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Abstract
In this dissertation, the center of attention is in the research area of Bayesian Sta-
tistical Process Control and Monitoring (SPC/M) with emphasis in developing self-
starting methods for short horizon data. The aim is in detecting a process disorder
as soon as it occurs, controlling the false alarm rate, and providing reliable poste-
rior inference for the unknown parameters. Initially, we will present two general
classes of methods for detecting parameter shifts for data that belong to the regular
exponential family. The first, named Predictive Control Chart (PCC), focuses in
transient shifts (outliers) and the second, named Predictive Ratio CUSUM (PRC),
in permanent shifts. In addition, we present an online change point scheme available
for both univariate or multivariate data, named Self-starting Shiryaev (3S). It is a
generalization of the well-known Shiryaev’s procedure, which will utilize the cumu-
lative posterior probability that a change point has been occurred. An extensive
simulation study along with a sensitivity analysis evaluate the performance of the
proposed methods and compare them against standard alternatives. Technical de-
tails, algorithms and general guidelines for all methods are provided to assist in their
implementation, while applications to real data illustrate them in practice.
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Chapter 1

Introduction

1.1 A brief description

Statistical Process Control/Monitoring (SPC/M) is an effective area of Statistics that

is applied in a plethora of disciplines, like: industrial processes, medical laboratories,

economics, image analysis, geophysics etc.. It includes all those methods that deal

with the quick and valid detection of any disorder in an ongoing process. More

specifically, its main aim is to detect when a process deteriorates from its In Control

(IC) state, where only natural causes of variation are observed, to the Out Of Control

(OOC) state, where exogenous to the process variation is present (Deming, 1986).

In essence, the OOC state represents the situation where a change is experienced in

at least one IC process setting. The implementation of SPC/M methods is primarily

(but not exclusively) performed via control charts, which are statistical tools used

monitoring a process and examining whether it runs under statistical stability (IC

state) or an assignable cause of variation is present (OOC state). Typically, a control

chart is a time series representation of the data (or of a functional form of them) and

performs sequential decision making, where we judge a point as “alarm” (indicating

process transition to the OOC state), when it plots beyong the control limits.

1
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The concept of control charts initiated by Shewhart in 1926 at Bell Labs (Shewhart,

1926) and over the years numerous types of control charts have been developed

for different types of data and different OOC scenarios. Most of them are within

the frequentist based approach, with the most representative being x̄, R, s, c, p etc.

(also known as Shewhart-type charts), along with CUSUM (Page, 1954) and EWMA

(Roberts, 1959). Montgomery (2020) and Oakland (2019) presented the most impor-

tant frequentist processes, while Hawkins and Olwell (1998) provided an analytical

review of CUSUM charts. In the nonparametric field, Qiu and Li (2011) proposed

several types of distribution free CUSUM charts, while Chakraborti and Graham

(2019) presented an overview of the literature on nonparametric control charts for

one dimensional data. From the Bayesian point of view, the online change point

model proposed by Shiryaev (1963) and its modification (Roberts, 1966) are the

most dominant univariate procedures in the area. A significant amount of Bayesian

procedures have been presented in Colosimo and Del Castillo (2006), providing a

summary of the Bayesian subregion. Finally, Qiu (2014), Kenett and Zacks, S.

(2021) and Tartakovsky et al. (2014) presented methods of more than one approach,

i.e. frequentist, nonparametric or Bayesian.

In spite of the fact that univariate procedures are well established, in many cases

in SPC/M, we are interested in testing and monitoring simultaneously more than

one variables or quality characteristics. In these cases, the application of univariate

control charts to each recorded variable is known to be suboptimal, even when these

variables are independent. Firstly, when the number of recorded variables is large

(something that happens more and more often in the big data era) handling a vast

amount of univariate charts is cumbersome and very tricky, especially in handling

issues like the the overall false alarm rate (i.e. Type I error) in the decision mak-

ing. Secondly and most importantly, testing these variables independently will be

misleading, as associations between the variables are not taken into account. For ex-

ample an alarm in a marginal distribution monitoring, does not necessarily imply an
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alarm in the joint distribution and the inverse, i.e. an alarm in the joint distribution

monitoring does not imply an alarm to some of the marginal distribution control

charts. Interestingly enough the above is valid even when the recorded variables are

independent. Furthermore, it should be noted that, apart from testing, attributing

the alarm to a specific process characteristic is of major importance in multivariate

settings.

Hotelling’s (1947) T 2 based control chart is the most prominent representative of

multivariate control charts. Multivarite generalizations of CUSUM and EWMA were

also proposed by Crosier (1988) Lowry et al. (1992) respectively. Mason and Young

(2002) and Bersimis et al. (2007) provide a review of multivariate control chart

methods. From a nonparametric point of view, Conover et al. (2019) presented the

multivariate sequential Normal scores, while several multivariate methods exist in

the books of Lauro et. al (2012) and Qiu (2014). The Bayesian approach in Multi-

variate Statistical Process Control and Monitoring (MSPC/M) is rather restricted.

Triantafyllopoulos (2006) developed a control chart based on the sequential Bayes

Factors for monitoring multivariate autocorrelated processes. Makis (2008, 2009)

formulated a multivariate Bayesian scheme in the optimal stopping framework, for

monitoring the mean vector in infinite and finite processes. Furthermore, Zou et al.

(2011) proposed a practical LASSO-based diagnostic procedure of the responsible

factors for deterioration in high-dimensional procedures and Feltz and Shiau (2001)

implemented empirical Bayes process monitoring techniques.

1.2 Standard setup and issues

The majority of the proposed SPC/M methods require two phases (I/II). Phase

I is the training phase, where independent IC data are gathered and the goal is

to perform calibration of the monitoring scheme, i.e. to derive reliable estimates

of the distribution and the unknown parameter(s). Phase II follows and it is the
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testing phase, where new observations are collected and compared against the IC

standards that established in phase I. Thus, phase I plays a crucial role, as the phase

II effective performance will heavily depend on the successful analysis of phase I.

Phase I is typically retrospective (offline), while phase II is a prospective (online)

or monitoring analysis. Chakraborti et al. (2008) provided a detailed review on

the retrospective control charts for univariate variables in phase I along with the

appropriate false alarms metrics, while Woodall and Montgomery (1999) presented

a plethora of methods in SPC/M area, discussing about open problems and issues

in this area.

It is well documented that the phase I/II separation has certain restrictions, which

are mainly related with the assumptions and operations while in phase I. Jones-

Farmer et al. (2014), presented a detailed overview of phase I methods, exploring

the major issues and developments in this domain. For more recent development on

the implementation of the phase I analysis and its effect to phase II performance, one

can refer Atalay et al. (2020) and Dasdemir et al. (2016) and the references therein.

The major issue in phase I analysis is that a large amount of independent IC samples

is needed in order to provide reliable estimates of the unknown parameter(s). This is

a serious constrain for short runsand for processes that require online decision making

from the start of the process (like in the monitoring of medical type data). However,

even if the assumption of a large enough initial sample is met, the estimation error for

the parameter(s) of interest is typically not taken into account. In most cases, only

the point estimates are used and this negatively affects the phase II performance, by

increasing the actual false alarm rate. Regarding the phase I sample size requirements

in eliminating the effect of estimation error one can refer to Jensen et al. (2006),

Zhang et al. (2013, 2014) and Lee et al. (2013) along with the references therein.

Apart from the estimation error, another consequence of the one-off plugged in esti-

mates is that IC information which is available from phase II data is wasted. This

issue is of primary importance with two extensions: a practical, as we can improve
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the performance of a chart using more information, and a philosophical, as we do

not utilize the available information from all the data. Another important issue in

phase I is the assumptions’ violation. Phase I data are considered to be “clean" data

from the stable state of the process. However, a shift in a parameter may occur

during phase I, regardless of how well designed or carefully employed a process is.

Undetected violations jeopardize the performance in both phases I and II. It is worth

noting that this risk increases as the size of the sample under study increases. Fi-

nally, retrospective analysis in phase I implies that a disorder might be detected long

after its occurrence which is troublesome, especially in processes that online decision

making is needed.

1.3 Self-starting control charts

Self-starting methods in SPC/M have been proposed to mitigate the problems aris-

ing from phase I/II separation. The developed methodology not only relaxes the

necessity of a sufficiently large “clean" dataset in order to provide reliable estimates

for the unknown parameter(s), but also provides testing from the early start of a pro-

cess without any preliminary calibration. Essentially, in a parametric setting with a

known distribution, the estimation of the unknown parameter(s) is performed while

we test of whether the process is under a stable (IC) state. Hawkins (1987) intro-

duced the term “self-starting” to describe CUSUM schemes for detecting persistent

shifts in location or scale parameters of Normal data, without the need of a phase

I exercise. Since then, numerous of self-starting control charts have been developed

and they are widely used, as their setup offers a framework that is very attractive in

real world problems.

Nevertheless, there does not seem to be a concrete definition in the literature of

what can be called “self-starting” and what not. As a result many methods self-

identify as self-starting, but they are not in practice, as they require the existence of a
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preliminary phase or a reference sample for the parameters’ estimates. Consequently,

we will provide Definition 1.3.1, aiming to establish the basic principles that a control

chart needs to have in order to be characterized as “self-starting” and we will follow

these principles over the development of this dissertation.

Definition 1.3.1. A control chart will be called as self-starting if:

• it can provide testing, without the need of a preliminary training phase,

• it is online, i.e. to be able to raise an alarm the moment it happens, not

retrospectively and

• the IC and the OOC states contain at least one unknown parameter.

From now on in this dissertation, we will characterize a method as self-starting based

on Definition 1.3.1.

1.4 Categorization of self-starting methods

The collection and recording of existing methods in a research area is of great sig-

nificance. On one hand, we discover the already developed methods, avoiding to

“reinventing the wheel” and on the other hand we learn about the subareas or un-

solved problems, which need further investigation. Castillo et al. (1996) reviewed and

commented on the control methods for short production runs, while, more recently,

Marques et al. (2015) classified the short run methods and provided a decision model

for the choice of the most appropriate method regarding the ongoing process. In a

similar spirit, we will start this thesis by providing an extensive literature review for

self-starting methods. Trying to list the self-starting methods, a rough categorization

could be based on three pillars:

• Dimension: univariate or multivariate,
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• Type of shift: transient or permanent,

• Type of approach: frequentist, Bayesian or nonparametric.

A chart is referred as univariate if only a single variable (feature) is involved, while a

multivariate chart corresponds to a procedure that controls more than one variable

(feature) simultaneously. Concerning the types of a shift, they represent standard

causal variations in SPC/M, i.e. the OOC states most often considered in practice.

Consequently, the majority of SPC/M methods are designed to efficiently detect

them. A transient shift is typically of large size and corresponds to an outlying ob-

servation, that is to say an isolated unusual value. An outlier may indicate a sample

peculiarity, a data entry error or another impermanent problem. On the contrary,

permanent shifts are usually of small or medium size and they are systematic changes

to at least one parameter of a procedure. They can by of various types, such as step

changes, scale shifts, linear trends, rotations etc.. In Figure 1.4.1, we provide a

paradigm of an outlier and location shift in univariate and bivariate sequences.

Concerning the type of approach, the methods, referred as frequentist or Bayesian,

are parametric methods via the corresponding school of thought, while for the non-

parametric methods, there is no distributional assumption. In the next subsections,

we will provide an analytical review of the main methods that are or can be con-

sidered as self-starting, classifying them to the above categories. It is important to

highlight that some methods may belong to more than one category concerning the

type of shift, as they are capable to detect both transient and permanent shifts.

Figure 1.4.2 depicts the categorization graphically, as a treemap.

1.4.1 Univariate self-starting methods

We start the literature review with the frequentist univariate schemes and specifically

with those that are focused on detecting transient shifts (outliers). We could not

start with anything other than Q statistics, as they dominate the region. Quesen-



1.4. Categorization of self-starting methods 8

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

n

X

Transient shifts
Univariate

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

n

X

Permanent shifts
Univariate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

X

Y

       Bivariate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

X

Y

      Bivariate

Figure 1.4.1: An illustration of a transient and a permanent shift in univariate and
bivariate data. The IC and the OOC data are in blue and red respectively.

berry (1991a, 1991b, 1991c, 1995d) introduced the Q charts for detecting transient

shifts in shorts runs for Normal, Poisson, Binomial and Geometric data respectively.

The Q chart procedure is based on the sequentially updated Q statistic, that does not

require a preliminary phase. Assuming normality, Castillo and Montgomery (1994)

presented modifications that enhance the detection properties and He et al. (2008)

proposed two schemes to alleviate bias issues in Q charts. Completing the review of

Q-based charts, Ravichandran (2019) identified his proposal as self-starting, because

updated Q statistic is used, although an IC sample for the initial estimates is re-

quired. Methods with many similarities with the aforementioned, are the t chart (Gu

et al., 2014) and the methodology of Korzenowski et al. (2015), both implemented to

monitor the process mean in multi-variety and small batch production runs. In the
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same context, a variable sample size t control chart for monitoring short production

runs was proposed by Castagliola et al. (2013). For non-normal data, Zhang et al.

(2017) constructed a Shewhart-type control chart, named Beta chart for monitoring

the Weibull shape parameter. Recently, Dogu and Noor-ul-Amin (2021) proposed a

self-starting chart for detecting anomalies in exponentially distributed time between

events (TBE) data. It should be noted that in the latter method, the proposed

statistic can be used in an EWMA or a CUSUM in detecting persistent shifts, a type

of process disturbance that we will review next.

Retaining the focus on the frequentist approach, we continue with the permanent

shifts. Worsley (1979, 1986) pioneering work, introduced the ratio test statistic in

modeling a mean change point. Similarly, the likelihood ratio and the change point

formulation play the role of the “frame of reference” for the models of Gombay (2003),

Mei (2006) and Dessein and Cont (2013). Hawkins’s work has a prominent place in

the sequential change point detection. He introduced numerous methods, related to

the detection of shifts in the mean or/and the variance of a process, like Hawkins

(1977), Hawkins et al. (2003), Hawkins and Zamba (2005a, 2005b). Special note

should be made for the self-starting CUSUM (SSC) for location and scale (Hawkins,

1987) and the SSCs using the Q statistics (Hawkins and Olwell, 1998) that are

widely used. In relation to the CUSUM-type charts, Atwi et al. (2011) proposed

a CUSUM-based method for hidden Markov models, while Tercero-Gómez et al.

(2014) developed a SSC for detecting changes in the process mean, combined with

a maximum likelihood estimation for the change point. Furthermore, Siegmund and

Venkatraman (1995) suggested a CUSUM-type change point model, which is based

on a generalized likelihood ratio statistic for detecting a change in a normal mean

with known variance.

Next, we will review various hybrid control chart suggestions that typically combining

more than one procedures, enhancing the power in detecting of permanent shifts.

The common element of these “alloys” of methods in this paragraph is an EWMA,
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which is adopted by all of them. Specifically, Li et al. (2010) proposed a self-

starting control chart, based on the likelihood ratio test (LRT) and the EWMA

for simultaneous monitoring of the mean and the variance. In addition, Li and

Wand (2010) and Li et al. (2010) proposed a hybrid chart focused on mean shifts,

which combines a SSC using the Q statistic with an adaptive EWMA scheme for the

magnitude of the shift. Again based on Q statistic, Roes et al. (1999) developed

the alternative Q(R) chart, estimating the standard deviation via the mean moving

range, while modelling the cost of low-volume processes. An EWMA chart for t

statistic is demonstrated in different versions for short runs by Chang and Sun (2016),

Wang et al. (2020) and Song et al. (2020). Of particular interest is the bootstrap

based monitoring scheme for Poisson count data with varying population sizes (Shen

et al., 2016). Furthermore, Castillo and Montgomery (1995) suggested a Kalman

Filter process control scheme for short runs, which essentially acts like an EWMA.

In closing, it is noteworthy that of the outlier detection methods, the Geometric Q

chart (Quesenberry, 1995d) and the monitoring scheme of Korzenowski et al. (2015)

can be applied for permanent shifts, along with the TBE model (Dogu and Noor-ul-

Amin 2021) after certain modifications, as we have already mentioned.

From the Bayesian perspective, several methods have been proposed for identifying

isolated shifts. The common denominator in all of them is the use of the predictive

distribution, which represents the conditional likelihood of the future observable(s)

given the available data (i.e. all the unknown parameters have been integrated out).

The most general methodology in this category of models is the Predictive Control

Chart (PCC) by Bourazas et al. (2021), which is partly presented in this disserta-

tion. PCC offers a unifying, closed form mechanism, that is capable to monitor for

transient shifts, data from any (ontinuous or discrete) distribution as long as it is

a member of the regular exponential family. In the same framework, the methods

of Ali and Riaz (2020) and Bayarri and García-Donato (2005) were specialized in

monitoring the dispersion of Normal and Poisson count data respectively. Kumar
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and Chakraborti (2017) along with Ali (2020) suggested methods for monitoring the

exponentially distributed TBE data. The work of Tsiamyrtzis et al. (2015) for a se-

quence of Normal data was the “harbinger” of PCC, while in similar context, Olwell

(1996, 1997) proposed methods to handle Normal and Poisson data respectively..

Additionally, the Cumulative Bayes Factor (CBF) by West (1986) and West and

Harrison (1986) are memory based method, but the Bayes Factor (BF) can be an

indicator for the presence of an isolated shift as well.

Plenty of methods for investigating permanent shifts are in the Bayesian “reservoir”,

including the aforementioned CBF and the Normal linear dynamic models also by

West and Harrison (1996). More research in the area of sequential model compari-

son, monitoring and forecasting was performed by Harrison and West (1987, 1991),

Harrison and Veerapen (1994) and Harrison (1999). By the same token, Geweke and

Amisano (2010) applied the cumulative predictive Bayes Factor for model compar-

isons in economics. Still in the Bayesian perspective the work of Tsiamyrtzis and

Hawkins (2005, 2008, 2010, 2019) with change point models for the mean of Normal

or Poisson data, further boosted the Bayesian modelling in short runs. By the same

logic, a three-state sequential algorithm was developed, modelling the three states

of an epidemic (Zamba et al., 2013).

Change point models have occupied the Bayesian statisticians for many decades.

Smith (1975) adopted the change point formulation to provide inference for sequences

of Normal or Binomial data. In 1990s, the work of Wasserman and Sudjianto (1993)

with a Bayesian second ordered dynamic linear model and of Wasserman (1994,

1995), who developed Bayesian EWMA schemes, were novel for detecting mean

shifts in short runs. Later, Crowder and Eshleman (2001) investigated an adaptive

filtering approach to monitor low volume autocorrelated data. Howley et al. (2009)

proposed a CUSUM-type monitoring of clinical indicators, based on the posterior

predictive of Bernoulli trials and in the same spirit Toubia-Stucky et al. (2012)

developed a memory based procedure for the proportion of non-conforming items
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in a process. We sould highlight in particular the highly cited online change point

by Adams and MacKay (2007), who proposed a machine learning algorithm for the

estimation of a change point based on posterior distribution of the length of the last

IC sequence, after the last disorder. Following a different approach, Lai and Xing

(2010) extended the Shiryaev’s Bayesian online change point model, while assuming

pre/post change unknown parameters and providing corresponding stopping rules.

Recently, Noor-ul-Amin and Noor (2021) and Noor et al. (2020) proposed Bayesian

self-starting EWMAs for specific distributions in the exponential family. Regarding

the previously described methods, a Bayesian change detection model is provided

along with a frequentist alternative in Atwi et al. (2011), while an EWMA and a

CUSUM modification is proposed for the TBE chart in Ali (2020).

Through the prism of nonparametric statistics, only a handful of the developed self-

starting methods are capable to detect isolated jumps, especially when we have short

production runs. Their most characteristic representative is the control chart pro-

posed by Alloway and Raghavachari (1991), which is based on the Hodges-Lehmann

estimator and the Wilcoxon signed rank statistic. Moreover, Conover et al. (2018)

used Sequential Normal Scores (SNS) for developing a Shewhart type chart, along

with CUSUM and EWMA type modifications for persistent shifts. We could add to

this category the recursive segmentation and permutation (RS/P) method of Capizzi

and Masarotto (2013). Although it has been developed for the effective detection of

mean and/or scale shifts, it can identify isolated jumps for subgrouped data.

Along with the latter method, which is suitable for persistent shifts, Capizzi and

Masarotto (2012) also proposed a hybrid scheme named CUSCORE-type chart, us-

ing an EWMA adaptation. Furthermore, a sequential nonparametric test, based

on windowed Kolmogorov - Smirnov statistics (Madrid Padilla et al., 2019), have

been suggested to handle univariate data, while Gombay (2004) proposed sequential

testing strategies based on U statistics and Wiener process approximations. Several

methods have adapted a CUSUM-type detection scheme using nonparametric statis-
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tics. For instance, the two stage procedure for prospective change-point detection

and the retrospective estimation of the detected location of the change, via a modi-

fied Kolmogorov-Smirnov test (Brodsky, 2010). In the same regard the independent

works of Li (2021) and Hou and Yu (2020), proposing nonparametric CUSUMs for

the detection of any type of distributional change.

The sequential ranks have a special place in the nonparametric approach, as they are

widely used in change point detection. Apart from the aforementioned work, Conover

et al. (2017) analytically discussed about sequential Normal scores. In the same spirit

with the latter, the control chart of Villanueva-Guerra et al. (2017) is focused on

scale shifts, based on squared ranks. Some of the initial proposals applied the idea of

sequential ranks like in Reynolds (1975), where a truncated version of sequential tests

with linear barriers was used. Furthermore, Bakir and Reynolds (1979) and Amin

and Searcy (1991) used the Wilcoxon signed-rank statistics, while Bhattacharya and

Frierson (1981) adopted a partial weighted sum of sequential ranks. McDonald (1990)

proposed a CUSUM-type chart for detecting an abrupt change form the sampling

distribution to a stochastically dominating one. In more recent research, Liu et al.

(2013, 2014, 2015) developed CUSUM-type and EWMA-type self-starting schemes

for process monitoring, based on the sequential ranks. Regarding methods that are

capable in detecting both location and scale changes simultaneously, Lombard and

Van Zyl (2018) suggested the signed rank CUSUMs and Ross et al. (2011) developed

a nonparametric model for a stream of random variables.

1.4.2 Multivariate self-starting methods

In this subsection we deal with multivariate processes, which in their vast major-

ity are frequentist based. Starting from the transient shifts, Quesenberry (2001)

proposed a snapshot chart, where we plot all the univariate Q statistics for all the

measured variables on a particular production unit on one chart. Despite the fact
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that it is a valuable attempt to provide a summary chart for high dimensional data,

it is still suboptimal, as it ignores possible associations between the variables. Khoo

and Quah (2002) and Khoo et al. (2005) took it one step further, as they pro-

posed the extension of Q chart for individual or subgrouped multivariate Normal

data. Also, they demonstrated their use for memory based charts. It is important

to mention that to the best of our knowledge in the literature, there are neither

Bayesian nor nonparamteric self-starting procedure for detecting multivariate out-

lying observations. Combining it with the fact that there are only a few methods

from the frequentist approach, we can easily conclude that this is a virgin area for

the self-starting procedures in short runs and not only.

Dealing with the permanent shifts, the most cited paper is the work of Zamba and

Hawkins (2006), where a frequentist change point model was proposed. The intro-

duced model is based on an unknown-parameter likelihood ratio test for detecting

a step change in the mean vector of multivariate Normal data. Also, the work of

Sullivan and Jones (2002) is widely mentioned, where a self-starting multivariate

EWMA for the mean vector was demonstrated, using the Q update formulas for the

sample mean vector and covariance matrix. Remaining in the EWMA framework,

Hawkins and Maboudou-Tchao (2007) suggested the use of recursive residuals in a

self-starting chart. The recursive residuals were initially introduced in a CUSUM

procedure by Brown et al. (1975), while they were also used by Taleb and Arfa

(2012) in a modification of CUSUM and by Capizzi and Masarotto (2010). In the

latter, two robust control charts were proposed, a CUSUM-type and an EWMA-type,

which were based on a CUSCORE procedure for monitoring the unknown mean of a

multivariate Normal distribution. Furthermore, Li et al. (2017) integrated a multi-

variate spatial rank test with the EWMA charting for monitoring sparse multivariate

mean shifts.

The EWMA-type charts are numerous in the literature, but the first reported self-

starting multivariate EWMA is by Quesenberry (1997), involving the computation
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of a Hotelling T 2 statistic. Also, a special mention should be made of one of the first

models for detecting a change in the multivariate normal mean by Srivastava and

Worsley (1986). Recently, the work by Yang and Qiu (2021) is also worth mentioning;

they propose a variable-sampling control chart, where the intervals are determined

by the covariate information. Even though the chart needs initial estimates for the

IC parameters, they are recursively updated in the monitoring process. In the same

pattern, Zhang et al. (2012) developed a hybrid cumulative count of conforming

chart for monitoring high-quality processes. Returning to the self-starting methods

that satisfy the criteria of Definition 1.3.1, Maboudou-Tchao and Hawkins (2011)

formulated a high-dimensional control chart to monitor changes in both the location

and the scale of Normal data. For the mean vector shifts in Normal data, Li at

al. (2014) proposed a self-starting chart, providing change point estimate, Zantek

et al. (2006) suggested a CUSUM-type for monitoring multistage manufacturing

systems. Apropos of the linear profiles, Zou et al. (2007), Amiri et al. (2016) and

Xia and Tsung (2019) developed self-starting schemes for detecting changes in the

regression parameters, based on the recursive residuals or a Wald-type sequential

statistic. Working in the same spirit, Aminnayeri and Sogandi (2016) and Khosravi

and Amiri (2019) proposed logistic regression profile control charts to monitor the

relationship between a Bernoulli or a Binomial response variable and explanatory

variables. Amirkhani et al. (2018) used a CUSUM-type control chart based on the

residual values of the accelerated failure time regression model for monitoring the

survival times of patients. Further, Pazhayamadom et al. (2013, 2016) demonstrated

a harvest control rule for monitoring limited data fisheries, based on a self-starting

CUSUM.

Only a limited number of methods can be found in the Bayesian arena; Zeng and

Zou (2011) proposed a change point model for the patient outcomes in healthcare.

Specifically, they formulated the change detection as model-selection problem and the

decision making relies on Bayes Factors. Furthermore, Hou et al. (2020) developed
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a self-starting monitoring scheme by fitting a piecewise linear model in monitor-

ing the process mean. Continuing with the nonparametric approach, Paynabar et

al. (2016) developed a potentially distribution free change point model for phase

I monitoring analysis of multichannel profiles, while Xue and Qiu (2020) suggested

a nonparametric CUSUM chart for monitoring multivariate serially correlated pro-

cesses. Although, the latter method is not self-starting based on Definition 1.3.1,

as it needs a batch (even small) of IC data to initiate the chart, before the initial

estimates can be sequentially updated during the online process.

1.4.3 Supplementary research

The research on an area is not only concerned with proposing new innovative meth-

ods, but also investigating the application and properties of existing methods. Hence,

supplementary research papers are added to an area, improving our knowledge about

the already proposed methodologies. Quenseberry (1995a, 1995b, 1995c, 2000) ex-

plored to greater depth the properties of Q statistics for Normal, Poisson and Bi-

nomial data respectively and illustrated geometric Q chart for nosocomial infection

surveillance. Furthermore, Keefe et al. (2015) discussed about the IC performance

of self-starting charts, emphasizing on self-starting CUSUM and Q chart for Normal

data, conditioned on the already observed data. On the same wavelength, Zantek

(2005, 2006, 2008) and Zantek and Nestler (2009) investigated the run-length per-

formance of the same type of charts, facilitating the understanding of Q statistics

behaviour and the derivation of an appropriate design. Remaining in Q statistics,

there are several publications on their application in practice, such as the evaluation

of the performance of Q-based charts by Theroux et al. (2014) for short production

runs in aerospace manufacturing. In the same framework, Snoussi et al. (2005) and

Kawamura et al. (2013) applied Q statistics to the residuals of a time series model

for detecting anomalies, while Lampreia et al. (2012) applied a modified version of

Q statistics for the vibration monitoring of repairable systems.
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For the rest methods of the area, the self-starting CUSUM proposed by Hawkins was

tested in real-world applications, as it was used for the assessment of antihypertensive

responses by Cornélissen et al. (1997) and for the development of a self-balancing

approach for debris cleanup operations using data from an Atlantic hurricane by

Fetter and Rakes (2011). Furthermore, Sobas et al. (2014, 2020) discussed about

the application of Bayesian techniques to medical lab processes. On a different topic,

Celano et al. (2012a, 2012b, 2013) discussed in detail about the performance and

the economic design of t control charts in short runs and Lang (2019) provided

analytical tables of the control limits for a nonparametric adaptive CUSUM based

on sequential ranks. An analytical comparative study of already proposed methods

always helps in their assessment under OOC scenarios. In this context, Yu et al.

(2020) compared different EWMA approaches for a self-starting forecasting process,

while Dogu and Kim (2020) staged a comparison between self-starting methods for

individual multivariate observations. Finally, we cannot forget the important work

of Pollak and Siegmund (1991), who introduced three stopping rules for a change in

the unknown mean of a univariate Normal process and of Baron (2001, 2004), who

discussed about the stopping rules for Bayesian sequential change point models.

1.5 Thesis structure

In this thesis, the focus is on the effective online detection of process disorders and

the reliable inference for the unknown process parameter(s) of short horizon data,

without the requirement of any calibration phase. We will attempt to achieve this

goal adopting the Bayesian perspective in developing appropriate self-starting con-

trol charts. Namely, we propose a general Bayesian method named the Predictive

Control Chart (PCC) focused on the detection of large transient shifts (outliers).

In the same philosophy, we propose Predictive Ratio CUSUM (PRC) focusing on

detecting medium/small persistent parameter shifts. In addition, we introduce the
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Self-Starting Shiryaev (3S), a general online change point model available for uni-

variate (U3S) or multivariate (M3S) processes.

Analytically, in Chapter 2, we provide the PCC initial assumptions and derive the

modelling along with the necessary formulas for several discrete and continuous uni-

variate distributions that belong to the regular exponential family. Along with them,

we provide guidelines regarding choices of prior distributions and the options that

allow the use of possibly available historical data, via a power prior mechanism.

Further, we present the possibility of employing a Fast Initial Response (FIR) PCC,

which enhances its performance during the early stages of the process. An extended

simulation study follows including a comparison against a frequentist based compet-

ing method, a sensitivity analysis and a robustness study examining both prior and

model type misspecifications. The PCC application to real data wraps this Chapter,

where a continuous (Normal) and a discrete (Poisson) real-data case from a medical

lab and an industrial setting respectively, are being explored.

The PRC derivation is presented in Chapter 3. Precisely, we provide the PRC

design, including the recursive formulas for several univariate discrete and continuous

distributions that belong to the regular exponential family, along with the related

decision making and a FIR option. A simulation study for detecting persistent

parameter shifts in Normal, Poisson and Binomial data follows, where we evaluate

the PRC performance against frequentist and Bayesian competitors, while examining

a prior sensitivity. At the end of this chapter, we provide a PRC illustration to real

data, where a continuous (Normal) and a discrete (Poisson) cases are examined.

Chapter 4 refers to the 3S detection scheme. Specifically, we present the assumptions

and the general model structure, which allow its application to any type of data,

regardless of the dimension. In addition, we discuss about the posterior inference

for the process parameters and about the 3S stopping time, introducing an adaptive

decision limit. Apart from the description of the general form, we provide the details

and the properties of the submodels of the univariate (U3S) and multivariate (M3S)
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of Normal data. The performance of the proposed models is examined via extensive

simulations in a comparative study against frequentist and nonparametric methods

for both univariate and multivariate data, along with a sensitivity analysis. Three

applications to well documented data demonstrate U3S and M3S, where a mean or a

variance shift for univariate data and a translocation shift for multivariate data are

experienced. Finally, the conclusions of this thesis along with the suggested future

research work are presented in Chapter 5, while all the necessary technical details

are provided in Appendices.
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Chapter 2

Predictive Control Chart (PCC)

2.1 PCC Theoretical background

Being in the Bayesian framework, our goal is to utilize the available prior informa-

tion and provide a control chart with enhanced performance compared to existing

self-starting frequentist-based methods. The Predictive Control Chart (PCC) were

initially proposed in the M.Sc. thesis of Bourazas (2014) and Kiagias (2014) for

continuous and discrete cases respectively and published in Bourazas et al. (2021).

PCC is formed by the predictive distribution and it will provide a sequentially up-

dated region against which every new observable will be plotted. Observations falling

outside the predictive region will ring an alarm triggering further investigation and

potentially some form of corrective action. In this chapter, we extend PCC in four

ways. By using power priors, by defining rigorously the IC region, by developing a

fast initial response (FIR) scheme and by providing two applications to real data.

21
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2.1.1 PCC for k-parameter regular exponential family (k-

PREF)

Initially, we need to derive the predictive distribution (Geisser, 1993), which depends

on the likelihood of the observed univariate data. From a process under study, we

sequentially obtain the data X = (x1, . . . , xn), which we consider to be a random

sample from the distributionXj|θ, whereXj, j = 1, . . . , n, is univariate, while the un-

known parameter θ can be either univariate or multivariate, e.g. Xj|θ ∼ Bin(Nj, θ),

Xj|θ ∼ P (θ), Xj|θ ∼ N(θ1, θ
2
2) etc. Our main interest is in detecting in an online

fashion and without employing a phase I exercise, the presence of large transient

shifts on the unknown parameter(s) θ. We assume that the likelihood, is a member

of the univariate k-parameter regular exponential family (denoted from this point

on as k-PREF), and by following Bernardo and Smith (2000), it can be written as:

f(X|θ) =

[
n∏
j=1

g(xj)

]
[c(θ)]n exp

{
k∑
i=1

ηi(θ)
n∑
j=1

hi(xj)

}
, (2.1.1)

where g(xj) ≥ 0, h1(xj), . . . , hk(xj) are real-valued functions of the univariate obser-

vation xj that do not depend on θ, while c(θ) ≥ 0 and η1(θ), . . . , ηk(θ) are real-valued

functions of the unknown parameter(s) θ that cannot depend onX. PCC will be de-

veloped for any likelihood that belongs to the k-PREF, providing a general platform

where binary (Binomial), count (Poisson, Negative Binomial) or various continuous

(Normal, Gamma, Lognormal etc.) univariate data can be analyzed using the same

methodology.

The prior distribution is of key importance in the Bayesian approach. Since in

practice, historical data (of the same or a similar process, not to be confused with

phase I data) are typically available, we recommend the use of power priors (Ibrahim

and Chen, 2000), which offer a framework to incorporate past data (when available)
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in the mechanism of forming the prior distribution. The power prior is derived by:

π (θ|Y , α0, τ ) ∝ f (Y |θ)α0 π0 (θ|τ ) , (2.1.2)

where Y = (y1, . . . , yn0) refers to a vector of historical univariate data (under the

same distribution law f(·|θ) that the current data obey), 0 ≤ α0 ≤ 1 is a scalar

parameter, π0 (θ|τ ) is the initial prior for the unknown parameter(s) and τ is the

vector of the initial prior hyperparameters. The (fixed) parameter, α0, controls the

power prior’s tail heaviness and consequently the influence of the historical data on

the posterior distribution. Essentially, α0 represents the probability of the historical

data being compatible with the current observations and at the extremes α0 = 0 or

1, the historical data will be ignored or taken fully into account (just as the current

data) respectively. A typical value for α0 is 1/n0, which conveys the weight of a single

observation to the prior information. In general, α0 should be determined by the

relevance of past with current data and how likely is the past data to provide reliable

estimates for the unknown parameters (depending on the size n0). For relevant

historical data but with small (large) n0 it is recommended to use α0 < 1/n0 (α0 >

1/n0). It should be noted that the power priors are robust in conflicts of historical

and current data, as they use only the sufficient statistic of the past data.

Generalizing the power prior concept, we could either assume α0 is unknown (mod-

eled by a prior distribution) or we could allow the use of multiple historical data: if Y

and Z are historical data from different sources weighted by α0 and β0 respectively,

then the power prior is proportional to:

π (θ|Y ,Z, α0, β0, τ ) ∝ f (Y |θ)α0 f (Z|θ)β0 π0 (θ|τ ) . (2.1.3)

It is worth mentioning that, Ibrahim et al. (2003), proved that the power prior is

100% efficient in the sense that the ratio of the output to input information is equal

to one, with respect to Zellner’s information rule (see Zellner, 1988).
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In a subjective Bayesian manner, π0(·) should reflect all available information regard-

ing the unknown parameter(s) before the data become available and its form can be

derived from prior knowledge, expert’s opinion etc. From an objective Bayesian

point of view and under the scenarios of lacking any prior knowledge, one can adopt

a weakly informative or even non-informative initial prior, such as flat (uniform)

prior, Jeffreys (Jeffreys, 1961) or reference (Bernardo, 1979, Berger et al., 2009)

prior (see also the discussion regarding prior elicitation in Subsection 2.1.2).

To preserve closed form solutions for all scenarios, when implementing PCC, we will

adopt a conjugate prior for π0 (θ|τ ), which always exists for any likelihood that is a

member of the k-PREF (Bernardo and Smith, 2000) and its form is given by:

π0 (θ|τ ) = [K(τ )]−1 [c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
, (2.1.4)

where θ ∈ Θ (parameter space) and τ = (τ0, τ1, . . . , τk) is the (k + 1)-dimensional

vector of the initial prior hyperparameters, such that:

K(τ ) =

∫
Θ

[c(θ)]τ0 exp

{
k∑
i=1

ηi(θ)τi

}
dθ <∞. (2.1.5)

The conjugate prior, π0 (θ|τ ), is also a member of the exponential family. The

choice of the hyperparameters τ will reflect the prior knowledge, ranging from highly

informative to vague and even non-informative choices. Non-conjugate choices of the

initial prior are allowed, at the cost of not having PCC in closed form but evaluated

numerically. Lemma 2.1.1 provides the form of a conjugate power prior.

Lemma 2.1.1. For any vector of historical data Y = (y1, . . . , yn0) of the same form

with the current data, a conjugate π0 (θ|τ ) will lead to a conjugate power prior of

the form:

π (θ|Y , α0, τ ) ∝ π0 (θ|τ + α0tn0(Y )) , (2.1.6)
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where tn0(Y ) =

(
n0,

n0∑
l=1

h1(yl), . . . ,

n0∑
l=1

hk(yl)

)
is a (k+1)-dimensional vector, with

Y = (y1, . . . , yn0) referring to the vector of historical univariate data.

Proof

For a likelihood f(·|θ), being a member of the k-PREF, the conjugate prior is given

by (2.1.4) and the normalizing constant, K(τ ) is given by (2.1.5) (for discrete θ,

we replace the integral sign by summation). Then for the historical data Y =

(y1, ..., yn0), sampled from the same member of the k-PREF as the likelihood, f(·|θ),

the power prior will become:

π (θ|Y , α0, τ ) ∝ f (Y |θ)α0 π0 (θ|τ )

=

[
n0∏
l=1

g(yl)

]α0

[c(θ)]α0n0 exp

{
α0

k∑
i=1

ηi(θ)

n0∑
l=1

hi(yl)

}
×

×[K(τ )]−1[c(θ)]τ0exp

{
k∑
i=1

ηi(θ)τi

}

= [K(τ )]−1

[
n0∏
l=1

g(yl)

]α0

[c(θ)]τ0+α0n0 exp

{
k∑
i=1

ηi(θ)

(
τi + α0

n0∑
l=1

hi(yl)

)}

∝ [c(θ)]τ0+α0n0 exp

{
k∑
i=1

ηi(θ)

(
τi + α0

n0∑
l=1

hi(yl)

)}
∝ π0 (θ|τ + α0tn0(Y )) ,

where tn0(Y ) =

(
n0,

n0∑
l=1

h1(yl), . . . ,

n0∑
l=1

hk(yl)

)
is a (k+1)-dimensional vector, with

Y = (y1, ..., yn0) referring to the vector of historical data.

Q.E.D.

Theorem 2.1.1 provides, in closed form, the posterior and predictive distributions of

any likelihood that belongs to the k-PREF:

Theorem 2.1.1. For any likelihood belonging to the k-PREF (2.1.1) and an initial

conjugate prior (2.1.4) via a power prior (2.1.1) mechanism we have:
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(i)The posterior distribution of the unknown parameter(s) θ:

p (θ|X,Y , α0, τ ) = π0 (θ|τ + α0tn0(Y ) + tn(X)) , (2.1.7)

where tn(X) =

(
n,

n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj)

)
is a (k+ 1)-dimensional vector, with

X = (x1, . . . , xn) being the observed univariate data.

(ii)The predictive distribution of the single future univariate observable Xn+1:

f (Xn+1|X,Y , α0, τ ) =
K (τ + α0tn0(Y ) + tn(X) + t1(Xn+1))

K (τ + α0tn0(Y ) + tn(X))
g(Xn+1), (2.1.8)

where t1(Xn+1) = (1, h1(Xn+1), . . . , hk(Xn+1)) is a (k + 1)-dimensional vector, func-

tion of the future observable Xn+1.

Proof

(i) Once the current dataX = (x1, ..., xn) become available, we will be able to derive

the posterior distribution of the unknown parameter(s) θ, using Bayes theorem:

p (θ|X,Y , α0, τ ) ∝ f (X|θ) π (θ|Y , α0, τ )

∝ f (X|θ) π0 (θ|τ + α0tn0(Y ))

=

[
n∏
j=1

g(xj)

]
[c(θ)]n exp

{
k∑
i=1

ηi(θ)
n∑
j=1

hi(xj)

}
×

× [K(τ )]−1

[
n0∏
l=1

g(yl)

]α0

[c(θ)]τ0+α0n0

× exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl)

)}

∝ [c(θ)]τ0+α0n0+n exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj)

)}
∝ π0 (θ|τ + α0tn0(Y ) + tn(X)) ,

where tn(X) =

(
n,

n∑
j=1

h1(xj), . . . ,
n∑
j=1

hk(xj)

)
is a (k+ 1)-dimensional vector, with

X = (x1, ..., xn) being the observed data. This is a member of exponential family,
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and specifically of the same distribution form as the initial prior (as expected since

we use a conjugate prior).

(ii) We have that the predictive distribution of a future observable will be given by:

f (Xn+1|X,Y , α0, τ ) =

=

∫
Θ

f (Xn+1|θ) p (θ|X,Y , α0, τ ) dθ

=

∫
Θ

[
g(Xn+1)c(θ) exp

{
k∑
i=1

ηi(θ)hi(Xn+1)

}]
×

[
[K (τ + α0tn0(Y ) + tn(X))]−1

[c(θ)]τ0+α0n0+n exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj)

)}]
dθ

= [K (τ + α0tn0(Y ) + tn(X))]−1 g(Xn+1)×

×
∫
Θ

[c(θ)]τ0+α0n0+n+1 exp

{
k∑
i=1

ηi(θ)

(
τi + a0

n0∑
l=1

hi(yl) +
n∑
j=1

hi(xj) + hi(Xn+1)

)}
dθ ⇒

f (Xn+1|X,Y , α0, τ ) =
K (τ + α0tn0(Y ) + tn(X) + t1(Xn+1))

K (τ + α0tn0(Y ) + tn(X))
g(Xn+1),

where t1(Xn+1) = (1, h1(Xn+1), . . . , hk(Xn+1)) a (k+1)-dimensional vector, function

of the future observable Xn+1. Note that the vectors tn0(Y ), tn(X) and t1(Xn+1)

refer to the respective sufficient statistics for the power prior and the likelihood.

Q.E.D.

PCC construction will be based on the predictive distribution and it can start as

soon as n = 2 (except when we have Normal likelihood with both parameters

unknown, α0 = 0 and we use the reference prior, where PCC starts at n = 3).

The exact form of the predictive distribution (under conjugate prior), for various

likelihood choices (either discrete or continuous data), used commonly in SPC/M,

can be found in Table 2.1.1. To unify notation in the table, we denote by D =

(Y ,X) = (y1, . . . , yn0 , x1, . . . , xn) the vector of historical and current univariate

data, w = (α0, . . . , α0, 1, . . . , 1) the vector of weights corresponding to each element

dj in D and finally we call ND = n0 + n the length of the data vector D.
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2.1.2 Prior elicitation

The big advantage of PCC is the use of (typically available) prior information, which

allows to decrease the uncertainty of the unknown parameter(s) θ, improving the

performance (with respect to false alarms and detection power), especially at the

early stages. The speed at which this uncertainty decreases is inversely related

to the information that the prior distribution carries. When strong opinion about

the unknown parameter(s) is available and located accurately (i.e. we have highly

informative initial prior placed at the parameter space where the unknown parameter

is), then the PCC performance will be optimal, i.e. the false alarm tolerance at the

nominal level and quite high detection power. Nevertheless, a highly informative

prior miss-placed on the parameter space (with respect to where the true unknown

θ is), will have as result to get an extremely high False Alarm Rate (FAR), until

sufficient information from the data moves the posterior to the area where the true θ

lies. Thus, a general recommendation is to avoid having a highly informative initial

prior distribution (to eliminate the risk of inflated false alarms if miss-placed). Wang

et al. (2018) developed effective numerical methods for exploring reasonable choices

of an informative prior distribution.

From the above it becomes evident that the elicitation of the hyper-parameters τ play

an important role to PCC. There are two different ways that one can proceed: being

subjective or objective. In the latter we use non-informative priors and in a sense

we leave the data to carry the information. In the former we use a low/medium (but

not high) informative prior distribution. Such a prior will carry more information

compared to the objective priors (reducing the posterior variability of θ) enhancing

the PCC performance, especially at the start of the process. Furthermore, as the size

of the data increases, the influence of the low/medium information prior is washing-

out.

In the case where no prior information for θ exists, or a user prefers to follow an
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objective prior approach, then the hyper-parameters determination should be chosen

with caution, especially when we do not have historical data to use in a power prior

(i.e. α0 = 0). Various classes of non-informative priors exist like:

• Flat prior: a uniform prior equally weighting all possible values of the un-

known parameter.

• Jeffreys prior: a prior that is closed under parameter transformations.

• Reference prior: a function that maximizes some measure of distance (e.g.

Hellinger) or divergence (e.g. Kullback-Leibler) between the posterior and

prior, as data become available.

A list of Jeffreys and reference initial priors that can be used for likelihoods that are

members of the k-PREF are given in Table 2.1.2.

Likelihood Initial Reference/Jeffreys Prior
f (·|θ) π0 (θ|τ )

P (θ · si) π0(θ) ∝ 1√
θ
≡ G(1/2, 0)

Bin(Ni, θ) π0(θ) ∝ 1√
θ(1− θ)

≡ Beta(1/2, 1/2)

NBin(r, θ) π0(θ) ∝ 1

θ
√

(1− θ)
≡ Beta(0, 1/2)

W (θ, κ) π0(θκ) ∝ 1

θκ
≡ IG(0, 0)

G(a, θ), IG(a, θ), Pa(m, θ) π0(θ) ∝ 1

θ
≡ G(0, 0)

N (θ, σ2), LogN (θ, σ2) π0(θ) ∝ c ≡ N(0,+∞)

N (µ, θ2), LogN (µ, θ2) π0(θ2) ∝ 1

θ2
≡ IG(0, 0)

N (θ1, θ
2
2), LogN (θ1, θ

2
2) πR0 (θ1, θ22) ∝

1

θ22
≡ NIG(0, 0,−1/2, 0), πJ0 (θ1, θ22) ∝

1

θ32
≡ NIG(0, 0, 0, 0)

Table 2.1.2: Initial Reference (R) and Jeffreys (J) prior distributions. For univariate
θ the two classes of non-informative priors coincide.
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When we need to choose an “objective” prior we should aim to satisfy the following

properties: have the minimal possible influence in the process, do not decrease the

reflexes of PCC and attempt to have stable false alarm performance. Based on this

proposal we will next provide more specific details along with some guidelines for

the likelihoods of Normal, Poisson and Binomial that are most common in SPC/M

studies.

For the N (θ1, θ
2
2) − NIG(µ0, λ, a, b) model, we have to carefully determine the pa-

rameters of the Inverse Gamma (i.e. a and b). For example, the prior NIG(0, ε, ε, ε)

(which converges to Jeffreys prior as ε→ 0) gives higher density at values of θ2
2 which

are close to 0. Thus, it becomes very informative, increasing drastically the false

alarms especially for large values of θ2
2. Similar results hold for NIG(0, ε, 1/2, ε) and

NIG(0, ε, 1, ε), where the mean of the marginal posterior of θ2
2 is the MLE and the un-

biased estimator respectively. On the other hand, a flatter prior like NIG(0, ε, ε, 1)

may overestimate θ2
2 reducing the reflexes of PCC. Generally, we recommend to

choose a value for the hyper-parameter a > 2, so that the mean and the variance of

the prior Inverse Gamma is defined. In different cases, the prior parameters have to

be determined carefully.

For the P (θ3)−Gamma(c, d) model, the initial prior Gamma(ε, ε) seems not to be a

good choice. Despite that the posterior mean is the MLE, this prior may increase the

number of false alarms, especially when θ3 is close to 0. In that case, if xn = 0, then

no-alarm zone of PCC, which will be defined as Highest Predictive Mass (HPrM)

region Rn+1 in Subsection 2.1.3, will shrink to a short region. In general we found

that small values for both of the hyper-parameters c and d (e.g. less than 1/3) tend

to affect Rn+1 in the same manner, even when the prior mean is correctly located.

For Bin(N, θ4)−Beta(a, b) model we propose to avoid Beta(ε, ε), which converges to

Haldane’s prior (Haldane, 1932) as ε→ 0, where the posterior mean is equal to the

MLE, as we will have inflated false alarms. Also, we suggest to avoid small values

for both of the hyper-parameters a and b (e.g. less than 1/3), especially if θ4 is close
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to 0 as we will have inflated false alarms (just as we had in the Poisson-Gamma

respective case). In contrary, the flat Beta(1, 1), equally weighting all values of θ4,

will have the posterior mode to be the MLE and provide weak information, inflating

the predictive. Thus, the detection performance of PCC will be affected.

Generally, reference priors (Bernardo, 1979, Berger et al., 2009) and neutral priors

(Kerman, 2011) provide a stable start to PCC under total prior ignorance. Our

proposal though, when some information about the unknown parameters exists, is to

adopt a medium/low volume information prior π0(θ|τ ) which will enhance the PCC

performance (compared to non-informative choices) and its effect will be removed

once a short sequence of data becomes available.

2.1.3 HPrD/M region and Type I error

The PCC is based on the sequentially updated form of the predictive distribution,

which is used to determine a region denoted by Rn+1, where the future observable

(Xn+1) will most likely be, as long as the process is stable (i.e. no changes occurred).

The region Rn+1 will be the 100(1−α)% Highest Predictive Density/Mass (HPrD/M)

region, which is the unique shortest region, that minimizes the absolute difference

with the predetermined coverage. For notational convenience we will adopt the name

HPrD, even for cases in which the predictive distribution is discrete, where we derive

the Highest Predictive Mass (HPrM) region.

The definiton of HPrD/M is as follows:

Definition 2.1.1. Assume the set Rc which contains the values of the predictive

density (or mass) function, which are greater than a threshold c, i.e.:

Rc = {xn+1 : f(xn+1|D,w, τ ) ≥ c}. (2.1.9)

The HPrD/M region will be given by minimizing the absolute difference of a highest
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predictive probability from a significance level 1− a, for all the possible values of c.

Specifically:

Rn+1 = min
Rc

∣∣∣∣∣∣
∫
Rc

f(xn+1|D,w, τ )− (1− a)

∣∣∣∣∣∣, (2.1.10)

for the discrete case, we replace the integral sign by summation.

Rn+1 will be the shortest region with the smallest absolute difference from the proba-

bility 1−a. In other words, it minimizes the Lebesque measure m(Rc) for continuous

cases or the corresponding measure l(Rc) =
∑
i

δxi (f(xi|D,w, τ ) ≥ c) for discrete

cases, where δxi(·) represents the Dirac delta function.

For continuous distributions the HPrD region is calculated just like the Highest

Posterior Density (HPD) region in Bayesian analysis (see for example Carlin and

Louis, 2009), where instead of the posterior, we use the predictive distribution and

the minimum value of the absolute difference will be 0. For discrete predictive

distributions, typically we will not be able to obtain a region that has the exact

coverage probability 1 − α. In this case the HPrD/M can be obtained by starting

from the mode of the predictive distribution and continue adding sequentially the

next most probable values of the predictive distribution, until we get sufficiently

close (minimizing the absolute difference) to the predetermined coverage level 1−α.

Algorithm 1 provides the details in how to derive the HPrM region for a discrete

predictive distribution and Figure 2.1.1 provides an illustration.
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Figure 2.1.1: The HPrD/M region (Rn+1) for continuous (left panel) and discrete
(right panel) data.

Algorithm 1 HPrM algorithm for a discrete distribution

1: Set pi the ith decreasing ordered probability of f (Xn+1|X,Y , α0, τ ), e.g. p1 is
the max

2: Set zi = arg{pi}, i.e. the argument(s) where pi get their values
3: n← 1 { initial values }
4: sum_probs← 0
5: diff ← 1
6: HPrM ← ∅
7: stop← 0
8: while stop = 0
9: sum_probs← sum_probs+ pn

10: if |sum_probs− (1− a)| < diff
11: HPrM ← {HPrM, zn}
12: diff ← |sum_probs− (1− a)|
13: n← n+ 1
14: else
15: stop← 1
16: HPrM ← sort{HPrM}

We should also note here that in symmetric discrete predictive distributions (like a

Beta Binomial with α = β), the HPrM region might not be unique, as there might

exist two regions that achieve the minimum of absolute difference (we can choose at
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random).

PCC will plot the sequentially updated HPrD/M region versus time, providing the

“in control” region of the next data point and thus give an alarm if a new observable

does not belong to the respective HPrD/M region. For unimodal predictive distribu-

tions, the region Rn+1 will be an interval for continuous distributions, or a set with

consecutive numbers for the discrete case, while for a multimodal predictive, Rn+1

might be formed as a union of non-overlapping regions.

Regarding the false alarm tolerance, the (predetermined) parameter 0 < α < 1, also

known as False Alarm Rate (FAR), will reflect our tolerance to false alarms and

consequently the detection power. The proposed PCC can be viewed as a sequential

(multiple) hypothesis testing procedure, where at each time point n we draw the

HPrD/M region (Rn+1) for the future observable, so that if no changes occurred in

the process (IC state), the probability to raise an alarm is: P (Xn+1 /∈ Rn+1|IC) = α.

We suggest two metrics in selecting α, depending on whether we know or not in

advance the number of data points, N , that PCC will be used for (in short runs or

Phase I studies) and/or whether N is large.

If we have a (known) fixed horizon of N data points, for which PCC will be employed

and N is not too large (typically up to a few dozens), then we suggest to control the

Family Wise Error Rate (FWER), which expresses the probability of raising at least

one false alarm out of a pre-determined number of N hypothesis tests. This is iden-

tical to the concept of False Alarm Probability (FAP) introduced by Chakraborti et

al. (2008) for phase I analysis. Among various proposals in controlling FWER, we

adopt the Šidák’s correction (Šidák, 1967), which is slightly more powerful than the

popular Bonferroni’s correction (Dunn, 1961). Šidák’s correction assumes indepen-

dence across tests and is more conservative in the presence of positive dependence,

compared with independent tests. If we define V to be the number of false alarms

observed in a PCC, applied on N observations in total, i.e. n = 1, . . . , N , from the

IC state of the distribution (0 ≤ V ≤ N − 1, when PCC starts at n=2), then the
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Šidák’s correction (assuming independence) will provide:

FWER = P (V ≥ 1) = 1− P (V = 0) = 1− P

(
N⋂
i=2

{Xi ∈ Ri|IC}

)

= 1−
N∏
i=2

P (Xi ∈ Ri|IC) = 1− (1− α)N−1 ⇒ α = 1− (1− FWER)
1

N−1 . (2.1.11)

So, once we know N and we set the desirable FWER, we can obtain the parameter

α needed in deriving the HPrD/M regions, Rn+1. It is evident that as N increases, α

decreases and approaches zero, it leads to an extremely conservative decision scheme,

that will reduce the OOC detection power.

We recommend to use the above approach, as long as α ≥ 10−3, even though this

can be adjusted depending on the type of process we monitor. However, in the

cases where N is either unknown in advance or it is too large, then we suggest to

derive α using the metric of IC Average Run Length (ARL0). Following Montgomery

(2020), this corresponds to the desired average number of data points that we will

plot in the PCC before a false alarm occurs, given that the process is under the

IC state. As N increases, the updated posterior distribution gets more informative

(offering consistent estimates of the unknown parameters) and thus the resulting

hypothesis tests will tend to be nearly independent. Then, the value of the desired

(predetermined) ARL0 will be approximately:

ARL0 ≈
1

α
⇒ α ≈ 1

ARL0

. (2.1.12)

Based on either (2.1.11) or (2.1.12), we predetermine the coverage level 100(1−α)%

that the HPrD/M region (Rn+1) will have.
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2.1.4 Fast Initial Response (FIR) PCC

One of the most serious issues in self-starting methods, is the weak response to

early shifts (Goedhart et al., 2017, Capizzi and Masarotto, 2019). The Fast Initial

Response (FIR) feature is typically used to improve the performance of the standard

charts for early shifts in a process. Lucas and Crosier (1982) were the first to propose

a FIR feature for CUSUM, while Steiner (1999) introduced the FIR EWMA by

narrowing the control limits. In the latter, the time dependent effect of the FIR

adjustment, decreases exponentially with time and becomes negligible after a few

observations. Precisely, Steiner’s adjustment is given by:

FIRadj = 1− (1− f)1+a(t−1) , (2.1.13)

where a > 0 is a smoothing parameter, t is the current number of hypotheses tests

performed and 0 < f < 1 represents the proportion of the adjusted limit over the

initial test (i.e. t = 1).

As the PCC uses control limits, much like the EWMA, we will adopt Steiner’s ad-

justment for a time-varying narrowing of the Rn+1 region in the start of the process.

Despite the head-start the FIR option can provide to PCC, we should make sure that

we do not significantly inflate the false alarms. Thus, the FIR parameters should

be selected by taking into account the false alarm behavior of PCC, which depends

on the prior settings, especially when the volume of available data is small. If an

extremely informative prior (near point mass) is used, then the PCC behavior acts

like a typical Shewhart chart, as the resulting Rn+1 region is not essentially updated

by new observations. On the other hand, if a non-informative prior, like the initial

reference prior without historical IC data, is selected, then the FAR depends only

on the (iid) data. As a result for these two cases, the observed FAR will meet the

predetermined standards (even from the very first hypothesis testing) and therefore

we should avoid the use of a FIR adjustment (or otherwise the observed FAR will
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be inflated).

However, in the case of a weakly informative prior, the Rn+1 region is quite wide

(as we combine prior and likelihood uncertainty), but at the same time the prior

distribution provides beneficial information for the IC state. Combining these two

facts, the first IC data points are more likely to be plotted within the Rn+1 region.

This will result in a temporarily smaller (from what is anticipated) FAR, especially

for the very early tests at the start of a process. Thus, we could use a FIR adjustment

without a negative effect on the predetermined expected number of false alarms. We

propose to be somewhat conservative and use f = 0.99, i.e. the adjusted Rn+1 region

will be the 99% of the original for the first test and a = (−3/log10(1− f)− 1) /4,

i.e. the adjusted Rn+1 region will be the 99.9% of the original at the fifth test. We

should note that t is the current number of tests, not the number of observations, as

for the first (or the second) observation PCC does not provide a test.

2.2 PCC decision making

The major role of PCC is to control a process and identify transient large shifts

(outliers), in an online fashion and without a phase I exercise. As such, PCC performs

a hypothesis test as each new data point xn+1 becomes available and raises an alarm

when xn+1 /∈ Rn+1, indicating that the new observable is not in agreement with what

is anticipated from the predictive distribution (that was built from the previous data

and the prior distribution). The endpoints of Rn+1, formed from the predictive

distribution, play the role of the control limits of the chart. The range of these limits

reflect the variability of the predictive distribution, which is known to depend on

both the length of the available data and the precision of the prior distribution. For

a weakly informative prior the range will be wider at the start of the process and

as more data become available it will become more narrow and eventually stabilize,

washing out the effect of the prior. Figure 2.2.1 provides illustrations of PCC for data
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streams of length 30 that come from a continuous (Normal data with both parameters

unknown) and two discrete (Poisson and Binomial) cases, when the process is either

IC or has a large isolated shift at location 15 (OOC scenario).
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Figure 2.2.1: The IC and OOC illustration of PCC for i.i.d. Normal, Poisson
and Binomial data. For the IC Normal data Xi|

(
θ1, θ

2
2

)
∼ N

(
θ1 = 0, θ2

2 = 1
)
and

for the OOC case we sample X15 ∼ N(4, 1). The initial prior was
(
θ1, θ

2
2

)
∼

NIG (µ = 0, λ = 2, a = 1, b = 0.8). For the IC Poisson data Xi|θ3 ∼ P (θ3 = 4). For
the OOC case X15 ∼ P (10), while θ3 ∼ G (c = 8, d = 2). For the IC Binomial data
Xi|θ4 ∼ Bin (N = 20, θ4 = 0.1). For the OOC case X15 ∼ Bin(20, 0.368), while
θ4 ∼ Beta (a = 0.5, b = 4.5). In all cases, α needed to derive the 100(1−α)% HPrD/M
(Rn+1) was selected to satisfy FWER = 0.05 for N = 30 observations.

As can be seen in Figure 2.2.1, the limits tend to become more narrow and finally

stabilize when the size of the data increases, forming a more informative posterior

distribution of the unknown parameter(s). The outlying observations in all scenarios

are plotted outside the Rn+1 region, hence raising an alarm. The region Rn+1 is

formed online, after the data point xn becomes available, and so when we get an

alarm (i.e. xn+1 /∈ Rn+1), the suggestion is to stop the process, perform some root

cause analysis to identify external sources of variation, possibly have an intervention
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and finally restart the PCC (the posterior we had right before the alarm can act as

the new prior, or the previous IC data can be used in the power prior mechanism).

However, if we will not react to an alarm, due to the Bayesian dynamic update

mechanism, the isolated change detected will be absorbed. As a consequence, the

posterior and predictive distribution will have inflated variance leading to wider Rn+1

regions. In the OOC scenarios in Figure 2.2.1 we observe that the Rn+1 regions are

wider at time 16 due to the “no action” policy at the alarm for time 15. This effect

is reduced with time but it is still present until observation 30, where the Rn+1 is

wider compared to the respective region of the IC data.

The PCC methodology with all possible options is synopsized in a flowchart in Figure

2.2.2 and in pseudocode in Algorithm ??.
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START

Choose the significance level
α based on (2.1.11) or (2.1.12)

Choose the likelihood and the con-
jugate prior from the Table 2.1.1

FIR PCC?Determine f and a in (3.1.5) Set f = 1 in (3.1.5)

Prior
Information?

Determine the initial
prior hyperparameters τ

Set the initial reference
prior from Table 2.1.2

Historical
Data?

Provide the historical data
and determine α0 in (2.1.2) Set α0 = 0

Obtain xn, (n = 1 or 2F)

Derive the predictive Xn+1| (X,Y , α0, τ ), form the FIRadj ·
100(1 − α)% HPrD/M region (Rn+1) and obtain xn+1

xn+1 ∈ Rn+1?n ← n + 1 ALARM!

Corrective
Action?

END

YES NO

YES NO

YES NO

YES NO

YES

NO

Figure 2.2.2: PCC flowchart. A parallelogram corresponds to an input/output
information, a decision is represented by a rhombus and a rectangle denotes an
operation after a decision making. In addition, the rounded rectangles indicate the
beginning and end of the process.
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Algorithm 2 PCC algorithm
1: Select the significance level α, based on FWER or ARL0 { FAR }
2: Choose the data distribution and the conjugate prior density for θ { distributions

}
3: Is FIR-PCC of interest? { FIR }
4: YES
5: Determine the parameters f and a
6: NO
7: Set f = 1
8: Is prior information available? { initial prior π0(·) }
9: YES

10: Determine the hyperparameters of the initial prior τ
11: NO
12: Set the initial reference/Jeffeys prior (see Table 2.1.2)
13: Are prior data available? { power prior }
14: YES
15: Provide the historical data Y and determine α0

16: NO
17: Set α0 = 0
18: Once the data point xn (n ≥ 1F) arrives, derive the predictive distribution of

next observable Xn+1| (X,Y , α0, τ )
19: Derive the FIRadj ·100(1−α)% HPrD/M region, obtain xn+1 and draw it { Rn+1

}
20: if xn+1 ∈ Rn+1 { test }
21: n← n+ 1
22: goto 18
23: else { alarm! }
24: if you do not make a corrective action
25: then goto 21
26: else
27: end

FFor the Normal - NIG model using the initial reference prior and α0 = 0 we need

n = 2 to initiate PCC, while for all other cases PCC starts at after x1 becomes

available.

Apart from controlling a process, PCC can be used for monitoring the unknown

parameter(s). As we showed in Theorem 2.1.1, before deriving the predictive distri-

bution at each time point, we first obtain the posterior distribution for the unknown
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parameter(s). Decision theory can be used to provide loss function based optimal

point/interval estimates and/or hypothesis testing for each parameter. For exam-

ple, using the squared error loss function, the Bayes rule (optimal point estimate) is

known to be the mean of the posterior distribution (Carlin and Louis, 2009), i.e. we

have a (sequentially updated) point estimate of the unknown process parameter(s).

To illustrate this option, in Figure 2.2.1, we additionally plot the posterior mean

estimate of θ1 for the Normal and θ3 for the Poisson cases.

Finally, PCC summarizes the predictive distribution through a region, but other

forecasting options (like point estimates) are straightforward to derive as well using

decision theory.

2.3 Comparative study and sensitivity analysis

The PCC is developed in a general framework, allowing its use for any likelihood

that belongs to the k-PREF. In traditional SPC/M, significant amount of work has

been dedicated for Normal, Poisson and Binomial data. When the goal is to detect

transient large shifts in a short run process of individual univariate data, without

employing a phase I calibration stage, the frequentist based Q charts developed by

Quesenberry (1991a,b,c) are probably the most prominent representative methods

for Normal, Binomial and Poisson data respectively. In absence of phase I parameter

estimates, the Q charts provide a self-starting monitoring method, where calibration

and testing happens simultaneously, aiming to detect process disturbances (OOC

states) in an online fashion.

2.3.1 Competing methods

In this Subsection, we will present the Q chart procedure for Normal, Poisson and

Binomial data, i.e. the methods that we will compare against the proposed PCC. We
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denote as Φ−1(·) the inverse of the standard Normal CDF, Gν(·) the Student-t CDF

with ν degrees of freedom, B(·) the Binomial CDF and H(·) the Hypergeometric

CDF. Briefly, the Q statistics are:

• Q statistic (Quessnberry, 1991a) for the Normal data assuming both µ and σ2

unknown, i.e. Xi|θ ∼ N (θ1, θ
2
2)

Qn+1 = Φ−1

Gn−1


Xn+1 −

n∑
j=1

Xj√
n∑
j=1

(xj − x̄n)2 /(n− 1)


 , n = 2, 3, ...

• Q statistic (Quessnberry, 1991c) for the Poisson data assuming rate λ unknown

and inspected units si known, i.e. Xi|θ ∼ P (θ · si)

Qn+1 = Φ−1

B
Xn+1;

n+1∑
j=1

Xj,
sn+1

n+1∑
j=1

sj


 , n = 1, 2, ...

• Q statistic (Quessnberry, 1991b) for the Binomial data assuming probability p

unknown and size N known, i.e. Xi|θ ∼ Bin (Ni, θ)

Qn+1 = Φ−1

{
H

(
Xn+1;

n+1∑
j=1

Xj, Nn+1,
n∑
j=1

Nj

)}
, n = 1, 2, ...

For all the above cases, the Q statistics are tested against the standard Normal

distribution. It is worth mentioning that only for the Normal case the Q statistics

for the Normal case are independently and identically distributed N(0, 1) random

variables. For the Poisson and the Binomial case theQ statistics approximated by the

standard Normal probabilities. Such approximations are known to be questionable

for small values of the unknown parameters. The Lower Control Limit (LCL) and
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the Upper Control Limit (UCL) for Q statistics are:

LCL = Φ−1(a1) and UCL = Φ−1(1− a2),

where a1 and a2 are the false alarm rate from the lower and the upper side respec-

tively, usually equal.

2.3.2 Simulation results

Quesenberry (1991a) presented three versions of Q chart for Normal data, where

either a parameter is known or both unknown (we ignore the scenario that both

parameters are known). For these three scenarios and their relation to the respective

PCCs we have the following Lemma.
Lemma 2.3.1. All three versions of Q chart for Normal data are special cases of the

respective PCCs, when the initial prior is the reference prior and we do not make

use of a power prior option (i.e. α0 = 0).

Proof

Following Quesenberry (1991a) the Q chart in all three cases of the Normal distri-

bution, makes use at each data point xn+1, of the statistic Qn+1. For PCC we set

α0 = 0, eliminating the power prior part regarding the past data (Y ) and in each

case we set the hyperparameters τ , so that we have the respective reference prior for

the unknown parameter(s). We will show that controlling Qn+1 statistic is identical

to controlling PCC’s standardized predictive residual:

PRn+1 =
Xn+1 − µ̂n

σ̂n

where, µ̂n and σ̂n are the mean and standard deviation respectively of the predictive

distribution of Xn+1| (X,Y , α0 = 0, τ ) ≡ Xn+1| (X, τ ). Denoting by Φ−1(·) the

inverse of the standard normal CDF and Gν(·) the Student-t CDF with ν degrees of
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freedom we get:

Case I: µ unknown, σ2 known.

We have: Xi|θ ∼ N (θ, σ2) and the reference prior is π(θ) ∝ c ≡ N (0,+∞). Then

the predictive distribution will be:

Xn+1| (X, τ ) ∼ N

(
x̄n ,

n+ 1

n
σ2

)
⇒ PRn+1 =

Xn+1 − x̄n√
n+1
n
σ

= Qn+1 ∼ N(0, 1).

Case II: µ known, σ2 unknown.

We have: Xi|θ2 ∼ N (µ, θ2) and the reference prior is π(θ2) ∝ 1/θ2 ≡ IG (0, 0).

Then the predictive distribution will be:

Xn+1| (X, τ ) ∼ tn−1

µ ,
n∑
j=1

(xj − µ)2

n

⇒ PRn+1 =
Xn+1 − µ√

n∑
j=1

(xj−µ)2

n

∼ tn−1.

Transformating the PRn+1 we get: Φ−1 {Gn (PRn+1)} = Qn+1 ∼ N(0, 1).

Case III: µ unknown and σ2 unknown.

We have: Xi| (θ1, θ
2
2) ∼ N (θ1, θ

2
2) and the reference prior is π(θ1, θ

2
2) ∝ 1/θ2

2 ≡

NIG (0, 0,−1/2, 0). Then the predictive distribution will be:

Xn+1| (X, τ ) ∼ tn−2

x̄n ,
n∑
j=1

(xj − x̄n)2

n− 1

⇒ PRn+1 =
Xn+1 − x̄n√

n∑
j=1

(xj−x̄n)2

n−1

∼ tn−2.

Transformating again the PRn+1 we get: Φ−1 {Gn−1 (PRn+1)} = Qn+1 ∼ N(0, 1).

For cases II and III, as the functions Φ−1(·) and Gν(·) are injective, it is identical to

control PRn+1 or Qn+1.

Q.E.D.

The proof shows that the Normal Q charts (in all three cases) are identical to the
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respective PCC when neither prior information (i.e. use of reference prior) nor his-

torical data are available. What happens though when prior information and/or

historical data do exist? In such scenarios, the posterior distribution will be more

informative, enhancing the predictive distribution, which will boost the PCC per-

formance. For discrete data (Poisson and Binomial) the Q charts use the uniform

minimum variance unbiased (UMVU) estimation of the cumulative distribution func-

tion of the process, thus we lose ability to compare analytically against the respective

exact discrete PCC.

In what follows we will perform a simulation study to examine the performance of

Q charts against PCC when we have N = 30 data points from N (θ1, θ
2
2), P (θ3)

or Bin (20, θ4) distributions. We will design charts to have a FWER = 0.05 at

the last observation N = 30 (using Šidák correction). We will compare the run-

ning FWER(k) = 1 − P
(

k⋂
i=2

{Xi ∈ Ri|IC}
)

of Q charts and PCC at each of the

k = 2, . . . , 30 data points, when we simulate IC sequences from N (θ1 = 0, θ2
2 = 1),

P (θ3 = 2) and Bin (20, θ4 = 0.1) respectively (see Keefe et al., 2015 for more details

regarding the conditional IC performance of self-starting control charts). To exam-

ine the OOC detection power of Q charts and PCC we will use the IC sequences

generated and introduce large isolated shifts at one of the locations: 5 (early), 15

(middle) or 25 (late). The size of the shifts that we will consider are:

• Normal mean: δN = {2.5θ2 or 3θ2} = {2.5 or 3}, i.e. OOC states come from

N(2.5, 1) or N(3, 1).

• Poisson mean (or variance): δP = {2.5
√
θ3 or 3

√
θ3} = {2.5

√
2 or 3

√
2}, i.e.

OOC states come from P (2 + 2.5
√

2) = P (5.536) or P (2 + 3
√

2) = P (6.243).

• Binomial probability of success: δB =

{
2.5
√

θ4(1−θ4)
N

or 3
√

θ4(1−θ4)
N

}
={

2.5
√

0.1(1−0.1)
20

or 3
√

0.1(1−0.1)
20

}
, i.e. OOC states come from Bin(20, 0.268) or

Bin(20, 0.301).

For detection, we will record the cases that a chart provides an alarm at the exact
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time that the shift was introduced. Specifically, these cases will be denoted as the

OOC Detection (OOCD), where OOCD(k′) = P

(
{Xk′ /∈ Rk′ |OOC}

k′−1⋂
i=2
{Xi ∈ Ri|IC}

)
and k′ = {5, 15, 25}. Both FWER(k)% for IC data (at each time 2, . . . , 30) and

OOCD(k′)% at locations 5, 15 or 25 will be estimated over 100,000 iterations.

PCC will require to define a prior distribution and so within this simulation study we

will take advantage to examine the sensitivity of the PCC performance for various

prior settings. Precisely, for each setup described above, we will make use of two

initial priors (reference and weakly informative) and two values for the α0 parameter

(0 or 1/n0) representing the absence or presence of n0 historical data Y (we will use

n0 = 10 historical data from the IC likelihood). Therefore, for each scenario we will

compare the Q chart against one of the four possible versions of PCC (with/without

prior knowledge, with/without historical data). The initial priors π0(·|τ ), which we

will employ are (see Figure 2.3.1):

• Normal: reference prior π0 (θ1, θ
2
2) ∝ 1/θ2

2 ≡ NIG(0, 0,−1/2, 0) or the weakly

informative NIG(0, 2, 1, 0.8).

• Poisson: reference prior π0 (θ3) ∝ 1/
√
θ3 ≡ G(1/2, 0) or the weakly informative

G(4, 2).

• Binomial: reference prior π0 (θ4) ∝ 1/
√
θ4(1− θ4) ≡ Beta(1/2, 1/2) or the

weakly informative Beta(0.5, 4.5).
The simulation findings are summarized graphically in Figure 2.3.2 and analytically

in Table 2.3.1, where we observe that overall PCC outperforms Q chart. Starting

from the false alarms in the case of Normal data, both methods reach the nominal

5% at time N = 30, but at all time points k, the FWER(k) of PCC is always

smaller. For both discrete cases, the Q chart’s FWER(k) becomes unacceptably

high, something that is caused from the fact that the true parameter values are near

(even though not too close) to the parameter space boundary, which in conjunction

with the UMVU estimation, inflates drastically the false alarms (the closer we get to

the parameter boundary the worst the Q chart’s performance regarding false alarms).
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Figure 2.3.1: The initial reference (i.e. non-informative) and the weakly informative
prior distributions used in the simulation study, along with the IC values (as vertical
segments) for the parameters θ1, θ

2
2, θ3 and θ4 of the simulation study.

Finally, the extremely small FWER(k) observed for PCC in the first 5 data points

motivates the use of the FIR-PCC described in Section 2.1.4.

For the Normal data, the simulations verify Lemma 2.3.1, as the Q chart and the

PCC with reference prior and no historical data have identical performance. Moving

to the detection power, as it is measured by OOCD(k′), both methods improve as

the size of the shift increases (from 2.5 to 3 sd) or the shift delays its appearance

(from k′ = 5 to 15 to 25), just as it was expected. Especially for the shifts at

time 5, PCC greatly outperforms Q charts thanks to the head-start from the prior

and/or the historical data. Focusing at each location of the shift, we observe that as

we move from Q chart to PCC with reference prior and next to PCC with weakly
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informative prior the performance improves (quite significantly for some scenarios).

When relevant historical data are available, through the power prior mechanism,

they further boost the performance. The somewhat competitive performance of Q

chart in one of the Binomial scenarios should be considered in conjunction with

its quite high FWER, when compared to the one achieved by PCC (see also Table

2.3.2, where the FWER of PCCs is increased to align with the one that Q chart can

achieve in the Poisson and Binomial cases, offering a straightforward comparison

of detection power). In summary, PCC appears more powerful to the respective Q

charts in detecting isolated shifts in short runs of individual data.

Focusing on the performance of PCC at location k′ = 5, we observe that in the Nor-

mal scenario we have smaller power compared to the respective setting in Poisson or

Binomial (as we move k′ to higher values, the differences vanish). This is caused from

the fact that in the Normal scenario we have two unknown parameters as opposed

to the Poisson and Binomial cases where each has only one unknown parameter (a

PCC built using four data points for a setting with two unknown parameters will be

a lot more challenging, as opposed to a setting with only one unknown parameter).

A Normal PCC scheme with either the mean or the variance being known would

radically improve the performance reaching (or even overcoming) the levels achieved

in the Poisson and Binomial. The effect of the two unknown parameters (Normal)

versus the single unknown parameter (Poisson and Binomial) is responsible in the

performance of PCC1 to PCC4 in detecting outliers at k′ = 25. With one unknown

parameter, the information collected from the 24 in control data points has signifi-

cantly reduced the posterior (and predictive) uncertainty, shrinking the effect of the

prior and providing a near uniform performance. For the Normal case though the

posterior (and predictive) uncertainty at k′ = 25 remains non-negligible, allowing

the prior setting to play some role and differentiate the performance across the four

versions of PCCs (in general the more the data the higher the shrinkage of the prior’s

effect). Concluding, we should note that PCC was shown to be more powerful in
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detecting large isolated shifts compared to Q chart. The relative performance of Q

chart to PCC remains the same when we use medium or small shifts, with detection

power dropping as the size of the isolated shift decreases.

Jump k′
Q chart PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)

N
o
rm

a
l 0σ (5.049) (5.049) (4.347) (4.776) (4.932)

5 1.901 1.901 1.492 4.205 6.271
2.5σ 15 12.791 12.791 14.249 17.433 18.407

25 17.025 17.025 17.691 20.005 20.371
5 2.873 2.873 2.816 9.024 12.556

3σ 15 22.809 22.809 24.914 30.112 31.426
25 30.095 30.095 31.021 34.410 34.880

P
o
is

so
n

0
√
λ (18.283) (4.515) (4.192) (4.409) (4.320)

5 12.437 12.696 14.793 16.265 16.928

2.5
√
λ 15 17.220 18.196 18.660 19.052 19.302

25 17.704 19.164 19.180 19.510 19.623
5 18.185 19.185 21.984 24.240 25.204

3
√
λ 15 24.930 26.826 27.434 27.972 28.345

25 25.740 28.153 28.196 28.683 28.823

B
in

o
m

ia
l 0

√
p(1−p)
N

(17.878) (4.387) (3.991) (4.852) (4.381)

5 14.079 15.848 15.540 16.111 17.008

2.5

√
p(1− p)

N
15 20.057 18.845 19.319 20.084 20.067

25 20.284 19.878 20.035 19.839 20.315
5 21.646 24.078 24.098 24.509 26.039

3

√
p(1− p)

N
15 29.469 28.765 29.353 30.207 30.213

25 29.952 30.165 30.389 30.117 30.703

Table 2.3.1: The FWER for N = 30 (in parenthesis) and the outlier detection power
at k′ = {5, 15, 25}, of the Q chart against PCC under a reference prior (PCC1), a
reference prior with historical data (PCC2), a weakly informative prior (PCC3) and
a weakly informative prior with historical data (PCC4). The results refer to Normal,
Poisson and Binomial data.
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Jump k′
Q chart PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)

P
o
is

so
n

0
√
λ (18.283) (16.498) (15.646) (16.550) (16.183)

5 18.185 34.295 35.388 38.820 39.221

2.5
√
λ 15 24.930 38.634 39.192 39.899 40.388

25 25.740 37.823 38.215 38.456 38.679
5 12.437 25.410 26.138 28.906 29.157

3
√
λ 15 17.220 28.657 29.108 29.736 30.166

25 17.704 28.181 28.440 28.692 28.869

B
in

o
m

ia
l 0

√
p(1−p)
N

(17.878) (16.606) (15.383) (17.950) (16.682)

5 21.646 38.442 38.898 38.345 40.992

2.5

√
p(1− p)

N
15 29.469 40.947 42.666 42.406 43.004

25 29.952 40.052 41.283 40.589 41.210
5 14.079 28.073 28.037 27.982 29.906

3

√
p(1− p)

N
15 20.057 29.549 30.984 30.920 31.351

25 20.284 29.040 30.053 29.662 30.039

Table 2.3.2: The FWER for N = 30 (in parenthesis) and the outlier detection power
at k′ = {5, 15, 25}, of the Q chart against PCC under a reference prior (PCC1), a
reference prior with historical data (PCC2), a weakly informative prior (PCC3) and
a weakly informative prior with historical data (PCC4). The results refer to Poisson
and Binomial data, where PCC has aligned FWER with the one achieved by Q chart.
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2.4 PCC Robustness

Apart from checking the prior sensitivity that was done in Subsection 2.3.2, we will

also examine how robust the suggested PCC performance is to possible model type

misspecifications. For the PCC construction we assume that the observed data are

iid observations from a specific likelihood. In this section, we will examine how

robust is the PCC performance when:

(a) we violate the assumption of independence (i.e. the data are correlated)

(b) the assumed likelihood function is invalid (i.e. data are generated from a

different random variable from the one assumed in the PCC construction).

Regarding (a) we will use a Normal (with both parameters unknown) PCC imple-

mentation, but the actual data will be generated as sequentially dependent Normal

data via an autoregressive (AR) model: Xn = c + φXn−1 + εn with c = 0 and

εn ∼ N(0, 1). To examine various degrees of dependence we will use φ = −0.4, 0.4

(moderate) or 0.8 (high). For the outlying observations we will set c = 2.5 or 3, in

order to introduce shifts of size of 2.5σ or 3σ respectively, at one of the locations 5,

15 or 25 (just as we did in Section 2.3.2).

For (b) we will examine the following scenarios:

• Use a Normal based PCC (both parameters unknown) while the data are gener-

ated from a Student t7 distribution, i.e. we have heavier tails (t7 is symmetric,

with the same mean but 40% inflated variance compared with the standard

Normal).

• Use a Normal based PCC (both parameters unknown) while the data are gen-

erated from a Gumbel (µ = −0.5, β = 0.8) distribution, i.e. we have skewed

data (Gu (−0.5, 0.8) has approximately the same mean and variance with the

standard Normal, but it has positive skewness ≈ 1.14).
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• Use a Poisson based PCC while the data are generated from aNBin (r = 6, p = 1/4)

distribution, i.e. we have over-dispersed data (NBin (6, 1/4) has the same mean

with P (2), but its variance is ≈ 33% inflated).

The aforementioned likelihoods are illustrated in Figure 2.4.1.
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Figure 2.4.1: The various misspecification of the PCC distributional forms regarding
the continuous (left panel) and discrete (right panel) data generation mechanisms.

For this misspecification scenario, we generate the OOC data from the introduced

distributions in a manner that the isolated large shifts will correspond to either 2.5

or 3 standard deviations, again at locations 5, 15 or 25 (similar to what we had in

Section 2.3.2). Precisely:

• Student t: OOC states come from t7

(
µ = 2.5 ·

√
7/5, σ = 1

)
or t7

(
µ = 3 ·

√
7/5, σ = 1

)
.

• Gumbel: OOC states come from Gu (−0.5 + 2.5, 0.8) or Gu (−0.5 + 3, 0.8).

• Negative Binomial: OOC states come fromNBin (6 · 2.5, 1/4) orNBin (6 · 3, 1/4).

The prior distributions (reference prior and weakly informative) along with the use

or not of n0 = 10 historical data (power prior with α0 = 0 or 1/n0) will be identical

to the ones used in Section 2.3.2.

Figures 2.4.2 and 2.4.3 summarize graphically the results of Tables 2.4.1 and 2.4.2, re-

garding the performance (FWER(k) and OOCD(k′) are as defined in Section 2.3.2)
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for independence and distributional misspecifications respectively. In the former, we

observe that PCC is almost unaffected in the presence of moderate autocorrelation.

For highly dependent data (φ = 0.8 or larger), PCC is somewhat less robust as it

decreases its detection power and slightly increases the FWER percentages, however

still achieving noticeable performance, especially at the early stages thanks to the

IC prior information.

In the distributional violation scenarios (Figure 2.4.3), we observe that PCC retains

its high detection percentages in all cases. However, the FWER(k) is significantly

inflated. This can be explained by considering the shape discrepancies among the as-

sumed and actual likelihood functions, where IC values are somewhat outlying under

the misspecified assumed model (a more strict α value in determining the HPrD/M

region would reduce the FWER(k) in such scenarios at the cost of somewhat reduc-

ing power).
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Jump k′
PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%)

A
R

(1
),
φ

=
−

0.
4 0sd (4.420) (3.293) (4.711) (4.480)

5 1.421 0.511 4.038 4.789
2.5sd 15 9.822 10.369 14.050 14.441

25 13.289 13.794 15.995 16.270
5 2.059 1.066 8.092 9.880

3sd 15 17.294 18.516 24.093 24.776
25 23.557 24.446 27.724 28.185

A
R

(1
),
φ

=
0
.4 0sd (6.319) (4.135) (5.530) (5.026)

5 2.535 0.531 4.082 4.755
2.5sd 15 12.724 12.915 16.640 16.669

25 15.511 15.943 18.120 18.308
5 3.671 1.155 8.615 10.138

3sd 15 21.836 22.571 28.115 28.342
25 26.773 27.656 30.740 31.135

A
R

(1
),
φ

=
0
.8 0sd (9.218) (5.637) (7.226) (6.795)

5 3.098 0.347 3.135 3.854
2.5sd 15 11.237 10.191 12.407 12.121

25 10.341 10.509 11.668 11.640
5 4.591 0.857 6.508 7.904

3sd 15 17.783 16.820 20.031 19.832
25 16.488 16.931 18.619 18.712

Table 2.4.1: The FWER at N = 30 (in parenthesis) and the outlier detection power
at k′ = {5, 15, 25} for the Normal distribution for PCC with both parameters being
unknown, when we actually have data from an AR(1) process. PCC process is under
a reference prior (PCC1), a reference prior with historical data (PCC2), a weakly
informative prior (PCC3) and a weakly informative prior with historical data (PCC4).
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Jump k′
PCC1 PCC2 PCC3 PCC4

OOCD(k′)% OOCD(k′)% OOCD(k′)% OOCD(k′)%
(FWER%) (FWER%) (FWER%) (FWER%)

t
-S

t
u

d
e

n
t

(d
f

=
7
) 0sd (15.338) (14.425) (19.128) (19.361)

5 2.543 1.366 8.282 9.606
2.5sd 15 14.576 15.417 19.861 20.468

25 17.560 18.313 20.427 20.847
5 3.782 2.737 15.511 18.167

3sd 15 25.243 27.059 33.409 34.462
25 30.435 31.765 34.518 35.183

G
u

m
b

e
l(
−

0.
5
,0
.8

) 0sd (21.903) (19.583) (23.849) (23.227)
5 3.488 1.245 6.320 6.953

2.5sd 15 15.614 15.528 18.505 18.180
25 16.654 17.021 18.387 18.333
5 4.911 2.279 10.943 12.150

3sd 15 27.444 25.030 29.539 29.259
25 26.648 27.426 29.420 29.549

N
e

g.
B

in
( 6
,

1 4

) 0sd (17.526) (16.761) (17.686) (17.543)
5 11.626 12.478 13.976 14.055

2.5sd 15 14.766 15.035 15.442 15.504
25 14.499 14.601 14.772 14.848
5 19.709 21.374 23.701 24.010

3sd 15 24.251 24.690 25.254 25.351
25 23.790 23.997 24.171 24.290

Table 2.4.2: The FWER at N = 30 (in parenthesis) and the outlier detection power
at k′ = {5, 15, 25} for the Normal distribution for PCC violating the distributional
assumption. Panel 1 and 2 refer to the Normal PCC with both parameters being
unknown while the data come from a Student or Gumbel distribution respectively. In
panel 3 we assume Poisson based PCC while the data are from a Negative Binomial.
PCC process is under a reference prior (PCC1), a reference prior with historical data
(PCC2), a weakly informative prior (PCC3) and a weakly informative prior with
historical data (PCC4).
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Finally, for both the violation schemes, it is worth mentioning that PCC detection

seems to be stabilized and not necessarily improved when the outliers occur at lo-

cation 25. This can be attributed to the contaminated estimates of the unknown

parameters from the data that violate the PCC assumptions, as well as the fact that

the influence of the prior is decreased. Overall, the PCC appears to be robust when

we violate the assumptions, as its performance is somewhat reduced but noticeably

far from collapsing.

2.5 PCC real data application

2.5.1 PCC application to Normal data

In this section we will illustrate the use of PCC in practice. Specifically, we will

apply the proposed PCC methodology in two real data sets (one for continuous

and one for discrete data). Regarding the continuous case, we will use data that

come from the daily Internal Quality Control (IQC) routine of a medical laboratory.

We are interested in the variable “activated Partial Thromboplastin Time” (aPTT),

measured in seconds. APTT is a blood test that characterizes coagulation of the

blood. It is a routine clotting time test and can be used as a diagnosis of bleeding

risk (e.g. aPTT value is higher in patients with hemophilia or Willebrand disease)

or for unfractionated heparin treatment monitoring. We gathered 30 daily normal

IQC observations (Xi) from a medical lab (see Table 2.5.1), where Xi|
(
θ1, θ2

2
)
∼

N
(
θ1, θ2

2
)
. Notice that these data are based on control samples and in regular

practice will become available sequentially. The goal is to accurately detect any

transient parameter shift of large size, as this will have an impact on the reported

patient results. Thus, it is of major importance to perform on-line monitoring of

the process without a phase I exercise. Via available prior information, we elicit

the prior π0

(
θ1, θ2

2|τ
)
∼ NIG (29.6, 1/7, 2, 0.562). Furthermore, there were n0 = 30
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historical data (from a different reagent) available (see Table 2.5.1), with ȳ = 30.18

and var(y) = 0.32. We set α0 = 1/30 and combining these two sources of information

we get the power prior π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (30.1, 8/7, 5/2, 0.72). To examine

prior sensitivity we will also use as initial prior the reference prior π0

(
θ1, θ2

2|τ
)
∝

1/θ2
2 ≡ NIG(0, 0,−1/2, 0) (to declare a-priori ignorance) and so we will get two

versions of PCC (one for each initial prior). Figure 2.5.1 provides the two versions of

PCC (continuous/dotted limits for weakly informative/reference prior) along with

a plot of the historical data and the marginal distributions of the mean (θ1) and

variance (θ2
2) at the end of the data collection.

y1 − y15 30.4 29.9 30.1 30.2 31.2 30.7 30.6 29.6 29.3 30.2 30.4 30.3 29.5 29.9 30.2

x1 − x15 30.8 30.2 30.9 30.2 30.5 30.4 30.9 30.2 30.3 30.1 30.6 29.9 30.5 29.8 30.5

y16 − y30 29.9 30.5 29.7 30.7 29.9 29.6 30.1 30.1 29.9 30.1 29.9 29.9 29.7 32.2 30.6

x16 − x30 28.8 30.3 30.4 30.6 30.2 30.8 30.7 31.0 30.3 30.7 30.2 30.3 30.6 30.4 30.2

Table 2.5.1: The aPTT (in seconds) internal quality control observations of the
historical Y = (y1, y2, . . . , y30) and the current X = (x1, x2, . . . , x30) data.

Specifically, for each parameter we plot the marginal weakly informative initial,

π0 (·|τ ), power, π (·|Y , α0, τ ), priors and the posterior distribution, p (·|X,Y , α0, τ ).

We should emphasize that despite the fact that we provide the plots at the end of

the data sequence, in practice the PCC chart and each of the two posterior dis-

tributions will start being plotted at observation 2 and 1 respectively and will be

sequentially updated every time a new observable becomes available. PCC provides

an alarm at location 16, indicating that there was a transient large shift during that

day. This would call for checking the process at that date and if an issue was found

then we would take some corrective action, initiate the PCC and reanalyze all the

patient samples that were received between days 15 (no alarm) and 16 (alarm). In

the present study, no action was taken and the process continued to operate. As a

result, the PCC limits were inflated right after the alarm, but this effect was grad-

ually absorbed as more IC data become available. We also note (as expected) that

the use of the reference prior provides wider limits, especially at the early stage of

the process, making the chart less responsive. Finally, the marginal posterior distri-
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butions can be used to draw inference regarding the unknown parameters, at each

time point.
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Figure 2.5.1: The PCC application on Normal data. At the upper panels (left and
right), we have the marginal distributions for the mean and the variance respectively.
With the dotted, dashed and solid lines we denote the initial prior, the power prior and
the posterior after gathering all the current data respectively. At the lower panels, we
provide the time series of the historical data (open circles on left) and of the current
data (solid points on the right). The solid lines represent the limits of PCC, the
dotted lines are the limits of PCC under prior ignorance, i.e. using the initial reference
prior and the dash lines correspond to the FIR adjustment, setting f = 0.99 and
a = (−3/log10(1− f)− 1) /4 = 0.125.

2.5.2 PCC application to Poisson data

Next, we provide an illustration of PCC for discrete (Poisson) data. The data come

from Hansen and Ghare (1987) and were also analyzed by Bayarri and García-Donato
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(2005). They refer to the number of defects (xi), per inspected number of units (si),

encountered in a complex electrical equipment of an assembly line. We have 25

counts (see Table 2.5.2) arriving sequentially that we will model using the Poisson

distribution with unknown rate parameter, i.e. Xi|θ ∼ P (θ · si). In contrast to the

previous application, neither prior information regarding the unknown parameter

nor historical data exist. Therefore, we use the reference prior as initial prior for θ,

i.e. π0(θ|τ ) ∝ 1/
√
θ ≡ G(1/2, 0) and we also set α0 = 0 for the power prior term.

Inspected units (s1 − s13) 4 7 5 7 7 7 6 7 7 6 8 6 3
Defect counts (x1 − x13) 17 23 24 27 32 33 18 28 29 31 39 29 30

Inspected units (s14 − s25) 8 9 6 7 5 7 3 6 8 8 7 8
Defect counts (x14 − x25) 31 21 26 20 24 29 15 32 20 24 24 14

Table 2.5.2: Number of defects (xi) and inspected units (si) per time point (i =
1, 2, . . . , 25), in an assembly line of an electrical equipment.

In Figure 2.5.2, we provide the initial prior and posterior distributions, the plot of

the data, (daily rate of defects i.e. total number of defects per number of inspected

units and number of inspected units) and the Poisson based PCC (the wavy form of

the limits is caused by the variation in the number of inspected units we have per

day).

Similarly to what we mentioned earlier, the posterior and the PCC will start from

times 1 and 2 respectively and will be updated sequentially, every time a new data

point becomes available, offering online inference in controlling the process. PCC

raises two alarms, at locations 13 and 25. In the former, the observed rate (30/3=10)

seems to be higher (process degradation) from what it was expected from the pro-

cess as it was evolving till that time, while the latter indicates that the observed

rate (14/8=1.75) was smaller from what PCC was anticipating (process improve-

ment). Similar to the previous application, the fact that the alarms were kept in

the process inflated the subsequent limits. At last, online inference regarding the

unknown Poisson rate parameter is available via its (sequentially updated) posterior

distribution.
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Figure 2.5.2: The PCC application on Poisson data. At the upper left panel we have
the distributions for the rate parameter. With the dashed and solid lines we denote the
prior and posterior distributions respectively, after gathering all the available data. At
the upper right panel, we provide the number of inspected units si (dashed line) and the
number of defects per size xi/si, i.e the rate of defects (solid line), whereas at the lower
panel we present the PCC implementation. Specifically, solid lines correspond to the
standard PCC process, while the dashed represent the PCC based on FIR adjustment,
setting f = 0.95 and a = (−3/log10(1− f)− 1) /4 ≈ 0.326.



Chapter 3

Predictive Ratio CUSUM (PRC)

3.1 PRC Theoretical background

In this chapter, the focus is on detecting medium/small persistent parameter shifts

in short horizon data. In the literature there are two standard methods that could

be employed in such a setup: the frequentist self-starting CUSUM (SSC) of Hawkins

and Olwell (1998) and the Bayesian Cumulative Bayes Factor (CBF) of West (1986)

and West and Harrison (1986). We will propose a self-starting Bayesian scheme

named Predictive Ratio Cusum (PRC), which much like the PCC methodology, will

be based on the use of the predictive distribution.

PRC will provide an enhanced Bayesian analogue of SSC and at the same time pro-

vide an antagonistic to CBF method which will differentiate from CBF in three ways.

Firstly, PRC will examine specific alternative hypotheses as OOC scenarios (much

like it is done for traditional CUSUM in SPC/M), in contrast to the diffused West’s

CBF (neutral) alternatives. Secondly, PRC will be formulated for various discrete

and continuous distributions that are members of the regular exponential family, pro-

viding a closed form mechanism (i.e. easy to be used in practice), capable to examine

a variety of standard OOC scenarios considered in SPC/M. Last but most impor-

67
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tantly, by proposing a procedure that derives a decision making threshold based on

the false alarm tolerance (something that both CBF and SSC are typically lacking),

again allowing its straightforward use to real life problems. In the same spirit to

PCC, in this chapter, we will provide the technical details, develop a FIR option,

evaluate the performance against competition, examine topics regarding sensitivity

and robustness and conclude with illustrations to real datasets.

3.1.1 PRC for k-parameter regular exponential family (k-

PREF)

As we mentioned, PRC is a Bayesian CUSUM type chart, comparing the IC state

against an OOC scenario. It is of great importance to clarify that the null state (IC)

is not fixed, but sequentially updated, every time a new data point arrives. Like-

wise, the alternative (OOC) scenario cannot be fixed, but it should be constructed

sequentially and designed suitably in order to increase the detection power. West

(1986), suggested to derive a neutral alternative (OOC) hypothesis scenario, by in-

tervening to the most recent posterior parameters, τn, in such a way that we reserve

the same location, but we inflate the variance, getting a more diffused (spread out)

predictive distribution. Despite the indisputable convenience of that choice, there is

significant room for improvement, at least within the SPC/M methodological frame-

work. In particular, the adoption of an alternative informative scenario with shifted

parameters, which simply yields a benchmark of the OOC state, can greatly im-

prove detection power. Typically, the kind of persistent shifts that we aim to detect

(like a mean jump, a variance/rate inflation, etc.), can be predetermined and arise

from the nature of the process along with what is considered as process deteriora-

tion/improvement. This is a well known strategy in SPC/M, where charts can be

built with a specific OOC state in mind (like the traditional CUSUM).

For PRC, we keep the same general distributional setup, as we had in Chapter 2
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for PCC, where the likelihood belongs to the k-PREF family, and we use a con-

jugate power prior. The posterior parameters τn in Theorem 2.1.1 summarize all

the information regarding the unknown parameter(s) θ at time n, as they consist of

the initial prior hyperparameters and the sufficient statistics of the current and the

(possibly available) historical data. Our recommendation in PRC is to adopt infor-

mative OOC scenarios (typically used in SPC/M), for the unknown parameter(s) θ,

resulting an intervention to the most recent posterior distribution parameters τn. In

this manner, we provide an antagonistic methodology of CBFs and simultaneously

develop an effective Bayesian alternative of the SSC.

The choice of the unknown parameter shifts, will be expressed in a way that pre-

serves conjugacy, allowing closed form solutions, while reflecting our perspective for

the OOC state. For most of the cases, where the posterior distribution (or the pos-

terior marginal, if θ is multivariate) is a member of a location or scale family, we

will consider shifts that represent location or scale transformation of the unknown

parameter respectively. This will guarantee that we remain in the same distribution

with updated parameters τ ′n, derived as simple location or scale transformations of

the IC state posterior parameters τn. The only exception occurs in the case of a

Beta posterior (resulting in Binomial and Negative Binomial likelihood settings),

which is neither location nor scale family. For the Beta posterior, our proposal will

be to introduce the OOC shift, not on θ but on the expected posterior odds, i.e.

Eθ|X [θ/(1− θ)]. Table 3.1.1 reports the IC and OOC states of the unknown param-

eter(s) θ, along with the relevant interpretation, for various likelihood choices from

the k-PREF that are commonly used in SPC/M.

As it was mentioned earlier, PRC will be based on the predictive distribution of the

next unseen data f (Xn+1|X,Y , α0, τ ), or for simplicity f (Xn+1|Xn). In Theorem

2.1.1, if we will replace the current posterior distribution, π0 (θ|τn), with the OOC

posterior, π0 (θ|τ ′n), corresponding to the shifted parameter scenario, we will derive
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the shifted (OOC) predictive distribution:

f ′ (Xn+1|Xn) =

∫
Θ

f (Xn+1|θ) π0 (θ|τ ′n) dθ =
K (τ ′n + tf (Xn+1))

K (τ ′n)
g(Xn+1) (3.1.1)

PRC is based on the sequential comparison (via their ratio) between the current

predictive distribution f (Xn+1|Xn), which includes all the relevant information

from the process up to the current time, and the corresponding shifted predictive,

f ′ (Xn+1|Xn), representing the OOC shifted parameter scenario. The ratio of the

shifted predictive over the current predictive for Xn+1 will be:

Ln+1 =
f ′ (Xn+1|Xn)

f (Xn+1|Xn)
=

K (τ ′n + tf (Xn+1))

K (τ ′n)
g(Xn+1)

K (τn + tf (Xn+1))

K (τn)
g(Xn+1)

=
K (τ ′n + tf (Xn+1)) ·K (τn)

K (τn + tf (Xn+1)) ·K (τ ′n)
,

(3.1.2)

In general, the predictive distribution becomes available after the first observation,

except when we have Normal/Lognormal likelihood with both parameters unknown

and total prior ignorance (i.e. no historical data, so α0 = 0 and we use the non-

informative reference prior as initial prior), where the predictive requires two obser-

vations to become proper. PRC will build up evidence by monitoring the log-ratio

of predictive densities, log(Ln+1), using a CUSUM. Precisely, starting with S1 = 0

(or S1 = S2 = 0, when we have two unknown parameters and total prior ignorance),

the one sided PRC statistic at time n+ 1 will be:

Sn+1 = max{0, Sn + log (Ln+1)} or Sn+1 = min{0, Sn − log (Ln+1)} (3.1.3)

when we are interested in detecting upward or downward shifts respectively. Control-

ling Sn+1 is performed in the same spirit as in traditional CUSUM, where an alarm

is raised when the cumulative statistic exceeds an appropriately selected threshold

value (also known as decision interval). Thus, the suggested control chart, will plot
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Sn+1 versus the order of the data, having a horizontal line at height h to denote the

predetermined decision threshold, which we will derive in Section 3.2. An alarm will

be ringed, each time the statistic Sn+1 will plot beyond h.

From a Bayesian perspective, (3.1.2) is simply the predictive Bayes Factor at time

n+ 1, comparing the OOC model (M1 : f ′ (Xn+1|Xn)) against the IC model (M0 :

f (Xn+1|Xn)), i.e. Ln+1 = Bn+1
10 . Therefore, the statistic Sn+1 can be written as:

Sn+1 = max
{

0, Sn + log
(
Bn+1

10

)}
= max

{
0,

n∑
i=κ

log
(
Bi+1

10

)}
or

Sn+1 = min
{

0, Sn − log
(
Bn+1

10

)}
= min

{
0,

n∑
i=κ

−log
(
Bi+1

10

)}
(3.1.4)

for the upward or downward shifts respectively, where κ (1 ≤ κ ≤ n) is the last time

for which the monitoring statistic was equal to zero (i.e. Sκ = 0 and ∀` > κ we have

|S`| > 0). In other words, Sn+1 represents the most recent cumulative logarithmic

Bayes Factor evidence, a quantity that is known in the Bayesian decision theory

framework to provide a summary of evidence for the alternative (OOC)M1 against

the (IC) nullM0 model (West, 1986).

The designed OOC parameter shifts, along with the exact formula of the log(Ln+1)

statistic used in PRC, can be found in Table 3.1.1, for various likelihood choices

(of discrete and continuous univariate data) that belong to the k-PREF and are

commonly used in SPC/M. To unify notation, we denote by Dn = (Y ,Xn) =

(y1, . . . , yn0, x1, . . . , xn) the vector of historical and current data, w = (α0, . . . , α0,

1, . . . , 1) the vector of weights corresponding to each element dj of Dn and we call

ND = n0 + n the length of the data vector Dn. Technical details regarding the

derivation of all these PRC models are available in Appendix A.
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â
n

=
a

+
N
D ∑ j=
1

w
j
d
j
,

b̂ n
=
b

+
N
D ∑ j=
1

w
j
N
j
−

N
D ∑ j=
1

w
j
d
j

N
B
in

(r
,θ

)
k
·E

θ
|X

( θ 1
−
θ

) k
>

1:
(k
−

1)
10

0%
in
cr
ea
se

in
ex
pe

ct
ed

od
ds

of
θ

lo
g
B
( k
·â
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·â

n
,r

)
B
et

a(
a
,b

)
k
<

1:
(1
−
k
)1

00
%

de
cr
ea
se

in
ex
pe

ct
ed

od
ds

of
θ

â
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2â
n

+
( z n

+
1
−
k
·λ̂

n
/(
λ̂
n

+
1)
) 2

N
IG

(µ
0
,λ
,a
,b

)
k
<

0:
de
cr
ea
se

in
θ
si
ze

of
k
·θ̂

2

N
(θ

1
,θ

2 2
)

k
·θ

2 2

k
>

1:
(k
−

1)
10

0%
in
cr
ea
se

in
θ2 2

(â
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2â
n

+
z2 n

+
1
/k
−
lo
g
√
k

N
IG

(µ
0
,λ
,a
,b

)
k
<

1:
(1
−
k
)1

00
%

de
cr
ea
se

in
θ2 2

µ̂
n

=

λ
µ

0
+

N
D ∑ j=
1

w
j
lo
g
(d
j
)

λ
+

N
D ∑ j=
1

w
j

,
λ̂
n

=
λ

+
N
D ∑ j=
1

w
j
,
â
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3.1.2 Fast Initial Response (FIR) PRC

It is well known that the self-starting memory based charts have a weak response to

shifts arriving early in the process. Failing to react to an early shift will lead to its ab-

sorption, contaminating the calibration and reducing the testing performance. Lucas

and Crosier (1982) were the first to introduce the Fast Initial Response (FIR) feature

for CUSUM, by adding a constant value to the initial cumulative statistic, enhancing

its reaction to very early shifts in the process. Steiner (1999) introduced the FIR

EWMA by narrowing its control limits, with the effect of this adjustment decreasing

exponentially fast. For PRC, we propose an exponentially decreasing adjustment,

multiplied to the statistic log(Ln+1). Specifically, the adjustment (inflation) will be:

FIRadj = 1 + f · d(t−1), (3.1.5)

where t is the time of the examined predictive ratio, f ≥ 0 represents the proportion

of the inflation for the PRC statistic, log(Ln+1), when t = 1 and 0 < d < 1 is

a smoothing parameter, specifying the exponential decay of the adjustment (the

smaller the d the fastest the decay). As the first predictive ratio is available for the

second observation, we have t = 1 when n = 2. The only exception is when we have

two unknown parameters and total prior ignorance (i.e. use of initial reference prior

and α0 = 0 due to lack of historical data), where we get t = 1 when n = 3.

The proposed FIR adjustment is more flexible compared to the fixed constant of

Lucas and Crosier (1982) FIR-CUSUM, as it allows to control the influence, by tun-

ing the initial parameters (f, d) providing a better interpretation. The FIR option

can improve the performance at the early start, but the choice of the adjustment

parameters must be prudent, avoiding to inflate significantly the false alarm rate.

The expected number of false alarms for PRC will depend on the prior settings,

especially when the volume of available data is small. Our suggestion is to be some-

what conservative, especially when a weakly informative prior is used, so that the
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FIR adjustment will not seriously affect the predetermined expected number of false

alarms. In general, we recommend to use (f, d) = (1/2, 3/4), where the adjusted

log(Ln+1) will be inflated by 50% for the first test, while the inflation will be only

5% at the ninth test (the choice of these parameters will reflect the user’s based

needs).

3.2 PRC design and Inference

3.2.1 Tuning the PRC

PRC is simply a sequential hypothesis testing procedure, where two competing states

of the predictive are compared via their log-predictive ratio, within a memory based

(CUSUM) control scheme. In the ratio, the denominator refers to the running (con-

sidered as IC) predictive model, while the numerator is the intervened (considered as

OOC) competing model. Our goal is to detect a transition from the IC to the OOC

model, as soon as it occurs, while keeping the false alarms at a low predetermined

level.

For the classical CUSUM process, where both IC and OOC models have all param-

eters known, certain optimality properties have been derived (like in Moustakides,

1986 or Ritov, 1990) along with theoretical results regarding the choice of the de-

sign parameters. Namely, numerical algorithms have been developed to compute the

IC Average Run Length, ARL0 (i.e. the expected number of observations before

the occurrence of the first false alarm), as in Brook and Evans (1972). However,

such algorithms are not applicable to self-starting setups, where both the IC and

OOC distributions include unknown parameter(s) that we estimate online (i.e. these

distributions are not fixed, but sequentially updated).

When PRC alarms, the process should be stopped and examined thoroughly (trigger-

ing a potential corrective action), preventing further contaminated data from joining
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the calibration step. We will define as stopping time T of a PRC, tuned for an

upward shift:

T = inf{n+ 1 : Sn+1 ≥ h} (3.2.1)

where n+1 ≥ 2, except the special case with two unknown parameters and complete

prior ignorance, where we have n + 1 ≥ 3, while h > 0 is a preselected constant to

guarantee a predetermined false alarm standard (for downward shifts in (3.2.1) we

have Sn+1 ≤ h, with h < 0). The choice of h reflects on the tolerance that we have on

false alarms, measured via either the Family Wise Error Rate (FWER), for a fixed

and not too long horizon of N data points or the In Control Average Run Length

(ARL0), when we have an unknown or a large N scenario. Due to the general form

of PRC’s mechanism, that allows hosting any distribution from the k-PREF, there

is no single optimal strategy in selecting h. In what follows, we will provide specific

guidelines for the selection of h, utilizing the distributional setup under study.

Scenario 1: the predictive distribution is a location-scale family.

In this case we will derive h via the standard predictive distribution (i.e. the distri-

bution with location=0 and scale=1). Then, at each step of PRC we will perform the

same location-scale transformation to both the IC and OOC predictive distributions,

so that each time the IC, f(Xn+1|Xn), becomes the standard predictive (note that

the location-scale transformation will be different at each step). The transformed

predictives will be used in the ratio (3.1.2). From the distributions in Table 3.1.1

the location-scale predictive is valid for the Normal and logarithmic transformed

Lognormal likelihood cases, where the logarithm of the standardized predictive ratio

(3.1.2) is tabulated. Algorithms 3 and 4 can be used to derive h, when we work

with either the FWER for a fixed horizon of N data or when we use ARL0 metric

respectively. Furthermore, in Appendix B we provide a table with the derived h

threshold values for various choices of (N,FWER) or ARL0 values, combined with

specific OOC shift sizes k, when we have total prior ignorance (i.e. use of initial

reference prior and no historical data).
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Algorithm 3 Determine PRC’s decision limit h based on FWER

1: Define the length of the data, N , for which PRC will be employed {initial input}
2: Define the FWER that we aim to have at the N -th data point
3: Define the vector τ ′n, which represents the OOC disturbance that we wish to

detect
4: Define the number of iterations, I, used in the empirical estimation
5: if {predictive distribution is a location-scale family} then
6: f (X) = the standard distribution { loc.=0, sc.=1 and dfn = 2ân if X ∼ t }
7: else
8: f (X) = the marginal (prior predictive) distribution from (11)
9: end if

10: Generate a matrix D of dimension I ×N with random numbers from f (X)
11: Set S to be a matrix of dimension I ×N filled with zeros
12: Set M to be a vector of dimension I filled with NAs
13: for {i in 1 : I}
14: for {n in 1 : (N − 1)}

15: Ln+1 ←
f ′(D[i, n+ 1] | D[i, 1], . . . , D[i, n])

f(D[i, n+ 1] | D[i, 1], . . . , D[i, n])
{Predictive ratio}

16: S[i, n+ 1] = max{0, S[i, n] + log(Ln+1)}
(or S[i,n+1] = min{0, S[i, n]− log(Ln+1)} for downward shifts) {PRC statis-

tic}
17: end for
18: M [i]← max{S[i, ]}

(or M [i]← min{S[i, ]} for downward shifts)
19: end for
20: H ← F̂−1

I (1− FWER)

( or H ← F̂−1
I (FWER) for downward shifts) { F̂I(x) =

1

I

I∑
i=1

1 {M [i] < x} }

21: if {predictive distribution is a location-scale family} then
22: h← H {empirical estimate of h}
23: else
24: hm ← H {marginal based (conservative) empirical estimate of h}
25: end if
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Algorithm 4 Determine PRC’s decision limit h based on ARL0

1: Define the ARL0 that you aim to have
2: Define the numerical tolerance tol, which represents the maximum of error esti-

mate
3: Define the vector τ ′n, which represents the OOC disturbance that you wish to

detect
4: Define the number of iterations I, used in the empirical estimation
5: if {predictive distribution is a location scale family} then
6: f (X) = the standard distribution { loc.=0, sc.=1 and dfn = 2ân if X ∼ t }
7: else
8: f(X) = the marginal (prior predictive) distribution from (11)
9: end if

10: start function ARL(h)
11: Set M to be a vector of dimension I filled with NAs
12: for {i in 1 : I}
13: Set S ← 0
14: Set n← 1
15: Generate xn ∼ f(X)
16: while {S < h (or S > h for downward shifts)}
17: Generate xn+1 ∼ f(X)

18: Ln+1 ←
f ′(xn+1|x1, . . . , xn)

f(xn+1|x1, . . . , xn)
{ Predictive ratio }

19: S ← max{0, S + log(Ln+1)}
(or S ← min{0, S − log(Ln+1)} for downward shifts) { PRC statistic }

20: Set n← n+ 1
21: end while
22: M [i]← n
23: end for

24: return {ARL(h)← M̄} { M̄ =
1

I

I∑
i=1

M [i] }

25: end function ARL(h)
26: Set h1 = 2 (or h1 = −2 for downward shifts) the first initial value for h (or hm)
27: Get ARL(h1) { use of function ARL(h)}
28: if {|ARL(h1)− ARL0| < tol}
29: H ← h1

30: goto 48
31: end if
32: Set h2 = 4 (or h1 = −4 for downward shifts) the second initial value for h (or

hm)
33: Get ARL(h2) { use of function ARL(h)}
34: if {|ARL(h2)− ARL0| < tol}
35: H ← h2

36: goto 48
37: end if
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38: H ← h2 + (ARL0 − ARL(h2)) · (h2 − h1)

(ARL(h2)− ARL(h1))
{ regula falsi estimate}

39: Get ARL(H) { use of function ARL(h)}
40: while {|ARL(H)− ARL0| > tol}

41: H ← h2 +(ARL0−ARL(h2)) · (h2 − h1)

(ARL(h2)− ARL(h1))
{ regula falsi estimate}

42: Get ARL(H) { use of function ARL(h)}
43: h1 ← h2

44: h2 ← H
45: end while
46: if {predictive distribution is a location scale family} then
47: h← H { empirical estimation}
48: else
49: hm ← H { marginal based (conservative) empirical estimation}
50: end if

Scenario 2: the predictive is not location-scale family, but we have an informative

prior.

The unknown parameter(s) and the lack of standardization (since we do not have

location-scale family) prevent from deriving the sampling predictive distribution as

in scenario 1. Our suggestion is to use the marginal (prior predictive) distribution

to generate imaginary data. Using the power prior (2.1.3), the general form of the

marginal distribution will be available in closed form:

f(X|Y , α0, τ ) =

∫
Θ

f(X|θ)π(θ|Y , α0, τ )dθ =
K (τ + α0th(Y ) + tf (X))

K (τ + α0th(Y ))
g(X)

(3.2.2)

The marginal, is a compound distribution of the likelihood and the prior, with the

unknown parameter(s) being integrated out. It has heavier tails (greater variance)

compared to the likelihood, leading to an estimated decision limit hm( 6= h) that will

result a more conservative FWER or ARL0 metric. Essentially, the likelihood based

threshold h is a limiting case of the marginal-based threshold hm, when the prior

variance tends to zero. Thus, we can generate imaginary data from the marginal, in

order to control either the FWER or the ARL0 and derive the hm threshold from

Algorithm 3 or 4 respectively.
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An important issue in this proposal, is that the prior needs to be informative, oth-

erwise the marginal would be too diffused compared to the likelihood, resulting an

upper or lower bound hm that will be too conservative (i.e. |hm| will seriously over-

estimate |h|, decreasing significantly the false alarms and the detection power). We

propose to measure the discrepancy of the likelihood over the marginal variance by:

Eθ

(
V ar(X|θ)

V ar(X|Y , α0, τ )

)
= ρ (3.2.3)

The ratio parameter ρ ≤ 1 expresses the expected underdispersion of the likelihood

variance versus the marginal variance. When ρ → 1 (i.e. we use a highly informa-

tive prior), then the marginal is a reliable representative of the likelihood, resulting

hm → h. After an extensive simulation study, we recommend to use the marginal

distribution approach only when the distributional setting roughly satisfies ρ ≥ 0.9.

Table 3.2.1 provides the formulas for estimating ρ for each of the likelihoods reported

in Table 3.1.1 (that do not fall in the location-scale family treated by scenario 1),

where for the power prior term, we assume the historical data Y = (y1, . . . , yn0),

that are weighted by α0 (for no historical data, set α0 = 0).

In Figure 3.2.1 we provide some illustration of the achieved FWER and ARL0

metrics in a Poisson and a Binomial likelihood scenario with varying ρ and parameter

values, when the OOC scenario was set to shifts of size k = 2 (i.e. double the

Poisson rate parameter or double the expected odds in the Binomial). The designed

performance metrics were FWER = 5% for a sequence of N = 50 observation or

ARL0 = 100 while the achieved values in each case were obtained by averaging over

100,000 iterations of the IC process. As the prior becomes more informative, we

have hm → h, where h corresponds to the (unknown) threshold with the designed

FWER or ARL0 performance. The convergence of hm to h will depend primarily

on the value of ρ and to a smaller degree on the actual parameter values.

Scenario 3: neither the predictive is location-scale family nor we have an informa-
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Likelihood Initial Prior Expected Ratio (3.2.3)
f (·|θ) π0(θ|τ ) ρ

P (θ · si) G(c, d) 1− 1

d+ α0

n0∑
j=1

sj + 1

Bin(Ni, θ) Beta(a, b) 1− N

a+ b+ α0

n0∑
j=1

Nj +N

NBin(r, θ) Beta(a, b) 1− r

b+ α0

n0∑
j=1

yj − 1 + r

G(α, θ) G(c, d) 1− α

c+ α · (α0n0 + 1)− 1

W (θ, κ) IG(α, β) 1−
Γ 2

(
1 +

1

κ

)[
Γ (α+ α0n0)Γ

(
α+ α0n0 −

2

κ

)
+ Γ 2

(
1− 1

κ

)]
Γ (α+ α0n0)Γ

(
α+ α0n0 −

2

κ

)
Γ

(
1 +

2

κ

)
+ Γ 2

(
1 +

1

κ

)
Γ 2

(
1− 1

κ

)
IG(α, θ) G(c, d) 1− α− 2

c+ α · α0n0 − 1 + α

Pa(m, θ) G(c, d) 1−
V arθ

(
θ

θ − 1

)
Eθ

(
θ

(θ − 1)2(θ − 2)

)
+ V arθ

(
θ

θ − 1

)

Table 3.2.1: The expected ratio of the variance of the likelihood f(X|θ) over the
variance of the marginal f(X|Y , α0, τ ), defined in (3.2.3)

tive prior.

When our distributional setup does not conform with either scenario 3 or 4, we face

the most challenging case. Since we do not have a reliable way to estimate h us-

ing imaginary data, we will make use of the predictive Bayes factor to form some

evidence based limits for the charting statistics Sn+1. In (3.1.4) we expressed Sn+1

as the zero truncated cumulative logarithmic Bayes Factor, which measures the ev-

idence of the alternative model M1 (OOC) against the null M0 (IC). In addition,

under the assumption that the IC and OOC models are equally probable a-priori,

i.e. P (M0) = P (M1), then Bn+1
10 is simply the posterior odds of the two models.

Kass and Raftery (1995), following Jeffreys (1961), provided an analytical interpre-
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Figure 3.2.1: The hm based achieved FWER and ARL0 metrics for different param-
eter values as function of ρ in a Poisson or a Binomial PRC process. The horizontal
lines indicate the target value of FWER = 5% (with N = 50) and ARL0 = 100, while
for the FIR adjustment it was used (f, d) = (1/2, 3/4).

tation of Bn+1
10 and offered threshold values for decision making. Based on these

guidelines, when Bn+1
10 > 100, then the evidence against the null model is referred

as “decisive”, since the posterior probability of the alternative model will be at least

100 times greater than the corresponding of the null. Thus, we recommend to use

hBF = log(100) ≈ 4.605 as an evidence based limit for Sn+1. In other words, if

Sn+1 > hBF (or Sn+1 < −hBF for downward shifts), then we have a decisive cumu-

lative evidence in favor of the OOC state.

The evidence based limits can be used for a few initial steps to monitor the process.

At each step, as long as the posterior odds reveal that we are in the IC state, we

can use the obtained data to update the prior setting (since the posterior at each

time point acts as prior for the next observable) and examine whether it becomes

informative (based on ρ) or not. Once we have an informative prior we move to
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scenario (2), generating imaginary data from the marginal and deriving hm, initiating

a new PRC.

In Figure 3.2.2 we summarize all the proposed options for deriving a PRC’s decision

threshold. The threshold h, will depend on the likelihood of the data, the prior set-

tings and the intervened vector τ ′n, with the latter reflecting the discrepancy between

the current (IC) and the intervened (OOC) distribution. In general, assuming that

the deviation between IC and OOC state is considerably large, then if a change of

smaller size occurs, PRC might absorb it. On the other hand, if the real shift is

greater than the one we have set, then PRC probably will have a slightly delayed

alarm, but is expected to react. Therefore, the choice of the OOC state must take

into account the absorption risk, avoiding setting PRC for very large shifts (a similar

discussion regarding SSC can be found in Zantek, 2006). This is an issue, closely

related with West’s (1986) CBF methodology, where the alternatives are set to be

diffused, allowing potentially large shifts, a strategy that has a high risk in absorb-

ing small shifts and not reacting on them (for more information refer to Subsection

3.3.1).

Since for scenarios 2 and 3 in determining the decision threshold, we will have hm to

be a more conservative estimate, resulting lower false alarms (from what we design),

the use of FIR-PRC is motivated. Additionally, in some cases of handling big values

of ARL0, the FIR adjustment might be implemented for longer periods of data and

not just for the very few first observations (Figure 3.2.1 visualizes the benefit of

FIR-PRC).

3.2.2 PRC based inference

The control chart associated with PRC has the familiar form of a CUSUM, where the

monitoring statistic Sn+1 (from either (3.3.1) or (3.1.4)) is plotted versus time with

a horizontal decision limit h, derived in Section 3.2, acting as an upper/lower control
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Is the
predictive
location-
scale?

Scenario 1: Via
standardization,
derive h using

Algorithm 3 or 4

ρ ≥ 0.9
in (3.2.3)?

Scenario 2: Gener-
ate imaginary data
from the marginal
and derive hm via
Algorithm 3 or 4

Scenario 3: Use
the posterior odds to
monitor the process

If the evidence is in
favor of the IC state,
update the prior using

the posterior and
estimate the running ρ

YES NO

YES NO

Figure 3.2.2: Determining the decision threshold h for a PRC scheme. A decision is
represented by a rhombus and a rectangle corresponds to an operation after a decision
making.

limit in detecting upward/downward shifts (graphical illustrations are available in

Section 3.4). The area between the horizontal axis and h is considered as the IC

region, so when Sn+1 plots beyond the control limit h, then we raise an alarm and

our suggestion is to stop the process and examine for an assignable cause, triggering

a potential corrective action. From a root cause analysis point of view, a CUSUM

alarm will indicate not only that the IC state has been rejected, but it will also

offer an estimate of the time where the OOC state was initiated, which is simply

the latest time for which we had Sn+1 = 0. Once we correct the problem, then PRC

is suggested to be reinitiated, using all past IC recordings as historical data in the

power prior.

If we will not react to an alarm, then due to the dynamic update of PRC, OOC data

will be involved in the learning process, affecting what is considered as IC state. As

a result, the monitoring statistic will start moving back to the IC region. This is a

well known issue for the self-starting methods, reported in the literature as “window

of opportunity” for a control chart to alarm, before the running statistic stops to
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alarm (in contrast to the fixed parameter CUSUM, where there is no updating and

so an alarm will tend to persist). Thus, it is strongly recommended to act upon a

PRC alarm.

As we mentioned earlier, PRC’s monitoring can be considered as a sequential hypoth-

esis testing regarding the unknown parameter. Furthermore, within the Bayesian de-

cision theory framework, one can derive the point/interval estimate of the unknown

parameter. Precisely, when the process is under the IC state, the posterior distri-

bution of the unknown parameter(s) can be used to derive a Bayes point estimate

(like the posterior mean under squared error loss) or the Highest Posterior Density

(HPD) credible set. Such inference is also available via the predictive distribution

when forecasting might be of interest.

Quite often in practice, we might need to employ more than a single PRC, like when

we monitor the mean of a Normal distribution for either an upward or a downward

shift. In such cases, we need to account for the multiple testing and so if we use the

FWER metric we simply need to adjust its value, using for example the Bonferroni’s

correction (Dunn, 1961). For the ARL metric, one can refer to Hawkins and Olwell

(1998) among others, on how to combine the individual CUSUM ARLs, in getting

a designed overall ARL.

Summarizing, all the possible options of PRC are provided next, both in pseudo-code

in Algorithm 5 and in a flowchart in Figure 3.2.3.

3.3 Comparative study and sensitivity analysis

3.3.1 Competing methods

The first competing method of the study is SSC, which was demonstrated in chapter 7

in Hawknis and Olwell (1998) and we will present it for Normal, Poisson and Binomial

data. The SSC charts use the Q statistics, which were presented in Subsection 2.3.2.
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Algorithm 5 PRC algorithm
Determine the PRC model from the Table 1 and define the size of the shift k {
Model }
Determine either the length of data N with FWER or the ARL0 { FA tolerance
}
Is prior information available? { initial prior π0(·) }
YES

Determine the hyperparameters of the initial prior τ
NO

Set the initial reference prior
Are prior data available? { power prior }
YES

Provide the historical data Y and determine α0

NO
Set α0 = 0

Choose the appropriate threshold h based on Section 3.2 { Decision Threshold
}
Is FIR-PRC of interest? { FIR }
YES

Determine the parameters (f, d) in (13)
NO

Set f = 0 in (13)
Once the data point xn (n ≥ 1F) arrives, derive the predictive distribution of
next observable Xn+1| (Xn,Y , α0, τ )
Obtain xn+1 and calculate FIRadj · log(Ln+1) in (7) and Sn+1 in (8) { Sn+1 }
if Sn+1 ≤ h (or Sn+1 ≥ h for downward shifts) then { test }
n← n+ 1
goto 19

else { Stopping time alarm}
Raise an Alarm
if you do not make a corrective action then
goto 22

else
end PRC scheme

endif
endif



3.3. Comparative study and sensitivity analysis 89

START

Choose the PRC model from the Table 1 and define the size of the shift k

Prior
Information?

Determine the initial
prior hyperparameters τ

Set the initial
reference prior

Historical
Data?

Provide the historical data
and determine α0 in (2) Set α0 = 0

Choose the appropriate threshold h based on Section 3.2

FIR PRC?Determine (f, d) in (13) Set f = 0 in (13)

Obtain xn, (n = 1 or 2F)

Obtain xn+1 and calculate FIRadj · Ln+1 in (7) and Sn+1 in (8)

|Sn+1| ≤ |h|?n ← n + 1
Stopping
Time!

Corrective
Action?

END

YES NO

YES NO

YES NO

YES NO

YES

NO

Figure 3.2.3: PRC flowchart. A parallelogram corresponds to an input/output
information, a decision is represented by a rhombus and a rectangle denotes an
operation after a decision making. In addition, the rounded rectangles indicate the
beginning and end of the process.

FFor the likelihoods with two unknown parameters and total prior ignorance
(i.e. initial reference prior and α0 = 0 in the power prior) we need n = 3 to initiate
PRC, while for all other cases, PRC starts right after x1 becomes available.
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After calculating the Q statistic at time n+ 1, then a CUSUM chart is constructed

for it. Thus, the formula of one sided SSC is:

Sn+1 = max{0, Sn +Qn+1 − k} or Sn+1 = min{0, Sn −Qn+1 + k} (3.3.1)

for upwards and downwards shifts respectively, where k is a reference value which

determines the size of the shift for which the SSC is tuned. Hawknis and Olwell

(1998) and Zantek (2006) discussed about the selection of k. For Normal data, if we

are interested in detecting a shift for the variance, then we employ the square of the

calculated statistic. In other words, a scale SSC is employed if in the formulas of

Sn+1 we replace Qn+1 by Q2
n+1. We ring an alarm, if |Sn+1| ≥ |hSSC |, where hSSC is

a threshold appropriately chosen to respect to the false alarm criterion.

The second competing method is CBF by West (1986) and West and Harrison (1986).

In the same philosophy with PRC, CBF uses the ratio of posterior predictive distribu-

tions. The main difference between these two procedure is that, while the predictive

f (Xn+1|Xn) that represents the IC state is identical, the OOC predictives differ.

The CBF’s alternative predictive fA (Xn+1|Xn) will be a diffused version of the IC

predictive, with the same mean but a greater variance. Specifically, the variance of

the neutral alternative will be:

V ar (Xn+1|Xn) = V arA (Xn+1|Xn) /r (3.3.2)

where 0 < r < 1 is the discount factor. The Bayes’ factor at time n+ 1 will be:

Hn+1 = f (Xn+1|Xn) /fA (Xn+1|Xn) (3.3.3)

Small values Hn+1 indicate poor predictive performance of IC state. Then, the

cumulative Bayes’ factor of the most recent k observations is defined as:

Wn+1(k) = Hn+1 ·Hn · ... ·Hn−k+2 = Hn+1 ·Wn(k) (3.3.4)
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for n+ 1 ≥ 2. As West and Harrison (1986) denoted, a single small Hn+1 = Wn+1(1)

provides a warning of a potential outlier at time n+ 1 or the or the onset of change,

while a small Wn+1(k) for k > 1 suggests a possible change in the past. Finally, the

cumulative statistic is given the formula:

Vn+1(k) = min
1≤t≤n+1

Wn+1(k) = Hn+1 min{1, Vn}. (3.3.5)

We ring an alarm, if Vn+1(k) drops below a predetermined threshold hCBF a threshold

appropriately chosen to respect to the false alarm criterion.

3.3.2 Simulation study

In this subsection, we will evaluate the performance of PRC and compare it against

SSC and CBF. The comparison will involve data from Normal, Poisson or Binomial,

i.e. the most studied distributions in SPC/M. The goal will be to detect as soon as

possible, step changes for the mean or inflation for the standard deviation in Normal

data (when both parameters are unknown), rate increases in Poisson and increases

in the odds of the success probability in Binomial data (all cases refer to typical

process deterioration in SPC/M).

All competing methods, are aligned to have identical false alarm rate, while they

are designed appropriately to detect the OOC scenario under study. Specifically, we

tune the parameter k in PRC, the reference value of SSC, and the discount factor

of CBF, to reflect on the size of the shift that we aim to detect. For the SSC

with discrete distributions (i.e. Poisson and Binomial) we follow the suggestion (in

chapter 7) of Hawkins and Olwell (1998), where the normal scores obtained based on

the proposal of Quessenberry (1995) are winsorized by replacing, whenever necessary,

the undefined Φ−1(1) by Φ−1(0.995).

To derive the decision limit of each method, we simulate 100,000 IC sequences of
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size N = 50 observations from N (θ1 = 0, θ2
2 = 1) (that will be used for both the

mean and the variance charts), P (θ3 = 1) and Bin (40, θ4 = 0.025). In SPC/M we

typically use Poisson or Binomial to model count or proportion of defects respectively

and so small parameter values are more realistic. Furthermore, the Bayesian PRC

and CBF methods require to define a prior distribution and so within this simulation

we will take the opportunity to perform a sensitivity analysis, examining the effect of

the presence/absence of prior information (reflecting the subjective/non-informative

point of view). Therefore, for each scenario, we will compare the SSC against two

versions for each of PRC and CBF (with/without prior knowledge). The initial priors

π0(·|τ ), considered are:

• Normal: reference (non-informative) prior π0

(
θ1, θ

2
2

)
∝ 1/θ2

2 ≡ NIG(0, 0,−1/2, 0)

or the moderately informative NIG(0, 4, 2, 1.5).

• Poisson: reference (non-informative) prior π0 (θ3) ∝ 1/
√
θ3 ≡ G(1/2, 0) or the

moderately informative G(4, 4).

• Binomial: reference (non-informative) prior π0 (θ4) ∝ 1/
√
θ4(1− θ4) ≡

Beta(1/2, 1/2) or the moderately informative Beta(4, 156).

The OOC scenarios that will evaluate the detection power of the competing methods,

come from the 100,000 IC sequences of length N = 50, where small or medium

permanent parameter shifts (i.e. step changes) are introduced at one of the locations

ω = {11, 26 or 41}. In other words, we have three scenarios for the unique change

point location ω: either at the start, or in the middle, or near the end of the sample.

For each location we will consider two shift sizes, which will be:

• Normal (mean): mean step change of size {1θ2 or 1.5θ2} = {1 or 1.5}, i.e. after

the change point ω, the OOC data come from N(1, 1) or N(1.5, 1).

• Normal (standard deviation): sd inflation of size {50% or 100%}, i.e. after the

change point ω, the OOC data come from N(0, 1.52) or N(0, 22).

• Poisson (rate): parameter increase of size {50% or 100%}, i.e. after the change
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point ω, the OOC data come from P (1.5) or P (2).

• Binomial (probability of success): an increase of size {50% or 100%} for the

odds of success, i.e. after the change point ω, OOC data come from Bin(40, 0.037)

or Bin(40, 0.049).

Next, we provide the performance metrics used to evaluate the competing charts.

First, we align all methods to have 5% Family Wise Error Rate (FWER) when we

have IC data of length 50, i.e. FWER(N) = P (T ≤ N |ω > N) = 0.05, where T

denotes the stopping time, ω is the time of the step change and N = 50 (length of the

data in this study). Regarding OOC detection, the main goal of self-starting methods

(especially in short runs), is to be able to ring an alarm before they absorb a change

and also minimize the delay in ringing the alarm. The former, will be assessed, in

the same philosophy as Frisen (1992), using the Probability of Successful Detection

(PSD), where PSD(ω) = P (ω ≤ T ≤ N) and the bigger PSD(ω), the better. For

the latter, we estimate the delay of an alarm similar to Kenett and Pollak (2012),

using the truncated Conditional Expected Delay, which is:

tCED(ω) = Eω(T − ω + 1|ω ≤ T ≤ n) =
Eω
(
(T − ω + 1) · 1{ω≤T≤n}

)
P (ω ≤ T ≤ n)

(3.3.6)

and it is the average delay of the stopping time T , given that this stopping time

was after the change point occurrence and before the end of the sample (i.e. point

of truncation) and the smaller the delay the better the performance. tCED is in

the same philosophy with Average Detection Delay ADD(τ) = Eτ (T − τ |T ≥ τ),

which is minimized by the classical Shiryaev’s process. In addition, other optimality

properties have been investigated by Pollak and Tartakovsky (2009), however these

problems are open when these distributions include unknown parameters. It is worth

mentioning that the aforementioned metrics are more realistic compared with the

rather restrictive Average Run Length (ARL, Lorden 1971), which in fact cannot be

applied in self-starting procedures, especially when we have short runs.
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The simulation results are summarized graphically in Figure 3.3.1 (and analytically in

Table 3.3.1). Overall, the PRC outperforms both competing methods in all scenarios

of jump sizes and change point locations, as it has steadily better performance in

the detection ability and better or similar performance on the delay in signaling an

alarm.

Initially, for the detection performance within each method, we observe (as it was

expected) that the bigger the size of the shift, the higher the detection power. Re-

garding the effect of the location ω, we observe that in all cases the best performance

appears when the change point is at the middle of the sequence (ω = 26). The lower

performance in the start (ω = 11), is related to the fact that the learning process is

not as mature as in the middle of the sequence. For the change near the end (ω = 41)

despite the fact that the learning has been significantly improved the performance

decreases as there is not sufficiently long time to build up the evidence and ring an

alarm (there exist only 50 − ω + 1 = 10 observations until we reach the end of the

data sequence).

Comparing across methods via PSD(ω), we observe that the PRC achieves higher

detection percentage than SSC for all distributions, shifts and locations. The PRC’s

outperformance against SSC is valid irrespectively of whether we have an informa-

tive or not prior distribution and their difference is greater at ω = 11 (the earlier

the shift the bigger the difference). The SSC’s significantly lower performance versus

PRC (even when a reference prior is in use) in the discrete distributions can be at-

tributed to the fact that SSC is using an approximation to normality algorithm that

in discrete data can be poor. The CBF, with one exception, is having the lowest

performance of all competing methods. This is the price that CBF pays for aim-

ing to be general and not specifying a target OOC distribution (it simply diffuses

the predictive distribution keeping the same location). The exception is when we

study shifts in the standard deviation of the normal data, where the CBF becomes

informative, since the alternative (OOC) scenario involves the same location and
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inflated variance. Thus, for this specific scenario, CBF coincides with PRC provid-

ing identical performance. Regarding tCED(ω), we observe that PRC is indifferent

from SSC in Normal data (and better from CBF in normal mean PRC), while for

the discrete distributions we have PRC to have comparable performance with CBF

and a lot better (i.e. smaller delay) when compared to the SSC. Finally, the prior

sensitivity indicates that even moderately informative prior information enhances

the performance of PRC (and CBF). This is more intense at the early stages of the

process (ω = 11), when the volume of the data is very low.

3.3.3 PRC Robustness and FIR implementation

Like in Subsection 2.4, we will examine how robust is the PRC in misspecification

of the setup and we will also perform a short simulation study for the evaluation of

the performance of the FIR-PRC scheme. Namely, we will compare PRC, SSC and

CBF, when we have:

(a) distributional violation (i.e. data are generated from a different distribution

than the one assumed),

(b) jump misspecification (i.e. the real change in the process is different from the

one that is tuned),

(c) misplaced prior distribution (i.e. the prior mean is significantly different than

the real mean of the process),

(d) early shifts in a FIR-PRC scheme (i.e. shifts at the early start of the process).

For (a), we will examine the following scenarios:

• run the PRC process for the mean of Normal data, while the real data are

generated from a Student t5 distribution,
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• run the PRC process for the mean of Normal data, while the real data are

generated from a Gumbel (µ = −0.5, β = 0.8) distribution,

• run the PRC process for Poisson data, while the real data are generated from

a NBin (r = 4, p = 1/5) distribution.

In the distributional violation scenarios, the shifts will be of size 1sd of the actual

distribution. Regarding (b), we will set all the methods for step changes in the mean

of Normal data size of 1σ, while the real jump will be:

• a mean step change size of 0.5σ,

• a mean step change size of 1.5sd,

• a sd inflation size of 100%.

The prior distributions (reference prior and moderately informative) for (a) and (b)

will be identical to the ones used in Subsection 3.3.1. For the prior misspecification

scenario (c), we will examine the performance of both the Bayesian methods, PRC

and CBF, misplacing moderately informative priors. Precisely, we will set the pro-

cesses for mean step changes size of 1σ with IC sequences from a standard Normal

distribution. But, instead from the moderately informative NIG(0, 4, 2, 1.5) with

prior mean µ0 = 0, we will use the misplaced priors:

• NIG(0.5, 4, 2, 1.5) with prior mean µ0 = 0.5,

• NIG(−0.5, 4, 2, 1.5) with prior mean µ0 = −0.5.

The locations of the change points for all the above misspecification scenarios will

be the same with those in Subsection 3.3.2, i.e. we will introduce contaminated

data starting from ω = {11, 26 or 41} until the end of the sample (N = 50). As

regards the FIR-PRC implementation in (d), we will examine its performance using

the somewhat conservative choice of (f, d) = (1/2, 3/4). The setup will be the same

as that of Subsection 3.3.1 with mean step changes of 1σ in Normal data, introducing

at early locations ω = {6 or 11}.
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Figure 3.3.2: The FWER(k) at each time point k = 2, 3, . . . , 50, the probability of suc-
cessful detection, PSD(ω), (%) and the truncated conditional expected delay, tCED(ω) for
shifts at locations ω = {11, 26, 41}, of SSC, CBF and PRC, under a reference (CBFr, PRCr)
or a moderately informative (CBFmi, PRCmi) prior for OOC scenarios with misspecified
distributions. All the procedures are set for a mean step change size of 1σ in data from a
standard Normal or an rate increase of 50% in Po(1) data.

Figures 3.3.2, 3.3.3, 3.3.4 and 3.3.5 provide a graphical representation of the results

of Tables 3.3.2, 3.3.3 3.3.4 and 3.3.5, regarding the performance for misspecification

in the distribution, the kind of the shift and the prior, along with the FIR-PRC

respectively. As we see, PRC is less affected by the distributional violation in either

the false alarms in a IC sequence or the detection power in the OOC scenarios.

Specifically, the false alarms of SSC and CBF are unacceptable high in most cases,

while those of PRC are close to the predetermined, especially with the reference

prior, where PRC is almost unaffected. In addition, PRC has greater detection

percentages, especially using the moderately informative prior.
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k′

SSC PRCmi PRCr CBFmi CBFr
Actual PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)%

Distribution tCED(ω) tCED(ω) tCED(ω) tCED(ω) tCED(ω)
(sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω)))

M
is

sp
e

c
if

ie
d

d
is

tr
ib

u
ti

o
n

s IC 7.685% 6.217% 5.410% 22.942% 15.222%
37.130% 63.885% 37.932% 26.015% 12.102%

11 13.411 12.596 13.756 19.376 22.034
(8.713) (7.794) (8.288) (10.187) (10.587)

62.920% 76.107% 64.688% 41.083% 26.663%
t5 26 10.956 10.422 11.140 10.858 11.354

(5.658) (5.458) (5.547) (6.533) (6.635)
39.057% 47.175% 40.062% 23.203% 17.483%

41 6.727 6.656 6.850 5.623 5.719
(2.256) (2.224) (2.183) (2.764) (2.748)

IC 9.247% 6.013% 5.272% 14.542% 13.421%
41.658% 53.488% 36.462% 19.560% 13.361%

11 13.152 14.237 14.105 21.824 21.841
(9.092) (8.450) (8.813) (10.128) (10.728)

58.958% 67.790% 58.332% 36.149% 28.717%
Gu(−0.5, 0.8) 26 10.703 10.907 11.127 11.483 11.197

(5.856) (5.679) (5.728) (6.662) (6.752)
36.204% 40.736% 35.881% 22.105% 18.941%

41 6.454 6.562 6.663 5.562 5.535
(2.392) (2.318) (2.298) (2.751) (2.755)

IC 6.379% 11.148% 2.204% 26.677% 21.836%
10.121% 48.294% 16.081% 34.639% 32.524%

11 30.258 19.315 23.484 34.639 32.524
(7.721) (9.962) (9.245) (11.246) (11.291)

15.449% 48.547% 22.867% 28.720% 27.625%
NB(4, 1/5) 26 17.083 12.980 15.177 11.986 11.916

(6.042) (6.435) (6.015) (7.141) (7.514)
8.579% 20.601% 8.024% 13.801% 13.396%

41 6.293 6.301 6.779 5.327 5.324
(2.726) (2.619) (2.527) (2.859) (2.863)

Table 3.3.2: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for ω =
{11, 26, or 41}, of SSC against PRC under a moderately informative prior (PRCmi)
or the reference prior (PRCr) and CBF under a moderately informative prior (PRCmi)
or the reference prior (CBFr) for OOC scenarios with misspecified distributions. All
the procedures are set for a mean step change size of 1σ in data from a standard
Normal or an rate increase of 50% in Po(1) data.

Regarding the misspecification in the shift, PRC is still robust, even when smaller

changes from what we designed occur. Especially under the presence of IC prior

information, PRC has significantly high detection percentages. Seemingly, the only

exception is in the case of a change in variance. There, the CBF has a superior

performance, but this is expected because, as we have mentioned, CBF is essentially

a method that can successfully detect changes in variance. Moreover, it is identical

to the PRC in this case, so the exact same performance would have achieved by a
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PRC for the variance.
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Figure 3.3.3: The FWER(k) at each time point k = 2, 3, . . . , 50, the probability of suc-
cessful detection, PSD(ω), (%) and the truncated conditional expected delay, tCED(ω) for
shifts at locations ω = {11, 26, 41}, of SSC, CBF and PRC, under a reference (CBFr, PRCr)
or a moderately informative (CBFmi, PRCmi) prior for OOC scenarios with misspecified
jumps. All the procedures are set for a mean step change size of 1σ in data from a standard
Normal distribution.



3.3. Comparative study and sensitivity analysis 102

Jump k′

SSC PRCmi PRCr CBFmi CBFr
PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)%
tCED(ω) tCED(ω) tCED(ω) tCED(ω) tCED(ω)

(sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω)))

M
is

sp
e

c
if

ie
d

ju
m

p
s

IC 4.943% 4.917% 4.879% 4.871% 4.824%
10.707% 16.954% 11.683% 4.943% 4.622%

11 17.261 18.519 17.715 27.577 24.930
(10.442) (9.743) (10.123) (8.394) (9.753)
15.775% 22.115% 17.122% 8.199% 6.557%

0.5σ 26 13.049 13.171 13.128 13.842 12.951
(6.229) (6.174) (6.203) (6.739) (6.997)
7.078% 9.279% 7.440% 4.693% 3.715%

41 6.861 6.858 6.901 5.847 5.780
(2.408) (2.392) (2.393) (2.785) (2.805)

63.772% 92.249% 67.982% 11.736% 4.214%
11 11.436 9.774 11.807 15.774 14.812

(7.325) (6.003) (7.170) (8.503) (9.401)
93.854% 97.632% 94.831% 58.903% 39.695%

1.5σ 26 8.277 7.304 8.250 10.361 10.225
(4.446) (3.779) (4.302) (5.909) (6.043)

80.003% 85.372% 80.954% 47.309% 37.820%
41 6.029 5.794 6.069 5.846 5.949

(2.119) (2.075) (2.083) (2.583) (2.593)
16.435% 22.384% 19.958% 88.688% 55.722%

11 15.566 17.148 18.534 15.721 19.648
(11.139) (10.535) (11.027) (8.585) (9.531)
32.170% 36.199% 26.820% 94.630% 87.762%

100% 26 10.253 10.932 11.242 9.209 10.409
(6.446) (6.433) ()6.487 (5.572) (5.985)

24.420% 25.208% 20.330% 68.253% 61.292%
41 5.707 5.846 5.980 5.422 5.629

(2.597) (2.564) (2.551) (2.656) (2.657)

Table 3.3.3: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for ω =
{11, 26, 41}, of SSC against PRC under a moderately informative prior (PRCmi) or
the reference prior (PRCr) and CBF under a moderately informative prior (PRCmi)
or the reference prior (CBFr) for OOC scenarios with misspecified jumps. All the
procedures are set for a mean step change size of 1σ in data from a standard Normal
distribution.

Continuing with the misplaced prior, PRC is very robust, even if the prior is on

the side of the jump (PRC+). Finally, the FIR-PRC with a conservative choice of

(f, d) boosts the performance, especially at ω = 6, while it has only a small effect

on the false alarms. This is of great importance if we wish to detect changes at the

beginning of a process.
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PRC Performance (Normal data)
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Figure 3.3.4: The FWER(k) at each time point k = 2, 3, . . . , 50, the probability
of successful detection, PSD(ω), (%) and the truncated conditional expected delay,
tCED(ω) for shifts at locations ω = {11, 26, 41}, of PRC under two misplaced mod-
erately informative priors in the positive and the negative respectively (PRC+ and
PRC+) along with the and CBF under the same priors (CBF+ andCBF−). All the
procedures are set for a positive mean step change size of 1σ in Normal data.

Jump k′

PRC+ PRC− CBF+ CBF−
PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)%
tCED(ω) tCED(ω) tCED(ω) tCED(ω)

(sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω)))

M
isp

la
ce

d
pr

io
rs IC 5.962% 5.885% 3.648% 3.655%

38.703% 70.832% 3.791% 5.700%
11 16.549 12.059 25.806 19.439

(8.709) (7.738) (8.897) (9.502)
65.132% 79.485% 16.704% 24.582%

1σ 26 11.981 10.366 13.115 12.254
(5.609) (5.478) (6.456) (6.351)
37.880% 48.775% 12.556% 16.708%

41 6.982 6.643 6.149 6.135
(2.128) (2.243) (2.685) (2.650)

Table 3.3.4: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for ω =
{11, 26, 41} of PRC under two misplaced moderately informative priors in the positive
and the negative respectively (PRC+ and PRC+) along with the and CBF under the
same priors (CBF+ andCBF−). All the procedures are set for a positive mean step
change size of 1σ in Normal data.
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FIR−PRC Performance (Normal data)
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Figure 3.3.5: The FWER(k) at each time point k = 2, 3, . . . , 50, the probability
of successful detection, PSD(ω), (%) and the truncated conditional expected delay,
tCED(ω) for shifts at locations ω = {11, 26, 41}, of SSC, CBF and PRC, under a
reference (CBFr, PRCr) or a moderately informative (CBFmi, PRCmi) prior. Along
with the standard version of PRC, the FIR-PRC (FIR − PRCmi and FIR − PRCr)
with (f, d) = (1/2, 3/4) is employed. The results refer to Normal data with step change
of 1σ for the mean.

Jump k′

SSC PRCmi PRCr CBFmi CBFr FIR− PRCmi FIR− PRCr
PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)% PSD(ω)%
tCED(ω) tCED(ω) tCED(ω) tCED(ω) tCED(ω) tCED(ω) tCED(ω)

(sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω))) (sd(tCED(ω)))

F
IR

IC 4.943% 4.917% 4.879% 4.871% 4.824% 5.278% 5.691%

1σ

12.966% 36.430% 13.733% 2.180% 2.360% 44.568% 17.880%
6 16.769 16.457 18.132 31.805 31.090 14.224 15.361

(10.923) (9.367) (10.400) (9.507) (10.446) (9.163) (10.283)
31.716% 58.059% 34.978% 5.790% 3.927% 60.181% 37.070%

11 13.926 13.916 14.351 22.534 20.867 13.354 13.650
(8.772) (8.142) (8.517) (9.507) (10.446) (8.127) (8.542)

Table 3.3.5: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for τ =
{6, 11}, of SSC against PRC under a moderately informative prior (PRCmi) or the
reference prior (PRCr) and CBF under a moderately informative prior (PRCmi) or
the reference prior (CBFr). Along with the standard version of PRC, the FIR-PRC
(FIR − PRCmi and FIR − PRCr) with (f, d) = (1/2, 3/4) is employed. The results
refer to Normal data with step change of 1σ for the mean.
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3.4 PRC real data application

3.4.1 PRC application to Normal data

In this Section we will illustrate the use of PRC in real data, assuming normality.

Regarding the continuous case, we will use data that come from the daily Internal

Quality Control (IQC) routine of a medical laboratory and specifically from the area

of clinical hemostasis. We are interested in the variable “Factor V”, measured in

% regarding the international standards in Biology. Factor V is one of the serine

protease enzymes of the procoagulant system, which interacts on a phospholipid

surface to induce formation of stable clot of fibrin. Deficiencies of Factor V can

induce bleeding disorders of varying severity. The normal range for factor V level is

61%−142% (for adults) and in this application we focus on pathological values (i.e.

measurements below 60%, which Biologist’s call abnormal values). In a medical lab,

where control samples are used to monitor the quality of the process, it is known

that a change of reagent batch might introduce a step change to the measurement

of Factor V. This can occur at the early stages of the process and it is crucial to

identify such a change point, when present, to avoid impacting clinically the patients

care. We sequentially gathered 21 normally distributed IQC observations (Xi) from

a medical lab (see Table 3.4.1), where Xi|
(
θ1, θ2

2
)
∼ N

(
θ1, θ2

2
)
.

x1 − x11 31.0 30.0 32.0 28.0 33.2 33.2 35.1 35.1 33.9 37.9 33.2
x12 − x21 36.5 33.2 35.1 34.5 36.5 33.2 35.1 37.2 32.6 36.5

Table 3.4.1: The Factor V (%) internal quality control observations of the current
X = (x1, x2, . . . , x21) data, reported during September 24, 2019 - October 8, 2019.

From the control sample manufacturer, we elicit the initial prior π0

(
θ1, θ2

2|τ
)
∼

NIG (31.8, 1/2, 2, 4.41). Furthermore, we have n0 = 37 IC historical data (from a

different reagent) available, with ȳ = 31.73 and var(y) = 3.31 and we set α0 =

1/37 in the power prior term, to convey the weight of a single data point to these.

Combining the two sources of information within the power prior (2.1.3) we obtain:
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π
(
θ1, θ2

2|Y , α0, τ
)
∼ NIG (31.75, 3/2, 5/2, 6.02). The goal is to detect any small

permanent positive or negative shift in the mean of the process, as this will have

an impact on the reported patient results. In this setup, we choose the parameter

k = 1, as at low levels of factor V the bleeding risk can hugely increase with small

differences. Thus, we tune the PRC in detecting mean step changes, in either upward

or downward direction, of one standard deviation size (i.e. ±θ̂2). The PRC control

chart will plot two monitoring statistics: S+
n+1 (evolving in the nonnegative part) and

S−n+1 (evolving in the nonpositive numbers) that will test for upward and downward

permanent mean shifts respectively. Furthermore, we will have two decision limits

h+ and h−, which due to the normal distribution symmetry and the design of the

same OOC step change shift (±θ̂2) will be of the same magnitude (i.e. |h+| = |h−|).

As the data are normally distributed, the standardized version of PRC is available

and from scenario 1 of Section 3.2 we derive the decision limit h+ = 3.882 (h− =

−3.882), to achieve FWER = 5% for 21 observations (since we run two tests we

used Bonferroni’s adjustment resulting FWER = 2.5% for each of the PRCs). As

this study is offline, we will not interrupt the process after a PRC alarm (as we would

have done when PRC runs online), but instead we will let it run until the end of the

sample in order to perceive its behavior in the presence of contaminated data.

Figure 3.4.1, provides the two sided PRC chart along with the plot of the available

data. The control chart rings an alarm at location eight indicating an upward mean

shift, which seems to be initiated at location four (i.e. last time where S+
n+1 = 0

before the alarm), i.e. we have a delay of three observations in ringing the alarm. It

worths noting also that the alarm persists till the end of the sample, indicating PRC’s

resistance in absorbing the change. We should also mention that due to the lack of

knowledge of the actual parameter values one cannot provide a decision threshold to

respect the required FWER for either SSC or CBF, a huge obstacle for using them

in everyday practice.
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Figure 3.4.1: PRC for Normal data. At the top panel the data are plotted, while at
the lower panel, we provide the PRC control chart, focused on detecting an upward or
downward mean step change of one standard deviation size, when we aim a FWER =
5% for 21 observations.
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3.4.2 PRC application to Poisson data

Now, we provide the PRC’s illustration for discrete (Poisson) data, presented initially

at Dong et al. (2008) and analyzed by Ryan and Woodall (2010) as well. They

refer to counts of adverse events (xi), per product exposure in millions (si), in a

pharmaceutical company. We have 22 counts (see Table 3.4.2) arriving sequentially

that we will model using the Poisson distribution with unknown rate parameter, i.e.

Xi|θ ∼ P (θ · si). In contrast to the previous application, neither prior information

regarding the unknown parameter nor historical data exist. Therefore, we use the

reference prior as initial prior for θ, i.e. π0(θ|τ ) ∝ 1/
√
θ ≡ G(1/2, 0) and we also set

α0 = 0 for the power prior term.

Adverse events (x1 − x11) 1 0 0 0 1 0 3 3 3 2 5
Product exposure (s1 − s11) 0.206 0.313 0.368 0.678 0.974 0.927 0.814 0.696 0.659 0.775 0.731
Adverse events (x12 − x22) 5 2 4 4 3 4 3 8 3 2 2

Product exposure (s12 − s22) 0.710 0.705 0.754 0.682 0.686 0.763 0.833 0.738 0.741 0.843 0.792

Table 3.4.2: Counts of adverse events (xi) and product exposure (si) per million
(i = 1, 2, . . . , 22), for each quarter reported during July 1, 1999 - December 31, 2004
(see Dong et al., 2008).

We tune PRC in detecting a 100% increase in the rate parameter and we also provide

the FIR-PRC version, setting (f, d) = (1/2, 3/4). As the predictive distribution is

not a location/scale family and the prior is not informative, we fall under scenario

3 of Section 3.2 and so we will make use of the evidence based threshold hBF =

log(100) ≈ 4.605. Just as we did in the previous application we will analyze all the

data in an offline version and not interrupt the process after an alarm to record the

alarm’s persistence. In Figure 3.4.2 a plot of the data along with the two versions of

PRC (with/without FIR) are provided.

The PRC provides the first alarm at observation 12, while the FIR-PRC gives an

alarm at location 11, both indicating that we had a persistent rate increase, which

appears to have started after location 6 (i.e. last time before the alarm, where the

monitoring statistic was zero). Furthermore, the alarm persists until observation 21,
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after which the monitoring statistics returns to the IC region. It is worth mentioning

that, since we have a decisive evidence that the procedure is OOC, we maintained

the evidence limit until the end of the sample, avoiding the option of elicitating hm

via the marginal distribution after the first few data, as described in scenario 3 of

Section 3.2. We also note that both in Dong et al. (2008) and Ryan and Woodall

(2010), where the aim was to have an IC Average Run Length ARL0 ≈ 100, their

cumulative evidence monitoring approach, gave only a single alarm at location 19

(i.e. the alarm comes later compared to PRC and is absorbed instantly).
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Figure 3.4.2: PRC for Poisson data. At the top panel we plot the counts of adverse
events xi (solid line) and the rate of adverse events per million units xi/si (dashed
line). At the lower panel, we provide the PRC control chart, focused on detecting
100% rate inflation and the evidence based limit of hBF = log(100) ≈ 4.605 is used.
For the FIR-PRC (dashed line) the parameters (f, d) = (1/2, 3/4) were used.



Chapter 4

Self-starting Shiryaev (3S)

4.1 3S Theoretical background

The efficient online detection of a shift in short horizon data and the reliable estima-

tion of the unknown process parameters is not a trivial problem. In this chapter, we

propose a Bayesian change point scheme, named Self-Starting Shiryaev (3S), provid-

ing all the assumptions and the methodological framework to handle either univariate

(U3S) or multivariate (M3S) data. Especially for M3S, the high-dimensional version

of 3S, we build it so that it can achieve the desired detection properties of a mul-

tivariate chart, i.e. to be able to identify when the process parameters experience

directional invariance, anisotropic scaling or rotation, by using directional statistics.

We assume that the observations are normally distributed, but potentially the pro-

posed mechanism can be available for every distribution. The monitoring in the

proposed methodology is based on the posterior marginal probability of a change

point occurrence. 3S is a generalization of the Shiryaev’s process (Shiryaev, 1963),

relaxing the strict assumption of known parameters and offering a more flexible prior

for the change point.

3S, as all the proposed methods in this dissertation, is a self-starting scheme and

110
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therefore it does not require a phase I calibration and it is powerful in detecting

process disturbances from the start of the process, utilizing prior information when

available. Apart from the online testing and monitoring, our proposal provides pos-

terior inference for all the unknown parameters of the IC and the OOC state and

the change point. Additionally, we propose an adaptive decision limit, which is

more realistic and better interpretable compared to a constant. An extensive sim-

ulation study evaluates our proposal against frequentist based and nonparametric

alternatives, and performs a prior sensitivity analysis. Namely, we compare U3S

against the Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998) and the Recur-

sive Segmentation and Permutation (RS/P, Capizzi and Masarotto, 2013) for mean

and scale shifts. In the multivariate case we compare M3S against the Self-Starting

Multivariate EWMA SSMEWMA, (Hawkins and Maboudou-Tchao, 2007) and the

Self-Starting CUSCORE (SSCUSC(1) Capizzi and Masarotto, 2010) for drifts in the

mean vector. Further, we provide three applications in total to illustrate its use in

practice. Two for univariate datasets, with a mean and a variance shift respectively,

and one for a mean vector shift in multivariate data. All the technical details of the

modelling and the applications are analytically provided in the provided in detail in

Appendices.

4.1.1 3S methodological framework

Sequential change point methods in SPC/M aim to detect a change from the IC state

of a distribution, as soon as it occurs, while keeping a predetermined tolerance in

False Alarms (FA). Standard Shiryaev’s process is a Bayesian sequential change point

method, which is based on the posterior probability of a change point occurrence,

given the dataset. More analytically, assume xn = (x1, x2, ..., xn) is a random sample

of data, obtained sequentially. The known IC and OOC distributions are denoted

by f0 and f1 respectively, not necessarily of the same parametric form. Regarding

the unknown change point τ , it is assumed τ ∼ G(p). Then, the likelihood combines
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both the IC and OOC states, conditional on the time of a permanent shift. Namely,

it is given by:

f (xn|τ) =


τ−1∏
i=1

f0 (xi)
n∏
i=τ

f1 (xi) if τ ≤ n

n∏
i=1

f0 (xi) if τ > n

(4.1.1)

The stopping time T (p∗) is the first observation for which the posterior probability of

a change point occurrence exceeds a predetermined threshold that was chosen based

on the desired FA tolerance, i.e.:

T (p∗) = inf {n ≥ 1 : p (τ ≤ n|xn) ≥ p∗} (4.1.2)

Standard Shiryaev’s process has certain optimality properties, as it minimizes the

Average Detection Delay ADD(τ) = Eτ (T − τ |T ≥ τ) (Pollak, 1985), i.e. the av-

erage delay until the stopping time. Pollak and Tartakovsky (2009) investigated

more optimality properties of the Shiryaev’s process. It is worth mentioning that

ADD(τ) is more realistic as a performance measure versus the widely used Average

Run Length (ARL), which in fact cannot be applied in self-starting procedures.

Despite the fact that the ShiryaevâĂŹs process is known to be a very powerful method

when compared to several alternatives, it has somewhat restrictive assumptions and

thus there is room for improving the existing methodology by relaxing some these

assumptions. Probably, the most important is that it is assumed that both of the

IC (pre-change) density f0 and the OOC (post-change) density f1 are known. This

is a very strict and rather unrealistic assumption. In practice, f0 could be known

under specific conditions, but it is extremely restrictive to assume that f1 will be

known in advance. However, only under the assumption of known distributions the

Shiryaev’s process will have the optimal properties, while the problem is open when

the distribution will involve unknown parameters. In addition to this, the assumption

of known OOC (post-change) density f1 is rather unrealistic for multivariate data
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processes. In the univariate case, f1 simply yields a benchmark of the OOC state.

For instance, if we are interested in detecting shifts for the mean, then the possible

shifts (of predetermined magnitude) are either upward or downward. Therefore, we

can easily build up two corresponding settings. But, as the data dimension increases,

the number of the possible OOC scenarios for all components increases exponentially

fast with the dimensionality. This is a plausible reason for the lack of a multivariate

generalization of Shiryaev process, while there is a plethora of directionally invariant

score based multivariate CUSUMs, like Crosier (1988) or Pignatiello and Runger

(1990), and EWMAs, like Lowry et al. (1992). Another standard assumption of

Shiryaev’s process is that the prior distribution used for the (unknown) change point

parameter is Geometric, i.e. τ ∼ G(p). In other words, the prior probability on

the location of the change point is constant over all data. However, in real world

problems, the risk of failure in any process, is rather unrealistic to assume that it is

constant over time.

We propose 3S, aiming to generalize the classical Shiryaev’s approach in either one

or more dimesions. Being self-starting, it will allow to test if a change is present and

provide inference from the very early start of the data collection. Precisely, 3S will

test if the procedure deviates from the IC state and simultaneously it will provide

on-line estimates for all the unknown parameters. Thus, we will relax the strict

assumptions of the standard Shiryaev’s process enriching the methodology in four

ways:

• allowing both the IC parameter(s) θ and the OOC parameter(s) φ to be un-

known,

• allowing the OOC scenarios to fulfill certain desired properties in multivariate

processes, namely: directional invariance, anisotropic scaling or rotation,

• offering a more flexible and general prior distribution for the change point τ

and
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• providing posterior inference for all the unknown parameters regarding the IC

or the OOC scenario.

We will focus our attention on developing models for Normal data, but the description

is general enough to cover any other (discrete or continuous) distribution. Namely,

instead of the known IC and OOC distributions f0 and f1 respectively, we assume a

distribution f , which reflects the IC state, allowing the IC parameters θ (e.g. mean

or variance) to be unknown. For the OOC state, we assume the OOC parameters φ

to be also unknown. The OOC parameters are suitably defined depending both on

the dimension of the data and the type of the shift we are interested in detecting. For

example, it may be the magnitude of a mean step change for univariate data, or the

distance of a translocation for multivariate data. The IC and the OOC parameters

are connected via the function g(θ,φ), which links the IC with the OOC scenario. In

Subsections 4.1.2 and 4.1.3, we provide examples for the function g for univariate and

multivariate models respectively. Introducing unknown parameters in the general

model, we can build up a hierarchical prior setting, avoiding the strict assumption of

known distributions. The general form of the likelihood combines both the IC and

OOC scenarios, conditional on the change point occurrence τ . Specifically, denoting

by xn, the random vector of the univariate or multivariate data up to time n, the

likelihood will be:

f (xn|θ,φ, τ) =


f (xn|θ,φ, τ ≤ n) =

τ−1∏
i=1

f (xi|θ)
n∏
i=τ

f (xi|g(θ,φ)) if τ ≤ n

f (xn|θ, τ > n) =
n∏
i=1

f (xi|θ) if τ > n

(4.1.3)

Moreover, we will propose a general prior for the change point τ , relaxing the as-

sumption of a constant probability over time. Differentiating from Shiryaev’s ap-

proach, the prior distribution of the change point is a Discete Weibull (DW), i.e.

τ ∼ DW (p, β) a generalization of G(p), where the parameter β represents the wear
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out effect of a system, while p represents the probability of moving to the OOC state

in a single observation. Thus, using DW (p, β) we can control the prior probability of

a change point, relaxing the assumption of constant probability. Precisely, for β > 1

the hazard function of the procedure increases, for β < 1 decreases, while for β = 1

it is constant, i.e. DW (p, 1) coincides with G(p). Therefore, the prior distribution

for τ used in the standard Shiryaev’s process is a special case of the corresponding

distribution of 3S. In a change point model, the hazard function represents the risk

that the next data point will be the first OOC observation given that the change

point did not occur yet, i.e. all the previous observations are IC. The combination

of p and β that we choose allows us to control the evolution of the hazard function

and, consequently, to be more flexible. Specifically, we can enhance the detection

ability of 3S when a shift detection is of utmost importance. For example, if the

detection of shift at the very early stage is crucial, then a choice of large p and β < 1

is recommended. On the other hand, if the wear out effect of the process is slow and

we are interested in detecting shifts at later stages, then a choice of small value for

p and β > 1 is preferable. Moreover, if we lack prior knowledge regarding both the

the location of the change point and the importance of the location of the detection,

then a choice of a prior with constant hazard function seems plausible. Figure 4.1.1

provides a graphical representation of the hazard function for three different priors.

Apparently, posterior inference for the location of the first OOC observation, i.e. the

change point τ , will be available.

The prior information (if available), is of vital importance, especially for short runs,

as it can help to boost the performance. Regarding the IC or OOC parameters, we

recommend using the general class of power priors (Ibrahim and Chen, 2000). The

structural advantage of power priors is that they can combine different sources of

potentially available information. For more information regarding the power priors

please refer to Section 2.1. In cases of total prior ignorance, we need to select a

suitable non-informative prior that will balance the detection power and the false
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Figure 4.1.1: The hazard function for the priors G(1/50), DW (1/10, 9/10) and DW
(1/1000, 2), which are represented by the solid, the dashed and the dotted-dashed line
respectively.

alarm tolerance, aiming to optimize the 3S performance. These cases are separately

analyzed for univariate and multivariate processes in Subsections 4.1.2 and 4.1.3

respectively.

For the stopping time, it will be based on the posterior marginal probability of a

change point occurrence, in an analogous manner to the classical Shiryaev process.

Precisely:

p (τ ≤ n|xn) =
f (xn|τ ≤ n) π(τ ≤ n)

f (xn|τ ≤ n) π(τ ≤ n) + f (xn|τ > n) π(τ > n)
(4.1.4)

In Section 4.2, we will provide all the details regarding the stopping rule options

along with the respective decision limits. The marginal distributions involved in

the computation of the probability (4.1.4), will be derived by integrating out the
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unknown parameters. Precisely, for the IC and OOC scenarios we have respectively:

f(xn|τ > n) =

∫
Θ

f(xn|θ, τ > n)π(θ)dθ (4.1.5)

f(xn|τ ≤ n) =

∫
Φ

∫
Θ

f(xn|θ,φ, τ ≤ n)π(θ)π(φ)dθdφ (4.1.6)

However, these marginal will be undefined, when the prior π(theta) is improper, for

instance when a non-informative prior is adopted. In this case, we recommend to

“sacrifice” the first s observations xs necessary to make the posterior p(θ|xs) proper

and then use it instead of the initial prior π(θ) starting the process testing from the

s + 1 observation Thus, xs will be used for the calibration and not for testing, but

this is necessary to initiate a non-informative 3S scheme. When the process starts,

inference for θ, φ and τ becomes available by sampling from the corresponding full

conditional posteriors. Therefore, we will not only be able to perform sequential

testing if the procedure deviates from the IC state, and we will also be available to

provide online estimates for the parameters of interest, with respect to the IC or the

OOC scenario. The Directed Acyclic Graph (DAG) in Figure 4.1.2 synopsizes the

general 3S scheme.

The general form of 3S allows its use for any type of parametric (i.e. distributional)

setting, as long as the various marginal and posterior distributions indicated in the

DAG of Figure 4.1.2 are computed (in closed form or numerically). Apart from its

general form, the great advantage of 3S is its resistance in absorbing a change. In

general, it is well known and documented in the literature, that the self-starting

schemes face a big challenge. They have only a “small window of opportunity” to

react in a change before they absorb it. Specifically, if a change from the IC state

occurs and a self-starting process does not realize it “soon” after its occurrence, then

the OOC data are involved in the calibration, contaminating the estimates of the

unknown parameters. This affects the performance dramatically, as the chart absorbs
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IC scenario (τ > n) OOC scenario (τ ≤ n)

f (xn|θ, τ > n) f (xn|θ,φ, τ ≤ n)

π (θ) π (τ) π (φ)

pIC (θ|xn) pOOC (θ,φ, τ |xn)

f (xn|τ > n) f (xn|τ ≤ n)

p(τ ≤ n|xn)

Figure 4.1.2: The DAG of the 3S process. The IC unknown parameters are denoted
as θ, φ represents the OOC parameters, while τ is the change point. Combining the
likelihoods and the priors, we obtain the corresponding marginals and consequently the
posterior marginal of a change point occurrence p(τ ≤ n|xn). In addition, estimates for
the unknown parameters are available by sampling from the corresponding posteriors
of the IC or the OOC scenario respectively.

the change and considers the contaminated data as IC data. By construction, 3S is

quite resistant in absorbing a change, as it splits the data appropriately, avoiding

the involvement of the contaminated data in the IC estimates. This is a great

advantage comparing with standard self-starting alternatives. Furthermore, if the

change arrives at the early start, then self-starting processes have typically very poor

performance, as the estimates for the unknown parameters are still vague. On the

contrary, 3S can be efficient, even from the early start, thanks to its structure and

the use of prior distributions.
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4.1.2 U3S modelling

In this Subsection, we develop the specifics of the univariate models. U3S, is the

univariate generalization of Shiryaev’s (1963) process, offering a more flexible and

realistic set up. It is worth mentioning that Shiryaev’s change point model is a

special case of U3S, when:

• the IC distribution f0 and OOC f1 are of the same parametric form (i.e. dis-

tribution),

• the IC parameters θ and the OOC φ are known, i.e. their U3S’s respective

prior distributions are set both to be point mass distributions, and

• the hazard function for change point τ is assumed to be constant, by setting

the prior distribution to be DW with β = 1 (i.e. geometric).

In U3S, the unknown OOC parameters φ are linked to the IC parameters θ via the

function g(θ, φ), which expresses the OOC scenario under study. For example, in the

case of a Normal likelihood with θ = (θ1, θ
2
2) being the IC unknown parameters for

the mean and the variance of the data respectively and assuming that we wish to

guard against mean shifts, then we can have φ = δ being the magnitude of a mean

shift and we can define g(θ,φ) = θ1 + δ · θ2. For φ, we recommend the use of at

least a weakly informative prior, which will express the size of the shift that we are

more interested to detect and will play the role of a benchmark for the OOC state.

Generally, an informative prior for φ helps to “distinguish” the IC and OOC states,

making U3S more robust and enhancing its detection ability, compared with the U3S

scheme that adopts a totally non-informative prior. It is worth mentioning, that in

the U3S model the OOC parameters are designed to be unitless. For instance a jump

for the mean is expressed as a multiple of the standard deviation, even when the latter

is unknown. This means we can set an informative prior for φ, even when we lack

any information regarding θ. In the case that we are interested in detecting shifts of

either direction, e.g. a positive or negative step change for the mean, or an inflation
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or shrinkage for the variance, we recommend using a mixture of priors for φ. Worth’s

mentioning that if the priors in such a mixture modelling have significant overlap,

e.g. the prior that represents a positive jump has significant probability in negative

values, then some form of truncation is recommended, primarily for interpretation

purposes.

In cases of total prior ignorance, we propose the adoption of the reference priors

(Bernardo, 1979, Berger et al., 2009) for the IC parameters θ. Reference priors

is a general class of non-informative priors that will coincide with Jeffreys priors

(Jeffreys, 1961), when θ is one-dimensional. Table 4.1.1 provides a synopsis of the

four versions of U3S model for Normal data, for location or scale shifts, while in

Appendix C, they are presented analytically. Precisely, we provide the assumptions

about the likelihood and the priors and the resulting formulas about the posterior

marginal probability of a change point occurrence and the posterior distributions

under the IC and the OOC scenario.

4.1.3 M3S modelling

In this Subsection we will propose the multivariate version of 3S, i.e. the Multivariate

Self-Starting Shiryaev (M3S). The focus will be on the detection of persistent shifts

in the mean vector or the covariance matrix of short horizon multivariate Normal

data. In a similar way with the univariate case, the stopping time will be based

on the posterior marginal probability of a change point occurrence p(τ ≤ n|xn),

remaining in the At Most One Change (AMOC) scenario. In the multivariate case,

the change point τ will refer to the time that at least one component of the mean

vector or the covariance matrix, shifts from its IC state. Therefore, from now on the

change point will be the first observation when at least one component of the mean

vector or the covariance matrix shifts from the IC to the OOC state. For instance,

in the bivariate Normal distribution with both mean vector and covariance matrix
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being unknown, the change point τ will denote the time where at least one of the

five involved parameter’s components: (µ1, µ2, σ
2
1, σ

2
2, ρ) shifts.

Probably the most challenging part of the multivariate extension of 3S is the ap-

propriate expression of the OOC scenarios in high dimensions. This is achieved by

the beneficial use of the directional statistics (see Mardia and Jupp, 2009) and the

selection of prior distributions for φ that fulfill the desired properties. The models

are carefully designed in order not only to allow the components to shift in their

parameter space but to be interpretablle as well. Namely, the desired properties of

M3S can be synopsized to:

• Directional Invariance, i.e. M3S can detect changes in any direction.

• Anisotropic scaling, i.e. M3S can detect different scale changes to each dimen-

sion or weight a shift by the variance of the corresponding component.

• Rotation, i.e. M3S can detect changes in the correlation between the variables,

either positive or negative.

Figure 4.1.3 provides the graphical representation of these properties. M3S can detect

changes in the means (translocation in any direction), the variances (shrinking or

inflation) and in the correlation (angle drifting).

X

Y

Directional Invariance

X

Y

Anisotropic Scaling
IC distribution OOC distribution

X

Y

Rotation

Figure 4.1.3: The graphical representation of the directional invariance (left panel),
the anisotropic scaling (center panel) and the rotation (right panel) in two dimensions.
The IC distribution is in blue, while the OOC distribution is in red.
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As 3S is a general detection scheme, the M3S modelling is similar to the univariate

case. This means that the process for the elicitation of p(τ ≤ n|xn) and the posteriors

of θ and φ remains the same. Similarly, the decision limits described in Subsection

4.2, and the corresponding stopping times T (·) are defined in an identical way. With

respect to the IC parameters of the proposed M3Ss, just as before we have the

mean vector and the covariance matrix of Normal data, i.e. θ = (µ,Σ). While the

prior setting for the IC parameters is straightforward for the mean vector and the

covariance matrix model, apparently this is not the case for φ, the parameters that

represent the OOC scenarios. It is important to mention that in the multivariate

case, the OOC parameters do not only play the role of the shifted parameters, but

may also describe the association between the shifts of the components. For example,

in M3S for the mean vector, φ does not merely denote the distance of the IC and

the OOC state, but the direction of the translocation as well, describing in this way

the dependence between the individual drifts of the components of µ.

In case of prior ignorance, several types of objective priors can be proposed for the

mean vector and the covariance matrix of a multivariate Normal distribution, based

on different criteria. Considering that we do not have any available prior information,

either from historical data or prior beliefs, we propose the use of the Jeffreys prior

(1961) for M3S, which coincides with the prior introduced by Geisser and Cornfield

(1963) for two-dimensional data. In D-dimensions, the Jeffreys prior is:

π(µ,Σ) ∝ |Σ|−(D+2)/2 (4.1.7)

For further information about the non-informative priors in the multivariate case,

one can refer to Sun and Berger (2007). All the details regarding the prior setting, the

resulting posteriors and the calculation of the BFτ,n+ of the referred M3S models are

analytically provided in Appendix D, while Table 4.1.2 presents the models briefly.
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4.2 Decision making

In the sequential change point methods in SPC/M, the stopping time is defined by

the stopping rule, which is essentially a stochastic decision on whether the process

has experienced a change or not. Thus, the choice of the “appropriate” decision limit

is crucial for every method. Bather (1967) discussed about the optimal stopping time

T (p∗) for the classical Shiryaev’s process, where an alarm is raised when p(τ ≤ n|xn)

exceeds a predetermined constant threshold p∗, a method that can be applied in the

3S scheme as well. The determination of a constant decision limit p∗ for all the

probabilities p(τ ≤ n|x) is a plausible and simple strategy. However, this would be

very conservative for the very first tests, reducing significantly the detection power

for the early stages of the process. This is a major issue for self-starting methods in

short runs, where we aim to have efficient performance from the start of the process.

As the prior π(τ) is involved in forming the posterior p(τ ≤ n|xn), it must be

considered in the determination of the decision limit. Apart from 3S model novelty,

we will propose a new adaptive decision limit p∗n, which takes into account the effect

of the prior at time n. The prior-adjusted threshold p∗nwill reduce the delay of an

alarm, especially at the early start of the process, while respecting the required false

alarm tolerance. Its derivation relies on the property that p(τ ≤ n|xn) can be written

as function of prior weighted Bayes Factors (BF). More specifically, p(τ ≤ n|xn) can

be written as:

p(τ ≤ n|x) =
f (xn|τ ≤ n) π(τ ≤ n)

f (xn|τ ≤ n) π(τ ≤ n) + f (xn|τ > n)π(τ > n)

=

f (xn|τ ≤ n)π(τ ≤ n)

f (xn|τ > n) π(τ > n)

f (xn|τ ≤ n) π(τ ≤ n)

f (xn|τ > n) π(τ > n)
+ 1
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=

n∑
k=1

π(τ = k)

π(τ > n)
·BFk,n+

n∑
k=1

π(τ = k)

π(τ > n)
·BFk,n+ + 1

(4.2.1)

where BFk,n+ =
f(xn|τ = k)

f(xn|τ > n)
compares the evidence the kth ≤ n observation to be

the change point against the evidence all the observations to be IC. We establish

a decision limit, which will be less conservative for the first tests and consider the

prior adjustment. As p(τ ≤ n|xn) is function of n Bayes factors, if we will replace

BFk,n+ = A, then the equation (4.2.1) will become:

p(τ ≤ n|x) =

A ·
n∑
k=1

π(τ = k)

π(τ > n)

A ·
n∑
k=1

π(τ = k)

π(τ > n)
+ 1

(4.2.2)

Thus, the adaptive stopping time T (p∗n) will be:

T (p∗n) = inf{n > 1 : p (τ ≤ n|xn) ≥ p∗n} (4.2.3)

By controlling A, we can control the FA tolerance via a predetermined metric, like

the Probability of False Alarm, PFA(n) = P (T ≤ n|τ > n) = α, the IC Average

Run Length (ARL0) etc. Apart from improving the overall performance, the choice

of p∗n can be interpretable according to the evidence scale that Kass and Raftery

(1995) proposed, controlling the posterior FA evidence as it was defined in Section

3.2.

If we will use the PFA(n) metric for a short horizon of data, then the adaptive p∗n will

be significantly more sensitive for the first observations, but a little more conservative

for the last few, compared to the constant threshold p∗. The prior weights of τ play

an important role in the final form of p∗n. Additionally, the testing using p∗n reduces
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considerably the truncated Conditional Expected Delay, tCED(τ) = Eτ (T − τ +

1|τ ≤ T ≤ n), especially when the shift occurs at the early start of a process. This

is very important, as the main disadvantage of the self starting charts is the low

performance and the slow reaction when the change occurs at early stages. Apart

from the performance, the adaptive limit distributes in a bigger range the false alarms

compared with the constant limit. Figure 4.2.1 provides a graphical representation of

the evolution of p∗n and p∗ and the histograms of the corresponding false alarms. The

plots refer to certain OOC scenarios for univariate processes of Subsection 4.3.1.2,

using the non-informative prior setting, named vs, assuming π(θ) ∝ 1/θ2
2, δ|γ ∼

γ · N(1, 0.52) + (1 − γ) · N(−1, 0.52) and τ ∼ DW (1/50, 1). As we can see, the

stopping time of T (p∗) are mostly concentrated at the end of the sample, while

T (p∗n) are almost uniformly distributed after the 10th observation.

We recommend the use of the adaptive decision limit, when the failure risk is non

increasing, i.e. when the DW parameter β ≤ 1. In this case, we will gain the

beneficial properties of p∗n at the start of a process with a negligible influence at the

end. Contra wise, if β � 1, then the classical decision limit p∗ seems to be better

choice on average.

4.3 Competing methods and sensitivity analysis

In this chapter, we will compare the performance of 3S against well established

alternative methods. We will provide the simulation results both for univariate and

multivariate settings.
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Figure 4.2.1: A graphical comparison of the evolution of the adaptive decision limit
p∗n (solid line) against the constant p∗ (dashed line) for various OOC scenarios for
univariate processes assuming π(θ) ∝ 1/θ2

2, δ|γ ∼ γ ·N(1, 0.52) + (1− γ) ·N(−1, 0.52)
and τ ∼ DW (1/50, 1). The shaded region denotes where p∗n is more sensitive, while
the dashed denotes where it is more conservative. Further, the histograms of the
corresponding stopping times T (·), i.e. the locations of the FAs, are provided. Finally,
the times where the two decision thresholds are crossing are illustrated with vertical
green segments.

4.3.1 Simulation study for U3S

4.3.1.1 Competing methods for U3S

In this Subsection, we will present the competing methods whose performance will be

measured against the proposed U3S scheme in detecting changes in the mean or the

variance of univariate Normal data. The first competing method is the frequentist

Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998) for location or scale shifts,

which was described in Subsection 3.3.1.

A second competing method that we will use is the non-parametric scheme intro-

duced by Capizzi and Masarotto (2013) named Recursive Segmentation and Permu-
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tation (denoted as RS/P from now on). RS/P is designed to detect single or multiple

mean and/or scale shifts, of individual or subgrouped observations. Let K be the

maximum number of change points that we wish to detect, of m subgroups with n

data points each. The control statistic for location shifts is:

T0 = max
i=1,...,m

|x̄i − ¯̄x| (4.3.1)

where x̄i =
1

n

n∑
j=1

xij and ¯̄x =
1

m

m∑
i=1

x̄i. Regarding the statistics T1, ..., TK of possible

change points 0 < τ1 < ... < τk < m, they are computed using a simple forward

recursive segmentation approach. The algorithm starts with k = 0 and proceeds in

K successive stages. At the beginning of stage k, the interval [1,m] is partitioned

into k subintervals, each having a length greater or equal to lMIN , which is a user-

controllable constant giving the minimum number of subgroups allowed between two

change points. At stage k, one of these subintervals is split, adding a new potential

change point. Every new change point is estimated by maximizing the quantity:

k+1∑
i=1

(τ̂i − τ̂i−1) (x̄ (τ̂i−1, τ̂i)− ¯̄x)2 (4.3.2)

conditionally on the results of the previous stages, where x̄(a, b) =
1

b− a

b∑
i=a+1

x̄i. The

statistic Tk is the maximum value of equation (4.3.2). Now, we continue with the

permutation step to calculate the p-value (p), to test the null hypothesis that the

process is IC. Assume L random permutations of the pooled sample. Let e T̃kl be

the value of the kth statistic obtained from the lth permutation, where k = 0, ..., K

and l = 1, ..., L. Then, the overall control statistics are:

W = max
k=0,...,K

Tk − uk
νk

(4.3.3)
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and

W̃l = max
k=0,...,K

T̃kl − uk
νk

(4.3.4)

where uk =
1

L

L∑
l=1

T̃kl and νk =
1

L− 1

L∑
l=1

(
T̃kl − uk

)2

. The empirical p-value that

indicates if the process is IC or OOC is p =
1

L
1W̃l≥W , where 1 is the indicator

function. We raise an alarm if p < α, with α to be the probability that controls

a false alarm metric. The RS/P procedure is slightly modified for detecting scale

changes. Now, T0 is defined as:

T0 = max
i=1,...,m

|s2
i − s2| (4.3.5)

where s2
i =

1

n

n∑
j=1

(xij − x̄i)2 and s2 =
1

m

m∑
i=1

s2
i . Furthermore, we maximize the

quantity:
k+1∑
i=1

(τ̂i − τ̂i−1) log

(
s2

s2 (τ̂i−1, τ̂i)

)
(4.3.6)

where s2(a, b) =
1

b− a

b∑
i=a+1

s2
i , replacing the equation (4.3.2).

4.3.1.2 Simulation results for U3S

In this Subsection, our goal is to evaluate the performance of U3S and compare it

against the SSC and RS/P alternative methods. Precisely, we examine the effective

detection and the speed of reaction for step changes of the mean or inflations of

the variance. Both of the IC and the OOC data are from a Normal distribution,

assuming all parameters unknown. For IC data, we simulate 10,000 sequences size of

N=50 observations from a typical Normal distribution, used to obtain the decision

limits of each of the competing methods. Concerning the decision limits of U3S, we

employ both the constant limit p∗ and the adaptive p∗n (noted by superscript n in

the upcoming tables and graphs), so that one can compare their performance. In
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addition, we start the testing from the third observation, as SSC needs the first two

observations to estimate the unknown parameters and also we need to sacrifice the

same number of data points in order to have a proper marginal distribution for U3S,

when the reference prior for the IC parameters is in use. Thus, we perform N − 2

hypothesis tests for each method and the decision limits are elicited such that all

the competing methods to have PFA(48) = 5% for an IC sample. For the OOC

scenarios, we introduce change points expressing contaminated data with small or

medium persistent shifts. The change points are introduced at one of the locations,

τ = {11, 26 or 41}, i.e. near the start, the middle or near the end of each OOC

data sequence. The shifts are step changes of size 1 or 1.5 standard deviations for

the mean, i.e. the OOC states are N(1, 1) or N(1.5, 1) and variance inflations of

size 50% and 100% for the standard deviation, i.e. the OOC states are N(0, 1.52)

or N(0, 22). Regarding the Monte Carlo efficiency, we also generate L = 10, 000

random permutations to calculate the p-value of the test statistic of RS/P and we

generate the same number of observations to estimate the marginals for BFτ,n+ and

consequently to estimate the p(τ ≤ n|xn) for each data point in U3S decision limit

derivation. In addition, SSC is optimally tuned in detecting the predetermined shifts.

For the mean, we set a two sided SSC, for a positive and a negative shift, while for the

variance we set it only for inflation detection, as this scenario is of major importance

in practice.

For the priors used in U3S, we have a standard prior setting assuming (almost)

total prior ignorance for θ, φ and τ . Precisely, in the standard prior setting, we as-

sume the non informative reference prior for the IC parameters, i.e. π(θ) ∝ 1/θ2
2 ≡

NIG(0, 0,−1/2, 0). For the change point we assume τ ∼ DW (1/N, 1) ≡ G(1/N),

i.e. an non informative prior about the location of the first OOC observation (con-

stant hazard function), while the probability of moving to the OOC state for each

data point is the reciprocal of the sample size. In order to have comparable as-

sumptions with SSC, which is optimally tuned for the existed shifts, we assume



4.3. Competing methods and sensitivity analysis 133

informative priors for the OOC parameter φ. Precisely, for the mean step changes

of size 1 standard deviation, we assume δ|γ ∼ γ ·N(1, 0.252) + (1− γ) ·N(−1, 0.252)

and γ ∼ Ber(1/2), while for 1.5 standard deviations jumps the prior is δ|γ ∼

γ · N(1.5, 0.252) + (1 − γ) · N(−1.5, 0.252). This mixture of priors coincides with

a two sided detection scheme for U3S, detecting for positive or negative shifts. For

the variance inflation and specifically for the 50% standard deviation increase, we

assume κ ∼ IG(50, 112.5), while κ ∼ IG(50, 200) is employed for the scenario of

the 100% standard deviation increase. In addition, we apply a sensitivity analysis

changing only one prior at a time, in order to perceive its effect. This reference

prior setting corresponds to r,c indicator in the upcoming tables and graphs. The

indicator wi,c corresponds to the weakly informative prior for θ ∼ NIG(0, 5, 2.5, 2),

while the rest prior setting is the same with the standard. Regarding the change

point, we employ a prior with an increasing hazard function (indicator r,i), where

τ ∼ DW (0.001, 2) and with a decreasing hazard function (indicator r,d), where

τ ∼ DW (0.1, 0.9). Further, we complete the sensitivity analysis, employing a

more vague prior for the shift (indicator vs). We select weakly informative pri-

ors by increasing (doubling) the standard deviation of the standard setting priors.

Thus, the priors for the mean are δ|γ ∼ γ · N(1, 0.52) + (1 − γ) · N(−1, 0.52) and

δ|γ ∼ γ ·N(1.5, 0.52)+(1−γ) ·N(−1.5, 0.52), while for the variance κ ∼ IG(14, 31.5)

and κ ∼ IG(14, 52) respectively. Table 4.3.1 synopsizes all the different prior setting

used, where θOOC1 = {1 or 1.5} and θOOC2 = {1.5 or 2} the true OOC values for the

mean and the standard deviation respectively,
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Setting Priors

π(θ) ∝ 1/θ2
2

δ|γ ∼
1∑
i=0

γ1−i(1− γ)iN((−1)i · θOOC1 , 1/42) (mean model)

r, c γ ∼ Ber(1/2) (mean model)

κ ∼ IG(50, 50 ·
(
θOOC2

)2
) (variance model)

τ ∼ G(1/N)

θ ∼ NIG (0, 5, 2.5, 2)

δ|γ ∼
1∑
i=0

γ1−i(1− γ)iN((−1)i · θOOC1 , 1/42) (mean model)

wi, c γ ∼ Ber(1/2) (mean model)

κ ∼ IG(50, 50 ·
(
θOOC2

)2
) (variance model)

τ ∼ G(1/N)

π(θ) ∝ 1/θ2
2

δ|γ ∼
1∑
i=0

γ1−i(1− γ)iN((−1)i · θOOC1 , 1/42) (mean model)

r, i γ ∼ Ber(1/2) (mean model)

κ ∼ IG(50, 50 ·
(
θOOC2

)2
) (variance model)

τ ∼ DW (10−3, 2)

π(θ) ∝ 1/θ2
2

δ|γ ∼
1∑
i=0

γ1−i(1− γ)iN((−1)i · θOOC1 , 1/42) (mean model)

r, d γ ∼ Ber(1/2) (mean model)

κ ∼ IG(50, 50 ·
(
θOOC2

)2
) (variance model)

τ ∼ DW (0.1, 0.9)

π(θ) ∝ 1/θ2
2

δ|γ ∼
1∑
i=0

γ1−i(1− γ)iN((−1)i · θOOC1 , 1/22) (mean model)

vs γ ∼ Ber(1/2) (mean model)

κ ∼ IG(14, 14 ·
(
θOOC2

)2
) (variance model)

τ ∼ G(1/N)

Table 4.3.1: The prior settings of U3S for the simulation study.
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Concerning the performance, we estimate the metrics introduced in the Subsection

3.3.2 and precisely the PSD(τ), along with the mean and the sd of the tCED(τ) for

all the OOC scenarios. Furthermore, in the graphs we provide the running PFA(n),

n = 3, ..., N , in order to perceive the FA behavior of the competing methods. In

Tables 4.3.2 and 4.3.3, we provide the results of the simulations, while their graphical

representation is in Figures 4.3.1, 4.3.2, 4.3.3 and 4.3.4. As demonstrated, the results,

regarding the location and size of the shift, are corresponding to those in simulation

study for PRC in Subsection 3.3.2. all methods have their best performance when

the change point τ is at the middle of the sequence τ = 26. In addition, they

improve their performance for medium shifts (1.5θ2 mean step change and +100%

sd (θ2) inflation) compared with the small (1θ2 mean step change and +50% sd (θ2)

inflation).

Comparing the methods, U3S achieves greater performance compared with SSC and

RS/P beyond the shadow of any doubt. More specifically, U3S achieves greater

detection percentages than SSC, especially when the change point is at the start of

the process. This is true as U3S is more resistant in absorbing a change, which is

of vital importance for the self-starting methods. The tCED(τ) behavior is similar,

apart from the cases when U3S has much higher detection percentages than the other

methods. In these cases, the much greater PSD(τ) denotes that has larger “window

of opportunity” to detect a change. Thus, it has the chance to react later in a change

and this inflates the tCED(τ). It is worth mentioning that RS/P does not seem to

be competitive at all for the variance inflations, as it has much worse performance

than the other methods. This is the price the nonparametric approach pays in being

general enough, as the other methods are flexible in aid of the detection power, as

they are tuned for one-sided shifts.

Regarding the prior setting, it is clear that the performance using a weakly informa-

tive prior for θ (prior setting wi, c) is significantly better for all the OOC scenarios,

but mostly the when change points occurs at the start, i.e. the IC information from
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the data is low. The results also denote the role that plays the hazard function

in the detection power. Using a decreasing hazard function (prior setting r, i), the

detection power is better at the early stages and vice versa, when using a increasing

hazard function (r, d), the detection power improves at later stages. Regarding the

vague priors for the shifts (prior setting vs), we observe that the detection percent-

ages are slightly decreased, which was expected, but U3S is still robust. This is very

important, as we considerably relax the assumption of known jumps.

Further, comparing the constant and the adaptive decision limit for U3S we can see

that, as the adaptive (superscript n) is more conservative at the later stages, then it

has reduced performance. But, when the change point is at the start, then it has the

similar detection percentages and considerably less delay for an alarm, than using

the constant one. Furthermore, via Figures 4.3.1, 4.3.2, 4.3.3 and 4.3.4, we realize

that using p∗n, then the FAs are more spread in the range of a sample, while using

p∗, they are more concentrated at the end.

âĂČ
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Figure 4.3.1: The PFA(n) at each time point n = 3, 4, . . . , 50 (top row), the PSD(τ)
(middle row) and the tCED(τ) at τ = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have step changes for the mean size of 1 standard
deviation.
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Figure 4.3.2: The PFA(n) at each time point n = 3, 4, . . . , 50 (top row), the PSD(τ)
(middle row) and the tCED(τ) at τ = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have step changes for the mean size of 1.5 standard
deviations.
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Figure 4.3.3: The PFA(n) at each time point n = 3, 4, . . . , 50 (top row), the PSD(τ)
(middle row) and the tCED(τ) at τ = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have inflations for the standard deviation size of 50%.
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Figure 4.3.4: The PFA(n) at each time point n = 3, 4, . . . , 50 (top row), the PSD(τ)
(middle row) and the tCED(τ) at τ = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have inflations for the standard deviation size of 100%.
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4.3.2 Simulation study for M3S

4.3.2.1 Competing methods for M3S

In this Subsection, we will present the two methods that we will use in comparing the

performance of the suggested M3S for several OOC scenarios, in sequences of multi-

variate Normal data. These are the Self-Starting Multivariate EWMA (SSMEWMA,

Hawkins and Maboudou-Tchao, 2007) and the Self-Starting CUSCORE (SSCUSC(1),

Capizzi and Masarotto, 2010) for drifts in the mean vector. Both competing methods

are based on the recursive residuals, a regression methodology, introduced by Brown

et al. (1975). Starting from t = D + 2, where D the dimensions of the data, then

for t > j + 1, the sequence of recursive residuals for the tth observation on the jth

variable for xt,j, ..., xt,j−1 are obtained by repeatedly using the regression coefficients

estimated from vectors x1, ...,xt−1. Let rt,j = xt,j − x̂t,j denoting the difference

between the observed and the predicted value of the jth variable, respectively. The

standardized recursive residual will be:

et,j =
rt,j√√√√ t−1∑

i=j+1

r2
t,j/(t− j − 1)

(4.3.7)

Then a standard transformation is applied to et,j to obtain independent standard

normal statistics Qt,j:

Qt,j = Φ−1 {Gt−j−1 (et,j)} (4.3.8)

where Φ−1(·) is the inverse of the standard Normal CDF, Gν(·) the Student-t CDF

with ν degrees of freedom. For SSMEWMA, the process statistic is given by:

Zt,j = λQt,j + (1− λ)Zt−1,j (4.3.9)
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where 0 ≤ λ1 is a constant that controls the depth of memory of the chart, Z0,j = 0

and j = 1, ..., D. Defining, the constant h > 0 to achieve a predetermined IC false

alarm tolerance, the SSMEWMA gives an out-of-control signal whenever:

D∑
j=1

Z2
t,j > h

λ
[
1− (1− λ)2(t−p−1)

]
2− λ

(4.3.10)

As concerns to SSCUSC(1), the Qt,j are used again, but this time through a CUSUM

type formula. Starting from t = D + 2 and initializing the parameters CL
D+1,j =

CU
D+1,j = 0 and τLD+1,j = τUD+1,j = D + 2, the downwards and upwards CUSCORE

statistics will be respectively:

CL
t,j = min

{
0, CL

t−1,j + ft
(
τLt−1,j

)
·
[
Qt,j +

1

2
ft
(
τLt−1,j

)]}
(4.3.11)

CU
t,j = max

{
0, CU

t−1,j + ft
(
τUt−1,j

)
·
[
Qt,j −

1

2
ft
(
τUt−1,j

)]}
(4.3.12)

for j = 1, ..., D, where the involved parameters τLt,j, τUt,j and the function ft (τ) are

respectively:

τLt,j =

 t+ 1 if CL
t,j = 0

τLt−1,j if CL
t,j < 0

(4.3.13) τUt,j =

 t+ 1 if CU
t,j = 0

τLt−1,j if CU
t,j > 0

(4.3.14)

ft (τ) = m ·max

{
c,

τ − 1√
t(t− 1)

}
(4.3.15)

Regarding the design constants m > 0 and 0 < c < 1, the former is related to a mean

vector shift size of particular importance and the latter is introduced to prevent the

CUSCORE statistics from trapping into a constant value. Defining a threshold h
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with respect to the false alarm metric, an alarm is raised if:

SSCUSC
(1)
t =

D∑
j=1

max
{
−CL

t,j, C
U
t,j

}
> h (4.3.16)

4.3.2.2 Simulation results for M3S

A simulation study, along with a sensitivity analysis, will compare the mean vector

model M3S against the methods SSMEWMA and CUSCORE that we described in

Subsection (4.3.2.1). Analogously to the univariate simulation study, we will exam-

ine here the performance in detecting permanent shifts. For IC data, we simulate

1,000 sequences size of N=50 observations each from a bivariate (D = 2) Normal

distribution, needed in deriving the decision limits. As we wish to test the perfor-

mance for different structures of the covariance matrix, we consider two scenarios of

IC data; from a standard bivariate Normal (i.e. with zero mean vector and identity

covariance matrix) and a bivariate Normal with mean zero vector and a covariance

matrix with the i, j element to be ci,j = 0.6|i−j|. For M3S, we employ both decision

thresholds p∗ and p∗n with the latter being denoted by superscript n in the upcom-

ing tables and graphs. We use the first three observations to initiate the charts,

i.e. to calculate the statistics of SSMEWMA and CUSCORE and to estimate the

marginal of M3S. Thus, the decision limit for each method has been set so that we

have PFA(47) = 5% for an IC sample, while for the OOC scenarios, we introduce

contaminated data with a shift δ to the mean vector, starting at one of the locations

τ = {11, 26 or 41} until the end of the sample. Specifically, the OOC shifts are:

• δ = (+0.5 + 0.5)T or δ = (+1 + 1)T , while Σ = I2

• δ = (+0.5 + 0.5)T or δ = (+1 + 1)T or δ = (+0.5 − 0.5)T or δ = (+1 − 1)T ,

while Σ with the i, j element to be ci,j = 0.6|i−j|

This means that we have six OOC states with three different τ locations, i.e. 18

different OOC scenarios in total. Regarding the priors, we assume two settings for
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M3S, an objective and an informative. For the objective setting (indicator n-i), we

assume the Jeffreys’ prior for the IC parameters, equal density for every possible

shift direction and a constant hazard function for the change point. For to the

informative setting (indicator i), we use the expected values of mean vector and the

sum of pairwise deviation products of five bivariate IC imaginary data to set the

prior parameters for θ. We choose the number of the IC imaginary data to be equal

with the number of the unknown IC parameters. For the angle of the shift, we set

the prior parameters so that over than 3/4 of the prior distribution to lie in the

corresponding quadrant with the actual change, while for the change point we aim

the hazard function to be approximately double at the end of the sample. The prior of

the radius is suitably located for small or medium size shifts and in a similar manner

we set λ = {0.05, 0.1} for SSMEWMA and m = {0.25, 0.5} for CUSCORE, in case

of small or medium size shifts respectively. All the prior distributional assumptions

are provided in Table 4.3.4, while Figures 4.3.5 roughly visualizes the settings for

uncorrelated data.

Non-informative setting Informative setting

π(µ,Σ) ∝ |Σ|−2 (µ,Σ) ∼ NIW
(
(0 0)T , 5, 5,Ψi,j = 4 · 0.6|i−j|

)
r ∼ NCχD(||δ||2, 1/4) r ∼ NCχD(||δ||2, 1/4)

θ ∼ U(0, 2π) Tθ ∼ vM(π/4 + π · 1δl 6=δ2 , 4)

τ ∼ G(1/N) τ ∼ DW (1/N, 3/2)

Table 4.3.4: The prior settings of M3S for the simulation study.

Regarding the performance metrics, similarly to the univariate case we estimate the

Probability of Successful Detection, PSD(τ), the mean and the sd of the truncated

Conditional Expected Delay, tCED(τ) for all the OOC scenarios and we plot the

running Probability of False Alarm, PFA(n), n = 4, ..., N . The results of the com-

parisons along with their graphical representations are provided in Table 4.3.5 and

Figures 4.3.6, 4.3.7 and 4.3.8. As we can see, all the methods achieve the highest per-
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Figure 4.3.5: A graphical representation of the non-informative prior setting (left)
and the informative prior setting (right) for uncorrelated data.

formance when the change point occurs at location 26, as they have both sufficient

IC information available and a large enough “window of opportunity” to detect the

change. Comparing the methods, M3S with the informative setting outperforms all

the others, achieving significantly higher detection percentages and reacting faster

to a change. This is the result of the beneficial use of the prior information. How-

ever, M3S is competitive even in the non-informative prior setup. Specifically, it has

better performance than the competitors for small shifts in uncorrelated data, but

it loses some detection power for medium shifts or correlated data. This is prob-

ably caused partly by the objective prior for the IC parameters and partly by the

prior for radius r. Regarding the Jeffreys prior that we used, Sun and Berger (2007)

noted that it seems to be quite bad for correlations, even if it achieves frequentist
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matching for means and variances. A variety of other objective priors have been

proposed for the bivariate case by Berger and Sun (2008). This is a challenging open

problem (especially for high dimensions) that requires further investigation. For the

prior of r, the location parameter d yields a benchmark for the size of the shift that

we wish to detect. In many papers in the literature (e.g. Zantek, 2006 or Capizzi

and Masarotto, 2010) it is suggested to avoid setting a self-starting for large shifts,

especially when the IC history is not so long. Thus, a prior sensitivity regarding d

could be employed. Finally, in comparing the constant and adaptive decision limits,

the results are in par with the findings in the univariate case.

4.4 3S pplications to real data

4.4.1 U3S illustration

The application of U3S to real datasets is of interest in this Subsection. As demon-

strated in Subsection 4.3.1.2, U3S has superior performance than the competitors in

detecting shifts for the mean or the variance in short runs. We will apply the U3S

methodology in two real data sets, where it appears that the first one experiences

a mean step change and the second one a variance shift. The first dataset analyzed

by Hawkins (1987) and it refers to a chemical laboratory that carries out routine

indirect (instrumental) assays for precious metals of batches of a feedstock. As a

control measure, a sample of a standard reference material is assayed along with

each batch of unknowns. Due to confidentiality issues, the standardized data were

presented in the paper of Hawkins (1987), subtracting the mean and dividing by the

standard deviation. The standardized dataset is in Table 4.4.1.
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Figure 4.3.6: The PSD(τ) (left), the tCED(τ) vs the PSD(τ) (top right) for shift
vectors δT = (+0.5 + 0.5) or δT = (1 1) and Σ = I2 starting at τ = {11, 26 or 41}
and the PFA(n) at each time point n = 4, 5, . . . , 50 (bottom right) of the M3S with
all the prior settings against SSCUSC(1) and SSMEWMA, when we have step changes
for the mean vector.
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Figure 4.3.7: The PSD(τ) (left), the tCED(τ) vs the PSD(τ) (top right) for shift
vectors δT = (0.5 0.5) or δT = (1 1) and Σ with the i, j element to be ci,j = 0.6|i−j|

starting at τ = {11, 26 or 41} and the PFA(n) at each time point n = 4, 5, . . . , 50 (bot-
tom right) of the M3S with all the prior settings against SSCUSC(1) and SSMEWMA,
when we have step changes for the mean vector.
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Figure 4.3.8: The PSD(τ) (left), the tCED(τ) vs the PSD(τ) (top right) for shift
vectors δT = (0.5 −0.5) or δT = (1 −1) andΣ with the i, j element to be ci,j = 0.6|i−j|

starting at τ = {11, 26 or 41} and the PFA(n) at each time point n = 4, 5, . . . , 50 (bot-
tom right) of the M3S with all the prior settings against SSCUSC(1) and SSMEWMA,
when we have step changes for the mean vector.
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x1 − x11 0.82 0.40 -2.02 -0.02 -2.18 -0.64 -0.39 -0.51 1.17 0.49 -1.77
x12 − x22 -0.64 -2.30 -1.55 -0.90 0.03 0.50 0.60 -0.65 0.19 -0.38 -0.72
x23 − x33 -0.21 -0.50 0.95 1.59 0.68 -0.34 0.30 2.23 -0.75 1.39 1.01
x34 − x44 -0.80 0.15 1.37 -1.39 0.86 0.64 -0.21 -0.51 -0.21 0.51 0.12
x45 − x55 -0.33 1.010 -1.34 1.01 -0.04 1.67 1.26 -0.01 0.06 -0.82 0.12

Table 4.4.1: The sequence of the standardized data xn = (x1, x2, . . . , x55) from the
first laboratory carrying out routine indirect (instrumental) assays for precious metals.

The prior distributions are the same with the standard prior setting for step changes

of 1 standard deviation in Subection 4.3.1.2. In order to avoid being much more

conservative compared to Hawkins (1987), who choose the decision limit of SSC to

control ARL0 = 100, we control the PFA(55) = 20%, using the adaptive decision

limit p∗n. However, U3S would have similar reaction using the constant p∗ as well.

As we observe in the Figure 4.4.1, U3S realizes a step change and raises the first

alarm at time T = 33, while the first alarm of SSC was at time T = 30. A plausible

strategy is to stop the process after the first alarm, but we continue until the end

of the sample in order to perceive its behavior in a permanent shift. Clearly, U3S

resists in absorbing the change and it raises consecutive (14 in total) alarms, until the

end of the data sequence. Apart from testing, U3S also provides posterior inference

for the parameters of interest. The inference in Figure 4.4.1 is based on the whole

sample, i.e. n = 55, but we can have online posterior inference as each data point

becomes available. Analytical details for the sampling are provided in Appendix E.

Regarding the posterior of the change point τ , the location 16 is the most probable

for the first OOC observation, while there is a second mode at location 25. For the IC

mean (pre change) and variance, the posterior means are θ̂1 = −0.69 and θ̂2
2 = 0.91

respectively, while the posterior mean for the size of the shift is δ̂ = 0.98 times the

standard deviation of the process. In other words, the point estimate for the post

change mean is θ̂1 + δ̂ · θ̂2 = 0.24. Further, the lines which are plotted with the data

(upper left panel) do not represent a control chart, but they provide visualization of

the IC and the OOC state. Specifically, the dashed lines represent the pre and post

change means, while the solid lines are positioned at ±2 · θ̂2 distance from each mean
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respectively.
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Figure 4.4.1: The U3S application to a mean step change. At the left panel (upper)
we provide the data, the U3S process (middle) and the barplot of the full conditional
for τ , while at the right panel we have the histograms for the IC parameters θ1 and θ2

2

and the size of the OOC shift δ. The adaptive decision p∗n limit controls the PFA(55) =
20%.

The second dataset for analysis comes from Villanueva-Guerra et al. (2017) and it

refers to 60 monthly increments in the S&P 500, which is an American stock market

index. Specifically, these are the first differences in S&P 500 values, or the amount

that it grows or decays in a given month. The dataset is provided in Table 4.4.2.

x1 − x12 -6.36 31.40 13.19 77.65 92.64 -18.84 -79.67 -8.63 17.88 23.47 -40.65 70.46
x13 − x24 9.79 77.32 78.20 -4.45 100.79 -70.48 -50.55 56.49 24.12 14.55 -7.03 -68.74
x25 − x36 -46.67 -10.91 -15.81 -17.70 12.05 -54.75 -7.49 -53.71 -19.21 -13.81 18.73 18.91
x37 − x48 -13.38 -20.15 39.12 -2.52 -10.35 -15.62 -43.63 -38.09 30.65 -22.33 23.01 23.74
x49 − x60 -34.65 0.17 -42.85 13.85 -8.48 21.81 -42.47 1.19 -31.79 -0.58 -14.16 -15.78

Table 4.4.2: The monthly increments xn = (x1, x2, . . . , x60) in the S&P 500, reported
during July 2004 - June 2009.
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The prior distributions are the same with the standard prior setting in Section 4.3.1.2,

apart from the prior of the size of the shift κ. Now, we are interested in a two-sided

U3S, either for a inflation or a shrinkage of the variance. Thus, we will adopt a

mixture κ = γ · IG (50, 200) + (1 − γ) · IG (50, 12.5), where γ ∼ Ber(1/2). The

components of the prior are centred in an increase of 100% or a decrease 50% for

the sd. That is to say, we are more interested if the sd gets double or it becomes

half. We use again the adaptive decision limit p∗n, controlling the PFA(60) = 10%.

The graphical representation of the application is visually summarized in the Figure

4.4.2.
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Figure 4.4.2: The U3S application to a variance level change. At the left panel
(upper) we provide the data, the U3S process (middle) and the barplot of the full
conditional for τ , while at the right panel we have the histograms for the IC parameters
θ1 and θ2

2 and the size of the OOC shift κ. The adaptive decision p∗n limit controls the
PFA(60) = 10%.

U3S realizes a level change for the variance and raises the first alarm at time T =
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41. Similarly to the first application, we allow the process to run until the end of

the sample and the posterior inference is based on the whole sample (Appendix E

provides all the details regarding the MCMC sampling). U3S avoids again to absorb

the change, raising 20 consecutive alarms. For the posterior inference of the change

point, τ , the distribution is bimodal, with the modes being at locations 26 and 21.

The posterior mean estimates for the IC mean and variance (pre change) of the

process are θ̂1 = −7.09 and θ̂2
2 = 2965.7 respectively, while the κ̂ = 0.25, denoting

that the post change variance is four times smaller, i.e. κ̂ · θ̂2
2 = 736.24. At the upper

left panel, the dashed line denotes the mean of the process, while the solid lines are

positioned from the mean distance of ±2 · θ̂2 pre change and ±2 · κ̂ · θ̂2 post change,

respectively. Regarding the analysis of Villanueva-Guerra et al. (2017), where the

first 10 observations were used to initiate the monitoring, the chart reacted later

to the change (under comparable false alarm tolerance). Additionally, the inference

about the change point τ was misleading, as the point estimate was the location 30,

where there is no any graphical evidence to start any change in the data.

4.4.2 M3S illustration

In this Subsection, we will illustrate the M3S for the mean vector changes to a real

bivariate Normal dataset that appears to experience some type of disorder. The

dataset is well documented and given by Holmes and Mergen (1983). It has been

further analyzed via the self starting methods Self-Starting Multivariate EWMA (SS-

MEWMA) by Sullivan and Jones (2002) and Self-Starting CUSCORE (SSCUSC(1))

by Capizzi and Masarotto (2010). The dataset consists of n = 56 bivariate observa-

tion from a European plant producing gravel:

x =

x1,1

x2,1

 ,

x1,2

x2,2

 , ...,

x1,56

x2,56


where x1,i and x2,i represent the percentage of particles (by weight) of large and
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medium sizes respectively. The dataset is provided in Table 4.4.3.

Large % (x1,1 − x1,14) 5.4 3.2 5.2 3.5 2.9 4.6 4.4 5.0 8.4 4.2 3.8 4.3 3.7 3.8
Medium % (x2,1 − x2,14) 93.6 92.6 91.7 86.9 90.4 92.1 91.5 90.3 85.1 89.7 92.5 91.8 91.7 90.3
Large % (x1,15 − x1,28) 2.6 2.7 7.9 6.6 4.0 2.5 3.8 2.8 2.9 3.3 7.2 7.3 7.0 6.0

Medium % (x2,15 − x2,28) 94.5 94.5 88.7 84.6 90.7 90.2 92.7 91.5 91.8 90.6 87.3 79.0 82.6 83.5
Large % (x1,29 − x1,42) 7.4 6.8 6.3 6.1 6.6 6.2 6.5 6.0 4.8 4.9 5.8 7.2 5.6 6.9

Medium % (x2,29 − x2,42) 83.6 84.8 87.1 87.2 87.3 84.8 87.4 86.8 88.8 89.8 86.9 83.8 89.2 84.5
Large % (x1,43 − x1,56) 7.4 8.9 10.9 8.2 6.7 5.9 8.7 6.4 8.4 9.6 5.1 5.0 5.0 5.9

Medium % (x2,43 − x2,56) 84.4 84.3 82.2 89.8 90.4 90.1 83.6 88.0 84.7 80.6 93.0 91.4 86.2 87.2

Table 4.4.3: Percentage of particles (by weight) of Large % (x1,i) and Medium %
(x2,i) sizes respectively per time point (i = 1, 2, . . . , 56), in a European plant producing
gravel.

The observations are tested sequentially, assuming Xi| (µ,Σ)
iid∼ N2 (µ,Σ). For the

unknown parameters, we have the non-informative prior setting, used in Subsection

4.3.2.2, defining the location parameter of radius d =
√

2. Further, as the prior is

improper, we sacrifice the first three initial data points for the calculation of the

marginal distribution, as described in Section 4.1.1. Regarding the decision limits,

we use both of the constant p∗ and the adaptive decision limit p∗n, to control the

PFA(56) = 10% for each limit. As we can see in the Figure 4.4.3, M3S with the

adaptive decision limit is quite sensitive and raises an alarm from the first test, i.e.

the fourth data point of the process (as the first three were used in the calibration).

We could say it is a plausible alarm, as there is a discrepancy between the fourth

data point and the initial three (in light blue) that involved in the marginal. We

take it into account only as a warning message, letting the process continue. But in

any case, this is quite important, as a big issue of the self-starting procedures is that

they are incapable to react and detect a shift when it occurs in the very beginning

of a process, because of the lack of IC history. A plausible stopping time would be

T = 28, where we have the first of 29 consecutive alarms, until the end of the sample.

Like U3S, M3S is also very persistent in raising alarms, when a disorder is detected.

This is also a very important property, as it reduces the risk of absorption of a change.

It is worth mentioning, that both of the SSMEWMA and the SSCUSC(1) reacted

later and raised the first alarm at the 29th and the 30th observation respectively.
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M3S is not merely superior in the early detection of the shift, but also provides

analytical posterior inference regarding the unknown IC and OOC states. Based on

the whole sample, the most probable location for the change point is 25, while it is

quite probable a second change point to have been experienced around the location

43. In the scatterplot of Figure 4.4.3, the points 1-24 are in blue, while the rest are

in red, noting stopping time T = 28. The posterior means for the IC parameters (pre

change) are µ̂1 = 4.64, µ̂2 = 89.16, σ̂1 = 2.08, σ̂2 = 6.23 and ρ̂ = −0.69, while for

the OOC parameters we have r̂ = 2.19 and θ̂ = 334.37o. Thus the point estimates

for components of the OOC mean vector are µ̂′1 = µ̂1 + r̂ · cosθ̂ · σ̂1 = 7.46 and

µ̂
′
2 = µ̂2 + r̂ · cosθ̂ · σ̂2 = 86.23. Appendix F provides the trace and the ACF plots

for all the posteriors, along with the details of the MCMC sampling.
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Figure 4.4.3: The M3S application to a mean vector step change change. At the left
panel we provide the data, at the center panel the U3S process (upper) and the barplot
of the full conditional for τ (lower), while at the right panel we provide the histograms
for the IC parameters µ1, µ2, σ2

1, σ2
2 and ρ and the OOC parameters r and θ. The

constant and the adaptive decision limit (p∗ and p∗n) control the PFA(56) = 10%.



Chapter 5

Conclusions and Discussion

5.1 Conclusions

Statistical Process Control and Monitoring (SPC/M) is a widely used area of Statis-

tics with a plethora of applications. The standard approach calls for a phase I

calibration followed by a phase II testing phase, relying on strict assumptions and

may under certain conditions be problematic. Namely, it may not be applicable in

case where low volume data are available and the online analysis is of interest, or

when there is no prior information about the process. Self-starting control charts aim

to alleviate such issues. The Bayesian approach in SPC/M is underdeveloped, de-

spite the advantages offered in handling the uncertainty of the unknown parameters

utilizing prior knowledge about the process.

In this dissertation, we started with an extensive literature review on self-starting

methods that we classified in distinct domains, based on certain criteria (like dimen-

sionality, type of approach etc.). In this way we demarcate the area of Bayesian

SPC/M, where the developed research methodology will be devoted. Specifically,

the goal was the development of innovative Bayesian self-starting methods for indi-

vidual observations in short runs. All things considered, we successfully dealt with

162
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the detection of transient or permanent shifts, for location and/or scale parameters

of either univariate or multivariate data, developing the appropriate methods. In

addition to the successful detection of assignable causes of variation and the pro-

cess monitoring, we also provided reliable inference about the unknown parameters,

which is of major importance, when such methods are used in practice.

Namely, we expanded the work of Bourazas (2014) and Kiagias (2014) for Predictive

Control Charts (PCC), which is a new general Bayesian method that permits online

process monitoring for various types of univariate data, as long as their distribution

belongs to the regular exponential family. We introduced the use of power priors,

which, along with the initial priors, offer the flexibility to incorporate historical data

and/or subjective knowledge in the decision making scheme allowing valid online in-

ference, from the very early start of the process, aborting the need of a preliminary

calibration phase. It is the use of prior distribution that provides a structural advan-

tage over the non-parametric and self-starting frequentist based methods, especially

in short runs and phase I data, where only brief IC information is available from

the current data. The effect of the prior settings (as long as we avoid extremely

informative priors), will decay soon, as more data become available. Furthermore,

for users that might not be accustomed to the Bayesian approach, the choice of non-

informative (reference or Jeffeys) prior, allows direct PCC implementation, using

only the incoming data (and historical data if available). Also, we provided guide-

lines for the prior elicitation, and, generally, we developed the axiomatic framework,

where the PCC process is applied, including the definition of HPrD/M region, a FIR

scheme and a discussion on decision making.

PCC puts emphasis in online outlier detection of short production runs and it does

not require a phase I/II split. Traditional phase I studies, where online inference re-

garding the presence of large transient shifts is of interest, are ideal settings for PCC.

Furthermore, it is feasible for a user to switch from standard phase I/II monitoring

methods to PCC, as it will not only provide online outlier detection monitoring dur-
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ing the phase I segment, but thanks to its sequentially updated nature, it will allow

incorporation of the phase II data into the monitoring mechanism (something that

is not done with typical Frequentist methods). Thanks to the Bayesian posterior

distribution, we are also able to perform inference regarding each of the unknown

parameters. Lemma 2.3.1 and an extended simulation study, shows that PCC has

better performance compared to the frequentist based alternative,Q Chart, achieving

greater power in outlier detection and being robust for all the parameter values, even

those that are too close to the boundary of their support set. Additionally, PCC

is quite robust in model misspecifications, like violation in the independence or the

distribution of the data.

PCC seems to be ideal for everyone that deals with either short runs or applications

that require online monitoring during phase I. However, practitioners that employ

a traditional phase I/II protocol in their routine, can benefit from the use of PCC

during their phase I. Precisely, they will not only be able to monitor the process

online while in phase I, but also obtain the posterior point estimates of the unknown

parameters at the end of phase I, that will be necessary to build traditional phase

II control charts. The benefits are significant in short runs, where most of the

existing methods are unable to have robust performance and reliable estimates of

the unknown parameter(s).

Next, we developed Predictive Ratio CUSUMs (PRC), a Bayesian change point

model, able to accommodate any univariate data generating distribution that belongs

to the regular exponential family, much like PCC. PRC is an enhanced Bayesian ver-

sion of the frequentist Self-Starting CUSUM (SSC). In addition, PRC utilizes the

fact that the alternative (competing) models (OOC in the SPC/M framework) are

known, providing a method that boosts significantly the West’s (1986) Cumulative

Bayes Factors (CBF) approach. Most importantly though, PRC comes with detailed

guidelines in deriving the decision thresholds (something missing to a large degree

from both SSC and CBF) and a FIR scheme topics that are desperately needed from
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a practitioner in employing such schemes in real life practice. An extensive simula-

tion, evaluating the detection (both in power and alarm delay) of persistent shifts,

shows that PRC outperforms SSC even when non-informative prior is used and it is

also more powerful from CBF, except the special case where we look for shifts in the

variance of a location scale family distribution, where CBF becomes a special case

of PRC.

The PRC methodology was developed as a self starting quality monitoring scheme

within the SPC/M area, but it can be used at any other field, where we are interested

in online detection of persistent parameter shifts, especially when only low volume of

data is available (short runs). Apart from the change point detection aspect of PRC

(i.e. alarm a shift and provide an estimate of when this shift was originated), thanks

to the Bayesian framework, at each time we can have a point/interval estimate of

the unknown parameter, which will be sequentially updated. Finally, the detailed

description of the methodology (in closed form) and the associated decision limits

(typically absent in standard competing methods), based on the false alarm policy

that one wishes to have, allows its straightforward implementation in either short

(using FWER) or long (via ARL0) sequences of data.

Next research work in this dissertation was the development of the Self-Starting

Shiryaev (3S) methodology, a general detection scheme focusing on the efficient de-

tection of permanent shifts in short runs, under the absence of phase I. Precisely,

3S is a family of innovative Bayesian online change point models under the At Most

One Change (AMOC) scenario, which is general enough to be employed in any dis-

tribution, either continuous or discrete. It is a generalization of classical Shiryaev’s

approach in two main ways. First, by relaxing the strict assumption of known pro-

cess parameters. This is true by allowing the parameters that describe the IC state

or reflect an OOC shift to be all unknown. Secondly, by offering a more general prior

(Discrete Weibull) for the change point. The selected prior is more flexible in the

management of the hazard function for the occurrence of a change point, which is of
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major importance in real life applications. We set the general 3S framework for any

distributional setting, but we studied in detail the Univariate (U3S) and Multivariate

(M3S) schemes for Normal data, providing the assumptions, the development, the

evaluation and illustration to real data.

An extensive simulation study showed U3S to be more effective in detecting persis-

tent shifts for the mean or the variance in short horizon Normal datasets compared

to the standard frequentist or nonparametric alternatives, like SSC and Recursive

Segmentation and Permutation (RS/P). Thanks to the prior distribution, U3S can

utilize any available source of prior information in aid of the detection power, but it

is still robust and effective under total prior ignorance. Concerning M3S, we define

the models appropriately, in order to achieve the desired properties of the directional

invariance, anisotropic scaling and rotation, which are beneficial for its applicabil-

ity in real world problems. The simulation study, where we compare M3S for the

mean vector against SSMEWMA and CUSCORE in the presence of step changes in

the mean vector, showed that M3S outperforms the competing methods, in case of

available prior information, while it is competitive under total prior ignorance.

The enhanced detection performance in both univariate and multivariate 3S schemes

can be attributed to the proposed model structure, which splits appropriately the

data and summarizes the evidence of a change point occurrence, using the whole

sample. In this manner, it avoids including contaminated data in the IC estimates

and consequently is more resistant in absorbing a shift. Aside from the superiority in

the change point detection, U3S offers an online posterior inference for the unknown

parameters, regarding the IC or the OOC scenario, including the change point. This

is a great advantage for an online monitoring and a successful root cause analysis

after a change point occurrence. Furthermore, we proposed a more realistic adaptive

decision limit, which takes into account the prior of the change point and we provided

guidelines for its successful use. Summarizing, 3S is an excellent choice for the online

detection of a change point, especially in short runs, offering also posterior inference
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for the unknown process parameters and the shift.

Despite the innovative methodology, which introduced and developed in this disser-

tation, there is still room for further improvement. Future research will be focused

on the simulation study of M3S for the detection of rotations or scale shifts in the

covariance matrix or the detection of mean vector drifts in higher dimensions. A fur-

ther investigation will concern the non-informative prior setting in the multivariate

processes along with some topics on the robustness. Finally, an R package with the

existed methodology is planned to be developed, allowing the free and direct use of

Bayesian SPC/M (BSPC/M) methods in the community.



Chapter 6

Appendices

Appendix A: Technical details regarding the derivation of the log ratio of the pre-

dictive OOC over IC models, log(Ln+1), for all PRC scenarios presented in Table

3.1.1.

A1: PRC for the rate of a Poisson likelihood.

Assume Xi|θ ∼ P (θ · si), where si is the known number of events for the ith obser-

vation, while for the rate (per event) unknown parameter we assume θ ∼ G (c, d).

Then, the resulting IC posterior is θ|τn ∼ G
(
ĉn, d̂n

)
, while the corresponding pre-

dictive is f (Xn+1|Xn) = NBin
(
ĉn, sn+1/

(
d̂n + sn+1

))
, where ĉn = c +

ND∑
j=1

wjdj

and d̂n = d+
ND∑
j=1

wjsj. Thus, the vector of IC posterior parameters, the predictive’s

sufficient statistic and K (τn), needed in PRC are

τn =
(
d̂n, ĉn − 1

)
, tf (Xn+1) = (sn+1, xn+1) and K (τn) =

Γ (τn,1 + 1)

(τn,0)τn,1+1

For the OOC scenario we introduce the shift to the unknown rate parameter θ by mul-

tiplying it by k (i.e. the OOC parameter is k ·θ), which corresponds to a (k−1)·100%

rate increase if k > 1, or to a (1− k) · 100% decrease when k < 1. Since Gamma is

168



169

a scale family it follows that the OOC posterior will be θ|τ ′n ∼ G
(
ĉn, d̂n/k

)
, result-

ing the predictive f ′ (Xn+1|Xn) = NBin
(
ĉn, sn+1/

(
d̂n/k + sn+1

))
. Therefore, the

vector of intervened posterior parameters will be τ ′n =
(
d̂n/k, ĉn − 1

)
. Finally, the

score function log (Ln+1) will be given by

log (Ln+1) = log
f ′ (Xn+1|Xn)

f (Xn+1|Xn)
= log

K (τ ′n + tf (Xn+1)) ·K (τn)

K (τn + tf (Xn+1)) ·K (τ ′n)

= log

Γ (ĉn + xn+1)(
d̂n/k + sn+1

)ĉn+xn+1
· Γ (ĉn)

d̂ĉnn

Γ (ĉn + xn+1)(
d̂n + sn+1

)ĉn+xn+1
· Γ (ĉn)(
d̂n/k

)ĉn
= (ĉn + xn+1) log

d̂n + sn+1

d̂n/k + sn+1

+ xn+1 · logk

A2: PRC for the probability of success of a Binomial likelihood.

Let Xi|θ ∼ Bin(Ni, θ), where Ni is the known number of Bernoulli trials of the

ith observation and for the unknown success probability we assume θ ∼ Beta (a, b).

The IC posterior is θ|τn ∼ Beta
(
ân, b̂n

)
, while the predictive is f (Xn+1|Xn) =

BetaBin
(
ân, b̂n, Nn+1

)
, where ân = a+

ND∑
j=1

wjdj and b̂n = b+
ND∑
j=1

wjNj −
ND∑
j=1

wjdj.

Thus, the vector of IC posterior parameters, the predictive’s sufficient statistic and

K (τn), needed in PRC are

τn =

 ân + b̂n − 2
n∑
i=1

Ni

, ân − 1

 , tf (xn+1) = (Nn+1, xn+1) and

K (τn) =
Γ (τn,1 + 1)Γ (Ni · τn,0 − τn,1 + 1)

Γ

(
n∑
i=1

Ni · τn,0 + 2

)
For the OOC scenario we multiply the expected odds of θ by k, i.e. the OOC
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shift is k · E
(

θ

1− θ

)
. This shift corresponds to a (k − 1) · 100% expected odds

increase if k > 1, or to a (1 − k) · 100% decrease when k < 1. The OOC posterior

will be θ|τ ′n ∼ Beta
(
k · ân, b̂n

)
and the corresponding predictive f ′ (Xn+1|Xn) =

BetaBin
(
k · ân, b̂n, Nn+1

)
. Therefore, the vector of the intervened posterior param-

eters will be τ ′n =

k · ân + b̂n − 2
n∑
i=1

Ni

, k · ân − 1

. The score function log (Ln+1) will

be

log (Ln+1) = log

Γ (k · ân + xn+1)Γ
(
b̂n +Nn+1 − xn+1

)
Γ
(
k · ân + b̂n +Nn+1

) ·
Γ (ân)Γ

(
b̂n

)
Γ
(
ân + b̂n

)
Γ (ân + xn+1)Γ

(
b̂n +Nn+1 − xn+1

)
Γ
(
ân + b̂n +Nn+1

) ·
Γ (k · ân)Γ

(
b̂n

)
Γ
(
k · ân + b̂n

)

= log
B
(
k · ân + b̂n, Nn+1

)
·B (ân, xn+1)

B
(
ân + b̂n, Nn+1

)
·B (k · ân, xn+1)

A3: PRC for the probability of success of a Negative Binomial likelihood.

Let Xi|θ ∼ NBin(r, θ), where r represents the known number of failures until the ex-

periment stops and for the unknown probability of success we assume θ ∼ Beta (c, d).

The IC posterior and predictive will be θ|τn ∼ Beta
(
ân, b̂n

)
and f (Xn+1|Xn) =

NBetaBin
(
ân, b̂n, r

)
respectively, where ân = a + r

ND∑
j=1

wj and b̂n = b +
ND∑
j=1

wjdj.

Thus, the vector of IC posterior parameters, the predictive’s sufficient statistic and

K (τn), needed in PRC are

τn =

(
ân − 1

r
, b̂n − 1

)
, tf (xn+1) = (1, xn+1) and K (τn) =

Γ (τn,1 + 1)Γ (r · τn,0 + 1)

Γ (r · τn,0 + τn,1 + 2)

As in the Binomial case, for the OOC scenario we multiply the expected odds of θ

by k. This shift represents a (k − 1) · 100% expected odds increase if k > 1, or a
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(1− k) · 100% decrease when k < 1. The OOC posterior is θ|τ ′n ∼ Beta
(
k · ân, b̂n

)
and the corresponding predictive f ′ (Xn+1|Xn) = NBetaBin

(
k · ân, b̂n, r

)
. The

intervened posterior parameters are τ ′n =

(
k · ân − 1

r
, b̂n − 1

)
. Finally, the score

function log (Ln+1) will be given by

log (Ln+1) = log
B
(
k · ân + b̂n, r + xn+1

)
·B (ân, r)

B
(
ân + b̂n, r + xn+1

)
·B (k · ân, r)

A4: PRC for the mean of a Normal likelihood with known variance.

Let Xi|θ ∼ N (θ, σ2), where σ2 is the known variance, and for the unknown mean

parameter we assume θ ∼ N (µ0, σ
2
0). The IC posterior and predictive will be

θ|τn ∼ N (µ̂n, σ̂
2
n) and f (Xn+1|Xn) = N (µ̂n, σ̂

2
n + σ2) respectively, where

µ̂n =

(
σ2µ0 + σ0

2
ND∑
j=1

wjdj

)/(
σ2 + σ0

2
ND∑
j=1

wj

)
and σ̂2

n = σ0
2σ2

/(
σ2 + σ0

2
ND∑
j=1

wj

)
.

The vector of IC posterior parameters, the predictive’s sufficient statistic andK (τn),

needed in PRC are

τn =

(
σ2

σ̂2
n

,
µ̂n
σ̂2
n

)
, t1 (xn+1) =

(
1,
xn+1

σ2

)
and K (τn) =

√
2πσ2

τn,0
exp

{
σ2τ 2

n,1

2τn,0

}

For the OOC shift, we introduce a step change of size k · σ on the mean, i.e. the

OOC mean is θ + k · σ and the mean shift is upward or downward, depending on

whether k > 0 or k < 0 respectively. Since Normal is a location family, the OOC

posterior is θ|τ ′n ∼ N (µ̂n + k · σ, σ̂2
n) and the corresponding OOC predictive will

be f ′ (Xn+1|Xn) = N (µ̂n + k · σ, σ̂2
n + σ2). The vector of the intervened posterior

parameters is τ ′n =

(
σ2

σ̂2
n

,
µ̂n + k · σ

σ̂2
n

)
. If we will standardize the future observable,

setting Zn+1 = (Xn+1 − µ̂n) /
√
σ̂2
n + σ2, then the standardized predictives will be

f (Zn+1|Xn) = N (0, 1) and f ′ (Zn+1|Xn) = N
(
k · σ/

√
σ̂2
n + σ2, 1

)
. The score func-
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tion log (Ln+1) will be given by

log (Ln+1) = log
f ′ (Xn+1|Xn)

f (Xn+1|Xn)
= log

f ′ (Zn+1|Xn)

f (Zn+1|Xn)

=

(
zn+1 −

k

2
· σ√

σ̂2
n + σ2

)
· σ√

σ̂2
n + σ2

A5: PRC for the variance of a Normal likelihood with known mean.

Let Xi|θ2 ∼ N (µ, θ2), where µ is the known mean, and for the unknown variance

parameter we assume θ2 ∼ IG (a, b). The IC posterior and predictive distributions

will be θ2|τn ∼ IG
(
ân, b̂n

)
and f (Xn+1|Xn) = t2ân

(
µ, b̂n/ân

)
respectively, where

ân = a +
ND∑
j=1

wj
/

2 and b̂n = b +
ND∑
j=1

wj (dj − µ)2 /2. The vector of IC posterior

parameters, the predictive’s sufficient statistic and K (τn), needed in PRC are

τn =
(

2(ân + 1), 2b̂n

)
, t1 (xn+1) =

(
1, (xn+1 − µ)2) and K (τn) =

Γ
(τn,0

2
− 1
)

(τn,1
2

)τn,0
2
−1

For the OOC shift, we multiply the variance by k, i.e. the OOC parameter is

k · θ2 and this shift corresponds to a (k − 1) · 100% variance increase if k > 1 or

a (1 − k) · 100% decrease if k < 1. Since the Inverse Gamma is a scale family,

the OOC posterior will be θ|τ ′n ∼ IG
(
ân, k · b̂n

)
with the corresponding predic-

tive being f ′ (Xn+1|Xn) = t2ân

(
µ, k · b̂n/ân

)
. Thus, the intervened parameters are

given by τ ′n =
(

2(ân + 1), k · 2b̂n
)
. Standardizing the future observable we have

Zn+1 = (Xn+1 − µ̂n) /

√
b̂n/ân, resulting the IC and OOC predictive distributions to

be f (Zn+1|Xn) = t2ân (0, 1) and f ′ (Zn+1|Xn) = t2ân (0, k) respectively. Finally, the

score function will be

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân + z2
n+1/k

− log
√
k
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A6: PRC for the mean of a Normal likelihood with both parameters un-

known.

Let Xi| (θ1, θ
2
2) ∼ N (θ1, θ

2
2) with both parameters being unknown and assumed

(θ1, θ
2
2) ∼ NIG (µ0, λ, a, b). The IC posterior and predictive distributions will be

given by

(θ1, θ
2
2) |τn ∼ NIG

(
µ̂n, λ̂n, ân, b̂n

)
and f (Xn+1|Xn) = t2ân

(
µ̂n, (λn + 1) · b̂n

/
(λn · ân)

)
respectively, where µ̂n =

(
λµ0 +

ND∑
j=1

wjdj

)/(
λ+

ND∑
j=1

wj

)
, λ̂n = λ +

ND∑
j=1

wj, ân =

a+
ND∑
j=1

wj
/

2 and b̂n = b+

(
λµ2

0 +
ND∑
j=1

wjd
2
j

)/
2−

(
λµ0 +

ND∑
j=1

wjdj

)2/(
2

(
λ+

ND∑
j=1

wj

))
.

The vector of IC posterior parameters, the predictive’s sufficient statistic andK (τn),

needed in PRC are

τn =
(

2(ân + 1), 2b̂n + λ̂nµ̂
2
n, λ̂nµ̂n, λ̂n

)
, t1 (xn+1) =

(
1, x2

n+1, xn+1, 1
)

and

K (τn) =

√
2π

τn,3
·

Γ

(
τn,0 − 3

2

)
(
τn,1
2
−

τ 2
n,2

2τn,3

)τn,0 − 3

2

For the OOC shift, we introduce a step change of size k · θ̂2 to the mean (i.e.

the OOC parameter will be θ1 + kθ̂2), where θ̂2 =

√
b̂n/ân (the shift will be up-

ward or downward, depending on whether k > 0 or k < 0 respectively). The

parameter θ̂2 is the mean of the posterior marginal for the standard deviation θ2.

This choice preserves the conjugacy and expresses the shift in terms of the esti-

mated standard deviation. Furthermore, it is always well defined when the predic-

tive is available and it allows the pivotal statistic to depend only on λ̂n. Given

that the posterior marginal Student t is a location family, the OOC posterior is

(θ1, θ
2
2) |τ ′n ∼ NIG

(
µ̂n + k · θ̂2, λ̂n, ân, b̂n

)
, while the corresponding predictive and

the intervened posterior parameters are

f ′ (Xn+1|Xn) = t2ân

(
µ̂n + k · θ̂2,

(
λ̂n + 1

)
· b̂n/

(
λ̂n · ân

))
and
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τ ′n =
(

2(ân + 1), 2b̂n + λ̂nµ̂
2
n, λ̂n(µ̂n + k · θ̂2), λ̂n

)
respectively. Standardizing the fu-

ture observable (using the IC parameters) we get Zn+1 = (Xn+1 − µ̂n) /

√(
λ̂n + 1

)
· b̂n/

(
λ̂n · ân

)
.

Then the IC and OOC predictive will be f (Zn+1|Xn) = t2ân (0, 1) and f ′ (Zn+1|Xn) =

t2ân

(
k ·
√
λ̂n/

(
λ̂n + 1

)
, 1

)
respectively. The score function log (Ln+1) will be given

by

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân +
(
zn+1 − k · λ̂n/(λ̂n + 1)

)2

A7: PRC for the variance of a Normal likelihood with both parameters

unknown.

In this scenario, the likelihood, prior and the IC posterior distributions are identical

to the ones of scenario A6. However, here we consider the PRC for the variance

term and so for the OOC shift, we multiply the variance by k, i.e. k · θ2
2. The shift

corresponds to a (k − 1) · 100% variance increase if k > 1 or a (1 − k) · 100%

decrease when k < 1. Furthermore, as the posterior marginal of θ2
2 is Inverse

Gamma, i.e. a scale family, the OOC posterior will be given by (θ1, θ
2
2) |τ ′n ∼

NIG
(
µ̂n, λ̂n, ân, k · b̂n

)
, while the corresponding predictive will be f ′ (Xn+1|Xn) =

t2ân

(
µ̂n, k ·

(
λ̂n + 1

)
· b̂n
/(

λ̂n · ân
))

. Thus the vector of the intervened posterior

parameters will be τ ′n =
(

2(ân + 1), 2k · b̂n + λ̂nµ̂
2
n, λ̂nµ̂n, λ̂n

)
. Standardizing the

future observable (just as in A6) we get the standardized IC and OOC predictive

distributions to be f (Zn+1|Xn) = t2ân (0, 1) and f ′ (Zn+1|Xn) = t2ân (0, k) respec-

tively. Finally, the score function log (Ln+1) will be

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân + z2
n+1/k

− log
√
k

A8: PRC for the rate of a Gamma likelihood.

Let Xi|θ ∼ G(α, θ), where α is the known shape parameter, and for the unknown

rate parameter we assume that θ ∼ G (c, d). Then, the resulting IC posterior and
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predictive will be θ|τn ∼ G
(
ĉn, d̂n

)
and f (Xn+1|Xn) = CompG

(
α, ĉn, d̂n

)
(i.e.

Compound Gamma) respectively, where ĉn = c + α
ND∑
j=1

wj and d̂n = d +
ND∑
j=1

wjdj.

Therefore, the vector of IC posterior parameters, the predictive’s sufficient statistic

and K (τn), needed in PRC are

τn =

(
ĉn − 1

α
, d̂n

)
, tf (xn+1) = (1, xn+1) and K (τn) =

Γ (ατn,0 + 1)

τ
ατn,0+1
n,1

Just as in the Poisson case, the OOC scenario is introduced as a shift to the rate θ

parameter, by multiplying it by k, representing a (k−1) ·100% rate increase if k > 1

or a (1−k)·100% decrease when k < 1. As Gamma is a scale family it follows that the

OOC posterior will be θ|τ ′n ∼ G
(
ĉn, d̂n/k

)
, and the corresponding predictive will be

f ′ (Xn+1|Xn) = CompG
(
α, ĉn, d̂n/k

)
. Therefore, the vector of intervened posterior

parameters will be τ ′n =

(
ĉn − 1

α
,
d̂n
k

)
. Finally, the score function log (Ln+1) will

be given by

log (Ln+1) = (ĉn + α) · log d̂n + xn+1

d̂n + k · xn+1

+ α · logk

A9: PRC for the scale of a Weibull likelihood.

If Xi|θ ∼ W (θ, κ), where κ is the known shape parameter, and for the unknown scale

parameter we assume θ ∼ IG (a, b). The IC posterior and predictive distributions

will be θ|τn ∼ IG
(
ân, b̂n

)
and f (Xn+1|Xn) = Burr

(
κ, ân, b̂

1/κ
n

)
respectively, where

ân = a+
ND∑
j=1

wj and b̂n = b+
ND∑
j=1

wjd
κ
j . Thus, the vector of IC posterior parameters,

the predictive’s sufficient statistic and K (τn), needed in PRC are

τn =
(
ân + 1, b̂n

)
, tf (xn+1) =

(
1, xκn+1

)
and K (τn) =

Γ (τn,0 − 1)

τ
τn,0−1
n,1

Similarly to scenario A5, we introduce the OOC shift by multiplying the scale pa-

rameter θκ by k. The shift corresponds to a (k − 1) · 100% scale increase if k > 1
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or a (1 − k) · 100% decrease when k < 1. The Inverse Gamma is a scale family,

thus the OOC posterior will be θκ|τ ′n ∼ IG
(
ân, k · b̂n

)
and the corresponding OOC

predictive will be given by f ′ (Xn+1|Xn) = Burr

(
κ, ân,

(
k · b̂n

)1/κ
)
. Finally, the

vector of the intervened posterior parameters is τ ′n =
(
ân + 1, k · b̂n

)
, while the score

function becomes

log (Ln+1) = (ân + 1) · log
b̂n + xκn+1

b̂n + xκn+1/k
− logk

A10: PRC for the scale of an Inverse Gamma likelihood.

Let Xi|θ ∼ IG(α, θ), where α is the known shape parameter while for the unknown

scale parameter we assume θ ∼ G (c, d). The IC posterior is θ|τn ∼ G
(
ĉn, d̂n

)
, while

the resulting predictive is f (Xn+1|Xn) = GB2
(
−1, 1

/
d̂n, α, ĉn

)
(i.e. Generalized

Beta of the second kind), where ĉn = c+α
ND∑
j=1

wj and d̂n = d+
ND∑
j=1

wj/dj. The vector

of IC posterior parameters, the predictive’s sufficient statistic and K (τn), needed in

PRC are

τn =

(
ĉn − 1

α
, d̂n

)
, tf (xn+1) =

(
1,

1

xn+1

)
and K (τn) =

Γ (ατn,0 + 1)

(τn,1)ατn,0+1

Similarly to earlier scenarios, where Gamma was the prior, we introduce the shift to

the shape θ by multiplying it by k, which represents a (k − 1) · 100% scale increase

if k > 1 or a (1 − k) · 100% decrease if k < 1. Gamma is a scale family, thus the

OOC posterior will be θ|τ ′n ∼ G
(
ĉn, d̂n/k

)
, and the corresponding predictive will

be f ′ (Xn+1|Xn) = GB2
(
−1, k/d̂n, α, ĉn

)
. The intervened posterior parameters will

be τ ′n =

(
ĉn − 1

α
, d̂n/k

)
and the score function log (Ln+1) will be given by

log (Ln+1) = (ĉn + α) · log d̂n · xn+1 + 1

d̂n · xn+1 + k
+ α · logk

A11: PRC for the shape of Pareto likelihood.
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Let Xi|θ ∼ Pa(θ,m), where m is the known minimum parameter, and for the shape

parameter we assume θ ∼ G (c, d). The IC posterior and predictive distribution

are θ|τn ∼ G
(
ĉn, d̂n

)
and f (Xn+1|Xn) = expGPD

(
d̂n/ (m · ĉn) , ĉ−1

n

)
(i.e. expo-

nentiated Generalized Pareto Distribution) respectively, where ĉn = c +
ND∑
j=1

wj and

d̂n = d +
ND∑
j=1

wjlog(dj/m). The vector of IC posterior parameters, the predictive’s

sufficient statistic and K (τn), needed in PRC are

τn =
(
ĉn − 1, d̂n

)
, tf (xn+1) = (1, log(xn+1/m)) and K (τn) =

Γ (τn,0 + 1)

τ
τn,0+1
n,1

Just as it was done in the earlier cases where Gamma was involved as prior, we

multiply the shape θ by k, which represents a (k − 1) · 100% shape increase if

k > 1 or to a (1 − k) · 100% decrease when k < 1. As Gamma is a scale family,

the OOC posterior θ|τ ′n ∼ G
(
ĉn, d̂n/k

)
, and the OOC predictive: f ′ (Xn+1|Xn) =

expGPD
(
d̂n/ (k ·m · ĉn) , ĉ−1

n

)
. The intervened posterior parameters will be τ ′n =(

ĉn − 1

α
, d̂n/k

)
and the score function log (Ln+1) will be given by

log (Ln+1) = (ĉn + 1) · log d̂n + log(xn+1/m)

d̂n + k · log(xn+1/m)
+ logk

A12: PRC for the scale of Lognormal likelihood with known shape pa-

rameter.

Let Xi|θ ∼ LogN (θ, σ2), where σ2 is the known shape parameter, and for the

scale parameter we assume θ ∼ N (µ0, σ
2
0). Similarly to the corresponding Nor-

mal case (scenario A4) we have that the IC posterior and predictive distributions to

be θ|τn ∼ N (µ̂n, σ̂
2
n) and f (Xn+1|Xn) = LogN (µ̂n, σ̂

2
n + σ2) respectively, where

µ̂n =

(
σ2µ0 + σ0

2
ND∑
j=1

wjlog(dj)

)/(
σ2 + σ0

2
ND∑
j=1

wj

)
and σ̂2

n = σ0
2σ2

/(
σ2 + σ0

2
ND∑
j=1

wj

)
.

The vector of IC posterior parameters, the predictive’s sufficient statistic andK (τn),
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needed in PRC are

τn =

(
σ2

σ̂2
n

,
µ̂n
σ̂2
n

)
, t1 (xn+1) =

(
1,
log(xn+1)

σ2

)
and K (τn) =

√
2πσ2

τn,0
exp

{
σ2τ 2

n,1

2τn,0

}

For the OOC shift, we introduce a step change of size of k · σ for θ, i.e. the OOC

parameter is θ+ k ·σ with the shift being upwards or downwards depending if k > 0

or k < 0 respectively. Since the Normal is a location family, the OOC posterior

will be θ|τ ′n ∼ N (µ̂n + k · σ, σ̂2
n) with the corresponding predictive f ′ (Xn+1|Xn) =

LogN (µ̂n + k · σ, σ̂2
n + σ2). The vector of the intervened posterior parameters will

be τ ′n =

(
σ2

σ̂2
n

,
µ̂n + k · σ

σ̂2
n

)
. If we will standardize the log-transformed future observ-

able, setting Zn+1 = (log(Xn+1)− µ̂n)
/√

σ̂2
n + σ2, then the standardized predictives

will be f (Zn+1|Xn) = N (0, 1) and f ′ (Zn+1|Xn) = N
(
k · σ/

√
σ̂2
n + σ2, 1

)
. The

score function log (Ln+1) will be given by:

log (Ln+1) =

(
zn+1 −

k

2
· σ√

σ̂2
n + σ2

)
· σ√

σ̂2
n + σ2

A13: PRC for the shape of Lognormal likelihood with known scale pa-

rameter.

Let Xi|θ2 ∼ LogN (µ, θ2), where µ is the known scale, and for the shape parameter

we assume θ2 ∼ IG (a, b). Similarly to the corresponding Normal case (scenario A5)

we have that the IC posterior and predictive distributions to be θ2|τn ∼ IG
(
ân, b̂n

)
,

and f (Xn+1|Xn) = Logt2ân

(
µ, b̂n/ân

)
respectively, where ân = a +

ND∑
j=1

wj
/

2 and

b̂n = b+
ND∑
j=1

wj (log(dj)− µ)2 /2. The vector of IC posterior parameters, the predic-

tive’s sufficient statistic and K (τn), needed in PRC are

τn =
(

2(ân + 1), 2b̂n

)
, t1 (xn+1) =

(
1, (log(xn+1)− µ)2) and K (τn) =

Γ
(τn,0

2
− 1
)

(τn,1
2

)τn,0
2
−1
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For the OOC shift, we multiply the shape parameter by k, i.e. k · θ2. The shift

corresponds to a (k− 1) · 100% increase if k > 1 or to a (1− k) · 100% decrease when

k < 1. Since, Inverse Gamma is a scale family, the OOC posterior and predictive will

be θ|τ ′n ∼ IG
(
ân, k · b̂n

)
and f ′ (Xn+1|Xn) = Logt2ân

(
µ, k · b̂n/ân

)
. The vector of

the intervened posterior parameters will be τ ′n =
(

2(ân + 1), k · 2b̂n
)
. Standardizing

the log-transformed future observable we have Zn+1 = (log(Xn+1)− µ)
/√

b̂n/ân,

resulting the IC and OOC predictive distributions to be f (Zn+1|Xn) = t2ân (0, 1)

and f ′ (Zn+1|Xn) = t2ân (0, k) respectively. Finally, the score function will be

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân + z2
n+1/k

− log
√
k

A14: PRC for the scale of Lognormal likelihood with both parameters

unknown.

Let Xi| (θ1, θ
2
2) ∼ LogN (θ1, θ

2
2), where both parameters are being unknown and

we assume (θ1, θ
2
2) ∼ NIG (µ0, λ, a, b). Similarly to the corresponding Normal case

(scenario A6) we have that the IC posterior and predictive distributions will be

(θ1, θ
2
2) |τn ∼ NIG

(
µ̂n, λ̂n, ân, b̂n

)
and f (Xn+1|Xn) = Logt2ân

(
µ̂n, (λn + 1) · b̂n

/
(λn · ân)

)
respectively, where

µ̂n =

(
λµ0 +

ND∑
j=1

wjlog(dj)

)/(
λ+

ND∑
j=1

wj

)
, λ̂n = λ+

ND∑
j=1

wj, ân = a+
ND∑
j=1

wj
/

2 and

b̂n = b+

(
λµ2

0 +
ND∑
j=1

wj(log(dj))
2

)/
2−

(
λµ0 +

ND∑
j=1

wjlog(dj)

)2/(
2

(
λ+

ND∑
j=1

wj

))
.

The vector of IC posterior parameters, the predictive’s sufficient statistic andK (τn),

needed in PRC are

τn =
(

2(ân + 1), 2b̂n + λ̂nµ̂
2
n, λ̂nµ̂n, λ̂n

)
, t1 (xn+1) =

(
1, (log(xn+1))2, log(xn+1), 1

)
and
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K (τn) =

√
2π

τn,3
·

Γ

(
τn,0 − 3

2

)
(
τn,1
2
−

τ 2
n,2

2τn,3

)τn,0 − 3

2

For the OOC shift, we introduce a step change of size of k ·θ̂2 to the mean, where θ̂2 =√
b̂n/ân, (i.e the expected value of the posterior marginal for the θ2) and so the OOC

parameter will be θ1 + kθ̂2. The shift is upward or downward depending on whether

k > 0 or k < 0 respectively. As the posterior marginal Student t is a location family,

the OOC posterior is (θ1, θ
2
2) |τ ′n ∼ NIG

(
µ̂n + k · θ̂2, λ̂n, ân, b̂n

)
, while the corre-

sponding predictive is f ′ (Xn+1|Xn) = Logt2ân

(
µ̂n + k · θ̂2, (λn + 1) · b̂n/ (λn · ân)

)
.

The vector of intervened posterior parameters is τ ′n =
(

2(ân + 1), 2b̂n + λ̂nµ̂
2
n, λ̂n(µ̂n + k · θ̂2), λ̂n

)
.

Standardizing the the log-transformed future observable (using the IC parameters)

we get

Zn+1 = (log(Xn+1)− µ̂n)

/√(
λ̂n + 1

)
· b̂n
/(

λ̂n · ân
)
. Then the IC and OOC pre-

dictive will be f (Zn+1|Xn) = t2ân (0, 1) and f ′ (Zn+1|Xn) = t2ân

(
k ·
√
λ̂n/

(
λ̂n + 1

)
, 1

)
respectively. The score function log (Ln+1) will be given by

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân +
(
zn+1 − k · λ̂n/(λ̂n + 1)

)2

A15: PRC for the shape of Lognormal likelihood with both parameters

unknown.

The likelihood and the IC distributions and parameters are identical with the ones

presented in scenario A14, but for the OOC shift, we multiply the shape parameter

θ2 by k, referring to a (k − 1) · 100% increase if k > 1 or (1 − k) · 100% decrease

when k < 1. Furthermore, as the posterior marginal (Inverse Gamma) is a scale fam-

ily, the OOC posterior and predictive will be (θ1, θ
2
2) |τ ′n ∼ NIG

(
µ̂n, λ̂n, ân, k · b̂n

)
and f ′ (Xn+1|Xn) = Logt2ân

(
µ̂n, k · (λn + 1) · b̂n

/
(λn · ân)

)
respectively. The in-

tervened posterior parameters will be τ ′n =
(

2(ân + 1), 2k · b̂n + λ̂nµ̂
2
n, λ̂nµ̂n, λ̂n

)
.
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Standardizing the the log-transformed future observable (just as in A14) we get the

standardized IC and OOC predictive distributions to be f (Zn+1|Xn) = t2ân (0, 1)

and f ′ (Zn+1|Xn) = t2ân (0, k) respectively. Finally, the score function log (Ln+1) will

be

log (Ln+1) = (ân + 1/2) · log
2ân + z2

n+1

2ân + z2
n+1/k

− log
√
k
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Appendix B: Decision thresholds h for PRC Models

Table 6.0.1 provides the decision threshold h for the Normal (or equivalently the

logarithm based transformation of a Lognormal) likelihood for scenario 1 in Section

3.2. Specifically, we derive the h values for different choices of (FWER,N) or ARL0

and specific size of OOC parameter shift k, when we make use of a reference prior

and no historical data are available. The models for which the h decision limit is

calculated refer to the following scenarios:

I. PRC for mean shift of a Normal Likelihood with known variance.

II. PRC for variance shift of a Normal Likelihood with known mean.

III. PRC for mean shift of a Normal Likelihood with both mean and variance

unknown.

IV. PRC for variance shift of a Normal Likelihood with both mean and variance

unknown.
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Appendix C: List of U3S Models

C1: Normal - Normal Model for the mean θ

We provide the U3S model, assuming the distribution of the IC state be a Normal

distribution with only the mean θ be unknown, wanting to investigate a potential

shift for it, either upwards or downwards. In other words, Xi|θ ∼ N (θ, σ2), i =

1, ..., n are sequentially arrived observations. Regarding the IC mean we assume

θ ∼ N (µ0, σ
2
0). As OOC parameter, we set φ = δ, which represents the magnitude

of a shift in terms of the standard deviation and we define g(θ,φ) = θ + δ · σ as

the link function for the OOC state, replacing the mean. Regarding δ we select a

mixture of of Normal distributions. This setting gives a two-sided U3S for an upward

and a downward shift respectively. Alternatively, instead of a mixture of priors for

a two-sided U3S, we could implement two one-sided U3S, using simple priors for

δ. For the mixture, we assume δ = γ · δ1 + (1 − γ) · δ2, where δi ∼ N (µδi, σδi
2)

and γ ∼ Ber(π). The probability π is the prior probability of the shift δ1 in the

mixture and the choice of π = 1/2 corresponds to the same FA tolerance, upwards or

downwards. Finally, for the location of the change point, we assume τ ∼ DW (p, β).

The likelihood is:

f (x|θ, δ, τ) =


τ−1∏
i=1

f (xi|θ)
n∏
i=τ

f (xi|θ + δ · σ) if τ ≤ n

n∏
i=1

f (xi|θ) if τ > n

Setting nt = n− t + 1, Xt1:t2 =

t2∑
i=t1

xi, σ2
p =

(
n

σ2
+

1

σ2
0

)−1

, µp =

(
X1:n

σ2
+
µ0

σ2
0

)
· σ2

p,

eδi = nτσ
2
δi

(
σ2 − nτσ2

p

)
+ σ2, π1 = π and π2 = 1− π, then the Bayes Factor will be:

BFτ,n+ =

2∑
i=1

πif(x|τ ≤ n)

f(x|τ > n)
(6.0.1)
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where the IC and the OOC marginal will be respectively:

f(x|τ > n) =

∫
θ

f(x|θ, τ > n)π(θ)dθ

=

∫
θ

(
1

σ
√

2π

)n
· exp

−
n∑
i=1

(xi − θ)2

2σ2

 ·
1

σ0

√
2π
· exp

{
−(θ − µ0)2

2σ2
0

}
dθ

=

(
1

σ
√

2π

)n
· 1

σ0

√
2π
· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0


×∫

θ

exp

{
−−2(σ2

0X1:n + σ2µ0)θ + (nσ2
0 + σ2)θ2

2σ2σ2
0

}
dθ

=

(
1√
2π

)n
· σp
σ0σn

· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0

−
µ2
p

σ2
p




f(x|τ ≤ n) =

2∑
i=1

πi

∫
δi

∫
θ

f(x|θ, δi, τ ≤ n)π(θ)π(δi)dθdδi

=

2∑
i=1

πi

∫
δi

∫
θ

(
1

σ
√

2π

)n
· exp

−
τ−1∑
i=1

(xi − θ)2 +
n∑
i=τ

(xi − (θ + δiσ))2

2σ2

×

× 1

σ0

√
2π
· exp

{
−(θ − µ0)2

2σ2
0

}
dθπ(δi)dδi
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=

2∑
i=1

πi

∫
δi

(
1

σ
√

2π

)n
· 1

σ0

√
2π
· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0

− 2Xτ :nδi
σ

+ nτδ
2
i


×

×

∫
θ

exp

{
−−2(σ2

0X1:n + σ2µ0 − σ2
0nτδiσ)θ + (nσ2

0 + σ2)θ2

2σ2σ2
0

}
dθπ(δi)dδi

=

2∑
i=1

πi

∫
δi

(
1√
2π

)n
· σp
σ0 · σn

· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0

− 2Xτ :nδi
σ

+ nτδ
2
i


×

×exp

{
+

(
µp − nτδiσ2

p/σ
)2

2σ2
p

}
· 1

σδi
√

2π
· exp

{
−(δi − µδi)2

2σ2
δi

}
dδi

=

2∑
i=1

πi

(
1√
2π

)n
· σp
σ0σn

· 1

σδi
√

2π
· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0

−
µ2
p

σ2
p

+
µ2
δi

σ2
δi


×

×

∫
δi

exp

{
−
−2(σ2

δi
(Xτ :n − nτµp)σ + σ2µδi)δ + eδiδ

2
i

2σ2σ2
δi

}
dδi =

=

2∑
i=1

πi

(
1√
2π

)n
· σp
σ0σn−1√eδi

· exp

−
1

2


n∑
i=1

x2
i

σ2
+
µ2

0

σ2
0

−
µ2
p

σ2
p

+
µ2
δi

σ2
δi


×

×exp
{

+
(σ2

δi
(Xτ :n − nτµp)σ + σ2µδi)

2

2σ2
δi
σ2eδi

}
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Substituting in (6.0.1) we get

BFτ,n+ =

2∑
i=1

πiσ√
eδi
· exp

{
− µ2

δi

2σ2
δi

+
(σ2

δi (Xτ :n − nτµp)σ + σ2µδi)
2

2σ2
δi
σ2eδi

}

Regarding the full conditional posteriors we have:

• θ|(τ > n,x)

p(θ|τ > n,x) ∝ f(x|θ, τ > n)π(θ)

∝ exp

{
−−2(σ2

0X1:n + σ2µ0)θ + (nσ2
0 + σ2)θ2

2σ2σ2
0

}

Thus θ|(τ > n,x) ∼ N
(
µp, σ

2
p

)
• θ|(δ, τ ≤ n,x)

p(θ|δ, τ ≤ n,x) ∝ f(x|θ, δ, τ ≤ n)π(θ)

∝ exp

{
−−2(σ2

0X1:n + σ2µ0 − σ2
0nτδσ)θ + (nσ2

0 + σ2)θ2

2σ2σ2
0

}

Thus θ|(δ, τ ≤ n,x) ∼ N
(
µp − σ2

pnτδ/σ, σ
2
p

)
• δi| (θ, τ ≤ n,x)

p(δi|θ, τ ≤ n,x) ∝ f(x|θ, δ,τ ≤ n)π(δi)

∝ exp

{
−−2 (µδi + σ2

δi (Xτ :n − nτθ) /σ) δi + (1 + nτσ
2
δi) δ

2
i

2σ2
δi

}

Thus δi| (θ, τ ≤ n,x) ∼ N

(
µδi + σ2

δi (Xτ :n − nτθ) /σ
1 + nτσ2

δi

,
σ2
δi

1 + nτσ2
δi

)
• γ| (θ, δi, τ ≤ n,x)
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π∗ =

π ·
∫
δ1

f (x|θ, δ1, τ ≤ n) π(δ1)dδ1

π ·
∫
δ1

f (x|θ, δ1, τ ≤ n)π(δ1)dδ1 + (1− π) ·
∫
δ2

f (x|θ, δ2, τ ≤ n) π(δ2)dδ2

=
π

π + (1− π) · exp

{
µ2
δp2

2σ2
δp2

−
µ2
δp1

2σ2
δp1

}
σδp2
σδp1

Thus γ| (θ, δi, τ ≤ n,x) ∼ Ber

 π

π + (1− π) · exp

{
µ2
δp2

2σ2
δp2

−
µ2
δp1

2σ2
δp1

}
σδp2
σδp1


• τ | (θ, δ,x)

p (τ = k|θ, δ,x) =
f (x|θ, δ, τ) π(τ = k)
n∑
j=1

f (x|θ, δ, τ) π(τ = j)

=

exp

{
δ (Xk:n − nkθ)

σ
− nkδ

2

2

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

exp

{
δ (Xj:n − njθ)

σ
− njδ

2

2

}(
(1− p)(j−1)β − (1− p)jβ

)
C2: Normal - Inverse Gamma Model for the variance θ2

Let the distribution of the IC state be a Normal distribution with unknown variance

θ2, while the mean µ is known, i.e. Xi|θ ∼ N (µ, θ2), i = 1, ..., n. Regarding the

detection scheme, we want to investigate a level change for the variance. Regarding

the IC parameter, we assume θ2 ∼ IG (a, b). We set φ = κ, which represents the

magnitude of an inflation and for the link function for the OOC state, we replace

the variance with g(θ,φ) = κ · θ2. For κ, we assume a mixture of Inverse Gam-

mma distributions, for a potential inflation or shrinkage of the variance respectively.

Specifically, κ = γ · κ1 + (1 − γ) · κ2, where κi ∼ IG (ci, di) and γ ∼ Ber(π). In
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this manner, we implement again a two-sided U3S. For the change point, we assume

τ ∼ DW (p, β). The likelihood is given by:

f (x|θ2, κ, τ) =


τ−1∏
i=1

f
(
xi|θ2

) n∏
i=τ

f
(
xi|κ · θ2

)
if τ ≤ n

n∏
i=1

f
(
xi|θ2

)
if τ > n

Setting nt = n − t + 1, S2
t1:t2

=

t2∑
i=t1

(xi − µ)2, ap = a +
n

2
, bt = b +

S2
1:t

2
, π1 = π and

π2 = 1− π, then the IC and the OOC marginal will be respectively:

f(x|τ > n) =

∫
θ2
f(x|θ2, τ > n)π(θ2)dθ2

=

∫
θ2

(
1

σ
√

2π

)n
· exp

{
−S

2
1:n

2θ2

}
· ba

Γ (a)
·
(

1

θ2

)a+1

· exp
{
− b

θ2

}
dθ2

=

(
1√
2π

)n
· ba

Γ (a)

∫
θ2

(
1

θ2

)ap+1

· exp
{
−bn
θ2

}
dθ2

=

(
1√
2π

)n
· ba

Γ (a)
· Γ (ap)

b
ap
n

f(x|τ ≤ n) =

2∑
i=1

πi

∫
θ2

∫
κi

f(x|θ2, κi, τ ≤ n)π(θ2)π(κi)dκidθ
2

=

2∑
i=1

πi

∫
θ2

∫
κi

(
1

θ
√

2π

)n
·
(

1

κi

)nτ/2
· exp

{
−
S2

1:τ−1

2θ2
− S2

τ :n

2κiθ2

}
×

× dcii
Γ (ci)

·
(

1

κi

)ci+1

· exp
{
−di
κi

}
dκiπ(θ2)dθ2
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=

2∑
i=1

πi

∫
θ2

(
1

θ
√

2π

)n
· dcii
Γ (ci)

· exp
{
−
S2

1:τ−1

2θ2

}
×

×

∫
κi

(
1

κi

)nτ/2+ci+1

· exp

−
di +

S2
τ :n

2θ2

κi

 dκiπ(θ2)dθ2

=

2∑
i=1

πi

∫
θ2

(
1

θ
√

2π

)n
· dcii
Γ (ci)

· exp
{
−
S2

1:τ−1

2θ2

}
×

× Γ (nτ/2 + ci)(
di +

S2
τ :n

2θ2

)nτ+ci
· dcii
Γ (ci)

·
(

1

θ2

)a+1

· exp
{
− b

θ2

}
dθ2

=

2∑
i=1

πi
dcii Γ (nτ/2 + ci)

(2π)n/2Γ (ci)

∫
θ2

1

θn
·
(
di +

S2
τ :n

2θ2

)−(nτ/2+ci)

· exp
{
−
S2

1:τ−1

2θ2

}
dθ2

The Bayes’ Factor will be:

BFτ,n+ =
Γ (ap)

b
ap
n

2∑
i=1

πid
ci
i Γ (nτ/2 + ci)

Γ (ci)

∫
θ2

(
1

θ2

)ap+1

·
(
di +

S2
τ :n

2θ2

)−(nτ/2+ci)

·exp
{
−bτ−1

θ2

}
dθ2

Regarding the full conditional posteriors we have:

• θ2|(τ > n,x)

p(θ2|τ > n,x) ∝ f(x|θ2, τ > n)π(θ)

∝
(

1

θ2

)ap+1

· exp
{
−bn
θ2

}

Thus θ2|(τ > n,x) ∼ IG (ap, bn)

• θ2|(κ, τ ≤ n,x,x)
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p(θ2|κ, τ ≤ n,x) ∝ f(x|θ2, κ, τ ≤ n)π(θ2)

∝
(

1

θ2

)ap+1

· exp

−
bτ−1 +

S2
τ :n

2θ2

θ2


Thus θ2|(κ, τ ≤ n,x) ∼ IG

(
ap, bτ−1 +

S2
τ :n

2κ

)
• κi| (θ2, τ ≤ n,x)

p(κ|θ2, τ ≤ n,x) ∝ f(x|κ, θ2, τ ≤ n)π(θ)

∝
(

1

κi

)nτ/2+ci

· exp

−
di +

S2
τ :n

2θ2

κi


Thus κi| (θ2, τ ≤ n,x) ∼ IG

(
nτ
2

+ ci, di +
S2
τ :n

2θ2

)
• γ| (θ2, κi, τ ≤ n,x)

π∗ =

π ·
∫
κ1

f (x|θ2, κ1, τ ≤ n) π(κ1)dκ1

π ·
∫
κ1

f (x|θ2, κ1, τ ≤ n) π(κ1)dκ1 + (1− π) ·
∫
κ2

f (x|θ2, κ2, τ ≤ n) π(κ2)dκ2

=
π

π + (1− π) · Γ (cp2)

Γ (cp1)
· dcp1p1 · d

−cp2
p2

Thus γ| (θ2, κi, τ ≤ n,x) ∼ Ber

 π

π + (1− π) · Γ (cp2)

Γ (cp1)
· dcp1p1 · d

−cp2
p2


• τ | (θ2, κ,x)
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p
(
τ = k|θ2, κ,x

)
=

f (x|θ2, κ, τ) π(τ = k)
n∑
j=1

f
(
x|θ2, κ, τ

)
π(τ = j)

=

(
1

κ

)nk
2
exp

{
−
S2

1:(k−1)

2θ2
− S2

k:n

2κθ2

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

(
1

κ

)nj
2
exp

{
−
S2

1:(j−1)

2θ2
−
S2
j:n

2κθ2

}(
(1− p)(j−1)β − (1− p)jβ

)

C3: Normal - Normal Inverse Gamma Model for the mean θ1

In this Subsection, we provide the U3S process, assuming that the distribution

which represents the IC state is a Normal distribution with both the mean θ1 and

the variance θ2
2 unknown. We want to investigate a potential shift for the mean,

either upwards or downwards. More specifically, Xi|θ ∼ N (θ1, θ
2
2), i = 1, ..., n

are sequentially arrived observations. Now, the IC parameters are two, assuming

(θ1, θ
2
2) ∼ NIG (µ0, λ, a, b). For the OOC shift, we set φ = δ, which represents

the magnitude of a shift and we replace the mean with g(θ,φ) = θ1 + δ · θ2 as the

link function which reflects the OOC state. Regarding δ we select a mixture of of

Normal distributions. For the mixture, we assume δ = γ · δ1 + (1 − γ) · δ2 , where

δi ∼ N (µδi, σδi
2) and γ ∼ Ber(π). Finally, for the location of the change point, we

assume τ ∼ DW (p, β). The likelihood is:

f (x|θ1, θ
2
2, δ, τ) =


τ−1∏
i=1

f
(
xi|θ1, θ

2
2

) n∏
i=τ

f
(
xi|θ1 + δ · θ2, θ

2
2

)
if τ ≤ n

n∏
i=1

f
(
xi|θ1, θ

2
2

)
if τ > n

Setting nt = n− t+ 1, Xt1:t2 =

t2∑
i=t1

xi, S2
t1:t2

=

t2∑
i=t1

(xi − θ1)2, µp =
λµ0 +X1:n

λ+ n
, λp =

λ+n, ap = a+
n

2
, bp = b+

1

2

(
n∑
i=1

(xi − x̄)2 +
λn

λp
(x̄− µ0)2

)
, eδi = nτ

(
1− nτ

λp

)
+

1

σ2
δi

,

π1 = π and π2 = 1− π then the IC and the OOC marginal will be respectively:
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f(x|τ > n) =

∫
θ2
2

∫
θ1

f(x|θ1, θ
2
2, τ > n)π(θ1|θ2

2)π(θ2
2)dθ1dθ

2
2

=

∫
θ2
2

∫
θ1

(
1

θ2

√
2π

)n
· exp

{
−S

2
1:n

2θ2
2

}
·
√
λ

θ2

√
2π

×exp
{
−λ(θ1 − µ0)2

2θ2
2

}
dθ1π(θ2

2)dθ2
2

=

∫
θ2
2

√
λ ·
(

1

θ2

√
2π

)n+1

· exp

−
n∑
i=1

x2
i + λµ2

0

2θ2
2

×

×

∫
θ1

exp

{
−−2(X1:n + λµ0)θ1 + λpθ

2
1

2θ2
2

}
dθ1π(θ2

2)dθ2
2

=

∫
θ2
2

√
λ√
λp
·
(

1

θ2

√
2π

)n
· exp

−
n∑
i=1

x2
i + λµ2

0 − µ2
p

2θ2
2


× ba

Γ (a)
·
(

1

θ2
2

)a+1

· exp
{
− b

θ2
2

}
dθ2

2

=

(
1√
2π

)n
·
√
λ√
λp
· ba

Γ (a)
· exp

−
n∑
i=1

x2
i + λµ2

0 − µ2
p

2θ2
2


×

∫
θ2
p

(
1

θ2

)ap+1

· exp
{
− bp
θ2

2

}
dθ2
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=

(
1√
2π

)n
·
√
λ√
λp
· ba

Γ (a)
· Γ (ap)

b
ap
n
· exp

−
n∑
i=1

x2
i + λµ2

0 − µ2
p

2θ2
2



f(x|τ ≤ n) =

2∑
i=1

πi

∫
δi

∫
θ22

∫
θ1

f(x|θ1, θ
2
2, δi, τ ≤ n)π(θ1|θ2

2)π(θ2
2)π(δi)dθ1dθ

2
2dδi

=

2∑
i=1

πi

∫
δi

∫
θ22

∫
θ1

(
1

θ2

√
2π

)n
· exp

−
S2

1:τ−1 +

n∑
i=τ

(xi − (θ1 + δiθ2))2

2θ2
2

×

×
√
λ

θ2

√
2π
· exp

{
−λ(θ1 − µ0)2

2θ2
2

}
dθ1π(θ2

2)dθ2
2π(δi)dδi

=

2∑
i=1

πi

∫
δi

∫
θ22

√
λ ·
(

1

θ2

√
2π

)n+1

· exp

−
n∑
i=1

x2
i + λµ2

0 − 2Xτ :nδiθ2

2θ2
2

− nτδ2
i

×

×

∫
θ1

exp

{
−−2(X1:n + λµ0 − nτδiθ2)θ1 + λpθ

2
1

2θ2
2

}
dθ1π(θ2

2)dθ2
2π(δi)dδi

=

2∑
i=1

πi

∫
θ22

∫
δi

√
λ√
λp
·
(

1

θ2

√
2π

)n
· exp

−
n∑
i=1

x2
i + λµ2

0 − 2Xτ :nδiθ2

2θ2
2

− nτδ2
i

×

×exp

{
+
λp (µp − nτδiθ2/λp)

2

2θ2
2

}
· exp

{
−(δi − µδi)2

2σ2
δi

}
dδiπ(θ2

2)dθ2
2

=

2∑
i=1

πi

∫
θ22

√
λ√
λp
·
(

1

θ2

√
2π

)n
· 1

σδi
√

2π
· exp

−
n∑
i=1

x2
i + λµ2

0 − λpµ2
p

2θ2
2

−
µ2
δi

2σ2
δi

×
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×

∫
δi

exp

{
−
−2
(
σ2
δi

(Xτ :n − nτµp)/θ2 + µδi
)
δi +

(
σ2
δi

(nτ − n2
τ/λp) + 1

)
δ2
i

2σ2
δi

}
dδiπ(θ2

2)dθ2
2

=

2∑
i=1

πi

∫
θ22

√
λ√
λp
·
(

1

θ2

√
2π

)n
· 1

σδi
√
eδi
· exp

−
n∑
i=1

x2
i + λµ2

0 − λpµ2
p

2θ2
2

−
µ2
δi

2σ2
δi

×

×exp

+

(
Xτ :n − nτµp

θ2
+
µδi
σ2
δi

)2

2eδi

 ·
ba

Γ (a)
·
(

1

θ2
2

)a+1

· exp
{
− b

θ2
2

}
dθ2

2

=

2∑
i=1

πi

√
λ√
λp
·
(

1√
2π

)n
· 1

σδi
√
eδi
· ba

Γ (a)
· exp

{
−
µ2
δi

2σ2
δi

}
×

×

∫
θ22

(
1

θ2
2

)ap+1

· exp

−
bp
θ2

2

+

(
Xτ :n − nτµp

θ2
+
µδi
σ2
δi

)2

2eδi

 dθ2
2

The Bayes’ Factor will be:

BFτ,n+ =
b
ap
p

Γ (ap)

2∑
i=1

πi
σδi
√
eδi
·exp

{
−
µ2
δi

2σ2
δi

}∫
θ22

(
1

θ2
2

)ap+1

·exp

−
bp
θ2

2

+

(
Xτ :n − nτµp

θ2
+
µδi
σ2
δi

)2

2eδi

 dθ2
2

The full conditional posteriors will be:

• (θ1, θ
2
2)|(τ > n,x)

p(θ1, θ
2
2|τ > n,x) ∝ f(x|θ1, θ

2
2, τ > n)π(θ1, θ

2
2)

∝
(

1

θ2
2

)ap+3/2

· exp
{
−2bp + λp(θ1 − µp)2

2θ2
2

}

Thus (θ1, θ
2
2)|(τ > n,x) ∼ NIG (µp, λp, ap, bp)
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• θ1|(θ2
2, δ, τ ≤ n,x)

p(θ1|θ2
2, δ, τ ≤ n,x) ∝ f(x|θ1, θ

2
2, δ, τ ≤ n)π(θ1|θ2

2)

∝ exp

{
−−2(X1:n + λ0µ0 − nτδθ2)θ1 + λpθ

2
1

2θ2
2

}

Thus θ1|(θ2
2, δ, τ ≤ n,x) ∼ N

(
µp −

nτδθ2

λp
,
θ2

2

λp

)
• θ2

2|(θ1, δ, τ ≤ n,x)

p
(
θ2

2|θ1, δ, τ ≤ n,x
)
∝ f(x|θ1, θ

2
2, δ, τ ≤ n)π(θ2

2)

∝
(

1

θ2
2

)αp+3/2

exp

{
−2b+ S2

1:n + λ (θ1 − µ0)2

2θ2
2

− (Xτ :n − nτθ1) δ

θ2

}

• δi| (θ1, θ
2
2, τ ≤ n,x)

p(δi|θ1, θ
2
2, τ ≤ n,x) ∝ f(x|θ1, θ

2
2, δi, τ ≤ n)π(δi)

∝ exp

{
−(µδi + σ2

δi (Xτ :n − nτθ1) /θ2) δi + (1 + nτσ
2
δi) δ

2
i

2σ2
δi

}

Thus δi| (θ1, θ
2
2, τ ≤ n,x) ∼ N

(
µδi + σ2

δi (Xτ :n − nτθ1) /θ2

1 + nτσ2
δi

,
σ2
δi

1 + nτσ2
δi

)
• γ| (θ1, θ

2
2, δi, τ ≤ n,x)

π∗ =

π ·
∫
δ1

f(x|θ1, θ
2
2, δ1, τ ≤ n)π(δ1)dδ1

π ·
∫
δ1

f(x|θ1, θ2
2, δ1, τ ≤ n)π(δ1)dδ1 + (1− π) ·

∫
δ2

f(x|θ1, θ2
2, δ2, τ ≤ n)π(δ2)dδ2

=
π

π + (1− π) · exp

{
µ2
δp2

2σ2
δp2

−
µ2
δp1

2σ2
δp1

}
σδp2
σδp1
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Thus γ| (θ1, θ
2
2, δi, τ ≤ n,x) ∼ Ber

 π

π + (1− π) · exp

{
µ2
δp2

2σ2
δp2

−
µ2
δp1

2σ2
δp1

}
σδp2
σδp1


• τ | (θ1, θ

2
2, δ,x)

p
(
τ = k|θ1, θ

2
2, δ,x

)
=

f(x|θ1, θ
2
2, δ, τ ≤ n)π(τ = k)

n∑
j=1

f(x|θ1, θ
2
2, δ, τ ≤ n)π(τ = j)

=

exp

{
δ (Xk:n − nkθ1)

θ2

− nkδ
2

2

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

exp

{
δ (Xj:n − njθ1)

θ2

− njδ
2

2

}(
(1− p)(j−1)β − (1− p)jβ

)

C4: Normal - Normal Inverse Gamma Model for the variance θ22

Assume that the distribution of the IC state is a Normal distribution with both

the mean θ1 and the variance θ2
2 to be unknown and we wish to investigate a level

change for the variance. The sequentially arrived observations are Xi|θ ∼ N (θ, σ2),

i = 1, ..., n. Regarding the IC parameters, we assume (θ1, θ
2
2) ∼ NIG (µ0, λ, a, b).

For the OOC shift, we set φ = κ, which represents the magnitude of a shift and for

the link function, we define g(θ,φ) = κ ·θ2
2, replacin gthe variance. The prior for κ is

a mixture of Inverse Gammma distributions, for a potential inflation and shrinkage

of the variance respectively. Specifically, κ = γ ·κ1 +(1−γ)·κ2, where κi ∼ IG (ci, di)

and γ ∼ Ber(π). For the first OOC observation we assume τ ∼ DW (p, β), while the

likelihood is given by:

f (x|θ1, θ
2
2, κ, τ) =


τ−1∏
i=1

f
(
xi|θ1, θ

2
2

) n∏
i=τ

f
(
xi|θ1, κ · θ2

2

)
if τ ≤ n

n∏
i=1

f
(
xi|θ1, θ

2
2

)
if τ > n
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Setting nt = n−t+1, nt,k = t−1+
nt
k
, Xt1:t2 =

t2∑
i=t1

xi, X2
t1:t2

=

t2∑
i=t1

x2
i , S2

t1:t2
=

t2∑
i=t1

(xi−

θ1)2, µp =
λµ0 +X1:n

λ+ n
, λp = λ+n, ap = a+

n

2
, bp = b+

1

2

(
n∑
i=1

(xi − x̄)2 +
λn

λp
(x̄− µ0)2

)
,

bt,k = b+
1

2

λµ2
0 +X2

1:(t−1) +
X2
t:n

k
−

(
λµ0 +X1:(t−1) +

Xt:n

k

)2

λ+ nt,k

, π1 = π and π2 =

1− π then the IC and the OOC marginal will be respectively:

f(x|τ > n) =

∫
θ2
2

∫
θ1

f(x|θ1, θ
2
2, τ > n)π(θ1|θ2

2)π(θ2
2)dθ1dθ

2
2

=

(
1√
2π

)n
·
√
λ√
λp
· ba

Γ (a)
· Γ (ap)

b
ap
n
· exp

−
n∑
i=1

x2
i + λµ2

0 − µ2
p

2θ2
2



f(x|τ ≤ n) =

2∑
i=1

πi

∫
κi

∫
θ22

∫
θ1

f(x|θ1, θ
2
2, δi, τ ≤ n)π(θ1|θ2

2)π(θ2
2)π(κi)dθ1dθ

2
2dκi

=

2∑
i=1

πi

∫
κi

∫
θ22

∫
θ1

(
1

θ2

√
2π

)n
·
(

1

κi

)nτ/2
· exp

{
−
S2

1:τ−1

2θ2
2

− S2
τ :n

2κiθ2
2

}
×

×
√
λ

θ2

√
2π
· exp

{
−λ(θ1 − µ0)2

2θ2
2

}
dθ1π(θ2

2)dθ2
2π(κi)dκi

=

2∑
i=1

πi

∫
κi

∫
θ22

√
λ

(
1

θ2

√
2π

)n+1

·
(

1

κi

)nτ/2
· exp

{
−
X2

1:τ−1 +X2
τ :n/κi + λµ0

2θ2
2

}
×

×

∫
θ1

exp

{
−−2 (λµ0 +X1:τ−1 +Xτ :n/κi) θ1 + (λ+ nτ,κi) θ

2
1

2θ2
2

}
dθ1π(θ2

2)dθ2
2π(κi)dκi
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=

2∑
i=1

πi

∫
κi

∫
θ22

√
λ√

λ+ nτ,κi

(
1

θ2

√
2π

)n
×

×
(

1

κi

)nτ/2
· exp

{
−
X2

1:τ−1 +X2
τ :n/κi + λµ0

2θ2
2

}
×

×exp

{
+

(λµ0 +X1:τ−1 +Xτ :n/κi)
2

2 (λ+ nτ,κi) θ
2
2

}
· ba

Γ (a)
·
(

1

θ2
2

)a+1

· exp
{
− b

θ2
2

}
dθ2

2π(κi)dκi

=

2∑
i=1

πi

∫
κi

√
λ√

λ+ nτ,κi

(
1√
2π

)n
·
(

1

κi

)nτ/2
· ba

Γ (a)
×

×

∫
θ22

(
1

θ2
2

)ap+1

· exp
{
−bτ,κi

θ2
2

}
dθ2

2π(κi)dκi

=

2∑
i=1

πi

(
1√
2π

)n
· Γ (ap)

Γ (a)
·
√
λ

b−a
×

×

∫
κi

b
−ap
τ,κi√

λ+ nτ,κi
·
(

1

κi

)nτ/2
·
dcii
Γ (ci)

·
(

1

κi

)ci+1

· exp
{
−di
κi

}
dκi

=

2∑
i=1

πi

(
1√
2π

)n
· Γ (ap)

Γ (a)
·
√
λ

b−a
·
dcii
Γ (ci)

×

×

∫
κi

b
−ap
τ,κi√

λ+ nτ,κi
·
(

1

κi

)nτ/2+ci+1

· exp
{
−di
κi

}
dκi

The Bayes’ Factor will result:

BFτ,n+ = bapp
√
λp

2∑
i=1

πid
ci
i

Γ (ci)

∫
κi

b
−ap
τ,κi · κ

−(nτ/2+ci+1)
i√
λ+ nτ,κi

exp

{
−di
κi

}
dκi

The full conditional posteriors will be:

• (θ1, θ
2
2)|(τ > n,x)
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p(θ1, θ
2
2|τ > n,x) ∝ f(x|θ1, θ

2
2, τ > n)π(θ1, θ

2
2)

∝
(

1

θ2
2

)ap+3/2

· exp
{
−2bp + λp(θ1 − µp)2

2θ2
2

}

Thus (θ1, θ
2
2)|(τ > n,x) ∼ NIG (µp, λp, ap, bp)

• θ1|(θ2
2, δ, τ ≤ n,x)

p(θ1|θ2
2, κ, τ ≤ n,x) ∝ f(x|θ1, θ

2
2, δ, τ ≤ n)π(θ1|θ2

2)

∝ exp

{
−
−2(λµ0 +X1:(τ−1) +Xτ :n/κ)θ1 + (λ+ nτ,κ) θ

2
1

2θ2
2

}

Thus θ1|(θ2
2, κ, τ,x) ∼ N

(
λµ0 +X1:(τ−1) +Xτ :n/κ

λ+ nτ,κ
,

θ2
2

λ+ nτ,κ

)
• θ2

2|(θ1, κ, τ ≤ n,x)

p
(
θ2

2|θ1, κ, τ ≤ n,x
)
∝ f(x|θ1, θ

2
2, κ, τ ≤ n)π(θ2

2)

∝
(

1

θ2
2

)ap+1

exp

{
−bτ,κi

θ2
2

}

Thus θ2
2| (θ1, κ, τ,x) ∼ IG (ap, bτ,κi)

• κi| (θ2, τ ≤ n,x)

p(κi|θ1, θ
2
2, τ ≤ n,x) ∝ f(x|θ1, θ

2, κi, τ ≤ n)π(κi)

∝
(

1

κi

)nτ/2+ci

· exp

−
di +

S2
τ :n

2θ2

κi


Thus κi| (θ1, θ

2
2, τ ≤ n,x) ∼ IG

(
ci +

nτ
2
, di +

S2
τ :n

2θ2

)
• γ| (θ1, θ

2
2, κi, τ ≤ n,x)
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π∗ =

π ·
∫
κ1

f(x|θ1, θ
2
2, κ1, τ ≤ n)π(κ1)dκ1

π ·
∫
κ1

f(x|θ1, θ2
2, κ1, τ ≤ n)π(κ1)dκ1 + (1− π) ·

∫
κ2

f(x|θ1, θ2
2, κ2, τ ≤ n)π(κ2)dκ2

=
π

π + (1− π) · Γ (cp2)

Γ (cp1)
· dcp1p1 · d

−cp2
p2

Thus γ| (θ1, θ
2
2, κi, τ ≤ n,x) ∼ Ber

 π

π + (1− π) · Γ (cp2)

Γ (cp1)
· dcp1p1 · d

−cp2
p2


• τ | (θ1, θ

2
2, κ,x)

p
(
τ = k|θ1, θ

2
2, κ,x

)
=

f(x|θ1, θ
2
2, κ, τ ≤ n)π(τ = k)

n∑
j=1

f(x|θ1, θ
2
2, κ, τ ≤ n)π(τ = j)

=

(
1

κ

)nk
2
exp

{
−
S2

1:(k−1)

2θ2
2

− S2
k:n

2κθ2
2

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

(
1

κ

)nj
2
exp

{
−
S2

1:(j−1)

2θ2
2

−
S2
j:n

2κθ2
2

}(
(1− p)(j−1)β − (1− p)jβ

)
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Appendix D: List of M3S Models

D1: Normal Model for the mean vector µ in D dimensions

In this Subsection, we provide the M3S model for detecting shifts in the mean vector

in D dimensions, obtaining the data sequentially. We assume that the distribution of

the IC state is a Normal with unknown the mean vector and the covariance matrix,

i.e. Xi| (µ,Σ) ∼ ND (µ,Σ), i = 1, ..., n. For the IC parameters θ, we assume

θ = (µ,Σ) ∼ NIW (µ, λ, ν0,Ψ ). In case of available historical IC data Y , we

can use the power prior (Ibrahim and Chen, 2000), assuming the NIW to be the

initial term. Then, π (µ,Σ) ∝ L (µ,Σ|Y )α0 π0 (µ,Σ), where 0 ≤ α0 ≤ 1 fixed

and π0 (µ,Σ) = NIW the initial prior. For the OOC shift, we set φ = δ, where

δ = (δ1 δ2 ... δD)T is the vector with the magnitude of the shift for each component

of the mean vector. For the shifted mean of the OOC state, we replace µ with

g(θ,φ) = µ+L1/2δ, where L = diag(Σ), i.e. a diagonal matrix with the same main

diagonal with the covariance matrix. Multiplying by L1/2, we achieve the desired

property of the anisotropic scaling, or in other words the jumps are weighted by

the variance of the corresponding component. Regarding the prior distributions, we

assume δi ∼ N (µdi, σd
2) and for the change point τ ∼ DW (p, β), as in the univariate

models. The likelihood is:

f (xn|µ,Σ, δ, τ) =


τ−1∏
i=1

f (xi|µ,Σ)
n∏
i=τ

f
(
xi|µ+L1/2δ,Σ

)
if τ ≤ n

n∏
i=1

f (xi|µ,Σ) if τ > n

Although we achieve the anisotropic scaling with the above set, we do not achieve

the directional invariance, i.e. δ cannot translocate in any direction. For this reason,

we transform the shift vector δ into D-sphere coordinates. Thus, assume r be the

radius and θ = (θ1, θ2, ..., θD−1) be the D − 1 angular components, where r > 0,

(θ1, θ2, ..., θD−2) ∈ [0, π)D−2 and θD−1 ∈ [0, 2π). Note that θ refer to the IC pa-

rameter, while nonbold θ is the vector of the angles. We apply the transformation

δ = rTθ, such that rTθ to belong to a (D − 1)-sphere of radius r, or rTθ ∈ SD−1(r).



203

Tθ is a unit vector, i.e. it is a vector of length 1 and specifically:

Tθ =



cosθ1

...

cosθD−1

∏
i<D−1

sinθi

D−1∏
i=1

sinθi


if D ≥ 3 or Tθ = (cosθ, sinθ) if D = 2. After the transformation, the directional

invariant likelihood will be:

f (xn|µ,Σ, r, θ, τ) =


τ−1∏
i=1

f (xi|µ,Σ)
n∏
i=τ

f
(
xi|µ+ rL1/2Tθ,Σ

)
|J | if τ ≤ n

n∏
i=1

f (xi|µ,Σ) if τ > n

where |J | = rD−1

D−2∏
j=0

[sinθj+1]D−2−j is the Jacobian determinant of the transfor-

mation. Note that the radius r denotes the size of the jumps, while the angu-

lar components θ represents the association between the jump for each variable

of the process. Applying standard transformation properties of the Normal dis-

tribution, the radius r follows a two parameter Noncentral Chi distribution, or

r ∼ NCχD(d, σ2
d) with d =

(
D∑
i=1

µ2
di

)1/2

. The Rice distribution is a special case

on NCχD(d, σ2
d), when D = 2. For the unit vector Tθ, we assume a von Mises-

Fisher distribution, or Tθ ∼ vMF (µθ, κ), which is the analogue of the multivari-

ate Normal over the unit sphere. When D = 2, then it is von Mises distribu-

tion over the unit circle, while it reduces to the UD−1 (Uniform in D − 1 dimen-

sions), when the concentration parameter κ = 0. For the next expressions, we

set Cn =
n∑
i=1

(xi − x̄n)(xi − x̄n)T , C = (x̄n − µ)(x̄n − µ)T , nt = n − t + 1,

At = ntT
T
θ L

1/2Σ−1L1/2Tθ, Bt =
n∑
i=t

(xi − µ)TΣ−1L1/2Tθ, µp =
nx̄n + λµ0

n+ λ
,

λp = n + λ, νp = n + ν0 and Ψp = C + Ψ +
λn

λ+ n
C, then the IC and the
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OOC marginal will be respectively:

f(xn|τ > n) =

∫
Σ

∫
µ

f(xn|µ,Σ, τ > n)π(µ|Σ)π(Σ)dµdΣ

=

∫
Σ

∫
µ

(
1

2π

)nD/2
· |Σ|−n/2 · exp

{
−1

2

(
trCnΣ

−1 + n(µ− x̄n)TΣ−1(µ− x̄n)
)}

×
(
λ

2π

)D/2
· |Σ|−1/2 · exp

{
−λ

2
(µ− µ)TΣ−1(µ− µ)

}
π(Σ)dµdΣ

=

∫
Σ

(
1

2π

)nD/2
·
(
λ

λp

)D/2
· |Σ|−n/2 · exp

{
−1

2

(
trCnΣ

−1 + nx̄TnΣ
−1x̄n

)}

×exp
{
−1

2

(
λµ

TΣ−1µ − λpµpTΣ−1µp
)}

× |Ψ |ν0/2

2ν0D/2ΓD

(ν0

2

) · |Σ|−(ν0+D+1)/2 · exp
{
−1

2
trΨΣ−1

}
dΣ

=
1

πnD/2
·
(
λ

λp

)D/2
· ΓD (νp/2)

ΓD (ν0/2)
· |Ψ |

ν0/2

|Ψp|νp/2

f(xn|τ ≤ n) =

∫
r

∫
θ

∫
Σ

∫
µ

f(xn|µ,Σ, r, θ, τ ≤ n)π(µ|Σ)π(Σ)π(r)π(θ)dµdΣdθdr

=

∫
r

∫
θ

∫
Σ

∫
µ

rD−1
D−2∏
j=0

[sinθj+1]D−2−j

(2π)nD/2 · |Σ|n/2
· exp

{
−1

2

τ−1∑
i=1

(xi − µ)TΣ−1(xi − µ)

}

×exp

{
−1

2

n∑
i=τ

(xi − µ− rL1/2Tθ)
TΣ−1(xi − µ− rL1/2Tθ)

}

×
(
λ

2π

)D/2
· |Σ|−1/2 · exp

{
−λ

2
(µ− µ)TΣ−1(µ− µ)

}
π(Σ)π(r)π(θ)dµdΣdθdr
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=

∫
r

∫
θ

∫
Σ

rD−1
D−2∏
j=0

[sinθj+1]D−2−j

(2π)nD/2 · |Σ|n/2
·
(
λ

λp

)D/2

×exp

{
−1

2

(
n∑
i=1

xi
TΣ−1xi + λµ

TΣ−1µ +Aτ

)
+Bτ

}

×exp

+
λp
2

(
µp −

nτrL
1/2Tθ
λp

)T
Σ−1

(
µp −

nτrL
1/2Tθ
λp

)π(Σ)π(r)π(θ)dΣdθdr

=
κD/2−1 · d1−D/2

σ2
d · (2π)(nD+1)/2

·
(
λ

λp

)D/2
· |Ψ |ν0/2

2ν0D/2ΓD

(ν0

2

) · ID/2−1

(
rd

σ2
d

)
ID/2(κ)

· exp
{
−d

2

2

}

×

∫
r

∫
θ

∫
Σ

r3D/2−1
D−2∏
j=0

[sinθj+1]D−2−j

|Σ|(νp+D+1)/2
· exp

{
−1

2

(
Aτ + r2

)
+Bτ + κµθ

TTθ

}

×exp
{
−1

2
trΣ−1

(
Ψ + xixi

T + λµµ
T
)}

×exp

+
λp
2
trΣ−1λp

(
µp −

nτrL
1/2Tθ
λp

)(
µp −

nτrL
1/2Tθ
λp

)T dΣdθdr

The Bayes’ Factor will be:

BFτ,n+ =
κD/2−1 · d1−D/2

σ2
d ·
√
π · 2(νpD+1)/2

·
(
λ

λp

)D/2
· |Ψp|

νp/2

ΓD

(νp
2

) · ID/2−1

(
rd

σ2
d

)
ID/2(κ)

· exp
{
−d

2

2

}

×

∫
r

∫
θ

∫
Σ

r3D/2−1
D−2∏
j=0

[sinθj+1]D−2−j

|Σ|(νp+D+1)/2
· exp

{
−1

2

(
Aτ + r2

)
+Bτ + κµθ

TTθ

}

×exp
{
−1

2
trΣ−1

(
Ψ + xixi

T + λµµ
T
)}

×exp

+
λp
2
trΣ−1λp

(
µp −

nτrL
1/2Tθ
λp

)(
µp −

nτrL
1/2Tθ
λp

)T dΣdθdr
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The full conditional posteriors under the IC or the OOC scenario will be:

• (µ,Σ) |(τ > n,xn)

p(µ,Σ|τ > n,xn) ∝ f(x|µ,Σ, τ > n)π(µ,Σ)

∝ |Σ|(νp+D+2)/2 · exp
{
−1

2

(
trΨpΣ

−1 + λp(µ− µp)TΣ−1(µ− µp)
)}

Thus µ,Σ|τ > n,xn) ∼ NIW (µp, λp, νp,Ψp)

• µ|(Σ, r, θ, τ ≤ n,xn)

p(µ|Σ, r, θ, τ ≤ n,xn) ∝ f(xn|µ,Σ, r, θ, τ ≤ n)π(µ|Σ)

∝ exp

{
µTΣ−1(nx̄n − nτrL1/2Tθ)−

1

2
λpµ

TΣ−1µ

}

Thus µ|(Σ, r, θ, τ ≤ n,xn) ∼ ND

(
µp −

nτrL
1/2Tθ
λp

,
Σ

λp

)
• Σ|(µ, r, θ, τ ≤ n,xn)

p (Σ|µ, r, θ, τ ≤ n,xn) ∝ f(xn|µ,Σ, r, θ, τ ≤ n)π(Σ)

∝ |Σ|−(n+ν0+D+1)/2 · exp
{
−1

2

(
trΨpΣ

−1 + r2Aτ ) + rBτ

)}

• r|(µ,Σ, θ, τ ≤ n,xn)

p(r|µ,Σ, θ, τ ≤ n,xn) ∝ f(xn|µ,Σ, r, θ, τ ≤ n)π(r)

∝ r3D/2−1 · exp
{
−r

2 (Aτ + 1/σd
2)

2
+ rBτ

}
· ID/2−1

(
rd

σ2
d

)

where ID/2−1(·) is the modified Bessel function of the first kind with order D/2− 1.

• θ| (µ,Σ, r, τ ≤ n,xn)
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p(θ|µ,Σ, r, τ ≤ n,xn) ∝ f(xn|µ,Σ, r, θ, τ ≤ n)π(θ)

∝
D−2∏
j=0

(sinθj+1)D−2−j · exp
{
−r

2Aτ

2
+ rBτ + κµθTθ

}

• τ | (µ,Σ, r, θ,xn)

p (τ = k|µ,Σ, r, θ,xn) =
f(xn|µ,Σ, r, θ, τ ≤ n)π(τ = k)
n∑
j=1

f(xn|µ,Σ, r, θ, τ ≤ n)π(τ = j)

=

exp

{
rBk −

r2Ak

2

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

exp

{
rBj −

r2Aj

2

}(
(1− p)(j−1)β − (1− p)jβ

)
D2: Normal Model for the covariance matrix Σ

Now, the interest is placed on detecting scale or rotation shifts of sequentially gath-

ered multivariate data. Specifically, we develop M3S model for detecting shifts in

the the covariance matrix in D dimensions, obtaining the data sequentially. The IC

state, including the likelihood, the IC parameters θ, the prior and the marginal, is

the same with the M3S for the mean vector. For the expression of a scale shift, we

assume a positive definite and diagonal matrix S ∈ diag
(
RD×D
>0

)
:

S =


κ1 0

. . .

0 κD


The most challenging and demanding part of the model is the appropriate expression

of a rotation shift in high dimensions. Geometrically, every rotation of a point

in D dimensions takes places in a 2 dimensional plane, while all the other D − 2

dimensions are fixed (free). This means that the rotated point maintains a constant

distance to the invariant pivot element, which is not necessarily a 0-dimensional

point. Specifically, only in 2 dimensions, the invariant element will be a point, while



208

in 3 dimensions will be a line, in 4 a plane etc. In other words, the rotation is around

a point, a line and a plane respectively. For a plane αβ, which is formed by the axes

α and β, the rotation matrix for an angle θα,β is:

Rα,β(θα,β) =



rα,α = cos(θα,β)

rβ,β = cos(θα,β)

ri,j
rα,β = −sin(θα,β)

rβ,α = sin(θα,β)

ri,j = 1, i = j, i 6= {α, β}

ri,j = 0, elsewhere


All the possible rotations in a D-dimensional space equals to the number of all the

pairs of planes formed, i.e. the combination
(
D

2

)
=
D(D − 1)

2
. The matrix R(θ),

which allows all the possible rotations in D dimensions, is the product of all the

possible Rα,β, i.e.:

R(θ) =
D−1∏
α=1

D∏
β=α+1

Rα,β(θα,β)

where θ = (θ1,1, ..., θD−1,D) and θ ∈ [0, 2π)D−1× [0, π)(D−1)(D−2)/2. R(θ) is a real and

orthogonal matrix with |R(θ)| = 1, belonging to the special orthogonal group, i.e.

R(θ) ∈ SO(D). It is worth to note that R(θ) consists of all the possible rotation in

D dimensions, modelling all the correlations ρα,β of the covariance matrix. However,

if not all the correlations are of interest, then we can more flexible by setting the

corresponding Rα,β(θα,β) = ID. In this way, we set the angle of the corresponding

rotation θα,β = 0, not allowing a drift for ρα,β.

For the development of an appropriate M3S model, which will be able to detect a

potential shift in all the components of the covariance matrix, we define the rotation

and scaling matrix T = R(θ)S1/2. T which will provide the properties of anisotropic

scaling and rotation to the model. We set φ = {diag(S), θ}, i.e. the diagonal

elements of S and all the rotation angles θα,β. For the OOC state, we replace Σ
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with g(θ,φ) = TΣT T . Thus, the likelihood will be:

f (xn|µ,Σ,T , τ) =


τ−1∏
i=1

f (xi|µ,Σ)
n∏
i=τ

f
(
xi|µ,TΣT T

)
if τ ≤ n

n∏
i=1

f (xi|µ,Σ) if τ > n

Regarding the priors, for the change point we assume τ ∼ DW (p, β), as in the

previous 3S models. For the scaling matrix S, we assume an Inverse Wishart, or

S ∼ IW (νs,D). For the components of the rotation matrix R(θ), we assume a

von-Mises distribution for the first D−1 components and a p-periodic von-Mises for

the rest
(D − 1)(D − 2)

2
. Specifically, θα,β ∼ vM(µα,β, κα,β) for α = 1 and β > α

and θα,β ∼ πvM(µα,β, κα,β) otherwise. For the reduction of the next mathematical

expressions, we set Cn =
n∑
i=1

(xi − x̄n)(xi − x̄n)T , C = (x̄n − µ)(x̄n − µ)T ,

Xt:t =

t2∑
i=t1

xi, nt = n − t + 1, µp =
nx̄n + λµ0

n+ λ
, λp = n + λ, νp = n + ν0,

Ψp = C + Ψ +
λn

λ+ n
C, Mp = Σ−1 (X:τ− + λµ) +

(
TΣT T

)−1
Xτ :n, Σp =((

Σ

λp − nt

)−1

+

(
TΣT T

nt

)−1
)−1

, Kt =
n∑
i=t

T−1(xi − µ)
(
T−1(xi − µ)

)T , Ψp,t =

+Ψ + λ(µ−µ)(µ−µ)T +Ct− +Kt then the IC and the OOC marginal will be

respectively:

f(xn|τ > n) =

∫
Σ

∫
µ

f(xn|µ,Σ, τ > n)π(µ|Σ)π(Σ)dµdΣ

=
1

πnD/2
·
(
λ

λp

)D/2
· ΓD (νp/2)

ΓD (ν0/2)
· |Ψ |

ν0/2

|Ψp|νp/2

f(xn|τ ≤ n) =

∫
T

∫
Σ

∫
µ

f(xn|µ,Σ,T , τ ≤ n)π(µ|Σ)π(Σ)π(T )dµdΣdT
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=

∫
T

∫
Σ

∫
µ

|S|−nτ/2 · |Σ|−n/2

(2π)nD/2
· exp

{
−1

2

τ−1∑
i=1

(xi − µ)TΣ−1(xi − µ)

}

×exp

{
−1

2

n∑
i=τ

(xi − µ)T
(
T TΣT

)−1
(xi − µ)

}

×
(
λ

2π

)D/2
· |Σ|−1/2 · exp

{
−λ

2
(µ− µ)TΣ−1(µ− µ)

}
π(Σ)π(T )dµdΣdT

=

∫
T

∫
Σ

(
λ

(2π)n

)D/2
· |Σp|1/2

|S|nτ/2 · |Σ|(n+1)/2

×exp

{
−1

2

(
τ−1∑
i=1

xi
TΣ−1xi +

n∑
i=τ

xi
T
(
T TΣT

)−1
xi + λµ

TΣ−1µ

)}

×exp
{

+
1

2
Mp

TΣp
−1Mp

}
π(Σ)π(T )dµdΣdT

=

(
λ

(2π)n

)D/2
· |Ψ |ν0/2

2ν0D/2ΓD

(ν0

2

) · |D|νs/2

2νsD/2ΓD

(νs
2

) · 1

π(D−1)(D−2)/2

×
D−1∏
α=1

D∏
β=α+1

1

I0(κα,β)

∫
T

∫
Σ

|Σp|1/2

|S|(nτ+νs+D+1)/2 · |Σ|(νp+D+1)/2

×exp
{
−1

2
trDS−1 + κα,β · cos

(
1 + 1{α>1}

)
(θα,β − κα,β)

}

×exp
{
−1

2
trΣ−1

(
Ψ + xixi

T + λµµ
T − λpMpMp

T
)}

dΣdT

The Bayes’ Factor will be:

BFτ,n+ =

(
λp

2νp+νs

)D/2
· |Ψp|

νp/2

ΓD

(νp
2

) · |D|νs/2
ΓD

(νs
2

) · 1

π(D−1)(D−2)/2

×
D−1∏
α=1

D∏
β=α+1

1

I0(κα,β)

∫
T

∫
Σ

|Σp|1/2

|S|(nτ+νs+D+1)/2 · |Σ|(νp+D+1)/2

×exp
{
−1

2
trDS−1 + κα,β · cos

(
1 + 1{α>1}

)
(θα,β − κα,β)

}
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×exp
{
−1

2
trΣ−1

(
Ψ + xixi

T + λµµ
T − λpMpMp

T
)}

dΣdT

The full conditional posteriors under the IC or the OOC scenario will be:

• (µ,Σ) |(τ > n,xn)

p(µ,Σ|τ > n,xn) ∝ f(x|µ,Σ, τ > n)π(µ,Σ)

∝ |Σ|(νp+D+2)/2 · exp
{
−1

2

(
trΨpΣ

−1 + λp(µ− µp)TΣ−1(µ− µp)
)}

Thus µ,Σ|τ > n,xn) ∼ NIW (µp, λp, νp,Ψp)

• µ|(Σ,T , τ ≤ n,xn)

p(µ|Σ,T , τ ≤ n,xn) ∝ f(xn|µ,Σ, r, θ, τ ≤ n)π(µ|Σ)

∝ exp

{
µTMp −

1

2
λpµ

TΣp
−1µ

}

Thus µ|(Σ,T , τ ≤ n,xn) ∼ ND

(
Σp

(
Σ−1 (X:τ− + λµ) +

(
TΣT T

)−1
Xτ :n

)
,Σp

)
• Σ|(µ,T , τ ≤ n,xn)

p (Σ|µ,T , τ ≤ n,xn) ∝ f(xn|µ,Σ,T , τ ≤ n)π(Σ)

∝ |Σ|−(νp+D+1)/2 · exp
{
−1

2
trΣ−1 (Ψp +Cτ− +Kτ )

}

Thus (Σ|µ,T , τ ≤ n,xn) ∼ IWD (νp,Ψp +Cτ− +Kτ )

• S|(µ,Σ,R(θ), τ ≤ n,xn)

p(S|µ,Σ,R(θ), τ ≤ n,xn) ∝ f(xn|µ,Σ,T , τ ≤ n)π(S)

∝ |S|−(nτ+νs+D+1)/2 · exp
{
−1

2
tr
(
Σ−1Kτ + S−1D

)}
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• θa,b| (µ,Σ,S, τ ≤ n,xn)

p(θa,b|(µ,Σ,S, τ ≤ n,xn) ∝ f(xn|µ,Σ,T , τ ≤ n)π(θa,b)

∝ exp

{
−1

2
trΣ−1Kτ + κa,b · cos(θa,b − κa,b)

}

• τ | (µ,Σ,T ,xn)

p (τ = k|µ,Σ,T ,xn) =
f(xn|µ,Σ,T , τ ≤ n)π(τ = k)
n∑
j=1

f(xn|µ,Σ,T , τ ≤ n)π(τ = j)

=

|S|−nk/2exp
{
−1

2
trΣ−1 (Ck− +Kk)

}(
(1− p)(k−1)β − (1− p)kβ

)
n∑
j=1

|S|−nj/2exp
{
−1

2
trΣ−1 (Cj− +Kj)

}(
(1− p)(j−1)β − (1− p)jβ

)
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Appendix E: Convergence Plots for U3S Applications

Regarding the Markov Chain Monte Carlo (MCMC) sampling of the first applica-

tion (precious metals dataset), we applied the Metropolis within Gibbs algorithm

to obtain an independent posterior sample size of 10,000. The burn in period had

length of 20,000 iterations, while the thinning was 500. It is worth mentioning that

the reason of the large thinning that posterior of τ was bimodal with the modes

to be far from each other, which created correlated batches in the Markov Chain.

Figure 6.0.1 provides the trace plots and the autocorrelation function (ACF) plots

of the full conditional posteriors for θ1, θ2
2, δ and τ . For the MCMC sampling of the

second application (monthly increment dataset), we applied the Gibbs algorithm to

generate 10,000 independent data points from the posterior distributions. Now, the

burn in period had length of 2,000 iterations and the thinning was 50. The Figure

6.0.2 summarizes all the trace ACF plots of the full conditional posteriors for θ1, θ2
2,

κ and τ .
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Figure 6.0.1: The trace plots and the ACF plots of the posterior samples for θ1, θ2
2,

δ and τ for the application to the precious metals dataset
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Figure 6.0.2: The trace plots and the ACF plots of the posterior samples for θ1, θ2
2,

κ and τ for the application to the monthly increments dataset

Appendix F: Convergence Plots for M3S Application

Regarding the Markov Chain Monte Carlo (MCMC) sampling of the M3S applica-
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tion to gravel data, we applied the Metropolis within Gibbs algorithm to obtain an

independent posterior sample size of 2,000. The burn in period had length of 10,000

iterations, while the thinning was 100. The Figure 6.0.2 summarizes all the trace

ACF plots of the full conditional posteriors for µ1, µ2, r, θ, σ2
1, σ2

2, ρ and τ .
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Figure 6.0.3: The trace plots and the ACF plots of the posterior samples for µ1, µ2,
r, θ, σ2

1, σ2
2, ρ and τ for the gravel dataset
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