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Abstract

In this dissertation, the center of attention is in the research area of Bayesian Sta-
tistical Process Control and Monitoring (SPC/M) with emphasis in developing self-
starting methods for short horizon data. The aim is in detecting a process disorder
as soon as it occurs, controlling the false alarm rate, and providing reliable poste-
rior inference for the unknown parameters. Initially, we will present two general
classes of methods for detecting parameter shifts for data that belong to the regular
exponential family. The first, named Predictive Control Chart (PCC), focuses in
transient shifts (outliers) and the second, named Predictive Ratio CUSUM (PRC),
in permanent shifts. In addition, we present an online change point scheme available
for both univariate or multivariate data, named Self-starting Shiryaev (3S). It is a
generalization of the well-known Shiryaev’s procedure, which will utilize the cumu-
lative posterior probability that a change point has been occurred. An extensive
simulation study along with a sensitivity analysis evaluate the performance of the
proposed methods and compare them against standard alternatives. Technical de-
tails, algorithms and general guidelines for all methods are provided to assist in their
implementation, while applications to real data illustrate them in practice.
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Chapter 1

Introduction

1.1 A brief description

Statistical Process Control/Monitoring (SPC/M) is an effective area of Statistics that
is applied in a plethora of disciplines, like: industrial processes, medical laboratories,
economics, image analysis, geophysics etc.. It includes all those methods that deal
with the quick and valid detection of any disorder in an ongoing process. More
specifically, its main aim is to detect when a process deteriorates from its In Control
(IC) state, where only natural causes of variation are observed, to the Out Of Control
(OOC) state, where exogenous to the process variation is present (Deming, 1986).
In essence, the OOC state represents the situation where a change is experienced in
at least one IC process setting. The implementation of SPC/M methods is primarily
(but not exclusively) performed via control charts, which are statistical tools used
monitoring a process and examining whether it runs under statistical stability (IC
state) or an assignable cause of variation is present (OOC state). Typically, a control
chart is a time series representation of the data (or of a functional form of them) and
performs sequential decision making, where we judge a point as “alarm” (indicating

process transition to the OOC state), when it plots beyong the control limits.
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The concept of control charts initiated by Shewhart in 1926 at Bell Labs (Shewhart,
1926) and over the years numerous types of control charts have been developed
for different types of data and different OOC scenarios. Most of them are within
the frequentist based approach, with the most representative being z, R, s, ¢, p etc.
(also known as Shewhart-type charts), along with CUSUM (Page, 1954) and EWMA
(Roberts, 1959). Montgomery (2020) and Oakland (2019) presented the most impor-
tant frequentist processes, while Hawkins and Olwell (1998) provided an analytical
review of CUSUM charts. In the nonparametric field, Qiu and Li (2011) proposed
several types of distribution free CUSUM charts, while Chakraborti and Graham
(2019) presented an overview of the literature on nonparametric control charts for
one dimensional data. From the Bayesian point of view, the online change point
model proposed by Shiryaev (1963) and its modification (Roberts, 1966) are the
most dominant univariate procedures in the area. A significant amount of Bayesian
procedures have been presented in Colosimo and Del Castillo (2006), providing a
summary of the Bayesian subregion. Finally, Qiu (2014), Kenett and Zacks, S.
(2021) and Tartakovsky et al. (2014) presented methods of more than one approach,

i.e. frequentist, nonparametric or Bayesian.

In spite of the fact that univariate procedures are well established, in many cases
in SPC/M, we are interested in testing and monitoring simultaneously more than
one variables or quality characteristics. In these cases, the application of univariate
control charts to each recorded variable is known to be suboptimal, even when these
variables are independent. Firstly, when the number of recorded variables is large
(something that happens more and more often in the big data era) handling a vast
amount of univariate charts is cumbersome and very tricky, especially in handling
issues like the the overall false alarm rate (i.e. Type I error) in the decision mak-
ing. Secondly and most importantly, testing these variables independently will be
misleading, as associations between the variables are not taken into account. For ex-

ample an alarm in a marginal distribution monitoring, does not necessarily imply an
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alarm in the joint distribution and the inverse, i.e. an alarm in the joint distribution
monitoring does not imply an alarm to some of the marginal distribution control
charts. Interestingly enough the above is valid even when the recorded variables are
independent. Furthermore, it should be noted that, apart from testing, attributing
the alarm to a specific process characteristic is of major importance in multivariate

settings.

Hotelling’s (1947) T2 based control chart is the most prominent representative of
multivariate control charts. Multivarite generalizations of CUSUM and EWMA were
also proposed by Crosier (1988) Lowry et al. (1992) respectively. Mason and Young
(2002) and Bersimis et al. (2007) provide a review of multivariate control chart
methods. From a nonparametric point of view, Conover et al. (2019) presented the
multivariate sequential Normal scores, while several multivariate methods exist in
the books of Lauro et. al (2012) and Qiu (2014). The Bayesian approach in Multi-
variate Statistical Process Control and Monitoring (MSPC/M) is rather restricted.
Triantafyllopoulos (2006) developed a control chart based on the sequential Bayes
Factors for monitoring multivariate autocorrelated processes. Makis (2008, 2009)
formulated a multivariate Bayesian scheme in the optimal stopping framework, for
monitoring the mean vector in infinite and finite processes. Furthermore, Zou et al.
(2011) proposed a practical LASSO-based diagnostic procedure of the responsible
factors for deterioration in high-dimensional procedures and Feltz and Shiau (2001)

implemented empirical Bayes process monitoring techniques.

1.2 Standard setup and issues

The majority of the proposed SPC/M methods require two phases (I/II). Phase
I is the training phase, where independent IC data are gathered and the goal is
to perform calibration of the monitoring scheme, i.e. to derive reliable estimates

of the distribution and the unknown parameter(s). Phase II follows and it is the
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testing phase, where new observations are collected and compared against the 1C
standards that established in phase I. Thus, phase I plays a crucial role, as the phase
IT effective performance will heavily depend on the successful analysis of phase I.
Phase I is typically retrospective (offline), while phase II is a prospective (online)
or monitoring analysis. Chakraborti et al. (2008) provided a detailed review on
the retrospective control charts for univariate variables in phase I along with the
appropriate false alarms metrics, while Woodall and Montgomery (1999) presented
a plethora of methods in SPC/M area, discussing about open problems and issues

in this area.

It is well documented that the phase I/II separation has certain restrictions, which
are mainly related with the assumptions and operations while in phase I. Jones-
Farmer et al. (2014), presented a detailed overview of phase I methods, exploring
the major issues and developments in this domain. For more recent development on
the implementation of the phase I analysis and its effect to phase II performance, one
can refer Atalay et al. (2020) and Dasdemir et al. (2016) and the references therein.
The major issue in phase I analysis is that a large amount of independent IC samples
is needed in order to provide reliable estimates of the unknown parameter(s). This is
a serious constrain for short runsand for processes that require online decision making
from the start of the process (like in the monitoring of medical type data). However,
even if the assumption of a large enough initial sample is met, the estimation error for
the parameter(s) of interest is typically not taken into account. In most cases, only
the point estimates are used and this negatively affects the phase II performance, by
increasing the actual false alarm rate. Regarding the phase I sample size requirements
in eliminating the effect of estimation error one can refer to Jensen et al. (2006),

Zhang et al. (2013, 2014) and Lee et al. (2013) along with the references therein.

Apart from the estimation error, another consequence of the one-off plugged in esti-
mates is that IC information which is available from phase II data is wasted. This

issue is of primary importance with two extensions: a practical, as we can improve
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the performance of a chart using more information, and a philosophical, as we do
not utilize the available information from all the data. Another important issue in
phase I is the assumptions’ violation. Phase I data are considered to be “clean" data
from the stable state of the process. However, a shift in a parameter may occur
during phase I, regardless of how well designed or carefully employed a process is.
Undetected violations jeopardize the performance in both phases I and II. It is worth
noting that this risk increases as the size of the sample under study increases. Fi-
nally, retrospective analysis in phase I implies that a disorder might be detected long
after its occurrence which is troublesome, especially in processes that online decision

making is needed.

1.3 Self-starting control charts

Self-starting methods in SPC/M have been proposed to mitigate the problems aris-
ing from phase I/II separation. The developed methodology not only relaxes the
necessity of a sufficiently large “clean" dataset in order to provide reliable estimates
for the unknown parameter(s), but also provides testing from the early start of a pro-
cess without any preliminary calibration. Essentially, in a parametric setting with a
known distribution, the estimation of the unknown parameter(s) is performed while
we test of whether the process is under a stable (IC) state. Hawkins (1987) intro-
duced the term “self-starting” to describe CUSUM schemes for detecting persistent
shifts in location or scale parameters of Normal data, without the need of a phase
I exercise. Since then, numerous of self-starting control charts have been developed
and they are widely used, as their setup offers a framework that is very attractive in

real world problems.

Nevertheless, there does not seem to be a concrete definition in the literature of
what can be called “self-starting” and what not. As a result many methods self-

identify as self-starting, but they are not in practice, as they require the existence of a
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preliminary phase or a reference sample for the parameters’ estimates. Consequently,
we will provide Definition 1.3.1, aiming to establish the basic principles that a control
chart needs to have in order to be characterized as “self-starting” and we will follow

these principles over the development of this dissertation.

Definition 1.3.1. A control chart will be called as self-starting if:
e it can provide testing, without the need of a preliminary training phase,

e it is online, i.e. to be able to raise an alarm the moment it happens, not

retrospectively and
e the IC and the OOC states contain at least one unknown parameter.

From now on in this dissertation, we will characterize a method as self-starting based

on Definition 1.3.1.

1.4 Categorization of self-starting methods

The collection and recording of existing methods in a research area is of great sig-
nificance. On one hand, we discover the already developed methods, avoiding to
“reinventing the wheel” and on the other hand we learn about the subareas or un-
solved problems, which need further investigation. Castillo et al. (1996) reviewed and
commented on the control methods for short production runs, while, more recently,
Marques et al. (2015) classified the short run methods and provided a decision model
for the choice of the most appropriate method regarding the ongoing process. In a
similar spirit, we will start this thesis by providing an extensive literature review for
self-starting methods. Trying to list the self-starting methods, a rough categorization

could be based on three pillars:

e Dimension: univariate or multivariate,
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e Type of shift: transient or permanent,
e Type of approach: frequentist, Bayesian or nonparametric.

A chart is referred as univariate if only a single variable (feature) is involved, while a
multivariate chart corresponds to a procedure that controls more than one variable
(feature) simultaneously. Concerning the types of a shift, they represent standard
causal variations in SPC/M, i.e. the OOC states most often considered in practice.
Consequently, the majority of SPC/M methods are designed to efficiently detect
them. A transient shift is typically of large size and corresponds to an outlying ob-
servation, that is to say an isolated unusual value. An outlier may indicate a sample
peculiarity, a data entry error or another impermanent problem. On the contrary,
permanent shifts are usually of small or medium size and they are systematic changes
to at least one parameter of a procedure. They can by of various types, such as step
changes, scale shifts, linear trends, rotations etc.. In Figure 1.4.1, we provide a

paradigm of an outlier and location shift in univariate and bivariate sequences.

Concerning the type of approach, the methods, referred as frequentist or Bayesian,
are parametric methods via the corresponding school of thought, while for the non-
parametric methods, there is no distributional assumption. In the next subsections,
we will provide an analytical review of the main methods that are or can be con-
sidered as self-starting, classifying them to the above categories. It is important to
highlight that some methods may belong to more than one category concerning the
type of shift, as they are capable to detect both transient and permanent shifts.

Figure 1.4.2 depicts the categorization graphically, as a treemap.

1.4.1 Univariate self-starting methods

We start the literature review with the frequentist univariate schemes and specifically
with those that are focused on detecting transient shifts (outliers). We could not

start with anything other than () statistics, as they dominate the region. Quesen-
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n n
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Figure 1.4.1: An illustration of a transient and a permanent shift in univariate and
bivariate data. The IC and the OOC data are in blue and red respectively.

berry (1991a, 1991b, 1991¢, 1995d) introduced the @ charts for detecting transient
shifts in shorts runs for Normal, Poisson, Binomial and Geometric data respectively.
The @ chart procedure is based on the sequentially updated @) statistic, that does not
require a preliminary phase. Assuming normality, Castillo and Montgomery (1994)
presented modifications that enhance the detection properties and He et al. (2008)
proposed two schemes to alleviate bias issues in () charts. Completing the review of
@-based charts, Ravichandran (2019) identified his proposal as self-starting, because
updated @) statistic is used, although an IC sample for the initial estimates is re-
quired. Methods with many similarities with the aforementioned, are the ¢t chart (Gu
et al., 2014) and the methodology of Korzenowski et al. (2015), both implemented to

monitor the process mean in multi-variety and small batch production runs. In the
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same context, a variable sample size ¢ control chart for monitoring short production
runs was proposed by Castagliola et al. (2013). For non-normal data, Zhang et al.
(2017) constructed a Shewhart-type control chart, named Beta chart for monitoring
the Weibull shape parameter. Recently, Dogu and Noor-ul-Amin (2021) proposed a
self-starting chart for detecting anomalies in exponentially distributed time between
events (TBE) data. It should be noted that in the latter method, the proposed
statistic can be used in an EWMA or a CUSUM in detecting persistent shifts, a type

of process disturbance that we will review next.

Retaining the focus on the frequentist approach, we continue with the permanent
shifts. Worsley (1979, 1986) pioneering work, introduced the ratio test statistic in
modeling a mean change point. Similarly, the likelihood ratio and the change point
formulation play the role of the “frame of reference” for the models of Gombay (2003),
Mei (2006) and Dessein and Cont (2013). Hawkins’s work has a prominent place in
the sequential change point detection. He introduced numerous methods, related to
the detection of shifts in the mean or/and the variance of a process, like Hawkins
(1977), Hawkins et al. (2003), Hawkins and Zamba (2005a, 2005b). Special note
should be made for the self-starting CUSUM (SSC) for location and scale (Hawkins,
1987) and the SSCs using the @ statistics (Hawkins and Olwell, 1998) that are
widely used. In relation to the CUSUM-type charts, Atwi et al. (2011) proposed
a CUSUM-based method for hidden Markov models, while Tercero-Gémez et al.
(2014) developed a SSC for detecting changes in the process mean, combined with
a maximum likelihood estimation for the change point. Furthermore, Siegmund and
Venkatraman (1995) suggested a CUSUM-type change point model, which is based
on a generalized likelihood ratio statistic for detecting a change in a normal mean

with known variance.

Next, we will review various hybrid control chart suggestions that typically combining
more than one procedures, enhancing the power in detecting of permanent shifts.

The common element of these “alloys” of methods in this paragraph is an EWMA |
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which is adopted by all of them. Specifically, Li et al. (2010) proposed a self-
starting control chart, based on the likelihood ratio test (LRT) and the EWMA
for simultaneous monitoring of the mean and the variance. In addition, Li and
Wand (2010) and Li et al. (2010) proposed a hybrid chart focused on mean shifts,
which combines a SSC using the @) statistic with an adaptive EWMA scheme for the
magnitude of the shift. Again based on @ statistic, Roes et al. (1999) developed
the alternative Q(R) chart, estimating the standard deviation via the mean moving
range, while modelling the cost of low-volume processes. An EWMA chart for ¢
statistic is demonstrated in different versions for short runs by Chang and Sun (2016),
Wang et al. (2020) and Song et al. (2020). Of particular interest is the bootstrap
based monitoring scheme for Poisson count data with varying population sizes (Shen
et al., 2016). Furthermore, Castillo and Montgomery (1995) suggested a Kalman
Filter process control scheme for short runs, which essentially acts like an EWMA.
In closing, it is noteworthy that of the outlier detection methods, the Geometric ()
chart (Quesenberry, 1995d) and the monitoring scheme of Korzenowski et al. (2015)
can be applied for permanent shifts, along with the TBE model (Dogu and Noor-ul-

Amin 2021) after certain modifications, as we have already mentioned.

From the Bayesian perspective, several methods have been proposed for identifying
isolated shifts. The common denominator in all of them is the use of the predictive
distribution, which represents the conditional likelihood of the future observable(s)
given the available data (i.e. all the unknown parameters have been integrated out).
The most general methodology in this category of models is the Predictive Control
Chart (PCC) by Bourazas et al. (2021), which is partly presented in this disserta-
tion. PCC offers a unifying, closed form mechanism, that is capable to monitor for
transient shifts, data from any (ontinuous or discrete) distribution as long as it is
a member of the regular exponential family. In the same framework, the methods
of Ali and Riaz (2020) and Bayarri and Garcia-Donato (2005) were specialized in

monitoring the dispersion of Normal and Poisson count data respectively. Kumar
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and Chakraborti (2017) along with Ali (2020) suggested methods for monitoring the
exponentially distributed TBE data. The work of Tsiamyrtzis et al. (2015) for a se-
quence of Normal data was the “harbinger” of PCC, while in similar context, Olwell
(1996, 1997) proposed methods to handle Normal and Poisson data respectively..
Additionally, the Cumulative Bayes Factor (CBF) by West (1986) and West and
Harrison (1986) are memory based method, but the Bayes Factor (BF) can be an

indicator for the presence of an isolated shift as well.

Plenty of methods for investigating permanent shifts are in the Bayesian “reservoir”,
including the aforementioned CBF and the Normal linear dynamic models also by
West and Harrison (1996). More research in the area of sequential model compari-
son, monitoring and forecasting was performed by Harrison and West (1987, 1991),
Harrison and Veerapen (1994) and Harrison (1999). By the same token, Geweke and
Amisano (2010) applied the cumulative predictive Bayes Factor for model compar-
isons in economics. Still in the Bayesian perspective the work of Tsiamyrtzis and
Hawkins (2005, 2008, 2010, 2019) with change point models for the mean of Normal
or Poisson data, further boosted the Bayesian modelling in short runs. By the same
logic, a three-state sequential algorithm was developed, modelling the three states

of an epidemic (Zamba et al., 2013).

Change point models have occupied the Bayesian statisticians for many decades.
Smith (1975) adopted the change point formulation to provide inference for sequences
of Normal or Binomial data. In 1990s, the work of Wasserman and Sudjianto (1993)
with a Bayesian second ordered dynamic linear model and of Wasserman (1994,
1995), who developed Bayesian EWMA schemes, were novel for detecting mean
shifts in short runs. Later, Crowder and Eshleman (2001) investigated an adaptive
filtering approach to monitor low volume autocorrelated data. Howley et al. (2009)
proposed a CUSUM-type monitoring of clinical indicators, based on the posterior
predictive of Bernoulli trials and in the same spirit Toubia-Stucky et al. (2012)

developed a memory based procedure for the proportion of non-conforming items
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in a process. We sould highlight in particular the highly cited online change point
by Adams and MacKay (2007), who proposed a machine learning algorithm for the
estimation of a change point based on posterior distribution of the length of the last
IC sequence, after the last disorder. Following a different approach, Lai and Xing
(2010) extended the Shiryaev’s Bayesian online change point model, while assuming
pre/post change unknown parameters and providing corresponding stopping rules.
Recently, Noor-ul-Amin and Noor (2021) and Noor et al. (2020) proposed Bayesian
self-starting EWMAs for specific distributions in the exponential family. Regarding
the previously described methods, a Bayesian change detection model is provided
along with a frequentist alternative in Atwi et al. (2011), while an EWMA and a
CUSUM modification is proposed for the TBE chart in Ali (2020).

Through the prism of nonparametric statistics, only a handful of the developed self-
starting methods are capable to detect isolated jumps, especially when we have short
production runs. Their most characteristic representative is the control chart pro-
posed by Alloway and Raghavachari (1991), which is based on the Hodges-Lehmann
estimator and the Wilcoxon signed rank statistic. Moreover, Conover et al. (2018)
used Sequential Normal Scores (SNS) for developing a Shewhart type chart, along
with CUSUM and EWMA type modifications for persistent shifts. We could add to
this category the recursive segmentation and permutation (RS/P) method of Capizzi
and Masarotto (2013). Although it has been developed for the effective detection of

mean and/or scale shifts, it can identify isolated jumps for subgrouped data.

Along with the latter method, which is suitable for persistent shifts, Capizzi and
Masarotto (2012) also proposed a hybrid scheme named CUSCORE-type chart, us-
ing an EWMA adaptation. Furthermore, a sequential nonparametric test, based
on windowed Kolmogorov - Smirnov statistics (Madrid Padilla et al., 2019), have
been suggested to handle univariate data, while Gombay (2004) proposed sequential
testing strategies based on U statistics and Wiener process approximations. Several

methods have adapted a CUSUM-type detection scheme using nonparametric statis-
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tics. For instance, the two stage procedure for prospective change-point detection
and the retrospective estimation of the detected location of the change, via a modi-
fied Kolmogorov-Smirnov test (Brodsky, 2010). In the same regard the independent
works of Li (2021) and Hou and Yu (2020), proposing nonparametric CUSUMs for
the detection of any type of distributional change.

The sequential ranks have a special place in the nonparametric approach, as they are
widely used in change point detection. Apart from the aforementioned work, Conover
et al. (2017) analytically discussed about sequential Normal scores. In the same spirit
with the latter, the control chart of Villanueva-Guerra et al. (2017) is focused on
scale shifts, based on squared ranks. Some of the initial proposals applied the idea of
sequential ranks like in Reynolds (1975), where a truncated version of sequential tests
with linear barriers was used. Furthermore, Bakir and Reynolds (1979) and Amin
and Searcy (1991) used the Wilcoxon signed-rank statistics, while Bhattacharya and
Frierson (1981) adopted a partial weighted sum of sequential ranks. McDonald (1990)
proposed a CUSUM-type chart for detecting an abrupt change form the sampling
distribution to a stochastically dominating one. In more recent research, Liu et al.
(2013, 2014, 2015) developed CUSUM-type and EWMA-type self-starting schemes
for process monitoring, based on the sequential ranks. Regarding methods that are
capable in detecting both location and scale changes simultaneously, Lombard and
Van Zyl (2018) suggested the signed rank CUSUMs and Ross et al. (2011) developed

a nonparametric model for a stream of random variables.

1.4.2 Multivariate self-starting methods

In this subsection we deal with multivariate processes, which in their vast major-
ity are frequentist based. Starting from the transient shifts, Quesenberry (2001)
proposed a snapshot chart, where we plot all the univariate () statistics for all the

measured variables on a particular production unit on one chart. Despite the fact
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that it is a valuable attempt to provide a summary chart for high dimensional data,
it is still suboptimal, as it ignores possible associations between the variables. Khoo
and Quah (2002) and Khoo et al. (2005) took it one step further, as they pro-
posed the extension of () chart for individual or subgrouped multivariate Normal
data. Also, they demonstrated their use for memory based charts. It is important
to mention that to the best of our knowledge in the literature, there are neither
Bayesian nor nonparamteric self-starting procedure for detecting multivariate out-
lying observations. Combining it with the fact that there are only a few methods
from the frequentist approach, we can easily conclude that this is a virgin area for

the self-starting procedures in short runs and not only.

Dealing with the permanent shifts, the most cited paper is the work of Zamba and
Hawkins (2006), where a frequentist change point model was proposed. The intro-
duced model is based on an unknown-parameter likelihood ratio test for detecting
a step change in the mean vector of multivariate Normal data. Also, the work of
Sullivan and Jones (2002) is widely mentioned, where a self-starting multivariate
EWMA for the mean vector was demonstrated, using the () update formulas for the
sample mean vector and covariance matrix. Remaining in the EWMA framework,
Hawkins and Maboudou-Tchao (2007) suggested the use of recursive residuals in a
self-starting chart. The recursive residuals were initially introduced in a CUSUM
procedure by Brown et al. (1975), while they were also used by Taleb and Arfa
(2012) in a modification of CUSUM and by Capizzi and Masarotto (2010). In the
latter, two robust control charts were proposed, a CUSUM-type and an EWMA-type,
which were based on a CUSCORE procedure for monitoring the unknown mean of a
multivariate Normal distribution. Furthermore, Li et al. (2017) integrated a multi-
variate spatial rank test with the EWMA charting for monitoring sparse multivariate

mean shifts.

The EWMA-type charts are numerous in the literature, but the first reported self-
starting multivariate EWMA is by Quesenberry (1997), involving the computation
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of a Hotelling T statistic. Also, a special mention should be made of one of the first
models for detecting a change in the multivariate normal mean by Srivastava and
Worsley (1986). Recently, the work by Yang and Qiu (2021) is also worth mentioning;
they propose a variable-sampling control chart, where the intervals are determined
by the covariate information. Even though the chart needs initial estimates for the
IC parameters, they are recursively updated in the monitoring process. In the same
pattern, Zhang et al. (2012) developed a hybrid cumulative count of conforming
chart for monitoring high-quality processes. Returning to the self-starting methods
that satisfy the criteria of Definition 1.3.1, Maboudou-Tchao and Hawkins (2011)
formulated a high-dimensional control chart to monitor changes in both the location
and the scale of Normal data. For the mean vector shifts in Normal data, Li at
al. (2014) proposed a self-starting chart, providing change point estimate, Zantek
et al. (2006) suggested a CUSUM-type for monitoring multistage manufacturing
systems. Apropos of the linear profiles, Zou et al. (2007), Amiri et al. (2016) and
Xia and Tsung (2019) developed self-starting schemes for detecting changes in the
regression parameters, based on the recursive residuals or a Wald-type sequential
statistic. Working in the same spirit, Aminnayeri and Sogandi (2016) and Khosravi
and Amiri (2019) proposed logistic regression profile control charts to monitor the
relationship between a Bernoulli or a Binomial response variable and explanatory
variables. Amirkhani et al. (2018) used a CUSUM-type control chart based on the
residual values of the accelerated failure time regression model for monitoring the
survival times of patients. Further, Pazhayamadom et al. (2013, 2016) demonstrated

a harvest control rule for monitoring limited data fisheries, based on a self-starting

CUSUM.

Only a limited number of methods can be found in the Bayesian arena; Zeng and
Zou (2011) proposed a change point model for the patient outcomes in healthcare.
Specifically, they formulated the change detection as model-selection problem and the

decision making relies on Bayes Factors. Furthermore, Hou et al. (2020) developed
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a self-starting monitoring scheme by fitting a piecewise linear model in monitor-
ing the process mean. Continuing with the nonparametric approach, Paynabar et
al. (2016) developed a potentially distribution free change point model for phase
I monitoring analysis of multichannel profiles, while Xue and Qiu (2020) suggested
a nonparametric CUSUM chart for monitoring multivariate serially correlated pro-
cesses. Although, the latter method is not self-starting based on Definition 1.3.1,
as it needs a batch (even small) of IC data to initiate the chart, before the initial

estimates can be sequentially updated during the online process.

1.4.3 Supplementary research

The research on an area is not only concerned with proposing new innovative meth-
ods, but also investigating the application and properties of existing methods. Hence,
supplementary research papers are added to an area, improving our knowledge about
the already proposed methodologies. Quenseberry (1995a, 1995b, 1995¢, 2000) ex-
plored to greater depth the properties of ) statistics for Normal, Poisson and Bi-
nomial data respectively and illustrated geometric () chart for nosocomial infection
surveillance. Furthermore, Keefe et al. (2015) discussed about the IC performance
of self-starting charts, emphasizing on self-starting CUSUM and @) chart for Normal
data, conditioned on the already observed data. On the same wavelength, Zantek
(2005, 2006, 2008) and Zantek and Nestler (2009) investigated the run-length per-
formance of the same type of charts, facilitating the understanding of () statistics
behaviour and the derivation of an appropriate design. Remaining in () statistics,
there are several publications on their application in practice, such as the evaluation
of the performance of Q-based charts by Theroux et al. (2014) for short production
runs in aerospace manufacturing. In the same framework, Snoussi et al. (2005) and
Kawamura et al. (2013) applied @ statistics to the residuals of a time series model
for detecting anomalies, while Lampreia et al. (2012) applied a modified version of

(@ statistics for the vibration monitoring of repairable systems.
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For the rest methods of the area, the self-starting CUSUM proposed by Hawkins was
tested in real-world applications, as it was used for the assessment of antihypertensive
responses by Cornélissen et al. (1997) and for the development of a self-balancing
approach for debris cleanup operations using data from an Atlantic hurricane by
Fetter and Rakes (2011). Furthermore, Sobas et al. (2014, 2020) discussed about
the application of Bayesian techniques to medical lab processes. On a different topic,
Celano et al. (2012a, 2012b, 2013) discussed in detail about the performance and
the economic design of ¢ control charts in short runs and Lang (2019) provided
analytical tables of the control limits for a nonparametric adaptive CUSUM based
on sequential ranks. An analytical comparative study of already proposed methods
always helps in their assessment under OOC scenarios. In this context, Yu et al.
(2020) compared different EWMA approaches for a self-starting forecasting process,
while Dogu and Kim (2020) staged a comparison between self-starting methods for
individual multivariate observations. Finally, we cannot forget the important work
of Pollak and Siegmund (1991), who introduced three stopping rules for a change in
the unknown mean of a univariate Normal process and of Baron (2001, 2004), who

discussed about the stopping rules for Bayesian sequential change point models.

1.5 Thesis structure

In this thesis, the focus is on the effective online detection of process disorders and
the reliable inference for the unknown process parameter(s) of short horizon data,
without the requirement of any calibration phase. We will attempt to achieve this
goal adopting the Bayesian perspective in developing appropriate self-starting con-
trol charts. Namely, we propose a general Bayesian method named the Predictive
Control Chart (PCC) focused on the detection of large transient shifts (outliers).
In the same philosophy, we propose Predictive Ratio CUSUM (PRC) focusing on

detecting medium /small persistent parameter shifts. In addition, we introduce the
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Self-Starting Shiryaev (3S), a general online change point model available for uni-

variate (U3S) or multivariate (M3S) processes.

Analytically, in Chapter 2, we provide the PCC initial assumptions and derive the
modelling along with the necessary formulas for several discrete and continuous uni-
variate distributions that belong to the regular exponential family. Along with them,
we provide guidelines regarding choices of prior distributions and the options that
allow the use of possibly available historical data, via a power prior mechanism.
Further, we present the possibility of employing a Fast Initial Response (FIR) PCC,
which enhances its performance during the early stages of the process. An extended
simulation study follows including a comparison against a frequentist based compet-
ing method, a sensitivity analysis and a robustness study examining both prior and
model type misspecifications. The PCC application to real data wraps this Chapter,
where a continuous (Normal) and a discrete (Poisson) real-data case from a medical

lab and an industrial setting respectively, are being explored.

The PRC derivation is presented in Chapter 3. Precisely, we provide the PRC
design, including the recursive formulas for several univariate discrete and continuous
distributions that belong to the regular exponential family, along with the related
decision making and a FIR option. A simulation study for detecting persistent
parameter shifts in Normal, Poisson and Binomial data follows, where we evaluate
the PRC performance against frequentist and Bayesian competitors, while examining
a prior sensitivity. At the end of this chapter, we provide a PRC illustration to real

data, where a continuous (Normal) and a discrete (Poisson) cases are examined.

Chapter 4 refers to the 3S detection scheme. Specifically, we present the assumptions
and the general model structure, which allow its application to any type of data,
regardless of the dimension. In addition, we discuss about the posterior inference
for the process parameters and about the 3S stopping time, introducing an adaptive
decision limit. Apart from the description of the general form, we provide the details

and the properties of the submodels of the univariate (U3S) and multivariate (M3S)
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of Normal data. The performance of the proposed models is examined via extensive
simulations in a comparative study against frequentist and nonparametric methods
for both univariate and multivariate data, along with a sensitivity analysis. Three
applications to well documented data demonstrate U3S and M3S, where a mean or a
variance shift for univariate data and a translocation shift for multivariate data are
experienced. Finally, the conclusions of this thesis along with the suggested future
research work are presented in Chapter 5, while all the necessary technical details

are provided in Appendices.



1.5. Thesis structure

"Se0UaI0Jel oY) ur uoryedrqnd e
JO IoquNU PoIdPIo o1} 0} IoJol SIdqUINU o], (JUOURULIDJ I0 JUSISURIT,) }SOIONUI JO SI
PIgm Yrys Jo od£y pue ‘(uersedeq 10 oujeurereduou ‘isiyuenbaiy) yoroxdde [eorysiye)s
o) ‘(en[q Ul 9JRLIBATIN]N ‘OSURIO UI OJRLIRAIU()) ®jep $s000I1d o1} JO UOISUAUWIP o1}
U0 Paseq SPOTIoUl JUlIR)s J[Os ) [[B Sozllewwns ypiym deursal) y :g ' T o2In3rg




Chapter 2

Predictive Control Chart (PCC)

2.1 PCC Theoretical background

Being in the Bayesian framework, our goal is to utilize the available prior informa-
tion and provide a control chart with enhanced performance compared to existing
self-starting frequentist-based methods. The Predictive Control Chart (PCC) were
initially proposed in the M.Sc. thesis of Bourazas (2014) and Kiagias (2014) for
continuous and discrete cases respectively and published in Bourazas et al. (2021).
PCC is formed by the predictive distribution and it will provide a sequentially up-
dated region against which every new observable will be plotted. Observations falling
outside the predictive region will ring an alarm triggering further investigation and
potentially some form of corrective action. In this chapter, we extend PCC in four
ways. By using power priors, by defining rigorously the IC region, by developing a

fast initial response (FIR) scheme and by providing two applications to real data.

21
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2.1.1 PCC for k-parameter regular exponential family (k-
PREF)

Initially, we need to derive the predictive distribution (Geisser, 1993), which depends
on the likelihood of the observed univariate data. From a process under study, we
sequentially obtain the data X = (zy,...,2,), which we consider to be a random
sample from the distribution X;|0, where X, j = 1,...,n, is univariate, while the un-
known parameter 8 can be either univariate or multivariate, e.g. X;|0 ~ Bin(Nj,0),
X;|0 ~ P(0), X;|0 ~ N(:,03) etc. Our main interest is in detecting in an online
fashion and without employing a phase I exercise, the presence of large transient
shifts on the unknown parameter(s) 8. We assume that the likelihood, is a member
of the univariate k-parameter regular exponential family (denoted from this point

on as k-PREF), and by following Bernardo and Smith (2000), it can be written as:

f(X)6) = [ng]] ]nexp{zm(e)zm(xj>}, (2.1.1)

where g(x;) > 0, hqi(x;),. .., hi(z;) are real-valued functions of the univariate obser-
vation x; that do not depend on 8, while ¢(6@) > 0 and 1,(0), . . ., 7n,(0) are real-valued
functions of the unknown parameter(s) @ that cannot depend on X. PCC will be de-
veloped for any likelihood that belongs to the k-PREF, providing a general platform
where binary (Binomial), count (Poisson, Negative Binomial) or various continuous
(Normal, Gamma, Lognormal etc.) univariate data can be analyzed using the same

methodology.

The prior distribution is of key importance in the Bayesian approach. Since in
practice, historical data (of the same or a similar process, not to be confused with
phase I data) are typically available, we recommend the use of power priors (Ibrahim

and Chen, 2000), which offer a framework to incorporate past data (when available)
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in the mechanism of forming the prior distribution. The power prior is derived by:
7 (0]Y, a0, 7) x f(Y]0) 7 (0|7), (2.1.2)

where Y = (y1,...,yn,) refers to a vector of historical univariate data (under the
same distribution law f(-|@) that the current data obey), 0 < oy < 1 is a scalar
parameter, 7 (6|7) is the initial prior for the unknown parameter(s) and 7 is the
vector of the initial prior hyperparameters. The (fixed) parameter, ag, controls the
power prior’s tail heaviness and consequently the influence of the historical data on
the posterior distribution. Essentially, aq represents the probability of the historical
data being compatible with the current observations and at the extremes ag = 0 or
1, the historical data will be ignored or taken fully into account (just as the current
data) respectively. A typical value for ayq is 1/no, which conveys the weight of a single
observation to the prior information. In general, oy should be determined by the
relevance of past with current data and how likely is the past data to provide reliable
estimates for the unknown parameters (depending on the size ng). For relevant
historical data but with small (large) ny it is recommended to use ag < /ny (g >
1/ng). It should be noted that the power priors are robust in conflicts of historical

and current data, as they use only the sufficient statistic of the past data.

Generalizing the power prior concept, we could either assume «q is unknown (mod-
eled by a prior distribution) or we could allow the use of multiple historical data: if Y’
and Z are historical data from different sources weighted by o and [, respectively,

then the power prior is proportional to:
T (0|Y,Z, o, B, 7) x f(Y]|0)* f(Z]0)” 7 (0|7) . (2.1.3)

It is worth mentioning that, Ibrahim et al. (2003), proved that the power prior is
100% efficient in the sense that the ratio of the output to input information is equal

to one, with respect to Zellner’s information rule (see Zellner, 1988).
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In a subjective Bayesian manner, 7y(-) should reflect all available information regard-
ing the unknown parameter(s) before the data become available and its form can be
derived from prior knowledge, expert’s opinion etc. From an objective Bayesian
point of view and under the scenarios of lacking any prior knowledge, one can adopt
a weakly informative or even non-informative initial prior, such as flat (uniform)
prior, Jeffreys (Jeffreys, 1961) or reference (Bernardo, 1979, Berger et al., 2009)

prior (see also the discussion regarding prior elicitation in Subsection 2.1.2).

To preserve closed form solutions for all scenarios, when implementing PCC, we will
adopt a conjugate prior for 7y (6|7), which always exists for any likelihood that is a

member of the k-PREF (Bernardo and Smith, 2000) and its form is given by:

o (8)|7T) = [K(‘l’)r1 [c(8)]™ exp {Z ’I]Z'(O)Ti} , (2.1.4)

where 6 € @ (parameter space) and T = (79, T1,...,7%) is the (k + 1)-dimensional

vector of the initial prior hyperparameters, such that:

K(r)= /[0(9)]70 exp {Z m(@)f,} dg < oc. (2.1.5)

(]

The conjugate prior, m (@|7), is also a member of the exponential family. The
choice of the hyperparameters 7 will reflect the prior knowledge, ranging from highly
informative to vague and even non-informative choices. Non-conjugate choices of the
initial prior are allowed, at the cost of not having PCC in closed form but evaluated

numerically. Lemma 2.1.1 provides the form of a conjugate power prior.

Lemma 2.1.1. For any vector of historical data Y = (y1,...,y,,) of the same form
with the current data, a conjugate m (@|7) will lead to a conjugate power prior of
the form:

T (0lY , a9, T) ox 7 (0|7 + ot (Y)) (2.1.6)
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where t,,,(Y) = <n0, i hi(yr), - Z hi (y; ) is a (k+1)-dimensional vector, with
Y = (v1,--+,Yng) refer;ing to the vector of historical univariate data.

Proof

For a likelihood f(-|@), being a member of the k-PREF, the conjugate prior is given
by (2.1.4) and the normalizing constant, K(7) is given by (2.1.5) (for discrete 6,
we replace the integral sign by summation). Then for the historical data ¥ =

(Y1, -+, Yny ), sampled from the same member of the k-PREF as the likelihood, f(-|0),

the power prior will become:

T(0Y, 00, 7) o< f(Y]0) 7o (0|T)
- [ﬁgm)] e {aozm Dot >} .
< [K ()] 7 [e(0)] " exp {; 771'(9)%}
= [K(m)]™ [ﬁ g(yz)] ) [c(@)] "™ exp {ilm(@) (Tz- + ag lnzol hz'(yz)> }
x [c(8)]P 0 exp {i (n + ag ;21 hi(yl)) }

=1

x o (0T + aotn, (Y)),

no
where t,,,(Y') = <no, Zhl(yl) th Ui ) is a (k+1)-dimensional vector, with
li

=1
Y = (y1, -, Yn,) referring to the Vector of historical data.
Q.E.D.

Theorem 2.1.1 provides, in closed form, the posterior and predictive distributions of

any likelihood that belongs to the k-PREF:

Theorem 2.1.1. For any likelihood belonging to the k-PREF (2.1.1) and an initial

conjugate prior (2.1.4) via a power prior (2.1.1) mechanism we have:
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(1) The posterior distribution of the unknown parameter(s) 6:

p(0|X.,Y, ap, ) =m (O] + aptn,(Y) + t,.(X)), (2.1.7)
where t,( ( Z hi(x;), Z hi (2 ) is a (k4 1)-dimensional vector, with
X = (z1,...,2,) belng the observed unlvarlate data.

(ii) The predictive distribution of the single future univariate observable X, 1:

K (7 + aotng(Y) + (X)) + 81 (X))
K (T + aotn, (Y) + t,(X))

f(Xn+1|X7Y>a0aT) = g(Xn+1)> (218)

where ¢ (X,11) = (1, hi1(Xps1), - -, he(Xny1)) is a (k + 1)-dimensional vector, func-

tion of the future observable X, ..

Proof
(i) Once the current data X = (z1, ..., z,,) become available, we will be able to derive

the posterior distribution of the unknown parameter(s) 6, using Bayes theorem:
p(O1X,Y a0, 7) o< f(X|0)7(0]Y,0,7)
o< f(X]0) 70 (8] + aotn, (Y))

= L]i[l g(xj)] [c(0)]" exp {Zj; 1i(0) JZZ; hi(wj)} x
! Lﬁ 9(w) :
X exp {z; 1:(0) (n + ag li_o; hi(yz)> }
o [e(@)]Fom M exp {i n:(6) (n +ag g hi(yr) + ]Zn;hi(l’j)> }

=1

o< mo (B]T + agtn (Y) + (X)),

(@)

where t,,( < Z hy(z;), Z hi(x; ) is a (k + 1)-dimensional vector, with

X = (x1, ..., ) belng the observed data This is a member of exponential family,
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and specifically of the same distribution form as the initial prior (as expected since
we use a conjugate prior).

(ii) We have that the predictive distribution of a future observable will be given by:
f(Xa1| X, Y, a0, 7) =

_ /f(XnHl@)p(GIX,Y,ao?T)d"

= / [g<Xn+l eXp {Z 771 z Xns1 }] X [[K (T + aoty, (Y) + tn(X))}_l

(O]
k

[6(0)]70+010n0+n exp {Z 771(0) (Ti + ag ZO hi(yl) + Z hz(l’])> } ] deo

i=1

= [K (T + aoty (Y) + (X)) (X1 x

k no n
X / To+aono+n+1 exp {Z 771<9) (Ti + QAo Z hz(yl) + Z hz(l‘J) + hz<Xn+1)) } d0 =
e i=1 =1 j=1

K (1 + aotn, (Y) + ta(X) + 81(Xnt1))
K (14 apt,,(Y) + t,(X))

f(Xn+1|X,Y7Oé0,T) — g<Xn+1)7

where t1(X,41) = (1, h1(Xn11), - -+, he(Xns1)) @ (k+1)-dimensional vector, function
of the future observable X, 1. Note that the vectors t,,(Y),¢,(X) and ¢1(X,11)

refer to the respective sufficient statistics for the power prior and the likelihood.
Q.E.D.

PCC construction will be based on the predictive distribution and it can start as
soon as n = 2 (except when we have Normal likelihood with both parameters
unknown, ap = 0 and we use the reference prior, where PCC starts at n = 3).
The exact form of the predictive distribution (under conjugate prior), for various
likelihood choices (either discrete or continuous data), used commonly in SPC/M,
can be found in Table 2.1.1. To unify notation in the table, we denote by D =
(Y, X) = (y1,--+,Yng, 1, -, &) the vector of historical and current univariate
data, w = (ag,...,ap,1,...,1) the vector of weights corresponding to each element

d; in D and finally we call Np = ny + n the length of the data vector D.
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2.1.2 Prior elicitation

The big advantage of PCC is the use of (typically available) prior information, which
allows to decrease the uncertainty of the unknown parameter(s) @, improving the
performance (with respect to false alarms and detection power), especially at the
early stages. The speed at which this uncertainty decreases is inversely related
to the information that the prior distribution carries. When strong opinion about
the unknown parameter(s) is available and located accurately (i.e. we have highly
informative initial prior placed at the parameter space where the unknown parameter
is), then the PCC performance will be optimal, i.e. the false alarm tolerance at the
nominal level and quite high detection power. Nevertheless, a highly informative
prior miss-placed on the parameter space (with respect to where the true unknown
0 is), will have as result to get an extremely high False Alarm Rate (FAR), until
sufficient information from the data moves the posterior to the area where the true 0
lies. Thus, a general recommendation is to avoid having a highly informative initial
prior distribution (to eliminate the risk of inflated false alarms if miss-placed). Wang
et al. (2018) developed effective numerical methods for exploring reasonable choices

of an informative prior distribution.

From the above it becomes evident that the elicitation of the hyper-parameters T play
an important role to PCC. There are two different ways that one can proceed: being
subjective or objective. In the latter we use non-informative priors and in a sense
we leave the data to carry the information. In the former we use a low/medium (but
not high) informative prior distribution. Such a prior will carry more information
compared to the objective priors (reducing the posterior variability of ) enhancing
the PCC performance, especially at the start of the process. Furthermore, as the size
of the data increases, the influence of the low/medium information prior is washing-

out.

In the case where no prior information for @ exists, or a user prefers to follow an
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objective prior approach, then the hyper-parameters determination should be chosen
with caution, especially when we do not have historical data to use in a power prior

(i.e. ap =0). Various classes of non-informative priors exist like:

e Flat prior: a uniform prior equally weighting all possible values of the un-

known parameter.
e Jeffreys prior: a prior that is closed under parameter transformations.

e Reference prior: a function that maximizes some measure of distance (e.g.
Hellinger) or divergence (e.g. Kullback-Leibler) between the posterior and

prior, as data become available.

A list of Jeffreys and reference initial priors that can be used for likelihoods that are

members of the k-PREF are given in Table 2.1.2.

Likelihood Initial Reference/Jeffreys Prior
f(10) o (0]7)
P9 - s;) 7T0(0>O(%EG(1/2,0)
Bin(N;, 0) mo(0) ﬁ = Beta(1/2,1/2)
: 1 _
NBZ”(T, 9) 70(0) 0,8 m = Beta((), ]_/2)
W (6, x) 7o(6%) o ei — 1G(0,0)
G(a,0), IG(a,6), Pa(m,0) 7o(0) % — &(0,0)
N(9,0%), LogN (0, 0?) () o< ¢ = N(0, +0)
N(u,60), LogN (u,02) 7o(67) % — 1G(0,0)

N (61,62), LogN (6,,603)  =5(61.62) 0% = NIG(0,0,~1/2,0), 7 (61, 62) o 9% = NIG(0,0,0,0)
2 2

Table 2.1.2: Initial Reference (R) and Jeffreys (J) prior distributions. For univariate
0 the two classes of non-informative priors coincide.
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When we need to choose an “objective” prior we should aim to satisfy the following
properties: have the minimal possible influence in the process, do not decrease the
reflexes of PCC and attempt to have stable false alarm performance. Based on this
proposal we will next provide more specific details along with some guidelines for
the likelihoods of Normal, Poisson and Binomial that are most common in SPC/M

studies.

For the N (6y,03) — NIG(po, A, a, b) model, we have to carefully determine the pa-
rameters of the Inverse Gamma (i.e. a and b). For example, the prior NIG(0, €, €, €)
(which converges to Jeffreys prior as € — 0) gives higher density at values of #3 which
are close to 0. Thus, it becomes very informative, increasing drastically the false
alarms especially for large values of #3. Similar results hold for NIG(0,¢,1/2,¢€) and
NIG(0,¢,1,€), where the mean of the marginal posterior of 63 is the MLE and the un-
biased estimator respectively. On the other hand, a flatter prior like NIG(0,¢,e€, 1)
may overestimate 02 reducing the reflexes of PCC. Generally, we recommend to
choose a value for the hyper-parameter a > 2, so that the mean and the variance of
the prior Inverse Gamma is defined. In different cases, the prior parameters have to

be determined carefully.

For the P(03) — Gamma(c, d) model, the initial prior Gamma(e, €) seems not to be a
good choice. Despite that the posterior mean is the MLE, this prior may increase the
number of false alarms, especially when 63 is close to 0. In that case, if z,, = 0, then
no-alarm zone of PCC, which will be defined as Highest Predictive Mass (H PrM)
region Rn+1 in Subsection 2.1.3, will shrink to a short region. In general we found
that small values for both of the hyper-parameters ¢ and d (e.g. less than 1/3) tend

to affect R, 1 in the same manner, even when the prior mean is correctly located.

For Bin(N,0,) — Beta(a,b) model we propose to avoid Beta(e, €), which converges to
Haldane’s prior (Haldane, 1932) as € — 0, where the posterior mean is equal to the
MLE, as we will have inflated false alarms. Also, we suggest to avoid small values

for both of the hyper-parameters a and b (e.g. less than 1/3), especially if 0, is close
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to 0 as we will have inflated false alarms (just as we had in the Poisson-Gamma
respective case). In contrary, the flat Beta(1,1), equally weighting all values of 6,
will have the posterior mode to be the MLE and provide weak information, inflating

the predictive. Thus, the detection performance of PCC will be affected.

Generally, reference priors (Bernardo, 1979, Berger et al., 2009) and neutral priors
(Kerman, 2011) provide a stable start to PCC under total prior ignorance. Our
proposal though, when some information about the unknown parameters exists, is to
adopt a medium/low volume information prior 7y(@|7) which will enhance the PCC
performance (compared to non-informative choices) and its effect will be removed

once a short sequence of data becomes available.

2.1.3 HPrD/M region and Type I error

The PCC is based on the sequentially updated form of the predictive distribution,
which is used to determine a region denoted by R, 1, where the future observable
(Xn+1) will most likely be, as long as the process is stable (i.e. no changes occurred).
The region R, will be the 100(1—a)% Highest Predictive Density /Mass (HPrD /M)
region, which is the unique shortest region, that minimizes the absolute difference
with the predetermined coverage. For notational convenience we will adopt the name
HPrD, even for cases in which the predictive distribution is discrete, where we derive

the Highest Predictive Mass (HPrM) region.

The definiton of HPrD/M is as follows:
Definition 2.1.1. Assume the set R which contains the values of the predictive

density (or mass) function, which are greater than a threshold ¢, i.e.:
R ={xpi1: f(xp|D,w,T) > c}. (2.1.9)

The HPrD/M region will be given by minimizing the absolute difference of a highest
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predictive probability from a significance level 1 — a, for all the possible values of c.
Specifically:
Rpi1 = rrll%icn /f(mn+1|D,'w,T) — (1 —a)|, (2.1.10)
RC

for the discrete case, we replace the integral sign by summation.

R, 1 will be the shortest region with the smallest absolute difference from the proba-
bility 1 —a. In other words, it minimizes the Lebesque measure m(R¢) for continuous

cases or the corresponding measure [(R°) = Zémi (f(x;|D,w,T) > ¢) for discrete

i
cases, where d,, () represents the Dirac delta function.

For continuous distributions the HPrD region is calculated just like the Highest
Posterior Density (HPD) region in Bayesian analysis (see for example Carlin and
Louis, 2009), where instead of the posterior, we use the predictive distribution and
the minimum value of the absolute difference will be 0. For discrete predictive
distributions, typically we will not be able to obtain a region that has the exact
coverage probability 1 — «. In this case the HPrD/M can be obtained by starting
from the mode of the predictive distribution and continue adding sequentially the
next most probable values of the predictive distribution, until we get sufficiently
close (minimizing the absolute difference) to the predetermined coverage level 1 — av.
Algorithm 1 provides the details in how to derive the HPrM region for a discrete

predictive distribution and Figure 2.1.1 provides an illustration.
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Figure 2.1.1: The HPrD/M region (R,+1) for continuous (left panel) and discrete

(right panel) data.

Algorithm 1 HPrM algorithm for a discrete distribution

1: Set p; the i decreasing ordered probability of f(X,41|X,Y, aq,T), e.g. p; is
the max

2: Set z; = arg{p;}, i.e. the argument(s) where p; get their values
3: n < 1 { initial values }

4: sum__probs < 0

5. dif f < 1

6: HPrM + @

7. stop < 0

8: while stop =0

9: sum__probs <— sum__probs + p,
10: if |sum_probs — (1 —a)| < dif f
11: HPrM < {HPrM,z,}

12: dif f < |sum_probs — (1 — a)|
13: n<n+1

14: else

15: stop < 1

16: HPrM < sort{ HPrM}

We should also note here that in symmetric discrete predictive distributions (like a
Beta Binomial with o = (), the HPrM region might not be unique, as there might

exist two regions that achieve the minimum of absolute difference (we can choose at
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random).

PCC will plot the sequentially updated HPrD/M region versus time, providing the
“in control” region of the next data point and thus give an alarm if a new observable
does not belong to the respective HPrD /M region. For unimodal predictive distribu-
tions, the region R,,; will be an interval for continuous distributions, or a set with
consecutive numbers for the discrete case, while for a multimodal predictive, R, 1

might be formed as a union of non-overlapping regions.

Regarding the false alarm tolerance, the (predetermined) parameter 0 < o < 1, also
known as False Alarm Rate (FAR), will reflect our tolerance to false alarms and
consequently the detection power. The proposed PCC can be viewed as a sequential
(multiple) hypothesis testing procedure, where at each time point n we draw the
HPrD/M region (R, 1) for the future observable, so that if no changes occurred in
the process (IC state), the probability to raise an alarm is: P (X, 41 ¢ R,41|IC) = a.
We suggest two metrics in selecting «, depending on whether we know or not in
advance the number of data points, N, that PCC will be used for (in short runs or

Phase I studies) and/or whether N is large.

If we have a (known) fixed horizon of N data points, for which PCC will be employed
and N is not too large (typically up to a few dozens), then we suggest to control the
Family Wise Error Rate (F'W ER), which expresses the probability of raising at least
one false alarm out of a pre-determined number of N hypothesis tests. This is iden-
tical to the concept of False Alarm Probability (FAP) introduced by Chakraborti et
al. (2008) for phase I analysis. Among various proposals in controlling FW ER, we
adopt the Sidak’s correction (Sidak, 1967), which is slightly more powerful than the
popular Bonferroni’s correction (Dunn, 1961). Sidak’s correction assumes indepen-
dence across tests and is more conservative in the presence of positive dependence,
compared with independent tests. If we define V' to be the number of false alarms
observed in a PCC, applied on N observations in total, i.e. n =1,..., N, from the

IC state of the distribution (0 < V' < N — 1, when PCC starts at n=2), then the
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Sidak’s correction (assuming independence) will provide:

=2

FWER:P(Vz1):1—P(V:0):1—P<ﬂ{XZ~ERZ~|IC}>

N

=1-[[PXieR|IC)=1-(1-a)" " > a=1-(1- FWER)~1. (2.1.11)
i=2

So, once we know N and we set the desirable FW E R, we can obtain the parameter

a needed in deriving the HPrD/M regions, R, ;1. It is evident that as N increases, «

decreases and approaches zero, it leads to an extremely conservative decision scheme,

that will reduce the OOC detection power.

We recommend to use the above approach, as long as o > 1073, even though this
can be adjusted depending on the type of process we monitor. However, in the
cases where N is either unknown in advance or it is too large, then we suggest to
derive « using the metric of IC Average Run Length (ARLy). Following Montgomery
(2020), this corresponds to the desired average number of data points that we will
plot in the PCC before a false alarm occurs, given that the process is under the
IC state. As N increases, the updated posterior distribution gets more informative
(offering consistent estimates of the unknown parameters) and thus the resulting
hypothesis tests will tend to be nearly independent. Then, the value of the desired
(predetermined) ARLy will be approximately:

1
= ax

1
ARLy ~ — .
Rlo® 2 ARLy

(2.1.12)

Based on either (2.1.11) or (2.1.12), we predetermine the coverage level 100(1 — )%
that the HPrD /M region (R, ;) will have.
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2.1.4 Fast Initial Response (FIR) PCC

One of the most serious issues in self-starting methods, is the weak response to
early shifts (Goedhart et al., 2017, Capizzi and Masarotto, 2019). The Fast Initial
Response (FIR) feature is typically used to improve the performance of the standard
charts for early shifts in a process. Lucas and Crosier (1982) were the first to propose
a FIR feature for CUSUM, while Steiner (1999) introduced the FIR EWMA by
narrowing the control limits. In the latter, the time dependent effect of the FIR
adjustment, decreases exponentially with time and becomes negligible after a few

observations. Precisely, Steiner’s adjustment is given by:
FIRyy = 1 — (1 — f)FT20=1 (2.1.13)

where a > 0 is a smoothing parameter, t is the current number of hypotheses tests
performed and 0 < f < 1 represents the proportion of the adjusted limit over the
initial test (i.e. t =1).

As the PCC uses control limits, much like the EWMA, we will adopt Steiner’s ad-
justment for a time-varying narrowing of the R, region in the start of the process.
Despite the head-start the FIR option can provide to PCC, we should make sure that
we do not significantly inflate the false alarms. Thus, the FIR parameters should
be selected by taking into account the false alarm behavior of PCC, which depends
on the prior settings, especially when the volume of available data is small. If an
extremely informative prior (near point mass) is used, then the PCC behavior acts
like a typical Shewhart chart, as the resulting R, region is not essentially updated
by new observations. On the other hand, if a non-informative prior, like the initial
reference prior without historical IC data, is selected, then the FAR depends only
on the (iid) data. As a result for these two cases, the observed FAR will meet the
predetermined standards (even from the very first hypothesis testing) and therefore

we should avoid the use of a FIR adjustment (or otherwise the observed FAR will
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be inflated).

However, in the case of a weakly informative prior, the R, ; region is quite wide
(as we combine prior and likelihood uncertainty), but at the same time the prior
distribution provides beneficial information for the IC state. Combining these two
facts, the first IC data points are more likely to be plotted within the R, ., region.
This will result in a temporarily smaller (from what is anticipated) FAR, especially
for the very early tests at the start of a process. Thus, we could use a FIR adjustment
without a negative effect on the predetermined expected number of false alarms. We
propose to be somewhat conservative and use f = 0.99, i.e. the adjusted R, region
will be the 99% of the original for the first test and a = (—3/log1o(1 — f) — 1) /4,
i.e. the adjusted R, .1 region will be the 99.9% of the original at the fifth test. We
should note that ¢ is the current number of tests, not the number of observations, as

for the first (or the second) observation PCC does not provide a test.

2.2 PCC decision making

The major role of PCC is to control a process and identify transient large shifts
(outliers), in an online fashion and without a phase I exercise. As such, PCC performs
a hypothesis test as each new data point x,, .1 becomes available and raises an alarm
when z,,.1 ¢ R,.1, indicating that the new observable is not in agreement with what
is anticipated from the predictive distribution (that was built from the previous data
and the prior distribution). The endpoints of R, ., formed from the predictive
distribution, play the role of the control limits of the chart. The range of these limits
reflect the variability of the predictive distribution, which is known to depend on
both the length of the available data and the precision of the prior distribution. For
a weakly informative prior the range will be wider at the start of the process and
as more data become available it will become more narrow and eventually stabilize,

washing out the effect of the prior. Figure 2.2.1 provides illustrations of PCC for data
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streams of length 30 that come from a continuous (Normal data with both parameters
unknown) and two discrete (Poisson and Binomial) cases, when the process is either

IC or has a large isolated shift at location 15 (OOC scenario).

Normal IC scenario Poisson IC scenario Binomial IC scenario
—— Observations N —— Observations —— Observations
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Figure 2.2.1: The IC and OOC illustration of PCC for i.i.d. Normal, Poisson
and Binomial data. For the IC Normal data Xj| (01,«9%) ~ N (01 =0, 9% = 1) and
for the OOC case we sample X15 ~ N(4,1). The initial prior was (91,9%) ~
NIG(p=0,A=2,a=1,b=0.8). For the IC Poisson data X;|03 ~ P (#3 =4). For
the OOC case X15 ~ P(10), while 3 ~ G (¢ =8,d =2). For the IC Binomial data
Xil0s ~ Bin(N =20,64 =0.1). For the OOC case X;5 ~ Bin(20,0.368), while
04 ~ Beta (a = 0.5,b = 4.5). In all cases, a needed to derive the 100(1 — )% HPrD/M
(Rn+1) was selected to satisfy FWER = 0.05 for N = 30 observations.

As can be seen in Figure 2.2.1, the limits tend to become more narrow and finally
stabilize when the size of the data increases, forming a more informative posterior
distribution of the unknown parameter(s). The outlying observations in all scenarios
are plotted outside the R, ; region, hence raising an alarm. The region R, is
formed online, after the data point x,, becomes available, and so when we get an
alarm (i.e. x,41 ¢ R,y1), the suggestion is to stop the process, perform some root

cause analysis to identify external sources of variation, possibly have an intervention
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and finally restart the PCC (the posterior we had right before the alarm can act as
the new prior, or the previous IC data can be used in the power prior mechanism).
However, if we will not react to an alarm, due to the Bayesian dynamic update
mechanism, the isolated change detected will be absorbed. As a consequence, the
posterior and predictive distribution will have inflated variance leading to wider R, 1
regions. In the OOC scenarios in Figure 2.2.1 we observe that the R, ; regions are
wider at time 16 due to the “no action” policy at the alarm for time 15. This effect
is reduced with time but it is still present until observation 30, where the R, ; is

wider compared to the respective region of the IC data.

The PCC methodology with all possible options is synopsized in a flowchart in Figure

2.2.2 and in pseudocode in Algorithm 77.
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START

Choose the significance level
a based on (2.1.11) or (2.1.12)

!

Choose the likelihood and the con-
jugate prior from the Table 2.1.1

|

YES NO

Determine f and a in (3.1.5)

Set f=1in (3.1.5)

Determine the initial
prior hyperparameters T

Set the initial reference
prior from Table 2.1.2

Provide the historical data
and determine ayp in (2.1.2)

Historical
Data?

Obtain x,, (n = 1 or 2%)

|

\/

Derive the predictive X,,11| (X,Y, g, 7), form the FIR,q -

100(1 — @)% HPrD/M region (R,1) and obtain x,4

ALARM!

YES ‘ NO
n+<n+1
O

Corrective
Action?

YES
END

Figure 2.2.2: PCC flowchart. A parallelogram corresponds to an input/output
information, a decision is represented by a rhombus and a rectangle denotes an
operation after a decision making. In addition, the rounded rectangles indicate the

beginning and end of the process.
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Algorithm 2 PCC algorithm

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:
18:

19:

20:
21:
22:
23:
24:
25:
26:
27:

Select the significance level «, based on FWER or ARLy { FAR }
Choose the data distribution and the conjugate prior density for @ { distributions

}
Is FIR-PCC of interest? { FIR }

YES

Determine the parameters f and a
NO

Set f=1
Is prior information available? { initial prior mo(-) }
YES

Determine the hyperparameters of the initial prior 7
NO

Set the initial reference/Jeffeys prior (see Table 2.1.2)
Are prior data available? { power prior }

YES

Provide the historical data Y and determine «y
NO

Set ag =0

Once the data point x, (n > 1*) arrives, derive the predictive distribution of
next observable X, 1| (X,Y, aq, T)
Derive the FIRy4-100(1 — )% HPrD/M region, obtain x,,1 and draw it { R4
}
if 2,41 € Ry { test }
n<n-+1
goto 18
else { alarm! }
if you do not make a corrective action
then goto 21
else
end

*For the Normal - NIG model using the initial reference prior and cy = 0 we need

n = 2 to initiate PCC, while for all other cases PCC starts at after x; becomes

available.

Apart from controlling a process, PCC can be used for monitoring the unknown

parameter(s). As we showed in Theorem 2.1.1, before deriving the predictive distri-

bution at each time point, we first obtain the posterior distribution for the unknown
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parameter(s). Decision theory can be used to provide loss function based optimal
point/interval estimates and/or hypothesis testing for each parameter. For exam-
ple, using the squared error loss function, the Bayes rule (optimal point estimate) is
known to be the mean of the posterior distribution (Carlin and Louis, 2009), i.e. we
have a (sequentially updated) point estimate of the unknown process parameter(s).
To illustrate this option, in Figure 2.2.1, we additionally plot the posterior mean

estimate of A, for the Normal and 65 for the Poisson cases.

Finally, PCC summarizes the predictive distribution through a region, but other
forecasting options (like point estimates) are straightforward to derive as well using

decision theory.

2.3 Comparative study and sensitivity analysis

The PCC is developed in a general framework, allowing its use for any likelihood
that belongs to the k&-PREF. In traditional SPC/M, significant amount of work has
been dedicated for Normal, Poisson and Binomial data. When the goal is to detect
transient large shifts in a short run process of individual univariate data, without
employing a phase I calibration stage, the frequentist based () charts developed by
Quesenberry (1991a,b,c) are probably the most prominent representative methods
for Normal, Binomial and Poisson data respectively. In absence of phase I parameter
estimates, the () charts provide a self-starting monitoring method, where calibration
and testing happens simultaneously, aiming to detect process disturbances (OOC

states) in an online fashion.

2.3.1 Competing methods

In this Subsection, we will present the () chart procedure for Normal, Poisson and

Binomial data, i.e. the methods that we will compare against the proposed PCC. We
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denote as ¢~!(-) the inverse of the standard Normal CDF, G, () the Student-t CDF
with v degrees of freedom, B(-) the Binomial CDF and H(-) the Hypergeometric
CDF. Briefly, the () statistics are:

e ( statistic (Quessnberry, 1991a) for the Normal data assuming both y and o2
unknown, i.e. X;|0 ~ N (0y,03)

X1 = X,
\/ S (2~ )" /(n = 1)

e () statistic (Quessnberry, 1991¢) for the Poisson data assuming rate A unknown

Qni1 =P Gpy . n=2,3,..

and inspected units s; known, i.e. X;|6 ~ P (0-s;)

n+1

Qui1 =9 ' B Xn+1;ZXja,ian , n=12 ..

=t s
j=1

e () statistic (Quessnberry, 1991b) for the Binomial data assuming probability p

unknown and size N known, i.e. X;|6 ~ Bin (V;,0)
n+1 n
Qn-i—l = (P—l {H (Xn-‘rl; Zva Nn-‘rl? Z Nj) } , = 1a 27
j=1 j=1

For all the above cases, the () statistics are tested against the standard Normal
distribution. It is worth mentioning that only for the Normal case the @) statistics
for the Normal case are independently and identically distributed N(0, 1) random
variables. For the Poisson and the Binomial case the () statistics approximated by the
standard Normal probabilities. Such approximations are known to be questionable

for small values of the unknown parameters. The Lower Control Limit (LCL) and
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the Upper Control Limit (UCL) for ) statistics are:
LCL =& '(a;) and UCL=®'(1— ay),

where a; and a, are the false alarm rate from the lower and the upper side respec-

tively, usually equal.

2.3.2 Simulation results

Quesenberry (1991a) presented three versions of @) chart for Normal data, where
either a parameter is known or both unknown (we ignore the scenario that both
parameters are known). For these three scenarios and their relation to the respective

PCCs we have the following Lemma.

Lemma 2.3.1. All three versions of () chart for Normal data are special cases of the
respective PCCs, when the initial prior is the reference prior and we do not make
use of a power prior option (i.e. ap = 0).

Proof

Following Quesenberry (1991a) the @ chart in all three cases of the Normal distri-
bution, makes use at each data point x,;, of the statistic @,,r;. For PCC we set
ap = 0, eliminating the power prior part regarding the past data (Y') and in each
case we set the hyperparameters 7, so that we have the respective reference prior for
the unknown parameter(s). We will show that controlling @), statistic is identical
to controlling PCC’s standardized predictive residual:

Xn+1 - ,&n

~

PRn+1 =

n

where, [i,, and &,, are the mean and standard deviation respectively of the predictive
distribution of X, 11| (X,Y,a0=0,7) = X,.1| (X, 7). Denoting by &~'(-) the
inverse of the standard normal CDF and G, (-) the Student-t CDF with v degrees of
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freedom we get:
Case I: ;1 unknown, o2 known.
We have: X;|0 ~ N (0,02) and the reference prior is 7(f) oc ¢ = N (0, +00). Then

the predictive distribution will be:

n+1

X (X, 1)~ N <fn , U2> = PR, =

Case II: u known, o unknown.

j=1

We have: X;|0? ~ N (u,0%) and the reference prior is 7(6%) < 1/6? = IG (0,0).
Then the predictive distribution will be:
21 (a; — )’ .
X1 (X, 7) ~ by |, ————— | = PRy = e
n .
> (z5—n)°

n

Transformating the PR, 1 we get: @' {G, (PR, 1)} = Qni1 ~ N(0,1).
Case III: ;4 unknown and o2 unknown.

We have: X;|(601,03) ~ N (0;,05) and the reference prior is 7(6y,63) oc 1/603 =
NIG(0,0,—1/2,0). Then the predictive distribution will be:

Xn+1| (X, T) ~tlpa | Tn )

Transformating again the PR, .1 we get: @' {G, 1 (PRpi1)} = Quni1 ~ N(0,1).

For cases IT and III, as the functions #7'(-) and G, (-) are injective, it is identical to

control PR, 1 or Q1.
Q.E.D.

The proof shows that the Normal @ charts (in all three cases) are identical to the
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respective PCC when neither prior information (i.e. use of reference prior) nor his-
torical data are available. What happens though when prior information and/or
historical data do exist? In such scenarios, the posterior distribution will be more
informative, enhancing the predictive distribution, which will boost the PCC per-
formance. For discrete data (Poisson and Binomial) the ) charts use the uniform
minimum variance unbiased (UMVU) estimation of the cumulative distribution func-
tion of the process, thus we lose ability to compare analytically against the respective

exact discrete PCC.

In what follows we will perform a simulation study to examine the performance of
Q charts against PCC when we have N = 30 data points from N (6y,63), P (6s)
or Bin (20,604) distributions. We will design charts to have a FWER = 0.05 at
the last observation N = 30 (using Sidak correction). We will compare the run-
ning FWER(k) =1—-P <(k] {X; € Ri\IC}) of @ charts and PCC at each of the
k= 2,...,30 data points, \;7:}1261’1 we simulate IC sequences from N (0; = 0,63 = 1),
P (03 = 2) and Bin (20,0, = 0.1) respectively (see Keefe et al., 2015 for more details
regarding the conditional IC performance of self-starting control charts). To exam-
ine the OOC detection power of () charts and PCC we will use the IC sequences
generated and introduce large isolated shifts at one of the locations: 5 (early), 15

(middle) or 25 (late). The size of the shifts that we will consider are:

e Normal mean: oy = {2.50, or 305} = {2.5 or 3}, i.e. OOC states come from
N(2.5,1) or N(3,1).

e Poisson mean (or variance): dp = {2.5v/03 or 3v/03} = {2.5v/2 or 3v/2}, i.e.
OOC states come from P(2 + 2.5v/2) = P(5.536) or P(2 + 3v/2) = P(6.243).

e Binomial probability of success: g = {2.5\/ M or 3\/ —94(1N94)} =
5./2 1200 D or 34/% 1(1200 L) } i.e. OOC states come from Bin(20,0.268) or

Bin(20,0.301).

For detection, we will record the cases that a chart provides an alarm at the exact
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time that the shift was introduced. Specifically, these cases will be denoted as the
OOC Detection (OOCD), where OOCD(K') = P <{Xk/ ¢ Ri/|OOC} klﬁl {X; e Ri|IC’}>
and k' = {5,15,25}. Both FWER(k)% for IC data (at each timze_22, ..., 30) and
OOCD(K")% at locations 5, 15 or 25 will be estimated over 100,000 iterations.

PCC will require to define a prior distribution and so within this simulation study we
will take advantage to examine the sensitivity of the PCC performance for various
prior settings. Precisely, for each setup described above, we will make use of two
initial priors (reference and weakly informative) and two values for the o parameter
(0 or 1/ng) representing the absence or presence of ng historical data Y (we will use
no = 10 historical data from the IC likelihood). Therefore, for each scenario we will
compare the @) chart against one of the four possible versions of PCC (with/without
prior knowledge, with/without historical data). The initial priors my(+|7), which we
will employ are (see Figure 2.3.1):
e Normal: reference prior 7y (61,60%) o< 1/65 = NIG(0,0,—1/2,0) or the weakly
informative NIG(0,2,1,0.8).

e Poisson: reference prior 7y (63) oc 1/4/03 = G(1/2,0) or the weakly informative
G(4,2).

e Binomial: reference prior m (04) o< 1/4/04(1 —64) = Beta(1/2,1/2) or the

weakly informative Beta(0.5,4.5).
The simulation findings are summarized graphically in Figure 2.3.2 and analytically

in Table 2.3.1, where we observe that overall PCC outperforms () chart. Starting
from the false alarms in the case of Normal data, both methods reach the nominal
5% at time N = 30, but at all time points k, the FWER(k) of PCC is always
smaller. For both discrete cases, the @ chart’s FWER(k) becomes unacceptably
high, something that is caused from the fact that the true parameter values are near
(even though not too close) to the parameter space boundary, which in conjunction
with the UMVU estimation, inflates drastically the false alarms (the closer we get to

the parameter boundary the worst the () chart’s performance regarding false alarms).
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Figure 2.3.1: The initial reference (i.e. non-informative) and the weakly informative
prior distributions used in the simulation study, along with the IC values (as vertical
segments) for the parameters 61,03, 65 and 6, of the simulation study.

Finally, the extremely small FIWW ER(k) observed for PCC in the first 5 data points
motivates the use of the FIR-PCC described in Section 2.1.4.

For the Normal data, the simulations verify Lemma 2.3.1, as the ) chart and the
PCC with reference prior and no historical data have identical performance. Moving
to the detection power, as it is measured by OOCD(k’), both methods improve as
the size of the shift increases (from 2.5 to 3 sd) or the shift delays its appearance
(from k' = 5 to 15 to 25), just as it was expected. Especially for the shifts at
time 5, PCC greatly outperforms () charts thanks to the head-start from the prior
and /or the historical data. Focusing at each location of the shift, we observe that as

we move from () chart to PCC with reference prior and next to PCC with weakly
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informative prior the performance improves (quite significantly for some scenarios).
When relevant historical data are available, through the power prior mechanism,
they further boost the performance. The somewhat competitive performance of @)
chart in one of the Binomial scenarios should be considered in conjunction with
its quite high FWER, when compared to the one achieved by PCC (see also Table
2.3.2, where the FWER of PCCs is increased to align with the one that () chart can
achieve in the Poisson and Binomial cases, offering a straightforward comparison
of detection power). In summary, PCC appears more powerful to the respective Q

charts in detecting isolated shifts in short runs of individual data.

Focusing on the performance of PCC at location &' = 5, we observe that in the Nor-
mal scenario we have smaller power compared to the respective setting in Poisson or
Binomial (as we move £’ to higher values, the differences vanish). This is caused from
the fact that in the Normal scenario we have two unknown parameters as opposed
to the Poisson and Binomial cases where each has only one unknown parameter (a
PCC built using four data points for a setting with two unknown parameters will be
a lot more challenging, as opposed to a setting with only one unknown parameter).
A Normal PCC scheme with either the mean or the variance being known would
radically improve the performance reaching (or even overcoming) the levels achieved
in the Poisson and Binomial. The effect of the two unknown parameters (Normal)
versus the single unknown parameter (Poisson and Binomial) is responsible in the
performance of PCCY to PCCy in detecting outliers at k£’ = 25. With one unknown
parameter, the information collected from the 24 in control data points has signifi-
cantly reduced the posterior (and predictive) uncertainty, shrinking the effect of the
prior and providing a near uniform performance. For the Normal case though the
posterior (and predictive) uncertainty at k' = 25 remains non-negligible, allowing
the prior setting to play some role and differentiate the performance across the four
versions of PCCs (in general the more the data the higher the shrinkage of the prior’s

effect). Concluding, we should note that PCC was shown to be more powerful in
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detecting large isolated shifts compared to ) chart. The relative performance of @)
chart to PCC remains the same when we use medium or small shifts, with detection

power dropping as the size of the isolated shift decreases.

Q chart PCC, PCC, PCCy PCC,
Jump K 00CD(K)% OOCD(K)% OOCDK)% OOCDKK)%  OOCD(K)%
(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)

00 (5.049) (5.049) (4.347) (4.776) (4.932)

= 5 1.901 1.901 1.492 4205 6.271

= 250 15 12.791 12.791 14.249 17.433 18.407

- 25 17.025 17.025 17.691 20.005 20.371

> 5 2873 2.873 2816 9.024 12.556

— 30 15 22.809 22.809 24.914 30.112 31.426

25 30.095 30.095 31.021 34.410 34.880

0vVx (18.283) (4.515) (4.192) (4.409) (4.320)

= 12437 12.696 14.793 16.265 16.928

° 2.5v/A 15 17.220 18.196 18.660 19.052 19.302

»n 25 17.704 19.164 19.180 19.510 19.623

" 18.185 19.185 21.984 24240 25.204

Ocj 3V 15 24.930 26.826 27.434 27.972 28.345

25 25.740 28.153 28.196 28.683 28.823

B 0\/ elor) (17.878) (4.387) (3.991) (4.852) (4.381)

@ 5 14.079 15.848 15.540 16.111 17.008
.- — / 1 Iy

g 25 ’% 15 20.057 18.845 19.319 20.084 20.067

2 25 20.284 19.878 20.035 19.839 20.315

i 5 21.646 24078 24.098 24.509 26.039

1—
SR w 15 29.469 28.765 29.353 30.207 30.213
25 29.952 30.165 30.389 30.117 30.703

Table 2.3.1: The FWER for N = 30 (in parenthesis) and the outlier detection power
at k' = {5,15,25}, of the @ chart against PCC under a reference prior (PCCy), a
reference prior with historical data (PCCy), a weakly informative prior (PCC3) and
a weakly informative prior with historical data (PCCjy). The results refer to Normal,
Poisson and Binomial data.
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Q chart PCCl PCCQ PCOg POC4

Jump ¥ 00CD()% OOCD(K)% OOCD(K)% OOCDK)% OOCD(K)%

(FWER%) (FWER%) (FWER%) (FWER%) (FWER%)
0vV\ (18.283) (16.498) (15.646) (16.550) (16.183)
S 5 18.185 34.295 35.388 38.820 39.221
°© 2.5V\ 15 924.930 38.634 39.192 39.899 40.388
" 25 925.740 37.823 38.215 38.456 38.679
- 5 12.437 25.410 26.138 98.906 29.157
ch 3vVA 15 17.220 28.657 29.108 929.736 30.166
25 17.704 28.181 98.440 98.692 28.869
. 0\/% (17.878) (16.606) (15.383) (17.950) (16.682)
@ 5 21.646 38.442 38.808 38.345 40.992
. p— 1 .
= o /M ~ P 29.469 40.947 42.666 42.406 43.004
2 25 29.952 40.052 41.283 40.589 41.210
S 5 14.079 28.073 28.037 27.082 29.906
1 _

m g /e - P 20.057 99.549 30.984 30.920 31.351
25 20.284 29.040 30.053 29.662 30.039

Table 2.3.2: The FWER for N = 30 (in parenthesis) and the outlier detection power
at k' = {5,15,25}, of the @Q chart against PCC under a reference prior (PCC), a
reference prior with historical data (PCCs), a weakly informative prior (PCCs) and
a weakly informative prior with historical data (PCCjy). The results refer to Poisson
and Binomial data, where PCC has aligned FWER with the one achieved by @ chart.
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2.4 PCC Robustness

Apart from checking the prior sensitivity that was done in Subsection 2.3.2, we will
also examine how robust the suggested PCC performance is to possible model type
misspecifications. For the PCC construction we assume that the observed data are
iid observations from a specific likelihood. In this section, we will examine how

robust is the PCC performance when:
(a) we violate the assumption of independence (i.e. the data are correlated)

(b) the assumed likelihood function is invalid (i.e. data are generated from a

different random variable from the one assumed in the PCC construction).

Regarding (a) we will use a Normal (with both parameters unknown) PCC imple-
mentation, but the actual data will be generated as sequentially dependent Normal
data via an autoregressive (AR) model: X, = ¢+ ¢X, 1 + €, with ¢ = 0 and
€, ~ N(0,1). To examine various degrees of dependence we will use ¢ = —0.4,0.4
(moderate) or 0.8 (high). For the outlying observations we will set ¢ = 2.5 or 3, in
order to introduce shifts of size of 2.50 or 3¢ respectively, at one of the locations 5,

15 or 25 (just as we did in Section 2.3.2).
For (b) we will examine the following scenarios:

e Use a Normal based PCC (both parameters unknown) while the data are gener-
ated from a Student ¢; distribution, i.e. we have heavier tails (¢; is symmetric,
with the same mean but 40% inflated variance compared with the standard

Normal).

e Use a Normal based PCC (both parameters unknown) while the data are gen-
erated from a Gumbel (u = —0.5, 5 = 0.8) distribution, i.e. we have skewed
data (Gu (—0.5,0.8) has approximately the same mean and variance with the

standard Normal, but it has positive skewness ~ 1.14).
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e Use a Poisson based PCC while the data are generated from a NBin (r = 6,p = 1/4)
distribution, i.e. we have over-dispersed data (N Bin (6,1/4) has the same mean

with P(2), but its variance is ~ 33% inflated).

The aforementioned likelihoods are illustrated in Figure 2.4.1.

0.30
|

— N(0,1) P(2)
N -- t(v=7) m NB(r=6, p = 1/4)
3 N N, ‘' Gu(u=-05pB=08) &
R o
°
© S
S
2
2> =
2 EEN
=} [28
S
g
3 .
8
o J e - g [I E. =
-4 0 5 4 0 1 2 3 4 5 6 7 8
f(x; | 61, 85) f(xi | 83)

Figure 2.4.1: The various misspecification of the PCC distributional forms regarding
the continuous (left panel) and discrete (right panel) data generation mechanisms.

For this misspecification scenario, we generate the OOC data from the introduced
distributions in a manner that the isolated large shifts will correspond to either 2.5
or 3 standard deviations, again at locations 5, 15 or 25 (similar to what we had in

Section 2.3.2). Precisely:

e Student t: OOC states come from ¢7 (/L =25-/7/5,0 = 1)
or tr (u =3-4/7/5,0 = 1>.
e Gumbel: OOC states come from Gu (—0.5 4 2.5,0.8) or Gu (—0.5 + 3,0.8).

e Negative Binomial: OOC states come from NBin (6 - 2.5,1/4) or NBin (6 - 3,1/4).

The prior distributions (reference prior and weakly informative) along with the use
or not of ny = 10 historical data (power prior with ag = 0 or 1/ng) will be identical

to the ones used in Section 2.3.2.

Figures 2.4.2 and 2.4.3 summarize graphically the results of Tables 2.4.1 and 2.4.2, re-
garding the performance (FW ER(k) and OOCD(K') are as defined in Section 2.3.2)



2.4. PCC Robustness 57

for independence and distributional misspecifications respectively. In the former, we
observe that PCC is almost unaffected in the presence of moderate autocorrelation.
For highly dependent data (¢ = 0.8 or larger), PCC is somewhat less robust as it
decreases its detection power and slightly increases the FWER percentages, however
still achieving noticeable performance, especially at the early stages thanks to the

IC prior information.

In the distributional violation scenarios (Figure 2.4.3), we observe that PCC retains
its high detection percentages in all cases. However, the FW ER(k) is significantly
inflated. This can be explained by considering the shape discrepancies among the as-
sumed and actual likelihood functions, where IC values are somewhat outlying under
the misspecified assumed model (a more strict « value in determining the HPrD /M
region would reduce the FW ER(k) in such scenarios at the cost of somewhat reduc-

ing power).



2.4. PCC Robustness

58

PCC, PCC, PCCy PCC,
Jump K 00OCD(K)% OOCD(K)% OOCD(K)% OOCD(K)%
(FWER%) (FWER%) (FWER%) (FWER%)
» 0sd (4.420) (3.293) (4.711) (4.480)
< 5 1.421 0511 1,038 1.789
| 25sd 15 9.822 10.369 14.050 14.441
- 25 13.289 13.794 15.995 16.270
= 5 2.059 1.066 8.002 9.880
= 3sd 15 17.294 18.516 24.093 24.776
= 2 923.557 24.446 27.724 98.185
- 0sd (6.319) (4.135) (5.530) (5.026)
S 5 2.535 0.531 1.082 4755
l 925sd 15 12.724 12.915 16.640 16.669
< 25 15.511 15.943 18.120 18.308
=) 5 3671 1.155 8615 10.138
i 3sd 15 21.836 22.571 28.115 98.342
25 26.773 927.656 30.740 31.135
o Usd (9.218) (5.637) (7.226) (6.795)
S 5 3.008 0.347 3135 3.854
g 25sd 15 11.237 10.191 12.407 12.121
e 25 10.341 10.509 11.668 11.640
=) 5 1501 0.857 6.508 7.904
f 3sd 15 17.783 16.820 20.031 19.832
25 16.488 16.931 18.619 18.712

Table 2.4.1: The FWER at N = 30 (in parenthesis) and the outlier detection power
at k' = {5,15,25} for the Normal distribution for PCC with both parameters being
unknown, when we actually have data from an AR(1) process. PCC process is under
a reference prior (PCC}), a reference prior with historical data (PCCy), a weakly

informative prior (PCCj5) and a weakly informative prior with historical data (PCCy).
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PCCy PCC, PCCy PCC,
Jump kK OOCD(K)% OOCD(K)% OOCD(K)% OOCD(K)%
(FWER%)  (FWER%) (FWER%)  (FWER%)
— 0sd (15.338) (14.425) (19.128) (19.361)
v 5 2.543 1.366 8.282 9.606
s 25sd 15 14.576 15.417 19.861 20.468
= 25 17.560 18.313 20.427 20.847
s 5 3782 2.737 15,511 18.167
T 3sd 15 25.243 27.059 33.409 34,462
b 25 30.435 31.765 34.518 35.183
% 0Osd (21.903) (19.583) (23.849) (23.227)
s 5 3.488 1.245 6.320 6.953
S 25 15 15.614 15.528 18.505 18.180
s 25 16.654 17.021 18.387 18.333
2 5 1911 2.279 10.943 12.150
E 3sd 15 27.444 25.030 29.539 29.259
& 25 26.648 27.426 29.420 29.549
— 0 (17.526) (16.761) (17.636) (17.543)
= 5 11.626 12.478 13.976 14.055
= 25sd 15 14.766 15.035 15.442 15.504
- 25 14.499 14.601 14.772 14.848
@ 5 19.709 21.374 23.701 24.010
S 3sd 15 24.251 24.690 25.254 25.351
25 23.790 23.997 24171 24.290

Table 2.4.2: The FWER at NV = 30 (in parenthesis) and the outlier detection power
at k' = {5,15,25} for the Normal distribution for PCC violating the distributional
assumption. Panel 1 and 2 refer to the Normal PCC with both parameters being
unknown while the data come from a Student or Gumbel distribution respectively. In
panel 3 we assume Poisson based PCC while the data are from a Negative Binomial.
PCC process is under a reference prior (PCC1), a reference prior with historical data
(PCCy), a weakly informative prior (PCCs3) and a weakly informative prior with
historical data (PCCy).
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Finally, for both the violation schemes, it is worth mentioning that PCC detection
seems to be stabilized and not necessarily improved when the outliers occur at lo-
cation 25. This can be attributed to the contaminated estimates of the unknown
parameters from the data that violate the PCC assumptions, as well as the fact that
the influence of the prior is decreased. Overall, the PCC appears to be robust when
we violate the assumptions, as its performance is somewhat reduced but noticeably

far from collapsing.

2.5 PCC real data application

2.5.1 PCC application to Normal data

In this section we will illustrate the use of PCC in practice. Specifically, we will
apply the proposed PCC methodology in two real data sets (one for continuous
and one for discrete data). Regarding the continuous case, we will use data that
come from the daily Internal Quality Control (IQC) routine of a medical laboratory.
We are interested in the variable “activated Partial Thromboplastin Time” (aPTT),
measured in seconds. APTT is a blood test that characterizes coagulation of the
blood. It is a routine clotting time test and can be used as a diagnosis of bleeding
risk (e.g. aPTT value is higher in patients with hemophilia or Willebrand disease)
or for unfractionated heparin treatment monitoring. We gathered 30 daily normal
IQC observations (X;) from a medical lab (see Table 2.5.1), where Xj| (91,922) ~
N (91,922). Notice that these data are based on control samples and in regular
practice will become available sequentially. The goal is to accurately detect any
transient parameter shift of large size, as this will have an impact on the reported
patient results. Thus, it is of major importance to perform on-line monitoring of
the process without a phase I exercise. Via available prior information, we elicit

the prior g (91, 922|‘r) ~ NIG (29.6,1/7,2,0.56%). Furthermore, there were ng = 30
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historical data (from a different reagent) available (see Table 2.5.1), with y = 30.18
and var(y) = 0.32. We set oy = 1/30 and combining these two sources of information
we get the power prior 7 (61, 05°|Y , g, 7') ~ NIG (30.1,8/7,5/2,0.7%). To examine
prior sensitivity we will also use as initial prior the reference prior m (81, 022\7') o
1/65 = NIG(0,0,—1/2,0) (to declare a-priori ignorance) and so we will get two
versions of PCC (one for each initial prior). Figure 2.5.1 provides the two versions of
PCC (continuous/dotted limits for weakly informative/reference prior) along with
a plot of the historical data and the marginal distributions of the mean (6;) and

variance (65) at the end of the data collection.

1 —vs | 304 299 301 30.2 312 30.7 306 29.6 293 30.2 304 303 295 299 302
1 —25 | 30.8 30.2 309 30.2 305 304 309 30.2 303 30.1 30.6 299 30.5 29.8 30.5
Yie —Yys0 | 29.9 30.5 29.7 30.7 299 296 30.1 30.1 299 30.1 299 299 297 322 306
T16 — T30 | 28.8 30.3 304 306 30.2 30.8 30.7 31.0 30.3 30.7 30.2 30.3 30.6 304 30.2

Table 2.5.1: The aPTT (in seconds) internal quality control observations of the
historical Y = (y1,¥2,...,ys30) and the current X = (z1, z2,...,x30) data.

Specifically, for each parameter we plot the marginal weakly informative initial,
7o (+|7), power, m (-|Y, ag, T), priors and the posterior distribution, p (-| X, Y, ag, 7).
We should emphasize that despite the fact that we provide the plots at the end of
the data sequence, in practice the PCC chart and each of the two posterior dis-
tributions will start being plotted at observation 2 and 1 respectively and will be
sequentially updated every time a new observable becomes available. PCC provides
an alarm at location 16, indicating that there was a transient large shift during that
day. This would call for checking the process at that date and if an issue was found
then we would take some corrective action, initiate the PCC and reanalyze all the
patient samples that were received between days 15 (no alarm) and 16 (alarm). In
the present study, no action was taken and the process continued to operate. As a
result, the PCC limits were inflated right after the alarm, but this effect was grad-
ually absorbed as more IC data become available. We also note (as expected) that
the use of the reference prior provides wider limits, especially at the early stage of

the process, making the chart less responsive. Finally, the marginal posterior distri-
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butions can be used to draw inference regarding the unknown parameters, at each

time point.
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Figure 2.5.1: The PCC application on Normal data. At the upper panels (left and
right), we have the marginal distributions for the mean and the variance respectively.
With the dotted, dashed and solid lines we denote the initial prior, the power prior and
the posterior after gathering all the current data respectively. At the lower panels, we
provide the time series of the historical data (open circles on left) and of the current
data (solid points on the right). The solid lines represent the limits of PCC, the
dotted lines are the limits of PCC under prior ignorance, i.e. using the initial reference
prior and the dash lines correspond to the FIR adjustment, setting f = 0.99 and
a=(=3/logio(1 — f)—1)/4=0.125.

2.5.2 PCC application to Poisson data

Next, we provide an illustration of PCC for discrete (Poisson) data. The data come

from Hansen and Ghare (1987) and were also analyzed by Bayarri and Garcia-Donato
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(2005). They refer to the number of defects (z;), per inspected number of units (s;),
encountered in a complex electrical equipment of an assembly line. We have 25
counts (see Table 2.5.2) arriving sequentially that we will model using the Poisson
distribution with unknown rate parameter, i.e. X;|0 ~ P (0 -s;). In contrast to the
previous application, neither prior information regarding the unknown parameter
nor historical data exist. Therefore, we use the reference prior as initial prior for 6,

ie. m(A7T) x 1/v6 = G(1/2,0) and we also set ag = 0 for the power prior term.

Inspected units (sy —sy3) | 4 7 5 7 7 7 6 7 7 6 8 6 3
Defect counts (7 —xy3) | 17 23 24 27 32 33 18 28 29 31 39 29 30

Inspected units (s14—s) | 8 9 6 7 5 7 3 6 8 8 7 8
Defect counts (z14 —x95) | 31 21 26 20 24 29 15 32 20 24 24 14

Table 2.5.2: Number of defects (x;) and inspected units (s;) per time point (i =
1,2,...,25), in an assembly line of an electrical equipment.

In Figure 2.5.2, we provide the initial prior and posterior distributions, the plot of
the data, (daily rate of defects i.e. total number of defects per number of inspected
units and number of inspected units) and the Poisson based PCC (the wavy form of
the limits is caused by the variation in the number of inspected units we have per

day).

Similarly to what we mentioned earlier, the posterior and the PCC will start from
times 1 and 2 respectively and will be updated sequentially, every time a new data
point becomes available, offering online inference in controlling the process. PCC
raises two alarms, at locations 13 and 25. In the former, the observed rate (30/3=10)
seems to be higher (process degradation) from what it was expected from the pro-
cess as it was evolving till that time, while the latter indicates that the observed
rate (14/8=1.75) was smaller from what PCC was anticipating (process improve-
ment). Similar to the previous application, the fact that the alarms were kept in
the process inflated the subsequent limits. At last, online inference regarding the
unknown Poisson rate parameter is available via its (sequentially updated) posterior

distribution.
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Figure 2.5.2: The PCC application on Poisson data. At the upper left panel we have
the distributions for the rate parameter. With the dashed and solid lines we denote the
prior and posterior distributions respectively, after gathering all the available data. At
the upper right panel, we provide the number of inspected units s; (dashed line) and the
number of defects per size x;/s;, i.e the rate of defects (solid line), whereas at the lower
panel we present the PCC implementation. Specifically, solid lines correspond to the
standard PCC process, while the dashed represent the PCC based on FIR adjustment,
setting f = 0.95 and a = (—3/logio(1 — f) — 1) /4 ~ 0.326.



Chapter 3

Predictive Ratio CUSUM (PRC)

3.1 PRC Theoretical background

In this chapter, the focus is on detecting medium/small persistent parameter shifts
in short horizon data. In the literature there are two standard methods that could
be employed in such a setup: the frequentist self-starting CUSUM (SSC) of Hawkins
and Olwell (1998) and the Bayesian Cumulative Bayes Factor (CBF) of West (1986)
and West and Harrison (1986). We will propose a self-starting Bayesian scheme
named Predictive Ratio Cusum (PRC), which much like the PCC methodology, will

be based on the use of the predictive distribution.

PRC will provide an enhanced Bayesian analogue of SSC and at the same time pro-
vide an antagonistic to CBF method which will differentiate from CBF in three ways.
Firstly, PRC will examine specific alternative hypotheses as OOC scenarios (much
like it is done for traditional CUSUM in SPC/M), in contrast to the diffused West’s
CBF (neutral) alternatives. Secondly, PRC will be formulated for various discrete
and continuous distributions that are members of the regular exponential family, pro-
viding a closed form mechanism (i.e. easy to be used in practice), capable to examine

a variety of standard OOC scenarios considered in SPC/M. Last but most impor-
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tantly, by proposing a procedure that derives a decision making threshold based on
the false alarm tolerance (something that both CBF and SSC are typically lacking),
again allowing its straightforward use to real life problems. In the same spirit to
PCC, in this chapter, we will provide the technical details, develop a FIR option,
evaluate the performance against competition, examine topics regarding sensitivity

and robustness and conclude with illustrations to real datasets.

3.1.1 PRC for k-parameter regular exponential family (k-
PREF)

As we mentioned, PRC is a Bayesian CUSUM type chart, comparing the IC state
against an OOC scenario. It is of great importance to clarify that the null state (IC)
is not fixed, but sequentially updated, every time a new data point arrives. Like-
wise, the alternative (OOC) scenario cannot be fixed, but it should be constructed
sequentially and designed suitably in order to increase the detection power. West
(1986), suggested to derive a neutral alternative (OOC) hypothesis scenario, by in-
tervening to the most recent posterior parameters, 7, in such a way that we reserve
the same location, but we inflate the variance, getting a more diffused (spread out)
predictive distribution. Despite the indisputable convenience of that choice, there is
significant room for improvement, at least within the SPC/M methodological frame-
work. In particular, the adoption of an alternative informative scenario with shifted
parameters, which simply yields a benchmark of the OOC state, can greatly im-
prove detection power. Typically, the kind of persistent shifts that we aim to detect
(like a mean jump, a variance/rate inflation, etc.), can be predetermined and arise
from the nature of the process along with what is considered as process deteriora-
tion/improvement. This is a well known strategy in SPC/M, where charts can be

built with a specific OOC state in mind (like the traditional CUSUM).

For PRC, we keep the same general distributional setup, as we had in Chapter 2
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for PCC, where the likelihood belongs to the k-PREF family, and we use a con-
jugate power prior. The posterior parameters 7, in Theorem 2.1.1 summarize all
the information regarding the unknown parameter(s) @ at time n, as they consist of
the initial prior hyperparameters and the sufficient statistics of the current and the
(possibly available) historical data. Our recommendation in PRC is to adopt infor-
mative OOC scenarios (typically used in SPC/M), for the unknown parameter(s) 6,
resulting an intervention to the most recent posterior distribution parameters 7,,. In
this manner, we provide an antagonistic methodology of CBFs and simultaneously

develop an effective Bayesian alternative of the SSC.

The choice of the unknown parameter shifts, will be expressed in a way that pre-
serves conjugacy, allowing closed form solutions, while reflecting our perspective for
the OOC state. For most of the cases, where the posterior distribution (or the pos-
terior marginal, if 6 is multivariate) is a member of a location or scale family, we
will consider shifts that represent location or scale transformation of the unknown
parameter respectively. This will guarantee that we remain in the same distribution
with updated parameters 7, derived as simple location or scale transformations of
the IC state posterior parameters 7,,. The only exception occurs in the case of a
Beta posterior (resulting in Binomial and Negative Binomial likelihood settings),
which is neither location nor scale family. For the Beta posterior, our proposal will
be to introduce the OOC shift, not on 6 but on the expected posterior odds, i.e.
Eox [0/(1 —0)]. Table 3.1.1 reports the IC and OOC states of the unknown param-
eter(s) 0, along with the relevant interpretation, for various likelihood choices from

the k-PREF that are commonly used in SPC/M.

As it was mentioned earlier, PRC will be based on the predictive distribution of the
next unseen data f(X,1|X,Y,ag, T), or for simplicity f(X,11|X,). In Theorem
2.1.1, if we will replace the current posterior distribution, m (8|7,), with the OOC

posterior, m (0|7,,), corresponding to the shifted parameter scenario, we will derive
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the shifted (OOC) predictive distribution:

K (7, + 4(Xnt1))
K (1)

n

9(Xns1)  (3.1.1)

f’(XnHIXn):/f(XnHw)WO (0]7)) do =
e}

PRC is based on the sequential comparison (via their ratio) between the current
predictive distribution f (X,11|X,), which includes all the relevant information
from the process up to the current time, and the corresponding shifted predictive,
1 (Xns1]X,), representing the OOC shifted parameter scenario. The ratio of the

shifted predictive over the current predictive for X, will be:

K (7, +t/(Xop1))

L PEelX) K O K (60) K ()
T Kl X) © K (X)) T K t(Kaa)) K (1)
K(Tn) n+1

(3.1.2)

In general, the predictive distribution becomes available after the first observation,
except when we have Normal /Lognormal likelihood with both parameters unknown
and total prior ignorance (i.e. no historical data, so oy = 0 and we use the non-
informative reference prior as initial prior), where the predictive requires two obser-
vations to become proper. PRC will build up evidence by monitoring the log-ratio
of predictive densities, log(L,1), using a CUSUM. Precisely, starting with S; = 0
(or S; = Sy = 0, when we have two unknown parameters and total prior ignorance),

the one sided PRC statistic at time n + 1 will be:

Sp+1 =max{0,5, +log (Lns1)} or Sy =min{0,S, —log (L,4+1)} (3.1.3)

when we are interested in detecting upward or downward shifts respectively. Control-
ling S, 11 is performed in the same spirit as in traditional CUSUM, where an alarm
is raised when the cumulative statistic exceeds an appropriately selected threshold

value (also known as decision interval). Thus, the suggested control chart, will plot
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Spa1 versus the order of the data, having a horizontal line at height h to denote the
predetermined decision threshold, which we will derive in Section 3.2. An alarm will

be ringed, each time the statistic S,,,1 will plot beyond h.

From a Bayesian perspective, (3.1.2) is simply the predictive Bayes Factor at time
n + 1, comparing the OOC model (M : f' (X,11|X,,)) against the IC model (M, :

f (Xpni1|X0)), ice. Lnyy = Byt Therefore, the statistic S,;1 can be written as:

Spi1 = max {O, Sp + log (Bfg’l)} = max {0, Z log (Bﬁ)rl) } or

1=K

Spp1 = min{0,5, —log (B{y"")} = min {O, Z —log (Bﬁ{l)} (3.1.4)
for the upward or downward shifts respectively, where x (1 < k < n) is the last time
for which the monitoring statistic was equal to zero (i.e. S, = 0 and ¥/ > xk we have
|Se| > 0). In other words, S, represents the most recent cumulative logarithmic
Bayes Factor evidence, a quantity that is known in the Bayesian decision theory
framework to provide a summary of evidence for the alternative (OOC) M, against

the (IC) null M, model (West, 1986).

The designed OOC parameter shifts, along with the exact formula of the log(L, 1)
statistic used in PRC, can be found in Table 3.1.1, for various likelihood choices
(of discrete and continuous univariate data) that belong to the A-PREF and are
commonly used in SPC/M. To unify notation, we denote by D, = (Y, X,) =
(Y1y- -+ Yno, T1, - - -, Tp) the vector of historical and current data, w = (ay,...,ap,
1,...,1) the vector of weights corresponding to each element d; of D,, and we call

Np = ng + n the length of the data vector D,. Technical details regarding the
derivation of all these PRC models are available in Appendix A.
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3.1.2 Fast Initial Response (FIR) PRC

It is well known that the self-starting memory based charts have a weak response to
shifts arriving early in the process. Failing to react to an early shift will lead to its ab-
sorption, contaminating the calibration and reducing the testing performance. Lucas
and Crosier (1982) were the first to introduce the Fast Initial Response (FIR) feature
for CUSUM, by adding a constant value to the initial cumulative statistic, enhancing
its reaction to very early shifts in the process. Steiner (1999) introduced the FIR
EWMA by narrowing its control limits, with the effect of this adjustment decreasing
exponentially fast. For PRC, we propose an exponentially decreasing adjustment,

multiplied to the statistic log(L,1). Specifically, the adjustment (inflation) will be:
FIR,g = 1+ f-d*Y, (3.1.5)

where t is the time of the examined predictive ratio, f > 0 represents the proportion
of the inflation for the PRC statistic, log(Ln41), when ¢t = 1 and 0 < d < 1 is
a smoothing parameter, specifying the exponential decay of the adjustment (the
smaller the d the fastest the decay). As the first predictive ratio is available for the
second observation, we have t = 1 when n = 2. The only exception is when we have
two unknown parameters and total prior ignorance (i.e. use of initial reference prior

and ag = 0 due to lack of historical data), where we get t = 1 when n = 3.

The proposed FIR adjustment is more flexible compared to the fixed constant of
Lucas and Crosier (1982) FIR-CUSUM, as it allows to control the influence, by tun-
ing the initial parameters (f,d) providing a better interpretation. The FIR option
can improve the performance at the early start, but the choice of the adjustment
parameters must be prudent, avoiding to inflate significantly the false alarm rate.
The expected number of false alarms for PRC will depend on the prior settings,
especially when the volume of available data is small. Our suggestion is to be some-

what conservative, especially when a weakly informative prior is used, so that the
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FIR adjustment will not seriously affect the predetermined expected number of false
alarms. In general, we recommend to use (f,d) = (1/2,3/4), where the adjusted
log(Ly41) will be inflated by 50% for the first test, while the inflation will be only
5% at the ninth test (the choice of these parameters will reflect the user’s based

needs).

3.2 PRC design and Inference

3.2.1 Tuning the PRC

PRC is simply a sequential hypothesis testing procedure, where two competing states
of the predictive are compared via their log-predictive ratio, within a memory based
(CUSUM) control scheme. In the ratio, the denominator refers to the running (con-
sidered as IC) predictive model, while the numerator is the intervened (considered as
OOC) competing model. Our goal is to detect a transition from the IC to the OOC
model, as soon as it occurs, while keeping the false alarms at a low predetermined

level.

For the classical CUSUM process, where both IC and OOC models have all param-
eters known, certain optimality properties have been derived (like in Moustakides,
1986 or Ritov, 1990) along with theoretical results regarding the choice of the de-
sign parameters. Namely, numerical algorithms have been developed to compute the
IC Average Run Length, ARL, (i.e. the expected number of observations before
the occurrence of the first false alarm), as in Brook and Evans (1972). However,
such algorithms are not applicable to self-starting setups, where both the IC and
OOC distributions include unknown parameter(s) that we estimate online (i.e. these

distributions are not fixed, but sequentially updated).

When PRC alarms, the process should be stopped and examined thoroughly (trigger-

ing a potential corrective action), preventing further contaminated data from joining
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the calibration step. We will define as stopping time T of a PRC, tuned for an
upward shift:
T=inf{n+1: 5,41 > h} (3.2.1)

where n+1 > 2, except the special case with two unknown parameters and complete
prior ignorance, where we have n + 1 > 3, while A > 0 is a preselected constant to
guarantee a predetermined false alarm standard (for downward shifts in (3.2.1) we
have S,, 41 < h, with h < 0). The choice of h reflects on the tolerance that we have on
false alarms, measured via either the Family Wise Error Rate (FW ER), for a fixed
and not too long horizon of N data points or the In Control Average Run Length
(ARLy), when we have an unknown or a large N scenario. Due to the general form
of PRC’s mechanism, that allows hosting any distribution from the k-PREF, there
is no single optimal strategy in selecting h. In what follows, we will provide specific

guidelines for the selection of h, utilizing the distributional setup under study.

Scenario 1: the predictive distribution is a location-scale famaily.

In this case we will derive h via the standard predictive distribution (i.e. the distri-
bution with location=0 and scale=1). Then, at each step of PRC we will perform the
same location-scale transformation to both the IC and OOC predictive distributions,
so that each time the IC, f(X,1]/X,), becomes the standard predictive (note that
the location-scale transformation will be different at each step). The transformed
predictives will be used in the ratio (3.1.2). From the distributions in Table 3.1.1
the location-scale predictive is valid for the Normal and logarithmic transformed
Lognormal likelihood cases, where the logarithm of the standardized predictive ratio
(3.1.2) is tabulated. Algorithms 3 and 4 can be used to derive h, when we work
with either the FFW ER for a fixed horizon of N data or when we use ARLqy metric
respectively. Furthermore, in Appendix B we provide a table with the derived h
threshold values for various choices of (N, FWER) or ARL values, combined with
specific OOC shift sizes k, when we have total prior ignorance (i.e. use of initial

reference prior and no historical data).
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Algorithm 3 Determine PRC’s decision limit h based on FWER

1: Define the length of the data, IV, for which PRC will be employed {initial input}

@

10:
11:
12:
13:
14:

15:

16:

17:
18:

19:
20:

21:
22:
23:
24:
25:

Define the FIWWER that we aim to have at the N-th data point
Define the vector 7, which represents the OOC disturbance that we wish to
detect
Define the number of iterations, I, used in the empirical estimation
if {predictive distribution is a location-scale family} then

f (X)) = the standard distribution { loc.=0, sc.=1 and df,, = 2a, if X ~t }
else

f (X)) = the marginal (prior predictive) distribution from (11)
end if
Generate a matrix D of dimension I x N with random numbers from f (X)
Set S to be a matrix of dimension I x N filled with zeros

Set M to be a vector of dimension I filled with NAs
for {iin1:17}
for {nin1: (N —1)}
f(Dli,n+ 1] | D[i,1], ..., Dli,n]) L ,
Ly <+ FDlin+1]1 D, . Dli.n) { Predictive ratio}
Sli,n + 1] = max{0, S[i,n] + log(L,+1)}
(or Sli,;n+1] = min{0, S[i,n] —log(L,1)} for downward shifts) { PRC statis-
tic}
end for
M]i] < max{S[i,]|}
(or M[i] < min{S[i, |} for downward shifts)
end for
H + F7'(1 - FWER)
I
(or H « E-'(FWER) for downward shifts) { F}(z) — %Z 1{M[i] < 2} }
i=1
if {predictive distribution is a location-scale family} then

h < H {empirical estimate of h}
else

hpm < H {marginal based (conservative) empirical estimate of h}
end if
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Algorithm 4 Determine PRC’s decision limit h based on ARLj

1:
2:

10:
11:
12:
13:
14:
15:
16:
17:

18:

19:

20:
21:
22:
23:

24:

25:
26:
27:
28:
29:
30:
31:
32:

33:
34:
35:
36:
37:

Define the ARLy that you aim to have
Define the numerical tolerance tol, which represents the maximum of error esti-
mate
Define the vector 7, which represents the OOC disturbance that you wish to
detect
Define the number of iterations I, used in the empirical estimation
if {predictive distribution is a location scale family} then
f (X) = the standard distribution { loc.=0, sc.=1 and df,, = 2a, if X ~t }
else
f(X) = the marginal (prior predictive) distribution from (11)
end if
start function ARL(h)
Set M to be a vector of dimension [ filled with NAs
for {iinl:1}
Set S« 0
Set n <+ 1
Generate x, ~ f(X)
while {S < h (or S > h for downward shifts)}

Generate x,11 ~ f(X)
f(@nalz, . w)
f(@ngr|on, .o )

S < max{0, S + log(L,+1)}
(or S <= min{0, S — log(Ly+1)} for downward shifts) { PRC statistic }
Set n < n+1
end while
Mli] < n
end for

Ly < { Predictive ratio }

I
- — 1
return {ARL(h) - M} { M =—> Ml }
I
end function ARL(h)
Set hy =2 (or hy = —2 for downward shifts) the first initial value for h (or hy,)

Get ARL(hy) { wuse of function ARL(h)}
if {|ARL(h1) — ARLo| < tol}

H + hl

goto 48
end if

Set hy = 4 (or hy = —4 for downward shifts) the second initial value for h (or

hum)

Get ARL(hy) { wuse of function ARL(h)}
if {|ARL(hs) — ARLg| < tol}

H + hg

goto 48
end if
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(ha — ha)
5 H iy (ARLy —~ ARL(h2)) - ypros— s
39: Get ARL(H) { wuse of function ARL(h)}
40: while {|ARL(H) — ARLy| > tol}
(hg — hy)

e H o= o (ARLy = ARL(:)) o S = AR T )

42:  Get ARL(H) { wuse of function ARL(h)}

43: hl — hg

44: h2 +— H

45: end while

46: if {predictive distribution is a location scale family} then

47 h <« H { empirical estimation}

48: else

49:  hy, < H { marginal based (conservative) empirical estimation}
50: end if

{ regula falsi estimate}

{ regula falsi estimate}

Scenario 2: the predictive is not location-scale family, but we have an informative
PTIOT.

The unknown parameter(s) and the lack of standardization (since we do not have
location-scale family) prevent from deriving the sampling predictive distribution as
in scenario 1. Our suggestion is to use the marginal (prior predictive) distribution
to generate imaginary data. Using the power prior (2.1.3), the general form of the

marginal distribution will be available in closed form:

K (7 + aota(Y) + £¢(X))
K(T + Oéoth(Y))

F(X|Y a0, 7) = / F(X]0)7(BIY, g, 7)d6 = 9(X)

(3.2.2)
The marginal, is a compound distribution of the likelihood and the prior, with the
unknown parameter(s) being integrated out. It has heavier tails (greater variance)
compared to the likelihood, leading to an estimated decision limit h,,(# h) that will
result a more conservative FW ER or ARLq metric. Essentially, the likelihood based
threshold A is a limiting case of the marginal-based threshold h,,, when the prior
variance tends to zero. Thus, we can generate imaginary data from the marginal, in
order to control either the FW ER or the ARLy and derive the h,, threshold from

Algorithm 3 or 4 respectively.
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An important issue in this proposal, is that the prior needs to be informative, oth-
erwise the marginal would be too diffused compared to the likelihood, resulting an
upper or lower bound h,, that will be too conservative (i.e. |h,,| will seriously over-
estimate |h|, decreasing significantly the false alarms and the detection power). We

propose to measure the discrepancy of the likelihood over the marginal variance by:

Var(X|0) B
Eo <Var(X|Y,a0,T)) —7 (3:2:3)

The ratio parameter p < 1 expresses the expected underdispersion of the likelihood
variance versus the marginal variance. When p — 1 (i.e. we use a highly informa-
tive prior), then the marginal is a reliable representative of the likelihood, resulting
h.,, — h. After an extensive simulation study, we recommend to use the marginal
distribution approach only when the distributional setting roughly satisfies p > 0.9.
Table 3.2.1 provides the formulas for estimating p for each of the likelihoods reported
in Table 3.1.1 (that do not fall in the location-scale family treated by scenario 1),
where for the power prior term, we assume the historical data Y = (y1,...,Yn,),

that are weighted by «q (for no historical data, set ag = 0).

In Figure 3.2.1 we provide some illustration of the achieved FWER and ARL
metrics in a Poisson and a Binomial likelihood scenario with varying p and parameter
values, when the OOC scenario was set to shifts of size & = 2 (i.e. double the
Poisson rate parameter or double the expected odds in the Binomial). The designed
performance metrics were FWER = 5% for a sequence of N = 50 observation or
ARLgy = 100 while the achieved values in each case were obtained by averaging over
100,000 iterations of the IC process. As the prior becomes more informative, we
have h,, — h, where h corresponds to the (unknown) threshold with the designed
FWER or ARLq performance. The convergence of h,, to h will depend primarily

on the value of p and to a smaller degree on the actual parameter values.

Scenario 3: neither the predictive is location-scale family nor we have an informa-
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Likelihood Initial Prior Expected Ratio (3.2.3)
f(-16) mo(6]7) p
1
P(0-s;) G(c,d) -
d —+ O[OZS]' =+ 1
j=1
. N
Bin(N;, 0) Beta(a, b) 1-— o
a + b + OéoZN]' + N
j=1
NDBin(r,0) Beta(a,b) 1-— - r
b+ aOZyj —14r
j=1
«
G(a,0) G(c,d) 1-

c+a-(apno+1)—1

We.r)  IG@pB) 1- w2 (1 7) [rie v r(asaon 2 ) s (1- 7))
F(a—l—ozono)F(a—l—ozonO—%)p(1+%>+F2 (1+%>F2 (1_%)

a—2

1G(a, ) G(c,d) 1—

c+a-agng — 1+«

vors (72)
Pa(m,0) (c,d) -
e QY (S e (U

Table 3.2.1: The expected ratio of the variance of the likelihood f(X]0) over the
variance of the marginal f(X|Y, ag, ), defined in (3.2.3)

tive prior.

When our distributional setup does not conform with either scenario 3 or 4, we face
the most challenging case. Since we do not have a reliable way to estimate h us-
ing imaginary data, we will make use of the predictive Bayes factor to form some
evidence based limits for the charting statistics S,.;. In (3.1.4) we expressed S, 11
as the zero truncated cumulative logarithmic Bayes Factor, which measures the ev-
idence of the alternative model M; (OOC) against the null M, (IC). In addition,
under the assumption that the IC and OOC models are equally probable a-priori,
ie. P(Mp) = P(M,), then B! is simply the posterior odds of the two models.

Kass and Raftery (1995), following Jeffreys (1961), provided an analytical interpre-
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Figure 3.2.1: The h,, based achieved FW ER and ARLg metrics for different param-
eter values as function of p in a Poisson or a Binomial PRC process. The horizontal
lines indicate the target value of FW ER = 5% (with N = 50) and ARLy = 100, while
for the FIR adjustment it was used (f,d) = (1/2,3/4).

tation of B! and offered threshold values for decision making. Based on these

: : n+1
guidelines, when B

> 100, then the evidence against the null model is referred
as “decisive”, since the posterior probability of the alternative model will be at least
100 times greater than the corresponding of the null. Thus, we recommend to use
hgr = log(100) =~ 4.605 as an evidence based limit for S, ;. In other words, if

Snt+1 > hpp (or S,+1 < —hpp for downward shifts), then we have a decisive cumu-

lative evidence in favor of the OOC state.

The evidence based limits can be used for a few initial steps to monitor the process.
At each step, as long as the posterior odds reveal that we are in the IC state, we
can use the obtained data to update the prior setting (since the posterior at each
time point acts as prior for the next observable) and examine whether it becomes

informative (based on p) or not. Once we have an informative prior we move to



3.2. PRC design and Inference 85

scenario (2), generating imaginary data from the marginal and deriving h,,, initiating

a new PRC.

In Figure 3.2.2 we summarize all the proposed options for deriving a PRC’s decision
threshold. The threshold h, will depend on the likelihood of the data, the prior set-
tings and the intervened vector 7;,, with the latter reflecting the discrepancy between
the current (IC) and the intervened (OOC) distribution. In general, assuming that
the deviation between IC and OOC state is considerably large, then if a change of
smaller size occurs, PRC might absorb it. On the other hand, if the real shift is
greater than the one we have set, then PRC probably will have a slightly delayed
alarm, but is expected to react. Therefore, the choice of the OOC state must take
into account the absorption risk, avoiding setting PRC for very large shifts (a similar
discussion regarding SSC can be found in Zantek, 2006). This is an issue, closely
related with West’s (1986) CBF methodology, where the alternatives are set to be
diffused, allowing potentially large shifts, a strategy that has a high risk in absorb-
ing small shifts and not reacting on them (for more information refer to Subsection

3.3.1).

Since for scenarios 2 and 3 in determining the decision threshold, we will have h,, to
be a more conservative estimate, resulting lower false alarms (from what we design),
the use of FIR-PRC is motivated. Additionally, in some cases of handling big values
of ARLy, the FIR adjustment might be implemented for longer periods of data and
not just for the very few first observations (Figure 3.2.1 visualizes the benefit of

FIR-PRC).

3.2.2 PRC based inference

The control chart associated with PRC has the familiar form of a CUSUM, where the
monitoring statistic S,1 (from either (3.3.1) or (3.1.4)) is plotted versus time with

a horizontal decision limit A, derived in Section 3.2, acting as an upper /lower control
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Is the
predictive
location-
scale?
YES

Scenario 1: Via
standardization,
derive h using
Algorithm 3 or 4

Scenario 2: Gener- 0

ate imaginary data Scenario 3: Use
from the marginal the posterior odds to
and derive h,, via monitor the process

Algorithm 3 or 4

¥
If the evidence is in
favor of the IC state, !
update the prior using -
the posterior and
estimate the running p

Figure 3.2.2: Determining the decision threshold h for a PRC scheme. A decision is
represented by a rhombus and a rectangle corresponds to an operation after a decision
making.

limit in detecting upward/downward shifts (graphical illustrations are available in
Section 3.4). The area between the horizontal axis and h is considered as the IC
region, so when S,, 1 plots beyond the control limit A, then we raise an alarm and
our suggestion is to stop the process and examine for an assignable cause, triggering
a potential corrective action. From a root cause analysis point of view, a CUSUM
alarm will indicate not only that the IC state has been rejected, but it will also
offer an estimate of the time where the OOC state was initiated, which is simply
the latest time for which we had S,,.; = 0. Once we correct the problem, then PRC
is suggested to be reinitiated, using all past IC recordings as historical data in the

power prior.

If we will not react to an alarm, then due to the dynamic update of PRC, OOC data
will be involved in the learning process, affecting what is considered as IC state. As
a result, the monitoring statistic will start moving back to the IC region. This is a
well known issue for the self-starting methods, reported in the literature as “window

of opportunity” for a control chart to alarm, before the running statistic stops to



3.3. Comparative study and sensitivity analysis 87

alarm (in contrast to the fixed parameter CUSUM, where there is no updating and

so an alarm will tend to persist). Thus, it is strongly recommended to act upon a

PRC alarm.

As we mentioned earlier, PRC’s monitoring can be considered as a sequential hypoth-
esis testing regarding the unknown parameter. Furthermore, within the Bayesian de-
cision theory framework, one can derive the point/interval estimate of the unknown
parameter. Precisely, when the process is under the IC state, the posterior distri-
bution of the unknown parameter(s) can be used to derive a Bayes point estimate
(like the posterior mean under squared error loss) or the Highest Posterior Density
(HPD) credible set. Such inference is also available via the predictive distribution

when forecasting might be of interest.

Quite often in practice, we might need to employ more than a single PRC, like when
we monitor the mean of a Normal distribution for either an upward or a downward
shift. In such cases, we need to account for the multiple testing and so if we use the
FW ER metric we simply need to adjust its value, using for example the Bonferroni’s
correction (Dunn, 1961). For the ARL metric, one can refer to Hawkins and Olwell
(1998) among others, on how to combine the individual CUSUM ARLs, in getting
a designed overall ARL.

Summarizing, all the possible options of PRC are provided next, both in pseudo-code

in Algorithm 5 and in a flowchart in Figure 3.2.3.

3.3 Comparative study and sensitivity analysis

3.3.1 Competing methods

The first competing method of the study is SSC, which was demonstrated in chapter 7
in Hawknis and Olwell (1998) and we will present it for Normal, Poisson and Binomial

data. The SSC charts use the @) statistics, which were presented in Subsection 2.3.2.
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Algorithm 5 PRC algorithm

Determine the PRC model from the Table 1 and define the size of the shift & {
Model }
Determine either the length of data N with FW ER or the ARLy { FA tolerance
}
Is prior information available? { initial prior mo(-) }
YES
Determine the hyperparameters of the initial prior 7
NO
Set the initial reference prior
Are prior data available? { power prior }

YES

Provide the historical data Y and determine oy
NO

Set ag =0

Choose the appropriate threshold h based on Section 3.2 { Decision Threshold
}
Is FIR-PRC of interest? { FIR }
YES

Determine the parameters (f,d) in (13)
NO

Set f =0 in (13)
Once the data point z, (n > 1%) arrives, derive the predictive distribution of
next observable X, 11| (X,, Y, o, T)
Obtain z,,+1 and calculate F IRy - log(Ly11) in (7) and S,4q in (8) { Sy41 }
if S,+1 <h (or Sp41 > h for downward shifts) then { test }

n<n+1

goto 19
else { Stopping time alarm}

Raise an Alarm

if you do not make a corrective action then

goto 22
else
end PRC scheme

endif

endif
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Choose the PRC model from the Table 1 and define the size of the shift &

Set the initial
reference prior

Determine the initial
prior hyperparameters 7

Prior
Information?

Provide the historical data
and determine « in (2)

\/

Choose the appropriate threshold h based on Section 3.2
Y

Historical
Data?

Ditzarmmsita () i (1) R NO | Set f=0in(13)

\/

Obtain ,, (n = 1 or 2%)
)
Obtain z,41 and calculate FIR,g - Lyt in (7) and S,4q in (8)

YES NO Stopping

Time!

Corrective
Action?

n+<n+1

Figure 3.2.3: PRC flowchart. A parallelogram corresponds to an input/output
information, a decision is represented by a rhombus and a rectangle denotes an
operation after a decision making. In addition, the rounded rectangles indicate the
beginning and end of the process.

*For the likelihoods with two unknown parameters and total prior ignorance
(i.e. initial reference prior and ap = 0 in the power prior) we need n = 3 to initiate
PRC, while for all other cases, PRC starts right after 1 becomes available.
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After calculating the @) statistic at time n 4+ 1, then a CUSUM chart is constructed
for it. Thus, the formula of one sided SSC is:

Sn+1 = maX{O, Sn + Qn+1 — k'} or Sn+1 = min{O, Sn — Qn+1 + k} (331)

for upwards and downwards shifts respectively, where k is a reference value which
determines the size of the shift for which the SSC is tuned. Hawknis and Olwell
(1998) and Zantek (2006) discussed about the selection of k. For Normal data, if we
are interested in detecting a shift for the variance, then we employ the square of the
calculated statistic. In other words, a scale SSC is employed if in the formulas of
Spt1 we replace Qny1 by Q2. ;. We ring an alarm, if |S,11| > |hgsc|, where hgse is

a threshold appropriately chosen to respect to the false alarm criterion.

The second competing method is CBF by West (1986) and West and Harrison (1986).
In the same philosophy with PRC, CBF uses the ratio of posterior predictive distribu-
tions. The main difference between these two procedure is that, while the predictive
f(Xn41|X,) that represents the IC state is identical, the OOC predictives differ.
The CBF’s alternative predictive f4 (X, 11|X,) will be a diffused version of the IC
predictive, with the same mean but a greater variance. Specifically, the variance of

the neutral alternative will be:
Var (Xn41|X,) = Vara (X1 X,) /7 (3.3.2)
where 0 < r < 1 is the discount factor. The Bayes’ factor at time n + 1 will be:

Hpy = / (Xn+1|Xn) /fA (Xn+1|Xn> (3'3'3)

Small values H,.; indicate poor predictive performance of IC state. Then, the

cumulative Bayes’ factor of the most recent k observations is defined as:

Wn+1(k) = Hn+1 . Hn et Hn_k+2 - Hn_;’_]_ : Wn(k) (334)
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for n+1 > 2. As West and Harrison (1986) denoted, a single small H,, ;1 = W,,11(1)
provides a warning of a potential outlier at time n + 1 or the or the onset of change,
while a small W,, (k) for k£ > 1 suggests a possible change in the past. Finally, the
cumulative statistic is given the formula:

Vor1(k) = min W, (k) = Hpyq min{1,V,}. (3.3.5)

1<t<n+1

We ring an alarm, if V,,; 1 (k) drops below a predetermined threshold hopr a threshold

appropriately chosen to respect to the false alarm criterion.

3.3.2 Simulation study

In this subsection, we will evaluate the performance of PRC and compare it against
SSC and CBF. The comparison will involve data from Normal, Poisson or Binomial,
i.e. the most studied distributions in SPC/M. The goal will be to detect as soon as
possible, step changes for the mean or inflation for the standard deviation in Normal
data (when both parameters are unknown), rate increases in Poisson and increases
in the odds of the success probability in Binomial data (all cases refer to typical

process deterioration in SPC/M).

All competing methods, are aligned to have identical false alarm rate, while they
are designed appropriately to detect the OOC scenario under study. Specifically, we
tune the parameter k& in PRC, the reference value of SSC, and the discount factor
of CBF, to reflect on the size of the shift that we aim to detect. For the SSC
with discrete distributions (i.e. Poisson and Binomial) we follow the suggestion (in
chapter 7) of Hawkins and Olwell (1998), where the normal scores obtained based on
the proposal of Quessenberry (1995) are winsorized by replacing, whenever necessary,

the undefined @~1(1) by #71(0.995).

To derive the decision limit of each method, we simulate 100,000 IC sequences of
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size N = 50 observations from N (6; =0, 62 = 1) (that will be used for both the
mean and the variance charts), P (03 = 1) and Bin (40, 6, = 0.025). In SPC/M we
typically use Poisson or Binomial to model count or proportion of defects respectively
and so small parameter values are more realistic. Furthermore, the Bayesian PRC
and CBF methods require to define a prior distribution and so within this simulation
we will take the opportunity to perform a sensitivity analysis, examining the effect of
the presence/absence of prior information (reflecting the subjective/non-informative
point of view). Therefore, for each scenario, we will compare the SSC against two
versions for each of PRC and CBF (with/without prior knowledge). The initial priors

mo(+|7), considered are:

e Normal: reference (non-informative) prior mo (61,63) o 1/65 = NIG(0,0,—1/2,0)
or the moderately informative N1G(0,4,2,1.5).

e Poisson: reference (non-informative) prior mo (63) oc 1/4/03 = G(1/2,0) or the
moderately informative G(4,4).

e Binomial: reference (non-informative) prior my (64) o< 1/4/04(1 — 04) =

Beta(1/2,1/2) or the moderately informative Beta(4, 156).

The OOC scenarios that will evaluate the detection power of the competing methods,
come from the 100,000 IC sequences of length N = 50, where small or medium
permanent parameter shifts (i.e. step changes) are introduced at one of the locations
w = {11,26 or 41}. In other words, we have three scenarios for the unique change
point location w: either at the start, or in the middle, or near the end of the sample.

For each location we will consider two shift sizes, which will be:

e Normal (mean): mean step change of size {16, or 1.505} = {1 or 1.5}, i.e. after

the change point w, the OOC data come from N(1,1) or N(1.5,1).

e Normal (standard deviation): sd inflation of size {50% or 100%}, i.e. after the
change point w, the OOC data come from N (0,1.5%) or N (0, 2%).

e Poisson (rate): parameter increase of size {50% or 100%}, i.e. after the change
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point w, the OOC data come from P(1.5) or P(2).

e Binomial (probability of success): an increase of size {50% or 100%} for the
odds of success, i.e. after the change point w, OOC data come from Bin(40,0.037)
or Bin(40,0.049).

Next, we provide the performance metrics used to evaluate the competing charts.
First, we align all methods to have 5% Family Wise Error Rate (FWER) when we
have IC data of length 50, i.e. FWER(N) = P(T < N|w > N) = 0.05, where T
denotes the stopping time, w is the time of the step change and N = 50 (length of the
data in this study). Regarding OOC detection, the main goal of self-starting methods
(especially in short runs), is to be able to ring an alarm before they absorb a change
and also minimize the delay in ringing the alarm. The former, will be assessed, in
the same philosophy as Frisen (1992), using the Probability of Successful Detection
(PSD), where PSD(w) = P(w < T < N) and the bigger PSD(w), the better. For
the latter, we estimate the delay of an alarm similar to Kenett and Pollak (2012),
using the truncated Conditional Expected Delay, which is:

E,(T—w+1) T<ren)
Plw<T <n)

tCED(w)=E,(T—w+1llw<T<n)= (3.3.6)

and it is the average delay of the stopping time T, given that this stopping time
was after the change point occurrence and before the end of the sample (i.e. point
of truncation) and the smaller the delay the better the performance. tCED is in
the same philosophy with Average Detection Delay ADD(7) = E. (T — 7|T > 1),
which is minimized by the classical Shiryaev’s process. In addition, other optimality
properties have been investigated by Pollak and Tartakovsky (2009), however these
problems are open when these distributions include unknown parameters. It is worth
mentioning that the aforementioned metrics are more realistic compared with the
rather restrictive Average Run Length (ARL, Lorden 1971), which in fact cannot be

applied in self-starting procedures, especially when we have short runs.
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The simulation results are summarized graphically in Figure 3.3.1 (and analytically in
Table 3.3.1). Overall, the PRC outperforms both competing methods in all scenarios
of jump sizes and change point locations, as it has steadily better performance in
the detection ability and better or similar performance on the delay in signaling an

alarm.

Initially, for the detection performance within each method, we observe (as it was
expected) that the bigger the size of the shift, the higher the detection power. Re-
garding the effect of the location w, we observe that in all cases the best performance
appears when the change point is at the middle of the sequence (w = 26). The lower
performance in the start (w = 11), is related to the fact that the learning process is
not as mature as in the middle of the sequence. For the change near the end (w = 41)
despite the fact that the learning has been significantly improved the performance
decreases as there is not sufficiently long time to build up the evidence and ring an
alarm (there exist only 50 —w + 1 = 10 observations until we reach the end of the

data sequence).

Comparing across methods via PSD(w), we observe that the PRC achieves higher
detection percentage than SSC for all distributions, shifts and locations. The PRC’s
outperformance against SSC is valid irrespectively of whether we have an informa-
tive or not prior distribution and their difference is greater at w = 11 (the earlier
the shift the bigger the difference). The SSC’s significantly lower performance versus
PRC (even when a reference prior is in use) in the discrete distributions can be at-
tributed to the fact that SSC is using an approximation to normality algorithm that
in discrete data can be poor. The CBF, with one exception, is having the lowest
performance of all competing methods. This is the price that CBF pays for aim-
ing to be general and not specifying a target OOC distribution (it simply diffuses
the predictive distribution keeping the same location). The exception is when we
study shifts in the standard deviation of the normal data, where the CBF becomes

informative, since the alternative (OOC) scenario involves the same location and
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inflated variance. Thus, for this specific scenario, CBF coincides with PRC provid-
ing identical performance. Regarding tC'ED(w), we observe that PRC is indifferent
from SSC in Normal data (and better from CBF in normal mean PRC), while for
the discrete distributions we have PRC to have comparable performance with CBF
and a lot better (i.e. smaller delay) when compared to the SSC. Finally, the prior
sensitivity indicates that even moderately informative prior information enhances
the performance of PRC (and CBF). This is more intense at the early stages of the

process (w = 11), when the volume of the data is very low.

3.3.3 PRC Robustness and FIR implementation

Like in Subsection 2.4, we will examine how robust is the PRC in misspecification
of the setup and we will also perform a short simulation study for the evaluation of
the performance of the FIR-PRC scheme. Namely, we will compare PRC, SSC and
CBF, when we have:

(a) distributional violation (i.e. data are generated from a different distribution

than the one assumed),

(b) jump misspecification (i.e. the real change in the process is different from the

one that is tuned),

(c) misplaced prior distribution (i.e. the prior mean is significantly different than

the real mean of the process),
(d) early shifts in a FIR-PRC scheme (i.e. shifts at the early start of the process).
For (a), we will examine the following scenarios:

e run the PRC process for the mean of Normal data, while the real data are

generated from a Student t5 distribution,
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Figure 3.3.1: The FWER(k) at each time point k = 2,3,...,50, the probability
of successful detection, PSD(w), (%) and the truncated conditional expected delay,
tCED(w) for shifts at locations w = {11,26,41}, of SSC, CBF and PRC, under a
reference (CBF,, PRC,) or a moderately informative (CBF,,;, PRC,,;) prior. The
results refer to Normal data with step changes for the mean of size {162, 1.565}, Normal
data with inflated standard deviation of size {50%,100%}, Poisson data with rate
increase of size {50%,100%} and Binomial data with increases for the odds of size

{50%, 100%}.
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e run the PRC process for the mean of Normal data, while the real data are

generated from a Gumbel (u = —0.5, f = 0.8) distribution,

e run the PRC process for Poisson data, while the real data are generated from

a NBin (r =4,p = 1/5) distribution.

In the distributional violation scenarios, the shifts will be of size 1sd of the actual
distribution. Regarding (b), we will set all the methods for step changes in the mean

of Normal data size of 1o, while the real jump will be:
e a mean step change size of 0.50,
e a mean step change size of 1.5sd,
e a sd inflation size of 100%.

The prior distributions (reference prior and moderately informative) for (a) and (b)
will be identical to the ones used in Subsection 3.3.1. For the prior misspecification
scenario (c), we will examine the performance of both the Bayesian methods, PRC
and CBF, misplacing moderately informative priors. Precisely, we will set the pro-
cesses for mean step changes size of 1o with IC sequences from a standard Normal
distribution. But, instead from the moderately informative NIG(0,4,2,1.5) with

prior mean pgy = 0, we will use the misplaced priors:
e NIG(0.5,4,2,1.5) with prior mean py = 0.5,
e NIG(—0.5,4,2,1.5) with prior mean py = —0.5.

The locations of the change points for all the above misspecification scenarios will
be the same with those in Subsection 3.3.2, i.e. we will introduce contaminated
data starting from w = {11,26 or 41} until the end of the sample (N = 50). As
regards the FIR-PRC implementation in (d), we will examine its performance using
the somewhat conservative choice of (f,d) = (1/2,3/4). The setup will be the same
as that of Subsection 3.3.1 with mean step changes of 1o in Normal data, introducing

at early locations w = {6 or 11}.
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Figure 3.3.2: The FWER(k) at each time point k = 2,3,...,50, the probability of suc-
cessful detection, PSD(w), (%) and the truncated conditional expected delay, tC'ED(w) for
shifts at locations w = {11, 26,41}, of SSC, CBF and PRC, under a reference (CBF,, PRC,)
or a moderately informative (CBF,,;, PRC,,;) prior for OOC scenarios with misspecified
distributions. All the procedures are set for a mean step change size of 1o in data from a
standard Normal or an rate increase of 50% in Po(1) data.

Figures 3.3.2, 3.3.3, 3.3.4 and 3.3.5 provide a graphical representation of the results
of Tables 3.3.2, 3.3.3 3.3.4 and 3.3.5, regarding the performance for misspecification
in the distribution, the kind of the shift and the prior, along with the FIR-PRC
respectively. As we see, PRC is less affected by the distributional violation in either
the false alarms in a IC sequence or the detection power in the OOC scenarios.
Specifically, the false alarms of SSC and CBF are unacceptable high in most cases,
while those of PRC are close to the predetermined, especially with the reference
prior, where PRC is almost unaffected. In addition, PRC has greater detection

percentages, especially using the moderately informative prior.
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e PRC,,; PRC, CBF,, CBF.
Actual » PSD(w)% PSD(w)% PSD(w)% PSD(w)% PSD(w)%
Distribution tCED(w) tCED(w) tCED(w) tCED(w) tCED(w)
(sd(tCED(w))) (sd(tCED(w))) (sd#CED(w))) (sd(tCED(w))) (sd(tCED(w)))
e 7.685% 6.217% 5.410% 22.942% 15.222%
2 37.130% 63.885% 37.932% 26.015% 12.102%
= 11 13.411 12.596 13.756 19.376 22.034
o (8.713) (7.794) (3.288) (10.187) (10.587)
p— 62.920% 76.107% 64.688% 41.083% 26.663%
+ ts 26 10.956 10.422 11.140 10.858 11.354
— (5.658) (5.458) (5.547) (6.533) (6.635)
39.057% 47.175% 40.062% 23.203% 17.483%
<~ 41 6.727 6.656 6.850 5.623 5.719
T (2.256) (2.224) (2.183) (2.764) (2.748)
e 9.247% 6.013% 5.272% 14.542% 13.421%
+ 41.658% 53.488% 36.462% 19.560% 13.361%
n 11 13.152 14.237 14.105 21.824 21.841
i (9.092) (8.450) (3.813) (10.128) (10.728)
e 58.958% 67.790% 58.332% 36.149% 28.717%
Gu(—0.5,0.8) 26 10.703 10.907 11.127 11.483 11.197
o (5.856) (5.679) (5.728) (6.662) (6.752)
(<)} 36.204% 40.736% 35.881% 22.105% 18.941%
j— 41 6.454 6.562 6.663 5.562 5.535
S (2.392) (2.318) (2.208) (2.751) (2.755)
e e 6.379% 11.148% 2.204% 26.677% 21.836%
O 10.121% 48.294% 16.081% 34.639% 32.524%
[«D) 11 30.258 19.315 23.484 34.639 32.524
o, (7.721) (9.962) (9.245) (11.246) (11.291)
0 15.449% 48.547% 22.867% 28.720% 27.625%
o NB@1/5) % 17.083 12.980 15.177 11.986 11.916
= (6.042) (6.435) (6.015) (7.141) (7.514)
8.579% 20.601% 8.024% 13.801% 13.396%
2 41 6.293 6.301 6.779 5.327 5.324
(2.726) (2.619) (2.527) (2.859) (2.863)

Table 3.3.2: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for w =
{11,26, or 41}, of SSC against PRC under a moderately informative prior (PRC}y,;)
or the reference prior (PRC)) and CBF under a moderately informative prior (PRC;)
or the reference prior (CBF;.) for OOC scenarios with misspecified distributions. All
the procedures are set for a mean step change size of 1o in data from a standard
Normal or an rate increase of 50% in Po(1) data.

Regarding the misspecification in the shift, PRC is still robust, even when smaller
changes from what we designed occur. Especially under the presence of IC prior
information, PRC has significantly high detection percentages. Seemingly, the only
exception is in the case of a change in variance. There, the CBF has a superior
performance, but this is expected because, as we have mentioned, CBF is essentially
a method that can successfully detect changes in variance. Moreover, it is identical

to the PRC in this case, so the exact same performance would have achieved by a



3.3. Comparative study and sensitivity analysis 101

PRC for the variance.
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Figure 3.3.3: The FWER(k) at each time point k = 2,3,...,50, the probability of suc-
cessful detection, PSD(w), (%) and the truncated conditional expected delay, tC'ED(w) for
shifts at locations w = {11, 26,41}, of SSC, CBF and PRC, under a reference (CBF,, PRC,)
or a moderately informative (CBF,,;, PRC,,;) prior for OOC scenarios with misspecified
jumps. All the procedures are set for a mean step change size of 1o in data from a standard
Normal distribution.
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ssc PRC,; PRC, CBF,, CBF,
Jump K PSD(w)% PSD(w)% PSD(w)% PSD(w)% PSD(w)%
tCED(w) tCED(w) tCED(w) tCED(w) tCED(w)
(sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w)))
IC 4.943% 4.917% 4.879% 4.871% 4.824%
10.707% 16.954% 11.683% 4.943% 4622%
11 17.261 18.519 17.715 27.577 24.930
(10.442) (9.743) (10.123) (8.394) (9.753)
&2 15.775% 22.115% 17.122% 8.199% 6.557%
& 050 26 13.049 13.171 13.128 13.842 12.951
= (6.229) (6.174) (6.203) (6.739) (6.997)
7.078% 9.279% 7.440% 4.693% 3.715%
= 41 6.861 6.858 6.901 5.847 5.780
c— (2.408) (2.392) (2.393) (2.785) (2.805)
63.772% 92.249% 67.982% 11.736% 4.214%
= 11 11.436 9.774 11.807 15.774 14.812
D) (7.325) (6.003) (7.170) (8.503) (9.401)
- — 93.854% 97.632% 94.831% 58.903% 39.695%
“— 150 26 8.277 7.304 8.250 10.361 10.225
. (4.446) (3.779) (4.302) (5.909) (6.043)
© 80.003% 85.372% 80.954% 47.309% 37.820%
) 41 6.029 5.794 6.069 5.846 5.949
oy (2.119) (2.075) (2.083) (2.583) (2.593)
" 16.435% 22.384% 19.958% 88.688% 55.722%
o 11 15.566 17.148 18.534 15.721 19.648
s (11.139) (10.535) (11.027) (8.585) (9.531)
32.170% 36.199% 26.820% 94.630% 87.762%
= 100% 26 10.253 10.932 11.242 9.209 10.409
(6.446) (6.433) ()6.487 (5.572) (5.985)
24.420% 25.208% 20.330% 68.253% 61.292%
41 5.707 5.846 5.980 5.422 5.629
(2.597) (2.564) (2.551) (2.656) (2.657)

Table 3.3.3: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for w =
{11,26, 41}, of SSC against PRC under a moderately informative prior (PRC},;) or
the reference prior (PRC,) and CBF under a moderately informative prior (PRCp;)
or the reference prior (CBF,) for OOC scenarios with misspecified jumps. All the
procedures are set for a mean step change size of 1o in data from a standard Normal

distribution.

Continuing with the misplaced prior, PRC is very robust, even if the prior is on

the side of the jump (PRC,). Finally, the FIR-PRC with a conservative choice of

(f,d) boosts the performance, especially at w = 6, while it has only a small effect

on the false alarms. This is of great importance if we wish to detect changes at the

beginning of a process.
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PRC Performance (Normal data)
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Figure 3.3.4: The FWER(k) at each time point k = 2,3,...,50, the probability
of successful detection, PSD(w), (%) and the truncated conditional expected delay,
tCED(w) for shifts at locations w = {11,26,41}, of PRC under two misplaced mod-
erately informative priors in the positive and the negative respectively (PRCy and
PRCY) along with the and CBF under the same priors (CBF; andCBF_). All the
procedures are set for a positive mean step change size of 1o in Normal data.

PRC, PRC_ CBF. CBF._
Jump K PSD(w)% PSD(w)% PSD(w)% PSD(w)%
tCED(w) tCED(w) tCED(w) tCED(w)
(sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w)))
2 IC 5.962% 5.885% 3.648% 3.655%
o 38.703% 70.832% 3.791% 5.700%
= 11 16.549 12.059 25.806 19.439
~ (8.709) (7.738) (8.897) (9.502)
"8 65.132% 79.485% 16.704% 24.532%
O 1o 26 11.981 10.366 13.115 12.254
= (5.609) (5.478) (6.456) (6.351)
% 37.880% 48.775% 12.556% 16.708%
g 41 6.982 6.643 6.149 6.135
(2.128) (2.243) (2.685) (2.650)

Table 3.3.4: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for w =
{11,26,41} of PRC under two misplaced moderately informative priors in the positive
and the negative respectively (PRCy and PRC.) along with the and CBF under the
same priors (CBFy andCBF_). All the procedures are set for a positive mean step
change size of 1o in Normal data.
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FIR-PRC Performance (Normal data)

©- SSC
~7- CBF, (reference)
S —v— CBFy; (moderately informative)
A PRC; (reference)
—4— PRC,,; (moderately informative)
--8-- FIR-PRC; (reference)
—s— FIR-PRCy, (moderately informative)
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16, step change
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Figure 3.3.5: The FWER(k) at each time point k = 2,3,...,50, the probability
of successful detection, PSD(w), (%) and the truncated conditional expected delay,
tCED(w) for shifts at locations w = {11,26,41}, of SSC, CBF and PRC, under a
reference (CBF,, PRC,) or a moderately informative (CBF,,;, PRCy,;) prior. Along
with the standard version of PRC, the FIR-PRC (FIR — PRC,,; and FIR — PRC),)
with (f,d) = (1/2,3/4) is employed. The results refer to Normal data with step change
of 1o for the mean.

SSC PRC,,; PRC, CBF,,; CBF, FIR — PRC,,; FIR — PRC,
Jump K PSD(w)% PSD(w)% PSD(w)% PSD(w)% PSD(w)% PSD(w)% PSD(w)%
’ ) tCED(w) tCED(w) tCED(w) tCED(w) tCED(w) tCED(w) tCED(w)
(sdtCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sd(tCED(w))) (sdtCED(w))) (sd(tCED(w)))
Ie 4.943% 4.917% 4.879% 4.871% 4.824% 5.278% 5.691%
12.966% 36.430% 13.733% 2.180% 2.360% 44.568% 17.880%
m 6 16.769 16.457 18.132 31.805 31.090 14.224 15.361
— (10.923) (9.367) (10.400) (9.507) (10.446) (9.163) (10.283)
(S 31.716% 58.059% 34.978% 5.790% 3.927% 60.181% 37.070%
11 13.926 13.916 14.351 22.534 20.867 13.354 13.650
(8.772) (8.142) (8.517) (9.507) (10.446) (8.127) (8.542)

Table 3.3.5: The percent probability of successful detection, the truncated conditional
expected delay and the corresponding standard deviation (in parenthesis) for 7 =
{6,11}, of SSC against PRC under a moderately informative prior (PRC),;) or the
reference prior (PRC,) and CBF under a moderately informative prior (PRC,,;) or
the reference prior (CBF;). Along with the standard version of PRC, the FIR-PRC
(FIR — PRC,,; and FIR — PRC,) with (f,d) = (1/2,3/4) is employed. The results

refer to Normal data with step change of 1o for the mean.
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3.4 PRC real data application

3.4.1 PRC application to Normal data

In this Section we will illustrate the use of PRC in real data, assuming normality.
Regarding the continuous case, we will use data that come from the daily Internal
Quality Control (IQC) routine of a medical laboratory and specifically from the area
of clinical hemostasis. We are interested in the variable “Factor V”, measured in
% regarding the international standards in Biology. Factor V is one of the serine
protease enzymes of the procoagulant system, which interacts on a phospholipid
surface to induce formation of stable clot of fibrin. Deficiencies of Factor V can
induce bleeding disorders of varying severity. The normal range for factor V level is
61%—142% (for adults) and in this application we focus on pathological values (i.e.
measurements below 60%, which Biologist’s call abnormal values). In a medical lab,
where control samples are used to monitor the quality of the process, it is known
that a change of reagent batch might introduce a step change to the measurement
of Factor V. This can occur at the early stages of the process and it is crucial to
identify such a change point, when present, to avoid impacting clinically the patients
care. We sequentially gathered 21 normally distributed IQC observations (X;) from
a medical lab (see Table 3.4.1), where X;| (91, 922) ~ N (91, 922).

T1— T ‘31.0 30.0 320 28.0 33.2 33.2 351 35.1 339 379 332
1‘12—1’21‘36.5 33.2 351 345 365 332 351 372 326 36.5

Table 3.4.1: The Factor V (%) internal quality control observations of the current
X = (z1,x9,...,x91) data, reported during September 24, 2019 - October 8, 2019.

From the control sample manufacturer, we elicit the initial prior (91,922]7') ~
NIG (31.8,1/2,2,4.41). Furthermore, we have ny = 37 IC historical data (from a
different reagent) available, with y = 31.73 and var(y) = 3.31 and we set oy =
1/37 in the power prior term, to convey the weight of a single data point to these.

Combining the two sources of information within the power prior (2.1.3) we obtain:
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T («91,022|Y7a0,7) ~ NIG(31.75,3/2,5/2,6.02). The goal is to detect any small
permanent positive or negative shift in the mean of the process, as this will have
an impact on the reported patient results. In this setup, we choose the parameter
k =1, as at low levels of factor V the bleeding risk can hugely increase with small
differences. Thus, we tune the PRC in detecting mean step changes, in either upward
or downward direction, of one standard deviation size (i.e. iéz). The PRC control
chart will plot two monitoring statistics: S, ; (evolving in the nonnegative part) and
S,+1 (evolving in the nonpositive numbers) that will test for upward and downward
permanent mean shifts respectively. Furthermore, we will have two decision limits
h* and h~, which due to the normal distribution symmetry and the design of the
same OOC step change shift (+6,) will be of the same magnitude (i.c. |h*| = [h|).
As the data are normally distributed, the standardized version of PRC is available
and from scenario 1 of Section 3.2 we derive the decision limit ht = 3.882 (h~ =
—3.882), to achieve FWER = 5% for 21 observations (since we run two tests we
used Bonferroni’s adjustment resulting FIWFER = 2.5% for each of the PRCs). As
this study is offline, we will not interrupt the process after a PRC alarm (as we would
have done when PRC runs online), but instead we will let it run until the end of the

sample in order to perceive its behavior in the presence of contaminated data.

Figure 3.4.1, provides the two sided PRC chart along with the plot of the available
data. The control chart rings an alarm at location eight indicating an upward mean
shift, which seems to be initiated at location four (i.e. last time where S, ; = 0
before the alarm), i.e. we have a delay of three observations in ringing the alarm. Tt
worths noting also that the alarm persists till the end of the sample, indicating PRC’s
resistance in absorbing the change. We should also mention that due to the lack of
knowledge of the actual parameter values one cannot provide a decision threshold to
respect the required FW ER for either SSC or CBF, a huge obstacle for using them

in everyday practice.



3.4. PRC real data application 107

= °
X © \ . o P .
< ™ _ _
S P N N NN
s ° °
3] .\./ \ /
©
LL oo °
N
[ T T I |
o —— Decision Limits .
-a-S;, - _A
v S A . A A~a-a” a7
@ Lastobservation with S, =0 A, ~A—A—
A Alarm / A
< /A"
A,
L3 "
n /A/
e ¢<$50‘Offv—v—v—v—v—v—v-v-v—v—v—v-v—v—v—v-v
N_/
by v
=
(%)
<Il' _
1 5 10 15 20
Time

Figure 3.4.1: PRC for Normal data. At the top panel the data are plotted, while at
the lower panel, we provide the PRC control chart, focused on detecting an upward or

downward mean step change of one standard deviation size, when we aim a FW ER =
5% for 21 observations.
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3.4.2 PRC application to Poisson data

Now, we provide the PRC’s illustration for discrete (Poisson) data, presented initially
at Dong et al. (2008) and analyzed by Ryan and Woodall (2010) as well. They
refer to counts of adverse events (z;), per product exposure in millions (s;), in a
pharmaceutical company. We have 22 counts (see Table 3.4.2) arriving sequentially
that we will model using the Poisson distribution with unknown rate parameter, i.e.
X;|0 ~ P (0 -s;). In contrast to the previous application, neither prior information
regarding the unknown parameter nor historical data exist. Therefore, we use the
reference prior as initial prior for 6, i.e. m(6|7) o< 1/v/0 = G(1/2,0) and we also set

oo = 0 for the power prior term.

Adverse events (z; — z1;) 1 0 0 0 1 0 3 3 3 2 5
Product exposure (s; —s17) | 0.206 0.313 0.368 0.678 0.974 0.927 0.814 0.696 0.659 0.775 0.731
Adverse events (z15 — Z29) 5 2 4 4 3 4 3 8 3 2 2

)

Product exposure (s12 — $22) | 0.710 0.705 0.754 0.682 0.686 0.763 0.833 0.738 0.741 0.843 0.792

Table 3.4.2: Counts of adverse events (z;) and product exposure (s;) per million
(1 =1,2,...,22), for each quarter reported during July 1, 1999 - December 31, 2004
(see Dong et al., 2008).

We tune PRC in detecting a 100% increase in the rate parameter and we also provide
the FIR-PRC version, setting (f,d) = (1/2,3/4). As the predictive distribution is
not a location/scale family and the prior is not informative, we fall under scenario
3 of Section 3.2 and so we will make use of the evidence based threshold hpr =
log(100) ~ 4.605. Just as we did in the previous application we will analyze all the
data in an offline version and not interrupt the process after an alarm to record the
alarm’s persistence. In Figure 3.4.2 a plot of the data along with the two versions of

PRC (with/without FIR) are provided.

The PRC provides the first alarm at observation 12, while the FIR-PRC gives an
alarm at location 11, both indicating that we had a persistent rate increase, which
appears to have started after location 6 (i.e. last time before the alarm, where the

monitoring statistic was zero). Furthermore, the alarm persists until observation 21,
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after which the monitoring statistics returns to the IC region. It is worth mentioning
that, since we have a decisive evidence that the procedure is OOC, we maintained
the evidence limit until the end of the sample, avoiding the option of elicitating h,,
via the marginal distribution after the first few data, as described in scenario 3 of
Section 3.2. We also note that both in Dong et al. (2008) and Ryan and Woodall
(2010), where the aim was to have an IC Average Run Length ARLy ~ 100, their
cumulative evidence monitoring approach, gave only a single alarm at location 19

(i.e. the alarm comes later compared to PRC and is absorbed instantly).
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Figure 3.4.2: PRC for Poisson data. At the top panel we plot the counts of adverse
events z; (solid line) and the rate of adverse events per million units x;/s; (dashed
line). At the lower panel, we provide the PRC control chart, focused on detecting
100% rate inflation and the evidence based limit of hpr = log(100) ~ 4.605 is used.
For the FIR-PRC (dashed line) the parameters (f,d) = (1/2,3/4) were used.



Chapter 4

Self-starting Shiryaev (3S)

4.1 3S Theoretical background

The efficient online detection of a shift in short horizon data and the reliable estima-
tion of the unknown process parameters is not a trivial problem. In this chapter, we
propose a Bayesian change point scheme, named Self-Starting Shiryaev (3S), provid-
ing all the assumptions and the methodological framework to handle either univariate
(U3S) or multivariate (M3S) data. Especially for M3S, the high-dimensional version
of 3S, we build it so that it can achieve the desired detection properties of a mul-
tivariate chart, i.e. to be able to identify when the process parameters experience
directional invariance, anisotropic scaling or rotation, by using directional statistics.
We assume that the observations are normally distributed, but potentially the pro-
posed mechanism can be available for every distribution. The monitoring in the
proposed methodology is based on the posterior marginal probability of a change
point occurrence. 3S is a generalization of the Shiryaev’s process (Shiryaev, 1963),
relaxing the strict assumption of known parameters and offering a more flexible prior

for the change point.

3S, as all the proposed methods in this dissertation, is a self-starting scheme and

110
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therefore it does not require a phase I calibration and it is powerful in detecting
process disturbances from the start of the process, utilizing prior information when
available. Apart from the online testing and monitoring, our proposal provides pos-
terior inference for all the unknown parameters of the IC and the OOC state and
the change point. Additionally, we propose an adaptive decision limit, which is
more realistic and better interpretable compared to a constant. An extensive sim-
ulation study evaluates our proposal against frequentist based and nonparametric
alternatives, and performs a prior sensitivity analysis. Namely, we compare U3S
against the Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998) and the Recur-
sive Segmentation and Permutation (RS/P, Capizzi and Masarotto, 2013) for mean
and scale shifts. In the multivariate case we compare M3S against the Self-Starting
Multivariate EWMA SSMEWMA, (Hawkins and Maboudou-Tchao, 2007) and the
Self-Starting CUSCORE (SSCUSC™ Capizzi and Masarotto, 2010) for drifts in the
mean vector. Further, we provide three applications in total to illustrate its use in
practice. Two for univariate datasets, with a mean and a variance shift respectively,
and one for a mean vector shift in multivariate data. All the technical details of the
modelling and the applications are analytically provided in the provided in detail in

Appendices.

4.1.1 3S methodological framework

Sequential change point methods in SPC/M aim to detect a change from the IC state
of a distribution, as soon as it occurs, while keeping a predetermined tolerance in
False Alarms (FA). Standard Shiryaev’s process is a Bayesian sequential change point
method, which is based on the posterior probability of a change point occurrence,
given the dataset. More analytically, assume @,, = (21, x9, ..., ,,) is a random sample
of data, obtained sequentially. The known IC and OOC distributions are denoted
by fo and f; respectively, not necessarily of the same parametric form. Regarding

the unknown change point 7, it is assumed 7 ~ G(p). Then, the likelihood combines
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both the IC and OOC states, conditional on the time of a permanent shift. Namely,
it is given by:

T—1 n
[1fo @ []fi (@) iftr<n
=1 i=T

f(@nlT) = (4.1.1)

Hfo (ZIZ',L) ifr>n

The stopping time T'(p*) is the first observation for which the posterior probability of
a change point occurrence exceeds a predetermined threshold that was chosen based

on the desired FA tolerance, i.e.:
T(p*)=inf{n>1:p(r <nlx,) >p'} (4.1.2)

Standard Shiryaev’s process has certain optimality properties, as it minimizes the
Average Detection Delay ADD(7) = E, (T — 7|T > 7) (Pollak, 1985), i.e. the av-
erage delay until the stopping time. Pollak and Tartakovsky (2009) investigated
more optimality properties of the Shiryaev’s process. It is worth mentioning that
ADD(T) is more realistic as a performance measure versus the widely used Average

Run Length (ARL), which in fact cannot be applied in self-starting procedures.

Despite the fact that the ShiryaevaAZs process is known to be a very powerful method
when compared to several alternatives, it has somewhat restrictive assumptions and
thus there is room for improving the existing methodology by relaxing some these
assumptions. Probably, the most important is that it is assumed that both of the
IC (pre-change) density fy and the OOC (post-change) density f; are known. This
is a very strict and rather unrealistic assumption. In practice, fy could be known
under specific conditions, but it is extremely restrictive to assume that f; will be
known in advance. However, only under the assumption of known distributions the
Shiryaev’s process will have the optimal properties, while the problem is open when
the distribution will involve unknown parameters. In addition to this, the assumption

of known OOC (post-change) density f; is rather unrealistic for multivariate data
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processes. In the univariate case, f; simply yields a benchmark of the OOC state.
For instance, if we are interested in detecting shifts for the mean, then the possible
shifts (of predetermined magnitude) are either upward or downward. Therefore, we
can easily build up two corresponding settings. But, as the data dimension increases,
the number of the possible OOC scenarios for all components increases exponentially
fast with the dimensionality. This is a plausible reason for the lack of a multivariate
generalization of Shiryaev process, while there is a plethora of directionally invariant
score based multivariate CUSUMs, like Crosier (1988) or Pignatiello and Runger
(1990), and EWMAs, like Lowry et al. (1992). Another standard assumption of
Shiryaev’s process is that the prior distribution used for the (unknown) change point
parameter is Geometric, i.e. 7 ~ G(p). In other words, the prior probability on
the location of the change point is constant over all data. However, in real world
problems, the risk of failure in any process, is rather unrealistic to assume that it is

constant over time.

We propose 3S, aiming to generalize the classical Shiryaev’s approach in either one
or more dimesions. Being self-starting, it will allow to test if a change is present and
provide inference from the very early start of the data collection. Precisely, 3S will
test if the procedure deviates from the IC state and simultaneously it will provide
on-line estimates for all the unknown parameters. Thus, we will relax the strict
assumptions of the standard Shiryaev’s process enriching the methodology in four

ways:

e allowing both the IC parameter(s) 8 and the OOC parameter(s) ¢ to be un-

known,

e allowing the OOC scenarios to fulfill certain desired properties in multivariate

processes, namely: directional invariance, anisotropic scaling or rotation,

e offering a more flexible and general prior distribution for the change point 7

and
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e providing posterior inference for all the unknown parameters regarding the IC

or the OOC scenario.

We will focus our attention on developing models for Normal data, but the description
is general enough to cover any other (discrete or continuous) distribution. Namely,
instead of the known IC and OOC distributions f; and f; respectively, we assume a
distribution f, which reflects the IC state, allowing the IC parameters € (e.g. mean
or variance) to be unknown. For the OOC state, we assume the OOC parameters ¢
to be also unknown. The OOC parameters are suitably defined depending both on
the dimension of the data and the type of the shift we are interested in detecting. For
example, it may be the magnitude of a mean step change for univariate data, or the
distance of a translocation for multivariate data. The IC and the OOC parameters
are connected via the function g(8, ¢), which links the IC with the OOC scenario. In
Subsections 4.1.2 and 4.1.3, we provide examples for the function g for univariate and
multivariate models respectively. Introducing unknown parameters in the general
model, we can build up a hierarchical prior setting, avoiding the strict assumption of
known distributions. The general form of the likelihood combines both the IC and
OOC scenarios, conditional on the change point occurrence 7. Specifically, denoting

by @,, the random vector of the univariate or multivariate data up to time n, the

likelihood will be:

f(@nl0,0,7<n) = []f(@l0)[[f(x:l9(6,0)) ifr<n
f(mn|07 7T) = ile =
f@nl0,7>n) = [[f(x:6) if 7>n
. (4.1.3)

Moreover, we will propose a general prior for the change point 7, relaxing the as-
sumption of a constant probability over time. Differentiating from Shiryaev’s ap-
proach, the prior distribution of the change point is a Discete Weibull (DW), i.e.
T ~ DW(p, 3) a generalization of G(p), where the parameter /3 represents the wear
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out effect of a system, while p represents the probability of moving to the OOC state
in a single observation. Thus, using DW (p, #) we can control the prior probability of
a change point, relaxing the assumption of constant probability. Precisely, for 5 > 1
the hazard function of the procedure increases, for 5 < 1 decreases, while for § =1
it is constant, i.e. DW(p, 1) coincides with G(p). Therefore, the prior distribution
for 7 used in the standard Shiryaev’s process is a special case of the corresponding
distribution of 3S. In a change point model, the hazard function represents the risk
that the next data point will be the first OOC observation given that the change
point did not occur yet, i.e. all the previous observations are IC. The combination
of p and S that we choose allows us to control the evolution of the hazard function
and, consequently, to be more flexible. Specifically, we can enhance the detection
ability of 3S when a shift detection is of utmost importance. For example, if the
detection of shift at the very early stage is crucial, then a choice of large p and § < 1
is recommended. On the other hand, if the wear out effect of the process is slow and
we are interested in detecting shifts at later stages, then a choice of small value for
p and S > 1 is preferable. Moreover, if we lack prior knowledge regarding both the
the location of the change point and the importance of the location of the detection,
then a choice of a prior with constant hazard function seems plausible. Figure 4.1.1
provides a graphical representation of the hazard function for three different priors.
Apparently, posterior inference for the location of the first OOC observation, i.e. the

change point 7, will be available.

The prior information (if available), is of vital importance, especially for short runs,
as it can help to boost the performance. Regarding the IC or OOC parameters, we
recommend using the general class of power priors (Ibrahim and Chen, 2000). The
structural advantage of power priors is that they can combine different sources of
potentially available information. For more information regarding the power priors
please refer to Section 2.1. In cases of total prior ignorance, we need to select a

suitable non-informative prior that will balance the detection power and the false
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Figure 4.1.1: The hazard function for the priors G(1/50), DW(1/10,9/10) and DW
(1/1000, 2), which are represented by the solid, the dashed and the dotted-dashed line
respectively.

alarm tolerance, aiming to optimize the 3S performance. These cases are separately
analyzed for univariate and multivariate processes in Subsections 4.1.2 and 4.1.3

respectively.

For the stopping time, it will be based on the posterior marginal probability of a
change point occurrence, in an analogous manner to the classical Shiryaev process.

Precisely:

_ f (@l <n)7w(r <n)
p(7 < njzn) = f(xp|m <n)7w(r <n)+ f(xu|7 >n)nw(T >n) (4.1.4)

In Section 4.2, we will provide all the details regarding the stopping rule options
along with the respective decision limits. The marginal distributions involved in

the computation of the probability (4.1.4), will be derived by integrating out the
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unknown parameters. Precisely, for the IC and OOC scenarios we have respectively:

f(xn|T >n) = / f(xn|0, 7 > n)n(0)do (4.1.5)
C)

f(@nlT <n) = / / f(@n]0,¢,7 < n)m(0)7(¢p)dOdp (4.1.6)
oJO

However, these marginal will be undefined, when the prior m(theta) is improper, for
instance when a non-informative prior is adopted. In this case, we recommend to
“sacrifice” the first s observations x5 necessary to make the posterior p(|xs) proper
and then use it instead of the initial prior 7(#) starting the process testing from the
s + 1 observation Thus, x, will be used for the calibration and not for testing, but
this is necessary to initiate a non-informative 3S scheme. When the process starts,
inference for 6, ¢ and 7 becomes available by sampling from the corresponding full
conditional posteriors. Therefore, we will not only be able to perform sequential
testing if the procedure deviates from the IC state, and we will also be available to
provide online estimates for the parameters of interest, with respect to the IC or the
OOC scenario. The Directed Acyclic Graph (DAG) in Figure 4.1.2 synopsizes the

general 3S scheme.

The general form of 3S allows its use for any type of parametric (i.e. distributional)
setting, as long as the various marginal and posterior distributions indicated in the
DAG of Figure 4.1.2 are computed (in closed form or numerically). Apart from its
general form, the great advantage of 3S is its resistance in absorbing a change. In
general, it is well known and documented in the literature, that the self-starting
schemes face a big challenge. They have only a “small window of opportunity” to
react in a change before they absorb it. Specifically, if a change from the IC state
occurs and a self-starting process does not realize it “soon” after its occurrence, then
the OOC data are involved in the calibration, contaminating the estimates of the

unknown parameters. This affects the performance dramatically, as the chart absorbs
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IC scenario (7 > n) OOC scenario (1 < n)

@ f (®n|0,¢,7 < n)

ASE\

pooc (6, b, T|xn)

Figure 4.1.2: The DAG of the 3S process. The IC unknown parameters are denoted
as @, ¢ represents the OOC parameters, while 7 is the change point. Combining the
likelihoods and the priors, we obtain the corresponding marginals and consequently the
posterior marginal of a change point occurrence p(7 < n|xy). In addition, estimates for
the unknown parameters are available by sampling from the corresponding posteriors
of the IC or the OOC scenario respectively.

the change and considers the contaminated data as IC data. By construction, 3S is
quite resistant in absorbing a change, as it splits the data appropriately, avoiding
the involvement of the contaminated data in the IC estimates. This is a great
advantage comparing with standard self-starting alternatives. Furthermore, if the
change arrives at the early start, then self-starting processes have typically very poor
performance, as the estimates for the unknown parameters are still vague. On the
contrary, 3S can be efficient, even from the early start, thanks to its structure and

the use of prior distributions.
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4.1.2 U3S modelling

In this Subsection, we develop the specifics of the univariate models. U3S, is the
univariate generalization of Shiryaev’s (1963) process, offering a more flexible and
realistic set up. It is worth mentioning that Shiryaev’s change point model is a

special case of U3S, when:

e the IC distribution fo and OOC f; are of the same parametric form (i.e. dis-

tribution),

e the IC parameters 8 and the OOC ¢ are known, i.e. their U3S’s respective

prior distributions are set both to be point mass distributions, and

e the hazard function for change point 7 is assumed to be constant, by setting

the prior distribution to be DW with g =1 (i.e. geometric).

In U3S, the unknown OOC parameters ¢ are linked to the IC parameters 6 via the
function g(0, ¢), which expresses the OOC scenario under study. For example, in the
case of a Normal likelihood with @ = (61, 63) being the IC unknown parameters for
the mean and the variance of the data respectively and assuming that we wish to
guard against mean shifts, then we can have ¢ = § being the magnitude of a mean
shift and we can define ¢g(0,¢) = 6, + 6 - 05. For ¢, we recommend the use of at
least a weakly informative prior, which will express the size of the shift that we are
more interested to detect and will play the role of a benchmark for the OOC state.
Generally, an informative prior for ¢ helps to “distinguish” the IC and OOC states,
making U3S more robust and enhancing its detection ability, compared with the U3S
scheme that adopts a totally non-informative prior. It is worth mentioning, that in
the U3S model the OOC parameters are designed to be unitless. For instance a jump
for the mean is expressed as a multiple of the standard deviation, even when the latter
is unknown. This means we can set an informative prior for ¢, even when we lack
any information regarding 6. In the case that we are interested in detecting shifts of

either direction, e.g. a positive or negative step change for the mean, or an inflation
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or shrinkage for the variance, we recommend using a mixture of priors for ¢p. Worth’s
mentioning that if the priors in such a mixture modelling have significant overlap,
e.g. the prior that represents a positive jump has significant probability in negative
values, then some form of truncation is recommended, primarily for interpretation

purposes.

In cases of total prior ignorance, we propose the adoption of the reference priors
(Bernardo, 1979, Berger et al., 2009) for the IC parameters 6. Reference priors
is a general class of non-informative priors that will coincide with Jeffreys priors
(Jeffreys, 1961), when 6 is one-dimensional. Table 4.1.1 provides a synopsis of the
four versions of U3S model for Normal data, for location or scale shifts, while in
Appendix C, they are presented analytically. Precisely, we provide the assumptions
about the likelihood and the priors and the resulting formulas about the posterior
marginal probability of a change point occurrence and the posterior distributions

under the IC and the OOC scenario.

4.1.3 M3S modelling

In this Subsection we will propose the multivariate version of 3S, i.e. the Multivariate
Self-Starting Shiryaev (M3S). The focus will be on the detection of persistent shifts
in the mean vector or the covariance matrix of short horizon multivariate Normal
data. In a similar way with the univariate case, the stopping time will be based
on the posterior marginal probability of a change point occurrence p(7 < n|x,,),
remaining in the At Most One Change (AMOC) scenario. In the multivariate case,
the change point 7 will refer to the time that at least one component of the mean
vector or the covariance matrix, shifts from its IC state. Therefore, from now on the
change point will be the first observation when at least one component of the mean
vector or the covariance matrix shifts from the IC to the OOC state. For instance,

in the bivariate Normal distribution with both mean vector and covariance matrix
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being unknown, the change point 7 will denote the time where at least one of the

five involved parameter’s components: (ui1, o, 02, 03, p) shifts.

Probably the most challenging part of the multivariate extension of 3S is the ap-
propriate expression of the OOC scenarios in high dimensions. This is achieved by
the beneficial use of the directional statistics (see Mardia and Jupp, 2009) and the
selection of prior distributions for ¢ that fulfill the desired properties. The models
are carefully designed in order not only to allow the components to shift in their
parameter space but to be interpretablle as well. Namely, the desired properties of

M3S can be synopsized to:
e Directional Invariance, i.e. M3S can detect changes in any direction.

e Anisotropic scaling, i.e. M3S can detect different scale changes to each dimen-

sion or weight a shift by the variance of the corresponding component.

e Rotation, i.e. M3S can detect changes in the correlation between the variables,

either positive or negative.

Figure 4.1.3 provides the graphical representation of these properties. M3S can detect
changes in the means (translocation in any direction), the variances (shrinking or

inflation) and in the correlation (angle drifting).

Directional Invariance Anisotropic Scaling Rotation
IC distribution OOC distribution

X X X

Figure 4.1.3: The graphical representation of the directional invariance (left panel),
the anisotropic scaling (center panel) and the rotation (right panel) in two dimensions.
The IC distribution is in blue, while the OOC distribution is in red.
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As 3S is a general detection scheme, the M3S modelling is similar to the univariate
case. This means that the process for the elicitation of p(7 < n|x,,) and the posteriors
of 8 and ¢ remains the same. Similarly, the decision limits described in Subsection
4.2, and the corresponding stopping times 7'(+) are defined in an identical way. With
respect to the IC parameters of the proposed M3Ss, just as before we have the
mean vector and the covariance matrix of Normal data, i.e. 8 = (u, X'). While the
prior setting for the IC parameters is straightforward for the mean vector and the
covariance matrix model, apparently this is not the case for ¢, the parameters that
represent the OOC scenarios. It is important to mention that in the multivariate
case, the OOC parameters do not only play the role of the shifted parameters, but
may also describe the association between the shifts of the components. For example,
in M3S for the mean vector, ¢ does not merely denote the distance of the IC and
the OOC state, but the direction of the translocation as well, describing in this way

the dependence between the individual drifts of the components of .

In case of prior ignorance, several types of objective priors can be proposed for the
mean vector and the covariance matrix of a multivariate Normal distribution, based
on different criteria. Considering that we do not have any available prior information,
either from historical data or prior beliefs, we propose the use of the Jeffreys prior
(1961) for M3S, which coincides with the prior introduced by Geisser and Cornfield

(1963) for two-dimensional data. In D-dimensions, the Jeffreys prior is:
m(p, X) o | 2|7 (P22 (4.1.7)

For further information about the non-informative priors in the multivariate case,
one can refer to Sun and Berger (2007). All the details regarding the prior setting, the
resulting posteriors and the calculation of the BF;,,, of the referred M3S models are

analytically provided in Appendix D, while Table 4.1.2 presents the models briefly.
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4.2 Decision making

In the sequential change point methods in SPC/M, the stopping time is defined by
the stopping rule, which is essentially a stochastic decision on whether the process
has experienced a change or not. Thus, the choice of the “appropriate” decision limit
is crucial for every method. Bather (1967) discussed about the optimal stopping time
T'(p*) for the classical Shiryaev’s process, where an alarm is raised when p(7 < n|z,,)
exceeds a predetermined constant threshold p*, a method that can be applied in the
3S scheme as well. The determination of a constant decision limit p* for all the
probabilities p(7 < n|x) is a plausible and simple strategy. However, this would be
very conservative for the very first tests, reducing significantly the detection power
for the early stages of the process. This is a major issue for self-starting methods in

short runs, where we aim to have efficient performance from the start of the process.

As the prior 7(7) is involved in forming the posterior p(r < n|®,), it must be
considered in the determination of the decision limit. Apart from 3S model novelty,
we will propose a new adaptive decision limit p}, which takes into account the effect
of the prior at time n. The prior-adjusted threshold p}will reduce the delay of an
alarm, especially at the early start of the process, while respecting the required false
alarm tolerance. Its derivation relies on the property that p(7 < n|z,,) can be written
as function of prior weighted Bayes Factors (BF). More specifically, p(7 < n|z,,) can

be written as:

f(@n|r <n)m(r <n)
f(@n|r <n)n(r <n)+ f(xp|7 >n)n(r >n)

p(r <nlz) =

f(xp|T <n)n(r <n)
f(xp|T >n)n(r > n)
[ (@n|T <n)m(r < n)
f(@n|T >n)7w(T > n)

+1
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M.BFIMJr
(T > n)
- = (4.2.1)
M -BF} e +1
(T >n) ’
k=1
f(@n|T = F)

where BF}, 4 = compares the evidence the k' < n observation to be

f(xn|T > n)
the change point against the evidence all the observations to be IC. We establish
a decision limit, which will be less conservative for the first tests and consider the
prior adjustment. As p(7 < n|z,,) is function of n Bayes factors, if we will replace

BFy,,,. = A, then the equation (4.2.1) will become:

" n(r = k)
A.;W(T>n)

p(T <nlx) = — k (4.2.2)
A TR
(T > n)
Thus, the adaptive stopping time 7" (p%) will be:
T(py)=inf{n>1:p(t <nlz,) >p,} (4.2.3)

By controlling A, we can control the FA tolerance via a predetermined metric, like
the Probability of False Alarm, PFA(n) = P(T < n|t > n) = «a, the IC Average
Run Length (ARLy) etc. Apart from improving the overall performance, the choice
of p; can be interpretable according to the evidence scale that Kass and Raftery
(1995) proposed, controlling the posterior FA evidence as it was defined in Section

3.2.

If we will use the PF A(n) metric for a short horizon of data, then the adaptive p? will
be significantly more sensitive for the first observations, but a little more conservative
for the last few, compared to the constant threshold p*. The prior weights of 7 play

an important role in the final form of p}. Additionally, the testing using p;, reduces
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considerably the truncated Conditional Expected Delay, tCED(1) = E.(T — 7 +
1|7 < T < n), especially when the shift occurs at the early start of a process. This
is very important, as the main disadvantage of the self starting charts is the low
performance and the slow reaction when the change occurs at early stages. Apart
from the performance, the adaptive limit distributes in a bigger range the false alarms
compared with the constant limit. Figure 4.2.1 provides a graphical representation of
the evolution of p} and p* and the histograms of the corresponding false alarms. The
plots refer to certain OOC scenarios for univariate processes of Subsection 4.3.1.2,
using the non-informative prior setting, named wvs, assuming 7(0) o 1/63, |y ~
v+ N(1,0.5%) + (1 —7) - N(=1,0.5%) and 7 ~ DW(1/50,1). As we can see, the
stopping time of T'(p*) are mostly concentrated at the end of the sample, while

T (p:) are almost uniformly distributed after the 10" observation.

We recommend the use of the adaptive decision limit, when the failure risk is non
increasing, i.e. when the DW parameter § < 1. In this case, we will gain the
beneficial properties of p; at the start of a process with a negligible influence at the
end. Contra wise, if § > 1, then the classical decision limit p* seems to be better

choice on average.

4.3 Competing methods and sensitivity analysis

In this chapter, we will compare the performance of 3S against well established
alternative methods. We will provide the simulation results both for univariate and

multivariate settings.
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Figure 4.2.1: A graphical comparison of the evolution of the adaptive decision limit
p; (solid line) against the constant p* (dashed line) for various OOC scenarios for
univariate processes assuming m(6) oc 1/63, 8|y ~ v+ N(1,0.5%) + (1 —v) - N(—1,0.5?)
and 7 ~ DW(1/50,1). The shaded region denotes where p; is more sensitive, while
the dashed denotes where it is more conservative. Further, the histograms of the
corresponding stopping times 7'(+), i.e. the locations of the FAs, are provided. Finally,
the times where the two decision thresholds are crossing are illustrated with vertical
green segments.

4.3.1 Simulation study for U3S
4.3.1.1 Competing methods for U3S

In this Subsection, we will present the competing methods whose performance will be
measured against the proposed U3S scheme in detecting changes in the mean or the
variance of univariate Normal data. The first competing method is the frequentist
Self-Starting CUSUM (SSC, Hawkins and Olwell, 1998) for location or scale shifts,

which was described in Subsection 3.3.1.

A second competing method that we will use is the non-parametric scheme intro-

duced by Capizzi and Masarotto (2013) named Recursive Segmentation and Permu-



4.3. Competing methods and sensitivity analysis 130

tation (denoted as RS/P from now on). RS/P is designed to detect single or multiple
mean and/or scale shifts, of individual or subgrouped observations. Let K be the
maximum number of change points that we wish to detect, of m subgroups with n
data points each. The control statistic for location shifts is:

i=1,....m

n m
where z; = %wa and T = %Zj, Regarding the statistics 77, ..., Tk of possible
change points]TJ1 <1 <..< 7'Zk:1< m, they are computed using a simple forward
recursive segmentation approach. The algorithm starts with £ = 0 and proceeds in
K successive stages. At the beginning of stage k, the interval [1,m] is partitioned
into k subintervals, each having a length greater or equal to Iy, which is a user-
controllable constant giving the minimum number of subgroups allowed between two

change points. At stage k, one of these subintervals is split, adding a new potential

change point. Every new change point is estimated by maximizing the quantity:

> (Fi = #im) (@ (Fior, 72) — 3)° (4.3.2)

b
1
conditionally on the results of the previous stages, where Z(a, b) = b Z Z;. The
—a
i=a+1
statistic T} is the maximum value of equation (4.3.2). Now, we continue with the

permutation step to calculate the p-value (p), to test the null hypothesis that the
process is IC. Assume L random permutations of the pooled sample. Let e Ty be
the value of the k' statistic obtained from the [ permutation, where k = 0, ..., K

and [ =1, ..., L. Then, the overall control statistics are:
Ty — uy

W = max —— (4.3.3)
k=0,...,.K Vg
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and 3
- T, —
W, = max “kt Uk (4.3.4)
k=0,...,.K Vi
L L )
where u, = lZT and v, = L (T —u ) The empirical p-value that
k lel kl k L_ll:1 kl k| -
indicates if the process is IC or OOC is p = —1yj,5yy,, where 1 is the indicator

L
function. We raise an alarm if p < «, with «a to be the probability that controls

a false alarm metric. The RS/P procedure is slightly modified for detecting scale

changes. Now, Ty is defined as:

Ty = max |s? — 5| (4.3.5)
i=1,....m
1 n m
—\2 . .
where s7 = — E (r;; —7;)° and s* = — E s?. Furthermore, we maximize the
n m
j=1 i=1

quantity:

k+1 82
Z (Ti — Tifl) lOg (m) (436)

i=1

1

where s%(a,b) = "

b
Z s7, replacing the equation (4.3.2).
i=a+1

4.3.1.2 Simulation results for U3S

In this Subsection, our goal is to evaluate the performance of U3S and compare it
against the SSC and RS/P alternative methods. Precisely, we examine the effective
detection and the speed of reaction for step changes of the mean or inflations of
the variance. Both of the IC and the OOC data are from a Normal distribution,
assuming all parameters unknown. For IC data, we simulate 10,000 sequences size of
N=50 observations from a typical Normal distribution, used to obtain the decision
limits of each of the competing methods. Concerning the decision limits of U3S, we
employ both the constant limit p* and the adaptive p} (noted by superscript n in

the upcoming tables and graphs), so that one can compare their performance. In



4.3. Competing methods and sensitivity analysis 132

addition, we start the testing from the third observation, as SSC needs the first two
observations to estimate the unknown parameters and also we need to sacrifice the
same number of data points in order to have a proper marginal distribution for U3S,
when the reference prior for the IC parameters is in use. Thus, we perform N — 2
hypothesis tests for each method and the decision limits are elicited such that all
the competing methods to have PFA(48) = 5% for an IC sample. For the OOC
scenarios, we introduce change points expressing contaminated data with small or
medium persistent shifts. The change points are introduced at one of the locations,
7 = {11,26 or 41}, i.e. near the start, the middle or near the end of each OOC
data sequence. The shifts are step changes of size 1 or 1.5 standard deviations for
the mean, i.e. the OOC states are N(1,1) or N(1.5,1) and variance inflations of
size 50% and 100% for the standard deviation, i.e. the OOC states are N(0,1.5%)
or N(0,2%). Regarding the Monte Carlo efficiency, we also generate L = 10,000
random permutations to calculate the p-value of the test statistic of RS/P and we
generate the same number of observations to estimate the marginals for BF ,, and
consequently to estimate the p(7 < n|x,) for each data point in U3S decision limit
derivation. In addition, SSC is optimally tuned in detecting the predetermined shifts.
For the mean, we set a two sided SSC, for a positive and a negative shift, while for the
variance we set it only for inflation detection, as this scenario is of major importance

in practice.

For the priors used in U3S, we have a standard prior setting assuming (almost)
total prior ignorance for 8, ¢ and 7. Precisely, in the standard prior setting, we as-
sume the non informative reference prior for the IC parameters, i.e. m(0) o< 1/62 =
NIG(0,0,—1/2,0). For the change point we assume 7 ~ DW(1/N,1) = G(1/N),
i.e. an non informative prior about the location of the first OOC observation (con-
stant hazard function), while the probability of moving to the OOC state for each
data point is the reciprocal of the sample size. In order to have comparable as-

sumptions with SSC, which is optimally tuned for the existed shifts, we assume
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informative priors for the OOC parameter ¢. Precisely, for the mean step changes
of size 1 standard deviation, we assume 6|y ~ - N(1,0.25%) + (1 — ) - N(—1,0.25%)
and v ~ Ber(1/2), while for 1.5 standard deviations jumps the prior is d|y ~
v+ N(1.5,0.25%) + (1 — v) - N(—=1.5,0.25%). This mixture of priors coincides with
a two sided detection scheme for U3S, detecting for positive or negative shifts. For
the variance inflation and specifically for the 50% standard deviation increase, we
assume Kk ~ [G(50,112.5), while k ~ IG(50,200) is employed for the scenario of
the 100% standard deviation increase. In addition, we apply a sensitivity analysis
changing only one prior at a time, in order to perceive its effect. This reference
prior setting corresponds to r,c¢ indicator in the upcoming tables and graphs. The
indicator wi,c corresponds to the weakly informative prior for @ ~ NI1G(0,5,2.5,2),
while the rest prior setting is the same with the standard. Regarding the change
point, we employ a prior with an increasing hazard function (indicator r,7), where
7 ~ DW(0.001,2) and with a decreasing hazard function (indicator r,d), where
T ~ DW(0.1,0.9). Further, we complete the sensitivity analysis, employing a
more vague prior for the shift (indicator wvs). We select weakly informative pri-
ors by increasing (doubling) the standard deviation of the standard setting priors.
Thus, the priors for the mean are 6|y ~ v - N(1,0.5%) + (1 — ) - N(—1,0.5?) and
8y ~~v-N(1.5,0.5%) + (1 —~)- N(—1.5,0.5%), while for the variance k ~ IG(14, 31.5)
and k ~ [G(14, 52) respectively. Table 4.3.1 synopsizes all the different prior setting
used, where 99¢ = {1 or 1.5} and 69°¢ = {1.5 or 2} the true OOC values for the

mean and the standard deviation respectively,
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Setting Priors

7(0) o< 1/63
1
Oy ~ nyl_i(l —7)'N((=1)"- 699 1/4%) (mean model)
i=0
r,C ~ ~ Ber(1/2) (mean model)

Kk ~ IG(50,50 - (GQOOC)Q) (variance model)

7~ G(1/N)

6 ~ NIG(0,5,2.5,2)

1
Oy ~ ZWI’Z‘(I — ) N((—1)"- 699¢ 1/4%) (mean model)
=0

wi, ¢ | ~ ~ Ber(1/2) (mean model)
k ~ IG(50,50 - (9300)2) (variance model)
7~ G(1/N)
7(0) o< 1/63
Sy ~ S L~ YN (~1 - 699, 1/42) (mean model)
ri T < Ber(1/2) (mean model)
Kk ~ IG(50,50 - (9?00)2) (variance model)
7~ DW(107%,2)
7(0) o< 1/63
8y ~ ivl_i(l = 7)'N((=1)"-679¢,1/4%) (mean model)
r.d = ~ ~ Ber(1/2) (mean model)
Kk ~ IG(50,50 - (HQOOC)Q) (variance model)
7~ DW(0.1,0.9)
7(0) o< 1/63
Oy ~ 21:71%(1 —7)'N((=1)"- 699 1/2%) (mean model)
vs = ~ ~ Ber(1/2) (mean model)
K~ 1G(14,14 - (#99°)*) (variance model)
7~ G(1/N)

Table 4.3.1: The prior settings of U3S for the simulation study.
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Concerning the performance, we estimate the metrics introduced in the Subsection
3.3.2 and precisely the PSD(7), along with the mean and the sd of the tC ED(7) for
all the OOC scenarios. Furthermore, in the graphs we provide the running PF A(n),
n = 3,...,N, in order to perceive the FA behavior of the competing methods. In
Tables 4.3.2 and 4.3.3, we provide the results of the simulations, while their graphical
representation is in Figures 4.3.1, 4.3.2, 4.3.3 and 4.3.4. As demonstrated, the results,
regarding the location and size of the shift, are corresponding to those in simulation
study for PRC in Subsection 3.3.2. all methods have their best performance when
the change point 7 is at the middle of the sequence 7 = 26. In addition, they
improve their performance for medium shifts (1.50; mean step change and +100%
sd (6;) inflation) compared with the small (10, mean step change and +50% sd (6s)

inflation).

Comparing the methods, U3S achieves greater performance compared with SSC and
RS/P beyond the shadow of any doubt. More specifically, U3S achieves greater
detection percentages than SSC, especially when the change point is at the start of
the process. This is true as U3S is more resistant in absorbing a change, which is
of vital importance for the self-starting methods. The tC' ED(7) behavior is similar,
apart from the cases when U3S has much higher detection percentages than the other
methods. In these cases, the much greater PSD(7) denotes that has larger “window
of opportunity” to detect a change. Thus, it has the chance to react later in a change
and this inflates the tC ED(7). It is worth mentioning that RS/P does not seem to
be competitive at all for the variance inflations, as it has much worse performance
than the other methods. This is the price the nonparametric approach pays in being
general enough, as the other methods are flexible in aid of the detection power, as

they are tuned for one-sided shifts.

Regarding the prior setting, it is clear that the performance using a weakly informa-
tive prior for @ (prior setting wi, ¢) is significantly better for all the OOC scenarios,

but mostly the when change points occurs at the start, i.e. the IC information from
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the data is low. The results also denote the role that plays the hazard function
in the detection power. Using a decreasing hazard function (prior setting r,i), the
detection power is better at the early stages and vice versa, when using a increasing
hazard function (r,d), the detection power improves at later stages. Regarding the
vague priors for the shifts (prior setting vs), we observe that the detection percent-
ages are slightly decreased, which was expected, but U3S is still robust. This is very

important, as we considerably relax the assumption of known jumps.

Further, comparing the constant and the adaptive decision limit for U3S we can see
that, as the adaptive (superscript n) is more conservative at the later stages, then it
has reduced performance. But, when the change point is at the start, then it has the
similar detection percentages and considerably less delay for an alarm, than using
the constant one. Furthermore, via Figures 4.3.1, 4.3.2, 4.3.3 and 4.3.4, we realize
that using p;, then the FAs are more spread in the range of a sample, while using

p*, they are more concentrated at the end.
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Mean Step Change 16,
Initial Prior Setting & Prior Sensitivity for 0 Prior Sensitivity for 1 & &

PSD(1) %

tCED(T)

o -~ n -
I T 1 I T 1
11 26 41 11 26 41
n n
-+ SSC  -e- U3S) -m- U3Sy, uss), -w- U3S], u3s],
RS/P —— U3S;. —a— U3S, U3s;; —w— U3Sy U3Sys

Figure 4.3.1: The PF A(n) at each time point n = 3,4, ...,50 (top row), the PSD(1)
(middle row) and the tCED(7) at 7 = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have step changes for the mean size of 1 standard
deviation.
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Figure 4.3.2: The PF A(n) at each time point n = 3,4, ...,50 (top row), the PSD(7)
(middle row) and the tCED(7) at 7 = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have step changes for the mean size of 1.5 standard

deviations.
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Figure 4.3.3: The PF A(n) at each time point n = 3,4, ...,50 (top row), the PSD(7)
(middle row) and the tCED(7) at 7 = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have inflations for the standard deviation size of 50%.
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Figure 4.3.4: The PF A(n) at each time point n = 3,4, ...,50 (top row), the PSD(1)
(middle row) and the tCED(7) at 7 = 11, 26 or 41, of the U3S with all the prior settings
against SSC and RS/P, when we have inflations for the standard deviation size of 100%.
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4.3.2 Simulation study for M3S
4.3.2.1 Competing methods for M3S

In this Subsection, we will present the two methods that we will use in comparing the
performance of the suggested M3S for several OOC scenarios, in sequences of multi-
variate Normal data. These are the Self-Starting Multivariate EWMA (SSMEWMA,
Hawkins and Maboudou-Tchao, 2007) and the Self-Starting CUSCORE (SSCUSC™,
Capizzi and Masarotto, 2010) for drifts in the mean vector. Both competing methods
are based on the recursive residuals, a regression methodology, introduced by Brown
et al. (1975). Starting from ¢ = D + 2, where D the dimensions of the data, then

t'h observation on the j

for t > j + 1, the sequence of recursive residuals for the
variable for ; ;, ..., 2, ;1 are obtained by repeatedly using the regression coefficients
estimated from vectors xq,...,xs—1. Let 7; = x;; — &;; denoting the difference
between the observed and the predicted value of the j** variable, respectively. The

standardized recursive residual will be:

er; = [t (4.3.7)
t—1
Z 7"752,3‘/(75 -Jj=1)
i=j+1

Then a standard transformation is applied to e;; to obtain independent standard

normal statistics Q) ;:

Qrj =D {Grojo1 (er)} (4.3.8)

where &71(-) is the inverse of the standard Normal CDF, G, (-) the Student-t CDF
with v degrees of freedom. For SSMEWMA, the process statistic is given by:

Zij = AQu; + (1= N)Zy_1; (4.3.9)
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where 0 < A1 is a constant that controls the depth of memory of the chart, Z,; =0
and j = 1,..., D. Defining, the constant h > 0 to achieve a predetermined IC false
alarm tolerance, the SSMEWMA gives an out-of-control signal whenever:

D _p—

A1 — (1= N)2rD)]
>z} >h (4.3.10)
gl 2— A

As concerns to SSCUSC™), the ():,; are used again, but this time through a CUSUM
type formula. Starting from ¢ = D + 2 and initializing the parameters C'5 41 =
CgH’j =0 and TZ%HJ = TgHJ = D + 2, the downwards and upwards CUSCORE

statistics will be respectively:

. 1
CtL,j = mnin {07 Cﬁm + fi (Tt€1,j) : |:Qt,j + éft (TtLl,j)} } (4.3.11)

1
ng = max {0, CtU_Lj + fi (Tt({Lj) . [Qt,j — §ft (thl,j)} } (4.3.12)

L U

for j = 1,..., D, where the involved parameters 7;;, 7; and the function f; (1) are

respectively:

t+1 ifCk =0 AU _
L R B A CE R Y
Ty G <0 ! iy, ECH >0

L _
Ttj =

T—1
fe(T) =m - max {07 m} (4.3.15)

Regarding the design constants m > 0 and 0 < ¢ < 1, the former is related to a mean
vector shift size of particular importance and the latter is introduced to prevent the

CUSCORE statistics from trapping into a constant value. Defining a threshold h
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with respect to the false alarm metric, an alarm is raised if:

t7j ) 7j

D
SSCUSCY = max {-C},, L} > h (4.3.16)
j=1

4.3.2.2 Simulation results for M3S

A simulation study, along with a sensitivity analysis, will compare the mean vector
model M3S against the methods SSMEWMA and CUSCORE that we described in
Subsection (4.3.2.1). Analogously to the univariate simulation study, we will exam-
ine here the performance in detecting permanent shifts. For IC data, we simulate
1,000 sequences size of N=50 observations each from a bivariate (D = 2) Normal
distribution, needed in deriving the decision limits. As we wish to test the perfor-
mance for different structures of the covariance matrix, we consider two scenarios of
IC data; from a standard bivariate Normal (i.e. with zero mean vector and identity
covariance matrix) and a bivariate Normal with mean zero vector and a covariance
matrix with the i, j element to be ¢;; = 0.6/, For M3S, we employ both decision
thresholds p* and p;, with the latter being denoted by superscript » in the upcom-
ing tables and graphs. We use the first three observations to initiate the charts,
i.e. to calculate the statistics of SSMEWMA and CUSCORE and to estimate the
marginal of M3S. Thus, the decision limit for each method has been set so that we
have PFA(47) = 5% for an 1C sample, while for the OOC scenarios, we introduce
contaminated data with a shift § to the mean vector, starting at one of the locations

7 = {11,26 or 41} until the end of the sample. Specifically, the OOC shifts are:
e d=(+05 +05)T or §d = (+1 +1)7, while X =TI,

e 5=(+05 +05Tord=(+1 + )T or 6 = (+0.5 —0.5)7 or 6 = (+1 — 1)7,
while X' with the ¢, j element to be ¢; ; = 0.6/i—

This means that we have six OOC states with three different 7 locations, i.e. 18

different OOC scenarios in total. Regarding the priors, we assume two settings for
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M3S, an objective and an informative. For the objective setting (indicator n-i), we
assume the Jeffreys’ prior for the IC parameters, equal density for every possible
shift direction and a constant hazard function for the change point. For to the
informative setting (indicator i), we use the expected values of mean vector and the
sum of pairwise deviation products of five bivariate IC imaginary data to set the
prior parameters for 8. We choose the number of the IC imaginary data to be equal
with the number of the unknown IC parameters. For the angle of the shift, we set
the prior parameters so that over than 3/4 of the prior distribution to lie in the
corresponding quadrant with the actual change, while for the change point we aim
the hazard function to be approximately double at the end of the sample. The prior of
the radius is suitably located for small or medium size shifts and in a similar manner
we set A = {0.05,0.1} for SSMEWMA and m = {0.25,0.5} for CUSCORE, in case
of small or medium size shifts respectively. All the prior distributional assumptions
are provided in Table 4.3.4, while Figures 4.3.5 roughly visualizes the settings for

uncorrelated data.

Non-informative setting Informative setting
m(p, X) o | X7 (1, X) ~ NIW ((0 0)7,5,5, %, ; = 4 - 0.6/~91)
r~NCy,(|[6]]2,1/4) r~ NC,,(||8]]2,1/4)
T~ G(1/N) T~ DW(1/N,3/2)

Table 4.3.4: The prior settings of M3S for the simulation study.

Regarding the performance metrics, similarly to the univariate case we estimate the
Probability of Successful Detection, PSD(7), the mean and the sd of the truncated
Conditional Expected Delay, tCED(7) for all the OOC scenarios and we plot the
running Probability of False Alarm, PFA(n), n = 4, ..., N. The results of the com-
parisons along with their graphical representations are provided in Table 4.3.5 and

Figures 4.3.6, 4.3.7 and 4.3.8. As we can see, all the methods achieve the highest per-
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Figure 4.3.5: A graphical representation of the non-informative prior setting (left)
and the informative prior setting (right) for uncorrelated data.

formance when the change point occurs at location 26, as they have both sufficient
IC information available and a large enough “window of opportunity” to detect the
change. Comparing the methods, M3S with the informative setting outperforms all
the others, achieving significantly higher detection percentages and reacting faster
to a change. This is the result of the beneficial use of the prior information. How-
ever, M3S is competitive even in the non-informative prior setup. Specifically, it has
better performance than the competitors for small shifts in uncorrelated data, but
it loses some detection power for medium shifts or correlated data. This is prob-
ably caused partly by the objective prior for the IC parameters and partly by the
prior for radius r. Regarding the Jeffreys prior that we used, Sun and Berger (2007)

noted that it seems to be quite bad for correlations, even if it achieves frequentist
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matching for means and variances. A variety of other objective priors have been
proposed for the bivariate case by Berger and Sun (2008). This is a challenging open
problem (especially for high dimensions) that requires further investigation. For the
prior of r, the location parameter d yields a benchmark for the size of the shift that
we wish to detect. In many papers in the literature (e.g. Zantek, 2006 or Capizzi
and Masarotto, 2010) it is suggested to avoid setting a self-starting for large shifts,
especially when the IC history is not so long. Thus, a prior sensitivity regarding d
could be employed. Finally, in comparing the constant and adaptive decision limits,

the results are in par with the findings in the univariate case.

4.4 3S pplications to real data

4.4.1 U3S illustration

The application of U3S to real datasets is of interest in this Subsection. As demon-
strated in Subsection 4.3.1.2, U3S has superior performance than the competitors in
detecting shifts for the mean or the variance in short runs. We will apply the U3S
methodology in two real data sets, where it appears that the first one experiences
a mean step change and the second one a variance shift. The first dataset analyzed
by Hawkins (1987) and it refers to a chemical laboratory that carries out routine
indirect (instrumental) assays for precious metals of batches of a feedstock. As a
control measure, a sample of a standard reference material is assayed along with
each batch of unknowns. Due to confidentiality issues, the standardized data were
presented in the paper of Hawkins (1987), subtracting the mean and dividing by the
standard deviation. The standardized dataset is in Table 4.4.1.
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Figure 4.3.6: The PSD(7) (left), the tCED(7) vs the PSD(7) (top right) for shift

vectors 67 =
and the PFA(n) at each time point n = 4,5,...

(+0.5 +0.5) or 67 = (1 1) and X = I, starting at 7 = {11,26 or 41}

,50 (bottom right) of the M3S with

all the prior settings against SSCUSC™) and SSMEWMA, when we have step changes
for the mean vector.
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when we have step changes for the mean vector.
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r—znn | 082 040 -2.02 -0.02 -2.18 -0.64 -0.39 -0.51 1.17 0.49 -1.77
T12 — T2 | -0.64 -2.30 -1.55 -0.90 0.03 0.50 0.60 -0.65 0.19 -0.38 -0.72
r93 — w33 | -0.21 -0.50 095 159 0.68 -0.34 030 223 -075 139 1.01
T34 — 24 | -0.80 0.15 137 -1.39 086 0.64 -0.21 -0.51 -0.21 0.51 0.12
T4s —Ts5 | -0.33 1.010 -1.34 1.01 -0.04 167 126 -0.01 0.06 -0.82 0.12

Table 4.4.1: The sequence of the standardized data @, = (z1,z2,...,zs5;5) from the
first laboratory carrying out routine indirect (instrumental) assays for precious metals.

The prior distributions are the same with the standard prior setting for step changes
of 1 standard deviation in Subection 4.3.1.2. In order to avoid being much more
conservative compared to Hawkins (1987), who choose the decision limit of SSC to
control ARLy = 100, we control the PFA(55) = 20%, using the adaptive decision
limit p;. However, U3S would have similar reaction using the constant p* as well.
As we observe in the Figure 4.4.1, U3S realizes a step change and raises the first
alarm at time 7" = 33, while the first alarm of SSC was at time T = 30. A plausible
strategy is to stop the process after the first alarm, but we continue until the end
of the sample in order to perceive its behavior in a permanent shift. Clearly, U3S
resists in absorbing the change and it raises consecutive (14 in total) alarms, until the
end of the data sequence. Apart from testing, U3S also provides posterior inference
for the parameters of interest. The inference in Figure 4.4.1 is based on the whole
sample, i.e. n = 55, but we can have online posterior inference as each data point
becomes available. Analytical details for the sampling are provided in Appendix E.
Regarding the posterior of the change point 7, the location 16 is the most probable
for the first OOC observation, while there is a second mode at location 25. For the IC
mean (pre change) and variance, the posterior means are 0, = —0.69 and ég =091
respectively, while the posterior mean for the size of the shift is 5 = 0.98 times the
standard deviation of the process. In other words, the point estimate for the post
change mean is 0, + 60y = 0.24. Further, the lines which are plotted with the data
(upper left panel) do not represent a control chart, but they provide visualization of
the IC and the OOC state. Specifically, the dashed lines represent the pre and post

change means, while the solid lines are positioned at £+2- 0 distance from each mean
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respectively.
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Figure 4.4.1: The U3S application to a mean step change. At the left panel (upper)
we provide the data, the U3S process (middle) and the barplot of the full conditional
for 7, while at the right panel we have the histograms for the IC parameters 6; and 63
and the size of the OOC shift §. The adaptive decision p}, limit controls the PFA(55) =
20%.

The second dataset for analysis comes from Villanueva-Guerra et al. (2017) and it
refers to 60 monthly increments in the S&P 500, which is an American stock market
index. Specifically, these are the first differences in S&P 500 values, or the amount

that it grows or decays in a given month. The dataset is provided in Table 4.4.2.

1 —x2 | -6.36 3140 13.19 77.65 92.64 -18.84 -79.67 -8.63 17.88 2347 -40.65 70.46
Tig— T4 | 979 7732 7820 -4.45 100.79 -70.48 -50.55 56.49 24.12 14.55 -7.03 -68.74
Tos — T36 | -46.67 -10.91 -15.81 -17.70 12.05 -54.75 -7.49 -53.71 -19.21 -13.81 1873 1891
T3r —wgg | -13.38 -20.15  39.12  -2.52 -10.35 -15.62 -43.63 -38.09 30.65 -22.33 23.01 23.74
Ta9 — Teo | -04.65 0.17  -42.85 13.85 -848 21.81 -4247 119 -31.79 -0.58 -14.16 -15.78

Table 4.4.2: The monthly increments x,, = (1, x2,...,Zg) in the S&P 500, reported
during July 2004 - June 2009.
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The prior distributions are the same with the standard prior setting in Section 4.3.1.2,
apart from the prior of the size of the shift k. Now, we are interested in a two-sided
U3S, either for a inflation or a shrinkage of the variance. Thus, we will adopt a
mixture £ = v - IG (50,200) + (1 — v) - IG (50,12.5), where v ~ Ber(1/2). The
components of the prior are centred in an increase of 100% or a decrease 50% for
the sd. That is to say, we are more interested if the sd gets double or it becomes
half. We use again the adaptive decision limit p, controlling the PFA(60) = 10%.

The graphical representation of the application is visually summarized in the Figure
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Figure 4.4.2: The U3S application to a variance level change. At the left panel
(upper) we provide the data, the U3S process (middle) and the barplot of the full
conditional for 7, while at the right panel we have the histograms for the IC parameters
61 and 63 and the size of the OOC shift k. The adaptive decision p} limit controls the
PFA(60) = 10%.

U3S realizes a level change for the variance and raises the first alarm at time T =
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41. Similarly to the first application, we allow the process to run until the end of
the sample and the posterior inference is based on the whole sample (Appendix E
provides all the details regarding the MCMC sampling). U3S avoids again to absorb
the change, raising 20 consecutive alarms. For the posterior inference of the change
point, 7, the distribution is bimodal, with the modes being at locations 26 and 21.
The posterior mean estimates for the IC mean and variance (pre change) of the
process are ; = —7.09 and é% = 2965.7 respectively, while the &£ = 0.25, denoting
that the post change variance is four times smaller, i.e. & - 02 = 736.24. At the upper
left panel, the dashed line denotes the mean of the process, while the solid lines are
positioned from the mean distance of 42 - 0y pre change and £2 - & - 0y post change,
respectively. Regarding the analysis of Villanueva-Guerra et al. (2017), where the
first 10 observations were used to initiate the monitoring, the chart reacted later
to the change (under comparable false alarm tolerance). Additionally, the inference
about the change point 7 was misleading, as the point estimate was the location 30,

where there is no any graphical evidence to start any change in the data.

4.4.2 M3S illustration

In this Subsection, we will illustrate the M3S for the mean vector changes to a real
bivariate Normal dataset that appears to experience some type of disorder. The
dataset is well documented and given by Holmes and Mergen (1983). It has been
further analyzed via the self starting methods Self-Starting Multivariate EWMA (SS-
MEWMA) by Sullivan and Jones (2002) and Self-Starting CUSCORE (SSCUSC™)
by Capizzi and Masarotto (2010). The dataset consists of n = 56 bivariate observa-

tion from a European plant producing gravel:

)

Z1,1 x1,2 T1,56
T21 Z22 T2.56

where 27, and z5; represent the percentage of particles (by weight) of large and
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medium sizes respectively. The dataset is provided in Table 4.4.3.

Large % (111 —7104) | 54 32 52 35 29 46 44 50 84 42 38 43 37 38
Medium % (22, — 214) | 93.6 926 917 869 90.4 921 91.5 90.3 85.1 89.7 925 918 917 90.3
Large % (v115 — 4108) | 26 2.7 79 66 40 25 38 28 29 33 72 73 70 60
Medium % (2215 — T20s) | 945 945 887 846 90.7 90.2 927 915 918 90.6 87.3 79.0 82.6 83.5
Large % (7120 — 4102) | 74 68 63 6.1 66 62 65 60 48 49 58 72 56 69
Medium % (720 — T249) | 83.6 84.8 87.1 87.2 87.3 848 874 868 888 89.8 869 838 892 845
Large % (T143 — @106) | 74 89 109 82 67 59 87 64 84 96 51 50 50 59
Medium % (2243 — Ta56) | 844 843 82.2 898 904 90.1 83.6 880 847 80.6 93.0 914 862 87.2

Table 4.4.3: Percentage of particles (by weight) of Large % (x1;) and Medium %
(x2,;) sizes respectively per time point (i = 1,2,...,56), in a European plant producing
gravel.

The observations are tested sequentially, assuming X;| (u, X) 2N, (u, X). For the

unknown parameters, we have the non-informative prior setting, used in Subsection
4.3.2.2, defining the location parameter of radius d = v/2. Further, as the prior is
improper, we sacrifice the first three initial data points for the calculation of the
marginal distribution, as described in Section 4.1.1. Regarding the decision limits,
we use both of the constant p* and the adaptive decision limit p}, to control the
PFA(56) = 10% for each limit. As we can see in the Figure 4.4.3, M3S with the
adaptive decision limit is quite sensitive and raises an alarm from the first test, i.e.
the fourth data point of the process (as the first three were used in the calibration).
We could say it is a plausible alarm, as there is a discrepancy between the fourth
data point and the initial three (in light blue) that involved in the marginal. We
take it into account only as a warning message, letting the process continue. But in
any case, this is quite important, as a big issue of the self-starting procedures is that
they are incapable to react and detect a shift when it occurs in the very beginning
of a process, because of the lack of IC history. A plausible stopping time would be
T = 28, where we have the first of 29 consecutive alarms, until the end of the sample.
Like U3S, M3S is also very persistent in raising alarms, when a disorder is detected.
This is also a very important property, as it reduces the risk of absorption of a change.
It is worth mentioning, that both of the SSMEWMA and the SSCUSC™) reacted

later and raised the first alarm at the 29* and the 30" observation respectively.
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M3S is not merely superior in the early detection of the shift, but also provides
analytical posterior inference regarding the unknown IC and OOC states. Based on
the whole sample, the most probable location for the change point is 25, while it is
quite probable a second change point to have been experienced around the location
43. In the scatterplot of Figure 4.4.3, the points 1-24 are in blue, while the rest are
in red, noting stopping time 7' = 28. The posterior means for the IC parameters (pre
change) are fi; = 4.64, i = 89.16, 61 = 2.08, 65 = 6.23 and p = —0.69, while for
the OOC parameters we have 7 = 2.19 and 6 = 334.37°. Thus the point estimates
for components of the OOC mean vector are fi; = fi; + 7 - cosl - 61 = 7.46 and
fly = fig + 7 - cosf) - 65 = 86.23. Appendix F provides the trace and the ACF plots
for all the posteriors, along with the details of the MCMC sampling.
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Figure 4.4.3: The M3S application to a mean vector step change change. At the left
panel we provide the data, at the center panel the U3S process (upper) and the barplot
of the full conditional for 7 (lower), while at the right panel we provide the histograms
for the IC parameters p1, 2, 02, 03 and p and the OOC parameters 7 and 6. The
constant and the adaptive decision limit (p* and p}) control the PFA(56) = 10%.



Chapter 5

Conclusions and Discussion

5.1 Conclusions

Statistical Process Control and Monitoring (SPC/M) is a widely used area of Statis-
tics with a plethora of applications. The standard approach calls for a phase I
calibration followed by a phase II testing phase, relying on strict assumptions and
may under certain conditions be problematic. Namely, it may not be applicable in
case where low volume data are available and the online analysis is of interest, or
when there is no prior information about the process. Self-starting control charts aim
to alleviate such issues. The Bayesian approach in SPC/M is underdeveloped, de-
spite the advantages offered in handling the uncertainty of the unknown parameters

utilizing prior knowledge about the process.

In this dissertation, we started with an extensive literature review on self-starting
methods that we classified in distinct domains, based on certain criteria (like dimen-
sionality, type of approach etc.). In this way we demarcate the area of Bayesian
SPC/M, where the developed research methodology will be devoted. Specifically,
the goal was the development of innovative Bayesian self-starting methods for indi-

vidual observations in short runs. All things considered, we successfully dealt with
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the detection of transient or permanent shifts, for location and/or scale parameters
of either univariate or multivariate data, developing the appropriate methods. In
addition to the successful detection of assignable causes of variation and the pro-
cess monitoring, we also provided reliable inference about the unknown parameters,

which is of major importance, when such methods are used in practice.

Namely, we expanded the work of Bourazas (2014) and Kiagias (2014) for Predictive
Control Charts (PCC), which is a new general Bayesian method that permits online
process monitoring for various types of univariate data, as long as their distribution
belongs to the regular exponential family. We introduced the use of power priors,
which, along with the initial priors, offer the flexibility to incorporate historical data
and /or subjective knowledge in the decision making scheme allowing valid online in-
ference, from the very early start of the process, aborting the need of a preliminary
calibration phase. It is the use of prior distribution that provides a structural advan-
tage over the non-parametric and self-starting frequentist based methods, especially
in short runs and phase I data, where only brief IC information is available from
the current data. The effect of the prior settings (as long as we avoid extremely
informative priors), will decay soon, as more data become available. Furthermore,
for users that might not be accustomed to the Bayesian approach, the choice of non-
informative (reference or Jeffeys) prior, allows direct PCC implementation, using
only the incoming data (and historical data if available). Also, we provided guide-
lines for the prior elicitation, and, generally, we developed the axiomatic framework,
where the PCC process is applied, including the definition of HPrD /M region, a FIR

scheme and a discussion on decision making.

PCC puts emphasis in online outlier detection of short production runs and it does
not require a phase I/II split. Traditional phase I studies, where online inference re-
garding the presence of large transient shifts is of interest, are ideal settings for PCC.
Furthermore, it is feasible for a user to switch from standard phase I/II monitoring

methods to PCC, as it will not only provide online outlier detection monitoring dur-
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ing the phase I segment, but thanks to its sequentially updated nature, it will allow
incorporation of the phase II data into the monitoring mechanism (something that
is not done with typical Frequentist methods). Thanks to the Bayesian posterior
distribution, we are also able to perform inference regarding each of the unknown
parameters. Lemma 2.3.1 and an extended simulation study, shows that PCC has
better performance compared to the frequentist based alternative,() Chart, achieving
greater power in outlier detection and being robust for all the parameter values, even
those that are too close to the boundary of their support set. Additionally, PCC
is quite robust in model misspecifications, like violation in the independence or the

distribution of the data.

PCC seems to be ideal for everyone that deals with either short runs or applications
that require online monitoring during phase I. However, practitioners that employ
a traditional phase I/II protocol in their routine, can benefit from the use of PCC
during their phase I. Precisely, they will not only be able to monitor the process
online while in phase I, but also obtain the posterior point estimates of the unknown
parameters at the end of phase I, that will be necessary to build traditional phase
IT control charts. The benefits are significant in short runs, where most of the
existing methods are unable to have robust performance and reliable estimates of

the unknown parameter(s).

Next, we developed Predictive Ratio CUSUMs (PRC), a Bayesian change point
model, able to accommodate any univariate data generating distribution that belongs
to the regular exponential family, much like PCC. PRC is an enhanced Bayesian ver-
sion of the frequentist Self-Starting CUSUM (SSC). In addition, PRC utilizes the
fact that the alternative (competing) models (OOC in the SPC/M framework) are
known, providing a method that boosts significantly the West’s (1986) Cumulative
Bayes Factors (CBF) approach. Most importantly though, PRC comes with detailed
guidelines in deriving the decision thresholds (something missing to a large degree

from both SSC and CBF) and a FIR scheme topics that are desperately needed from
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a practitioner in employing such schemes in real life practice. An extensive simula-
tion, evaluating the detection (both in power and alarm delay) of persistent shifts,
shows that PRC outperforms SSC even when non-informative prior is used and it is
also more powerful from CBF, except the special case where we look for shifts in the

variance of a location scale family distribution, where CBF becomes a special case

of PRC.

The PRC methodology was developed as a self starting quality monitoring scheme
within the SPC/M area, but it can be used at any other field, where we are interested
in online detection of persistent parameter shifts, especially when only low volume of
data is available (short runs). Apart from the change point detection aspect of PRC
(i.e. alarm a shift and provide an estimate of when this shift was originated), thanks
to the Bayesian framework, at each time we can have a point/interval estimate of
the unknown parameter, which will be sequentially updated. Finally, the detailed
description of the methodology (in closed form) and the associated decision limits
(typically absent in standard competing methods), based on the false alarm policy
that one wishes to have, allows its straightforward implementation in either short

(using FW ER) or long (via ARLg) sequences of data.

Next research work in this dissertation was the development of the Self-Starting
Shiryaev (3S) methodology, a general detection scheme focusing on the efficient de-
tection of permanent shifts in short runs, under the absence of phase 1. Precisely,
3S is a family of innovative Bayesian online change point models under the At Most
One Change (AMOC) scenario, which is general enough to be employed in any dis-
tribution, either continuous or discrete. It is a generalization of classical Shiryaev’s
approach in two main ways. First, by relaxing the strict assumption of known pro-
cess parameters. This is true by allowing the parameters that describe the IC state
or reflect an OOC shift to be all unknown. Secondly, by offering a more general prior
(Discrete Weibull) for the change point. The selected prior is more flexible in the

management of the hazard function for the occurrence of a change point, which is of
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major importance in real life applications. We set the general 3S framework for any
distributional setting, but we studied in detail the Univariate (U3S) and Multivariate
(M3S) schemes for Normal data, providing the assumptions, the development, the

evaluation and illustration to real data.

An extensive simulation study showed U3S to be more effective in detecting persis-
tent shifts for the mean or the variance in short horizon Normal datasets compared
to the standard frequentist or nonparametric alternatives, like SSC and Recursive
Segmentation and Permutation (RS/P). Thanks to the prior distribution, U3S can
utilize any available source of prior information in aid of the detection power, but it
is still robust and effective under total prior ignorance. Concerning M3S, we define
the models appropriately, in order to achieve the desired properties of the directional
invariance, anisotropic scaling and rotation, which are beneficial for its applicabil-
ity in real world problems. The simulation study, where we compare M3S for the
mean vector against SSMEWMA and CUSCORE in the presence of step changes in
the mean vector, showed that M3S outperforms the competing methods, in case of

available prior information, while it is competitive under total prior ignorance.

The enhanced detection performance in both univariate and multivariate 3S schemes
can be attributed to the proposed model structure, which splits appropriately the
data and summarizes the evidence of a change point occurrence, using the whole
sample. In this manner, it avoids including contaminated data in the IC estimates
and consequently is more resistant in absorbing a shift. Aside from the superiority in
the change point detection, U3S offers an online posterior inference for the unknown
parameters, regarding the IC or the OOC scenario, including the change point. This
is a great advantage for an online monitoring and a successful root cause analysis
after a change point occurrence. Furthermore, we proposed a more realistic adaptive
decision limit, which takes into account the prior of the change point and we provided
guidelines for its successful use. Summarizing, 3S is an excellent choice for the online

detection of a change point, especially in short runs, offering also posterior inference
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for the unknown process parameters and the shift.

Despite the innovative methodology, which introduced and developed in this disser-
tation, there is still room for further improvement. Future research will be focused
on the simulation study of M3S for the detection of rotations or scale shifts in the
covariance matrix or the detection of mean vector drifts in higher dimensions. A fur-
ther investigation will concern the non-informative prior setting in the multivariate
processes along with some topics on the robustness. Finally, an R package with the

existed methodology is planned to be developed, allowing the free and direct use of

Bayesian SPC/M (BSPC/M) methods in the community.



Chapter 6

Appendices

Appendix A: Technical details regarding the derivation of the log ratio of the pre-
dictive OOC over IC models, log(L,.1), for all PRC scenarios presented in Table
3.1.1.

A1l: PRC for the rate of a Poisson likelihood.
Assume X;|0 ~ P(0 - s;), where s; is the known number of events for the it obser-
vation, while for the rate (per event) unknown parameter we assume 6 ~ G (c,d).

Then, the resulting IC posterior is 0|1, ~ G (én, cfn>, while the corresponding pre-

A Np
dictive is f (Xnp1|X,) = NBin (én,snﬂ / (dn + snﬂ», where &, = ¢+ > w;d;
j=1
A Np
and d, = d+ ) w;s;. Thus, the vector of IC posterior parameters, the predictive’s
=1

‘7:
sufficient statistic and K (7,), needed in PRC are

F(Tn,l + 1)

Th = (dAn,én - 1) ) tf(Xn+1) = (3n+17xn+1> and K (Tn) - (7_ )Tn,1+1
n,0

For the OOC scenario we introduce the shift to the unknown rate parameter 6 by mul-
tiplying it by & (i.e. the OOC parameter is k-6), which corresponds to a (k—1)-100%

rate increase if k£ > 1, or to a (1 — k) - 100% decrease when k < 1. Since Gamma is
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a scale family it follows that the OOC posterior will be 0|7 ~ G <én, d,/ k;), result-
ing the predictive f'(X,11|X,) = NBin (én, Snt1/ (cin/k; + an)). Therefore, the
vector of intervened posterior parameters will be 7, = (cin [k, ¢ — 1). Finally, the
score function log (L,1) will be given by
K (7, 4+ t5(Xnia)) -
K (70 4 t5(Xn1a)) -
I' (¢, + Tpyi1) I(é,)

~ én+$n+1 ’ 7
(dn/ k+ Sn+1)

F(én +xn+1) F(én)

A~ én“!‘ﬂCnJrl ’ ~ Cn
(dn + an) <dn k;)

log (Ln+1) = log

3P

= log

d + Sp
= (Cn + xn—‘rl) lOg 5 w

— + Tni1 - lng?
n/k + Sn+1

A2: PRC for the probability of success of a Binomial likelihood.

Let X;|0 ~ Bin(N;,0), where N; is the known number of Bernoulli trials of the
th observation and for the unknown success probability we assume 6 ~ Beta (a,b).
The IC posterior is 0|7, ~ Beta (dmi)n>, while the predictive is f( 7hL1|)( ) =
BetaBz'n(dn, ZA)n, Nn+1> where a,, = a + E w;d; and b, = b+ E w;N;j — Z w;d;

Thus, the vector of IC posterior parameters the predictive’s sufﬁ(nent statlstlc and

K (7p), needed in PRC are

i b, — 2
Th = %7&71 =1, t(@ns1) = (N1, 20q1)  and

> Ni
=1

F(Tn,l + 1)F<Nl . Tn,O — Tn,l + 1)
F (Z ]\/vZ 'Tn,0+2)

i=1

K (Tn) =

For the OOC scenario we multiply the expected odds of 6 by k, i.e. the OOC
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0
shift is k- (m) This shift corresponds to a (k — 1) - 100% expected odds

increase if £ > 1, or to a (1 — k) - 100% decrease when k& < 1. The OOC posterior
will be 6|1 ~ Beta (k: : &n,5n> and the corresponding predictive [’ (X,1|X,) =
BetaBin (k <y, l;n, Nn+1). Therefore, the vector of the intervened posterior param-

ko +b,—2 , ,
eters will be 7, = n + ,k-a, —1]. The score function log (Ly,+1) will

> N
=1

be
Ik -an+app) I (z}n 4 Ny — mn+1> (@) T (bn>
r (k iy + by + Nn+1) r (an + Bn)
log(Lns1) = log ~ -
[y + ns2) T (bn Ny — a:nﬂ) I(k-an) I bn>

B <k ' CALn + [;na Nn—i—l) B (d’mxn—l—l)
B (an + b, Nn+1> B (k- n, Tni1)

= log

A3: PRC for the probability of success of a Negative Binomial likelihood.
Let X;|0 ~ N Bin(r, ), where r represents the known number of failures until the ex-

periment stops and for the unknown probability of success we assume 6 ~ Beta (c, d).

The IC posterior and predictive will be 0|7, ~ Beta (dn, Bn> and f (X,1]X,) =

R Np ~ Np

N BetaBin (&n, bn,r> respectively, where @, = a+r > w; and b, = b+ Y w;d;.
j=1 j=1

Thus, the vector of IC posterior parameters, the predictive’s sufficient statistic and

K (7y,), needed in PRC are

D(Tpa + D) (r - 7o + 1)
F(’f’ . Tn70 + Tn71 —+ 2)

i —1 -
Tn = (a s bn — 1) , tp(@ns) = (Lizpn) and K (7a) =
7“

As in the Binomial case, for the OOC scenario we multiply the expected odds of 6
by k. This shift represents a (k — 1) - 100% expected odds increase if k& > 1, or a
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1 —k)-100% decrease when k < 1. The OOC posterior is |7/ ~ Beta ( k - 4, b,
( "

and the corresponding predictive f’(X,41|X,) = NBetaBz'n(k; : dml}n,r). The
k-a,—1

,l;n — 1). Finally, the score
r

intervened posterior parameters are T, = (

function log (L, +1) will be given by

B (k iy + by, T+ an) B (an, 7)

B (dn + Z)n,r + xn+1> B (k- ap,r)

log (Lnt1) = log

A4: PRC for the mean of a Normal likelihood with known variance.
Let X;|0 ~ N (0,0%), where o2 is the known variance, and for the unknown mean
parameter we assume 6 ~ N (ug,02). The IC posterior and predictive will be

0|7, ~ N (fin,62) and f (X,41|X,) = N (jin, 6% + 02) respectively, where
Np Np Np

fn = | oo + 00 Y wjd; / 0?4+ 00* Y w; | and 62 = 00202/ o+ 00® Y wj .
j=1 j=1 j=1

The vector of IC posterior parameters, the predictive’s sufficient statistic and K (7,),

needed in PRC are

2.2

02 :&n Tnt1 27702 0" Th1
Ty = (72772) , bt (Tpy) = (1, 0; ) and K (1,) = ea:p{ ’ }

o, O, Tn,0 2T 0

For the OOC shift, we introduce a step change of size k- ¢ on the mean, i.e. the
OOC mean is 6 + k - 0 and the mean shift is upward or downward, depending on

whether £ > 0 or £ < 0 respectively. Since Normal is a location family, the OOC

2
n

posterior is 0|7, ~ N (fi, + k-0,6;) and the corresponding OOC predictive will

be f'(X,:1|Xn) = N (ji, + k- 0,62 + 02). The vector of the intervened posterior
2 A
parameters is T, = ?2 , %) If we will standardize the future observable,
O-’I'L 0-7’L

setting Z,11 = (Xpq1 — fin) /A/02 + 02, then the standardized predictives will be
f(Zn1| X)) = N(0,1) and f'(Z,41|X,) = N (k‘ c0/\/G2 + 02, 1). The score func-
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tion log (L,+1) will be given by

_ f/ (Xn+1|Xn) _ f/ (Zn+1|Xn)
109 ) = 10070 IR T F Z X

Z _ﬁ- U . O-
2 62 a?) Jaito?

A5: PRC for the variance of a Normal likelihood with known mean.
Let X;|0? ~ N (u,6?%), where u is the known mean, and for the unknown variance
parameter we assume 6% ~ IG (a,b). The IC posterior and predictive distributions

will be 6|7, ~ IG (dn,6n> and f (X,11|Xn) = toa, <u, l;n/&n) respectively, where

Np “ Np

an, = a+ > w;j/2 and b, = b+ Y w;(d; — 1) /2. The vector of IC posterior
j=1 j=1

parameters, the predictive’s sufficient statistic and K (7, ), needed in PRC are

(3

Th = (2(&n +1), 2l;n) ;b (Tng1) = (1, (T — ,u)Q) and K (1,) = 2 o
(52
2
For the OOC shift, we multiply the variance by k, i.e. the OOC parameter is
k - 6% and this shift corresponds to a (k — 1) - 100% variance increase if k > 1 or
a (1 —k)-100% decrease if £ < 1. Since the Inverse Gamma is a scale family,
the OOC posterior will be 0|7 ~ IG (dn,k . I;n) with the corresponding predic-
tive being [’ (X,11|X5) = t2a, (,u, k- En/dn) Thus, the intervened parameters are
given by 7, = (2(dn +1),k- 2(3n> Standardizing the future observable we have

1 = (Xns1 — fin) / \/Bn /@, resulting the IC and OOC predictive distributions to
be f(Zn1|Xn) = toa, (0,1) and f' (Z,41]1X,) = taa, (0, k) respectively. Finally, the
score function will be

2a, + 22
log (L, = (G, +1/2) log———"2FL _ 1ogVk
09 (Ln41) (an +1/2) Og2&n+23+1/k ogVk
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A6: PRC for the mean of a Normal likelihood with both parameters un-
known.

Let X;|(61,03) ~ N (61,03) with both parameters being unknown and assumed
(61,03) ~ NIG (ug, \,a,b). The IC posterior and predictive distributions will be
given by

(01,03) |1, ~ NIG (,um)\n,an, )andf( Xoi1|X0) = toa, <pm, (A +1)-b n/ (An -y )

Np
respectively, where fi,, = ()\uo + ZD wjdj) / ( Z ) =+ Z wj, Gn, =
i=1 i=1

j=1

ND N ND D 2 ND
at+y_ w;/2and by, = b+ | Aud + > w;d /2— Mo + Y wjd, / 2( A+ > w; | |.
j=1 j=1 j=1 j=1

The vector of IC posterior parameters, the predictive’s sufficient statistic and K (14,),

needed in PRC are

Tn = (2(&71 + ]-)7 2871 + j\nlazm Xnﬂnv 5‘71) ) tl (xn—&-l) = (]-7 x121+17 Tn+1, 1) and

Tng—?)
F )
V2m ( 2 )

Tn,3 ) Tn,0 — 3
Tn,1 i Tn,2 2
2 27—n,3

For the OOC shift, we introduce a step change of size k - 05 to the mean (i.e.
the OOC parameter will be 6 + k), where 0y = 1/b,/d, (the shift will be up-

ward or downward, depending on whether £k > 0 or k£ < 0 respectively). The
parameter 0 is the mean of the posterior marginal for the standard deviation 6.
This choice preserves the conjugacy and expresses the shift in terms of the esti-
mated standard deviation. Furthermore, it is always well defined when the predic-
tive is available and it allows the pivotal statistic to depend only on An. Given
that the posterior marginal Student ¢ is a location family, the OOC posterior is
(0,,03) |7, ~ NIG (/ln + k- Oy, A, i, I;n>, while the corresponding predictive and
the intervened posterior parameters are

I (X X)) = taa, <[Ln + k- éz, <5\n + 1) . l;n/ (5\” . &n>> and
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T, = (2(€Ln + 1), 2b,, + ;\nﬂi, Xn(ﬂn + k- ég), 5\n> respectively. Standardizing the fu-

ture observable (using the IC parameters) we get Z,,11 = (X1 — fin) /\/(S\n + 1) . l;n/ (j\n . dn).
Then the IC and OOC predictive will be f (Z,11|X,) = toa, (0,1) and f' (Z,41|X,) =

toa, <k: [ A/ (5\” + 1), 1> respectively. The score function log (L, 1) will be given

by

- 2
20, + 25, 4

log (Lpy1) = (G, +1/2)-log —— 5
%, + <zn+1 kOt 1))

AT7: PRC for the variance of a Normal likelihood with both parameters
unknown.

In this scenario, the likelihood, prior and the IC posterior distributions are identical
to the ones of scenario A6. However, here we consider the PRC for the variance
term and so for the OOC shift, we multiply the variance by k, i.e. k- 603. The shift
corresponds to a (k — 1) - 100% variance increase if & > 1 or a (1 — k) - 100%
decrease when k < 1. Furthermore, as the posterior marginal of 62 is Inverse
Gamma, i.e. a scale family, the OOC posterior will be given by (6y,603) |7, ~
NIG (ﬂn, My Gy K - l;n>, while the corresponding predictive will be f’ (X, 11]|X,) =
toa, (ﬂn, k- (5\” + 1) I;n / 5\n . dn)). Thus the vector of the intervened posterior
parameters will be 7/ = (2(a, + 1), 2k - b, + j\nﬂ%, Xnﬂn, ;\n> Standardizing the
future observable (just as in A6) we get the standardized IC and OOC predictive
distributions to be f (Z,41|X,) = taa, (0,1) and f'(Z,41|X,) = ta, (0,k) respec-
tively. Finally, the score function log (L,1) will be

2a, + 22
log (L, = (G, +1/2) log—2—"""FL  _ JogVk
09 (Ln41) (an +1/2) Og?dn+22+1/k ogVk

A8: PRC for the rate of a Gamma likelihood.
Let X;|0 ~ G(«,0), where « is the known shape parameter, and for the unknown

rate parameter we assume that § ~ G (¢,d). Then, the resulting IC posterior and
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predictive will be 0|1, ~ G (én,dn) and f(X,+1|X,) = CompG (a,én,ain) (i.e.

Np N Np
Compound Gamma) respectively, where ¢, = ¢+ a ) w; and d,, = d + > w;d;.

j=1 j=1
Therefore, the vector of IC posterior parameters, the predictive’s sufficient statistic
and K (7,), needed in PRC are

I'lat,o+1)

én—1
™ (Td) ty(@nn) = (Lanp) and K (1) = — 25—
n,1l

Just as in the Poisson case, the OOC scenario is introduced as a shift to the rate
parameter, by multiplying it by k, representing a (k —1)-100% rate increase if k > 1
ora (1—k)-100% decrease when k < 1. As Gamma is a scale family it follows that the
OOC posterior will be 0|7, ~ G (én, d, / k’) , and the corresponding predictive will be
(X1l X,) = CompG (a, e,y / k) Therefore, the vector of intervened posterior

~

parameters will be 7/ = (c ,?> Finally, the score function log (L,1) will
!

be given by

. dy + 2,
1og (Lns1) = (én+a)-log———tntl

+ a - logk
dn + k- Tnt1

A9: PRC for the scale of a Weibull likelihood.
If X;|0 ~ W (0, k), where k is the known shape parameter, and for the unknown scale

parameter we assume ¢ ~ IG (a,b). The IC posterior and predictive distributions

will be 0|7, ~ IG (&n, 6n> and f (X,41|X,) = Burr (/@, Qi IA)TI/H) respectively, where
Np
an=a+ Y,

R Np
wj and b, =b+ ) w;df. Thus, the vector of IC posterior parameters,
j=1 j=1

the predictive’s sufficient statistic and K (7,), needed in PRC are

i [ — 1
Ty = (dn + l,bn> , tp(zn) = (L) and K (1) = %

n,1

Similarly to scenario A5, we introduce the OOC shift by multiplying the scale pa-
rameter #° by k. The shift corresponds to a (k — 1) - 100% scale increase if k > 1
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or a (1 —k)-100% decrease when k < 1. The Inverse Gamma is a scale family,

thus the OOC posterior will be 0|7, ~ IG <dn, k - l;n> and the corresponding OOC
~\ /K
predictive will be given by f' (X, 1|X,) = Burr (m, Qs <l<: : bn> ) Finally, the

vector of the intervened posterior parameters is 7, = (dn +1,k- 3n>, while the score

function becomes

log(Lpy1) = (an+1)-log-

A10: PRC for the scale of an Inverse Gamma likelihood.

Let X;|0 ~ IG(a,0), where « is the known shape parameter while for the unknown

scale parameter we assume 6 ~ G (¢, d). The IC posterior is 0|1, ~ G (én, Jn), while

the resulting predictive is f (X,41|X,) = GB2 (—1, 1/czn,a,én> (i.e. Generalized
ND ~ ND

Beta of the second kind), where ¢, = c+a > w; and d,, = d+ ), w;/d;. The vector
j=1 j=1

of IC posterior parameters, the predictive’s sufficient statistic and K (7,), needed in

PRC are

po—1 1 Ilar, o+ 1
m= () e = (1) e K = D
“ Tt (Tn1)™™

Similarly to earlier scenarios, where Gamma was the prior, we introduce the shift to

the shape 6 by multiplying it by k, which represents a (k — 1) - 100% scale increase
if k> 1ora(1—k)-100% decrease if k < 1. Gamma is a scale family, thus the
OOC posterior will be 0|7/ ~ G <én, d,/ k:), and the corresponding predictive will
be [ (X,11|X,) = GB2 (—1, k:/cin, a, én>. The intervened posterior parameters will

An - ]- 7 . . .
be 7/ = (C—, d,/ k> and the score function log (L,+1) will be given by
a

109 (Lut1) = (én+a)-log="—

A11: PRC for the shape of Pareto likelihood.
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Let X;|0 ~ Pa(f, m), where m is the known minimum parameter, and for the shape
parameter we assume 6 ~ G (c,d). The IC posterior and predictive distribution

are O|t, ~ G (én,czn) and f (X,41|X,) = expGPD (a?n/ (m - ¢,) 6_1> (i.e. expo-

Np
nentiated Generalized Pareto Distribution) respectively, where ¢, = ¢+ > w; and
j=1
A Np
d, = d+ ) w;log(d;j/m). The vector of IC posterior parameters, the predictive’s
j=1
sufficient statistic and K (7,), needed in PRC are

. A I'(mh0+1
Thn = <Cn — 1,dn> ) tf(fl?n-i-l) = (LZOQ(xn-i-l/m)) and K(Tn) - ( T:,)o+1 )

n,1

Just as it was done in the earlier cases where Gamma was involved as prior, we
multiply the shape 6 by k, which represents a (k — 1) - 100% shape increase if
k> 1ortoa(l—Fk)-100% decrease when k < 1. As Gamma is a scale family,
the OOC posterior 8|1) ~ G (én, cin/k>, and the OOC predictive: f' (X, 11]|X,) =

expGPD (dn J(k-m-é,),¢, 1). The intervened posterior parameters will be 7, =

An -1 . . .
(C—, d,/ k) and the score function log (L,+1) will be given by
a

Czn + log(Tpi1/m)
Cin +k- lOg(ajnJrl/m)

log(Lyy1) = (¢n+1)-log + logk

A12: PRC for the scale of Lognormal likelihood with known shape pa-
rameter.

Let X;|0 ~ LogN (0,0?), where o2 is the known shape parameter, and for the
scale parameter we assume 6 ~ N (pg,02). Similarly to the corresponding Nor-
mal case (scenario A4) we have that the IC posterior and predictive distributions to

be 0|1, ~ N (ji,, 62) and f (X,+1|X,) = LogN (ji,, 62 + 0?) respectively, where

n

Np Np Np
fin = | 0210 + 0% > w;log(d;) / 0?4+ 00 Y w; | and 62 = 00202/ o2+ 0 Y wj|.
j=1 j=1 j=1
The vector of IC posterior parameters, the predictive’s sufficient statistic and K (7,),



178

needed in PRC are

o fin log (1) I et
Tn = (&TQL; &—%) , b () = (L T> and K (1) = o 61’]9{ 2o }

For the OOC shift, we introduce a step change of size of k - o for 6, i.e. the OOC
parameter is # + k - 0 with the shift being upwards or downwards depending if £ > 0
or k < 0 respectively. Since the Normal is a location family, the OOC posterior
will be O|7! ~ N (i, + k - 0, 6%) with the corresponding predictive f’ (X,;1|X,) =
LogN (ji, + k-0, 62+ 0?). The vector of the intervened posterior parameters will
be T, = (22 , ﬂn;#) . If we will standardize the log-transformed future observ-
able, settingnZnH :n (log(Xnt1) — fin) / \/W , then the standardized predictives
will be f (Zns1|X,) = N(0,1) and f (Zppi| X)) = N(k-a/ &g+a2,1). The

score function log (L, 1) will be given by:

k o o
log (L, = Zpgl — — .
g (Lnsr) ( B \/&g+o—2> N

A13: PRC for the shape of Lognormal likelihood with known scale pa-
rameter.

Let X;|0? ~ LogN (u,6?), where p is the known scale, and for the shape parameter
we assume 6 ~ IG (a,b). Similarly to the corresponding Normal case (scenario A5)

we have that the IC posterior and predictive distributions to be 6|, ~ IG <dn, Bn>,

A Np
and f (X,41|X,) = Logtas, <u, bn/dn> respectively, where G, = a + Y w;/2 and
j=1

R Np
by, =b+ > w;(log(d;) — 1)’ /2. The vector of IC posterior parameters, the predic-
j=1
tive’s sufficient statistic and K (7,), needed in PRC are

A (-
Tn = <2(dn + 1)) 2bn> ) tl ($n+1) = (17 (log(xn+1) - ,u)2> and K (’Tn) = —7_,10
(T 2
2
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For the OOC shift, we multiply the shape parameter by k, i.e. k- 6% The shift
corresponds to a (k—1)-100% increase if k > 1 or to a (1 — k) - 100% decrease when
k < 1. Since, Inverse Gamma is a scale family, the OOC posterior and predictive will
be 0|7 ~ IG (an, k- Bn> and f' (Xps1| X)) = Logtas, (u, kb, /an). The vector of
the intervened posterior parameters will be 7, = (2(dn +1), k- 213n> Standardizing
the log-transformed future observable we have Z,.1 = (log(Xnt1) — ) / \/%’
resulting the IC and OOC predictive distributions to be f (Z,11|X,) = t2a, (0,1)

and f' (Z,11|X,) = tea, (0, k) respectively. Finally, the score function will be
24, + 22

l0g (Luy1) = (an+1/2) - log————"F— —logVk

09 (Lnt1) = (an+1/2) 9 22, ogV'k
A14: PRC for the scale of Lognormal likelihood with both parameters
unknown.
Let X;|(01,05) ~ LogN (6,60%), where both parameters are being unknown and
we assume (01,03) ~ NIG (po, A, a,b). Similarly to the corresponding Normal case
(scenario A6) we have that the IC posterior and predictive distributions will be

(01, 62) |7 ~ NIG (,&n, R i, Bn) and f (X,11| X)) = Logtsa, (gn, O+ 1) b/ (A an))

respectively, where

Np Np " Np Np
fn = | Ao + > wjlog(d;) / A Y wi |, A=A+ wj, a, =a+Y w;/2and
j=1 j=1 j=1 j=1

b, = b+ (Au% + iwj(log(dj))Q) /2— ()\uo + iwﬂog(dﬁ) / (2 ()\ + ﬁw) )

The vector of IC posterior parameters, the predictive’s sufficient statistic and K (7,),

needed in PRC are

T, = (2(dn +1), 2b,, + j\n,&i, S\Hﬂn, 5\n> , b (1) = (1, (log(2n41))?, log(xn11), 1) and
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Tn0—3
F )
V2w ( 2 )

Tn,3 ) Tn,0 — 3
Tn,1 i Tn,2 2
2 27',173

For the OOC shift, we introduce a step change of size of k-0 to the mean, where 6y =

\/ by /i, (i.e the expected value of the posterior marginal for the ;) and so the OOC

parameter will be 6, + k. The shift is upward or downward depending on whether
k > 0 or k < 0 respectively. As the posterior marginal Student ¢ is a location family,
the OOC posterior is (6y,602) |7, ~ NIG (ﬂn + k- éz,j\n,&n,?)n>, while the corre-
sponding predictive is f' (Xns1|Xn) = Logtsa, (,:Ln ks, Ot 1) b/ (M- an)>.
The vector of intervened posterior parameters is 7, = (2(dn +1), 2b,, + j\nﬂi, ;\n(ﬂn + k- ég), ;\n)
Standardizing the the log-transformed future observable (using the IC parameters)

we get

Zosr = (10g(Xos1) — fin) / \/ (Aw+1) 5/ (An-an). Then the IC and OOC pre-

dictive will be f (Zn+1|Xn) = t2&n (O, 1) and f/ (Zn+1|Xn) = tg@n (k} A /;\n/ (S\n + 1), 1)

respectively. The score function log (L, 1) will be given by

- 2
20 + 25, 4

log (Lpy1) = (G, +1/2)-log — 5
24, + <zn+1 kO + 1))

A15: PRC for the shape of Lognormal likelihood with both parameters
unknown.

The likelihood and the IC distributions and parameters are identical with the ones
presented in scenario A14, but for the OOC shift, we multiply the shape parameter
62 by k, referring to a (k — 1) - 100% increase if & > 1 or (1 — k) - 100% decrease
when k < 1. Furthermore, as the posterior marginal (Inverse Gamma) is a scale fam-
ily, the OOC posterior and predictive will be (6y,63) |7, ~ NIG </ln, Ay, k- 6n>
and [’ (X,11|X,) = Logtas, (ﬂn, k-(A+1)- l;n/ (A - dn)) respectively. The in-
tervened posterior parameters will be 77 = (2(&n +1),2k- b, + S\nﬂi,ﬂnﬂn,ﬂn)
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Standardizing the the log-transformed future observable (just as in A14) we get the
standardized IC and OOC predictive distributions to be f (Z,+1|X,) = t2a, (0,1)
and f' (Z,41|Xn) = taa, (0, k) respectively. Finally, the score function log (L, 1) will
be

2a, + 22
log (L, = (G, +1/2) log—2—"""FL  _ TogVk
09 (Ln41) (an +1/2) OQQ%JFZ?LHM ogVk
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Appendix B: Decision thresholds h for PRC Models

Table 6.0.1 provides the decision threshold h for the Normal (or equivalently the
logarithm based transformation of a Lognormal) likelihood for scenario 1 in Section
3.2. Specifically, we derive the h values for different choices of (FWER, N) or ARLy
and specific size of OOC parameter shift k&, when we make use of a reference prior
and no historical data are available. The models for which the h decision limit is

calculated refer to the following scenarios:
I. PRC for mean shift of a Normal Likelihood with known variance.
I1. PRC for variance shift of a Normal Likelihood with known mean.

ITI. PRC for mean shift of a Normal Likelihood with both mean and variance

unknown.

IV. PRC for variance shift of a Normal Likelihood with both mean and variance

unknown.
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Appendix C: List of U3S Models
C1: Normal - Normal Model for the mean 6

We provide the U3S model, assuming the distribution of the IC state be a Normal
distribution with only the mean 6 be unknown, wanting to investigate a potential
shift for it, either upwards or downwards. In other words, X;|0 ~ N (0,0?), i =
1,...,n are sequentially arrived observations. Regarding the IC mean we assume
0 ~ N (g, 02). As OOC parameter, we set ¢ = §, which represents the magnitude
of a shift in terms of the standard deviation and we define g(0,¢) = 0 + 0 - o as
the link function for the OOC state, replacing the mean. Regarding 6 we select a
mixture of of Normal distributions. This setting gives a two-sided U3S for an upward
and a downward shift respectively. Alternatively, instead of a mixture of priors for
a two-sided U3S, we could implement two one-sided U3S, using simple priors for
. For the mixture, we assume § = ~y - d; + (1 — 7) - 8, where &; ~ N (usi,05:°)
and v ~ Ber(mw). The probability 7 is the prior probability of the shift d; in the
mixture and the choice of 7 = 1/2 corresponds to the same FA tolerance, upwards or

downwards. Finally, for the location of the change point, we assume 7 ~ DW (p, ).

The likelihood is:

T—1 n

Hf (2:]0) Hf (2;]0+0-0) if7<n
f(x|0,6,7) =< =t i=T

117 @l0) if 7>n

i=1

t2 -1
n 1 Xin
Setting ny =n —t+1, Xy 4, = Zmi, az = ( + —2> s Py = ( In o ,u_g) .012”

2 2
o 0, o 0,
i=t1 0 0

esi = n,03; (02 — nTag) + 0% m = mand m = 1 — 7, then the Bayes Factor will be:

me(mh' < n)

BF. . = =1 0.1
ot f(x|T >n) (6.0.1)
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where the IC and the OOC marginal will be respectively:

flx]t >n) = /f(a:@,T > n)m(0)do
6

n (z; — 0)°
= < 1 ) cexp{ — =1 -exp { (0_—M0>2} do
g \oV2m 202 T 202

1 " 1 1| °=
= ( > : ceap{ - | ELo 4 B R
oV 2m ooV 2T 2 o 0§
expd —2(03 X 1.0 + 02u0)92+ (nog + o%)6? "
0 2020}

_ L\ o 1 i:1' Ko Hp
B (\/27r) opo™ crp 2 o2 +00 o2

2
flx|tr <n) = Z // f(x]0,0;, 7 < n)m(0)m(6;)dbdd;
1=1
2 S . —0) +Z — (0 +6:0))
DI A R
1=1

1 (6 — MO)Q}
X . — 5 dO7(0;)d0;
oovzs P { (%)
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2 2
1 " 1 1 ; ,LL(Q) 2X7'n51 2
= T . erpy —5 | —— + = — + n.0;
. \oV2r ooV 21 2 o on o

X /exp {_ —2(08 X1:n + 0% 10 — 0gn:0;0)6 + (nog + 0*)6” } dom(5;)ds;
0

2,2
2040}

2
(1p — 71751'(7]2)/0) 1 { ~ .
Xex + . - ex —_
b { 20’3 o5,V 2T b 20'(%1_

1 \" o 1 L] = Ko Hp | Hs
= ™ . . cexp{ —= + = - =+
Z (\/277) 000" 05\/2T Pl 72| o2 o5 o o}
1=1
—2(05 (Xrin — 1 pty)0 + 0°p15,)0 + 5,07
X expq — : 5 3 dé; =
20403,
52' ¢

1 " Op 1 1=1 Ho Hp Hs,
= i . - ex —_— + — — —= + — X
ZW (\/QW) oo™t /ey, P72 o? oy 02 o}

1=1

(05, (Xrin — nrptyp)o + 02415, )? }

Xexrpq +
{ 2075 o%es,



187

Substituting in (6.0.1) we get

2

BF. = o _ N(Qsz‘ (agz‘ (Xrin —nrp1p) 0+ 02M6¢)2
nh Vesi exrp 20%, + 202 o2e;,
i=1 '

Regarding the full conditional posteriors we have:

o |(T >n,x)

p(|T >n,x) < f(x|0,7 > n)m(0)

—2(05 X1 + 0% 0)0 + (nog + 0%)6”
X expq — 2‘72‘78

Thus |(7 > n,x) ~ N (pp, 02)

e 0|(6, 7 <m,x)

p(019, 7 <n,x) o f(x]f,0,7 <n)n(0)

—2(02X 1.0 + %o — 020, 00)0 + (nol + 02)6?
x erps — 20707

Thus 6|(6, 7 < n, ) ~ N (u, — 02n.6/0,02)

e 0;| (0,7 <n,x)

p(6:]0, 7 <mn,x) o f(z|0,017 <n)n(d;)

=2 (us; + 02 (Xpp — n,0) /o) 6 + (1 + n,o3) 67
oy 22t = 0100+ 0 )
05

' 2 (X,.,, —n.0 2
Thus 6] (0,7 < n, @) ~ N [ 12570 (Ko - )Jo o, 2
L+ n,o5; 1+ n,05;

e 7| (0,6, 7T <n,x)
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. f(:c]G,(Sl,T S n) W((Sl)ddl
* (51

- f(zc|(9,51,7' Sn)ﬂ'(él)dél—'—(l—ﬂ') : f(w‘e,ég,T < n)7T<52)d(52
51 52

™

7+ (1 . 71') Cexp /’LgpQ . /"Lgp]_ O6p2
2U§p2 20§p1 Osp1

™

2 2
e+ (l—7)- exp{ Hsp2 Hsp1 } Osp2

Thus | (6,0;, 7 < n,x) ~ Ber

2a§p2 B 20§p1 Top1
o 7|(0,0,x)
p(,]_: k’|9,5,.’1}') — nf(CUlG,(;,T)TF(T:k>
> f(@]6,6,7) (T = j)
j=1
X. _ 2
A=) 0N (o)
o 2
" ) (Xj:n — TLJH) 7’Lj62 . .
_ _o\G=DB _ (1 _ )i
;exp{ - 5 (=P (1—p)*)

C2: Normal - Inverse Gamma Model for the variance 62

Let the distribution of the IC state be a Normal distribution with unknown variance
62, while the mean p is known, i.e. X;|0 ~ N (u,0%), i = 1,...,n. Regarding the
detection scheme, we want to investigate a level change for the variance. Regarding
the IC parameter, we assume 6% ~ IG (a,b). We set ¢ = r, which represents the
magnitude of an inflation and for the link function for the OOC state, we replace
the variance with g(0,¢) = - 6%. For k, we assume a mixture of Inverse Gam-
mma distributions, for a potential inflation or shrinkage of the variance respectively.

Specifically, kK = v+ k1 + (1 — ) - kg, where k; ~ IG (¢;,d;) and v ~ Ber(r). In
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this manner, we implement again a two-sided U3S. For the change point, we assume

T ~ DW (p, ). The likelihood is given by:

T—1 n

Hf (2i]6°) Hf (zilk-6%) ifT<n
=1 i=T

f(ng?’i?T) - n
117 (zi16°) ifr>n
=1

to 2
1:t

Setting n, =n—t+1, S7,, = Z(mZ —n)? a, =a+ g, by =b+ —=, m =7 and

2

1=t1
my = 1 — 7, then the IC and the OOC marginal will be respectively:

flx]t >n) = / f(x|6 7 > n)n(6%)db?
62

1 \" S? b? 1\ b .,
= . et 10 QS . —— \ap
LG (S ) el

() [, @) el

- (&) T

2

flalr<nm) = Y = / / F(@l0?, ki, 7 < n)m(6%)m (1) drsid?
- 92 K
1=1 [

52

2
RN ACORONES
— 7Ti _ . _ .exp J— 5

d;* 1\ d; 2\ 702
XF(ci) : (/@7) -exp{——i} dr;m(6%)do

) %
2/@92 }
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2
Z ( 1 )n d’LCZ { S%ZT*l } X
— " Jpp \ovar) Tle) TUL 2

1=

2
TN

nr/24c;+1 d. +
]_ 7
x/ (—) - exp 207 dr;m(0%)d6?
K Rj Rj

2
Z ( 1 ) ds { S%:T_l}x
2 \0v2r) T(c) Pl o
i=1
Y

572':71 ne F<Cl) ﬁ
(@+2W>

2
AT (n, /2 + ;) 1 52 (/e S2
i ! —_— dz ol . —— df
ZW (2m)"/21(¢;) /02 on ( * 2@2) exp 202

1=1

The Bayes’ Factor will be:

2
I'(a,) md D (ny )2+ ¢;) 1™ g2 N\ /2t by

BF’T?’I, — P 1 - . dz T:n . _ 1 d02
s Z T(cs) g2 \P2 T 20 eTpy =g

bt
1=1

Regarding the full conditional posteriors we have:

o 0%|(1 >n,x)
p(0%IT >n,z) o f(x]0* 7> n)n(0)
I b
(&) el

Thus 6*|(7 > n,x) ~ IG (ap, by)

o %|(k, 7 <n,x,x)
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p(0*lk, 7 <n,x) o f(x]0* kT <n)r(6?)
2

Sz,
1 ap+1 bT—l =+ #
JONE

2
Thus 6?|(k,7 < n,z) ~ IG <ap, br_1 + 5;")
K

o x| (0%, 7 <n,x)

p(|0*, 7 <n,x) < f(xlk 0% 7 < n)r(0)

2
Tin

1 nr/2+c; dz —+
K

52
i <n a1 (T s gy S
Thus ;| (6%, 7 < n,x) [G(2 + ¢, d; + 292)

o V| (6% ki, T < m,m)

- / [ (2|6 k1,7 < n)w(k1)dky

* K1

- / f(x|0% k7 <n)m(ky)dk + (1 —7) - / f(x|0%, ko, ™ < n)m(Ke)dks

. T
B F(C 2) Cpl —Cp2
7T+(1_7T) ) F(Cp1> 'dpl 'dp2
P

Thus 7| (62, ki, 7 < n,x) ~ Ber i
T+ (1 —m)- G0 AR d P
I

o 7| (6% K, )
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P (T = k|62, /f,m) =

C3: Normal - Normal Inverse Gamma Model for the mean 6,

In this Subsection, we provide the U3S process, assuming that the distribution
which represents the IC state is a Normal distribution with both the mean #; and
the variance 65 unknown. We want to investigate a potential shift for the mean,
either upwards or downwards. More specifically, X;|0 ~ N (01,03), i = 1,...n
are sequentially arrived observations. Now, the IC parameters are two, assuming
(01,032) ~ NIG (uo, A, a,b). For the OOC shift, we set ¢ = J, which represents
the magnitude of a shift and we replace the mean with ¢(0,¢) = 0, + ¢ - 05 as the
link function which reflects the OOC state. Regarding o we select a mixture of of
Normal distributions. For the mixture, we assume § = - d; + (1 — ) - 05 , where
8; ~ N (usi, 05:%) and v ~ Ber(r). Finally, for the location of the change point, we
assume 7 ~ DW (p, B). The likelihood is:

n

7—1
L1/ (il6r.63) [ [f (wilbr +6 - 62,63) if 7 <m
=1

f<33|0179%,6, T) = n =T
117 (zil6r,63) if 7>n
i=1
2 & Ao + X
. 0 1in
Settlng ng =mn — t+ ]_, Xt1:t2 = Zl’i, Sth:tz = Z([L’Z — 61)27 Hp = ﬁ’ p =

i=ty i=t1
n 1 - 9 AN 9 n, 1

An, a, = atsg, b, = b—|—§ ;(:cl —I)* 4+ A—p(:v —10)° |, esi =nn <1 — /\—p)—i—a—gi,

m =7 and m, = 1 — 7 then the IC and the OOC marginal will be respectively:
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flzlr >n) = //f(a:|91,9§,7>n)7r(91\9§)7r(0§)d91d9§
02 J o,

{ Sin} VA
= ex — .
02 egm U 0vem

[10) 2\ 702
X@l’p{ 2—9%} d@l (92)d02

iﬂ«“? + i
=1

—2(X1m + At)01 + N\, 0%
x/ exp{— (X, 29”%0) L2 0, (62)d63
01

2 —_—
_ VA . ( 1 ) R T
6% \/ )\p QQ V 27( 2

ba 1 a+1 { b } )
R (el . —— L0
“T(a) (e) P\
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2

falr<n) = Y m / / / S (@(01,63,6,,7 < n)w(01163)m (63)(5:)d01d03ds,
. 5; J62J6
i=1 1Yz YL

St 1+ Y (@i — (61 + 6:62))°

2
S f [ ] Goz) ‘ :
= v S —— CETP  — 2

VA A(01 — po)?
: 2 L 40, m(02)d03 R (8;)ds;
oo { A o i)

Zl’? + )\u% — 2X7—;n(5i92

22: / / (L . )
= e A- ( ) cexp{ —— — n.0;
i—1 V0 /03 bov2m 203

—2(X n — 7Oy 2
01 2

n

2
Z - oz Jo, Ve \62v2m 263 T
1= g

_ ) 2 o 2
Xexp {+)\p (1p = 1r0i6/ Ap) } . exp {—((SZ 1) }dém(Hg)dﬁg

202 20?1,

n
fo + g — /\pl‘;% 9
=1

- ZW' - < 1 >n 1 exp { —- _ M
_ ! 02 VAp  \f2V/2m o5,V 21 b 202 20?_

=1

[ 1)
<
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/ { -2 (agi (X7 — nrpp) /02 + ps,) 6; + (agi (ny —n2/Ap) +1) 67
x | expq —
9;

2 2

n
Zx? + )‘N% - )‘pﬂg 9
=1

= Z”‘ f/)\ < \/1 )" 1#‘69619 — TR
— 7 0% >\p 92 At 0'51. 651, 29% 20’?7
X — nrplp + ,U/(%>2
ex : = cexpy ——5
P 2e5; I'(a) \ 63 P 03 2
- ZW' v <\/1 >n : Ve |
— VA o o5, /es; I'(a) P 20(%
<X7':n — Nrlp + Hoi 2
1 aptl bp 0 Ug-
X cexp{ —— + t do?
/92 <9%> P 03 2e5i ?

Osirn/€si 202, 63 2 2e5

2
2 XT:n_nT,Up _1_@
por ) 2 1 ap+1 b 0 2
- 03

The full conditional posteriors will be:

o (01,02)|( > n,x)

p(01, 057 > n,x) o f(x)01, 05,7 > n)mw(6:,03)

1\ %32 2% 4+ M\ (6 — )2
x (_2) .e:Ep{_ p T p(21 Hp) }
02 262

Thus (01, 02)|(T > n,x) ~ NIG (up, A, ap, by)
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o 01[(62,6,7 < n,x)

p(61|0;7577— S n7w) (8 f(m|0170§’ 577_ S n)ﬂ-(91|0§)

—2(X1: + Aopto — n,002)01 + )\pQ%
X exps — 552
2

2
Thus 64](63,6,7 < n,z) ~ N (Mp - nT_MZ’ 9_2)
AN

e 02|(01,0,7 < n,x)

p(63161,0,7 <n,x) o< f(x]61,605,6,7 <n)w(63)

N < 1 )a,,+3/2 . {_26 + St A O = 10)* (X —1s61) 5}

@ _

202 02

o 0| (61,05, 7 <n,x)

p(5i|9170377_ S nvw) X f(w’9179§75i77_ S n)ﬂ-(él)

02 (X — -+ (1 2 52
x exp {_ (psi + 03 (X n7921;2/02) 8 + (1 4+ n.o3;) 07 }
5i

i 2 (X,., —n.0;) /0 2
Thus & (61, 02,7 < n, @) ~ N (L9700 Krn Z 1000 [0 o0
L+ n-o5 1+ n,o5;

L4 7’ (9170375i77- S naw)

- f($|91,9%,51,7‘ < n)ﬂ'((sl)d(sl
* 01

T f(ﬂ3|91,9%,(51,7' S 7’L)7T((51)d51 + (1 — 7T) : f(a:\@l,eg,ég,r S n)ﬂ(ég)dég
(51 52
T

2 2
T+ (1—7) -ea:p{ Hsp2  Hopt } Osp2

2 2
2‘75;;2 2051)1 Osp1
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™

T+ (1 . 7T> - exp M§p2 . /J“gpl O6p2
20§p2 2a§p1 Ospl

Thus | (01,03, 0;, 7 < n,x) ~ Ber

o 7](61,03,6, )

f(x)01,03,6, 7 <n)m(t =k)

p(T:k|91,8§,(5,w) = —
Zf(a:wl,@g,&r < n)m(t =)
=1

exp { ) (Xk;:n92_ n01) B nk252} ((1 B p)(k_l)ﬁ (- p)kg)

Zexp{5 <ij92_ nty) ”9‘25 } (1= p)u=D" — (1 = p)i*)

C4: Normal - Normal Inverse Gamma Model for the variance 63

Assume that the distribution of the IC state is a Normal distribution with both
the mean 6; and the variance 63 to be unknown and we wish to investigate a level
change for the variance. The sequentially arrived observations are X;|0 ~ N (0, 0?),
i = 1,..,n. Regarding the IC parameters, we assume (61,03) ~ NIG (uo, A, a,b).
For the OOC shift, we set ¢ = k, which represents the magnitude of a shift and for
the link function, we define g(0, ¢) = - 63, replacin gthe variance. The prior for & is
a mixture of Inverse Gammma distributions, for a potential inflation and shrinkage
of the variance respectively. Specifically, Kk = vy-k1+ (1 —7)- Ko, where k; ~ IG (¢;, d;)
and v ~ Ber(r). For the first OOC observation we assume 7 ~ DW (p, /), while the
likelihood is given by:

n

T—1
L1/ (wil6r.63) [ 1/ (wil6r - 63) it r<m
i=1 i=T

f(xwl?e%?’%ﬂ-) = n
Hf ($i|91,9§) ifr>n
i=1
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to

Setting ny = n—t+1, ny = t— 1+ th g = Zl‘“ X2, = le, St o, = Z( Ti—

i=t1 i=t1 i=t1

n 1 _ An, _
, )\p = )\—i-n, ap = a—|—§, bp = b+§ (Zl(l’l — 1‘)2 + A—(iL‘ — /L0>2>,

X\
X2 (/\Mo + X + Tt)

k A1y

>\/VLO + Xl:n

01)27 :up = )\ +n

1
b = b+ 5 Mg + X12:(t—1) +

1 — m then the IC and the OOC marginal will be respectively:

flx|r>n) = / / f(x]01,05, 7 > n)r(6,|03)7(05)d6,db;
03 J
2 1

g + Mg — py
_(1)”\5 b I'(a,) Zl 0

- V&) AT

202

2
falr<n) = Y m / / / F(@]61,63.6:,7 < n)w(01]63)m (63 (1)1 63
i=1 Kj 9% 01
— Zﬂ. . i nT/Q‘ex _S%!T—l . S72—n %
a ' 02 92 27r Hi P 205 2ri63

exp{ (01 — po)?
92\/277 2603

2
= Zﬂ" \/X (1>n+1 . <1>n7—/2 .exp{_XlzzT—l + Tn/K;’L +)\MO}
" Jg \0aV2m Ki 262

—2(A Xig—1+ X /Ki) 0 A ) 03
X/ 6.?6]){— ( po + X1:7—1 + 292/’%) 1+( tn ) z) 1}d01ﬂ(0§)d9§7r(m)dm
01 2
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2 n
- ZW/H/%\/HI%Q);%) -

=1

x 1 nr/2 X12:7'—1 + in/ﬁl + )‘MO %
_ .er _
Kj P 29%

()\,UO + Xl:Tfl + XTITL/Hi)2 b* 1 atl b 2
. = . —— o df i)dK;
X exp {+ 2Ot 1) 02 T\ exp 72 57 (ki)dK

2 n nr a
B Z;”/H#Q%) (;) /Q‘Fl)(cox

1 G,erl b )
X i (92> -exp {— ;’;’ } dO3m (ki) dr;
62 \"2 2

() T

M-

=1

par 1 n/2 A 1\ ct! d.
I L N A ceapd =B g
o, VAT Nz, <Hz> I'(¢;) (f%) p{ f%}

" (¢127r> 1;(55) | bﬁ | ri)

M-

=1

b9 1 nr/24c;+1 d.
w | Ommi () -exp{—z}d/@i
Ky AN+ Mg, \Ki Ki

The Bayes’ Factor will result:

—ap —(nr/24c;+1)

2
a Wzdfl bT,Hi N /‘i',i dl
BF.,, =br\/)\ E (e exp{—ﬁ—}dm
=1 /i

\V4 A + Nz k;

The full conditional posteriors will be:

o (01,02)|( > n,x)
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p(61, 637 > n,x) o f(x)61, 05,7 > n)mw(6:,63)

ap+3/2
x i? +/ " exp _pr + )‘p(921 — 1p)°
05 203

Thus (61,603)|(7 > n,x) ~ NIG (i, \p, ap, by)

o 0.|(03,6,7 <n,x)

p(elwga R, T S naw) X f($|017057577— S n)/n(el’e%)

—2(AMo + Xi(rm1y + X /K)01 + (A + 1) 0;
X erp§ — 292
2

A +X'T— +XT7‘L ‘92
Thus 61](62, k., 7, @) NN( Ho Li(r—1) /K 2 )

A+ N A,

o 02|(01,k, 7 <n,x)

p (03101, 5,7 <n,x) o f(=l, 05, k7 < n)m(63)

1\t b, .
(@) %

Thus 65| (01, k, 7, @) ~ IG (ap, bs ;)

o 1| (62,7 <n,x)

p("ii|0179§77— S nvw) 08 f(w|617027 Riy, T S n)/ﬂ(lﬂ)

82
nr/2+e; d. + =22
1 i
X (—) - exp o 20%
Ky K
h 2] 62 nr Szn
Thus ’%Z'( 15 2,T§TL,IB> ~ IG Ci‘i‘?,di‘i‘w

b ’7| (017037 Ri, T < 7171,')
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7T~/ f(x]01,03, k1,7 < n)m(k1)dk,
K1

- / f(x]61,603, k1,7 < n)m(ky)dry + (1 — ) - / ()61, 603, ko, 7 < n)(Ka)dko
K1 K2

o T
B F(C 2) Cpl —Cp2
7T+(1_7T) ) F(Cp1> 'dpl 'dpQ
P

ThUS ’}/‘ (917957ﬁi77§n7w)f\“367’ Vs
T+ (1—m)- T (cp2) N
Lep) ™ "
o 7|(01,03 1, )
5 < =
p(r= kb)) = SISO =D
Zf($|91,¢9§, kR, T <n)(T = j)
j=1
ng )
1\ 2 Stk-1  SE ( s .
o - — = 1 —p)=D7 _ (1 = k>
(F«) exp{ 207~ ang3 [\ 7P (1=p)

1

—~ (1) 2 Si(j—u Sjg ; ;
L _ _ 20 L G108 (1 — p)i®
1 (H) exp{ 267 onf? (1—p) (1—p)i*)
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Appendix D: List of M3S Models

D1: Normal Model for the mean vector p in D dimensions

In this Subsection, we provide the M3S model for detecting shifts in the mean vector
in D dimensions, obtaining the data sequentially. We assume that the distribution of
the IC state is a Normal with unknown the mean vector and the covariance matrix,
ie. Xi|(pu,X) ~ Np(p,X), i = 1,...,n. For the IC parameters 0, we assume
0 = (u,X) ~ NIW (o, A\, 11, %). In case of available historical IC data Y, we
can use the power prior (Ibrahim and Chen, 2000), assuming the NIW to be the
initial term. Then, 7 (pu, X) o L (u, X|Y)* 7o (, X'), where 0 < ap < 1 fixed
and 7y (p, X) = NIW the initial prior. For the OOC shift, we set ¢ = &, where
d=1(0102...6 D)T is the vector with the magnitude of the shift for each component
of the mean vector. For the shifted mean of the OOC state, we replace p with
9(0,¢) = p+ L'Y%§, where L = diag(X), i.e. a diagonal matrix with the same main
diagonal with the covariance matrix. Multiplying by L'/2, we achieve the desired
property of the anisotropic scaling, or in other words the jumps are weighted by
the variance of the corresponding component. Regarding the prior distributions, we
assume &; ~ N (f14;, 04?) and for the change point 7 ~ DW (p, ), as in the univariate

models. The likelihood is:

n

7—1
Hf (x|, X2) Hf (zi|p+ L6, %) if7<n
=1

=T

f(wn“‘l’? 27677—> =
Hf(wi]p,,E) ifr>n
=1

Although we achieve the anisotropic scaling with the above set, we do not achieve
the directional invariance, i.e. § cannot translocate in any direction. For this reason,
we transform the shift vector & into D-sphere coordinates. Thus, assume r be the
radius and 6 = (04,0s,...,0p_1) be the D — 1 angular components, where r > 0,
(01,05, ....,0p_5) € [0,m)P~2 and Op_; € [0,27). Note that @ refer to the IC pa-
rameter, while nonbold 6 is the vector of the angles. We apply the transformation

& = rTy, such that rTj to belong to a (D — 1)-sphere of radius r, or rTy € SP~1(r).
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T) is a unit vector, i.e. it is a vector of length 1 and specifically:

cost

Ty = | cosOp_; H sinb;

i<D—1
D-1
H sind;
i=1

if D> 3 or Ty = (cosh, sinf) if D = 2. After the transformation, the directional

invariant likelihood will be:

T—1
Hf (x|, X) Hf () + rL'Y*Ty, X) |J| ifr<n
i=1

=T

f (mn|l‘l’7 27 T’ 0’ 7-) =

n
[1/ @il =) if>n
i=1
D-2
where |J| = rP~ 1| [sind;,1]P 277 is the Jacobian determinant of the transfor-
=0

mation. Note that the radius r denotes the size of the jumps, while the angu-
lar components 6 represents the association between the jump for each variable
of the process. Applying standard transformation properties of the Normal dis-

tribution, the radius r follows a two parameter Noncentral Chi distribution, or
D

1/2
r ~ NC,,(d,o3%) with d = (Z/@Z) . The Rice distribution is a special case
i=1
on NC,,(d,c3), when D = 2. For the unit vector Ty, we assume a von Mises-

Fisher distribution, or Ty ~ vMF (e, ), which is the analogue of the multivari-
ate Normal over the unit sphere. When D = 2, then it is von Mises distribu-

tion over the unit circle, while it reduces to the Up_; (Uniform in D — 1 dimen-

sions), when the concentration parameter x = 0. For the next expressions, we

set Cp, = Z(acZ — ) (i — )T, Co = (Tp — o) (T — o)™, Ny = n —t + 1,
i=1

- _ Tp, + Ao

A, = nTILV2E LT, B, = - ) ZLT, o, = Mot

t Ny 0 0, t Z(w l’l’) 05 l’l’p n+)\ )

i=t

Ap =N+ AN v =n+1 and!Pp:C—i-W—F%CO, then the IC and the
n
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OOC marginal will be respectively:

f(xn|T >n)

f(@n|T < n)

nD/2

/ /f (Tp|p, X7 > n)m(p| X)7(X)dpdX
m
m

.G

(A)D/2 DIREE emp{_;(u 5 (ﬂ—uo)}ﬂ(E)dudz

3 P

1 - _

B ap {1 (rCa B 4l = ) 5 a—2) |

s

N/ v /2 1
XL}/ . |2‘*(V0+D+1)/2 - exp {_tr!p‘\jl} ix
0 (3) :

1 <A>D/Q Tp(vp/2)  |@|/?

7.‘-nD/Q : Yp FD (1/0/2) |Wp‘l/”/2

/// / flen|p, X,7,0, 7 < n)m(p|X)m(X)w(r)m(0)dud X dodr

D .
H [sinf1]P 27

3=0 17'—1 -
//// 20y PP | el 'emp{_2;(w"_”)T2 I(mi_’”}

Xexp{ QZ(wz —p—rLPT) TS 2y — p— rL1/2T9)}

=T

D/2
(ge) 152 e 5 o) 0 o) (B0 dpad S
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D—
H smﬁjﬂ

\ O\ D72
/// (27 "o SIE <Ap>

xexp{— (ZwZTE Y + Mol X o + A >+BT}

=1

T
)\ T LI/QT T LI/QT
xezp {+; <up - ”A9> ! <up - ”A9> } w(2)m(r)w(6)dSdbdr
P P

rd

xD/2=1 . g1-D/2 < A >D/2 |!p‘1/0/2 D/2 1 (‘7?) { d2}
. —_— . . 6x —_——
0-621 . (27[‘)(7ID+1)/2 /\p 2V0D/2FD (VQO) ID/Q(/{) D 2

D—-2
p3D/2—1 H [Sin9j+1}D_2_]

j=0 1 2 T
X//H/S |2|(y,,+D+1)/2 -eacp{—Q (AT—I-T)—i-Bf—i—/ﬁp,g Tg}
r

1
X exp {—Qtrﬂ_l (W +xx; ] + )\p,ouoT) }

A n.rLY2Ty n.rLY2Ty g
X exp —|——ptr2_1)\p Bp— ———— Pp— ———— dX’dfdr
2 Ap Ap

The Bayes’ Factor will be:

rd
. K D/2-1 j1-D/2 A\ 0\ P72 |wp|up/2 Ipja-1 (aﬁ) d2
™ty T 0-3 . ﬁ . 2(l/pD+1)/2 ) <)\p> ’ FD (%) ' ID/Q(H) $erp {_2}

D—2
F3D/2—1 H [sin9j+1]D—2—j

§=0 1 9 T
/// |2’(VP+D+1)/2 .ea:p{—2 (A7-+7' ) + Br + kg Tg}

Xexrp {—21‘,7"2 (!P + wiwiT + )\,uou,oT) }

A n rL1/2T9 n 7“L1/2T9 g
Xexp +—ptr2_1)\p Hp — - Hp — - dXdldr
2 Ap Ap
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The full conditional posteriors under the IC or the OOC scenario will be:

o (1, X)[(1>n,zn)

p(p, Zlr >n,x,) o f(z|p, X, 7> n)m(p, )

1 _ -
x |2|(Vp+D+2)/2 . 61’]){—5 (t?“!ppz 1 )\p(“ _ Ipr)TZ 1(#, . N/p))}

Thus p, X|17 > n,x,) ~ NIW (pp, Ay, v, Pp)

o pu|(X,r,0,71 <n,x,)

p(p| X, 70,7 <n,xp) o< f(Ta|p, X0, 0,7 < n)r(p|X)

1
X exp {MTE_l(n:En —nrLY?Ty) — §ApuT2_1p}

o LV?T, X
Thus p|(X,r,0,7 <n,x,) ~ Np (up — u, —)
)\p )\p

o X|(p,r, 0,7 <n,x,)

p (X, 0,7 <n,x,) x flxp|p X, 0,7 <n)r(X)

1
o | 3|t DED2 e {—5 (tTWpZ'_l +7r2A;) + T‘BT)}

hd T|(“727677— S n,iBn)

p(rip, X0, 71 <n,x,) < flx,|lu, X r 0,7 <n)r(r)

2(A, +1/042 d
x P2t exp{—T ( _2|_ for) —|—TB7.} Ipja—1 (%)
d

where Ip/;_1(-) is the modified Bessel function of the first kind with order D/2 — 1.

hd 9|(“727T77—§nawn>
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p(Olp, X r, 7 <n,x,) < f(xn|lpw, X,7r,0,7 <n)r(f)

D

[\

. 2A
(sinﬁjH)D_Q_] - exp {—T 5 T +rB, + mung}
0

X

<

i Tl (“7 2” r) 07 mn)

f(@nlp, X1, 0,7 < n)r(r = k)

n

Zf(wn“’l’? 2,’/“,9,7’ S 77,)7'((7' = J)

p(T:k|M>2aT>9>mn) =

exp {er _ 7”2;41@} ((1 )’ (1 - p)k5>
ilexp {rBj — 7“2;43' } (1= p)0=1" — (1 — p)*)

D2: Normal Model for the covariance matrix X

Now, the interest is placed on detecting scale or rotation shifts of sequentially gath-
ered multivariate data. Specifically, we develop M3S model for detecting shifts in
the the covariance matrix in D dimensions, obtaining the data sequentially. The IC
state, including the likelihood, the IC parameters 6, the prior and the marginal, is
the same with the M3S for the mean vector. For the expression of a scale shift, we

assume a positive definite and diagonal matrix S € diag (]REOXD ):

0
0 .

The most challenging and demanding part of the model is the appropriate expression
of a rotation shift in high dimensions. Geometrically, every rotation of a point
in D dimensions takes places in a 2 dimensional plane, while all the other D — 2
dimensions are fixed (free). This means that the rotated point maintains a constant
distance to the invariant pivot element, which is not necessarily a 0-dimensional

point. Specifically, only in 2 dimensions, the invariant element will be a point, while
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in 3 dimensions will be a line, in 4 a plane etc. In other words, the rotation is around
a point, a line and a plane respectively. For a plane a3, which is formed by the axes

a and f, the rotation matrix for an angle 0, s is:

Taa = €0S(043)

rij =1, 1 =7, i # {a, B}

ri; = 0, elsewhere

|
|
|
|
|
3
|
Rap(las) = | rij
|
|
|
|
|
|
|
|

All the possible rotations in a D-dimensional space equals to the number of all the

w. The matrix R(6),

which allows all the possible rotations in D dimensions, is the product of all the

D
pairs of planes formed, i.e. the combination (2) =

possible R g, i.e.:

D-1 D
R(®) = ]] ] Ras(ban)
a=18=a+1

where 0 = (011, ...,0p_1.p) and 6 € [0,2m)P~1 x [0, 7)(P~DP=2/2 R(H) is a real and
orthogonal matrix with |R(6)| = 1, belonging to the special orthogonal group, i.e.
R(6) € SO(D). It is worth to note that R(€) consists of all the possible rotation in
D dimensions, modelling all the correlations p, g of the covariance matrix. However,
if not all the correlations are of interest, then we can more flexible by setting the
corresponding Ry g(0..5) = Ip. In this way, we set the angle of the corresponding

rotation 0, 3 = 0, not allowing a drift for p, s.

For the development of an appropriate M3S model, which will be able to detect a
potential shift in all the components of the covariance matrix, we define the rotation
and scaling matrix T' = R(0)S'/2. T which will provide the properties of anisotropic
scaling and rotation to the model. We set ¢ = {diag(S),0}, i.e. the diagonal

elements of S and all the rotation angles 6, 3. For the OOC state, we replace X
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with ¢(0, @) = TXTT. Thus, the likelihood will be:

n

T—1
[/ @le. 2) [/ (@l TETT) it7<n
i=1 i=T

f(wn’l'L?E?T7T): n
I/ @ilp. =) if 7> n
=1

Regarding the priors, for the change point we assume 7 ~ DW(p, ), as in the
previous 3S models. For the scaling matrix S, we assume an Inverse Wishart, or
S ~ IW(vs, D). For the components of the rotation matrix R(f), we assume a

von-Mises distribution for the first D — 1 components and a p-periodic von-Mises for
(D—-1)(D-2)
2
and 0,5 ~ TOM (a5, Ko p) Otherwise. For the reduction of the next mathematical
n

the rest

. Specifically, 0,5 ~ VM (o, kap) for o = 1 and 8 > «

expressions, we set Cn - Z(mz - CEn)(wz - a_gn)T7 C'0 = (jn - No)(jn - /Jfo)Ta
=1

t2
thzt2 - Zw’h ny = n—1t+ ]-7 l‘l'p -
i=t1

W, = C+ ¥+

NTy, + )‘IJ'O

Y s Ap = N+ Y = n+ 1,

n 1

Coa Mp = 3! (X1:‘rf1 +)‘.u‘0) + (TETT)_ X‘r:n> Zp =

+n

W+ A — o) (pp — pro)” + Cy_, + K, then the IC and the OOC marginal will be

respectively:

f(@n|T>n) = //f(wn\u,zm>n)ﬂ(u|2>7r<2)dud2
XJp

1 M2 I (v,/2) @]
— D\, Tp(0/2) @]/

f(xplr <n) = ///f(wnu,Z,T,TSn)w(uyZ)w(Z)w(T)dudZdT
TJXY Jp



S —n./2 5 —n/2 1"'*1 B
S e S - w5 i )
(2m)" 24

xexp{ 22(331 w! (T"2T)” 1(wi—u)}

=T

D/2
(A) B2 {50 o) B~ o) b (B Tz

D” | Zp[1/2
- 27r |Synf/2 | 32| (n+1)/2

Xexp {— (Zxﬁz x; + Zazz (T"2T)" IRt AuoTzlu()) }

=1 =T

1
xXexrp {+2MpT2p_1Mp} (X)) (T)dpdXdT

. ( A >D/2 |,:p‘1/0/2 ’D‘VS/Q 1
(2m)" 2uoD/2FD< 0) 9vsD/2 [ (%) 4(D-1)(D-2)/2

D—1 ’21)‘1/2
X H aﬁ |S|(nf+us+D+1)/2 . |2|(Vp+D+1)/2

a=1 :

1
X exrp {_QtrDS_l + kg €0 (1+ Ligs1y) (O, — Ha’ﬁ)}
1 M
xexp {—2tr2_1 (& + @iz + Moo — \pM, pT)} dXdT

The Bayes’ Factor will be:

BF _ )\p D/2 |W |Vp/2 ‘D Vs /2 1
e\ 2wt r > r, (V> 7(D=1)(D-2)/2

D
’2 |1/2

a=18= a+1

Xexp {_étrDS + Ka,8 * COS (1 + 1{a>1}) (904,,3 - /ia,ﬁ)}
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1
Xexp {—itrz_l (¥ +ziz;" + Apopto’ — )\pMpMpT)} dXdT

The full conditional posteriors under the IC or the OOC scenario will be:

o (u, X)|(1t>n,xy,)

p(p, X|1>n,2,) o< flxlp, X, 7>n)n(p, X)

1 ) .
oc | Z|rEPERZ L ep {—5 (tr@p X"+ A — )" X7 (- up))}

Thus p, X|7 > n,x,) ~ NIW (pp, Ay, vp, Pp)

o pu|( X T, 7 <n,x,)

p(p| X, T, 7 <n,x,) < flxa|p, X, r0,7<n)r(ulX)
1

x ea:’p{,u,TMp ~ 3

)‘p,UJTZP_lN}

Thus p|(2,T,7 < n, ) ~ Np (zp (2*1 (Xira + Mto) + (TETT) ™ Xm> ,2,,)

o X|(p, T, 7 <n,x,)
p( X, T, 7 <n,xy,) x flxu|lp, X, T,7<n)r(X)
1
X |2|_(Vp+D+1)/2 - exp {_ﬁtrzl—l (wp + CT—1 + KT)}

Thus (X|p, T, 7 <n,xp,) ~ IWp (v, ¥+ Cr_, + K;)

o S|(pn, X R(O), 7T <n,x,)

p(Slu, X, R(0), 7T <n,x,) x f(xu|p, X, T, 7 <n)r(S)

1
- ‘S‘—(nT+Vs+D+1)/2 - exp {—§t’l“ (2_1KT + S_lD)}
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hd 9a,b|(/~"727577—§n7mn)

p(ea,bl(ll’a 27 SvT S nam’n) X f(il}'n“l,, 27T77_ S n)ﬂ—(ea,b)

1
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=1
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Appendix E: Convergence Plots for U3S Applications

Regarding the Markov Chain Monte Carlo (MCMC) sampling of the first applica-
tion (precious metals dataset), we applied the Metropolis within Gibbs algorithm
to obtain an independent posterior sample size of 10,000. The burn in period had
length of 20,000 iterations, while the thinning was 500. It is worth mentioning that
the reason of the large thinning that posterior of 7 was bimodal with the modes
to be far from each other, which created correlated batches in the Markov Chain.
Figure 6.0.1 provides the trace plots and the autocorrelation function (ACF) plots
of the full conditional posteriors for 6y, #3, § and 7. For the MCMC sampling of the
second application (monthly increment dataset), we applied the Gibbs algorithm to
generate 10,000 independent data points from the posterior distributions. Now, the
burn in period had length of 2,000 iterations and the thinning was 50. The Figure
6.0.2 summarizes all the trace ACF plots of the full conditional posteriors for 0y, 63,

Kk and T.
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Figure 6.0.1: The trace plots and the ACF plots of the posterior samples for 61, 9%,
¢ and 7 for the application to the precious metals dataset
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Figure 6.0.2: The trace plots and the ACF plots of the posterior samples for 61, 9%,
k and 7 for the application to the monthly increments dataset

Appendix F: Convergence Plots for M 3S Application

Regarding the Markov Chain Monte Carlo (MCMC) sampling of the M3S applica-
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tion to gravel data, we applied the Metropolis within Gibbs algorithm to obtain an
independent posterior sample size of 2,000. The burn in period had length of 10,000
iterations, while the thinning was 100. The Figure 6.0.2 summarizes all the trace

ACF plots of the full conditional posteriors for i, po, r, 0, 03, 02, p and 7.
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