA statistic for unconstrained portfolio (table B.0.5) exhibit lower values of
ARL; for the Mahalanobis distance case. Finally, the fourth case (table B.0.7) gives
the lowest ARL;s except in the cases with smoothing parameters A = {0.75,0.9}.
Generally, the examples with portfolios not allowing short selling perform better in
terms of ARL; than allowing short selling. The MRLys for the constrained portfolios
indicate that our method gives signal at the next time period when the monitoring
process of portfolio weights is already in the out-of-control state. The fact that the
MRL; is smaller in some cases from the ARL; indicate that the distribution of the
run length may be extremely right-skewed (Golosnoy and Schmid (2007)).

Table 4.6.1 presents the best ARL; values for each control chart case and the cor-
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responding value of smoothing parameter A\ for each shock in the variance matrix.
For the Mahalu case the control chart with smoothing parameter A\ = 0.35 per-
forms better and gives the smallest out-of-sample ARL. In Mahac this happens for
smoothing parameter A = 0.1. On the contrary in MEWMAu and MEWMAc¢ oc-
casion there is no unique smoothing parameter value that outperforms the others.
In the first case small shocks are detected faster from large values of A\ in contrast
to larger shocks where more appropriate are small values of the smoothing parame-
ter. In the latter, for all shocks in the variance the best results are given for small
values of the smoothing parameter. Table 4.6.2 exhibits the best MRL, values for
the two cases for unconstrained portfolio, Mahalu and MEWMAu, along with the
corresponding smoothing parameter values. In both cases there is no specific value
for the smoothing parameter that outperforms the others.

The difference control charts based on the Mahalanobis distance perform better
that these based on the multivariate EMWA recursion in the case of unconstrained
portfolios. This not always happens when short selling in not allowed since in many
cases the control schemes based on MEWMA recursion have slightly better results in
terms of out-of-sample ARL. As a portfolio strategy the prohibition of short selling
has as result lower out-of-sample ARL;s and MRL;s. The smallest out-of-sample
ARLys obtained for the Mahalu charts are comparable with the results from the
MEWMAu charts. With some exceptions the proposed difference control schemes
for monitoring optimal weights from a government bond portfolio favour small values
of the smoothing parameter. This is in accordance with the results for the case of
portfolios constructed from risk assets (Golosnoy and Schmid (2007)). Additionally,
the difference control schemes appear to react slowly in small changes in the variance
of asset returns and the out-of-sample ARL,s takes large values except in the case
of MEWMAc.

4.7 Empirical example

The control charts based on the first differences of optimal portfolio weights are
applied in the out-of-sample period from January, 2000 to December, 2009 in total
120 months. We assume an investor who holds a portfolio consisted of £ = 6 U.S.
Treasury bonds. Before we construct the control charts it is necessary to determine
the target process or else the in-control process. This may be quite challenging
for real data in financial applications specially in our example where we have lees
frequently data than daily, monthly. When the monitoring process is in control, it is
assumed there is no change point and the target process is estimated.
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u Malalu Mahalc MEWMAu MEWMACc
1.5 | 4.2689 (0.35) 1.1212 (0.1) 5.4578 (0.75) 1.3646 (0.05)
2 | 4.1450 (0.35) 1.0668 (0.1) 5.3463 (0.75) 1.1986 (0.1)
2.5 | 4.0805 (0.35) 1.0320 (0.1) 2.2036 (0.5)  1.0656 (0.1)
3 ] 3.9716 (0.35) 1.0252 (0.1) 4.9013 (0.05) 1.0168 (0.05)
3.5 | 3.7859 (0.35) 1.0178 (0.1) 4.5306 (0.25) 1.0136 (0.05)
4 | 3.6668 (0.35) 1.0106 (0.1) 3.9979 (0.05) 1.0102 (0.1)
4.5 | 3.4719 (0.35) 1.0050 (0.1) 3.7748 (0.15) 1.0106 (0.1)

Table 4.6.1: Best out-of-control ARLs values for each shock in variance of asset
returns, for n=40 and in-control ARL=6. The corresponding smoothing parameter
values are given in parentheses.

1 15 2 2.5 3 35 1 15
Malalu |5 (0.5) 5 (0.5) 5 (0.15) 4 (0.5) 4(0.5) 5 (%) 4 (0.05)
MEWMAu | 4 (¥) 3(03) 4(*) 4% 3 3 3(%

Table 4.6.2: Best out-of-control MRLs values for n=40 and in-control MRL=6 for
unconstrained portfolios. The corresponding smoothing parameter values are given in
parentheses. The notation (*) means that more than on value of \ is appropriate.

We choose the period from September 1996 to December 1999, in total 40 months,
as the prerun period where the process is in-control. In this period the U.S. Treasury
bond returns are assumed to be in the in-control state. Using the observations from
this period we estimate the in-control one period ahead log- realized returns, the one-
period ahead expected returns, the covariance matrix of bond returns and the target
optimal GMVP weights. The control charts are constructed for the out-of-sample
period and there is no-reestimation of the target process. After the control chart gives
a signal and is confirmed from the financial analyst that this is a structural break,
normally the target process should be reevaluated (see for example Golosnoy and
Schmid (2007) and Golosnoy et al. 2011). Since, in our case we have less frequently
data a possible solution to this problem may be via simulation. The control limits
are chosen for a prespecified value h of the in-control ARL equal to 6 months, this
means that on average each control chart should give the first false alarm after
six months. The control charts are estimated for the following set of smoothing
parameters A € {0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5,0.75,0.9}. Golosnoy
and Schmid (2007) mentioned that a benefit of the first difference control charts is
that give an alarm almost immediately with high probability if the change in the
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parameters we monitor is large.

Longerstaey and Spencer (1996) supported the choice of large values of the smooth-
ing parameters in the EWMA model in financial applications, specifically equal to
0.97. In contrast Bollen (2015) is in favor of lower values values and found that the
optimal value of A is time varying and clusters in high and low periods. In our em-
pirical example we find that in the case of control schemes based on the Mahalanobis
distance for constrained and unconstrained GMVP values equal or lower than 0.15
and 0.3 respectively, are appropriate. In addition, for control schemes based on mul-
tivariate EWMA recursion for both cases smoothing parameter values equal or lower
than 0.3 are preferred.

The behavior of the control statistics based on the Mahalanobis distance for smooth-
ing parameter values r = A, A € {0.05,0.1,0.15,0.2,0.25,0.3}. is shown in figures
4.7.1 and 4.7.2 for constrained and unconstrained portfolio respectively. Results for
the rest of the smoothing parameter values are presented in the Appendix B. Figures
4.7.3 and 4.7.4 present analogously the control statistics based on the MEWMA re-
cursion. We remind that for the MEWMA charts the smoothing matrix is taken as
a diagonal matrix with diagonal elements equal to A, » = AI. In the control schemes
based on the Mahalanobis distance the control statistics show large oscillations in
contrast with those of MEWMA recursion that exhibit a very smoother behavior.
As a consequence, control statistics based on Mahalanobis distance are more often
lying above the control limit from those based on MEWMA recursion.

Control scheme Smth parameter. Control limit
Mahal. dist. (constrained) 0.15 29.8

Mahal. dist. (unconstrained) | 0.15 31.8
MEMWA (constrained) 0.2 1809.8
MEMWA (unconstrained) 0.2 12.9

Table 4.7.1: Control limits for the out-of-sample period for the various control
schemes and fixed ARL equal to 6. The control schemes are applied to constrained or
unconstrained portfolios.

The main purpose of an investor is to minimize the one period ahead out-of-sample
portfolio variance. The proposed control charts give a signal when a structural break
in the optimal portfolio weights is likely to happen. Table 4.7.1 presents for the two
control chart procedures and constrained and unconstrained portfolio optimization,
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Figure 4.7.1: Control Statistics for constrained GMVP based on Mahalanobis dis-
tance for A = {0.05,0.1,0.15,0.2,0.25,0.3}. The out-of-sample period is 2000:01 to
2009:12.

the control limits and the corresponding smoothing parameters. The smoothing
parameters for the procedures based on the Mahalanobis distance are set equal to
0.15 and for the MEWMA statistic are for both optimization cases equal to 0.2.
Additional results for other values of the smoothing parameter are available upon
request. Figure 4.7.5 illustrates the change points for the control schemes based on
the MEWMA. We remind that when a signal is given and a change point is identified
the process should be re-estimated as Golosnoy and Schmid (2007) mentioned.

Figures 4.7.6 and 4.7.5 present the control charts for the two portfolio strategies based
on the Mahalanobis distance and the multivariate EWMA recursion, respectively.
The difference control charts using the Mahalanobis distance for both constrained
and unconstrained portfolios give more signals than the charts using the MEWMA
statistic. The latter control schemes behave better which is a results in contradiction
with the results for risk assets and daily data that Golosnoy and Schmid (2007)
found. A possible explanation could be the difference in the risk characteristics of
the data since here we have less risky assets than stocks, government bonds. A
possibly advantage of using less frequently data than daily could be the reduction of
large number of signals specially in term structure models. A distinction between real
and false alarm is difficult and each signal obtained should be evaluated for further
actions by a financial analyst. In our work we attempt to give, if it is possible, to
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Figure 4.7.2: Control Statistics for unconstrained GMVP based on Mahalanobis
distance for A = {0.05,0.1,0.15,0.2,0.25,0.3}. The out-of-sample period is 2000:01 to
2009:12.

the signals obtained from the control charts an economic interpretation. The use
of difference MEWMA control chart for unconstrained portfolio gives in the out-
of-sample period four signals (without reestimation). The dates of the signals are:
2005:09, 2007:10, 2008:10 and 2008:11. The difference MEWMA control chart for
constrained portfolio gives signals at the following dates: 2005:09, 2005:11, 2007:09
and 2008:10. The economic evaluation of all given signals is of great importance in
finance. At December 2007 started the global financial crisis which led to the Great
Recession until June 2009 according to the National Bureau of Economic Research
(NBER). Both control schemes detect the structural break due to the financial crisis
of 2007. However, the MEWMA chart for constrained portfolio gives a signal a
month earlier than the chart in unconstrained case. The signals that both charts
give at September of 2005 could be associated with the housing market correction
during the period 2005-2006 that started the June of 2005.
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Figure 4.7.3: MEWMA Control Statistics for constrained GMVP for A =
{0.05,0.1,0.15,0.2,0.25,0.3}. The out-of-sample period is 2000:01 to 2009:12.
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Figure 4.7.4: MEWMA Control Statistics for unconstrained GMVP for A =
{0.05,0.1,0.15,0.2,0.25,0.3}. The out-of-sample period is 2000:01 to 2009:12.
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Figure 4.7.5: Control charts based on MEWMA statistic for smoothing parameter
equal to 0.2. The out-of-sample period is 2000:01 to 2009:12.
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Figure 4.7.6: Control charts based on Mahalanobis distance for smoothing parameter
equal to 0.15. The out-of-sample period is 2000:01 to 2009:12.



Chapter 5

Change points and VARMA Affine
Term Structure Models

5.1 Introduction

In this chapter we monitoring the parameters of an arbitrage-free VARMA ATSM
where the vector of state variables is observable and the estimation procedure follow-
ing Ang et al. (2006) is a two-step process. In the first step we estimate parameters
of the VARMA model and in the second step the market prices of risk given the
estimates from the first step. This research in addition to standard estimation tech-
niques for the first step of the estimation procedure is focused in a numerical robust
estimation technique that so far as we know is the first time that is applied in an
ATSM for interest rates, which is called projection minimum distance (PMD) esti-
mation approach (Jorda and Kozicki (2011)). This method is previously applied in
the estimation of DSGE models. In this method the restrictions of the model are
opposed to a semi-parametric representation of the data based on its Wold repre-
sentation (or impulse responses). Jorda and Kozicki (2011) proposed this two step
estimation procedure where the mapping between Wold coefficients and parameters
is linear and the likelihood score function is nonlinear in the parameters. PMD
belongs to the class of limited-information, minimum distance estimators. In the
first step for the estimation of the Wold representation coefficients is used the local
projections method (Jorda (2005)). The second step of the estimator consists in
minimizing the distance resulting from the mapping between the Wold coefficients
and the coefficients of our model.

119
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The estimation of impulse responses with the local projections method is robust to
potential misspecification of the data generating process. However, a disadvantage
of this method is an efficiency loss in the estimation of impulse response functions.
Teulings and Zubanov (2014) addressed this issue and propose an extension of the
local projections method for the estimation of the impulse response function (IRF)
of GDP taking into consideration banking crisis.

We mention that affine models are usually used to describe the term structure be-
tween yields and interest rates and for the modeling of the state evolution process
the majority of the literate is based on linear models such as VARs. The advan-
tage of VAR models is the fact they have the ability of reproducing the complex
dynamics of the term structure quite well. In recent years VARMA models are in-
troduced to macroeconomic applications and their theoretical advantages have been
examined (Kascha (2012)). However, estimation problems are a possible drawback
that discourage its application very often.

Metaxoglou and Smith (2007) dealt with the computational problems of ML esti-
mation of VARMA models and introduced a state-space representation for VARMA
that enables ML estimation using the expectation-maximization (EM) algorithm.
Dufour and Pelletier (2008) proposed a modeling and estimation method for weak
VARMA processes simpler than the usual echelon form of VARMA model. The
estimation method is a three-step generalization of the regression-based estimation
method proposed by Hannan and Rissanen (1982) for univariate ARMA models.
Kascha and Mertens (2009) used structural VARMA and state space models in
DSGE models. Feunou and Fontaine (2009) studied VARMA ATSMs and presented
the benefits of using VARMA process for the term structure. Kascha (2012) pre-
sented a comparison of the main estimation methods for VARMA models such as
the Hannan-Rissanen Method (HR) (Hannan and Rissanen (1982)), the Hannan-
Kavalieris-Procedure (HK) Hannan and Kavalieris (1984) and Hannan and Deistler
(2012), Generalized Least Squares (KP) (Koreisha and Pukkila (1990) Kavalieris et
al. (2003)), the Tterative Least Squares (IHR) proposed by Kapetanios (2003), and fi-
nally the MLE method. The results showed advantages in the use of VARMA instead
of VAR modeling and the best performance is made from the algorithm of Hannan
and Kavalieris (1984). Also the results favored the opinion that for a VARMA model
the preferred estimation method should be close to a robust maximum likelihood
method.

Mainassara and Francq (2011) examined the asymptotic properties of the quasi-
maximum likelihood estimator (QMLE) of VARMA models assuming that the errors
are uncorrelated but not necessarily independent martingale differences. Mainassara
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et al. (2014) estimated the asymptotic variance matrix of the least squares (LS)
and the quasi-maximum likelihood (QML) estimators of VARMA models in terms
of the VAR and MA polynomials and the second and fourth-order structure of the
noise. The main assumption is that the errors are uncorrelated but not necessarily
independent. Chan et al. (2016) developed a Bayesian approach for inference in
VARMA models and to deal up with potential problems of over-parameterization
and computation. Chan and Eisenstat (2017) proposed Bayesian approach for the
estimation of VARMA models. Wilms et al. (2021) presented a sparse identification
and estimation approach for Gaussian VARMA models.

Kascha and Trenkler (2011) proposed an estimation strategy for the cointegrated
VARMA models applied to U.S. term structure of interest rates. Simionescu (2013)
applied a VARMA model for the U.S. economy and compared its forecasts with these
from a VAR model. For small time horizons the forecasts based on VARMA models
are better than others for variables unaffected by structural shocks. For the evalu-
ation of the relative forecasting accuracy is introduced the the generalized forecast
error of second moment (GFESM). Dufour and Stevanovi¢ (2013) studied the rela-
tionship between VARMA and factor representations of a vector stochastic process
and combined factor and VARMA modeling by using factor-augmented VARMA
(FAVARMA) models.

Sliwa and Schmid (2005) proposed EWMA control charts, for jointly monitoring all
elements of the covariance matrix at lag 0 of a multivariate time series. The un-
derlying target process is assumed to be a stationary Gaussian process especially
a VARMA(1,1) process. Sliwa and Schmid (2005) applied control charts for the
surveillance of the covariance matrices of multivariate nonlinear time series. The
target process is assumed to be a multivariate GARCH(1,1) model. Bodnar and
Schmid (2007) proposed several CUSUM charts, modified and residual charts, for
the mean of stationary multivariate time series by taking into account the structure
of the underlying stochastic process. The target process is always assumed to be a
multivariate stationary Gaussian process such as a VARMA(1,1) model. The pro-
posed charts are in general not directionally invariant in contrast to CUSUM charts
for 1.i.d. variables. However, the authors derived a sufficient condition under which
the introduced CUSUM charts fulfill this property.

Bodnar and Schmid (2011) introduced various CUSUM type control chart procedures
for monitoring the mean of a multivariate Gaussian process. In a simulation study the
introduced CUSUM charts are compared with other control chart procedures. The
in-control process is assumed to be either a 10-dimensional VAR(1) process or a two-
dimensional VARMA(1,1) process. The 10-dimensional VAR(1) process satisfies the
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invariance condition but not the VARMA(1,1) process. The out-of-control condition
assumed a constant shift in the mean vector. The results showed that there is
no overall best chart procedure and the performance of the charts depends on the
underlying in-control process.

Vanhatalo and Kulahei (2015) studied how the autocorrelation in data affects the
Hotelling T2 control chart. The detection ability of the control chart is evaluated for
various shifts in the mean vector for simulated data from a VAR model. Among the
approaches constructing the Hotelling 72 chart for a comparison study Vanhatalo
and Kulahci (2015) used the residuals from a VARMA(1,1) model fitted to the raw
data.

The chapter is organized as follows. In Section 2, we summarize and analyze our
data. Next, in Section 3 we introduce the framework of the ATSM. Also, in this
section we present the basic estimation techniques of the model and the adaptation
of the PMD estimation technique for our case. In Section 4 the results for the
model estimation and a comparison study is presented. In Section 5 we introduce
the control chart procedures for the sequential monitoring of the affine model. In
Section 6 a simulation study for all proposed control charts compared with each other
is displayed. An empirical example is presented in Section 7.

5.2 Data

We use monthly data on continuously compounded nominal spot yields for the U.S.
yield curve from the FED St. Louis dataset with maturities 1,12, 24, 36, 48, 60, 120
months with the 1-month Treasury bill to be the short rate and assuming them to
be default-risk-free. Also we use two macroeconomic factors, the IP index growth
rate which measures the economic activity and as a proxy for the inflation the CPI.
The inclusion of inflation is necessary for recovering the canonical decomposition
of nominal yields into the term structure of real yields, inflation expectation and
inflation risk premia. All data are in monthly frequency from 1983:01 to 2003:12,
in total 252 observations. The out-of-sample period is from 2004:01 to 2011:12, 96
monthly observations. We denote the yield at time ¢ with maturity in n-months as
Yy .Summary statistics for yields and macroeconomic factors are presented in tables
5.2.1 and 5.2.2 respectively.
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Figure 5.2.1: U.S. Treasury Yields. The sample period is 1983:01 to 2003:12.

Yields Mean Std deviation Kurtosis Skewness
1 months  5.1591 2.141 2.6663 0.0262
12 months  5.887 2.3748 2.8104 0.0120
24 months 6.2732 2.3830 2.9762 0.1837
36 months  6.5507 2.3211 3.0306 0.3026
48 months 6.7778 2.2884 3.0414 0.4161
60 months  6.9083 2.2569 3.0746 0.52367
120 months  7.4559 2.0687 3.0202 0.7019

Table 5.2.1: Summary Statistics of U.S. Treasury yields from 1983:01 to 2003:12.
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Summary Statistics of Macroeconomic factors

IP growth CPI
Mean 3.1217 3.1257
Median 3.1953 3.0143
Mode -5.1737 1.6667
Std deviation 3.3294 1.111
Kurtosis 3.0887 2.8284
Skewness -0.0289 0.4410
Range 17.382 5.3104
Minimum -5.1737 1.0692
Maximum 12.209 6.3796

Table 5.2.2: Summary Statistics of macroeconomic factors.
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Figure 5.2.2: Macroeconomic factors. The sample period is 1983:01 to 2003:12.
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Figure 5.2.3: Term Premia. The sample period is 1983:01 to 2003:12.

Figure 5.2.1 plots the time series of U.S. government yields and figure 5.2.2 presents
the two macroeconomic factors, CPI and TP growth rate for the in-sample period
from 1983:01 to 2003:12. Specifically, figure 5.2.1 illustrates the time series of US
government bond yields that start from a high level due to early 1980’s recession
they reach at a peak in the mid of 1984 and subsequently they exhibit a downward
trend until they reach the lowest levels at the end of our sampling period.

From figure 5.2.2 we see that CPI starts from a high level due to early 1980s recession
and in the subsequent period moves generally in lower levels before the increase in
the first semester of 1984 and shows a downward trend until the end of 1986 where
reaches at the lowest level. This is followed by a long period of upward trend until
the end of 1991 where reaches the highest level of the entire sampling period. Next,
CPI with the exception of two periods remains at the same level. The IP growth
rates with the exceptions at the very beginning and the end of the in-sample period
show movements generally opposite with those of the CPI. The movements of IP
growth rates follow most of the time that of the government yields in contrast with
the time series of CPI. The yields and macroeconomic factors exhibit mild excess

kurtosis and right-skewness.

Before we present and estimate our model it is useful to highlight some characteris-
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tics of the data. In table 5.2.3 we present the autocorrelations of the time series of
nominal yields for up to five lags.The time series of all bond yields are highly auto-
correlated showing high degree of persistence and the autocorrelations increase for
longer maturity. Also, in table 5.2.4 we present the autocorrelations for the macroe-
conomic factors. IP growth rate and CPI show medium to strong autocorrelation.

The term spread is defined as the difference between the long-end and the short-end
bond yield: yt(mo) — y§1). Figures 5.2.3 and C.0.76 present the term spread for the
in-sample and out-of-sample period respectively. For the in-sample period the plot
indicates that periods with high (or low) term spreads are followed by periods of
high (or low) IP growth rate. In the out-of-sample period we observe that the term
spread exhibits the lowest position before the outbreak of the global financial crisis of
2007-09. Finally, the curvature of the yield curve for the in-sample period, estimated
as

curv = 2 % y§48) — (120 _ yt(?’ﬁ)

is displayed in figure C.0.71.

Yields Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

1 month  0.96708 0.93836 0.90711 0.88467 0.85865
12 months  0.97967 0.9569 0.93096 0.90392 0.87614
24 months  0.97944 0.95521 0.92883 0.9016 0.87481
36 months  0.9777 0.95345 0.92746 0.90072 0.87471
48 months  0.97802 0.95334 0.92961 0.90441 0.87987
60 months  0.97773 0.97773 0.97773 0.97773 0.97773
120 months 0.97845 0.95761 0.93693 0.91579 0.89322

Table 5.2.3: Autocorrelations of U.S. Treasury Yields.

Factors Lag 1 Lag 2 Lag 3 Lag 4 Lag 5

CPI 0.96475 0.90738 0.85313 0.79845 0.74463
IP growth 0.96626 0.91183 0.84575 0.76689 0.67817
Term spread 0.9175  0.8479  0.7858  0.7534  0.7112

Table 5.2.4: Autocorrelations of macroeconomic factors.
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5.3 VARMA Affine Term Structure Model

In recent decades, there has been a interest in modeling economic time series by
VARMA models. However, this class of models has been unpopular in practice be-
cause of estimation problems and the complexity of the identification stage. These
disadvantages have led to the dominant use of VAR models in macroeconomic ap-
plications. In this paper, we apply several simple estimation methods for VARMA
models are compared among each other and with pure vector autoregressive modeling
using ordinary least squares. For the evaluation of the estimation methods we use
the RMSE not only for the in-sample period but also for an out-of-sample horizon
up to 24 months.

5.3.1 The Model

The Vector Autoregressive Moving Average process VARMA (p,q) is generally defined
as

p q
Xi=p+) ¢:Xii— ) Oiej+e, e~N0X), (5.3.1)
i=1 j=1
where ¢t = 0,1,2,.... In terms of matrix polynomial lag operators the process can
be written as
where
oL)=I—-dL—---—D,LP, O(L)=1—-61L—---—0O,LP and LPX, =X, ,.

In our case the process that describes the evolution of the state variables in the econ-
omy is a reduced-form VARMA(1,1) process which under the historical probability
measure P is defined as

Xt =K + ¢1Xt—1 + € — @1675_1, € ~ N(O, E), (533)
where p is a k x 1 vector and ®,0; are k x k matrices. The log-normal pricing

kernel is

]. ! I
M = eap(=y;” = SXN M = X)), (5.3.4)

where \; is the k x 1 vector market price of risk and y") is the 1-month U.S.
Treasury bond yield. We assume that the short rate is the 1-month Treasury bill.
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The conditional expectation of the state evolution process X, is given by
m; = K + (I)lXt — 61615,1, (535)

then from equation (5.3.3) we have that

XtJrl = My + €. (536)

The conditional mean m, = E;(X,;,1) evolves recursively as follows:

My =p+ 21 X — 601X
=p+ P, X —0( X —my)
=p+ P X1 -0 X4y + Py

The moment generating function of the vector of the state variables X; under the
risk-neutral probability measure ) is

/ 1 I ’
ERlexp(u zip1)] = exp(u,(my — T, + SU ST ). (5.3.7)

In our case we assume that the variance matrix > is lower triangular and in contrast
with the work of Feunou and Fontaine (2009) we do not impose any restriction to
the matrix ©;.

The market price of risk vector ); is linear in the state variables and the conditional
expectations p; under the risk-neutral probability measure in order the model dy-
namics to keep their VARMA properties. The market prices of risk have the following
form

)\t = )\0 + >\1Xt + Agmt, (538)

where Ao is a k x 1 vector and A; and\, are k x k matrices. This framework of the
market prices of risk is an extension of that of Ang and Piazzesi (2003) . For Ay = 0
we have the market price structure of Ang and Piazzesi (2003). The bond prices
under the affine framework are exponential affine functions of the state variables and
their conditional mean. The price at time ¢ of a zero-coupon bond with maturity n

1S
n—1

P = E?( -3 rt) = cap(y” + A, + B, X, + By, m,). (5.3.9)

t=0
The yields of a n-period zero coupon bond are affine in the state factors X; and their
conditional expectations my:

y" = ag + by, Xi + Xby,my (5.3.10)
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5.3.1.1 Model dynamics under the Risk-neutral measure

According to Feunou and Fontaine (2009) the state evolution process under the risk-
neutral probability measure follows a Gaussian VARMA(2,1) process if under the
historical probability measure follows a VARMA(1,1) process. Specifically

X, =pf 4+ %X, | + €2 — 0% . (5.3.11)

Under the risk-neutral probability measure we have that

th = mt—zAt

my — E()\O + )\1Xt + Agmt)
=m; — EAO — EAIXt — EAth
= (I — EAg)mt — E(AO + AlXt).

This means that

my = (I —3X)'m& + (I — X)) 'S (Mo 4+ M X)) (5.3.12)

According to Feunou and Fontaine (2009) when the state evolution process under
the historical probability measure follows a VARMA(1,1) process then under the
risk-neutral measure follows a VARMA(2,1) process:

my = (I —3X)'m& + (I — X)) 'S (N 4+ M X)) (5.3.13)

Feunou and Fontaine (2009) stated that adding a MA component to a standard
VAR process improvements the forecasting of bond yields, inflation, real activity
and future interest rate risk premia in contrast to a standard VAR model or to the
Nelson-Siegel model.

5.3.2 Estimation Method

In our Gaussian ATSM we use two factors from the yield curve, the first is the one-
month bond yield (yt(l)) assumed to be the short rate process and used as a proxy
for the level of the yield curve. The second is the term premia (Yip;), defined as
the differnce between the 10-year and the one-month bond yield taken as a proxy
for the slope of the yield curve. The vector of state-variables can be expressed as
X = {CPIL, 1P, Ytp, y"} = {CPL, TP,y "y} where Yip, = 52—y} is
the yields term premia, C'PI; and I P, are the time series for CPI and the IP growth
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rate, respectively. The VARMA(1,1) state factor process described in the section 4.1
can now be expressed in the following matrix form

CPI, H1 Dy CPI; 4 €1t O €1,t—1

IP, - H3 + Dy TP + €2t . O12 €2,t—1

Yip, | | D3 Yipi 1 €3, O13 €311

Yt(l) 2 D14 Yt(ﬂ €4, O €4,t—1
(5.3.14)

Since our model contains only observable factors, similar to the method of Ang et al.
(2006) we use a two-step procedure to estimate the term structure model. In the
first step the set of the parameters & = {u, ®1,01, X} of the VARMA(1,1) process
under the historical probability measure is estimated. For the estimation we choose
the approach of Hannan and Rissanen (1982) . A comparison review of the main
methods for the estimation of VARMA processes is presented in Kascha (2012). In
the second step, we minimize the sum of squared fitting errors for the zero-coupon
bond yields, given the estimates of the first step:

T N
miny y 6" —u"), (5.3.15)

t=1 n=1

for the n yields we use in our model and estimate risk premia parameters & =
{A0, A1, A2}. We mention that all our term structure factors are observable and the
data used for our analysis are demeaned. Ang et al. (2006) noted that the two-step
estimation procedure may be not as efficient as the one-step maximum likelihood
procedure but this does not affect the forecasting procedure. According to equation
(5.3.10) the 120-month (10-year) yield (yflzo)) is estimated as follows

. . _ (120 (1)
and for the yield term premia (Yip, =y, = —y,; ') we have that

For the model estimation we need to impose the following restrictions in order the
results from the yields pricing equation to be consistent with those from the results
from the yields under the historical dynamics.

a); = O, b171 = 63, bg’l = O, 120 — O, b17120 =e3 + 64, b27120 = 0,
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where e3 = [0 0 1 0], e, = [0 0 0 1). This approach indicates that yV and ¢

yields are measured without errors. Also, for the constant factor of the VARMA(1,1)
process we assume that p1 = o = 3 = g = 0.

Another estimation technique for the estimation of the parameters of the first step we
previously described, we use so far as we know for the first time in Gaussian ATSMs
the the PMD method introduced by Jorda and Kozicki (2011). This approach has
been applied until now in macroeconomic applications such as DSGE models (see
e.g. Giraitis et al. (2014)) and models that described by a VAR process. The authors
mentioned that this method could be applied among others to VARMA models. In
our work we apply it to an empirical example modeled by a VARMA(1,1) process.
The PMD method introduced by Jorda and Kozicki (2011) is a limited-information
estimation method. The approach is based on the fact that a covariance-stationary
process has a Wold representation. The VARMA process of equation (5.3.1) assuming
that it is covariance-stationary, according to the Wold representation and omitting
for simplicity the constant factor, can be expressed as follows

X, =) by, (5.3.18)
h=0

with the restriction .
> lbi < o0,
h=0

where b;, are the Wold coefficients with the restriction by = I and u; is an i.1.d. se-
quence with mean zero and finite second-order moment. In practice A is set to a finite
number usually estimated from an information criterion. The vector of coefficients of
the Wold representation can be semi-parametrically estimated by local projections
(see Jorda (2005)). Next, the parameters of the model can be estimated from the
restrictions the model imposes on the Wold coefficients by the PMD method. This
method in many cases is asymptotically equivalent to maximum likelihood estima-
tion (MLE) as the sample grows to infinity and can be useful when the true data
generating process is unknown. PMD is appropriate for estimation of models whose
likelihood require numerical optimization routines such as VARMA models. The
first step of the PMD method is the estimation of the Wold coefficients based on
local projections which is is consistent and asymptotically normal under some gen-
eral assumptions. According to Jorda (2005) local projections have the advantage of
providing a closed-form and analytic expression for the covariance matrix of impulse
response coefficients across time and across variables. The mapping between Wold
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coefficients and the parameters of interest in the VARMA model of equation (5.3.1)
is linear. From equation (5.3.18) and

X, =®9X, | +e? — 0% (5.3.19)
after we equating terms we have that
b, = ®b,_ 1 — Odp, h > 1, (5.3.20)

where d;, = 1 if h = 1. Suppose now that the n x k vector of parameters of interest
is 7, k regressors in n equations, then the mapping between the Wold coefficients
and the parameters of interest in our model is

where B nh X n matrix with b = vec(B), h the truncated horizon for equation
(5.3.18). Also, the matrices S, Sy, Sy are selector matrices so as to pick the appro-
priate elements in matrix B in order to describe the mapping of the model of interest.
As a result the minimum-distance function that corresponds to our problem is

S*br — g(bp; ) = (I, ® S)by — (I, ® (S,By SoB7p))w, (5.3.22)

where m = vec(¢0) and the estimation of the parameters of the VARMA model is
the solution to the following problem

(S*by — g(by; ™) W[S* by — g(by; )] (5.3.23)
The optimal covariance matrix for the vector of estimated coefficients v, is
Q= (FRWEF,)™!, (5.3.24)
where
W = (B,Q,F,) ",
is the the optimal weighting matrix and
Fo=(L®8)— (7 L.)I,®8:1oS8)

The lag length i for the Wold representation can be estimated via an information
criterion.
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5.4 Results for the Term Structure Model

In this section we present the results for the parameter estimation of the VARMA
ATSM. Also, we compare VARMA and VAR term structure models estimated with
standard techniques and the PMD approach in terms of their forecasting ability in
the yield curve and the state factors of the model.

5.4.1 Comparison study

The results for the parameter estimates under the historical probability measure,
of the first step for our VARMA term structure model along with the results for a
standard Gaussian ATSM are provided in tables 5.4.1 and 5.4.2, respectively. Tables
5.4.3 and 5.4.4 present the results of the first step for the VARMA and VARM
models but now using the PMD estimation approach. The covariance matrix X is
lower triangular which implies that innovations to inflation are not correlated with
innovations in IP and the short rate process and yields term premia. Also, innovations
in IP are not correlated with innovations in yields term premia and the short rate.
Comparing the autoregressive coefficients between VARMA and VARMA models
the results from the VAR model indicate that that inflation, IP and the short rate
process of are more persistent from those in the VARMA model but the yield spread
is slightly less persistent in accordance with the findings of Feunou and Fontaine
(2009). The results from the PMD-VAR model are for the autoregressive matrix are
very similar with those in the standard VAR model but the results provided from
the PMD-VARMA model exhibit, except from the inflation coefficient, much less
persistence. The inclusion of a MA component in the standard model has as a result
a slight reduction in the autocovariance matrix with the exception of the slope of
the yield curve where we have an increase as we previously mentioned. Now for the
PMD cases, VAR and VARMA, the result in a significant decline specially in the
values of the term premia and short rate persistence.

The results for estimation of risk premia parameters for the four models are presented
in tables 5.4.5, 5.4.6,5.4.7 and 5.4.8. The results indicate significant changes in the
behavior of the price of risk not only between the VAR and VARMA specifications
but also between the estimation approach, standard approach or PMD.

Figures C.0.77,C.0.79,C.0.81 and C.0.83 illustrate the path of the market price of
risk for each variable in the case of VAR and the VARMA models under standard
estimation methods. Figures C.0.78, C.0.80, C.0.82 and C.0.84 present the market
prices of risk for each variable but not for VAR and VARMA models under the PMD
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estimation approach.

(I)l @1
CPI 0.9153 0.0088 0.0273 0.0012 0.4192 0.0181 0.0089 0.0500
IP growth -0.3132 0.9342 0.1214 0.1600 0.4665 0.1674 0.2747 0.1696
Y1m 0.0132 0.0237 0.9765 0.0328 0.0681 0.0248 0.1489 0.2216
Term Premia -0.0186 -0.0230 0.0125 0.9397 -0.0548 0.0254 -0.1367 -0.1604
b)) 0.2541 0 0 0
0.0748 0.6815 0 0
0.0004 -0.0087 0.4085 0
0.0322  0.0618 -0.3527 0.3026
Table 5.4.1: Parameter estimates for VARMA-ATSM Model.
M @,
CPI -0.0067 0.9551 0.0131 0.0130 0.0033
IP growth 0.0170 -0.2586 0.9511 0.0953 0.1484
Y1m -0.0285 0.0158 0.0222 0.9811 0.0560
Term Premia 0.0033 -0.0149 -0.0183 0.0043 0.9235
by -0.0647 0 0 0
0.0395 0.2759 0 0
0.0426 -0.0052 0.1017 0
00329 -0.0072 -0.1008 0.0371
Table 5.4.2: Parameter estimates for VAR ATSM Model.
@1 61
CPI 0.9156  0.4480 -0.0035 0.0260 0.0603 -0.0780 0.0554 -0.0111
IP growth  -0.3509 0.7465 1.0867 -0.0294 0.0966 -0.0284 0.3053 -0.0008
Y1m -0.0762 0.2442 0.0428 0.0206 0.8873 0.0202 -0.0282 0.2655
Term Premia -0.0020 0.0020 0.0109 0.0797 -0.0077 -0.7761 0.8728 -0.0787
b 0.5270 0 0 0
0.6277 0.6193 0 0
0.5579  0.2524  0.2626 0
0.5246 -0.2258 0.6456 0.1327

Table 5.4.3: Parameter estimates for PMD-VARMA ATSM Model.
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!
CPI 0.9551 0.0131 0.0130 0.0033
IP growth -0.2586  0.9511  0.0953 0.1484
Y1m 0.0158 0.0222  0.9811 0.0560
Term Premia -0.0149 -0.0183 0.0043 0.9235
by -0.0646 0 0 0
0.0394  0.2753 0 0
0.0425 -0.0052 0.1015 0
-0.0328 -0.0072 -0.1006 0.0370

Table 5.4.4: Parameter estimates for PMD-VAR ATSM Model.

VARMA Risk premia parameters

Xo | 11206 2.1468  -1.7722 -0.0285
A | 5.8268  0.2033 24117  6.4030
(0.105)  (0.0151) (0.03)  (0.017)
2.6392  0.3186  -1.8522  -10.0501
(0.018) (0.002)  (0.019)  (0.48)
1.1895  0.3739  -4.7565 3.5196
(0.0018) (0.0034) (0.0012) (0.756)
-1.2833  -0.3105 -1.7404  -2.0460
(0.0016)  (0.0004) (0.0010) (0.0003)
Xo | 10.4848 38771  1.2375  8.6610
(0.05)  (0.38)  (0.0279) (0.34)
42940  -1.1470  -2.3012  -7.5446
(0.178) (0.068)  (0.0485) (0.0318)
0.0385  -0.1405 5.1830  -2.5266
(0.089)  (0.0048) (0.0182) (0.410)
0.5308 -0.3293  1.8274  2.5444
(0.0016)  (0.0004) (0.0010) (0.0003)

Table 5.4.5: Risk premia parameter estimates for the VARMA model under historical
probability measure. The asymptotic standard errors are in parentheses.
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VAR Risk premia parameters

Ao | 0.0744  -0.8410 -6.6192  0.2575
A | 7.7520  -4.1785  7.7632  -4.9087
(0.0215) (0.138)  (0.0289) (0.585)
6.7696  2.3050  -7.0524  -32.3220
(1.018) (0.0728) (0.719)  (3.38)
-4.9236  2.1397  -3.6489  6.0810
(0.048)  (0.0434) (0.412)  (0.54)
1.4220 1.0570  -2.8516  -9.1001
(0.0217) (0.014)  (0.051)  (0.913)

Table 5.4.6: Risk premia parameter estimates for the VAR model under historical
probability measure. The asymptotic standard errors are in parentheses.

PMD-VARMA Risk premia parameters
Ao | 5.3328 -0.8359 -2.7418  2.3620
A1 | 7.0249 -3.2263 -3.2039  19.3562
(1.015) (0.485) (0.6029) (2.19)
0.7148 1.6741 -1.5818  -9.7660
( 0.0819) (0.38) (0.0169) (0.98)
-0.0013 0.6471 -1.7451  0.9442
(0.00008)  (0.004) (0.082)  (0.043)
-0.2214 -0.1692 -2.4969  -2.2541
(0.0056)  (0.0018)  (0.22) (0.448)
Ao | 7.5959 -4.5877 12,4222  12.7802
(1.77) (0.88) (2.110)  (1.449)
1.0893 -0.5635 1.2528  0.0719
( 0.140)  (0.008) (0.0229) (0.0078)
-1.3440 -0.0002 1.6016  -0.5260
(0.07) (0.00004) (0.12) (0.009)
-0.8288 0.2961 2.2140 2.5027
(0.0076)  (0.04) (0.11) (0.39)

Table 5.4.7: Risk premia parameter estimates for the VARMA-PMD model under
historical probability measure. The asymptotic standard errors are in parentheses.
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PMD-VAR Risk premia parameters

Ao | -8.1537  -4.6053  -3.1419  6.2122
A1 [ -0.0345  1.4113  -3.3751  1.3897
(0.05) (0.041)  (0.859)  (0.103)
1.3802 -1.1069  1.1160 -1.0325
(0.168) (0.288)  (0.55) (0.138)
-0.3057  0.6188  -0.7878  0.6241
(0.028)  (0.0064) (0.052)  (0.099)
-0.5496  -0.2355  0.5379  -0.0709
(0.0076) (0.0504) (0.0410) (0.009)

Table 5.4.8: Risk premia parameter estimates for the VAR-PMD model under his-
torical probability measure. The asymptotic standard errors are in parentheses.

The market price of inflation risk is on average positive for both VARMA models but
for the PMD-VAR the price of risk is mostly negative. The price of risk for inflation
in the PMD-VAR exhibits less fluctuations compared to the other models. The price
of inflation risk becomes more negative in the VARMA model when current inflation
is higher. The price of real activity risk is negative on average. The market price of
short rate risk is negative on average, implying higher valuations for assets that have
higher payoffs in states of the economy with a higher short rate. The market price
of yields term premia for VARMA, PMD-VARMA and PMD-VAR is mostly positive
with the results from VAR model to include and negative periods of premia.

5.4.2 Forecasting

In this section, we focus on forecasting performance of the four models and com-
pare their relative performance on forecasting the state factor process and the future
yields. We remind the four models are the VARMA-ATSM, the VAR-ATSM, the
PMD-VARMA-ATSM and the PMD-VAR-ATSM. After the parameter estimation
we try to test the forecasting ability of our yield curve model. The yield curve could
provide information about the future path of the economy (Cochrane and M. Pi-
azzesi (2009)). The estimation of forecasts for the model is a crucial procedure for
the performance evaluation of the term structure model. First, we evaluate the in-
sample performance of the four models for the state factors used in the models and
the bond yields. We remind that according our estimation procedure the 1-month
and the 10-year yields are estimated without error. Second, we evaluate and com-
pare the out-of-sample performance of the four models in terms of the yield curve but
also for the forecasting of the state factors. The performance measure is the RMSE.
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RMSEs e.g. for the bond yields are estimated according to the following equation

T
1 AN n
RMSE = | > @Y — )2, (5.4.1)

t=1

where 9" and ™ are the predicted and the actual yields respectively of a bond with
maturity n months and T indicates the total length of the forecasting period. Lower
values of root mean square error denote better forecasts. The length of the in-sample
period is 252 months and the length of the out-of-sample period is 96 months.

Tables 5.4.9 and 5.4.10 illustrate the RMSEs for the state factors and the 12-,24-
,36-,48-,60- months bond yields, respectively. For the inflation factor the VAR and
PMD-VAR perform better than the VARMA models. Also, this happens for the IP
factor and the short rate process. However, the VARMA model performs better for
the yield premia factor. The best overall performance for the bond yields in general
has the VARMA model and the worst the PMD-VAR model. The VARMA models
perform better that their correspondent VAR model. In figures C.0.72, C.0.73, C.0.74
and C.0.75 we present for every bond yield we used in our models the theoretical
estimated values versus the actual values for the entire in-sample period. With
the exception of the PMD-VAR the results in the other three models perform close
enough to each other in predicting the actual bond yield values estimated from the
various theoretical models.

We implement an out-of sample forecast study for a period of 96 monthly time series
of the state factors described in section 5.3 and yields, from 2004:01 to 2011:12,
for various forecast horizons in order to examine whether our model provides a good
forecast of the factor evolution process and the yield curve dynamics. The forecasting
horizons are 1,3,9,12 and 24 months. Table 5.4.11 summarizes the out-of-sample
forecasting errors for the VAR models and table 5.4.12 for the VARMA models.
For the two macroeconomic factors the PMD-VAR model outperforms the standard
VAR model but for the yield curve factors the standard VAR model has smaller
forecasting errors. The standard VARMA model has smaller RMSEs than the PMD-
VARMA model for the macroeconomic factors. Comparing now the VARMA models
for the yield curve factors the standard VARMA model performs better for short-
term horizons. However, for long term horizons the PMD-VARMA model exhibit
better results. Generally, in most of the cases the models estimated with standard
methods outperform the models estimated with the PMD approach.
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RMSE (in-sample)
Factor VAR PMD-VAR VARMA PMD-VARMA
CPI 0.0647 0.0606 0.2272 0.2506
IP change 0.2787 0.3247 0.3969 0.6235
Y1m 0.1103 0.1017 0.1604 0.3967
Term premia | 0.1126 1.5972 0.1053 0.4586

Table 5.4.9: Forecast comparisons. The table presents the comparisons of the in-
sample forecasts for the state factors. The in-sample forecasting period is 1983:01 to
2003:12, a total of 252 months. The root mean square error (RMSE) for annualized
data is calculated.

RMSE (in-sample)
Yields VAR PMD-VAR VARMA PMD-VARMA
12-months | 0.3884 0.6781 0.3832 0.3875
24-months | 0.3502 0.6223 0.3451 0.3485
36-months | 0.2954 0.7071 0.2940 0.2931
48-months | 0.2404 0.7960 0.2351 0.2346
60-months | 0.1913 0.8688 0.1932 0.1876

Table 5.4.10: Forecast comparisons. The table presents the comparisons of the in-
sample forecasts for the yield curve. The in-sample forecasting period is 1983:01 to
2003:12, a total of 252 months. The root mean square error (RMSE) for annualized
data is calculated.

Next, table 5.4.13 and table 5.4.14 illustrate the forecasting errors for the zero-coupon
bond yields in the VAR and VARMA models, respectively. In the VAR models for
the 24-,36-,48- and 60-month yield the standard VAR model performs better than the
PMD-VAR except for the 9-,12- and 24-month horizon of the 12-months bond yield.
The standard VARMA model outperforms the PMD-VARMA model by producing
lower forecasting error. The forecasting study confirms the findings of Feunou and
Fontaine (2009) that the VARMA model improves the forecasting ability of the VAR
model. The PMD-VARMA could be an possible alternative if someone wants good
forecasting for horizons greater than 12 months.

In conclusion, in terms of forecasting performance the VARMA models provides the
best results for the yield curve. However, for the state factors the standard models
perform better. In the out-of-sample study concerning the state factors, the VAR
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models produce smaller forecasting errors with many case the PMD-VAR to improve
the forecasting. Finally, for the yield curve the VARMA model is the dominant
model with the PMD-VARMA more suitable for longer than 12 months horizons.

VAR model
1m horizon 3m horizon 9m horizon 12m horizon 24m horizon
CPI 0.0182 0.0028 0.0197 0.0371 0.0300
IP growth 0.1855 0.1988 0.0506 0.3295 0.3828
Y1im 0.0734 0.0487 0.0563 0.0616 0.1113
Term premia  0.0809 0.0488 0.0535 0.0520 0.1281

PMD VAR model

1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

CPI 0.0095 0.0035 0.0084 0.0204 0.0195
IP growth 0.1356 0.0007 0.0812 0.1463 0.1797
Y1lm 0.1598 0.1106 0.1850 0.2637 0.0309
Term premia 2.5069 2.4602 2.1344 1.8892 0.3962

Table 5.4.11: RMSE: Forecasting errors for state variables. The out-of-sample period
is 2004:01 to 2011:12.

VARMA model
1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

CPI 0.3059 0.0529 0.8419 1.6001 1.3302
IP growth 0.4242 0.2324 0.3021 1.0762 0.3283
Y1lm 0.7509 0.6651 0.6661 0.8599 2.0371
Term premia 0.0164 0.2688 0.1524 0.3775 1.8497

PMD-VARMA model

1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

CPI 1.3410 4.6405 3.7988 8.4746 2.0162
IP growth 4.4702 0.7736 6.9449 0.2368 12.2833
Y1m 1.7390 0.7507 2.3647 0.5767 1.1726
Term premia 0.9706 0.9551 0.6225 0.2426 1.8187

Table 5.4.12: RMSE: Forecasting errors for state variables. The out-of-sample period
is 2004:01 to 2011:12.
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VAR model
1m horizon 3m horizon 9m horizon 12m horizon 24m horizon
12-months 1.2613 1.3025 0.9035 0.8033 0.5681
24-months 1.3557 1.4655 0.9398 0.8313 0.5907
36-months 1.2146 1.3963 0.9591 0.8583 0.6020
48-months 1.1482 1.3007 0.9577 0.8561 0.6575
60-months 1.1141 1.2703 1.0159 0.9284 0.7841

PMD VAR model

1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

12-months  1.0821 1.2237 0.7504 0.5974 0.4193
24-months  1.9944 2.2021 1.8141 1.9191 1.5241
36-months 1.5881 1.8641 1.7074 1.9881 1.5942
48-months 1.5774 1.8364 1.8678 2.2535 2.0212
60-months  1.4209 1.6836 1.8747 2.3567 2.1852

Table 5.4.13: RMSE: Forecasting errors for bond yields for the VAR and PMD-VAR
model. The out-of-sample period is 2004:01 to 2011:12.

VARMA model

1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

12-months  0.5476 0.7807 0.2239 0.1495 1.0505
24-months  0.3781 0.7610 0.1745 0.0663 0.6104
36-months  0.2010 0.6782 0.1991 0.0281 0.3754
48-months  0.2105 0.6621 0.2632 0.1266 0.1347
60-months  0.3582 0.8092 0.4694 0.3614 0.1694

PMD-VARMA model

1m horizon 3m horizon 9m horizon 12m horizon 24m horizon

12-months  2.9868 2.6347 2.1013 0.1367 1.0488
24-months  0.9026 2.3513 2.1475 0.0658 0.5626
36-months  0.6665 2.9455 2.2482 0.8477 0.1098
48-months  2.3395 2.4319 2.2719 0.1815 0.2845
60-months  2.4299 2.4036 2.1956 0.3234 0.1588

Table 5.4.14: RMSE: Forecasting errors for bond yields for the VARMA nad PMD-
VARMA model. The out-of-sample period is 2004:01 to 2011:12.

5.5 Sequential monitoring

The basic aim of MSPC is the simultaneous detection of changes in a process charac-
teristics. These changes may be caused at unknown times with unpredictable origins.
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The most important tool of SPC is the control chart. In our work we use control
charts so as to sequentially detect a change in the parameters of a VARMA ATSM.
Specially, a change in the parameters of the state evolution process of the term struc-
ture model of equation (5.3.3). We propose several types of MEWMA control charts
for sequential detection of changes in the VARMA (1,1) state evolution process of the
term structure model. Specifically, we propose modified EWMA control charts based
on the Mahalanobis distance and the multivariate EWMA statistic and the corre-
spondent residual based EWMA charts. The EWMA control chart was introduced
by Roberts (1959) where the control statistic is the exponentially weighted average
of the previous and current observations. Lowry et al. (1992) extended the univariate
EWMA control chart procedure for the multivariate case and Kramer and Schmid
(1997) generalized the MEWMA control chart of Lowry et al. (1992) to correlated
observations. Additionally, we construct a multivariate EWMA control chart which
is an extension of the simple MEWMA chart by adding to the control statistic the
difference of the current with the previous value of the monitoring process, first in-
troduced in the univariate case by Patel and Divecha (2011) and for the multivariate
by Patel and Divecha (2013), for industrial applications.

5.5.1 Modeling out-of-control situation

We monitor directly the vector of parameters € = (®1, ®;) assuming homoscedastic-
ity for the covariance matrix of the residuals. We mention that a change in the vector
of parameters € or in a part of it could affect the yield curve as we see from the set of
equations that describe the term structure model in section 4.1. When the process is
in-control we assume that there is no change in the vector of the model parameters
&. The observed process, which in our case in the VARMA state evolution process,

is given by
Q — { Xv if t<0
YT lI+D)® X, + e — (I+Dy)Ore, if t>1

where D, Dy are the diagonal matrices that contain the shocks to the model pa-
rameters. Their diagonal elements are dgl), e dgk) and dél), e ,dgk) respectively.
If D; = D; = 0 then the monitoring process is in-control, else it is out-of-control.
The multivariate control chart we examine are based on the distance between the
vector of the observed values of the monitoring process and the vector of the mean
values of the target process. In our model as the mean of the target values we take
the conditional expectations of the state factor process defined in equation (5.3.5).
At every time point ¢ a control statistic is appropriately constructed and in order
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to decide if the process is out-of-control at time ¢, it is necessary the determina-
tion of a control limit h; that defines the rejection area. If the value of the control
statistic lies within the acceptance area then the monitoring process is considered
to be in-control. We determine the critical value h; in such a way that the ARL is
equal to a predetermined value k; through a simulation study. When the process is
in the in-control state, the average run length (ARLg) denotes the average number
of observations or samples until a signal is obtained. In our work we assume that
the value of the ARLq is equal to 12 months. For the determination of the control
limit first a starting value of the control limit is chosen. Next, under the assumption
that the process is in-control and the target values are identified, the data for the
state evolution process X; are generated from equations described at section 4.1.
These simulated values are applied to each control chart procedure and the stopping
times, when the control statistic exceeds the control limit, of the control chart are
recorded. Finally, the estimated run length in the in-control state is the average of
the simulated stopping times. If now the estimated ARLy is greater or lower from
its prespecified by an error equal to 1% a new value for the control limit is chosen.
Using this new control limit a new iteration procedure is performed so as to estimate
the stopping times and the ARLy. The control limits that fulfill the error condition
are chosen as the appropriate control limits. The number of iterations for the above
procedure is 10° times.

The detection ability of a control chart can be evaluated and compared with other
control charts from the ARL;. The ARL, indicates the average number of observa-
tions (or samples) that is required until the control chart provides a signal that there
is a change in the target process. We desire the value of ARL; to be as small as it
can be and the opposite for the ARLy.

Bodnar and Schmid (2011) chose as the in-control process a 10-dimensional VAR(1)
process and a two- dimensional VARMA(1,1) process.The first process satisfies the
invariance condition but not the latter process. Their out-of-control modeling is
restricted to the case of a constant shift in the covariance matrix. The measure for
the performance of a control chart is the maximum expected delay (MED). Bodnar
and Schmid (2017) mentioned that the changes of interest in a VARMA process can
be shifts in the mean value of the time series, changes in the variance of the error
terms, changes in the process scaling and changes in the correlation structure such
as changes in the coefficients of a VARMA process. In their work they dealt with
the detection of changes in the mean and in the scaling of (V)ARMA processes.
In contrast we are interested for detecting changes in the coefficients of a VARMA
process.
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5.5.2 Control chart procedures

For the sequential monitoring we use five categories of control chart procedures: Mod-
ified EWMA control chart based on the Mahalanobis distance (ModMah), modified
chart based on the Multivariate EWMA Statistic (ModMEWMA), EWMA Resid-
ual chart based on the Mahalanobis Distance (ResMah), Residual chart Based on
the multivariate EWMA Statistic (ResMEWMA) and Multivariate Modified EWMA
control chart (MMOEWMA). The monitoring process for the modified control schemes
is a stationary VARMA(1,1) process. In the residual based charts instead of the orig-
inal observations for the state factor process, the residual process is monitored.

5.5.2.1 Modified EWMA control charts

The EWMA control charts are very effective for the detection of small shifts in
the monitoring process (Montgomery (2013)). Lowry et al. (1992) generalized the
univariate EWMA control chart procedure for the multivariate case. The EWMA
is used extensively in time series modeling and since it can be viewed as a weighted
average of all past and current observations, it is very insensitive to the normality
assumption of the monitoring process. Small values of the smoothing parameter give
more weight to recent values.

Suppose that XP = [X},..., X[X] is the vector of observed state factors of the
economy at time ¢. Also, under the assumption that F(e;) = 0 for all ¢ > 1 and the
underlying process is weak stationary we have that E(X;) = F(X;_1) and V(X;) =
V(X¢-1). The in-control expected value for the state evolution process is

Eo(XD) = ®,Eo(Xy). (5.5.1)
Under the assumption that Covg(X;,¢;) = 0, E(e;) = 0, E(ege) = U, the covari-

ance matrix of the vector of the state evolution process is

Covg(Xy) = @, Vo(X4—1)®, + T + 0,3.0). (5.5.2)

The univariate EWMA control chart is based on the EWMA recursion applied on
the Mahalanobis distance. The Mahalanobis distance is referred to be the distance of
observed state factors from its in-control conditional expectation mq = Eq¢(X{77)
and is measured by

Ty = (XP" — mo,) Cove(Xp™) ™ (XP — mgy), t > 1. (5.5.3)
The univariate EWMA statistic based on the Mahalanobis distance is given by
Zin = (1 =N Zy_10 + AT, (5.5.4)
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for t > 1. The starting value Z;,, is set equal to Ey(T},) = k. A signal is given if
Zin > hy. The control limit h; > 0 that determines the rejection area, is estimated

through simulation for a predetermined value of the in-control average run length
(ARLy).

Multivariate EWMA control charts are constructed by applying a multivariate EWMA
recursion directly to the components of the monitoring characteristic Xj'. The ad-
vantage of this approach is that each characteristic element obtains its own smooth-
ing factor and as a result allows for more flexibility compared to the univariate
EWMA (Golosnoy and Schmid (2007)). Suppose that Covy(X;,u;) = 0, E(e) =
0, E(ee;) = U and E(ee,) = 0t # s. The multivariate EWMA statistic has the
following form

Zin=(1-R)'Z 1, +RX{ L > 1, (5.5.5)
or else
t—1
Zin=(I-R)Z, +RY I-R)"XP, (5.5.6)
v=0

where I is the k X k identity matrix and R = diag(ry,rs, ..., %) is k x k diagonal
matrix with diagonal elements 0 < r; < 1,4 € {1,2,...,k}, k is the total number
of observable state factors at each time ¢. The starting value Zy,, is Eo(T:n) =
A, + BaEy(Xy), with Ej is denoted the mean value when the monitoring process
is in-control. The covariance matrix of the multivariate EWMA statistic Z;,, in the
in-control state is given by

t—1

Covo(Zipn) = R( Z (I—R) Covo(XP*) (I — R)J) R. (5.5.7)
i,j=0
A signal is given if
(Ztn — Eo(Zin)) Covo(Ze) ™ (Zon — Eo(Zin)) > I,
where the expected value of the control statistic when the process is in-control is
Eo(Z) = (1—-R)*Zo+ (I —(I—-R)uox. (5.5.8)

where po,x = Ey(X¢). The covariance matrix for the Modified MEWMA statistic is

COUQ(Zt) = R(2 * QlcOUQ(Xt_i_IXt_j_ll)(I)ll + ZQ(Gt) + 2 % @120(6,5)@&)
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I
T—(I—Ry"

where

’

Covg(my_m,_;) = @, Eo([Xe—iXej 1) + O Eoler—i€,_;]0).

Also, pox = Eo(Xy¢) and 6§ x = Vo(Xy). For the proof of the previous equations
see appendix A.3.1.

5.5.2.2 Residual based control charts

For the residual control charts the procedures based on the Mahalanobis distance and
the multivariate EWMA statistic for the series of the observed state factors are now
replaced by the residuals. We assume that the vector of residuals is defined as the
deviations of the observed factors at time ¢ from their conditional expectations when
the process is in-control, Fo(X{™/X{";). We suppose that the vector of the residuals
is dy = X" — Eo(X{"/X{). Suppose that Covg(Xg,e) = 0, Couvp(eg, Xg) =
0, E(dy) =0, E(e) =0, E(erer ) = U, E(eges ) = 0,1 # 5, The control statistic for
the Residual chart based on the Mahalanobis distance is

Zt = (1 - )\)tZ(] + )\Td,b t Z 1,

with the Mahalanobis distance between the observed state factors and the target
mean vector given as

Ty = d, 274,
The in-control covariance matrix of the vector of the residuals is
Covg(dy) = &,V (Xp_1)®) + 2. — ©,3.09,.

For the multivariate case we assume that Covy(X¢, ;) = 0, Covg(e, X¢) = 0, E(dy) =
0, E(e,) =0, Eegey’) = U, E(eges ) = 0,t # s, then the covariance matrix of the
statistic Zy is

CO’UU(Zt) = R(2 * ¢1Xt—i—1Xt—j—1/¢,1 + Ee

: I
- 3.0 - @126)1_ Tt

For the proof of the previous equations see appendix A.3.2 and appendix A.3.3.
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5.5.2.3 MMOEWDMA control charts

Patel and Divecha (2013) introduced the MMOEWMA control chart for detect-
ing both large and small shifts in a VAR(1) process. Their approach is an exten-
sion of their univariate Modified EWMA chart (Patel and Divecha (2011)). The
MMOEWMA control chart statistic is a correction of the MEWMA chart statistic
by adding the sum of the last change in the monitoring process. The authors men-
tioned that the use of the Modified MEWMA chart corrects the MEWMA statistic
from the inertia problem. The MMOEWMA control statistic takes into considera-
tion each current change in the monitoring process by giving full weight in addition
to the past observations. In our work we adapt their approach appropriately and
estimate the expected value and the covariance of the control statistic.

The control statistic for the modified MEWMA (MMOEWMA) control chart based
on the multivariate EWMA recursion is

Zt == (I - R)Zt,]_ + RXt,]_ + (Xt - Xt,]_), t Z 1 (559)

It can be proved by repeated substitution in equation (5.5.9) that

t—1 t—1
Zi=1-R)'Zo+RY (I-RPXej+ ) (I - RY(Xej— Xejq).  (5.5.10)
j=0 =0

The MMOEWMA control chart gives an out-of-control signal when
(Ze — Eo(Zy)) (Covg(Ze)) ™ (Zy — Eo(Z:)) > ha,
where hy > 0 is estimated for a determined value of ARL through a simulation study.

The expected value of the control statistic is given by

Eo(Zy) = Eo((I—R)'Zo + Ri I-R)’X;+ i I-R)Y(Xej— X j1)

= (I-R)*Zo+ (I— (I—R)*uo.x.

Suppose that Covyg(Xy, €;) = 0, E(e,) = 0, E(ege;) = U, then the in-control covari-
ance matrix is
1

Covy(Zy) = RI — =Ry

RVo(Xe).

For the proof of the previous equations see appendix A.3.4.
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5.6 Simulation study results

In this section, we present the results for the Monte Carlo simulation for the compar-
ison of detection ability of the control charts we introduced in the section 6 for the
standard VARMA ATSM. We remind that in all our cases the normality assumption
of the data is valid. The results are for a four-dimensional VARMA(1,1) state factor
process where shifts are allowed to either the autoregressive matrix or the moving
average matrix or in both of them. We mention that the introduced charts are not
directionally invariant for this formulation of the monitoring process we use. The
proportionate change in the parameters ®; and ©, varies between —40% and 40%,
in total 16 cases.

In tables 5.7.1 and 5.7.2 we present the best results for the negative and positive
values of the shift parameters D5 against all possible shifts in parameter Dy, respec-
tively. In our study we assume that d; = dgl) == dgk) and dy = dgl) == dék).
The tables illustrate the best ARL; and the correspondent smoothing parameter
value, for every control chart procedure we use and every combination of shifts in
the VARMA(1,1) process. The best value for each combination of shifts in denoted
with bold font. For negative shifts in the moving average matrix regardless the sign
of the change in the autoregressive matrix the MMOEWMA chart and next the mod-
ified chart based on the Mahalanobis distance turns out to have the smallest ARL;.
Now, for positive shocks in the moving average matrix the modified chart based on
the Mahalanobis distance outperforms the other control charts.

In appendix B.4 we present the tables with the full results for every control chart
procedure. For the modified EWMA control chart based on the Mahalanobis distance
(see appendix B.4.1) all shifts are detected relatively fast, the ARLs; is lower than
7 months except for the case when A = 0.9 and fails to detect fast the shift. The
modified MEWMA chart (see appendix B.4.2) performs well only for values for the
smoothing parameter greater than 0.5. The residual charts are the charts with
the worst overall performance for both negative and positive shifts in the moving
average parameter matrix. The residual based EWMA based on the Mahalanobis
distance (see appendix B.4.3) detects the shifts in a period under 7 months only for
A = {0.1,0.2}. The residual chart for the MEWMA statistic (see appendix B.4.4)
performs well for value of the smoothing parameter greater or equal than 0.5. The
MMOEWMA chart is the best performing chart for the case of negative shifts in
the parameter matrix ©;. Also, for positive shifts in matrix ©®; gives the best
results after the modified chart based on Mahalanobis distance. Generally, positive
and negative shifts are detected with relative ease for the various values of A. The
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differences in the detection power between the modified control charts, including
the MMOEWMA, and the residual based charts could be due to the estimation
procedure for the residual of the VARMA term structure model. The residuals of the
VARMAC(1,1) process are independent and identically distributed when the process
is in-control and the control limits of the residual based charts are the same as for the
independent case. When the process is out-of-control, the residuals are independent
but not identically distributed. According to Bodnar and Schmid (2017) the residual
based control chart procedures are not directionally invariant.

An interesting fact is that in the modified MEWMA and the MMOEWMA chart
the ARL, is always smaller than the ARL;. We remind that all control charts are
calibrated so as to have the same ARLg, here is 12 months. Additionally, in most of
the cases for each value of the smoothing parameter, the values of the ARL; show
low to medium fluctuations. For the residual chart based on the MEWMA statistic
for A > 0.3 the ARL; is much larger than the ARLy.

5.7 Empirical study

In this section, the control chart procedures that we previously proposed are applied
to a Gaussian affine term structure model for the U.S. yield curve, whose state factor
process is described by a VARMA(1,1) process. We assume that the in-control period
of the term structure model is from January 1983 to December 2003. The results
from this VARMA affine model estimated from historical data are obtained from
section 5.4 under the no arbitrage assumption. Our aim is to monitor the process
that describes the evolution of the observable factors in the economy. The out-of-
sample period for the monitoring process is from January 2004 to December 2011
which contains the global financial crisis of 2007-08.

We perform the analysis by considering as the target process of the state factor equa-
tion X; (see equation (5.3.3)) its conditional expectation E;(X;y1). Furthermore,
we use for monitoring in the out-of-sample period the modified and residual based
control charts described in section 5.5.2.

However, here we present the results for the modified EWMA control chart based on
the Mahalanobis distance with smoothing parameter A = 0.3 and the MMOEWMA
control chart with smoothing parameter A = 0.2. The control limits are obtained
from the Monte Carlo simulation study we described in previous section. The zero-
coupon yield curve process is an affine function of the state factor process and its
conditional expectations. As a result a shift is the state factor process may lead to



5.7. Empirical study 150

changes in the yield curve which is of crucial interest for the investors. The statistical
monitoring processes we use for the detection of changes do not give us more insight
to the causes of an out-of-control condition.

In figure 5.7.1 we present the control chart for the univariate EWMA based on the
Mahalanobis distance for A = 0.3 for the control limit obtained from a simulation
study as described in section 5.5.2. From the control chart for the univariate EWMA
based on the Mahalanobis distance we have two periods of significant changes in the
parameters of the process that describes the evolution of the state factors in the
economy. The first is from August,2005 to March, 2008 and the second from June,
2008 to August, 2011. The second period of changes contains the crisis on the US
capital market, e.g. the failure of investment bank Lehman Brothers in September
2008, which led to the world financial crisis.

The MMOEWMA control chart for A = 0.2 provides two signals, the first in January
2006 and the second in June 2008. We notice that the MMOEWMA chart in control
with the univariate EWMA chart based on the Mahalanobis distance does not start
from an out-of-control condition and after August 2010 the process returns to the
in-control condition. Since the state factor evolution process contain two factors from
the yield curve, the term premia and the 1-month yield, its dynamics is estimated
directly from observed data. This fact affects the behavior and the fluctuations of the
control statistics. We observe that in the period from the beginning of 2006 until the
beginning of 2008 have more fluctuations of the control statistic in the MMOEWMA
chart.
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da

d -0.4 -0.3 -0.2 -0.1
0.4 ModMah 2.1746(0.1) | 2.0526(0.1) | 2.1510(0.1) | 2.1982(0.1)
ModMEWMA || 2.8098 (0.9) | 2.7753(0.9) | 2.7923 (0.9) | 2.8050 (0.9)
ResMah 3.0125 (0.1) | 3.3208 (0.1) | 3.2167(0.1) | 2.8625 (0.1)
ResMEWMA || 3.0032 (0.9) | 3.0105(0.9) | 3.0620 (0.9) | 3.0100(0.9)
MMOEWMA | 2.2825 (0.1) | 2.2908 (0.1) | 2.2545 (0.1) | 2.3325 (0.1)
-0.3 ModMah 2.1990 (0.2) | 2.1504(0.1) | 2.0807(0.1) | 2.0880(0.1)
ModMEWMA || 2.7770 (0.9) | 2.7440 (0.9) | 2.8310 (0.9) | 2.8330 (0.9)
ResMah 3.3208 (0.1) | 2.7917(0.1) | 2.7000 (0.1) | 2.8417 (0.1)
ResMEWMA || 3.0753 (0.9) | 3.0507 (0.9) | 3.0240 (0.9) | 3.0473 (0.9)
MMOEWMA | 2.0173(0.1) | 2.2447(0.1) | 2.2803(0.1) | 2.3035 (0.1)
-0.2 ModMah 2.1537(0.1) | 2.0230(0.1) | 1.9936(0.1) | 2.0330(0.1)
ModMEWMA || 2.8218 (0.9) | 2.7978(0.9) | 2.8450 (0.9) | 2.7948 (0.9)
ResMah 2.6667(0.1) | 3.4458 (0.1) | 2.8500(0.1) | 2.9083(0.1)
ResMEWMA || 2.9693 (0.9) | 3.0930 (0.9) | 3.0873 (0.9) | 2.9733(0.9)
MMOEWMA | 1.9910(0.1) | 2.2578 (0.1) | 2.2327 (0.1) | 2.2560 (0.1)
0.1 ModMah 2.0720 (0.1) | 2.4883 (0.3) | 2.0830(0.1) | 2.1502(0.1)
ModMEWMA || 2.8685 (0.9) | 2.8255(0.9) | 2.7445 (0.9) | 2.8403(0.9)
ResMah 3.3750(0.1) | 3.0667(0.1) | 2.9000 (0.1) | 2.9625 (0.1)
ResMEWMA || 3.0315 (0.9) | 2.9947 (0.9) | 3.0177(0.9) | 2.9595(0.9)
MMOEWMA | 2.0232(0.1) | 2.2700(0.1) | 2.0383(0.1) | 2.3170 (0.1)
0.1 ModMah 2.0450(0.1) | 2.1527(0.2) | 2.09170.1) | 2.2580(0.3)
ModMEWMA | 2.7690 (0.9) | 2.8382 (0.9) | 2.8312(0.9) | 2.8592 (0.9)
ResMah 3.0042 (0.1) | 3.2208 (0.1) | 2.9542(0.1) | 2.9250 (0.1)
ResMEWMA || 3.0118 (0.9) | 3.0048 (0.9) | 3.0190 (0.9) | 3.0975 (0.9)
MMOEWMA || 1.9757(0.1) | 2.2668 (0.1) | 1.9932(0.1) | 2.0562(0.1)
0.2 ModMah 2.2350(0.1) | 2.0413(0.1) | 2.0647(0.1) | 2.1943(0.1)
ModMEWMA || 2.8450 (0.9) | 2.8093(0.9) | 2.8555 (0.9) | 2.8108(0.9)
ResMah 3.0458 (0.1) | 2.9833 (0.1) | 2.9625(0.1) | 3.2625 (0.1)
ResMEWMA 3.0722(0.9) | 2.9880 (0.9) | 3.0332 (0.9) | 3.0042 (0.9)
MMOEWMA | 2.0558(0.1) | .2942 (0.1) | 2.0055(0.1) | 1.9880(0.1)
0.3 ModMah 2.0240(0.1) | 2.1663(0.2) | 2.0907(0.1) | 2.0680 (0.1)
ModMEWMA || 2.8180 (0.9) | 2.7927 (0.9) | 2.8683 (0.9) | 2.8050 (0.9)
ResMah 3.0708 (0.1) | 2.6833(0.1) | 2.8375(0.1) | 3.5042 (0.1)
ResMEWMA || 2.9882 (0.9) | 3.0097 (0.9) | 3.0270 (0.9) | 3.0528(0.9)
MMOEWMA | 2.0190(0.1) | 2.2740 (0.1) | 2.0045(0.1) | 2.0313(0.1)
0.4 ModMah 2.1352(0.1) | 2.0506(0.1) | 2.1164(0.1) | 2.1372 (0.1)
ModMEWMA || 2.8235 (0.9) | 2.7877(0.9) | 2.8080(0.9) | 2.7920(0.9)
ResMah 3.5625 (0.1) | 2.8583 (0.1) | 2.5542 (0.1) | 2.8292 (0.1)
ResMEWMA || 3.0227 (0.9) | 3.0303 (0.9) | 3.0025(0.9) | 2.9943 (0.9)
MMOEWMA | 2.0135(0.1) | 2.2870 (0.1) | 1.9952(0.1) | 2.0057(0.1)
Table 5.7.1: Best out-of-control ARLs for negative shifts in the moving average

component of the VARMA affine process.
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da

" 0.1 0.2 0.3 0.4
0.4 ModMah 2.1106(0.1) | 2.0124(0.1) | 2.0454(0.1) | 2.0960(0.1)
ModMEWMA || 2.7492 (0.9) | 2.8258 (0.9) | 2.7942(0.9) | 2.7793(0.9)
ResMah 3.2625 (0.1) | 2.7042(0.1) | 2.9917(0.1) | 2.8458 (0.1)
ResMEWMA || 3.0412 (0.9) | 3.1012 (0.9) | 2.9973(0.9) | 3.0848 (0.9)
MMOEWMA || 2.2730 (0.1) | 2.3160 (0.1) | 2.2883 (0.1) | 2.2675 (0.1)

0.3 ModMah 2.1467(0.1) | 2.0113(0.1) | 2.2723(0.1) | 2.0563(0.1)
ModMEWMA || 2.8105 (0.9) | 2.7832(0.9) | 2.8740 (0.9) | 2.8150 (0.9)
ResMah 3.0208 (0.1) | 2.8833 (0.1) | 3.1042(0.1) | 3.1792 (0.1)
ResMEWMA || 2.9983 (0.9) | 2.9600(0.9) | 2.9870 (0.9) | 2.9800 (0.9)
MMOEWMA || 2.2742 (0.1) | 2.2828 (0.1) | 2.2725 (0.1) | 2.3148 (0.1)

0.2 ModMah 2.1913(0.1) | 2.2877(0.1) | 2.1020(0.1) | 2.1507(0.2)
ModMEWMA || 2.8070 (0.9) | 2.7628(0.9) | 2.7473 (0.9) | 2.8392(0.9)
ResMah 3.2375 (0.1) | 2.6625(0.1) | 2.9042(0.1) | 3.6625 (0.1)
ResMEWMA || 2.9630 (0.9) | 2.9663 (0.9) | 3.0337 (0.9) | 2.9882 (0.9)
MMOEWMA || 2.3395(0.1) | 2.3100 (0.1) | 2.2923 (0.1) | 2.2535 (0.1)

0.1 ModMah 2.0177(0.1) | 2.1707(0.1) | 2.2343(0.2) | 2.0917(0.1)
ModMEWMA || 2.7520 (0.9) | 2.7520 (0.9) | 2.8390 (0.9) | 2.7418(0.9)
ResMah 3.0042 (0.1) | 3.1833 (0.1) | 3.1542(0.1) | 3.1833 (0.1)
ResMEWMA || 3.0183 (0.9) | 2.9278 (0.9) | 3.0850 (0.9) | 2.9848 (0.9)
MMOEWMA || 2.3080 (0.1) | 2.3200 (0.1) | 2.2982(0.1) | 2.2677 (0.1)

0.1 ModMah 2.1408(0.1) | 2.1403(0.1) | 2.1510(0.2) | 2.1793(0.2)
ModMEWMA || 2.7767 (0.9) | 2.8502 (0.9) | 2.8518 (0.9) | 2.7830(0.9)
ResMah 3.0792 (0.1) | 2.8250 (0.1) | 3.4750 (0.1) | 2.6375(0.1)
ResMEWMA || 2.9080 (0.9) | 3.0248(0.9) | 3.0032 (0.9) | 3.0090 (0.9)
MMOEWMA || 2.2670(0.1) | 2.2738 (0.1) | 2.2978 (0.1) | 2.2510 (0.1)

0.2 ModMah 1.9867(0.1) | 2.0854(0.1) | 2.0477(0.1) | 2.1810(0.1)
ModMEWMA || 2.8145 (0.9) | 2.8045(0.9) | 2.7938 (0.9) | 2.8155(0.9)
ResMah 2.6750 (0.1) | 3.0542 (0.1) | 2.8542(0.1) | 3.1750(0.1)
ResMEWMA || 3.0120 (0.9) | 3.0703(0.9) | 3.0290(0.9) | 3.0547 (0.9)
MMOEWMA || 1.9770(0.1) | 2.3450 (0.1) | 2.2810(0.1) | 2.3055 (0.1)

0.3 ModMah 21320 (0.1) | 2.0327 (0.1) | 2.1586(0.1) | 2.0870(0.1)
ModMEWMA || 2.8308 (0.9) | 2.8255(0.9) | 2.8400 (0.9) | 2.7538(0.9)
ResMah 3.1417 (0.1) | 2.9375(0.1) | 3.0875(0.1) | 3.5792(0.1)
ResMEWMA || 3.0130 (0.9) | 2.9562 (0.9) | 3.0408(0.9) | 2.9863(0.9)
MMOEWMA || 1.9883(0.1) | 2.0180(0.1) | 2.2515 (0.1) | 2.3020 (0.1)

0.4 ModMah 2.1026 (0.1) | 2.1062(0.1) | 2.1598 (0.2) | 2.1264(0.1)
ModMEWMA || 2.8105 (0.9) | 2.8763(0.9) | 2.8708(0.9) | 2.8268 (0.9)
ResMah 2.7708 (0.1) | 2.7667 (0.1) | 3.0250(0.1) | 2.7792(0.1)
ResMEWMA || 3.0215 (0.9) | 3.0515(0.9) | 2.9482(0.9) | 3.0082 (0.9)
MMOEWMA | 2.0402(0.1) | 2.0227(0.1) | 2.0307(0.1) | 2.2917 (0.1)

Table 5.7.2: Best out-of-control ARLs for positive shifts in the moving average com-
ponent of the VARMA affine process.
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Figure 5.7.1: Modified EWMA chart based on Mahalanobis distance for A = 0.3.
The out-of-sample period is 2004:01 to 2011:12.
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Figure 5.7.2: MMOEWMA chart for A = 0.2. The out-of-sample period is 2004:01
to 2011:12.



Chapter 6

Conclusions and Discussion

In recent years SPC techniques such as control charts, originating from industrial
production, have found application to various fields such as finance. Monitoring of
a financial time series for detection of changes can be an important tool for decision
making.

In this work first we apply control charts for the detection of structural breaks in a
multifactor ATSM. The proposed control charts are the univariate EWMA based on
the Mahalanobis distance, the MEWMA chart, their corresponding charts applied
to the residual of the monitoring process, the MCUSUM and for the first time in a
financial application a modification of the MEWMA control chart the MMOEWMA
chart. The detection power of the control charts is tested through a simulation study.
We simulate shifts in the factor loading of the state evolution process of the affine
model and various parallel and non-parallel shifts in the yield curve process. The
results indicate that the choice of the suitable control chart depends on the type of
the shift, the size and the sign of the shift. The proposed control chart techniques
have been applied empirically to the U.S. yield curve and various structural breaks
have been documented. The main problem when the chart gives a signal is the
reestimation of the target process and eventually the new control limits. Here we
propose an estimation technique that is based on a estimation window that contains
a small period after the signal is given.

Second, we apply the mean-variance portfolio approach introduced by Markowitz
(1952) to obtain optimal portfolios composed of government bonds through an affine
term structure model estimated using the minimum chi square approach. This port-
folio optimization strategy is compared with other benchmark strategies and the
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results are quite satisfactory. Next, we propose EWMA control charts based on the
first differences for the surveillance of optimal GMVP weights. We apply this control
schemes in two portfolio optimization cases, allowing or not short selling. The calcu-
lation of the control charts requires the knowledge of the moments of the estimated
optimal weights. For the estimation of the covariance we use a simulation approach
since our asset returns are correlated. For the out-of-sample period only changes
in the variance of bond returns are considered. The MEWMA difference control
chart performs better than the the Mahalanobis difference chart and for every con-
trol scheme the results for constrained portfolio outperform that for unconstrained.
In the empirical study the results for the out-of-sample period favor the MEWMA
difference control chart.

Finally, we study a no-arbitrage Gaussian VARMA model of the term structure es-
timated through a two-step procedure. For the first step additional to standard
estimation approaches we apply an estimation procedure based on the impulse re-
sponses of the data process, the Projection Minimum Distance approach which is
asymptotically equivalent to the maximum likelihood method. Next, we compare
the forecasting ability for the state factor and theoretical bond yields not only for
the VARMA models but also compared with VAR-based models. The comparison in
terms of forecasting ability is done both for the in-sample and out-of-sample period.
The results confirm mostly in the forecasting of zero-coupon bond yields the superi-
ority of the VARMA models. The PMD estimation technique can be useful when we
are interest in medium- and long-term forecasting of the yield curve. In addition, we
apply control charts for detecting changes in the parameters of the VARMA model
under the historical probability measure. The detection power of the control charts
is tested through a simulation study for positive and negative shifts in the autore-
gressive and moving average component of the VARMA affine model. The results
indicate the choice of the modified EWMA chart based on the Mahalanobis distance
and the MMOEWMA control chart.

Future research in portfolio surveillance should concentrate on extending existing
control schemes for the GMVP or establishing new techniques. This requires thor-
ough study not only of SPC methods but also of modern portfolio theory. The
majority of the work in monitoring portfolio weights is concentrated in GMVPs and
should be extended for portfolio categories other than the GMVPs such as tangency
or Sharpe ratio. This suggests exploring techniques in order to monitor simulta-
neously the mean and the variance of the portfolio weights. On a wider level the
application of control charts in areas different from the Modern Portfolio Theory
(MPT) such as the Post-Modern Portfolio Theory (PMPT) should be investigated.
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Additionally the assumption of the distribution of the asset returns for cases other
than the Normal distribution needs further work. Most of the literature in the
Markowitz’s portfolio theory is focused on the equity portfolios and less on the class
of fixed-income portfolios. The monitoring of both mean and variance in a mean-
variance portfolio framework points out the need for applying more advanced SPC
techniques. One more possible application of control charts need to be considered
is monitoring large-scale portfolio allocations. Control charts on portfolio based
on realized covariance matrix is a new research area that future investigations are
necessary in topics such as in high-dimensional portfolios using a parametric factor
structure for the estimation of the covariance.

In many financial applications the sequence of the data is less frequent than daily data
e.g monthly or quarterly data, specially in term structure models. Future studies
should target on control schemes that take into consideration low frequency data and
affect distributional properties of estimators. For example, the use of low frequency
data for the asset returns may affect the estimation of the covariance matrix of the
control statistic and the distributional properties of the optimal portfolio weights. In
that case future work should aim at Monte Carlo simulation techniques. Additional
investigation is needed for control charts that assist the decision-making process
in stock trading for stocks that have low trading frequency. Future studies should
target on control schemes that take into consideration low frequency data and affect
distributional properties of estimators. Finally, further research should be focused
on techniques for the estimation of the moments of optimal portfolio weights when
the asset returns are identically and depended data under the normality assumption.
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Appendix A

Appendix

A.1 ATSM-Moments for control chart procedures

A.1.1 Moments for EWMA based on Mahalanobis distance

Ezxpected value for the Mahalanobis distance statistic
Suppose that F(uy) = 0 for all ¢ > 1,then the in-control expected value for the
vector of zero-coupon bond yields is

Eo(Y}) = Eo(An + B, X))

= A, + B Ey(Xy)

= An + By (19 + ¢VEo(Xi11)).
Covariance matrix for the Mahalanobis distance statistic
Suppose that Covg(X;,u;) = 0, E(uy) = 0, E(ugu,) = U, then the covariance
matrix of the vector of bond yields is
Covy(Ys) = Eo[Ye — Eo(Yo)|[Ye — Eo(Ye
E() A + B/ Xt +ug — A — B/ Eo(Xt)][A + B/nXt +ug — An — B/nEO(Xt)]/

[
[
= Fy[(B ;Xt +uy — B p? — Baop®Ey(Xi_1))(BuXe + uy — Buap® — Buop®E (Xi_1))]
= Eo[(Bn(Xy — p®? — ¢ Ep(Xi1)) + ue) (B (X — p® — ¢9Eo(Xi 1)) + uy)]
= Bo[(BL(Xe — Eo(Xe)) + ue) (B, (Xe — Eg(Xe)) + ug) ]
= Fo[(B, (X — Eo(Xy)) + ue)(Xe — Eo(Xe)) Bn + uy )]
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= Eo[(By(Xs — Eo(Xe))((X¢
— Eo(Xe))ug + uguy)]

= Eo[B,(X¢ — Eo(Xe))(X¢ —

= B, E[(X¢ — Eo(Xe))(Xs

— Eo(Xy)) Bn + ug(Xy — Eo(Xy)) By + B (X

Eo(X¢))Bn] +U
— Ep(X¢))|Ba +U

= B, (¢9Vo(X;)9p? + X)B, + U.

A.1.2 Moments for Modified MEWMA control charts

Ezpected value for the Modified MEWMA statistic:
The control statistic for the modified control chart based on the multivariate EWMA

recursion is

Zi=(1-R)'Zo+RY_ (I-R}Y:.

The expected value of the statistic is

Eo(Z,) = Ey(I-R Z0+RZ (I-R)Y,)

—(I-R Z0+RZ (I—-R)IEy(Yy)

t—1

=(I-R)'Zo+R>_ (I-RY(A, +B,(X¢y)

j=0
t—1

= (I-R)"Zo + A, + RB, Z (I-RYEo(X¢)

=0
t—1

=(I-R)'Zo+ A, + RB, Y (I-R)po,x

=(I-R)'Zo+ A, + RB

, (1: —(I-R)
nmIJ’O,X

= (I-R)*Zo+ A, +B,(I—(I—-R)*uox.

where po, x = Eo(X¢).

Covariance matrix for the Modified MEWMA statistic:
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Suppose that Covy(X;, u;) = 0, E(u) =0, E(usu,) = U, then
t—1
Covg(Zy) = Covg(I-R)*Zo + R (I-R)Y, )
7=0
t—1 t—1
—R(ZZ (I-R)Covy(Ye-iYej)(I-R))R
=0 5=0
t—1 t—1 A
R[S R RV Y)Yy~ B(Yeg) 1R )R
=0 j=0
-1 t-1
— (ZZ I-R A+ B X i +up; — A, — BLFEy(X¢_1))
=0 j=0

(B, Xey + et~ ByEo(Xe ) 00~ R) )R

_ ( ™ (1= R Eol(B(Xe s — Ey(Xes)) + e s)
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—_
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where po,x = Eo(Xy) and 0§ x = Vo(X¢). According to Abramowitz et al. (1988)
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Also, we have that
I-(I-R)* I

lim =

v I— (I-R)2 I—-(I-R)?

Then, the in-control covariance of the statistic is

Covo(Zyn) = R(B,u?0 xBn =+ B¢ xBu)

I-I-R)

, I
—R(B' . (u® Q52 B, —— ——R.
R(Bo(#%h0x + ¢%00x) B+ U)— 5 R

—a-rezUR

A.1.3 Covariance matrix for Residual control chart statistic

Control chart based on Mahalanobis distance
Suppose that Covg(X¢,ug) = 0, F(u,) = 0, E(uguy) = U. Since the control
statistic for the Residual chart based on the Mahalanobis distance is

Zy=(1=N'"Zo+ Xy, t > 1,
with
Ty, = d, 27 d,.
The in-control covariance matrix of the vector of the residuals is

Covo(dy) = Eo[(de — Eo(de))(de — Eo(dy))]

Eo[A, + B, X+ u; — A, — B_Eo(Xy)][An + B, X¢ +ug — A, — B_LEo(Xy)]
EyB,X; — B, Ey(Xy) +uy][B, Xy — B Eo(X,) + ¢

Eo[(B,(Xe — Xeo1) + ) (B, (Xe — Xeoy) + 1) |

B_ Eo[Vo(X¢ — X¢_1)]Bn + Eo(uguy)

= B, E[Vo(X¢/X¢-1)|Bn + U

= B (¢?Vp(X¢_1)9? + Z¢)By + U.

Control chart based on MEWMA statistic
Suppose that Covy(X¢, ug) = 0, Covg(ug, X¢) =0, E(dg) =0, E(u,) =0, E(uguy) =
U, then the covariance matrix of the statistic Z; is

t—1
Covg(Zy) = Covg ((1 ~R)'Zo+R) (I- R)Jdt_j)
j=0
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According to Abramowitz et al. (1988) we have that

t—

—_

[ / i ’ I
(L= R)'(Ba(¢6°)V0(Xema) + 20)Bu)(I = R)' = By ByBug— 3.
j=0
Also
I-(I-R)* I
lim = .
two I—(I-R)2 I-(I-R)2
Then the covariance matrix has the following form
/ I I
_ Q)2
Covg(Zy) = R(Bn(q’) ) Vo(Xg—1) + Et)BnI “I-RP? + T—(1- R)zU)R
/ I
=R(B,XyB,+U)———R.
(BuXyBu + )I—(I—R)z

A.1.4 Moments for MMOEWMA control chart statistic

Ezxpected value for the control statistic
The statistic for the modified MEWMA (MMOEWMA) control chart based on the
multivariate EWMA recursion is

Z,=(1-R)Zy+R> (I-R Yt_J+Z I-R)(Ye;— Y1)
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The expected value of the control statistic is

t—1
Ey(Z:) = BEo(I-R)'Zo + R (I-R)Y, + Z I-R)(Yej—Yij1)
7=0

= (I—-R)'Zo+ th_: (I—-RY Eo(Y¢ + Z (I-R)YEy(Ye;— Y1)

=0
t—1
— (I-R)'Zq +RZ I-R) (A, +B,(Xej) + Y (I-R) Ey(Yej— Y j1)
7=0
t—1 ‘
= (I1-R)'Zo+ A, +RB, > _ (I - R)Ey(X;)
§=0
t—1 ‘
=(I-R)'Zo+ A, +RB, > (I-R) pox
=0
(I—(I-R)

= (I— Z A, B—
( R) ot+A,+R "I (I-R) Mo, x

=I-R)*Zo+ A, + Bn(I — (I-R)*mox.
Covariance matrixz for the control statistic

Suppose that Covg(X¢,u;) = 0, E(u,) = 0, E(uguy) = U, then the in-control
covariance matrix is

R+Z (I—R) Covg(RY¢—5, Ye_j — Ye_j_1)(I—R)



A.2. Moments of bond yields 180
I t—1 A '
7=0
It can be proved that
— : . I-(I-R)
: (I - R)JVCLTO(Yt_j)(I - R)] = I—(I——RJzEY.
7=0
Also, we have that
I-(I-R)* I

Then, the covariance matrix is given as

, I
Covy(Zy) = R(BDEYBn + U) m)R + RI —I- R)zzYR
, I 2 I
=R((B,ZvyB, + U)—I IR JR+ Ry - REY-

A.2 Moments of bond yields
Suppose that the yield of a n-period zero coupon bond is given by
Y =A,+ B, X, +¢€,€e ~ N(0,Zy).
The expected value is
EiaY] = A, + B, E, 1 [ X = A, + B, Xy 1,

where X;_; is the one-step-ahead predictions of the state factors.
The conditional covariance matrix of bond yields is given by

Y, — B (Y)|[Y: — B (V)]

=1
=
— E,4[B,X,— B,E,_(X,)+ €|[B,X, — B,E,_1(X,) + €]
= E;1[B,X; — B,(p+ pX:1)][B,X: — B (p + pX;1)]

A, +B,X,+¢ —A,— B,E,_1(X))][A. + B, X, + € — A, — B, E,_,(X,)]
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= Ea[(B (X —p— pXi 1) + ) (B, (X, — p— pX, 1) + &) ]

= B [(B (M + X+ u —p— pXi1)(B,(n+ pXi+u — p— pXi)]
=F,_ 1[(B u; + et)(Bnut + et)/]

— E,1[B,u,u,B, + €€,

= B, E,_1[u,u,| B, + E,_1[e€,].

A.3 VARMA ATSM-Moments for control chart pro-
cedures

A.3.1 Modified EWMA control charts

EWMA chart based on the Mahalanobis distance

Suppose that E(e;) = 0 for all ¢ > 1 and under that the underlying process in weak
stationary we have that F(X;) = F(X;-1) and V(X;) = V(X;-1). The in-control
expected value for the state evolution process is

Eo(X}) = Eg(®1X¢—1 + € — Or6,1)
=P, Ey(Xi—1) + Eo(€r) — ©1Ep(€1—1)
= (I)lEO(Xt>-

If we assume that Covg(Xy, ) = 0, E(e;) = 0, E(ege;) = U, then the covariance
matrix of the vector of the state evolution process is

/

Covg(Xy) = Ep[(P1 X1+ € — O161)]|[(P1 X1 + €, — O1€4-1)]
= Eo[(®1Xi—1 + € — O16,1)][X;_1P] + €, — €,_,0]]
=Ey[®1 X1 X, P+ D1 Xy 1€, — P21 X, 1€;,_,0]

+ e X, 1P + ere, — €€, 10— Oes_1 X)_ P — O€s_1€, + Oes_1€, 6]
= By X1 X,_,¢| + Eolere] + Eol0es—1€,_,0']
= Vo(Xe-1)d + T + 056,

Chart Based on the Multivariate EWMA Statistic:

The control statistic for the modified control chart based on the multivariate EWMA
recursion is

Z,=(I-R)'Z+RY I-R)X.
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The expected value of the control statistic is
t—

Ey(Z:) = Eo(I-R)'Zo+R > (I-RPX; ;)

—_

7=0
t—1
=(I-R)'Zo+R>_ (I-RYE(X)
j 0
= (I-R ZO+RZ (I—RYEy(Xy)

=(I-R)"Zo+ RZ (I- Ry pox

(1-(1-R)
T @Ry e
— (I-R)'Zo+ (I— (I—R)*pox.

I-R)'Zo+R

where po,x = Eo(X).

Covariance matrixz for the Modified MEWMA statistic

Suppose that Covy(Xy,€) = 0, E(e,) = 0, E(ee,) = U and E(ee,) = 0t # s,
then we have

Covg(Zy) = Covp((I — R)*Zg + RZ (I-R)IX; ;)

(I-R)'Covy(X¢—iXe—j)I-R))R

I
/N
~
—= O »l—l
o~
= o »l—n

;lu
Ing
g

&+ S,

|

.
|

(I—R)"Eo[(Xemi — Bo(Xe—s)) (X — Eo(Xe—y)) (T~ R)j) R

=0 5=0
=1 t—1 ‘

= ( (I—- R)IEO[(q)lthifl +é€—i — 0161 — Ep(X¢i))
i=0 j=0

(<I)1Xt,j,1 + €t—j5 — ®1€t—j—1 — Eo(Xt,j)l](I — R)J) R

—_

t—1 t—1
= R( I-R)Ep[(®1X¢i-1+ €—i — Or€4—i—1 — My_;0)

7

Il
=)
<.

Il
o
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(<I)1Xt7j71 +e_j—O1€6_j1— _mtfj,o)/](l - R)j)R

t—1

t—1 t—
:R( Z EO (I)Xt11+6t 1,_916t1,1_mt10)

=0 7=0

’ ’

—_

t—1

t—
= R( (I-R) Ep[(®1 X i1 Xe—j1 P + €r—i€y_; + B1 XK 11X j_1 P}

i

Il
o
.

Il
o

+Or€ig,_;_101)(I— R)j) R

—_

t—1 t—1
— R( (I-R) (®1E0(X¢i—1Xe—j—1 )1 + Eo(€r—i€;_;) + ®1Ep(Xeoi1Xe—j-1 )@}

7

Il
=)
.

Il
o

+ @1E0(€t—i€/t_j—1)®,1](1 - R)j>R
1

t—1 t
( <I>1Cov0(Xt i— 1Xt —j-1 )(I) +20(€t)+¢100U0(Xt i— 1Xt —j— 1)
=0 j

I\
o

D, 4+ O,%(e)O (I - R)’)R

/ ’ ’ I
= R(2 * (EICOUO(thiletfjfl )i)l —+ Eo(ﬁt) + 2% @120(6,5)@1) T— (I — R)2R

where

C’ovo(mt_im;j) = Eo([@lxt_i — Glet—i][q)lxt—j — Glet—j]/>

/ ’

= Eo([®1X¢—i — ®1€t—i”Xt—j,(I)/1 —€_;0])

)
’

= @1 Fp([Xe—iXej |®) + 61E0[€t—i€/t—j]@1'

Also, po,x = Eo(X¢) and Jg,X = Vo(X¢). According to Abramowitz et al. 1988

t—1 t—

—_

)(I-RY =

Il
=)

=0 7
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Also, we have that

tc I—(I-R)2  I-(I-R)?

A.3.2 Residual-based control charts

EWMA Residual Chart Based on the Mahalanobis Distance
Suppose that Covg(Xy,e;) = 0, FE(e;) =0, E(erer ) = U, E(eges ) = 0,t # s. Since
the control statistic for the Residual chart based on the Mahalanobis distance is

Zy= (1= N2y + Ny, t > 1,
with
Ty, = d, X7 d,.
The in-control covariance matrix of the vector of the residuals is
Covg(dy) = Eo[(de — Eo(dy))(de — Eo(dy))]
= Ey[(X¢ — Eo(Xe/Xp-1))(X¢ — Eo(Xe/Xr-1))]
(Xt/Xr-1)

=V
Vo(®1 X1+ € — Or€,1)
HVo(Xp_1)®, + 2, — 0,X.0].

A.3.3 Residual Chart Based on the Multivariate EWMA Statis-
tic

Suppose that Covy(Xg, €;) = 0, Covp(ey, X¢) =0, E(dy) =0, E(ey) =0, E(ees ) =

U, E(eges ) = 0,t # s, then the covariance matrix of the statistic Z, is

Covy(Zy) = Covy ((I —R)*Zo + Ri (I- R)jdt—j)

t—1 t—1
= R( R)'Covo(dy_i, dy_;) (I — RY )R

— R( t 3 (I—R) Ey(de—id,_;)(I - R)j)R



A.3. VARMA ATSM-Moments for control chart procedures 185

t—1 t—

[y

(L= R oK) Kooy - R R

tf
— R( (I-R)'E[(®:1X¢_i_1 + €4

=0

Il
= o
- <
= o

o

.

—Or€e—i—1 — ) (P1X¢jo1 + €1—j — Or€_j_1 — mt—j)/](l — R)j>R

[y

t—1 t—
= R( (I-R)E[(®:1 X 51 + €4

i

Il
o
T
o

’ 12 / /
— O1€_i_1 — mtfi)(thjfl @, + €—j — €t—j—1

O}~ mi_ (I~ R )R

1

t—1 t—
( D (I R)Eo[(®1Xe—i-1Xej1

=0 75=0
o, + ‘I)1Xt—i—1€t_j — ‘I’1Xt—i—1€;_j_1@/1 - (plxt—i—lm;_j
+ et—iXt—j—l/(I)/1 + €t—i€;,_j
— et_ie;_j_l@ll — et_im;_j
- @1€t—i—1thj71,(I)l1 - @let—i—le;_j
+ O1€—i—16,_;_10) + Or€_j_1m,_;

/ i !
- mt—iXt—j—l P, — mi—i€s_j

+ mt,ie;_j_l@ll + mt,im;fj)](l - R)j> R

— R<2 $ @ X 1 Xy 1 P+ 2,

/ 1
- %0 - @126) ot

According to Abramowitz et al. 1988 we have that

—_

t—

I-R)(I-R) =

i
o
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Also

. I—-(I- R)2t 1
lim = )
twoo I — (I —R)?2 I-(I-R)2

Then the covariance matrix has the following form

Covy = R<2 £ @ X ;1 Xy P+ 2,

: I
- 3.0 - @125) TRt

A.3.4 MMOEWMA control charts

Ezpected value for the control statistic
The control statistic for the modified MEWMA (MMOEWMA) chart based on the
multivariate EWMA recursion is given by

Zi=(I-R)Zo+RY_ (I-RYX;+ Z I—RY (Xe_j — Xe_j_1).
=0

The expected value of the control statistic is

t—1
Ey(Zy) = Eo((1 - ZO+RZ (I-RYX¢+ Y I-R) (Xej— Xej1)
7=0
t—1
=(I— ZO+RZ I-RYE(Xe)+ Y (I-RYEy(Xej— Xe_j_1)
0
t— t—1 '
- (I - R) ZO + RE()( (I - R) Xt__]) + (I - R)]EO(Xt—j - Xt—j—l)

J

J

—_

I
=)
I
o

J

= (I— Z0+RZ (I-R) Ey(X¢;)

= (I-R)'Zo + RZ (I—R) po x

(1-(I-R)

= (I — R)tZO + Rmuo’x
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= (I-R)*'Zo+ (I — (I-R)* o x.

Covariance matriz for the control statistic
Suppose that Covy(Xy, €;) = 0, E(e,) = 0, E(ege;) = U, then the in-control covari-

ance matrix is

t—1 t—1
Covg(Zy) = Covg ((1 ~R)'Zo+RY I-R)YXej+ Y (I-RY(Xej— Xt_j_l))
j=0 Jj=0

J

= Covy (RS(I - R)thj) - Covo< ::(I — R (X4_j — thl)) +

7=0
t—1 A t—1
Covg (RZ (I-RYXe > (I-R) (X — Xt_J_1)>
=0 =0
t—1 ' '
=R(D_(I-R)Coup(Xe)(I- R)J))R
j=0
t—1 ' '
+ Z (I — R)]CO’UQ(Xt,j — Xt,jfl)(]: — R)J
j=0
t—1 A )
+) (I-R)YCovy(RX¢_j,X¢ ; — X¢_j1)(I—R)
=0
- R ! RV, (X¢)
T I—(I-R2? Y

It can be proved that

(I-R)'Vary(Ye;)(I-R) = —II__ <(II__I;{))2;

t

I
o

J
Also, we have that

I-(I-R)% I
"R I-(I-R?

tlip;a I-—

—~I|
|



Appendix B

Tables

VAR No. of elements Y. Zpum 09 01 Pmi Pmm Pu Pim 00 2 om @
Q3 N, X

Qr Nin(Np +1)/2 X

o NN, X X

s NVeNm X X

5 NN, X X

Qx N(N +1)/2 X X

1 NN X X X

& N2 X X X X

o1 N? X X X

i NN, X X X X

A N, X X X X X

A Np X X X X X X
A; N, X X X X X X

Table B.0.1: Mapping between structural and reduced-form parameters for the ATSM
model.

Maturity 38 month t-Statistic 5 year t-Statistic 10 year t-Statistic
Intercept 0.0035 (0.1800*1e-03) 19.6709 0.0047 (0.4670*1e-03) 10.1299 0.0051 (0.0644*1e-03) 79.0791
CPI 0.0034 (0.1709*1e-03) 19.9140 0.0028 (0.4434*1e-03) 6.4156 0.0026 (0.0612*1e-03) 42.3099
P -7.5713e-06 (0.1587*1e-03)  -0.0477  6.4410e-06 (0.4116*1e-03)  0.0156  -3.7569e-06 (0.0568*1e-03)  -0.06625
adj.R? 0.1112 0.1391 0.2128

Table B.0.2: Regressing U.S. Treasury yields on macroeconomic factors.
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IM

J8M

60M

72M

84M

120M

1.0000
0.1445
0.3650
0.2697
0.3008
-0.1696

Table B.0.3: Correlation coefficients for U.S. Treasury bond expected returns.

0.1445
1.0000
0.1655
0.9798
0.8138
0.8326

0.3650
0.1655
1.0000
0.1714
0.6826
-0.3383

0.2697
0.9798
0.1714
1.0000
0.8067
0.7795

0.3008
0.8138
0.6826
0.8067
1.0000
0.4126

-0.1696
0.8326
-0.3383
0.7795
0.4126
1.0000
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\ " 1.5 2 25 3 35 4 45

0.05 | 10.9052 (6) 10.1504 (6) 9.3015 (6) 8.5742 (5) 7.5604 (5) 6.6746 (5) 5.8821 (4)
0.1 |10.4735 (7) 10.0032 (6) 9.3625 (6) 8.6141 (6) 7.8398 (5) 6.7949 (5) 6.3112 (4)
0.15 | 4.6401 (6) 4.5863 (6) 4.5285 (5) 4.3028 (5) 4.1521 (5) 3.8635 (5) 3.7039 (4)
0.2 | 6.1538 (7)  6.0879 (7) 5.8557 (7) 5.6442 (6) 5.3134 (5) 4.9711 (5) 4.6929 (5)
0.25 | 6.2345 (7)  6.0457 (7) 5.9630 (6) 5.5580 (6) 5.2661 (5) 5.0370 (5) 4.6644 (5)
0.3 | 6.3382 (7) 6.1988 (6) 6.0654 (6) 5.7349 (6) 5.4512 (5) 5.1801 (5) 4.8956 (5)
0.35 | 4.2680 (7) 4.1450 (7) 4.0805 (6) 3.9716 (6) 3.7859 (5) 3.6668 (5) 3.4729 (5)
0.4 | 4.5479 (7)  4.3657 (6) 4.2784 (6) 4.1053 (6) 3.9930 (5) 3.7932 (5) 3.6039 (5)
0.45 | 4.7380 (7)  4.6270 (6) 4.4198 (6) 4.3756 (6) 4.1834 (5) 4.0068 (5) 3.8220 (5)
0.5 | 4.81811 (5) 4.8303 (5) 4.6982 (5) 4.5100 (4) 4.6883 (4) 4.1049 (5) 4.0258 (5)
0.75 | 6.4559 (5) 6.2089 (5) 6.3188 (5) 6.0857 (5) 5.8935 (5) 5.6704 (5) 5.5211 (5)
0.9 | 5.9822 (6) 5.9012 (6) 5.7933 (5) 5.6725 (5) 5.5070 (5) 5.400 (5) 5.2461 (4)

Table B.0.4: Out-of-control ARLs for n=40 and in-control ARL=6 for the case of con-
trol chart based on Mahalanobis distance for unconstrained portfolios. In parentheses
the MRLs are presented.

u

\ 15 2 2.5 3 3.5 4 45
0.05 | 5.7647 (4) 5.4942 (4) 5.2403 (4) 4.9013 (4) 4.554 (3) 3.9979 (3) 3.9514 (3)
0.1 |5.9874 (4) 5.6457 (4) 5.4315 (4) 5.0503 (4) 4.661 (4) 4.1433 (3) 3.7668 (3)
0.15 | 5.8075 (5) 5.6026 (4) 5.3753 (4) 4.9159 (4) 4.6268 (3) 4.1407 (3) 3.7748 (3)
0.2 |5.8304 (4) 5.6859 (4) 5.3572 (4) 5.0197 (4) 4.6309 (3) 4.2401 (3) 3.8680 (3)
0.25 | 5.6773 (4) 5.5410 (4) 5.2776 (4) 4.9200 (4) 4.5306 (4) 4.1454 (3) 3.8527 (3)
0.3 | 5.8985 (4) 5.6726 (3) 5.4226 (4) 5.1959 (4) 4.7568 (4) 4.3851 (3) 4.0227 (3)
0.35 | 5.9271 (4) 5.7277 (4) 5.5195 (4) 5.1419 (4) 4.8185 (4) 4.4227 (3) 4.0606 (3)
0.4 |5.9286 (4) 5.6923 (4) 54714 (4) 5.1928 (4) 4.7971 (4) 4.4854 (3) 4.0788 (3)
0.45 | 5.9849 (5) 5.7179 (5) 5.5457 (5) 5.2854 (4) 4.8729 (4) 4.5943 (4) 4.2015 (3)
0.5 | 54718 (5) 5.4366 (4) 5.2036 (4) 4.9585 (4) 4.6863 (4) 4.4031 (4) 4.0940 (3)
0.75 | 54578 (5) 5.3463 (5) 5.2082 (5) 5.0806 (5) 4.8743 (5) 4.5602 (4) 4.3138 (4)
0.9 |7.3793 (5) 7.3455 (4) 7.0636 (4) 7.0084 (4) 6.8983 (4) 6.6646 (4) 6.3441 (4)

Table B.0.5: Out-of-control ARLs for n=40 and in-control ARL=6 for the case of
control chart based on MEWMA statistic for unconstrained portfolios.
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u

A\ 1.5 2 2.5 3 3.5 4 4.5
0.05 | 3.1238 2.1804 1.7700 1.5558 1.4020 1.3174 1.2158
0.1 |1.1212 1.0668 1.0320 1.0252 1.0178 1.0106 1.0050
0.15 | 2.1586 1.6672 1.4656 1.3498 1.2586 1.2174 1.1690
0.2 | 2.1104 1.6924 1.4666 1.3740 1.2884 1.2178 1.1670
0.25 | 2.0806 1.6784 1.4746 1.4060 1.2986 1.2236 1.1844

(1 0 6 (1) ® (1) ®
(1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (1) (1) (1) (1)

0.3 | 1.9454 (1) (1) (1) (1) (1) (1) (1)

0.35 | 1.9224 (1) 1.5950 (1) 1.4514 (1) 1.3630 (1) 1.3036 (1) 1.2350 (1) 1.1912 (1)
0.4 | 2.4336 (1) (1) (1) (1) (1) (1) (1)

0.45 | 2.3126 (1) (1) (1) (1) (1) (1) (1)
0.5 | 2.0582 (1) (1) (1) (1) (1) (1) (1)

0.75 | 1.9428 (1) (1) (1) (1) (1) (1) (1)
0.9 | 1.9192 (1) (1) (1) (1) (1) (1) (1)

Table B.0.6: Out-of-control ARLs for n—40 and in-control ARL=6 for the case of
control chart based on Mahalanobis distance for constrained portfolio.

\ " 1.5 2 25 3 35 4 45

0.05 | 1.3646 (1) 1.3824 (1) 1.4120 (1) 1.0168 (1) 1.0136 (1) L1.0118 (1) 1.0114 (1)
0.1 | 1.4506 (1) 1.1986 (1) 1.0656 (1) 1.0240 (1) 1.0160 (1) 1.0102 (1) 1.0106 (1)
0.15 | 1.6190 (1) 1.3068 (1) 1.1134 (1) 1.0576 (1) 1.0312 (1) 1.0218 (1) 1.0112 (1)
0.2 | 1.7244 (1) 1.3822 (1) 1.1984 (1) 1.0990 (1) 1.0544 (1) 1.0302 (1) 1.0222 (1)
0.25 | 1.7562 (1) 1.4404 (1) 1.2264 (1) 1.1206 (1) 1.0674 (1) 1.0430 (1) 1.0340 (1)
0.3 | 1.8254 (1) 1.4662 (1) 1.2742 (1) 1.1540 (1) 1.0942 (1) 1.0550 (1) 1.0358 (1)
0.35 | 1.8864 (1) 1.5068 (1) 1.3096 (1) 1.2070 (1) 1.1274 (1) 1.0852 (1) 1.0472 (1)
0.4 | 1.8558 (1) 1.5510 (1) 1.3498 (1) 1.2170 (1) 1.1534 (1) 1.1030 (1) 1.0562 (1)
0.45 | 1.9938 (1) 1.6310 (1) 1.4224 (1) 1.2832 (1) 1.1842 (1) 1.1346 (1) 1.0948 (1)
0.5 | 1.0882 (1) 1.6574 (1) 1.4476 (1) 1.2994 (1) 1.2222 (1) 1.1572 (1) 1.1168 (1)
0.75 | 2.4472 (1) 2.0778 (1) 1.8260 (1) 1.6198 (1) 1.5304 (1) 1.4188 (1) 1.3174 (1)
0.9 | 5.8965 (1) 5.2398 (1) 5.6694 (1) 4.9970 (1) 4.1104 (1) 3.5460 (1) 3.1660 (1)

Table B.0.7: Out-of-control ARLs for n—40 and in-control ARL=6 for the case of
control chart based on MEWMA statistic for constrained portfolio.
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¢ 0.87181 -0.017812  0.012011 0.0034272  -0.0053583
(2.5431e-08)  (5.1461e-08) (2.0137e-07) (0.0536e-07) (2.1606e-07)
-0.30186 0.80995 0.099164 0.01879 -0.0587
(3.0271e-08)  (6.2142e-08) (2.4061e-07) (0.0205¢-07) (2.3962e-07)
0.097158  -0.58839 0.98951 0.016938 -0.08426
(1.3344¢-08)  (8.5078¢-08) (5.4005¢-07) (0.0859¢-07) (1.0933¢-07)
-0.08554 -0.028417  -0.03024 0.93816 0.01096
(5.6615e-08)  (1.4567e-07) (4.9868¢-07) (0.0440e-07) (4.1624e-07)
0.5685 0.21583 0.2952 0.15714 0.7043
(8.6810e-08) (2.4387e-07) (5.3895e-07) (0.0590e-07) (4.4603e-07)

o -3.3432e-04
(4.4166e-07)

51 3.1952e-05  0.00013014  1.2125¢-05  0.0001709  0.00016569
(1.28586-07) 2.3255¢-07)  (1.8357e-07) (2.6514e-07) (4.4406e-05)

1@ 1.3919 -0.81477 0 0 0
(1.212e-07)  (2.17556-07)

2 0.20883 0 0 0 0
(5.913¢-09)
0.029512 0.61729 0 0 0
(0.1693¢-08)  (0.1197e-08)
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

po 0.025387 0.42077 0.67457 -0.25218 2.6127
(3.07556-08)  (3.3529e-07) (1.0075e-8)  (4.1247e-08) (5.1066e-08)

¢?  1.0633 0.82035 -0.32955 0.47331 0.26845
(1.5812e-05) (3.1240e-05) (6.9610e-06) (5.3160e-05) (3.8894e-05)
-0.26035 0.61316 -0.28452 -0.28316 -0.1324
(3.1898¢-05)  (6.3245¢-05) (1.0625¢-05) (1.0247e-04) (7.8352e-05)
-0.10367 0.071545 0.91015 0 0
(1.1166e-04)  (1.0089e-04)  (2.6895¢-05)
0.013353  -0.5 0.051817  0.78713 -0.20236
(1.8092e-05) (2.4970e-05) (1.4491e-05) (1.0026e-04) (3.6707e-05)
-0.17911 -0.24853 0.33837 -0.1458 0.78713

(3.5119¢-05)

(2.8875€-05)

(1.3749-05)

(8.2879¢-04)

(1.0026e-05)

Table B.0.8: The table reports the parameter estimates and standard errors in paren-
theses applying the minimum-chi-square method. The sample period is 1988:01 to
1997:07.
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B.1 Shifts in the factor loadings of the state evolu-
tion process

B.1.1 Positive shifts in Yield curve

\ d 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

0.1 | 1523 1698 16.82 17.71 19.46 19.24 20.31 20.86
0.2 109 11.07 11.67 11.75 11.96 12.65 13.2 13.19
0.25 | 10.85 11.24 1146 12 1211 12.25 1247 12.73
0.35 | 11.17 11.16 11.8 12.05 12,11 12.35 1259 12.84
0.45 | 11.53 1148 11.66 12.71 12.22 124 12.82 12.86
0.5 997 9.99 10.17 10.32 10.33 10.65 10.86 10.96
0.75 | 11.57 11.54 11.74 12.04 12.27 12.38 12.25 12.69
0.9 |10.21 1041 10.74 1052 10.81 11.1 11.1 11.27

Table B.1.1: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on Mahalanobis distance.

A\ d 006 01 015 0.2 025 03 035 04
0.1 6.65 3.52 2.07 145 1.17 1.06 1.02 1

0.2 |10.81 587 299 188 1.33 1.13 1.05 1.01
0.25 | 15.69 825 42 234 155 12 1.08 1.02
035 | 5.12 3.7 239 164 126 1.09 1.03 1

0.45 | 20.42 14.1 835 4.7 279 1.78 134 1.11
0.5 |10.11 7.61 5.23 319 204 15 1.2 1.06
0.75 | 11.05 946 7.47 538 3.8 252 1.81 1.38
0.9 945 885 7.17 569 42 3.06 228 1.67

Table B.1.2: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on MEWMA statistic.
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A\ d 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1 |14.26 1245 15.81 2047 2222 17.22 1851 19.09
0.2 9.82 10.06 10.52 10.64 11.2 11.51 11.67 11.89
0.25 | 945 944 983 994 1039 104 10.76 10.73
0.35 | 956 10.04 105 10.35 10.82 11.21 11.25 11.74
0.45 | 9.38 9.7 968 999 10.28 10.18 10.36 10.97
0.5 | 10.35 1041 10.43 108 10.89 11.42 11.7 11.28
0.75 | 9.99 997 10.35 1043 10.17 10.32 10.54 10.91
0.9 |11.49 12,03 12.14 11.81 12.77 13.22 12,16 12.05

Table B.1.3: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on Mahalanobis distance.

A d 0.05 01 015 02 025 03 035 04
0.1 |1.01 1.04 1.08 126 1.8 3.18 6.06 10.66
0.2 | 1.18 1.37 1.88 2.532 3.75 5.33 7.56 10.35
0.25 | 142 1.74 235 3.2 459 59 797 10.26
0.35 | 25 3.11 398 5.04 649 7.72 957 11.41
0.45 | 3.32 4 4.8 58 7 828 953 10.63
0.5 | 3.7 459 542 637 741 854 9.7 11.05
0.75 6 684 7.72 845 9.26 10.1 1091 11.5
09 |6.23 687 734 805 879 938 958 10.25

Table B.1.4: Out-of-control ARLs for in-control ARL—11 months for the case of
Residual control chart based on MEWMA statistic.
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o d 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0.1 |11.18 11.62 11.28 11.53 11.72 11.26 12.1 12
0.3 1096 11.08 10.96 11.38 11.69 11.84 11.75 12.42
0.5 |13.22 13.56 13.68 13.75 14.02 14.05 13.83 14.13
0.7 | 916 932 935 922 954 933 9.36 9.7

1 10.41 10.77 10.84 11.01 11.04 11.2 11.27 11.34
1.5 1 916 924 936 958 956 979 992 987
2 8 8.22 817 825 848 823 879 878
2.5 | 1657 169 17.08 17.68 1785 17.77 18.22 17.78

Table B.1.5: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control chart.

A\ d 0.05 0.1 015 0.2 025 03 035 04
0.1 6.66 3.36 2.02 141 1.17 1.05 1.02 1
0.2 8 433 25 159 1.22 1.09 102 1
025 | 794 437 255 163 1.26 1.09 1.03 1
035 | 886 554 319 199 14 1.15 1.04 1.01
045 | 993 681 416 245 1.68 126 1.09 1.02
0.5 | 1046 739 466 287 186 1.34 1.12 1.04
0.75 | 11.14 9.03 6.9 4.71 3.17 218 1.56 1.24

0.9 |10.67 9.52 7.77 5.7 4 285 204 1.55

Table B.1.6: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.1.2 Negative Shifts in the Yield curve

A\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4
0.1 | 1456 13.32 13.39 1299 1223 11.44 10.78 10.01
0.2 ]10.19 10.18 9.78 9.56 889 9.09 850 825
0.25 | 10.32 10.21 9.78 9.87 944 899 883 8.84
0.35 | 10.63 10.61 10.23 10.09 9.86 9.52 9.26 9.07
0.45 | 10.73 10.64 1049 10.3 9.91 9.9 9.7 949
05 | 943 929 892 873 877 86 838 824
0.75 | 10.83 10.67 10.91 10.35 10.43 10.16 9.9 10.24

0.9 | 998 10.02 9.77 9.8 9.6 925 939 912

Table B.1.7: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on Mahalanobis distance.

A\ d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 | 1349 826 4.7/ 3.06 217 1.7 1406 1.26
0.2 |19.54 11.54 10.68 887 58 411 328 2.71
0.25 | 15.87 996 6.46 5.93 d 4.01 331 2.7
0.35 | 11.02 8 5.85 4.09 298 234 197 1.78
0.45 | 5.69 4.59 3.7 28 234 191 1.69 1.53
0.5 591 485 396 317 255 216 1.87 1.73
0.75 | 15.32 13.23 10.6 8.8 75 6.08 529 4.7

0.9 1559 141 11.94 10.27 857 7.5 637 5.95

Table B.1.8: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on MEWMA statistic.
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A\ d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4
0.1 | 12,67 11.32 10.53 9.66 898 822 7.62 6.93
02 | 894 853 783 773 706 69 64 64
025 | 83 707 784 629 598 6.72 556 598
035 | 943 913 86 816 7.84 T7.62 727 7.35
045 | 9.05 844 845 822 742 757 725 T7.08
05 | 962 914 9.04 877 843 835 797 7.76
0.75 | 992 944 912 918 888 856 8.67 841
0.9 | 11.12 10.75 10.83 10.31 10.36 9.98 9.82 9.78

Table B.1.9: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on Mahalanobis distance.

A\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4
0.1 3056 566 1.38 1.01 1 1
0.2 | 1491 5.82 228 122 1.02 1
0.25 | 12.68 5.89 2.5 1.4 1.06 1
0.35 | 11.82  6.23 3.3 1.9 1.25  1.06 1
0.45 | 10.11 6.48 3.64 226 152 1.18 1.05 1
0.5 987 648 414 249 168 1.28 1.09 1.02
0.75 | 15.81 1542 1548 1535 15.45 15.64 15.66 15.64

0.9 | 1275 1285 13.04 1257 1298 12.68 12.7 12.86

—_ = =
—_

Table B.1.10: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on MEWMA statistic.
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o d -0.06 -01 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 |11.16 11.45 10.78 10.87 10.52 10.52 10.35 10.61
0.3 |11.35 10.38 10.8 10.34 10.26 10.34 10.45 9.88
0.5 |12.84 12,63 124 1234 1239 1242 11.91 11.68
0.7 | 88 857 834 841 837 85 8.46  8.29

1 10.23 10.38 994 979 969 956 9.64 9.42
1.5 | 897 876 891 851 8.56 8.6 8.67 8.3
2 799 7.8 78 7.74 746 757 7.3 7.6
25 |16.23 16.12 15.77 1535 153 15.11 1491 14.87

Table B.1.11: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control chart.

d
A
0.1 | 754 406 235 162 125 1.1 1.03 1
02 | 729 478 292 18 14 117 1.06 1.02
0.25 | 7711 5.09 3.06 2 1.48 1.22 1.08 1.03
0.35 7 4.85 3.27 216 1.58 1.29 1.11 1.05
0.45 | 827 6.02 409 27 19 149 124 1.11
05 | 749 567 39 275 196 151 126 1.13
0.75 | 828 6.77 5.15 3.77 279 215 1.69 141
09 | 879 744 592 455 348 263 2.07 1.69

-0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4

Table B.1.12: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.2 Parallel shifts in Yield curve

B.2.1 Positive shifts

A\ d 0.05 0.1 015 02 025 03 035 04
0.1 |85.38 51.46 23.65 873 284 123 101 1

0.2 |34.22 23.77 1346 7.44 3.45 1.77 1.18 1.02
0.25 | 28.78 21.67 1348 7.61 4.08 212 13 1.06
0.35 | 25.19 19.08 12.74 8.07 4.71 277 1.71 1.25
0.45 | 23.77 18.02 12.78 8.46 5.29 3.29 2.15 1.49
0.5 | 1891 15.22 1098 7.39 4.8 311 213 1.52
0.75 | 19.7 16.06 12.04 8.82 597 4.3 3 224
0.9 | 1648 14.09 10.89 819 5.74 4.13 3.08 237

Table B.2.1: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on Mahalanobis distance.

A\ d 0.05 0.1 015 0.2 025 03 035 04
0.1 9.73 566 3.19 198 1.41 1.19 1.07 1.02
0.2 124 7.04 399 252 1.75 134 1.15 1.06
0.25 | 10.14 6.38 3.81 251 1.71 1.34 1.17 1.06
035 | 774 541 371 245 1.8 141 1.21 1.09
045 | 438 35 269 202 1.61 132 1.17 1.08
0.5 456 3.7 281 225 1.7 141 121 1.11
0.75 | 11.92 9.75 7.34 547 4.06 3  2.28 1.83

0.9 | 1288 10.8 8.64 6.73 508 391 3.05 2.38

Table B.2.2: Out-of-control ARLs for in-control ARL=11 months for the case of
control chart based on MEWMA statistic.
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\ d 0.05 01 015 02 025 03 035 04
0.1 397 238 144 1.07 1 1 1 1
02 419 295 203 135 1.09 1 1 1
025 | 448 334 216 155 12 105 1 1
035 | 529 4.03 287 2 149 119 106 1
045 | 546 4.2 3.15 23 1.7 135 115 1.03
0.5 0.9 4.72 348 261 193 148 1.21 1.08
0.75 | 6.08 494 383 298 234 191 158 1.33
09 | 721 56 456 342 271 221 1.84 1.57

Table B.2.3: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on Mahalanobis distance.

A\ d 0.05 01 015 02 025 03 035 04
0.1 3066 5.75 135 1.01 1 1 1
0.2 1511 5.8 221 12 1.02 1 1
0.25 | 12.35 562 248 135 1.06 1 1
0.35 | 11.68 6.23 3.22 18 1.23 106 1
0.45 10 642 363 221 15 116 105 1
0.5 ]10.01 6.56 3.86 241 1.64 1.28 1.09 1.02
0.75 | 9.38 6.98 492 336 237 1.77 144 1.21
0.9 8.04 6.48 482 3.53 2.63 2.03 1.64 1.37

1
1
1
1

Table B.2.4: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on MEWMA statistic.
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o d 0.05 01 015 02 025 03 035 04
0.1 281 1.02 1 1 1 1 1 1
0.3 | 3.34 1.05 1 1 1 1 1 1
0.5 | 5.69 1.56 1 1 1 1 1 1
0.7 | 894 878 891 9.07 9.05 9.06 896 8.69

1 6.83 452 208 107 1 1 1 1
1.5 | 6.72 553 403 255 145 103 1 1
2 6.14 546 438 332 243 1.71 118 1
25 | 1195 10.35 8.2 6.04 46 3.27 233 1.62

Table B.2.5: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control chart.

d
A

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.1
0.2
0.25
0.35
0.45
0.5
0.75
0.9

9.63
7.5
7.54
6.68
7.85
7.4
8.26
8.8

5.45
4.68
4.97
4.84
2.96
5.48
6.68
7.35

3.1
2.82
3.11
3.24
4.06
3.92
5.18
6.14

1.91
1.9
2.04
2.24
2.76
2.81
3.95
4.81

1.4
1.42
1.51
1.66
2.04

2.1
2.96

3.6

1.17
1.19
1.25
1.3
1.56
1.64
2.33
2.88

1.06
1.07
1.1
1.15
1.29
1.32
1.85
2.29

1
1.03
1.04
1.07
1.15
1.17

1.5
1.88

Table B.2.6: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.2.2 Negative shifts

A d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 | 8287 50.95 2299 846 2.68 1.24 1 1

0.2 |33.73 2421 14.04 7.13 341 1.78 1.15 1.02
0.25 | 304 21.79 13.64 7.68 3.92 2.06 1.32 1.06
0.35 | 25.43 19.35 13.14 8.07 4.69 281 1.77 1.25
0.45 | 22.87 18.07 1287 838 5.18 3.2 217 1.1
0.5 | 19.11 15.03 1092 7.27 481 3.16 212 1.51
0.75 | 20.13 16.51 1244 8.66 6.25 4.17 3.02 2.25

0.9 ]16.59 14.34 10.8 8.02 586 4.24 3.09 2.38

Table B.2.7: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on Mahalanobis distance.

A\ d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 998 568 318 194 144 119 1.07 1.02
0.2 | 1259 7.16 407 248 1.71 131 1.15 1.05
0.25 | 10.18 6.41 3.86 245 1.72 134 1.17 1.05
0.35 | 7.64 547 361 249 18 141 1.19 1.08
0.45 | 444 355 266 202 16 132 1.17 1.08
0.5 | 453 372 287 217 171 141 121 11
0.75 | 11.96 9.68 7.26 5.33 397 3.02 232 183

0.9 | 1277 10.69 868 6.69 515 39 3.01 235

Table B.2.8: Out-of-control ARLs for in-control ARL=11 months for the case of
modified control chart based on MEWMA statistic.
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A\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 3.9 253 146 1.07 1 1 1 1
02 | 422 299 195 133 1.09 1.01 1 1
025 | 445 339 228 156 1.18 1.04 1 1
035 | 52 403 29 207 147 119 1.05 1
0.45 | 5.51 4.27v 314 233 1.74 133 114 1.04
0.5 | 598 456 3.51 256 193 148 1.21 1.07
0.75 | 6.23 508 3.77 295 236 1.89 1.57 1.35
09 | 715 584 433 346 2.69 225 185 1.58

Table B.2.9: Out-of-control ARLs for in-control ARL=11 months for the case of

Residual control chart based on Mahalanobis distance.

A\ d -0.065 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 12947 55 14 1.01 1 1 1 1
0.2 | 1493 561 218 1.19 1.02 1 1 1
025 | 123 573 249 136 1.05 1 1 1
0.35 | 11.64 6.34 3.32 181 1.27 1.06 1 1
0.45 | 10.28 6.23 3.69 222 1.48 1.15 1.04 1
0.5 |10.08 6.64 396 241 1.61 1.26 1.09 1.02
0.75 | 968 7.15 494 339 238 1.81 1.44 1.23
0.9 811 6.0 4.72 344 258 202 1.63 1.39

Table B.2.10: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on MEWMA statistic.
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o d -0.06 -01 -0.15 -0.2 -0.25 -0.3 -0.35 -04
0.1 |11.12 11.33 11.3 10.99 11.01 11.1 109 10.91
0.3 |10.75 11.29 10.85 10.54 11.01 10.91 10.56 10.6
0.5 |12.73 12,67 12.76 1282 13  12.88 13.250 13.23
0.7 {919 89 878 898 881 872 895 897

1 10.33 10.23 10.19 10.38 10.32 10.08 10.35 10.41
1.5 [ 905 901 931 931 912 934 9 9

2 8.07 809 794 816 814 8.01 805 7.95
2.5 | 1647 1642 16.22 16.1 16.67 16.14 16.75 16.55

Table B.2.11: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts.

A\ d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35 -0.4
01 | 784 429 251 1.7 131 112 1.04 1.02
02 | 815 5.02 314 202 148 1.19 1.09 1.03
0.25 | 822 545 327 214 155 1.26 1.12 1.04
0.35 | 7.07 5.21 339 237 1.7 134 1.16 1.07
0.45 | 833 6.29 434 294 207 159 132 1.16
05 | 7.74 6.12 4.24 3 218 1.69 1.36 1.18
0.75 | 835 7.13 551 423 312 241 189 1.54
0.9 8.8 781 646 509 39 294 24 1.98

Table B.2.12: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.3 Non-parallel shifts in yield curve

B.3.1 Positive shifts for a twist in the yield curve

A\ d 0.05 0.1 0.15 0.2 025 03 035
0.1 | 4774 295 1 1 1 1 1
0.2 ]66.53 43.68 22.26 1035 43 1.74 1
0.25 | 51.99 36.84 20.86 10.53 4.73 2.01 1.18
0.35 | 40.83 30.34 18.92 11.04 5.82 2.95 1.61
0.45 | 35.62 27.05 17.61 1088 6.2 3.63 2.01
0.5 | 2837 219 1492 949 58 3.67 203
0.75 | 12.22 551 2.35 1.2 1.02 1 1
0.9 | 11.17 547 262 138 1.06 1 1

Table B.3.1: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on Mahalanobis distance.

A\ d 0.05 0.1 0.15 0.2 025 0.3 0.35
0.1 988 485 272 172 131 113 1.04
0.2 13.7  6.81 3.5 215 147 1.2 1.06
0.25 | 1212 6.34 346 213 148 1.19 1.07
0.35 | 933 599 3,51 224 156 1.23 1.09
0.45 | 5.23 3.82 271 1.8 142 1.17 1.05
05 | 1236 886 5.79 3.69 242 1.73 1.31
0.75 | 1478 122 888 6.4 455 321 233
0.9 | 1548 13.12 10.57 8.04 5.92 4.23 3.18

Table B.3.2: Out-of-control ARLs for in-control ARL=11 months for the case of
MEWMA control chart.
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A\ d 0.0 01 015 02 025 03 0.35
0.1 | 157 1.1 1 1 1 1
0.2 1216 143 105 1 1
025 | 244 169 1.12 1.01 1

035 | 3.07 22 143 106 1

045 | 3.35 259 1.7 115 1.01
0.5 |37 284 113 129 1.03 1

0.75 | 421 344 264 1.78 1.26 1.04
09 147 4 3.09 223 158 1.18 1

— = = = =

1
1
1
1
1
1
.0

2

Table B.3.3: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual EWMA control chart based on Mahalanobis distance.

\ d 0.05 01 015 02 025 03 0.35
0.1 393 45 106 1 1 1 1
0.2 119.65 5.84 1.65 103 1 1 1
0.25 | 16.88 6.04 2.05 1.11 1 1 1
0.35 | 15.84 754 3.15 1.54 107 1.01 1

045 | 14.03 759 391 198 1.26 109 1

0.5 | 1358 814 43 224 139 11 1.01
0.75 | 13.48 9.22 587 354 23 1.6 1.25
0.9 |11.36 895 592 393 2.7 196 1.46

Table B.3.4: Out-of-control ARLs for in-control ARL—=11 months for the case of
Residual control chart based on the MEWMA statistic.



B.3. Non-parallel shifts in yield curve 207

o d 0.06 0.1 015 02 025 03 0.35
0.1 | 2.15 1 1 1 1 1 1
0.3 |3.75 1 1 1 1 1 1
05 | 7.3 1.25 1 1 1 1 1
0.7 1689 239 1 1 1 1 1

1 9.3 561 2.02 1 1 1 1
1.5 1839 6.73 477 277 125 1 1
2 7.76  6.57 532 3.85 2.66 1.65 1.06
2.5 | 159 1299 1045 7.55 5.29 3.64 2.39

Table B.3.5: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control chart.

A\ d 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.1 | 14.03 13.86 14.06 14.27 1433 14.3 13.71
0.2 ]13.84 13.46 13.65 13.58 13.8 13.52 13.58
0.25 | 13,57 13.73 13.58 13.94 13.41 13.45 13.74
0.35 | 11.66 11.51 11.14 11.51 1147 11.49 114
0.45 | 13.25 13.33 1292 13.09 13.01 1299 13.13
0.5 | 11.51 11.3 11.46 11.59 11.37 11.56 11.41
0.75 | 11.08 11.52 11.31 11.06 11.13 11.2 11.53

0.9 |11.33 11.84 11.38 11.78 11.35 1145 11.5

Table B.3.6: Out-of-control ARLs for in-control ARL—=11 months for the case of
MMOEWMA control chart.
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B.3.2 Negative shifts for a twist in the yield curve

A d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35
0.1 69.2 381 2836 124 54 186 1.2
0.2 |66.45 431 224 101 418 1.74 1.07
0.25 | 53.4 36.84 20.99 1042 4.73 213 1.18
0.35 | 41.7 30.62 19.73 10.74 5.65 291 1.59
0.45 | 35.79 2733 17.38 10.95 6.3 347 194
0.5 | 2755 21.44 1523 975 5.8 3.42 2
0.75 | 26.88 22.17 16.14 11.15 7.29 4.76 3.19
0.9 |21.87 1839 14.18 981 6.86 4.71 3.27

Table B.3.7: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on Mahalanobis distance.

\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35
0.1 916 435 238 154 1.23 1.07 1.02
0.2 |19.02 938 441 237 155 1.22 1.08
0.25 | 15.07 815 419 242 156 1.23 1.08
0.35 | 11.03 7.17 415 253 1.65 1.25 1.1
0.45 | 5.9 4.26 3 201 1.5 1.21 1.07
0.5 599 452 327 222 163 126 1.1
0.75 | 15.64 13.18 10.06 6.92 4.88 3.32 2.33
0.9 16.2 13.69 11.1 855 6.39 4.65 3.31

Table B.3.8: Out-of-control ARLs for in-control ARL=11 months for the case of
MEWMA control chart.
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A\ d -0.05 -0.1 -015 -0.2 -0.25 -0.3 -0.35
0.1 1.58 1.11 1 1 1 1 1
0.2 | 212 143 1.05 1 1 1 1
0.25 | 248 1.63 1.12 1 1 1 1
0.35 | 3.22 225 141 1.06 1 1 1
045 | 3.38 26 167 1.16 1 1 1
05 | 378 291 196 13 1.03 1 1
0.75 | 41 347 262 1.75 124 1.04 1
0.9 | 469 4.05 315 225 1.56 1.17 1.02

Table B.3.9: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual EWMA chart based on Mahalanobis distance.

A\ d -0.05 -0.1 -0.15 -0.2 -0.25 -0.3 -0.35
0.1 | 3831 441 1.05 1 1 1 1
0.2 |19.64 595 1.7 1.03 1 1 1
0.25 | 16.29 6.33 212 1.11 1 1 1
0.35 | 16.34 7.47 3.09 1.53 1.07 1 1

0.45 | 1447 772 381 194 125 1.04 1

0.5 | 14.02 814 432 222 14 169 1.01
0.75 | 13.44 952 5.8 3.6 228 163 1.27
0.9 |11.22 874 599 4.04 2.7 193 1.46

Table B.3.10: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual MEWMA control chart.
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o d -0.05 -0.1 -0.15 -02 -0.25 -0.3 -0.35
0.1 2.25 1 1
0.3 | 3.56 1 1
0.5 | 7.55 1.23 1
0.7 | 6.61 2.35 1
1 8.84 555 2.02 1 1
1.5 | 852 6.88 484 279 1.25 1 1
2 776 6.89 522 387 2.7 168 1.01
2.5 | 1546 13.23 10.11 7.55 5.27 3.62 2.44

— e

— = = =
=
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Table B.3.11: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts.

A\ d -0.05 -0.1 -015 -0.2 -0.25 -0.3 -0.35
0.1 | 1342 13.71 13.75 1346 14 13.78 13.67
0.2 1376 13.31 13.64 13.97 13.69 13.75 13.42
0.25 | 13.79 13.49 14 13.94 13.62 14.07 13.66
0.35 | 11.74 11.44 11.38 11.71 1142 11.32 114
0.45 | 13.17 13.09 13.03 12.82 13.03 13.29 13.13
0.5 | 11.52 11.35 1146 1145 11.7 11.43 11.47
0.75 | 11.46 11.27 11.21 11.02 11.28 11.12 10.99
0.9 | 11.35 11.57 11.41 11.64 11.47 11.56 11.45

Table B.3.12: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.



B.3. Non-parallel shifts in yield curve 211

B.3.3 Negative shifts in positive butterfly

A\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3
0.1 - - 81.18 38.46 9.12 2.25
0.2 | 6274 41.81 3345 1991 7.72 3.11
0.25 | 50.94 3532 29.76 18.72 831 3.71
0.35 | 40.76 30.3 24.76 17.41 8.77 4.68
0.45 | 34.34 26.83 2279 16.74 9.12 5.39
0.5 |26.59 21.96 18.61 14.26 8.04 4.92
0.75 | 26.3 2191 19.72 1526 9.7 6.43

0.9 |21.73 1883 16.59 13.32 9.03 6.24

Table B.3.13: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on the Mahalanobis distance. With -’ we denote that the
control charts failed to detect the out-of-control situation.

A\ d -0.06 -0.1 -015 -0.2 -0.25 -0.3
0.1 |12.24 8.03 459 3.02 2.04 1.43
0.2 | 2311 1575 9.28 556 3.45 2.06
0.25 | 17.57 13.12 825 543 3.35 207
0.35 | 12.04 9.67v 7.06 487 3.55 219
0.45 | 592 5.33 4.2 3.42 265 1.87
0.5 6.12 555 452 3.65 292 2.04
0.75 | 15.76 14.41 1198 986 7.61 5.7
0.9 |16.49 15 12.97 10.99 8.91 7

Table B.3.14: Out-of-control ARLs for in-control ARL=11 months for the case of
MEWMA control chart.
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A\ d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3
0.1 | 1.v5 138 1.17 1.05 1 1
0.2 | 229 206 154 133 1.07 1
0.25 | 256 228 1.7 153 1.16 1.03
035 | 3.21 294 244 202 145 1.16
045 | 3.6 316 273 236 179 131
0.5 | 3.89 3.65 293 2.59 2 1.48
0.75 | 435 4.03 3.5 3.21 255 2
0.9 4.9 453 4 3.67 3 2.38

Table B.3.15: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual control chart based on the Mahalanobis distance.

A\ d -0.065 -0.1 -0.15 -0.2 -0.25 -0.3
0.1 79.4 2774 683 22 1.11 1
0.2 |28.09 159 6.96 343 1.75 1.04
0.25 | 2226 1381 73 384 2.07 1.13
0.35 | 19.79 1391 854 5.04 3.05 1.52
0.45 | 16.87 13.11 831 549 3.71 201
0.5 | 16.24 1256 861 5.72 394 2.18
0.75 | 15.04 124 962 731 5.54 3.39

0.9 |12.16 10.89 8.89 7.08 5.73 3.75

Table B.3.16: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual MEWMA control chart.
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o d -0.06 -0.1 -0.15 -0.2 -0.25 -0.3
0.1 6.7 1.86 1 1 1 1
0.3 | 758 2,62 1.04 1 1 1
0.5 |10.21 546 1.67 1.03 1 1
0.7 | 797 566 266 1.28 1.01 1

1 9.68 789 562 325 1.63 1
1.5 | 882 798 6.56 523 3.8 2.28
2 791 729 652 5.61 451 3.43
2.5 | 15.76 1435 12.82 10.64 8.95 6.57

Table B.3.17: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts.

d
A

-0.05

-0.1

- 0.15

-0.2

-0.25

-0.3

0.1
0.2
0.25
0.35
0.45
0.5
0.75
0.9

14.37
13.56
13.66
11.11
13.3
11.35
11.48
11.68

14.01
13.61
13.48
11.33
13.24
11.56
11.1
11.21

14.21
13.95
13.44
11.46
13.4
11.34
11.27
11.29

13.87
13.97
14.08
11.57
13.17
11.49
11.19
11.46

13.86
13.88
13.63
11.23
13.26
11.41
11.42
11.55

14.25
13.92
13.86
11.78
13.48
11.4
11.15
11.38

Table B.3.18: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.3.4 Negative shifts in negative butterfly

A d -0.03 -0.06 -0.09 -0.12 -0.15 -0.2
0.1 - - 112.32 62 30.19 9.92
0.2 | 1461 13.25 1093 896 6.56 4.34
0.25 | 57.48 477 3537 24.74 16.19 8.17
0.35 | 43.97 37.32 2931 209 15.15 8.7
0.45 | 3747 31.75 2579 19.51 14.62 8.94
0.5 | 2948 2551 21.14 16.23 12.05 7.77
0.75 | 27.82 24.93 21 16.25 13.14 9.15
0.9 |2215 2046 1746 143 1146 8.5

Table B.3.19: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on Mahalanobis distance. With "-" we dentote that the
control chart failed to detect the out-of-control situation.

A\ d -0.03 -0.06 -0.09 -0.12 -0.15 -0.2
0.1 1236 8.06 4.76 3.07 2.07 1.43
0.2 |22.63 1558 9.01 5.6 346 2.1
0.25 | 17.78 13.19 816 533 347 207
035 | 11.96 996 7.04 501 349 223
0.45 6 5.27 429 343 258 191
0.5 6.22 546 454 3.67 281 2.08
0.75 | 15.74 14.23 12.03 947 7.73 5.63
0.9 |16.63 15.24 13 10.93 8.76 6.92

Table B.3.20: Out-of-control ARLs for in-control ARL=11 months for the case of
MEWMA control chart.
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A\ d -0.03 -0.06 -0.09 -0.12 -0.15 -0.2
0.1 | 165 1.39 116 1.06 1 1

0.2 | 222 199 1.56 1.3 1.08 1

0.25 | 2.72 218 1.77 153 1.16 1.02
035 | 3.36 292 241 2 1.5 1.15
0.45 | 3.48 3.2 269 235 176 1.3
05 | 3.93 364 299 2.62 2 1.44
0.75 | 424 397 359 317 256 194
0.9 | 477 459 403 3.67 3.02 243

Table B.3.21: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual EWMA control chart based on Mahalanobis distance.

A\ d -0.03 -0.06 -0.09 -0.12 -0.15 -0.2
0.1 | 81.31 2793 6.9 221 1.11 1

0.2 | 2856 1595 6.9 339 1.75 1.05
0.25 | 21.74 142 717 393 213 1.13
0.35 | 19.23 13.66 8 0.02  3.12 1.53
0.45 | 16.44 1257 846 559 3.7 198
0.5 | 16.21 12.76 8.8 5.91 398 2.21
0.75 | 14.7 13.09 10.48 8.63 6.31 3.44
0.9 |12.19 11.08 9.25 7.56 6.01 3.68

Table B.3.22: Out-of-control ARLs for in-control ARL—11 months for the case of
Residual MEWMA control chart.
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g d -0.03 -0.06 -0.09 -0.12 -0.15 -0.2
0.1 | 6.62 1.97 1 1 1 1
0.3 | 743 274 1.05 1 1 1
0.5 | 10.6 536 1.59 1.02 1 1
0.7 | 791 547 272 127 1.01 1

1 9.71 7.6 5.52 318 153 1.01
1.5 9 8.06 691 532 398 218
2 797 732  6.47 0.7 451 3.29
2.5 | 15.8 1443 1288 10.58 8.84 6.62

Table B.3.23: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts.

d
A

-0.03

-0.06

- 0.09

-0.12

-0.15

-0.2

0.1
0.2
0.25
0.35
0.45
0.5
0.75
0.9

14.29
13.67
14.01
11.37
12.89
11.52
11.11
11.7

14.12
13.71
14.06
11.56
12.9
11.34
11.5
11.35

13.88
14.16
13.85
11.25
13.03
11.38
11.19
11.21

14.31
13.71
13.58
11.47
13.13
11.57
11.61
11.42

14.25
13.81
13.66
11.63
13.02
11.37
11.31
11.84

14.21
14.11
13.82
11.65
13.05
11.48
11.37
11.49

Table B.3.24: Out-of-control ARLs for in-control ARL=11 months for the case of
MMOEWMA control chart.
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B.3.5 Positive shifts in positive butterfly

A\ d 0.05 0.1 0.15 0.2 025 0.3
0.1 - - 55.15 45.25 9.17 2.29
0.2 |63.19 41.69 33.2 20.19 7.52 3.05
0.25 | 49.76  36.3 29.35 19.24 8.25 3.7
0.35 | 40.19 30.09 24.78 17.46 4.13 2.34
0.45 | 34.06 27.28 22.7 17 9.16 541
0.5 | 26.63 21.59 18.61 14.27 81 4.88
0.75 | 26.19 21.65 19.57 1537 9.67 6.52
0.9 | 21.66 19.08 16.27 13.46 889 6.38

Table B.3.25: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on the Mahalanobis distance. With "-" we denote that
the control chart failed to detect the out-of-control situation.

A\ d 0.05 0.1 0.15 0.2 0.25 0.3
0.1 1062 5.6 406 264 156 1.23
0.2 | 3866 18.06 12.17 6.66 3.01 1.84
0.25 | 71.65 33.02 2147 11.97 487 2.66

0.35 - 44.52 352 31.58 12.66 6.04
0.45 - 56.15 419 72.02 29.17 13.62
0.5 - - - - 41.75 20.30
0.75 - - - - 42.49 20.37
0.9 - - - - 45.8 22.14

Table B.3.26: Out-of-control ARLs for in-control ARL=11 months for the case of
MEWMA control chart. With "-" we denote that the control chart failed to detect the
out-of-control situation.
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A\ d 0.0 01 015 02 025 0.3
01 |1.18 1 1 1 1 1
0.2 163 1.11 1.04 1 1 1
025 | 1.84 125 1.11 1 1 1
035 | 251 164 14 104 1 1
045 291 192 161 116 1 1
05 312 223 186 128 1 1.01
0.75 | 3.64 279 248 1.79 1.07 1.06
0.9 423 337 3.02 218 1.75 1.09

Table B.3.27: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual EWMA control chart based on Mahalanobis distance.

N d 0.05 01 015 0.2 025 0.3
0.1 |2763 3.7 164 1.02 1 1
0.2 164 53 31 14 1 1
0.25 | 1453 594 354 1.71 103 1
0.35 | 1411 717 5 266 1.26 1.03
0.45 | 13.09 7.57 562 338 16 1.14
0.5 | 12.09 7.88 592 3.77 186 1.24
0.75 | 1296 9.26 7.82 543 3 203
0.9 |11.07 87 7.59 564 344 24

Table B.3.28: Out-of-control ARLs for in-control ARL=11 months for the case of

Residual MEWMA control chart.
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o d 0.05 0.1 015 02 025 0.3
0.1 |1.23 1 1 1 1 1
0.3 | 2.08 1 1 1 1 1
0.5 [558 1.1 1 1 1 1
0.7 |6.04 213 1.2 1 1 1

1 8.67 534 3.7 158 1 1

1.5 [ 811 6.9 6.05 444 2.06 1.06
2 7.57 6.66 6.13 498 3.42 2.36
2.5 15 13.05 12.07 9.75 6.88 4.85

Table B.3.29: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts.

d
A

0.05

0.1

0.15

0.2

0.25

0.3

0.1
0.2
0.25
0.35
0.45
0.5
0.75
0.9

14.04
13.77
13.86
11.45
13.06
11.73
11.41
11.55

14.17
13.78
13.66
11.62
13.18
11.6
11.26
11.43

13.97
13.61
13.48
11.71
13.04
11.2
11.23
11.56

14.31
13.62
13.83
11.4
13
11.6
11.52
11.47

14.05
13.58
14.13
11.4
12.72
11.45
11.52
11.54

14.13
13.73
13.85
11.68
13.33
11.01
11.37
11.33

Table B.3.30: Out-of-control ARLs for in-control ARL—11 months for the case of
MMOEWMA control chart.
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B.3.6 Positive shifts in negative butterfly

A d 0.03 0.06 009 0.12 0.15 0.2
0.1 - - - 62.3 30.33 10.36
0.2 - - 40.33 27.06 16.91 8.01
0.25 - - 35.53 24.09 16.13 8.04
0.35 - - 28.74 2149 1491 8.64
0.45 - - 25.99 19.34 14.21 9.02
0.5 - - 20.82 16.07 1218 7.77
0.75 - - 20.71 16.82 13.28 9.07
0.9 |22.73 2088 17.93 1492 11.55 8.54

Table B.3.31: Out-of-control ARLs for in-control ARL=11 months for the case of
EWMA control chart based on the Mahalanobis distance. With "-" we denote that
the control chart failed to detect the out-of-control situation.

A\ d 0.03 0.06 0.09 0.12 0.15 0.2
0.1 |13.47 946 551 332 218 1.49
0.2 |20.42 13.05 7.92 49 313 1.9
0.25 | 16.05 11.32 7.1 465 3.16 1.98
035 | 11.48 892 6.17 441 3.1 2.09
045 | 581 494 407 3.18 252 181
0.5 5.92 525 425 343 27 1.99
0.75 | 15.19 13.51 11.15 88 6.89 5.22
0.9 |16.05 14.39 12.66 10.36 8.21 6.50

Table B.3.32: Out-of-control ARLs for in-control ARL=11 months for the case of

MEWMA control chart.
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A\ d 0.03 006 0.09 012 015 0.2
0.1 - - 78.72 4854 17.11 4.87
0.2 - - 22.73 1651 865 3.9
0.25 - 21.75 16.13 1243 7.11 341

0.35 | 14.95 12.71 1041 838 5.39 3.12
0.45 | 10.6 943 7.72 6.5 4.49 294
0.5 912 828 691 592 424 277
0.75 5.8 50.34 463 417 3.23 256
0.9 | 480 452 4.05 3.65 299 245

Table B.3.33: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual EWMA control chart based on the Mahalanobis distance. With "-" we denote
that the control chart failed to detect the out-of-control situation.

A\ d 0.03 006 009 0.12 015 0.2
0.1 |63.15 3293 12.89 5.69 2.72 1.16
0.2 |59.28 32.73 14.71 749 3.67 146
0.25 | 54.33 34.55 17.72 9.8 5.65 237
0.35 | 50.51 35.29 20.21 12 732 3.39
0.45 | 49.89 35.7 27.07 13.2 8.25 4.01
0.5 |50.16 3551 21.43 13.41 8.05 3.89
0.75 | 48.53 39.73 27.03 19.16 12.56 7.09

0.9 |48.18 40.52 30.65 23.32 15.89 9.35

Table B.3.34: Out-of-control ARLs for in-control ARL=11 months for the case of
Residual MEWMA control chart.
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o d 0.03 006 009 012 015 0.2
0.1 6.93 197 1.01 1 1 1
0.3 | 50.68 14.46 216 1.04 1 1
0.5 - - 1716 2.8 1.07 1
0.7 - - - 23.89  3.62 1

1 - - - - 86.1 5.66
1.5 - - - - 55.14  8.61
2 - - - - 66.18 11.5
2.5 - - - - 421 84

Table B.3.35: Out-of-control ARLs for in-control ARL=11 months for the case of
MCUSUM control charts. With "-" we denote that the control chart failed to detect

the out-of-control situation.

A\ d 0.03 0.06 009 0.12 0.15 0.2

0.1 | 14.26 14.33 13.73 13.98 13.57 14.36
0.2 | 1399 1335 13.14 1395 13.8 13.79
0.25 | 13.59 1394 13.77 13.36 13.7 13.77
0.35 | 11.43 11.3 11.53 11.25 11.56 11.6
0.45 | 13.24 13.27 13.42 1281 134 13.05
0.5 | 11.57 11.28 11.65 11.41 11.58 11.25
0.75 | 11.42 11.25 11.39 11.46 11.28 11.19
0.9 | 11.55 11.43 11.56 11.47 11.54 11.33

Table B.3.36: Out-of-control ARLs for in-control ARL=11 months for the case of

MMOEWMA control chart.
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B.4 VARMA ATSM Simulation study results

B.4.1 Modified EWMA chart based on the Mahalanobis dis-

tance
A=0.1
p d2 -0.4 -0.3 -0.2 0.1 0.1 0.2 0.3 0.4
1
-0.4 2.1746 | 2.0526 | 2.1510 | 2.1982 | 2.1106 | 2.0124 | 2.0454 | 2.0960
-0.3 2.2663 | 2.1504 | 2.0807 | 2.0880 | 2.1467 | 2.0113 | 2.2723 | 2.0563
-0.2 2.1537 | 2.0230 | 1.9936 | 2.0330 | 2.1913 | 2.2877 | 2.1020 | 2.5280
-0.1 2.0720 | 2.5447 | 2.0830 | 2.1502 | 2.0177 | 2.1707 | 2.2613 | 2.0917
0.1 2.0450 | 2.4773 | 2.0917 | 2.3950 | 2.1408 | 2.1403 | 2.2823 | 2.2867
0.2 22350 | 2.0413 | 2.0647 | 2.1943 | 1.9867 | 2.0854 | 2.0477 | 2.1810
0.3 2.0240 | 2.3497 | 2.0907 | 2.0680 | 2.1320 | 2.0327 | 2.1586 | 2.0870
0.4 2.1352 | 2.0506 | 2.1164 | 2.1372 | 2.1026 | 2.1062 | 2.1772 | 2.1264
A=0.2
p d2 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 22348 | 2.1382 | 2.2426 | 2.2240 | 2.2912 | 2.3828 | 2.1810 | 2.2916
-0.3 2.1990 | 2.1888 | 2.4617 | 2.4800 | 2.4023 | 2.1560 | 2.4150 | 2.4233
-0.2 2.4817 | 2.1617 | 2.2612 | 2.3380 | 2.2347 | 2.3177 | 2.1730 | 2.1507
0.1 2.4443 | 29130 | 2.1327 | 2.1546 | 2.5187 | 2.3507 | 2.2343 | 2.3887
0.1 21280 | 2.1527 | 2.1310 | 2.2783 | 2.2782 | 2.1577 | 2.1510 | 2.1793
0.2 2.2953 | 2.0730 | 2.3103 | 2.2277 | 2.3827 | 2.7654 | 2.0903 | 2.2793
0.3 2.3160 | 2.1663 | 2.1307 | 2.1833 | 2.2220 | 2.2200 | 2.1796 | 2.1713
0.4 2.1878 | 2.0802 | 2.2252 | 2.1500 | 2.6322 | 2.4902 | 2.1598 | 2.2712
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A=0.3
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 2.7018 | 2.4554 | 2.4614 | 2.4598 | 2.2822 | 2.569 | 2.4400 | 2.5812
-0.3 2.3313 | 2.4406 | 2.3120 | 2.4190 | 2.5197 | 3.0630 | 2.3233 | 2.3193
-0.2 2.4573 | 2.4200 | 2.2998 | 2.4787 | 2.8077 | 2.6193 | 2.3630 | 2.5767
-0.1 2.3153 | 2.4883 | 2.3923 | 2.3090 | 2.2783 | 2.4030 | 2.5150 | 2.4147
0.1 2.7567 | 2.5030 | 2.6960 | 2.2580 | 2.3400 | 2.4380 | 2.3367 | 2.2950
0.2 2.3157 | 2.5430 | 2.6210 | 2.4793 | 2.3957 | 2.5242 | 2.3993 | 2.7067
0.3 2.7097 | 2.4233 | 2.9137 | 2.2577 | 2.3987 | 2.3443 | 2.4130 | 2.3923
0.4 2.2203 | 2.5563 | 2.4120 | 2.2357 | 2.7347 | 2.5140 | 2.2577 | 2.3368
A=04
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 2.5308 | 2.5854 | 2.4962 | 2.3934 | 2.7636 | 2.5654 | 2.5846 | 2.5836
-0.3 2.5093 | 2.5594 | 2.3253 | 2.3420 | 2.7040 | 2.4990 | 2.7520 | 2.6410
-0.2 2.3813 | 2.4637 | 2.5378 | 2.8347 | 2.2510 | 2.5777 | 2.4513 | 2.5833
-0.1 2.7097 | 2.9893 | 2.4757 | 2.6258 | 3.0120 | 2.7393 | 2.7997 | 2.8717
0.1 2.3953 | 2.4310 | 2.9023 | 2.3903 | 2.6662 | 2.4623 | 2.6017 | 2.4710
0.2 2.2.2893 | 2.7713 | 3.1333 | 2.3697 | 2.4470 | 2.5742 | 2.5583 | 2.3507
0.3 2.7363 | 2.6433 | 2.7607 | 2.6450 | 2.9433 | 2.4380 | 2.9292 | 2.5933
0.4 2.6177 | 2.6753 | 2.5380 | 2.5540 | 2.7947 | 2.6703 | 3.0030 | 2.5088
A=0.5
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.0578 | 3.0676 | 2.8860 | 3.2692 | 3.8950 | 3.4368 | 2.7330 | 3.6520
-0.3 2.8373 | 2.9654 | 3.0230 | 2.9420 | 3.1023 | 3.1550 | 2.5827 | 2.9360
-0.2 2.7147 | 4.7203 | 3.1712 | 3.0203 | 3.0173 | 3.0630 | 3.4377 | 4.1413
-0.1 3.5013 | 2.6247 | 3.0607 | 2.8652 | 2.7803 | 3.2157 | 2.7027 | 2.9830
0.1 3.2830 | 2.9803 | 2.8067 | 2.9113 | 2.7452 | 3.0967 | 4.2123 | 2.7283
0.2 3.0117 | 4.2037 | 3.2603 | 2.7690 | 2.8247 | 3.5020 | 3.0243 | 3.0127
0.3 3.4933 | 2.7867 | 2.7113 | 3.0820 | 3.3570 | 3.1783 | 4.5844 | 3.9463
0.4 2.5663 | 3.0143 | 3.3353 | 2.7323 | 3.3420 | 3.2433 | 2.7963 | 3.0748
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A=06
g Bl o4 | w03 | 02 | 01 | o1 0.2 0.3 0.4
1
-0.4 3.4494 | 3.4508 | 3.2046 | 3.6150 | 3.9324 | 3.9856 | 3.3424 | 3.4370
0.3 3.3157 | 3.2684 | 3.4287 | 3.6600 | 3.2297 | 3.0533 | 3.1480 | 3.0737
-0.2 3.4340 | 3.5527 | 3.8704 | 4.4390 | 4.1063 | 3.5357 | 3.2867 | 2.7683
-0.1 2.9857 | 3.1110 | 3.2267 | 3.4940 | 3.6280 | 3.2447 | 3.2937 | 3.2407
0.1 3.7063 | 3.3830 | 3.1240 | 2.9673 | 3.1346 | 3.0817 | 3.0207 | 3.3240
0.2 3.0480 | 3.8617 | 3.5153 | 2.8410 | 3.1340 | 3.1822 | 3.7650 | 3.6370
0.3 3.5370 | 3.4617 | 2.9813 | 3.0040 | 5.8447 | 3.0090 | 3.0800 | 3.2447
0.4 3.0767 | 4.2893 | 4.1510 | 2.9980 | 3.3153 | 4.8187 | 2.7660 | 3.0336
=07
p Rl o4 | w03 | w02 | 01 | o1 0.2 0.3 0.4
1
-0.4 47072 | 41002 | 4.8674 | 6.7524 | 5.5128 | 5.5464 | 5.1988 | 3.7088
-0.3 3.8227 | 4.0136 | 3.8700 | 4.4720 | 4.1603 | 5.0490 | 3.7123 | 4.1017
-0.2 44203 | 4.0873 | 3.6768 | 3.5950 | 4.2263 | 4.6687 | 3.9560 | 4.1100
0.1 3.5800 | 4.4280 | 5.3150 | 6.2754 | 5.5390 | 5.1283 | 6.4270 | 4.4410
0.1 4.9090 | 3.9223 | 4.2303 | 4.4940 | 3.8526 | 3.5197 | 3.3527 | 3.6867
0.2 3.7373 | 4.1940 | 3.8720 | 3.6447 | 3.7157 | 5.3226 | 4.0407 | 4.4923
0.3 3.9627 | 4.2223 | 5.5920 | 6.8543 | 3.5147 | 4.0953 | 4.9716 | 4.0030
0.4 4.0157 | 3.8897 | 3.6310 | 3.7860 | 3.2443 | 3.7637 | 3.3313 | 3.5836
A=09
; “o4 | 03 | w02 | 01 0.1 0.2 0.3 0.4
1
-0.4 10.3270 [ 14.7660 [ 12.3940 | 9.8972 | 15.6692 | 14.1892 | 15.1136 | 11.6218
-0.3 9.0983 | 10.5170 | 8.7407 | 8.2530 | 7.5270 | 12.2537 | 11.1547 | 9.9680
0.2 9.6420 | 7.3993 | 11.1047 | 11.6790 | 9.9697 | 8.2740 | 10.1030 | 12.8937
0.1 13.7073 | 10.8523 | 10.6483 | 10.7620 | 10.4703 | 7.3540 | 10.8960 | 8.8590
0.1 7.8907 | 17.4400 | 17.0293 | 9.9747 | 12.8333 | 7.7073 | 10.8470 | 11.3843
0.2 9.3217 | 8.3690 | 12.9400 | 10.7497 | 9.6837 | 7.7073 | 10.8470 | 11.3843
0.3 7.9960 | 11.0257 | 7.1170 | 10.4750 | 10.8583 | 7.6193 | 11.1587 | 11.2940
0.4 9.8030 | 14.3847 | 12.7297 | 10.9877 | 14.7320 | 10.1297 | 10.3057 | 10.9793
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B.4.2 Modified Chart Based on the Multivariate EWMA Statis-

tic
A=0.1
J d -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 8.1905 | 8.3250 | 8.0892 | 8.2360 | 8.1227 | 8.2555 | 8.2927 | 8.3313
0.3 8.1828 | 8.2775 | 8.1950 | 8.4055 | 8.0378 | 8.3462 | 8.2148 | 8.1475
-0.2 8.3872 | 8.3455 | 8.2180 | 8.4392 | 8.1532 | 8.4772 | 8.4330 | 8.1807
-0.1 8.2982 | 8.2523 | 8.2568 | 8.3845 | 8.4927 | 8.3855 | 8.3810 | 8.1500
0.1 8.2900 | 8.1438 | 8.5068 | 8.3993 | 8.5305 | 8.4205 | 8.2065 | 8.4010
0.2 8.4288 | 8.2402 | 8.2833 | 8.3277 | 8.2797 | 8.3630 | 8.4135 | 8.0642
0.3 8.2372 | 8.0593 | 8.1265 | 8.2892 | 8.1950 | 8.3255 | 8.2150 | 8.1990
0.4 8.2583 | 8.0183 | 8.0158 | 8.4243 | 8.4665 | 8.2510 | 8.1990 | 8.3110
A=0.2
p d -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 8.7602 | 8.7312 | 8.8703 [ 9.0017 | 8.6828 | 9.0533 | 8.6877 | 8.8227
-0.3 9.0162 | 8.9012 | 9.1600 | 8.9105 | 8.8730 | 8.6468 | 8.9765 | 8.8997
0.2 8.8788 | 8.7127 | 9.0777 | 8.7058 | 8.8727 | 8.9283 | 8.6760 | 8.8460
-0.1 8.8945 | 9.0290 | 8.6935 | 8.8778 | 8.9462 | 8.8562 | 8.9482 | 8.7892
0.1 8.6485 | 8.7505 | 8.9727 | 8.9355 | 8.9078 | 8.7755 | 8.8473 | 8.7425
0.2 8.6342 | 8.7560 | 8.5715 | 8.9678 | 8.9395 | 8.7513 | 9.1542 | 8.8130
0.3 8.7610 | 8.7807 | 8.8737 | 8.6845 | 8.9507 | 8.6150 | 8.8565 | 8.9273
0.4 8.6540 | 8.8060 | 9.1380 | 8.7290 | 8.9128 | 9.0233 | 8.9273 | 8.7293
A=0.3
p d -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
0.4 8.6922 | 8.8325 | 8.7082 [ 9.0457 | 8.9465 | 8.7050 | 8.9440 | 8.9070
-0.3 8.8250 | 9.0570 | 8.6535 | 8.6155 | 8.6445 | 8.6888 | 8.7427 | 8.8200
-0.2 8.8432 | 8.7090 | 8.9165 | 8.8280 | 8.7937 | 8.6080 | 8.6945 | 8.8148
0.1 8.6550 | 8.8383 | 8.7535 | 9.0140 | 8.8825 | 8.6568 | 8.9042 | 8.9817
0.1 9.0175 | 8.7602 | 8.9548 | 8.6877 | 8.5665 | 8.7152 | 8.5973 | 8.7668
0.2 8.8285 | 8.8245 | 8.7472 | 8.6565 | 9.0500 | 8.6795 | 8.8085 | 8.7345
0.3 8.8012 | 8.8283 | 8.7133 | 8.5582 | 8.6738 | 8.8323 | 8.7752 | 8.8242
0.4 8.7338 | 8.8443 | 8.8490 | 8.6598 | 8.6768 | 8.7317 | 8.9335 | 8.9040
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A=04
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 6.3613 | 6.4207 | 6.5113 | 6.2382 | 6.3472 | 6.4203 | 6.3890 | 6.5625
-0.3 6.2533 | 6.6913 | 6.5160 | 6.5285 | 6.2908 | 6.6357 | 6.3735 | 6.5195
-0.2 6.5625 | 6.4140 | 6.4742 | 6.4588 | 6.4190 | 6.3120 | 6.5427 | 6.4165
-0.1 6.3950 | 6.4135 | 6.3370 | 6.2690 | 6.4772 | 6.4848 | 6.4400 | 6.4895
0.1 6.4810 | 6.4982 | 6.3540 | 6.6753 | 6.3935 | 6.2793 | 6.4680 | 6.4283
0.2 6.4275 | 6.4285 | 6.3863 | 6.5345 | 6.4307 | 6.4648 | 6.4832 | 6.5205
0.3 6.3982 | 6.4028 | 6.4748 | 6.2955 | 6.4085 | 6.3092 | 6.4920 | 6.5338
0.4 6.2965 | 6.4480 | 6.3055 | 6.5252 | 6.2957 | 6.4385 | 6.4588 | 6.5140
A=0.5
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 5.5633 | 5.5225 | 5.4100 | 5.4195 | 5.4240 | 5.3875 | 5.4795 | 5.5095
-0.3 5.4367 | 5.5352 | 5.4508 | 5.3838 | 5.4997 | 5.4088 | 5.2603 | 5.4153
-0.2 5.5347 | 5.5215 | 5.4352 | 5.4532 | 5.5432 | 5.4523 | 5.5362 | 5.2880
-0.1 5.5285 | 5.4465 | 5.5053 | 5.3228 | 5.4060 | 5.4502 | 5.5045 | 5.4713
0.1 0.3765 | 5.4655 | 5.4088 | 5.4902 | 5.5925 | 5.3412 | 5.5243 | 5.3907
0.2 5.5125 | 5.4290 | 5.5713 | 5.6070 | 5.4627 | 5.4110 | 5.4935 | 5.4908
0.3 5.4662 | 5.4932 | 5.4527 | 5.4158 | 5.3735 | 5.4955 | 5.4612 | 5.4547
0.4 0.4328 | 5.3563 | 5.5115 | 5.5198 | 5.5255 | 5.5827 | 5.4923 | 5.4502
A=0.6
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.5762 | 4.6018 | 4.5105 | 4.6470 | 4.6200 | 4.5790 | 4.5793 | 4.5738
-0.3 4.5883 | 4.5660 | 4.5985 | 4.5968 | 4.5427 | 4.5003 | 4.4843 | 4.5918
-0.2 4.6050 | 4.6268 | 4.6673 | 4.5050 | 4.5462 | 4.6655 | 4.6605 | 4.6342
-0.1 4.6413 | 4.6270 | 4.6700 | 4.6292 | 4.5295 | 4.4930 | 4.5370 | 4.4547
0.1 4.6327 | 4.5702 | 4.6195 | 4.5905 | 4.5423 | 4.4173 | 4.5385 | 4.5435
0.2 4.4975 | 4.7780 | 4.6145 | 4.5505 | 4.5047 | 4.5682 | 4.5225 | 4.6487
0.3 4.6480 | 4.5894 | 4.5700 | 4.5888 | 4.5122 | 4.7118 | 4.4967 | 4.6917
0.4 4.6558 | 4.4417 | 4.5580 | 4.5347 | 4.6075 | 4.4943 | 4.5118 | 4.5278
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A=0.7
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.8733 | 3.8055 | 3.7015 | 3.8197 | 3.7778 | 3.7925 | 3.8270 | 3.6605
-0.3 3.7452 | 3.7578 | 3.8035 | 3.8405 | 3.8140 | 3.7420 | 3.7220 | 3.8287
-0.2 3.8657 | 3.7692 | 3.7710 | 3.8102 | 3.7593 | 3.8207 | 3.8293 | 3.6702
-0.1 3.7045 | 3.8080 | 3.8218 | 3.7572 | 3.8030 | 3.9220 | 3.7393 | 3.8298
0.1 3.8222 | 3.9143 | 3.7723 | 3.7687 | 3.8575 | 3.7410 | 3.8468 | 3.8803
0.2 3.7763 | 3.8763 | 3.8810 | 3.8635 | 3.7468 | 3.7985 | 3.7872 | 3.9038
0.3 3.7458 | 3.7778 | 3.7980 | 3.8535 | 3.7683 | 3.7342 | 3.7920 | 3.8345
0.4 3.8245 | 3.9017 | 3.8825 | 3.8977 | 3.7612 | 3.8268 | 3.8013 | 3.8400
A=0.9
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1

-0.4 2.8098 | 2.7753 | 2.7923 | 2.8050 | 2.7492 | 2.8258 | 2.7942 | 2.7793
-0.3 27770 | 2.7440 | 2.8310 | 2.8330 | 2.8105 | 2.7832 | 2.8740 | 2.8150
-0.2 2.8218 | 2.7978 | 2.8450 | 2.7948 | 2.8070 | 2.7628 | 2.7473 | 2.8392
-0.1 2.8685 | 2.8255 | 2.7445 | 2.8403 | 2.7520 | 2.7520 | 2.8390 | 2.7418
0.1 2.7690 | 2.8382 | 2.8312 | 2.8592 | 2.7767 | 2.8502 | 2.8518 | 2.7830
0.2 2.8450 | 2.8093 | 2.8555 | 2.8108 | 2.8145 | 2.8045 | 2.7938 | 2.8155
0.3 2.8180 | 2.7927 | 2.8683 | 2.8050 | 2.8308 | 2.8255 | 2.8400 | 2.7538
0.4 2.8235 | 2.7877 | 2.8080 | 2.7920 | 2.8105 | 2.8763 | 2.8708 | 2.8268

B.4.3 EWMA Residual Chart Based on the Mahalanobis Dis-

tance
A=0.1
p a2 -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
0.4 3.0125 | 3.3208 | 3.2167 | 2.8625 | 3.2625 | 2.7042 [ 2.9917 | 2.8458
-0.3 3.3208 | 2.7917 | 2.7000 | 2.8417 | 3.0208 | 2.8833 | 3.1042 | 3.1792
-0.2 2.6667 | 3.4458 | 2.8500 | 2.9083 | 3.2375 | 2.6625 | 2.9042 | 3.6625
0.1 3.3750 | 3.0667 | 2.9000 | 2.9625 | 3.0042 | 3.1833 | 3.1542 | 3.1833
0.1 3.0042 | 3.2208 | 2.9542 | 2.9250 | 3.0792 | 2.8250 | 3.4750 | 2.6375
0.2 3.0458 | 2.9833 | 2.9625 | 3.2625 | 2.6750 | 3.0542 | 2.8542 | 3.1750
0.3 3.0708 | 2.6833 | 2.8375 | 3.5042 | 3.1417 | 2.9375 | 3.0875 | 3.5792
0.4 3.5625 | 2.8583 | 2.5542 | 2.8292 | 2.7708 | 2.7667 | 3.0250 | 2.7792
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A=02
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.8875 | 6.0833 | 6.5542 | 5.5500 | 7.4125 | 6.8083 | 6.0167 | 5.0792
-0.3 5.7625 | 5.9917 | 6.7708 | 5.9125 | 7.6833 | 5.5417 | 6.3458 | 7.7708
-0.2 6.5125 | 5.9667 | 6.6542 | 5.4875 | 5.9292 | 7.4375 | 4.8750 | 6.5583
-0.1 4.8042 | 6.6708 | 6.8917 | 5.3542 | 5.3083 | 5.9458 | 7.2250 | 6.0958
0.1 6.6583 | 6.5875 | 6.1417 | 6.8667 | 7.2917 | 6.1792 | 8.2208 | 6.4625
0.2 0.8542 | 4.7083 | 5.7833 | 6.4542 | 5.9292 | 6.2875 | 6.8708 | 4.6500
0.3 8.5125 | 6.7375 | 5.6583 | 6.9500 | 6.2292 | 5.8292 | 6.1542 | 6.4333
0.4 5.4750 | 5.2000 | 5.1667 | 4.3958 | 4.8458 | 5.4292 | 6.8083 | 6.2000
A=0.3
d d: -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 10.5208 | 12.1500 | 9.8167 | 8.9417 | 12.8083 | 10.6167 | 13.1917 | 10.8000
-0.3 12.4917 | 10.7042 | 10.9708 | 9.5000 | 10.9500 | 11.1500 | 9.4958 | 13.7708
-0.2 11.9083 | 10.0083 | 12.7542 | 14.4500 | 10.6083 | 9.6000 | 11.3083 | 10.9167
-0.1 10.4042 | 8.8708 | 9.3958 | 8.6750 | 9.9792 | 9.4708 | 9.0083 | 10.3458
0.1 9.0458 | 9.9292 | 8.6125 | 12.4542 | 14.8292 | 8.3042 | 14.6917 | 10.2375
0.2 11.2583 | 11.3417 | 8.6125 | 10.0750 | 8.0917 | 10.7125 | 7.9208 | 10.3625
0.3 9.0125 | 10.0042 | 12.9042 | 9.9875 | 10.7042 | 10.1625 | 11.9750 | 9.4917
0.4 7.9667 | 10.8042 | 7.8708 | 8.4542 | 11.4667 | 9.3667 | 13.9583 | 13.9458
A=04
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 20.7875 | 13.2000 | 20.9042 | 16.5000 | 17.5500 | 19.5750 | 21.1625 | 20.7583
-0.3 18.8542 | 23.7667 | 18.0250 | 15.3542 | 18.5208 | 17.5542 | 17.5500 | 24.5208
-0.2 20.5167 | 23.0500 | 19.5250 | 20.6375 | 20.6500 | 14.8917 | 18.9833 | 18.5292
-0.1 17.2917 | 15.8208 | 20.0500 | 17.2458 | 17.1583 | 20.1333 | 14.1958 | 19.1000
0.1 19.5833 | 17.8667 | 20.4500 | 20.2833 | 17.0833 | 17.1708 | 18.7208 | 19.0708
0.2 18.2458 | 15.8667 | 17.6292 | 14.4833 | 17.7500 | 19.6000 | 18.8583 | 21.2250
0.3 17.4500 | 21.2333 | 16.4875 | 19.3083 | 20.0958 | 11.0917 | 18.4208 | 17.8500
0.4 18.6083 | 14.6792 | 17.9000 | 20.7000 | 21.8167 | 17.7375 | 14.6750 | 16.7750
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A=05
i “l o4 | 03 | w02 | 01 0.1 0.2 0.3 0.4
1
-0.4 27.8667 | 28.0833 | 30.5333 | 32.0667 | 29.2017 | 34.8083 | 28.2083 | 26.5958
0.3 20.2917 | 27.7333 | 26.3208 | 27.5375 | 29.9917 | 32.3208 | 29.8292 | 23.8375
0.2 28.0833 | 23.3625 | 23.8750 | 28.4083 | 23.7042 | 26.6875 | 25.8792 | 23.3167
0.1 26.8500 | 25.3917 | 27.3083 | 24.1458 | 29.4042 | 29.1333 | 28.2167 | 25.2667
0.1 22.9458 | 20.0917 | 28.8667 | 30.0708 | 33.6333 | 25.9202 | 32.2042 | 31.9000
0.2 24.4042 | 20.8792 | 29.4833 | 27.8250 | 29.1000 | 32.4917 | 26.5208 | 24.7417
0.3 24.6875 | 35.0458 | 26.5167 | 24.7417 | 26.2250 | 29.1875 | 30.7167 | 22.7792
0.4 20.6167 | 20.7167 | 27.4292 | 29.2375 | 28.3792 | 28.4875 | 20.8333 | 28.1542

A=06
J 2l 04 | 03 | 02 | 01 0.1 0.2 0.3 0.4
1
0.4 44.0875 | 44.2417 | 36.2250 | 40.7042 | 45.9000 | 41.8125 | 41.0000 | 35.5750
-0.3 40.7875 | 42.0125 | 50.3292 | 45.3208 | 32.7792 | 35.6958 | 41.6875 | 38.6667
-0.2 43.0208 | 45.6208 | 32.5125 | 38.0833 | 40.4417 | 44.2202 | 41.4417 | 43.0250
0.1 47.1083 | 31.8833 | 47.6333 | 41.3250 | 39.1917 | 41.1583 | 38.0583 | 41.7583
0.1 41.2708 | 34.6500 | 34.5667 | 39.4750 | 41.0208 | 40.2542 | 38.2917 | 36.3083
0.2 37.8417 | 37.8042 | 44.9125 | 39.3000 | 38.2542 | 41.2792 | 42.1750 | 40.4583
0.3 35.4083 | 40.7333 | 45.2333 | 42.8292 | 41.6208 | 39.4042 | 40.1750 | 37.0750
0.4 47.3958 | 42.7667 | 36.6917 | 40.6708 | 51.6625 | 35.6458 | 36.0792 | 43.8417

A=07
g “oa | 03 | w02 | 01 0.1 0.2 0.3 0.4
1
0.4 48.0000 [ 53.9542 | 49.3375 | 46.0333 | 46.9333 | 51.3125 | 44.1250 | 49.0792
-0.3 41.8875 | 49.7833 | 50.3292 | 45.3208 | 32.7792 | 35.6958 | 41.6875 | 38.6667
0.2 42.0250 | 47.2250 | 45.9458 | 46.9375 | 43.7542 | 40.5500 | 52.4292 | 55.8000
0.1 47.3083 | 53.3458 | 41.5208 | 48.4833 | 51.9875 | 46.0417 | 45.4458 | 49.6917
0.1 49.7375 | 47.1833 | 48.4292 | 50.4250 | 47.0500 | 53.2250 | 54.1000 | 43.7042
0.2 47.2458 | 46.3292 | 45.1375 | 53.9250 | 51.2542 | 51.1292 | 45.7375 | 57.0625
0.3 41.8542 | 47.5375 | 51.7583 | 47.1083 | 48.1833 | 44.9583 | 42.2000 | 43.1958
0.4 44.3292 | 41.8583 | 45.2125 | 49.9458 | 44.1917 | 54.6792 | 54.1125 | 48.3958




B.4. VARMA ATSM Simulation study results 231

A=09

d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

-0.4 54.9167 | 57.5708 | 61.8042 | 52.9250 | 55.0750 | 55.1125 | 66.3292 | 57.6667
-0.3 60.8708 | 53.6125 | 60.1500 | 57.6083 | 58.3625 | 53.0250 | 56.3708 | 60.7083
-0.2 50.0583 | 64.1208 | 59.5000 | 60.0792 | 58.2208 | 56.0167 | 53.5958 | 50.3500
-0.1 95.1375 | 57.9625 | 59.9417 | 59.9208 | 61.9000 | 50.0375 | 55.5500 | 60.8375
0.1 61.5667 | 55.4375 | 59.2833 | 63.6125 | 60.4792 | 49.7583 | 50.8875 | 52.0583
0.2 52.1958 | 58.7833 | 53.0125 | 54.3000 | 55.6625 | 61.0542 | 46.4000 | 59.6875
0.3 50.1875 | 61.5583 | 59.0542 | 48.1458 | 58.9000 | 61.7042 | 59.5833 | 60.4208
0.4 51.9250 | 56.9125 | 55.9708 | 61.7208 | 57.8375 | 55.8750 | 55.8292 | 58.8875

B.4.4 Residual Chart Based on the Multivariate EWMA Statis-

tic
A=0.1

J d -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4

1

-0.4 20.3852 [ 21.0040 | 21.4632 [ 20.6268 | 21.0802 | 21.1227 [ 20.9750 | 20.9443
-0.3 21.4390 | 20.9930 | 20.8863 | 21.1710 | 21.4853 | 21.2305 | 21.3890 | 21.5975
0.2 20.9348 | 21.4110 | 21.5065 | 21.0485 | 20.8900 | 21.4597 | 21.5910 | 20.4110
-0.1 21.6172 | 21.0415 | 20.8128 | 21.2347 | 20.6968 | 21.4123 | 21.1687 | 20.9500
0.1 21.0727 | 20.4932 | 21.4830 | 20.3970 | 21.0162 | 21.3115 | 20.7285 | 20.7685
0.2 20.4803 | 20.9627 | 21.0338 | 20.5008 | 20.9617 | 21.1762 | 21.0182 | 20.8663
0.3 21.5897 | 21.9262 | 21.6460 | 20.9013 | 21.5948 | 21.2055 | 20.9735 | 21.1310
0.4 21.1567 | 20.7718 | 21.3785 | 21.5748 | 21.3407 | 21.4175 | 21.4247 | 21.1125

A=0.2

p d 0.4 0.3 0.2 0.1 0.1 0.2 0.3 0.4

1

-0.4 11.2747 [ 10.8505 | 10.7282 | 10.6110 | 10.8210 | 11.0053 [ 10.8530 | 10.7095
0.3 11.1245 | 10.9710 | 10.8277 | 10.6360 | 10.8902 | 10.9340 | 10.6728 | 11.0360
-0.2 10.7703 | 11.0173 | 10.9010 | 10.9738 | 10.5732 | 10.7508 | 11.0770 | 10.9977
-0.1 10.8995 | 10.9217 | 10.6990 | 10.9927 | 10.8262 | 10.8933 | 10.5757 | 10.9425
0.1 11.0285 | 11.2650 | 10.8050 | 10.9712 | 10.7272 | 10.6888 | 10.4855 | 11.0292
0.2 10.9625 | 10.9458 | 11.1080 | 11.1118 | 11.1060 | 11.1802 | 11.3340 | 10.9908
0.3 10.8595 | 10.9582 | 10.7828 | 10.8250 | 10.7035 | 10.5633 | 10.9797 | 10.7660
0.4 11.10808 | 10.9070 | 10.8425 | 11.0427 | 10.9770 | 10.9878 | 11.3085 | 10.9648
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A=0.3
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 7.3520 | 7.3442 | 7.3905 | 7.4040 | 7.3593 | 7.4798 | 7.1475 | 7.2145
-0.3 7.2685 | 7.1585 | 7.3247 | 7.3208 | 7.1357 | 7.2005 | 7.3350 | 7.2767
-0.2 7.4940 | 7.2443 | 7.3373 | 7.3907 | 7.4192 | 7.2805 | 7.2893 | 7.3070
-0.1 7.2960 | 7.2378 | 7.1505 | 7.2905 | 7.0423 | 7.2467 | 7.2188 | 7.3217
0.1 7.2370 | 7.2400 | 7.1707 | 7.3448 | 7.3647 | 7.1780 | 7.2203 | 7.3765
0.2 7.3115 | 7.2847 | 7.3762 | 7.1785 | 7.3420 | 7.2770 | 7.1935 | 7.2153
0.3 7.3327 | 7.2428 | 7.4238 | 7.3353 | 7.4240 | 7.3325 | 7.2935 | 7.3792
0.4 7.2758 | 7.2393 | 7.3637 | 7.4698 | 7.3420 | 7.2953 | 7.4605 | 7.3797
A=04
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 5.2068 | 5.1790 | 5.1232 | 5.1875 | 5.2693 | 5.1818 | 5.1615 | 5.1465
-0.3 2.2645 | 5.0972 | 5.2900 | 5.2302 | 5.0903 | 5.3135 | 5.1770 | 5.2367
-0.2 5.1297 | 5.1997 | 5.1405 | 5.1558 | 5.2973 | 5.1377 | 5.2515 | 5.1505
-0.1 5.0660 | 5.2870 | 5.0995 | 5.1410 | 5.3362 | 5.2930 | 5.2995 | 5.1745
0.1 0.2438 | 5.3160 | 5.2432 | 5.1513 | 5.3155 | 5.2637 | 5.2533 | 5.1463
0.2 5.2910 | 5.3175 | 5.2685 | 5.1940 | 5.2590 | 5.2227 | 5.2278 | 5.2637
0.3 5.3362 | 5.2428 | 5.2142 | 5.1865 | 5.2505 | 5.2285 | 5.1547 | 5.2607
0.4 5.2055 | 5.2103 | 5.1815 | 5.2218 | 5.3310 | 5.2950 | 5.3105 | 5.1137
A=0.5
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.3020 | 4.2503 | 4.3928 | 4.2603 | 4.2328 | 4.3068 | 4.2475 | 4.1855
-0.3 4.3315 | 4.3275 | 4.3398 | 4.3033 | 4.2405 | 4.2815 | 4.2053 | 4.2805
-0.2 4.2430 | 4.2680 | 4.2685 | 4.2912 | 4.2947 | 4.2410 | 4.2875 | 4.2000
-0.1 4.3335 | 4.3492 | 4.3338 | 4.3305 | 4.2592 | 4.2668 | 4.2850 | 4.2763
0.1 4.3822 | 4.2477 | 4.3450 | 4.3320 | 4.2715 | 4.3662 | 4.3325 | 4.2983
0.2 4.3195 | 4.2380 | 4.2775 | 4.4245 | 4.2873 | 4.2032 | 4.2603 | 4.2518
0.3 4.3535 | 4.3215 | 4.2540 | 4.2942 | 4.1818 | 4.4180 | 4.3330 | 4.4115
0.4 4.2580 | 4.1570 | 4.2555 | 4.2698 | 4.2800 | 4.2805 | 4.1685 | 4.2280
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A=0.6
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.6248 | 3.5795 | 3.5793 | 3.8018 | 3.5772 | 3.7088 | 3.6442 | 3.5878
-0.3 3.6282 | 3.6827 | 3.7163 | 3.6452 | 3.6858 | 3.5993 | 3.6740 | 3.7222
-0.2 3.5940 | 3.6970 | 3.5910 | 3.7287 | 3.6923 | 3.6630 | 3.6820 | 3.6805
-0.1 3.5725 | 3.5855 | 3.6560 | 3.6865 | 3.6528 | 3.7083 | 3.7110 | 3.7367
0.1 3.6923 | 3.6700 | 3.7405 | 3.5920 | 3.6322 | 3.6307 | 3.6370 | 3.7080
0.2 3.6985 | 3.6945 | 3.6307 | 3.5978 | 3.6568 | 3.6085 | 3.6347 | 3.6437
0.3 3.7037 | 3.5297 | 3.6852 | 3.6848 | 3.6827 | 3.6810 | 3.6757 | 3.5860
0.4 3.6685 | 3.7062 | 3.6603 | 3.6058 | 3.5722 | 3.7730 | 3.6395 | 3.6495
A=0.7
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.3500 | 3.3173 | 3.2687 | 3.3218 | 3.3270 | 3.3262 | 3.3687 | 3.3125
-0.3 3.3298 | 3.2917 | 3.2767 | 3.2955 | 3.2912 | 3.3105 | 3.2662 | 3.3165
-0.2 3.3485 | 3.3965 | 3.2480 | 3.3218 | 3.3130 | 3.3397 | 3.3510 | 3.3445
-0.1 3.3653 | 3.3060 | 3.3595 | 3.3708 | 3.3675 | 3.3733 | 3.3740 | 3.3283
0.1 3.1735 | 3.3135 | 3.3385 | 3.2820 | 3.4112 | 3.3468 | 3.2957 | 3.3525
0.2 3.2615 | 3.3025 | 3.2887 | 3.3093 | 3.3342 | 3.2847 | 3.3558 | 3.3670
0.3 3.3165 | 3.2292 | 3.3363 | 3.3758 | 3.3573 | 3.2325 | 3.2650 | 3.3782
0.4 3.3203 | 3.3485 | 3.2830 | 3.3053 | 3.3628 | 3.2748 | 3.3268 | 3.3472
A=09
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.0032 | 3.0105 | 3.0620 | 3.0100 | 3.0412 | 3.1012 | 2.9973 | 3.0848
-0.3 3.0753 | 3.0507 | 3.0240 | 3.0473 | 2.9983 | 2.9600 | 2.9870 | 2.9800
-0.2 2.9693 | 3.0930 | 3.0873 | 2.9733 | 2.9630 | 2.9663 | 3.0337 | 2.9882
-0.1 3.0315 | 2.9947 | 3.0177 | 2.9595 | 3.0183 | 2.9278 | 3.0850 | 2.9848
0.1 3.0118 | 3.0048 | 3.0190 | 3.0975 | 2.9080 | 3.0248 | 3.0032 | 3.0090
0.2 3.0722 | 2.9880 | 3.0332 | 3.0042 | 3.0120 | 3.0703 | 3.0290 | 3.0547
0.3 2.9882 | 3.0097 | 3.0270 | 3.0528 | 3.0130 | 2.9562 | 3.0408 | 2.9863
0.4 3.0227 | 3.0303 | 3.0025 | 2.9943 | 3.0215 | 3.0515 | 2.9482 | 3.0082
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B.4.5 MMOEWMA control chart

A=0.1
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 2.2825 | 2.2908 | 2.2545 | 2.3325 | 2.2730 | 2.3160 | 2.2883 | 2.2675
-0.3 2.0173 | 2.2447 | 2.2803 | 2.3035 | 2.2742 | 2.2828 | 2.2725 | 2.3148
-0.2 1.9910 | 2.2578 | 2.2327 | 2.2560 | 2.3395 | 2.3100 | 2.2923 | 2.2535
-0.1 2.0232 | 2.2700 | 2.0383 | 2.3170 | 2.3080 | 2.3200 | 2.2982 | 2.2677
0.1 1.9757 | 2.2668 | 1.9932 | 2.0562 | 2.2670 | 2.2738 | 2.2978 | 2.2510
0.2 2.0558 | 2.2942 | 2.0055 | 1.9880 | 1.9770 | 2.3450 | 2.2810 | 2.3055
0.3 2.0190 | 2.2740 | 2.0045 | 2.0313 | 1.9883 | 2.0180 | 2.2515 | 2.3020
0.4 2.0135 | 2.2870 | 1.9952 | 2.0057 | 2.0402 | 2.0227 | 2.0307 | 2.2917
A=0.2
d d -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 2.7422 | 2.6963 | 2.7440 | 2.7778 | 2.6980 | 2.7230 | 2.7203 | 2.6463
-0.3 2.3955 | 2.7403 | 2.7075 | 2.8270 | 2.7353 | 2.7462 | 2.7363 | 2.7872
-0.2 2.4370 | 2.7532 | 2.7335 | 2.7375 | 2.7418 | 2.6972 | 2.8037 | 2.7412
-0.1 2.3803 | 2.6760 | 2.4472 | 2.7585 | 2.7035 | 2.7525 | 2.7840 | 2.7705
0.1 2.4750 | 2.7765 | 2.4550 | 2.4655 | 2.7410 | 2.6648 | 2.7700 | 2.7372
0.2 2.3725 | 2.7147 | 2.4655 | 2.4432 | 2.4177 | 2.7500 | 2.7255 | 2.7357
0.3 2.3803 | 2.7207 | 2.4388 | 2.4697 | 2.5030 | 2.4617 | 2.7687 | 2.7760
0.4 2.4552 | 2.7542 | 2.4325 | 2.4190 | 2.4962 | 2.4600 | 2.4700 | 2.6982
A=0.3
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.0282 | 3.0297 | 3.0402 | 3.0507 | 2.9823 | 3.0343 | 3.0775 | 3.0535
-0.3 2.7397 | 3.0177 | 3.0223 | 3.0692 | 3.0275 | 3.0245 | 3.0450 | 3.0685
-0.2 2.7820 | 2.9987 | 3.0377 | 3.0010 | 3.0340 | 3.0208 | 3.0810 | 3.0385
-0.1 2.7553 | 2.9575 | 2.7902 | 3.0697 | 3.0528 | 3.0553 | 3.1162 | 3.0177
0.1 2.7405 | 3.0947 | 2.7687 | 2.7505 | 3.0322 | 3.0150 | 3.0710 | 3.0980
0.2 2.7830 | 2.9780 | 2.8105 | 2.7767 | 2.8195 | 3.0475 | 3.0495 | 2.9503
0.3 2.7625 | 3.0535 | 2.8272 | 2.7935 | 2.7412 | 2.7750 | 3.0562 | 3.0213
0.4 27755 | 3.0705 | 2.7997 | 2.7628 | 2.7723 | 2.7940 | 2.8340 | 2.9965
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A=04
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 3.4663 | 3.5185 | 3.5008 | 3.5605 | 3.4598 | 3.4987 | 3.4817 | 3.5095
-0.3 2.9647 | 3.4655 | 3.4232 | 3.5265 | 3.4595 | 3.4330 | 3.4327 | 3.4987
-0.2 2.9958 | 3.3960 | 3.5088 | 3.3990 | 3.4588 | 3.5295 | 3.4038 | 3.4417
-0.1 3.0160 | 3.5105 | 2.9855 | 3.5175 | 3.4653 | 3.4348 | 3.4430 | 3.4487
0.1 2.9588 | 3.4355 | 2.9385 | 2.9453 | 3.4265 | 3.4880 | 3.3782 | 3.4505
0.2 2.9552 | 3.4398 | 3.0122 | 2.9962 | 2.9200 | 3.3770 | 3.4475 | 3.4638
0.3 2.9860 | 3.4478 | 2.9602 | 2.9562 | 2.9707 | 2.9457 | 3.5015 | 3.4842
0.4 2.9605 | 3.5313 | 2.9215 | 2.9500 | 3.0053 | 2.9590 | 2.9522 | 3.3853
A=0.5
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.0365 | 4.0520 | 4.1355 | 4.0980 | 4.0380 | 4.0365 | 4.0500 | 4.0780
-0.3 3.1145 | 4.1057 | 3.9728 | 4.1303 | 4.0130 | 3.9405 | 4.0462 | 4.0125
-0.2 3.2043 | 4.1467 | 3.9710 | 4.1285 | 4.0617 | 4.0090 | 4.1050 | 4.0818
-0.1 3.2475 | 4.0892 | 3.2302 | 4.1028 | 4.0012 | 4.1502 | 3.9817 | 4.0637
0.1 3.1917 | 3.9567 | 3.2052 | 3.1987 | 4.0285 | 4.0530 | 4.0415 | 4.0492
0.2 3.2340 | 3.9455 | 3.2473 | 3.1785 | 3.1915 | 4.0682 | 4.0500 | 4.0310
0.3 3.1925 | 4.0667 | 3.2037 | 3.2557 | 3.2188 | 3.2435 | 4.0622 | 4.0865
0.4 3.2170 | 4.0000 | 3.2150 | 3.1975 | 3.2295 | 3.2175 | 3.1875 | 4.1283
A=0.6
d d> -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.4037 | 4.3200 | 4.2562 | 4.3005 | 4.2867 | 4.2885 | 4.2905 | 4.2888
-0.3 3.4268 | 4.3513 | 4.3240 | 4.2915 | 4.3578 | 4.2923 | 4.2545 | 4.4342
-0.2 3.4672 | 4.3355 | 4.2035 | 4.2227 | 4.3915 | 4.4040 | 4.3210 | 4.3122
-0.1 3.4148 | 4.3265 | 3.3265 | 4.2547 | 4.3072 | 4.2947 | 4.2053 | 4.4437
0.1 3.4758 | 4.3355 | 3.4407 | 3.4055 | 4.2945 | 4.3565 | 4.2553 | 4.3680
0.2 3.4855 | 4.3485 | 3.4137 | 3.3638 | 3.4322 | 4.2918 | 4.2400 | 4.4235
0.3 3.5050 | 4.3498 | 3.4478 | 3.4475 | 3.4065 | 3.4060 | 4.3445 | 4.2227
0.4 3.4733 | 4.4750 | 3.4420 | 3.4075 | 3.4017 | 3.3222 | 3.4985 | 4.3232
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A=0.7
d d> -04 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1
-0.4 4.7707 | 4.8800 | 4.9132 | 4.7830 | 4.7607 | 4.7453 | 4.6880 | 4.8120
-0.3 3.7405 | 4.8472 | 4.9320 | 4.8262 | 4.5738 | 4.8498 | 4.8323 | 4.7715
-0.2 3.7160 | 4.7820 | 4.8200 | 4.7755 | 4.7252 | 4.8480 | 4.9485 | 4.8758
-0.1 3.7005 | 4.8068 | 3.6510 | 4.9473 | 4.8178 | 4.7953 | 4.7955 | 4.8643
0.1 3.7395 | 4.7523 | 3.6322 | 3.6267 | 4.7800 | 4.7490 | 4.7995 | 4.7598
0.2 3.7633 | 4.7168 | 3.6713 | 3.6520 | 3.6270 | 4.7855 | 4.8480 | 4.9185
0.3 3.7687 | 4.7348 | 3.7662 | 3.7400 | 3.6695 | 3.6910 | 4.7630 | 4.8275
0.4 3.6615 | 4.7598 | 3.7335 | 3.7738 | 3.5640 | 3.6985 | 3.6775 | 4.7218
A=09
d & -0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4
1

-0.4 5.8982 | 5.8723 | 5.7998 | 5.8617 | 5.9760 | 5.9588 | 6.0040 | 6.0788
-0.3 4.3208 | 5.8395 | 5.9592 | 5.8705 | 5.8630 | 6.1002 | 6.0175 | 5.9820
-0.2 4.4170 | 5.8375 | 5.8308 | 5.9953 | 5.8660 | 5.7467 | 5.9360 | 5.9822
-0.1 4.2642 | 5.9725 | 4.3770 | 5.9710 | 5.9873 | 5.8338 | 5.9088 | 5.7942
0.1 4.3842 | 5.9020 | 4.3625 | 4.3933 | 5.8887 | 6.0713 | 6.0885 | 5.8552
0.2 4.4645 | 5.8785 | 4.3617 | 4.3703 | 4.3563 | 5.9112 | 5.8783 | 5.8955
0.3 4.4488 | 6.0008 | 4.4112 | 4.2852 | 4.4000 | 4.3918 | 6.0228 | 5.7767
0.4 4.3673 | 6.0000 | 4.2847 | 4.3228 | 4.3643 | 4.4402 | 4.3610 | 6.0285
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Figures

Sample Autocorrelations for Consumer Price Index

1
Lag Length

Figure C.0.1: The figure illustrates the autocorrelations for the Consumer Price
Index for lag 1 to lag 24 over the sample period 1981:01 to 2009:12.
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Sample Autocorrelations for IP

Lag Length

Figure C.0.2: The figure illustrates the autocorrelations for the Industrial Production
Index for lag 1 to lag 24 over the sample period 1981:01 to 2009:12.
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Sample Autocorrelations for 3-month U.S. Treasury Yield
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(c) Autocorrelation of 60m bond
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Figure C.0.3: Autocorrelation of U.S. Treasury bond yields.
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Figure C.0.4: The figure illustrates the yield term premia, the difference between the
10-year yield and the 3-month yield.

120

Figure C.0.5: One-step-ahead holding period returns for the out-of-sample period
2000:01 to 2009:12. Hpi, ¢ = ..., 5 are the holding period returns from holding each of

the bonds for one period of time and maturity decreases from ¢ + 1 to 4.
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Figure C.0.6: Excess holding period returns for the out-of-sample period 2000:01 to
2009:12. Hpi, ¢ = ..., 5 are the excess holding period returns from holding each of the
bonds for one period of time and maturity decreases from 7+ 1 to ¢ net of the risk-free
rate the federal funds rate.
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Figure C.0.7: Fitted and actual yield for the out-of-sample period 2000:01 to 2009:12.
The blue line is the predicted values and the red line is the actual yields.
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Figure C.0.8: Excess holding period returns with risk free rate the Federal Funds
rate. The sample period is 1982:01 to 2009:12.
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Figure C.0.9: Five-by-ten year forward rate for the sample period 1982:01 to 2009:12.
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Figure C.0.10: Forward spread rates for the sample period 1982:01 to 2009:12.
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Figure C.0.11: Impulse responses for the macroeconomic factors.
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Figure C.0.12:

3M Expected Returns

Impulse responses for the latent factors.

48M Expected Returns

03 006
~e )
0.2 \f\/J\/ N//\M\ 0.04 - N\
N\ gt .
~
01 s AVAN 002 - -
\ A~
0 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120
60M Expected Returns 72M Expected Returns
0.04 01
002 008
0 006
-0.02 0.04
-0.04 0.02
20 40 60 80 100 120 o 20 40 60 80 100 120
84M Expected Returns
0.25
0.2
015
0.1
0 20 40 60 80 100 120

Figure C.0.13:

Out-of-sample

expected returns for the U.S. government bonds.
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GMV uncostrained portfolio allocation

3m-48m log realized returns

48m-60m log realized returns

40 60 80 100 120
72m-84m log realized returns

R R

0.565 T 037
] /
0.56 A (| A SN N
AN AN A M x/\\”‘f‘v Vi~ U //\H‘ V\‘N 0365
0.555 ! \V\
055 . . . . L 036
0 20 4 60 80 100 120 0
60m-72m log realized returns
0.16 T -0.04
I
' I
0.155 Pt I -0.041
fh A
) nog
g PN VLAY et
P L N R W\ N\ VA LAV LS UIvE W 02
0.145 -0.043
0 20 40 60 80 100 120 0
84m-120m log realized returns
-0.035
-0.036
-0.037
-0.038
-0.039
10 20 30 40 5 60 70 80 90 100 110 120

Figure C.0.14: GMVP allocation for the period 2000:01 to 2009:12 when short selling

is allowed.
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Figure C.0.15:
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GMYV constrained portfolio allocation for the period 2000:01

to
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Figure C.0.16: Monthly GMVP standard deviation with short selling for the out-of-

sample period 2000:01 to 2009:12.
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Figure C.0.17: Monthly GMVP standard deviation with no short selling for the out-

of-sample period 2000:01 to 2009:12.



247

6000

5000 -

4000

3000

2000

1000

Figure C.0.18: Distribution fitting plot for simulated optimal GMVP weights in the
case of asset correlation and the logistic distribution.
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MYV unconstrained portfolio weights for risk aversion § = 0.001.
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MV costrained portfolio allocation
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Figure C.0.20: MV constrained portfolio weights for risk aversion 6 = 0.001.
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Figure C.0.21: Portfolio turnover for constrained MV portfolio for the out-of-sample
period 2000:01 to 2009:12.
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Figure C.0.22: Portfolio turnover for unconstrained MV

sample period 2000:01 to 2009:12.
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Figure C.0.23: Realized returns net of transaction costs of unconstrained MV port-

folio for the out-of-sample period 2000:01 to 2009:12.
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Figure C.0.24:

Realized returns net of transaction costs of constrained MV portfolio

for the out-of-sample period 2000:01 to 2009:12.

C.0.1 Control statistics without reestimation of the target
process
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Figure C.0.25: Control statistic for the case of EWMA control chart based on Ma-

halanobis distance

when A = 0.1. The sample period is 2001:01 to 2009:12.
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Figure C.0.26: Control statistic for the case of EWMA control chart based on Ma-
halanobis distance when A = 0.75. The sample period is 2001:01 to 2009:12.
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Figure C.0.27: Control statistic for the case of EWMA control chart based on Ma-
halanobis distance when A = 0.9. The sample period is 2001:01 to 2009:12.
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Figure C.0.28: Control statistic for the case of MEWMA control chart when A = 0.25.
The sample period is 2001:01 to 2009:12.

2010

20
18- B
16~ i i
‘»
! i
i i
14 i oA
i
4 i
i i 4
12 i I i
i A i
o i i
10 ! i [ i -
r in A i/
s A \
A FANA il 7
i s !
8- i ! B
i - i
/ !
i i
6 i " ; il
!
i !
i ' i
4 i i A / 7
i “ S
/’ A N /‘/ NN
H N —
i
i
0 1 1 1 1
2001 2002 2003 2004 2005 2006 2007 2008 2009
DATE

Figure C.0.29: Control statistic for the case of MEWMA control chart when A = 0.45.
The sample period is 2001:01 to 2009:12.
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Figure C.0.30: Control statistic for the case of MEWMA control chart when A = 0.75.
The sample period is 2001:01 to 2009:12.
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Figure C.0.31: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.2. The sample period is 2001:01 to 2009:12.
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Figure C.0.32: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.25. The sample period is 2001:01 to 2009:12.
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Figure C.0.33: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.35. The sample period is 2001:01 to 2009:12.
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Figure C.0.34: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.5. The sample period is 2001:01 to 2009:12.
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Figure C.0.35: Control statistic for the case of Residual MEWMA control chart when
A = 0.25. The sample period is 2001:01 to 2009:12.
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Figure C.0.36: Control statistic for the case of Residual MEWMA control chart when
A = 0.45. The sample period is 2001:01 to 2009:12..
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Figure C.0.37: Control statistic for the case of Residual MEWMA control chart when
A = 0.75. The sample period is 2001:01 to 2009:12.
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Figure C.0.38: Control statistic for the case of MCUSUM control chart when g = 2.5.
The sample period is from 2001:01 to 2009:12.
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Figure C.0.39: Control statistic for the case of MMOEWMA control chart when
A = 0.45. The sample period is 2001:01 to 2009:12.
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Figure C.0.40: Control statistic for the case of MMOEWMA control chart when
A =0.9. The sample period is 2001:01 to 2009:12.

C.0.2 Control charts without reestimation of the target pro-
cess

10
ol =
o a

/
/
/

S ( i
5K N~ / 7

\ / - /

\ / /

\ Y, — /
\
s\ Y, D B |
\\ / ,/ 03/2008
\ / /

Lo\ __ a2 _ N ______ | ____________

- \\ J / -
/ /
~ / /
i / / I
h T
2 1 1 1 1 1 1 1 1
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
DATE

Figure C.0.41: Control chart for the case of EWMA control chart based on Maha-
lanobis distance when A = 0.1. The sample period is 2001:01 to 2009:12.
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Figure C.0.42: Control chart for the case of EWMA control chart based on Maha-

lanobis distance when A = 0.75. The sample period is 2001:01 to 2009:12.
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Figure C.0.43: Control chart for the case of MEWMA control chart when A = 0.5.

The sample period is 2001:01 to 2009:12.
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Figure C.0.44: Control chart for the case of MEWMA control chart when A = 0.75.
The sample period is 2001:01 to 2009:12.
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Figure C.0.45: Control chart for the case of Residual EWMA control chart based on
Mahalanobis distance when A = 0.2. The sample period is 2001:01 to 2009:12.
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Figure C.0.46: Control chart for the case of Residual EWMA control chart based on
Mahalanobis distance when A = 0.35. The sample period is 2001:01 to 2009:12.
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Figure C.0.47: Control chart for the case of Residual EWMA control chart based on
Mahalanobis distance when A = 0.5. The sample period is 2001:01 to 2009:12.
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Figure C.0.48: Control chart for the case of Residual MEWMA control chart when
A =0.75. The sample period is 2001:01 to 2009:12.

C.0.3 Control statistics with reestimation of the target pro-
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Figure C.0.49: Control statistic for the case of EWMA control chart based on Ma-
halanobis distance when A = 0.1 and reestimation of the target process. The sample
period is 2001:01 to 2009:12.
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Figure C.0.50: Control statistic for the case of EWMA control chart based on Ma-
halanobis distance when A = 0.75 and reestimation of the target process. The sample

period is 2001:01 to 2009:12.
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Figure C.0.51: Control statistic for the case of EWMA control chart based on Ma-
halanobis distance when A = 0.9 and reestimation of the target process. The sample

period is 2001:01 to 2009:12.
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Figure C.0.52: Control statistic for the case of MEWMA control chart when A = 0.25
and reestimation of the target process. The sample period is 2001:01 to 2009:12.

Figure C.0.53: Control statistic for the case of MEWMA control chart when A = 0.5
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure C.0.54: Control statistic for the case of MEWMA control chart when A = 0.75
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure C.0.55: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.2 and reestimation of the target process. The

sample period is 2001:01 to 2009:12.
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Figure C.0.56: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.25 and reestimation of the target process. The
sample period is 2001:01 to 2009:12.
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Figure C.0.57: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.35 and reestimation of the target process. The
sample period is 2001:01 to 2009:12.
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Figure C.0.58: Control statistic for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.5 and reestimation of the target process. The

sample period is 2001:01 to 2009:12.
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Figure C.0.59: Control statistic for the case of Residual MEWMA control chart
when A\ = 0.45 and reestimation of the target process. The sample period is 2001:01

to 2009:12.
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Figure C.0.60: Control statistic for the case of Residual MEWMA control chart
when A\ = 0.75 and reestimation of the target process. The sample period is 2001:01

to 2009:12.

Figure C.0.61: Control statistic for the case of MMOMEWMA control chart when
A = 0.45 and reestimation of the target process. The sample period is 2001:01 to

2009:12.
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C.0.4 Control charts with reestimation of the target process
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Figure C.0.62: Control chart for the case of EWMA control chart based on Maha-
lanobis distance when A = 0.1 and reestimation of the target process. The sample
period is 2001:01 to 2009:12.
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Figure C.0.63: Control chart for the case of EWMA control chart based on Maha-
lanobis distance when A = 0.75 and reestimation of the target process. The sample
period is 2001:01 to 2009:12.
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Figure C.0.64: Control chart for the case of MCUSUM control chart when g = 2.5
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure C.0.65: Control chart for the case of MEWMA control chart when A = 0.5
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure C.0.66: Control chart for the case of MEWMA control chart when A = 0.75
and reestimation of the target process. The sample period is 2001:01 to 2009:12.
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Figure C.0.67: Control chart for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.2 and reestimation of the target process. The
sample period is 2001:01 to 2009:12.
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Figure C.0.68: Control chart for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.35 and reestimation of the target process. The

sample period is 2001:01 to 2009:12.

6 01/2001

« 0912002

« 12/2008

0
2001

2002

2003

2004

2005

DATE

2006

2007

2008

2009

2010

Figure C.0.69: Control chart for the case of Residual EWMA control chart based
on Mahalanobis distance when A = 0.5 and reestimation of the target process. The

sample period is 2001:01 to 2009:12.
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Figure C.0.70: Control chart for the case of Residual MEWMA control chart when
A = 0.75 and reestimation of the target process. The sample period is 2001:01 to
2009:12.
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Figure C.0.71: Curvature of the yield curve. The sample period is 1983:01 to 2003:12.
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Figure C.0.72: Fitted and actual yields in-sample affine VARMA. The in-sample
period is 1983:01 to 2003:12.
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Figure C.0.73: Fitted and actual yields in-sample affine VAR. The in-sample period
is 1983:01 to 2003:12.
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Figure C.0.74: Fitted and actual yields in-sample affine PMD-VARMA. The in-
sample period is 1983:01 to 2003:12.

12-months
T T

Perecent
Perecent

0 L 0 L L L L L L
1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

36-months
T T

T T T T 15 T T T

48-months
T T T T T T

Perecent
Perecent

0 L 0 L L L L
1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

60-months
15 T T T T T

Perecent

0 L L L L
1983 1985 1987 1989 1991 1993 1995 1997 1999 2001 2003

Figure C.0.75: Fitted and actual yields in-sample affine PMD-VAR. The in-sample
period is 1983:01 to 2003:12.
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Figure C.0.76: Term Premia for the out-of-sample period, 2004:01 to 2011:12.
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Figure C.0.77: Market price of risk for inflation for the in-sample period, 1983:01 to
2003:12.
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Figure C.0.78: Market price of risk for inflation from the PMD for the in-sample
period, 1983:01 to 2003:12.
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Figure C.0.79: Market price of risk for TP for the in-sample period, 1983:01 to
2003:12.
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Figure C.0.80: Market price of risk for IP from the PMD for the in-sample period,
1983:01 to 2003:12.

| | VN i
\ / \\‘f\\ \M/ ° Wt J\J%\/JN S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-15
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

VAR
T

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-60
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003

Figure C.0.81: Market price of risk for short rate for the in-sample period, 1983:01
to 2003:12.
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Figure C.0.82: Market price of risk for short rate from the PMD for the in-sample
period, 1983:01 to 2003:12.
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Figure C.0.83: Market price of risk for term premia for the in-sample period, 1983:01

to 2003:12.
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Figure C.0.84: Market price of risk for term premia from the PMD for the in-sample
period, 1983:01 to 2003:12.
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