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ABSTRACT

We examine hitting probability problems regarding the behavior of simple linear stochastic
differential equations with exponential boundaries, related to problems arising in risk theory
and asset and liability models in pension funds.

The first model we examine, in Chapter 2, is an Ornstein-Uhlenbeck (OU) process
described by the Stochastic Differential Equation dXt = µXtdt + σdWt with X0 = x0

given, where µ > 0 and {Wt} is standard Brownian motion. This model arises as a diffusion
approximation of risk theory models in which the free reserves earn interest. The question
posed then is that of determining the probability of hitting a lower deterministic boundary
curve v0e

βt and/or an upper boundary curve u0e
αt assuming that initially the free reserves

lie between these values, i.e. 0 < v0 < x0 < u0 and that β < µ < α. Both the finite horizon
“ruin probability problem” of determining the probability of hitting the boundary within
a finite horizon, and the infinite horizon probability are examined. This problem may of
course be formulated in terms of a second order PDE with curved (exponential) boundaries
in the plane and solved numerically. (An alternative approach involving a time change
argument is also discussed briefly in Chapter 2.) The main thrust of the analysis however
involves Large Deviations techniques and in particular the Wentzell-Freidlin approach in
order to obtain logarithmic asymptotics for the probability of hitting either the lower or
the upper boundary. These low-noise asymptotics are valid when the variance σ is small
and hence the event of hitting either boundary is rare. The exponential rate characterizing
this probability is obtained by solving a variational problem which also gives the “path
to ruin”. We begin with a careful and detailed analysis of the finite horizon problem of
hitting a lower boundary. The infinite horizon problem both for hitting the lower and the
upper exponential boundary is treated using the transversality conditions approach of the
calculus of variations. In addition, the OU process with a more general linear drift factor
is examined, namely, the process resulting from the SDE dXt = (µXt + r)dt + σdWt with
the upper exponential boundary u0e

αt (with 0 < µ < α).

We also consider, in the end of Chapter 2, the problem of two independent OU processes
arising from the SDE’s dXt = αXtdt+ σdWt, dYt = βYtdt+ bdVt, X0 = x0, Y0 = y0 given.
Also, {Wt} and {Vt} are independent standard Brownian motions. If α > β and x0 > y0

then, in the absence of noise, it would hold that Xt > Yt for all t > 0. We examine,
again using the Wentzell-Freidlin approach, the probability that the two processes meet.
The optimal paths followed by the two processes and the meeting time T is determined
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by solving a variational problem with trasversality conditions. Interestingly, the same
model when a correlation is assumed between the two Brownian motions exhibits more
complicated behavior if the correlation coefficient exceeds a certain threshold. This last
case is discussed in chapter 4.

In Chapter 3 a corresponding problem involving a Geometric Brownian motion described
by the SDE dXt = µXtdt + σXtdWt with X0 = x0 is examined, together with an upper
and a lower exponential boundary. Again the Wentzell-Freidlin theory is used. In this case
however, an exact solution is also possible, and therefore we are able to obtain an idea of
the accuracy of the logarithmic asymptotics we propose. As expected, when the variance
constant σ becomes smaller, the quality of the approximation improves. The case of two
correlated Geometric Brownian motions is also discussed. These models are inspired by
the Gerber and Shiu model of assets and liabilities in pension funds.

In Chapter 4, besides revisiting the problem of two Ornstein-Ulhenbeck processes in the
presence of correlation, we also examine briefly OU processes with time-varying variance
constant, arising from the SDE dXt = µXtdt+ σ(t)dWt. The hitting problem we examine
has a lower exponential boundary and infinite horizon. The variational problem arising from
the Wentzell-Freidlin method is tractable. However the equation giving the optimal hitting
time may not have a unique solution. We solve an instance of this problem numerically in
order to illustrate the approach.



1. INTRODUCTION

1.1 Ruin problems with compounding assets

Consider the following collective risk model: Claims are i.i.d. random variables {Yi}, with
distribution F on R+, and they occur according to an independent Poisson process with
points {Tn} and rate λ. We denote by N(t) :=

∑∞
i=1 1(Ti ≤ t) the corresponding counting

process. Income from premiums comes at a constant rate c and the initial value of the free
reserves is x0. We assume further that free reserves accrue interest at a fixed rate β. If
we denote by Zt :=

∑N(t)
i=1 Yi, t ≥ 0, the compound Poisson process describing the claim

process then the free reserves can be described by the stochastic differential equation

dXt = (βXt + c) dt− dZt, X0 = x0. (1.1)

Along the above lines, Harrison [8] considered the following generalization of the classical
model of collective risk theory. He assumed that the cumulative income of a firm is given by
a process X with X = {X(t), t ≥ 0} be a stochastic process with stationary independent
increments, finite variance and x0 = 0. Then Y (t) the assets of the firm at time t can
be represented by a simple path-wise integral with respect to the income process X. He

Fig. 1.1: Left: A sample path of the risk model. Middle: The same model with rescaled axes.
Right: A sample path of the corresponding Ornstein-Uhlenbeck process driven by Brow-
nian motion.
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defined the corresponding assets process Y by

Y (t) = eβty +

∫ t

0

eβ(t−s)dZ(s), t ≥ 0, (1.2)

with y positive level of initial assets and β positive interest rate. Harrison demonstrated
that the Riemann-Stieltjes integral on the rigth side of (1.2) exists and is finite for all
t ≥ 0 and almost every sample path of Z. Thus the process is a small defined path-wise
functional of the income process.

Typically Z(t) may be a Lévy process with finite variation so that the stochastic in-
tegral in (1.2) may be defined pathwise. A model with Z(t) being Brownian motion with
drift would be natural as a diffusion approximation of such a model and this leads to the
Ornstein-Uhlenbeck model we examine in detail in this thesis.

Models with compounding assets occur naturally in the study of pension funds as well
Gerber and Shiu [4] have studied such models involving a pair of Geometric Brownian
Motion processes with positive drift representing assets and liabilities over time and in
this context ruin problems become relevant. With the notable exception of the Geometric
Brownian Motion problems exact solutions are not possible and we will study these ruin
problems related to these systems using Large Deviations techniques.

1.2 An overview of Large Deviation Results

Let X be a complete, separable metric space and B the Borel σ-field of its subsets. Let
also {µε} be a family of probability measures on (X ,B) and I : X → [0,∞] a (lower
semicontinuous) function with values in the non-negative extended real numbers. Then,
roughly speaking we say that the family of measures satisfies a Large Deviation Principle
with rate function I if, as ε → 0, ε log µε(B) ≈ − infx∈B I(x). (The precise statement will
be given presently.) Before giving the precise statement however we will state Cramér’s
theorem which will provide motivation for the definitions.

Theorem 1. (Cramér). Suppose that {Xi} are i.i.d. random variables with finite mean
µ and moment generating function M(θ) := E[eθX1 ] (defined for all θ ∈ R for which the
expectation is finite). Then

lim
n→∞

1

n
logP

(
1

n

n∑
i=1

Xi > x

)
= −I(x) (1.3)

where the rate function I is the Legendre-Fenchel transform of the cumulant function
Λ(θ) := logM(θ) i.e.

I(x) := sup
x∈R
{θx− Λ(θ)} . (1.4)
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Cramér’s theorem dates from the 1930’s and was a seminal result which provided the
impetus for the initial work in Large Deviations Theory. Lundberg’s exponent in the
classical risk theory model plays precisely the same role as the rate function in the above
theorem. For a comprehensive account of Risk Theory, both classical and modern, see [34].

Recall that a function f is lower semicontinuous at x iff, for every sequence {xn} such
that limn→∞ xn = x, lim infn→x f(xn) ≥ I(x). A rate function I : X → [0,∞] is a lower
semicontinuous function on X which implies that the level sets ΨI(y) := {x ∈ X : I(x) ≤ y}
are closed subsets of X . A good rate function is one for which all the level sets ΨI(y) are
compact subsets of X . The effective domain of the rate function I is the subset of X ,
DI := {x : I(x) <∞} for which the rate function is finite.

The fact that the rate function I is lower-semicontinuous has as a consequence that the
level sets of the form Ψ(α) := {x : I(x) ≤ α}, α ∈ R are closed. A rate function I is called
good if all level sets Ψ(α) are compact. As usual, for any Γ ⊂ X , Γ̄ denotes the closure and
Γo the interior of Γ.

With the above definition one may give a precise statement of the Large Deviation
Principle (LDP):

Definition 2. The family of measures on {µε} satisfies an LDP with rate function I if for
all Γ ∈ B,

− inf
x∈Γo

I(x) ≤ lim inf
ε→0

ε log µε(Γ) ≤ lim sup
ε→0

ε log µε(Γ) ≤ − inf
x∈Γ̄

I(x). (1.5)

Recall that a function f : [0, T ] → R is absolutely continuous if for all ε > 0 there
exists δ > 0 such that, for all n ∈ N, 0 < s1 < t1 < s2 < t2 < · · · < sn < tn < T such
that

∑n
i=1(ti − si) < δ implies

∑n
i=1 |f(ti) − f(si)| < ε. Clearly, an absolutely continuous

function is continuous but the converse is not true. The set of all real, absolutely continuous
functions on [0, T ] is denoted by AC[0, T ].

A fundamental result in sample path Large Deviations theory is the following theorem
due to Schilder [32]. Suppose that {W (t); t ∈ [0, 1]} is a Standard Brownian motion in R
and define a family of processes {Wε(t); t ∈ [0, 1]} via Wε(t)(t) :=

√
εW (t) where ε > 0.

Theorem 3 (Schilder). The family of measures {µε} induced by the family of processes
{Wε(t); t ∈ [0, 1]} satisfies an LDP with good rate function

I =


1

2

∫ 1

0

f ′(s)2ds if f ∈ H1

+∞ otherwise

where H1 is the Cameron-Martin space {f ∈ AC[0, T ], f(0) = 0,
∫ 1

0
f ′2(s)ds < ∞} of

absolutely continuous functions with square integrable derivatives.
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Wentzell-Freidlin theory generalizes this idea to Stochastic Differential Equations.

1.3 Wentzell-Freidlin theory

We begin with the following relatively simple problem. {Xε
t ; t ∈ [0, 1]} is a family of

real-valued diffusion processes defined on the same probability space, (Ω,F ,P) given by

Xε
t := b(Xε

t )dt+
√
εdWt, Xε

0 = 0, t ∈ [0, 1], ε ≥ 0. (1.6)

The function b : R→ R is assumed to be uniformly Lipschitz-continuous, i.e. |b(x)−b(y)| ≤
B|x − y| for some B > 0 and all x, y ∈ R. To simplify the exposition and the analysis to
follow, the initial condition is assumed to be zero and the volatility term does not depend
on the diffusion state. These restrictions will be later removed.

For each given ε > 0 the stochastic differential equation in (1.6) has a unique solution
which is a continuous function with probability 1 (see for instance [31, §5.2]). Let C0[0, 1] :=
{f : [0, 1]→ R, s.t. f(0) = 0, f continuous}. Then Xε

t ∈ C0[0, 1] and for each ε, it induces
a probability measure µ̃ε on C0[0, 1].

Consider first the transformation Γ : C0[0, 1]→ C0[0, 1] defined via φ = Γ(g) where

φ(t) = g(t) +

∫ t

0

b(φ(s))ds for t ∈ [0, 1] and g continuous with g(0) = 0. (1.7)

The existence and uniqueness of a function φ ∈ C0[0, 1] satisfying (1.7) for a given function
g ∈ C0[0, 1] follows from the corresponding theorems on ordinary differential equations,
given that b is uniformly Lipschitz continuous. Let µε denote the measure induced on
C0[0, 1] by the Brownian motion {

√
εWt; t ∈ [0, 1]} (where {Wt} is Standard Brownian

Motion). The measure µ̃ε on C0[0, 1] can then be expressed as µε ◦ Γ−1 where Γ−1 is
the inverse map: If B(C0[0, 1]) is the Borel σ-field of sets of continuous functions and
A ∈ B(C0[0, 1]) then Γ−1(A) = {f ∈ C0[0, 1] : Γ(f) ∈ A}.

We note that Γ is an injective mapping: If gi, i = 1, 2 are two different elements of
C0[0, 1] then since φi = Γ(gi),

g2(t)− g1(t) = φ2(t)− φ1(t)−
∫ t

0

(b(φ2(s))− b(φ1(s))) ds.

Since the left hand side in the above equation is not identically 0, then φ2 − φ1 cannot be
identically zero.

Also, Γ is a continuous mapping. (The norm we use of course is the sup norm: ‖f‖ =
supt∈[0,1] |f(t)|). Then setting ∆(t) := |φ2(t)− φ1(t)| and r(t) = |g2(t)− g1(t)| we have

∆(t) =

∣∣∣∣∫ t

0

(b(φ2(s))− b(φ1(s))) ds+ g2(t)− g1(t)

∣∣∣∣ ≤ B

∫ t

0

∆(s)ds+ r(t).
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Then, as a result of Grownwal’s inequality, if r(t) ≤ η,

∆(t) ≤ η eBt.

This establishes the continuity of the mapping Γ and hence, appealing to Schilder’s theorem,
we conclude that the measures induced on C[0, T ] by {Xε

t } satisfy a Large Deviations
Principle with good rate function

I(x) :=
1

2

∫ T

0

(x′(t)− b(x(t)))
2
dt.

The precise arguments can be found in [3, §5.2] and [20] (chapter 2, theorem 2.25). For
applications in Risk Theory see Asmussen and Steffensen [1].

1.4 Exit time of a diffusion from a deterministic boundary

The typical problem we examine in this thesis involves a family of SDE’s parameterized by
ε > 0 which denotes the intensity of the noise factor

dXε
t = µ(Xε

t )dt+
√
ε σ(Xε

t )dWt, Xε
0 = x0 (1.8)

together with the ODE ensuing when the noise factor is set to zero,

x′(t) = µ(x(t)), x(0) = x0, (1.9)

and a second ODE,
u′(t) = ν(u(t)), u(0) = u0. (1.10)

We assume that ν(x) ≥ µ(x) for all x and x0 < u0. Therefore x(t) < u(t) for all t ≥ 0
which means that the zero noise solution of (1.8) is always below the solution of (1.10). Of
course, in the presence of noise, there is a positive probability that the solution of (1.8)
exceeds that of (1.10). To be more specific, let τε = inf{t ≥ 0 : Xε

t = u(t)} (with τε = +∞
when the set is empty). (We will suppose of course that the functions µ, σ, and ν satisfy
the usual Lipschitz continuity and rate of growth conditions to insure (strong) existence
and uniqueness of the solutions.)

The main object of this study is the evaluation of the finite and infinite horizon “ruin
probability” P(τe < ∞) which, in general, is analytically intractable. Thus, with the
exception of the Geometric Brownian motion case, i.e. when m(x) = mx, σ(x) = σx and
ν(x) = νx where explicit closed form expressions can be obtained, as is shown in chapter
3, we resort to logarithmic asymptotics obtained by large deviation arguments.

More specifically, we apply the Wentzell-Freidlin technique (see for instance [7] or [3])
to obtain the value of

α := − lim
ε→0

ε logP (τε <∞) . (1.11)
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We will examine in detail the case of the Ornstein-Uhlenbeck process, corresponding to
drift µ(x) = µx and volatility σ(x) = σ with µ > 0 as well as other linear SDE’s.



2. LOW NOISE ASYMPTOTICS FOR THE ORNSTEIN-UHLENBECK
PROCESS

In this chapter we examine an Ornstein-Uhlenbeck (OU) process with positive infinitesimal
drift and consider the probability of hitting an upper or a lower exponential boundary.
The problem is approached using the Wentzell-Freidlin theory for obtaining logarithmic
asymptotics both for the finite and the infinite horizon problem. An OU process with an
additional constant term in the drift is also examined. Interestingly, depending on the value
of the constant drift, the variational problem from which the rate function is obtained, may
not have a unique solution.

2.1 The Ornstein-Uhlenbeck SDE and the time to exit from a
deterministic boundary

Consider the Ornstein-Uhlenbeck Stochastic Differential Equation (SDE)

dXt = µXtdt+ σdWt, X0 = x0 (2.1)

where µ > 0. Note that its expectation increases exponentially with time according to
EXt = x0e

µt, t ≥ 0. Consider also the deterministic exponential function given by

V (t) = v0e
βt where 0 ≤ β < µ and 0 < v0 < x0. (2.2)

Let
p(x0, T ) = P(Xt > V (t); 0 ≤ t ≤ T ) (2.3)

denote the probability that the process {Xt} stays above the exponential boundary V (t).
In this model 1−p(x0, T ) may be thought of as a type of ruin probability. We are interested
in evaluating p(x0, T ) and the limiting probability p(x0) := limT→∞ p(x0, T ) for the process
given in (2.1) with boundary given by (2.2). Due to the Markovian property of {Xt}, the
“non-ruin probability” defined in (2.3) satisfies the PDE

1

2
σ2fxx + µxfx + ft = 0, in D := {(x, t) : 0 < t < T, x > v0e

βt} (2.4)

with boundary conditions f(v0e
βt, t) = 0 for t ∈ [0, T ] and f(x, T ) = 1 for x > v0.
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We will not attempt to obtain an expression for the solution of (2.4) due to the difficulty
introduced by the shape of the domain D. One may obtain numerical results for the ruin
probability based on the above formulation. We will instead use Wentzell-Freidlin “low
noise asymptotics” [7] in order to obtain a large deviations estimate for the probability
that Xt crosses the path of V (t) for some t ∈ [0, T ]. There has of course been significant
work on first-passage times in OU processes, in particular we mention L. Alili, P. Patie,
and J.L. Pedersen [49].

2.2 A time-change approach to the Ornstein-Uhlenbeck ruin problem

Consider the two sided problem

dXt = µXtdt+ σdWt, X0 = x0

with an upper boundary given by the curve U(t) := u0e
αt and a lower boundary given by

V (t) := v0e
βt. We assume that 0 < v0 < x0 < u0 and 0 < β < µ < α. We are interested

in the hitting time T = inf{t ≥ 0 : XT ≥ U(T ) or XT ≤ V (T )}. (Of course, if the set
is empty, the hitting time is equal to +∞ corresponding to the case where the process
never exits from one of the two boundary curves.) The Ornstein-Uhlenbeck process has the
solution

X0 = x0e
µt + σ

∫ t

0

eµ(t−s)dWs

The condition
V (t) < Xt < U(t)

is equivalent to e−µtV (t) < e−µtXt < e−µtU(t) or

v0e
−(µ−β)t < x0 + σ

∫ t

0

e−sµdWs < u0e
(α−µ)t. (2.5)

The stochastic integral ξ(t) := σ
∫ t

0
e−sµdWs is a Gaussian process with independent inter-

vals and variance function

Var(ξ(t)) = σ2

∫ t

0

e−2µsds =
σ2

2µ

(
1− e−2µt

)
.

Note that the limit limt→∞ Var(ξ(t)) = σ2

2µ
is finite. Consider the time change function τ(t)

defined by

τ(t) =
σ2

2µ

(
1− e−2µt

)
, t ∈ [0,∞) (2.6)

The inverse function (which necessarily exists since Var(ξ(t)) is an increasing function) is

t(τ) = − 1

2µ
log

(
1− 2µτ

σ2

)
, τ ∈

[
0,
σ2

2µ

)
(2.7)
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Applying this change of time to the double inequality (2.5) we obtain

v0e
(µ−β) 1

2µ
log(1− 2µτ

σ2
) < x0+σ

∫ − 1
2µ

log(1− 2µτ

σ2
)

0

e−sµdWs < u0e
−(α−µ) 1

2µ
log(1− 2µτ

σ2
), τ ∈

[
0,
σ2

2µ

)
.

However, W̃τ := σ
∫ − 1

2µ
log(1− 2µτ

σ2
)

0 e−sµdWs is standard Brownian motion. (It can easily be

seen that it is a continuous martingale with quadratic variation function 〈W̃ 〉τ = τ .) Thus
we have the equivalent problem

v0

(
1− 2µτ

σ2

)µ−β
2µ

< x0 + W̃τ < u0

(
1− 2µτ

σ2

)−α−µ
2µ

, τ ∈
[
0,
σ2

2µ

)
. (2.8)

In general, the passage time – hitting probability problem associated with (2.8) must
be solved numerically. Of course the time change transformation may have computational
advantages. There is a great deal of work, both theoretical and applied, regarding passage
times and hitting probabilities of Brownian motion with curving boundaries. In the special
case where α = β = µ an exact solution exists. In general we have not been able to obtain
closed form expressions even with a single boundary even in the few cases where exact
solutions are known, such as for a parabolic boundary: When β = 0 then the time-changed

lower bound is v0

√
1− 2µτ

σ2 . While this is a parabolic boundary, the results that have

obtained for this case, [37], [38], apply when it acts as an upper and not a lower boundary.
Therefore, the exact solution in this case is not known, to the best of our knowledge.

A two–boundary case: α = β = µ. In that case (2.8) becomes

v0 − x0 < W̃τ < u0 − x0, τ ∈
[
0,
σ2

2µ

)
.

The exact probability of never exiting either boundary, can be obtained from the well known
expression for the density of standard Brownian motion (starting at zero) with absorbing
boundaries at a, b, (a, b > 0). If p(x, t)dx := P (Wt ∈ (x, x+ dx); −b < Ws < a, 0 ≤ s ≤ t),
then, (see [23, p.222])

p(x, t) =
∞∑
n=1

2

a+ b
sin

(
nπb

a+ b

)
e−λnt sin

(
nπ

x+ b

a+ b

)
,

where λn =
1

2

n2π2

(a+ b)2
, n = 1, 2, . . . .

Then

P (−b < Ws < a, for 0 ≤ s ≤ t) =

∫ a

−b
p(x, t)dx,



2. Low Noise Asymptotics for the Ornstein-Uhlenbeck Process 16

Fig. 2.1: Time-change in an Ornstein-Uhlenbeck ruin problem.
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and in our case −b = v0 − x0, a = u0 − x0, t = σ2

2µ
. Hence,

P
(
−b < Ws < a, 0 ≤ s ≤ σ2

2µ

)
(2.9)

=
∞∑
k=0

4

(2k + 1)π
exp

(
−(2k + 1)2π2σ2

2(u0 − v0)2µ

)
sin

(2k + 1)π(x0 − v0)

u0 − v0

.

2.3 The Wentzell-Freidlin Framework - Finite Horizon Problem

To express the problem discussed in the previous section in the Wentzell-Freidlin framework
we consider the family of processes {Xε

t }

dXε
t = µXε

tdt+
√
ε σ dWt, Xε

0 = x0 (2.10)

together with the deterministic process

ẋ(t) = µx(t), x(0) = x0.

Denote by C[0, T ] the set of continuous functions on [0, T ], and by Cx0 [0, T ] the set of
all continuous functions f : [0, T ] → R with f(0) = x0. Consider the transformation
F : C[0, T ]→ Cx0 [0, T ] defined by

f = F (g) with f(t) :=

∫ t

0

µf(s)ds + σg(t), t ∈ [0, T ]. (2.11)

Let fi, denote the solution of (2.11) when the driving function is gi, i = 1, 2. We may then
establish the continuity of the map F by means of a Gronwall argument which shows that

‖f1 − f2‖ ≤ σ eµT‖g1 − g2‖.

Theorem 5.6.7 of [3, p. 214] applies and therefore the solution of (2.10) satisfies a Large
Deviation Principle with good rate function

I(f, T ) :=


1

2

∫ T

0

(f ′(t)− µf(t))
2
σ−2dt if f ∈ H1

x0

+∞ otherwise

(2.12)

where H1
x0

(T ) := {f : [0, T ] → R : f(t) = x0 +
∫ t

0
φ(s)ds , t ∈ [0, T ], φ ∈ L2[0, T ]} is the

Cameron-Martin space of absolutely continuous functions with square integrable derivative
with initial value f(0) = x0.
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Theorem 4. In the above framework, if the lower boundary curve is V (t) = v0e
βt,

lim
ε→0

ε logP
(

min
t∈[0,T ]

Xε
t − V (t) ≤ 0

)
= −IV (T ). (2.13)

The rate is given by

IV (T ) =


2µ

(
v0e

βT − x0e
µT
)2

e2µT − 1
if T ≤ toV

2µ

(
v0e

βtoV − x0e
µtoV
)2

e2µtoV − 1
if T > toV

(2.14)

where toV is the unique positive solution of the equation(
1− β

µ

)
e(µ+β)t +

β

µ
e(β−µ)t =

x0

v0

. (2.15)

Similarly, for the upper boundary curve U(t) = u0e
αt,

lim
ε→0

ε logP
(

max
t∈[0,T ]

Xε
t − U(t) ≥ 0

)
= −IU(T ) (2.16)

with

IU(T ) =


2µ

(
u0e

αT − x0e
µT
)2

e2µT − 1
if T ≤ toU

2µ

(
u0e

βtoU − x0e
µtoU
)2

e2µtoU − 1
if T > toU

(2.17)

where toU is the unique positive solution of the equation

α

µ
e(α−µ)t −

(
α

µ
− 1

)
e(µ+α)t =

x0

u0

. (2.18)

Proof. Part 1. We begin by fixing t > 0 and considering paths that start at x0 at time 0
and end at V (t) := v0e

βt at time t: Consider the set

H1
x0,V (t) :=

{
h : [0, t]→ R : h(s) = x0 +

∫ s

0

φ(u)du , s ∈ [0, t], h(t) = V (t), φ ∈ L2[0, t]

}
.

Then, for η > 0,

lim
ε→0

ε logP
(

sup
0≤s≤t

|Xε
s − h(s)| < η

)
= −J∗(t). (2.19)

where J∗(t) is the solution of the variational problem

J∗(t) = inf
{
J(x; t) : x ∈ H1

x0,V (t)

}
(2.20)
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where

J(x; t) =

∫ t

0

F (x, x′, u)du, and F (x, x′, u) =
1

2σ2
(x′ − µx)

2
. (2.21)

J(x; t) gives the rate function for a path that starts at x0 and meets the lower boundary
at the point (t, v0e

βt) i.e. satisfies the boundary conditions

x(0) = x0, x(t) = v0e
βt. (2.22)

The infimum in (2.20) is taken over all absolutely continuous functions on [0, t] with deriva-
tive in L2. The function x ∈ H1

x0,Vt)
[0, t] that minimizes the integral defining the rate

function is the solution of the Euler-Lagrange equation (e.g. see [26], [2])

Fx −
d

du
Fx′ = 0 (2.23)

and the boundary conditions (2.22). With the given form of F in (2.21) the Euler-Lagrange
equation becomes

x′′(u) = µ2x(u) (2.24)

which has the general solution

x(u) = c1e
µu + c2e

−µu. (2.25)

The values of c1, c2 for which x satisfies the boundary conditions are given by the unique
solution of the system [

1 1
eµt e−µt

] [
c1

c2

]
=

[
x0

v0e
βt

]
.

We obtain

c1 =
v0e

βt − x0e
−µt

eµt − e−µt
, c2 = −v0e

βt − x0e
µt

eµt − e−µt
. (2.26)

Thus (2.25) with the constants c1, c2 given by (2.26) give the optimal path

x(u) =
v0e

βt (eµu − e−µu) + x0

(
eµ(t−u) − e−µ(t−u)

)
eµt − e−µt

=
v0e

βt sinh(µu) + x0 sinh(µ(t− u))

sinh(µt)
(2.27)

From (2.25)
x′(u)− µx(u) = −2µc2e

−µu

and, from this together with (2.21),

J∗(t) = 4µ2c2
2

∫ t

0

e−2µudu = 2µc2
2

(
1− e−2µt

)
.

Taking into account the expression for c2 we have

J∗(t) = 2µ

(
v0e

βt − x0e
µt
)2

e2µt − 1
. (2.28)
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There remains to show that there is no path x(u) with piece-wise continuous derivative
which achieves a smaller value of the criterion, i.e. that the optimal solution does not
have corners. To this end we consider the Erdeman corner conditions ([2, §2.5]). The first
condition requires that Fx′ evaluated at the critical path be a continuous function of u. Since
Fx′ = 1

σ2 (x′ − µx) and x(u) is necessarily continuous, the first Erdeman condition implies
the continuity of x′(u) as well. Therefore, by virtue of the first Erdeman condition alone
we may conclude that the optimal solution cannot have discontinuities in its derivative.
For the sake of completeness we mention that the second Erdeman condition requires
that F − x′Fx′ evaluated at the critical path be also a continuous function of u. Since
F−x′Fx′ = − 1

2σ2 ((x′)2 − µ2x2) and because of the continuity of x(u), this second condition
by itself would allow the existence of corners at which the first derivative changes sign.
(Such corners are of course precluded by the first condition.)

The solution we have found corresponds to a global minimum. To see this (c.f. Theorem
3.16 [2, p.45]) it suffices to note that, setting F (x, x′) := 1

2σ2 (x′ − µx)2, then F is convex
on R2. Indeed, we can show that, for any (x′0, x0) ∈ R2,

F (x, x′) ≥ F (x0, x
′
0) + Fx(x0, x

′
0) (x− x0) + Fx′(x0, x

′
0) (x′ − x′0)

or
1

2
(x′ − µx)

2 ≥ 1

2
(x′0 − µx0)

2 − µ (x′0 − µx0) (x− x0) + (x′0 − µx0) (x′ − x′0).

This last inequality is equivalent to

1

2
(x′ − µx)

2 ≥ − 1

2
(x′0 − µx0)

2
+ (x′ − µx) (x′0 − µx0)

or
(x′ − µx)

2
+ (x′0 − µx0)

2 − 2 (x′ − µx) (x′0 − µx0) ≥ 0

which is clearly true.

Part 2. In the first part we obtained the fixed time optimal solution under the boundary
conditions (2.22). These conditions need to be supplemented with the additional path
inequality constraint

x(u) ≥ V (u) for all u ∈ [0, t]. (2.29)

In this part however we will solve the optimization problem

I(T ) := inf{J(x, t) : 0 ≤ t ≤ T, x ∈ H1
x0,V (t), i.e. x satisfies the conditions (2.22) }

with finite time horizon t ∈ [0, T ], ignoring the inequality path constraints (2.29). Clearly
I(T ) = inft∈[0,T ] J∗(t).

We will next establish that J∗(t) is strictly convex and has a global minimum. From
(2.28)

J ′∗(t) =
4v0µ

2emut
(
x0e

µt − v0e
βt
)

(e2µt − 1)2

[(
1− β

µ

)
e(β+µ)t +

β

µ
e(β−µ)t − x0

v0

]
. (2.30)
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Define the function

φ1(t) =

(
1− β

µ

)
e(β+µ)t +

β

µ
e(β−µ)t, t ≥ 0. (2.31)

Since 0 < β < µ and 0 < v0 < x0, x0e
µt − v0e

βt > 0 for all t ≥ 0 and thus the sign of J ′∗(t)
is that of φ1(t) − x0

v0
. Note that φ′1(t) = µ−β

µ
e(β+µ)t [µ+ β(1− e−2µt)] > 0 for all t ≥ 0 and

thus φ1 is an increasing function. Also, φ1(0) = 1, and x0
v0
> 1, hence there exists to > 0

such that
φ1(to) =

x0

v0

> 1. (2.32)

In view of the expression (2.30), J ′∗(t) < 0 for 0 ≤ t < to, J∗(t
o) = 0 and J ′∗(t) > 0 for

t > to. Thus to is a point of global minimum for J∗. Given the definition of the function
φ1, to is the unique solution of (2.15). Figure 2.2 illustrates the behavior of the function
J∗(t).

Fig. 2.2: The dotted black line denotes the function J∗(t). The dotted red line denotes the rate
function I(t). Here µ = 2.5, β = 1.0, x0 = 4, u0 = 1 and to u 0.529.
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Then

I(T ) = inf
t∈[0,T ]

J∗(t) =


2µ

(
v0e

βT − x0e
µT
)2

e2µT − 1
if T ≤ to

2µ

(
v0e

βto − x0e
µto
)2

e2µto − 1
if T > to

(2.33)

Part 3. We complete the proof by showing that the optimal rate given by (2.33) remains
valid even after taking into account the path constraint (2.29). Define

J∗∗(t) = inf
{
J(x; t) : x ∈ H1

x0,V (t), x(u) ≥ V (u) for u ∈ [0, t].
}

(2.34)

In this part of the proof we will study the behavior of the optimal path x(u) of (2.27) for
all u ≥ 0. Clearly x(u) > 0 for 0 ≤ u ≤ t. By examining the numerator of (2.27) we see
that, for u > t, x(u) > 0 iff

g(u) :=
sinh(µu)

sinh(µ(u− t))
− x0

v0

e−βt > 0.

We can easily see that g′(u) < 0 and hence g is strictly decreasing in (t,∞). Also,
limu→t+ g(u) = +∞ and limu→∞ g(u) = eµt − x0

v0
e−βt. Therefore there are two cases de-

pending on whether the condition eµt − x0
v0
e−βt < 0 or equivalently

et(µ+β) <
x0

v0

(2.35)

or, alternatively,

t < t1 :=
1

µ+ β
log

x0

v0

. (2.36)

If condition (2.35) holds then there exists a unique u0 ∈ (t,∞) for which g(u0) = 0 and
therefore x(u0) = 0. The derivative of x at u0 is

x′(u0) =
µ

sinh(µt)
(cosh(µu)− x0 cosh(µ(u− t))) .

However, by the definition of u0, it also holds that

v0e
βt sinh(µu) = x0 sinh(µ(u− t)).

From these last two equations, together with the inequality x0 > v0 we can easily show
that x′(u0) < 0. Thus in the interval [u0,∞), x(u) satisfies the ODE (2.24) with initial
conditions x(u0) = 0, x′(u0) < 0, and hence it must be negative in this whole interval.
From the above analysis we conclude that when t is small enough to satisfy (2.35) then
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Fig. 2.3: Here µ = 1, β = 0.6, x0 = 2, v0 = 0.5. The hitting times range from t = 0.25 to t = 1.50.
Note that, for t = 0.25, 0.50, and 0.75 the path x(u) eventually becomes negative, after
hitting once V (u), the dotted green line. In the rest of the cases the paths remain
positive and intersect the dotted green line twice.

in the interval [0, t), x(u) > V (u) and hence the path inequalities constraints (2.29) are
satisfied.

On the other hand, if t ≥ t1 then x(u) > 0 for all u > 0. Therefore, as a result of
(2.24), x′′(u) > 0 and the function x is strictly convex for x ≥ 0. Figure 2.3 illustrates
both cases. For t = 0.25, 0.5, and 0.75 (black, red, and green paths) the paths eventually
become negative and intersect the dotted green line (i.e. V (·)) once. In the rest of the
cases the paths remain positive and intersect the dotted green line twice.

Since the curve V (u) = v0e
βu is also convex there can be two points of intersection at

most between them, or only one if the curve x(u) is tangent to v0e
βu at t. Thus if there are

two intersection points, due the convexity of the curves and the fact that x(0) = x0 > v0 =
V (0), if x′(t) < V ′(t) then t is the first intersection point of the two curves, meaning that
the path constraint x(u) > V (u) is satisfied for all 0 ≤ u < t. Conversely, if x′(t) > V ′(t),
then there exists τ(t) in the interval (0, t) for which x(τ(t)) = V (τ(t)) and x(u) < V (u) for
u ∈ (τ(t), t). In this latter case, the inequality path constraint (2.29) is not satisfied. Thus
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the optimal path of Part 1 also satisfies the constraint (2.29) iff

x′(t) ≤ V ′(t). (2.37)

From (2.27)

x′(t) = µ
v0e

βt (eµt + e−µt)− 2x0

eµt − e−µt
. (2.38)

Therefore (2.37) can be written as

µ
v0e

βt (eµt + e−µt)− 2x0

eµt − e−µt
≤ v0βe

βt.

or, equivalently, as (
1− β

µ

)
e(β+µ)t +

(
1 +

β

µ

)
e(β−µ)t ≤ 2

x0

v0

. (2.39)

If this condition is satisfied then the optimal path of part I also satisfies the constraint
(2.29). Define the function

φ2(u) =

(
1− β

µ

)
e(β+µ)u +

(
1 +

β

µ

)
e(β−µ)u

It is easy to see that φ′2(t) > 0 and φ2(0) = 2. Hence, the equation φ2(t) = 2x0
v0

has a
unique, positive solution, say t2. Since the function φ2(t) is increasing, if follows that

t < t2 (2.40)

is equivalent to condition (2.39).

Thus, when (2.40) is satisfied, the path given by (2.27) minimizes the functional J(x, t)
in (2.21) under the boundary conditions (2.22) and the path inequality constraints (2.29).
Then

J∗∗(t) = J∗(t) when t < t2. (2.41)

Figure 2.4 shows that for specific values of the parameters µ, β, x0, v0. For the values of
the parameters in Figure 2.4 t0 = 1

2
log 8 ≈ 1.04. Hence in the figure in the left the path

x(u) is decreasing and eventually becomes negative. There is a single intersection between
the curves x(u) and V (u). On the other hand in the figure in the middle (t = 2) and in the
right (t = 3) the path x(u) is strictly convex, as is V (u), and thus the two curves intersect
in two points. For t = 2 the path x(u) satisfies (2.39) and therefore (2.37) and (2.29) while
for t = 3 it does not.
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Fig. 2.4: Three cases. Here µ = 1, β = 1, x0 = 4, v0 = 0.5. In the figure on the left the
predetermined hitting time is t = 1. The optimal path x(u), after meeting V (u) at
t = 1, keeps decreasing monotonically and eventually becomes negative. In the figure in
the middle the predetermined hitting time is t = 2 and it is the first of the two points of
intersection of the curves. The path is convex and x(u) > 0 for all u. In the figure on the
right the predetermined hitting time is t = 3. The path is again convex and x(u) > 0.
Here, another hitting time occurs before the predetermined hitting time at t = 3.

If (2.39) is not satisfied then t is the second point of intersection of x(u) with V (u).
With τ(t) denoting the first point of intersection, so that τ(t) ≤ t, the optimal path is
given by

xo(u) =

{
x(u) for 0 ≤ u ≤ τ(t)
V (u) for τ(t) < u ≤ t

or, xo(u) = max(x(u), V (u)), 0 ≤ u ≤ t.

Figure 2.6 illustrates this situation. The corresponding optimal value of the criterion is

J∗∗(t) =
1

2σ2

(∫ τ(t)

0

(x′(u)− µx(u))2du+

∫ t

τ(t)

(u0βe
βu − µu0e

βu)2du

)

= J∗(τ(t)) +
u2

0(µ− β)2

4βσ2

(
e2βt − e2βτ(t)

)
when t > t2. (2.42)

where J∗ is the expression in (2.28).

Next we will show that
to < t2. (2.43)

Indeed, using the definition of φ1 and to,

φ2(to) =

(
1− β

µ

)
e(β+µ)to +

(
1 +

β

µ

)
e(β−µ)to

= φ1(to) + e(β−µ)to <
x0

v0

+ 1 < 2
x0

v0

= φ2(t2).



2. Low Noise Asymptotics for the Ornstein-Uhlenbeck Process 26

Fig. 2.5: Two cases. Here µ = 1, β = 0.4, x0 = 4, v0 = 0.5. The hitting times range from t = 2
to t = 7. Note that, only for t = 2 the path x(u) hits V (u), the thick green line, for the
second time at the hitting time, i.e. only for t = 2 does the condition x′(t) < V ′(t) hold.

where we have used the fact that β − µ < 0 and that x0 > v0. Then (2.43) follows from
the fact that φ2 is increasing.

Then, the rate function in (2.13), defined as

IV (T ) := inf
{
J(x; t) : x ∈ H1

x0,V (t), x(u) ≥ V (u) for 0 < u < t, 0 < t ≤ T.
}

(2.44)

can be obtained as
IV (T ) := min

t∈(0,T ]
J∗∗(t). (2.45)

If T ≤ t2 then J∗∗(t) = J∗(t) and hence IV (T ) = mint∈(0,T ] J∗(t) = J∗(t
o ∧ T ) due to the

fact that J∗ is strictly decreasing in (0, to and strictly increasing in (to,∞).

If T > t2 then we can write IV (T ) := min
(
mint∈(0,t2] J∗∗(t),mint∈(t2,T ] J∗∗(t)

)
. For

every t ∈ (t2, T ] there exists τ(t) < t for which, necessarily, τ(t) ∈ (0, t2]. Since J∗∗(t) >
J∗(τ(t)) for t > t2, by virtue of (2.42), it follows that mint∈(t2,T ] J∗∗(t) > mint∈(0,t2] J∗(t).
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Fig. 2.6: The optimal solution for the problem with fixed time and path inequality constraint
x(u) ≥ V (u). The red dotted line is the optimal path. It consists of a portion of the
optimal path without constraints and then follows the constraint up to time t.

Therefore we conclude that IV (T ) is also given by (2.28). This concludes the proof of
the first part of Theorem 4. The proof of the second part, pertaining to the upper boundary
curve is similar and will be omitted.

2.3.1 The infinite horizon problem - lower bound

We now turn to the infinite horizon problem of obtaining a large deviations estimate for
the probability P (inft≥0Xt−v0e

βt ≤ 0) in the same context as that of the previous section.
It is of course possible to solve first the finite horizon problem P (inf0≤t≤T Xt−v0e

βt ≤ 0) as
we saw in the previous section and then minimize this probability over T . Instead of this
we will use the standard transversality conditions approach of the Calculus of Variations
in order to tackle in one step the infinite horizon problem. These are necessary conditions
for optimality in variational problems with variable end-points.

min

∫ T

0

F (x, x′, t)dt,

subject to the constraints x(0) = x0, x(t) > V (t), x(T ) = V (T )

with F (x, x′, t) =
1

2σ2
(x′ − µx)

2
, V (t) = v0e

βt, 0 < v0 < x0.

In the above, both the optimal path x and the horizon T are unknowns to be determined.
Our approach to dealing with the inequality path constraint, x(t) > V (t) for all t ∈ [0, T )
will be to initially ignore it and obtain an optimal hitting time T and an optimal path x∗
minimizing the criterion

∫ T
0
F (x, x′, t)dt and satisfying the boundary conditions x∗(0) = x0,
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x∗(T ) = V (T ). We then show that this optimal path satisfies the constraint x∗(t) > V (t)
for 0 ≤ t < T .

The necessary conditions for a minimum in the problem without the path inequality
constraint are

Euler-Lagrange Equation: Fx −
d

dt
Fx′ = 0, (2.46)

Boundary Conditions: x(0) = x0, x(T ) = V (T ), (2.47)

Transversality Condition: F + (V ′ − x′)Fx′ = 0 at T. (2.48)

Taking into account that Fx = −µσ−2 (x′ − µx), Fx′ = σ−2 (x′ − µx), d
dt
Fx′ = σ−2 (x′′ − µx′),

the Euler-Lagrange equation becomes

Fx −
d

dt
Fx′ = −σ−2

(
x′′ − µ2x

)
= 0

and thus
x′′ − µ2x = 0. (2.49)

This has the general solution
x(t) = C1e

µt + C2e
−µt. (2.50)

Taking into account the boundary conditions (2.47), we obtain

x(0) = C1 + C2 = x0, (2.51)

x(T ) = C1e
µT + C2e

−µT = v0e
βT . (2.52)

Proof. The transversality condition (2.48):

1

2σ2
(x′(T )− µx(T ))

2
+
(
v0βe

βT − x′(T )
) 1

σ2
(x′(T )− µx(T )) = 0

or
(x′(T )− µx(T ))

(
−x′(T )− µx(T ) + 2v0βe

βT
)

= 0. (2.53)

Taking into account (2.50), it follows that x′(T ) − µx(T ) = −2µC2e
−µT and hence, if the

first factor of (2.53) were to vanish, this would imply that C2 = 0. This in turn implies,
in view of (2.50) and (2.51), that x(T ) = x0e

µT = v0e
βT which is impossible since x0 > v0

and µ > β. Hence (2.53) implies

v0e
βT =

µ

β
C1e

µT . (2.54)

From (2.47) and (2.54) we obtain

C1 + C2 = x0

C1

(
1− µ

β

)
eµT + C2e

−µT = 0
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whence it follows that

C1 =
x0e
−µT(

µ
β
− 1
)
eµT + e−µT

, C2 =
x0

(
µ
β
− 1
)
eµT(

µ
β
− 1
)
eµT + e−µT

. (2.55)

(Note that, µ > β implies that the denominator in the above expressions never vanishes.)
It remains to determine the time T where the two paths meet and this is obtained using
(2.54) and (2.55) which gives(

µ

β
− 1

)
e(µ+β)T + e−(µ−β)T =

x0

v0

µ

β
. (2.56)

If ψ(t) :=
(
µ
β
− 1
)
e(µ+β)t + e−(µ−β)t then it is easy to see that ψ(0) = µ

β
< x0

v0

µ
β

and

ψ′(t) = (µ − β)
((

1 + µ
β

)
et(µ+β) − e−(µ−β)t

)
> 0. Furthermore, ψ(t) → ∞ as t → ∞.

Hence (2.56) has a unique solution T > 0.

The rate function then becomes

1

2σ2

∫ T

0

(x′ − µx)
2
dt =

1

2σ2

∫ T

0

4µ2C2
2e
−2µtdt =

µC2
2

σ2

(
1− e−2µT

)
or

I =
x2

0µ

σ2

1− e−2µT(
1 + β

µ−β e
−2µT

)2 . (2.57)

Finally, the optimal path x∗ hitting the lower bound is given by

x∗(t) = x0

e−µ(T−t) +
(
µ
β
− 1
)
eµ(T−t)

e−µT +
(
µ
β
− 1
)
eµT

(2.58)

where T is the (unique) solution of equation (2.56).

Intuitively, the uniqueness of the solution of (2.56) makes sense. If T is very small the
noise factor Wt must exhibit an extremely unlikely behavior in order for the OU process to
drop to the level of the lower curve. So having more time available makes the rare event
of hitting the lower boundary more likely. But if T is very large, because of the difference
in the rates of the two processes, again hitting the lower boundary becomes extremely
unlikely. In Chapter 4 we will study a linear SDE which the uniqueness of the solution
does not necessarily hold. Also, in some cases, in the infinite horizon problem, an infimum
may exist but no minimum. The rate function I is not ”good” and compactness fails. In
practical terms, the more time available the more likely it is that the noise term will cause
the Stochastic Differential Equation to hit the deterministic boundary curve.
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Fig. 2.7: An Ornstein-Uhlenbeck process evolving between an upper and a lower exponential
bound.

It remains to show that the optimal path x∗ for the problem without the inequality
path constraint, satisfies these constraints as well, i.e. we will show that

x∗(t) > v0e
βt, 0 ≤ t < T. (2.59)

Observe from (2.58) that x∗(t) > 0 for all t ∈ [0, T ] and, since it satisfies (2.49), x′′∗(t) > 0
for all t ∈ [0, T ]. Therefore x∗ is a convex function of t and so is V (t) = v0e

βt. Since the
two curves meet at T , they are either tangent to each other or they have exactly two points
of intersection. If the condition

x′∗(T ) ≤ V ′(T ) = v0βe
βT (2.60)

holds then T is the first point where the path x∗(t) hits the curve V (t) and the path x∗
satisfies the inequality constraints as well and hence gives the solution to our problem.. (If
(2.60) holds as an equality then it is the only point where this happens.) From (2.58) we
see that (2.60) is equivalent to

µx0

(
2− µ

β

)
(
µ
β
− 1
)
eµT + e−µT

< v0βe
βT . (2.61)

The above is also written as µx0
v0β

(
2− µ

β

)
<
(
µ
β
− 1
)
e(µ+β)T + e−(µ−β)T and using (2.56)
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Fig. 2.8: The black line is a typical path of an OU process with µ = 1, σ = 1 and starting point
x0 = 2. The blue curve is the lower exponential bound v0e

βt with v0 = 1 and β = 0.8.
The meeting T obtained by solving numerically (2.56) is equal to 1.0621. Finally the
red optimal (large deviation) path is obtained from (2.58)

this becomes µx0
v0β

(
2− µ

β

)
< x0µ

v0β
or 1 < µ

β
which holds by assumption. Thus (2.60) holds

as a strict inequality and (2.58) is indeed the optimal path.

2.3.2 The infinite horizon problem with an upper bound

This problem is similar to the lower bound treated in the previous section. We will discuss
it very briefly. The optimization problem for the action functional now becomes

min

∫ T

0

F (x, x′, t)dt, x(0) = x0,

subject to the constraints x(0) = x0, x(t) < U(t) for 0 ≤ t < T, and x(T ) = U(T )

with F (x, x′, t) =
1

2σ2
(x′ − µx)

2
, U(t) = u0e

αt, 0 < x0 < u0.
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The necessary conditions for the minimum are

Euler-Lagrange Equation: Fx −
d

dt
Fx′ = 0, (2.62)

Boundary Conditions: x(0) = x0, x(T ) = U(T ), (2.63)

Transversality Condition: F + (U ′ − x′)Fx′ = 0 at T. (2.64)

Proof. Again we first obtain the optimal solution without taking into account the inequality
path constraint x(t) < U(t) for 0 < t < T . The solution method is the same as in section
2.3.1. In particular, the Euler-Lagrange equation again gives

x′′(t) = µ2x(t) (2.65)

and the optimal path is again of the form

x(t) = C1e
µt + C2e

−µt. (2.66)

The transversality condition (2.64), together with (2.65), gives

µ

α
C1e

µT = u0e
αT . (2.67)

Together with the boundary conditions C1 + C2 = x0, C1 e
µT + C2 e

−µT , this gives

C1 =
x0e
−µT(

µ
α
− 1
)
eµT + e−µT

, C2 =
x0

(
µ
α
− 1
)
eµT(

µ
α
− 1
)
eµT + e−µT

. (2.68)

and the optimal hitting time is given by the unique solution of(
α

µ
− 1

)
e(µ+α)T − α

µ
e(α−µ)T +

x0

u0

= 0. (2.69)

To establish that (2.69) has a unique solution define the function φ : [0,∞)→ R by

φ(t) :=

(
α

µ
− 1

)
e(µ+α)t − α

µ
e(α−µ)t +

x0

u0

. (2.70)

It holds that φ(0) = x0
u0
− 1 < 0 and

φ′(t) =
α− µ
α

et(µ+α)
(
µ+ α(1− e−2µt)

)
> 0 for all t ≥ 0.

Thus, φ is a strictly increasing function for which φ(t) → +∞ when t → ∞. Hence the
equation φ(t) = 0 has a unique solution, as claimed above. From (2.66) and (2.68), the
critical path is

x(t) = x0

e−µ(T−t) −
(
1− µ

α

)
eµ(T−t)

e−µT −
(
1− µ

α

)
eµT

. (2.71)
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Consider the function ψ(t) := e−µt −
(
1− µ

α

)
eµt, t ≥ 0. ψ(0) = µ

α
> 0 and it is easy to see

that ψ(t) is decreasing and goes to −∞ as t → ∞. There is therefore a unique root t0 of
the equation ψ(t) = 0 which is given by t0 = 1

2µ
log α

α−µ and ψ(t) > 0 for t ∈ [0, t0). We

next note that φ(t0) = eα−µ
(

(α
µ
− 1)e2µt0 − α

µ

)
+ x0

u0
= x0

u0
> 0. This then shows, in view of

the properties of φ (defined in (2.70)) that T < t0 and therefore that both ψ(t) > 0 and
ψ(T − t) > 0 when t ∈ [0, T ]. This establishes that x(t) defined in (2.71) is positive and,
because of (2.65) also convex for t ∈ [0, T ].

Therefore there are precisely two intersection points between the optimal path x(t)
and the convex curve u0e

αt. (Generally speaking there could be a single point of contact,
assuming the two curves to be tangent to each other, we will see however that this is not
the case.) It remains to show that

x′(T ) > u0αe
αT (2.72)

Using (2.71), (2.67), and (2.68) the above inequality is equivalent to

x0µ
2− µ

α

e−µT −
(
1− µ

α

)
eµT

>
x0µ

e−µT −
(
1− µ

α

)
eµT

which in turn is equivalent to α > µ which holds by assumption. Therefore the critical
path x(t) satisfies the inequality x(t) < U(t) as well, for all t ∈ [0, T ).

The corresponding value of the rate function is

I =
x2

0µ

σ2

1− e−2µT(
1 + α

µ−α e
−2µT

)2 . (2.73)

and hence, on a practical note, the probability that the OU process reaches the upper
boundary satisfies approximately

logP (sup
t≥0

Xt − u0e
αt > 0) ≈ −I.

The quality of this approximation improves as σ becomes smaller. In fact the exact state-
ment would be

lim
σ→0

σ2 logP(sup
t≥0

Xt − u0e
αt > 0) = x2

0µ
1− e−2µT(

1 + α
µ−α e

−2µT
)2 .

Note in particular that the value of T does not depend on σ as is clear from (2.69). Equation
(2.73) gives the value of I in terms of T which is in terms determined by (2.69). Alternative
expressions for the rate I, using (2.69) are, of course, possible. For instance,

I =
µ

σ2

(
u0e

(α−µ)T − x0

)2

1− e−2µT
=

µ

σ2
u2

0

(
1− µ

α

)2

e2αT
(
e2µT − 1

)
. (2.74)
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In Figures 2.9, 2.10, we consider the OU process dXt = Xt + dWt, with X0 = x0, (with
the value of the parameters µ = 1, σ = 1) and the lower and upper bounds v(t) = 0.5e0.5t,
u(t) = 2e1.3t. (Thus α = 1.3, u0 = 2, β = 0.5 and v0 = 0.5.) In Figure 2.8 the optimal
value of T that corresponds to the solution of the optimization problems of sections 2.3.1
and 2.3.2 (equations (2.56) and (2.69)).

2.4 Ornstein-Uhlenbeck with a general linear drift

Here we consider the Ornstein-Uhlenbeck process with a more general drift. This is im-
portant since it arises as a diffusion approximation in the risk models with interest rates
considered in chapter 1. Consider the SDE

dXt = (µXt + r)dt+ σdWt, X0 = x0.

The upper limit is U(t) = u0e
αt. We assume that u0 > x0 and µ < α. In the determin-

istic limit, when σ → 0, the solution X0 satisfies the deterministic Differential Equation
d
dt
X0(t) = µX0(t) + r which has the solution X0(t) = x0e

µt + r
µ
(eµt − 1). To ensure that

we remain in range of applicability of Large Deviation results we will need to ensure that
the deterministic solution remains strictly below the upper bound, U(t) for all t ≥ 0. Let

φ(t) := u0e
αt −

(
x0 +

r

µ

)
eµt +

r

µ
. (2.75)

Then we must have
inf
t≥0

φ(t) > 0. (2.76)

We will make the additional assumption that

r < u0(α− µ). (2.77)

This assumption ensures that (2.76) holds. Indeed, φ(0) = u0 − x0 > 0 and φ′(t) =
eµt
[
u0αe

(α−µ)t − x0µ− r
]
. Then,

u0αe
(α−µ)t − x0µ− r ≥ u0α− x0µ− r > u0α− x0α− r > 0

and hence (2.76) holds.

The action functional is
1

2σ2

∫ T

0

(x′ − µx− r)2
du.

The Euler-Lagrange differential equation Fx − d
dt
Fx′ = 0 reduces to

x′′ − µ2x− µr = 0.
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Fig. 2.9: The system under consideration is an OU process with µ = 1, σ = 1 and initial position
x0. The red line is the “optimal hitting time” for the upper curve u0e

αt with u0 = 2,
α = 1.3, i.e. the solution of (2.69). Note that this optimal time decreases to zero as x0

increases to u0 = 2. Respectively, the blue line is the corresponding ”optimal hitting
time” for the lower curve v0e

βt, β = 0.5, v0 = 0.5, i.e. the solution of (2.56). In this case
the optimal time increases as the distance of x0 from v0 increases.
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Fig. 2.10: The OU process and the upper and lower curves are as in (2.9). The red line is a plot of
the optimal rate I for hitting the upper curve in the infinite horizon problem given by
(2.73). Correspondingly, the blue line gives the plot of the optimal rate for hitting the
lower curve, given by (2.57). The point of intersection of the two curves corresponds
to the initial condition x0 for which the exponential rate for the probability of hitting
the upper curve is equal to that for the lower curve.
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Its general solution is

x(t) = C1e
µt + C2e

−µt − r

µ
. (2.78)

The boundary conditions are

x0 = C1 + C2 −
r

µ
(2.79)

u0e
αT = C1e

µT + C2e
−µT − r

µ
. (2.80)

The transversality condition that must be satisfied by a critical path meeting the curve
U(t) := u0e

αt at T is

F + (U ′(T )− x′(T ))Fx′ = 0 or (x′ − r − µx)
(
−x′ − r − µx+ 2u0e

αT
)

= 0

which, using (2.78), reduces to

C2

(
u0αe

αT − µC1e
µT
)

= 0. (2.81)

The above equation leads to the examination of two cases:

Case 1. C2 = 0. Using this value in (2.79), (2.80), and eliminating C1 among them gives

u0e
αT −

(
x0 +

r

µ

)
eµT +

r

µ
= 0. (2.82)

This equation corresponds to the requirement φ(T ) = 0 for the function defined in (2.75)
which is impossible. Hence C2 = 0 is impossible.

Case 2. u0αe
αT − µC1e

µT = 0. This, together with (2.80) gives

u0

(
1− α

µ

)
eαT = C2e

−µT − r

µ
. (2.83)

Using this, (2.79), (2.80), give

C1 + C2 = x0 +
r

µ
(2.84)

C1e
µT + C2e

−µT = u0e
αT +

r

µ
. (2.85)

The above system has the solution

C1 =
e−µT

(
x0 + r

µ

)
−
(
u0e

αT + r
µ

)
e−µT − eµT

, C2 =
u0e

αT + r
µ
− eµT

(
x0 + r

µ

)
e−µT − eµT

.
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Using this, (2.83) reduces to

u0

(
α

µ
− 1

)
e(α+µ)T − u0

α

µ
e(α−µ)T − r

µ
eµT + x0 +

r

µ
= 0. (2.86)

Under Assumption (2.77) i.e. if the drift term r is either negative or, if positive, not too
large the above equation has a unique solution which determines T .

Define

f(t) = u0

(
α

µ
− 1

)
et(α+µ) − u0

α

µ
e(α−µ)t − r

µ
eµt + x0 +

r

µ

f(0) = x0 − u0 < 0.

Also limt→∞ f(t) = +∞.

f ′(t) = (α + µ)u0

(
α

µ
− 1

)
et(α+µ) − u0

α

µ
(α− µ)e(α−µ)t − reµt.

f ′(0) = u0(α− µ)− r.

Under the assumption f ′(0) > 0. We will show that the condition implies f ′(t) > 0 for all
t > 0.

e−µtf ′(t) =: g(t) = (α + µ)u0

(
α

µ
− 1

)
eαt − u0

α

µ
(α− µ)e(α−2µ)t − r

g(0) = f ′(0) = u0(α− µ)− r > 0.

g′(t) =
α

µ
eαt(α− µ)u0

(
α + µ− (α− 2µ)e−2µt

)
> 0 for all t ≥ 0.

This implies the uniqueness of the solution of (2.86).

Then

x′(T ) = µ
−2(x0 + r

µ
) +

(
u0e

αT + r
µ

) (
eµT + e−µT

)
eµT − e−µT

. (2.87)

The condition for this solution to satisfy the inequality constraints as well is

x′(T ) > u0αe
αT .

This is written as

µ

(
u0e

αT + r
µ

) (
eµT + e−µT

)
− 2(x0 + r

µ
)

eµT − e−µT
> αu0e

αT .

This is equivalent to

r

µ

(
eµT + e−µT

)
+u0e

T (α−µ)−2(x0+
r

µ
) > u0e

αT

[(
α

µ
− 1

)
eµT − α

µ
e−µT

]
=

r

µ
(eµT−1)−x0
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the last equation following from (2.86). Hence

r

µ
e−µT + u0e

(α−µ)T > x0 +
r

µ
.

This inequality however is true because it is equivalent to φ(T ) > 0 for the function φ
defined in (2.75), which is true.

The optimal path is in this case

x(t) =

(
x0 + r

µ

)
sinh(µ(T − t)) +

(
u0e

αT + r
µ

)
sinh(µt)

sinh(µT )
− r

µ
.

The optimal rate can be obtained from the fact that x′(t)− µx(t)− r = 2C2e
µt and hence

I =
µ

σ2

∫ T

0

4C2
2e
µtdt =

µ

σ2

(
u0e

(α−µ)T − r
µ

(
1− e−µT

)
− x0

)2

1− e−2µT
.

Note, of course, that when r → 0 the above reduces to the value of I given in (2.74).

2.5 A Ruin Problem Involving Two Independent OU Processes

Here we generalize the problem examined in the previous section. The lower (or upper)
deterministic exponential boundary now is also considered to be stochastic - in fact another,
independent, OU process. We may thus study the following pair of SDE’s

dXt = αXtdt+ σdWt, X0 = x0 (2.88)

dYt = βYtdt+ bdBt, Y0 = y0. (2.89)

where β < α and y0 < x0. As a result of these inequalities, in the absence of noise,
(σ = b = 0) we would have Yt < Xt for all t. The presence of noise may cause the two
curves to meet however. Again, an exact analysis does not give results in closed form and
we obtain low noise logarithmic asymptotics in the Wentzell-Freidlin framework. Using
again Theorem 5.6.7 of [3, p. 214] we obtain a two dimensional version of (2.12) for the
action functional to be minimized:

I =

∫ T

0

F (x, x′, y, y′)dt, F =
1

2

[
1

σ2
(x′ − αx)2 +

1

b2
(y′ − βy)2

]
, (2.90)

The boundary conditions x(0) = x0, y(0) = y0, and x(T ) = y(T ).

We will again tackle the infinite horizon problem directly and solve the moving boundary
variational problem using the appropriate transversality conditions. Thus the first order



2. Low Noise Asymptotics for the Ornstein-Uhlenbeck Process 40

necessary conditions for an extremum are

Fx −
d

dt
Fx′ = 0 (2.91)

Fy −
d

dt
Fy′ = 0 (2.92)

x(T ) = y(T ) (2.93)

Fx′ + Fy′ = 0 at T, (2.94)

F − x′Fx′ − y′Fy′ = 0 at T. (2.95)

We note that

Fx = − α

σ2
(x′ − αx), Fy = − β

b2
(y′ − βy), Fx′ =

1

σ2
(x′ − αx), Fy′ =

1

b2
(y′ − βy).

The Euler-Lagrange equations give

x′′ − α2x = 0 and y′′ − β2y = 0.

Thus,

x(t) = C1e
αt + C2e

−αt, y(t) = C3e
βt + C4e

−βt

with boundary conditions

C1 + C2 = x0, C3 + C4 = y0, and C1e
αT + C2e

−αT0 = C3e
βT + C4e

−βT . (2.96)

Also

x′(T ) = αC1e
αT − αC2e

−αT , x′(T )− αx(T ) = −2αC2e
−αT , (2.97)

y′(T ) = βC3e
βT − βC4e

−βT , y′(T )− βy(T ) = −2βC4e
−βT . (2.98)

The first transversality condition is Fx′ + Fy′ = 0 or

1

σ2
(x′(T )− αx(T )) +

1

b2
(y′(T )− βy(T )) = 0 (2.99)

or
α

σ2
C2e

−αT +
β

b2
C4e

−βT = 0. (2.100)

The second transversality condition:

x′Fx′ + y′Fy′ = (x′ − αx)Fx′ + (y′ − βy)Fy′ + αxFx′ + βyFy′ = 2F + αxFx′ + βyFy′

Then

x′Fx′ + y′Fy′ − F = F + αxFx′ + βyFy′

=
1

2

[
1

σ2
(x′ − αx)2 +

1

b2
(y′ − βy)2

]
+
αx

σ2
(x′ − αx) +

ay

b2
(y′ − βy)

=
1

2σ2
(x′ − αx)(x′ + αx) +

1

2b2
(y′ − βy)(y′ + βy) = 0.



2. Low Noise Asymptotics for the Ornstein-Uhlenbeck Process 41

The above, in view of (2.99), becomes

(x′(T )− αx(T )) (x′(T ) + αx(T )− y′(T )− βy(T )) = 0.

If the first factor is zero then, in view of (2.99), we obtain

x′(T )− αx(T ) = 0, y′(T )− βy(T ) = 0.

In view of the fact that x′(T ) − αx(T ) = −2αC2e
−αT this translates into C2 = 0 and

similarly y′(T ) − βy(T ) = −2βC4e
−βT = 0 implies C4 = 0. Hence x(t) = x0e

αT , y(t) =
y0e

βT , and x(T ) = y(T ) implies that x0e
αT = y0e

βT or e(α−β)T = y0
x0

. Since α − β > 0 and
y0/x0 < 1 it is impossible to find T > 0 which satisfies this last equation.

The alternative solution is

x′(T ) + αx(T ) = y′(T ) + βy(T ). (2.101)

Note that
x′(T ) + αx(T ) = 2αC1e

αT , y′(T ) + βy(T ) = 2βC3e
βT

and hence (2.101) gives
αC1e

αT = βC3e
βT . (2.102)

Determination of the optimal path. Displays (2.96), (2.100), and (2.102) provide the fol-
lowing 5 equations to determine the 5 unknown quantities, Ci, i = 1, . . . , 4, and T :

C1 + C2 = x0, C3 + C4 = y0

C1e
αT + C2e

−αT = C3e
βT + C4e

−βT

C3 =
α

β
e(α−β)T C1, C4 = −α

β

b2

σ2
e−(α−β)T C2

or

C1 + C2 = x0 (2.103)

α

β
e(α−β)T C1 −

α

β

b2

σ2
e−(α−β)T C2 = y0 (2.104)

C1e
αT + C2e

−αT =
α

β
eαT C1 −

α

β

b2

σ2
e−αT C2 (2.105)

C3 =
α

β
e(α−β)T C1 (2.106)

C4 = −α
β

b2

σ2
e−(α−β)T C2 (2.107)

From the above we may obtain the values of Ci, i = 1, . . . , 4 in terms of T :

C1 = x0

(
1 + α

β
b2

σ2

)
e−αT(

1 + α
β
b2

σ2

)
e−αT +

(
α
β
− 1
)
eαT

, C2 = x0

(
α
β
− 1
)
eαT(

1 + α
β
b2

σ2

)
e−αT +

(
α
β
− 1
)
eαT

.

(2.108)
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and

C3 = y0

(
1 + β

α
σ2

b2

)
e−βT(

1 + β
α
σ2

b2

)
e−βT +

(
β
α
− 1
)
eβT

, C4 = y0

(
β
α
− 1
)
eβT(

1 + β
α
σ2

b2

)
e−βT +

(
β
α
− 1
)
eβT

.

(2.109)
From these we obtain the following expression for the critical path

x(t) = x0

(
1 + α

β
b2

σ2

)
eα(t−T ) +

(
α
β
− 1
)
eα(T−t)(

1 + α
β
b2

σ2

)
e−αT +

(
α
β
− 1
)
eαT

(2.110)

y(t) = y0

(
1 + β

α
σ2

b2

)
eβ(t−T ) +

(
β
α
− 1
)
eβ(T−t)(

1 + β
α
σ2

b2

)
e−βT +

(
β
α
− 1
)
eβT

(2.111)

Of course, there remains the task to determine the optimal meeting time T . From the
above, when t = T we have

x(T ) = x0
α(b2 + σ2)

(α− β)σ2eαT + (βσ2 + αb2)e−αT
,

y(T ) = y0
β(b2 + σ2)

(β − α)b2eβT + (βσ2 + αb2)e−βT
.

At the meeting time T , x(T ) = y(T ) and therefore

x0α
[
(β − α)b2eβT + (βσ2 + αb2)e−βT

]
= y0β

[
(α− β)σ2eαT + (βσ2 + αb2)e−αT

]
(2.112)

Determination of the meeting time T . We will show that the above equation determines
uniquely T . To this end, define the function

f(t) := (α− β)
[
y0βσ

2eαt + x0αb
2eβt
]

+ (βσ2 + αb2)
[
y0βe

−αt − x0αe
−βt] , t ≥ 0.

It holds that

f(0) = (α− β)
[
y0βσ

2 + x0αb
2
]

+ (βσ2 + αb2) [y0β − x0α]

= αβ(σ2 + b2)(y0β − x0α) < 0

and also limt→∞ f(t) = +∞. Furthermore

f ′(t) = (α− β)αβ
[
y0σ

2eαt + x0b
2eβt
]

+ (βσ2 + αb2)αβ
[
−y0e

−αt + x0e
−βt]

Clearly f ′(t) > 0 for all t ≥ 0 since
[
−y0e

−αt + x0e
−βt] = e−αt

[
−y0 + x0e

(α−β)t
]
> 0

because α > β and x0 > y0.
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Determination of the rate I. Taking into account that x′(t) − αx(t) = −2αC2e
−αt and

similarly y′(t)− βy(t) = −2βC4e
−βt the rate function becomes

I =
1

2σ2

∫ T

0

4α2C2
2e
−2αtdt+

1

2b2

∫ T

0

4β2C2
4e
−2βtdt =

αC2
2

σ2

(
1− e−2αT

)
+
βC2

4

b2

(
1− e−2βT

)
=

α
σ2

(
1− e−2αT

)
x2

0

(
α
β
− 1
)2

e2αT[(
1 + α

β
b2

σ2

)
e−αT +

(
α
β
− 1
)
eαT
]2 +

β
b2

(
1− e−2βT

)
y2

0

(
β
α
− 1
)2
e2βT[(

1 + β
α
σ2

b2

)
e−βT +

(
β
α
− 1
)
eβT
]2

or equivalently

I =
α(α− β)2σ2x2

0

(
e2αT − 1

)
[(α− β)σ2eαT + (βσ2 + αb2)e−αT ]2

+
βy2

0b
2
(
e2βT − 1

)
(α− β)2

[(αb2 + βσ2) e−βT + (β − α) b2 eβT ]2
. (2.113)

In particular, when b = 0 and α = µ then the lower OU process becomes a deterministic
lower bound and (2.113) reduces indeed to (2.57), as it should.

Again, as in the proof of Theorem 4 we will show that the solution obtained corresponds
to a global minimum using the fact that F : R4 → R is convex and appealing to Theorem
3.16 [2, p.45]. To establish the convexity of F (x, x′, y, y′) := 1

2σ2 (x′ − αx)2 + 1
2b2

(y′ − βy)2

we note that, for any (x0, x
′
0, y0, y

′
0) ∈ R4,

F (x, x′, y, y′)−F (x0, x
′
0, y0, y

′
0) ≥ F 0

x (x−x0)+F 0
x′ (x

′−x′0)+F 0
y (y−y0)+F 0

y′ (y
′−y′0) (2.114)

where F 0
x is shorthand for Fx(x0, x

′
0, y0, y

′
0) and similarly for the other three such quantities.

The above inequality is equivalent to

1

2σ2
(x′ − αx)

2
+

1

2b2
(x′ − βx)

2 − 1

2σ2
(x′0 − αx0)

2 − 1

2b2
(x′0 − βx0)

2

≥ − α

σ2
(x′0 − αx0) (x− x0) +

1

σ2
(x′0 − αx0) (x′ − x′0)

− β
b2

(y′0 − βy0) (y − y0) +
1

b2
(y′0 − βy0) (y′ − y′0).

Elementary algebraic manipulations can show the above inequality to be true and therefore
establish inequality (2.114) which implies the convexity of F .

We may thus summarize the above long derivation as follows.

Theorem 5. Consider the pair of Ornstein-Uhlenbeck SDE’s depending on a parameter
ε > 0

dXε
t = αXε

tdt+
√
εσdWt, Xε

0 = x0,

dY ε
t = βY ε

t dt+
√
εbdBt, Y ε

0 = y0.
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Assume that 0 < y0 < x0 and 0 < β < α. Let T ε := inf{t ≥ 0 : Xε
t = Y ε

t } (with the
standard convention that T ε = +∞ if the set is empty). Then

lim
ε→0

ε logP (T ε <∞) = −I

where I is given by (2.113). If this rare event occurs then the meeting path followed by the
two processes, is given by (2.110), (2.111), and the meeting time T is the unique solution
of (2.112).



3. GEOMETRIC BROWNIAN MOTION

In this chapter an analysis of the problems we examined for the Ornstein-Uhlenbeck process
is repeated for the Geometric Brownian motion. The techniques used and approach followed
are analogous to that of the previous chapter. The reason for treating the Geometric
Brownian motion in equal detail is, on one hand its great importance in applications but
also the fact that in this case an analytic solution for the types of ruin problems we consider
can be obtained. As a result, the accuracy and merit of the large deviation estimates we
obtain may be gauged. This is carried out in this chapter.

3.1 The Finite Horizon Problem

Suppose that {Xt; t ≥ 0} is a Geometric Brownian motion satisfying the Stochastic Differ-
ential Equation

dXt = µXtdt+ σXtdWt, X0 = x0 w.p. 1. (3.1)

As is well known this has the closed form solution

Xt = x0e
(µ− 1

2
σ2)t+σWt . (3.2)

Let u0 > x0 and α > µ. Then the event {Xt ≥ u0e
at for some t ≤ T} is an event

whose probability goes to 0 as σ → 0. Our goal is to obtain low variance Wentzell-
Freidlin asymptotics for this finite horizon hitting probability. For reasons of notational
compatibility we introduce the parameterized process

dXε
t = µXε

tdt+
√
εσXε

tdWt, Xε
0 = x0 w.p. 1. (3.3)

Theorem 6. For the parameterized process {Xε
t },

lim
ε→0

ε logP
(

sup
0≤t≤T

(
Xε
t − u0e

αt
)
≥ 0

)
= −I(T ). (3.4)

The rate function I(T ) is given by

I(T ) := min
0≤t≤T

J∗(t) (3.5)
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where J∗(t) is solution to the minimization problem

J∗(t) = min
{
J(x, t) : x ∈ H, x(0) = x0, x(t) = u0e

αt, x(s) < u0e
αs, s ∈ [0, t)

}
. (3.6)

where H =
{
h : [0, t]→ R : h(s) = h(0) +

∫ s
0
φ(u)du , s ∈ [0, t], φ ∈ L2[0, t]

}
and J(x, t) is

the action functional

J(x, t) :=
1

2

∫ t

0

(
x′(u)− µx(u)

σx(u)

)2

du =
1

2σ2

∫ t

0

((log x(u))′ − µ)
2
du. (3.7)

This theorem is of course a consequence of the Wentzell-Freidlin theory. The minimiz-
ing path x(t) can be easily obtained in this case either using the full machinery of the
Euler-Lagrange differential equations, or simply by observing that the functional J(x, t) is
minimized when (log x)′ is zero or equivalently when log x(s) = c for s ∈ [0, t]. This in turn
implies that x(s) = Kect with x(0) = x0 = K and x(t) = x0e

ct = u0e
αt whence we conclude

that the function that minimizes the action functional under the boundary conditions is

x(t) = x0e
ct where c = α +

1

t
log

u0

x0

. (3.8)

It is easy to see that the above path satisfies the constraint x(s) < u0e
αs for s ∈ [0, t). The

corresponding minimum action is then

J∗(t) =
t

2σ2

(
α− µ+

1

t
log

u0

x0

)2

or

J∗(t) = t
(α− µ)2

2σ2
+ 2

(α− µ) log u0
x0

2σ2
+

1

t

(log u0
x0

)2

2σ2
.

The value of t that minimizes the above expression is

tmin =
log u0

x0

α− µ
and the corresponding minimum is

2(α− µ) log u0
x0

σ2
.

Thus the rate function is

I(T ) =


2(α−µ) log

u0
x0

σ2 if tmin < T

T
2σ2

(
α− µ+ 1

T
log u0

x0

)2

if tmin ≥ T

(3.9)

and, based on Theorem 6 we conclude that

− logP
(

sup
0≤t≤T

(Xt − u0e
at) ≥ 0

)
≈ I(T ). (3.10)

The above approximation is satisfactory provided that σ is sufficiently small. We assess
its quality in the next subsection taking advantage of the fact that an exact solution also
exists in this situation.
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3.2 The exact solution

Consider the GBM Xt = x0e
(µ− 1

2
σ2)t+σWt and the corresponding finite horizon hitting prob-

ability

pT := P
(

sup
0≤t≤T

(Xt − u0e
at) ≥ 0

)
where, as before α > µ and 0 < x0 < u0. Since the event (Xt − u0e

αt) ≥ 0 is the same as
Xte

−αt − u0 ≥ 0, we will determine, equivalently the probability

pT = P
(

sup
0≤t≤T

x0e
(µ− 1

2
σ2−a)t+σWt ≥ u0

)
= P

(
sup

0≤t≤T
(µ− 1

2
σ2 − α)t+ σWt ≥ log

u0

x0

)

= 1− Φ

 log
(
u0
x0

)
− (µ− α− 1

2
σ2)T

σ
√
T


+e

2
σ2

(µ−α− 1
2
σ2) log

(
u0
x0

)
Φ

− log
(
u0
x0

)
− (µ− α− 1

2
σ2)T

σ
√
T

 (3.11)

Here, Φ(x) :=
∫ x
−∞

1√
2π
e−

1
2
u2 du, the standard normal distribution function. The above

exact formula for pT allows us to evaluate the accuracy of the approximation (3.10). Figure
3.2 shows again −σ2 log pT together with the Wentzell-Freidlin asymptotic result when
σ → 0. One may see that approximation (3.10) may be considered satisfactory, provided
that σ is small.

3.3 The Infinite Horizon Problem

The exact value of the infinite horizon hitting probability can be obtained from (3.11) by
letting T →∞. This gives

lim
T→∞

pT =: p∞ = exp

(
2

σ2
(µ− 1

2
σ2 − α) log

u0

x0

)
.

Returning to the parameterized version of the problem, concerning the family of processes
{Xε

t } defined in (3.3), the corresponding infinite horizon hitting probability is

pε∞ = exp

(
2

εσ2
(µ− 1

2
εσ2 − α) log

u0

x0

)
and therefore

lim
ε→0

ε log pε∞ = − 2

σ2
(α− µ) log

u0

x0

. (3.12)

This, as we will see, is the same as the result obtained from Wentzell-Freidlin theory.
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Theorem 7. For the parameterized process {Xε
t },

lim
ε→0

ε logP
(

sup
t≥0

(
Xε
t − u0e

αt
)
≥ 0

)
= −I(∞) (3.13)

where the rate function I(∞) is the solution to the infinite horizon variational problem

inf
{
J(x, T ) : x ∈ H, x(s) < u0e

αs, 0 ≤ s < T, x(0) = x0, x(T ) = u0e
αT
}

(3.14)

where J(x, t) := 1
2

∫ t
0

(
(log x(u))′ − µ

)2
du and H is again the Cameron-Martin space of

absolutely continuous functions with square-integrable derivatives. In fact, the rate function
for the infinite horizon problem is

I(∞) = 2
α− µ
σ2

log
u0

x0

, (3.15)

the optimal time horizon is

T =
log u0

x0

α− µ
, (3.16)

and the optimal path that achives the minimum is

x∗(t) = x0e
2α−µt, t ∈ [0, T ]. (3.17)

Figure 3.1 provides an illustration of the above result.

The optimization problem of Theorem 7 can of course be solved using the finite horizon
analysis as a basis. However we prefer to use standard techniques of the calculus of varia-
tions for infinite horizon problems with the final value of the path constrained to lie on a
prescribed curve using the transversality conditions

min

∫ T

0

F (x, x′, t)dt, with boundary conditions x(0) = x0, and x(T ) = u(T )

with F (x, x′, t) =
1

2σ2

(
x′

x
− µ

)2

. (3.18)

In the above u(t) = u0e
αt is a given boundary curve with x0 < u0 and x is a C1[0,∞)

function which minimizes the “action” integral given the boundary conditions in (3.18).
The conditions for a minimum is

Fx −
d

dt
Fx′ = 0 (3.19)

x(0) = x0 and x(T ) = u(T ) (3.20)

F + (u′ − x′)Fx′ = 0 at T. (3.21)
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Fig. 3.1: Simulated sample path for α = 1, x0 = 1, u0 = 2 and σ = 0.15. The red curve is the
exponential target curve u0e

αt. The green curve is optimal path predicted by Large
Deviations theory and given by x∗(t) = x0e

(2α−µ)tt. Both a typical path and an extreme
path of the Geometric Brownian motion are displayed. The extreme path was generated
by simulating a large number of paths (≈ 105) and selecting one that hit the target, i.e.
reached the red curve. As expected it follows closely the green curve. The smaller the
variance the smaller the probability of hitting the target and the closer the agreement
with the theoretical path.

The first equation is the Euler-Lagrange DE of the Calculus of Variations. Equation (3.21)
is known as the transversality condition resulting from the fact that the end time T is not
fixed but is itself to be chosen optimally, under the restriction that x(T ) = u(T ). Then

Fx = µx′

σ2x2
− (x′)2

σ2x3
, Fx′ = x′

σ2x2
− µ

σ2x
, and d

dt
Fx′ = x′′

σ2x2
−2 (x′)2

σ2x3
+µ x′

σ2x2
and the Euler-Lagrange

equation (3.19) becomes
2

x3

(
(x′)2 − x′′x

)
= 0

or equivalently

x′

x
=
x′′

x′
⇔ (log x′)

′ − (log x)′ = 0 ⇔ log x′ − log x = c1 ⇔
x′

x
= γ.

Hence
x(t) = x0e

γt. (3.22)
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Fig. 3.2: Logarithm of Hitting Probability and Comparison with the Wentzell-Freidlin low vari-
ance limit
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The transversality condition (3.21) reduces to(
x′(T )

x(T )
− µ

) (
x′(T )

x(T )
− µ+

(
u0αe

αT − x′(T )
) 2

x(T )

)
= 0

and taking into account (3.22) we obtain either µ = γ or

γ − µ+ 2α
u0

x0

e(α−γ)T − 2γ = 0

or
2α
u0

x0

e(α−γ)T = µ+ γ. (3.23)

Equation (3.20) gives x0e
γT = u0e

αT and therefore

e(α−γ)T =
x0

u0

. (3.24)

From (3.23) and (3.24) we have
γ = 2α− µ (3.25)

Once the variational problem for a fixed time horizon is solved we may then find the
value T of the “most likely meeting point” for the two curves by optimizing over T . Al-
ternatively we may use (and have done so) the transversality conditions approach of the
Calculus of Variations. The solution of the variational process that minimizes the action
functional I and satisfies the boundary conditions yields the optimal path is xt = x0e

(2α−µ)t

and the rate function

I = 2
α− µ
σ2

log
u0

x0

and T =
log u0

x0

α− µ
.

It is worth pointing out that, in this case, a closed form analytic expression can also be
obtained. The solution of the SDE is Xε

t = x0e
(µ− 1

2
εσ2)t+

√
εσWt and one may show that

lim
ε→0

ε logP

(
sup
t≥0

(Xε
t − u0e

αt) ≥ 0

)
= − 2

σ2
(α− µ) log

u0

x0

.

The exact solution agrees with the Wentzell-Freidlin asymptotic result. In Figure 3.1 the
extreme path was selected by simulating a large number of paths and picking the largest
among them.
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Fig. 3.3: Probability of hitting the upper boundary as a function of time horizon based on the
exact solution (3.11). Here σ = 0.5, x0 = 1, u0 = 1.3, µ = 1. The function is plotted for
α = 1.1, 2, 2.5, 3, 3.5.

Fig. 3.4: Probability of hitting the upper boundary as a function of time horizon based on the
exact solution (3.11). Here x0 = 1, u0 = 1.3, µ = 1 α = 1.1. The function is plotted for
σ = 0.2, 0.5, 1, 2, 3.
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Fig. 3.5: Probability of hitting the upper boundary as a function of time horizon based on the
exact solution (3.11). Here x0 = 1, α = 1.1, µ = 1 σ = 0.5. The function is plotted for
u0 = 1.3, 2, 2.5, 3, 3.5.

3.4 Two Correlated Geometric Brownian Motions

Suppose that Wt, Vt, are independent standard Brownian motions and ρ ∈ [−1, 1]. Set
Bt = ρWt +

√
1− ρ2 Vt. Then (Wt, Bt) are correlated Brownian motions with correlation

ρ. Consider now the processes

dXt = αXtdt+ σXtdWt, X0 = x0,

dYt = βYtdt+ bYtdBt, Y0 = y0, .

We will assume that α > β and x0 > y0 > 0. Thus, in the absence of noise one would have
Xt > Yy for all t > 0. In the presence of noise however the probability that XT = YT for
some T > 0 is non-zero. The second equation can be written equivalently as

dYt = βYtdt+ ρbYtdWt +
√

1− ρ2bYtdVt.

Heuristically, we have

dWt =
dXt − αXtdt

σXt

and

dVt =
1

bYt
√

1− ρ2

(
dYt − βYtdt− ρbYt

dXt − αXtdt

σXt

)
.

and thus we obtain the following action functional to be minimized:

I =
1

2

∫ T

0

(
x′ − αx
xσ

)2

+
1

1− ρ2

(
y′ − βy
yb

− ρx
′ − αx
xσ

)2

dt (3.26)
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Fig. 3.6: −log Probability of hitting the upper boundary based on the exact solution (3.11). Here
x0 = 1, u0 = 1.3, µ = 1. The upper graph was obtained for σ = 0.05 while the
lower for σ = 0.5. The magenta dotted line gives the value of (the exponent of) the
Wentzell-Freidlin approximation.
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Fig. 3.7: −log Probability of hitting the upper boundary based on the exact solution (3.11). Here
x0 = 1, µ = 1, α = 1.3. The upper graph was obtained for σ = 0.05 while the lower
for σ = 0.5. The magenta dotted line gives the value of (the exponent of) the Wentzell-
Freidlin approximation.
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Fig. 3.8: −log Probability of hitting the upper boundary based on the exact solution (3.11). Here
x0 = 1, u0 = 1.3, µ = 1, α = 1.1. The magenta dotted line gives the value of (the
exponent of) the Wentzell-Freidlin approximation.
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This of course can be justified by appealing to the multidimensional version of (2.12) as we
have already seen. Set

F =
1

2σ2

(
x′

x
− α

)2

+
1

2(1− ρ2)

(
1

b

(
y′

y
− β

)
− ρ

σ

(
x′

x
− α

))2

(3.27)

The conditions for minimum are

Fx −
d

dt
Fx′ = 0 (3.28)

Fy −
d

dt
Fy′ = 0 (3.29)

x(T ) = y(T ) (3.30)

Fx′ + Fy′ = 0 at T, (3.31)

F − x′Fx′ − y′Fy′ = 0 at T. (3.32)

Rewrite (3.27) as

F =
1

2b2σ2(1− ρ2)

[
b2

(
x′

x
− α

)2

+ σ2

(
y′

y
− β

)2

− 2ρbσ

(
x′

x
− α

)(
y′

y
− β

)]
. (3.33)

From the above equation we obtain

Fx =
1

2b2σ2(1− ρ2)

2x′

x2

[
−b2

(
x′

x
− α

)
+ ρbσ

(
y′

y
− β

)]
Fy =

1

2b2σ2(1− ρ2)

2y′

y2

[
−σ2

(
y′

y
− β

)
+ ρbσ

(
x′

x
− α

)]

Fx′ =
1

2b2σ2(1− ρ2)

2

x

[
b2

(
x′

x
− α

)
− ρbσ

(
y′

y
− β

)]
Fy′ =

1

2b2σ2(1− ρ2)

2

y

[
σ2

(
y′

y
− β

)
− ρbσ

(
x′

x
− α

)]

Then (3.28) becomes

x′

x2

[
−b2

(
x′

x
− α

)
+ ρbσ

(
y′

y
− β

)]
+
x′

x2

[
b2

(
x′

x
− α

)
− ρbσ

(
y′

y
− β

)]
+

1

x

[
b2

(
x′′

x
−
(
x′

x

)2
)
− ρbσ

(
y′′

y
−
(
y′

y

)2
)]

= 0
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which, since x > 0, gives
b2(log x)′′ − ρbσ(log y)′′ = 0

Similarly (3.29) gives
σ2(log y)′′ − ρbσ(log x)′′ = 0

These equations together imply that (log x)′′ = (log y)′′ = 0 whence we obtain x′

x
= c1 and

y′

y
= c2 for arbitrary c1, c2 and hence

x(t) = x0e
c1t, y(t) = y0e

c2t. (3.34)

Condition (3.30) gives
x0e

c1T = y0e
c2T . (3.35)

Taking into account that x′

x
= c1 and similarly y′

y
= c2, condition (3.31) gives

1

x0ec1T
[
b2 (c1 − α)− ρbσ (c2 − β)

]
+

1

y0ec2T
[
σ2(c2 − β)− ρbσ(c1 − α)

]
= 0

Setting u1 = c1 − α, u2 = c2 − β, we rewrite the above b2u1 − ρbσu2 + σ2u2 − ρbσu1 = 0.
This gives

u2 = λu1 with λ =
b

σ

ρσ − b
σ − ρb

(3.36)

Finally, from (3.32),

b2u2
1 + σ2u2

2 − 2ρbσu1u2 − 2c1

[
b2u1 − ρbσu2

]
− 2c2

[
σ2u2 − ρbσu1

]
= 0

or
−u2

1

[
b2 + σ2λ2 − 2ρbσλ

]
+ 2u1

[
−αb2 + βρbσ − λβσ2 + λαbσρ

]
= 0.

Besides the solution u1 = 0 which means (c1 = α), we obtain

u1 = − 2

b2 + σ2λ2 − 2ρbσλ

(
αb2 + aλσ2 − ρbσ(a+ λα)

)
.

The denominator can be written as

b2 + σ2λ2 − 2ρbσλ = b2 + σ2

(
ρbσ − b2

σ2 − ρbσ

)2

− 2ρbσ
ρbσ − b2

σ2 − ρbσ

=
b2(1− ρ2)

(σ − ρb)2

[
σ2 + b2 − 2ρbσ

]
(3.37)

The numerator is

αb2 + aλσ2 − ρbσ(a+ λα) = αb2 + aσ2 b

σ

ρσ − b
σ − ρb

− ρbσ
(
a+

b

σ
α
ρσ − b
σ − ρb

)
= (α− β)

σb2(1− ρ2)

σ − ρb
. (3.38)
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Fig. 3.9: Two independent Geometric Brownian Motions.

The above expression simplifies to

u1 = 2(β − α)
σ(σ − ρb)

σ2 + b2 − 2ρbσ
, u2 = 2(β − α)

b(ρσ − b)
σ2 + b2 − 2ρbσ

. (3.39)

From (3.33) and (3.39), together with the definition of u1, u2,

F =
1

2b2σ2(1− ρ2)

[
b2u2

1 + σ2u2
2 − 2ρbσu1u2

]
=

2(β − α)2

σ2 + b2 − 2ρbσ
. (3.40)

Thus, since

T =
1

α− β
log

(
x0

y0

)
,

the optimal rate is

I =
2(α− β) log

(
x0
y0

)
σ2 + b2 − 2ρbσ

. (3.41)
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Exact analysis for two correlated Brownian motions

An exact analysis is again possible here. Suppose

Xε
t = x0e

(α− 1
2
σ2
ε)t+σεWt , Y ε

t = y0e
(β− 1

2
b2ε)t+bεBt ,

are two families of Geometric Brownian Motions, indexed by a positive parameter ε. We
will assume that σε = σ

√
ε and, similarly, bε = b

√
ε. Assuming that α > β and x0 > y0

and that {Wt}, {Bt} are standard Brownian motions with correlation ρ as in section 3.4,
we are interested in obtaining an expression for the probability

P(Tε <∞) where Tε = inf{t > 0 : Y ε
t > Xε

t }. (3.42)

The condition Y ε
t > Xε

t is equivalent to(
α− β +

1

2
(b2
ε − σ2

ε )

)
t+ σεWt − bεBt < log

y0

x0

.

Set log y0
x0

= −u, γε := α−β+ 1
2
(b2
ε −σ2

ε ) and θε :=
√
σ2
ε + b2

ε − 2ρbεσε. If {W̃t} is standard
Brownian motion, then (3.42) becomes

P(Tε <∞) = P
(

inf
t≥0

(γεt+ θεW̃t) < −u
)
. (3.43)

Since α > β, when ε is sufficiently small, γε > 0 regardless of the values of σ and b.
Therefore (see [23]) (3.43) becomes

P(Tε <∞) = e
−u 2γε

θ2ε = e
log

y0
x0

2(α−β)+(b2ε−σ
2
ε )

σ2ε+b
2
ε−2ρbεσε .

It therefore follows that

lim
ε→0

ε logP(Tε <∞) = log
y0

x0

lim
ε→0

2(α− β) + (b2
ε − σ2

ε )

ε−1 (σ2
ε + b2

ε − 2ρbεσε)
= log

y0

x0

2(α− β)

σ2 + b2 − 2ρbσ
.

This result of course agrees with (3.41).



4. MODELS EXHIBITING MORE COMPLEX BEHAVIOR

Here we discuss a number of models examining more complex behavior. First we revisit the
problem of two OU processes with ordered drift constants and initial conditions. However
we now assume that the driving brownian motions are not independent. This introduces
additional difficulties in the solution of the optimization problem. More importantly, how-
ever the existence of the solution requires an additional condition involving the correlation
coefficient between the two brownian motions, ρ. If ρ is too close to 1 then the two pro-
cesses will move essentially in unison and, roughly speaking, the lower process will never
be able to catch up with the upper process.

In section 4.2 we study an OU process with variance that has a general time varying
form and, perhaps surprisingly, we are able to obtain a solution essentially in closed form.

Finally, in section 4.3 we examine the same type of problem in connection to the SDE
dXt = rdt+ σXtdWt as well as the general linear SDE dXt = (r+ µXt)dt+ (b+ σXt)dWt.
While these seem similar to the models already examined in the previous chapters, their
behavior is more complex and the exact solution of the resulting variational problems is
more challenging. In particular, depending on the value of the parameters we may not have
uniqueness of the solution or, in the infinite horizon case a solution may not exist.

4.1 Two Correlated OU Processes

Suppose that Wt, Vt, are independent standard Brownian motions and ρ ∈ [−1, 1]. Set
Bt = ρWt +

√
1− ρ2 Vt. Then (Wt, Bt) are correlated Brownian motions with correlation

ρ. Consider now the processes

dXt = αXtdt+ σdWt,

dYt = βYtdt+ bdBt.

The second equation can be written equivalently as

dYt = βYtdt+ ρbdWt +
√

1− ρ2bdVt

Using the same heuristic derivation as the one that led to (3.26) we have

dWt =
dXt − αXtdt

σ
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and

dVt =
1

b
√

1− ρ2

(
dYt − βYtdt− ρb

dXt − αXtdt

σ

)
.

We thus obtain the following action functional to be minimized

I =
1

2

∫ T

0

(
x′ − αx

σ

)2

+
1

1− ρ2

(
y′ − βy

b
− ρx

′ − µx
σ

)2

dt (4.1)

The conditions for minimum are

Fx −
d

dt
Fx′ = 0 (4.2)

Fy −
d

dt
Fy′ = 0 (4.3)

x(T ) = y(T ) (4.4)

Fx′ + Fy′ = 0 at T, (4.5)

F − x′Fx′ − y′Fy′ = 0 at T. (4.6)

An alternative expression for F is

F =
1

2(1− ρ2)σ2b2

[
b2f 2 + σ2g2 − 2ρbσfg

]
, f := x′ − αx, g := y′ − βy.

Omitting the factor 1
2(1−ρ2)σ2b2

we have

Fx = 2αb2
[
−f + ρ

σ

b
g
]
, Fy = 2βσ2

[
−g + ρ

b

σ
f

]

Fx′ = 2b2
[
f − ρσ

b
g
]
, Fy′ = 2σ2

[
g − ρ b

σ
f

]
d

dt
Fx′ = 2b2

[
f ′ − ρσ

b
g′
]
,

d

dt
Fy′ = 2σ2

[
g′ − ρ b

σ
f ′
]
.

Set

p(t) = f(t)− ρσ
b
g(t), q(t) = g(t)− ρ b

σ
f(t).

Then the Euler-Lagrange equations become

Fx −
d

dt
Fx′ = 0 or p′(t) + αp(t) = 0

Fy −
d

dt
Fy′ = 0 or q′(t) + βq(t) = 0

The condition Fx′ + Fy′ = 0 at T becomes

b2p(T ) + σ2q(T ) = 0 or q(T ) = − b
2

σ2
p(T ). (4.7)
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By the definition of f and g, f(T ) = x′(T )−αx(T ) or x′(T ) = f(T ) +αx(T ) and similarly
y′(T ) = g(T ) + βy(T ). Thus (all expressions are evaluated at T ) taking into account that
x = y

x′Fx′+y
′Fy′ = 2(f+αx)b2p+2(g+βy)σ2q = 2b2p (f + αx− g − βx) = 2b2p (f − g + x(α− β))

F = b2f 2 + σ2g2 − 2ρbσfg = b2

(
f 2 +

σ2

b2
g2 − ρσ

b
fg − ρσ

b
fg

)
= b2f

(
f − ρσ

b
g
)

+ bσg
(σ
b
g − ρf

)
= b2f

(
f − ρσ

b
g
)

+ σ2g

(
g − ρ b

σ
f

)
= b2fp+ σ2gq = b2fp− b2gp = b2p(f − g).

Thus F − x′Fx′ − y′Fy′ = 0 becomes

b2p(f − g) = 2b2p (f − g + x(α− β))

or
p(f − g + 2x(α− β)) = 0.

From the above we obtain two sets of conditions: The first is

p(T ) = q(T ) = 0 or equivalently f(T )−ρσ
b
g(T ) = 0, g(T )−ρ b

σ
f(T ) = 0, or f(T ) = g(T )

or
x′(T )− αx(T ) = 0, y′(T )− βy(T ) = 0. (4.8)

The second is

f − g+ 2x(α−β) = 0, or x′(T )−αx(T )− y′(T ) +βy(T ) +x(T )(α−β) + y(T )(α−β) = 0

(we have used again x(T ) = y(T )). One possible way of expressing this is

x′(T ) + αx(T ) = y′(T ) + βy(T ). (4.9)

The Euler-Lagrange equations give

p(t) = p0e
−αt, q(t) = q0e

−βt. (4.10)

Then

f(t)− ρσ
b
g(t) = p(t)

−ρ b
σ
f(t) + g(t) = q(t)[

1 −ρσ
b

−ρ b
σ

1

] [
f(t)
g(t)

]
=

[
p(t)
q(t)

]
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whence

f(t) =
1

1− ρ2

(
p(t) + ρ

σ

b
q(t)

)
, (4.11)

g(t) =
1

1− ρ2

(
q(t) + ρ

b

σ
p(t)

)
. (4.12)

Since f(t) = x′(t)− αx(t) and g(t) = y′(t)− βy(t),

x(t) = x0e
αt +

∫ t

0

eα(t−s)f(s)ds,

y(t) = y0e
βt +

∫ t

0

eβ(t−s)g(s)ds.

Substituting we have

x(t) = x0e
αt +

eαt

1− ρ2

(
p0

2α
(1− e−2αt) +

ρσ

b

q0

α + β
(1− e−(α+β)t)

)
, (4.13)

y(t) = y0e
βt +

eβt

1− ρ2

(
q0

2β
(1− e−2βt) +

ρb

σ

p0

α + β
(1− e−(α+β)t)

)
. (4.14)

We need to determine the unknown quantities p0, q0, and the meeting time T .

Fx′ + Fy′ = 0 at T gives: q0e
−βT = −

(
b

σ

)2

p0e
−αT . (4.15)

F + x′Fx′ + y′Fy′ = 0 at T gives: f(T )− g(T ) + 2[αx(T )− βy(T )] = 0. (4.16)

From (4.11), (4.12),

f(T ) =
1

1− ρ2

(
p0e
−αT + ρ

σ

b
q0e
−βT
)
, g(T ) =

1

1− ρ2

(
q0e
−βT + ρ

b

σ
p0e
−αT
)
.

and

f(T )− g(T ) =
1

bσ(1− ρ2)

(
p0e
−αT (bσ − ρb2) + q0e

−βT (ρσ2 − bσ)
)
.

From (4.13), (4.14),

αx(T )− βy(T ) = αx0e
αT − βy0e

βT +
1

1− ρ2

(
p0e
−αT e

2αT − 1

2
+
ρσα

b
q0e

αT 1− e−(α+β)T

α + β

)
− 1

1− ρ2

(
q0e
−βT e

2βT − 1

2
+
ρbβ

σ
p0e

βT 1− e−(α+β)T

α + β

)
= x0αe

αT − y0βe
βT

+
1

2(1− ρ2)

(
p0e
−αT (e2αT − 1)− q0e

−βT (e2βT − 1) +
2ρσ

b

e(α+β)T − 1

α + β

(
αq0e

−βT − β
(
b

σ

)2

p0e
−αT

))
= x0αe

αT − y0βe
βT

+
1

2(1− ρ2)

(
p0e
−αT (e2αT − 1)− q0e

−βT (e2βT − 1) +
2ρσ

b
(e(α+β)T − 1)q0e

−βT
)
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or

αx(T )− βy(T ) = x0αe
αT − y0βe

βT

+
1

2(1− ρ2)

(
p0e
−αT (e2αT − 1

)
+ q0e

−βT
(

2ρσ

b

(
e(α+β)T − 1

)
−
(
e2βT − 1

)))
.

Then (4.16) gives

p0e
−αT

(
1− ρ b

σ

)
+ q0e

−βT
(
ρ
σ

b
− 1
)

+ p0e
−αT (e2αT − 1

)
+q0e

−βT
(

2ρσ

b

(
e(α+β)T − 1

)
−
(
e2βT − 1

))
= −2(1− ρ2)

(
x0αe

αT − y0βe
βT
)

p0e
−αT

(
−ρ b

σ
+ e2αT

)
+ q0e

−βT
(
ρ
σ

b
+

2ρσ

b

(
e(α+β)T − 1

)
− e2βT

)
= −2(1− ρ2)

(
x0αe

αT − y0βe
βT
)

[
−ρ b

σ
+ e2αT ρσ

b
+ 2ρσ

b

(
e(α+β)T − 1

)
− e2βT

1
(
σ
b

)2

] [
p0e
−αT

q0e
−βT

]
=

[
−2(1− ρ2)

(
x0αe

αT − y0βe
βT
)

0

]
.

(4.17)

∆ = e2βT +
(σ
b

)2

e2αT − 2ρ
σ

b
e(α+β)T .

p0e
−αT = − 2

∆

(σ
b

)2

(1− ρ2)
(
x0αe

αT − y0βe
βT
)

(4.18)

q0e
−βT =

2

∆
(1− ρ2)

(
x0αe

αT − y0βe
βT
)

(4.19)

x(T ) = x0e
αT +

1

1− ρ2

(
p0e
−αT

2α
(e2αT − 1) +

ρσ

b

q0e
−βT

α + β
(e(α+β)T − 1)

)
, (4.20)

y(T ) = y0e
βT +

1

1− ρ2

(
q0e
−βT

2β
(e2βT − 1) +

ρb

σ

p0e
−αT

α + β
(e(α+β)T − 1)

)
. (4.21)

x(T ) = x0e
αT + 2

x0αe
αT − y0βe

βT

∆

(
−
(σ
b

)2 e2αT − 1

2α
+
ρσ

b

e(α+β)T − 1

α + β

)
, (4.22)

y(T ) = y0e
βT + 2

x0αe
αT − y0βe

βT

∆

(
e2βT − 1

2β
− ρb

σ

(σ
b

)2 e(α+β)T − 1

α + β

)
. (4.23)



4. Models Exhibiting More Complex Behavior 66

(
x0e

αT − y0e
βT
)

∆ =(
x0αe

αT − y0βe
βT
) (
−
(σ
b

)2 e2αT − 1

α
+

2ρσ

b

e(α+β)T − 1

α + β
− e2βT − 1

β
+

2ρb

σ

(σ
b

)2 e(α+β)T − 1

α + β

)

(
x0e

αT − y0e
βT
)

∆ +(
x0αe

αT − y0βe
βT
) (
−
(σ
b

)2 e2αT − 1

α
+

4ρσ

b

e(α+β)T − 1

α + β
− e2βT − 1

β

)
= 0

(
x0e

αT − y0e
βT
) (

e2βT +
(σ
b

)2

e2αT − 2ρ
σ

b
e(α+β)T

)
+

(
x0αe

αT − y0βe
βT
) (
−
(σ
b

)2 e2αT − 1

α
+

4ρσ

b

e(α+β)T − 1

α + β
− e2βT − 1

β

)
= 0

This gives

x0αe
αT

(
b2(β − α)e2βT + 2ρσb

e(α+β)T

α + β
(α− β)β + αb2 + βσ2 − 4ρbσ

αβ

α + β

)
= y0βe

βT

(
σ2(α− β)e2αT + 2ρσb

e(α+β)T

α + β
(β − α)α + αb2 + βσ2 − 4ρbσ

αβ

α + β

)

x0α

(
b2(β − α)eβT + 2ρσb

eαT

α + β
(α− β)β +

(
αb2 + βσ2 − 4ρbσ

αβ

α + β

)
e−βT

)
= y0β

(
σ2(α− β)eαT + 2ρσb

eβT

α + β
(β − α)α +

(
αb2 + βσ2 − 4ρbσ

αβ

α + β

)
e−αT

)
To determine the value or values of T that satisfy the above equation we need to examine
the function f : (0,∞)→ R defined below and determine its roots:

f(t) = eβtα(α− β)b2

(
−x0 + y02ρ

σ

b

β

α + β

)
+ eαtβ(α− β)σ2

(
−y0 + x02ρ

b

σ

α

α + β

)
+

(
αb2 + βσ2 − 4ρbσ

αβ

α + β

)(
x0αe

−βt − y0βe
−αt) . (4.24)

A moment’s examination reveals that the roots of the equation f(t) = t depend on three
parameters, namely y0/x0 ∈ (0, 1), β/α ∈ (0, 1), and σ2/b2 ∈ (0,∞). In the sequel, to
simplify the problem we will examine the case b = σ.
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The special case b = σ

Let us first examine this special case which will enable us to reach some interesting con-
clusions regarding the effect of the correlation between the two processes. We will examine
the existence of solutions of f(t) = 0 where f is the function defined in (4.24). Here

f(t) = (α− β)σ2

(
αeβt

(
−x0 + 2ρy0

β

α + β

)
+ βeαt

(
−y0 + 2ρx0

α

α + β

))
+σ2

(
α + β − 4ρ

αβ

α + β

)(
αx0e

−βt − βy0e
−αt) . (4.25)

We assume of course that x0 > y0 and α > β and hence the term on the second line of
(4.25) is positive for all t ≥ 0. Also,

f(0) = 2αβσ2 (1− ρ) (x0 − y0) > 0. (4.26)

The condition for limt→∞ f(t) = −∞ is −y0 + 2ρx0
α

α+β
< 0 or equivalently

ρ <
y0

x0

α + β

2α
. (4.27)

Now set g(t) := eαtf ′(t)(αβσ2)−1. Then

g(t) = (α− β)

(
eβt
(
−x0 + 2ρy0

β

α + β

)
+ eαt

(
−y0 + 2ρx0

α

α + β

))
+

(
α + β − 4ρ

αβ

α + β

)(
−x0e

−βt + y0e
−αt) ,

Then we can see that g(0) = −2(1 − ρ) [x0α− y0β] < 0. Define next the function h(t) :=
e−(α−β)tg′(t)(α− β)−1.

h(t) = (α + β)e2βt

(
−x0 + 2ρy0

β

α + β

)
+ 2αe(α+β)t

(
−y0 + 2ρx0

α

α + β

)
−x0

(
α + β − 4ρ

αβ

α + β

)
.

Finally,

h(0) = 2x0(α + β)

(
2α

α + β
ρ− 1

)
+ 2y0β

(
ρ− α

β

)
< 0.

Also,

h′(t)e−2βt

2(α + β)
= β

(
−x0 + 2ρy0

β

α + β

)
+ αe(α−β)t

(
−y0 + 2ρx0

α

α + β

)
< 0.

This last inequality is a consequence of (4.27). Thus, the last two inequalities imply that
h(t) < 0 for all t. This in turn implies that g′(t) < 0 for all t and, since g(0) < 0,
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Fig. 4.1: Two correlated OU processes. The figure on the left plots f(t) defined in (4.25) for ρ
ranging from 0 (blue line) to 1 (red line). The values of the other parameters are α = 1,
x0 = 1, β = 0.2, y0 = 0.5. In the figure on the right the roots of the equation f(t) = 0 are
plotted as a function of ρ. Note that for ρ ∈ [0, 0.325] f has a single root (brown point).
At ρ ≈ 0.325 a second root of f appears (green points). The equation f(t) = 0 has two
roots when ρ belongs to the (approximate) interval [0.325, 0.7]. Finally, for ρ > 0.7 no
solutions exist.

that g(t) < 0 for all t. Hence f(0) > 0, f is strictly decreasing and f(t) → −∞ as
t→∞. Therefore it follows that f(t) = 0 has a single root, T , the meeting time, provided
that condition (4.27) holds. The need for condition (4.27) should not surprise us. If ρ
is sufficiently close to 1 then the two processes Xt and Yt will move nearly in unison and
hence Yt, starting from below, will not be able to catch up with Xt.

4.2 An Ornstein-Uhlenbeck Process with Time-Varying Variance

Here we examine a family of OU processes with time varying variance. It turns out that a
closed form solution of the variational problem arising from the Wentzell-Freidlin approach
to determining the hitting probability of a lower exponential boundary is possible.

Theorem 8. Consider the family of SDE’s

dXε
t = µXε

tdt+ σ(t)dWt, Xε
0 = x0.
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(We assume that σ(t) > 0 for all t ≥ 0.) Let also V (t) = v0e
βt with 0 < v0 < x0 and

0 < β < µ and T ε = inf{t ≥ 0 : Xε
t − v0e

βt ≤ 0}. Then

lim
ε→0

ε logP (T ε <∞) = −I

where I is given in (4.44)

The proof as well as the determination of the optimal path is given below. We have the
optimization problem

min

∫ T

0

F (x, x′, t)dt, x(0) = x0, and x(T ) = V (T )

with F (x, x′, t) =
1

2
σ(t)−2 (x′ − µx)

2
, V (t) = v0e

βt, v0 < x0.

The conditions for a minimum is

Fx −
d

dt
Fx′ = 0 (4.28)

x(T ) = V (T ) (4.29)

F + (V ′ − x′)Fx′ = 0 at T. (4.30)

Assume β < µ. In this case

Fx = −µσ−2 (x′ − µx)

Fx′ = σ−2 (x′ − µx)

d

dt
Fx′ = σ−2 (x′′ − µx′)− 2σ′(t)σ(t)−3 (x′ − µx) .

The Euler-Lagrange equation can be written as

−ασ−2 (x′ − µx)− σ−2 (x′′ − µx) + 2σ′σ−3 (x′ − µx) = 0

or, equivalently,

x′′ − µ2x =
2σ′

σ
(x′ − µx) . (4.31)

In order to solve this equation we define the function

y(t) = e−µtx(t). (4.32)

Then

y′ = (x′ − µx) e−µt

y′′ =
(
x′′ − 2µx′ + µ2x

)
e−µt =

(
x′′ − µ2x+ 2µ2x− 2µx′

)
e−µt



4. Models Exhibiting More Complex Behavior 70

Hence, from the above,

x′ − µx = y′eµt

x′′ − µ2x = y′′eµt + 2µ(x′ − µx) = y′′eµt + 2µy′eµt

Substituting into (4.31) we obtain

y′′eµt + 2µy′eµt =
2σ′

σ
y′eµt

or, setting z = y′,
z′ + 2 (µ− (log σ)′) z = 0.

This is a first order linear differential equation which can be easily solved to obtain

z(t) = C1e
−2µtσ2(t)

and hence

y(t) = C1

∫ t

0

e−2µsσ2(s)ds+ C2. (4.33)

Thus, from (4.32),

x(t) = C1e
µt

∫ t

0

e−2µsσ2(s)ds+ C2e
µt. (4.34)

Differentiating we obtain

x′(t) = C1µe
µt

∫ t

0

e−2µsσ2(s)ds+ C1e
−µtσ2(t) + C2µe

µt. (4.35)

From the initial value of x(0) and the transversality condition we obtain

x0 = C2 (4.36)

v0e
βT = C1e

µT

∫ T

0

e−2µsσ2(s)ds+ C2e
µT (4.37)

We also have the relationship F + (V ′ − x′)Fx′ = 0 (evaluated at time T ) which gives

1

2

(x′ − µx)2

σ2
+
(
βv0e

βT − x′
) (x′ − µx)

σ2
= 0

or
x′ − µx
σ2

(
2βv0e

βT − x′ − ax
)

= 0 (4.38)

Noting that
x′(t)− µx(t) = C1e

−µtσ2(t) (4.39)

(4.38) becomes

C1e
−αT

(
2βv0e

βT − 2C1µe
µT

∫ T

0

e−2µsσ2(s)ds− C1e
−µTσ2(T )− 2C2µe

µT

)
= 0. (4.40)
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Assuming that C1 6= 0 and taking into account (4.37) the above equation becomes

2βv0e
βT = C1e

−µTσ2(T ) + 2µv0e
βT .

which gives

C1 = −2(µ− β)v0

σ2(T )
e(µ+β)T . (4.41)

From equations (4.36), (4.37), we obtain

C1

∫ T

0

e−2µsσ2(s)ds = v0e
(β−µ)T − x0

and thus, taking into account (4.41),

2(β − µ)v0

σ2(T )

∫ T

0

σ2e−2µsds = v0e
(β−µ)T − x0.

Thus T is determined by the solution of the equation∫ T

0

e−2µsσ2(s)ds =
σ2(T )e−2µT

2(µ− β)

(
x0

v0

e(µ−β)T − 1

)
. (4.42)

One can check that the above equation, when σ is constant, reduces to (2.56).

From this last equation we determine T . Having determined T , the critical path is given
as

x(t) = x0e
µt − 2(µ− β)v0

σ2(T )
e(µ+β)T+µt

∫ t

0

σ2(s)e−2µsds, t ∈ [0, T ] (4.43)

Finally the rate function is equal to

I =

∫ T

0

(x′ − µx)2

2σ2(t)
dt =

C2
1

2

∫ T

0

e−2µtσ2(t)dt

=
(µ− β)v0e

2(µ+β)T

σ2(T )

(
x0 − v0e

(β−µ)T
)
. (4.44)

We illustrate the above derivation with a numerical example presented in Figure 4.3. Equa-
tion (4.42) is solved numerically, and of course when the time dependence of the variance
σ2(t) is arbitrary there is no guarantee that it has a unique solution. Figure 4.2 illustrates
this point. The solid black curve plots the function

f(t) :=

∫ t

0

e−2µsσ2(s)ds − σ2(t)e−2µt

2(µ− β)

(
x0

v0

e(µ−β)t − 1

)
.

With the given form of the function σ2(t) and the given values of the parameters (see Figure
4.2) there are three roots of this equation, namely T = 0.224 (red vertical line), T = 0.4194
(green vertical line), and T = 0.7639 (blue vertical line).
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Fig. 4.2: Here µ = 1, β = 0.5, x0 = 1.8, v0 = 1, and σ2(t) = 5 + 4.9 cos(20t). There are three
candidates for the optimal solution T = 0.224 (red vertical line), T = 0.4194 (green
vertical line), and T = 0.7639 (blue vertical line).

Fig. 4.3: Again, with µ = 1, β = 0.5, x0 = 1.8, v0 = 1, and σ2(t) = 5 + 4.9 cos(20t) the three
candidates for the optimal solution. The red path corresponds to the minimum.

To each of these values of T there corresponds a value of the action functional I = 0.4525,
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I = 0.6767, and I = 0.9142 respectively. Thus the value of T that corresponds to the
minimum is the first value T = 0.224. Figure (4.3) shows the three candidate optimal
paths. The red path corresponds to the minimum value of I. In this particular case, the
red path also satisfies the constraint x(t) > v0e

βt for all t ∈ [0, T ). Note however that the
paths are not necessarily convex and that the simple arguments of Chapter 2 cannot be
applied in general here.

4.3 A Linear SDE

Here we examine the same type of problem in connection to the linear SDE which has a
more complex behavior and the exact solution of the resulting variational problem is more
challenging. Consider the linear SDE

dXt = rdt+ σXtdWt, X0 = x0 w.p. 1.

Suppose that since

dWt =
dXt − rdt
σXt

our objective is to find the function x : [0, T ]→ R which minimizes the functional

I(T ) =
1

2σ2

∫ T

0

(
ẋ− r
x

)2

dt (4.45)

under the constraints x(0) = x0, x(T ) = xT := u0e
γT . After we do this we will find

minT∈[0,Tf ] I(T ). The corresponding Euler equation is

Fx −
d

dt
Fẋ = 0

Since Fx = − (ẋ−r)2
x3

, Fẋ = ẋ−r
x2

, and d
dt
Fẋ = ẍ

x2
− 2 ẋ−r

x3
ẋ, the Euler equation becomes

−(ẋ− r)2

x3
− ẍ

x2
+ 2

(ẋ− r)
x3

ẋ = 0

or equivalently
xẍ− ẋ2 + r2 = 0. (4.46)

This is a second order DE which does not contain the independent variable, t, and thus we
may reduce its order by one if we treat t as the dependent variable and x as the independent.
t′(x) = ẋ−1 and

t′′(x) =
d

dx

1
dx
dt

= − 1(
dx
dt

)2

d

dx

dx

dt
= − 1(

dx
dt

)2

(
d

dt

dx

dt

)
dt

dx
= − 1

ẋ3
ẍ
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whence we obtain t′′ = −t′3ẍ. Substituting in (4.46) we have −xt′−3t′′ − t′−2 + r2 = 0 or

t′′ +
1

x
t′ − r2

x
t′3 = 0. (4.47)

Setting
y = t′ (4.48)

(4.47) becomes

y′ +
1

x
y − r2

x
y3 = 0. (4.49)

This is a first order Bernoulli DE and thus can be linearized by means of the change of
variables

u = y−2 (4.50)

which gives u′ = −2y−3y′ and hence −1
2
y3u′ + 1

x
y − r2

x
y3 = 0 or

u′ − 2

x
u+

2r2

x
= 0. (4.51)

This, at long last, is a linear first order DE which can be integrated if we multiply with the
integrating factor e−

∫
2
x
dx = e−2 log x = x−2. We thus obtain x−2u′ − 2x−3u+ 2r2x−3 = 0 or

(x−2u)′ = −2r2x−3

which can be integrated directly to give x−2u = r2x−2 + C2 or

u = r2 + C2x2. (4.52)

Now we can start reversing this long process. From (4.50) we have

y =
1√

r2 + C2x2

and from (4.48)

t =

∫
1√

r2 + C2x2
dx =

1

C
sinh−1(

xC

r
)−K

whence x(t) = r
C

sinh(C(t+K)). We may write

x(t) =
r

C
sinh(Ct+K) (4.53)

with K > 0 as we will soon see.

Setting t = 0 we obtain
x0C

r
= sinh(CK). (4.54)
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Set CK = w, CT = z, a = x0
rT

, b = xT
rT

. (Note that a < b.) Then (4.53), (4.54) become

za = sinhw (4.55)

zb = sinh(w + z) (4.56)

and hence
z = sinh−1(zb)− sinh−1(za).

Taking into account that sinh(x−y) = sinhx cosh y−coshx sinh y and that cosh sinh−1 x =√
(1 + x2) we have

sinh z = zb
√

1 + (za)2 − za
√

1 + (zb)2. (4.57)

The above equation has a single positive solution z∗ to which there corresponds a unique
w∗ = sinh−1(z∗a). Thus the unknown constants are

C =
z∗

T
, K =

w∗

z∗
T. (4.58)

Substituting into (4.53) we have

x(t) =
rT

z∗
sinh(z∗

t

T
+ w∗). (4.59)

Fig. 4.4: The heavy green line corresponds to the upper boundary 2 ·e0.5 t. The light blue lines are
optimal paths for various meeting times T . The red line corresponds to the minimum
value of the action functional, as shown in Figure 4.4.
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Fig. 4.5: The value of the action functional for various values of T . T = 1.7 corresponds to the
minimum.

The corresponding value of the rate functional is

I(T ) =
1

2σ2

∫ T

0

(
r cosh

(
z∗ t

T
+ w∗

)
− r

r T
z∗

sinh
(
z∗ t

T
+ w∗

) )2

dt

=
z∗

2σ2T

∫ w∗+z∗

w∗

(
cosh(s)− 1

sinh(s)

)2

ds =
z∗

2σ2T

∫ w∗+z∗

w∗
tanh2(s)ds (4.60)

=
z∗

2σ2T

(
z∗ − 2 tanh

w∗ + z∗

2
+ 2 tanh

w∗

2

)
. (4.61)
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Linear SDE - Infinite Horizon Problem

We have the optimization problem

min

∫ T

0

F (x, x′, t)dt, x(0) = x0, and x(T ) = R(T )

with F (x, x′, t) =
1

2σ2

(
x′ − r
x

)2

, R(t) = u0 + αt, x0 < u0.

The conditions for a minimum is

Fx −
d

dt
Fx′ = 0 (4.62)

x(T ) = R(T ) (4.63)

F + (R′ − x′)Fx′ = 0 at T. (4.64)

In this case

Fx = −2
(x′ − r)2

x3

Fx′ = 2
x′ − r
x2

d

dt
Fx′ = 2

x′′

x2
− 4

(x′)2

x3
+ 2

x′r

x3
.

The Euler-Lagrange equation (4.62) becomes

Fx −
d

dt
Fx′ =

2

x3

(
(x′)2 − x′′x

)
= 0

or equivalently
xẍ− ẋ2 + r2 = 0

Thus
x(t) =

r

C
sinh(Ct+K). (4.65)

From transversality (4.63) we have

r

C
sinh(C(T +K)) = u0 + αT

and from (4.64)
(x′(T )− r) (x′(T )− r + 2(α− x′(T ))) = 0 (4.66)

The case x′(T ) = r implies r cosh(CT +K) = r whence it follows that CT +K = 0. This
however is inconsistent with (4.66). Hence

x′(T ) = 2α− r
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or
cosh(CT +K) = 2

α

r
− 1.

Since α > 1 there exists a unique γ > 0 such that

cosh(γ) = 2
α

r
− 1, and CT +K = γ. (4.67)

We thus obtain the following system of three equations which will allow us to obtain
the three unknown constants C,K, T .

sinh(K) = C
x0

r
, (4.68)

sinh(γ) = C
u0

r
+
α

r
CT, (4.69)

CT +K = γ. (4.70)

K is obtained as the solution of

sinh(K)− x0

u0

α

r
K +

x0

u0

(
sinh γ − α

r
γ
)

= 0. (4.71)

and

C =
r

x0

sinh(K), T =
γ −K
C

. (4.72)

Depending on the values of the parameters r, u0, x0 and γ = cosh−1(2α
r
− 1), equation

(4.71) may have no positive solution or two positive solutions.

4.4 The general linear SDE with constant coefficients

Consider the SDE
dXt = (r + µXt)dt+ (b+ σXt)dWt. (4.73)

Arguing as before we have

dWt =
dXt − (r + µXt)dt

b+ σXt

which gives

I(t) =
1

2

∫ t

0

(
x′ − r − µx
b+ σx

)2

du . (4.74)
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Fig. 4.6: Sample paths of dXt = rdt+σXtdWt. The mean is EXt = x0 +rt but the linear increase
in not evident due to high variability.

Set F = 1
2

(
x′−r−µx
b+σx

)2

. Then

Fx =
x′ − r − µx
b+ σx

(
− µ

b+ σx
− x′ − r − µx

(b+ σx)2
σ

)
Fx′ =

x′ − r − µx
(b+ σx)2

d

du
Fx′ =

x′′ − µx′

(b+ σx)2
− 2σx′

x′ − r − µx
(b+ σx)3

.

The Euler equation is Fx − d
du
Fx′ = 0 or equivalently

−µ(x′−r−µx)(b+σx)−(x′−r−µx)2σ−(x′′−µx′)(b+σx)+2σx′(x′−r−µx) = 0 (4.75)

Changing the roles between the independent variable, t, and the dependent variable, x we
have

x′ =
1

t′
, x′′ = − t

′′

t′3

and substituting into (4.75) we have

−µ
(

1

t′
− r − µx

)
(b+σx)−

(
1

t′
− r − µx

)2

σ−
(
− t
′′

t′3
− µ 1

t′

)
(b+σx)+2σ

1

t′

(
1

t′
− r − µx

)
= 0.
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Setting y = t′ we reduce the order of the differential equation by one and obtain

−µ(y2−(r+µx)y3)(b+σx)−(1−(r+µx)y)2yσ+(y′+µy2)(b+σx)+2σy(1−y(r+µx)) = 0.

which simplifies into

y′ +
σ

b+ σx
y + (µb− σr)r + µx

b+ σx
y3 = 0. (4.76)

This last equation is a Bernoulli differential equation which can be integrated using the
transformation u = y−2. We then obtain

u′ − 2σ

b+ σx
u+ 2(σr − µb)r + µx

b+ σx
= 0. (4.77)

In order to solve this linear differential equation we multiply with the integrating factor
(b+ σx)−2 and obtain (

u(b+ σx)−2
)′

= 2(µb− σr) r + µx

(b+ σx)3

which we integrate to obtain

u(b+ σx)−2 = 2(µb− σr)
(
µb− rσ

2σ2
(b+ σx)−2 − µ

σ2
(b+ σx)−1

)
+ C2

or

u = l2 − 2µl

σ
(b+ σx) + C2(b+ σx)2 (4.78)

where

l =
µb− rσ

σ
.

Note that we assume the integration constant to be positive. By “completing the square”
we rewrite (4.78) as

u = l2
(

1− µ2

σ2C2

)
+

(
C(b+ σx)− µl

σC

)2

(4.79)

and thus

y =
1√

l2
(

1− µ2

σ2C2

)
+
(
C(b+ σx)− µl

σC

)2

which gives

t =

∫
dx√

l2
(

1− µ2

σ2C2

)
+
(
C(b+ σx)− µl

σC

)2
.

Assume that
C >

µ

σ
.
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Then, setting

ξ = C(b+ σx)− µl

σC
, λ2 = l2

(
1− µ2

σ2C2

)
,

we have

t =
1

Cσ

∫
dξ√
λ2 + ξ2

(4.80)

which gives

t =
1

Cσ
sinh−1 ξ

λ
−K (4.81)

with K > 0. Thus

x(t) =
λ

Cσ
sinhCσ(t+K) +

µl

σ2C2
− b

σ
. (4.82)

Note that when µ = b = 0, λ = l = r the above expression becomes

x(t) =
r

σC
sinhσC(t+K)

which essentially agrees with our previous result.
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Fig. 4.7: The right hand side of (4.71) with multiple solutions.
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