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ABSTRACT

Autoregressive Conditional Heteroscedasticity (ARCH) models have
successfully been employed in order to predict asset return volatility. Predicting
volatility is of great importance in pricing financial derivatives, selecting portfolios,
measuring and managing investment risk more accurately.

Most of the methods used in the ARCH literature for selecting the appropriate
model are based on evaluating the ability of the models to describe the data. In this
thesis, the approach taken is based on evaluating the ability of the models to predict
the conditional variance rather than on the ability of the models to describe the data.
Based on a standardized prediction error criterion (SPEC), a model selection
algorithm is developed. According to this algorithm, the ARCH model with the
lowest sum of squared standardized forecasting errors as judged by the value of the
ratio of two correlated gamma variables is selected for predicting future volatility.
The proposed model selection method allows the use of a virtually different model for
prediction at each of a sequence of points in time.

A number of evaluation criteria are used to examine whether the SPEC model
selection procedure has a satisfactory performance in selecting that model that
generates “better” volatility predictions. Moreover, we consider assessing model
performance through computing real and simulated option prices based on the
volatility forecasts of the underlying asset returns, devising trading rules to trade
options on a daily basis and comparing the resulting profits. The results show that
traders using the SPEC algorithm for deciding which model’s forecasts to use at any
given point in time achieve the highest profits.

Finally, a multi-model selection procedure is proposed, which leads to the
selection of the model with the lowest sum of squared standardized one-step-ahead
prediction errors. The form of the exact distribution of the test statistic is explicitly
derived and the procedure is illustrated in the case of three modes using real data on

stock returns.
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HHEPIAHYH

Ta  ovtomoAivopopo  HOVTEAD — OECUELUEVNG  ETEPOCKEDACTIKOTNTOG
(Autoregressive Conditional Heteroscedasticity - ARCH) é£yovv epoppootel pe
egmroyioc  ywo Vv wPOPAeyn G OSKOHOVONG TG  amOdoons  SlpoOpmV
YPNUOTOOIKOVOLK®DV  TPOTOVTOV, Om®G UETOXEG, GULVOAAOYHOTIKEG  1COTIUIES,
ypnpotiotnplokol ogikteg, opotPoio kepdiowo x.0.k. H axpipig mpoPreyn 1ng
drakdpavong €xet Wwitepn onuocioo TNV TYWWOAOYNON TOPAYDY®V, GTNV KOTUCKELN
YOPTOPLAOKI®MV, GTN LETPNOT KO OLALXEIPIGT TOV EMEVOVTIKOD KIVOVVOUL.

H mapodoa dwrpin éxet otdx0 va napovsidoet pa pébodo emroyng ARCH
HOVTEL®V pe Baom v TPOoPAETTIKY TOVG IKOVOTNTO. LVYKEKPIUEVA, GTO KEQAAMLO 2,
Topovctaloviot 1060 ta LOVOUETOPANTE, 660 kat To modvpetapintd ARCH povtéla
mov vmapyovv ot PiPAoypaeic, ot péBodor ektipunong tovg kabBMOG Kol TO
YOPUKTNPIOTIKA TOV YPNUOTOOIKOVOUIK®OV GEP®V, To omoia gpunvevovv. Mia
ocvotnuotiky wapovoioon t@v ARCH povtélov eivor mépa moAd ypnoun £tot dote
va umopet évog epeuvnTig vo eMAEEEL TO KATOAANAO HOVTEAD Yol TN GLYKEKPLUEVN
gpyacio wov BEAEL

1o keparawo 3, epappolovpe pia oepd ard Monte Carlo mpocopoidoels omd
TIC OTtOlEC POUVETAL OTL TO EKTILAOUEVO TVTOTOMUEVE KatdAouma and odpopa ARCH
povtéda Katavépovtor aveEdpmra. Mio vrdBeon moAD onUAVTIKY Yo T0. VTOAOITA
KePAAota TG StatpPng.

H mietoynoeio tov pebddwv emroyng poviédov otmv ARCH BifAoypapio
Bacileton omv afloAdynon G KavOTNTOS TOV HOVIEADV VO TEPLYPAYOLV T
dedopéva. Xto ke@aiato 4, eetdletor o éleyyoc vobfécewv mov 16O amd Tovg
Xekalaki et al. (2003) ywo v cvykprtikny a&loldynon 600 HOVIEA®Y ToAVIpOUN oG,
yw. v nepintowon ARCH povtéhov. Xvykekpipéva, mpoteivetan n ovykpion ARCH
HOVTEL®V HEGM TOV EAEYYOV TNG UNOEVIKTG LTOBeoNC OTL Tl dVO HOVTEAD EXOVV TNV
0w mpoPrentikn wavoTTO, £VOVTL TNG EVOAAOKTIKNG, OTL TO HOVIEAO HE TO
HIKPOTEPO  AOPOICHO TOV TETPUYOVIKAOV TUTOMOMUEVAOV  KATOAOWT®V €YEL TNV
vynAdtepn mpoPrentikn wavotnto. O éheyyog owtds odnyel 6TV KOTAGKELN €VOG
alyopiBuov emioync povtélmv pe kprtplo Pact{OUEVO GTO TUTOTOMUEVO GOAALOTO
npoPreyng, tov Standardized Prediction Error Criterion (SPEC) aiyopiBpo emroyng
povtélov. Xoppovo pe tov SPEC aiydpiBpo, and éva covoro ARCH povtélov,



avtd TO0 Omoio £xel TO HIKPOTEPO AOPOICUA TOV TETPUYDOVIKOV TLTOTOMUEVOV
KOTAAOWT®V, EMAEYETOL Yo TNV TPOPAeYN 1TNG OECUELUEVNG SLOKVUOVONG TG
emopevng ypovikng otiyuns. H pebodoroyio mov avanticoetal facileton og avé 600
ovykpicels v Vo e&étaon povtédwv. BéBata, kabe popd mov o SPEC aiydpiBuog
epappoletat, To poviého mov Ba ypnoiponombel yio v TpdPAreyn g dSakvOVONG,
elval ev YEVEL SL0POPETIKO.

Yto emopeva kepaiowo m afordoynon g SPEC pebBodoroyiog emioyng
HOVTEL®V YiveTal HEG® TNG XPNONG TNG OE SLAPOPES YPMLOTOOTKOVOLUKES EPAPOYEC.
YUYKEKPIUEVA, OTO KEPAANO S5, Lot GEPA A0 GTATIGTIKA KPITNplo 0E0AOYNoNG TG
TPOPAETTIKNG IKOVOTNTOS YPNOLomotovvTot Yo vo, dovpe moro ARCH povtélo éxet
™ UEYOADTEPN TPOPAENTIKY KOVOTNTA Yo ¥POVIKOVG opilovteg amd pio g ekatod
YPOVIKEC LOVAOEG UTPOGTA. TN GLVEYELD, OEOAOYOVUE TNV TPOPAETTIKN KAVOTNTO
dpopov pedddmv emloyng poviédwv, petald towv omoiwv eivar kot o SPEC
alyopiBuoc. Ta aroteAéopata deiyvouv 6t 1 SPEC pébodog éxet moAd koA amdooom
OTO VO, EMAEYEL TO HOVTEAO HE TN UEYOAVTEPN TPOPAENTIKY IKOVOTNTO GE GYEOT| UE
A eG neBdOOVG emAhoyNe povTEA®V TeptAapPavopévey kol nefodmv PBaocilopevov
ot xpnon evog povaditkov ARCH povtéiov.

210 KeQAAO 6, afloroyeital n wKavotnta TOoco Tov SPEC aAdyopibuov 6o
Kot 010Qopwv GAA@V peBOdwV emAOYNG HOVIEA®V oTO TAAIGIO TPOoPANUAT®V
TILOAOYNONG OIKOOUAT®V TPOOIPESNC GTO YPNUATICTHPIO TOPAYDY®Y TOL X1KAYO.
Xpnotponmoovvtal 6edopéva Omd SIKOUMUOTE TPOAIPESNG TOL YPNUOTIGTHPLOKOD
deiktn S&P500. Méoa and ta amoteAéopato TG cVYKPIoNG TV HeBOd®V EMAOYNG
HOVTEA®V, TPOKVUTTEL OTL 0 €MEVOLTNG Tov ¥pnoponolel tov SPEC adyopiBuo, €xet
mv wavotnta va emAéyel avtd o ARCH poviéha ta omoia divouv ) peyoidtepn
duvartn amoddoon amd kdbe GAAN pébodo emhoyng povtédwv. Emedn, eviote, 1o
TPAYUATIKA OEGOUEVOL TTOV YPNCLOTOIOVVTOL OTO TNV AYOPE TOPAYDY®V EVOEXETOL VO
pepoAnmrovv vrép piag pebodoroyiog, 610 KEPAAMO 7, TPOCOUOIDVOLUE o oyopd
TOPAYDY®V, otV omoia KAOe emevovTtig ypnoonotel pio pébodo mpoPreyng g
UEAALOVTIKNG TIUNAG TOL OtKoumpotog mpoaipeons. Kot oe avt) v mepintwon, ot
enevoutég mov Pacilovron ommv SPEC pebBodoloyiar emituyydvouv Ti UEYIOTES
ATOdOGELC.

Téhog, oto keedAoo 8, mpotelveror o eVOALOKTIKY HEOOSOC EmMAOYNG

povtéAwv omd N Swbéoiua povtéia (n > 2) n omoia odnyel otV €m0y TOL
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LOVTEAOL TOV OToioL TO GOPOICUE  TETPAYDOVOV TOV TLTOTOWUEVOV GOOAUATOV
TpOPreyNg €xel v mo younA . H pebodoroyia mov ypnoipomoteitor dtapépet
amd avTv Tov KepoAaiov 4, m omoio khvel ypnom TV avo dvo AGY®V TV
afpoloUdTOV TETPAYDOVOV TOV TLTOTOMUEVOV cQaAudTov TpdPreymc. H akpipng
HOPON NG KOTOVOUNG TNG EAEYYOCLVAPTNONG TPOGOoPIleTal MG 1 KOTOVOUN TNG
EMAYIOTNG CLVIOTMONG EVOG TLYOIOL SLUVOGLOTOG TOL aKOAOVOEL TNV TOAVUETAPANTY
yYappo, Kotovour. Avtdc o €heyyoc vmobécewmv umopel vo eQOpPUOCTEL Yoo TNV
a&loAOYN o™ NG IKOVOTNTOS TOV LOVTEL®VY Vo, TPOPAETOVY TOGO TV OEGUEVUEVT] LEoT
T 660 Kot ) deopevpévn dtakdpavon. H dwadwacio eAéyyov epappoletat yio tnv
TEPIMTOON TPLOV HOVTEA®V G€ ded0pEVA amd TNV EAANvVIKT kepaiaiayopd.

Eivar ypnowo va ovoaeepbel 611 pe PBdon ta €upnuoTo TOV TOPATOVED
kepoiaiov, 1 SPEC pébodoc sivan éva epyaieio moAD ypNoIUO Yio TNV ETIAOYN TOV
KATOAANA®V HOVTEA®V Yio TNV TPOPAEYN TNG SUKOUOVONG, LE EPAPUOYES OYL LOVO
otV 0&AOYNoN YOPTOPLACKIOV Kot otn dwyeipion kwvddvov, oAl Kol o1

ONUIoVPYio KEPOOGKOTIKMV GTPAUTNYIKAOV GTO YPNUATIGTIPLO TOPAYDYDV.
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Chapter 1

Introduction

Autoregressive Conditional Heteroscedasticity (ARCH) models have successfully
been employed in order to predict asset return volatility. However, the last two decades
numerous formulations of volatility modelling have been proposed and a vast number of
studies that evaluate the ability of ARCH models in forecasting volatility have been
conducted yielding in several cases contradictory results. This thesis aims at shedding
some light in the area of model selection for volatility forecasting. We try to define a
unified criterion, for as many classes of ARCH processes as possible, that is based on a
rating of the predictability of ARCH models. Subsequently, we evaluate the accuracy of
that criterion in suggesting at each point in time the model that will be used in obtaining
volatility forecasts.

The number of possible conditional volatility formulations is vast. Therefore, a
systematic presentation of the models that have been considered in the ARCH literature
can be useful in guiding one’s choice of a model for exploiting future volatility, with
applications in financial markets. In chapter 2, a number of univariate and multivariate
ARCH models, their estimating methods and the characteristics of financial time series,
which are captured by volatility models, are presented.

Quite often, the testing procedure requires independence in a sequence of
recursive standardized prediction errors, which cannot always be readily deduced
particularly in the case of econometric modeling. In chapter 3, on the basis of the results
of a series of Monte Carlo simulations, it is conjectured that independence holds and the
sum of squared standardized one-step-ahead prediction errors is Chi-square distributed.
The results of our simulation are confirmed analytically in chapter 4.

Most of the methods used in the ARCH literature for selecting the appropriate
model are based on evaluating the ability of the models to describe the data. In chapter
4, Xekalaki et al.’s (2003) hypothesis test for two regression models is considered in the
context of ARCH models. In particular, it is suggested that two ARCH processes can be
compared through testing a null hypothesis of equivalence of the models in their
predictability. Instead of being based on evaluating the ability of the models to describe

the data, the proposed approach is based on evaluating the ability of the models to
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predict the conditional variance. This comparative evaluation approach leads to what is
termed in the sequel the Standardized Prediction Error Criterion (SPEC) model selection
algorithm. According to this algorithm, the ARCH model with the lowest sum of squared
standardized forecasting errors is selected for predicting future volatility. Each time the
model selection method is applied, the model used to predict the conditional variance is
revised.

The ability of the SPEC algorithm to predict future volatility is also examined. In
the chapter 5, in particular, a number of statistical measures are used to examine the
performance of a model to predict future volatility, for forecasting horizons ranging from
one day to one hundred days ahead. The results show that the SPEC model selection
procedure has a satisfactory performance in selecting that model that generates “better”
volatility predictions.

The next two chapters look at the evaluation of the SPEC method not with the
use of statistical measures but through assessing the potential added value of the SPEC
algorithm in financial applications such as options’ forecasting. So, in chapter 6, we
consider assessing model performance through computing option prices based on the
volatility forecasts of the underlying asset returns, devising trading rules to trade options
on a daily basis and comparing the resulting profits. The comparative evaluation is
performed using S&P500 straddle options on the basis of the cumulative profits of
traders always using variance forecasts obtained by a single model on the one hand and
the cumulative profits of traders using variance forecasts obtained by models suggested
by the SPEC algorithm on the other. The results of the study show that traders using this
algorithm for deciding which model’s forecasts to use at any given point in time achieve
higher cumulative profits than those using only a single model all the time. A comparison
of the SPEC algorithm with a set of other model evaluation criteria yields similar findings.

In chapter 7, the evaluation of the presented algorithm is performed by
comparing different volatility forecasts in option pricing through the simulation of an
options market. Traders employing the SPEC model selection algorithm use the model
with the lowest sum of squared standardized one-step-ahead prediction errors for
obtaining their volatility forecast. The cumulative profits of the participants in pricing one-
day index straddle options always using variance forecasts obtained by GARCH,
EGARCH and TARCH models are compared to those made by the participants using
variance forecasts obtained by models suggested by the SPEC algorithm. The straddles

are priced on the S&P500 index. It is concluded that traders, who base their selection of
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an ARCH model on the SPEC algorithm, achieve higher profits than those, who use only
a single ARCH model. Moreover, the SPEC algorithm is compared with other criteria of
model selection that measure the ability of the ARCH models to forecast the realized
intra-day volatility. In this case too, the SPEC algorithm users achieve the highest
returns. Thus, the SPEC model selection method appears to be a useful tool in selecting
the appropriate model for estimating future volatility in pricing derivatives.

In chapter 8, an alternative model selection approach is proposed. It is a multi-
model selection procedure, which leads to the selection of the model with the lowest sum
of squared standardized one-step-ahead prediction errors. The theoretical framework
considered in chapter 8 differs from the one in chapter 4, which is based on pairwise
comparisons of the sums of squared standardized one-step-ahead forecasting errors of
the candidate models. The form of the exact distribution of the test statistic is explicitly
derived as the distribution of the minimum value of n variables that are jointly
multivariate gamma distributed. These represent the sums of squared standardized
prediction errors of n models. The null hypothesis that the n models are of equivalent
predictive ability is therefore tested against the alternative hypothesis that the model with
the lowest loss function has the highest predictive ability using this statistic. The
suggested testing procedure can be applied in evaluating the accuracy of either the
conditional mean or the conditional variance forecasts and is illustrated in the case of
three models using real data on index stock returns. Finally, in chapter 9, a brief
discussion on topics for future research is provided.

It would be worth mentioning that the SPEC model selection algorithm appears,
on the basis of our findings to offer a useful tool in guiding one’s choice of the
appropriate model for predicting future volatility, with applications in evaluating portfolios,
managing financial risk and creating speculative strategies with options.
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Chapter 2

Autoregressive Conditional Heteroscedasticity

(ARCH) Models: Review of the Literature

2.1. Introduction

Since the first decades of the 20™ century, asset returns have been assumed to
form an independently and identically distributed (i.i.d) random process with zero mean

and constant variance. Bachelier (1900) was the first who contributed the theoretical

random walk model for the analysis of speculative prices. For {R} denoting the discrete
time asset price process and { ,} denoting the process of the continuously compounded

returns, defined by y, = In(P, /P,_l), the early literature viewed the system that generates

the asset price process as a fully unpredictable random walk process:
F,=F, +s¢,

iid.

g ~ N(O,O'Z),
where ¢, is a zero-mean i.i.d. normal process. However, the assumptions of normality,

independence and homoscedasticity do not always hold with real data.

Figures 2.1 to 2.3 depict the continuously compounded daily returns of the
Chicago Standard and Poor’'s 500 Composite (S&P500) index, Frankfurt DAX30 stock
index and Athens Stock Exchange (ASE) index. The data cover the period from 2™
January 1990 to 27" June 2000. A visual inspection shows clearly, that the mean is
constant, but the variance changes over time, so the return series is not a sequence of
independently and identically distributed (i.i.d.) random variables. A characteristic of
asset returns, which is noticeable from the figures, is the volatility clustering first noted by
Mandelbrot (1963): “Large changes tend to be followed by large changes, of either sign,
and small changes tend to be followed by small changes”. Fama (1970) also observed
the alternation between periods of high and low volatility: “Large price changes are

followed by large price changes, but of unpredictable sign”.
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Figure 2.1. S&P500 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00
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Figure 2.2. DAX 30 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00
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Figure 2.3. ASE Continuously Compounded Daily Returns from 18/1/90 to 27/06/00
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A non-constant variance of asset returns should lead to a non-normal distribution.
Figure 2.4 represents the histograms and the descriptive statistics of the stock market
series plotted in Figures 2.1 to 2.3. Asset returns are highly leptokurtic and slightly
asymmetric, a phenomenon correctly observed by Mandelbrot (1963): “The empirical
distributions of price changes are usually too “peaked” to be relative to samples from
Gaussian populations ... the histograms of price changes are indeed unimodal and their
central bells remind the Gaussian ogive. But, there are typically so many outliers that
ogives fitted to the mean square of price changes are much lower and flatter than the
distribution of the data themselves.” In the sixties and seventies, the regularity of
leptokurtosis led to a literature on modeling asset returns as independently and
identically distributed random variables having some thick-tailed distribution (Blattberg
and Gonedes (1974), Clark (1973), Hagerman (1978), Mandelbrot (1963,1964), Officer
(1972), Praetz (1972)).

Figure 2.4. Histogram and Descriptive Statistics for S&P500, DAX 30 and ASE Stock
Market Returns.
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These models, although able to capture the leptokurtosis, could not account for
the existence of non-linear temporal dependence as the volatility clustering observed
from the data. For example, applying an autoregressive model to remove the linear
dependence from an asset returns series and testing the residuals for a higher-order
dependence using the Brock, Dechert and Scheinkman (BDS) test (Brock et al. (1987),
Brock et al. (1991), Brock et al. (1996)), the null hypothesis, that the residuals are i.i.d.,
is rejected.

In this chapter, a number of univariate and multivariate ARCH models are
presented and their estimation is discussed. The main features of what seem to be most
widely used ARCH models are described with emphasis on their practical relevance. It is
not an attempt to cover the whole of the literature on the technical details of the models,
which is very extensive. (A comprehensive survey of the most important theoretical
developments in ARCH type modeling covering the period up to 1993 was given by
Bollerslev et al. (1994)). The aim is to give the broad framework of the most important
models used today in the economic applications. A careful selection of references is
provided so that the interested reader can make more detailed examination of particular
topics. In particular, an anthology of representations of ARCH models that have been
considered in the literature is provided (section 2.2), including representations that have
been proposed for accounting for relationships between the conditional mean and the
conditional variance (section 2.3) and methods of estimation of their parameters (section
2.4). Generalizations of these models suggested in the literature in multivariate contexts
are also discussed (section 2.5). Section 2.6 gives a brief description of other methods of
estimating volatility. Finally, section 2.7 is concerned with interpretation and
implementation issues of ARCH models in financial applications.

The remaining of the present section looks at the influence that various factors
have on a time series and in particular at effects, which as reflected in the data, are
known as the “leverage effect’, the “non-trading period effect’, and the “non-

synchronous trading effect”.
2.1.1 The Leverage Effect
Black (1976) first noted that often, changes in stock returns display a tendency to

be negatively correlated with changes in returns volatility, i.e., volatility tends to rise in

response to “bad news” and to fall in response to “good news”. This phenomenon is



Chapter 2

termed the “leverage effect” and can only be partially interpreted by fixed costs such as
financial and operating leverage (see, e.g. Black (1976) and Christie (1982). The
asymmetry present in the volatility of stock returns is too large to be fully explained by

leverage effect.

Figure 2.5. Daily Log-values and Recursive Standard Deviation of Returns for the

S&P500 Stock Market.
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Figure 2.6. Daily Log-values and Recursive Standard Deviation of Returns for the DAX

30 Stock Market.
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Figure 2.7. Daily Log-values and Recursive Standard Deviation of Returns for the ASE

Stock Market.
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Table 2.1. Mean and Annualized Standard Deviation of the S&P500, DAX 30 and
ASE Index Returns.

Overall Monday Tuesday Wednesday Thursday Friday
S&P500
Mean 0.05% 0.12% 0.06% 0.07% -0.01% 0.04%
St. Deviation 14.80% 15.84% 15.43% 12.57% 14.81% 15.22%
N. of observations 2649 505 543 541 532 528
DAX 30
Mean 0.05% 0.07% 0.04% 0.09% 0.00% 0.06%
St. Deviation 20.34% 23.91% 19.79% 18.74% 19.49% 19.46%
N. of observations 2625 518 537 530 516 524
ASE 500
Mean 0.08% 0.12% -0.01% 0.06% -0.01% 0.26%
St. Deviation 30.27% 39.06% 30.60% 25.98% 28.68% 25.16%
N. of observations 2548 494 523 517 519 495

Annualized standard deviation is computed by multiplying the standard deviation of daily returns by
252" the square root of the number of trading days per year.

We can observe the phenomenon of “leverage effect” by plotting the market prices and

their volatility. As a naive estimate of volatility at day ¢, the standard deviation of the 22

2
most recent trading days, o|*” :\/Z;:t_zz(yi _(Z;:t_zzyi/ZZ)) /22, is used. Figures

2.5 to 2.7 plot daily log-values of stock market indices and the relevant standard
deviations of the continuously compounded returns. The periods of market drops are

characterized by a high increase in volatility.

2.1.2 The Non-trading Period Effect

Financial markets appear to be affected by the accumulation of information
during non-trading periods as reflected in the prices when the markets reopen following
a close. As a result, the variance of returns displays a tendency to increase. This is
known as the “non-trading period effect”. It is worth noting that the increase in the
variance of returns is not nearly proportional to the market close duration as would be
anticipated if the information accumulation rate were constant over time. In fact, as Fama
(1965) and French and Roll (1986) observed, information accumulates at a lower rate
when markets are closed than when they are open. Also, as reflected by the findings of
French and Roll (1986) and Baillie and Bollerslev (1989), the returns variance tends to
be higher following weekends and holidays than on other days, but not by as much as it
would be under a constant news arrival rate. Table 2.1 shows the annualized standard
deviations of stock market returns for each day for the indices S&P500, DAX30 and

10
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ASE. The standard deviation on Monday is higher than on other days, mainly for the
DAX 30 and ASE indices.

2.1.3 Non-synchronous Trading Effect

The fact that the values of time series are often taken to have been recorded at
time intervals of one length when in fact they were recorded at time intervals of other, not
necessarily regular, length is an important factor affecting the return series with an effect
known as the “non-synchronous trading effect” (see, e.g. Campbell et al. (1997)). For
example, the daily prices of securities, usually analyzed, are the closing prices. The
closing price of a security is the price at which the last transaction occurred. The last
transaction of each security is not implemented at the same time each day. So, it is
falsely assumed that the daily prices are equally spaced at 24-hour intervals. The
importance of non-synchronous trading was first recognized by Fisher (1966) and further
developed by many researchers such as Atchison et al. (1987), Cohen et al. (1978),
Cohen et al. (1979, 1983), Dimson (1979), Lo and MacKinlay (1988, 1990a, 1990b),
Scholes and Williams (1977).

Non-synchronous trading in the stocks making up an index induces
autocorrelation in the return series, primarily when high frequency data are used. To

control this, Scholes and Williams (1977) suggested a first order moving average

[MA(1)] form for index returns, while Lo and MacKinlay (1988) suggested a first order
autoregressive [AR(l)] form. Nelson (1991) wrote “as a practical matter, there is little

difference between an AR(l) and an MA(l) when the AR and MA coefficients are

small and the autocorrelations at lag one are equal, since the higher-order

autocorrelations die out very quickly in the 4R model”.

2.2. The Autoregressive Conditional Heteroscedasticity
(ARCH) Process

Autoregressive Conditional Heteroscedasticity (ARCH) models have been widely
used in financial time series analysis and particularly in analyzing the risk of holding an
asset, evaluating the price of an option, forecasting time varying confidence intervals

and obtaining more efficient estimators under the existence of heteroscedasticity.

11
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Let { t(H)} refer to the univariate discrete time real-valued stochastic process to

be predicted (e.g. the rate of return of a particular stock or market portfolio from time

t-1 to ¢t) where @ is a vector of unknown parameters and

E(y,(0)]1,,)=E, ,(»,(0))=1,(8) denotes the conditional mean given the information
set [, ; (sigma-field) available in time #—1. The innovation process for the conditional
mean, {¢,(6)}, is then given by &,(8)=y,(6)— 1,(6) with corresponding unconditional
variance ¥(z,(0))= E(¢2(6))= o(), zero unconditional mean and E(z,(0)z, (6))=0,
Vt#s. The conditional variance of the process given [, , is defined by
V(y,(0)11,,)=V,,(»,(0)= E, ,(?(6))=07(6). Since investors would know the
information set /, ; when they make their investment decisions at time ¢ -1, the relevant
expected return to the investors and volatility are 1, (6’) and o/ (49) respectively.
An ARCH process, {g, (6?)} can be presented as:
£(0)=2,0,0)
2" B =0,7(2,)=1] (2:2.1)
[(0)=2(0,4(0).0,,(0).-6.4(0) &, (0)..:0,1.0,5..)

g,
where E(z,)=0, V(zt)zl, £() is the density function of z,, &,(6) is a time-varying,
positive and measurable function of the information set at time -1, v, is a vector of
predetermined variables included in /,, and g() is a linear or nonlinear functional form.
By definition, ¢, (H) is serially uncorrelated with mean zero, but with a time varying
conditional variance equal to 0,2(9). The conditional variance is a linear or nonlinear
function of lagged values of o, and ¢,, and predetermined variables (u,_l,ut_z,...)
included in /, ;. In the sequel, for notational convenience, no explicit indication of the

dependence on the vector of parameters, &, is given when obvious from the context.
Since very few financial time series have a constant conditional mean of zero, an

ARCH model can be presented in a regression form by letting & be the innovation

process in a linear regression:

12
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Y, =xp+e
&1~ r0.07) (2.2.2)
o =8(0,4(0)0,,(0).;6.(0),(0)..;0,4,05...)

where x, is a kx1 vector of endogenous and exogenous explanatory variables included

in the information set /, ; and g is a k x1 vector of unknown parameters.

2.2.1 ARCH Models

In the literature, one can find a large number of specifications of ARCH models
that have been considered for the description of the characteristics of financial markets.
A wide range of proposed ARCH processes is covered in surveys such as Andersen and
Bollerslev (1998c), Bera and Higgins (1993), Bollerslev et al. (1992), Bollerslev et al.
(1994), Gouriéroux (1997), Li et al. (2001) and Palm (1996). A good account of the state
of the art up to 1995 can be found in Engle (1995).

Engle (1982) introduced the original form of af = g() in equation (2.2.1), as a
linear function of the past ¢ squared innovations:

q
o2 =ay+ Y (a,67,). (2.2.3)
i=1
For the linear ARCH(q) process to be well defined and the conditional variance to be
positive, almost surely the parameters must satisfy a, >0, a, 20, for i=1,...,q. An
equivalent representation of the ARCH(q) process is given by:

ol =a,+ A(L)e?, (2.2.4)
where L denotes the lag operator and A(L): (a1L+a2L2 +...+aqL"). Defining
v, = ¢’ — o, the model is rewritten as:

gl =ay+A(L)s? +v,. (2.2.5)
By its definition, v, is serially uncorrelated with E,ﬁl(v,):O but neither independently
nor identically distributed. The ARCH(q) model is interpreted as an autoregressive

process in the squared innovations and is covariance stationary if and only if the roots of

q .
Z(a,.L’)=1 lie outside the unit circle, or, equivalently, the sum of the positive
i=1

13
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autoregressive parameters is less than one. If the process is covariance stationary, its

unconditional variance is equal to V(¢,)= o’ = ao(l— Zle(a, ))_1.

Also, by definition, the innovation process is serially uncorrelated but not
independently distributed. On the other hand, the standardized innovations are time
invariant distributed. Thus, the unconditional distribution for the innovation process will
have fatter tails than the distribution for the standardized innovations. For example,
consider the kurtosis for the ARCH(1) process with conditional normally distributed

innovations  is E(g,“)/E(gf)z :3(1—0:12)/(1—30512) if 3a’ <1, and E(g;‘)/E(gf)z =0

otherwise, i.e., greater than 3, the kurtosis value of the normal distribution. Generally

speaking, an ARCH process always has fatter tails than the normal distribution:

Ee! ) B2 ) = Elo=! ) Elo?z2 | =3E(0? ) Elo? | 2 36(02) [ E(6?)

where the first equality comes from the independence of o, and z,, and the inequality is
implied by Jensen’s inequality.

In empirical applications of the ARCH(q) model, a relatively long lag in the
conditional variance equation is often called for, and to avoid problems of negative
variance parameter estimates a fixed lag structure is typically imposed (see, for
example, Engle (1982, 1983), and Engle and Kraft (1983)). To circumvent this problem,
Bollerslev (1986) proposed a generalization of the ARCH(q) process to allow for past
conditional variances in the current conditional variance equation, the generalized
ARCH, or GARCH(p,q), model:

2 N 2 N 2 2 2
o’ =a, +Zl‘,(aig,_i)+ Z;(bja,__,)z a, + A(L)e? + B(L)o? . (2.2.6)
P =

For a;>0,q,20, i=1,..,q and b, >0, j=1..,p, the conditional variance is well

defined. Taylor (1986) independently proposed the GARCH model using a different
acronym. Nelson and Cao (1992) showed that the non-negativity constraints on the

parameters of the process could be substantially weakened, so they should not be

imposed in estimation. Provided that the roots of B(L):l lie outside the unit circle and

the polynomials l—B(L) and A(L) have no common roots, the positivity constraint is

satisfied if all the coefficients in the infinite power series expansion for B(L)(l—B(L))_1

are non-negative. In the GARCH(1,2) model, for example, the conditions of non-
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negativity are that ¢, >0, 0<b, <1, a, 20 and ba, +a, 20. In the GARCH(2,1)
model, the necessary conditions require that a, >0, b, 20, a, 20, b +b, <1 and

bf +4b, > 0. Thus, slightly negative values of parameters, for higher order lags, do not

result in negative conditional variance. Rearranging the GARCH(p,q) model, it can be
presented as an autoregressive moving average process in the squared innovations of

orders max(p,q) and p, [ARMA(maX(p,q),p)], respectively:

&l =a,+ Zq:(aigtz—i )+ Zp:(b/‘grz—j )_ i(b/vt—j )+ Ve (2.2.7)

i=1 j=1 j=1

The model is second order stationary if the roots of A(L)+ B(L):l lie outside the unit

. . . q P oy . .
circle, or equivalently if Zl_flai+zl_flb, <1. Its unconditional variance is equal to

ot =Y 0 -3 b )

Very often, in connection with applications, the estimate for A(L)+ B(L) turns out

to be very close to unity. This provided an empirical motivation, for the development of
the so-called integrated GARCH(p,q) or IGARCH(p,q) model by Engle and Bollerslev
(1986):

o2 =a, +A(L)e? + B(L)o?, for A(L)+B(L)=1, (2.2.8)

where the polynomial A(L)+ B(L)=1 has d >0 unit roots and max(p,q)—d roots

outside the unit circle.
Moreover, Nelson (1990a) showed that the GARCH(1,1) model is strictly

stationary even if a, +b, >1, as long as E(Iog(bl+alzf))<0. Thus, the conditional
variance in IGARCH(1,1) with a, =0, collapses to zero almost surely, and in

IGARCH(1,1) with a, >0 is strictly stationary. Therefore, a process that is integrated in

the mean is not stationary in any sense, while an IGARCH process is strictly stationary

but covariance non-stationary.
Consider the IGARCH(1,1) model, o7 =a,+ae’, +(1—-a,)0?,, where
0 < a, <1. The conditional variance h-steps in the future takes the form:

Et (612+h ) = O-tz+h|t = 0_[2 + hao ’ (229)
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which looks very much like a linear random walk with drift a,. A linear random walk is

strictly non-stationary (no stationary distribution and covariance non-stationary) and it
has no unconditional first or second moments. In the case of IGARCH(1,1), the
conditional variance is strictly stationary even though its stationary distribution generally
lacks unconditional moments. In the case where a, =0, equation (2.2.9) reduces to

2
t+h|t

o, = O'f, a bounded martingale as it cannot take negative values. According to the

martingale convergence theorem (Dudley (1989)), a bounded martingale must converge,
and, in this case, the only value to which it can converge is zero. Thus, the stationary

distributions for ¢ and &, have moments, but they are all trivially zero. In the case of

a, > 0, Nelson (1990a) showed that there is a non-degenerate stationary distribution for

the conditional variance, but with no finite mean or higher moments. The innovation

process ¢, then has a stationary distribution with zero mean, but with tails that are so

thick that no second or higher order moments exist. Furthermore, if the variable z,

follows the standard normal distribution, Nelson (1990a) showed that:

E(In(b, +a,2?))= In(2a, )+ w(1/2)

2.2.10
+ (27t )P 0(0.51.5,b, /24, ) - (b, /ay ), F,(11:2,1.5;b, /24, ), (2:210)

where () denotes the Euler Psi function, with y(1/2)~—1.96351 (Davis (1965)),
d)(.;.;.) the confluent hypergeometric function (Lebedev (1972)), and 2FZ(.,.;.,.;.) the

generalized hypergeometric function (Lebedev (1972)). Bougerol and Picard (1992)
extended Nelson’s work and showed that the general GARCH(p,q) model is strictly
stationary and ergodic. Choudhry (1995), by means of the IGARCH(1,1) model, studied
the persistence of stock return volatility in European markets during the 1920’s and
1930’s and argued that the 1929 stock market crash did not reduce stock market
volatility. Using monthly stock returns from 1919 to 1936 in markets of Czechoslovakia,
France, Italy, Poland and Spain, Choudhry mentioned that in the GARCH(1,1) model the

sum of @ and b, approaches unity, which implies persistence of a forecast of the

conditional variance over all finite horizons.
The GARCH(p,q) model successfully captures several characteristics of financial
time series, such as thick tailed returns and volatility clustering. On the other hand, its

structure imposes important limitations. The variance only depends on the magnitude
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and not the sign of ¢,, which is somewhat at odds with the empirical behavior of stock

market prices where the “leverage effect” may be present. The models that have been
considered so far are symmetric in that only the magnitude and not the positivity or

negativity of innovations determines 0',2. In order to capture the asymmetry manifested
by the data, a new class of models, in which good news and bad news have different
predictability for future volatility, was introduced.

The most popular method proposed to capture the asymmetric effects is Nelson’s
(1991) exponential GARCH, or EGARCH, model. He proposed the following form for the
evolution of the conditional variance:

log(c?)= a, + img( “
i=1

—i
Gt —i

} 7 =1, (2.2.11)

and accommodated the asymmetric relation between stock returns and volatility changes
by making g(¢, /o, ) a linear combination of |¢, /o, and ¢, /o, :

gle,/o,)=0(z, /o |- Ele, /o) + 12, /o)), (2.2.12)
where € and y are constants. By construction, equation (2.2.12) is a zero mean i.i.d.
sequence (note that z, =&, /a, ). Over the range 0<z, <, g(z,) is linear in z, with
slope €+ y and over the range —0 <z, <0, g(z,) is linear with slope y —@. The first
term of (2.2.12), ¢9th| —E|zt|), represents the magnitude effect as in the GARCH model,
while the second term, y(z,), represents the leverage effect. To make this tangible,
assume that & >0 and y =0. The innovation in Iog(af) is then positive (negative)
when the magnitude of z, is larger (smaller) than its expected value. Assume now that

#=0 and y <0. In this case the innovation in Iog(af) is positive (negative) when

innovations are negative (positive). Moreover, the conditional variance is positive

regardless of whether the 7, coefficients are positive. Thus, in contrast to GARCH
models, no inequality constraints need to be imposed for estimation. Nelson (1991)
showed that Iog(a,z) and ¢, are strictly stationary as long as Z;ﬁf <oo. A natural

parameterization is to model the infinite moving average representation of equation

(2.2.11) as an autoregressive moving average model:
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In(c?)= a, + (1+ i a,l j(l— ib ij] Os,.2 /0,4~ Ele s Jo o))+ 16 s /o), (2.2.13)

or equivalently:
In(c?)=a, + 1+ A(L)Y1- B(L) g(z, ,). (2.2.13b)

Another popular way to model the asymmetry of positive and negative
innovations is the use of indicator functions. Glosten et al. (1993) presented the
GJR(p,q) model:

2 z 2 z 2 S 2
o, =a, +Z(a[.gH.)+ (7/,.d(g,7,. < O)gH.)+ Z(bjoyfj), (2.2.14)
i=1 i=1 J=1

where y,, for i=1,...,q, are parameters that have to be estimated, d() denotes the
indicator function (i.e. d(gl_,. < 0)=1 if &, <0,and d(gt_,. < 0)= 0 otherwise). The GJR
model allows good news, (gt_i > O), and bad news, (gt_i < 0), to have differential effects

on the conditional variance. Therefore, in the case of the GJR(0,1) model, good news
has an impact of a,, while bad news has an impact of a, + y,. For y, > 0, the “leverage

effect” exists.

A similar way to model asymmetric effects on the conditional standard deviation
was introduced by Zakoian (1990), and developed further in Rabemananjara and
Zakoian (1993), by defining the threshold GARCH, or TGARCH(p,q), model:

q q P
o, =a, +Zl:(ai5t+l.)—zl:(yi$;i)+ Z;'(bja’f)’ (2.2.15)
P p= =

+

where ¢ =¢, if &, >0, ¢/ =0 otherwise and ¢, =¢, — ¢, .

‘
Engle and Ng (1993) recommended the “news impact curve” as a measure of
how news is incorporated into volatility estimates by alternative ARCH models. In their
recent comparative study of the EGARCH model to the GJR model, Friedmann and
Sanddorf-Kdhle (2002) proposed a modification of the news impact curve termed the
“conditional news impact curve”. Engle and Ng argued that the GJR model is better than
the EGARCH model because the conditional variance implied by the latter is too high
due to its exponential functional form. On the other hand, Friedmann and Sanddorf-
Kohle (2002) argued that the EGARCH model does not overstate the predicted volatility.
The number of formulations presented in the financial and econometric literature

is vast. In the sequel, the best known variations of ARCH modeling are presented.
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Taylor (1986) and Schwert (1989a,b) assumed that the conditional standard
deviation is a distributed lag of absolute innovations, and introduced the absolute
GARCH, or AGARCH(p,q), model:

o, =a0+zq:ai|g,7[|+zp:bja,fj. (2.2.16)
i=1 j=1

Geweke (1986), Pantula (1986) and Milhgj (1987) suggested a specification in which the
log of the conditional variance depends linearly on past logs of squared innovations.
Their model is the multiplicative ARCH, or Log-GARCH(p,q), model defined by

n(02)=ay+ > a,n(e2, )+ b, (o2 ). (2.2.17)
i=1 j=1

Schwert (1990) built the autoregressive standard deviation, or Stdev-ARCH(q), model:

2

q
ol = (ao - Zai|‘9x—i|} : (2.2.18)

i=1

Higgins and Bera (1992) introduced the non-linear ARCH, or NARCH(p,q), model:
o N 2 % < 5
ol =ay+ Y alel,|?+ Yol (2.2.19)
i=1 j=1

while Engle and Bollerslev (1986) proposed a simpler non-linear ARCH model:
0% =ay+ale | +bo?,. (2.2.20)

In order to introduce asymmetric effects, Engle (1990), proposed the asymmetric
GARCH, or AGARCH(p,q), model:

ol =a, +i(al.gii trE )+ Ep:bjo—,{j, (2.2.21)
i=1 Jj=1

where a negative value of y, means that positive returns increase volatility less than

negative returns. Moreover, Engle and Ng (1993) presented two more ARCH models
that incorporate asymmetry for good and bad news, the non-linear asymmetric GARCH,
or NAGARCH(p,q), model:

q

p
ol =ay+Y ale  +y0.)+Dbol,, (2.2.22)
j=1

i=1
and the VGARCH(p,q) model:
q

P
O-tz =a, + Zai (8:4/0-14 T7i )2 + ijo-tzfj : (2.2.23)
=

i=1
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Ding et al. (1993) introduced the asymmetric power ARCH, or APARCH(p,q),
model, which includes seven ARCH models as special cases (ARCH, GARCH,
AGARCH, GJR, TARCH, NARCH and logARCH):

5 N\ 5 & 5
ol =ay+ D ale|-re.) +Y b0l (2.2.24)
i=1 j=1

where a, >0, 6§ 20, bj >0, j=1..,p, a,20 and -1<y, <1, i=1,...,¢9. The model

imposes a Box and Cox (1964) power transformation of the conditional standard
deviation process and the asymmetric absolute innovations. The functional form for the
conditional standard deviation is familiar to economists as the constant elasticity of
substitution (CES) production function. Ling and McAleer (2001) provided sufficient
conditions for the stationarity and ergodicity of the APARCH(p,q), model. Brooks et al.
(2000) applied the APARCH(1,1) model for 10 series of national stock market index
returns. The optimal power transformation was found to be remarkably similar across
countries.

Sentana (1995) introduced the quadratic GARCH, or GQARCH(p,q), model of the
form:

o’ =a, +ia[gt2_i +i7ig,_,. + Zi: ia[jgt_igt_j + ib/.af_j ) (2.2.25)
i=1 i=1 i=1 j=i+l j=1

Setting , =0, for i=1,...,q, leads to the Augmented ARCH model of Bera and Lee

(1990). It does encompass all the ARCH models of quadratic variance functions, but it
does not include models in which the variance is quadratic in the absolute value of
innovations, as the APARCH model.

Hentschel (1995) gave a complete parametric family of ARCH models. This
family nests the most popular symmetric and asymmetric ARCH models, thereby
highlighting the relation between the models and their treatment of asymmetry.

Hentschel presents the variance equation as:

A A
Ufﬂ L wract f(e)+ ﬁalTl (2.2.26)

where f() denotes the absolute value function of innovations,

fle)=le, - p-<(e, - p). (2.2.27)
In general, this is a law of the Box-Cox transformation of the conditional standard

deviation (as in the case of the APARCH model), and the parameter 4 determines the
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shape of the transformation. For 4 >1, the transformation of o, is convex, while for

A <1, it is concave. The parameter v serves to transform the absolute value function.
For different restrictions on the parameters in equations (2.2.26) and (2.2.27), almost all
the popular symmetric and asymmetric ARCH models are obtained. For example, for
A=0, v=1, =1 and free £, we obtain Nelson’s exponential GARCH model.
However, some models, as Sentana’s quadratic model, are excluded.

Gouriéroux and Monfort (1992) proposed the qualitative threshold GARCH, or
GQTARCH(p,q), model with the following specification:

q J P
cl=w+Y > al (s )+ bo?l,. (2.2.28)
i i=1

Assuming constant conditional variance over various observation intervals, Gouriéroux
and Monfort (1992) divided the space of ¢, into J intervals and let 7, (5;) be 1if ¢, isin

th

the ;" interval.

Another important class of models, proposed independently by Cai (1994) and
Hamilton and Susmel (1994), is the class of regime switching ARCH models, a natural
extension of regime-switching models for the conditional mean, introduced by Hamilton
(1989). These models allow the parameters of the ARCH process to come from one of

several different regimes, with transitions between regimes governed by an unobserved
Markov chain. Let &, be the innovation process and let s, denote an unobserved
random variable that can take on the values 1,2,..., K . Suppose that s, can be described

by a Markov chain, P(s, = j| 5,4 =1,5_, =k,...6,4,8,_5,...)= p;. for i,j =12,...,K . The

idea is to model the innovation process, ¢,, as &, = g, €, Where ¢, is assumed to

t

follow an ARCH process. So, the underlying ARCH variable, ¢,, is multiplied by the
constant /g, when the process is in the regime presented by s, =1, is multiplied by
A&, when s, =2, and so on. The factor for the first stage, g,, is normalized at unity

with g, >1 for j=23,...,K. The idea is, thus, to model changes in regime as changes

in the scale of the process. Dueker (1997) and Hansen (1994) extended the approach to
GARCH models.

Fornari and Mele (1995) introduced the volatility-switching ARCH model, or
VSARCH(p,q), model:
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&

q9 2 p
ol=w+) ael, +18 3+ bol,, (2.2.29)
=1 ) =1

O-t
where S, is an indicator factor that equals one if & >0, minus one if ¢ <0, and
g’ / o’ measures the difference between the forecast of the volatility at time ¢ on the

basis of the information set dated at 1, o7, and the realized value &’. As Fornari and

Mele (1995) mentioned, the volatility-switching model is able to capture a phenomenon
that has not been modeled before. It implies that asymmetries can become inverted, with
positive innovations inducing more volatility than negative innovations of the same size
when the observed value of the conditional variance is lower than expected. Fornari and
Mele (1996) built a mixture of the GJR and the VSARCH models, named it asymmetric
volatility-switching ARCH, or AVSARCH(p,q), model and estimated it for p =g =1:

0% =ay +a,el, +hol + )5, 62 +0(e2, [0k, )-K)S, .. (2.2.30)
The first four terms are the GJR(1,1) model, except that §, is a dummy that equals one
or minus one instead of zero or one, respectively. The last term captures the reversal of
asymmetry observed when &2,/c?2, reaches k, the threshold value. Note that the

AVSARCH model is able to generate kurtosis higher than the GARCH or GJR models.
Hagerud (1996), inspired by the Smooth Transition Autoregressive (STAR) model
of Luukkonen et al. (1988), proposed the smooth transition ARCH model. In the STAR
model, the conditional mean is a non-linear function of lagged realizations of the series
introduced via a transition function. The smooth transition GARCH(p,q) model has the

form:
q )4
ol =a,+ Z(ai +}/l.F(5H. )e?, + ijaffj , (2.2.31)
i=1 j=1

where F(.) is either the logistic or the exponential transition function, the two most

commonly used transition functions for STAR models (for details see Terasvirta (1994)).

The logistic function considered is
F(e, ;)= +exp(-6e,,))" -05,for >0, (2.2.32)
and the exponential function is

Fle, ,)=1-exp(- 6e?

t—i

), for 6>0. (2.2.33)
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The two resulting models termed logistic and exponential smooth transition GARCH, or
LST-GARCH(p,q) and EST-GARCH(p,q), models, respectively. The smooth transition
models allow for the possibility of intermediate positions between different regimes. For

—w<g <o, the logistic transition function takes values in —0.5< F(.)<0.5 and

generates data where the dynamics of the conditional variance differ depending on the
sign of innovations. On the other hand, the exponential function generates a return

process for which the dynamics of the conditional variance depend on the magnitude of

the innovations, as for |¢,|— o the transition function will be equal to unity, and when

g, =0 the transition function is equal to zero. Thus, contrary to the regime switching

models, the transition between states is smooth as the conditional variance is a
continuous function of innovations. A model similar to the LST-GARCH model was
independently proposed by Gonzalez-Rivera (1996). Recently, Nam et al. (2002)
provided an application of a smooth transition ARCH model with a logistic function in the

following form

o’ =a,+ae’, +a,o", + (bo +he’, + bzoﬁl)F(gH)

F(e, ;)= L+ exp(-e,))",
which they termed asymmetric nonlinear smooth transition GARCH, or ANST-GARCH
model. Nam et al. explored the asymmetric reverting property of short-horizon expected
returns and have found that the asymmetric return reversals can be exploited for the

contrarian profitability’. Note that when b, =5, =0 the ANST-GARCH model reduces to
Gonzalez-Rivera’s specification. Lubrano (1998) suggested an improvement over these
transition functions, introducing an extra parameter, the threshold ¢, which determines
at which magnitude of past innovations the change of regime occurs. The generalized
logistic transition function is given by:

_ 1= exp(— egrz—i)
Flo)=12 s iy e (2.2.34)

t—i

The exponential transition function can also be generalized in the form:

Fle,,)=1-expl-0(e, , - c)). (2.2.35)

! Contrarian investment strategies are contrary to the general market direction. Interpretation of the
contrarian profitability is in a debate between the two competing hypotheses: the time varying rational
expectation hypothesis and the stock market overreaction hypothesis. For details see Chan (1988), Chopra
et al. (1992), Conrad and Kaul (1993), DeBondt and Thaler (1985, 1987,1989), Lo and MacKinlay (1990b),
Veronesi (1999), Zarowin (1990).
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Engle and Lee (1993) proposed the component GARCH model in order to
investigate the long-run and the short-run movement of volatility. The GARCH(1,1)

model can be written as:
ol =0’ +a1(5f_1 —0'2)+b1(0,2_1 —02), (2.2.36)
for 0% = a, (1—a1 —bl)_l denoting the unconditional variance. The conditional variance

in the GARCH(1,1) model shows mean reversion to the unconditional variance, which is
constant for all time. By contrast, the component GARCH, or CGARCH(1,1), model

allows mean reversion to a time varying level g,. The CGARCH(1,1) model is defined

as:

Gzz =4, t al(gtz—l _qt—1)+b1(6t2—1 - qt—l)

) ) (2.2.37)

q, =ay+tpq,,+ ¢(8t—l - O-t—l)'
The difference between the conditional variance and its trend, o’ —g¢,, is the transitory
or short-run component of the conditional variance, while ¢, is the time varying long-run
volatility. Combining the transitory and permanent equations the model reduces to:
O-tz = (l_ a, — b )(l_ p)ao + (al + ¢)8t2—1 - (alp + (al +b )¢)‘9z272
+ (bl - ¢)Ux2—1 - (blp - (al +b, )¢)O'zz—2 '

which shows that the CGARCH(1,1) is a restricted GARCH(2,2) model. Moreover,

because of the existence of the “leverage effect”, Engle and Lee (1993) combine the

(2.2.38)

component model with the GJR model to allow shocks to affect the volatility components
asymmetrically. The asymmetric component GARCH, or the ACGARCH(1,1), model
becomes:
O-tz =q,+ al(gtzfl - qtfl)+ 7/1(‘{(5#1 < 0)‘5}24 - 0-5%71)"'171(07271 - qt—l) 2239
- (62,02 7aldle,, < )2, 0502 .
q, =ay+pq.,+oe—o0)+y,\dle, <0)e, —0.507, ),

where d() denotes the indicator function (i.e. d(s,,<0)=1 if &, <0, and
d(e, , <0)=0 otherwise).

Baillie et al. (1996), motivated by the Fractionally Integrated Autoregressive
Moving Average, or ARFIMA, model, presented the Fractionally Integrated Generalized
Autoregressive Conditional Heteroscedasticity, or FIGARCH, model. The ARFIMA(k,d,l)

model for the discrete time real-valued process { t}, initially developed in Granger

(1980) and Granger and Joyeux (1980), is defined as:
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ALY -L) y, =B(L)s,, (2.2.40)
where A(L) and B(L) denote the lag operators of order k£ and / respectively, and {8,}
is a mean-zero serially uncorrelated process. The fractional differencing operator,

(1— L)d, is usually interpreted in its binomial expansion given by:

r(j-d Lok —1- d
1-L) L f _—
( jz(;;z or 7, TGr H (2.2.41)

where F() denotes the gamma function.

The stationary ARMA process, equation (2.2.40) for d =0, is a short memory

process, the autocorrelations of which are geometrically bounded:

|C0r(yt,yt+m] <cr”,
for m=12,..., where ¢>0 and O<r<l. As m —> o the dependence, or memory,
between y, and y,,, decreases rapidly. However, some observed time series appeared

to exhibit a substantially larger degree of persistence than allowed for by stationary
ARMA processes. For example, Ding et al. (1993) found that the absolute values or
powers, particularly squares, of returns on S&P500 index tend to have very slowly
decaying autocorrelations. Similar evidence of this feature for other types of financial
series is contained in Dacarogna et al. (1993), Mills (1996) and Taylor (1986). Such time

series have autocorrelations that seem to satisfy the condition:

Cor(yt,yHm ) ~cm®!
as m — o, where ¢#0 and d <0.5. Such processes are said to have long memory
because the autocorrelations display substantial persistence.

The concept of long memory and fractional Brownian motion was originally
developed by Hurst (1951) and extended by Mandelbrot (1963, 1982) and Mandelbrot
and Van Ness (1968). However, the ideas became essentially applicable by Granger
(1980,1981), Granger and Joyeux (1980) and Hosking (1981). Hurst was a hydrologist
who worked on the Nile river dam project. He had studied an 847-years record of the
Nile’s overflows and observed that larger than average overflows were more likely to be
followed by more large overflows. Suddenly, the water flow would change to a lower than
average overflow which would be followed by lower than average overflows. Such a
process could be examined neither with standard statistical correlation analysis nor by

assuming that the water inflow is a random process, so it could be analyzed as a
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Brownian motion. Einstein (1905) worked on Brownian motion and found that the
distance a random particle covers increases with the square root of time used to
measure it, or:

d=1"% (2.2.42)
where d is the distance covered and ¢ is the time index. But this applies only to time
series that are in Brownian motion, i.e. mean-zero and unity variance independent
processes. Hurst generalized (2.2.42) to account for processes other than Brownian
motion in the form:

dfs=ct". (2.2.43)

T
For any process { t}; (e.g. asset returns) with mean y, = T‘lzy, , d is given by
t=1

k
d = %‘?Z %g;; (2.2.44)
where s is the standard deviation of { ,}il and c is a constant. The ratio d/s is called
rescaled range and H is the Hurst exponent. If {y,} is a sequence of independently and

identically distributed random variables, then H =0.5. Hurst’s investigations for the Nile
lead to H =0.9. Thus, the rescaled range was increasing at a faster rate than the
square root of time.

The IGARCH(p,q) model in equation (2.2.8) could be rewritten as:

®(LY1-L)e? = a, +(1—B(L)W,, (2.2.45)
where ®(L)=(1-A(L)-B(L)\1-L)" is of order [max(p,q)—l]. The FIGARCH model
is simply obtained by replacing the first difference operator in equation (2.2.45) with the

fractional differencing operator. Rearranging terms in equation (2.2.45) the
FIGARCH(p,d,q) model is given as:

o2 =ay +1- B(L)-d(LY1- L)' )e? + B(L)o?, (2.2.46)
which is strictly stationary and ergodic for 0 <d <1. In contrast to the GARCH and
IGARCH models where shocks to the conditional variance either dissipate exponentially

or persist indefinitely, for the FIGARCH model the response of the conditional variance

to past shocks decays at a slow hyperbolic rate. The sample autocorrelations of the daily

absolute returns, or |yt|, as investigated by Ding et al. (1993) and Bollerslev and

Mikkelsen (1996) among others, exceed the 95% confidence intervals for no serial
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dependence for more than 1000 lags. Moreover, the sample autocorrelations for the first

difference of absolute returns, (1—L)|y,|, still show statistically significant long-term

dependence. On the contrary, the fractional difference of absolute returns, (1-L)°|y,|,

shows much less long-term dependence. Bollerslev and Mikkelsen (1996) provided
evidence that illustrates the importance of using fractional integrated conditional
variance models in the context of pricing options with maturity time of one year or longer.
Note that the practical importance of the fractional integrated variance models stems
from the added flexibility when modeling long run volatility characteristics.

As Mills (1999) stated, the implication of IGARCH models that shocks to the
conditional variance persist indefinitely does not reconcile with the persistence observed
after large shocks, such as the crash of October 1987, and with the perceived behavior
of agents who do not appear to frequently and radically alter the composition of their
portfolios. So the widespread observation of the IGARCH behavior may be an artifact of
a long memory FIGARCH data generating process. Baillie et al. (1996) provided a
simulation experiment that provides considerable support of this line of argument. Beine
et al. (2002) applied the FIGARCH(1,d,1) model in order to investigate the effects of
official interventions on the volatility of exchange rates. One of their interesting remarks
is that measuring the volatility of exchange rates through the FIGARCH model instead of
a traditional ARCH model leads to different results. The GARCH and IGARCH models
tend to underestimate the effect of the central bank interventions on the volatility of
exchange rates. Vilasuso (2002) fitted conditional volatility models to daily spot
exchange rates and found that the FIGARCH(1,d,1) model generates superior volatility
forecasts compared to those generated by a GARCH(1,1) or IGARCH(1,1) model.

Bollerslev and Mikkelsen (1996) extended the idea of fractional integration to the
exponential GARCH model, whereas Tse (1998) built the fractional integration form of

the APARCH model. Factorizing the autoregressive polynomial
(1—B(L))= @(L)(l—L)d, where all the roots of CD(Z)z 0 lie outside the unit circle, the
fractionally integrated exponential GARCH, or FIEGARCH(p,d,q), model is defined as:
In(62)=ao + (L) (1- L) 1+ A(L))g(z, , ). (2.2.47)
The fractionally integrated asymmetric power ARCH, or FIAPARCH(p,d,q), model has

the following form:

of =ay+[1—(-BL) o(L)1-L)" e |-z, ) - (2.2.48)

t
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Finally, Hwang (2001) presented the asymmetric fractionally integrated family
GARCH(1,d,1), or ASYMM FIFGARCH(1,d,1), model, which is defined as:

i _LJ{l—M}N(&)OJ

t

" 1-s 1-6L
(2.2.49)
£e)=l5 b (—bJ
Gt Gl

for |c| <1. Hwang points out that, for different parameter values in (2.2.49), the following

fractionally integrated ARCH models are obtained: FIEGARCH, for 41 =0, v=1,
FITGARCH for A =1, v=1, FIGARCH for A =2, v=2, and FINGARCH, for A =v but
otherwise unrestricted.

However, Ruiz and Pérez (2003) noted that Hwang’s model is poorly specified
and does not nest the FIEGARCH model. Thus, they suggested an alternative

specification, which is a direct generalization of Hentschel’'s model in (2.2.26):

7\' —
(-oL)a-L) S = o alt syl (1 (2,0)-1)
, (2.2.50)
Gy Gy Gy

Imposing appropriate restrictions on the parameters of (2.2.50), a number of models are
obtained as special cases (e.g. the FIGARCH model in (2.2.46), the FIEGARCH model
in (2.2.47), Hentschel’'s model in (2.2.26)).

Nowicka-Zagrajek and Weron (2001) replaced the constant term in the
GARCH(p,q) model with a linear function of i.i.d. stable random variables and defined
the randomized GARCH, or R-GARCH(r,p,q), model:

o7 = Z;(c n )+ qu:(a,e,z_,- )+i(b‘,af_/‘ ), (2.2.51)
o = =

where c.. >0,i" =1..,r,a20,i=1..,q, b/. >0, j=1..., p, the innovations 7, are

positive i.i.d. stable random variables expressed by the characteristic function in (2.4.16),
and {nt} and {Zz} are independent.

Mdiller et al. (1997), based on the hypothesis that participants in a heterogeneous
market make volatilities of different time resolutions behave differently, proposed the
heterogeneous interval GARCH, or H-GARCH(p,n), model that takes into account the

squared price changes over time intervals of different sizes:
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. . 2
ol =ay+ ZZaik(ng[_*) +3bo?,), (2.2.52)

i=1 k=1 =k j=1
where a, >0, a;, 20,fori=1..,n, k=1..,i,b,20, j=1..p.

Many financial markets impose restrictions on the maximum allowable daily
change in price. As pointed out by Wei and Chiang (1997), the common practice of
ignoring the problem by treating the observed censored observations as if they were
actually the equilibrium prices, or dropping the limited prices from the studied sample,
leads to the underestimation of conditional volatility. Morgan and Trevor (1997) proposed
the Rational Expectation (RE) algorithm (which can be interpreted as an EM algorithm
(Dempster et al. (1977)) for censored observations in the presence of heteroscedasticity,
which replaces the unobservable components of the likelihood function of the ARCH
model by their rational expectations. As an alternative to the RE algorithm, Wei (2002),
based on Kodres’s (1993) study, proposed a censored-GARCH model and developed a
Bayesian estimation procedure for the proposed model. Moreover, on the basis of
Kodres’s (1988) research, Lee (1999a), Wei (1999) and Calzolari and Fiorentini (1998)
developed the class of Tobit-GARCH models.

Brooks et al. (2001) reviewed the most known software packages for estimation
of ARCH models, and concluded that the estimation results differ considerably from one
another. Table 2.2, in the Appendix, contains the ARCH models that have been

presented in this section.
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2.3. The Relationship Between Conditional Variance and

Conditional Mean
2.3.1 The ARCH in Mean Model

Financial theory suggests that an asset with a higher expected risk would pay a

higher return on average. Let y, denote the rate of return of a particular stock or market

portfolio from time ¢ to 1 —1 and rf, be the return on a riskless asset (i.e. treasury bills).

Then, the excess return (asset return minus the return on a riskless asset) can be

decomposed into a component anticipated by investors at time ¢-1, g, and a

component that was unanticipated, &, :

v, —rf, =u +¢,.
The relationship between investors’ expected return and risk was presented in an ARCH
framework, by Engle et al. (1987). They introduced the ARCH in mean, or ARCH-M,
model where the conditional mean is an explicit function of the conditional variance of
the process in framework (2.2.1). The estimated coefficient on the expected risk is a
measure of the risk-return tradeoff. Thus, the ARCH regression model, in framework

(2.2.2), can be presented as:
v, =xf+¢lo?)+e,
e |1~ f]0,6?]
ol = 8(0,_1101_2’---;5;_1,&_21---?%_1,0,_2,---)-
where ¢(<7f) represents the risk premium, i.e., the increase in the expected rate of
return due to an increase in the variance of the return. Although earlier studies
concentrated on detecting a constant risk premium, the ARCH in mean model provided a

new approach by which a time varying risk premium can be estimated. The most

commonly used specifications of the ARCH-M model are in the form:

#0?)=c, +¢,07, (Nelson (1991), Bollerslev et al. (1994)),

t
#lo?)=c, +c,0,, (Domowitz and Hakkio (1985), Bollerslev et al. (1988)),
#lo?)=cy +c,log(c?), (Engle et al. (1987)).

A positive as well as a negative risk return tradeoff could be consistent with the financial

theory. A positive relationship is expected if we assume a rational risk averse investor
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who requires a larger risk premium during the times when the payoff of the security is
riskier. On the other hand, a negative relationship is expected under the assumption that
during relatively riskier periods the investors may want to save more. In applied research
work, there is evidence for both positive and negative relationship. French et al. (1987)
found positive risk return tradeoff for the excess returns on the S&P500 composite
portfolio although not statistically significant in all the examined periods. Nelson (1991)
found a negative but insignificant relationship for the excess returns on the Center for
Research in Security Prices (CRSP) value weighted market index. Bollerslev et al.
(1994) found a positive, not always statistically significant, relationship for the returns on
Dow Jones and S&P500 indices. Interesting studies employing the ARCH-M model were
conducted by Devaney (2001) and Elyasiani and Mansur (1998). The former examined
the tradeoff between conditional variance and excess returns for stocks of the
commercial bank sector, while the latter investigated the time varying risk premium for

real estate investment trusts.
2.3.2 Volatility and Serial Correlation

LeBaron (1992) found a strong inverse relation between volatility and serial
correlation for S&P500, CRSP value weighted market index, Dow Jones and IBM
returns. He introduced the exponential autoregressive GARCH, or EXP-GARCH(p,q),
model in which the conditional mean is a non-linear function of the conditional variance.
Based on LeBaron (1992), the ARCH regression model, in framework (2.2.2), can be
presented as:

v, =xp+ (cl +c, exp(— ol /c3 ))y,_l +¢,
&1, ~ fl0,67] (2.3.1)
f = g(o;_l,at_z,...;gt_l,gt_z,...;u,_l,u,_z,...).

The model is a mixture of the GARCH model and the exponential AR model of Ozaki

o

(1980). For the data set LeBaron used, c, is significantly negative and remarkably
robust to the choice of sample period, market index, measurement interval and volatility

measure. As LeBaron stated, it is difficult to estimate ¢, in conjunction with ¢, when

using a gradient type of algorithm. So, ¢, is set to the sample variance of the series.

Generally, the first order autocorrelations are larger for periods of lower volatility and
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smaller during periods of higher volatility. The accumulation of news? and the non-
synchronous trading® were mentioned as the possible reasons. The stocks do not trade
close to the end of the day and information arriving during this period is reflected on the
next day’s trading, inducing serial correlation. As new information reaches market very
slowly, traders optimal action is to do nothing until enough information is accumulated.
Because of the non-trading, the trading volume, which is strongly positive related with
volatility, lowers. Thus, we have a market with low trade volume and high correlation.
Kim (1989), Sentana and Wadhwani (1991) and Oedegaard (1991) have also
investigated the relationship between autocorrelation and volatility and found an inverse
relation between volatility and autocorrelation. Moreover, Oedegaard (1991) found that
the evidence of autocorrelation, for the S&P500 daily index, decreased over time,
possibly because of the introduction of financial derivatives (options and futures) on the

index.

2.4. Estimation

2.4.1 Maximum Likelihood Estimation

In ARCH models, the most commonly used method in estimating the vector of
unknown parameters, &, is the method of maximum likelihood (MLE). Under the
assumption of independently and identically distributed standardized innovations,

z,(0)=¢£,(0)/c,(9), in framework (2.2.2), let us denote their density function as f(z,;w),
where weW < R” is the vector of the parameters of f to be estimated. So, for

w'=(0",w') denoting the whole set of the 17 =6 +w parameters that have to be
estimated for the conditional mean, variance and density function, the log-likelihood

function for { [(6)} is:

L) = (7 (0)w) -5 nlor(0). @41

The full sample log-likelihood function for a sample of T observations is simply:

T

L({y w)=2L(w). (2.4.2)

t=1

2 See section 2.1.2.
% See section 2.1.3.
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If the conditional density, the mean and the variance functions are differentiable for each
possible ¥ e @xW =¥ < R”, the MLE estimator 7 for the true parameter vector v, is

found by maximizing equation (2.4.2), or equivalently by solving the equation
5~ L y” - 0. (2.4.3)
t=1

If the density function does not require the estimation of any parameter, as in the case

of the normal distribution that is uniquely determined by its first two moments, then

w=0. In such cases, equation (2.4.3) becomes:

¥ ( (e (o) 2 0) (_ 014(0) 2 (9 _ 05072 (0", (e)ﬂ(@)}] 0. (244)

Py 00 00 00

Let us, for example, estimate the parameters of framework (2.2) for normal distributed
innovations and the GARCH(p,q) functional form for the conditional variance as given in

equation (2.2.6). The density function of the standard normal distribution is:

fz,)= %GXD(— %’] - (2.4.5)

2 ’

For  convenience equation (2.2.6) is written as o =o' where

1

2 2 2 2
a)':(ao,al,...,aq,,b’l,...,,b’p) and s,:(1,5,71,...,8174,0',71,...,0',7[,). The vector of

parameters that have to be estimated is y'=6"=(f',®'). For normally distributed

standardized innovations, z,, the log-likelihood function in equation (2.4.1), is

i) =] = |- L2 i)

and the full sample log-likelihood function in equation (2.4.2), becomes:

!

L,({y.}0)= —%(T In(27)+ ZT:MJF ZT: In(at2 )J .

t=1 o, =1

The first and the second derivatives of the log-likelihood for the ¢” observation with
respect to the variance parameter vector are:
alz(yt;ﬂ’a)): 1 aO_IZ gtz _O-t2
dw 2067 dw\ o )
azlt(y,;ﬂ,a))_(gf—afJ 0 [ 1 60‘5} 1 0o’ oo’ g

w0’ ol Jow'| 207 dw | 20} 0w o' of
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where

L 9o’
=s, + Zb[ —L,
i=1 ow

The first and second derivatives of the log-likelihood with respect to the mean parameter

vector are:

ol (y,: B,o) 1,007 £gf—afj

=&,X, O- + O-
op op\ of
O’y Br@) _
opop

oo, 1 60‘ 66 4 oo? (&gf-o?) o |1 007
=—0‘xx -~oc* — |—20,7¢,x, + ==l zo |
2 aﬂ aﬂ op o op'| 2 op

t

—2261[ X_i€ii

The information matrix corresponding to @ is given as:

~1&( (0% (y,; Bo) 1 & 400! of
] =N gl LV sm@) L
T le( [ dwde 27 27 o0 o0l

The information matrix corresponding to 4 is given as:

2
13 PL0B0))| L[ e W
[ﬂ/)’ :7Z(E(W :?Z o, thxt +20f4;ai28 i lxt i€t Zb ’

t=1 t=1 aﬂ

The elements in the off-diagonal block of the information matrix are zero, i.e.,

)

So, w can be estimated without loss of asymptotic efficiency based on a consistent
estimate of # and vice versa. At this point, it should be noticed that although the block
diagonality holds for models as the GARCH, NARCH and Log-GARCH models, it does
not hold for asymmetric models, i.e. the EGARCH model, and for the ARCH in mean

models. In such cases, the parameters have to be estimated jointly.
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Even in the case of the symmetric GARCH(p,q) model with normally distributed
innovations, we have to solve a set of & =k + p +q+1 non-linear equations in (2.4.4).

Numerical techniques are used in order to estimate the vector of parameters i/ .

2.4.2 Numerical Estimation Algorithms

The problem faced in non-linear estimation, as in the case of the ARCH models,
is that there are no closed form solutions. So, an iterative method has to be applied to

obtain a solution. lterative optimization algorithms work by taking an initial set of values

for the parameters, say 1//(0), then performing calculations based on these values to
obtain a better set of parameters values 1//(1). This process is repeated until the
likelihood function, in equation (2.4.2), no longer improves between iterations. If y/(o) isa
trial value of the estimate, then expanding LT({y, }; y/)/ét// and retaining only the first
power of y — %, we obtain

oL, 0oL,
% 61//(0)

0°L,
0y 90y

+(y -y

At the maximum, LT/az// should equal zero. Rearranging terms, the correction for the

initial value, y*), obtained is

oL o’L,
0 T T
(W v )_ 6!//(0)(8v/(°)61//'(0)} . (249

Let 1//(” denote the parameter estimates after the i” iteration. Based on (2.4.6) the
Newton-Raphson algorithm computes 1//(”1) as:

oy o [ 0°LY Sy
v =yt - - . (2.4.7)
oyoy oy

The scoring algorithm is a method closely related to the Newton-Raphson algorithm and
was applied by Engle (1982) to estimate the parameters of the ARCH(p) model. The
difference between the Newton-Raphson method and the method of scoring is that the

former depends on observed second derivatives, while the latter depends on the

expected values of the second derivatives. So, the scoring algorithm computes w(”l) as:
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‘ A oW - or\)
V,(Hl) — V/(l) +E( T ’J -=r_ (2.4.8)
oWoy oy
An alternative procedure suggested by Berndt et al. (1974), which uses first derivatives
only, is the Berndt, Hall, Hall and Hausman (BHHH) algorithm. The BHHH algorithm is
similar to the Newton-Raphson algorithm, but, instead of the Hessian (second derivative
of the log likelihood function with respect to the vector of unknown parameters), it is
based on an approximation formed by the sum of the outer product of the gradient
vectors for the contribution of each observation to the objective function. This
approximation is asymptotically equivalent to the actual Hessian when evaluated at the

parameter values, which maximize the function. The BHHH algorithm computes 1//(”1)

as:

A A r 51 1@ - oL\
l//(Hl) 21//(1)+ Z t t, r (2.4.9)
o Oy oy' ) Oy

When the outer product is near singular, a ridge correction may be used in order to
handle numerical problems and improve the convergence rate. Marquardt (1963)
modified the BHHH algorithm by adding a correction matrix to the sum of the outer

product of the gradient vectors. The Marquardt updating algorithm is computed as:

r 50 50) ~ar)
) = 0 4 Zal, al, _al OL; ’ (2.4.10)
= Oy Oy oy

where [ is the identity matrix and « is a positive number chosen by the algorithm. The
effect of this modification is to push the parameter estimates in the direction of the
gradient vector. The idea is that when we are far from the maximum, the local quadratic
approximation to the function may be a poor guide to its overall shape, so it may be
better off simply following the gradient. The correction may provide a better performance
at locations far from the optimum, and allows for computation of the direction vector in

cases where the Hessian is near singular.

2.4.3 Maximum Likelihood Estimation under Non-Normality

As already mentioned, an attractive feature of the ARCH process is that even

though the conditional distribution of the innovations is normal, the unconditional
distribution has thicker tails than the normal one. However, the degree of leptokurtosis
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induced by the ARCH process often does not capture all of the leptokurtosis present in

high frequency speculative prices. Thus, there is a fair amount of evidence that the
conditional distribution of &, is non-normal as well.

To circumvent this problem, Bollerslev (1987) proposed using the standardized t

distribution with v > 2 degrees of freedom:

v+l

v I(v+1)2) 22 ) 2
f(z”v)_r(v/z)m(“v—z] L vs2, (2.4.11)

where F() is the gamma function. The degrees of freedom are regarded as parameter

to be estimated, w = (v) The t distribution is symmetric around zero and for v >4 the

conditional kurtosis equals 3(v —2)v —4)™, which exceeds the normal value of three,

but for v —» =0, (2.4.11) converges to (2.4.5), the standard normal distribution.

Nelson (1991) suggested the use of the generalized error distribution, or GED*:
vexp(—0.5|zt //1|V)
22" Hr()

where v is the tail-thickness parameter and 4 = \/Z‘Z/V F(V‘l)/F(?w‘l). (For more details

f(z5v)

v>0, (2.4.12)

on the GED, see Harvey (1981) and Box and Tiao (1973)). When v =2, z, is standard
normally distributed and so (2.4.12) reduces to (2.4.5). For v < 2, the distribution of z,
has thicker tails than the normal distribution (e.g., for v =1, z, has a double exponential

distribution) while for v > 2, the distribution of z, has thinner tails than the normal

distribution (e.g., for v =0, z, has a uniform distribution on the interval (—\/§,\/§) ).

The densities presented above account for fat tails but they are symmetric. Lee
and Tse (1991) suggested that not only the conditional distribution of innovations may be
leptokurtotic, but also asymmetric. Allowing for skewness may be important in modeling
interest rates as they are lower bounded by zero and may therefore be skewed. To allow
for both skewness and leptokurtosis, they used a Gram Charlier type distribution (see
Kendall and Stuart (1969), p.157) with density function given by:

flemg)= T L)

H4(Zt)j, (2.4.13)

* The GED sometimes referred as the exponential power distribution.
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where f() is the standard normal density function, and Hs(z,)zzf—Bz, and

H,(z,)=z' -6z’ +3 are the Hermite polynomials. The quantites v and g are the

measures of skewness and kurtosis, respectively. Jondeau and Rockinger (2001)
examined the properties of the Gram Charlier conditional density function and estimated
ARCH models with a Gram Charlier density function for a set of exchange rate series.

Bollerslev et al. (1994) applied the generalized t distribution (McDonald and
Newey (1988)):

\%

f(Z,;V,g)= v>0, g>0 and

20'tbg]/VB(v’l : gXl+ QEJV /gb”ogv ))ng | (2.4.14)
vg > 2,
where B(v‘l,g)z F(v‘l)l"(g)/l“(v’l + g) is the beta  function  and

b=T(v)r(g)/T(3v*)r(g—2v?). The generalized t distribution has the advantage
that nests both (2.4.11) and (2.4.12). For v=2 and g =0.5 times the degrees of
freedom, (2.4.14) is set to the t distribution, and for v =00, the GED is obtained.

Moreover, the two shape parameters v and g allow for fitting both the tails and the
central part of the conditional distribution.

Lambert and Laurent (2000, 2001) extended the skewed Student t density
proposed by Fernandez and Steel (1998) to the ARCH framework, in the following
density function:

v+l

o) T +1)2) ( 2s J( 52, +m _”,jz 2.4.15
f(nV'g)_r(V/Z)m P 1+ v_2 g , V>2, (2.4.15)

where g is the asymmetry parameter, v denotes the number of degrees of freedom of

the distribution, F() is the gamma function, I, =1 if z, >—ms™*, and 1, =-1

otherwise, m =T((v-1)/2)/(v - 2)(F(v/2)\/;)71(g — g’l) and s=4g’+g2-m’ -1,
Angelidis and Degiannakis (2004), Degiannakis (2004) and Giot Laurent (2003) suggest
using ARCH models based on the skewed Student distribution to fully take into account

the fat left and right tails of the returns distribution.
De Vries (1991) noted that the unconditional distribution of variaties from an
ARCH process can be stable and that under suitable conditions the conditional

distribution is stable as well. Stable Paretian conditional distributions have been
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introduced in ARCH models by Liu and Brorsen (1995), Mittnik et al. (1999), and
Panorska et al. (1995). As the stable Paretian distribution does not have an analytical

expression for its density function, it is expressed by its characteristic function:
. a N 4
olt,a, p.o, 1) = exp[z,ut ~ || [l—zﬂHthLa)D, (2.4.16)

where 0 < a <2 is the characteristic exponent, —1< <1 is the skewness parameter,

o > 0 is the scale parameter, 1 € R is the location parameter, and

tanﬂ, a=x1l

a)Qt|,a):

—=log|f|, a=1.
w

The standardized innovations, z,, are assumed as independently, identically stable

Pareto distributed random variables with zero location parameter and unit scale
parameter. The way that GARCH models are built imposes limits on the heaviness of the
tails of their unconditional distribution. Given that a wide range of financial data exhibit
remarkable fat tails, this assumption represents a major shortcoming of GARCH models
in financial time series analysis. Stable Paretian conditional distributions have been
employed in a number of studies, such as Mittnik et al. (1998a, 1998b) and Mittnik and
Paolella (2001). Tsionas (1999) established a framework for Monte Carlo posterior
inference in models with stable distributed errors by combining a Gibbs sampler with
Metropolis independence chains and representing the symmetric stable variates as
normal scale mixtures. Mittnik et al. (2002) and Panorska et al. (1995) derived conditions
for strict stationarity of GARCH and APARCH models with stable Paretian conditional
distributions. De Vries (1991) provided relationships between ARCH and stable
processes. Tsionas (2002) compared a stable Paretian model with ARCH errors with a
stable Paretian model with stochastic volatility. The Randomized GARCH model with
stable Paretian innovations totally skewed to the right and with 0 < a <1 was studied by
Nowicka-Zagrajek and Weron (2001). They derived the unconditional distributions and
analyzed the dependence structure by means of the codifference. It turns out that R-
GARCH models with conditional variance dependent on the past can have very heavy
tails. The class is very flexible as it includes GARCH models and de Vries process

(1991) as special cases.
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Hansen (1994) suggested an approach that allows not only the conditional
variance to be time varying but also the higher moments of conditional distribution such

as skewness and kurtosis. He suggested the autoregressive conditional density, or the

ARCD, model, where the density function, f(zt;w), is presented as:

Szsw, 11,4). (2.4.17)
The parameter vector of the conditional density function in (2.4.17) is assumed to be a

function of the current information set, 7, .

Other distributions, that have been employed, include the normal Poisson mixture
distribution (Brorsen and Yang (1994), Drost et al. (1998), Jorion (1988), Lin and Yeh
(2000), and Vlaar and Palm (1993)), the normal lognormal mixture (Hsieh (1989)), and
serially dependent mixture of normally distributed variables (Cai (1994)) or student t
distributed variables (Hamilton and Susmel (1994))°. Recently, Politis (2003a, 2003b,
2004) developed an implicit ARCH model that gives motivation towards a more natural
and less ad hoc distribution for the residuals. He proposed to studentize the ARCH

residuals by dividing with a time-localized measure of standard deviation.
2.4.4 Quasi-Maximum Likelihood Estimation

The assumption of normally distributed standardized innovations is often violated
by the data. This has motivated the use of alternative distributional assumptions,
presented in the previous section. Alternatively, the MLE based on the normal density
may be given a quasi-maximum likelihood interpretation. Bollerslev and Wooldridge
(1992), based on Weiss (1986) and Pagan and Sabau (1987), showed that the

maximization of the normal log-likelihood function can provide consistent estimates of
the parameter vector @ even when the distribution of z, in non-normal, provided that:
E(z,|1,,)=0
E(z211,,)=1.
This estimator is, however, inefficient with the degree of inefficiency increasing with the
degree of departure from normality. So, the standard errors of the parameters have to be

adjusted. Let 0 be the estimate that maximizes the normal log-likelihood function, in

® Cai (1994) and Hamilton and Susmel (1994) used the mixtures to estimate the class of regime switching
ARCH models, presented in section 2.2.1.
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equation (2.4.2), based on the normal density function in (2.4.5), and let 6, be the true

value. Then, even when z, is non-normal, under certain regularity conditions:
A~ D
JT(0-0,)> N0, 4™ BA™), (24.17)
where

AEpIimleT:E(M],

T pry 0600’

!

B= plimT1iE(alf(‘9°)j(al'(9°)] :

T Py 00 00

for [, denoting the correctly specified log-likelihood function. The matrices 4 and B can

be consistently estimated by:

where [, is the incorrectly specified log-likelihood function under the assumption of

normal density function. Thus, standard errors for 6 that are robust to misspecification

of the family of densities can be obtained from the square root of diagonal elements of:
A B,

Recall that if the model is correctly specified and the data are in fact generated by the

normal density function, then 4= B, and, hence, the variance covariance matrix,
T'A7'BA™, reduces to the usual asymptotic variance covariance matrix for maximum

likelihood estimation:

T4
For symmetric departures from normality, the quasi-maximum likelihood estimation is
generally close to the exact MLE. But, for non-symmetric distributions, Engle and
Gonzalez-Rivera (1991), showed that the loss in efficiency may be quite high (Bai and
Ng (2001) proposed a procedure for testing conditional symmetry.). In such a case, other
methods of estimation should be considered. Lumsdaine (1991, 1996) and Lee and

Hansen (1991, 1994) established the consistency and asymptotic normality of the quasi-
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maximum likelihood estimators of the IGARCH(1,1) model. Lee (1991) extended the
asymptotic properties to the IGARCH(1,1) in Mean model, Berkes et al. (2003) and
Berkes and Horvath (2003) studied the asymptotic properties of the quasi-maximum
likelihood estimators of the GARCH(p,q) model under a set of weaker conditions, and
Baille et al. (1996) showed that the quasi-maximum likelihood estimators of the
FIGARCH(1,d,0) model are both consistent and asymptotically normally distributed.

2.4.5 Other Estimating Methods

Other estimation methods, except for MLE, have been appeared in the ARCH
literature. Harvey et al. (1992) presented the unobserved components structural ARCH,
or STARCH, model and proposed an estimation method based on the Kalman filter.
These are state space models or factor models in which the innovation is composed of
several sources of error where each of the error sources has a heteroscedastic
specification of the ARCH form. Since the error components cannot be separately
observed given the past observations, the independent variables in the variance
equations are not measurable with respect to the available information set, which
complicates inference procedures.

Pagan and Hong (1991) applied a nonparametric Kernel estimate of the expected
value of squared innovations. Pagan and Schwert (1990) used a collection of
nonparametric estimation methods, including Kernels, Fourier series and two-stage least
squares regressions. They found that the non-parametric methods did good job in-
sample forecasts though the parametric models yielded superior out-of-sample
forecasts. Gouriéroux and Monfort (1992) also proposed a nonparametric estimation
method in order to estimate the GQTARCH model in equation (2.2.28). Bihimann and
McNeil (2002) proposed a nonparametric estimation iterative algorithm, that requires
neither the specification of the conditional variance functional form nor that of the
conditional density function, and showed that their algorithm gives more precise
estimates of the volatility in the presence of departures from the assumed ARCH
specification.

Engle and Gonzalez-Rivera (1991), Engle and Ng (1993), Gallant and Tauchen
(1989), Gallant et al. (1991), Gallant et al. (1993) among others, combined parametric
specifications for the conditional variance with a nonparametric estimate of the

conditional density function. In a Monte Carlo study, Engle and Gonzalez-Rivera (1991)
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found that their semi-parametric method could improve the efficiency of the parameter
estimates up to 50 per cent over the QMLE, particularly when the density was highly
non-normal and skewed, but it did not seem to capture the total potential gain in
efficiency.

Another attractive way to estimate ARCH models without assuming normality is
to apply the generalized method of moments (GMM) approach. (For details, see Bates
and White (1988), Ferson (1989), Mark (1988), Rich et al. (1991), Simon (1989)). Let us,

for example, represent the GARCH(p,q) model as O',Zza)'s,, where

_ 2 2 2 2
) and s, —(1’%_1,--- A R o i

1 Ergs ) Under the assumption

!
1) =(a0,a1,...,aq,b1,...,bp

of:
E((y, -xp)x,)=0

E(el -0t k)=0

the parameters could be estimated by GMM by choosing the vector &' = (4, ') so as to
minimize:

PN

((6:1,,)) S(g(6:1,.1))

where

T

T71 (yz _x;ﬂ)xt
g(e;[z—l): 7 ,

Y (v, - x,B) - s, Js,

t=1

and the matrix S can be constructed by any of the methods that have been considered
in the GMM literature.

Geweke (1988a,b, 1989) argued that a Bayesian approach, rather than the
classical one, might be more suitable for estimating ARCH models due to the distinct
features of these models. In order to ensure positivity of the conditional variance, some
inequality restrictions should be imposed. Although difficult to impose such restrictions in
the classical approach, under the Bayesian framework, diffuse priors can incorporate
these inequalities. Also, as the main interest in not in the individual parameters but rather
in the conditional variance itself, in the Bayesian framework exact posterior distributions
of the conditional variance can be obtained.

Giraitis and Robinson (2000) estimated the parameters of the GARCH process

using the Whittle estimation technique and demonstrated that the Whittle estimator is
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strongly consistent and asymptotically normal, provided the GARCH process has finite
8™ moment marginal distribution. Whittle (1953) proposed an estimation technique that
works in the spectral domain of the process®. Moreover, Mikosch and Straumann (2002)
showed that the Whittle estimator is consistent as long as the 4™ moment is finite and
inconsistent when the 4" moment is infinite. Thus, as noted by Mikosch and Straumann,
the Whittle estimator for GARCH processes is unreliable as the ARCH models are
applied in heavy-tailed data, sometimes without finite 5", 4", or even 3 moments.

Hall and Yao (2003) showed that for heavy tailed innovations, the asymptotic
distribution of quasi-maximum likelihood parameter estimators is non-normal and

suggested percentile-t subsample bootstrap approximations to estimator distributions.
2.5. Multivariate ARCH Models

All the ARCH models that have been discussed are univariate. However, assets
and markets affect each other not only in terms of expected returns but also in terms of
volatility. Thus, the accurate estimation of time-varying covariances between asset
returns has been crucial for asset pricing and risk management. The generalization of
univariate models to a multivariate context leads to a straightforward application of

ARCH models to portfolio selection and asset pricing theory.

Let the (n x1) vector {y,} refer to the multivariate discrete time real-valued
stochastic process to be predicted, where EH( ,)E n, denotes the conditional mean.
The innovation process for the conditional mean €, =y, —pn, has an (nxn) conditional

covariance matrix V,fl(y,)s H,. For a system of n regression equations, the natural

extension of (2.2) to a multivariate framework could be presented as:
y, =Bx, +¢,
e |1, ~ f[0,H,] (2.5.1)
H,=g(H,, H, ,,..2 & ,..)

where B is a k xn matrix of unknown parameters, x, a k x1 vector of endogenous and

exogenous explanatory variables included in the available information set, 7, , f() the

® For further details about the Whittle estimation technique for ARMA processes see Brockwell and Davis
(1991).
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conditional multivariate density function of innovation process and g() a function of the

lagged conditional covariance matrices and innovation process.

The natural multivariate extension of the GARCH(p,q) model in equation (2.2.6)

q p
H, = A,A, + > (Asg, & A)+ > (BH,_B), (2.5.2)
i=1

J=l

where A, is a lower triangular matrix with (n(n+1)/2) parameters and, A, and B,

denote (nxn) matrices with n° parameters each. Engle and Kroner (1995), based on
an earlier work of Baba et al. (1990), proposed model (2.5.2) to which they referred as

the BEKK model. This parameterization guarantees that H, is positive definite and

t
requires the estimation of (n(n+1)/2)+n°(q+ p) parameters. For example, for n =3,

the multivariate GARCH(1,1) model contains 24 parameters for estimation. Lee (1999b)
investigated the output-inflation variability tradeoff using the bivariate BEKK model.
Recently, Moschini and Myers (2002), in order to estimate time-varying optimal hedge
ratios in commodity markets, modified the BEKK model of (2.5.2) in the form:

q P
H, = r;[AOA;, +> (A, & ,A)+Y (B H,_B, )]rt .
i=1 j=1
As Moschini and Myers noted, the covariance matrix is positive definite as long as I', is
a positive definite matrix.

A simpler expression of H, can be obtained through the use of the vech(.)

operator that stacks the lower portion of a (n X n) matrix as an (n(n +1)/2)><1 vector. So,

the equation (2.5.2) is rewritten as:
q

vech(H, ) = vech(A ,A} ) + Z(A vech(e,_g!_,) )+ i( vech( )) (2.5.3)

i=1
where A, and ];/ are parameter matrices of dimension (n(n+1)/2x n(n +1)/2). Engle
et al. (1986) published the first paper on multivariate ARCH models applying the
multivariate ARCH(2) model. However, in the multivariate expression of the GARCH(p,q)

model, serious problems arise: i) the model might not yield a positive definite covariance

matrix unless nonlinear inequality restrictions are imposed, and ii) the number of

parameters has to be estimated is (n(n+1)/2)1+ (n(n+1)/2) g+ p)), a very large
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number even for low dimensions of n. For example, for n=3, the multivariate
GARCH(1,1) model contains 78 parameters for estimation.

A number of models, considered in the financial literature, have dealt with
imposing constraints in multivariate GARCH models in order to reduce the number of
parameters that should be estimated. These constraints have to be compatible with a
positive definite conditional covariance matrix and must lead to tractable estimation

procedures. Bollerslev et al. (1988) proposed the diagonal multivariate GARCH(p,q)

model where the Z&,. and ]~3j matrices are supposed to be diagonal. Thus, the number of

parameters is reduced to (n(n+1)/2)1+ ¢ + p). So, for example, for n =3, the diagonal

GARCH(1,1) model requires the estimation of 18 parameters. Bollerslev et al. (1988)
used this model for analyzing returns on bills, bonds and stocks, while Baillie and Myers
(1991), Bera et al. (1991) and Myers (1991) estimated hedge ratios in commodity
markets. Ding and Engle (2001) gave sufficient conditions for the diagonal multivariate
GARCH(1,1) model to be positive definite and proposed four models, which are nested
to the multivariate diagonal multivariate GARCH(1,1) model.

A special case of the BEKK model, for p =g =1, is the factor GARCH model first

proposed in Engle (1987). The factor GARCH(1,1) model was constructed to overcome
the problem of estimating a vast number of parameters, while retaining the benefits of

positive definiteness. The model has the form:
H, = A, +M.’(oc(w'8t_l Y+ ﬁw'Ht_lw), (2.5.4)
where o and S are scalars, A and w are (nxl) vectors. The vector w can be

considered as a vector of portfolio weights and it is convenient to restrict in the case

'w =1, where 1 is a vector of ones. This model is a special case of the BEKK model

where the matrices A, and B, have rank 1: A, =+/awl’ and B, :\/ﬁwx’. The

number of parameters is (nz + 5n)/2 + 2. So for example, for n =3 we have to estimate

14 parameters. The model can be extended to allow for K factors and a higher order
GARCH structure. So, the K factor GARCH(p,q) model is represented by

K q »
H =A)A) + Z)"k)";c(zak,iw;catis;iwk + Zﬂk,jw;cHtjwa , (2.5.5)
kL i1 i

and has K(2n+ p+q)+n(n+1)/2 free parameters. Engle et al. (1990b) and Ng et al.
(1992) applied factor GARCH models on treasury bills and stock returns. Diebold and
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Nerlove (1989), Harvey et al. (1992), King et al. (1994) and Alexander (2000) proposed
latent factor GARCH models, based on the assumption that only a few factors influence
the conditional variances and covariances of asset returns, which are not functions of
the information set.

The constant conditional correlation model, introduced by Bollerslev (1990), is a
popular method to model multivariate GARCH models, where univariate GARCH models
are estimated for each asset and then the correlation matrix is estimated. The time-
varying conditional covariances are parameterized to be proportional to the product of
the corresponding conditional standard deviations. This assumption greatly simplifies the

estimation of the model and reduces the computational cost. Let us assume that the

covariance matrix can be decomposed thus H, = 2'°C,Z?, where X, is the diagonal

matrix with the conditional variances along the diagonal and C, is the matrix of

conditional correlations. The constant conditional correlation model assumes that the

matrix of conditional correlations is time invariant, so that the temporal variation of H,

can be determined solely by the conditional variances:
H, =x/’Ccxz!?. (2.5.6)

H is positive definite if C is positive definite and the conditional variances are positive.

t
The number of parameters reduces to (n(n—1)/2)+n(l+q+ p). So, for n=3 the

constant conditional correlation GARCH(1,1) model requires the estimation of 12
parameters. Several authors have considered this representation, e.g. Baillie and
Bollerslev (1990), Brown and Ligeralde (1990), Cecchetti et al. (1988), Fornari et al.
(2002), Kim (2000), Kroner and Claessens (1991), Kroner and Lastrapes (1991), Kroner
and Sultan (1991,1993), Lien and Tse (1998) and Park and Switzer (1995).

However, recent studies have considered test statistics, which reject the
constancy of conditional correlation. Bera and Kim (1996), who proposed the Information
Matrix test, were led to the rejection of a constant correlation hypothesis for USA,
European and Japan stock markets, while Tse (2000), who derived a Lagrange Multiplier
test for the conditional correlation stability hypothesis, rejected the hypothesis for Asian
stock markets. Tsui and Yu (1999), adopting the Information Matrix test, examined the
China stock market and found that the constant conditional correlation hypothesis is not
supported. Longin and Solnik (1995) rejected the hypothesis of constant conditional

correlation in international equity returns against three alternative sources of variability of
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the correlation such as a time trend, the presence of threshold and asymmetry and the
influence of information variables.

As the hypothesis of constancy of correlation was rejected in a number of papers,
Engle (2000) and Engle and Sheppard (2001) introduced a new form of multivariate
ARCH model, the Dynamic Conditional Correlation GARCH, or DCC-GARCH(C,M),
model. The model is estimated in two steps. The first is a series of univariate GARCH
estimates. The second step, using the residuals resulting for the first stage, evaluates
the conditional correlation estimator. The success of the DCC-GARCH model depends

on the estimability of extremely large time varying covariance matrices. Engle proposed
to use the decomposed covariance matrix H, = £Y'°C,ZY* and suggested a time
varying correlation matrix of the following form:

C,=Q;"*Q,Q; "%, (2.5.7)
The conditional variances, a,f’,, are estimated as univariate GARCH( p,,q,) models,

allowing for different lag lengths for each series k =1,2,...,n,

2 _ N 2 N 2
O Typo Z (ak,igk,t—i )+ Z (bk,jo-k,t—j ) (2.5.8)

i=1 j=1
The correlation matrix is computed using

Q = [1—2% —Zbcj@Zam(z,_mz;_m)+2b60,_c, (25.9)
m=1 c=1 c=1

m=1

where z, are the residuals standardized by their conditional standard deviation, 6 is

-1/2

the unconditional covariance of the standardized residuals and Q; is a diagonal

matrix composed of the square roots of the diagonal elements of Q,. Engle and

Sheppard (2001) proved the consistency and asymptotic normality of the two-step
estimators as well as the positive definiteness of the covariance matrix. They have also
proposed a test of the null hypothesis of constant correlation against an alternative of
dynamic conditional correlation. Christodoulakis and Satchell (2002) considered an
alternative extension of the constant conditional correlation model of Bollerslev (1990)
and developed a bivariate ARCH model with time varying conditional variances and
correlations, named Correlated ARCH, or CorrARCH, model.

The multivariate ARCH models, that have been presented, although simplifying

the estimation and inference procedures, do not account for empirical regularities such
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as the asymmetric effects. In to order to capture the “leverage effect” in a multivariate
framework, Braun et al. (1995) introduced a bivariate version of the EGARCH model in
equation (2.2.13). Sentana (1995), in the presentation of the quadratic GARCH model,
applied a multivariate version of his model to U.K. stock returns. Kroner and Ng (1998),
following Hentschel’s (1995) approach, introduced a general multivariate GARCH model
which nests the BEKK, diagonal, factor and constant conditional correlation GARCH
models and their natural asymmetric extensions. Their model can be regarded as a
multivariate extension of the GJR model in equation (2.2.13). Bekaert and Wu (1997),
Ding and Engle (2001) and Tai (2001) have also modified multivariate ARCH models to
accommodate asymmetric effects on conditional variances and covariances. Brunetti
and Gilbert (1998), based on Bollerslev's (1990) parameterization, proposed the
bivariate constant correlation FIGARCH model and Brunetti and Gilbert (2000) applied
the model to the crude oil market. Finally, Bayesian analysis of symmetric and
asymmetric multivariate ARCH processes was considered in a number of articles such
as Aguilar and West (2000), Giakoumatos et al. (2005) and Vrontos et al. (2000, 2001,
2003).

2.6. Other Methods of Volatility Modeling

“Stochastic volatility” models (Barndorff-Nielsen et al. (2002), Chib et al. (1998),
Giakoumatos (2004), Ghysels et al. (1996), Harvey and Shephard (1993), Jacquier et al.
(1994), Shephard (1996), Taylor (1994)), “implied volatility” models (Day and Lewis
(1988), Latane and Rendleman (1976), Schmalensee and Trippi (1978)), “historical
volatility” models (Beckers (1983), Garman and Klass (1980), Kunitomo (1992),
Parkinson (1980), Rogers and Satchell (1991)) and “realized volatility” models are
examples from the financial econometric literature of estimating volatility of asset returns.

A typical presentation of a stochastic volatility model can be given by

_ 0.50,
g, = z,,0€

2 _ 2
O, =40, +z,,

hid. (2.6.1)
z, ~ flE(z)=01(z,)=1]

iid.

" g[E(Zt)=O,V(Zt)=GZZZ],
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where o is a positive scale parameter, |a| <1, and the error terms z,, and z,, could be
contemporaneously correlated. The additional error term, z,,, in the conditional variance

equation makes the stochastic volatility model have no closed form solution. Hence, the
estimation of the parameters is a quite difficult task. For this reason, stochastic volatility
models are not as popular as the ARCH processes. Jacquier et al. (1994) considered a
Markov Chain Monte Carlo (MCMC) framework in order to estimate stochastic volatility
models and Jacquier et al. (1999, 2004) extended the MCMC technique to allow for the
leverage effect and fat tailed conditional errors. For extensions and applications of
MCMC techniques of ARCH models the interested reader may be referred to Brooks et
al. (1997), Dellaportas and Roberts (2003), Dellaportas et al. (2002), Giakoumatos et al.
(1999), Kaufmann and Fruhwirth-Schnatter (2002) and Nakatsuma (2000). Nelson
(1990b) was the first to show that the continuous time limit of an ARCH process, which is
a stochastic difference equation, is a diffusion process with stochastic volatility (which is
a stochastic differential equation). Duan (1996) extended Nelson’s study.

Models based on the daily open, high, low and close asset prices, and
exponential smoothing methods, such as the Riskmetrics method by J.P. Morgan, are
procedures which are included to the historical volatility models.

Implied volatility is the instantaneous standard deviation of the return on the
underlying asset, which would have to be input into a theoretical pricing model in order
to yield a theoretical value identical to the price of the option in the marketplace,
assuming all other inputs are known. Day and Lewis (1992) examined whether implied
volatilities contain incremental information relative to the estimated volatility from ARCH
models. Noh et al. (1994) compared the forecasting performance of ARCH and implied
volatility models in the context of option pricing. Andersen et al. (2004) reviewed a
systematically categorization of various ways of modeling volatility. Recently, Poon and
Granger (2001) conducted a comparative review based on the forecasting performance
of ARCH, implied volatility, and historical volatility models.

Although the presentation of the above methods of volatility estimation is beyond
the scope of this chapter, we briefly refer to the modeling of realized volatility, as it is a

recently developed promising area of volatility model building.
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2.6.1 Intra-Day Realized Volatility Models

The modeling of realized volatility is based on the idea of using higher frequency
data to generate more accurate volatility estimates of lower frequency. Andersen and

Bollerslev (1998a) introduced an alternative volatility measure, the “realized volatility”.

For P denoting the price of an asset at day ¢, let the difference of the log-prices,

Vi =IN(P)- In(PH/m), where 1 =1/m,2/m,..., (2.6.2)
denote the discretely observed series of continuously compounded returns with m

observations per day. The realized volatility for a horizon of N days ahead is:

N m-1

Ez?N) = N_lzZ(ln(P(jﬂ/m),x—i )_ In(P(j/m),t—i ))2 . (263)

i=1 j=1
Andersen at al. (2000b, 2001a, 2003) and Andersen at al. (2001b) were the first studies
that explored the distributional properties of the realized volatility. The main results are
that i) although the distribution of asset returns is non-normal (highly skewed and
kurtosed), the distribution of returns scaled by the realized standard deviation is
approximately Gaussian and ii) the realized logarithmic standard deviation is also nearly
Gaussian. The concept of the realized volatility is based on the “integrated volatility”,
which is central to the stochastic volatility option pricing in Hull and White (1987). Over

an interval of length %, the integrated volatility is defined as:

h
yi,t = J.O stz—lz+rdr ’ (264)

where s, is the volatility of the instantaneous returns process, generated by the

continuous time martingale, dIn(P)=s,dW,, (W, is the standard Wiener process). In

t

the case of discrete time with a sample frequency of 4 =1/m, y(zl/h)’, is an unbiased
estimator of J’;f,t- As noted by Ebens (1999) and Andersen and Bollerslev (1998a) for

daily volatility forecasts, or (h:l), the discretely sampled daily returns, for (mzl),
constitute a noisy estimator, but the accuracy improves as the sampling frequency is
increasing, (m - oo). However, the observed tick-by-tick asset prices are available only

at discrete points in time and asset returns are characterized by the effect of non-
synchronous trading. Thus, the sampling frequency should be as high as the market
microstructure features do not induce bias to volatility estimator, i.e. Andersen and
Bollerslev (1998a), Andersen et al. (1999), Andersen et al. (2000a), Andersen et al.
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(2001a), Areal and Taylor (2000), Kayahan et al. (2002) used a sampling frequency of 5-
minites for heavily traded assets. The 5-minites sampling frequency were also used in
the majority of the subsequent studies.

Ebens (1999), Giot and Laurent (2001), and Thomakos and Wang (2002)
proposed the use of an ARFIMA model, in the form of (2.2.40), in order to fit the
logarithmic realized variance. For more information and reference about applications and
properties of the realized volatility and the use of intraday data see Andersen (2000),
Andersen and Bollerslev (1997), Andersen and Bollerslev (1998b), Andersen et al.
(2003), Andersen et al. (2004), Angelidis and Degiannakis (2005a), Barndorff-Nielsen
and Shephard (2002, 2005), Bollerslev and Wright (2001), Oomen (2001) and Taylor
and Xu (1997).

2.7. Interpretation of ARCH Process

A number of studies have aimed at explaining the prominence of ARCH process
in financial applications. Stock (1987, 1988) established the time deformation model, in
which economic and calendar time proceed at different speed, and linked the relation
between time deformation and ARCH models. Any economic variable evolves on an
operational time scale, while in practice it is measured on a calendar time scale. The
inappropriate use of calendar time scale leads to volatility clustering since relative to the

calendar time, the variable may evolve quicker or slower. The time deformation model
for a random variable y, has the form:
YVi=PYViaTéE
&1, ~N0c?) (2.7.1)
ol =ay+ag’,.
According to Stock, when a long segment of operational time elapsed during a unit of
calendar time, p, is small and O'f is large. In order words, the time varying
autoregressive parameter is inversely related to the conditional variance.
Mizrach (1990) developed a model in which the errors, made by the participants
of the market on investing, are strongly dependent on all past errors. The highly

persistence on the errors forces the volatility of asset returns to have an ARCH like

structure.
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Gallant et al. (1991), based on some earlier work by Clark (1973), Mandelbrot
and Taylor (1967), Tauchen and Pitts (1983), and Westerfield (1977) provided a
theoretical interpretation of ARCH effect. Let us assume that the asset returns are
defined by a stochastic number of intra-period price revisions so that they can be

decomposed to:

o=+, 2.7.2)
=1

where u, is the forecastable component, ¢, ilid'N(O,sz) denotes the incremental
changes and o, is the number of times new information comes to the market in time ¢.
w, is an unobservable random variable and is independent of the incremental changes.
In such a case, the asset returns are not normally distributed, as their distribution is a
mixture of normal distributions. Rewriting the equation (2.7.2) as: y, = 4, +s2\/;,z[,
with z,, t=12,.. as iid. standard normal variables, the y, conditional on any
information set, @, and I, ;, is normally distributed:

v @, 1, )~ Ny, s0,). (2.7.3)

However, the knowledge of information that flows into the market is an unrealistic

assumption. Hence, the y, conditional on the information set available to the market
participants is:

Y11~ N, s%E, \(@,)). (2.7.4)
Note that the conditional kurtosis, C-’:Et_l(a)t2 )/Et_l(a)t )2, exceeds 3, as in the ARCH

process where the innovation, ¢, , always has fatter tails than its unconditional normal
distribution:
Elet) E(e2] = 3. (2.7.5)

Lamoureux and Lastrapes (1990) assumed that the number of information

arrivals is serially correlated and used the daily trading volume as a proxy variable for

the daily information that flows into the stock market. Hence, @, can be expressed as an

autoregressive process:
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K
w, = by + Zbia),_,. +z,
=1

(2.7.6)
iid
z,~ N(O,l)
From (2.7.4) we know that E((y, - 1, )? | I, , )= s, , thus (2.7.6) becomes
E((J’z —H )2 | It—1)= 5%y + ZbiE((yl—i —H )2 | It—i—1)+ sz, (2.7.7)
i=1

The structure in (2.7.7) expresses the persistence in conditional variance, a

characteristic that is captured by the ARCH process. Lamoureux and Lastrapes (1990)

used the trading volume as a proxy variable for ®, . Including the daily trading volume,

V,, as an exogenous variable in the GARCH(1,1) model, they found that its coefficient
was highly significant whereas the ARCH coefficients became negligible:

ol =ay,+ae’ +bo’ +oV,. (2.7.8)
The heteroscedastic mixture model assumes that 6 >0 and that the persistence of
variance as measured by a, +b, should become negligible. Their work provided

empirical evidence that the ARCH process is a manifestation of the time dependence on
the rate of information arrival to the market.

Brailsford (1996) and Pyun et al. (2000) applied versions of the heteroscedastic
mixture model and reported that the degree of persistence reduced as a proxy for
information arrival enters into the variance equation. On the other hand, a number of
studies (i.e. Abhyankar (1995), Bessembinder and Seguin (1993), Najand and Yung
(1991), Locke and Sayers (1993), Sharma et al. (1996)) tested the mixture of
distributions hypothesis, for various sets of data, and found that the ARCH coefficients
remain statistically significant even after a trading volume is included as an exogenous
variable in the model. This contradiction forced Miyakoshi (2002) to reexamine the
relation between ARCH effects and rate of information arrival to the market. By using
data from the Tokyo Stock Exchange, Miyakoshi showed that for periods with important
market announcements, the trading volume affects the return volatility and the ARCH
coefficients become negligible, while for periods which lack of “big news” the ARCH
structure characterizes the conditional variance, adequately. The mixture of distributions
hypothesis was also reexamined by Luu and Martens (2002) in the context of “realized

volatility”.
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Engle et al. (1990a) evaluated the role of the information arrival process in the
determination of volatility in a multivariate framework providing a test of two hypotheses:
heat waves and meteor showers. Using meteorological analogies, they supposed that
information follows a process like a heat wave so that a hot day in New York is likely to
be followed by another hot day in New York but not typically by a hot day in Tokyo. On
the other hand, a meteor shower in New York, which rains down on the earth as it turns,
will almost surely be followed by one in Tokyo. Thus, the heat wave hypothesis is that
the volatility has only country specific autocorrelation, while the meteor shower
hypothesis states that volatility in one market spills over to the next. They examined
intra daily volatility in the foreign exchange markets, focusing on time periods
corresponding to the business hours of different countries. Their research based on the
Yen/Dollar exchange rate while the Tokyo, European and New York market are open.
They found that the foreign news was more important than the past domestic news. So,
the major effect is more like a meteor shower, i.e. Japanese news had a greater impact
on the volatility of all markets except the Tokyo market. This is interpreted as evidence
that volatility in part arises from trading rather than purely from news. Conrad et al.
(1991), Pyun et al. (2000) and Ross (1989) examined the volatility spillover effect across
large and small capitalization companies. The main finding is that volatility propagates
asymmetrically in sense that the effect of shocks of larger firms on the volatility of
smaller companies is more significant than that from smaller firms to larger companies.

Bollerslev and Domowitz (1991) showed how the actual market mechanisms may
themselves result in a very different temporal dependence in the volatility of transaction
prices, with a particular automated trade execution system inducing a very high degree
of persistence in the conditional variance process.

Alternative expositions for theoretical evidence on the sources of ARCH effect
have been presented by Attanasio and Wadhwani (1989), Backus et al. (1989), Brock
and Kleidon (1990), Diebold and Pauly (1988), Domowitz and Hakkio (1985), Engle and
Susmel (1990), Giovannini and Jorion (1989), Hodrick (1989), Hong and Lee (2001),
Hsieh (1988), Lai and Pauly (1988), Laux and Ng (1993), Ng (1988), Schwert (1989a),
Smith (1987) and Thum (1988). Nelson (1990b) was the first to show how ARCH models
can emerge from diffusion processes. The problem of estimation of discretely sampled
diffusions, such as ARCH processes, and their relationship with continuous time models
has also been considered in the literature (see, e.g., Ait-Sahalia (2001, 2002), and the

references therein).
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Chapter 3
A Conjecture on the Independence of the
Standardized One-Step-Ahead Prediction Errors of
the ARCH Model

3.1. Introduction

In statistical modeling contexts the use of one-step-ahead prediction errors for
testing hypotheses on the forecasting ability of an assumed model has been widely
considered. Quite often, the testing procedure requires independence in a sequence of
recursive standardized prediction errors, which cannot always be readily deduced
particularly in the case of econometric modeling. In this chapter, on the basis of the
results of a series of Monte Carlo simulations, it is conjectured that independence holds
and the sum of squared standardized one-step-ahead prediction errors is Chi-square
distributed. The methodologies used in the remainder of the thesis are based on the
assumption that the standardized one-step-ahead prediction errors are a collection of
independently and identically distributed variables. Thus, the question of whether the

above quantities are indeed independently distributed is crucially important.

3.2. Monte Carlo Study: Simulating the AR(1)GARCH(1,1)

Process

An ARCH process, ¢,, is presented as:
& = 1,0y
ii.d.
z, ~ N(02) (3.2.1)
O-t2 = g(Gt—l’Ut—Z"“’gt—l’gt—Z"")
where z, is a sequence of independently and identically distributed random variables,

o, Is a time-varying, positive measurable function of the information set at time t -1 and

g(.) could be a linear or nonlinear functional form that has been presented in the ARCH

literature.
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The squared value of the i.i.d. standard normal process is Chi-square distributed

with 1 degree of freedom, or z? ~ y/, and the sum of T iid. standard normal
T

processes is Chi-square distributed with T degrees of freedom, or sz ~ ;{TZ. The
t=1

expected value and the variance of the Chi-square distributed process with T degrees
of freedom are E(Ztllzf):T and V@lef): 2T , respectively. Moreover, if z, is an
ii.d. random sequence then the autocorrelation, Cor(zt,zm), is approximately

N(O,T’l) and any transformation of z, is also an i.i.d. random sequence (see Ding et al.
(1993)).

Since very few financial time series have a constant conditional mean of zero, an
ARCH model can be presented in a ¥ order autoregressive form by letting g be the

innovation process in a linear regression:

K

Ye = Z(Ci yt—i)+gt
i=1
&, =20,~N(007?) 322
ii.d.
z, ~ N(0.2)
O-tz = g(at—lio-tfz1"'58t,1;gt72,...)
The disturbances, ¢,, are normally distributed with time varying conditional variance

ol = Et,l(gf). The most commonly used conditional variance function is the
GARCH(1,1) model:
ol =a,+a¢&’, +bol,.

In the sequel, a Monte Carlo simulation is used to provide evidence for the
assumption of independently and identically distributed standardized one-step-ahead
prediction errors. Our strategy runs as follow:

1) Generate data from the AR(1)GARCH(1,1) process.

. Generate a series of 32.000 values from the standard normal distribution

iid.

z, ~ N(0,2).
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32000 . . ..
. » by multiplying the i.i.d. random sequence

. Generate the ARCH process, {a } o

with a  specific  conditional  variance  form,  or g =12+4of, for

o2 =0.0001+0.12¢7, +0.852, .

. Generate a first order autoregressive processes, Y, =0.06y,, +¢&,, for the

. 32000
conditional mean, based on the {¢, |, process.

t=1
Figure 3.1 plots the simulated processes, Figure 3.2 presents the relevant histograms
and descriptive statistics, and Figure 3.3 depicts the histograms of the Chi-square

distribution with T degrees of freedom. The figures are presented in the Appendix. The

T
Chi-square distributed process, with T degrees of freedom, is constructed as sz .
t=1

According to the literature (e.g. Engle and Mustafa (1992)), the shocks to the variance,
2 2 2 2 _
E, (8t )_ Et—l(gt ): & —Oy =V,
generate a martingale difference sequence (in the sense that it cannot be predicted from

its past). These shocks are neither serially independent nor identically distributed. Let us

take a glance at the autocorrelations of the variables. z, has to be serially uncorrelated,
the shocks to the variance v, should be autocorrelated, and the conditional variance o/

would be highly correlated. As z, is an i.i.d. random sequence, the transformations of
z,, (|zt|d, vd >0), are uncorrelated in each case. Figure 3.4, in the Appendix,

presents the autocorrelation of transformations of the processes z,,v,,0, , ¢, . The half
length of the 95% confidence interval for the estimated sample autocorrelation equals

1.96/4/T =0.0113, if the process is i.i.d. normally distributed. On the other hand, o is

autocorrelated at any lag, while both v, and ¢, are autocorrelated in half of the cases.

Ding and Ganger (1996) and Karanasos (1996) give the autocorrelation function
of the squared errors for the GARCH(1,1) process and Karanasos (1999) extends the
results to the GARCH(p,q) model. He and Terasvirta (1999) derive the autocorrelation
function of the squared and absolute errors for a family of first order ARCH processes.

The number of estimated autocorrelations that are outside the 95% confidence

interval is presented in the Table that follows.
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Table 3.1. Percentage of autocorrelations outside the 95% confidence
interval (7 =1,2,...,100).

d= 0.5 1 1.5 2 2.5 3
c q d d)
or{z,| .|z, 6% 6% 5% 4% 5% 6%
d d
Cor([gt| Jee ) 36% 44%  45%  AT%  AT%  44%
d d
Cor([vt| Ve ) 56% 54%  44%  30% = 20%  15%
d d
Cor(o,0¢,) 92%  97%  98%  95%  93%  86%

2) Estimate the parameters of the AR(1)GARCH(1,1) model.

. The AR(1)GARCH(1,1) model is applied, for the data produced from the
AR(1)GARCH(1,1) process. Dropping out the first 1000 data, maximum likelihood
estimates of the parameters are obtained by numerical maximization of the log-likelihood

function, using a rolling sample of constant size equal to 1000". At each of a sequence of

points in time, the maximum likelihood parameter vector, 6, = (61;’510,1’511,“61;), is being
estimated in order to compute the conditional mean and variance:
9t+1|t = él,t Yi
&t2+1|t = é\lo,t + é‘l,tgtzlt + 61,thTt .
Thus, the model is estimated 30.000 times. Note that gtft and atft belong to the |,, so

are considered as observable.

}30000

3) Compute the standardized one-step-ahead prediction errors, {2t+m !

Zi :(ym—)?mJt )6-t‘+1m. The SPEC model selection algorithm uses the sum of the

T
squared standardized one-step-ahead prediction errors, or folt_l .
t=1

o The one-step-ahead estimated processes are presented in Figure 3.5, Figure
3.6, in the Appendix, presents the relevant histograms and the descriptive statistics,

respectively. The one-step-ahead standardized prediction error process, conditional on

the information set available at time t, 7, :(ym—ymn)&:mv is approximately

normally distributed, while Zfﬂlt is Chi-square distributed with 1 degree of freedom.

! Maximum likelihood estimates of the parameters are obtained by numerical maximization of the log-
likelihood function using the Marquardt algorithm (Marquardt (1963)). The quasi-maximum likelihood
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.
Moreover, if 2t2+m is independently Chi-square distributed, Zif+m should be, also, Chi-
t=1

square distributed with T degrees of freedom, with mean and variance:
T T
E{Z fim} =T and V[Z 2@4 =2T.
t=1 t=1

.
Figure 3.7, in the Appendix, plots the histograms of Ziim. All the histograms are
t=1

almost identical to the simulated Chi-squared histograms. Moreover, if Z,,, is an i.i.d.

random sequence then the sample autocorrelation, Cor(it+11t : 2Hﬁm+r), is approximately

d),

vd >0, is also N(O,T’l). Figure 3.8, in the Appendix, presents the autocorrelation of

A

N A d
N(O,T‘l) and the autocorrelation of any transformation of z,,,, Cor(]zmJt z

et Ht+r

transformations of the processes Z, y, €,y s Visy» Oy -

As the sum of squared standardized one-step-ahead prediction errors is Chi-square

distributed, and the transformations of Z,, are not autocorrelated, the standardized

one-step-ahead innovations, Z,,, , should be independent.

3.3. Monte Carlo Study: Simulating the GARCH, EGARCH
and TARCH Processes

In the sequel the assumption that the standardized one-step-ahead prediction errors
are independently and identically distributed (or equivalently that the sum of T one-step-
ahead prediction errors is Chi-square distributed) is investigated for a higher order of

autoregressive process for the conditional mean and the following conditional variance

functions:
The GARCH(p,q) model, Bollerslev (1986)
2 3 2 : 2
oy =8, +Z(ai5t—i)+2(bio't-i) (3.3.1)

i=1 i=1

estimator (QMLE) is used, as according to Bollerslev and Wooldridge (1992), it is generally consistent, has
a normal limiting distribution and provides asymptotic standard errors that are valid under non-normality.
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The EGARCH(p,q) model, Nelson (1991)

(o?)=2, z( y[a—j} 5 (an(e?)

i=1
The TARCH(p,q) model, Glosten et al. (1993)

2 _ X 2 2 $ 2
oy =4q, +Z(ai5t—i )+71‘9t—1dt—1 +;(biat—i)'

i=1

S

Oy

where d, =1if ¢ <0, and d, =0 otherwise.

(3.3.2)

(3.3.3)

1. Eight processes have been generated with the coefficients presented in the

following Table.

Table 3.2. Coefficients of the simulated processes.

Parameters
Model

C, C, Cs 4 aQ a, b, 71
a) AR(1)GARCH(1,1) 0.05 - - 0.002 0.05 - 0.91 -
b) AR(1)EGARCH(1,1) 0.05 - - 0.2 0.05 - 0.2 0.1
c) AR(1)TARCH(1,1) 0.05 - - 0.002 0.15 - 0.7 -0.08
d) AR(1)GARCH(1,2) 0.05 - - 0.002 0.05 0.08 0.8 -
e) AR(1)TARCH(1,2) 0.05 - - 0.002 0.15 0.05 0.7 -0.08
f) AR(3)GARCH(1,1) 0.1 0.03 -0.02 0.002 0.05 - 0.91 -
g) AR(3)EGARCH(1,1) 0.12 0.07 -0.03 0.001 0.05 - 0.2 0.1
h) AR(3)TARCH(1,1) 0.1 0.03 -0.02 0.002 0.15 - 0.7 -0.08

2. Estimate the parameters of the simulated processes.

e At each of a sequence of points in time, the maximum likelihood parameter vector

A A

6, s(él,t,ézvt,63&,éovt,én,éz,t,blyt,;?l,t,fzyt) is being estimated. The models are

estimated 30.000 times and the conditional mean and variance are computed in

(3.3.4)-(3.3.7):

The «™ order Autoregressive process

K

9t+ut = Z(éi,t Yiasi )

i=1

The GARCH(1,q) model

q N

~2 o2 A 2 2

Ouqr =g + z (ai,tgt—i+].lt )+ b, oy
i1
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The EGARCH(1,q) model

Eyt

~ | € ~
T V1 (_tlt] +by, In(GtTt )} (3.3.6)

~ 2 ~ ~
Oy = explao,t +a; o
1t

The TARCH(1,q9) model

q -
~2 A A 2 A2 2
O = Qg t+ (ai,tgt—iﬁjt )"' 71,t5t|tdt + bl,t0t|t ) (3.3.7)
i-1

where d, =1if & <0, and d, =0 otherwise.

3. Compute the standardized one-step-ahead prediction errors

2H1|t = (yt+1 — }7H1|t )&t}lm and examine the following properties:

2 }30000

e Histogram, mean and variance of {2t+m -

¢ Histogram, mean and variance of {th:t_miiﬂ i } for t =T(T)30000

e Sample autocorrelation, Cor(it+1|t i ) for = 1(1)100.

t+r+lt+7

e Sample autocorrelation of transformations of Z,,,,, Cor(ﬁmJt " Ziyepor d), for
£ =1(1)100 and d = 0.5(0.5)3.
. . . . ~2 30000
Figures 3.9, 3.10 and 3.11, in the Appendix, plot the histograms of {zt+1|t }t:1 , the

histograms ~ of {Zt 72 } for t=T(T)30000 and the autocorrelation of the

j=t-T+1 "I+

A

z

d), for 7=1(1100 and d =0.5(0.5)3, for each of the

A d
processes C0r021+1|t

t+r+lt+7

eight generated processes. The property of independently and identically distributed

standardized one-step-ahead prediction errors holds.

3.4. Monte Carlo Study: Simulating the GARCH(1,1) Process

for Various Coefficient Values

Simulate one more set of GARCH(1,1) processes in order to investigate if changes in
the coefficients change the distribution of squared standardized one-step-ahead

prediction errors.

>Here, T =a(b)c denotes T =a,a+b,a+2b,...,c—b,c.
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e Generate 18 series of 5.000 values from the standard normal distribution
iid.

z, ~ N(0,2).

20000

e Generate 18 GARCH(1,1) processes {gt }t=l

by multiplying the i.i.d. random

sequence with o, from o? =0.002+0.05s2, +b®o?, where b =0.05%k for
k=12,...18.

e Estimate the parameters of the 18 GARCH(1,1) models.

-1

e Compute 2t+]Jt = (ym - 9t+1|t )&t+l|t :
The histograms of {ththﬂiim}, for t =T(T)30000 and the autocorrelation functions

A

Cor(jimJt i ’ ) 7 =1(1)100 and d = 0.5(0.5)3, are similar to these plotted in the

&ttt

previous sections.

3.5. Conclusion

The sum of squared standardized one-step-ahead prediction errors is Chi-square

distributed, and any transformation of the 2Hm process is not autocorrelated. A property

that is robust to the type of conditional variance function, the order of the autoregressive
process of the conditional mean and the values of the coefficients, applied. Hence, the
simulated evidence provides evidence that the estimated standardized one-step-ahead
prediction errors are asymptotically independently standard normally distributed. The

results of our simulation are confirmed analytically in the next chapter.
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Chapter 4
Predictability and Model Selection in the Context
of ARCH Models

4.1. Introduction

The richness of the family of parametric ARCH models certainly complicates the
search for the true model, and leaves quite a bit of arbitrariness in the model selection
stage. The problem of selecting the model that describes best the movement of the
series under study is, therefore, of practical importance. Most of the methods used in the
ARCH literature for selecting the appropriate model are based on evaluating the ability of
the models to describe the data. An alternative model selection approach is examined
based on the evaluation of the predictability of the models in terms of standardized
prediction errors.

The aim of this chapter is to develop a model selection method based on the
evaluation of the predictability of the ARCH models. Section 4.2 provides a brief
description of the methods used in the literature for selecting the appropriate model
based on evaluating the ability of the models to describe the data. In section 4.3,
Xekalaki et al.’s (2003) model selection method based on a standardized prediction error
criterion is examined in the context of ARCH models. In section 4.4 the suggested model
selection method is applied using return data for the Athens Stock Exchange (ASE)
index over the period August 30™, 1993 to November 4", 1996, while, in section 4.5, a
selection method based on the ability of the models describing the data is investigated.

Finally, in section 4.6 a brief discussion of the results is provided.

4.2. Model Selection Methods

Most of the methods used in the literature for selecting the appropriate model are
based on evaluating the ability of the models to describe the data. Standard model
selection criteria such as the Akaike Information Criterion (AIC) (Akaike (1973)) and the
Schwarz Bayesian Criterion (SBC) (Schwarz (1978)) have widely been used in the
ARCH literature, despite the fact that their statistical properties in the ARCH context are

65



Chapter 4

unknown'. These are defined in terms of I (é) the maximized value of the log-likelihood

function of a model, where é is the maximum likelihood estimator of & based on a
sample of size T and 0 denotes the dimension of @, thus:
AIC =1,(0)-6 (4.2.1)
SBC =1,(0)-201n(T). (4.2.2)
In addition, the evaluation of loss functions for alternative models is mainly used
in model selection. When we focus on estimation of means, the loss function of choice is
typically the mean squared error (MSE):
T
MSE=T*> ¢&Z. (4.2.3)
t=1
When the same strategy is applied to variance estimation, the choice of the mean
squared error is much less clear. Because of high non-linearity in volatility models, a

number of researchers constructed heteroscedasticity-adjusted loss functions. Bollerslev

et al. (1994) present four types of loss functions:

)

L =Y (s2-62), (4.2.4)
T (g2)

L, = Zln(—‘zj , (4.2.5)

(4.2.6)

L, = i(g—‘z +In(o? )J (4.2.7)

Pagan and Schwert (1990) used the first two of the loss functions to compare alternative
estimators with in-sample and out-of-sample data sets. Andersen et al. (1999), Heynen
and Kat (1994), Hol and Koopman (2000), are some examples from the literature that
applied loss functions to compare the forecast performance of various volatility models.
Moreover, loss functions have been constructed, based upon the goals of the
particular application. West et al. (1993) developed such a criterion based on the

portfolio decisions of a risk averse investor. Engle et al. (1993) assumed that the

! Kavalieris (1989) provided a thorough discussion for methods of selection of autoregressive models and
asymptotic equivalence of the AIC criterion to predictive cross-validation. His work may have some nice
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objective was to price options and developed a loss function from the profitability of a

particular trading strategy.

4.3. Model Selection Based on a Standardized Prediction
Error Criterion (SPEC)

Let {yt (0)}tﬂ refer to the univariate discrete time real-valued stochastic process
to be predicted where @ is a vector of unknown parameters. According to section 2.2 of

the 2™ chapter, an ARCH process, {51 (6?)} can be presented as:

=17

¥, (60)=xB+(0)
- Et(e)zzto't(é?) vas
2, ~ 1[E@)=0V(2)=1] (4:3.1)
o} (6’) =4 (O't-l(ﬁ), o, (49) £ (0) &, (6’) 01y Oy )

where X, is a kx1 vector of endogenous and exogenous explanatory variables included
in the information set I, ,, S is a kx1 vector of unknown parameters, f() is the
density function of z,, o, (6?) is a time-varying, positive and measurable function of the
information set at time t-1, v, is a vector of predetermined variables included in 1,

and g() is a linear or nonlinear functional form. A wide range of ARCH models is

reviewed in section 2.2.1 of chapter 2. In the sequel for notational convenience, no
explicit indication of the dependence on the vector of parameters, &, is given when

obvious from the context.

The conditional mean, , = E(yt | IH), can be adequately described by a "

order autoregressive [AR(x)] model:

Yo =Co + 2, (Cy)+ 4. (4.3.2)
i=1

Usually, the conditional mean is either the overall mean or a first order autoregressive
process. Theoretically, the AR(l) process allows for the autocorrelation induced by

discontinuous (or non-synchronous) trading in the stocks making up an index®. Higher

extension to the case of ARCH specification.
2 For more details on non-synchronous trading see section 2.1.3 of the 2™ chapter.
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orders of the autoregressive process are considered in order to investigate if they are
adequate to produce more accurate predictions.
Let us assume that a researcher is interested in evaluating the ability of the

ARCH models to forecast the conditional variance. Consider the simple case of a

regression model: y, = X/ +¢&, where [ is a vector of K unknown parameters to be

estimated, X, is a vector of explanatory variables included in the information set at time

t—1and ¢ e N(O,az). At time t -1, the expected value u, of y, is estimated on the

basis of the information available at time t-1, ie. V., =/ = x!B.,, Where

,[;’t_l = (X, X, ;) (X1,Y,,) is the least square estimator of S at time t—1, Y, is the

(I, x1) vector of I, observations on the dependent variable y,, and X, is the (I, xk)

matrix whose rows comprise the k -dimensional vectors x, of the explanatory variables

included in the information set, so that X, :[it,l}, Y, = {\;1} Here I, >k, I, =1 +1
t t

and [X;X,|#0, t=0.1,.... In a manner of speaking, ¥, and ¥, , can be considered as
in-sample and out-of-sample forecasts, respectively. In other words, f/m is measured on
the basis of |, the information set available at time t, while y, , is measured on the

basis of I, ,, the information set available at time t —1.

The most commonly used way to model the conditional variance is the
GARCH(p,q) process:

ol =a, +Zq:(ai8f,i )+ (biaf,i ) (4.3.3)
i=1 i

p
i= i=1

The GARCH(p,q) process may be rewritten as®:

ol =(ul,n,wlv.¢, @),

2 2 2 2
where u; = (1,gt_l,...,gt_q), n=0,w= (O‘t_l,...,O't_p), v’

Il
QD
o
QD
-
o
o
_\/
N
Il
o

a)'z(bl,...,bp).

¥ The conditional variance is written in the form: (u/,7/,w, Xv,<, @), which includes the most widely used
ARCH models such as the TARCH and the EGARCH processes.
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The vector 8 = (ﬂ’,v', g”’,a)') denotes the set of parameters to be estimated for both the
conditional mean and the conditional variance at time t. In the sequel, the density

function f() in equation (4.3.1), is assumed to be that of the normal distribution and
Iy, = ét‘t,l&t]tl, , denotes the standardized one-step-ahead prediction errors®.
The residual ém,l =Y, - )“/tlt,l reflects the difference between the forecast and the

observed value of the stochastic process. Xekalaki et al. (2003) suggested measuring
the predictive behavior of linear regression models on the basis of the standardized
distance between the predicted and the observed value of the dependent random

variable. The estimate of the standardized distance was defined by:

Yi — 9t|t—1

rt =,
w/; Ith—l)

o P ' P ’ -1 s -1
where \Y (yt|t—1) = (Yt—l - Xt—lﬁt—l) (Yt—l = XaBa Xl"' X (Xt—lxt—l) X Xlt—l - k) . A
scoring rule to rate the performance of the model at time t for a series of T points in

time, (t = 1,...,T), was defined by
Ry =T7) r7, (4.3.4)

the average of the squared standardized residuals. As an ARCH model estimates
simultaneously the conditional mean and the conditional variance, its evaluation is two
fold. In the sequel, this approach is adopted using the average of the squared
standardized one-step-ahead prediction errors as a scoring rule in order to rate the
performance of an ARCH model to forecast both the conditional mean and the

conditional variance, in particular,

.
52
> 7k
R oo -t (4.3.5)
T — -
T

Zy, = ‘g‘t|t—lOA-tTtl— , is the estimated standardized distance between the predicted and the

observed value of the dependent random variable, when the conditional standard

* Consider the case of the AR(1)GARCH(1,1) model as defined by equations (4.3.2) and (4.3.3), for x =1
and p=q=1, respectively. The estimators of the one-step-ahead prediction error and its variance

conditional on the information set available at time t—1 are given by &, =y -¢, ,—¢C Y, and
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deviation of the dependent variable given 1., is defined by an ARCH model,

V(yt | It—l)EUtz'

Theorem 1: Let (Ht) denote the vector of unknown parameters to be estimated at time t.

Under the assumption of constancy of parameters over time,
6,)=(8,)=...=(6,)=(#), the estimated standardized one-step-ahead prediction

errors 2t|t_1, 2”]“,...,2”“ are asymptotically independently standard normally distributed.
Symbolically,

21 = (Ve = ua B ~ N(0), t=1,2,..,T

Zt|t—1= yt_yt|t—l tit—1 L), L=4L4,., 1. (4.3.6)

Proof: To prove the theorem, we need the following lemmas.

Lemma 1: (Slutsky’s theorem) (see, e.g. Greene (1997, p.118)): For a continuous

function g(x; ) thatis not a function of T, plimg(x, )= g(plimx; ).

(Here plim denotes the limit in probability as T — o .)

The following two Lemmas are implications of Slutsky’s theorem.

Lemma 2: (see, e.g. Hamilton, 1994, p. 182): Let {X,} denote a sequence of (nx1)
p

random vectors with plimX; =c, i.e., X; >c. Let g(.) be a vector-valued function,

p
g:R" — R™, which is continuous at ¢ and does not depend on T . Then g(X; )—g(c).

Lemma 3: (see, e.g. Hamilton (1994, p. 182)): Let {XH} denote a sequence of (nxn)
p
random matrices with X,; —C,, where C, is a non-singular matrix. Let X,; denote a
p
sequence of (n x1) random vectors with X, —C,, where C, is a constant. Then,

p

(XlT )_l Xor _)(Cl)_lcz’ or p Iim(xn )_l Xor = (Cl)_lcz .

We now prove the following lemma.

~9 ~

Ops=2a respectively. The estimated parameters are indexed by the subscript t

to indicate that they may vary with time.

~ ~2 -~ ~ 2
ota T al‘lflgl—llifl + bl‘lflo-l—l\lfl !
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Lemma 4: Let {XiT}, for i=1...,n, denote a sequence of random vectors with
plimX,; =W,, where W,, i=1..,n are independently and identically distributed with
some distribution function F(). Then plim(X,,, X, ... X;p )= (W, W,,..,.W,), and
X7 X, X; are asymptotically independently and identically distributed with
distribution function F(.).

Proof of Lemma 4: Let §(.) be a vector-valued real function, §(.):R" — R":

(X2 X oo X ) = G(Xg, X e X ) = (93 (X0 X reven X, ) G (X X seves Xy s G (X X 1es X, ).
Assume that g‘() is continuous at z,, Vi=1,...,,n, and does not dependon T .
According to Slutsky’s theorem (Lemma 1), for a continuous function g(XT) that is not a
function of T, plimg(x; )= g(plimx, ). Thus,

PIMG (X, X v Xop )= (95 (X 50 X0 X, 95 (X0 X ey X e 0, (X1, X5 X)),
By setting §(X, Xy X, )= (X, %0000 %, ), (€. 05 (X, %000 X, )= X, Vi=1,..,n), and
applying Slutsky’s theorem we obtain

PIHMG(Xer, Xor ey X )= PEM(X i, Xpr ey X o ) = GO W, . W, ) = (W, W, W)
Let Fy . x, .. XHT)(xl,xz,...,Xn) denote the joint density distribution of the random

variables X;;,X,r,...,X;;. As convergence in probability implies convergence in

distribution, we have

limF

T—>w (

= Fw1(X1)' sz (Xz) Fwn (Xn): lim Fx1T (Xi)'TILr?OFXZT (Xz)TILr?O Fan (Xn)

T—w
As the joint density is asymptotically the product of the marginal densities,

Xy Xor e Xp are asymptotically independently distributed, each with distribution

function F(.).

Let us now return to the proof of Theorem 1: At time t —1, the expected value of
Yy, is estimated on the basis of the information available at time t -1, i.e. 9t|H = X{,&A’H
and the expected value of the conditional variance is estimated on the basis of the

information available at time t—1, i.e. &, =(ut',n{,w{)(ﬁt_l,ft_l,@t_l). Note that the
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elements of the vector ( Uy, 770, W, ) belong to the |, ,, so are considered as known

values. The Z,, , can be written as:

(( us, 7, W )(V g, a)))llz + (Xt,(ﬂ_ﬁt—l»
(( ug, 77, W t)( t—l’gt—l’wt—l))llz ((ut"ﬂt,’Wt’)(ot—l’éct—lva}t—l))uz

We assume that a sample of T observations has been used to estimate the vector of

unknown parameters. According to Bollerslev (1986), the maximum likelihood estimate

A

6, is strongly consistent for & and asymptotically normal with mean &. In other words,
plim(ét): 0= plim(ﬁ{,\?t’,gi',c?){): (ﬁ’,v’,g“’,a)'), where plim denotes limit in
probability as the size of the sample, T, goes to infinity. According to Lemma 2:

p Iim(itlt_l) =

2, (00t W) (1., ) }p,im[ lp-5.) ).
(] R (w0 )
Then, based on Lemma 3:

2, (0,7, w) (v ¢ ) iptim{p—A4,.)
(Ut'vﬂt: t)(p“m( t—l’é/t—l'a)t—l))llz (pIim((ut’vnt"Wt’)(vt—lléct-va}t-l)))uz
2 () o) (eptimls— )
i w) (@S0l (g w)ptimG. S )
R

L w v, ¢ @)

:Zt

= plim

+
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As convergence in probability implies convergence in distribution, the Zm_l, 2H1|t,..., 2T|T—l

are asymptotically standard normally distributed:

p d
lya—o2 = Ly, >~ N(0,1)

This result, combined with Lemma 4, implies that the Ly s Lysgpseor Lypy  AT€

asymptotically independently standard normally distributed, i.e.,
d ii.d.

2y, —z, ~ N(01).

Hence, the theorem has been established.

The result of the theorem is valid for all the conditional variance functions with

consistent estimators of the parameters.

Remark: As concerns the EGARCH and the TARCH models, the maximum likelihood
estimator ét = (,3{,\7{,5{, cbt') is consistent and asymptotically normal.

Consider the EGARCH(p,q) model in the following form

In(c?)=a, + il:(ai +y, ((‘%B + ipl (b, In(s2,)) (4.3.7)

which can be written as:

S
Oy

oy = (uf, 7, W, \v.¢, @)
where U; = (1’|gt—l/0t—1|"""gt—q/o-t—q‘)’ = ([gt—l/o-tfl]"“’lgt—q /thqJ)’

W, =(Inaf_l,...,lnaf_p), v':(ao,al,...,aq), g':(yl,...,;/q), a)':(bl,...,bp).
According to Nelson (1991), under sufficient regularity conditions, the maximum
likelihood estimator 67t = (ﬁ{,\?{,g;t’,a}t') is consistent and asymptotically normal. Also, for

the TARCH(p,q) process, the conditional variance can take the form:
2 ! 2 2 $ 2
Oy =3, + Z(aigt—i )"' req dyy + Z(bio-t—i )’ (4.3.8)
i=1 i=1

which can be written as:

2

ol = (ul.n wv.¢ @)

where U/ =(1,gt2_1,...,gt2_q), n =(dt_1gf_l), W, =(at2_1,...,at2_p), V' = (ao,al,...,aq),
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C'=(y), o' = (bl,...,bp), d, =1if & <0, and d, =0otherwise.

As pointed out by Glosten et al. (1993), as long as the conditional mean and variance
are correctly specified, the maximum likelihood estimates will be consistent and
asymptotically normal.

;
According to Lemma 1, if plimZ, , =z ~N(0,1) and g(2t|t—l): Z(ifn_l), which

=1

—

T T
is a continuous function, then pIimZ(ile)=Z(zf). As convergence in probability
t=1 t=1

T d T
implies convergence in distribution, Z(itzltfl)—)Z(th)'“}(-?. Hence, as ., are
=1

t=1
asymptotically standard normal variables, the variable TR; is asymptotically ;(2
distributed with T degrees of freedom, i.e.,
d
TR, > 42. (4.3.9)

Also, for two processes A and B with T, and T, observations, respectively, the ratio of

the scoring rules R ‘12 2% and R{® ‘12 2\2% is F distributed with T, and
T, degrees of freedom, i.e.,
R
Rur, = oy ~ P (4.3.10)

T,
if R%A) and R%B) are independently distributed.

According to Kibble (1941), if, for t=12,.,T, 2\ and Z{), are standard
normally distributed variables, following jointly the bivariate standard normal distribution,
then the joint distribution of (% RT(A),TERT(B)j is the bivariate gamma distribution with
probability density function (p.d.f) given by:

exp( x+y) .
1-p ( ( ( ))Z ))(Xy)(T/Z)“}x,y>O, (4.3.11)

f X, Y)=
TZR%‘“LR%“( Y) r(T/2)1-p? " & i+(T/2

where F() is the gamma function and p is the correlation coefficient between 2t(|tA_)1 and

28}, p=Cor(2(%,,2(%) ). Xekalaki et al. (2003) showed that, when the joint distribution
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of (%R#A),TERT(B)J is Kibble's bivariate gamma, the distribution of the ratio

=R /R® is defined by the following p.d.f.:

1—p2)% T4 T 2p S
fZ<AB)(z)=( 277 (1+2) {1—(—) z} ,2>0, (4.3.12)
B(%%’ z+1
TT T .
where B(E,EJ—F(ZJ /F(T). Symbolically,
EZ sz Y ~ CGR(k, p), (4.3.13)

where k =T/2. Xekalaki et al. (2003) referred to the distribution in (4.3.12) as the
Correlated gamma ratio (CGR) distribution. A sample of tables of its percentage points
and of graphs depicting its probability density function is given in the Appendix.

As pointed out by Xekalaki et al. (2003), RiA) and RT(B) could represent the sum

of the squared standardized prediction errors from two regression models (not
necessarily nested) but with a common dependent variable. Thus, two regression

models can be compared through testing a null hypothesis of equivalence of the models
in their predictability against the alternative that model (A) produces “better” predictions.

Here, the notion of the equivalence of two models with respect to their predictive ability is
considered in Xekalaki et al.’s (2003) sense to be defined implicitly through their mean
squared prediction errors. Following Xekalaki et al.’s (2003) rationale, the closest
description of the hypothesis to be tested is
Ho: Models A and B have equal mean squared prediction errors
Versus

Hi: Model A has lower mean squared prediction error than model B

using ZT(A'B) as a test statistic, i.e., using the ratio of the sum of the squared
standardized one-step-ahead prediction errors Z,, ;, of the two competing models. The
null hypothesis is rejected if Z\*®) > CGR(k, p,a), where CGR(k, p,a) is the 100(1-a)

percentile of the CGR distribution. In the case of independence between RT(A) and RﬁB),

the CGR density function reduces to the form:
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T/ -1 T
fopn (202 sl ze)T (4.3.14)

)- T 7 %
(7, 75)
which is the p.d.f. of the F distribution with T and T degrees of freedom.

Since very few financial time series have a constant conditional mean of zero, in
order to estimate the conditional variance, the conditional mean should have been
defined. Thus, both the conditional mean and variance are estimated simultaneously.
According to the SPEC model selection algorithm, the models that are considered as
having a “better” ability to predict future values of the dependent variable, are those with
the lowest sum of squared standardized one-step-ahead prediction errors. It becomes
evident, therefore, that these models can potentially be regarded as the most
appropriate to use for volatility forecasts too.

4.4. Empirical Results

The suggested model selection procedure is illustrated on data referring to the

daily returns of the Athens Stock Exchange (ASE) index. Let y, = In(Pt/PH) denote the

continuously compound rate of return from time t -1 to t, where P, is the ASE closing

price at time t. The data set covers the period from August 30", 1993 to November 4",
1996, a total of 800 trading days. Table 4.1 presents the descriptive statistics. For an
estimated kurtosis equal to 7.25 and an estimated skewness equal to 0.08, the
distribution of returns is flat (platykurtic) and has a long right tail relative to the normal
distribution. The Jarque Bera (JB) statistic (Jarque and Bera (1980)) is used to test
whether the series is normally distributed. The test statistic measures the difference of
the skewness and kurtosis of the series from those of the normal distribution. The JB

statistic is computed as:

B=T(s?+((x -3)/4))s, (4.4.1)
where T is the number of observations, S is the skewness and K is the kurtosis.
Under the null hypothesis of a normal distribution, the JB statistic is ;(2 distributed with 2

degrees of freedom. From Table 4.1, the value of the JB statistic obtained is 602.38 with
a very low p-value (practically zero). So, the null hypothesis of normality is rejected. In

order to determine whether {yt} is a stationary process, the Augmented Dickey Fuller
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test (ADF) (Dickey and Fuller (1979)) and the nonparametric Phillips Perron (PP) test
(Phillips (1987), Phillips and Perron (1988)) are conducted.

The ADF test examines the null hypothesis, H,:y =0, versus the alternative,

H, 1y <0, in the following regression:
Ay, =C+H, + Z?’iAyH + & (4.4.2)
i=1
where A denotes the difference operator. According to the ADF test, the null hypothesis
of non-stationarity is rejected at the 1% level of significance for any lag order up to
k =12 . The test regression for the PP test is the AR(1) process:
Ay, =C+py,, +¢&. (4.4.3)

Table 4.1. Descriptive Statistics of the daily returns of the ASE index
(30th August 1993 to 4th November 1996 (800 observations))

Observations 800
Mean 5.72E-05
Median -0.00018
Standard Deviation 0.012
Skewness 0.08
Kurtosis 7.25
Jarque Bera (JB) 602.38
probability <0.000001
Augmented Dickey Fuller (ADF) -12.67
1% critical value -3.44
Phillips Perron (PP) -24.57
1% critical value -3.44

The skewness of a symmetric distribution, as the normal distribution, is zero. Positive skewness implies that the
distribution has a long right tail. Negative skewness implies a long left tail distribution.

The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, the distribution is peaked (leptokurtic) relative
to the normal. If the kurtosis is less than 3, the distribution is flat (platykurtic) relative to the normal.

Under the null hypothesis of a normal distribution, the JB statistic is x° distributed with 2 degrees of freedom. The
reported probability is the probability that the JB statistic exceeds, in absolute value, the observed value under the null
hypothesis.

ADF: The null hypothesis of non-stationarity is rejected if the ADF value is less than the critical value. (4 lagged
differences).

PP: The null hypothesis of non-stationarity is rejected if the PP value is less than the critical value. (4 truncation
lags).

While the ADF test corrects for higher order serial correlation by adding lagged
differenced terms on the right hand side, the PP test makes a correction to the t statistic

of the y coefficient from the AR(1) regression to account for the serial correlation in ¢, .

The correction is nonparametric since an estimate of the spectrum of ¢, at frequency

zero, that is robust to heteroscedasticity and autocorrelation of unknown form, is used.
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According to the PP test, the null hypothesis is also rejected at the 1% level of
significance.

The most commonly used test, for examining the null hypothesis of
homoscedasticity against the alternative hypothesis of heteroscedasticity, is Engle’s
(1982) Lagrange multiplier (LM) test. The ARCH LM test statistic is computed from an
auxiliary test regression. To test the null hypothesis of no ARCH effects up to order q in

the residuals, the regression model
q
el =By + Y Bl +uy, (4.4.4)
i=1

with &, =Y, —C is run. Engle’s test statistic is computed as the product of the number of

observations times the value of the coefficient of variation R’ of the auxiliary test

regression. From Table 4.2, the values of the LM test statistic for q=1,...,8 are highly

significant at any reasonable level.

Table 4.2. Lagrange multiplier (LM) test. Test the null hypothesis of no ARCH effects in

the residuals up to order q.

q
gtz = ﬂo +Z‘,:Bi‘c"tz—i +U;
i=1

& =Y —C
Q LM statistic p-value
1 108.203 0.00
2 113.315 0.00
3 127.947 0.00
4 128.577 0.00
5 130.691 0.00
6 133.467 0.00
7 131.573 0.00
8 129.496 0.00

The LM statistic is computed as the number of observations times the R* from the auxiliary test regression. It converges
in distribution to a xzq.

As, according to the results of the above tests, the assumptions of stationarity
and ARCH effects seem to be plausible for the process {yt} of daily returns, several
ARCH models are considered in the sequel. It is assumed, specifically, that the

th

conditional mean is considered as a x order autoregressive process as defined in

(4.3.2) and the conditional variance o-f is assumed to be related to lagged values of &,
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and o, according to a GARCH(p,q) model, an EGARCH(p,q) model or a
TARCH( p,q) model as defined by (4.3.3), (4.3.7) and (4.3.8), respectively. Thus, the
AR(x )GARCH( p,q), AR(x)EGARCH(p,q) and AR(x)TARCH(p,q) models are
applied, for k =0,....4, p=0,1,2 and g =1, 2, yielding a total of 90 cases.

Since, in estimating non-linear models, no closed form expressions are
obtainable for the parameter estimators, an iterative method has to be employed. The
value of the parameter vector € that maximizes It(ﬁ), the log likelihood contribution for
each observation t, is to be found. Iterative optimization algorithms work by starting with
an initial set of values for the parameter vector €, say 0 and obtaining a set of

parameter values Y which corresponds to a higher value of It(H). This process is
repeated until the objective function It(H) no longer improves between iterations. In the
sequel, the Marquardt algorithm (Marquardt (1963)) is used. This algorithm modifies the
Berndt, Hall, Hall and Hausman, or BHHH, algorithm (Berndt et al. (1974)) by adding a
correction matrix to the Hessian approximation (i.e., to the sum of the outer product of
the gradient vectors for each observation’s contribution to the objective function). The
Marquardt updating algorithm is computed as:

_ _ T 510 p10) T
9(-+1):9(-)+( Zt 7t g L (4.4.9)
tzzll 06 06’ tZ:l: 00

where | is the identity matrix and a is a positive number chosen by the algorithm. The
effect of this modification is to push the parameter estimates in the direction of the
gradient vector. The idea is that when we are far from the maximum, the local quadratic
approximation to the function may be a poor guide to its overall shape, so it may be
better off to simply follow the gradient. The correction may provide a better performance
at locations far from the optimum, and allows for computation of the direction vector in
cases where the Hessian is near singular.

The quasi-maximum likelihood estimator (QMLE) is used, as according to
Bollerslev and Wooldridge (1992), it is generally consistent, has a limiting normal
distribution and provides asymptotic standard errors that are valid under non-normality.

In order to compute the sum of squared standardized one-step-ahead prediction
errors, a rolling sample of constant size equal to 500 is used, or T =500, so 300 one-

step-ahead daily forecasts are estimated. Combined 90 model specifications and 300
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replications for each model, our approach produces a total of 27.000 model estimations.
In the chapters follow, ARCH models are estimated for larger number of data windows
increasing even more the total number of one-step-ahead estimates. Unfortunately, it is
not possible to use updating procedures that help cut down on computing time, expect
from fixing, at each point in time, the initial values of the parameters to be estimated to
their previously estimated values. On average, the computation of the 90 models
requires 12 minutes per trading day®.

Although, large data sets are often used in the literature for the estimation of
ARCH models, we consider here using a not too large sample, which would expectantly
incorporate changes in trading behavior more efficiently as the evidence is from various
findings in the literature (e.g. Engle et al. 1993, Frey and Michaud 1997 and Angelidis et
al. 2004). Moreover, in the 7" chapter samples of 1000 and 2000 observations were
considered.

The out-of-sample data set is split into 5 subperiods and the SPEC model
selection algorithm is applied in each subperiod separately. Thus, the model selection is
revised every 60 trading days and the information set includes daily continuously
compound returns of the two most recently years, or 500 trading days. The choice of a

60-day length for each subperiod is arbitrary. The sum of the squared one-step-ahead

prediction errors, Z:Til(itft—l)’ is estimated for each model and presented in Table 4.3,

in the end of chapter. The models selected for each subperiod and their sums of the

squared standardized one-step-ahead prediction errors are:

. - T+s (a2
Subperiod Model Selected mm@)tzm(ztm1 ))
1. 25 August 1995 - 16 November 1995 AR(2) EGARCH(0,1) 21.961
2. 17 November 1995 - 13 February 1996 ~ AR(0) EGARCH(0,1) 76.315
3. 14 February 1996 - 14 May 1996 AR(0) EGARCH(0,1) 42.176
4. 15 May 1996 — 8 August 1996 AR(3) EGARCH(0,1) 27.308
5. 9 August 1996 - 4 November 1996 AR(1) EGARCH(0,1) 43.920

According to the SPEC selection method, the exponential GARCH(0,1) model describes
best the conditional variance for the total examined period of 300 trading days. It is
selected by the SPEC selection method in each subperiod. Figure 4.1 shows the daily

® In the 6" chapter, an options trading strategy that is based on the SPEC algorithm is constructed. The
trading game assumes that there is enough time to forecast the next day’s option prices. In order to compute
option prices for the next trading day, the required computational time per day should be less than 15
minutes.
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value of the ASE index and the one-step-ahead conditional standard deviation of its

returns.

Figure 4.1. The ASE index and the one step ahead conditional standard deviation of its
returns estimated by the EGARCH(0,1)
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Figure 4.2. The parameters of the estimated EGARCH(0,1) models

0.60 -
-+ 0.26
_ 0.50 >
S o
g T o.g
"E’ 0.40 - o
g 1 0.6
o (]
o 0.30 £
] + 0.8
S o
=]
@ 0.20 - =
=]
= " 0.6
>
0.10 - -+ 0.01
0.00 -0.04
Auy-95 OkT1-95 Aek-95 DeB-96 ATTp-96 louv-96 Auy-96 OkT1-96
Date
Value of the parameter a1 Value of the parameter y1

81



Chapter 4

Figure 4.3. The standard error for the parameters of the estimated EGARCH(0,1) models
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Despite the fact that an asymmetric model is selected by the SPEC algorithm,
there are no asymmetries in the ASE index volatility. According to Figure 4.1, the major
episodes of high volatility are not associated with market changes of the same sign.
Figure 4.2 presents the values of the parameters a, and y, of the 300 estimated
EGARCH(0,1) models, while Figure 4.3 depicts the relevant standard errors for the
parameters a, and y,. Obviously, the y, parameter, which allows for the asymmetric
effect, is positive but statistically insignificant. Therefore, the asymmetric relation
between returns and changes in volatility does not characterize the examined period.

An interesting point is that the higher order of the conditional mean
autoregressive process is chosen as adequate to produce more accurate predictions for

the first and the fourth subperiods. As concerns the first subperiod, the
AR(2)EGARCH(0,1) model

Y =Co +CYiq tCY, &

£y (4.4.10)
+7 )
Oy

(2t2|t—1) equal to 21.961. The hypothesis:

S

In(of): a, +a

t-1

is the one with the lowest value of zzzm

Ho: The model AR(2)EGARCH(0,1) has equivalent predictive ability to model X

is tested versus
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H,: The model AR(2)EGARCH(0,1) produces “better” predictions than model X ,
with X denoting any one of the remainder models.

The CGR distribution depends on the correlations among standardized prediction
errors from different models. Assuming that replacing the unknown parameters by their
estimates should work in large samples, the correlation is estimated from the data. The
correlation between the standardized one-step-ahead prediction errors is greater than

0.9 in each case, which is naturally the case for predicted values specially when they are

. L 1 560 A
derived from similar model frameworks. If ZAX@FARHODX < (21 96) ztzsmzt(ltx_)f

>CGR(k :30,p>0.9,a), the null hypothesis of equivalent predictive ability of the
models is rejected at 100a% level of significance and the AR(2)EGARCH(0,1) model is
regarded as “better” than model X . Table 4.4, in the end of chapter, summarizes the

results of the hypothesis tests, for each subperiod.

Figure 4.4, in the end of chapter, depicts the one-step-ahead 95 per cent

prediction intervals for the models with the lowest z:;il(iflt_l) in each subperiod. The

prediction intervals are constructed as the expected rate of return plus\minus 1.96 times
the conditional standard deviation, both measurable to t—-1 information set:
fy, +1.96G, . So, each time next day’s prediction interval is plotted, only information
available at current day is used. Remark that around November 1995, a volatile period,

the prediction interval in Figure 4.4 tracked the movement of the returns quite closely

(seven outliers, or 2.33%, were observed).

4.5. An Alternative Approach

In this section an in-sample analysis is performed in order to select the
appropriate models describing the data. Then, the selected models are used to estimate

the one-step-ahead forecasts. Having assumed that the conditional mean of the returns

follows a x™ order autoregressive process, as in (4.5), Richardson and Smith (1994)
developed a test for autocorrelation. It is a robust version of the standard Box Pierce

(Box and Pierce (1970)) procedure. For p; denoting the estimated autocorrelation

between the returns at time t and t —i, the test is formulated as:
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RS(r)=TY P (4.5.1)

Sl+c,’
where T is the sample size and ¢, is the adjustment factor for heteroscedasticity, which

is calculated as:
C = COV(ytz’yt{i)

Ve } (4.5.2)

where Y, =Y, —T‘lz::1 Y, - Under the null hypothesis of no autocorrelation, the statistic

is asymptotically distributed as y® with r degrees of freedom. If the null hypothesis of
no autocorrelation cannot be rejected, then the returns’ process is equal to a constant

plus the residuals, ¢,. In other words, {yt} follows the AR(0) process. If the null of no

autocorrelation is rejected, then {yt} follows the AR(1) process. In order to test for the

existence of a higher order autocorrelation, the test is applied on the estimated residuals

from the AR(1) model. In this case, the statistic, under the null hypothesis, is
asymptotically distributed as y* with r —1 degrees of freedom. The test is calculated on

7 autocorrelations (r=7) for 800 observations vyielding a value equal to

RS(7)=14,86 > X7 005 - As the null hypothesis of no autocorrelation is rejected the test is

run on the estimated residuals from the AR(1) model that gives RS(6)=12,33 < ;5;0.05.

Thus, a first order autocorrelation is detected for the returns’ process. Note that the
AR(1) form allows for the autocorrelation imposed by discontinuous trading.

Having defined the conditional mean equation, the next step is the estimation of
the conditional variance function. The AIC and the SBC criteria are used to select the
appropriate conditional variance equation. Note that the AIC mainly chooses as best the
less parsimonious model. Also, under certain regularity conditions, the SBC is
consistent, in the sense that for large samples it leads to the correct model choice,
assuming the “true” model does belong to the set of models examined. Thus, the SBC
may be preferable to use. As concerns the specific dataset, both the AIC and SBC select
the GARCH(1,1) model as the most appropriate function to describe the conditional
variance. So, performing an in-sample analysis the AR(1)GARCH(1,1) model is regarded
as the most suitable, which is the model applied in most researches. Figure 4.5 presents
the in-sample 95 per cent confidence interval for the AR(1)GARCH(1,1) model. There
are fourteen observations, or 4.66%, outside the confidence interval.
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In order to compare the model selection methods, the choice of the models
should be conducted at the same time points. Thus, the Richardson Smith test for
autocorrelation detection and the information criteria for model selection are used in

each subperiod separately. The models selected for in each subperiod are:

Subperiod Richardson Smith SBC AIC
Model selection Model Selection Model Selection
1. AR(3) GARCH(1,1) EGARCH(1,2)
2. AR(2) GARCH(2,1) GARCH(2,1)
3. AR(0) GARCH(1,1) GARCH(1,1)
4, AR(0) GARCH(1,1) GARCH(1,1)
5. AR(0) GARCH(1,1) TARCH(1,1)

Based on Table 4.4, the hypothesis that the model selected by the in-sample analysis is
equivalent to the model with minimum value of Zt o 1( Zy 1) is rejected in the majority of

the cases.

Proceeding as in the previous section, the one-step-ahead prediction intervals,
for the models selected in each subperiod, are created. As in section 4.5, next day’s
prediction is based only on information available at current day. Figures 4.6 and 4.7
present the one-step-ahead 95 per cent prediction intervals for the models selected by
the SBC and AIC, respectively. There are thirteen observations, or 4.33%, outside the
prediction interval for the models selected by the SBC, whereas there are fourteen
outliers, or 4.66%, for the models selected by the AIC. Therefore, the importance of
selecting a conditional variance model based on its ability to forecast and not on fitting
the data gains a lead over. Of course, the construction of the prediction intervals is a

naive way to examine the accuracy of our method’s predictability.

4.6. Conclusion

An alternative model selection approach, based on the CGR distribution, was
introduced. Instead of being based on evaluating the ability of the models to describe the
data (Akaike information and Schwarz Bayesian criteria), the proposed approach is
based on evaluating the ability of the models to predict the conditional variance. The
method was applied to 800 daily returns of the ASE index, a dataset covers the period
from August 30" 1993 to November 4™, 1996. The first T observations were used to
estimate the one-step-ahead prediction of the conditional mean and variance at T +1.
For T =500, a total of 300 one-step-ahead predictions of the conditional mean and

variance were obtained. The out-of-sample data set was split to 5 subperiods and the
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SPEC model selection algorithm was applied in each subperiod separately. Thus, the
model selection was revised every 60 trading days.

The idea of “jumping” from one model to another, as stock market behavior
alters, is introduced. The transition from one model to another is done according to the
SPEC model selection algorithm. Each time the model selection method is applied, the
model is used to predict the conditional variance is revised. Of course, the idea of
switching from one regime to another has been already applied to the class of switch
regime ARCH models introduced by Cai (1994) and Hamilton and Susmel (1994) and
extended by several authors such as Dueker (1997) and Hansen (1994). However,
these models allow the parameters of a specific ARCH model to come from one of
several different regimes, with transitions between regimes governed by an unobserved
Markov chain.

Using an alternative approach, based on evaluating the ability of fitting the data,
the conditional mean is first modeled and subsequently, an appropriate form for the
conditional variance is chosen. Applying the SPEC model selection algorithm, the null
hypothesis, that the model selected by the in-sample analysis is equivalent to the model

with minimum value of Z:Tsﬂ(ifltfl), is rejected in the plurality of the cases at less than

5% level of significance. The in-sample model selection methods and the predictability-
based method do not coincide in the sifting of the appropriate conditional variance

model. Moreover, 2.33% and 4.33% of the data were outside the i, , +1.965,

prediction interval constructed based on the SPEC and the SBC model selection
methods, respectively.

The predictive ability of the SPEC model selection algorithm is further
investigated in the next chapters. Among the financial applications where this method
could have a potential use are in the fields of portfolio analysis, risk management and

trading option derivatives.
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Table 4.3. Sum of squared standardized one step ahead prediction errors for each subperiod. The AR(K)\GARCH(p,q), AR(K)EGARCH(p,q)

and AR(k)TARCH(p,q) models are applied, for k=0,...,4, p=0,1,2 and g=1,2.

AR(K) Ye=Co+ 2 (Cy )+ &
i=1
(biatz—i)

EGARCH(p,q) In(af)z a, +i a oty y, (8“ +S (bi In(aii ))
_i =1
d

q p
GARCH(pa) O =a,+ ). (aigii )+
i-1 i-1

i=L Ot t-i i
q P
2 2 2 2
TARCHpa) OF =2, + 2 (aie?; )+ reud,, + Y (bio?,)
i=1 i=1
Table 3.a Table 3.b Table 3.c
25 August 1995 - 16 November 1995 (s=[501,560]) 17 November 1995 - 13 February 1996 (s=[561,620]) 14 February 1996 - 14 May 1996 (s=[621,680])
k=0* k=1 K=2 k=3 k=4 k=0* k=1 K=2 k=3 K=4 k=0* k=1 K=2 k=3 k=4

GARCH(p,q) GARCH(p,q) GARCH(p,q)

p=0, qg=1 26.371 25.465 24.843 25.173 26.570 p=0, qg=1 81.183 79.657 79.913 83.204 89.584 p=0, qg=1 45970 46.740 46.793 47.855 47.882

p=0, g=2 30.150 29.493 28.940 29.109 30.835 p=0, qg=2 88.007 85.947 88.135 89.575 95.825 p=0, qg=2 46.138 46.323 46.039 47.496 47.382

p=1, q=1 39.076 38.848 38.289 38.496 38.466 p=1, q=1 79.571 84410 85.070 85.671 86.749 p=1, q=1 50.273 50.205 49.959 50.363 49.320

p=1,q=2 39.129 38.709 38.159 38.533 38.456 p=1,q=2 80.684 85.214 85554 87.046 89.907 p=1,q=2 50.429 50.097 49.814 50.223 49.330

p=2, q=1 39.183 38.304 37.882 37.829 37.889 p=2, q=1 79.703 83.700 86.917 84.920 87.420 p=2, q=1 50.650 50.334 49.547 49.917 49.843

p=2, q=2 39.511 38.742 38.336 39.223 38.377 p=2, q=2 81.230 84.534 85143 82.863 88.940 p=2, q=2 50.811 50.126 50.051 50.330 48.975
TARCH(p,q) TARCH(p,q) TARCH(p,q)

p=0, qg=1 26.795 25.892 25270 25.683 27.300 p=0, qg=1 81505 80.810 81.158 84.704 90.674 p=0, q=1 45.947 46.731 46.749 47.769 47.806

p=0, g=2 31.151 30.981 30.442 30.619 32.125 p=0, g=2 88.977 88.465 91.004 92.734 98.915 p=0, g=2 46.114 46.311 46.001 47.422 47.263

p=1, q=1 39.070 38.624 38.146 38.506 38.550 p=1, q=1 81.296 85.321 86.339 87.601 88.412 p=1, q=1 50.461 50.262 50.006 50.396 49.368

p=1,q=2 39.016 38.667 38.185 38.660 38.482 p=1, q=2 86.517 87.338 88.246 92.729 98.976 p=1, q=2 50.677 50.145 49.830 50.229 49.512

p=2, q=1 39.279 37.836 37.422 38.005 38.290 p=2, q=1 81609 86.085 85458 84.975 90.097 p=2, q=1 50.769 49.491 48.737 50.231 49.613

p=2, q=2 40.975 38.732 38.180 38.755 38.398 p=2, q=2 89.614 86.608 87.364 91.126  98.289 p=2, q=2 51.664 49.794 50.262 50.548 50.133
EGARCH(p,q) EGARCH(p,q) EGARCH(p,q)

p=0, qg=1 23.770 22.644 21.961 22.047 22.722 p=0, qg=1 76.315 78.689 78.342 78551 84.422 p=0, qg=1 42176 42.724 42688 43.561 43.383

p=0, qg=2 27.289 27.340 26.731 26.896 28.312 p=0, qg=2 87.867 91.361 92.862 93.526 101.216 p=0, qg=2 43.712 44279 44178 45.395 44.838

p=1, q=1 44.281 43.555 43.131 43.321 41.934 p=1, q=1 88.246 96.778 98.579 99.805 99.650 p=1, q=1 49.382 48.836 48.837 49.369 48.644

p=1,q=2 43.754 42427 41.360 42.235 41.231 p=1,q=2 98.798 103.714 105.834 107.774 108.783 p=1,q=2 49.140 48.716 48.592 49.065 48.608

p=2, q=1 44.620 43.216 43.138 43.142 42.077 p=2, q=1 90.043 98.056 99.570 101.509 101.531 p=2, q=1 49.422 48.384 48.301 48.452 48.380

p=2, q=2 43.926 42.915 42231 42.645 41.138 p=2, q=2 93.750 102.953 112.441 105.882 ** p=2, q=2 51.970 49.555 ** 48.992 **

Table 3.d Table 3.e
15 May 1996 - 8 August 1996 (s=[681,740]) 9 August 1996 - 4 November 1996 (s=[741,800])
Kk=0* k=1 K=2 k=3 k=4 k=0* k=1 K=2 k=3 K=4

GARCH(p,q) GARCH(p,q)

p=0, qg=1 30.568 30.619 29.473 29.346 29.534 p=0, g=1 48.288 47.469 47.437 49749 50.771
p=0, qg=2 31.557 32.105 30.967 30.861 30.813 p=0, qg=2 50.795 49.575 49484 51426 52236
p=1, q=1 36.016 36.440 35335 35.175 35.013 p=1, q=1 55915 54.344 54572 54967 55.281
p=1,q=2 36.098 36.951 35.846 35.706 35.431 p=1,q=2 56.099 54.631 54872 55163 55.399
p=2, q=1 35.732 37.374 36.069 36.020 35.628 p=2, q=1 55807 55420 55335 56.306 56.075
p=2, q=2 35.859 36.647 36.252 35.446 35.437 p=2, q=2 56.102 54.814 55.145 55.137  55.359

TARCH(p.q) TARCH(p.q)
p=0, g=1 30.747 30.605 29.419 29.352 29.593 p=0, g=1 47179 47143 47101 49.494  50.529
p=0, qg=2 31.821 31.978 30.804 30.785 30.811 p=0, qg=2 49.483 49.131 49.030 51.031 51.935
p=1, q=1 36.029 36.326 35.157 35.147 35.075 p=1, q=1 53.866 53.341 53.616 53.897 54.272
p=1,q=2 36.117 36.636 35.489 35482 35.298 p=1,q=2 54.065 53.684 53.835 54.075 54.327
p=2, q=1 36.279 37.214 35.789 36.224 35.946 p=2, q=1 53.925 54199 53999 54.245 56.211
p=2, q=2 35.945 37.646 35.776 36.005 36.030 p=2, q=2 54.181 54.482 54725 55.039 54.846

EGARCH(p,q) EGARCH(p,q)
p=0, g=1 29.252 28733 27.428 27.308 27.330 p=0, g=1 44260 43.920 44.047 45908  46.528
p=0, q=2 30.310 30.109 28.772 28.644 28.563 p=0, q=2 46.453 45986 46.035 47.513  47.990
p=1, q=1 35972 36.142 34.806 34.716 34.754 p=1, q=1 52,752 53.271 53.285 53.801 53.944
p=1,q=2 36.251 36.923 35.548 35.477 35.460 p=1,q=2 53.233 54.767 54.191 54450 54.617
p=2, q=1 35.706 37.371 36.176 36.190 36.266 p=2, q=1 53.922 55703 55410 55.596 55.726
p=2, q=2 35562 35.109 34.329 34.210 34.777 p=2, q=2 52.438 54.052 53.963 ** 54.716

*Regress the depedent variable on a constant.
** Model fails to converge at least once.
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Table 4.4

Testing the null hypothesis that the model with the lowest sum of the squared standardized one step ahead prediction errors
has equivalent predictive ability to model X, with X denoting any of the remainder models.

Table 4.a: 25 August 1995 - 16 November 1995 (1st subperiod) Table 4.b: 17 November 1995 - 13 February 1996 (2nd subperiod)
Ho: The model AR(2)-EGARCH(0,1) is equivalent to model X Ho: The model AR(0)-EGARCH(0,1) is equivalent to model X
versus Hy: The model AR(2)-EGARCH(0,1) is "better" than model X. versus Hy: The model AR(0)-EGARCH(0,1) is "better" than model X.
Model for Conditional Mean Model for Conditional Mean
AR(O) | ArR(M) | ArR@) | ArRE) | ArR@) AR(O) | AR(1) | ArR@) | AR@E) | AR@)
GARCH(0,1) 1.201 1.160 1.131 1.146 1.210 GARCH(0,1) 1.064 1.044 1.047 1.090 1.174
p-value <0.10 <0.10 <0.25 <0.25 <0.05 p-value >0.25 >0.25 >0.25 <0.25 <0.1
GARCH(0,2) 1.373 1.343 1.318 1.326 1.404 GARCH(0,2) 1.153 1.126 1.155 1.174 1.256
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.25 <0.25 <0.25 <0.1 <0.05
GARCH(1,1) 1.779 1.769 1.744 1.753 1.752 GARCH(1,1) 1.043 1.106 1.115 1.123 1.137
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.25
GARCH(1,2) 1.782 1.763 1.738 1.755 1.751 GARCH(1,2) 1.057 1.117 1.121 1.141 1.178
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
GARCH(2,1) 1.784 1.744 1.725 1.723 1.725 GARCH(2,1) 1.044 1.097 1.139 1.113 1.146
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.25
GARCH(2,2) 1.799 1.764 1.746 1.786 1.748 GARCH(2,2) 1.064 1.108 1.116 1.086 1.165
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
8 TARCH(0,1) 1.220 1.179 1.151 1.170 1.243 8 TARCH(0,1) 1.068 1.059 1.063 1.110 1.188
% p-value <0.05 <0.10 <0.25 <0.10 <0.05 % p-value >0.25 >0.25 >0.25 <0.25 <0.1
'% TARCH(0,2) 1.418 1.411 1.386 1.394 1.463 '% TARCH(0,2) 1.166 1.159 1.192 1.215 1.296
2 p-value <0.01 <0.01 <0.01 <0.01 <0.01 2 p-value <0.1 <0.1 <0.1 <0.05 <0.05
g TARCH(1,1) 1.779 1.759 1.737 1.753 1.755 g TARCH(1,1) 1.065 1.118 1.131 1.148 1.159
;.g p-value <0.01 <0.01 <0.01 <0.01 <0.01 ;.g p-value >0.25 <0.25 <0.25 <0.25 <0.1
2 TARCH(1,2) 1.777 1.761 1.739 1.760 1.752 2 TARCH(1,2) 1.134 1.144 1.156 1.215 1.297
8 p-value <0.01 <0.01 <0.01 <0.01 <0.01 8 p-value <0.25 <0.25 <0.25 <0.05 <0.05
:o: TARCH(2,1) 1.789 1.723 1.704 1.731 1.744 :o: TARCH(2,1) 1.069 1.128 1.120 1.113 1.181
D p-value <0.01 <0.01 <0.01 <0.01 <0.01 D p-value >0.25 <0.25 <0.25 <0.25 <0.1
8 TARCH(2,2) 1.866 1.764 1.739 1.765 1.748 8 TARCH(2,2) 1.174 1.135 1.145 1.194 1.288
= p-value <0.01 <0.01 <0.01 <0.01 <0.01 = p-value <0.1 <0.25 <0.25 <0.1 <0.05
E-GARCH(0,1) 1.082 1.031 1.004 1.035 E-GARCH(0,1) 1.031 1.027 1.029 1.106
p-value <0.25 >0.25 >0.25 >0.25 p-value >0.25 >0.25 >0.25 <0.25
E-GARCH(0,2) 1.243 1.245 1.217 1.225 1.289 E-GARCH(0,2) 1.151 1.197 1.217 1.226 1.326
p-value <0.05 <0.05 <0.05 <0.05 <0.05 p-value <0.25 <0.1 <0.05 <0.05 <0.01
E-GARCH(1,1) 2.016 1.983 1.964 1.973 1.909 E-GARCH(1,1) 1.156 1.268 1.292 1.308 1.306
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.25 <0.05 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.992 1.932 1.883 1.923 1.878 E-GARCH(1,2) 1.295 1.359 1.387 1.412 1.425
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.05 <0.01 <0.01 <0.01 <0.01
E-GARCH(2,1) 2.032 1.968 1.964 1.965 1.916 E-GARCH(2,1) 1.180 1.285 1.305 1.330 1.330
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.1 <0.05 <0.05 <0.01 <0.01
E-GARCH(2,2) 2.000 1.954 1.923 1.942 1.873 E-GARCH(2,2) 1.228 1.349 1.473 1.387 **
p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.05 <0.01 <0.01 <0.01

** Model fails to converge at least once.
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Table 4.4 (continued)

Testing the null hypothesis that the model with the lowest sum of the squared standardized one step ahead prediction errors
has equivalent predictive ability to model X, with X denoting any of the remainder models.

Table 4.c: 14 February 1996 - 14 May 1996 (3rd subperiod) Table 4.d: 15 May 1996 - 8 August 1996 (4th subperiod)
Hoy: The model AR(2)-EGARCH(0,1) is equivalent to model X Ho: The model AR(3)-EGARCH(0,1) is equivalent to model X
versus Hy: The model AR(2)-EGARCH(0,1) is "better" than model X. versus Hy: The model AR(3)-EGARCH(0,1) is "better" than model X.
Model for Conditional Mean Model for Conditional Mean
ARO) | AR(M) | AR@) | ArR@E) | ArR®) ARO) | AR(1) | AR@) | ArR@) | ArR@)
GARCH(0,1) 1.090 1.108 1.109 1.135 1.135 GARCH(0,1) 1.119 1.121 1.079 1.075 1.081
p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.25 <0.25 <0.25 >0.25 <0.25
GARCH(0,2) 1.094 1.098 1.092 1.126 1.123 GARCH(0,2) 1.156 1.176 1.134 1.130 1.128
p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.25 <0.1 <0.25 <0.25 <0.25
GARCH(1,1) 1.192 1.190 1.185 1.194 1.169 GARCH(1,1) 1.319 1.334 1.294 1.288 1.282
p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.05 <0.05 <0.05
GARCH(1,2) 1.196 1.188 1.181 1.191 1.170 GARCH(1,2) 1.322 1.353 1.313 1.308 1.297
p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.05 <0.05
GARCH(2,1) 1.201 1.193 1.175 1.184 1.182 GARCH(2,1) 1.308 1.369 1.321 1.319 1.305
p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.01 <0.05
GARCH(2,2) 1.205 1.188 1.187 1.193 1.161 GARCH(2,2) 1.313 1.342 1.328 1.298 1.298
p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.05 <0.05
g TARCH(0,1) 1.089 1.108 1.108 1.133 1.133 g TARCH(0,1) 1.126 1.121 1.077 1.075 1.084
% p-value <0.25 <0.25 <0.25 <0.25 <0.25 % p-value <0.25 <0.25 >0.25 >0.25 <0.25
5 TARCH(0,2) 1.093 1.098 1.091 1.124 1.121 5 TARCH(0,2) 1.165 1.171 1.128 1.127 1.128
2 p-value <0.25 <0.25 <0.25 <0.25 <0.25 2 p-value <0.1 <0.1 <0.25 <0.25 <0.25
i TARCH(1,1) 1.196 1.192 1.186 1.195 1.171 i TARCH(1,1) 1.319 1.330 1.287 1.287 1.284
;5:3 p-value <0.1 <0.1 <0.1 <0.1 <0.1 ;5:3 p-value <0.01 <0.01 <0.05 <0.05 <0.05
2 TARCH(1,2) 1.202 1.189 1.181 1.191 1.174 2 TARCH(1,2) 1.323 1.342 1.300 1.299 1.293
8 p-value <0.1 <0.1 <0.1 <0.1 <0.1 8 p-value <0.01 <0.01 <0.05 <0.05 <0.05
§ TARCH(2,1) 1.204 1.173 1.156 1.191 1.176 § TARCH(2,1) 1.329 1.363 1.311 1.327 1.316
Ko p-value <0.1 <0.1 <0.25 <0.1 <0.1 Ko p-value <0.01 <0.01 <0.01 <0.01 <0.01
8 TARCH(2,2) 1.225 1.181 1.192 1.199 1.189 8 TARCH(2,2) 1.316 1.379 1.310 1.318 1.319
= p-value <0.05 <0.1 <0.1 <0.1 <0.1 = p-value <0.01 <0.01 <0.01 <0.01 <0.01
E-GARCH(0,1) 1.013 1.012 1.033 1.029 E-GARCH(0,1)| 1.071 1.052 1.004 1.001
p-value >0.25 >0.25 >0.25 >0.25 p-value >0.25 >0.25 >0.25 >0.25
E-GARCH(0,2) 1.036 1.050 1.047 1.076 1.063 E-GARCH(0,2)| 1.110 1.103 1.054 1.049 1.046
p-value >0.25 >0.25 >0.25 >0.25 >0.25 p-value <0.25 <0.25 >0.25 >0.25 >0.25
E-GARCH(1,1) 1.171 1.158 1.158 1.171 1.153 E-GARCH(1,1)| 1.317 1.323 1.275 1.271 1.273
p-value <0.1 <0.1 <0.1 <0.1 <0.25 p-value <0.01 <0.01 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.165 1.155 1.152 1.163 1.153 E-GARCH(1,2)| 1.327 1.352 1.302 1.299 1.299
p-value <0.1 <0.25 <0.25 <0.1 <0.25 p-value <0.01 <0.01 <0.05 <0.05 <0.05
E-GARCH(2,1) 1.172 1.147 1.145 1.149 1.147 E-GARCH(2,1)| 1.308 1.368 1.325 1.325 1.328
p-value <0.1 <0.25 <0.25 <0.25 <0.25 p-value <0.05 <0.01 <0.01 <0.01 <0.01
E-GARCH(2,2) 1.232 1.175 ** 1.162 ** E-GARCH(2,2)| 1.302 1.286 1.257 1.253 1.274
p-value <0.05 <0.1 <0.1 p-value <0.05 <0.05 <0.05 <0.05 <0.05

** Model fails to converge at least once.
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Table 4.4 (continued)

Testing the null hypothesis that the model with the lowest sum
of the squared standardized one step ahead prediction errors
has equivalent predictive ability to model X, with X denoting any
of the remainder models.

Table 4.e: 9 August 1996 - 4 November 1996 (5th subperiod)

Hoy: The model AR(1)-EGARCH(0,1) is equivalent to model X
versus Hy: The model AR(1)-EGARCH(0,1) is "better" than model X.

Model for Conditional Mean

ARO) | AR(M) | AR@) | ArR@E) | ArR@)

GARCH(0,1) 1.099 1.081 1.080 1.133 1.156
p-value <0.25 <0.25 <0.25 <0.25 <0.25
GARCH(0,2) 1.157 1.129 1127 1471 1.189

p-value <0.25 <0.25 <0.25 <0.1 <0.1
GARCH(1,1) 1.273 1.237 1.243 1.252 1.259
p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(1,2) 1.277 1.244 1.249 1.256 1.261
p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(2,1) 1.271 1.262 1.260 1.282 1.277
p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(2,2) 1.277 1.248 1.256 1.255 1.260
p-value <0.05 <0.05 <0.05 <0.05 <0.05
g TARCH(0,1) 1.074 1.073 1.072 1127 1.150
= p-value >0.25 >0.25 >0.25 <0.25 <0.25
= TARCH(0,2) 1127 1.119 1.116 1.162 1.183
> p-value <0.25 <0.25 <0.25 <0.1 <0.1
o TARCH(1,1) 1.226 1.215 1.221 1.227 1.236
2 p-value <0.05 <0.05 <0.05 <0.05 <0.05
2 TARCH(1,2) 1.231 1.222 1.226 1.231 1.237
8 p-value <0.05 <0.05 <0.05 <0.05 <0.05
S TARCH(2,1) 1.228 1.234 1.230 1.235 1.280
5 p-value <0.05 <0.05 <0.05 <0.05 <0.05
3 TARCH(2,2) 1.234 1.240 1.246 1.253 1.249
= p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(0,1) 1.008 1.003 1.045 1.059
p-value >0.25 >0.25 >0.25 >0.25
E-GARCH(0,2) 1.058 1.047 1.048 1.082 1.093
p-value >0.25 >0.25 >0.25 <0.25 <0.25
E-GARCH(1,1) 1.201 1.213 1.213 1.225 1.228
p-value <0.1 <0.05 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.212 1.247 1.234 1.240 1.244
p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(2,1) 1.228 1.268 1.262 1.266 1.269
p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(2,2) 1.194 1.231 1.229 * 1.246
p-value <0.1 <0.05 <0.05 <0.05

** Model fails to converge at least once.
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Figure 4.4
One Step Ahead 95% Forecasted Interval for the Models with the Lowest Sum of the Squared Standardized One
Step Ahead Prediction Errors
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Figure 4.5
In-Sample 95% Confidence Interval for the AR(1) GARCH(1,1) Model
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Figure 4.6
One Step Ahead 95% Forecasted Intervals for the Models Selected by the SBC
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Figure 4.7
One Step Ahead 95% Forecasted Intervals for the Models Selected by the AIC
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Chapter 5
Assessing the Performance of the Standardized
Prediction Error Criterion Model Selection

Algorithm

5.1. Introduction

Predicting volatility is of great importance in pricing financial derivatives, selecting
portfolios, measuring and managing investment risk more accurately. To evaluate their
accuracy, volatility forecasts have to be compared with realized volatility, which cannot
be observed. In this chapter, a number of evaluation criteria are used to examine the
ability of the SPEC model selection algorithm to indicate the ARCH model that generates
“better” volatility predictions, for a forecasting horizon ranging from one day to one
hundred days ahead. The results show that the SPEC model selection procedure has a
satisfactory performance in selecting that ARCH model that tracks realized volatility
closer, for a forecasting horizon ranging from 16 days to 36 days ahead. So, it is
possible to use this model selection method in financial applications requiring volatility
forecasts for a period longer than one day, i.e. option pricing, risk management. The
majority of studies investigate the volatility forecasting accuracy for daily horizons,
despite the fact that the practitioners require predictions of lower frequency (the Basle
Committee on Banking Supervision (Basle Committee on Banking Supervision, 1998) for
the use of Value-at-Risk methods requires the use of 10-days-ahead volatility
predictions, whereas fund managers re-balance their portfolios on at least a monthly
basis).

In section 5.2 of the present chapter, the forecast recursive relations of the
GARCH, TARCH and EGARCH models and the estimation steps comprising the SPEC
approach are presented. Section 5.3 provides a brief description of the evaluation
criteria and the inter-day realized volatility measures considered. In section 5.4, the
ability of the method proposed to select the ARCH model that generates “better”
predictions of the volatility, is examined. In section 5.5, the proposed model selection
method is compared to other methods of model selection. Finally, in section 5.6, a brief

discussion of the results is provided.
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52. The forecast recursion relations of ARCH Processes

For P, denoting the price of an asset at time t, let y, = In(Pt/PH) denote the

continuously compounded return series of interest. The return series is decomposed into

two parts, the predictable and unpredictable component:
Ye = E(yt|t—1)+gt’ (5.2.1)
where E(ytlH) is the conditional mean of return at period t depending upon the

information set available at time t—1 and &, is the prediction error. Usually, the

predictable component is either the overall mean or a first order autocorrelated process
(imposed by non-synchronous trading’). The conditional mean, unfortunately, does not
have the ability to give useful predictions. That is why modern financial theory assumes
the asset returns are unpredictable. Before the start of the 1980’s, the view taken about
returns in financial markets was that they behave as random walks and the Brock et al.
(1987) (BDS) statistic has widely been used to test the null hypothesis that asset returns
are independently and identically distributed. This hypothesis, however, has been
rejected in a vast number of applications. A rejection of the null hypothesis is consistent
with some types of dependence in the data, which could result in from a linear stochastic
system, a nonlinear stochastic system, or a nonlinear deterministic system. Thus, a
guestion arises: “Are the nonlinearities connected with the conditional mean (so, as to be
used to predict future returns) or with higher order conditional moments?” Artificial neural
networks®, chaotic dynamical systems®, nonlinear parametric and nonparametric
models* are some examples from the literature dealing with conditional mean
predictions. ARCH models and Stochastic Volatility models® are examples from the
literature dealing with conditional variance modeling. However, no nonlinear models that
can significantly outperform even the simplest linear model in out-of-sample forecasting
seem to exist in the literature (neither in the field of stochastic nonlinear models nor in

the field of deterministic chaotic systems). On the other hand, the ARCH processes and

! For more details on non-synchronous trading see section 2.1.3 of the 2™ chapter.

2 For an overview of the Neural Networks literature see Poggio and Girosi (1990), Hertz et al. (1991),
White (1992), Hutchinson et al. (1994).

% Brock (1986), Holden (1986), Thompson and Stewart (1986) and Hsieh (1991) review applications of
chaotic systems to financial markets.

* Priestley (1988), Tong (1990) and Terasvirta et al. (1994) cover a wide variety of nonlinear models.

> See for details Taylor (1994) and Shephard (1996).
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Stochastic Volatility models appear to be more appropriate to interpret nonlinearities in
financial systems on the basis of the conditional variance. If an ARCH process is the true
data generating mechanism, the nonlinearities cannot be exploited to generate improved

point predictions relative to a linear model.

In the sequel, the conditional mean is considered as an ™ order autoregressive

process defined by

E(Vys)=Co + X0 Y0 - (5.2.2)
i=1

Assuming the unpredictable component in (5.2.1) is an ARCH process, it can be
represented as:

& = 1,0,
iid

z, ~N(02) (5.2.3)
02 = 0(0 1) O sl Eigr EpreniUpgs Uy prons),
where {zt} is a sequence of independently and identically distributed random variables,
o, is a time-varying, positive measurable function of the information set at time t-1,
l,., v, is a vector of predetermined variables included in |, and g() could be a linear

or nonlinear functional form as it is usually assumed in the ARCH literature. A
researcher, who is looking for the “best” model, would have in mind a variety of
candidate models. The most commonly used conditional variance functions are the
GARCH (Bollerslev (1986)), the Exponential GARCH, or EGARCH, (Nelson (1991)) and
the Threshold GARCH, or TARCH, (Glosten et al. (1993)) functions. We rewrite these
ARCH models from the 4™ chapter:
The GARCH(p,q) model

2 2 2 L 2

o2 =a, +iZl:(aigti)+ 3 (b,o2,) (5.2.4)

i=1

The EGARCH(p,q) model

|WﬁFQﬁ§i@—;+4éiD+i@m@@» (5.2.5)

gt—l
O-t i i=1
The TARCH(p,q) model

2 x 2 2 . 2
ol =a,+ > (a2 )+retid, + (o), (5.2.6)
i=1

i=1
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where d, =1if ¢ <0, and d, =0 otherwise.

Maximum likelihood estimates of the parameters are obtained by numerical
maximization of the log-likelihood function using the Marquardt algorithm (Marquardt
(1963)). The quasi-maximum likelihood estimator (QMLE) is used, as according to
Bollerslev and Wooldridge (1992), it is generally consistent, has a normal limiting
distribution and provides asymptotic standard errors that are valid under non-normality.

The majority of practical applications, i.e. option pricing, determination of the
value-at-risk, require more than one-day-ahead volatility forecasts. More than one-step-
ahead forecasts can be computed by repeated substitution. The forecast recursion
relation of the GARCH(p,q) model is:

Gy =2+ Zq: (ai(t)gtz—m )+ Zp: (bi(t)atz—m) (5.2.7.a)
i=! i=1
6iq=al)+ Ylalot,)e el ) LoV ) .
fori<s fori>s

For s>t, the forecast of the predictive error ¢, conditional on information available at
time t equals to its zero expected value, E(c"s | It)= 0. On the other hand, the estimated

value of g measured at time t should be equal to o2, for s >t. For s <t, the predictive

S|t
error and its square are computed by the model with the available information at time t.

The forecast recursion relationship associated with the EGARCH(p,q) model is:

e e | DAL 0 B

i+1 l

t i+1

Gt i+1

ez )-abe 3 [l S o 2 S0 S, gz

fori>s for|<s

that associated with the TARCH(p,q) model is:

&tZHJt = ag) "‘qu‘,(ai(t t- |+1)+7 2d +Z( |+1) (5.2.9.a)

q

O-t+s|t_a '+ Z( |+s) Z( 2 |+s)+7) —1+5E(dt)+Zp:(bi(t)at2‘i+s)' (5.2.9.b)

i=1

1
for |<s ri>s
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Here, E(dt) denotes the percentage of negative innovations out of all innovations.
Under the assumption of normally distributed innovations, the expected number of
negative shocks is equal to the expected number of positive shocks, or E(dt): 0.5. The
forecast of the conditional variance at time t over a horizon of N days ahead is simply
the average of the estimated future variance conditional on information given at time 1t is

given by

*Zawp (5.2.10)

Let us now assume that we are interested in comparing the predictive ability of
two ARCH models:

Model A Model B
o =2, 0 0 = 2,00
ZMTN@Q ZMTwa
o2M - g(af_(f\),...,012_(?,Sf_(lA),---,gtz_((?)")x(fl)’”x(fz)v-") o B = g(O'f_(lB),...,012_(?,8t2_(f),...,8t2_(f),ut(_81),ut_z,..

(B)

)

According to the SPEC model selection algorithm, the models that are
considered as having a “better” ability to predict future values of the dependent variable
are those with the lowest sum of squared standardized one-step-ahead prediction errors.

[
LA = Zétﬂ/mnl- Here, &M =y —x™ B™ s the one-step-ahead

t\t -1
t=k-T+1 t=k-T+1
prediction error of model m, where A™ is the estimator of ™ based on the

~2(m)

information set that is available at time t -1 and o, is the one-step-ahead conditional

variance forecast of model m. It becomes evident, therefore, that these models can
potentially be regarded as the most appropriate to use for volatility forecasts too.

Let us assume that M candidate ARCH models are available and that we are
looking for the “most suitable” model at each of a sequence of points in time. At time k,
selecting a strategy for the most appropriate model to forecast volatility at time k +1
(k =T,T +1,...) could naturally amount to selecting the model, which, at time k, has the
lowest sum of squared standardized one-step-ahead prediction errors, on the basis of
the SPEC algorithm. Table 5.1 summarizes the estimation steps comprising this

approach. The rows of this table refer to candidate ARCH models, the columns refer to
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days, while its entries represent the sums of the squares of the T most recent
standardized one-step-ahead prediction errors of each of the M models. Each day, the
choice of the model to be used to predict the conditional variance for the next day is
determined by the entry of the corresponding column of table 5.1 that has the minimum
value. In particular, model m =i will be chosen at time k=T + j if it is the one that

T+j

corresponds to the cell of column T + j that has the minimum value of z Z
t=j+1

Table 5.1
The estimation steps required at time k for each model m by the SPEC

model selection algorithm. At time k (k=T,T +1,...), select the model

m with the minimum value for the sum of the squares of the T most

recent standardized one-step-ahead prediction errors,
k 2(m)
Zzt = gtlt ) /O-t|t )
t=k-T+1 t=k-T+1
Time
Model k=T k=T+1 . . . k=T+K
T 2(1) T+1 2(1) T+K
m=1 Z tlt-1 sz—l I Z tlt— 1 '
t=1 t=2 t=K+1
T "2(2) T 1’\2(2) T+K
m=2 z tlt-1 Lyt S qut 1
t=1 t=2 t=K+1
T .2(M) T+1 IZ(M) . T+K )
m=M qut—l Zt|t—1 e Z tt-1
t=1 t=2 t=K+1

In the next section, the methodology applied to evaluate the performance of a
model in estimating future volatility is presented, while in section 5.4, the ability of the
SPEC model selection algorithm to indicate those ARCH models that generate “better”
volatility predictions is illustrated on a set of real data on daily returns of the S&P500

stock index.
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53. Evaluating the Volatility Forecast Performance

The main problem in evaluating the predictive performance of a model is the
choice of the function one should use to measure the distance between estimations and
observations. Evaluating the performance of the variance forecasts requires knowledge
of the actual volatility, which is unobservable. Thus, in evaluating the predictive
performance of a variance model a question of a dual nature arises: that of determining
the realized volatility and of considering the appropriate measure to evaluate the

closeness of the forecasts to the corresponding realizations.

5.3.1 Realized Volatility Measures
Practitioners’ most popular volatility measures are the average of squared daily
returns and the variance of the daily returns. These measures, expressed on a daily

basis for a horizon of N days ahead, are:

N
Siin) = N7 v (5.3.1)
i1
c2 I v
St(n) = (N _1) Z(y”i - yt(N)) ' (5.3.2)

i=1
N
respectively, where Y, = N‘lz Y. is the average return. The inter-day volatity
i=1
measures are the most popular measures. However, as noted in the literature (e.g.
Ebens (1999)), although the squared daily returns are unbiased volatility estimators, they

are very noisy. Note that, under the ARCH process, the squared return can be
represented by y’ =z20/. It is therefore defined as the product of the true volatility

times the square of a normally distributed process. In the present chapter, we decide to
use the popular among practitioners inter-day measures while in the 7™ chapter an

investigation that is based on the intra-day realized volatility is conducted®.

® For details and references about intra-day realized volatility see section 2.7 in chapter 2.
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5.3.2 Evaluation Criteria

A large number of forecast evaluation criteria exists in the literature. However,
none is generally acceptable. Because of high non-linearity in volatility models and the
variety of statistical evaluation criteria, a number of researchers constructed economic
criteria based upon the goals of their particular application. West et al. (1993) develop a
criterion based on the decisions of a risk averse investor. Engle et al. (1993) assume
that the objective is to price options and develop a loss function from the profitability of a
particular trading strategy. Gonzalez-Rivera et al. (2004) compared the performance of
various volatility models with economic and statistical loss functions and find that there is
not a unigue model that is the best performer across various loss functions. Brooks and
Persand (2003) also found that the forecasting accuracy of the various methods is highly
sensitive to the measure used to evaluate them. Hence, different loss functions
proposed different models as the most appropriate in volatility forecasting. In the sequel,
we focus on statistical criteria to measure the closeness of the forecasts to the
realizations, in order to avoid restrictions imposed by economic theory. Moreover, we
consider statistical criteria that are robust to non-linearity and heteroscedasticity. Pagan
and Schwert (1990) use statistical criteria to compare parametric and non-parametric
ARCH models with in-sample and out-of-sample data. Besides, Heynen and Kat (1994)
investigate the predictive performance of ARCH and Stochastic Volatility models and Hol
and Koopman (2000) compare the predictive ability of Stochastic Volatility and Implied
Volatility models. Andersen et al. (1999a) applied heteroscedasticity-adjusted statistics

to examine the forecasting performance of intraday returns. Denoting the forecasting

variance over an N day period measured at day t by UIZ(N), and the realized variance

over the same period by SIZ(N), the following evaluation criteria are considered:

Squared Error (SE): (crf(,\,) - sf(N))z (5.3.3)
Absolute Error (AE): ‘O'f(N) - sf(N)‘ (5.3.4)
Heteroscedasticity Adjusted Squared Error (HASE): (1— stz(N)/o-tz(N))z (5.3.5)
Heteroscedasticity Adjusted Absolute Error (HAAE): ‘1— SIZ(N)/O'IZ(N)‘ (5.3.6)
Logarithmic Error (LE): In(sf(N)/af(N))z (5.3.7)

The first two functions have been widely used in the literature (see, e.g. Brooks and
Persand (2003), Heynen and Kat (1994) and West and Cho (1995)). The HASE and
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HAAE functions were considered by Andersen et al. (1999b), while the LE function was
utilized by Pagan and Schwert (1990).
Usually, the average of the evaluation criteria is computed. However, when

simulating an AR(1)GARCH(1,1) process, which is the most commonly used model in

financial applications, the distributions of (UIZ(N) —stZ(N)), (1—st2(N)/of(N)) and
In(StZ(N)/o-f(N)) are asymmetric with extreme outliers. It would therefore be advisable to

compute both the mean and the median of the evaluation criteria. Figure 5.1 depicts the
histograms of the one-step forecast error distribution from the following simulated
process:
y, =0.001+0.1y, , +¢,
ol =0.002+0.05¢, +0.957, (5.3.8)

iid
g =0,z, and z,~N(0}1)

54. Examining the Performance of the SPEC Model

Selection Algorithm

In this section, the ability of the SPEC model selection algorithm to lead to the
ARCH models that track closer future volatility is illustrated on a series of daily log-
returns. As follows from section 5.2, the return series can be modeled in the following

form:
Y, = E(yyu )+ &
E(ytlt_l): Co + ici Yii
& = ztalt:1 (5.4.1)
;TNm@

Gtz = g(o-t—l (‘9)' ) (‘9)""; ) (9)' € (0)7---; Uy 11Ut ')

In the sequel, the above form is considered in connection with the ARCH models defined
by (5.2.4), (5.2.5) and (5.2.6), for k =0,1,2,3,4, p=012 and q=12, thus yielding a

total of 85 cases’.

" Numerical maximization of the log-likelihood function, for the EGARCH(2,2) model, frequently failed to
converge. So the five EGARCH models for p =q =2 were excluded.
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Figure 5.1.
Histogram of o, — y; from an Histogram of 1-y{ /o) from an
AR(1)GARCH(1,1) simulated process AR(1)GARCH(1,1) simulated process
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The data set consists of 1661 S&P500 stock index daily returns in the period
from November 24™, 1993 to June 26™, 2000. The ARCH processes are estimated using
a rolling sample of constant size equal to 500°. Thus, the first one-step-ahead volatility

prediction, 6t2+m, is available at time t=500. Applying the SPEC model selection

algorithm, the sum of squared standardized one-step-ahead prediction errors, Z::l 2t2|t71 ,

was estimated considering various values for T, and, in particular, T =5(5)80. This is

& Section 6.5 provides motivation for the choice of a 500-observations window.
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an indirect way to examine the performance of the SPEC model selection algorithm for
various values of T. Thus, the evaluation criteria were applied on the one-step-ahead
forecasts using 1661—500—-80=1081 data points, on the two-step-ahead forecasts
using 1661—500—81=1080 data points, ..., and on the k™-step-ahead forecasts using
1081-k +1 data points.

Adopting Brooks and Persand’s (2003) approach we consider evaluating multi-
step-ahead forecasts based on overlapping time periods. In particular, most of the
studies in the literature evaluate the multi-step forecasts using non-overlapping time
periods in order to infer about the statistical significance of the ranking.

Our main purpose is to examine the application potential of the SPEC algorithm
of selection of models on the basis of their forecasting ability in terms of volatility. So, the
mean and the median value of each of the 5 evaluation criteria, in equations (5.3.3)-
(5.3.7), were computed, yielding a total of 10 evaluation criteria for each forecasting
horizon from one day to one hundred days ahead. However, volatility is expressed either
as the variance or as the standard deviation. Thus, in order to examine possible

differences between forecasting the variance and its square root, the evaluation criteria

were, also, applied on the standard deviation. Therefore, atz(N) and sf(N), in equations

(5.3.3)-(5.3.7), were replaced by Oy(n) and Si(n) » respectively and 10 more evaluation

criteria were computed. In total, 20 evaluation criteria were computed for a horizon
ranging from one trading day to five trading months. In section 5.3.1, two realized

volatility measures were mentioned. As, qualitatively, they are of the same nature, in the

sequel, we base the analysis on the realized volatility as defined by stZ(N).

It was examined whether the ARCH models selected by the SPEC algorithm
achieve the lowest value of the evaluation criteria. The main focus was on the median
values of the criteria and mainly on the heteroscedasticity adjusted criteria since they are
more robust to asymmetry. The comparative evaluation is performed by computing the
loss functions for variance forecasts always obtained by a single model on the one hand,
and for variance forecasts obtained by models picked by the SPEC algorithm on the
other. Table 5.2, in the Appendix, presents the minimum and maximum values of the
evaluation criteria that were achieved by each of the 85 ARCH models and the ARCH

models suggested by the SPEC model selection algorithm. The SPEC algorithm is
applied for 16 values for T, and, in particular, T =5(5)80. The minSPEC (maxSPEC)
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value refers to the minimum (maximum) of the 16 values of the evaluation criteria
achieved by the models selected by the SPEC algorithm. Moreover, for each of the 85
estimated ARCH models the evaluation criteria have been computed. The minARCH
(maxARCH) value refers to the minimum (maximum) of the 85 values of the evaluation
criteria achieved by the ARCH models.

Figure 5.2, in the Appendix, shows, for each evaluation criterion and each
forecasting horizon, whether ARCH models selected by the SPEC algorithm achieve the
lowest value of the evaluation criteria. In the first part of Figure 5.2, the performance of
the models, which are selected by the SPEC algorithm, on the basis of the conditional
variance is depicted, while, the second part refers to their performance on forecasting
standard deviation. The general conclusion is that the SPEC algorithm lead to the
selection of the ARCH processes which track closer the realized volatility in the majority
of the cases. Specifically, for the forecasting horizon ranging from 11 to 52 days, the
models selected by the SPEC algorithm achieve the lowest criteria values, irrespectively
of the evaluation criteria. The percentage of cases, that the models selected by the
SPEC algorithm achieve the lowest value of the evaluation criteria, is higher around the
forecasting horizon ranging from 16 to 36 days ahead, or 4 to 7 trading weeks ahead.
Table 5.3, in the Appendix, presents the percentage of cases the models selected by the
SPEC algorithm perform “better” as judged by the evaluation criteria, for 3 different
horizon ranges. Note that, in terms of the MSE and MAE criteria, none of the models
chosen by the SPEC algorithm appears to perform better in any of the forecasting
horizons considered. But, in terms of the median values of the criteria and the
heteroscedasticity adjusted criteria, which are robust to asymmetry, the models selected
by the SPEC algorithm appear to have a better performance in all the forecasting
horizons considered.

It is interesting to note that, via the evaluation criteria, the suggested sample size,
T, for the SPEC model selection algorithm can be determined. The SPEC model
selection algorithm has been applied for T :5(5)80. In the sequel, the value of T for
which the SPEC selection method achieves the best performance according to the
evaluation criteria used, is examined. Figure 5.3 shows a plot of the average T,
suggested by the evaluation criteria, across the forecasting horizons. The bar charts of
Figure 5.3 are a graphical representation of the number of evaluation criteria by which

the performance of the models selected by the SPEC algorithm were judged “better”
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than the performance of any other single model (measured on the right hand side

vertical axis).

For a 16 to 36 day ahead forecasting horizon, the appropriate T, as concerns
the specific data, ranges around 20 days with a standard deviation of 3.6 days. Table
5.4, in the Appendix, provides more details for the sample size of the SPEC selection
method suggested by the evaluation criteria and its standard deviation for both the entire

16 to 36 day ahead forecasting horizon and for each day individually. The SPEC model

selection algorithm shows a better performance for a sample size of about 20 days.

Figure 5.3. Sample size of the SPEC model selection algorithm, suggested by the

Evaluation Criteria.
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In order to test the importance of selecting the appropriate T, for the model
selection method suggested, the evaluation criteria were run for T =5(5)80 . The results
are indeed in support of a sample size of around 20 days for the SPEC algorithm to
manifest a better performance. Figure 5.4 presents the percentage of the evaluation
criteria by which the SPEC algorithm, with specific T , selects those ARCH models that
generate “better” volatility predictions. For T ranging from 15 to 35, the SPEC selection

method appears to have the highest performance.

Figure 5.4.b. The percentage of evaluation criteria rating the performance of the SPEC
algorithm 'best'. Forecasting horizon ranging from 1 to 100 days.
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55. Comparison of the SPEC Criterion to Other Methods of

Model Selection

Most of the methods used in the time series literature for selecting the
appropriate model are based on evaluating the ability of the models to describe the data.
Standard model selection criteria such as the Akaike Information Criterion [AIC] and the
Schwarz Bayesian Criterion [SBC] have widely been used in the ARCH literature,

despite the fact that their statistical properties in the ARCH context are unknown. These

are defined in terms of In(é), the maximized value of the log-likelihood function of a

model, where é is the maximum likelihood estimator of the parameter vector 8 based
on a sample of size n and @ denotes the dimension of &, thus:
AIC =1,(0)-0

SBC =1, (6)-241n(n).
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In addition, model selection is mainly based on the evaluation of some loss
function for each of the competing models. In this section, the statistical criteria, which
were considered in section 5.3 as measures in evaluating the predictive performance of
a variance model, are considered as criteria for the selection of ARCH models. In
particular, the model selection methods presented in Table 5.5, are considered and their
ability to predict future volatility is investigated.

Applying the SPEC model selection algorithm, the sum of squared standardized
one-step-ahead prediction errors, Z;éf'tfl / oA'tTH, was estimated considering various

values for T . Therefore, each of the model selection criteria, in Table 5.5, was computed
considering various values for T, and, in particular, T =10(10)80. The AIC and SBC

criteria were computed based on the rolling sample of constant size equal to 500, or
n =500, that is used at each time to estimate the parameters of the models. Based on
Table 5.1, selecting a strategy for each method of model selection naturally amounts to
selecting the model, which, at time k, has the lowest value of the formula is indicated in
Table 5.5.

Tables 5.6.1 to 5.6.11, in the 5" Appendix, presents the percentage of cases the
models selected by each model selection method perform “better” as judged by the
evaluation criteria, for 3 different horizon ranges. As concerns the AIC and SBC
selection methods, they do not achieve the lowest value of the evaluation criteria in
almost all the cases, which is indicative of the inability of the in-sample model selection
methods to suggest the models with superior volatility forecasting performance. The
general conclusion is that the loss functions presented in Table 5.5 do not led to the
selection of the ARCH processes which track closer the realized volatility. The HASEVar,
HAAEVar and HASEDev criteria show a better performance, as they select the ARCH
models with the lowest value of the evaluation criteria, around the forecasting horizon
ranging from 16 to 36 days ahead. So, they might be used in selecting that model that
generates “better” volatility predictions. In order to investigate whether the suggested
model selection method or the loss functions indicate the ARCH models that track closer
the realized volatility, the predictive ability of these loss functions must be compared to
the volatility forecasting ability of the SPEC criterion, and mainly for a forecasting horizon
ranging from 16 days to 36 days ahead.

Of main interest is whether the ARCH models selected by the SPEC algorithm

yield values for the evaluation criteria that are lower than those corresponding to the
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ARCH models selected by the model selection methods summarized in Table 5.5.
Tables 5.7.1 to 5.7.11, in the Appendix, presents the percentage of times the ARCH
models selected by the SPEC algorithm achieve lower values for the corresponding
evaluation criteria and the specific forecasting horizons than the models selected by the
other model selection methods. As concerns forecasting horizons of 4 to 7 trading weeks

ahead the performance of the SPEC algorithm is by far the best.

Table 5.5. Methods of selection of ARCH models. atz(N) denotes the forecasting

variance over an N day period measured at day t and sf(N) denotes the realized

variance over the same period.

1. Square Error of Conditional Variance (SEVar):
T

2
Z((Gtz(N) - Stz(N)) ) (5:5.1)
t=1
2. Absolute Error of Conditional Variance (AEVar):
T

> (et = siul) 552
t=1

3. Square Error of Conditional Standard Deviation (SEDev):
T

Z((Utm) - St(N))Z) (5.5.3)

t=1
4. Absolute Error of Conditional Standard Deviation (AEDev):
T

ant(w) - St(N)D (5.5.4)

t=1

5. Heteroscedasticity Adjusted Squared Error of Cond. Variance (HASEVar):
T

Z((l_stz(N)/Gtz(N))z) (5.5.5)

t=1
6. Heteroscedasticity Adjusted Absolute Error of Cond. Variance (HAAEVar):

3RV (5.5.6)

t=1

7. Heteroscedasticity Adjusted Squared Error of Cond. St. Deviation (HASEDeV):

;
Zl((l_ St(N)/Ut(N))Z) (5.5.7)

8. Heteroscedasticity Adjusted Absolute Error of Cond. St. Deviation (HAAEDeV):
T
> (1= /o) (5.5.8)
t=1

9. Logarithmic Error of Conditional Variance (LEVar):

i(m(stZ(N)/O_tz(N))Z) (5.5.9)

t=1
10. Akaike Information Criterion (AIC):
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Alc =1,(6)-6 (5.5.10)
11. Schwarz Bayesian Criterion (SBC):
SBC =1,(6)- 2 1n(n) (5.5.11)

The SPEC model selection algorithm performs “better” than the other methods of
model selection in about 90% of the cases. This percentage is lower when the SPEC
algorithm is compared to the HASEVar, HAAEVar and HASEDev methods.
Nevertheless, even in such cases, the opponent methods select the ARCH models that
track closer future volatility much less frequently than the SPEC algorithm. The
percentage of times, an opponent to the SPEC algorithm selects the most appropriate
models in forecasting future volatility, is highest in the case of the HAAEVar method.
However, only in the 23% of cases, the ARCH models selected by the HAAEVar method
perform "better" than the models selected by the SPEC criterion, for any of the 3 horizon

ranges.

5.6. Conclusions

The SPEC method, for selecting an ARCH model among several competing
models was suggested, amounts to choosing the model with the lowest sum of squared
standardized forecasting errors. A number of evaluation criteria, for forecasting horizons
ranging from one day to one hundred days ahead, were applied and it was found that
the ARCH models, selected by the SPEC model selection algorithm, generate “better”
predictions of the volatility. Here, Brooks and Persand’s (2003) evaluation approach was
adopted and multi-step-ahead forecasts were evaluated based on overlapping time
periods. Alternatively, one might like to consider non-overlapping time periods and apply
other evaluation schemes, such as those proposed by Diebold and Mariano (1995),
Hansen and Lund (2003) or Hansen et al. (2003). Thus, the SPEC selection method
appears to be a useful tool in guiding one’s choice of the appropriate model for
estimating future volatility, with applications in evaluating portfolios, derivatives and
financial risk.

Granger and Pesaran (2000a, 2000b) addressed the problem of forecast
evaluation in the context of a realistic decision problem. They noted that “each forecast
is linked with a value or cost function, as making a forecast error will cause a cost to

some decision maker”. In the next chapter, we consider evaluating the SPEC method
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along such lines. Specifically, the performance of the SPEC algorithm is examined

through the use of economic loss functions and in particular, the cumulative returns from

trading volatility forecasts.
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Chapter 6
Using the Standardized Prediction Error
Criterion for ARCH Model Selection in

Forecasting Option Prices

6.1. Introduction

The common way to measure the performance of volatility forecasting models
is through assessing their ability to predict future volatility. However, as volatility is
unobservable, there is no natural metric for measuring the accuracy of any particular
model. Noh et al. (1994) considered assessing model performance through
computing option prices based on the volatility forecasts of the underlying asset
returns, devising trading rules to trade options on a daily basis and comparing the
resulting profits.

Within this framework, the present chapter examines the performance of a
number of ARCH-model based methods of predicting volatility in pricing options. The
focus is on a method that allows the trader flexibility as to the choice of the model to
use for prediction at each of a sequence of points in time based on the SPEC
algorithm. The comparative evaluation is performed using options data on the basis
of the cumulative profits of traders always using variance forecasts obtained by a
single model on the one hand and the cumulative profits of traders using variance
forecasts obtained by models suggested by the SPEC algorithm on the other. The
results of the study show that traders using this algorithm for deciding which model’'s
forecasts to use at any given point in time achieve higher cumulative profits than
those using only a single model all the time. A comparison of the SPEC algorithm
with a set of other model evaluation criteria yields similar findings.

Noh et al. (1994) considered the problem of assessing the performance of
two model based methods for volatility-forecasting, the ARCH modeling based
method and the implied volatility regression method, by trading options. The ARCH
models provide one common conditional volatility estimate for both call and put
option prices, while the implied-volatility forecasting method provides different
volatility estimates for call and put option prices. Over the April 1986 to December
1991 period, for S&P500 index options, the ARCH model based forecasting method

led to a greater profit than the rule based on the implied volatility regression model. In
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particular, by the trading strategy based on the ARCH model a daily profit of 0.89%
was earned, while by the implied volatility method a daily loss of 1.26% was made.

A comparative evaluation is performed through comparing their volatility
forecasts in terms of the profits of traders pricing derivatives in a real market based
on these forecasts. The focus is on the model forecasting ability rating based
selection algorithm considered in 4™ chapter. According to the SPEC algorithm, each
trading day, the ARCH model with the lowest sum of squared standardized one-step-
ahead prediction errors is selected for estimating future volatility of underlying asset
returns. The advantage of this method over other single model based methods lies in
the fact that the trader is flexible as to the choice of the model at each of a sequence
of points in time. Forecasts of option prices used in the comparative evaluation are
calculated using the Black and Scholes (BS) pricing formula (Black and Scholes
1973). The obtained results indicate that the SPEC has a satisfactory performance in
selecting the ARCH models that yield better volatility predictions for option pricing. It
is demonstrated in particular, that over the period from March 1998 to June 2000,
taking into consideration a transaction cost of $2, an agent who would consider using
this model selection algorithm could make a daily profit of 1.46% from trading
S&P500 index options. Section 6.2 provides a brief description of the BS pricing
formula and introduces the reader to the notion of trading options and computing the
relative cash flows. Section 6.3 presents the trading rules considered by Noh et al.
(1994) for the performance of volatility-forecasting methods. In sections 6.4 to 6.7,
the cash flows, from trading options based on i) a set of ARCH processes, ii) the
SPEC model selection algorithm, and iii) a number of other methods of model
selection, are computed. Finally, in section 6.8, a brief discussion of the results is

provided.

6.2. Options

An option is a security that gives its owner the right, not the obligation, to buy
or sell an asset at a fixed price (exercise price) within a specified period of time,
subject to certain conditions. There are two main types of options: calls and puts. A
call option is the right to buy a number of shares, of the underlying asset, at a fixed
price on or before the maturity day. A put option is a right to sell a number of shares,
of the underlying asset, at a fixed price on or before the maturity day. A straddle
option is the purchase (or sale) of both a call and a put option, of the underlying
asset, with the same expiration day. The maturity day is the latest date that the

option can be exercised. If the option can be exercised only on the maturity day, it is
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termed a European option, whereas an American option can be exercised on or
before the expiration day.

The purchaser of a call (put) option acquires the right to buy (sell) a share of a
stock for a given price on or before time T and pays for the right at the time of
purchase. On the other hand, the writer of this call (put) collects both the option price
today and the obligation to deliver (buy) one share of stock in the future for the

exercise price, if the purchaser of the call (put) demands.

6.2.1 Stock and Exercise Price Relationship

The exercise price of the “at the money* option is equal to the price of the
underlying asset. The exercise price of the “near the money” option is approximately
the same as the price of the underlying asset. A call (put) option is said to be “in the
money” if its exercise price is less (greater) than the current price of the underlying
asset. A call (put) option is said to be “out of the money” if its exercise price is greater

(less) than the price of the underlying asset.

6.2.2 Black and Scholes Option Pricing Formula

The pricing of options is a cornerstone of financial literature. The BS option
pricing model is a very important and useful model in estimating the fair value of an
option. Based on the law of one price or no arbitrage condition, the option pricing
models of Black and Scholes (1973) and Merton (1973) gained an almost immediate
acceptance among academics and investments professionals®. Their approach can
be used to price any security whose payoffs depend on the prices of other securities.
The main idea is to create a costless self-financing portfolio strategy, whereby long
positions are completely financed by short positions, which can replicate the payoff of
the derivative. Under the no-arbitrage condition, the dynamic strategy reduces to a
partial differential equation subject to a set of boundary conditions that are

determined by the specific terms of the derivative security.

! The 1997 Nobel Prize in Economics was awarded to Robert C. Merton and Myron S. Scholes for their
work, along with Fischer Black, in developing the Fischer-Black options pricing model. Black, who
died in 1995, would undoubtedly have shared in the prize had he still been alive. (American
Mathematical Society; www.ams.org/new-in-math/nobel1997econ.html).

“An early version of Black and Scholes (1973) was submitted in the summer of 1970, but both the
Journal of Political Economy and the Review of Economics and Statistics rejected the paper — perhaps
because the ideas were so new and/or because Black was not an academic. After revising the approach
and receiving encouragement from the University of Chicago professors Merton Miller and Eugene
Fama, an article testing the model empirically was published in 1972 in the Journal of Finance, (Black
and Scholes 1972). The proof of the model was published in 1973 in the Journal of Political Economy,
published by the University of Chicago”. (Daigler 1994, page 128).
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The pricing of index options is based on the Black & Scholes option pricing
formula (Black and Scholes (1973)). In particular, the forecast price of a call and a

put option at time t+1 given the information available at time t, with 7 days to

maturity, denoted, respectively, by Ct(jﬂt and Pt(fu)t are given by
Cl =S.N(d;)-Ke ™ N(d,),
P& =—SN(-d,)+Ke ™ N(-d,),
where (6.2.1)
In(s%jjt (rft +% (O't(ﬁlt )2 )r
o O't(ﬁn\/;

Here, S, is the market closing price of the stock (or portfolio) at time t (used as a

and d, =d, —O't(ﬁlt\/;.

forecast for S,,,), rf, is the daily continuously compounded risk free interest rate

and K is the exercise (or strike) price at maturity day, while, N() and at(;)h denote,

respectively, the cumulative normal distribution function and the standard deviation of
the rate of return during the life of the option, from t+1 until the maturity day, given

the information available at time t.

6.2.3 An Example in Computing Theoretical Option Prices

Consider a trader who wants to evaluate the BS theoretical price of a
European call and put option with three months to expiry. The stock price is $60, the
strike price is $65, the risk free rate is 8% per annum (the return of three month

treasury bills), the dividend yield is 5% per annum and the volatility is 30% per
annum. Thus, S, =60, K=65, r=0.25, rf, =0.08, y,=0.05 and o, =0.3.
Computing:

d, =-0.409, N(d,)=0.341, N(-d,)=0.659,
d, =-0.559, N(d,)=0.288, N(-d,)=0.712,

the price of the call option is: C, = 60e°*°%0.341—-65¢****0.288 = $1.8674 and

the price of the put option is: P, = -60e**°%0.659 + 65 "**°#0.712 = $6.3256.

6.2.4 Option Strategies and Cash Flows

Suppose the price of stock at time t is S, and the price of a call and put

option, with expiration day T and exercise price K, are C, and P,, respectively. In

terms of cash flows, the purchaser of an option (a long option position) always has an

initial negative cash flow, the price of the option, and a future cash flow that is at
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worst zero. The writer of the option (a sort option position) has an initial positive cash
flow followed by a terminal cash flow that is at best zero. At expiration day, T, the
call option is exercised only if S; > K. Thus, the cash flow, at time T, of the call

purchaser is?:

rf (T-t) .
—-e C if S; <K
max(0, S, — K)-e™c, = f (Tt—t) .
S; —K-e™7C, if §; >K.
The cash flow of the call writer is opposite to that of the call purchaser:
rf (T-t) :
e C if S; <K
erft('r—t)c:t _ max(ol ST _ K) — (1) t - T
e C,+K -5, if §; > K.

Moreover, the put is exercised only if S; < K. Thus, at maturity day, the cash flow of

the put purchaser is:

rf (T-t) .
max(0,K =S, )—e™ (TP = —e™p if S, >K
T CoK-s —e™ TR if s <K
and the cash flow of the put writer is:
rf[(T—t)P if 5. >K
e"TUR —max(0,K -S;)=1 ‘f) t if S, 2
er[‘Pt-i-ST—K |fS-|—<K,

Figure 6.7 presents the profit and loss performance of buying and writing
options. A long straddle position is an option strategy in which a call and a put of the
same exercise price, maturity and underlying terms are purchased. This position is
called a straddle since it will profit from a substantial change in the stock price in
either direction. Traders purchase a straddle under one of two circumstances. The
first circumstance exists when a large change in the stock price is expected, but the
direction of the change is unknown. Examples include an upcoming announcement
of earning, uncertain takeover or merger speculation, a court case for damages, a
new product announcement, or an uncertain economic announcement such as
inflation figures or a change in the prime interest rate. A straddle seems a risk free
trading strategy when a large change in the price of a stock is expected.

However, in the real world, this is not necessarily the case. If the general view
of the market is that there will be a big jump in the stock price soon, the option prices
should reflect the increase in the potential volatility of the stock. A trader will find
options on the stock to be significantly more expensive than options on a similar

stock for which no jump is expected. For a straddle to be an effective strategy, the

2 It is assumed that investors, at time t , are borrowing and lending at the same risk free rate, rf,. Thus,
the money during the period from t to T is investing with a daily return of (1+ rft) ~ exp(rft).
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trader must believe that big movements in the stock price are likely and this belief

must be different from that of most of the other market participants.

Figures 6.1-6.6. Relationship between option prices and variables involved in the BS
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The second circumstance in which straddles are purchased occurs when the trader

estimates that the true future volatility of the stock will be greater that the volatility

that is currently impounded in the option prices. Note that although the long straddle

has theoretically unlimited potential profit and limited risk, it should not be viewed as

a low risk strategy. Options can lose their value very quickly, and in the case of a

straddle, there is twice the amount of erosion of time value as compared to the
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purchase of a call or put. The opposite of a long straddle strategy is a short straddle
position. This strategy has unlimited risk and limited profit potential, and is therefore
only appropriate for experienced investors with a high tolerance for risk. The short
straddle will profit from limited stock movement and will suffer losses if the underlying
asset moves substantially in either direction. Figure 6.8 presents the payoffs of taking
long and sort straddle positions. At expiration day, T , the cash flows of taking a long

and a sort straddle position are:
S; —K[-e"™(C, +R)
6.2.6
e (C, +P)-Is; K|, (6.2.9)

respectively.

Figure 6.7. The cash flows of taking long and sort positions in call and put options.
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Figure 6.8. The cash flows of taking long and sort straddle positions.
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6.2.5 An Example of Straddle Trading
Consider a trader who feels that the price of a certain stock, currently valued at $54
by the market, will move significantly in the next three months. The trader could

create a straddle by buying both a put and a call with a strike price of $55 and an
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expiration date in three months. Suppose that the call and the put costs are $5 and
$4, respectively. The most that can be lost is the amount paid, or $9, if the stock
price moves to $55. If the stock price moves above $63 or below $45, the long
position earns a profit. In the case of taking a short straddle position, the maximum
profit is the premium received, or $9. The maximum loss is unlimited, and the sort

position will lose if the stock price moves above $63 or below $45.

6.3. Assessing the Performance of Volatility Forecasting
Methods

Noh et al. (1994) devised rules to trade “near the money” straddles. If the
straddle price forecast is greater than the market straddle price, the straddle is
bought. If the straddle price forecast is less than the market straddle price, the

straddle is sold, i.e.

If Ct(jﬂt + Pt(fll)t > Pt(’) + Ct(’) = The straddle is bought at time t. (6.3.1)

If Ct(jj)Jt + F>t(+T:L|)t < Pt(f) +Ct(’) = The straddle is sold at time t. (6.3.2)

The strategy can be understood with the help of the following example: On Monday,
after the stock market closes®, Tuesday’s price of an option that expires on Friday, is
estimated. The remaining life of the option is 3 days, from Tuesday to Friday. If
option’s prediction price on Tuesday is higher than the observed option price on
Monday, the option is bought in order to be sold on Tuesday. If the predicted option
price on Tuesday is lower than the observed option price on Monday, the option is

sort-sold in order to be bought on Tuesday.

Monday t
Tuesday t+1
Wednesday t+2
Thursday t+3
Friday t+4
The rate of return from trading an option is:
C,+P-C_ -PR
RT, =——+ L 'on buying a straddle, (6.3.3)
t thl + Ptfl
-C,-R+C_, +P
RT, =——t—— Y on sort-selling a straddle. (6.3.4)

Ci+Py

® The trading strategy assumes that there is enough time to forecast the option prices given all the
information at time t (closing prices of stocks) so as the trader to be able to decide the trading of an
option at time t (before the option market closes). For example, the Chicago Stock Market closes at
3:00 pm local time and the Chicago Board of Option Exchange closes as 3:15 pm local time.
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Note that the transaction costs, X , should be taken into account. If this is the case,
the net rate of return from trading an option is given as:

X

NRT, =RT, - ——~——.
Ct—l + Pt—l

(6.3.5)

Moreover, a filter can be applied in the trading strategy, so as to trade an option only
when the difference between forecast and today’s option price exceeds the amount
of the filter.

Noh et al. (1994) applied the AR(1)-GARCH(1,1) model in order to forecast
the future volatility. Forecasts of option prices, on the next trading day, are calculated
using the BS option pricing formula and conditional volatility forecasts. The volatility
during the life of the option is computed as the square root of the average forecast

conditional variance:
T+1 172
T -1 ~2
O-t(+])1t:[r Zo-t+i|tj , (6.3.6)
i=2

where &im denotes the prediction of the conditional variance at time t+1 given the

information set available at time t.

Noh et al. (1994) assessed the performance of the AR(1)-GARCH(1,1) model
for straddles written on the S&P500 index over the period from April 1986 to
December 1991 and found that the model earns a profit of $0.885 per straddle in
excess of a $0.25 transaction cost and applying a $0.5 filter. Gonzalez-Rivera et al.
(2004) had also evaluated the ability of various volatility models in predicting one-
period ahead call options on the S&P500 index, with expiration dates ranging from
January 2000 through November 2000, and found that simple models like the EWMA

of Riskmetrics™ (1995) performed as well as sophisticated ARCH specifications.

6.4. Option Pricing Using a Set of ARCH Processes and

Model Selection Algorithms

The GARCH(1,1) is the most commonly used model in financial applications.
The question that arises at this point is: “Why should one use the simple
GARCH(1,1) model instead of using a higher order of GARCH(p,q) model, an
asymmetric ARCH model, or even a more complicated form of an ARCH process?”.
There is a vast number of ARCH models. Which one should be preferred? The
volatility prediction model, which gives the highest rate of return in trading options,
should be the preferable one. Moreover, under the assumption that the BS formula

describes perfectly the dynamics of the market that affects the price of the option, the
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model gives the most precise prediction of conditional volatility should be the model
that gives the highest rate of return. Unfortunately, an important limitation still
remains. Even if one could find the model, which predicts the volatility precisely, it is
well known that the BS formula does not describe the dynamics pricing the options
perfectly.* Moreover, the validity of the variance forecasts depends on which option
pricing formula is used. Engle et al. (1997) used Hull and White’s (1987) modification
to the BS formula for pricing straddles on a simulated options market. A series of
studies such as Barone-Adesi et al. (2004), Duan (1995), Duan et al. (1999), Heston
and Nandi (2000), Ritchken and Trevor (1999) and Sabbatini and Linton (1998),
derived ARCH-based option pricing models assuming that a specific ARCH process
generates the variance of the asset. . However, despite its limitations, the BS pricing
formula has had a wide acceptance by floor traders on option exchanges.

In this chapter, since the ARCH-based option pricing models considered in
the literature for the various models being compared are different or no ARCH based
pricing formula exists for some of them, the BS option pricing model is adopted. In
the sequel, a variety of volatility prediction models are estimated using S&P500 stock
index daily returns and the rate of return from trading straddles, based on the
volatility predictions, is calculated. The SPEC model selection algorithm is
subsequently applied in order to choose for each particular day the appropriate
ARCH model for estimating the price of an option. The day-by-day rates of return are
reflective of the corresponding predictive performances of the models. Comparing the
results, provides an indirect comparative assessment of a trading strategy based on
option prices forecasts provided by any one of these models to the trading strategy of
deciding each day on the basis of the option price forecast by the model selected by

the SPEC algorithm as the most appropriate for that particular day.

6.5. Trading Straddles Based on a Set Of ARCH

Processes

For y, = In(St/St_l) denoting the continuously compound rate of return from
time t-1 to t, where S, is the asset price at time t, a set of ARCH models are

estimated. The conditional mean is considered as a " order autoregressive

process ( AR(K))Z

* There is a large number of articles that examine the biasedness of BS formula. For details see Daigler
(1994) and Natenberg (1994).
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Y = 4 2,0

My =Co + Z(Ci yt—i) (6.5.1)

iid.

z, ~ N(02),
and the conditional variance is regarded as a GARCH( p,q), an EGARCH( p,q) or a
TARCH( p,q) function of the forms (5.2.4) — (5.2.6) considered in chapter 5. Thus,
the AR(x)GARCH(p,q), AR(x)EGARCH(p,q) and AR(x)TARCH(p,q) models
are applied, for ¥ =0,...,4, p=0,1,2 and q=1,2, yielding a total of 85 cases’. The
conditional variance for the GARCH(p,q) process may be rewritten as:
of = (Ul 7 w)v.¢ ),
where U/ :(1,gt2_1,...,gt2_q), 7 =0,w :(af_l,...,af_p), v':(ao,ai,...,aq), ¢'=0, (6.5.2)
R (N}
For the EGARCH(p,q) process, the conditional variance can be expressed as:
no? = (uf, 7w v.¢ o),
where U] = (1,|8t71/0't71|,...,‘8t7q/O'tfq‘), n =& /o o € /O't,q), (6.5.3)
W, =(Inaf_1,...,lnat2_p), v’=(a0,a1,...,aq), (’z(}/l,...,yq), a)':(bl,...,bp).
Also, for the TARCH(p,q) process, the conditional variance can take the form:
of = (Ul 7 w)v.¢ ),
where U/ :(1,gt2_1,...,gt2_q), m :(dt_lgf_l), W, :(af_l,...,af_p), v':(ao,ai,...,aq), (6.5.4)
=), o :(bl,...,bp), d, =11if & <0, and d, =0 otherwise.

In general, the conditional variance forecast recursion relations (5.2.7) — (5.2.9), in

the 5™ chapter, could be presented as:
&t2+s|t = E(O-t2+s | It)= E(ut’+s’77t,+s’wt,+s | It)(v(t)’é/(t)’a)(t))z (utl+s|t'nt’+s\t’wt’+s|t xv(t)’é/(t)’w(t))' (655)
In the 4™ chapter we have considered a comparative evaluation of two ARCH

models (i.e. model A and model B), on the basis of their ability to predict the future
values of the dependent variable and its volatility forecasts. For éHm =Y — 9t+m and
&tim denoting the one-step-ahead prediction error and the prediction of the

conditional variance at time t+1 given the information available at time t, the

predictive abilities of models A and B can be compared through testing a null

% Numerical maximization of the log-likelihood function, for the E-GARCH(2,2) model, frequently
failed to converge. So the five E-GARCH models for p =q =2 were excluded.
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hypothesis that the two models are of equivalent predictive ability. Let us assume

that a set of candidate ARCH models is available and the most suitable model is

sought for predicting conditional volatility. The ARCH model, with the lowest value of

the sum of the T most recently estimated squared standardized one-step-ahead
T

prediction errors, Zéfﬂlt/&im, can be considered for obtaining one-step-ahead
t=1

forecast of the conditional volatility. Consider a set of M competing ARCH

processes, which have been estimated T times, using a rolling sample of s

observations. The SPEC algorithm for selecting the most suitable of M candidate

models at each of a series of points in time is comprised of the following steps.

e For model m, (m=12..M) and for each point in time t,

(t =s,5+1...,T+5s —1), the vector of coefficients is estimated using a rolling
sample of s observations®:

oMo — (B(m)(t)’ g Fmao g me )

e Using the vector of coefficients é(m)(‘), estimate the vector:
o ~2
(9. 62).

e Compute:

~(m) \2

52(m) (yt+1 - yt(+:u)t)
t+t ~2(m)
t+1t

e Compute:
( ) T+s-1 2( )
m) __ Szlm
RT+s = ZZH]Jt :
t=s
The most suitable model to forecast volatility at time T +S is the model m with the

minimum value of R™

1. - The algorithm is repeated for each of a sequence of points in
time for the selection of the most appropriate model to be used for obtaining a
volatility forecast for the next point in time.

In a theoretical framework, the SPEC model selection method would be able
to select the model with the better prediction of the conditional variance of the
dependent variable. The question of whether a trader using models for volatility
forecasts picked by the SPEC algorithm makes profits from option pricing is
investigated in the sequel. Its advantage in predicting realized volatility, for forecast

horizons ranging from one day ahead to one hundred days ahead, has also been

o 0 _ (60 g0k s(mio)
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examined in the previous chapter but next sections look into the added value from
using the algorithm in the case of real world options data. The profit from trading
options will be used for measuring the performance of variance forecasts. Next
section describes the strategy an agent follows to trade straddles and the method of
measuring the total return of the strategy.

The data set consists of 1064 S&P500 stock index daily returns in the period
from March 14™, 1996 to June 2", 2000. Larger data sets are often used for the
estimation of ARCH models. However, as already noted in the 4™ chapter, the use of
a restricted sample size incorporates changes in trading behavior more efficiently.
Among others, Angelidis, Benos and Degiannakis (2004), Engle et al. (1993) and
Frey and Michaud (1997) supported the use of restricted samples and provided
empirical evidence that they better capture changes in market activity. Also, Hoppe
(1998) investigating the issue of the sample size in the context of Value-at-Risk,
argued that a smaller sample could lead to more accurate estimates than a larger
one. On the other hand, in the next chapter we consider samples of 500, 1000 and
2000 observations and demonstrate that the results of our simulation study are not
appreciably affected by the sample size.

In the sequel, a rolling sample of constant size equal to 500 is considered.

Hence, the first one-step-ahead volatility prediction, &t2+1|t, is available at time

t =500, or on March 11™, 1998. Maximum likelihood estimates of the parameters are
obtained by numerical maximization of the log-likelihood function using the Marquardt
algorithm (Marquardt 1963), a modification of the BHHH algorithm (Berndt et al.
1974). The quasi-maximum likelihood estimator is used, as according to Bollerslev
and Wooldridge (1992), it is generally consistent, has a normal limiting distribution
and provides asymptotic standard errors that are valid under non-normality.

The S&P500 index options’ data were obtained from the Datastream for the
period from March 11", 1998 through June 2", 2000, totally 564 trading days.
Unfortunately, the data record is not adequate for all the trading days. Proper data
are available for 456 trading days and contains information for the closing price of the
call and put options, exercise price, expiration date, and the number of contracts
traded. In total, 49500 call and put prices were collected. However, in order to
minimize the biasedness of the BS formula, only the straddle options with exercise
prices closest to the index level, maturity longer than 10 trading days and trading
volume greater than 100 were considered from the entire dataset for each trading

day. The choice of these data points was based on considerations for the optimal
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performance of the option pricing model. Sabbatini and Linton (1998) employing
Duan’s (1995) option pricing model in estimating the volatility of the Swiss market
index, for example, used under such considerations a two-year period of daily closing
prices of “near the money” options and with a period to maturity of at least 15 days.
In our case, “near the money” trading is considered since practice has shown that the
BS pricing model tends to misprice “deep out of the money” and “deep in the money”
options (see, e.g. Black (1975), Merton (1976) and MacBeth and Merville (1979,
1980)), while it works better for “near the money” options (see, e.g. Daigler (1994, p.
153)).

Table 6.1. Mean and standard deviation of the S&P500 option prices and their trading
volumes for the trading days collected in the data record (11 March 1998 — 2 June 2000)

Type of Trading Option P”;?:ndard Trading VOlSutr;]r?dard
Option Days Mean Deviation Mean Deviation
Call 456 33,6 10,09 1418 1861
Put 456 28,1 11,91 1680 2185

Straddle 456 61,7 18,44 1549 2032

Also, a maturity period of length no shorter than 10 trading days is considered to
avoid mispricings attributable to causes of practical as well as of theoretical nature. In
particular, experience has shown that traders pay less and less attention to the
values generated by the pricing model as expiration approaches (e.g. Natenberg
(1994, p. 398)). From the theoretical point of view, there is often a departure from the
BS model's assumption that stock prices are realizations of a continuous diffusion
process, as in most markets the underlying contracts conform to a combination of
both a diffusion process and a jump process®. According to Dumas et al. (1998) the
volatility estimation of close to expiration options is extremely sensitive to possible
measurement errors. Most of the time, asset prices change smoothly and
continuously with no gaps. However, every now and then a gap will occur,

instantaneously sending the price to a new level. These prices will again be followed

" S&P500 index options are traded on the Chicago Board Options Exchange (CBOE).

8 A variation of the BS model, which assumes that the underlying contract follows a jump diffusion
process, has been developed. See for example Merton (1976) and Beckers (1981). Unfortunately, the
model is considerably more complex mathematically than the traditional BS model. Moreover, in
addition to the five customary inputs, the model also requires two new inputs: the average size of a
jump in the underlying market and the frequency with which such jumps are likely to occur. Unless the
trader can adequately estimate these new inputs, the values generated by a jump diffusion model may
be no better, and might be worse, than those generated by the traditional model. Most traders take the
view that whatever weakness are encountered in a traditional model can be best offset through
intelligent decision making based on actual trading experience, rather than through the use of a more
complex jump diffusion model.

124



Chapter 6

Table 6.2. Mean and standard deviation of the S&P500 option prices based on the ARCH
volatility forecasts for the trading days collected in the data record (11 March 1998 — 2 June
2000).

Call Option  Put Option Straddle Call Option Put Option Straddle
ARCH Model Option ARCH Model Option
Mean Séand. Mean Stand. Mean Stand. Mean Stand. Mean Stand. Mean Stand.
ev. Dev Dev. Dev Dev. Dev.
AR(0)GARCH(0,1) 29.2 9.0 252 7.3 545 149 AR(3)TARCH(1,1) 30,3 99 263 91 565 178
AR(1)GARCH(0,1) 29.1 9.1 252 7.4 543 151 AR(4)TARCH(1,1) 304 99 264 91 56.7 179
AR(2)GARCH(0,1) 29.1 9.1 252 7.4 543 151 AR(0)TARCH(1,2) 295 99 255 90 549 176
AR(3)GARCH(0,1) 29.1 9.1 251 7.4 542 151 AR(1)TARCH(1,2) 302 9.8 262 90 565 17.6
AR(4)GARCH(0,1) 291 9.1 251 7.4 542 151 AR(2)TARCH(1,2) 303 98 263 91 565 176
AR(0)GARCH(0,2) 294 89 254 7.3 548 14.8 AR(3)TARCH(1,2) 301 98 261 90 562 175
AR(1)GARCH(0,2) 294 89 255 7.3 549 148 AR(4)TARCH(1,2) 301 97 261 89 562 173
AR(2)GARCH(0,2) 295 89 255 7.3 550 149 AR(0)TARCH(2,1) 294 98 254 89 547 174
AR(3)GARCH(0,2) 29.7 9.0 257 7.4 555 150 AR(1)TARCH(2,1) 30,1 99 261 90 563 17.6
AR(4)GARCH(0,2) 298 9.0 259 75 557 151 AR(2)TARCH(2,1) 304 101 264 93 56.8 181
AR(0)GARCH(1,1) 31.1 101 271 94 582 184 AR(3)TARCH(2,1) 30.3 100 263 9.2 56.6 17.9
AR(1)GARCH(1,1) 309 10.1 27.0 9.3 57.9 182 AR(4)TARCH(2,1) 304 100 264 91 56.8 17.9
AR(2)GARCH(1,1) 30.9 102 269 94 57.8 18.3 AR(0)TARCH(2,2) 294 100 254 9.2 548 180
AR(3)GARCH(1,1) 30.8 102 269 94 57.7 185 AR(1)TARCH(2,2) 301 99 261 92 562 179
AR(4)GARCH(1,1) 30.8 10.2 26.8 9.5 57.6 185 AR(2)TARCH(2,2) 30.3 101 263 93 56,5 181
AR(0)GARCH(1,2) 31.0 10.1 271 94 581 182 AR(3)TARCH(2,2) 30.1 101 261 93 56.2 181
AR(1)GARCH(1,2) 31.0 102 271 94 581 183 AR(4)TARCH(2,2) 30.1 100 261 9.2 56.2 17.9
AR(2)GARCH(1,2) 310 102 27.0 94 579 184 AR(0)EGARCH(0,1) 286 9.1 247 73 533 150
AR(3)GARCH(1,2) 309 102 269 94 57.8 185 AR(1)EGARCH(0,1) 289 9.1 249 73 538 151
AR(4)GARCH(1,2) 30.8 10.2 26.9 95 57.7 185 AR(2QEGARCH(0,1) 289 9.1 249 73 537 151
AR(0)GARCH(2,1) 31.0 101 270 9.3 58.0 18.2 AR(3)EGARCH(0,1) 288 91 249 73 537 150
AR(1)GARCH(2,1) 30.8 101 269 93 57.7 18.1 ARM4)EGARCH(0,1) 288 91 249 73 537 150
AR(2)GARCH(2,1) 30.8 10.2 26.8 9.3 57.6 183 AR(0)EGARCH(0,2) 27.7 88 237 7.0 515 145
AR(3)GARCH(2,1) 30.8 10.1 26.8 9.3 57,5 182 AR(1)EGARCH(0,2) 281 89 242 7.1 523 147
AR(4)GARCH(2,1) 30.7 10.1 26.7 94 574 183 AR(QEGARCH(0,2) 281 89 241 7.1 523 146
AR(0)GARCH(2,2) 309 10.0 26.9 9.2 57.8 18.0 AR(3)EGARCH(0,2) 281 88 241 7.1 521 145
AR(1)GARCH(2,2) 309 10.1 27.0 9.2 579 181 AR(4)EGARCH(0,2) 280 88 241 7.1 521 145
AR(2)GARCH(2,2) 309 10.1 269 9.2 579 181 AR(0)EGARCH(1,1) 282 90 243 75 525 151
AR(3)GARCH(2,2) 30.9 102 269 93 57.8 183 AR(1)EGARCH(1,1) 290 91 250 76 539 153
AR(4)GARCH(2,2) 30.8 102 268 94 57.7 184 AR(2)EGARCH(1,1) 288 91 248 7.6 536 154
AR(0)TARCH(0,1) 298 9.1 258 7.6 555 153 AR(3)EGARCH(1,1) 288 9.1 248 7.6 536 153
AR(1)TARCH(0,1) 300 9.1 26.0 7.6 56.1 153 AR(4)EGARCH(1,1) 288 9.2 248 7.7 537 155
AR(2)TARCH(0,1) 30.1 9.0 261 75 56.2 151 AR(0)EGARCH(1,2) 278 9.1 238 75 516 153
AR(3)TARCH(0,1) 30.0 9.0 261 75 56.1 151 AR(1)EGARCH(1,2) 288 94 248 7.7 535 158
AR(4)TARCH(0,1) 30.1 9.0 261 75 56.3 151 AR(EGARCH(1,2) 287 93 247 7.7 534 156
AR(0)TARCH(0,2) 29.0 9.1 249 75 539 152 AR()EGARCH(1,2) 286 93 246 7.6 533 156
AR(1)TARCH(0,2) 29.3 89 252 7.3 545 149 ARM@)EGARCH(1,2) 287 94 247 7.7 533 157
AR(2)TARCH(0,2) 29.3 9.0 253 7.4 546 150 AR(O)EGARCH(2,1) 282 90 243 75 525 150
AR(3)TARCH(0,2) 295 9.0 254 74 549 151 AR(1)EGARCH(2,1) 291 90 251 7.6 541 153
AR(4)TARCH(0,2) 296 9.0 256 75 552 152 AR(2QEGARCH(2,1) 291 90 251 7.6 541 153
AR(0)TARCH(1,1) 294 98 253 89 547 174 AR()EGARCH(2,1) 291 91 251 7.7 541 154
AR(1)TARCH(1,1) 303 99 263 9.1 56.5 17.8 ARM4)EGARCH(2,1) 291 91 251 76 541 154
AR(2)TARCH(1,1) 304 100 264 9.2 56.8 18.0
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by a smooth diffusion process until another gap will occur. Further, as Natenberg
(1994, p.397) commented: “since a gap in the market will have its greatest effect on
“at the money” options close to expiration®, it is these options that are likely to
be mispriced by the traditional BS pricing model with its continuous diffusion
process.”

As mentioned before, we have on the one hand traders who always choose to
use one and the same ARCH model for their forecasts and traders who at each point
in time choose to use the ARCH model suggested by the SPEC algorithm on the
other. This leads us to comparing 86 forecasting methods: 85 single-model methods,
one for each of 85 ARCH models, each amounting to the utilization of the forecasts
of one and the same model at any point in time and the SPEC model selection
algorithm.

The average and the standard deviation of the collected S&P500 option prices are
presented in Table 6.1. On each trading day, for each of the 85 ARCH models, the
call and put option prices are forecasted. Table 6.2 presents the mean and the
standard deviation of the predicted option prices, indicatively, for 12 of the 85 ARCH
models. The ARCH forecasts for both call and put options are lower than the actual

option prices, which is in accordance to Noh'’s et al. (1994) research.

Figure 6.9. Cumulative rate of return of the AR(3)EGARCH(1,1) agent from trading
straddles on the S&P500 index (11 March 1998 — 2 June 2000).
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Cumulative Returns

® A gap in the market has its greatest effect on a high Gamma option and “at the money” options close
to expiration have the highest Gamma. Delta, Lambda, Gamma, Theta, Vega and Rho comprise the
pricing sensitivities and represent the key relationships between the individual characteristics of the
option and the option price. For more details on options sensitivities see appendix 6.2 of the 6" chapter.
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Let us assume that there are 85 traders and each trader employs an ARCH
model to forecast future volatility and straddle prices. Each trading day, if the straddle
price forecast is greater than the market straddle price, the straddle is bought,
otherwise the straddle is sold. For each trader, the daily rate of return from trading
straddles for 456 days is computed as in equations (6.3.3) to (6.3.4) and is presented
in the second column of Table 6.3'°, in the Appendix 6.1. According to the t-ratios,
computed as ratios of the mean to the standard deviation divided by the square root
of the trading days, all the traders achieve profits significantly greater than zero.
However, the trader who employs the AR(3)EGARCH(1,1) model achieves the
highest profits. The AR(3)EGARCH(1,1) agent makes 4.42 per cent per day trading
for 456 days, with a t-ratio of 5.32. Figure 6.9 depicts the cumulative returns of the
AR(3)EGARCH(1,1) agent from trading straddles on a daily basis. However, each
time an agent trades a contract has to pay a transaction cost. Taking into
consideration a transaction cost of $2, which reflects the bid — ask spread“, the rate
of return would naturally be lower. Table 6.3 also presents for each trader the net

rate of return after a trading cost of $2, as computed in (6.3.5).

Table 6.4. ARCH models that yield the highest rate of return from trading straddles on the
S&P500 index (11 March 1998 — 2 June 2000).

Trans. Cost - Trading Total
Filter Days Returns
$0.00 - $0.00 AR(3)EGARCH(1,1) 4.42% 17.75% 5.32 0.00 456  2015%
$2.00- $0.00 AR(3)EGARCH(1,1) 0.77% 17.21% 0.95 0.34 456 349%
$2.00- $1.25 AR(2)EGARCH(1,1) 0.90% 17.34% 1.06 0.29 421 378%
$2.00-$1.75 AR(0)GARCH(2,2) 1.06% 18.46% 1.13 0.26 385 408%
$2.00-$2.00 AR(0)GARCH(1,2) 1.10% 18.53% 1.16 0.25 381 420%
$2.00-$2.25 AR(0)GARCH(1,2) 1.35% 18.50% 1.39 0.17 362 490%
$2.00-$2.75 AR(4)GARCH(0,2) 1.60% 17.60% 1.69 0.09 346 553%
$2.00-$3.50 AR(3)GARCH(0,2) 1.89% 18.11% 1.87 0.06 322 607%

Model Mean St.Dev t-ratio p-value

However, a rational trader will trade straddles only when profits are predicted

to exceed transaction costs. So, straddles are traded only when the absolute

10 Because of the large amount of data, Table 6.3, in the Appendix, is decomposed into four parts.

1 Bid price is the price that a trader is offering to pay for the option. Ask price is the price that a trader
is offering to sell the option. The ask price is higher that the bid price and the amount by which the ask
exceeds the bid is referred to as the bid — ask spread. The exchange sets the upper limits for the bid —
ask spread. For example, according to the CBOE rules, the width is supposed to be a dollar wide for
contracts above $20. However, Exchange rules allow for doubling and even tripling the width
depending upon the market conditions. For a retail investor, cost is higher and varies significantly from
broker to broker. The actual amount charged is usually calculated as a fixed cost plus a proportion of
the dollar amount of the trade, i.e. from a discount broker the purchase of contracts of $10.000 would
cost $145 in commissions. Retail commissions from full service brokers are higher.
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difference between forecast and today’s option price exceeds the amount of the filter,

F,, yielding a net rate of return of:

X
RT, -———————
NRTt = t Ct—l + Pt—l

0 , otherwise.

IF[C: + P -Cou=Ru> Fy 65.6

Various values for the filter are applied (i.e. $1.25, $1.75, $2.00, $2.25, $2.75, $3.50).
Notice that although the “before transaction cost” profits are significantly greater than
zero, applying a $2 transaction cost, the profits are not significantly greater than zero
for any of the agents. According to Table 6.4, the models that achieve the highest

rate of return are not the same for each filter strategy.

6.6. Trading Straddles Based on the SPEC Model

Selection Algorithm

The main purpose is to examine the application of the SPEC algorithm of
selection of volatility models on the basis of forecasting option prices and creating
trading strategies that yield abnormal returns. The term “abnormal returns” refers to
profits that are uncorrelated with the market rate of return as the “at the money”

straddle trading is a delta neutral™

trading strategy. According to the SPEC model
selection algorithm, the most appropriate model, among a set of candidate ARCH
models, to forecast one-day-ahead volatility is the model with the lowest sum of the
most recently estimated squared standardized one-step-ahead prediction errors. To
price an option, we need a forecast of the average daily variance over the lifetime of
the option, as given in (6.3.6), whereas the SPEC algorithm looks at the sum of the
one-step-ahead forecasts over some horizon T . Indeed, the SPEC method of model
selection does not pick the model that would have had the best performance in
estimating the volatility for option pricing but indicates the model that would have had

the best performance in forecasting the one-day-ahead volatility. In the 4™ chapter we

_gm

have shown that Zt(i”u)t E(y”ﬂ(—m))/”m) is asymptotically standard normally distributed
t+10t

for all the considered volatility specifications. On the other hand, there is not a

uniform method to compare the models based on average variance over the lifetime

of the option because the distribution of 2('”) for s >1, is not common for all the

t+sft

12 Delta is the change in the option price for a given change in the stock price. An option is termed delta
neutral when the sum total of all the positive and negative deltas adds up to approximately zero. The
rate of return of a delta neutral trading strategy is indifferent to any change in the underlying stock
price. For more details on Delta see appendix 6.2 of the 6" chapter.

128



Chapter 6

ARCH models. However, our findings indicate that the models picked by the SPEC
algorithm appear to be at the same time the models that have had the best
performance in estimating volatility for option pricing. Therefore, we investigate the
gains from the use of the SPEC algorithm, a criterion that evaluates the one-step-

ahead volatility predictions, in pricing options with lifetime greater than one day.

Table 6.5. Daily rates of return from trading straddles on the S&P500 index based on the ARCH
models selected by the SPEC model selection algorithm. Applying the SPEC model selection

. T A . . . . . .
algorithm, thlzf't_l was estimated considering various values for T, and, in particular,

T= 5(5)80. l.e. SPEC(5) corresponds to the SPEC model selection algorithm for T =5.

Without transaction cost $2 transaction cost
Without filter Without filter $1.25 filter $1.75 filter
Model Selection Stand. t Stand. t Stand. t Stand. t
Method Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days

SPEC(5) 4.06% 17.84% 4.86 456 0.41% 17.42%0.50 456 0.73% 17.99% 0.83 416 0.80% 18.38% 0.86 395
SPEC(10) 4.05% 17.84% 4.84 456 0.40% 17.47% 0.48 456 0.74% 18.03% 0.84 414 0.83% 18.20% 0.92 401
SPEC(15) 4.04% 17.84% 4.83 456 0.38% 17.49% 0.47 456 0.86% 18.00% 0.97 414 0.96% 18.24% 1.06 398
SPEC(20) 3.92% 17.87% 4.68 456 0.27% 17.51% 0.33 456 0.83% 18.07% 0.93 412 0.92% 18.22% 1.01 400
SPEC(25) 4.04% 17.84% 4.84 456 0.39% 17.47% 0.48 456 0.96% 17.96% 1.08 414 1.10% 18.17% 1.21 399
SPEC(30) 4.06% 17.84% 4.86 456 0.41% 17.47% 0.50 456 0.88% 18.07% 0.99 413 0.91% 18.27% 0.99 396
SPEC(35) 3.87% 17.88% 4.62 456 0.22% 17.52% 0.27 456 0.82% 18.00% 0.93 412 0.94% 18.29% 1.02 394
SPEC(40) 3.96% 17.86% 4.73 456 0.31% 17.50% 0.37 456 0.90% 18.08% 1.01 407 0.99% 18.23% 1.08 395
SPEC(45) 3.70% 17.91% 4.41 456 0.04% 17.56% 0.05 456 0.88% 18.13% 0.98 406 0.97% 18.32% 1.05 392
SPEC(50) 3.69% 17.92% 4.40 456 0.04% 17.56% 0.05 456 0.67% 18.09% 0.75 411 0.78% 18.23% 0.85 399
SPEC(55) 4.17% 17.81% 5.00 456 0.52% 17.26% 0.64 456 0.73% 17.91% 0.82 406 0.94% 18.12% 1.03 392
SPEC(60) 3.84% 17.88% 4.59 456 0.19% 17.35% 0.24 456 0.50% 17.95% 0.56 407 0.69% 18.09% 0.76 396
SPEC(65) 4.11% 17.82% 4.92 456 0.46% 17.29% 0.57 456 0.65% 17.63% 0.76 414 0.79% 17.84% 0.89 401
SPEC(70) 4.12% 17.82% 4.94 456 0.47% 17.28% 0.58 456 0.55% 17.73% 0.63 411 0.67% 17.88% 0.75 401
SPEC(75) 4.08% 17.83% 4.89 456 0.43% 17.31% 0.53 456 0.80% 17.76% 0.91 404 0.89% 18.02% 0.98 391
SPEC(80) 3.81% 17.89% 4.55 456 0.16% 17.47% 0.20 456 0.54% 18.06% 0.60 404 0.64% 18.33% 0.69 391
$2 transaction cost

$2.00 filter $2.25 filter $2.75 filter $3.50 filter
Model Selection Stand. t Stand. t Stand. t Stand. t
Method Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days

SPEC(5) 0.78% 18.06% 0.85 384 1.04% 18.31% 1.09 370 1.23% 18.70% 1.23 351 2.00% 18.64% 1.95 329
SPEC(10) 0.92% 18.06% 1.01 394 1.01% 18.32% 1.07 382 1.24% 18.24% 1.29 363 1.53% 18.72% 1.50 334
SPEC(15) 1.15% 18.20% 1.24 387 1.20% 18.43% 1.26 377 1.04% 18.47% 1.07 362 1.44% 18.49% 1.42 331
SPEC(20) 1.07% 18.05% 1.17 395 1.16% 18.31% 1.24 383 1.02% 18.38% 1.06 366 1.31% 18.35% 1.32 338
SPEC(25) 1.30% 18.11% 1.42 389 1.36% 18.26% 1.46 382 1.35% 18.19% 1.42 367 1.57% 18.12% 1.60 342
SPEC(30) 1.10% 18.21% 1.19 386 1.20% 18.43% 1.27 376 1.30% 18.45% 1.33 358 1.52% 18.13% 1.55 342
SPEC(35) 1.12% 18.23% 1.21 384 1.21% 18.46% 1.26 374 1.21% 18.50% 1.23 356 1.59% 18.36% 1.59 338
SPEC(40) 1.17% 18.24% 1.25 382 1.31% 18.58% 1.35 367 1.32% 18.58% 1.33 351 1.78% 18.52% 1.75 330
SPEC(45) 1.12% 18.24% 1.20 383 1.23% 18.51% 1.28 371 1.20% 18.48% 1.22 356 1.60% 18.46% 1.58 334
SPEC(50) 0.77% 18.45% 0.83 389 1.02% 18.42% 1.08 378 1.09% 18.64% 1.10 356 1.42% 18.57% 1.41 337
SPEC(55) 0.98% 18.30% 1.05 383 1.05% 18.55% 1.09 372 1.20% 18.66% 1.21 356 1.50% 18.55% 1.49 338
SPEC(60) 0.68% 18.30% 0.73 386 0.71% 18.46% 0.75 379 1.11% 18.33% 1.15 358 1.23% 18.54% 1.23 341
SPEC(65) 0.83% 18.06% 0.91 390 0.92% 18.33% 0.97 377 1.62% 18.32% 1.65 352 1.55% 18.38% 1.56 339
SPEC(70) 0.70% 18.15% 0.76 388 0.79% 18.47% 0.83 373 1.17% 18.96% 1.15 347 1.47% 18.49% 1.45 333
SPEC(75) 0.92% 18.28% 0.97 379 0.98% 18.48% 1.02 370 1.27% 18.88% 1.26 349 1.44% 18.60% 1.40 327
SPEC(80) 0.86% 18.33% 0.91 378 0.97% 18.48% 1.01 371 1.06% 18.81% 1.07 356 0.92% 18.86% 0.90 334
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Applying the SPEC model selection algorithm, the sum of squared standardized one-

- T 4 . . .
step-ahead prediction errors, ZHZSH , was estimated considering various values

for T, and, in particular, T =5(5)80. Thus, it is assumed that there are 16 traders

each of which uses on each trading day, the ARCH model picked by the SPEC
algorithm to forecast volatility and straddle prices for the next trading day. Table 6.5
presents, for each trader following the SPEC model selection strategy, the net rate of
return from trading straddles on a daily basis. With transaction costs of $2 and a filter
of $3.5, the trader utilizing the SPEC algorithm with T =5 achieves the highest rate
of return. The agent based on the SPEC(5) forecast algorithm makes 2.00% per day
trading for 329 days, with a t-ratio of 1.95.

Table 6.6. Number of ARCH models selected by the SPEC(5) algorithm
for trading straddles on the S&P500 index with transaction costs of $2.00
and a $3.5 filter (11 March 1998 — 2 June 2000), classified by the types of

models considered for their conditional means and variances.

Type of Conditional Mean Model

ARO) AR(1)  AR(2) AR(3) AR(4) Total
GARCH(0,1) 27 6 4 4 4 45
GARCH(0,2) 1 4 4 6 15
GARCH(1,1) 7 2 1 2 9 21
< GARCH(1,2) 9 2 3 2 4 20
€  GARCH(2,1) 1 1 1 3
i GARCH(2,2) 5 3 2 10
8 TARCH(0,1) 1 2 3
8 TARCH(0,2) 2
S TARCH(1,1) 5 9 1 3 1 19
£ TARCH(L2) 12 2 3 2 19
§ TARCH(2,1) 2 6 9 5 24
< TARCH(2,2) 5 2 3 6 19
§ EGARCH(0,1) 16 12 2 10 1 41
F  EGARCH(02) 1 6 5 16 8 36
EGARCH(L,1) 1 2
EGARCH(1,2) 5 6 32
EGARCH(2,1) 8 1 1 3 2 15
Total 108 56 36 66 63 329

The models picked by the SPEC(5) algorithm are presented in Table 6.6. So,
for example, the model with AR(0) conditional mean and GARCH(0,1) conditional
variance was picked on 27 trading days. The selection algorithm chooses higher
orders of the conditional mean autoregressive process for half the number of trading

days. As concerns the conditional variance function, the GARCH, E-GARCH and
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TARCH models are suggested as the most suitable in the 35%, 27%, and 38% of the
cases, respectively. Consequently, the SPEC algorithm does not appear to be
noticeably biased towards selecting a specific type of model.

In order to compare the strategy performances over the entire sample, agents
are assumed to invest at the risk free rate when they do not trade. Thus, the net rate

of return is now computed as:

Ct i Pt(;Ct_lF: Pt_l X Jif Ct(ltr—)l + Ptl(tr—)l _Ct—l - Pt—l > Fil
t—1+ t-1
Cu+P,-C,-R-X :
NRT, = {1 (t:—l . FtJ 2 tr, LifC+ P, —CYL -PC > F, (6.6.1)
t-1 t-1 .
rf, , otherwise.

For X =%$2.00 and F, =$3.50, the trader using the AR(3)GARCH(0,2)

forecasts makes a daily profit of 1.35% with a corresponding standard deviation of
15.24% and a t-ratio of 1.89 (or p-value 0.06). On the other hand, the agent that
follows the SPEC(5) model selection algorithm achieves a profit of 1.46% per day
with a corresponding standard deviation of 15.85% and a t-ratio of 1.97 (or p-value
0.05). Even marginally, the SPEC(5) model selection algorithm achieves higher
cumulative returns than those of any other trader who is based only on a single
ARCH model. Moreover, a t-ratio of 1.97 indicates that profits from the SPEC(5)
algorithm are significantly different from zero. Thus, the SPEC model selection
algorithm has a satisfactory performance in selecting those models that generate

better volatility predictions.

6.7. Trading Straddles Based on Other Methods Of Model

Selection

As we already mentioned in the 5" chapter, most of the methods used in the
time series literature for selecting the appropriate model are based on evaluating the
ability of the models to describe the data. Standard model selection criteria such as
the AIC and the SBC information criteria have widely been used in the ARCH
literature. In addition, the evaluation of loss functions for alternative models is mainly
used in model selection. When the focus is mainly on estimation of means, the loss
function of choice is typically the mean squared error. However, when the same
strategy is applied to variance estimation, the choice of the mean squared error is
much less clear. Because of high non-linearity in volatility models a number of

researchers constructed heteroscedasticity adjusted loss functions. Denoting the
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forecasting variance over an N day period measured at day t by

N
oiny=N'Y> 6%, ., and the realized variance over the same period by
i=1

N

Sin) = N‘lz yZ,, a set of statistical criteria to measure the closeness of the
i=1

forecasts to the realizations were presented in Table 5.5 of the 5" chapter.

Applying the SPEC model selection algorithm, the sum of squared
standardized one-step-ahead prediction errors, z::létft_l/&flt_l, was estimated

considering various values for T . Therefore, each of the model selection criteria, in
Table 5.5 of the 5" chapter, was computed considering various values for T, and, in
particular, T =10(10)80. The AIC and SBC criteria were computed based on the
rolling sample of constant size equal to 500 that is used at each time to estimate the
parameters of the models. Selecting a strategy based on any of several competing
methods of model selection naturally amounts to selecting the ARCH model that, at

each of a sequence of points in time, has the lowest value of the evaluation function.

Table 6.7. Daily rate of return from trading straddles on the S&P500 index based on
the SPEC model selection algorithm and the ARCH model selection algorithms with
transaction costs of $2.00 and a $3.5 filter. The column “sample size” refers to the
sample size, T, for which the corresponding model selection algorithm leads to the
highest rate of return. Agents are assumed to invest at the risk free rate when they

do not trade. The net rate of return is computed as in equation (6.6.1).

Trans. Cost — Mod_el Sample .

Filter Selection size Mean Stand. Dev. t-ratio Days

Method

$2.00 -$3.50 SPEC T=5 1.46% 15.85% 1.97 456
$2.00 -$3.50 AIC - 0.90% 15.57% 1.23 456
$2.00 -$3.50 SBC - 1.06% 15.93% 1.42 456
$2.00 -$3.50 SEVar T=40 0.61% 16.34% 0.80 456
$2.00 -$3.50 AEVar T=60 0.76% 15.82% 1.03 456
$2.00 -$3.50 SEDev T=60 0.74% 16.29% 0.97 456
$2.00 -$3.50 AEDev T=60 0.81% 15.96% 1.08 456
$2.00 -$3.50 HASEVar T=10 1.10% 15.98% 1.47 456
$2.00 -$3.50 HAAEVar T=40 1.24% 16.12% 1.65 456
$2.00 -$3.50 HASEDev T=20 0.90% 16.32% 1.18 456
$2.00 -$3.50 HAAEDev T=30 1.12% 16.47% 1.45 456

$2.00 -$3.50 LEVar T=80 0.75% 15.92% 1.00 456

132



Chapter 6

Assuming that the agents invest at the risk free rate when they do not trade, Table
6.7 presents the daily rate of returns from trading straddles on the S&P500 index
based on the ARCH models selected by the 11 model selection methods presented
in this section. Detailed tables for the daily rate of return from trading straddles based
on the ARCH models selected by the 11 model selection methods are presented in
Tables 6.8 to 6.17, in the Appendix 6.1. After transaction costs of $2, the agents
based on the HASEVar, HAAEVar, HASEDev and HAAEDev criteria achieve the
higher returns. Moreover, a trader who selects the volatility forecasts models
according to the standard model selection criteria, SBC and AIC, makes a cumulative
profit higher than in the case he/she would select ARCH models based on the
heteroscedasticity unadjusted and logarithmic error functions. However, in none of
the cases, the daily returns came out to be significantly different from zero (according
to the t-ratios of Table 6.7) or higher than the returns achieved by the SPEC
algorithm.

The net rate of return is computed according to equation (6.6.1). The SPEC
model selection algorithm, for T =5, leads to the highest profit of 1.46% per day and
a t-ratio of 1.97. Of the remaining model selection criteria considered in this section,
the HAAEVar selection algorithm, for T =40, yielded the highest daily profit (1.24%)
with a corresponding standard deviation of 16.12% and a t-ratio of 1.65. Thus, none
of the model selection algorithms considered appears to lead to daily returns that are
higher than the returns attained using the SPEC algorithm. Even the
AR(3)GARCH(0,2) model, which yields a daily profit of 1.35%, achieves a higher rate
of return than that of the models picked by the other model selection criteria. This is
an indication of the superiority of the SPEC algorithm over the other methods in the
ability to select the models that would produce accurate volatility estimations for

option pricing predictions.

6.8. Discussion

Selecting a model that can produce accurate volatility predictions for pricing
next day’s options is an intriguing problem. In this chapter, a number of single ARCH
model-based methods of predicting volatility were compared to poly-model SPEC
algorithm method in terms of profits from trading real options of the S&P500 index
returns. Over the March 1998 to June 2000 period, forecasts of option prices were
calculated by feeding the volatility estimated by the ARCH models into the BS option
pricing model, which is commonly used in option exchanges worldwide despite the

fact that it assumes a constant variance for the rate of return. Actually, as in the case

133



Chapter 6

of Noh et al.’'s (1994) study, our results imply that option prices can be predicted
even with the use of a misspecified model if asset volatilities can be predicted. The
results of our study showed that the SPEC algorithm outperformed all of the single
ARCH model-based methods as well as a set of other methods of model selection.
Moreover, in the 7" chapter we make a comparative study among a set of
ARCH model selection algorithms in order to examine which method yields the
highest profits by trading straddles, in a simulated options market, based on variance
forecast option prices. The simulated option market was considered to avoid the bias
induced by the use of actual option prices. The results also showed that the SPEC
algorithm for T =5 achieved the highest rate of return. One may therefore infer that
the evidence is rather in support of the assumption that the increase in profits is due
to improved volatility prediction and that the SPEC model selection algorithm offers a
potential tool in picking the model that would yield the best volatility prediction. If the
increase in profits were random, the SPEC algorithm would not achieve the highest
profits in both the simulated market and in the present study that is based on real

world options data.
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Chapter 7
Evaluating Volatility Forecasts in Option
Pricing in the Context of a Simulated Options
Market

7.1. Introduction

The evaluation of the SPEC algorithm is performed by comparing different
volatility forecasts in option pricing through the simulation of an options market.
Traders employing the SPEC model selection algorithm use the model with the
lowest sum of squared standardized one-step-ahead prediction errors for obtaining
their volatility forecast. The cumulative profits of the participants in pricing one-day
index straddle options always using variance forecasts obtained by GARCH,
EGARCH and TARCH models are compared to those made by the participants using
variance forecasts obtained by models suggested by the SPEC algorithm. The
straddles are priced on the S&P500 index. It is concluded that traders, who base
their selection of an ARCH model on the SPEC algorithm, achieve higher profits than
those, who use only a single ARCH model. Moreover, the SPEC algorithm is
compared with other criteria of model selection that measure the ability of the ARCH
models to forecast the realized intra-day volatility. In this case too, the SPEC
algorithm users achieve the highest returns. Thus, the SPEC model selection method
appears to be a useful tool in selecting the appropriate model for estimating future
volatility in pricing derivatives.

In this chapter, inspired by Engle et al’s (1993) approach to assess
incremental profits for a set of competing forecasts of the variance for a given
portfolio, we examine the usage of the SPEC model selection algorithm, in pricing
contingent claims. The goal of the present chapter is to evaluate the SPEC algorithm
for volatility model selection through the simulation of an options market. In particular,
section 7.2 presents Engle et al.’s (1993) data generated set-up of evaluating
volatility forecasts. In sections 7.3 and 7.4, based on Engle et al.’s (1993) technique,
the suggested model selection method is evaluated using daily return data for the
S&P500 stock index over the period from June 26™, 1991 to October 18", 2002. The
use of a model selection method is a tedious procedure as it presupposes the
estimation of a set of models. In order to examine whether there is any added value

in using the suggested model selection algorithm instead of any other method of

135



Chapter 7

using only a single ARCH model in the study, the performance of the SPEC algorithm
in investigated against a set of such methods for a range of ARCH models. The
results of section 7.3 provide evidence that this is indeed the case since they indicate
that the SPEC model selection algorithm offers a useful tool in providing information
related to the appropriate model. In section 7.4, the algorithm is compared with other
methods of model selection. In particular, model selection criteria that measure the
accuracy of the models to predict the realized volatility are constructed. The SPEC
method is then compared with those model selection methods. Clearly, the SPEC
algorithm outperforms all of the other methods of model selection considered.
Samples of 500 and 2000 observations were also considered, in the 7.5 section,
leading to similar findings, thus demonstrating that the results of the simulation study
are not appreciably affected by the sample size. Finally, in section 7.6 a brief

discussion of the results is provided.

7.2. Evaluation of Variance Forecasts with Simulated

Option Prices

As Engle et al. (1997 p.120) noted, “a natural criterion for choosing between
any pair of competing methods to forecast the variance of the rate of return on an
asset would be the expected incremental profit from replacing the lesser forecast with
the better one”. Engle et al. (1993) considered evaluating variance forecasts of the
NYSE index using generated index option prices instead of actual ones, thus
avoiding the perennial problems inherent in observed option prices. The wildcard
delivery option on cash-settled options (the right of an option buyer to exercise up an
option at the closing price for a period of time after the close of stock market), the
existence of bid-ask spread and transaction costs, the non-synchronous coexistence
of option and stock prices, are some of the difficulties that are induced in empirical
studies by the use of the actual index-option prices. In particular, Engle et al. (1993)
used a set of competing methods to generate alternative daily forecasts for the
variance of the returns on the NYSE index and applied these forecasts to price one-
day options on $1 shares of the NYSE index. The moving average variance, the
ordinary least squares, the ARMA(1,1) in the squared residuals and the GARCH(1,1)
models were applied for three sample lengths of i) 300 days, ii) 1000 days, and iii)
5000 days. The four models and the three sample lengths produce 12 variance
forecasts predicting methods. To these, Engle et al. (1993) added 3 more predicting
methods by considering the average of all daily forecasts, the daily minimum and the
daily maximum forecasts. As reported by Kane and Marks (1987), the average of
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conditionally independent forecasts converges rapidly to a perfect forecast, so that
any failure of the average forecast might be indicative of departures from quality and
conditional independence of the individual forecasts. As a check for the presence of
bias, Engle et al. (1993) added the minimum and maximum of the daily forecasts. So,
for example, in case of a significant downward bias, the maximum forecast will beat
the minimum forecast and all of the individual forecasts that are more severe biased.

Each agent applies a variance-forecast method and trades one-day options

on a $1 share of the NYSE portfolio. The exercise price is taken to be exp(rft). Thus,

for S, =1, z=1, K =exp(rf,), G%t =GOy Ct(ﬂit =Ciyq and Pt%t = Py » the Black

t+
& Scholes option pricing formula (equation 6.2.1 in chapter 6) reduces to:
Cog =Py = 2N(0'56t+iut)_l' (7.2.1)

The way in which the simulated options market operates is the following: The
daily differences in the variance forecasts of the various methods considered lead to
different reservation prices for one-day options on the index considered. These, in
turn, trigger option trading among fictitious agents, each using one of the forecast
methods considered. A trader with a higher (or lower) variance forecast and, hence,
with a higher (or lower) reservation price for the option would buy (or sell) a straddle
on a $1 share of index considered from any of the remaining traders with lower (or
higher) reservation prices for the option. A straddle option is the purchase (or sale) of
both a call and a put option, of the underlying asset, with the same maturity day. The
straddle trading is used because a straddle, that has its stock price equal to the
exercise price, is Delta neutral. Delta® is the change in the option price for a given

change in the stock price:

oc
Aca :g:e 7 N(d1)>0’
and
oP _,
ot =55 =€ 7(N(d,)-1)<0.
The day t payoff to agent i from holding the straddle is:
7, = max(exp(y, ) —exp(r, ). exp(r, )— exp(y, ), (7.2.2)

which is identical for each agent. A trade between two agents, i and i", is executed

at the average of the reservation prices of the two agents, that is, at the bid/ask

! Delta, Lambda, Gamma, Theta, Vega and Rho comprise the option sensitivities and represent the key
relationships between the individual characteristics of the option and the option price. For more details
on options sensitivities see appendix 6.2 of the 6" chapter.
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prices. The transaction that is executed at the average of the bid and ask price,

yields to agent i a profit given by

) _ {ﬂm (Coin Ct+m,(i*)) for Ceoi > Cogefr)

) : (7.2.3)
. (Cmn,(i) +C AT for Ct+1jt,(i) <C

t+ut,(i*) t+1]t,(i*)

In Engle et al. (1993), the GARCH(1,1) forecast method achieves the highest
cumulative profits for the three sample lengths. Moreover, the GARCH(1,1) method
for a rolling sample of 1000 observations yields the highest profit, dominating even

the average of all variance forecast methods.

7.3. Evaluating the SPEC Model Selection Algorithm on

Simulated Options

In the 5™ chapter, a number of statistical evaluation criteria were applied in
order to examine the ability of the SPEC model selection algorithm to select the
ARCH model that best predicts future volatility, for forecast horizons ranging from
one day ahead to one hundred days ahead. The results showed that the SPEC
model selection procedure has a satisfactory performance in selecting that model
that generates “better” volatility predictions. Moreover, in the 6™ chapter we made a
comparative study among a set of ARCH model selection algorithms in order to
examine which method yields the highest profits in straddle trading based on volatility
forecasts using actual option price data. The results showed that the SPEC algorithm
for T =5 achieved the highest rate of return.

In the sequel, the performance of the SPEC algorithm as an ARCH model
selection criterion is evaluated in the context of a simulated options market in order to
avoid biases induced by the use of actual index-option prices. In particular, following
Engle et al.’s (1993) approach, an economic criterion to evaluate the SPEC model
selection algorithm is adopted: the profit from variance forecasts in pricing one-day
index straddle options. A simulated market of option trading among 104 fictitious
agents is created, whereby traders use variance forecasts obtained by the models of
their choice to price a straddle on the S&P500 index for the next day. The
performance of the SPEC algorithm is evaluated through comparing the different
volatility forecasts. The comparison is performed on the basis of the cumulative
profits of traders each of which always uses volatility forecasts obtained by the same
GARCH, EGARCH or TARCH model on the one hand and cumulative profits by
traders using volatility forecasts obtained by models suggested by the SPEC criterion

on the other. So, traders can be thought of a having different “methods” or
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“strategies” for obtaining variance forecasts (amounting to the utilization of the
forecasts of a model at each point in time) and can be classified into two categories:
Those who choose to always use one and the same ARCH model and those who at
each point in time choose to use the ARCH model suggested by the SPEC algorithm.
The variance forecast methods that are compared are: 85 selection “methods”
(strategies), one for each of 85 ARCH models, each amounting to the utilization of
the forecasts of the same model at any point in time, the SPEC model selection
algorithm for 16 different sample sizes, the average, the minimum and the maximum
of all daily forecasts methods.

The data set consists of S&P500 stock index daily returns in the period from
June 26th, 1991 to October 18th, 2002, totally 2853 trading days.

th

The conditional mean is considered as a k' order autoregressive process:

Yo = 4y + 2,04,
=S+ 2 (C ), (7.3.1)
i=1
iid.
z, ~ N(0,1) .

Usually, the conditional mean is either the overall mean or a first order
autoregressive process. Theoretically, the AR(l) process allows for the
autocorrelation induced by discontinuous (or non-synchronous) trading in the stocks
making up an index. For more details on non-synchronous trading see section 2.1.3
of the 2" chapter.

The conditional variance is regarded as a GARCH( p,q), an EGARCH( p,q)
and a TARCH( p,q) function in the forms of (5.2.4), (5.2.5) and (5.2.6) of the 5"
chapter, respectively. Thus, the AR(x)GARCH( p,q), AR(x )EGARCH(p,q) and
AR(x)TARCH( p,q) models are applied, for k¥ =0,...,.4, p=0,1,2 and =12,
yielding a total of 85 cases. Numerical maximization of the log-likelihood function, for
the E-GARCH(2,2) model, frequently failed to converge. So the five E-GARCH
models for p=q=2 were excluded. Maximum likelihood estimates of the
parameters are obtained by numerical maximization of the log-likelihood function
using the Marquardt algorithm (Marquardt (1963)). The quasi-maximum likelihood
estimator (QMLE) is used, as according to Bollerslev and Wooldridge (1992), it is
generally consistent, has a limiting normal distribution and provides asymptotic
standard errors that are valid under non-normality. The one step-ahead volatility

forecasts of the models are:
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One-step-ahead forecast of the GARCH(p,q) model

O-t+11t = aO + Z( |+1) Z(bi(t)atz—nl)' (732)

i=1

One-step-ahead forecast of the EGARCH(p,q) model

55+m‘e><p( Z( ("”D+i( 'n(afm))} (7.3.3)

t-i+l l
One-step-ahead forecast of the TARCH(p,q) model

t+]1t a-0 +Z( t|+1)+7 & ‘d +Z( t|+l) (7.3.4)

i=1

t i+1

Otin

where d, =1 if ¢ <0, and d, =0 otherwise. The ARCH processes are estimated
using a rolling sample of constant size equal to 1000. Thus, the first one-step-ahead
volatility prediction, oA'tim , is available at time t =1000.

The SPEC model selection algorithm is applied for various values of T , and,

in particular, for T =5(5)80. Let us consider the set of M candidate ARCH models

of the form,
Yo =X p 4 ),
where
5t(m) - Zl,tat(m)1
ii~dN(o,l)
and
o™ = g(O'tz_(lm) o O'tz_(r;) Ledm gtz_(g‘), o™ o™ ,)
where the superscript m refers to model m, m=1, 2, ..., M. Assume that, at each of a

series of points in time, we are interested in looking for the most suitable of the M
competing models for obtaining a volatility forecast. According to the SPEC model
selection algorithm, the model with the lowest sum of squared standardized one-
step-ahead prediction errors is considered as having a better ability to predict the
conditional variance of the dependent variable. Thus, at time k, selecting a strategy

for the most appropriate model to forecast volatility at time k+1 (k=T,T +1,...)

could naturally amount to selecting the model, which, at time k , has the lowest value

k
of standardized one-step-ahead prediction errors, Zif(m) = Zéflt”l /th .
t=k-T+1 t=k-T+1

estimation steps comprising the SPEC model selection algorithm are summarized in
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Table 5.1 in chapter 5. Thus, based on the SPEC model selection algorithm, sixteen

agents are assumed to take part in the simulated options market.

Table 7.1
The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices.
T- T-

Rank Algorithm Profit Ratio Rank Algorithm Profit Ratio Rank Algorithm Profit T-Ratio
1 SPEC(T=5) 22.34% 676 36 AR(2EGARCH(2,1) 8.71% 4.12 71  AR(2)GARCH(1,2)  -4.69% -1.77
2 SPEC(T=10) 20.09% 6.64 37 AR(O)EGARCH(2,1) 8.64% 398 72  AR(4)GARCH(12)  -5.04% -1.85
3 SPEC(T=15) 17.94% 653 38 AR(4EGARCH(1,1) 844% 436 73 AR(0O)EGARCH(0,2) -6.45% -1.89
4 SPEC(T=25) 1658% 670 39  ARMA)TARCH(1,2) 811% 336 74 AR(1)EGARCH(0,2) -6.90% -2.02
5 SPEC(T=20) 16.56% 6.49 40  AR(0)TARCH(1,1) 7.80% 358 75 AR(2EGARCH(0,2) -7.20% 2,11
6  AR(O)EGARCH(1,2) 14.44% 549 41 AR(1EGARCH(2,1) 7.62% 369 76 AR(3)EGARCH(0,2) -7.60% -2.24
7 SPEC(T=50) 14.42% 635 42 AR(3)EGARCH(2,1) 7.53% 371 77 AR(4EGARCH(0,2) -7.83% -2.31
8 SPEC(T=40) 14.29% 591 43  AR(O)TARCH(2,1) 7.26% 3.33 78 MAXIMUM -10.38% -2.27
9 SPEC(T=30) 13.93% 5.78 44 ARA)EGARCH(2,1) 6.87% 344 79  AR(O)TARCH(0,2)  -11.66% -4.01
10 SPEC(T=45) 1385% 573 45  AR(QTARCH(1,1) 6.72% 301 80  AR(QTARCH(0,2) -12.18% -4.19
11 SPEC(T=35) 13.80% 5.69 46  AR(LTARCH(1,1) 650% 2.82 81  AR(3)TARCH(0,2) -12.57% -4.26
12 SPEC(T=80) 1349% 575 47  AR(2TARCH(2,1) 6.14% 287 82  AR(LTARCH(0,2) -12.69% -4.35
13 SPEC(T=55) 13.10% 556 48  AR(1)TARCH(2,1) 6.02% 275 83  AR@4)TARCH(0,2)  -13.00% -4.30
14 SPEC(T=70) 13.04% 548 49  ARG)TARCH(2,1) 591% 282 84  AR(0)GARCH(0,2)  -13.35% -4.48
15 SPEC(T=60) 12.84% 543 50  AR(3)TARCH(1,1) 5.61% 260 85  AR(1)GARCH(0,2) -13.80% -4.66
16 SPEC(T=65) 12.70% 5.39 51  AR@TARCH(1,1) 554% 256 86  AR(2)GARCH(0,2)  -13.84% -4.66
17 AR(0)TARCH(2,2) 12.61% 565 52  AR(TARCH(2,1) 465% 225 87  AR(3)GARCH(0,2)  -14.29% -4.72
18  AR(1)EGARCH(1,2) 1254% 4.88 53  AR(0)GARCH(2,1) -0.49% -0.19 88  AR(4)GARCH(0,2) -14.33% -4.64
19  AR(2EGARCH(1,2) 12.44% 496 54  AR(0)GARCH(1,2) -0.66% -0.27 89 AR(0O)EGARCH(0,1) -16.93% -5.43
20 AR(3)EGARCH(1,2) 12.12% 4.88 55  AR(0)GARCH(2,2) -0.68% -0.27 90 AR(1)EGARCH(0,1) -17.79% -5.61
21 SPEC(T=75) 12.02% 5.11 56  AR(0)GARCH(1,1) -150% -059 91 AR(2EGARCH(0,1) -17.91% -5.59
22  AR(4)EGARCH(1,2) 12.01% 4.82 57  AR(1)GARCH(2,1) -159% -0.60 92 AR(3)EGARCH(0,1) -18.22% -5.68
23  AR(O)EGARCH(1,1) 11.32% 541 58  AR(3)GARCH(2,2) -1.89% -0.71 93  AR(4)EGARCH(0,1) -18.27% -5.68
24  AR(1)TARCH(2,2) 11.04% 495 59  AR(1)GARCH(2,2) -1.94% -0.74 94  AR(0)GARCH(0,1)  -20.26% -6.39
25  AR(0)TARCH(1,2) 10.88% 452 60  AR(QGARCH(2,1) -1.99% -0.75 95  AR(1)GARCH(0,1)  -20.49% -6.35
26  AR(2TARCH(2,2) 10.74% 4.88 61  AR(3)GARCH(2,1) -2.00% -0.75 96  AR(2GARCH(0,1)  -20.89% -6.45
27  AR(2EGARCH(1,1) 10.69% 531 62  AR(2GARCH(2,2) -2.62% -1.00 97  AR(3)GARCH(0,1) -21.10% -6.45
28 AR(2TARCH(1,2) 10.31% 417 63  AR(1)GARCH(1,2) -2.70% -1.03 98  AR(0)TARCH(0,1)  -21.29% -6.84
29  AR(1)EGARCH(1,1) 10.24% 4.89 64  AR@)GARCH(2,1) -272% -1.02 99  AR(4)GARCH(0,1) -21.64% -6.54
30  AR(3)TARCH(2,2) 10.05% 4.68 65  AR(1)GARCH(1,1) -3.22% -1.26 100  AR(1)TARCH(0,1)  -21.90% -6.94
31  AR@ATARCH(2,2) 941% 431 66  AR(3)GARCH(1,1) -3.29% -1.24 101  AR(2TARCH(0,1)  -22.00% -6.95
32 AVERAGE 9.28% 9.33 67  AR(2)GARCH(1,1) -3.63% -1.40 102  AR(3)TARCH(0,1)  -22.24% -7.08
33  ARQ)EGARCH(1,1) 9.23% 472 68  AR(@)GARCH(1,1) -3.64% -1.37 103  AR(4)TARCH(0,1)  -22.25% -7.02
34  AR()TARCH(1,2) 8.94% 353 69  AR(4)GARCH(22) -3.65% -1.37 104 MINIMUM -37.99% -8.20
35 AR(3)TARCH(1,2) 8.89% 377 70  AR(@)GARCH(1,2) -4.28% -1.62

Each agent, who follows the SPEC algorithm, selects the ARCH model with

the lowest sum of T squared standardized one-step-ahead prediction errors,

Ztll 2t2|t—l , in order to forecast next day’s variance. As in Engle et al. (1993), three

more daily forecasts are added: the average of all daily forecasts, the daily minimum

and daily maximum forecasts. In the sequel, the resulting forecast methods will be
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referred to as the AVERAGE, the MINIMUM and the MAXIMUM method,
respectively.

Thus, the simulated options market that has been created is comprised by
104 competitors. Each trader applies a trading strategy for the period ranging from
October 4™ 1995 to October 18", 2002 on the S&P500 index, totally 1773 trading
days. For 1773 trading days and 104 agents, the ith agent’s daily profit per straddle

is computed as:

70 =SS £60) 108)1773), (7.3.5)

Any method that yields superior profits relative to the AVERAGE method
appears more suitable in predicting volatility for pricing contingent claims. Table 7.1
presents the profits per competitor per straddle and the corresponding t-ratios (ratio
of average daily profit to its standard deviation divided by the square root of the
trading days). The agents based on the SPEC model selection algorithm clearly
outperform the others. All the SPEC model selection based algorithms achieve
returns higher than the AVERAGE method. The highest annualized daily returns are
achieved by the SPEC(5) model selection algorithm, which is in accordance to
previous chapter’s results.

Moreover, the agents that employ the SPEC model selection algorithm rank
at the sixteenth of the twenty-two top positions. The MINIMUM forecast takes the last
positions and the MAXIMUM forecast achieves negative and statistically significant
returns, an indication that neither a downward nor an upward forecast bias, that could
affect profits significantly, is present. It is interesting to note that the EGARCH(1,2)
and the TARCH(2,2) model selection algorithms perform distinctly better that the
remaining ARCH models. The more flexible models, which account for the leverage

effect and have a higher order of p,q, outperform the parsimonious models (i.e.

GARCH(0,1), TARCH(0,1) and EGARCH(0,1)). Degiannakis (2004), Giot and
Laurent (2003), Hansen and Lunde (2003) and Vilasuso (2002), among others, have
found that more flexible models beat the forecasting ability of the parsimonious ones.
Of course, as the number of candidate models increases, the probability of finding
models with superior predictive ability will increase as well. Note that in our
simulation study, we include 3 conditional variance specifications and in the 2"
chapter we have presented 31 conditional variance specifications in the context of
the ARCH framework. However, the investigation of the SPEC algorithm
performance with a set of more flexible ARCH models, which account for recent

developments in the area of asset returns volatility, is suggested for further research.
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Table 7.2

Ranks of the methods based on the SPEC model selection algorithm and of the AVERAGE method by

dropping out the least profitable agent at a time.

Algorithm
N“g‘fber SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC , wo .-
ragqers (T=8) (T=10) (T=15) (T=20) (T=25) (T=30) (T=35) (T=40) (T=45) (T=50) (T=55) (T=60) (T=65) (T=70) (T=75) (T=80)
104 1 2 3 5 4 9 11 8 10 6 12 15 17 14 22 13 31
103 1 2 3 5 4 9 100 8 11 6 12 15 17 14 22 13 32
102 1 2 3 5 4 9 100 7 11 6 12 15 17 14 21 13 32
101 1 2 3 5 4 9 100 7 11 6 12 15 17 14 21 13 32
100 1 2 3 5 4 9 100 7 11 6 12 14 17 15 21 13 32
95 1 2 3 5 4 9 100 6 11 7 12 14 17 15 21 13 35
90 1 2 3 5 4 9 100 7 11 8 12 14 17 16 21 13 36
85 1 2 3 4 5 9 100 7 11 8 12 15 18 16 21 13 37
80 1 2 3 4 5 9 100 7 11 8 12 15 18 16 22 14 40
75 1 2 3 4 5 8§ 10 7 11 9 13 15 18 16 23 14 4
70 1 2 3 5 4 8 10 7 11 9 13 14 17 16 22 15 4
65 1 2 3 5 4 8 9 7 11 10 13 14 18 16 23 15 42
60 1 2 3 5 4 8 9 7 11 10 13 14 17 16 23 15 43
55 1 2 3 5 4 8 9 7 11 10 13 14 15 16 24 17 43
50 1 2 3 5 4 7 9 8 12 10 14 13 15 17 24 18 43
45 1 2 3 5 4 8 9 7 11 10 13 14 15 17 24 18 42
40 1 2 3 5 4 8 9 7 11 10 12 13 15 16 21 17 39
35 1 2 3 5 4 8 9 7 11 10 12 13 15 17 22 19
30 1 2 4 5 3 9 8 7 11 10 13 12 14 17 21 19
25 1 2 4 5 3 9 7 8 10 11 13 12 15 18 22 19
20 1 2 3 5 4 10 7 8 9 11 13 12 17 19 20
15 1 2 3 5 4 9 7 8 10 12 13 11
14 1 2 3 5 4 10 7 8 12 13 11
13 1 2 3 5 4 10 7 9 8 12 13 11
12 1 2 3 5 4 1 7 9 10 12 8
11 1 2 3 5 4 1 7 9 10 8
10 1 2 3 5 4 7 9 10 8
9 1 2 3 5 4 8 7 9
8 1 2 3 5 4 8 7
7 1 2 3 5 4 7
6 1 2 3 5 4
5 1 2 3 5 4
4 1 2 3 4
3 1 2 3
2 1 2

7.3.1 Ranking of Methods Dropping Out the Least Profitable Agent

An interesting question to investigate is whether the performance of the

SPEC algorithm is unaffected by the models that are included in the simulation. This
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is examined in the sequel by repeatedly running the simulation, each time having
dropped out the trader using the least profitable method and calculating the
cumulative profits of the remaining participating agents. If the performance of the
algorithm is not affected by the models considered, the profits of participants who
trade options using the SPEC algorithm should occupy the top places of the ranking.
The resulting ranks of the SPEC algorithm based methods and the AVERAGE
method are summarized in Table 7.2. The first column shows the number of
participants in each group and the rows present the ranking of the SPEC model
selection methods and the AVERAGE method within each group. As there are 104
traders, 103 groups are created. Although there are some slight changes in the rank,
the traders based on the SPEC model selection algorithm keep the first places in the
ranking. The SPEC(5) model selection algorithm achieves the highest returns in all
the cases, thus indicating that the forecasting ability is not sensitive to the models
that are used. On the other hand, the AVERAGE method deteriorates as the group
becomes smaller. An expected feature as the sample becomes smaller by dropping

out the least accurate forecasts.

7.3.2 Exercise Price and Relative Profits

Following Engle et al.’s (1993) approach, the sensitivity of agents’ profits to
exercise price is examined. Table 7.3 shows the ranking and cumulative profits of the
competitors trading one-day straddles with exercise prices equal to e® and e,
The call and put option prices are calculated as:

Gy =N (2(1— K)rf, +a§1|tJ_e(Kl)rft \ (2(1— K)rf,—o?y J

20,y 20y

7.3.6
and ( )

PH]Jt = Ct+14t +el -1,
for K=5,-3. The rank of the traders does not change significantly. So, the

cumulative profits in the simulated market are not sensitive to the exercise price that

is used.

7.4. Comparing Methods of Model Selection on Simulated

Options

The selection of the appropriate model is one of the most challenging areas in

statistical modeling. Usually, a researcher has to choose among a set of candidate
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models. Methods of model selection examine the ability of the models either to

describe or to forecast the variable under investigation.

Table 7.3
The rank and annualized daily profits of the competitors trading one-day straddles with different exercise prices.
Forecasts GSFK € o Forecasts GSFK € o Forecasts esm e o

Profit Rank Profit Rank Profit Rank Profit Rank Profit Rank Profit Rank
SPEC(T=5) 22.46% 1 22.52% 1 AR(1)GARCH(1,2) -2.48% 64 -247% 64 AR(1)TARCH(2,1) 595% 48 594% 48
SPEC(T=10) 2029% 2 20.34% 2  AR(QGARCH(L,2) -4.45% 71 -444% 71 AR(2TARCH(2,1) 6.12% 47 6.12% 47
SPEC(T=15) 17.84% 3 17.89% 3  AR(3)GARCH(1,2) -4.03% 70 -402% 70 AR(3)TARCH(2,1) 592% 49 591% 49
SPEC(T=20) 16.42% 5 16.46% 5  AR(4)GARCH(1,2) -4.77% 72 -477% 72 AR(4)TARCH(2,1) 4.63% 52 4.63% 52
SPEC(T=25) 16.50% 4 1653% 4  AR(0)GARCH(2,1) -0.23% 53 -0.22% 53 AR(O)TARCH(2,2) 12.69% 16 12.70% 16
SPEC(T=30) 13.81% 10 13.84% 9  AR(1)GARCH(2,1) -1.46% 57 -1.45% 57 AR(1)TARCH(2,2) 11.03% 24 11.03% 24
SPEC(T=35) 13.79% 11 13.82% 11 AR(2GARCH(2,1) -1.76% 60 -1.76% 60 AR(2TARCH(2,2) 10.79% 26 10.79% 26
SPEC(T=40) 14.21% 14.24% 8  AR()GARCH(2,1) -1.78% 61 -1.77% 61 AR(3)TARCH(2,2) 10.14% 29 10.14% 29
SPEC(T=45) 13.81% 13.83% 10 AR(4)GARCH(2,1) -2.44% 63 -2.44% 63 AR(4)TARCH(22) 9.50% 31 9.50% 31
SPEC(T=50) 14.40% 1441% 6  AR(0)GARCH(2,2) -0.36% 54 -0.35% 54 AR(0)EGARCH(0,1)-17.14% 89 -17.17% 89
SPEC(T=55) 13.41% 12 1343% 12 AR(1)GARCH(2,2) -1.67% 59 -1.66% 59 AR(1)EGARCH(0,1)-17.99% 90 -18.01% 90
SPEC(T=60) 12.83% 15 12.85% 15 AR(2GARCH(2,2) -2.33% 62 -2.32% 62 AR(2)EGARCH(0,1)-18.15% 91 -18.17% 91
SPEC(T=65) 12.55% 17 12.56% 17 AR(3)GARCH(2,2) -1.58% 58 -1.57% 58 AR(3)EGARCH(0,1)-18.44% 92 -18.47% 92
SPEC(T=70) 12.89% 14 12.90% 14 AR(4)GARCH(2,2) -3.33% 67 -3.33% 67 AR(4EGARCH(0,1)-18.52% 93 -18.55% 93
SPEC(T=75) 11.88% 22 11.89% 22 AR(0)TARCH(0,1) -21.45% 98 -21.47% 98 AR(0)EGARCH(0,2) -7.03% 73 -7.06% 73
SPEC(T=80) 13.34% 13 13.35% 13 AR(1)TARCH(0,1) -22.06% 100 -22.08% 100 AR(1)EGARCH(0,2) -7.48% 74 -7.50% 74
MINIMUM -38.14% 104 -38.24% 104 AR(2)TARCH(0,1) -22.13% 101 -22.15% 101 AR(2)EGARCH(0,2) -7.78% 75 -7.81% 75
MAXIMUM -1043% 78 -10.30% 78 AR(3)TARCH(0,1) -22.38% 102 -22.40% 102 AR(3)EGARCH(0,2) -8.20% 76 -8.22% 76
AVERAGE 9.46% 32 9.46% 32 AR(4)TARCH(0,1) -22.39% 103 -22.42% 103 AR(4)EGARCH(0,2) -8.47% 77 -8.50% 77
AR(0)GARCH(0,1) -20.47% 94 -20.49% 94 AR(0)TARCH(0,2) -11.33% 79 -11.35% 79 AR(0)EGARCH(1,1) 11.15% 23 11.16% 23
AR(1)GARCH(0,1) -20.70% 95 -20.72% 95 AR(1)TARCH(0,2) -12.38% 82 -12.41% 82 AR(1)EGARCH(1,1) 10.07% 30 10.07% 30
AR(2)GARCH(0,1) -21.05% 96 -21.07% 96 AR(2TARCH(0,2) -11.92% 80 -11.95% 80 AR(2EGARCH(1,1) 10.52% 27 10.52% 27
AR(3)GARCH(0,1) -21.26% 97 -21.29% 97 AR()TARCH(0,2) -12.26% 81 -12.28% 81 AR(3)EGARCH(1,1) 9.12% 33 9.12% 33
AR(4)GARCH(0,1) -21.82% 99 -21.85% 99 AR(4)TARCH(0,2) -12.68% 83 -12.70% 83 AR(4)EGARCH(1,1) 8.34% 38 8.34% 38
AR(0)GARCH(0,2) -12.95% 84 -12.97% 84 AR(0)TARCH(1,1) 7.68% 40 7.68% 40 AR(0)EGARCH(1,2) 14.32% 7 14.33% 7
AR(1)GARCH(0,2) -13.43% 85 -13.45% 85 AR(1)TARCH(1,1) 6.39% 46 6.39% 46 AR(1)EGARCH(1,2) 12.38% 18 12.39% 18
AR(2)GARCH(0,2) -1351% 86 -1354% 86 AR(2TARCH(1,1) 6.70% 45 6.70% 45 AR(2EGARCH(1,2) 12.32% 19 12.33% 19
AR(3)GARCH(0,2) -13.91% 87 -13.94% 87 AR(3)TARCH(1,1) 556% 50 5.56% 50 AR(3)EGARCH(1,2) 12.03% 20 12.04% 20
AR(4)GARCH(0,2) -13.96% 88 -13.98% 88 AR(4)TARCH(1,1) 5.39% 51 5.38% 51 AR(4)EGARCH(1,2) 11.94% 21 11.95% 21
AR(0)GARCH(1,1) -1.32% 56 -1.31% 56 AR(0)TARCH(1,2) 10.80% 25 10.81% 25 AR(0)EGARCH(2,1) 851% 37 852% 37
AR(1)GARCH(1,1) -3.03% 65 -3.02% 65 AR(1)TARCH(1,2) 892% 35 8.93% 35 AR(1)EGARCH(2,1) 7.51% 41 7.50% 41
AR(2)GARCH(1,1) -3.44% 68 -343% 68 AR(TARCH(1,2) 10.37% 28 10.37% 28 AR(2EGARCH(2,1) 8.64% 36 8.64% 36
AR(3)GARCH(1,1) -3.10% 66 -3.09% 66 AR()TARCH(1,2) 899% 34 898% 34 AR(3EGARCH(2,1) 7.42% 42 7.42% 42
AR(4)GARCH(1,1) -3.44% 69 -3.44% 69 AR(4)TARCH(1,2) 817% 39 8.17% 39 AR(4)EGARCH(2,1) 6.81% 44 6.81% 44
AR(0)GARCH(1,2) -0.40% 55 -0.40% 55 AR(O)TARCH(2,1) 7.12% 43 7.12% 43

The Akaike information criterion (Akaike (1973)) and the Schwarz Bayesian criterion

(Schwarz (1978)) are model selection methods that are based on the maximized

value of the log-likelihood function and evaluate the ability of the models to describe

the data. In the case we are interesting in using a model for forecasting, the
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evaluation of the models would naturally be based on their ability to produce valuable
forecasts. Loss functions, which measure either the distance between actual and
predicted values or the benefit from the use of these forecasts, are used to evaluate
the forecasting ability of the models. Poon and Granger (2003) reviewed a detailed
record of volatility forecasting loss functions and relative references.

In the sequel, the SPEC model selection algorithm is compared with other
criteria of selection that measure the ability of the models to forecast volatility again

on the basis of the profits of the participants in a simulated options market. Denoting
the realized at time t+1 by s/, the following loss functions were considered:

1. Mean Square Error of Variance (MSEV):

Ty (62, —s2) . (7.4.2)

t=1
2. Mean Absolute Error of Variance (MAEV):

2
— St

T y

t=1

(7.4.2)

3. Mean Square Error of Deviation (MSED):

T IZ(GH]H t+1) : (7.4.3)

t=1

4. Mean Absolute Error of Deviation (MAED):

T y

t=1

(7.4.4)

St+l :

5. Heteroscedasticity Adjusted Mean Squared Error of Variance (HAMSEV):

T
T 12( t+1 Gt+1|t )2 ' (745)

t=1

6. Heteroscedasticity Adjusted Mean Absolute Error of Variance (HAMAEV):

T
T _12‘1 - St2+l / OA_t2+1|t :

t=1
7. Heteroscedasticity Adjusted Mean Squared Error of Deviation (HAMSED):

1N ~ 2
T (-s0/60) - (7.4.7)
t=1

8. Heteroscedasticity Adjusted Mean Absolute Error of Deviation (HAMAED):

T
T _12‘1 - St+l/o’:t+1|t :
t=1

9. Mean Logarithmic Error of Variance (MLEV):

(7.4.6)

(7.4.8)
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il ~ 2
Ty In(s2,/62, ) - (7.4.9)
t=1

10. Gaussian Maximum Likelihood Error of Variance (GMLEV):

2

T‘li“(ln(&ﬁmﬁ( f’;” N (7.4.10)

O-t+]Jt

11. Gaussian Maximum Likelihood Error of Deviation (GMLED):

I A S
T In(crmJt )+ 1, (7.4.11)
t=1 Ut+:ut

where T is the number of the one-step-ahead volatility forecasts. The first four loss
functions have been widely used in applied studies. The heteroscedasticity adjusted
functions were introduced by Andersen et al. (1999) and Bollerslev and Ghysels
(1996), while mean logarithmic error function was utilized by Pagan and Schwert
(1990). The GMLE function, which was presented in Bollerslev et al. (1994),
measures the forecast error according to the likelihood function that is used in
estimating the models.

As the actual volatility is unobservable, the common way to determine the
daily realized volatility is the squared daily returns, which is an unbiased but noisy
volatility estimator. Andersen and Bollerslev (1998a) introduced the use of the sum
squared finely sampled high frequency data as an alternative volatility measure. For
a detailed description of the realized intra-day volatility, the interested reader is
referred to section 2.6.1 in chapter 2 and references therein. Based on Andersen et
al. (1999), Andersen et al. (2001b) and Kayahan et al. (2002), we compute the

realized intra-day volatility of day t as:

m-1

52 = > (IR, )= 0P ) (7.4.12)

J:
where P(m)’t denotes five-minute linearly interpolated prices of S&P500 at day t with

m observations per day. The intra-day quotation data are available from April 28th
1997 to October 18th 2002 and were provided by Olsen and Associates.
Each loss function is computed for T =10(10)80. In order to compare the

SPEC algorithm with the 11 loss functions, a simulated options market is created.
Each agent selects the ARCH model with the lowest value of its the loss function in
order to forecast next day’s variance. The simulated market is consisting of 99
traders: the 12 model selection algorithms for 8 different sample sizes (including the
SPEC algorithm), the average, the minimum and the maximum of all daily forecasts

methods. The comparison is carried out on the basis of the annualized daily profits of
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the participants.

Table 7.4

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices.

Model Selection

Model Selection

Model Selection

Rank ) Profit T-Ratio Rank ) Profit T-Ratio  Rank ) Profit T-Ratio
Algorithm Algorithm Algorithm

1 SPEC(T=10) 16.42% 3.51 34 MAEV(T=10) -7.72% -1.82 67 GMLEV(T=60) -10.97% -2.88
2 SPEC(T=20) 13.73% 3.09 35 HAMSED(T=20) -71.79% -1.96 68 GMLEV(T=30) -11.02% -2.95
3 SPEC(T=50)  13.59% 3.17 36 MSEV(T=70) -8.06% -2.17 69 MAED(T=80) -11.07% -2.90
4 AVERAGE 13.30% 4.67 37 MSEV(T=60) -8.08% -2.19 70 GMLEV(T=50) -11.08% -2.91
5 SPEC(T=30) 11.87% 2.74 38 GMLEV(T=20)  -8.35% -2.06 71 HAMAED(T=40) -11.20% -2.93
6 SPEC(T=40) 11.64% 2.68 39 HAMAED(T=20) -8.38% -2.10 72 GMLEV(T=70) -11.25% -2.96
7 SPEC(T=60)  11.50% 2.65 40 MSEV(T=50) -8.46% -2.19 73 MSED(T=80) -11.57% -3.09
8 SPEC(T=70)  10.63% 2.48 41 MSEV/(T=80) -8.58% -2.35 74 GMLED(T=70)  -11.75% -3.02
9 SPEC(T=80) 8.62% 2.03 42 GMLED(T=50) -8.60% -2.34 75 MLEV(T=70) -11.80% -3.04
10 HAMSEV(T=10) 0.87% 0.21 43 HAMAEV(T=40) -8.70% -2.40 76 HAMAED(T=80) -11.83% -3.05
11 HAMAEV(T=10) 0.53% 0.13 44 HAMSED(T=40) -8.94% -2.41 77 GMLED(T=60) -12.11% -3.13
12 HAMSEV(T=20) 0.38% 0.09 45 HAMSED(T=60) -9.30% -2.54 78 MSED(T=60) -12.42% -3.27
13 HAMSEV(T=30) 0.04% 0.01 46 GMLED(T=20)  -9.61% -2.41 79  HAMAED(T=50) -12.44% -3.29
14  HAMSED(T=10) -0.29% -0.07 47 MSED(T=70) -9.90% -2.58 80 MSED(T=30) -12.45% -3.12
15  HAMSEV(T=60) -0.96% -0.26 48 MSEV(T=20) -9.92% -2.40 81 MAEV/(T=50) -12.46% -3.21
16  HAMSEV(T=80) -1.05% -0.28 49  HAMAEV(T=70) -9.95% -2.70 82 MLEV(T=30) -12.65% -3.22
17 MAX -1.18% -0.21 50 HAMAEV(T=50) -10.04% -2.81 83 MAED(T=50) -12.68% -3.24
18 HAMSEV(T=70) -1.22% -0.34 51 GMLED(T=30) -10.11% -2.66 84 HAMAED(T=70) -12.87% -3.23
19 GMLEV(T=10) -1.66% -0.40 52 HAMAEV(T=60) -10.14% -2.79 85 MAED(T=70) -13.39% -3.44
20 GMLED(T=10) -1.93% -0.47 53 MLEV(T=60) -10.26% -2.70 86 MSEV(T=30) -13.44% -3.34
21 HAMSEV(T=50) -2.95% -0.78 54 MLEV(T=20) -10.32%  -2.58 87 MAEV(T=60) -13.46% -3.45
22 MLEV(T=10) -3.20% -0.77 55  HAMSED(T=30) -10.38%  -2.72 88  HAMAED(T=60) -13.70% -3.44
23 HAMSEV(T=40) -3.33% -0.87 56 GMLEV(T=80) -10.46%  -2.79 89 MAEV/(T=20) -13.74% -3.30
24 HAMAED(T=10) -3.81% -0.94 57 MLEV(T=50) -10.46% -2.79 90 MAED(T=20) -14.23% -3.46
25 MSED(T=10) -4.01% -0.95 58 GMLED(T=40) -10.51% -2.76 91 MAEV(T=70) -14.25% -3.60
26 MSEV(T=10) -4.28% -1.01 59 HAMAEV(T=30) -10.54% -2.83 92 MAED(T=40) -14.28% -3.62
27 MAED(T=10) -5.19% -1.23 60 MLEV(T=40) -10.55% -2.82 93 MAEV(T=30) -14.30% -3.55
28 GMLEV(T=40) -5.84% -1.57 61 GMLED(T=80) -10.61% -2.76 94 MAEV(T=80) -14.33% -3.71
29  HAMAEV(T=80) -6.44% -1.77 62 MSED(T=20)  -10.67%  -2.64 95 MAED(T=30) -14.53% -3.60
30 HAMSED(T=80) -6.66% -1.80 63 MLEV(T=80) -10.72% -2.86 96 MAED(T=60) -14.60% -3.82
31 HAMSED(T=70) -7.18% -1.91 64 MSED(T=40) -10.73% -2.79 97 MAEV(T=40) -16.09% -4.06
32 HAMAEV(T=20) -7.52% -1.89 65 MSED(T=50) -10.78% -2.89 98 HAMAED(T=30) -16.14% -4.06
33 MSEV(T=40) -71.71% -1.97 66 HAMSED(T=50) -10.82% -2.86 99 MIN -33.42% -6.12

The resulting ranking of the criteria is summarized in Table 7.4. For each

model selection criterion, the highest annualized daily profits are given along with the

values of the corresponding t-ratios defined as in Table 7.1 and the sample sizes

(values of T) at which the maximum returns are attained (in parentheses).

The results in the table indicate that traders who are based on the SPEC algorithm

achieve the highest returns, despite the use of the realized intra-day volatility by the

loss functions. Moreover, the SPEC method appears more suitable in predicting

volatility for pricing contingent claims, as it is the only model selection method that
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produces returns higher that the AVERAGE algorithm does. An interesting point is

that, with the exception of HAMSEYV, all the algorithms achieve their highest returns

for T =10.

Table 7.5

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask

prices, using rolling samples of 500 observations.

Rank Algorithm Profit T-Ratio Rank Algorithm Profit T-Ratio Rank Algorithm Profit  T-Ratio

1 SPEC(T=5) 21.79% 54 36 AR(3)TARCH(2,1) 574% 1.6 71  AR(0)GARCH(0,2) -8.80% -2.5
2 SPEC(T=30) 19.92% 6.3 37 AR(2EGARCH(1,2) 572% 1.8 72 AR4)TARCH(0,2) -8.97% -2.5
3 SPEC(T=10) 1959% 53 38 AR(2EGARCH(2,1) 560% 2.0 73 AR(1)EGARCH(0,2) -9.02% -2.9
4 SPEC(T=25) 19.03% 6.0 39 AR(1)EGARCH(1,2) 4.48% 1.4 74 AR(2TARCH(0,2) -9.04% -2.5
5 SPEC(T=35) 1855% 6.4 40  AR(0O)TARCH(2,1) 4.46% 1.2 75  AR(1)TARCH(0,2) -9.06% -2.5
6 SPEC(T=20) 18.41% 55 41  AR(3)TARCH(0,1) 4.06% 1.2 76  AR(3)GARCH(2,1) -9.14% -2.8
7 SPEC(T=15) 18.22% 53 42  AR(2TARCH(0,1) 4.01% 1.3 77  AR(2)GARCH(2,1) -9.22% -3.0
8  AR(4)TARCH(1,2) 15.87% 6.1 43 AR(3)EGARCH(1,2) 3.85% 1.2 78  AR(4)GARCH(1,1) -9.26%  -2.9
9 SPEC(T=45) 15.73% 5.7 44 AR(4)EGARCH(1,2) 3.73% 1.1 79  AR(1)GARCH(1,1) -9.26% -3.1
10 AR(0)TARCH(1,2) 15.06% 59 45 AR(4)TARCH(,1) 3.25% 1.0 80  AR(3)TARCH(0,2) -9.29% -25
11  AR(2)TARCH(1,2) 14.94% 538 46  AR(2)EGARCH(1,1) 2.61% 0.9 81 AR(4)EGARCH(0,2) -9.32% -2.8
12 AR(1)TARCH(1,2) 14.85% 57 47 AR(3)EGARCH(2,1) 2.30% 0.8 82 AR(3)EGARCH(0,2) -9.37% -2.9
13 AR(3)TARCH(1,2) 14.81% 58 48 AR(4)EGARCH(2,1) 1.76% 0.6 83 AR(2EGARCH(0,2) -9.38% -3.0
14 SPEC(T=40) 14.47% 52 49 AR(1)EGARCH(2,1) 1.72% 0.6 84  AR(1)GARCH(2,1) -9.60% -3.0
15 SPEC(T=60) 13.99% 5.0 50 AR(1)EGARCH(1,1) 1.60% 0.5 85  AR(4)GARCH(1,2) -9.97% -3.0
16 AVERAGE 13.65% 12.3 51 AR(4)EGARCH(1,1) 1.25% 0.4 86 AR(3)GARCH(1,2) -10.35% -3.1
17 SPEC(T=80) 13.60% 45 52 AR(3)EGARCH(1,1) 1.07% 0.4 87  AR(1)GARCH(1,2) -10.52% -3.3
18 SPEC(T=50) 1359% 5.0 53 AR(4)TARCH(1,1) -1.56% -0.4 88  AR(1)GARCH(0,2) -11.07% -3.2
19 SPEC(T=55) 13.22% 4.7 54 AR(3)TARCH(1,1) -1.68% -0.4 89  AR(2)GARCH(1,2) -11.19% -3.5
20 SPEC(T=70) 13.15% 4.7 55  AR(1)TARCH(1,1) -1.79% -0.4 90  AR(0)GARCH(0,1) -11.39% -3.2
21 SPEC(T=65) 13.13% 47 56  AR(O)TARCH(1,1) -1.81% -0.4 91  AR(2)GARCH(0,2) -11.51% -3.3
22  AR(1)TARCH(2,2) 12.82% 4.7 57 AR(2TARCH(1,1) -2.41% -0.6 92  AR(1)GARCH(0,1) -11.62% -3.1
23 SPEC(T=75) 12.62% 43 58  AR(0)GARCH(1,1) -2.87% -1.2 93  AR(2)GARCH(0,1) -12.20% -3.3
24 AR(2)TARCH(2,2) 10.19% 3.8 59  AR(0)GARCH(2,2) -3.58% -1.2 94 AR(3)GARCH(0,2) -12.37% -3.5
25 AR(3)TARCH(2,2) 9.69% 3.6 60  AR(0)GARCH(2,1) -3.83% -1.5 95 AR(3)GARCH(0,1) -12.56% -3.3
26 AR(O)TARCH(2,2) 9.43% 3.2 61 AR(0)GARCH(1,2) -4.12% -1.4 96  AR(4)GARCH(0,2) -12.68% -3.4
27 AR@)TARCH(2,2) 9.35% 3.4 62 AR(0)EGARCH(0,2) -6.81% -2.1 97  AR(4)GARCH(0,1) -12.92% -3.4
28 AR(2)TARCH(2,1) 8.56% 2.4 63  AR(1)GARCH(2,2) -7.36% -2.3 98 AR(1)EGARCH(0,1) -16.17% -4.4
29 AR(O)TARCH(0,1) 8.35% 29 64 AR(3)GARCH(1,1) -7.62% -2.5 99 AR(2)EGARCH(0,1) -16.94% -4.5
30 AR(1)TARCH(2,1) 7.84% 23 65 AR(4)GARCH(2,2) -7.69% -2.3 100 AR(0)EGARCH(0,1) -17.14% -4.6
31 AR@)TARCH(2,1) 7.03% 19 66 AR(O)TARCH(0,2) -7.70% -2.2 101 AR(3)EGARCH(0,1) -17.52% -4.7
32 AR(O)EGARCH(1,2) 6.87% 2.3 67  AR(4)GARCH(2,1) -7.81% -2.4 102 AR(4)EGARCH(0,1) -17.92% -4.7
33 AR(0)EGARCH(2,1) 6.42% 2.4 68 AR(2)GARCH(2,2) -7.88% -2.4 103 MAXIMUM -18.60% -3.3
34 AR(0OEGARCH(1,1) 6.07% 2.2 69 AR(3)GARCH(2,2) -8.13% -2.4 104 MINIMUM -33.35% -5.9
35 AR(1)TARCH(0,1) 5.82% 1.8 70 AR(2)GARCH(1,1) -8.16% -2.7
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7.5 Investigate the performance of the SPEC algorithm
using larger sample sizes for the estimation of the ARCH

models

As has been noted in the literature, although the use of the entire set of
available data is common practice in forecasting volatility, at least for some cases, a
restricted sample size could generate more accurate one-step-ahead forecasts, since
it incorporates changes in trading behaviour more efficiently. For example, Hoppe
(1998) examined the issue of the sample size, in the context of value-at-risk, and
argued that a smaller sample could lead to more accurate estimates than a larger
one. Frey and Michaud (1997) supported the use of small sample sizes in order to
capture the structural changes over time due to changes in trading behaviour.
Angelidis, Benos and Degiannakis (2004) noted similar findings.

In order to investigate whether the use of a rolling sample size of 1000
observations induces a bias on the results of the simulation, we re-run the simulation
study with larger datasets. We used rolling samples of 500 and 2000 observations
and we found out that the results in the previous sections are not appreciably
different when using sample sizes of 500, 1000 or 2000 observations.

Tables 7.5 and 7.6 present the profits per competitor per straddle and the
corresponding t-ratios when we use rolling samples of 500 and 2000 observations,
respectively. There is no qualitative difference among the used sample sizes. The
SPEC algorithm performs best for low values of T, (T=5, 10), in the new simulation
studies, which is in complete agreement with the originally obtained results on the
basis of a 1000-observation rolling sample. The MINIMUM forecast takes the last
positions and the MAXIMUM forecast achieves negative and statistically significant
returns, an indication that neither a downward nor an upward forecast bias, that could
affect profits significantly, is present.

As there is no qualitative difference between the use of sample sizes of 500
and 2000 observations, we present the results based on the sample size of 500.
Dropping out the trader with the least profitable method at a time, the cumulative
profits of the participants in the simulated market are calculated. The SPEC(5) model
selection algorithm achieves the highest returns in all the cases, thus indicating that
the forecasting ability is not sensitive to the models that are used. As concerns the
sample size of 500 observations, Table 7.7 presents the transitivity of the profitability
of competitors, who employ the SPEC model selection algorithm and the AVERAGE

method. Table 7.8 shows the ranking and cumulative profits of the competitors

=3rf,

trading straddles with exercise prices equal to e’ e™ and e™™. The rank of the
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traders does not change significantly. So, the cumulative profits in the simulated
market are not sensitive to the exercise price is used. The results of Table 7.7 and
7.8 are almost identical to those presented in the previous section for a sample size

of 1000 observations.

rolling samples of 2000 observations.

Table 7.6

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices, using

Rank Algorithm Profit T-Ratio  Rank Algorithm Profit T-Ratio  Rank Algorithm Profit T-Ratio
1 SPEC(T=5) 19.08% 5.63 36 AR(4)EGARCH(2,1) 9.82% 5.27 71 AR(1)GARCH(2,1) -5.20% -2.16
2 SPEC(T=10) 17.29% 5.69 37 AR(0)EGARCH(2,1)  9.82% 5.12 72 AR(3)GARCH(2,1) -5.22% -2.18
3 SPEC(T=40) 16.52% 7.09 38 AR(3)EGARCH(2,1)  9.51% 5.14 73 MAXIMUM -9.42% -2.04
4 SPEC(T=55) 16.24% 7.10 39 AR(3)TARCH(2,2) 9.42% 4.25 74 AR(0)EGARCH(0,2) -10.19% -2.82
5 SPEC(T=50) 15.89% 7.04 40 AVERAGE 9.37% 8.13 75 AR(4)EGARCH(0,2) -10.25% -2.83
6 SPEC(T=25) 15.43% 6.26 41 AR(2)EGARCH(2,1)  8.98% 4.56 76 AR(3)EGARCH(0,2) -10.29% -2.86
7 SPEC(T=65) 15.41% 6.88 42 AR(0)TARCH(1,1) 8.93% 4.07 77 AR(2)EGARCH(0,2) -10.58% -2.95
8 SPEC(T=45) 15.38% 6.65 43 AR(0)TARCH(2,1) 8.88% 4.20 78 AR(1)EGARCH(0,2) -10.63% -2.95
9 SPEC(T=35) 15.26% 6.63 44 AR(1)EGARCH(2,1) 8.73% 4.30 79 AR(0)TARCH(0,2) -11.50% -3.70

10 SPEC(T=15) 15.19% 5.47 45 AR(1)TARCH(2,1) 7.60% 3.56 80 AR(0)GARCH(0,2) -12.52% -4.03
11 SPEC(T=20) 14.85% 5.73 46 AR(2)TARCH(1,1) 7.16% 3.30 81 AR(1)TARCH(0,2) -13.32% -4.30
12 SPEC(T=60) 14.82% 6.44 47 AR(1)TARCH(1,1) 7.02% 3.22 82 AR(4)TARCH(0,2) -13.58% -4.28
13 SPEC(T=70) 14.61% 6.37 48 AR(2)TARCH(2,1) 6.66% 3.19 83 AR(2)TARCH(0,2) -13.60% -4.35
14 SPEC(T=30) 14.51% 6.26 49 AR(4)TARCH(1,1) 6.53% 3.25 84 AR(3)TARCH(0,2) -13.65% -4.35
15 AR(0)EGARCH(1,2) 14.22% 5.43 50 AR(4)TARCH(2,1) 6.50% 3.16 85 AR(1)GARCH(0,2) -14.02% -4.49
16 AR(1)EGARCH(1,1) 13.57% 7.18 51 AR(3)TARCH(1,1) 5.60% 2.66 86 AR(4)GARCH(0,2) -14.29% -4.50
17 AR(2)EGARCH(1,1) 13.26% 7.09 52 AR(3)TARCH(2,1) 4.64% 2.25 87 AR(2)GARCH(0,2) -14.50% -4.60
18 AR(0)TARCH(1,2)  12.92% 5.02 53 AR(0)GARCH(1,2) -0.12% -0.05 88 AR(3)GARCH(0,2) -14.50% -4.58
19 AR(1)EGARCH(1,2) 12.85% 5.05 54 AR(0)GARCH(2,2) -0.29% -0.12 89 AR(0)EGARCH(0,1) -16.91% -5.10
20 AR(4)EGARCH(1,1) 12.74% 6.85 55 AR(1)GARCH(2,2) -1.64% -0.66 90 AR(1)EGARCH(0,1) -17.02% -5.08
21 AR(0)EGARCH(1,1) 12.67% 6.68 56 AR(1)GARCH(1,2) -1.74% -0.73 91 AR(2)EGARCH(0,1) -17.42% -5.20
22 AR(2)EGARCH(1,2) 12.50% 5.00 57 AR(4)GARCH(2,2) -1.82% -0.74 92 AR(3)EGARCH(0,1) -17.50% -5.20
23 AR(0)TARCH(2,2)  12.31% 5.47 58 AR(3)GARCH(2,2) -2.96% -1.17 93 AR(4)EGARCH(0,1) -17.87% -5.26
24 AR(4)EGARCH(1,2) 12.21% 481 59 AR(3)GARCH(1,2) -3.11% -1.23 94 AR(3)GARCH(0,1) -20.29% -6.19
25 AR(3)EGARCH(1,1) 12.16% 6.75 60 AR(0)GARCH(1,1) -3.12% -1.27 95 AR(2)GARCH(0,1) -20.59% -6.30
26 AR(1)TARCH(2,2)  12.01% 5.18 61 AR(2)GARCH(1,2) -3.36% -1.35 96 AR(0)GARCH(0,1) -20.75% -6.43
27 AR(2)TARCH(1,2)  12.00% 4.79 62 AR(2)GARCH(2,2) -3.41% -1.36 97 AR(1)GARCH(0,1) -20.87% -6.33
28 SPEC(T=75) 12.00% 5.49 63 AR(4)GARCH(1,2) -3.70% -1.47 98 AR(0)TARCH(0,1) -21.15% -6.22
29 AR(3)EGARCH(1,2) 11.15% 4.49 64 AR(3)GARCH(1,1) -3.74% -1.46 99 AR(4)GARCH(0,1) -21.17% -6.36
30 AR(1)TARCH(1,2)  10.99% 4.24 65 AR(0)GARCH(2,1) -4.00% -1.67 100 AR(1)TARCH(0,1) -21.34% -6.26
31 AR(3)TARCH(1,2)  10.49% 4.16 66 AR(1)GARCH(1,1) -4.15% -1.68 101 AR(2)TARCH(0,1) -21.59% -6.36
32 AR(2)TARCH(2,2)  10.22% 4.56 67 AR(4)GARCH(1,1) -4.23% -1.66 102 AR(3)TARCH(0,1) -21.78% -6.37
33 SPEC(T=80) 10.21% 4.62 68 AR(4)GARCH(2,1) -4.34% -1.72 103 AR(4)TARCH(0,1) -22.14% -6.39
34 AR(4)TARCH(1,2) 9.84% 3.84 69 AR(2)GARCH(2,1) -4.77% -1.98 104 MINIMUM -43.47% -9.24
35 AR(4)TARCH(2,2) 9.84% 4.54 70 AR(2)GARCH(1,1) -5.08% -2.03
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7.6. Discussion

Adopting Engle et al.’s (1993) approach to comparing several variance
forecast methods using an economic value criterion, the performance of the SPEC
model selection algorithm was examined. Simulating an options market, in order to
avoid problems related to observed actual option prices, 104 traders were assumed
to trade one-day straddles on $1 shares of the S&P500 index, for the period from
October 4th 1995 to October 18th, 2002 (1773 trading days). Traders were also
assumed to use variance forecast methods of their choice. The variance forecast
methods considered were: 85 selection “methods” (strategies), one for each of 85
ARCH maodels, each amounting to the utilization of the forecasts of the same model
at any point in time, the SPEC model selection algorithm for 16 different sample
sizes, the average, the minimum and the maximum of all daily forecasts methods.
Traders using SPEC algorithm based methods appear to achieve higher profits than
traders using any of the 85 single ARCH model based methods considered in the
simulation. Moreover, traders, who apply the SPEC model selection algorithm for

sample sizes T = 5(5) 25, appear to achieve the highest profits, a conclusion which is

in agreement to chapter’s 6 findings in the case of real index-option prices. The
ability of the SPEC model selection algorithm was also compared with loss functions
that measure the ability of the models to forecast volatility. Even though, the other
criteria (loss functions) used the realized intra-day volatility, the SPEC algorithm, for
T =10, led to the highest profits. It appears, therefore, that the results support the
conclusion that the increase in profits cannot be attributed to chance but to improved
volatility prediction. Hence, the SPEC selection method offers a useful model

selection tool in estimating future volatility, with applications in pricing derivatives.

152



Chapter 7

Table 7.7

Rank of the methods based on the SPEC model selection algorithm by dropping out the least profitable

agent at a time, using rolling samples of 500 observations.

Ranks in

SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC SPEC

Algorithm

Sy“gjlg: (T=5) (T=10) (T=15) (T=20) (T=25) (T=30) (T=35) (T=40) (T=45) (T=50) (T=55) (T=60) (T=65) (T=70) (T=75) (T=80) "ERACE
4 1 3 7 6 4 2 5 14 9 18 19 15 21 20 23 17 16
03 1 3 7 6 4 2 5 14 9 17 19 15 21 20 23 18 16
2 1 3 7 6 4 2 5 14 9 17 19 15 21 20 23 18 16
4 1 3 7 6 4 2 5 14 9 16 19 15 21 20 23 18 17
0 1 3 7 6 4 2 5 14 9 16 19 15 20 21 23 18 17
s 1 3 6 7 4 2 5 14 8 16 19 15 20 21 23 17 18
%0 1 3 6 7 4 2 5 13 8 16 18 15 19 20 23 17 21
&5 1 2 6 7 4 3 5 13 8 16 19 15 18 20 23 17 22
&8 1 2 5 7 4 3 6 12 8 16 19 15 18 20 22 17 23
7% 1 2 5 7 4 3 6 10 8 16 19 15 18 20 22 17 23
0 1 2 4 7 5 3 6 10 8 14 19 16 18 20 21 17 23
65 1 2 4 7 5 3 6 10 8 12 20 13 18 19 21 17 23
660 1 2 4 6 5 3 7 10 8 11 21 13 18 19 20 17 25
55 1 2 4 6 5 3 7 10 8 11 21 12 16 19 20 15 27
so 1 2 4 6 5 3 7 10 8 11 21 12 15 19 20 16 28
45 1 2 4 6 5 3 7 10 8 11 21 12 14 18 20 15 29
9 1 2 4 6 5 3 7 11 9 13 21 16 18 19 20 14 31
35 1 2 4 6 5 3 7 11 8 138 20 15 16 19 21 14 31
30 1 2 4 6 5 3 7 10 8 14 20 15 16 19 22 13
25 1 2 4 6 5 3 7 9 8 14 20 16 15 19 21 13
20 1 2 4 6 5 3 7 9 8 14 19 17 16 18 10
5 1 2 5 6 4 3 7 11 8 13 15
4 1 2 5 6 4 3 7 12 8 14
3 1 2 5 6 4 3 7 12 8
2 1 2 5 6 4 3 7 10 8
1 1 2 5 6 4 3 7 10 8
o 1 2 5 6 4 3 7 10 8
s 1 2 5 6 4 3 7 8
8 1 2 6 5 4 3 71 8
7 1 2 6 5 4 3 71
6 1 2 6 5 3 4
5 1 2 5 4 3
4 1 2 4 3
3 1 2 3
2 1 2
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Table 7.8

The rank and annualized daily profits of the competitors trading one-day straddles with different exercise prices,

using rolling samples of 500 observations.

5rf;

-3

rf,

5rf,

=3rf,

5rf,

=3rf,

Forecasts € e Forecasts € e Forecasts e €

Profit Rank  Profit Rank Profit Rank Profit Rank Profit Rank Profit Rank
SPEC(T=5) 2160% 1 2166% 1 AR(1)GARCH(1,2) -10.53% 87 -10.52% 87 AR(1)EGARCH(2,1) 1.78% 49 1.78% 49
SPEC(T=10) 19.43% 3  19.48% 3 AR(2)GARCH(1,2) -11.24% 89 -11.23% 89 AR(2)EGARCH(2,1) 5.65% 38 5.65% 38
SPEC(T=15) 18.09% 7 18.12% 7 AR(3)GARCH(1,2) -10.41% 86 -10.40% 86 AR(3)EGARCH(2,1) 2.34% 47 2.34% 47
SPEC(T=20) 18.30% 6 18.33% 6 AR(4)GARCH(1,2) -10.03% 85 -10.02% 85 AR(4)EGARCH(2,1) 1.80% 48 1.80% 48
SPEC(T=25) 18.93% 4 18.95% 4 AR(0)GARCH(2,1) -3.87% 60 -3.87% 60 AR(0)TARCH(0,1) 8.39% 29 8.39% 29
SPEC(T=30) 19.83% 2 19.85% 2 AR(1)GARCH(2,1) -9.58% 84 -9.58% 84 AR(1)TARCH(0,1) 5.86% 35 5.86% 35
SPEC(T=35) 18.47% 5 18.48% 5 AR(2)GARCH(2,1) -9.26% 79 -9.25% 77 AR(2)TARCH(0,1) 4.04% 42 4.04% 42
SPEC(T=40) 14.40% 14 1442% 14 AR(3)GARCH(2,1) -9.18% 76 -9.17% 76 AR(3)TARCH(0,1) 4.09% 41 4.09% 41
SPEC(T=45) 1566% 9 1567% 9 AR(4)GARCH(2,1) -7.87% 67 -7.86% 67 AR(4)TARCH(0,1) 3.28% 45 3.28% 45
SPEC(T=50) 13.52% 17 1354% 17 AR(0)GARCH(2,2) -3.63% 59 -3.62% 59 AR(0)TARCH(0,2) -7.66% 64 -7.68% 65
SPEC(T=55) 13.17% 19 13.18% 19 AR(1)GARCH(2,2) -7.36% 63 -7.35% 63 AR(1)TARCH(0,2) -9.04% 75 -9.05% 75
SPEC(T=60) 1393% 15 13.94% 15 AR(2)GARCH(2,2) -7.93% 68 -7.92% 68 AR(2)TARCH(0,2) -9.01% 74 -9.02% 74
SPEC(T=65) 13.05% 21 13.06% 21 AR(3)GARCH(2,2) -8.18% 69 -8.17% 69 AR(3)TARCH(0,2) -9.26% 78 -9.27% 78
SPEC(T=70) 13.08% 20 13.09% 20 AR(4)GARCH(2,2) -7.74% 66 -7.73% 66 AR(4)TARCH(0,2) -8.94% 72 -8.95% 72
SPEC(T=75) 12.54% 23 1255% 23 AR(0)EGARCH(0,1) -17.09% 100 -17.11% 100 AR(0)TARCH(1,1) -1.73% 56 -1.75% 56
SPEC(T=80) 13.52% 18 13.53% 18 AR(1)EGARCH(0,1) -16.15% 98 -16.16% 98 AR(1)TARCH(1,1) -1.71% 55 -1.73% 55
MINIMUM -32.93% 104 -33.02% 104 AR(2)EGARCH(0,1) -16.91% 99 -16.92% 99 AR(2)TARCH(1,1) -2.33% 57 -2.35% 57
MAXIMUM -18.96% 103 -18.83% 103 AR(3)EGARCH(0,1) -17.48% 101 -17.49% 101 AR(3)TARCH(1,1) -1.59% 54 -1.61% 54
AVERAGE 13.63% 16 13.62% 16 AR(4)EGARCH(0,1) -17.87% 102 -17.88% 102 AR(4)TARCH(1,1) -1.47% 53 -1.49% 53
AR(0)GARCH(0,1) -11.35% 90 -11.37% 90 AR(0)EGARCH(0,2) -6.74% 62 -6.76% 62 AR(0)TARCH(1,2) 15.07% 10 15.06% 10
AR(1)GARCH(0,1) -11.60% 92 -11.61% 92 AR(1)EGARCH(0,2) -8.97% 73 -8.99% 73 AR(1)TARCH(1,2) 14.87% 12 14.86% 12
AR(2)GARCH(0,1) -12.17% 93 -12.19% 93 AR(2)EGARCH(0,2) -9.32% 83 -9.34% 83 AR(2TARCH(1,2) 14.96% 11 14.95% 11
AR(3)GARCH(0,1) -12.52% 95 -12.54% 95 AR(3)EGARCH(0,2) -9.31% 80 -9.33% 82 AR(3)TARCH(1,2) 14.83% 13 14.83% 13
AR(4)GARCH(0,1) -12.89% 97 -12.90% 97 AR(4)EGARCH(0,2) -9.25% 77 -9.27% 79 AR(4)TARCH(1,2) 1590% 8 15.89% 8
AR(0)GARCH(0,2) -8.73% 71 -8.75% 71 AR(O)EGARCH(1,1) 6.11% 34 6.11% 34 AR(0)TARCH(2,1) 4.52% 39 451% 39
AR(1)GARCH(0,2) -11.03% 88 -11.04% 88 AR(1)EGARCH(1,1) 1.60% 50 1.61% 50 AR(1)TARCH(2,1) 7.89% 30 7.88% 30
AR(2)GARCH(0,2) -11.46% 91 -11.47% 91 AR(2EGARCH(1,1) 2.61% 46 2.61% 46 AR(2)TARCH(2,1) 8.60% 28 8.59% 28
AR(3)GARCH(0,2) -12.30% 94 -12.32% 94 AR)EGARCH(1,1) 1.10% 52 1.10% 52 AR(3)TARCH(2,1) 5.79% 36 5.78% 36
AR(4)GARCH(0,2) -12.61% 96 -12.63% 96 AR(4)EGARCH(1,1) 1.30% 51 1.30% 51 AR(4)TARCH(2,1) 7.08% 31 7.07% 31
AR(0)GARCH(1,1) -290% 58 -2.90% 58 AR(0O)EGARCH(1,2) 6.91% 32 6.91% 32 AR(0)TARCH(2,2) 9.48% 26 9.47% 26
AR(1)GARCH(1,1)  -9.32% 81 -9.31% 81 AR(1)EGARCH(1,2) 4.45% 40 4.46% 40 AR(1)TARCH(2,2) 12.84% 22 12.84% 22
AR(2)GARCH(1,1) -8.23% 70 -821% 70 AR(2EGARCH(1,2) 5.73% 37 574% 37 AR(QTARCH(2,2) 10.21% 24 10.21% 24
AR(3)GARCH(1,1) -7.68% 65 -7.67% 64 AR(3)EGARCH(1,2) 3.89% 43 3.89% 43 AR(3)TARCH(2,2) 9.72% 25 9.71% 25
AR(4)GARCH(1,1)  -9.32% 82 -9.31% 80 AR(4)EGARCH(1,2) 3.77% 44 3.77% 44 AR(4)TARCH(2,2) 9.38% 27 9.38% 27
AR(0)GARCH(1,2) -4.16% 61 -415% 61 AR(O)EGARCH(2,1) 6.46% 33 6.46% 33
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Chapter 8
The Distribution of the Minimum Component of a

Vector Having a Multivariate Gamma Function

8.1. Introduction

Numerous methods of model evaluation have been derived in the statistical
literature. Most of them are based on measuring the ability of the models to fit in the data
(i.e. Akaike 1973 and Schwarz 1978). In the case where we are interested in evaluating a
model's forecasting ability, a loss function, which takes into consideration the
characteristics of the predicting variable as well as the utility of the forecasts, is mainly
constructed. For example, loss functions that are robust to heteroscedasticity are used by
Andersen et al. (1999), Heynen and Kat (1994) and Pagan and Schwert (1990) for
evaluating the predictive ability of volatility forecasting models because of high non-
linearity of the variable under investigation. Engle et al. (1993), Granger (2001), Granger
and Pesaran (2000) and West et al. (1993), among others, defined loss functions that
evaluated the models according to their predictions’ utility. As Hendry and Clements
(2001) noted “it seems natural that a stock broker measures the value of forecasts by their
monetary return, not their mean squared error”. Although loss functions are measures of
accuracy, which are constructed based upon the goals of their particular application, in the
majority of the cases, their statistical properties are unknown. The superiority of a loss
function against others cannot be judged by a statistical-theoretical ground but just from
their empirical motivations.

Even though we cannot investigate the statistical properties of a loss function, we
are capable to use it for measuring whether two forecasts have statistically equal

forecasting accuracy. Diebold and Mariano (1995) derived a test of the null hypothesis of

: . . . A(m) T
no difference in the accuracy of two competing forecasts. In particular, for {yt(ml)}t=l and

{f/t(mZ)}tT:l denoting two forecasts of the variable under investigation {yt }Ll, Diebold and

Mariano considered the time-t loss associated with forecast m,, for i=12, to be an
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arbitrary function of realization and prediction, f(yt,)?t(m‘)). The null hypothesis of equal

forecast accuracy is E(f (yt : )A/t(ml))): E(f (yt , §/t(m2))).

On the other hand, Xekalaki et al. (2003), based on a loss function, derived a two-
model hypothesis testing procedure to test whether the models have equal ability in
predicting the dependent variable of a regression model. In the 4™ chapter, the hypothesis
test was extended in comparing the ability of two models to forecast the conditional

variance of ARCH models. Their hypothesis test is based on the sum of squared

standardized one-step-ahead prediction errors, —2‘12(\/ yt'”) . The loss
ytlt—l

function, Xmi , is asymptotically chi-square distributed, whereas the ratio sz/Xm1 follows

the CGR distribution. The null hypothesis, that models m, and m, have equal
predictability against the alternative that model m, has a better predictive ability, is
rejected at the 100p% level of significance if X, /X, is greater than the 100(1- p)

percentile of the CGR distribution. Moreover, the SPEC algorithm of ARCH model

selection was considered based on the former hypothesis test. According to the SPEC

model selection algorithm, the model, which, among a set of n models, m,, i=12,...,n

has the lowest sum of squared standardized one-step-ahead prediction errors, is
considered as having a superior ability to predict the conditional variance of the dependent
variable. In the previous chapter, the performance of the SPEC algorithm was evaluated
by comparing different volatility forecasts in option pricing through the simulation of an
options market and concluded that traders, who base their selection of an ARCH model on
the SPEC algorithm, achieve higher profits than those, who use other methods of model
selection.

In the present chapter, the exact from of the distribution of the loss function for the

model with the lowest value, X(l) = min(X m sz ooy X i ) is determined in order to derive

m
the statistical properties of X(l) on which the SPEC model selection algorithm is based. In
section 8.2, the cumulative distribution function of X, named minimum multivariate

gamma (MMG) distribution, is derived while section 8.3 provides the percentage points of
the tri-variate version. Based on the MMG distribution function, in the 8.4 section, a testing

procedure is constructed where the null hypothesis that n available models are of
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equivalent predictive ability is tested against the alternative hypothesis that the model m,
with the lowest value of the loss function Xmi has the highest predictive ability. According

to authors’ knowledge, the hypothesis tests, which exist in the forecasting literature,

compare the ability of two models in producing accurate predictions. The advantage of the

MMG hypothesis test is that it takes into consideration the forecasting ability of n (n > 2)
candidate models in order to infer whether the model m;;, has the highest predictive ability.

In section 8.5 the suggested hypothesis test is applied using return data for the Athens
Stock Exchange (ASE) index over the period August 30", 1993 to November 4™ and a

short discussion is provided in section 8.6.

8.2. The Distribution of the Minimum Component of a Vector

X =(X,,X,,...X,) Having a Multivariate Gamma Distribution

In the sequel, two theorems are provided, which are subsequently used for the

derivation of the cumulative function of the MMG distribution. Theorem 1 defines the

cumulative distribution function of X, under the assumption that X, X,,.., X, are

identically but not independently distributed. Theorem 2 derives the cumulative distribution
function of n random variables having Krishnamoorthy and Parthasarathy’'s (1951)

multivariate gamma distribution. Finally, Lemma 3 combines the two theorems and

develops the cumulative function of X, when X, X,,.., X, are multivariate gamma

distributed.

8.2.1 Determining the Cumulative Function of the Minimum

Component, X(l)

Theorem 1:

Let X,, X,,..., X, be non-negative, identically distributed random variables with
distribution function FXi (): Fxl(.), for i =12,...,n. Denote by X(l), X(Z),..., X(n) the same
variables arranged in an ascending order. Let the joint distribution function of

.....
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their joint probability density function by f, , (Xl,XZ,...,Xn). Then, the cumulative

distribution function of X, = min(X,, X,,..., X, ) is

Fx<1) (X) = Z(_l)j_lz I:xil,xiz X ,(X’ Xy X)’ (8.2.1)

=1 noj !

where Z denotes summation over the set {i, =i,_, +1i, ; +2,...(n An—j+k)}, for

noj
nan—j+1 nan-j+2 nan-j+k nan—1
- - 1 .
(=120, (h =00 le, TXy = > > Do O DK
n j ip=1 ip=ip+1 i =l +l =i+l dj=ig+l

Proof:

We have by the definition of the cumulative distribution function of a random variable that:

FX(i) (X): P(X(l) < X):l_ P(X(l) > X):l_ P(Xl > X, XZ > Kyeeny Xn > X):

—ﬂg Fo (0~ 1 2 B, 000 1" B, 0000~ 1) E P, G300

n

— = (CD Y P xon oty 065X X X)= (S P, (060X X500, X),

ig g Mg Mg
n n-1

where Z denotes summation over the set {i, =i,_, +1i, ; +2,...(nAn—j+k)}, for

noj
nan—j+1 nan-j+2 nan—j+k nan—1
k:1’2""’J'(|0 =0)’ l.e., zxi1i2-~ij = Z Z Z Z Z ig.dj
n j ip=1 ip=ip+1 i =l +l =i+l dj=ij+1

Noting that iFXi(x):ZFXi(x) and  Fyy x (%X X)= D Fyy (XX, X), the
i=1 n1

nn

above relationship leads to (8.2.1) and, hence, to the result.

Y(nan—j+k)=min(n,n-j+k).
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8.2.2 Determining the Cumulative Function of the

Multivariate Gamma Distribution, Fy X(X,...,x)

-------

Theorem 2:
Suppose that (Xl,Xz,...,Xn) are n random variables having Krishnamoorthy and

Parthasarathy’'s (1951) multivariate gamma distribution with joint probability density

X 1e—><1
o

function given by

£ (X, Xg o X, ) = . r (8.2.2)
v Hf Za(r){ Z y ﬁL( )} n=2
i-1 ol S B o a h k-1
where f(Xi) denotes the marginal density of X, i=1...,n, for X, >0, a>0,
0 P o Py
o ..
Clz...n = _(_ 1)n = Pan
Pu Pu e O
and
r dr r+a-1,-x
r -1 X, e
{L(xk,a)} _L(x.a) :( ) dx;! b ) (8.2.3)
a %) a% e

Let us denote the joint distribution function of (X, X,,.,X,) by

Froxox, (X Xarn Xy ) = P(X, <X, X < X100 X S X, ). Then,

Froo Xn(X""’X):J."'J-f(xl""’xn)jxl""dxn:
0 0

0,1y .l g <0

where 1,(x,a)=|L,(x.,a)f(x, )dx, and can be evaluated for r = 0,,2,3,4 by relationships

o'—.x

(8.2.13) to (8.2.17) and for r > 5 by relationship (8.2.18) given below.
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Proof:

Defining C;, =0, we can write (8.2.2) as

n 0 a n j L r
f (% X0 X)) = (%) ;rl {ZZCI G ( )} >1.
i=1 r=0 '- j=ln j k=1
Making use of the expansmn 1 x i rl X", we obtain
r=0

£ (%) =T ] ( X)(l DA ﬁL( )Ja

i-1 i=in j k=1

i=1

n a n r;
Noting that, for any (1—inj = Z a A the above expression reduces to
)

) n L Tiip ..ij
) 10, % oI Llewadl b a)} ,
i=1 0,6y vy Fip <0 3 b, |,] =g r|1|2 i =

j=1n j

nAn—j+l nAn-j+2 nan-j+m

where ] denotes the product HX =10 I1 ~ IT -~ f[x,,___ij and by

n j ip=1 =i+l =g+l Q=i+l
n n n(n .
defining r, =0. As the Z ., has| . |terms, thenthe > >'r, . has > | |=2"-1
J i=ln =1\ J
n n
terms®. Rewriting [ f(x) as [] f(xj) and using Lemma 1, we have
i=1 j=1
r'l'z 'l izkrii i
|| L(Xk,a) ja e
(6% %,) = ao TS T e
0SE,, by i, <0 [szm .,] ER I (TN s a
j=ln
where Y, denotes summation over the set:
i,=12,..ki, =i ,+Li ,+2..,n—j+mm=23,..,j}.
Finally using relationship (8.2.3), we have
2 There are 2" —1 terms in the summation Z , i.e., for n = 3, the terms correspond to the indices
0<K,p e fig n <0
rl r2,r3,r12,r13,r23,r123
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FOg % X)= > | &,
0<R,6 .00 lp <0 [;.;H .

=Ln j '1'2 i

Thus
P, 0050 %)= [ [ £ (bt )l

[ DY I1 Ly ( )Li%--i-(tk'a)
= .| a Co f(t )= :

0 0 0<0, 6y oo iy <0 [;nzlfqiz,n] =L riliZ"'ijl k=1 ‘ a(élzkrlz J]

a
0SE.1y s fip <0 [erlz J] =l n j riliz...ij' k=L

n 12] n .
: }[HH ‘]H (%)=
.1

(%.a)

iz n 'y g i}
I [ [

k= a,
[EIZK Tiip..ij ]

0=, f2 0 =Lnoj |1|2 s

Xk

where | (x,,a)= L f(t )L (t.,a)dt, with ['(a

incomplete gamma function defined by F I e 't**dt, x> 0.

(1)

For r=012,..., the Laguerre (1879) Polynomials, L, (Xk,a)=

I e't*'dt and T,(a) denoting the

computed as

Lo(xa)= L5™(x,)=1

L(%.a)= (1)L (x ) =% ~a
U

(-
L,(x.a)=(-1)2L%"
(-

Ly(%.a)=

X, )=a+a’ —2x, —2ax, + X’

L,(x.a)=(-1)'41L3Y(x, )= 6a+11a> + 6a° + a* — 24x, — 44ax, —24a’x,

—4a’x, +36x7 +30ax; +6a’x; —12x’ —4ax; + x;

161

, are

13118 Y(x, )= —2a —3a® —a® + 6x, + 9ax, +3a’x, —6x —3ax? + X

(8.2.5)

(8.2.6)

(8.2.7)
(8.2.8)
(8.2.9)

(8.2.10)

(8.2.11)
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In order to compute Laguerre Polynomials of higher order we can use the following

recursive formula,

L (x.a)=(1) (@+2r—2-% X-1 "L, 4(x.a)- (r=1)(a+r - 2X-1) 7L, ,(x,a)).

Xi

As concerns the integral Ir(xk,a): j f (t)Lr (t,a) dt, for r=0.1,.2,..., is computed as

|0(xk,a)=1—W

ar, (a)-T, (a+1)
r'(a)

_ (1+a)ar, (a)-2r, (a+1)+T, (a+2)
IZ(Xk ’ a) r(a)

|1(Xk'a):

~(2+a)(@+a)(ar, (a)-3r, (a+1))+3r, (a+2))+T, (a+3)

X

|3(Xk’a): (a)

(3+a)(-(2+a)(1+a)(ar, (a)-4r, (a+1))+ 6L, (a+2))+4T, (a+3))-T, (a+4)

IA(Xk’a): F(a)

According to Lemma 2, a generalized form of Ir(xk,a) is the following

UL a)  (a

I,(xk,a)z_[0 6

o ay)l!

Ci
I

0<,1p . iz = iy dj

with Ir(x,a) as given by relationships (8.2.13) to (8.2.18).

Lemma 1:

r

=0 B

k=1
n

o DR

i1 =lip=ip+1 ip=ipq+1  ij=ij+1

?
M_.
T
>
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) 50 (ra i), (@)

n Fiig .1 " I, - iV(X,a)
2. a[zz][HH—,] P

k=1 & -
[El kriliz..ijJ

/

L(%.2)

a

}jzlzk Tijip...ij \J

(8.2.12)

(8.2.13)

(8.2.14)

(8.2.15)

(8.2.16)

(8.2.17)

(8.2.18)

(8.2.19)
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Proof:
. iriiliz..':iij- J L(Xi 'a) o
For simplicity, let us denote e J| H e; EHriliz___ij(Xil'xiz""’xij;a)' So
iyig.dj * k=1
fix | | ——<C.. . . =1 | flx Ll .
T f(xj) H, i_(xil Xi, ees X a)—
i1 0 i i i
= f(x)[TH (x ;a) (xz)l_[Hrmz(xi,xI a) fo)[ TH., (X, %, X ;0)
n 2 n n
nAan-1+1 nan-1+1nAn—-2+2
= f(x) HH,il(xil;a) - f(x,) I l_IHrm2 (xil,xiz;a)....
ip=1 =1 ip=ip+l
n/\n n+l nan-n+2
DT T TTH, b i)
ip=ip+11 i, =i, +1
foo) H.(xsa) H(x2)  H(ga)  H, (x;2) H, (x,;a)
f(x,) H, 06 %:a) H (x;a) H, (x,%,;a) H,, (%, %;;a)
H, (6 %;2) Hy (%,%,;a) H, (%, %,;2)
H,, (%, %,;2) H, (%, %,;a)
- Hrn,1 (Xn—ll Xn;a)
f(x,) - Hru___n(xl,k2 ..... X,;a)

B (Xl{%rl %{ L(x;, a)}rl.__{ L(x;, a)}rﬂ } .

_c{? Ci {L(xl,a) L(xz,a)}'ﬂm{ L(x,,a) L(Xn’a)}ﬁn

rlz! rln ! a a a a

f(x) .- S8 Czrzn"I {'-(sza) L(X3,a)}r“_“{ L(x,,a) L(xn,a)}an

r23! o0 a a a a
C,:: {L(an, a) L(Xn ’ a)}r”‘l ;
Mo n! a a
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f(xn {szz_-_g;l {L(Xl,a) L(Xz’a)... L(x,, a)}rlz }

{I—H—[J Il'izz J]' }[Hf ){ (Xk,a)}sz v J].

Lemma 2:

Xk

The generalized form of I (x,,a)= .[f(t)Lr(t,a)dt is computed as:

o

(Yay, o
l,(x.a) @) ; T ( a+l)— (a+|))
Proof:
L (6o2)= [SoE L ()t where L (ta)=(-1) 9 ee) /[e |
' T(a) dt

r r (')

r r—I |
But, d (r+a -1 t) Z( J d trea-l d g et r_(r n a_l)(r—l)tr+a—1+r+|(_1)l et

dt’ A\ )dt™ ! dt" ~

where A® = A(A-1).(A-B+1)=(-1P(- A~ A+1).(- A+ B-1)=(-1°(- A)y).

f N0
Hence, %(tﬂa—le—t):z( 1) r (r+a_1)(r—l)ta+l—1e—t

r () ro(_ _1)
and L, (t,a)= rz r+a—1)("')t' :ZM(—r—a+l)(r_,).

1=0 ! 1=0 II

As, (A B)(B+C) (A B)( )(A)(C)’ we find that:

r I

= Z%(— r-a+1),(-a+1),,.

1=0

Using i) (-r —a+1),,=(-1) a,, and i) (-a+1)_, = (—1)'/a(, , We arrive at:

Lr(t’a): : (_ r)(l)(_l)ra(f)(_l)l(_t)l a(ri

1=0 a)! 1=0 a !

(-1 a,R(-riast),
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where F(— a'b'z)— 3 (_a)(i)Zi is the Kummer (1836) confluent hypergeometric
SRR = ST P
function.
Thus,
(1) ) 00 e (1) a) o =y
I, (x.a)= r t e dt |= r Fa+l)-T, (a+1))].
(o2)=1ey & ! J @) &l a (ra+n-r, (@+1)

8.2.3 Determining the Distribution of the Minimum

Component X, of a Vector (Xl,Xz,...,Xn) Having a Multivariate

Gamma Distribution

Lemma 3:
Suppose that (Xl,Xz,...,Xn) are n random variables having Krishnamoorthy and
Parthasarathy’s (1951) multivariate gamma distribution with cumulative distribution

function given by (8.2.19) and parameters a and C,, .. Then, the cumulative distribution

function of X, = min(X,, X,,..., X, ) is computed in (8.2.20).

Proof:

Combining (8.2.1) with (8.2.19), the form of Fx(l)(x;a,Clz_.n), the MMG cumulative

distribution function is,

n

Fo (68,00 )=S0 T F 0 ()=

j=1

>

[1

k=1 @,
[Elzk r|1|2‘,,|j j

SISV WD W 7 J(r"[HC'“Z"’.

> j=in G

L i "

Tig +Figig o+ Tiig i <
j=ln

8.3. Tabulating the Distribution Function of X

In the sequel, we compute selected values of F, (aJl_p;a,Clz__n), for various values

of o , 20, p, a and the non-diagonal elements of C,,  using the tri-variate version of

Krishnamoorthy and Parthasarathy’s distribution.
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------

For n=1, |:X1(X)= Z (Clﬁ |r1(x,a)J. As we have defined Ci1 =0 and r = 0, we take that

0<r <o rl!

Fxl(X)=I0(x,a):1—1;j((EJL)).F0r n=2, Fxl'XZ(X,x)= Z a(rlz)C_lgz[Mj

a 0<r, <0 rlz!
and for n=3,
Fxl,xz,x3 (Xv X, X):

M2 f13 I23 f23 ( ) ( ) ( )
Z ClZ Cl3 C23 C123 I M2+ M3+ g3 X,a I T2+ T3+ o3 X,a I M3+ M3+ 123 X,a
(hy+hg+og+hs) | 1 | 1 ’
Mot Mgt Tyt Mgt a.(

0<h5 113,13, Tp3<0 fp+hg+1p3) (R +T3+hs) (r13 +r23+r123)

From (8.2.20) and as FXi (X): FX1 (X) Vi=1...,n, we find that

qu)(a)lfp;a,cm) is computed for various values of @, ,>0, 0<p<l, a>0 and
0< p,;q <1, for i=1,2, the non-diagonal elements of C,,,. Tables of selected values of
Fyo (a)l_p;a,Cm) as well as graphs depicting the cumulative density function of the tri-

variate MMG are presented in the Appendix 8.

8.4. Hypothesis Testing for the True Value of the Minimum

Component X

The distribution function of X(l) Emin(Xml,sz,...,an), when Xml,sz,...,X are

mﬂ
identically distributed random variables with Krishnamoorthy and Parthasarathy’'s
multivariate gamma distribution function, can be used to compare the predictability of a set

of models.

Let us assume that we are interested in examining the ability of m;, for i=12,..,n,
ARCH models in predicting the one-step-ahead conditional variance of the dependent

variable. Consider the ARCH process, {gt (49("“))}, as innovations in a linear regression
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Y, = Xt’flmi)ﬂ(mi) +& (0("\))
& (e(mi)): z,0, (e(mu))
iid.
z, ~ N(0,1)
o2(0™)= glle (0™ o (0 ) bl i 31,5 5.1, vk 1)

where xfm‘) is a vector of endogenous and exogenous explanatory variables included in
the information set It(m‘), ™) is a vector of unknown parameters, ,B(m') belongs to o)
o, (H(m‘)) is a measurable function of the information set at time t—1 that represents the
conditional variance of &, (H(m‘)), ut(m‘) is a vector of predetermined variables included in

It(m‘), and g() is a linear or non-linear functional form. In the 4™ chapter it was shown that
under the assumption of constancy of parameters over time,

(Ql(m‘)): (Hz(m‘)):...: (HT(m‘)): (6?('“‘)), the estimated standardized one-step-ahead prediction

errors Zt(lt 1) : 21(242, Z'?’lT)l are asymptotically independently standard normally distributed,

5 = (y, - 962 S N (02),

where )75[“_1) =x™am) ang o“'t(ltm_‘l) is the one-step-ahead conditional standard deviation
whose computation depends on the functional form of the m, ARCH process. Kibble

(1941) showed that if two variables follow jointly the standard normal distribution, then the

T T
joint distribution of (XmlsZIZizlq =21y J is the bivariate gamma.
t=1 t=1

Krishnamoorthy and Parthasarathy extended Kibble’s distribution to n variables. The null

hypothesis of equivalent predictive ability of models m,, for i=12,...,n, can be tested
against the alternative hypothesis that model m;;, (the model with the lowest half-sum of

squared standardized one-step-ahead prediction errors) is superior in forecasting the one-

step-ahead conditional variance:
Ho: Models m; are of equivalent predictive ability,
versus,

Hi: Model M) has the highest predictive ability.
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The null hypothesis is rejected if the test statistic X, mln( 12 ztIt o j exceeds the

100(1— p) percentile of the MMG cumulative distribution function, for a=T/2,

1 Py o Py

P 1w py

Cpon= and p; = COI’( t(lt)l’ t(|t)1)

P P - 1
Obviously, this hypothesis test can be applied for comparing the ability of models in
predicting the conditional mean. Consider the case that the m,, for i =12,...,n, models
are in the form of a linear regression
y, = X'(mi)ﬂ(mi) +€t(mi)
™' N(0,07™)

where ,B(m‘) is a vector of k™ unknown parameters to be estimated and xfm‘) is a vector

of explanatory variables included in |, . In such a case, the quantity Xmi is computed as

1Z(yt ﬂt ) )2 where 4™ = (XWX )XY, ,) is the least square

=1 (th ] )

estimator of #™ at time t—1,

~(m; m;) p(m ’ m;) n(m; m; r(m, m) YL r(m m) Y1
\% (yt(|t—l) )= (Yt—l o XE—l)ﬂt(—l )) (Yt—l o Xg—l)ﬂt(—l )Xl"' Xt( )(Xt(—l )ngl)) Xt( )Xlt—l o k( )) )
Y, is the (It xl) vector of |, observations on the dependent variable y,, and Xfm‘) is the

X( |) Y
(Itxk(mi)) matrix of x™ explanatory variables, so that X™ = [ El)} Y, :[ “1},
Yi

L >k™, 1, =1 +1and [X(™X™]#0, t=12,...T.
8.5. An Empirical Application
A thorough investigation of the predictive ability of ARCH model with the lowest

sum of standardized one-step-ahead prediction errors was conducted in chapters 5to 7. In

the present section we are not trying to evaluate the usage of selecting the model with the

minimum value of the test statistic, X(l), but we illustrate the application of the MMG
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hypothesis test. The reader who is interested in the predictability of the ARCH models with

Xy is referred to the relevant chapters mentioned above.

For y, = In(Pt/PH) denoting the daily log-returns, where P, is the ASE closing

price at day t, we estimate three ARCH processes. More specifically, framework (8.4.1) is
considered as a first order autoregressive process, AR(1), and the conditional variance is
modelled as Glosten’s et al. (1993) Threshold ARCH, or TARCH(p,q), process:

Yy =Co +C Yy + &

& = 1,0,
ii.d.

~ N(02)

—aO +Z(a & ,)+7/gt ~,d gt 5 SO +Z(biofi )

p
i=1 i=1

where d(g, <0)=1if & <0, and d(s, <0)=0 otherwise. The TARCH(p,q) model allows

a response of conditional variance to news with different coefficients for good (gH >O)

]
and bad (gtf1 < O) news. Therefore, good news has an impact of Zai , while bad news
i=1

has an impact of Z +7/ For y =0 the TARCH model reduces to Bollerslev's (1986)
i=1

representation of the GARCH(p,q) model. We arbitrarily choose to estimate the

GARCH(0,1), the GARCH(1,1) and the TARCH(2,2) models using the same data set of the

4™ chapter, on the Athens Stock Exchange (ASE) index which cover the period from 30"

of August 1993 to 4™ November of 1996. A rolling sample of constant size equal to 500 is

used and 300 one-day-ahead conditional mean and variance forecasts are computed,

which are divided into 5 sub-groups of 60 trading days each. The half sum of squared
60

standardized prediction errors of the three models, Xmi 52’12 2flt([“1i), for i=123, is
t=1

computed separately for each sub-group and they are presented in Table 8.1. The

standardized one-day-ahead prediction error of the TARCH(p,q) model is computed as

5 . Yi =Cor1 ~CreaYia

~

Zt|t 1 q 0 ’
A A A2 Y A ~2
\/ao,t—l + z (ai,t—lgt—i|t—l)+ 7t—18t—ﬂt—ld (gt—:ut—l < O)+ Z (bi ,t—lo-t—i|t—l)

i=1 i=1
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~

where (60't_1,61’t_1,éi]t_1,i =0,..,0, 74,0 i =1, p) is the estimating vector of unknown

parameters @ given the available information at time t —1.

Table 8.1. The half-sum of squared standardized one-day-ahead prediction errors of

60
the three estimated ARCH models, X, = 2"12 2t2|t([“li) ,for 1=1,23.
t=1

Sub-period AR(1)-GARCH(0,1) AR(1)-GARCH(1,1) AR(1)-TARCH(2,2)
1. 12.73 19.42 19.37
2. 39.83 42.21 43.30
3. 23.37 25.10 24.90
4. 15.31 18.22 18.82
5. 23.73 27.17 27.24

The AR(1)-GARCH(0,1) model appears to achieve the lowest value of the test statistic in
all the sub-periods. The null hypothesis
Ho: All the three models are of equivalent predictive ability
would, therefore, be interesting to be tested versus the alternative
H:: The model AR(1)-GARCH(0,1) has the highest predictive ability.

For any level of significance greater that 1— qu) (a)lfp;a :30,C123) the null hypothesis is

rejected at 100p% level of significance. Hence the evidence is in support of the
hypothesis that the AR(1)-GARCH(0,1) model has the highest predictive ability. Using
Table 8.2, one can test the above hypotheses for each sub-period. Note that p,; >95%,
for each model in every sub-group. The null hypothesis is rejected at any level of

significance greater than or equal to 1— Fxm (a)l_p ;a =30, Cm).

Table 8.2. Selected values of the cumulative density function, Fx(l) (a)lfp ;a= 30,0123).

Sub-period Fa (@,,:2=30,C,y,)

0.00008
0.98347
0.16725
0.00178
0.18515

abrwdE

We find that the null hypothesis is rejected at any reasonable level of significance only in
the second sub-period. Despite the fact that the AR(1)-GARCH(0,1) model has the lowest
value of the test statistic in all the periods, it is not selected by the MMG test among the

170



Chapter 8

three candidate models as the most accurate in forecasting the one-day-ahead ASE index

volatility.

8.6. Conclusion

The present chapter investigates the selection of a model from a set of available
models making simultaneous use of the information that is available from the candidate
forecasting models. The approach to compare statistically the predictive accuracy of a set
of forecasting models is commonly through pair wise comparisons. However, the
hypothesis testing procedure considered in this chapter, although complicated, provides
the researchers with a tool that allows the study of the joint fluctuations of the prediction
errors of the models. The presented multivariate test can be applied in the selection of
models forecasting either the conditional mean or the conditional variance. In future work,
we plan to study the gains in the forecasting accuracy that the use of the MMG test would
achieve compared to methods based on the use of classical two-model comparisons in
empirical applications. Morever, it should be pointed out that the practical applicability of
the MMG test could be extended to a comparison of a group of models of arbitrary size.
Instead of relying on tabulated values for the distribution of the minimum of a multivariate
Gamma distribution, one might approximate the quantiles of the minimum by a Monte
Carlo computer simulation. Approached such that of Hansen (2001) and Hansen and
Lunde (2003) where the p-values of the test statistic are obtained by using the bootstrap

method of Politis and Romano (1994) could be very instructive.
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Scope for Further Research

The present study provided an evaluation of the ability of a model selection
criterion in selecting the appropriate model to predict the conditional variance. According to
that criterion, named SPEC algorithm, the ARCH model with the lowest sum of squared
standardized one-step-ahead forecasting errors is selected for predicting one-step-ahead
future volatility. Two different theoretical frameworks have been considered. One based on
pairwise comparisons of the sums of squared standardized one-step-ahead forecasting
errors of the candidate models (chapter 4) and one utilizing their overall minimum (chapter
8). In chapters 5 to 7, we considered various approaches to explore whether the models
picked by the SPEC method achieve the highest predictive ability compared to those
picked by other methods of model selection, including single-model methods.

In the sequel, we refer to a number of topics worth future exploration.

e An important issue is the theoretical motivation of the SPEC algorithm application in
ARCH models with non-normally distributed conditional innovations. According to the
SPEC method of model selection, either in the case of a non-normal conditional
distribution for the residuals, the ARCH model with the lowest sum of squared
standardized one-step-ahead forecasting errors should be the most appropriate in
forecasting one-step-ahead volatility. However, the theoretical background in the case of
other distributions such as the student-t, the generalized error distribution and the skew
student-t distribution has to be further explored. Politis (2003b, 2004) considered
transforming the innovations to empirical ratios that are normally distributed by dividing the
ARCH process with a time-localized measure of standard deviation. Such approached
may add power in the applicability of the SPEC method.

e In the previous chapters, we included 3 conditional variance specifications, the
GARCH, the EGARCH and the TARCH models, but in the 2™ chapter we have presented
31 conditional variance specifications in the context of the ARCH framework. Hence,
investigating the performance of the SPEC algorithm over a set of more flexible ARCH
models, which account for recent developments in the area of asset returns volatility,
would be an interesting problem.
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e Recent developments in financial forecasting have provided evidence on statistically
significant predictability of asset returns. As already mentioned, in most of the cases, the
predictable component is either the overall mean or a first order autocorrelated process. In
the present thesis, the mean specification was considered as an autoregressive process.
However, artificial neural networks (Poggio and Girosi (1990), Hertz et al. (1991), White
(1992), Hutchinson et al. (1994)), chaotic dynamical systems (Brock (1986), Holden
(1986), Thompson and Stewart (1986) and Hsieh (1991)), nonlinear parametric and
nonparametric models (Tong (1990) and Terasvirta et al. (1994)) are some examples from
the literature dealing with conditional mean predictions. It would be interesting to
investigate whether there is added value in applying the SPEC model selection method for
such models for the conditional mean specification.

e We have investigated the added value of the SPEC model selection method in

forecasting volatility for options pricing. Value-at-Risk (VaR) at a given probability level p,

is the predicted amount of financial loss of a portfolio over a given time horizon. The
forecasting of the VaR number is another area of applied financial statistics that the added
value of the SPEC method should be explored. Angelidis and Degiannakis (2005b), Billio
and Pelizzon (2000), Brooks and Persand (2003) and Giot and Laurent (2003a, 2003b) are
examples of recent studies that investigate the forecasting ability of ARCH models in
predicting the VaR number.

e In section 2.6.1 we have noted the use of intra-day data as an alternative volatility
measure that introduced by Andersen and Bollerslev (1998a). In the 7" chapter, the ability
of the SPEC model selection algorithm was compared with loss functions that used the
realized intra-day volatility and the SPEC algorithm led to the highest profits. However, the
SPEC method can be compared to models that are based on intra-day datasets, like the
ARFIMA methodology described in equation 2.2.40 of the 2" chapter. As concerns the
guestion whether an ARFIMA model, which uses intra-day data, delivers more accurate
volatility forecasts than an ARCH model, which is based on daily returns, the answer may
not always positive. For example, Giot and Laurent (2004) concluded that an adequately
specified ARCH model has equivalent predictive ability with an ARFIMA specification in
predicting the one-day-ahead VaR. So, a future application of the SPEC model selection
method on inter-day and intra-day models would be interested.

e The SPEC algorithm is interesting to be applied in more data sets such as stocks,

stock indices, bonds, commodities and exchange rates.
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e At each point in time at which the SPEC method is applied, a specific model is picked
as the most appropriate for predicting future volatility. In Table 6.6 of the 6™ chapter, we
have seen that the SPEC algorithm does not appear to be noticeably biased towards
selecting a specific type of model. However, there are studies in the literature such as
Christoffersen and Jacobs (2003), Ferreira and Lopez (2003) and Lopez and Walter
(2001), which support the assumption that the simplest model specifications are chosen a
disproportionately large percentage of the time. On the other hand, Angelidis, Benos and
Degiannakis (2004), Degiannakis (2004), Giot and Laurent (2003a, 2004) among others
concluded that the more flexible an ARCH model is, the more adequate it is in volatility
forecasting, compared to parsimonious models. For further research, it may be interesting
to investigate whether the selection of specific models is related to certain economic
factors.

e The MMG hypothesis testing is a multi-model selection procedure, which leads to the
selection of the model with the lowest sum of squared standardized one-step-ahead
prediction errors. The form of the exact distribution of the test statistic is explicitly derived
as the distribution of the minimum value of n variables that are multivariate gamma
distributed. The derived exact distribution of the test statistic should not be considered only
as the theoretical justification of the SPEC algorithm. Studying the gains in forecasting
accuracy in empirical applications from the use of the proposed test procedure is worth

exploration.
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Appendix 2

The ARCH models that have been presented

Table 2.2. The ARCH models that have been presented in Section 2.1. The reader who is interested
in more information for an ARCH model should recur to the equation referred in the last column.

ARCH(q) Engle (1982)  (2.2.3)
i=1
q p
2 2 2 Bollerslev
GARCH(p.q) ol =a,+ Z(ai el )+ Z(bjo-t—J ) S (2.2.6)
i=1 j=1
q p q p Engle and
IGARCH(p,q) ol =a,+ Z(a el )+ Z(bjaf J) for Za, + ij =1 Bollerslev (2.2.8)
i=1 j=1 i=1 j=1 (1986)
-1
n(o?)=a, +[ 1+ YaL [ 1-b,L
t )= %o i ' Nel
EGARCH(p,q) il = (16959‘33‘ (2.2.13)
(qut—l /O't—1| - E|8t—1 /O-I—l|)+ 7(8I—1 /O-t—l ))
q 9 P
2 2 2 Glosten et
GJR(p.q) ol =a,+ Z(ai &l )+ Z(y d(e,_, <0)s )+ Z(bjat_j) ey, (2214
i=1 i=1 j=1
9 q P
+ - Zakoian
TGARCH(p,q) o, =a,+ Z(aig )— Z( Er )+ Z(bjo't_j) S990) (2.2.15)
i=1 i=1 j=1
q P Taylor
1986
AGARCH(p.q) o =a,+ . ale |+ b0 J1986) — (22.16)
= =l (1989a,b)
) q ) p 5 Geweke
Ln-GARCH(p,q) ln(at ): a, + Zai ln(gt_i )+ Zb j ln(at_ j ) é;?]ﬁﬁ; (2.2.17)
- a (1986)
q 2
Schwert
Stdev-ARCH(q) = (ao + le a, |gt_i |] 1990) (2.2.18)
i=
5 _ . 2 1% p b o’ Higgins and (2.2 19)
NARCH(p.q) of =a,+ el ? + D bjol, Bera (1992)
i=1 j=1
9 P
AGARCH(p,q) ol =a,+ > (@l +76. )+ bl Engle (1990) (22.21)
i=1 j=1
q
2 2 Engle and
NAGARCH(p.q) ol =a,+ Y ale. +r0,) +Y.bol, ooy (2222
i=1 j=1
q
2 Engle and
VGARCH(p.q) ol =a,+y.a(e /o +r) + Zb ol Nedioss 222
i=1
q
s Ding et al.
APARCH(p,q) ol =a,+ > alen|-ren) +Zb ol ool @224
i=1
q
2 Sentana
GQARCH(pa) O =@, + ) &, Z Vi€ +2Z Zaugt e+ Zb ol ey @2
i=1

i=1 j=i+l
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q J p G s .
GQTARCH(p,q) ol =0+ > al (e )+ ijaf_j and Morfort (2.2.28)
i=1 j=1 (1992)
VSARCH(p,q): =+ Za gl +98, —Ll+ Zb oy, For(q%régﬂ)e'e (2.2.29)
’[ 1
AVSARCH(p,q) =8 +|Za &l +Zb oL+l +5(( /ol 1) )St- &‘;21‘:;&5") (2.2.30)
q
;= F b,
LST-GARCH(p,q) %= +iZ=1:(a +riFle el +Z o) H(jQQSFGU)d (2.2.32)
Fe)=(1+exp(-0s))" o
q
;= F b
EST-GARCH(p,) 7t +.Z:1:(a FriFle ey +JZ‘ o) Hagerud (2239
F (5t , ) =1- exp(— ‘%H )
q P
o) =a, +Z(al +7|F( Eii )gtz—i +ijo-t2—j
GLST- i=1 i=t Lubrano (2.2.34)
GARCH(p.q) Fe )= 1—exp(- ggt .) (1998)
i 1+exp( el 2))
q P
GEST- =a, + z a; + 7| |))‘9t2| + ijo-t i Lubrano (2.2.35)
GARCH(p,q) = o50) 2.
F(gt—i) 1-ex ( (gt i C)Z)
= _ b(s2 —
CGARCH(1.1) ) q; + al( €t (qt2—1 )j 12 o;t—l qt—l) I_Eenegl(igg?c’i) (2.2.37)
9, =8, + pq,, +Ple, — o,
O-t2 = qt + al (5t{1 - qt—l )+ 71 (d (gt—l < 0)‘5}271 - O'Sqt—l )+ b1 (O-t2—1 - qt— Engle and 9
ACGARCH(1.1) 0: =28, + P, +¢(€t2—1 _Jt{1)+72 (d(gt—l < O)gil - 0~50-t271) Lee (1993) (2239
FIGARCH(p.d,q) ol =a, +( ~B(L)-®(L)1-L) )gf +B(L)o? Ba("j‘gg%t)a'- (2.2.46)
Bollerslev
FIEGARCH(p.d.q) In(o?)=a, + L) (1-L)* (1+ ALL))(z.,) vind | (2247)
(1996)
FIAPARCH(p.d.q) of =a, +(1-(1-BL) oLY1- L) a|-rz ) Tse (1908)  (22.48)
d
O.ti: K +( _(1_(0L)(1_L) jfv(gt t/l
ASYMM 1= 1-d Hwang (2.2.49)
FIFGARCH(1,d,1) . . (2001)
f(e) = —t—b‘ c[—‘—b |
Gt Ut
d Ui
(-l 1-L) 2o =o' +all+yL)o?, (F*(z.,)-1)
FlFGﬁa\éﬂx d,1) Ruizand (22 50)
o Perez (2003)
modified
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q D Nowicka-
r .
2 2 2 Zagrajek (2.2.51)
R-GARCH(r,p,q) ol =), (ci* n, . )+ Z(ai &l )+ Z(b o ) Legmer
i*=1 i=1 i=t (2001)
2
n i i p ..
Mdller et al.
2 2 (2.2.52)
H-GARCH(p.n) ol =a,+) ) a [Z%_i* ) + (b)) (1997)
i=1 k=l i*=k j=1
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Appendix 3

Figure 3.1. The simulated processes

Figure 3.2. Histograms and descriptive statistics of
the simulated processes

Figure 3.3. Histograms of simulated Chi-square
distributed process with T degrees of freedom

Figure 3.4. Autocorrelation of transformations of the
processes Z,,¢ ,V,, 0,

Figure 3.5. The one-step-ahead estimated processes
Figure 3.6. Histograms and descriptive statistics of
the one-step-ahead estimated processes

Figure 3.7. Histograms and descriptive statistics of

D220 for t=T(T)30000

j=t=T+1 "+l
Figure 3.8. Autocorrelation of transformations of the
processes Z ., &y Veapr Oy

Figure 3.9. Histograms and descriptive statistics of
the squared standardized one-step-ahead prediction
errors

Figure 3.10. Histograms and descriptive statistics of

D220 for t=T(T)30000

j=t-T+1 T+l

Figure 3.11. Autocorrelation of transformations of the

a

yA

processes Cor(ji , d), d =0.5(0.53, z=1(1)100

t+1t t+r+ljt+7
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Figure 3.1. The simulated processes.
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Figure 3.2. Histograms and descriptive statistics of the simulated processes.
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Figure 3.3. Histograms of simulated Chi-square distributed process with T

degrees of freedom.
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Figure 3.3. Histograms of simulated Chi-square distributed process with T

degrees of freedom.
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Figure 3.4. Autocorrelation of transformations of the processes z,,¢, ,V,, 0, .
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Figure 3.4. Autocorrelation of transformations of the processes z,,¢, ,V,,0, .
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Figure 3.5. The one-step-ahead estimated processes.
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Figure 3.6. Histograms and descriptive statistics of the one-step-ahead estimated

processes.
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Figure 3.7. Histograms and descriptive statistics of {th
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22, ,t=T(T)30000.

=t-T+1 i+l

Figure 3.7. Histograms and descriptive statistics of {th
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Figure 3.8. Autocorrelation of transformations of the processes Z,,,,, &,y s Viuyp» Oay -
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Figure 3.9. Histograms and descriptive statistics of the squared standardized one-

step-ahead prediction errors.
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Figure 3.9. Histograms and descriptive statistics of the squared standardized one-

step-ahead prediction errors.
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Figure 3.10. Histograms and descriptive statistics of {th 2 },t = T(T )30000.
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Figure 3.10. Histograms and descriptive statistics of {th
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Figure 3.10. Histograms and descriptive statistics of {th 72 },t =T(T )30000.
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Figure 3.11. Autocorrelation of transformations of the processes
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Figure 3.11. Autocorrelation of transformations of the processes
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Figure 3.11. Autocorrelation of transformations of the processes
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Figure 3.11. Autocorrelation of transformations of the processes
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Appendix 4

o Figures 4.8-4.14. The probability density function of

the Correlated Gamma Ratio Distribution

o Table 4.5. Percentage points of the Correlated Gamma

Ratio Distribution
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Figure 4.8. The probability density function of the Correlated Gamma Ratio

Distribution
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Figure 4.9. The probability density function of the Correlated Gamma Ratio

Distribution
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Figure 4.10. The probability density function of the Correlated Gamma Ratio

Distribution
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Figure 4.11. The probability density function of the Correlated Gamma Ratio

Distribution
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Figure 4.12. The probability density function of the Correlated Gamma Ratio

Distribution
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Figure 4.13. The probability density function of the Correlated Gamma Ratio
Distribution
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Figure 4.14. The probability density function of the Correlated Gamma Ratio

Distribution
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Table 4.5. Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.25
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 3.008 3.004 2993 2.974 2947 2913 2.871 2.821 2.763 2.697
2 2.064 2.062 2.057 2.048 2.035 2.019 1.999 1.975 1.947 1.915
3 1.782 1.781 1777 1771 1762 1.751 1.736 1.72 1.7 1.678
4 1.64 1.639 1.636 1.631 1.624 1.615 1.603 1.59 1.574 1.557
5 1.551 155 1548 1544 1538 1.53 1.521 1.509 1.496 1.481
6 149 1489 1487 1484 1478 1472 1463 1.453 1.442 1.429
7 1445 1.444 1442 1439 1434 1428 1421 1412 1.402 1.39
8 1.41 1409 1407 1404 14 1395 1388 1.38 1.37 1.359
9 1.381 1.381 1.379 1.376 1.372 1.367 1.361 1.354 1.345 1.335
10 1.358 1.357 1.356 1.353 1.35 1.345 1.339 1.332 1.324 1.315
11 1.338 1.338 1.336 1.334 133 1.326 1.321 1.314 1.306 1.297
12 1.321 1.321 1.32 1317 1314 131 1305 1.298 1.291 1.283
13 1.307 1.306 1.305 1.303 1.3 1.296 1.291 1.285 1.278 1.27
14 1.294 1.293 1.292 129 1.287 1.283 1.279 1.273 1.266 1.259
15 1.282 1.282 1.281 1.279 1.276 1.272 1.268 1.262 1.256 1.249
16 1272 1272 1.271 1.269 1.266 1.262 1.258 1.253 1.247 1.24
17 1.263 1.262 1.261 1.259 1.257 1.254 1.249 1.244 1.239 1.232
18 1.254 1.254 1.253 1.251 1.249 1.245 1.241 1.237 1.231 1.224
19 1.247 1.246 1.245 1.244 1.241 1.238 1.234 1.229 1.224 1.218
20 1.24 1.239 1.238 1.237 1.234 1.231 1.227 1.223 1.218 1.212
21 1.233 1.233 1.232 1.23 1.228 1.225 1.221 1.217 1.212 1.206
22 1.227 1.227 1.226 1.224 1.222 1.219 1.216 1.211 1.206 1.201
23 1222 1221 122 1.219 1.217 1214 121 1.206 1.201 1.196
24 1.216 1.216 1.215 1.214 1.212 1.209 1.205 1.201 1.197 1.191
25 1.212 1211 121 1.209 1.207 1.204 1.201 1.197 1.192 1.187
26 1.207 1.207 1.206 1.204 1.202 1.2 1197 1.193 1.188 1.183
27 1.203 1.202 1202 12 1.198 1.196 1.193 1.189 1.184 1.179
28 1.199 1.198 1.198 1.196 1.194 1.192 1.189 1.185 1.181 1.176
29 1.195 1.195 1.194 1.192 1191 1.188 1.185 1.181 1177 1.172
30 1.191 1191 119 1189 1.187 1.185 1.182 1.178 1.174 1.169
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.25
2k+1

z 2 k 2 2
1- _ 2
(D(z):IMxk“(Hx) M| 2L x dx=1-a
\ B(k,k) X+1
%{Z\
13
k 0.00 005 010 015 020 025 030 035 040 045
31 | 1.188 1.188 1.187 1.186 1.184 1.181 1178 1175 1.171 1.166
32 1.185 1.184 1.184 1.182 1.181 1.178 1.175 1.172 1.168 1.163
33 1181 1.181 1.181 1179 1178 1175 1.172 1.169 1.165 1.161
34 | 1179 1178 1178 1176 1.175 1172 117 1.166 1.163 1.158
35 | 1176 1176 1175 1174 1172 117 1.167 1.164 1.16 1.156
36 | 1173 1173 1172 1171 1.169 1.167 1.164 1.161 1.158 1.153
37 | 117 147 147 1.168 1.167 1.165 1.162 1.159 1.155 1.151
38 | 1.168 1.168 1.167 1.166 1.164 1.162 1.16 1.157 1.153 1.149
39 1.166 1.165 1.165 1.164 1.162 1.16 1.157 1.154 1.151 1.147
40 1.163 1.163 1.163 1.161 1.16 1.158 1.155 1.152 1.149 1.145
41 | 1161 1161 1.16 1.159 1.158 1.156 1.153 1.15 1.147 1.143
42 | 1159 1.159 1.158 1.157 1.156 1.154 1.151 1.148 1.145 1.141
43 | 1157 1157 1.156 1.155 1.154 1.152 1.149 1.147 1.143 1.139
44 | 1155 1.155 1.154 1153 1152 115 1.148 1.145 1.141 1.138
45 | 1153 1.153 1.153 1.151 1.15 1.148 1.146 1.143 114 1.136
46 | 1152 1151 1151 115 1.148 1.146 1.144 1.141 1.138 1.134
47 1.15 115 1.149 1.148 1.147 1145 1142 114 1.136 1.133
48 1.148 1.148 1.147 1.146 1.145 1.143 1.141 1.138 1.135 1.131
49 | 1146 1.146 1.146 1.145 1143 1.141 1.139 1.137 1133 1.13
50 | 1.145 1.145 1144 1143 1142 114 1138 1.135 1.132 1.128
51 | 1143 1143 1143 1142 114 1.138 1.136 1.134 1131 1.127
52 | 1142 1142 1141 114 1139 1.137 1.135 1.132 1129 1.126
53 | 114 114 114 1139 1.137 1.136 1.134 1.131 1.128 1.125
54 1139 1.139 1.138 1137 1.136 1.134 1.132 1.13 1.127 1.123
55 1.138 1.137 1.137 1136 1.135 1.133 1.131 1.128 1.125 1.122
56 | 1.136 1.136 1.136 1.135 1.133 1.132 113 1.127 1.124 1.121
57 | 1135 1.135 1134 1.133 1.132 113 1128 1126 1.123 1.12
58 | 1134 1.134 1133 1.132 1.131 1.129 1.127 1125 1122 1.119
59 | 1133 1132 1.132 1.131 1.13 1.128 1.126 1.124 1121 1.118
60 | 1131 1131 1.131 113 1.129 1.127 1125 1123 112 1.117
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.25
2k+1

1- _ 2
(D(z):IMxk“(Hx) 2| =2 | x dx=1-a
\ B(k,k) X+1
%{Z\
0
k 050 055 060 065 070 075 080 085 090 0.9
1 | 2623 254 2448 2346 2234 2111 1974 1.822 1646 1.431
2 1.879 1.839 1.794 1.743 1.687 1.624 1.554 1.474 1.379 1.26
3 1.652 1.623 1591 1555 1515 147 1419 136 129 1.2
4 | 1536 1513 1487 1458 1426 1.389 1.348 1.3 1243 1.169
5 | 1464 1444 1422 1398 137 1.339 1.303 1.262 1.212 1.148
6 | 1413 1396 1.377 1.355 1.331 1.303 1.272 1.235 1.191 1.133
7 | 1376 1.361 1.343 1.324 1302 1.277 1.248 1.215 1.175 1.122
8 | 1.347 1.333 1317 1299 1279 1256 123 1.199 1.162 1.114
9 1323 1.31 1295 1279 126 1239 1.215 1.186 1.152 1.107
10 1.304 1.292 1.278 1.262 1.245 1.225 1.202 1.175 1.143 1.101
11 | 1.287 1276 1.263 1248 1232 1213 1.192 1.166 1.136 1.096
12 | 1273 1262 125 1236 1.221 1203 1.182 1.159 1.13 1.091
13 | 1.261 1251 1.239 1226 1211 1.194 1.174 1.152 1.124 1.087
14 | 125 124 1229 1216 1.202 1.186 1.167 1.146 1.119 1.084
15 | 124 1231 122 1208 1.195 1179 1.161 1.14 1.115 1.081
16 | 1.232 1223 1.212 1201 1.188 1.173 1.156 1.135 1.111 1.078
17 1224 1.215 1.205 1194 1.182 1.167 1.15 1.131 1.107 1.076
18 1.217 1.209 1.199 1.188 1.176 1.162 1.146 1.127 1.104 1.073
19 | 1211 1202 1.193 1.183 1.171 1.157 1.142 1.123 1.101 1.071
20 | 1205 1.197 1.188 1.177 1.166 1.153 1.138 1.12 1.098 1.07
21 | 1199 1.191 1.183 1.173 1.162 1.149 1.134 1.117 1.096 1.068
22 | 1194 1187 1178 1.168 1.158 1.145 1.131 1.114 1.093 1.066
23 | 1189 1.182 1.174 1.164 1.154 1.142 1128 1.111 1.091 1.065
24 1185 1.178 117 1161 115 1.138 1.125 1.109 1.089 1.063
25 1.181 1.174 1.166 1.157 1.147 1.135 1.122 1.106 1.087 1.062
26 | 1177 117 1162 1.154 1.144 1133 1.12 1.104 1.086 1.061
27 | 1173 1.167 1159 1.151 1141 113 1.117 1.102 1.084 1.059
28 | 117 1163 1.156 1.148 1.138 1.127 1115 1.1 1.082 1.058
29 | 1167 1.16 1.153 1.145 1.136 1.125 1.113 1.098 1.081 1.057
30 |1.164 1157 115 1.142 1.133 1.123 1.111 1.097 1.079 1.056
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.25
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.50 055 060 065 070 075 080 085 090 0.95
31 1.161 1.155 1.148 114 1.131 1.121 1109 1.095 1.078 1.055
32 1.158 1.152 1.145 1137 1.129 1.119 1.107 1.093 1.077 1.054
33 1155 1.15 1.143 1135 1.127 1117 1.105 1.092 1.075 1.054
34 1.153 1.147 1.141 1.133 1.125 1115 1104 1.09 1.074 1.053
35 1.151 1.145 1.138 1.131 1.123 1.113 1.102 1.089 1.073 1.052
36 1.148 1.143 1.136 1.129 1121 1111 1.101 1.088 1.072 1.051
37 1.146 1.141 1134 1127 1119 1.11 1.099 1.087 1.071 1.05
38 1.144 1139 1.132 1125 1.117 1.108 1.098 1.085 1.07 1.05
39 1142 1.137 1.131 1124 1.116 1.107 1.096 1.084 1.069 1.049
40 114 1.135 1.129 1122 1.114 1.105 1.095 1.083 1.068 1.048
41 1.138 1.133 1.127 112 1113 1.104 1.094 1.082 1.067 1.048
42 1.136 1.131 1.125 1.119 1.111 1.103 1.093 1.081 1.067 1.047
43 1135 113 1.124 1117 111 1101 1.092 1.08 1.066 1.047
44 1.133 1.128 1.122 1116 1109 11 1.09 1.079 1.065 1.046
45 1.132 1.127 1121 1115 1.107 1.099 1.089 1.078 1.064 1.046
46 113 1125 112 1113 1.106 1.098 1.088 1.077 1.063 1.045
47 1.129 1.124 1.118 1112 1.105 1.097 1.087 1.076 1.063 1.045
48 1127 1122 1117 1111 1.104 1.096 1.086 1.076 1.062 1.044
49 1.126 1.121 1.116 1.109 1.103 1.095 1.086 1.075 1.061 1.044
50 1124 112 1.114 1.108 1.101 1.094 1.085 1.074 1.061 1.043
51 1.123 1.118 1.113 1.107 11 1.093 1.084 1.073 1.06 1.043
52 1.122 1117 1.112 1.106 1.099 1.092 1.083 1.072 1.06 1.042
53 1.121 1116 1.111 1105 1.098 1.091 1.082 1.072 1.059 1.042
54 1.119 1.115 111 1104 1.097 1.09 1.081 1.071 1.058 1.042
55 1.118 1.114 1.109 1.103 1.097 1.089 1.08 1.07 1.058 1.041
56 1.117 1.113 1.108 1.102 1.096 1.088 1.08 1.07 1.057 1.041
57 1.116 1.112 1.107 1.101 1.095 1.087 1.079 1.069 1.057 1.04
58 1.115 1111 1106 1.1 1.094 1.087 1.078 1.068 1.056 1.04
59 1114 111 1.105 1.099 1.093 1.086 1.078 1.068 1.056 1.04
60 1.113 1.109 1.104 1.098 1.092 1.085 1.077 1.067 1.055 1.039
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.20
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 4.013 4.006 3.988 3.958 3.915 3.861 3.794 3.714 3.622 3.518
2 2483 248 2472 2459 244 2416 2.387 2.352 2.311 2.265
3 2062 2.06 2.055 2.046 2.033 2.017 1.997 1.973 1.945 1.914
4 1.856 1.855 1.851 1.844 1.834 1.821 1.806 1.787 1.765 1.741
5 1732 173 1.727 1.721 1.713 1.702 1.689 1.674 1.656 1.635
6 1.646 1.645 1.642 1637 163 1621 161 1596 1.58 1.562
7 1.584 1583 158 1576 1.57 1.561 1.551 1.539 1.525 1.509
8 1.536 1.535 1.533 1.528 1.523 1.515 1.506 1.495 1.482 1.468
9 1497 1.497 1494 1491 1485 1478 147 146 1.448 1.435
10 1466 1.465 1.463 1.459 1.454 1448 144 1431 1.42 1.407
11 1439 1.438 1.436 1433 1429 1423 1.415 1.407 1.396 1.385
12 1416 1.416 1.414 1411 1406 1.401 1.394 1.386 1.376 1.365
13 1.397 1.396 1.394 1.391 1.387 1.382 1.375 1.368 1.359 1.348
14 1.379 1.379 1.377 1.374 1371 1.365 1.359 1.352 1.343 1.333
15 1.364 1.364 1.362 1.359 1.356 1.351 1.345 1.338 1.329 1.32
16 1.35 1.35 1.348 1.346 1.342 1.338 1.332 1.325 1.317 1.308
17 1.338 1.338 1.336 1.334 133 1326 1.32 1.314 1.306 1.297
18 1.327 1.327 1325 1323 132 1315 1.31 1.304 1.296 1.288
19 1.317 1.316 1.315 1313 131 1306 1.3 1.294 1.287 1.279
20 1.308 1.307 1.306 1.304 1.301 1.297 1.292 1.286 1.279 1.271
21 1.299 1.299 1.297 1.295 1.292 1.288 1.284 1.278 1.271 1.263
22 1291 1291 129 1287 1.285 1.281 1.276 1.271 1.264 1.257
23 1.284 1.283 1.282 1.28 1.277 1.274 1.269 1.264 1.257 1.25
24 1.277 1.277 1.275 1.274 1.271 1.267 1.263 1.258 1.251 1.244
25 1271 1.27 1.269 1.267 1.265 1.261 1.257 1.252 1.246 1.239
26 1.265 1.264 1.263 1.261 1.259 1.255 1.251 1.246 1.24 1.233
27 1.259 1.259 1.258 1.256 1.253 1.25 1.246 1.241 1.235 1.229
28 1.254 1.253 1.252 1.251 1.248 1.245 1.241 1236 1.23 1.224
29 1.249 1.248 1.247 1.246 1243 1.24 1236 1.231 1.226 1.22
30 1.244 1.244 1.243 1.241 1.239 1.236 1.232 1.227 1.222 1.215
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.20
2k+1

1- _ 2
(D(z):IMxk“(Hx) 2| =2 | x dx=1-a
\ B(k,k) X+1
%{Z\
0
k 000 005 010 0.15 020 025 030 035 040 045
31 | 124 1239 1238 1237 1234 1231 1228 1223 1218 1.212
32 1235 1.235 1.234 1.232 1.23 1.227 1.224 1.219 1.214 1.208
33 1231 1.231 123 1229 1226 1.223 122 1.215 1.21 1.204
34 | 1228 1227 1226 1225 1223 122 1216 1.212 1.207 1.201
35 | 1224 1224 1223 1221 1219 1216 1.213 1.208 1.204 1.198
36 | 122 122 1219 1218 1216 1213 1.209 1205 1.2 1.195
37 | 1217 1217 1216 1214 1212 121 1206 1.202 1.197 1.192
38 | 1214 1214 1213 1211 1209 1.207 1.203 1.199 1.194 1.189
39 1211 1211 121 1.208 1.206 1.204 1.2 1.196 1.192 1.186
40 1.208 1.208 1.207 1.205 1.203 1.201 1.198 1.194 1.189 1.184
41 | 1205 1205 1.204 1.203 1201 1.198 1.195 1.191 1.187 1.181
42 | 1202 1202 1201 12 1198 1.195 1.192 1.189 1.184 1.179
43 | 12 12 1199 1.197 1.195 1.193 119 1.186 1.182 1.177
44 | 1197 1197 1.196 1.195 1.193 1.19 1.187 1.184 1.179 1.175
45 | 1195 1.195 1.194 1.192 1.191 1.188 1.185 1.182 1.177 1.172
46 | 1193 1192 1.191 1.19 1.188 1.186 1.183 1.179 1175 1.17
47 1.19 1.19 1.189 1.188 1.186 1.184 1.181 1.177 1.173 1.168
48 1.188 1.188 1.187 1.186 1.184 1.182 1.179 1.175 1.171 1.166
49 | 1186 1.186 1.185 1.184 1.182 1.18 1.177 1.173 1.169 1.165
50 | 1.184 1.184 1.183 1.182 1.18 1.178 1.175 1.171 1.167 1.163
51 | 1.182 1.182 1.181 1.18 1.178 1.176 1.173 1.17 1.166 1.161
52 | 118 118 1.179 1.178 1.176 1.174 1171 1.168 1.164 1.159
53 | 1178 1.178 1.177 1.176 1.174 1.172 1.169 1.166 1.162 1.158
54 1176 1.176 1.175 1174 1173 117 1.168 1.164 1.161 1.156
55 1175 1174 1174 1172 1171 1169 1.166 1.163 1.159 1.155
56 | 1173 1.173 1.172 1171 1.169 1.167 1.164 1.161 1.157 1.153
57 | 1471 1471 147 1.169 1.168 1.165 1.163 1.16 1.156 1.152
58 | 117 1.169 1.169 1.168 1.166 1.164 1.161 1.158 1.154 1.15
59 | 1.168 1.168 1.167 1.166 1.164 1.162 1.16 1.157 1.153 1.149
60 | 1.167 1.166 1.166 1.165 1.163 1.161 1.158 1.155 1.152 1.148
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.20
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.50 055 060 065 070 075 080 085 090 0.95
1 34 3.269 3.125 2.966 2.792 2.602 2.394 2.163 1.902 1.591
2 2212 2153 2.088 2.015 1.935 1.846 1.746 1.634 1.503 1.34
3 1.878 1.837 1.792 1.742 1.686 1.623 1.553 1.473 1.378 1.259
4 1712 1.68 1.645 1.605 1.561 1511 1455 139 1.314 1.216
5 1.611 1.584 1.555 1.521 1.484 1.442 1.394 1.339 1.273 1.189
6 1542 1518 1492 1463 143 1393 1.351 1.303 1.245 1.17
7 1.491 147 1446 142 1.391 1358 132 1.276 1.224 1.156
8 1451 1432 1411 1387 1.36 1.33 1.295 1.255 1.207 1.144
9 1419 1.402 1382 136 1.335 1.307 1.275 1.238 1.194 1.135
10 1.393 1.377 1.359 1.338 1.315 1.289 1.259 1.224 1.182 1.128
11 1.371 1.356 1.339 1.319 1.298 1.273 1.245 1.212 1173 1.121
12 1.352 1.338 1.322 1.304 1.283 1.26 1.233 1.202 1.165 1.115
13 1.336 1.322 1.307 129 127 1.248 1.223 1.193 1157 1.11
14 1.322 1.309 1.294 1277 1.259 1.238 1.214 1.185 1.151 1.106
15 1.309 1.296 1.282 1.267 1.249 1.229 1.205 1.178 1.145 1.102
16 1.298 1.286 1.272 1.257 124 122 1198 1172 1.14 1.099
17 1.287 1.276 1.263 1.248 1.232 1.213 1.191 1.166 1.136 1.096
18 1.278 1.267 1.254 124 1224 1.206 1.185 1.161 1.132 1.093
19 1.269 1.259 1.247 1.233 1.218 1.2 1.18 1.156 1.128 1.09
20 1.262 1.251 124 1226 1.211 1194 1175 1.152 1.124 1.088
21 1.255 1.244 1233 122 1.206 1.189 117 1.148 1.121 1.085
22 1.248 1.238 1.227 1.215 1.201 1.184 1.166 1.144 1.118 1.083
23 1.242 1.232 1.221 1.209 1.196 1.18 1.162 1.141 1.115 1.081
24 1.236 1.227 1.216 1.204 1.191 1.176 1.158 1.138 1.113 1.08
25 1231 1222 1211 12 1187 1172 1.155 1.135 1.11 1.078
26 1.226 1.217 1.207 1.196 1.183 1.168 1.152 1.132 1.108 1.076
27 1221 1.212 1.203 1.192 1.179 1.165 1.148 1.129 1.106 1.075
28 1.217 1.208 1.199 1.188 1.175 1.162 1.146 1.127 1.104 1.073
29 1212 1.204 1.195 1.184 1172 1.159 1143 1.124 1.102 1.072
30 1.208 1.2 1191 1181 1.169 1156 114 1122 1.1 1.071
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.20

CD(z):i%xk“(ux)’z{l—(%fx] " dx=1-a

z

0
k 050 055 060 065 070 075 080 085 090 0.9

31 1.206 1.197 1.188 1.178 1.166 1.153 1.138 1.12 1.098 1.07
32 1.201 1.193 1.184 1174 1.163 1.15 1.135 1.118 1.097 1.068
33 1198 119 1.181 1172 1.16 1.148 1.133 1.116 1.095 1.067
34 1194 1.187 1178 1.169 1.158 1.145 1.131 1.114 1.094 1.066
35 1191 1.184 1176 1.166 1.155 1.143 1.129 1.112 1.092 1.065
36 1.188 1.181 1.173 1.164 1.153 1.141 1.127 1.111 1.091 1.064
37 1186 1.178 1.17 1.161 1.151 1.139 1.125 1.109 1.09 1.063
38 1.183 1.176 1.168 1.159 1.149 1.137 1.123 1.108 1.088 1.062
39 1.18 1.173 1.166 1.157 1.147 1.135 1.122 1.106 1.087 1.062
40 1178 1171 1.163 1.154 1.145 1.133 1.12 1.105 1.086 1.061
41 1175 1.169 1.161 1.152 1.143 1.131 1.119 1.103 1.085 1.06
42 1173 1.167 1159 115 1.141 113 1.117 1.102 1.084 1.059
43 1171 1.164 1157 1.149 1.139 1.128 1.116 1.101 1.083 1.059
44 1.169 1.162 1.155 1.147 1137 1127 1114 11 1.082 1.058
45 1167 1.16 1.153 1.145 1.136 1.125 1.113 1.098 1.081 1.057
46 1.165 1.158 1.151 1.143 1.134 1.124 1.112 1.097 1.08 1.057
47 1.163 1.157 115 1.142 1133 1.122 111 1.096 1.079 1.056
48 1.161 1.155 1.148 1.14 1.131 1.121 1.109 1.095 1.078 1.055

49 1159 1.153 1.146 1.138 1.13 112 1.108 1.094 1.077 1.055
50 1.158 1.151 1.145 1.137 1.128 1.118 1.107 1.093 1.076 1.054
51 1156 1.15 1.143 1.136 1.127 1.117 1.106 1.092 1.076 1.054
52 1.154 1.148 1.142 1.134 1.126 1.116 1.105 1.091 1.075 1.053
53 1163 1.147 114 1133 1.124 1115 1.103 1.09 1.074 1.053
54 1151 1.145 1139 1.131 1.123 1.113 1.102 1.089 1.073 1.052
55 115 1144 1137 113 1122 1112 1.101 1.089 1.073 1.052
56 1.148 1.143 1136 1.129 1.121 1111 1.1 1.088 1.072 1.051
57 1147 1141 1135 1128 112 1.1 1.1 1.087 1.071 1.051
58 1.145 114 1134 1.127 1118 1.109 1.099 1.086 1.071 1.05
59 1.144 1139 1.132 1.125 1.117 1.108 1.098 1.085 1.07 1.05
60 1.143 1.137 1.131 1124 1116 1.107 1.097 1.085 1.07 1.049
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.15
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 5689 5.679 5.649 5599 5528 5438 5.327 5.197 5.045 4.873
2 3.092 3.088 3.076 3.056 3.028 2.992 2.949 2.896 2.836 2.767
3 2449 2447 2439 2426 2.408 2.385 2.356 2.322 2.282 2.237
4 2149 2147 2141 2131 2117 2.099 2.077 2.051 2.021 1.986
5 1.97 1969 1.964 1956 1945 193 1912 189 1.865 1.837
6 1.851 1.849 1.845 1.838 1.829 1816 1.801 1.782 1.761 1.736
7 1.764 1.763 1.759 1.753 1.744 1.733 1.72 1.703 1.684 1.662
8 1.698 1.697 1693 1688 1.68 1.67 1.658 1.643 1.626 1.606
9 1645 1.644 1641 1636 1.629 1.62 1.609 1.595 1.579 1.561
10 1.602 1.601 1.599 1.594 1.587 1.579 1.568 1.556 1.541 1.525
11 1.566 1.566 1.563 1.559 1.553 1.545 1.535 1.523 1.51 1.494
12 1.536 1.535 1.533 1.529 1523 1.515 1.506 1.495 1.483 1.468
13 1.51 1.509 1.507 1.503 1.497 149 1482 1471 1.459 1.445
14 1487 1.486 1.484 148 1475 1468 146 145 1439 1.426
15 1466 1.466 1.464 1.46 1.455 1.449 1441 1432 1.421 1.408
16 1448 1.448 1.446 1.442 1.438 1.431 1424 1.415 1.405 1.393
17 1432 1431 1429 1426 1422 1416 1409 14 139 1.379
18 1417 1.417 1415 1.412 1.407 1402 1.395 1.387 1.377 1.366
19 1404 1.403 1.402 1.399 1.394 1.389 1.382 1.374 1.365 1.354
20 1.392 1.391 1.389 1.387 1.383 1.377 1.371 1.363 1.354 1.344
21 1.381 1.38 1378 1376 1.372 1.367 1.36 1.353 1.344 1.334
22 1.37 1.37 1368 1.365 1.362 1.357 1.351 1.343 1.335 1.325
23 1.361 1.36 1.358 1.356 1.352 1.347 1.342 1.335 1.326 1.317
24 1.352 1.351 1.35 1.347 1.343 1.339 1.333 1.326 1.318 1.309
25 1.343 1.343 1.341 1.339 1.335 1.331 1.325 1.319 1.311 1.302
26 1.336 1.335 1.334 1.331 1.328 1.323 1.318 1.311 1.304 1.295
27 1.328 1.328 1.326 1.324 1.321 1.316 1.311 1.305 1.297 1.289
28 1.321 1321 132 1317 1314 131 1305 1.298 1.291 1.283
29 1.315 1.314 1.313 1.311 1.308 1.304 1.299 1.292 1.285 1.277
30 1.309 1.308 1.307 1.305 1.302 1.298 1.293 1.287 1.28 1.272
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.15
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

0
k 0.00 005 0.10 015 020 025 030 035 040 0.45

31 1.303 1.303 1.301 1.299 1.296 1.292 1.287 1.282 1.275 1.267
32 1.298 1.297 12906 1.294 1.291 1.287 1.282 1.276 1.27 1.262
33 1.292 1.292 1291 1.289 1.286 1.282 1.277 1.272 1.265 1.258
34 1.287 1.287 1.286 1.284 1.281 1.277 1.273 1.267 1.261 1.253
35 1.283 1.282 1.281 1.279 1.276 1.273 1.268 1.263 1.256 1.249
36 1.278 1.278 1.277 1.275 1.272 1.268 1.264 1.259 1.252 1.245
37 1.274 1274 1272 127 1268 1.264 1.26 1.255 1.249 1.241
38 1.27 1.269 1.268 1.266 1.264 1.26 1.256 1.251 1.245 1.238
39 1.266 1.265 1.264 1.262 1.26 1.256 1.252 1.247 1.241 1.234
40 1.262 1.262 1.261 1.259 1.256 1.253 1.249 1.244 1.238 1.231
41 1.258 1.258 1.257 1.255 1.253 1.249 1.245 1.24 1.235 1.228
42 1.255 1.255 1.254 1.252 1.249 1.246 1.242 1.237 1.231 1.225
43 1.252 1251 125 1.248 1.246 1.243 1.239 1.234 1.228 1.222
44 1.248 1.248 1.247 1245 1243 124 1236 1.231 1.226 1.219
45 1.245 1.245 1.244 1242 124 1.237 1.233 1.228 1.223 1.216
46 1.242 1242 1.241 1239 1237 1.234 123 1225 122 1.214
47 1.239 1.239 1.238 1.236 1.234 1.231 1.227 1.223 1.217 1.211
48 1.237 1.236 1.235 1.234 1.231 1.228 1225 122 1.215 1.209
49 1.234 1.234 1.233 1.231 1.229 1.226 1.222 1.218 1.212 1.206
50 1.231 1231 123 1228 1.226 1.223 122 1215 121 1.204
51 1.229 1.228 1.227 1.226 1.224 1.221 1.217 1.213 1.208 1.202
52 1.226 1.226 1.225 1.223 1.221 1.218 1.215 1.211 1.206 1.2

53 1.224 1224 1.223 1221 1.219 1.216 1.213 1.208 1.203 1.198
54 1.222 1221 122 1219 1217 1214 121 1.206 1.201 1.196
55 1.219 1219 1218 1.217 1.214 1.212 1208 1.204 1.199 1.194
56 1.217 1.217 1.216 1.214 1212 1.21 1.206 1.202 1.197 1.192
57 1215 1.215 1.214 1212 121 1.208 1204 1.2 1195 1.19
58 1.213 1213 1212 1.21 1.208 1.206 1.202 1.198 1.194 1.188
59 1.211 1211 121 1208 1.206 1.204 1.2 1196 1.192 1.186
60 1.209 1.209 1.208 1.206 1.204 1.202 1.198 1.195 1.19 1.185
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.15
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.50 055 060 065 070 075 080 085 090 0.95
1 4.681 4.467 4.232 3.975 3.695 3.391 3.059 2.697 2.295 1.828
2 2.689 2603 2507 2.401 2.284 2155 2.013 1.853 1.67 1.447
3 2186 2.128 2.064 1.994 1915 1.828 1.731 1.621 1.493 1.334
4 1.947 1.903 1.853 1.799 1.738 1.67 1.593 1.507 1.405 1.276
5 1.804 1.768 1.727 1.681 163 1574 151 1436 135 1.24
6 1.708 1.676 1.641 1.601 1.557 1.508 1.452 1.388 1.312 1.215
7 1638 1.61 1578 1543 1504 146 141 1.352 1.284 1.196
8 1.584 1558 153 1498 1.463 1423 1.377 1.325 1.262 1.182
9 1541 1518 1.492 1462 143 1.393 1.351 1.302 1.245 1.17
10 1506 1.484 1.46 1433 1402 1.368 1.329 1.284 1.23 1.16
11 1476 1.456 1.434 1408 138 1.348 1.311 1.269 1.218 1.152
12 1451 1.432 1411 1387 136 1.33 1.295 1.255 1.207 1.144
13 1429 1412 1.391 1.369 1.343 1.315 1.282 1.244 1.198 1.138
14 1411 1.393 1.374 1353 1.329 1301 1.27 1234 119 1.133
15 1.394 1.377 1.359 1.339 1.315 1.289 1.259 1.224 1.183 1.128
16 1.379 1.363 1.346 1.326 1.304 1.279 1.25 1.216 1.176 1.123
17 1.365 1.35 1.333 1.315 1.293 1.269 1.241 1.209 1.17 1.119
18 1.353 1.339 1.322 1.304 1.284 1.26 1.234 1.202 1.165 1.116
19 1.342 1.328 1.312 1.295 1.275 1.252 1.227 1196 1.16 1.112
20 1.332 1.318 1.303 1.286 1.267 1.245 1.22 1.191 1.156 1.109
21 1.323 131 1.295 1278 126 1.238 1.214 1.186 1.151 1.106
22 1.314 1.301 1.287 1.271 1.253 1.232 1.209 1.181 1.148 1.104
23 1.306 1.294 1.28 1.264 1.246 1.226 1.203 1.177 1.144 1.101
24 1.298 1.287 1.273 1.258 1.241 1.221 1.199 1.173 1.141 1.099
25 1292 1.28 1.267 1.252 1.235 1.216 1.194 1.169 1.138 1.097
26 1.285 1.274 1.261 1246 123 1211 119 1.165 1.135 1.095
27 1.279 1.268 1.255 1.241 1.225 1.207 1.186 1.162 1.132 1.093
28 1273 1.262 125 1236 1.221 1.203 1.182 1.159 1.13 1.091
29 1.268 1.257 1.245 1.232 1.216 1.199 1179 1.156 1.127 1.09
30 1.263 1.252 1.241 1.227 1.212 1.195 1176 1.153 1.125 1.088
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.15

2k+1
z 2\ 2 |2
1- _ 2
(D(z):IMxk“(Hx) 2| =2 | x dx=1-a
\ B(k,k) X+1
%{Z\
0
k 050 055 060 065 070 075 080 085 090 0.9
31 1.258 1.248 1.236 1.223 1.208 1.192 1172 115 1.123 1.086
32 1.253 1.243 1.232 1.219 1.205 1.188 1.169 1.147 1.121 1.085
33 1.249 1.239 1.228 1.215 1.201 1.185 1.167 1.145 1.119 1.084
34 1.245 1.235 1.224 1212 1198 1.182 1.164 1.143 1.117 1.082
35 1241 1.231 1.221 1.209 1.195 1179 1.161 1.14 1.115 1.081
36 1.237 1.228 1.217 1.205 1.192 1177 1159 1.138 1.113 1.08
37 1.233 1.224 1.214 1.202 1.189 1.174 1.157 1.136 1.112 1.079
38 123 1221 1211 1199 1186 1.171 1.154 1134 111 1.078
39 1.227 1.218 1.208 1.196 1.184 1.169 1.152 1.132 1.108 1.077
40 1223 1.215 1.205 1.194 1.181 1.167 1.15 1.131 1.107 1.076
41 1.22 1.212 1.202 1.191 1179 1.164 1.148 1.129 1.106 1.075
42 1.217 1.209 1.199 1.189 1.176 1.162 1.146 1.127 1.104 1.074
43 1.215 1.206 1.197 1.186 1.174 116 1.144 1126 1.103 1.073
44 1.212 1.204 1.194 1.184 1172 1.158 1.143 1.124 1.102 1.072
45 1.209 1.201 1.192 1.182 117 1156 1.141 1123 11 1.071
46 1.207 1199 1.19 1.179 1.168 1.154 1.139 1.121 1.099 1.07
47 1.204 1.196 1.187 1177 1.166 1.153 1.138 1.12 1.098 1.069
48 1.202 1.194 1.185 1175 1.164 1.151 1.136 1.119 1.097 1.069
49 1.2 1192 1.183 1.173 1.162 1.149 1.135 1.117 1.096 1.068
50 1.197 119 1.181 1171 116 1.148 1.133 1.116 1.095 1.067
51 1.195 1.188 1.179 1.17 1.159 1.146 1.132 1.115 1.094 1.067
52 1.193 1.186 1.177 1.168 1.157 1145 113 1.114 1.093 1.066
53 1.191 1.184 1.175 1.166 1.155 1.143 1.129 1.112 1.092 1.065
54 1.189 1.182 1.174 1.164 1.154 1.142 1.128 1.111 1.091 1.065
55 1187 1.18 1172 1163 1.152 114 1126 1.11 1.09 1.064
56 1.186 1.178 1.17 1.161 1.151 1.139 1.125 1.109 1.09 1.063
57 1.184 1177 1.169 1.16 1.149 1.138 1.124 1.108 1.089 1.063
58 1.182 1.175 1.167 1.158 1.148 1.136 1.123 1.107 1.088 1.062
59 1.18 1.173 1.166 1.157 1.147 1135 1.122 1.106 1.087 1.062
60 1.179 1.172 1.164 1.155 1145 1.134 1121 1.105 1.086 1.061
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.10
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 9.05 9.032 8.977 8.886 8.758 8.594 8.393 8.156 7.881 7.571
2 4107 4.101 4.082 4.051 4.007 3.951 3.882 3.8 3.705 3.597
3 3.055 3.051 3.039 3.02 2992 2957 2914 2.863 2.804 2.737
4 2589 2586 2578 2564 2.543 2517 2.485 2.447 2.403 2.353
5 2323 232 2313 2302 2.285 2.264 2.239 2.208 2.172 2.131
6 2147 2145 214 213 2116 2.098 2.076 2.05 2.02 1.985
7 2.022 2.021 2.016 2.007 1.995 1979 196 1.937 1911 1.88
8 1.928 1.927 1922 1914 1904 1.89 1872 1.852 1.828 1.801
9 1.854 1.853 1.848 1.841 1.832 1.819 1.803 1.785 1.763 1.738
10 1.794 1.793 1.789 1.782 1.773 1.762 1.747 1.73 1.71 1.688
11 1.744 1.743 1.739 1.733 1.725 1.714 1.701 1.685 1.667 1.645
12 1.702 1.701 1.697 1.692 1.684 1.674 1.662 1.647 1.629 1.61
13 1.666 1.665 1.661 1.656 1.649 1.639 1.628 1.614 1.597 1.579
14 1.634 1.633 1.63 1.625 1.618 1.609 1598 1.585 1.57 1.552
15 1.606 1.606 1.603 1.598 1.591 1.583 1.572 1.56 1.545 1.528
16 1.682 1.581 1.578 1.574 1.568 1.559 1.549 1.537 1.523 1.507
17 156 1.559 1.556 1.552 1.546 1.538 1.529 1.517 1.504 1.488
18 154 1539 1.537 1.533 1.527 1519 151 1.499 1.486 1.471
19 1.522 1.521 1519 1515 1509 1502 1.493 1483 1.47 1.456
20 1.506 1.505 1.503 1.499 1493 1.486 1.478 1.468 1.456 1.442
21 1.491 149 1488 1484 1479 1472 1464 1.454 1.442 1.429
22 1477 1476 1.474 147 1465 1459 1451 1441 143 1.417
23 1464 1.463 1.461 1.458 1.453 1.446 1.439 1.429 1.419 1.406
24 1452 1.451 1.449 1.446 1.441 1435 1428 1.419 1.408 1.396
25 1441 144 1438 1435 143 1424 1417 1.408 1.398 1.386
26 1.431 143 1428 1425 142 1415 1.407 1.399 1.389 1.377
27 1.421 142 1418 1415 1411 1405 1398 1.39 1.38 1.369
28 1412 1411 1409 1406 1402 1.397 1.39 1.382 1.372 1.361
29 1403 1.403 1.401 1.398 1.394 1.388 1.382 1.374 1.364 1.354
30 1.395 1.395 1393 139 1.386 1.381 1.374 1.366 1.357 1.347
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.10
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

0
k 0.00 005 0.10 015 020 025 030 035 040 0.45

31 1.388 1.387 1.385 1.382 1.378 1.373 1.367 1.359 1.35 1.34
32 1.38 1.38 1.378 1.375 1.371 1.366 1.36 1.353 1.344 1.334
33 1.373 1373 1.371 1369 1365 1.36 1.354 1.346 1.338 1.328
34 1.367 1.366 1.365 1.362 1.358 1.354 1.348 1.34 1.332 1.322
35 1361 1.36 1.359 1.356 1.352 1.348 1.342 1.335 1.326 1.317
36 1.356 1.354 1.353 1.35 1.347 1.342 1336 1.329 1.321 1.312
37 1.349 1.349 1.347 1.345 1.341 1.337 1.331 1.324 1.316 1.307
38 1.344 1.343 1.342 1.339 1.336 1.331 1.326 1.319 1.311 1.302
39 1.339 1.338 1.337 1.334 1.331 1.326 1.321 1.314 1.307 1.298
40 1.334 1.333 1.332 1.329 1.326 1.322 1.316 1.31 1.302 1.293
41 1329 1.328 1.327 1.325 1.321 1.317 1.312 1.305 1.298 1.289
42 1324 1324 1323 132 1317 1.313 1.307 1.301 1.294 1.285
43 1.32 132 1.318 1.316 1.313 1.308 1.303 1.297 1.29 1.282
44 1316 1.315 1314 1.312 1.309 1.304 1.299 1.293 1.286 1.278
45 1312 1311 131 1.308 1.305 1.301 1.296 1.29 1.282 1.274
46 1.308 1.307 1.306 1.304 1.301 1.297 1.292 1.286 1.279 1.271
47 1.304 1.304 1.302 1.3 1.297 1.293 1.288 1.282 1.276 1.268
48 1.3 1.3 1299 1297 1294 129 1.285 1.279 1.272 1.265
49 1.297 1.296 1.295 1293 129 1.286 1.281 1.276 1.269 1.261
50 1293 1.293 1.292 1.29 1.287 1.283 1.278 1.273 1.266 1.258
51 1.29 1.29 1.289 1.286 1.284 1.28 1.275 1.27 1.263 1.256
52 1.287 1.287 1.285 1.283 1.28 1.277 1.272 1.267 126 1.253
53 1.284 1.283 1.282 1.28 1.277 1.274 1.269 1.264 1.257 1.25
54 1.281 128 1279 1277 1274 1271 1.266 1.261 1.255 1.248
55 1.278 1.278 1.276 1.274 1.272 1.268 1.264 1.258 1.252 1.245
56 1.275 1.275 1.274 1272 1.269 1.265 1.261 1.256 1.25 1.243
57 1.272 1.272 1.271 1.269 1.266 1.263 1.258 1.253 1.247 1.24
58 1.27 1.269 1.268 1.266 1.264 1.26 1.256 1.251 1.245 1.238
59 1.267 1.267 1.266 1.264 1.261 1.258 1.253 1.248 1.242 1.236
60 1.265 1.264 1.263 1.261 1.259 1.255 1.251 1.246 1.24 1.233
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.10
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.50 055 060 065 070 075 080 085 090 0.95
1 7.223 6.838 6.416 5.955 5456 4.917 4.336 3.707 3.022 2.249
2 3.475 3.34 3.191 3.027 2.848 2.651 2.436 2.197 1.928 1.607
3 2661 2576 2481 2377 2263 2137 1997 184 1.66 1.441
4 2296 2233 2162 2.083 1.997 1901 1.794 1.673 1.533 1.36
5 2.085 2034 1976 1912 1.841 1.762 1.674 1.573 1.457 1.31
6 1.946 1.902 1.853 1.798 1.737 1.669 1.593 1.506 1.404 1.276
7 1.846 1.807 1.764 1.716 1.662 1.602 1.534 1.457 1.366 1.251
8 1.77 1.735 1696 1.653 1.605 155 1489 1.419 1.337 1.232
9 1.71  1.679 1.643 1.604 1559 151 1454 1.389 1.313 1.216
10 1662 1.632 1.6 1.563 1.522 1476 1.424 1.365 1.294 1.203
11 1.621 1.594 1564 1529 1491 1448 1.4 1344 1.278 1.192
12 1.587 1.561 1.533 1.501 1.465 1.425 1.379 1.326 1.264 1.183
13 1.557 1.533 1.506 1476 1.442 1404 1.361 1.311 1.252 1.175
14 1.532 1.509 1.483 1455 1423 1.386 1.345 1.298 1.241 1.167
15 1.509 1.487 1463 1436 1.405 1.371 1.331 1.286 1.231 1.161
16 1489 1.468 1.445 1419 1.389 1.356 1.319 1.275 1.223 1.155
17 1471 1.451 1.429 1404 1.375 1.344 1.308 1.266 1.215 1.15
18 1455 1.435 1414 139 1363 1.332 1.297 1.257 1.209 1.145
19 144 1421 1401 1.377 1.351 1.322 1.288 1.249 1.202 1.141
20 1426 1.408 1.388 1.366 1.341 1.312 1.28 1.242 1196 1.137
21 1414 1.397 1.377 1.356 1.331 1.303 1.272 1.235 1.191 1.134
22 1402 1.386 1.367 1.346 1.322 1.295 1.265 1.229 1.186 1.13
23 1.392 1.376 1.357 1.337 1.314 1.288 1.258 1.223 1.182 1.127
24 1.382 1.366 1.348 1.329 1.306 1.281 1.252 1.218 1.177 1.124
25 1.373 1.357 1.34 1321 1.299 1.274 1.246 1.213 1.173 1.121
26 1.364 1.349 1.332 1.314 1.292 1.268 1.241 1.208 1.17 1.119
27 1.356 1.342 1.325 1.307 1.286 1.262 1.235 1.204 1.166 1.117
28 1.349 1.334 1318 13 128 1257 1231 1.2 1163 1.114
29 1.341 1.328 1.312 1.294 1.274 1.252 1.226 1196 1.16 1.112
30 1.335 1.321 1.306 1.289 1.269 1.247 1.222 1.192 1.157 1.11
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Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.10
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

0
k 050 055 060 065 070 075 080 085 090 0.9
31 1.328 1.315 1.3 1.283 1.264 1.243 1.218 1.189 1.154 1.108
32 1.322 1.309 1.295 1.278 1.259 1.238 1.214 1.186 1.151 1.106
33 1.317 1304 129 1.273 1255 1.234 121 1.183 1.149 1.105
34 1311 1.299 1285 1.269 1.251 1.23 1.207 1.18 1.146 1.103
35 1.306 1.294 1.28 1.264 1.247 1.227 1.204 1177 1.144 1.101
36 1.301 1.289 1.275 126 1243 1223 1.2 1174 1142 11

37 1.296 1.285 1.271 1.256 1.239 1.22 1197 1171 114 1.098

38 1.292 128 1.267 1.252 1.235 1.216 1.194 1.169 1.138 1.097
39 1.288 1.276 1.263 1.249 1.232 1.213 1.192 1.167 1.136 1.096
40 1.283 1.272 1259 1.245 1229 121 1189 1.164 1.134 1.094
41 1.28 1.268 1.256 1.242 1.226 1.207 1.186 1.162 1.132 1.093
42 1.276 1.265 1.252 1.238 1.223 1.205 1.184 1.16 1.131 1.092
43 1.272 1.261 1.249 1235 122 1.202 1.182 1.158 1.129 1.091
44 1.269 1.258 1.246 1.232 1.217 1.199 1.179 1.156 1.127 1.09
45 1.265 1.255 1.243 1.229 1.214 1197 1177 1.154 1.126 1.089
46 1.262 1.251 124 1227 1.212 1195 1175 1.1562 1.124 1.088
47 1.259 1.248 1.237 1.224 1.209 1.192 1173 1.15 1.123 1.087
48 1.256 1.246 1.234 1.221 1.207 119 1171 1.149 1.122 1.086

49 1253 1.243 1.231 1.219 1.204 1.188 1.169 1.147 1.12 1.085
50 1.25 1.24 1229 1.216 1.202 1.186 1.167 1.145 1.119 1.084
51 1.247 1237 1226 1214 12 1184 1.165 1.144 1.118 1.083
52 1.244 1235 1.224 1212 1198 1.182 1.164 1.142 1.116 1.082
53 1.242 1232 1.221 1209 1196 1.18 1.162 1.141 1.115 1.081
54 1.239 123 1219 1.207 1194 1178 116 1.14 1.114 1.081
55 1.237 1.227 1.217 1.205 1.192 1.176 1.159 1.138 1.113 1.08
56 1.234 1.225 1.215 1203 1.19 1175 1.157 1.137 1.112 1.079
57 1.232 1.223 1.213 1.201 1.188 1.173 1.156 1.136 1.111 1.078
58 1.23 1221 1.211 1199 1186 1.171 1.154 1.134 111 1.078
59 1.228 1.219 1.209 1.197 1.184 117 1.153 1.133 1.109 1.077
60 1.226 1.217 1.207 1.195 1.183 1.168 1.151 1.132 1.108 1.076

226



Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.05
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 19.202 19.158 19.02 18.808 18.50 18.109 17.62 17.06 16.40 15.663
2 6.388 6.377 6.342 6.283 6.202 6.097 5.968 5.816 5.64 5.441
3 4,284 4277 4.257 4.224 4177 4117 4.043 3.956 3.855 3.74
4 3.438 3.433 3.419 3.396 3.362 3.32 3.267 3.205 3.133 3.051
5 2978 2975 2963 2945 2919 2.885 2.844 2.795 2.739 2.674
6 2.687 2684 2674 2659 2.637 2.609 2.575 2.535 2.487 2434
7 2484 2481 2473 246 2441 2417 2.388 2.353 2.312 2.265
8 2.333 2.331 2324 2312 2296 2.275 2.249 2.218 2.182 2.141
9 2217 2215 2209 2.198 2.184 2164 2141 2113 2.081 2.044
10 2124 2122 2117 2.107 2.093 2.076 2.055 2.029 2 1.966
11 2.048 2.046 2.041 2.032 2.019 2.003 1.984 1.96 1.933 1.902
12 1.984 1.982 1.977 1.969 1.957 1.943 1.924 1.902 1.877 1.848
13 1.929 1.928 1.923 1.915 1905 1.891 1.874 1.853 1.829 1.802
14 1.882 1.881 1.876 1.869 1.859 1846 183 181 1.788 1.762
15 1.841 1.84 1835 1.829 1.819 1.807 1.791 1.773 1.752 1.727
16 1.804 1.803 1.799 1.793 1.784 1.772 1.757 1.74 1.72 1.697
17 1.772 1.771 1767 1.761 1.752 1.741 1.727 1.711 1.691 1.669
18 1.743 1.742 1.738 1.732 1.724 1.713 1.7 1.684 1.666 1.644
19 1.717 1.716 1.712 1.706 1.698 1.688 1.675 1.66 1.643 1.622
20 1.693 1.692 1.688 1.683 1.675 1.665 1.653 1.638 1.621 1.602
21 1.671 1.67 1667 1.661 1.654 1.644 1.633 1.619 1.602 1.583
22 1.651 1.65 1647 1642 1635 1625 1614 1.6 1.584 1.566
23 1.632 1.631 1.629 1.624 1.617 1.608 1.597 1.584 1.568 1.55
24 1615 1.614 1612 1607 1.6 1591 1581 1.568 1.553 1.536
25 1599 1.599 1.596 1.591 1.585 1.576 1.566 1.553 1.539 1.522
26 1.585 1.584 1.581 1577 157 1562 1552 154 1.526 1.51
27 1.571 1.57 1567 1.563 1.557 1.549 1.539 1.527 1.514 1.498
28 1.558 1.557 1.555 155 1544 1536 1.527 1.515 1.502 1.487
29 1.546 1.545 1.542 1538 1532 1525 1516 1.504 1.491 1.476
30 1.534 1.534 1531 1527 1.521 1.514 1505 1.494 1.481 1.466
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.05
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

0
k 0.00 005 0.10 015 020 025 030 035 040 0.45

31 1.524 1523 152 1516 1.511 1.504 1.495 1.484 1.472 1.457
32 1513 1513 151 1506 1.501 1.494 1.485 1.475 1.462 1.448
33 1.504 1.503 1.501 1.497 1.491 1.485 1476 1.466 1.454 1.44
34 1494 1.494 1.491 1.488 1.482 1.476 1.467 1.457 1.446 1.432
35 1.486 1.485 1.483 1.479 1.474 1.467 1.459 1.449 1.438 1.425
36 1.477 1477 1475 1471 1.466 1.459 1.451 1.442 1.431 1.418
37 1.469 1.469 1.467 1.463 1.458 1.452 1.444 1.434 1.423 1.411
38 1.462 1.461 1.459 1.456 1.451 1.445 1.437 1.428 1.417 1.404
39 1.455 1.454 1452 1449 1444 1438 143 1421 1.41 1.398
40 1.448 1.447 1445 1.442 1437 1.431 1424 1.415 1.404 1.392
41 1441 144 1.438 1435 1.431 1425 1.417 1.408 1.398 1.386
42 1435 1.434 1.432 1429 1.424 1419 1.411 1.403 1.393 1.381
43 1.429 1.428 1.426 1.423 1.418 1.413 1.406 1.397 1.387 1.376
44 1423 1.422 142 1417 1413 1407 14 1392 1.382 1.371
45 1.417 1.416 1.415 1.412 1.407 1.402 1.395 1.386 1.377 1.366
46 1412 1.411 1.409 1406 1.402 1.396 1.39 1.381 1.372 1.361
47 1.406 1.406 1.404 1.401 1.397 1.391 1.385 1.377 1.367 1.356
48 1.401 1.401 1.399 1396 1.392 1.387 1.38 1.372 1.363 1.352
49 1396 1.396 1.394 1.391 1.387 1.382 1.375 1.367 1.358 1.348
50 1392 1.391 1.389 1.387 1.383 1.377 1.371 1.363 1.354 1.344
51 1.387 1.387 1.385 1.382 1.378 1.373 1.367 1.359 1.35 1.34
52 1.383 1.382 1.381 1.378 1.374 1.369 1.362 1.355 1.346 1.336
53 1.378 1.378 1376 1.373 1.37 1.365 1.358 1.351 1.342 1.332
54 1.374 1374 1372 1369 1.366 1.361 1.354 1.347 1.339 1.329
55 1.37 1.37 1.368 1.365 1.362 1.357 1.351 1.343 1.335 1.325
56 1.366 1.366 1.364 1.362 1.358 1.353 1.347 1.34 1.331 1.322
57 1.363 1.362 1.361 1.358 1.354 1.349 1.343 1.336 1.328 1.319
58 1.359 1.358 1.357 1.354 1.351 1.346 1.34 1.333 1.325 1.315
59 1.356 1.355 1.353 1.351 1.347 1.342 1337 133 1.322 1.312
60 1.352 1.351 135 1.347 1.344 1.339 1.333 1.327 1.319 1.309
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.05
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.50 055 060 065 070 075 080 085 090 0.95
1 14.835 13.92 1291 11.83 10.65 9.392 8.041 6.596 5.049 3.368
2 5217 4969 4.696 4.397 4.072 3.719 3.336 2.919 2456 1.923
3 3.611 3.467 3.309 3.135 2.944 2.736 2.507 2.255 1.971 1.633
4 2959 2856 2.742 2.616 2478 2.327 2.159 1.973 1.76 1.503
5 2601 252 2429 233 222 2098 1964 1.813 1.64 1.428
6 2373 2305 2229 2145 2.053 1.951 1.837 1.709 1.56 1.377
7 2213 2.154 2.088 2.016 1.935 1.846 1.747 1.634 1.503 1.34
8 2.094 2.042 1984 1919 1.847 1.768 1.679 1.578 146 1.312
9 2.002 1.954 1.902 1.843 1.779 1.706 1.625 1.533 1425 1.29
10 1.927 1.884 1.836 1.783 1.723 1.657 1.582 1.497 1.397 1.272
11 1.866 1.826 1.782 1.732 1.677 1.616 1.546 1.467 1.374 1.256
12 1.815 1.778 1.736 1.69 1.638 1.581 1.516 1.442 1.354 1.243
13 1.771 1.736 1.697 1.654 1.605 1551 149 142 1337 1.232
14 1.733 1.7 1663 1.622 1577 1525 1.467 1.401 1.322 1.222
15 1.7 1.669 1.634 1.595 1.551 1.502 1.447 1.384 1.309 1.213
16 1.67 1.641 1607 157 1529 1482 143 1.369 1.297 1.205
17 1644 1.616 1.584 1.548 1.509 1.464 1.414 1.356 1.287 1.198
18 162 1.593 1.563 1.529 1.491 1.448 1.399 1.344 1.277 1.192
19 1.599 1.573 1.544 1511 1474 1433 1.386 1.333 1.269 1.186
20 1.58 1554 1526 1495 1459 142 1375 1.323 1.261 1.181
21 1.562 1.538 151 148 1446 1407 1.364 1.313 1.253 1.176
22 1.545 1522 1496 1466 1.433 1.396 1.354 1.305 1.247 1.171
23 163 1508 1.482 1454 1.421 1.385 1.344 1.297 1.24 1.167
24 1516 1.494 1.47 1442 1411 1376 1.336 1.29 1.234 1.163
25 1503 1.482 1.458 1.431 1.401 1.367 1.328 1.283 1.229 1.159
26 1.491 147 1447 1421 1391 1358 1.32 1.276 1.224 1.156
27 1.48 146 1437 1411 1382 135 1313 1.27 1.219 1.153
28 1469 1.449 1.427 1402 1374 1343 1.307 1.265 1.215 1.15
29 1459 144 1418 1394 1366 1.336 1.3 1.26 1.211 1.147
30 145 1431 141 1386 1.359 1.329 1.294 1.255 1.207 1.144
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.05
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]

k 0.50 055 060 065 070 075 080 085 090 0.95
31 1441 1422 1402 1.378 1.352 1.323 1.289 1.25 1.203 1.141
32 1432 1.414 1394 1371 1.346 1.317 1.284 1.245 1.199 1.139
33 1425 1.407 1.387 1.365 1.339 1.311 1.279 1.241 1.196 1.137
34 1.417 1.4 1.38 1.358 1.334 1.306 1.274 1.237 1.193 1.135
35 1.41 1.393 1.374 1.352 1.328 1.301 1.269 1.233 1.189 1.132
36 1403 1.386 1.367 1.346 1.323 1.296 1.265 1.229 1.186 1.13
37 1.396 1.38 1.362 1.341 1.317 1.291 1.261 1.226 1.184 1.128
38 1.39 1.374 1.356 1.335 1.313 1.287 1.257 1.223 1.181 1.127
39 1.384 1.368 1.35 133 1.308 1.282 1.253 1.219 1.178 1.125
40 1.378 1.363 1.345 1.326 1.303 1.278 1.25 1.216 1.176 1.123
41 1.373 1.358 1.34 1.321 1.299 1.274 1.246 1.213 1174 1.122
42 1.368 1.353 1.336 1.316 1.295 1.271 1.243 1.21 1171 112
43 1.363 1.348 1.331 1.312 1.291 1.267 1.24 1.208 1.169 1.118
44 1.358 1.343 1.327 1.308 1.287 1.264 1.236 1.205 1.167 1.117
45 1.353 1.339 1.322 1.304 1.283 1.26 1.233 1.202 1.165 1.116
46 1.348 1.334 1.318 1.3 1.28 1.257 1231 1.2 1.163 1.114
47 1.344 1.33 1.314 1.297 1.276 1.254 1.228 1.198 1.161 1.113
48 1.34 1326 1.31 1.293 1.273 1.251 1.225 1.195 1.159 1.112
49 1.336 1.322 1.307 1.29 127 1.248 1.223 1.193 1.157 1.11
50 1.332 1.318 1.303 1.286 1.267 1.245 1.22 1.191 1.156 1.109
51 1.328 1315 1.3 1283 1.264 1.242 1.218 1.189 1.154 1.108
52 1.324 1311 1296 128 1.261 1.24 1.215 1.187 1.152 1.107
53 1.321 1.308 1.293 1.277 1.258 1.237 1.213 1.185 1.151 1.106
54 1.317 1.305 1.29 1.274 1.255 1.235 1.211 1.183 1.149 1.105
55 1.314 1.301 1.287 1.271 1.253 1.232 1.209 1.181 1.148 1.104
56 1.311 1.298 1.284 1268 125 1.23 1.207 1.179 1.146 1.103
57 1.308 1.295 1.281 1.266 1.248 1.228 1.205 1.178 1.145 1.102
58 1.305 1.292 1.279 1.263 1.245 1.225 1.203 1.176 1.144 1.101
59 1.302 1.289 1.276 1.26 1.243 1.223 1.201 1174 1142 11

60 1.299 1.287 1.273 1.258 1.241 1.221 1199 1.173 1.141 1.099
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.01
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1
%z\
2]
k 0.00 005 010 015 020 025 030 035 040 045
1 100 100 100 100 99.95 97.546 94.60 91.141 87.15 82.665
2 15.977 15.942 1583 15.66 15.41 15.096 14.70 14.25 13.72 13.121
3 8.466 8.449 8.399 8.316 8.199 8.048 7.865 7.647 7.396 7.11
4 6.029 6.018 5.986 5.932 5.856 5.759 5.64 5.499 5336 5.151
5 4,849 4.841 4.817 4777 4.721 4649 4561 4.457 4336 4.198
6 4155 4.149 413 4.098 4.053 3.996 3.926 3.842 3.746 3.636
7 3.698 3.692 3.676 3.65 3.612 3.564 3.506 3.436 3.355 3.263
8 3.372 3.367 3.354 3.331 3.299 3.257 3.207 3.146 3.077 2.997
9 3.128 3.124 3.112 3.092 3.063 3.027 2.982 2929 2.867 2.797
10 2938 2934 2923 2905 2.88 2.847 2807 2.759 2.704 2.641
11 2.785 2782 2772 2.755 2.732 2.702 2.666 2.622 2.572 2.515
12 2.659 2656 2647 2632 2.611 2583 255 251 2464 2.411
13 2554 2551 2542 2528 2509 2483 2452 2415 2.372 2.323
14 2464 2461 2453 244 2422 2398 2.369 2.335 2.295 2.249
15 2.386 2.384 2376 2.364 2.347 2.325 2.297 2.265 2.227 2.184
16 2.318 2.316 2.309 2.297 2281 226 2235 2204 2168 2.128
17 2258 2256 225 2239 2223 2203 2179 215 2116 2.078
18 2205 2203 2.197 2.186 2.172 2153 213 2102 2.07 2.033
19 2157 2155 2149 2139 2126 2.108 2.085 2.059 2.029 1.993
20 2114 2112 2107 2.097 2.084 2.067 2.045 2.02 1.991 1.957
21 2.075 2.073 2.068 2.059 2.046 2.029 2.009 1.985 1.957 1.925
22 204 2038 2.033 2.024 2.011 1996 1976 1.953 1.926 1.895
23 2.007 2.005 2 1.992 198 1.965 1.946 1.923 1.897 1.867
24 1.977 1.975 197 1962 1951 1936 1.918 1.896 1.871 1.842
25 1.949 1.947 1943 1935 1924 1909 1.892 1.871 1.847 1.819
26 1.923 1.922 1.917 1909 1.899 1.885 1.868 1.848 1.824 1.797
27 1.899 1.898 1.893 1.886 1.876 1.862 1.846 1.826 1.803 1.777
28 1.877 1.875 1.871 1.864 1.854 1.841 1.825 1.806 1.783 1.758
29 1.856 1.855 1.85 1.843 1.834 1821 1.805 1.787 1.765 1.74
30 1.836 1.835 1.831 1.824 1.814 1.802 1.787 1.769 1.748 1.724

231



Chapter 4

Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.01
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

0
k 0.00 005 0.10 015 020 025 030 035 040 0.45

31 1.818 1.816 1.813 1.806 1.797 1.785 1.77 1.752 1.732 1.708
32 1.8 1.799 1.795 1.789 1.78 1.768 1.754 1.736 1.716 1.693
33 1.784 1.783 1.779 1.773 1764 1.752 1.738 1.721 1.702 1.679
34 1.768 1.767 1.763 1.757 1.749 1.737 1.724 1.707 1.688 1.666
35 1.754 1.752 1.749 1.743 1.734 1.723 1.71 1.694 1.675 1.654
36 1.74 1738 1.735 1.729 1721 1.71 1.697 1.681 1.663 1.642
37 1.726  1.725 1.722 1.716 1.708 1.697 1.684 1.669 1.651 1.63
38 1.714 1.713 1.709 1.704 1.696 1.685 1.673 1.658 1.64 1.62
39 1.702 1.701 1.697 1.692 1.684 1.674 1.661 1.647 1.629 1.609
40 169 1689 1686 1.68 1.673 1.663 1.651 1.636 1.619 1.6

41 1.679 1.678 1.675 1.669 1.662 1.652 1.64 1.626 1.609 1.59
42 1.668 1.667 1.664 1.659 1.652 1.642 1.63 1616 1.6 1.581
43 1.658 1.657 1.654 1.649 1.642 1.632 1.621 1.607 1.591 1.573
44 1.649 1.648 1.645 164 1.632 1.623 1.612 1.598 1.582 1.564
45 1.639 1.638 1.635 1.63 1.623 1.614 1.603 1.59 1.574 1.556
46 1.63 1.629 1.626 1.622 1.615 1.606 1.595 1.582 1.566 1.549
47 1.622 1.621 1.618 1.613 1.606 1.597 1.587 1.574 1.559 1.541
48 1613 1612 161 1605 1598 159 1579 1566 1.551 1.534
49 1.605 1.604 1.602 1.597 1.59 1582 1.571 1.559 1.544 1.527
50 1.598 1.597 1.594 1589 1.583 1.574 1.564 1.552 1.537 1.521
51 1.59 1.689 1.587 1.582 1.576 1.567 1.557 1.545 1.531 1.514
52 1.583 1.682 1.579 1575 1569 156 155 1.538 1.524 1.508
53 1.576 1.575 1.573 1.568 1.562 1.554 1.544 1.532 1.518 1.502
54 1.569 1.568 1.566 1.561 1.555 1.547 1.538 1.526 1.512 1.496
55 1.563 1.562 1.559 1.555 1.549 1.541 1.531 1.52 1.506 1.491
56 1.556 1.556 1.553 1.549 1.543 1.535 1.526 1.514 1.501 1.485
57 1.55 1.549 1.547 1543 1.537 1529 1.52 1509 1.495 1.48
58 1.544 1544 1541 1537 1.531 1524 1514 1503 149 1475
59 1.539 1.638 1.535 1.531 1.525 1.518 1.509 1.498 1.485 1.47
60 1533 1.632 153 1526 1.52 1513 1.504 1.493 148 1.465
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.01

o(2)= ijk“(ux)’z{l—(

4 Blkk)

2p
X+1

_2k+l

HACER
y -

z

0
k 050 055 060 065 070 075 0.80 0.8 0.90 0.95
1 77.666 72171 66.18 59.724 52.79 45.398 37.55 29.277 20.566 11.419
2 12.45 11.707 10.894 10.008 9.05 8.018 6.91 5.721 4.442 3.04
3 6.791 6.437 6.049 5.625 5164 4.666 4.128 3.545 2907 2.184
4 4944 4714 446 4.183 3.882 3.554 3.197 2.808 2.376 1.876
5 4.044 3.873 3.684 3.477 3.251 3.004 2.734 2438 2.106 1.715
6 3.512 3.375 3.223 3.056 2874 2.674 2455 2.213 1.94 1.614
7 3.159 3.044 2917 2776 2.622 2453 2.267 2.061 1.826 1.544
8 2908 2808 2.697 2.575 2.441 2294 2132 1.95 1.743 1.493
9 2718 2629 2532 2423 2304 2173 2.028 1.866 1.68 1.453
10 2569 249 2402 2304 2197 2078 1.946 1.799 1.629 1.421
11 245 2377 2297 2208 2109 2.001 1.88 1.744 1.587 1.394
12 2351 2284 221 2128 2.037 1936 1.825 1.698 1.553 1.372
13 2268 2206 2137 2061 1.976 1882 1.778 1.66 1.523 1.353
14 2197 2139 2.074 2003 1.924 1836 1.737 1.626 1.497 1.337
15 2136 2.081 202 1953 1.878 1.795 1.702 1.597 1.475 1.322
16 2082 203 1973 1909 1838 1.76 1.672 1572 1.455 1.309
17 2034 1985 1931 1.87 1803 1.728 1.644 1.549 1438 1.298
18 1.992 1.945 1.893 1.835 1.771 1.7 162 1529 1.422 1.288
19 1.954 1909 186 1.804 1.743 1.674 1.598 1.51 1.407 1.278

20 1919 1.877 1829 1.776 1.717 1.651 1.577 1.493 1.394 1.27

21 1.888 1.847 1801 1.75 1.694 163 1559 1.478 1.383 1.262

22 1.86 182 1776 1.727 1.672 1611 1.542 1464 1.372 1.255

23 1.833 1.795 1.753 1.705 1.652 1.593 1.527 1.451 1.361 1.248

24 1.809 1.772 1.731 1.685 1.634 1577 1513 1439 1.352 1.242

25 1.787 1.751 1.711 1.667 1.617 1562 1.499 1428 1.343 1.236

26 1.766 1.732 1693 1.65 1.602 1548 1.487 1.418 1.335 1.231

27 1.747 1.713 1676 1.634 1.587 1535 1.476 1.408 1.328 1.226

28 1.729 1696 166 1.619 1.573 1522 1.465 1.399 1.321 1.221

29 1.712 1.68 1.645 1.605 1.56 1511 1.455 1.39 1.314 1.216

30 1.696 1.665 163 1592 1548 15 1445 1382 1.308 1.212
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Percentage Points of the Correlated Gamma Ratio Distribution for a = 0.01
2k+1

CD(z)—jMxk“(Hx)’z{l—(z—pjzx} " dx=1-a

2 B(k,k) X+1

y -

z

2]
K 050 055 060 065 070 075 080 085 090 0.9

31 1.681 1.651 1.617 1579 1537 149 1.436 1.375 1.302 1.208
32 1.667 1.637 1.604 1.568 1.526 1.48 1.428 1.367 1.296 1.204
33 1.654 1.625 1.593 1.556 1.516 1.471 1.42 1361 1.291 1.201
34 1.641 1.613 1.581 1.546 1.506 1.462 1.412 1.354 1.286 1.197
35 1.629 1.602 1.571 1.536 1.497 1.454 1.405 1.348 1.281 1.194
36 1618 1591 156 1527 1.489 1.446 1.398 1.342 1.276 1.191
37 1.607 158 1.551 1518 1.48 1.439 1.391 1.337 1.272 1.188
38 1.597 1.571 1.542 1509 1.472 1431 1.385 1.331 1.268 1.185
39 1.587 1.561 1.533 1.501 1.465 1.425 1.379 1.326 1.264 1.183
40 1.577 1.552 1.524 1.493 1.458 1418 1373 1321 126 1.18
41 1.568 1.544 1.516 1.485 1.451 1412 1.368 1.317 1.256 1.178
42 1.56 1.536 1.508 1.478 1.444 1.406 1.362 1.312 1.2562 1.175
43 1.551 1.528 1.501 1471 1438 14 1357 1308 1.249 1.173
44 1.544 152 1494 1465 1.432 1.395 1.353 1.304 1.246 1.171
45 1.536 1.513 1.487 1.458 1.426 1.389 1.348 1.3 1.243 1.169
46 1.529 1506 1.481 1.452 1.42 1.384 1.343 1.296 1.24 1.166
47 1.522 1.499 1.474 1446 1.415 1.379 1.339 1.292 1.237 1.165
48 1515 1.493 1.468 144 1.409 1374 1335 1.289 1.234 1.163
49 1.508 1.487 1.462 1.435 1.404 137 1.331 1.285 1.231 1.161
50 1.502 1.481 1.457 143 1.399 1.365 1.327 1.282 1.228 1.159
51 1496 1.475 1451 1425 1395 1.361 1.323 1.279 1.226 1.157
52 149 1469 1446 142 139 1357 1319 1.276 1.223 1.156
53 1.484 1.464 1.441 1415 1386 1.353 1.316 1.273 1.221 1.154
54 1479 1.458 1436 141 1381 1.349 1312 127 1.219 1.152
55 1473 1.453 1.431 1406 1.377 1.345 1.309 1.267 1.216 1.151
56 1.468 1.448 1.426 1.401 1.373 1.342 1.306 1.264 1.214 1.149
57 1.463 1.443 1.422 1.397 1.369 1.338 1.303 1.262 1.212 1.148
58 1.458 1.439 1417 1393 1366 1.335 13 1259 121 1.146
59 1.453 1.434 1413 1389 1.362 1.331 1.297 1.256 1.208 1.145
60 1449 143 1.409 1.385 1.358 1.328 1.294 1.254 1.206 1.144
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Appendix 5

Table 5.2. The table presents the minimum and
maximum values of the evaluation criteria that were
achieved by each of the ARCH models and the ARCH
models suggested by the SPEC model selection
algorithm, respectively, for a subset of the
forecasting horizon which ranges from 2 to 100 days
Figure 5.2. The plots indicate whether the ARCH
models selected by the SPEC algorithm achieve the
lowest value of the evaluation criterion, for a
forecasting horizon ranging from one day to one
hundred days ahead

Table 5.3. The percentage of times the ARCH models
selected by the SPEC algorithm perform "better" as
judged by the evaluation criteria

Table 5.4. Average sample size for the SPEC model
selection algorithm suggested by the Evaluation
Criteria for both the entire 16 to 36 day ahead
forecasting horizon and for each day individually
Tables 5.6.1 to 5.6.11 presents the percentage of
cases the models selected by each model selection
method perform “better” as judged by the evaluation
criteria

Tables 5.7.1 to 5.7.11 present the percentage of times
the ARCH models selected by the SPEC algorithm
perform "better" than the ARCH models selected by

the other model selection methods
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Table 5.2

The table presents the minimum and maximum values of the evaluation criteria that were achieved by each of the ARCH models and the ARCH models suggested by the SPEC model selection algorithm,
respectively, for a subset of the forecasting horizon which ranges from 5 to 100 days. The first panel refers to the variance, (k=2), whereas the second panel accounts for the standard deviation, (k=1). The
evaluation criteria are the annualized mean and median values of the following loss functions:

Squared Error (SE) : (Gtk(T) =5
Absolute Error (AE) :‘O-tk(T) =S

i)
o)

Heteroscedasticity Adjusted Squared Error (HASE) :(1— sio/ a!km)z
Heteroscedasticity Adjusted Absolute Error (HAAE)&l— Stk(T)/ crtk(T)‘
Logarithmic Error (LE): In (s‘k(T)/o-!k(T))z

MeanSE
minSPEC
maxSPEC
minARCH
maxARCH

MeanAE
minSPEC
maxSPEC
minARCH
maxARCH

MedSE
minSPEC
maxSPEC
minARCH
maxARCH

MedAE
minSPEC
maxSPEC
minARCH
maxARCH

MeanHASE
minSPEC
maxSPEC
minARCH
maxARCH

MeanHAAE
minSPEC
maxSPEC
minARCH
maxARCH

0.187
0.208
0.177
0.220

1.964
2.176
1.844
2.217

0.0119
0.0162
0.0094
0.0151

1.089
1.274
0.970
1.228

208.9
250.3
236.8
414.9

64.52
68.19
70.92
91.12

10

0.126
0.140
0.116
0.160

1.683
1.869
1.588
1.963

0.0077
0.0115
0.0068
0.0119

0.877
1.073
0.824
1.089

146.0
170.1
158.5
279.8

56.37
60.02
61.82
82.42

15

0.097
0.107
0.087
0.129

1541
1.708
1.492
1.840

0.0066
0.0090
0.0061
0.0098

0.815
0.947
0.784
0.988

111.0
131.0
117.6
232.7

52.23
56.63
57.56
79.46

16

0.092
0.102
0.083
0.123

1513
1.674
1.471
1.812

0.0064
0.0090
0.0056
0.0096

0.799
0.951
0.751
0.981

104.7
128.1
1115
226.3

51.22
56.30
56.56
79.09

18

0.083
0.094
0.076
0.114

1.458
1.605
1.432
1.761

0.0055
0.0074
0.0059
0.0084

0.742
0.859
0.770
0.915

93.2
121.0
99.5
214.7

49.53
55.61
54.71
78.44

20

0.077
0.089
0.070
0.107

1.423
1.550
1.409
1.722

0.0052
0.0068
0.0057
0.0082

0.723
0.827
0.755
0.906

85.1
1146
91.9
203.8

48.15
55.29
53.32
77.80

Evaluation Criteria for the Conditional Variance, k=2
Forecast Horizon in days

22

0.072
0.084
0.066
0.101

1.402
1.532
1.395
1.701

0.0051
0.0066
0.0055
0.0083

0.717
0.810
0.740
0.909

78.9
1139
86.5
196.3

47.53
55.49
52.69
77.13

24

0.069
0.082
0.063
0.098

1.395
1.527
1.386
1.692

0.0050
0.0063
0.0056
0.0085

0.708
0.797
0.748
0.920

75.2
1111
82.1
189.0

47.37
55.52
52.21
76.70

26

0.067
0.079
0.061
0.096

1.386
1521
1.374
1.677

0.0050
0.0060
0.0052
0.0085

0.708
0.776
0.722
0.923

733
109.0
78.9
183.6

47.38
55.48
51.80
76.40

28

0.065
0.077
0.058
0.094

1.378
1.509
1.359
1.667

0.0048
0.0058
0.0049
0.0082

0.690
0.758
0.703
0.907

713
106.1
76.6
178.7

47.33
55.14
51.33
76.39

30

0.064
0.075
0.057
0.094

1.366
1.498
1.350
1.660

0.0047
0.0055
0.0048
0.0079

0.684
0.740
0.696
0.890

70.3
103.2
75.0
1745

47.15
54.76
50.95
76.43

32

0.063
0.073
0.055
0.094

1.360
1.490
1.337
1.656

0.0047
0.0054
0.0048
0.0079

0.683
0.738
0.690
0.890

69.7
101.0
73.7
170.9

47.32
54.63
50.90
76.62

34

0.062
0.072
0.054
0.094

1.361
1.493
1.335
1.666

0.0045
0.0053
0.0045
0.0075

0.668
0.728
0.674
0.868

68.5
98.6
725
167.5

4751
54.79
51.11
76.87

35

0.061
0.072
0.054
0.095

1.363
1.492
1.331
1.670

0.0043
0.0055
0.0047
0.0078

0.658
0.745
0.682
0.881

68.2
97.7
723
166.1

47.68
54.78
51.18
76.99

40

0.059
0.068
0.050
0.095

1.356
1.472
1314
1671

0.0047
0.0053
0.0044
0.0082

0.683
0.726
0.666
0.906

65.9
93.3
68.1
159.1

47.99
54.32
51.17
77.49

45

0.056
0.065
0.047
0.094

1.353
1.465
1.292
1.677

0.0044
0.0056
0.0043
0.0082

0.661
0.751
0.653
0.906

63.4
89.5
64.6
153.1

48.49
54.61
50.88
77.90

50

0.053
0.061
0.044
0.093

1.351
1.464
1.283
1.681

0.0046
0.0058
0.0047
0.0092

0.681
0.759
0.689
0.958

61.7
85.8
60.5
147.9

49.09
55.13
50.26
78.38

60

0.049
0.056
0.040
0.092

1.340
1.448
1.263
1.692

0.0041
0.0061
0.0043
0.0106

0.642
0.779
0.657
1.028

62.4
81.9
57.2
1413

50.71
55.98
50.48
78.82

70

0.045
0.050
0.037
0.091

1.329
1.431
1.241
1.702

0.0045
0.0059
0.0042
0.0113

0.672
0.766
0.650
1.063

61.3
76.3
54.5
136.3

51.74
56.32
50.53
79.31

80

0.041
0.046
0.034
0.092

1.317
1.415
1.233
1.701

0.0050
0.0064
0.0048
0.0118

0.706
0.801
0.694
1.088

59.1
711
515
132.2

52.64
56.65
50.73
80.12

920

0.038
0.043
0.031
0.091

1.305
1.388
1.214
1.692

0.0053
0.0070
0.0048
0.0121

0.729
0.835
0.690
1.100

57.3
67.2
48.1
128.7

53.31
56.86
50.18
80.66

100

0.036
0.041
0.030
0.091

1.291
1371
1.201
1.687

0.0056
0.0074
0.0045
0.0132

0.749
0.860
0.671
1.150

57.5
66.2
47.9
126.8

54.09
57.32
50.25
81.69
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Table 5.2 (continued)

MedHASE
minSPEC
maxSPEC
minARCH
maxARCH

MedHAAE
minSPEC
maxSPEC
minARCH
maxARCH

MeanLE
minSPEC
maxSPEC
minARCH
maxARCH

MedLE
minSPEC
maxSPEC
minARCH
maxARCH

MeanSE
minSPEC
maxSPEC
minARCH
maxARCH

MeanAE
minSPEC
maxSPEC
minARCH
maxARCH

MedSE
minSPEC
maxSPEC
minARCH
maxARCH

MedAE
minSPEC
maxSPEC
minARCH
maxARCH

MeanHASE
minSPEC
maxSPEC
minARCH
maxARCH

19.52
21.91
19.53
28.21

44.19
46.80
44.20
53.11

68.24
77.35
63.02
79.54

22.80
26.63
21.60
32.39

0.535
0.617
0.507
0.656

4.944
5.396
4,697
5.460

0.1322
0.1768
0.1211
0.1693

3.636
4.205
3.479
4.115

18.50
19.98
20.34
28.78

10

12.27
15.01
12.50
20.02

35.03
38.75
35.35
44.75

39.93
46.44
40.18
52.04

14.22
17.41
13.53
22.40

10

0.398
0.459
0.396
0.513

4.111
4.519
4.001
4.762

0.0823
0.1218
0.0783
0.1278

2.868
3.491
2.798
3.576

14.04
15.57
15.77
23.16

15

10.81
11.88
10.08
17.90

32.88
34.47
3175
42.31

3175
37.00
33.82
45.60

10.94
13.00
11.27
18.06

15

0.335
0.383
0.343
0.448

3.759
4.142
3.766
4.483

0.0739
0.0840
0.0653
0.1077

2719
2.898
2.555
3.282

11.92
13.59
13.49
21.45

16

10.01
11.16

9.82
17.26

31.64
33.41
31.33
41.55

30.99
35.93
33.10
44.76

10.65
12.72
11.10
17.53

16

0.323
0.371
0.333
0.435

3.698
4.074
3.718
4.428

0.0699
0.0806
0.0632
0.1046

2.645
2.838
2514
3.234

11.59
13.38
13.06
21.21

18

9.10
1131
9.69
1591

30.17
33.63
3112
39.89

29.04
33.76
31.36
43.33

10.04
12.03
10.41
16.90

18

0.301
0.349
0.316
0.414

3.583
3.913
3.632
4.337

0.0597
0.0742
0.0624
0.0967

2.444
2.723
2.499
3.110

10.81
13.00
12.25
20.76

Forecast Horizon in days

20 22 24 26 28 30 32 34 35 40
842 845 814 795 756 777 754 7.44 743 7.80
1054 1039 1035 10.25 10.01 10.66 10.39 10.27 10.22 10.77
9.02 924 943 922 851 885 842 843 886 845
16.05 1527 15.08 1530 14.95 1490 1531 1577 1553 1546
29.02 29.07 2854 2819 2749 27.88 27.46 27.27 2725 27.93
3247 3223 3217 3202 3163 32.65 3224 3205 3198 32.82
30.04 30.39 3070 30.37 29.17 29.74 29.02 29.03 29.77 29.07
40.07 39.07 3883 39.11 38.67 3860 39.13 39.71 3941 39.32
27.71 27.07 2643 26.07 2585 2566 2540 2524 2516 24.94
32,67 3214 3150 31.09 3071 30.34 30.02 29.86 29.72 29.16
29.90 29.03 2831 27.70 27.19 26.84 26.42 2621 26.06 25.40
4218 4165 4127 40.98 4091 40.83 40.71 40.81 40.81 40.78
865 927 849 802 819 759 772 817 833 836
11.30 11.22 11.42 1129 10.87 10.79 1049 10.38 10.65 10.77
946 9586 1003 981 932 914 865 892 911 907
16.38 1543 1585 1530 14.79 14.31 13.37 13.68 14.18 14.83

Evaluation Criteria for the Conditional Standard Deviation, k=1

Forecast Horizon in days

20 22 24 26 28 30 32 34 35 40
0.288 0.277 0.271 0267 0265 0.263 0.260 0.259 0.259 0.255
0.338 0.332 0.327 0322 0318 0.314 0310 0.309 0.308 0.300
0.301 0.292 0.283 0277 0271 0.268 0.265 0.262 0261 0252
0.400 0.392 0.386 0.380 0375 0.371 0.367 0.364 0.363 0.358
3504 3.466 3.448 3431 3416 3.388 3.381 3.386 3.393 3.394
3.822 3798 3.792 3783 3.757 3.728 3713 3.725 3.725 3.687
3576 3.543 3.535 3515 3.487 3.465 3432 3.430 3.423 3401
4261 4235 4228 4203 4.184 4166 4.156 4.173 4.180 4.194
0.0551 0.0560 0.0549 0.0538 0.0521 0.0499 0.0480 0.0474 0.0478 0.0498
0.0696 0.0677 0.0665 0.0646 0.0605 0.0602 0.0613 0.0596 0.0628 0.0617
0.0596 0.0573 0.0575 0.0565 0.0536 0.0548 0.0499 0.0507 0.0523 0.0500
0.0920 0.0929 0.0827 0.0860 0.0785 0.0819 0.0805 0.0859 0.0896 0.0864
2.347 2367 2344 2319 2282 2234 2190 2177 2186 2232
2638 2601 2578 2543 2459 2453 2476 2442 2506 2484
2441 2394 2398 2377 2316 2340 2234 2252 2286 2236
3.034 3.047 2.876 2932 2802 2861 2.837 2931 2993 2939
1032 991 968 957 947 941 937 931 930 918
12,68 12.77 12.68 12.62 1248 1231 1219 12.06 11.99 1165
11.68 11.34 11.04 10.82 10.64 1052 1045 10.32 1025 9.91
20.28  19.97 19.68 19.47 19.28 19.13 19.01 1890 18.85 18.63

45

7.38
10.96
8.40
15.09

27.17
33.10
28.97
38.85

24.85
28.93
24.77
40.94

8.20
10.81
8.68
15.71

45

0.250
0.294
0.242
0.353

3.410
3.696
3.360
4.229

0.0470
0.0647
0.0516
0.0936

2.168
2.544
2.272
3.059

9.07
11.45
9.57
18.44

50

8.08
10.95
8.72
15.92

28.43
33.10
29.52
39.90

24.84
28.89
24.41
41.10

9.10
1151
9.19
17.07

50

0.245
0.288
0.235
0.347

3.433
3.721
3.356
4.268

0.0490
0.0700
0.0518
0.1001

2.213
2.646
2.275
3.163

8.99
11.26
9.30
18.30

60

8.41
11.10
8.36
16.42

29.01
33.31
28.91
40.52

25.09
28.89
23.99
42.78

9.06
12.07
8.61
18.56

60

0.239
0.279
0.224
0.345

3.464
3.733
3.338
4.356

0.0515
0.0689
0.0500
0.1131

2.269
2.625
2.235
3.362

9.19
11.21
9.05
18.11

70

8.22
11.97
8.57
19.19

28.67
34.60
29.28
43.81

25.16
28.37
23.40
44.33

9.62
12.94
9.34
21.65

70

0.234
0.266
0.214
0.343

3.466
3.734
3.315
4.443

0.0531
0.0745
0.0506
0.1401

2.304
2.729
2.250
3.743

9.23
10.85
8.74
18.01

80

9.39
11.28
8.38
22.97

30.65
33.58
28.95
47.93

25.22
28.03
23.01
45.35

9.73
12.35
9.46
21.97

80

0.227
0.254
0.206
0.341

3.484
3.737
3.327
4.497

0.0538
0.0717
0.0531
0.1410

2.319
2.678
2.305
3.755

9.16
10.53
8.45
17.93

90

8.33
11.29
8.80
27.93

28.87
33.61
29.67
52.85

25.22
27.70
22.44
45.72

9.52
12.36
9.22
23.58

90

0.220
0.243
0.196
0.334

3.493
3.706
3.308
4.507

0.0542
0.0654
0.0516
0.1492

2.327
2.557
2271
3.863

9.08
10.26
8.11
17.83

100

8.74
11.94
8.33
36.67

29.57
34.55
28.86
60.55

25.55
27.74
22.27
46.73

9.14
13.03
8.83
26.19

100

0.216
0.237
0.191
0.333

3.491
3.692
3.284
4.549

0.0536
0.0685
0.0486
0.1542

2.315
2.617
2.204
3.927

9.22
10.25
8.03
17.81
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Table 5.2 (continued)

MeanHAAE
minSPEC
maxSPEC
minARCH
maxARCH

MedHASE
minSPEC
maxSPEC
minARCH
maxARCH

MedHAAE
minSPEC
maxSPEC
minARCH
maxARCH

MeanLE
minSPEC
maxSPEC
minARCH
maxARCH
MedLE
minSPEC
maxSPEC
minARCH
maxARCH

29.45
30.68
30.46
36.16

5.560
6.158
5.366
7.855

23.58
24.82
23.17
28.03

17.06
19.34
15.75
19.89

5.701
6.657
5.400
8.099

10

24.54
25.95
26.09
31.96

3.343
4.088
3.329
5.423

18.29
20.22
18.25
23.29

9.98
1161
10.04
13.01

3.555
4.352
3.383
5.599

15

22.61
24.17
24.45
30.45

2.845
3.167
2.523
4.480

16.87
17.80
15.89
21.16

7.94
9.25
8.46
11.40

2.734
3.249
2.818
4.514

16

22.24
24.00
24.12
30.28

2.602
2.888
2.652
4.480

16.13
16.99
16.29
21.17

7.75
8.98
8.27
11.19

2.661
3.179
2.774
4.382

18

21.57
23.64
23.53
30.01

2.444
3.001
2.564
4.143

15.63
17.32
16.01
20.36

7.26
8.44
7.84
10.83

2,510
3.007
2.603
4.224

20

21.05
23.45
23.09
29.78

2179
2.757
2.372
4.020

14.76
16.60
15.40
20.05

6.93
8.17
7.47
10.55

2.162
2.825
2.364
4.096

22

20.78
2341
22.82
29.49

2.252
2.702
2.441
3.904

15.01
16.44
15.62
19.76

6.77
8.03
7.26
10.41

2.319
2.806
2.465
3.857

24

20.68
2341
22.72
29.33

2.146
2.759
2.485
3.863

14.65
16.61
15.76
19.66

6.61
7.88
7.08
10.32

2123
2.854
2.507
3.963

Forecast Horizon in days

26

20.64
23.39
22.58
29.23

1.972
2.645
2.444
3.960

14.04
16.26
15.63
19.90

6.52
7.77
6.92
10.24

2.006
2.821
2.452
3.825

28

20.60
23.24
2241
29.26

2.001
2.724
2.270
3.813

14.15
16.51
15.07
19.53

6.46
7.68
6.80
10.23

2.049
2.718
2.329
3.698

30

20.47
23.07
22.24
29.31

2.003
2.678
2.247
3.723

14.15
16.36
14.99
19.29

6.41
7.59
6.71
10.21

1.896
2.698
2.285
3.577

32

20.50
23.01
22.05
29.42

1.887
2.676
2173
3.698

13.74
16.36
14.74
19.23

6.35
7.51
6.61
10.18

1.930
2.623
2.163
3.344

34

20.57
23.08
21.98
29.57

1.991
2.552
2.269
3.733

14.11
15.98
15.06
19.32

6.31
7.47
6.55
10.20

2.043
2.595
2.229
3.420

35

20.63
23.08
21.95
29.63

2.012
2.618
2.273
3.664

14.19
16.18
15.08
19.14

6.29
7.43
6.52
10.20

2.083
2.662
2.278
3.546

40

20.75
22.90
21.83
29.93

2.147
2.773
2.198
3.711

14.65
16.65
14.83
19.26

6.24
7.29
6.35
10.20

2.089
2.693
2.268
3.708

45

20.97
23.06
21.66
30.17

1.944
2.718
2124
3.899

13.94
16.49
14.57
19.75

6.21
7.23
6.19
10.23

2.050
2.703
2.169
3.928

50

21.25
2331
21.66
30.44

2.176
2.767
2.264
3.961

14.75
16.63
15.05
19.90

6.21
7.22
6.10
10.27

2.276
2.877
2.297
4.267

60

21.82
23.62
21.64
30.66

2.243
2.940
2.144
4.259

14.98
17.15
14.64
20.64

6.27
7.22
6.00
10.70

2.264
3.018
2.152
4.639

70

22.17
23.82
21.59
31.45

2.259
3.195
2.242
5.022

15.03
17.88
14.97
2241

6.29
7.09
5.85
11.08

2.404
3.235
2.335
5.412

80

22.54
23.97
21.71
32.19

2.348
2.951
2.356
5.826

15.32
17.18
15.35
24.14

6.30
7.01
5.75
11.34

2432
3.089
2.366
5.491

90

22.79
24.09
21.58
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100
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14.57
27.54
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5.57
11.68
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3.257
2.207
6.548
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Figure 5.2a

The plots indicate whether the ARCH models selected by the SPEC algorithm achieve the
lowest value of the evaluation criterion, for a forecasting horizon ranging from one day to one
hundred days ahead. The value 2 indicates that the ARCH model selected by the SPEC
algorithm achieves the lowest value for the corresponding criterion and the specific forecastin
horizon. The value 1 indicates the opposite. The realized volatilty measure is expressed as in
(4.1). The evaluation criteria are the mean and the median values of the functions defined by

(4.3), (4.4), (4.5), (4.6) and (4.7).
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Figure 5.2b

The plots indicate whether the ARCH models selected by the SPEC algorithm achieve the
lowest value of the evaluation criterion, for a forecasting horizon ranging from one day to one
hundred days ahead. The value 2 indicates that the ARCH model selected by the SPEC
algorithm achieves the lowest value for the corresponding criterion and the specific forecastini
horizon. The value 1 indicates the opposite. The realized volatilty measure is expressed as the
square root of (4.1). The evaluation criteria are the mean and the median values of the
functions defined by (4.3), (4.4), (4.5), (4.6) and (4.7).
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Table 5.3

The percentage of times the ARCH models selected by the SPEC algorithm perform "better" as judged by the
evaluation criteria. The first and the second panel correspond to the mean and the median of the evaluation
criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the varian

and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 47% 56% 34% 26% 26% 54% 56%  34%
11-52 0% 0% 88% 100% 79% 62% 62% 100% 100%  79%
16-36 0% 0% 100% 100% 100%  100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE  MedHASE  MedHAAE MedLE
1-100 40% 40% 65% 65% 35% 38% 38% 50% 50%  35%
11-52 64% 64% 88% 88% 83% 81% 81% 93% 93%  83%
16-36 86% 86% 95% 95% 100% 90% 90% 100% 100% 100%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

minSPEC

maxSPEC

MedLE: Median Logarithmic Error

Table 5.4

Average sample size for the SPEC model selection algorithm suggested by the Evaluation Criteria for
both the entire 16 to 36 day ahead forecasting horizon and for each day individually.

Average sample size suggested by the
Evaluation Criteria rating the
performance of the SPEC selection
algorithm "best".

Average sample size suggested by all
the Evaluation Criteria considered.

Forecasting Horizon (in Number of Average Standard Number of  Average Standard
number of days ahead) Criteria  sample size  Deviation Criteria  sample size  Deviation
16-36 366 19.7 3.6 420 19.9 3.7
16 12 23.8 1.7 20 26.0 2.5
17 14 20.7 15 20 235 2.9
18 18 24.7 2.8 20 24.3 2.7
19 18 25.0 3.3 20 24.3 3.3
20 18 23.6 3.3 20 23.0 3.3
21 18 23.3 34 20 225 34
22 18 20.0 3.8 20 195 3.6
23 18 19.4 3.8 20 19.0 3.7
24 18 19.4 3.8 20 19.0 3.7
25 18 17.2 2.9 20 17.0 2.8
26 18 17.2 2.9 20 17.0 2.8
27 18 17.8 3.6 20 17.5 34
28 18 18.3 3.1 20 18.0 2.9
29 18 18.3 3.1 20 18.0 2.9
30 18 20.6 6.5 20 20.0 6.2
31 18 16.1 14 20 16.0 14
32 18 17.8 3.6 20 17.5 34
33 16 15.6 0.8 20 20.0 6.2
34 18 21.1 4.7 20 20.5 4.5
35 18 17.8 3.6 20 175 34
36 18 17.8 2.9 20 17.5 2.8
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Table 5.6.1

The percentage of times the ARCH models selected by the SEVar method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 2% 2% 1% 1% 3% 2% 2% 1% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 4% 4% 2% 2% 3% 2% 2% 1% 1% 3%
11-52 2% 2% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 5% 5% 0% 0% 0% 0% 0% 0% 0% 0%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error

MHAAE: Mean Heteroscedasticity Adjusted Absolute Error

MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error

MedHAAE: Median Heteroscedasticity Adjusted Absolute Error

MedLE: Median Logarithmic Error

Table 5.6.2

The percentage of times the ARCH models selected by the AEVar method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 0% 0% 3% 2% 3% 0% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 9% 9% 1% 1% 2% 6% 6% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 5.6.3

The percentage of times the ARCH models selected by the SEDev method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 3% 1% 0% 3% 2% 3% 1% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 8% 8% 1% 1% 2% 5% 5% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 5.6.4

The percentage of times the ARCH models selected by the AEDev method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 3% 0% 0% 3% 2% 3% 0% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 9% 9% 1% 1% 2% 6% 6% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

Table 5.6.5

The percentage of times the ARCH models selected by the HASEVar method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 8% 16% 0% 0% 11% 12% 34% 0%
11-52 0% 0% 0% 14% 0% 0% 26% 5% 57% 0%
16-36 0% 0% 0% 5% 0% 0% 52% 0% 90% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 40% 40% 21% 21% 22% 26% 26% 20% 20% 22%
11-52 67% 67% 45% 45% 48% 57% 57% 45% 45%  48%
16-36 95% 95% 81% 81% 86% 86% 86% 81% 81% 86%

Table 5.6.6

The percentage of times the ARCH models selected by the HAAEVar method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 2% 1% 4% 16% 0% 1% 12% 9% 34% 0%
11-52 0% 0% 0% 14% 0% 0% 29% 0% 57% 0%
16-36 0% 0% 0% 5% 0% 0% 57% 0% 90% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 26% 26% 24% 26% 26% 24% 24% 24%
11-52 64% 64% 52% 52% 52% 60% 60% 50% 50%  52%
16-36 90% 90% 100% 100% 100% 86% 86% 95% 95% 100%
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Table 5.6.7

The percentage of times the ARCH models selected by the HASEDev method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean
forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 3% 6% 0% 2% 2% 5% 8% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Days ahead Median
forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 25% 25% 25% 25% 25% 21% 21% 27% 27% 25%
11-52 50% 50% 43% 43% 45% 48% 48% 48% 48%  45%
16-36 86% 86% 81% 81% 86% 76% 76% 90% 90% 86%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

Table 5.6.8

The percentage of times the ARCH models selected by the HAAEDev method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 3% 2% 2% 2% 2% 2% 2% 2% 3% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 3% 3% 8% 8% 6% 5% 5% 7% 7% 6%
11-52 5% 5% 5% 5% 5% 7% 7% 10% 10% 5%
16-36 10% 10% 10% 10% 10% 10% 10% 19% 19% 10%

Table 5.6.9

The percentage of times the ARCH models selected by the LEVar method perform "better" as judged by the evaluation criteria. The
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 0% 0% 3% 2% 2% 0% 0% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 8% 8% 1% 1% 2% 5% 5% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 5.6.10

The percentage of times the ARCH models selected by the AIC method perform "better" as judged by the evaluation criteria. The first
and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of the
panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 5.6.11

The percentage of times the ARCH models selected by the SBC method perform "better" as judged by the evaluation criteria. The first
and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of the
panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 0% 0% 0% 0% 0% 1% 1% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
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Table 5.7.1

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
SEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 96% 92% 100% 100% 95% 97% 94% 100% 99% 95%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 84% 84% 97% 97% 92% 85% 85% 95% 95% 92%
11-52 86% 86% 100% 100% 100% 88% 88% 100% 100% 100%
16-36 90% 90% 100% 100% 100% 95% 95% 100% 100% 100%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error

MHAAE: Mean Heteroscedasticity Adjusted Absolute Error

MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error

MedHAAE: Median Heteroscedasticity Adjusted Absolute Error

MedLE: Median Logarithmic Error

Table 5.7.2

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
AEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 94% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 88% 88% 99% 99% 96% 91% 91% 98% 98% 96%
11-52 95% 95% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.7.3

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
SEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean
forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 96% 93% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Days ahead Median
forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 88% 88% 99% 99% 96% 91% 91% 98% 98% 96%
11-52 95% 95% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

246



Chapter 5

Table 5.7.4

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
AEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 93% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 87% 87% 98% 98% 96% 91% 91% 98% 98% 96%
11-52 93% 93% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error

MHAAE: Mean Heteroscedasticity Adjusted Absolute Error

MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error

MedHAAE: Median Heteroscedasticity Adjusted Absolute Error

MedLE: Median Logarithmic Error

Table 5.7.5

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the

HASEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 93% 89% 100% 100% 94% 94% 91% 99% 98% 94%
11-52 100% 98% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 92% 92% 84% 48% 48% 90% 90% 84%
11-52 33% 33% 90% 90% 81% 55% 55% 90% 90%  81%
16-36 38% 38% 90% 90% 81% 52% 52% 90% 90% 81%

Table 5.7.6

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the

HAAEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 60% 99% 99% 93% 94% 89% 98% 96% 93%
11-52 0% 95% 100% 100% 100%  100% 98% 100% 100% 100%
16-36 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 92% 92% 83% 59% 57% 88% 88% 83%
11-52 26% 26% 93% 93% 79% 52% 52% 88% 88%  79%
16-36 19% 19% 90% 90% 76% 43% 43% 86% 86% 76%

247



Chapter 5

Table 5.7.7

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the

HASEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 82% 88% 100% 100% 93% 94% 91% 99% 98% 93%
11-52 100% 95% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 45% 45% 88% 88% 88% 60% 60% 87% 87% 88%
11-52 45% 45% 93% 93% 93% 60% 60% 93% 93%  93%
16-36 33% 33% 95% 95% 100% 43% 43% 100% 100% 100%

MSE: Mean Square Error

MAE: Mean Absolute Error

MHASE: Mean Heteroscedasticity Adjusted Squared Error

MHAAE: Mean Heteroscedasticity Adjusted Absolute Error

MLE: Mean Logarithmic Error

MedSE: Median Square Error

MedAE: Median Absolute Error

MedHASE: Median Heteroscedasticity Adjusted Squared Error

MedHAAE: Median Heteroscedasticity Adjusted Absolute Error

MedLE: Median Logarithmic Error

Table 5.7.8

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the

HAAEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 30% 86% 100% 99% 95% 96% 92% 99% 98% 95%
11-52 71% 90% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 71% 71% 94% 94% 92% 80% 81% 93% 93% 92%
11-52 86% 86% 100% 100% 95% 86% 86% 100% 100%  95%
16-36 90% 90% 100% 100% 100% 95% 95% 100% 100% 100%

Table 5.7.9

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
LEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean
forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 94% 100% 100% 96% 97% 95% 100% 100% 96%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
Days ahead Median
forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 90% 90% 100% 100% 97% 92% 92% 99% 99% 97%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Table 5.7.10

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the AIC
criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the evaluation
criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the standard
deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 99% 97% 100% 100% 96% 100% 96% 100% 100% 96%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 89% 89% 100% 100% 100% 93% 93% 99% 99% 100%
11-52 95% 95% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.7.11

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the
SBC criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the
standard deviation of the returns, respectively.

Days ahead Mean

forecasting Variance Standard Deviation
horizon MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 98% 97% 100% 100% 96% 99% 96% 100% 100% 96%
11-52 100% 100% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Days ahead Median

forecasting Variance Standard Deviation
horizon MedSE  MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 91% 91% 99% 99% 97% 92% 92% 99% 99% 97%
11-52 98% 98% 100% 100% 100%  100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
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Appendix 6

Table 6.3. Daily rate of return from trading straddles
on the S&P500 index based on the 85 ARCH volatility
models.

Table 6.8. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the SEVar model selection method.

Table 6.9. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the AEVar model selection method.

Table 6.10. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the SEDev model selection method.

Table 6.11. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the AEDev model selection method.

Table 6.12. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the HASEVar model selection method.
Table 6.13. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the HAAEVar model selection method.
Table 6.14. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the HASEDev model selection method.
Table 6.15. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the HAAEDev model selection method.
Table 6.16. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the LEVar model selection method.

Table 6.17. Daily rate of return from trading straddles
on the S&P500 index based on the ARCH models
selected by the AIC and SBC model selection

methods.
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e Construction of the Black and Scholes Option Pricing
Formula.

e Options Sensitivities.
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Table 6.3.a. Daily rate of return from trading straddles on the S&P500 index based on the 85

ARCH volatility forecasts (11 March 1998 — 2 June 2000).

ARCH Model

Without transaction cost
Without filter

Stand. t
Dev. ratio

Days Mean

Stand. t
Dev. ratio

$2 transaction cost

Days Mean

$1.25 filter

Stand. t
Dev. ratio

Days Mean

$1.75 filter

Stand. t
Dev. ratio

Days

AR(0)GARCH(0,1)
AR(1)GARCH(0,1)
AR(2)GARCH(0,1)
AR(3)GARCH(0,1)
AR(4)GARCH(0,1)
AR(0)GARCH(0,2)
AR(1)GARCH(0,2)
AR(2)GARCH(0,2)
AR(3)GARCH(0,2)
AR(4)GARCH(0,2)
AR(0)GARCH(1,1)
AR(1)GARCH(1,1)
AR(2)GARCH(1,1)
AR(3)GARCH(1,1)
AR(4)GARCH(1,1)
AR(0)GARCH(1,2)
AR(1)GARCH(1,2)
AR(2)GARCH(1,2)
AR(3)GARCH(1,2)
AR(4)GARCH(1,2)
AR(0)GARCH(2,1)
AR(1)GARCH(2,1)
AR(2)GARCH(2,1)
AR(3)GARCH(2,1)
AR(4)GARCH(2,1)
AR(0)GARCH(2,2)
AR(1)GARCH(2,2)
AR(2)GARCH(2,2)
AR(3)GARCH(2,2)
AR(4)GARCH(2,2)
AR(0)TARCH(0,1)
AR(1)TARCH(0,1)
AR(2)TARCH(0,1)
AR(3)TARCH(0,1)
AR(4)TARCH(0,1)
AR(0)TARCH(0,2)
AR(1)TARCH(0,2)
AR(2)TARCH(0,2)
AR(3)TARCH(0,2)
AR(4)TARCH(0,2)
AR(0)TARCH(1,1)
AR(1)TARCH(1,1)
AR(2)TARCH(1,1)

17.96% 4.10
17.96% 4.10
17.96% 4.10
17.97% 4.06
17.97% 4.06
17.90% 4.48
17.93% 4.32
17.93% 4.34
17.92% 4.34
17.89% 4.55
17.91% 4.44
17.87% 4.65
17.88% 4.60
17.87% 4.67
17.84% 4.81
17.83% 4.90
17.81% 4.99
17.80% 5.05
17.83% 4.90
17.80% 5.04
17.89% 4.54
17.86% 4.72
17.88% 4.61
17.88% 4.63
17.85% 4.76
17.84% 4.84
17.83% 4.91
17.80% 5.06
17.81% 5.01
17.80% 5.05
17.97% 4.08
17.94% 4.24
17.92% 4.40
17.96% 4.13
18.00% 3.88
17.97% 4.05
17.95% 4.20
17.95% 4.20
17.95% 4.21
17.95% 4.17
17.84% 4.94
17.91% 4.57
17.82% 5.02

456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
455
455
455
455
455
455
455
455

-0.21% 17.60% -0.25 456
-0.20% 17.60% -0.25 456
-0.20% 17.60% -0.25 456
-0.24% 17.60% -0.29 456
-0.24% 17.60% -0.29 456

0.10%
-0.02%
-0.01%
-0.01%
0.16%
0.07%
0.24%
0.20%
0.25%
0.37%
0.44%
0.51%
0.56%
0.44%
0.55%
0.15%
0.30%
0.21%
0.22%
0.33%
0.39%
0.45%
0.57%
0.52%
0.56%
-0.22%
-0.09%
0.04%
-0.18%
-0.38%
-0.25%
-0.12%
-0.12%
-0.11%
-0.15%
0.48%
0.18%
0.54%

17.46% 0.12
17.50% -0.03
17.50% -0.01
17.50% -0.01
17.45% 0.19
17.52% 0.09
17.46% 0.29
17.47% 0.25
17.46% 0.31
17.44% 0.45
17.41% 0.54
17.40% 0.62
17.39% 0.68
17.42% 0.54
17.39% 0.68
17.48% 0.19
17.42% 0.36
17.47% 0.25
17.47% 0.27
17.44% 0.40
17.43% 0.48
17.41% 0.55
17.39% 0.70
17.40% 0.64
17.39% 0.68
17.61%-0.27
17.58% -0.11
17.53% 0.05
17.60% -0.22
17.65% -0.46
17.55% -0.30
17.54% -0.15
17.54% -0.15
17.53%-0.14
17.54%-0.18
17.28% 0.59
17.38% 0.22
17.27% 0.67

456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
455
455
455
455
455
455
455
455

0.43%
0.47%
0.45%
0.47%
0.47%
0.82%
0.48%
0.47%
0.48%
0.55%
0.58%
0.56%
0.68%
0.65%
0.50%
0.70%
0.74%
0.67%
0.71%
0.75%
0.54%
0.72%
0.68%
0.66%
0.57%
0.71%
0.69%
0.69%
0.62%
0.69%
0.38%
0.43%
0.38%
0.47%
0.45%
0.42%
0.49%
0.49%
0.51%
0.59%
0.41%
0.64%
0.70%

17.94% 0.48
17.96% 0.53
17.92% 0.51
17.94% 0.53
17.94% 0.53
17.19% 0.96
18.10% 0.53
18.12% 0.52
18.20% 0.53
18.23% 0.60
18.21% 0.65
18.29% 0.61
18.11% 0.76
18.18% 0.72
18.24% 0.55
18.13% 0.78
18.21% 0.81
18.04% 0.76
18.06% 0.80
18.23% 0.83
18.22% 0.60
18.01% 0.81
18.13% 0.75
17.87% 0.75
18.05% 0.63
18.13% 0.79
18.05% 0.77
18.03% 0.78
17.90% 0.70
18.07% 0.77
18.18% 0.41
18.19% 0.47
18.20% 0.42
18.25% 0.51
18.30% 0.49
17.75% 0.48
17.96% 0.55
17.93% 0.55
18.04% 0.57
18.10% 0.66
17.60% 0.47
17.67% 0.74
17.75% 0.80

409
408
410
409
409
402
404
403
397
393
405
403
402
405
405
407
405
412
410
401
406
404
400
412
405
407
412
413
414
405
397
399
399
396
394
412
403
404
402
398
423
417
413

0.59%
0.58%
0.59%
0.57%
0.56%
0.85%
0.70%
0.66%
0.65%
0.67%
0.74%
0.58%
0.81%
0.75%
0.60%
1.03%
0.95%
0.92%
0.93%
0.86%
0.61%
0.88%
0.78%
0.77%
0.62%
1.06%
0.61%
0.77%
0.67%
0.64%
0.43%
0.57%
0.70%
0.61%
0.61%
0.54%
0.53%
0.73%
0.83%
0.81%
0.30%
0.79%
0.79%

18.43% 0.63
18.36% 0.62
18.34% 0.63
18.29% 0.62
18.27% 0.61
17.46% 0.96
18.49% 0.74
18.51% 0.70
18.52% 0.69
18.68% 0.69
18.62% 0.78
18.65% 0.61
18.47% 0.86
18.59% 0.79
18.58% 0.64
18.45% 1.09
18.55% 1.01
18.52% 0.98
18.43% 1.00
18.48% 0.92
18.39% 0.65
18.49% 0.93
18.45% 0.83
18.25% 0.83
18.13% 0.68
18.46% 1.13
18.20% 0.67
18.45% 0.82
18.15% 0.73
18.21% 0.70
18.49% 0.45
18.68% 0.59
18.80% 0.72
18.69% 0.63
18.69% 0.63
18.15% 0.60
18.18% 0.58
17.96% 0.80
18.15% 0.89
18.23% 0.86
17.68% 0.34
17.95% 0.88
18.01% 0.87

382
385
386
388
389
383
381
380
380
373
383
386
384
384
383
386
386
387
391
389
386
380
380
392
391
385
392
387
393
390
381
372
370
375
375
393
390
387
379
376
408
400
399
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Table 6.3.b. Daily rate of return from trading straddles on the S&P500 index based on the 85
ARCH volatility forecasts (11 March 1998 — 2 June 2000).

Without transaction cost
Without filter

ARCH Model

Stand.
Dev.

t
ratio

Days

Mean

Stand. t
Dev. ratio

Days Mean

$2 transaction cost

$1.25 filter

Stand. t
Dev. ratio

Days Mean

$1.75 filter

Stand. t
Dev. ratio

Days

AR(3)TARCH(1,1)
AR(4)TARCH(1,1)
AR(0)TARCH(1,2)
AR(1)TARCH(1,2)
AR(2)TARCH(1,2)
AR(3)TARCH(1,2)
AR(4)TARCH(1,2)
AR(0)TARCH(2,1)
AR(1)TARCH(2,1)
AR(2)TARCH(2,1)
AR(3)TARCH(2,1)
AR(4)TARCH(2,1)
AR(0)TARCH(2,2)
AR(1)TARCH(2,2)
AR(2)TARCH(2,2)
AR(3)TARCH(2,2)
AR(4)TARCH(2,2)
AR(0)EGARCH(0,1) 3.38%
AR(1)EGARCH(0,1) 3.37%
AR(2)EGARCH(0,1) 3.35%
AR(3)EGARCH(0,1) 3.37%
AR(4)EGARCH(0,1) 3.37%
AR(0)EGARCH(0,2) 2.53%
AR(1)EGARCH(0,2) 2.90%
AR(2)EGARCH(0,2) 2.89%
AR(3)EGARCH(0,2) 2.86%
AR(4)EGARCH(0,2) 2.86%
AR(0)EGARCH(1,1) 4.14%
AR(1)EGARCH(1,1) 4.33%
AR(2)EGARCH(1,1) 4.40%
AR(3)EGARCH(L,1) 4.42%
AR(4)EGARCH(1,1) 4.39%
AR(0)EGARCH(1,2) 3.16%
AR(1)EGARCH(1,2) 3.63%
AR(2)EGARCH(1,2) 3.27%
AR(3)EGARCH(1,2) 3.41%
AR(4)EGARCH(1,2) 3.53%
AR(0)EGARCH(2,1) 4.07%
AR(1)EGARCH(2,1) 4.31%
AR(2)EGARCH(2,1) 4.40%
AR(3)EGARCH(2,1) 4.32%
AR(4)EGARCH(2,1) 4.33%

17.79%
17.82%
17.78%
17.96%
18.00%
17.92%
17.94%
17.93%
17.94%
17.89%
17.90%
17.90%
18.00%
17.99%
17.94%
18.01%
18.00%
17.98%
17.98%
17.98%
17.98%
17.98%
18.12%
18.06%
18.06%
18.07%
18.07%
17.82%
17.77%
17.75%
17.75%
17.76%
18.02%
17.93%
18.00%
17.97%
17.95%
17.83%
17.78%
17.76%
17.77%
17.77%

5.1
4.94
5.27
4.31
4.06
4.49
4.47
4.39
4.34
4.66
4.51
4.53
4.06
4.06
4.36
4.03
4.08
4.01
4.00
3.98
4.00
4.00
2.98
3.43
3.41
3.38
3.38
4.96
5.20
5.29
5.32
5.28
3.74
4.33
3.88
4.06
4.20
4.87
5.18
5.29
5.19
5.21

456
456
455
454
454
455
454
455
455
455
456
455
454
455
455
454
454
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456

0.61%
0.47%
0.74%
-0.02%
-0.22%
0.11%
0.11%
0.04%
0.00%
0.25%
0.13%
0.14%
-0.22%
-0.23%
0.02%
-0.25%
-0.21%
-0.27%
-0.28%
-0.30%
-0.28%
-0.28%
-1.12%
-0.75%
-0.77%
-0.79%
-0.79%
0.49%
0.67%
0.75%
0.77%
0.74%
-0.49%
-0.02%
-0.38%
-0.24%
-0.12%
0.42%
0.66%
0.74%
0.67%
0.68%

17.24% 0.75
17.27% 0.58
17.24% 0.91
17.54% -0.02
17.59% -0.27
17.39% 0.14
17.41% 0.13
17.40% 0.05
17.37% 0.00
17.35% 0.31
17.36% 0.16
17.36% 0.18
17.48% -0.27
17.57% -0.28
17.52% 0.02
17.59% -0.30
17.59% -0.26
17.61% -0.33
17.62% -0.34
17.62% -0.37
17.62% -0.34
17.62% -0.34
17.79% -1.35
17.71% -0.91
17.72% -0.92
17.72% -0.95
17.72% -0.95
17.28% 0.60
17.24% 0.84
17.22% 0.93
17.21% 0.95
17.23% 0.92
17.51% -0.60
17.41% -0.02
17.58% -0.46
17.45% -0.29
17.43% -0.15
17.30% 0.52
17.25% 0.81
17.22% 0.92
17.24% 0.83
17.24% 0.84

456
456
455
454
454
455
454
455
455
455
456
455
454
455
455
454
454
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456
456

0.61%
0.61%
0.67%
0.63%
0.52%
0.39%
0.45%
0.54%
0.11%
0.45%
0.28%
0.19%
0.11%
0.45%
0.58%
0.48%
0.42%
0.23%
0.38%
0.38%

17.73% 0.70
17.71% 0.70
17.56% 0.79
17.52% 0.73
17.46% 0.61
17.66% 0.45
17.59% 0.52
17.45% 0.64
17.70% 0.13
17.83% 0.51
17.68% 0.32
17.58% 0.21
17.75% 0.13
17.71% 0.52
17.62% 0.68
17.52% 0.56
17.69% 0.48
17.86% 0.27
18.00% 0.43
18.00% 0.43
0.38% 17.96% 0.43
0.38% 17.96% 0.43
-0.46% 17.34% -0.55
-0.44% 17.60% -0.52
-0.44% 17.58% -0.52
-0.45% 17.54% -0.53
-0.47% 17.52% -0.55
0.32% 17.30% 0.39
0.81% 17.52% 0.95
0.90% 17.34% 1.06
0.83% 17.56% 0.97
0.68% 17.43% 0.80
-0.14% 17.75% -0.17
0.19% 17.82% 0.22
0.11% 17.85% 0.12
0.04% 17.93% 0.04
0.16% 17.91% 0.18
0.29% 17.32% 0.34
0.76% 17.63% 0.88
0.80% 17.29% 0.95
0.79% 17.77% 0.91
0.78% 17.48% 0.92

415
417
424
421
417
419
418
420
418
412
415
412
422
416
418
424
416
416
408
408
410
410
431
422
423
425
426
427
423
421
419
425
426
416
417
415
412
427
418
427
420
427

0.74%
0.74%
0.56%
0.81%
0.69%
0.59%
0.50%
0.46%
0.40%
0.58%
0.40%
0.32%
0.23%
0.58%
0.68%
0.55%
0.49%
0.19%
0.51%
0.37%

17.97% 0.83
17.90% 0.83
17.57% 0.65
17.74% 0.92
17.60% 0.79
17.84% 0.66
17.84% 0.57
17.49% 0.52
17.88% 0.44
17.98% 0.64
17.90% 0.45
17.67% 0.37
17.69% 0.27
17.84% 0.66
17.80% 0.78
17.68% 0.63
17.77% 0.55
17.80% 0.21
18.14% 0.56
17.93% 0.41
0.38% 17.96% 0.41
0.38% 17.96% 0.41
-0.37% 17.21% -0.44
-0.06% 17.52% -0.07
-0.08% 17.52% -0.09
-0.16% 17.46% -0.19
-0.19% 17.45% -0.22
0.50% 17.33% 0.58
0.84% 17.39% 0.97
0.85% 17.35% 0.99
0.84% 17.25% 0.98
0.83% 17.19% 0.97
-0.14% 17.42% -0.17
0.25% 18.10% 0.28
0.19% 18.11% 0.20
0.04% 18.19% 0.04
0.26% 18.18% 0.28
0.43% 17.34% 0.51
0.86% 17.46% 0.98
0.81% 17.39% 0.94
0.82% 17.33% 0.95
0.89% 17.40% 1.03

402
405
409
407
406
405
405
403
403
400
402
399
405
405
408
414
410
393
394
392
391
391
420
408
408
412
413
415
406
407
406
407
414
402
401
401
396
416
403
407
402
407
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Table 6.3.c. Daily rate of return from trading straddles on the S&P500 index based on the 85 ARCH

volatility forecasts (11 March 1998 — 2 June 2000).

ARCH Model

Mean

$2.00 filter

Stand.
Dev.

t
ratio

Days Mean

$2 transaction cost

$2.25 filter

Stand.
Dev.

t Day

. Mean
ratio s

$2.75 filter

Stand. t

Dev. ratio

Days Mean

$3.50 filter

Stand.
Dev.

t
ratio

Days

AR(0)GARCH(0,1)
AR(1)GARCH(0,1)
AR(2)GARCH(0,1)
AR(3)GARCH(0,1)
AR(4)GARCH(0,1)
AR(0)GARCH(0,2)
AR(1)GARCH(0,2)
AR(2)GARCH(0,2)
AR(3)GARCH(0,2)
AR(4)GARCH(0,2)
AR(0)GARCH(1,1)
AR(1)GARCH(1,1)
AR(2)GARCH(1,1)
AR(3)GARCH(1,1)
AR(4)GARCH(1,1)
AR(0)GARCH(L,2)
AR(1)GARCH(1,2)
AR(2)GARCH(1,2)
AR(3)GARCH(1,2)
AR(4)GARCH(1,2)
AR(O)GARCH(2,1)

AR(1)GARCH(2,1)
AR(2)GARCH(2,1)
AR(3)GARCH(2,1)
AR(4)GARCH(2,1)
AR(O)GARCH(2,2)

AR(1)GARCH(2,2)
AR(2)GARCH(2,2)
AR(3)GARCH(2,2)
AR(4)GARCH(2,2)
AR(0)TARCH(0,1)
AR(1)TARCH(0,1)
AR(2)TARCH(0,1)
AR(3)TARCH(0,1)
AR(4)TARCH(0,1)
AR(0)TARCH(0,2)
AR(1)TARCH(0,2)
AR(2)TARCH(0,2)
AR(3)TARCH(0,2)
AR(4)TARCH(0,2)
AR(0)TARCH(1,1)
AR(1)TARCH(1,1)
AR(2)TARCH(1,1)

0.61%
0.61%
0.57%
0.60%
0.55%
1.04%
0.92%
0.89%
0.90%
0.81%
0.99%
0.64%
0.82%
0.79%
0.69%
1.10%
0.95%
0.96%
0.72%
0.82%
0.98%
0.95%
0.80%
0.87%
0.69%
1.04%
0.73%
0.74%
0.75%
0.63%
0.75%
0.59%
0.70%
0.72%
0.86%
0.54%
0.78%
0.81%
0.88%
0.89%
0.39%
0.85%
0.87%

18.60%
18.59%
18.58%
18.56%
18.55%
17.36%
18.44%
18.44%
18.53%
18.54%
18.60%
18.82%
18.55%
18.71%
18.64%
18.53%
18.75%
18.71%
18.42%
18.61%
18.08%
18.74%
18.65%
18.36%
18.34%
18.55%
18.40%
18.54%
18.41%
18.29%
18.41%
18.75%
18.90%
18.90%
18.52%
18.18%
18.23%
18.34%
18.36%
18.41%
17.87%
18.04%
18.11%

0.63
0.63
0.59
0.63
0.57
1.16
0.96
0.92
0.93
0.83
1.03
0.66
0.86
0.82
0.72
1.16
0.98
1.00
0.76
0.86
1.05
0.98
0.83
0.93
0.74
1.09
0.77
0.77
0.80
0.68
0.78
0.60
0.71
0.73
0.89
0.58
0.83
0.85
0.92
0.93
0.44
0.94
0.95

374
374
374
376
375
374
367
367
365
364
370
377
380
379
378
381
376
378
380
379
375
368
370
384
381
376
379
375
380
386
371
369
366
366
368
385
375
370
370
368
397
395
392

0.95%
0.88%
0.91%
0.82%
0.82%
1.14%
1.04%
1.03%
1.06%
1.09%
1.06%
0.98%
1.08%
0.97%
0.77%
1.35%
0.85%
0.91%
0.75%
0.69%
0.93%
1.00%
0.86%
0.83%
0.80%
1.03%
0.87%
0.83%
0.78%
0.73%
0.91%
0.83%
0.69%
0.94%
0.96%
0.59%
0.88%
0.82%
0.93%
0.89%
0.62%
0.86%
0.98%

18.55%
18.53%
18.54%
18.53%
18.53%
17.60%
18.27%
18.22%
18.31%
18.32%
18.74%
19.04%
18.82%
18.56%
18.73%
18.50%
18.74%
18.76%
18.74%
18.68%
18.16%
18.86%
18.77%
18.47%
18.53%
18.24%
18.69%
18.70%
18.68%
18.59%
18.64%
18.75%
19.00%
18.78%
18.76%
18.36%
18.48%
18.46%
18.50%
18.50%
17.72%
18.14%
18.11%

0.98 363
0.90 363
0.93 362
0.85 364
0.85 364
1.23 362
1.08 359
1.07 361
1.10 359
1.12 358
1.08 363
0.98 362
1.10 364
1.01 368
0.79 372
1.39 362
0.87 365
0.93 369
0.76 365
0.71 368
0.98 367
1.01 363
0.87 365
0.87 375
0.83 372
1.08 363
0.89 366
0.85 367
0.81 369
0.76 373
0.92 360
0.84 357
0.68 358
0.95 357
0.97 358
0.62 377
0.91 364
0.85 365
0.96 364
0.92 364
0.69 392
0.94 390
1.06 389

1.29% 1
1.07% 1
1.07% 1
1.24% 1
1.24% 1
1.44% 1
1.26% 1
1.17% 1
1.21% 1
1.60%
1.19% 1
1.25% 1
1.16% 1
0.91% 1
0.96% 1
1.23% 1
0.99% 1
0.89% 1
0.91% 1
1.08% 1
1.24% 1
1.07% 1
0.82% 1
0.89% 1
0.85% 1
1.25% 1
1.00% 1
1.04% 1
0.98% 1
1.21% 1
1.05% 1
1.21% 1
1.27% 1
1.22% 1
1.45% 1
0.69% 1
1.16% 1
0.95% 1
1.02% 1
1.02% 1
0.62% 1
0.84% 1
0.96% 1

17.60%

8.51%
8.30%
8.30%
8.54%
8.54%
7.50%
8.56%
8.46%
8.55%

1.30
1.09
1.09
1.25
1.25
1.52
1.26
1.18
1.22
1.69
1.15
1.21
1.16
0.91
0.97
1.23
0.96
0.89
0.90
1.06
1.23
1.04
0.82
0.88
0.84
1.24
0.98
1.03
0.97
1.22
1.02
1.18
1.23
1.21
1.40
0.71
1.17
0.94
1.01
1.01
0.69
0.90
1.03

9.13%
9.17%
8.61%
8.80%
8.66%
8.61%
9.21%
8.92%
9.01%
9.07%
8.68%
9.06%
8.78%
8.86%
8.85%
8.60%
8.98%
8.94%
8.97%
8.65%
9.07%
8.85%
8.89%
8.73%
8.99%
8.38%
8.47%
8.75%
8.84%
8.85%
7.62%
8.03%
8.10%

348
347
347
348
348
344
346
350
347
346
341
344
350
353
357
345
344
356
353
348
343
341
347
350
351
345
346
352
353
353
342
338
336
342
334
357
344
347
348
349
383
377
379

1.36%
1.19%
1.19%
1.15%
1.15%
1.48%
1.51%
1.77%
1.89%
1.88%
1.75%
1.44%
1.44%
1.64%
1.25%
1.39%
1.60%
1.46%
1.42%
1.28%
1.46%
1.49%
1.28%
1.58%
1.26%
1.28%
1.31%
1.37%
1.37%
1.41%
1.53%
1.76%
1.81%
1.79%
1.76%
1.01%
1.25%
1.20%
1.29%
1.54%
0.60%
1.23%
1.26%

18.88%
18.64%
18.64%
18.59%
18.59%
17.62%
17.66%
18.01%
18.11%
18.12%
19.40%
19.16%
18.97%
18.72%
18.65%
19.24%
19.20%
18.91%
18.97%
19.18%
19.15%
19.13%
19.12%
18.71%
18.94%
18.98%
19.17%
18.99%
18.99%
19.15%
19.16%
19.46%
19.44%
19.39%
19.43%
18.61%
18.64%
18.65%
18.74%
19.08%
17.49%
18.29%
18.32%

1.31
1.15
1.15
1.12
1.12
1.51
1.54
1.76
1.87
1.86
1.61
1.33
1.36
1.57
1.22
1.28
1.50
1.41
1.36
1.20
1.37
1.38
1.19
1.51
1.20
1.21
1.23
1.30
1.30
1.33
1.42
1.60
1.64
1.64
1.60
0.98
1.21
1.16
1.23
1.46
0.65
1.26
1.30

328
327
327
329
329
326
324
321
322
321
317
313
321
320
328
317
322
334
332
325
321
315
317
321
325
324
324
328
328
324
317
311
311
313
312
330
325
325
321
324
369
351
356

255



Chapter 6

Table 6.3.d. Daily rate of return from trading straddles on the S&P500 index based on the 85 ARCH

volatility forecasts (11 March 1998 — 2 June 2000).

ARCH Model
Mean

$2.00 filter

Stand.
Dev.

t
ratio

Days Mean

$2.25 filter

Stand.
Dev.

$2 transaction cost

Stand.

t Day
S M Dev.

ratio

$2.75 filter

t
ratio

Days Mean

$3.50 filter

Stand.
Dev.

t
ratio

Days

AR(3)TARCH(1,1)
AR(4)TARCH(1,1)
AR(0)TARCH(1,2)
AR(1)TARCH(1,2)
AR(2)TARCH(1,2)
AR(3)TARCH(1,2)
AR(4)TARCH(1,2)
R(0)TARCH(2,1)

©) 0.77%
(4)

(0)

)

@)

®)

(4)

(0)
R(1)TARCH(2,1)
@)

@)

(4)

(0)

W)

@)

@)

(4)

0.75%
0.67%
0.71%
0.69%
0.56%
0.74%
0.44%
0.42%
0.68%
0.52%
0.35%
0.45%
0.50%
0.63%
0.61%
0.62%

> > >

R(2)TARCH(2,1)
R(3)TARCH(2,1)
AR(4)TARCH(2,1)
AR(0)TARCH(2,2)
AR(1)TARCH(2,2)
AR(2)TARCH(2,2)
AR(3)TARCH(2,2)
AR(4)TARCH(2,2)
AR(O)EGARCH(O,1) 0.38%
AR(1)EGARCH(0,1) 0.31%
AR(2)EGARCH(0,1) 0.33%
AR(3)EGARCH(0,1) 0.31%
AR(4)EGARCH(0,1) 0.31%
AR(O)EGARCH(O,Z) -0.34%
AR(1)EGARCH(0,2) 0.00%
AR(2)EGARCH(0,2) 0.07%
AR(3)EGARCH(0,2) -0.06%
AR(4)EGARCH(0,2) -0.06%
AR(O)EGARCH(1,1 ) 0.40%
AR(1)EGARCH(1,1) 0.97%
AR(2)EGARCH(1,1) 0.85%
)

)

)

)

)

)

)

)

)

)

)

)

>

AR(3)EGARCH(1,1) 0.91%
AR(4)EGARCH(1,1) 0.86%
AR(O EGARCH(1,2) -0.09%

AR(1)EGARCH(1,2) 0.23%
AR(2)EGARCH(1,2) 0.49%
AR(3)EGARCH(1,2) 0.12%
AR(4)EGARCH(1,2) 0.32%
AR(O EGARCH(2,1) 0.20%

AR(1)EGARCH(2,1) 0.88%
AR(2)EGARCH(2,1) 0.85%
AR(3)EGARCH(2,1) 0.92%
AR(4)EGARCH(2,1) 0.95%

18.07%
18.00%
17.63%
17.70%
17.67%
17.92%
17.81%
17.59%
18.04%
18.10%
18.02%
17.84%
17.58%
17.78%
17.75%
17.85%
17.83%
17.75%
18.19%
18.12%
18.07%
18.07%
17.31%
17.59%
17.37%
17.24%
17.24%
17.02%
17.52%
17.39%
17.41%
17.30%
17.48%
18.21%
17.75%
18.23%
18.27%
17.01%
17.48%
17.36%
17.43%
17.48%

0.85
0.83
0.76
0.81

0.78
0.63
0.82
0.49
0.46
0.75
0.57
0.39
0.51

0.56
0.71

0.69
0.70
0.42
0.33
0.35
0.34
0.34
-0.40
0.00
0.08
-0.07
-0.07
0.47
1.09
0.98
1.04
1.00
-0.11
0.25
0.55
0.13
0.35
0.24
1.00
0.98
1.04
1.08

397
400
404
401
403
401
394
397
395
393
393
391
400
400
400
405
404
383
375
378
380
380
415
398
400
409
409
410
390
397
397
401
408
396
395
398
392
413
393
399
393
399

0.83%
0.88%
0.74%
0.75%
0.73%
0.61%
0.76%
0.50%
0.33%
0.73%
0.51%
0.44%
0.53%
0.59%
0.60%
0.62%
0.71%
0.49%
0.51%
0.52%
0.52%
0.52%
-0.08%
0.26%
0.26%
0.05%
0.06%
0.34%
1.01%
0.95%
1.02%
0.90%
-0.11%
0.51%
0.54%
0.41%
0.66%
0.24%
0.94%
0.94%
0.99%
0.99%

18.21%
18.16%
17.76%
17.81%
17.77%
18.02%
17.83%
17.68%
18.01%
18.18%
18.17%
17.97%
17.63%
17.80%
17.86%
17.94%
17.96%
17.86%
18.12%
18.14%
18.14%
18.17%
17.45%
17.48%
17.48%
17.36%
17.36%
17.08%
17.67%
17.43%
17.52%
17.45%
17.60%
18.07%
17.84%
17.86%
17.91%
17.18%
17.53%
17.46%
17.53%
17.55%

0.90
0.95
0.83
0.84
0.82
0.67
0.85
0.55
0.36
0.79
0.55
0.48
0.59
0.66
0.67
0.69
0.79
0.53
0.54
0.55
0.54 365
0.55 364
-0.10 402
0.29 390
0.29 390
0.05 401
0.07 401
0.40 406
1.11 382
1.08 392
1.15 388
1.02 393
-0.12 401
0.56 388
0.59 390
0.45 393
0.73 386
0.28 403
1.06 390
1.07 393
1.12 388
1.12 395

388
391
396
395
398
396
393
391
391
389
386
383
396
397
395
401
397
377
366
365

0.98%
1.00%
0.73%
0.83%
0.84%
0.92%
0.88%
0.48%
0.26%
0.64%
0.62%
0.52%
0.63%
0.69%
0.76%
0.66%
0.69%
0.61%
0.73%
0.73%
0.71%
0.71%
0.18%
0.30%
0.33%
0.19%
0.19%
0.46%
1.18%
1.10%
1.13%
1.20%
0.14%
0.73%
0.68%
0.60%
0.86%
0.45%
0.93%
1.09%
0.96%
1.10%

18.13%
18.19%
17.52%
17.84%
17.81%
18.05%
17.94%
17.30%
18.12%
18.29%
18.12%
18.05%
17.80%
18.06%
18.02%
17.98%
18.01%
18.16%
18.51%
18.49%
18.44%
18.44%
17.51%
17.58%
17.59%
17.55%
17.55%
17.05%
17.94%
17.72%
17.81%
17.74%
17.84%
18.47%
18.01%
18.06%
18.07%
17.13%
17.91%
17.63%
17.77%
17.66%

1.05
1.06
0.82
0.91
0.93
1.00
0.96
0.54
0.28
0.67
0.67
0.56
0.69
0.75
0.83
0.72
0.75
0.64
0.73
0.74
0.73
0.73
0.21
0.34
0.36
0.21
0.21
0.53
1.26
1.20
1.22
1.30
0.15
0.76
0.73
0.65
0.92
0.52
1.00
1.20
1.05
1.22

378
375
386
383
384
383
386
380
378
375
376
374
384
385
386
388
386
357
348
349
351
351
388
376
375
382
382
389
366
375
370
371
385
368
378
380
375
393
371
380
376
378

1.12%
1.05%
0.49%
1.05%
1.07%
0.93%
1.06%
0.32%
0.48%
0.84%
0.72%
0.69%
0.46%
0.83%
1.03%
0.86%
1.12%
0.94%
1.12%
1.12%
1.11%
1.11%
0.51%
0.77%
0.78%
0.72%
0.72%
0.72%
1.50%
1.31%
1.61%
1.69%
0.32%
0.87%
0.84%
0.92%
1.01%
0.70%
1.11%
1.26%
1.17%
1.35%

18.30%
18.41%
17.19%
18.27%
18.34%
18.36%
18.33%
17.18%
18.52%
18.58%
18.50%
18.57%
17.43%
18.46%
18.11%
18.47%
18.40%
18.16%
18.40%
18.40%
18.32%
18.32%
17.68%
18.00%
17.97%
17.91%
17.88%
17.41%
18.05%
17.82%
17.96%
17.95%
17.82%
18.71%
18.34%
18.46%
18.41%
17.44%
18.27%
18.13%
18.12%
18.08%

1.15
1.07
0.55
1.09
1.10
0.96
1.09
0.35
0.49
0.85
0.73
0.69
0.50
0.85
1.08
0.89
1.15
0.94
1.1
1.1
1.1
1.1
0.55
0.81
0.82
0.76
0.76
0.79
1.54
1.39
1.68
1.76
0.34
0.87
0.85
0.94
1.03
0.77
1.14
1.31
1.21
1.41

357
351
370
357
354
360
358
367
360
354
356
344
370
358
365
363
356
334
330
330
333
333
362
351
352
355
356
369
344
354
351
349
367
349
350
353
353
374
354
354
354
356
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Table 6.8. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the SEVar model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Without transaction cost
Without filter

Mean

3.09%
3.13%
3.28%
3.03%
3.04%
3.18%
3.28%
3.32%

Mean

0.14%
-0.02%
0.06%
0.24%
-0.04%
0.16%
0.19%
0.11%

Stand. t
Dev. ratio

18.03% 3.66
18.02% 3.71
18.00% 3.89
18.04% 3.58
18.04% 3.60
18.01% 3.77
18.00% 3.89
17.99% 3.94

$2.00 filter

Stand. t
Dev. ratio

17.35% 0.16
17.62% -0.02
17.86% 0.07
18.00% 0.26
18.00% -0.04
17.65% 0.18
17.35% 0.22
17.79% 0.12

Days

456
456
456
456
456
456
456
456

Days

392
404
394
384
395
400
394
384

Stand.
Dev.

-0.56% 17.68%
-0.52% 17.69%
-0.37% 17.48%
-0.63% 17.66%
-0.61% 17.55%
-0.47% 17.52%
-0.37% 17.49%
-0.34% 17.49%

Mean

t
ratio

-0.68
-0.63
-0.46
-0.76
-0.74
-0.57
-0.45
-0.41

Days

456
456
456
456
456
456
456
456

$2 transaction cost
$1.25 filter

Mean

-0.13%
-0.42%
-0.14%
-0.32%
-0.35%
-0.25%
-0.08%
-0.06%

Stand.
Dev.

17.81%
17.82%
17.69%
18.20%
17.99%
17.97%
17.96%
17.98%

$2 transaction cost

$2.25 filter

Stand.
Dev.

17.42%
17.71%
17.99%
18.16%
17.89%
17.83%
17.52%
17.97%

Mean

0.22%
0.10%
0.20%
0.34%
0.21%
0.24%
0.26%
0.16%

t
ratio

0.25
0.11
0.21
0.36
0.23
0.27
0.30
0.17

Days

387
397
386
376
389
391
385
375

Mean

0.11%
0.12%
0.16%
0.41%
0.41%
0.38%
0.32%
0.29%

t
ratio

-0.14
-0.48
-0.17
-0.36
-0.39
-0.28
-0.09
-0.07

$2.75 filter

Stand.
Dev.

17.33%
17.88%
18.10%
18.34%
18.08%
18.10%
17.72%
18.16%

t
ratio

0.12
0.13
0.17
0.43
0.44
0.41
0.35
0.30

Days

419
423
416
411
416
416
415
415

Days

379
389
374
368
377
378
376
366

Mean

-0.04%
-0.13%
-0.16%
0.05%
-0.20%
0.04%
0.23%
0.18%

Mean

0.56%
0.45%
0.49%
0.78%
0.74%
0.65%
0.56%
0.52%

$1.75 filter

Stand. t
Dev. ratio

17.57% -0.04
17.79% -0.15
17.97% -0.18
18.10% 0.05
18.07% -0.22
17.84% 0.04
17.86% 0.25
18.26% 0.20

$3.50 filter

Stand. t
Dev. ratio

17.59% 0.59
18.23% 0.48
18.32% 0.51
18.69% 0.78
18.50% 0.75
18.51% 0.66
17.98% 0.59
18.58% 0.51

Days

397
409
401
393
404
403
400
392

Days

351
368
351
349
355
356
356
341

Table 6.9. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the AEVar model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=280

Without transaction cost
Without filter

Mean

4.06%
3.21%
2.89%
3.32%
3.14%
3.20%
3.35%
3.23%

Mean

0.48%
0.10%
0.09%
-0.04%
0.10%
0.32%
0.53%
0.35%

Stand. t
Dev. ratio

17.83% 4.86
18.01% 3.81
18.06% 3.42
17.99% 3.95
18.02% 3.72
18.01% 3.79
17.98% 3.98
18.00% 3.83

$2.00 filter

Stand. t
Dev. ratio

16.91% 0.57
17.88% 0.11
17.90% 0.10
17.81%-0.05
18.21% 0.11
18.01% 0.36
17.95% 0.58
17.82% 0.39

Days

Stand.

Mean Dev.

456 0.41% 17.30%
456 -0.44% 17.50%
456 -0.76% 17.57%
456 -0.33% 17.47%
456 -0.51% 17.50%
456 -0.45% 17.63%
456 -0.30% 17.58%
456 -0.42% 17.65%

t
ratio

0.51
-0.54
-0.92
-0.40
-0.62
-0.55
-0.36
-0.51

Days

456
456
456
456
456
456
456
456

$2 transaction cost

Mean

0.44%
-0.36%
-0.39%
-0.19%
-0.05%

0.03%

0.34%

0.16%

$1.25 filter
Stand. t
Dev. ratio

17.23% 0.53
17.79%-0.42
17.88%-0.45
17.69%-0.22
17.93%-0.05
17.76% 0.04
17.91% 0.38
17.66% 0.18

$2 transaction cost

$2.25 filter

Stand.
Dev.

0.48% 16.95%
0.16% 17.96%
0.30% 17.86%
0.20% 17.77%
0.27% 18.12%
0.57% 18.01%
0.80% 17.92%
0.59% 17.76%

Days Mean

406
398
395
389
388
397
389
385

t
ratio

0.57
0.18
0.33
0.22
0.29
0.62
0.87
0.65

Days

404
393
386
380
382
386
379
376

Mean

0.46%
0.33%
0.59%
0.43%
0.48%
0.66%
0.72%
0.68%

$2.75 filter

Stand. t
Dev. ratio

16.97% 0.54
18.06% 0.36
18.12% 0.63
17.79% 0.46
18.16% 0.50
17.94% 0.71
17.77% 0.77
17.95% 0.72

Days

422
425
419
413
411
419
409
411

Days

389
383
369
361
363
373
364
365

Mean

0.28%
-0.21%
-0.12%
-0.24%

0.11%

0.25%

0.33%

0.26%

Mean

0.85%
0.63%
0.76%
0.64%
0.70%
0.99%
0.90%
0.96%

$1.75 filter

Stand. t
Dev. ratio

17.10% 0.33
18.00% -0.23
18.01% -0.13
17.80% -0.28
18.08% 0.12
17.94% 0.28
18.08% 0.36
18.07% 0.28

$3.50 filter
Stand. t
Dev. ratio

17.33% 0.94
18.41% 0.65
18.39% 0.77
18.08% 0.65
18.35% 0.70
18.17% 1.01
18.21% 0.92
18.29% 0.97

Days

410
407
402
402
395
401
395
391

Days

364
363
349
345
339
346
345
346
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Table 6.10. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the SEDev model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Without transaction cost

Mean

3.68%
3.31%
3.03%
3.10%
2.81%
3.18%
3.24%
3.29%

Mean

0.00%
-0.05%
-0.14%
-0.06%

0.00%

0.29%

0.37%

0.33%

Stand. t
Dev. ratio

17.92% 4.39
17.99% 3.93
18.04% 3.59
18.03% 3.67
18.08% 3.32
18.01% 3.77
18.00% 3.85
17.99% 3.90

$2.00 filter

Stand. t
Dev. ratio

16.94% 0.00
17.83%-0.06
17.71%-0.15
17.62% -0.07
17.76% 0.00
17.72% 0.33
17.68% 0.41
17.88% 0.36

$2 transaction cost

$1.25 filter
Stand. t
Dev. ratio

17.35% 0.05
17.68%-0.46
17.64%-0.64
17.61%-0.47
17.96%-0.49
17.96%-0.17
17.87%-0.09
18.01%-0.13

$2.75 filter

Stand. t
Dev. ratio

16.91%-0.03
18.08% 0.23
18.03% 0.16
18.03% 0.52
18.06% 0.50
17.98% 0.86
17.97% 0.75
18.24% 0.61

Without filter
Days Mean Sl:t)aer\‘f" rattio Days Mean
456 0.03% 17.38% 0.04 456 0.04%
456 -0.34% 17.47% -0.42 456 -0.39%
456 -0.62% 17.54% -0.76 456 -0.55%
456 -0.56% 17.51% -0.68 456 -0.40%
456 -0.84% 17.58% -1.03 456 -0.43%
456 -0.47% 17.54% -0.58 456 -0.15%
456 -0.41% 17.50% -0.50 456 -0.08%
456 -0.36% 17.50% -0.44 456 -0.12%
$2 transaction cost
$2.25 filter
Days Mean Séaer\wl(?l. rattio Days Mean
403 0.09% 17.04% 0.11 396 -0.03%
406 0.04% 17.90% 0.04 401 0.21%
395-0.02% 17.82% -0.02 388 0.15%
397 0.04% 17.85% 0.04 386 0.49%
394 0.06% 17.89% 0.07 388 0.47%
396 0.42% 17.90% 0.46 387 0.80%
396 0.48% 17.88% 0.53 386 0.70%
388 0.39% 18.03% 0.42 381 0.58%

Days Mean

421 0.07%
429-0.24%
421-0.32%
421-0.20%
415-0.13%
416 0.15%
418 0.21%
413 0.24%

Days Mean

389
388
376
368
372
375
376
370

0.40%
0.49%
0.41%
0.56%
0.65%
0.93%
0.79%
0.79%

$1.75 filter

Stand. t
Dev. ratio

17.61% 0.08
17.91% -0.27
17.82% -0.36
17.65% -0.23
17.85% -0.15
17.88% 0.17
17.84% 0.24
18.04% 0.26

$3.50 filter

Stand. t
Dev. ratio

17.39% 0.44
18.45% 0.51
18.28% 0.42
18.30% 0.58
18.50% 0.66
18.41% 0.95
18.40% 0.81
18.58% 0.80

Days

408
414
402
408
402
401
401
393

Days

359
367
353
351
353
357
354
348

Table 6.11. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the AEDev model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=280

Without transaction cost

Mean

3.52%
3.66%
2.97%
3.21%
2.94%
3.18%
2.91%
3.29%

Mean

-0.19%
0.21%
-0.17%
-0.28%
-0.15%
0.33%
0.13%
0.19%

Stand. t
Dev. ratio

17.95% 4.18
17.92% 4.36
18.05% 3.52
18.01% 3.81
18.05% 3.48
18.01% 3.76
18.06% 3.44
17.99% 3.90

$2.00 filter

Stand. t
Dev. ratio

17.23%-0.22
17.78% 0.23
18.08%-0.19
18.08% -0.30
18.04%-0.16
18.10% 0.36
18.09% 0.15
17.97% 0.21

$2 transaction cost

$1.25 filter
Stand. t
Dev. ratio

17.55%-0.21
17.61%-0.04
17.80%-0.46
17.70%-0.32
17.79%-0.39
17.85% 0.09
17.77% 0.05
17.63% 0.10

$2.75 filter

Stand. t
Dev. ratio

17.13%-0.18
17.93% 0.51
17.98% 0.10
18.04% 0.13
17.95% 0.36
17.96% 0.74
18.02% 0.44
17.96% 0.75

Without filter
Days Mean Sézr\\/(-j. rattio Days Mean
456 -0.14% 17.42% -0.17 456 -0.18%
456 0.00% 17.38% 0.00 456 -0.04%
456 -0.68% 17.55% -0.83 456 -0.40%
456 -0.44% 17.50% -0.54 456 -0.28%
456 -0.71% 17.56% -0.86 456 -0.34%
456 -0.48% 17.64% -0.58 456 0.08%
456 -0.75% 17.69% -0.90 456 0.04%
456 -0.36% 17.52% -0.44 456 0.08%
$2 transaction cost
$2.25 filter
Days Mean Sézr\‘f' rattio Days Mean
408-0.15% 17.24% -0.17 406 -0.16%
399 0.27% 17.84% 0.30 395 0.46%
396 0.08% 18.04% 0.09 386 0.10%
391-0.05% 18.02% -0.06 383 0.13%
393 0.04% 17.97% 0.05 386 0.34%
394 0.60% 18.06% 0.65 385 0.68%
391 0.41%18.09% 0.44 380 0.41%
390 0.50% 17.88% 0.54 380 0.70%

Days Mean

423-0.37%
421-0.02%
418-0.24%
415-0.36%
418-0.10%
415 0.30%
414 0.10%
414 0.15%

Days Mean

395
385
372
365
367
373
366
371

0.10%
0.76%
0.49%
0.57%
0.66%
1.02%
0.76%
0.99%

$1.75 filter

Stand. t
Dev. ratio

17.42% -0.43
17.90% -0.02
17.93% -0.27
17.86% -0.40
17.95% -0.11
18.00% 0.34
18.00% 0.11
17.92% 0.17

$3.50 filter
Stand. t
Dev. ratio

17.62% 0.11
18.35% 0.79
18.01% 0.51
18.09% 0.59
18.07% 0.68
18.17% 1.06
18.08% 0.78
18.00% 1.04

Days

411
406
403
402
399
399
396
393

Days

368
362
355
347
350
352
351
357
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Table 6.12. Daily rate of return from trading straddles on the S&P500 index based on the ARCH

models selected by the HASEVar model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Without transaction cost

Mean

4.04%
3.95%
3.67%
3.29%
3.37%
3.53%
3.38%
3.35%

Mean

1.04%
0.86%
0.79%
0.27%
0.34%
0.12%
0.05%
0.03%

Stand. t
Dev. ratio

17.84% 4.84
17.86% 4.72
17.92% 4.37
17.99% 3.90
17.98% 4.01
17.95% 4.20
17.98% 4.02
17.98% 3.98

$2.00 filter

Stand. t
Dev. ratio

18.13% 1.13
18.16% 0.94
18.26% 0.85
18.54% 0.29
18.32% 0.37
17.80% 0.13
18.04% 0.06
18.08% 0.03

$2 transaction cost

Without filter $1.25 filter

Days Mean o o Days Mean U
456 0.39% 17.47% 0.47 456 0.68% 17.96% 0.78
456 0.29% 17.48% 0.36 456 0.64% 18.02% 0.72
456 0.01% 17.59% 0.02 456 0.51% 18.06% 0.58
456 -0.37% 17.67% -0.44 456 0.17% 18.15% 0.19
456 -0.28% 17.51% -0.34 456 0.14% 17.96% 0.15
456 -0.12% 17.44% -0.15 456 0.28% 17.96% 0.32
456 -0.27% 17.48% -0.33 456 0.04% 18.05% 0.05
456 -0.30% 17.49% -0.37 456 0.07% 18.09% 0.08

$2 transaction cost
$2.25 filter $2.75 filter

Days Mean ot o Days Mean I
392 1.08% 18.33% 1.15 383 1.15% 18.49% 1.19
392 0.87% 18.30% 0.94 386 0.97% 18.35% 1.02
390 0.82% 18.47% 0.87 381 1.12% 18.60% 1.16
392 0.49% 18.48% 0.52 383 0.73% 18.59% 0.76
388 0.42% 18.49% 0.44 379 0.58% 18.54% 0.60
390 0.16% 17.92% 0.18 383 0.37% 18.02% 0.40
386 0.04% 18.23% 0.05 378 0.32% 18.45% 0.33
386 0.02% 18.27% 0.02 378 0.24% 18.44% 0.25

Days Mean

419
416
417
416
412
412
410
408

1.07%
0.94%
0.66%
0.28%
0.34%
0.34%
0.26%
0.22%

Days Mean

367
372
370
372
372
373
363
365

1.45%
1.22%
1.41%
1.22%
1.00%
0.74%
0.52%
0.45%

$1.75 filter

Stand. t
Dev. ratio

18.00% 1.19
18.05% 1.04
18.34% 0.72
18.42% 0.31
18.13% 0.37
17.92% 0.38
18.17% 0.29
18.20% 0.25

$3.50 filter

Stand. t
Dev. ratio

18.47% 1.45
18.72% 1.21
18.65% 1.41
18.25% 1.27
18.17% 1.04
18.08% 0.78
18.40% 0.53
18.37% 0.46

Days

400
399
400
398
397
402
398
398

Days

341
347
349
360
354
357
347
350

Table 6.13. Daily rate of return from trading straddles on the S&P500 index based on the ARCH

models selected by the HAAEVar model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=280

Without transaction cost

Mean

3.48%
4.14%
3.62%
3.56%
3.80%
3.80%
3.70%
3.39%

Mean

0.36%
0.98%
0.60%
0.80%
0.63%
0.46%
0.65%
0.38%

Stand. t
Dev. ratio

17.96% 4.14
17.82% 4.97
17.93% 4.31
17.94% 4.23
17.89% 4.54
17.89% 4.54
17.91% 4.41
17.97% 4.03

$2.00 filter

Stand. t
Dev. ratio

18.21% 0.39
18.31% 1.06
18.32% 0.65
18.23% 0.85
18.47% 0.66
18.28% 0.49
18.47% 0.69
18.61% 0.40

$2 transaction cost

Without filter $1.25 filter
Days Mean ot o Days Mean UL
456-0.17% 17.63% -0.21 456 0.23% 17.95% 0.26
456 0.49% 17.45% 0.60 456 0.81% 17.93% 0.92
456 -0.03% 17.60% -0.04 456 0.34% 18.11% 0.38
456 -0.09% 17.58% -0.11 456 0.39% 18.20% 0.43
456 0.15% 17.40% 0.18 456 0.60% 17.86% 0.68
456 0.15% 17.39% 0.18 456 0.36% 17.93% 0.41
456 0.04% 17.42% 0.05 456 0.48% 17.95% 0.54
456-0.26% 17.49% -0.32 456 0.21% 18.07% 0.23
$2 transaction cost
$2.25 filter $2.75 filter
404 0.50% 18.11% 0.55 397 0.44% 18.22% 0.47
393 1.17%18.24% 1.25 384 1.23% 18.18% 1.30
388 0.85% 18.34% 0.90 375 1.08% 18.54% 1.11
380 0.84% 18.42% 0.88 372 1.05% 18.60% 1.07
382 0.69% 18.61% 0.72 375 0.85% 18.82% 0.85
386 0.57% 18.46% 0.60 377 0.91% 18.84% 0.91
384 0.72%18.63% 0.75 377 1.04% 19.10% 1.02
382 0.54%18.57% 0.56 374 0.79% 18.96% 0.78

Days Mean

422
415
413
410
412
413
411
408

0.43%
1.02%
0.45%
0.47%
0.59%
0.42%
0.55%
0.29%

Days Mean

378
370
363
360
354
355
352
353

0.90%
1.59%
1.50%
1.66%
1.19%
1.19%
1.28%
1.02%

$1.75 filter

Stand. t
Dev. ratio

18.17% 0.47
18.21% 1.12
18.36% 0.49
18.50% 0.50
18.16% 0.65
18.09% 0.46
18.19% 0.61
18.37% 0.32

$3.50 filter
Stand. t
Dev. ratio

18.45% 0.91
18.02% 1.64
18.44% 1.51
18.74% 1.63
18.70% 1.17
18.78% 1.16
19.06% 1.23
18.94% 0.99

Days

407
398
398
392
396
396
398
394

Days

346
345
343
337
337
339
337
337
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Table 6.14. Daily rate of return from trading straddles on the S&P500 index based on the ARCH

models selected by the HASEDev model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Without transaction cost

Mean

3.34%
3.76%
3.92%
3.55%
3.39%
2.83%
2.78%
2.92%

Mean

0.19%
0.56%
0.66%
0.22%
0.19%
-0.33%
-0.42%
-0.18%

Stand. t
Dev. ratio

17.98% 3.97
17.90% 4.49
17.87% 4.69
17.94% 4.22
17.97% 4.03
18.07% 3.34
18.08% 3.29
18.06% 3.46

$2.00 filter

Stand. t
Dev. ratio

17.48% 0.21
18.27% 0.60
18.13% 0.73
18.41% 0.23
18.31% 0.20
18.45% -0.36
18.42% -0.46
18.25% -0.20

Without filter

Stand.
Dev.

456-0.31% 17.71%
456 0.11% 17.56%
456 0.27% 17.35%
456 -0.10% 17.44%
456 -0.26% 17.48%
456 -0.83% 17.58%
456 -0.87% 17.59%
456 -0.73% 17.56%

Days Mean

t
ratio

-0.37
0.13
0.33

-0.13

-0.32

-1.00

-1.05

-0.88

Days

456
456
456
456
456
456
456
456

$2 transaction cost

$2 transaction cost

$2.25 filter

Stand.
Dev.

394 0.23% 17.56%
391 0.61% 18.41%
398 0.68% 18.27%
389 0.43% 18.39%
392 0.37% 18.20%
390-0.09% 18.40%
393-0.40% 18.62%
390-0.18% 18.36%

Days Mean

t
ratio

0.26
0.65
0.74
0.45
0.40
-0.09
-0.42
-0.19

Days

389
384
392
380
385
381
384
385

$1.25 filter
Mean Sl:t)aer:;:j. rattio Days Mean
0.10% 18.00% 0.12 417 0.18%
0.35% 18.15% 0.39 414 0.66%
0.58% 17.85% 0.66 415 0.67%
0.14% 18.03% 0.16 410 0.26%
0.03% 17.96% 0.03 415 0.19%
-0.55% 18.07%-0.63  416-0.33%
-0.52% 18.01%-0.59  417-0.41%
-0.53% 18.06%-0.60 414-0.24%
$2.75 filter
Mean Sée;r:/(:.i. rattio Days Mean
0.32% 17.76% 0.35 378 0.59%
0.88% 18.53% 0.92 373 1.17%
0.85% 18.40% 0.90 375 1.13%
0.68% 18.52% 0.70 370 1.12%
0.59% 18.40% 0.62 372 1.06%
0.13% 18.68% 0.13 364 0.48%
-0.11% 19.04%-0.11 361 0.10%
0.08% 18.58% 0.08 369 0.29%

$1.75 filter

Stand. t
Dev. ratio

17.65% 0.20
18.18% 0.73
18.01% 0.74
18.29% 0.28
18.14% 0.20
18.23% -0.36
18.17% -0.45
18.05% -0.27

$3.50 filter

Stand. t
Dev. ratio

18.11% 0.62
18.68% 1.17
18.41% 1.15
18.60% 1.13
18.56% 1.07
18.68% 0.48
18.96% 0.10
18.52% 0.30

Days

401
397
404
395
400
401
406
401

Days

353
348
353
353
352
352
347
354

Table 6.15. Daily rate of return from trading straddles on the S&P500 index based on the ARCH

models selected by the HAAEDev model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=280

Without transaction cost

Mean

2.69%
4.02%
4.01%
3.47%
2.84%
2.98%
2.84%
2.88%

Mean

-0.57%
0.49%
0.81%
0.23%

-0.58%

-0.46%

-0.52%

-0.51%

Stand. t
Dev. ratio

18.09% 3.18
17.84% 4.81
17.85% 4.79
17.96% 4.13
18.07% 3.36
18.05% 3.52
18.07% 3.36
18.06% 3.41

$2.00 filter

Stand. t
Dev. ratio

18.33% -0.62
17.81% 0.55
17.86% 0.91
18.16% 0.25
18.26% -0.63
18.33% -0.50
18.40% -0.56
18.47% -0.55

$2 transaction cost

Without filter $1.25 filter

Days Mean Sézr\\/(-j. rattio Days Mean Sl:t)aer:/(-j_ rattio Days Mean
456 -0.96% 17.80% -1.15 456 -0.71% 18.18%-0.80 421-0.67%
456 0.37% 17.36% 0.45 456 0.32% 17.74% 0.37 415 0.33%
456 0.35% 17.32% 0.44 456 0.62% 17.78% 0.70 415 0.60%
456 -0.18% 17.45% -0.22 456 -0.03% 17.89%-0.03 411 0.07%
456 -0.81% 17.57% -0.99 456 -0.60% 17.88%-0.68 418-0.60%
456 -0.67% 17.54% -0.82 456 -0.53% 17.94%-0.60 415-0.50%
456 -0.81% 17.57% -0.98 456 -0.59% 18.04%-0.67 417-0.57%
456 -0.77% 17.56% -0.94 456 -0.48% 18.10%-0.54 414-0.49%

$2 transaction cost
$2.25 filter $2.75 filter

Days Mean Sézr\‘f' rattio Days Mean Sl:t)aer:f_ rattio Days Mean
398-0.35% 18.16% -0.38 393 -0.36% 18.32%-0.38  380-0.04%
399 0.52% 17.96% 0.57 391 0.74% 18.02% 0.80 383 1.16%
399 0.88% 17.94% 0.97 394 1.14% 18.08% 1.23 382 1.38%
386 0.40% 18.14% 043 377 0.70% 18.26% 0.73 366 0.84%
400-0.43% 18.20% -0.46 393 -0.14% 18.54%-0.15 372 0.31%
396-0.27% 18.27% -0.29 389 0.11% 18.61% 0.11 367 0.43%
399-0.36% 18.37% -0.38 391 0.08% 18.76% 0.09 367 0.27%
395-0.35% 18.37% -0.38 390 0.05% 18.72% 0.05 368 0.21%

$1.75 filter

Stand. t
Dev. ratio

18.44% -0.73
17.92% 0.38
17.92% 0.67
18.15% 0.07
18.13% -0.67
18.20% -0.55
18.28% -0.63
18.34% -0.54

$3.50 filter
Stand. t
Dev. ratio

18.87% -0.04
18.11% 1.22
18.40% 1.43
18.63% 0.85
18.84% 0.31
18.82% 0.43
18.87% 0.27
18.78% 0.21

Days

406
406
408
398
406
402
405
402

Days

348
363
365
350
347
347
346
349
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Table 6.16. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the LEVar model selection method (11 March 1998 — 2 June 2000).

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Sample size

T=10
T=20
T=30
T=40
T=50
T=60
T=70
T=80

Without transaction cost

$2 transaction cost

Without filter $1.25 filter
Mean Dot rago Dave Mean U i Days Mean S i Days Mean
3.52% 17.95% 4.18 456-0.14% 17.41% -0.17 456 -0.42% 17.62%-0.49 421-0.40%
3.32% 17.99% 3.94 456-0.33% 17.47% -0.41 456 -0.34% 17.78%-0.39 419-0.35%
2.81% 18.07% 3.32 456-0.84% 17.57% -1.02 456 -0.69% 17.84%-0.79  423-0.35%
3.31% 17.99% 3.93 456-0.34% 17.48% -0.42 456 -0.06% 17.87%-0.07 418 0.06%
3.01% 18.04% 3.56 456-0.64% 17.53% -0.78 456 -0.28% 17.98%-0.32 412 0.08%
3.29% 17.99% 3.90 456-0.37%17.51% -0.45 456 -0.24% 17.80%-0.27 419 0.18%
3.18% 18.01% 3.78 456-0.47% 17.55% -0.57 456 -0.23% 17.72%-0.27 415 0.17%
3.07% 18.03% 3.63 456-0.58% 17.55% -0.71 456 -0.18% 17.73%-0.20 413 0.23%
$2 transaction cost
$2.00 filter $2.25 filter $2.75 filter
-0.44% 17.34%-0.51 403-0.34% 17.36% -0.39 397 -0.29% 17.17%-0.33 388-0.05%
-0.31% 18.09%-0.34 403-0.19% 18.24% -0.20 394 -0.26% 18.19%-0.28 380 0.15%
-0.32% 17.94%-0.35 399-0.24% 18.01% -0.26 394 -0.04% 17.81%-0.04 378 0.38%
0.12% 18.02% 0.13 393 0.28% 18.20% 0.30 382 0.46% 18.22% 0.49 363 0.93%
0.14% 18.08% 0.15 386 0.17% 18.22% 0.18 380 0.44% 18.18% 0.46 363 0.78%
0.23% 17.86% 0.26 394 0.28% 18.01% 0.30 387 0.40% 17.91% 043 372 0.79%
0.21% 17.62% 0.24 394 0.30% 17.82% 0.32 384 0.55% 18.02% 0.58 369 0.85%
0.23% 17.71% 0.25 390 0.31%17.94% 0.33 379 0.60% 18.12% 0.63 366 0.96%

$1.75 filter

Stand. t
Dev. ratio

17.87% -0.45
18.00% -0.39
17.80% -0.39
17.81% 0.07
17.99% 0.09
17.76% 0.20
17.61% 0.19
17.69% 0.26

$3.50 filter

Stand. t
Dev. ratio

17.71% -0.06
18.33% 0.15
17.93% 0.40
18.35% 0.94
18.35% 0.79
18.14% 0.82
18.20% 0.87
18.25% 0.98

Days

407
408
406
404
392
401
397
391

Days

361
358
357
342
344
350
345
347

Table 6.17. Daily rate of return from trading straddles on the S&P500 index based on the ARCH
models selected by the AIC and SBC model selection methods (11 March 1998 — 2 June 2000).

Sample size

AIC
SBC

Sample size

AIC
SBC

Without transaction cost

$2 transaction cost

Without filter $1.25 filter

Stand. T Stand. T Stand. T
Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days
4.05% 17.84% 4.85 456 0.40%17.31% 0.49 456 0.66% 17.69% 0.76 414
3.74% 17.90% 4.47 456 0.09% 17.37% 0.11 456 0.52% 17.82% 0.59 412

$2 transaction cost

$2.00 filter $2.25 filter $2.75 filter

Stand. T Stand. T Stand. T
Mean Dev. ratio Days Mean Dev. ratio Days Mean Dev. ratio Days
0.90% 17.86% 1.00 394 0.96% 18.00% 1.05 386 1.03% 17.95% 1.10 366
0.88% 18.23% 0.94 385 0.95%18.37% 1.01 378 0.98% 18.25% 1.03 364

Mean

0.78%
0.65%

Mean

1.21%
1.41%

$1.75 filter

Stand. t
Dev. ratio

17.75% 0.88
18.15% 0.71

$3.50 filter

Stand. t
Dev. ratio

18.22% 1.21
18.49% 1.40

Days

401
394

Days

333
338
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Appendix 6.1.
Construction of the Black and Scholes Option Pricing

Formula

The lines following present the Black and Scholes approach in constructing
their option pricing formula. Suppose we have an option whose value, C(S,t), depends
only on the stock price, S, and time, t. It is not necessary at this stage to determine
whether C is a call or put. Let’s create a riskless hedge portfolio, consisting of a long
position in the stock (buy the stock) and short position in the option (sell the option)
under the assumption investors have full access to information, are borrowing and
lending at the continuously compounded risk free interest rate and are trading
continuously in a frictionless capital market with no transaction costs, no taxes, no
short sales constraints. Moreover, we assume that the stock price follows a geometric

Brownian motion:

dS(t)= #S(t)dt + oS(t)dB(t),
where u is the expected instantaneous rate of return on the underlying asset, o is the
instantaneous variance of the rate of return and B(t) is a standard Brownian motion. If

we write as Qg the number of stocks and Q. the number of options then the value V|,

of that riskless hedge portfolio and its changes dV,, in short intervals will be

determined as:

V, =Q;S+Q.C
dV, =Q,dS +Q.dC

If we assume that the short position (writing call options) is changed continuously, we

can use Ito’s Lemma to expand dC = C(S +dS,t +dt)—C(S,t):

2
dc(s;):%ds JLg Loc

> o’S?dt.
ot 2 0S

We determine Q; and Q. such as the risk factor is eliminated:

6C
QsdS +Qc —=dS =0.

We find out that the ratio of stocks to options must be instantaneously adjusted at the
rate of - 9C/oS,
Q. 08

Q  oC’
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Normalizing Q4 =1, the above equation shows that for each stock purchased we have

to write (negative sing) 0C/0S options on it. Moreover, since the return on the equity on
the hedge portfolio is certain, it must be equal to the risk free rate:

Ve _ r.dt.

H

ot 2 0S?

Thus, dV,, = ——

2
6s(oC 4, 10°C
oC

azSzdtj and solving for 6C/dt we reach:

2
o[-
Combining V,, =S —C(1/(6C/6S)) with the above equation and rearranging, we reach
to the following partial differential equation for the value of the option:
2
1yag2@C g€ €
2 0S oS oT

which is uniquely solved subject to a set of boundary conditions.

r,C=0,

Having derived the Black and Scholes equation for the value of an option, we

must next consider the boundary conditions yielding a unique solution to the partial
differential equation. First, we are dealing with pricing a European call, C(S,t), with
exercise price K and expiry date T . At maturity day the value of the call is known with
certainty and is the payoff, C(S(T),T)=max[0,S(T)—K]. Moreover, if S=0 then the
call option is worthless even if there is a long time to expiry, C(O,t)= 0. Finally, as the

stock price increases without bound, it becomes even more likely that the option will be

exercised and the magnitude of the exercise price becomes less and less important.
Thus, as S — o the value of the option become that of the asset, C(S,t)~S as
S > w.

The boundary conditions to price a European put, denoted by P(S,t), with
exercise price K and expiry date T, claim that at maturity day the value of the put is
known with certainty and is the payoff, P(S(T),T)=max[0,K —S(T)]. If the stock price
is zero the put price is the present value of the exercise price received at maturity day:

P(O,t):exp(— r (T—t))K. Finally, as the asset price increases without bound the

option is unlikely to be exercised: P(S,t)—>0 as S — .

The unique solution of the partial differential equation, subject to the boundary

conditions, yields the Black and Scholes Option Pricing Formula.
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)=S(EN(d,)-Ke ™" "IN(d,)

t)=Ke"""IN(-d,)-S(t)N(-d,)

(S0 ol s el
oJT -t

d,=d, —oT -t

where N(.) is the standard normal cumulative distribution function and (T —t) is the

time to maturity of the option.
Merton (1973b) extended the Black & Scholes model to allow for dividend yield.
The model can be used to price European call and put options on a stock or stock

index paying a known dividend yield equal to y. Suppose that in time dt the
underlying asset pays a dividend ySdt . The asset price should fall by the amount of the
dividend payment, thus the asset price distribution is:

dS(t)=(z—y)S(t)dt + oS(t)dB(t).
Proceeding exactly as before we reach to a partial differential equation of the form:

2
lazszaf+(f N o,
20 7 68 os ot

which is uniquely solved subject to the same set of boundary conditions, except from

the value of the option when the asset price increases without bound. As S — « the
value of the call equals to the price of the asset without its dividend:
C(S,t)~ Sexp(— (T —t)). Adding a constant dividend yield the option pricing formula
is:
= S(t)e7™IN(d,) - Ke " "IN(d,)

- ke TIN(-d,)-S(te TN (-d)

ln(s() j r, — }/+/O'XT—t ,

oNT —t

d,=d,—oyT -t

Note that in order to derive the option pricing formula we do assume nothing

about investors’ preferences. Both an economy consisting of risk-neutral investors and
an economy consisting of risk-averse investors must yield the same price for the
derivative security. Cox and Ross (1976) assume a risk neutral economy and define
the price of the option as the expected value of its payoff discounted at the risk free

rate:

Cc(S(T)t)=e" " VE(max|0,S(T)- K] 1,).
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The expectation is evaluated conditional to the information available at time t. The
§(T) denotes the terminal stock price adjusted for risk neutrality. The procedure is

applied to solve the conditional expectation is called risk-neutral pricing method and the
solution yields to the Black and Scholes formula.

Cox et al. (1979) and Rendleman and Bartter (1979) independently derive the
Binomial option pricing formula. They assume that the stock price follows a
multiplicative binomial process over discrete period. At the limit, a binomial tree is
equivalent to the continuous time Black and Scholes formula for pricing European
options. The Binomial method provides solutions not only for a closed form European
option pricing model but also for the more difficult American option problem where
numerical solutions must be employed. To price European call and put options with 7

days to maturity, the model is expressed as:

=3

|

)¢ 3y - e )

[

P(t)=e " Y (LJp‘(I— p) (K —su'd™)
~\il(n—i)
The stock price can either increase by a fixed amount u with a probability p, or
decrease by a fixed amount d with probability 1— p. The number of time steps is n
and a is the smallest nonnegative integer greater than ln(K/Sd")/ln(u/d). The stock
price at each node is set equal to Su'd’™ for i=1,..., j. The upward and downward
jump size that the stock can take place at each time step Ar:r/n is given by
u =exp(0' Az‘) and d =exp(—0' Az‘) respectively, where n is the number of time
steps. The probability of the stock price increasing at the next time step is

p= ((exp(rf —y)Ar)— d )/(u - d) and the probability of going downis 1—p.
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Appendix 6.2.

Options Sensitivities

Delta, Lambda, Gamma, Theta, Vega and Rho comprise the pricing sensitivities
and represent the key relationships between the individual characteristics of the option
and the option price. The option sensitivities are the partial derivatives of the BS option
price in relation to each individual factor that affects the price of the option. In the
formulas following we omit the subscript symbol indicates the time, t, for notational
simplicity.

Delta is the change in the option price for a given change in the stock price, that is,

the hedge ratio.

oC .
Acar :a_S:e a N(d1)>0

PUT = Z_: = e‘”(N(dl)—l)< 0
For example, a trader who buys one call option with A=0.6, and sells a different call
option with A=0.4, has a net A=0.6-0.4=0.2. Thus, a $1 change in the stock price
creates a +$0.2 increase in the combined option position.
Lambda or Elasticity measures the percentage change in the option price for a

given percentage change in the stock price.

oC S e S
ACALL :gaze 4 N(d1)6>1
oP S o S
PUT :8_5526 7 (N(dl)_1)6<0

A Lambda of 5 means that a 1% increase in the price of the stock causes a 5%
increase in the price of the option. Leverage is an important characteristic of options
that attracts speculators.

Rho measures the change in the option price for a given change in the risk free

interest rate.

oC
PCALLz—aT:zKe N(d,)>0
f
oP —ryr
f

Option traders have only a minor interest in Pho, as an increase in risk free rate have

only a minimal effect on the value of an option.
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Theta is the change in the option price for a given a change in the time, until
option expiration. As time to maturity decreases, it is normal to express the Theta as

minus the partial derivative with respect to time.

aC Se—(}/Ter]Z/Z)O_ e rr
®CALL:_§:_—2\/2_M +78e7"N(d,)-r, Ke ""N(d,)
o seldidy
®PUT:_E:_W_7/S€ "N(-d,)+rKe""N(-d,)

Gamma measures the change in the delta for a given change in the stock price.

Gamma is identical for call and put options.

2

(8
0°C P e
Leawpur = 252 = 232 = SU\/Zﬂ'T

Gamma is one measure of the effect of instability on the option position (the other is

>0

Vega). It shows the risk inherent in Delta. If Gamma is small, Delta is not sensitive to
changes in the stock price. If Gamma is large, Delta is sensitive to stock price changes.
If Gamma is 0.5 and the current Delta is 0, then an increase in the stock price of $1
causes the Delta to increase from 0 to 0.5. Now, the new Delta means that an increase
in the stock price of $1 will now increase the option price by $0.5.

Vega is the change in the option price for a given change in the volatility of the
stock. Vega is equal for call and put options.

oC op seledanfy
Yowen =5 50

If V=18, then an increase in the annual standard deviation of the stock of 1% causes

>0

the option price to increase by $18. Traders often attempt to find out which options are
cheaper or more expensive in terms of volatility than the market believes. Moreover, a
relatively small change in the annual volatility of returns causes a relatively large
change in the option price. Volatility is the only factor in BS formula that is not directly
observable, so the traders forecast the future volatility to value options. Therefore,
changes in implied volatility have a major impact on option prices. Strategies with
positive Vega (buy an option) are profit when volatility increases and strategies with
negative Vega (sell an option) are profit when volatility is stable or decreases. Both
Gamma and Vega are dealing with volatility of the underlying asset, but they have a
main difference. Vega indicates the sensitivity of our position to a change in the implied
volatility of the stock. On the other hand, Gamma indicates the effect of the current
volatility on the option price as the stock price changes.

Consider the example of computing the theoretical option prices in section 6.2.3 of the

6™ chapter. The option sensitivities for the call and put options are the following:
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Price Delta Lambda Rho Theta Gamma Vega
Call 1,867 0,337 10,833 4,591 -6,981 0,040 10,873
Put 6,326 -0,650 -6,169 -11,337 | -4,847 0,040 10,873
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Appendix 8

Figures 8.1-8.8. The Cumulative Density Function of
the Minimum Component of a Tri-Variate Gamma

Vector

Tables 8.3-8.20. The Probability (I-p) that the

Minimum X, of a Trivariate Gamma Vector is Less

than or Equal to o, for 22w,_,250, 5>2a2>50
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Figure 8.1. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100=a>0, and p,=5%, p;=30%

and p, ; = 60%, the non-diagonal elements of C,,;.

Figure 8.2. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100=za>0, and p,=5%, p;=60%

and p, ; = 95%, the non-diagonal elements of C,,;.
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Figure 8.3. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 30%, Pis = 30%

and p, ; = 30%, the non-diagonal elements of C,,,.

g
8
5
%
s
0

o
d
i
Y
o
4
¥

7
"
S
“‘\“
(55
A
5
0
5
i

Figure 8.4. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 30%, Pis = 60%

and p, ; = 95%, the non-diagonal elements of C,,,.

2 3
Fx(l)(X; a>C123)= 3Fy, (X)_ZZ Fy, x, (X, X)+ Fy, %, (X, X, X)
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0.5
0.25
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Figure 8.5. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 60%, Pz = 60%

and p, ; = 60%, the non-diagonal elements of C,,;.

Figure 8.6. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 60%,, Pis = 60%

and p, ; = 95%, the non-diagonal elements of C,,,.

2 3
Fx(l)(X; a>C123)= 3Fy, (X)_ZZ Fy, x, (X, X)+ Fy, %, (X, X, X)
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Figure 8.7. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 60%, Pis = 95%

and p, ; =95%, the non-diagonal elements of C,,;.

Figure 8.8. The cumulative density function of the minimum component of a tri-variate

gamma vector, for 60>x>0, 100>a>0, and Pia = 95%, Pis = 95%

and p, ; = 95%, the non-diagonal elements of C,,,.

2 3
Fx(l)(X; a>C123)= 3Fy, (X)_ZZ Fy, x, (X, X)+ Fy, %, (X, X, X)
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Table 8.3 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to o, , for 2>, , 250, 52a=>50, and p,, =5%,
P15 =35% and p,; = 5%, the non-diagonal elements of C,,,.

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

o_p, 5 10 15 20 25 30 35 40 45 50

2 0.1497 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7508 0.0242 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9766 0.2311 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9990 0.6314 0.0509 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [1.0000 0.9034 0.2299 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9856 0.5394 0.0625 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9987 0.8137 0.2123 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000
16 [ 1.0000 0.9999 0.9499 0.4637 0.0654 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 1.0000 0.9908 0.7236 0.1910 0.0177 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9988 0.8954 0.4001 0.0640 0.0045 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9999 0.9710 0.6389 0.1699 0.0190 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 1.0000 0.9940 0.8293 0.3460 0.0604 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9991 0.9375 0.5618 0.1502 0.0192 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9999 0.9822 0.7580 0.2998 0.0559 0.0056 0.0003
30 |1.0000 1.0000 1.0000 1.0000 0.9960 0.8918 0.4927 0.1324 0.0187 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9993 0.9610 0.6860 0.2601 0.0510 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9887 0.8371 0.4314 0.1164 0.0178
36 | 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 0.9298 0.6163 0.2259 0.0461
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9750 0.7769 0.3774 0.1023
40 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9926 0.8895 0.5506 0.1964
42 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9537 0.7142 0.3299
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9836 0.8419 0.4898
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9951 0.9245 0.6515
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9690 0.7891
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9890 0.8880
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Table 8.4 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, for 2>®, , 250, 522250, and p,, =5%,
P13 =5% and p, ; =30%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1491 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7438 0.0242 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9733 0.2296 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9986 0.6250 0.0507 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [1.0000 0.8971 0.2283 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9832 0.5338 0.0623 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9982 0.8063 0.2108 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000
16 [ 1.0000 0.9999 0.9452 0.4590 0.0652 0.0034 0.0001 0.0000 0.0000 0.0000
18 |[1.0000 1.0000 0.9891 0.7162 0.1897 0.0177 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9984 0.8889 0.3962 0.0638 0.0045 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9998 0.9675 0.6321 0.1688 0.0189 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 1.0000 0.9928 0.8219 0.3428 0.0602 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9987 0.9322 0.5557 0.1493 0.0191 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9998 0.9796 0.7504 0.2972 0.0557 0.0056 0.0003
30 |1.0000 1.0000 1.0000 1.0000 0.9951 0.8852 0.4875 0.1316 0.0187 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9990 0.9569 0.6787 0.2579 0.0508 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9998 0.9867 0.8297 0.4270 0.1158 0.0178
36 | 1.0000 1.0000 1.0000 1.0000 1.0000 0.9966 0.9243 0.6096 0.2242 0.0460
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9718 0.7692 0.3736 0.1018
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9912 0.8829 0.5446 0.1950
42 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9492 0.7067 0.3268
44 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9811 0.8346 0.4845
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9940 0.9188 0.6444
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9654 0.7815
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9872 0.8813

275



Chapter 8

Table 8.5 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to o, for 22> O, 2 50, 52a=>50, and Pis =5%,
P15 =35% and p,; = 60%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1461 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7199 0.0240 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9631 0.2227 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9972 0.6024 0.0500 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9999 0.8771 0.2211 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9756 0.5137 0.0612 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9966 0.7823 0.2042 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9997 0.9301 0.4415 0.0640 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 1.0000 0.9835 0.6916 0.1839 0.0175 0.0007 0.0000 0.0000 0.0000
20 |1.0000 1.0000 0.9970 0.8683 0.3812 0.0626 0.0044 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9996 0.9562 0.6087 0.1638 0.0187 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9999 0.9885 0.7981 0.3300 0.0591 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9976 0.9155 0.5344 0.1450 0.0189 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9996 0.9711 0.7256 0.2863 0.0547 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9999 0.9919 0.8642 0.4685 0.1280 0.0185 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9981 0.9437 0.6543 0.2488 0.0499 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9996 0.9803 0.8061 0.4104 0.1127 0.0176
36 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9942 0.9067 0.5866 0.2165 0.0452
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9615 0.7445 0.3593 0.0992
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9863 0.8618 0.5234 0.1886
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9958 0.9348 0.6819 0.3145
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9731 0.8111 0.4655
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9903 0.9006 0.6205
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9969 0.9538 0.7568
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9991 0.9810 0.8601
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Table 8.6 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, for 2>®, , 250, 522250, and p,, =5%,
P13 =5% and p,; =95%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1317 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6599 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9395 0.1943 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9936 0.5434 0.0456 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9995 0.8320 0.1922 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9569 0.4584 0.0550 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9924 0.7275 0.1773 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9990 0.8948 0.3908 0.0572 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9999 0.9692 0.6338 0.1596 0.0164 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9932 0.8208 0.3353 0.0558 0.0043 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9987 0.9290 0.5514 0.1422 0.0175 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9998 0.9777 0.7437 0.2889 0.0526 0.0050 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9943 0.8761 0.4796 0.1260 0.0176 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9987 0.9503 0.6681 0.2497 0.0488 0.0054 0.0003
30 |1.0000 1.0000 1.0000 0.9998 0.9836 0.8157 0.4171 0.1113 0.0171 0.0015
32 | 1.0000 1.0000 1.0000 1.0000 0.9954 0.9120 0.5965 0.2164 0.0446 0.0055
34 | 1.0000 1.0000 1.0000 1.0000 0.9988 0.9644 0.7517 0.3630 0.0982 0.0163
36 | 1.0000 1.0000 1.0000 1.0000 0.9997 0.9877 0.8652 0.5301 0.1879 0.0405
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9364 0.6871 0.3160 0.0866
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9741 0.8127 0.4695 0.1635
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9907 0.9003 0.6238 0.2753
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9970 0.9534 0.7568 0.4148
46 (1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9991 0.9808 0.8578 0.5631
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9929 0.9256 0.6995
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9976 0.9655 0.8106
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Table 8.7 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to o, for 22> O, 2 50, 52a=>50, and Pis =5%,
P15 =30% and p,; =30%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1485 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7370 0.0241 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9699 0.2281 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9981 0.6188 0.0506 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9999 0.8908 0.2267 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9807 0.5284 0.0621 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [(1.0000 0.9977 0.7990 0.2094 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000
16 [ 1.0000 0.9998 0.9403 0.4545 0.0650 0.0034 0.0001 0.0000 0.0000 0.0000
18 |[1.0000 1.0000 0.9872 0.7089 0.1885 0.0177 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9980 0.8824 0.3924 0.0636 0.0045 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9997 0.9638 0.6254 0.1678 0.0189 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 1.0000 0.9914 0.8146 0.3397 0.0600 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9984 0.9268 0.5498 0.1484 0.0191 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9997 0.9768 0.7429 0.2946 0.0555 0.0056 0.0003
30 |1.0000 1.0000 1.0000 1.0000 0.9940 0.8786 0.4824 0.1309 0.0186 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9987 0.9526 0.6716 0.2558 0.0507 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9998 0.9846 0.8224 0.4226 0.1152 0.0178
36 | 1.0000 1.0000 1.0000 1.0000 1.0000 0.9958 0.9186 0.6030 0.2224 0.0459
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9684 0.7617 0.3700 0.1013
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9896 0.8762 0.5387 0.1936
42 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9970 0.9445 0.6993 0.3237
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9785 0.8273 0.4794
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9928 0.9130 0.6374
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9979 0.9616 0.7739
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9851 0.8746
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Table 8.8 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, for 2>®, , 250, 522250, and p,, =5%,
P13 =30% and p, ; = 60%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1455 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7139 0.0239 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9596 0.2213 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9966 0.5968 0.0499 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9998 0.8710 0.2197 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9728 0.5088 0.0610 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9959 0.7755 0.2028 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9995 0.9252 0.4374 0.0638 0.0034 0.0001 0.0000 0.0000 0.0000
18 |[1.0000 1.0000 0.9813 0.6849 0.1827 0.0175 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9963 0.8619 0.3777 0.0624 0.0044 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9994 0.9523 0.6026 0.1628 0.0187 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9999 0.9868 0.7912 0.3272 0.0589 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9970 0.9100 0.5290 0.1442 0.0189 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9994 0.9680 0.7186 0.2840 0.0545 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9999 0.9905 0.8578 0.4638 0.1273 0.0184 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9976 0.9392 0.6477 0.2469 0.0498 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9995 0.9779 0.7991 0.4064 0.1122 0.0176
36 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9931 0.9010 0.5805 0.2149 0.0451
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9578 0.7374 0.3559 0.0987
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9844 0.8553 0.5180 0.1873
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9949 0.9299 0.6751 0.3117
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9701 0.8041 0.4608
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9888 0.8948 0.6140
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9497 0.7496
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9786 0.8535
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Table 8.9 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to o, for 22> O, 2 50, 52a=>50, and Pis =5%,
P15 =30% and p,; =95%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1313 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6554 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9363 0.1934 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9926 0.5390 0.0455 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9994 0.8267 0.1912 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9539 0.4546 0.0548 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9913 0.7217 0.1764 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9987 0.8901 0.3876 0.0570 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9998 0.9665 0.6282 0.1588 0.0164 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9921 0.8152 0.3326 0.0556 0.0043 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9985 0.9248 0.5464 0.1415 0.0174 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9997 0.9753 0.7377 0.2867 0.0525 0.0050 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9934 0.8710 0.4752 0.1254 0.0176 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9985 0.9467 0.6622 0.2479 0.0486 0.0054 0.0003
30 |1.0000 1.0000 1.0000 0.9997 0.9816 0.8099 0.4133 0.1108 0.0171 0.0015
32 | 1.0000 1.0000 1.0000 0.9999 0.9946 0.9073 0.5909 0.2149 0.0445 0.0055
34 | 1.0000 1.0000 1.0000 1.0000 0.9986 0.9613 0.7457 0.3598 0.0978 0.0163
36 | 1.0000 1.0000 1.0000 1.0000 0.9997 0.9861 0.8597 0.5251 0.1867 0.0404
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9956 0.9322 0.6811 0.3133 0.0863
40 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9714 0.8067 0.4650 0.1625
42 (1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9894 0.8952 0.6180 0.2731
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9965 0.9497 0.7507 0.4109
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9787 0.8521 0.5577
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9919 0.9211 0.6934
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9972 0.9624 0.8045
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Table 8.10 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, , for 2>®, , 250, 5>2a250, and p,, =5%,
P13 =60% and p, ; = 60%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1428 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6934 0.0238 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9493 0.2151 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9947 0.5769 0.0492 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9996 0.8523 0.2131 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9644 0.4909 0.0599 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9937 0.7535 0.1968 0.0147 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9991 0.9101 0.4217 0.0626 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9999 0.9746 0.6627 0.1773 0.0174 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9943 0.8422 0.3641 0.0612 0.0044 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9989 0.9403 0.5815 0.1581 0.0185 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9998 0.9815 0.7691 0.3156 0.0578 0.0051 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9952 0.8933 0.5098 0.1401 0.0187 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9989 0.9585 0.6959 0.2741 0.0535 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9998 0.9863 0.8376 0.4467 0.1239 0.0182 0.0015
32 | 1.0000 1.0000 1.0000 1.0000 0.9961 0.9253 0.6255 0.2386 0.0489 0.0057
34 | 1.0000 1.0000 1.0000 1.0000 0.9990 0.9703 0.7770 0.3914 0.1093 0.0174
36 | 1.0000 1.0000 1.0000 1.0000 0.9998 0.9897 0.8834 0.5596 0.2079 0.0443
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9969 0.9464 0.7145 0.3429 0.0963
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9783 0.8348 0.4989 0.1814
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9922 0.9149 0.6524 0.3005
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9975 0.9609 0.7819 0.4436
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9839 0.8766 0.5923
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9941 0.9371 0.7266
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980 0.9711 0.8329
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Table 8.11 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to @, , for 2>®,_, 250, 5>2a=>50, and p,, =5%,

P15 =60% and p,; =95%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

a

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1297 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6396 0.0226 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9281 0.1892 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9907 0.5227 0.0450 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9991 0.8111 0.1864 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9999 0.9462 0.4397 0.0540 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9885 0.7031 0.1717 0.0139 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9981 0.8769 0.3744 0.0561 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9998 0.9594 0.6092 0.1545 0.0163 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9894 0.7983 0.3212 0.0547 0.0043 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9978 0.9133 0.5282 0.1377 0.0173 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9996 0.9692 0.7188 0.2769 0.0516 0.0050 0.0002 0.0000
26 | 1.0000 1.0000 0.9999 0.9909 0.8558 0.4585 0.1221 0.0174 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9977 0.9367 0.6426 0.2396 0.0478 0.0053 0.0003
30 |1.0000 1.0000 1.0000 0.9995 0.9764 0.7922 0.3985 0.1080 0.0170 0.0015
32 | 1.0000 1.0000 1.0000 0.9999 0.9925 0.8939 0.5718 0.2079 0.0438 0.0055
34 | 1.0000 1.0000 1.0000 1.0000 0.9979 0.9527 0.7265 0.3468 0.0954 0.0162
36 | 1.0000 1.0000 1.0000 1.0000 0.9995 0.9817 0.8436 0.5069 0.1808 0.0397
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9938 0.9204 0.6613 0.3021 0.0843
40 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9642 0.7886 0.4483 0.1576
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9858 0.8806 0.5983 0.2634
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.9395 0.7312 0.3958
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9726 0.8352 0.5388
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9889 0.9080 0.6734
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9536 0.7860
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Table 8.12 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, , for 2>®, , 250, 5>2a250, and p,, =5%,
P13 =95% and p, ; =95%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1223 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.5895 0.0216 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9171 0.1695 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9904 0.4708 0.0417 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9992 0.7790 0.1635 0.0094 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9369 0.3898 0.0492 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9851 0.6594 0.1493 0.0132 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9976 0.8546 0.3281 0.0507 0.0032 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9998 0.9487 0.5602 0.1339 0.0153 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9853 0.7644 0.2789 0.0492 0.0042 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9969 0.8942 0.4778 0.1191 0.0162 0.0010 0.0000 0.0000
24 | 1.0000 1.0000 0.9996 0.9586 0.6767 0.2388 0.0463 0.0048 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9870 0.8281 0.4090 0.1056 0.0162 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9969 0.9190 0.5955 0.2056 0.0429 0.0051 0.0003
30 |1.0000 1.0000 1.0000 0.9995 0.9670 0.7567 0.3512 0.0935 0.0158 0.0015
32 | 1.0000 1.0000 1.0000 1.0000 0.9891 0.8693 0.5223 0.1779 0.0393 0.0053
34 | 1.0000 1.0000 1.0000 1.0000 0.9971 0.9368 0.6847 0.3026 0.0828 0.0151
36 | 1.0000 1.0000 1.0000 1.0000 0.9994 0.9738 0.8125 0.4571 0.1544 0.0358
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9910 0.8980 0.6151 0.2614 0.0733
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9975 0.9504 0.7516 0.3996 0.1345
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9793 0.8525 0.5497 0.2265
44 (1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9927 0.9195 0.6893 0.3491
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9978 0.9610 0.8019 0.4892
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9837 0.8824 0.6278
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9941 0.9362 0.7479
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Table 8.13 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, , for 22w, , 250, 5>2a2>50, and p,, =30%,
P15 =30% and p,; =30%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1479 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7297 0.0241 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9658 0.2266 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9974 0.6123 0.0505 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9999 0.8839 0.2252 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9776 0.5229 0.0619 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9969 0.7914 0.2079 0.0149 0.0004 0.0000 0.0000 0.0000 0.0000
16 [ 1.0000 0.9997 0.9349 0.4499 0.0648 0.0034 0.0001 0.0000 0.0000 0.0000
18 |[1.0000 1.0000 0.9850 0.7015 0.1872 0.0177 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9973 0.8755 0.3886 0.0634 0.0045 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9996 0.9597 0.6186 0.1667 0.0189 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 1.0000 0.9897 0.8070 0.3366 0.0598 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9978 0.9210 0.5439 0.1476 0.0191 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9996 0.9737 0.7353 0.2920 0.0553 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9999 0.9927 0.8716 0.4773 0.1302 0.0186 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9983 0.9479 0.6643 0.2537 0.0505 0.0058
34 |1.0000 1.0000 1.0000 1.0000 0.9997 0.9822 0.8148 0.4183 0.1146 0.0177
36 | 1.0000 1.0000 1.0000 1.0000 0.9999 0.9948 0.9126 0.5964 0.2207 0.0457
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9647 0.7540 0.3664 0.1008
40 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9877 0.8693 0.5328 0.1922
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9395 0.6919 0.3207
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9756 0.8198 0.4743
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9913 0.9068 0.6304
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 0.9575 0.7662
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9828 0.8676
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Table 8.14 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to @, , for 2>2®,_, 250, 522250, and p,, =30%,

P13 =30% and p, ; = 60%, the non-diagonal elements of C,,; .

F
X()

(@, :8.C)=P(Xy <@ )=1-p

a

w,_, 5 10 15 20 25 30 35 40 45 50

2 0.1449 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.7063 0.0239 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9544 0.2199 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9955 0.5904 0.0497 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9997 0.8635 0.2181 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [1.0000 0.9689 0.5034 0.0608 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9947 0.7676 0.2015 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9993 0.9190 0.4330 0.0636 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9999 0.9783 0.6776 0.1815 0.0175 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9953 0.8546 0.3741 0.0622 0.0044 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9992 0.9474 0.5960 0.1618 0.0187 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9999 0.9845 0.7835 0.3242 0.0587 0.0052 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9962 0.9037 0.5233 0.1433 0.0189 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9992 0.9641 0.7111 0.2816 0.0543 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9999 0.9887 0.8505 0.4590 0.1266 0.0184 0.0016
32 | 1.0000 1.0000 1.0000 1.0000 0.9969 0.9338 0.6407 0.2449 0.0496 0.0058
34 | 1.0000 1.0000 1.0000 1.0000 0.9993 0.9748 0.7915 0.4023 0.1116 0.0175
36 | 1.0000 1.0000 1.0000 1.0000 0.9998 0.9917 0.8945 0.5742 0.2133 0.0449
38 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9534 0.7298 0.3525 0.0983
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9819 0.8480 0.5125 0.1860
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9938 0.9243 0.6678 0.3089
44 {1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9665 0.7965 0.4560
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9868 0.8882 0.6073
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9953 0.9449 0.7420
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9756 0.8463
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Table 8.15 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to o, for 2> O, 2 50, 52a=>50, and Py = 30%,

P15 =30% and p,; =95%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

a

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1306 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6473 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9292 0.1920 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9906 0.5326 0.0454 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9991 0.8180 0.1899 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9999 0.9486 0.4495 0.0547 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9892 0.7133 0.1752 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9982 0.8828 0.3836 0.0568 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9997 0.9622 0.6208 0.1578 0.0164 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9902 0.8072 0.3294 0.0554 0.0043 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9979 0.9187 0.5400 0.1406 0.0174 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9996 0.9717 0.7297 0.2841 0.0524 0.0050 0.0002 0.0000
26 | 1.0000 1.0000 0.9999 0.9918 0.8637 0.4698 0.1247 0.0175 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9979 0.9414 0.6547 0.2458 0.0485 0.0054 0.0003
30 |1.0000 1.0000 1.0000 0.9995 0.9786 0.8022 0.4089 0.1103 0.0171 0.0015
32 | 1.0000 1.0000 1.0000 0.9999 0.9932 0.9008 0.5842 0.2133 0.0444 0.0055
34 | 1.0000 1.0000 1.0000 1.0000 0.9981 0.9569 0.7379 0.3561 0.0974 0.0163
36 | 1.0000 1.0000 1.0000 1.0000 0.9995 0.9836 0.8525 0.5191 0.1854 0.0403
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9945 0.9265 0.6736 0.3104 0.0859
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9677 0.7991 0.4599 0.1615
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9874 0.8886 0.6111 0.2707
44 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9955 0.9448 0.7430 0.4065
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9755 0.8449 0.5515
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9902 0.9151 0.6860
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9964 0.9581 0.7970
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Table 8.16 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, , for 2> ®,_;, 250, 522250, and p,, =30%,
P13 =60% and p, ; = 60%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1421 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6839 0.0237 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9419 0.2136 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9927 0.5697 0.0490 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9993 0.8430 0.2116 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9999 0.9590 0.4852 0.0598 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9917 0.7446 0.1954 0.0147 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9986 0.9024 0.4171 0.0624 0.0034 0.0001 0.0000 0.0000 0.0000
18 |[1.0000 0.9998 0.9703 0.6548 0.1761 0.0173 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 1.0000 0.9926 0.8336 0.3605 0.0610 0.0044 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9984 0.9340 0.5747 0.1571 0.0185 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9997 0.9781 0.7605 0.3126 0.0576 0.0051 0.0002 0.0000
26 | 1.0000 1.0000 1.0000 0.9938 0.8857 0.5040 0.1393 0.0187 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9985 0.9533 0.6879 0.2718 0.0533 0.0056 0.0003
30 |1.0000 1.0000 1.0000 0.9997 0.9835 0.8293 0.4419 0.1232 0.0182 0.0015
32 | 1.0000 1.0000 1.0000 0.9999 0.9949 0.9187 0.6183 0.2367 0.0487 0.0057
34 | 1.0000 1.0000 1.0000 1.0000 0.9986 0.9661 0.7686 0.3874 0.1087 0.0174
36 | 1.0000 1.0000 1.0000 1.0000 0.9997 0.9875 0.8758 0.5532 0.2064 0.0442
38 |1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9408 0.7064 0.3396 0.0958
40 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 0.9749 0.8267 0.4934 0.1802
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9904 0.9081 0.6449 0.2978
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9967 0.9562 0.7737 0.4388
46 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9811 0.8691 0.5855
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9926 0.9312 0.7186
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9974 0.9671 0.8249
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Table 8.17 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to @, , for 2> m,_, 250, 522250, and p,, =30%,

P13 =60% and p, ; =95%, the non-diagonal elements of C,,; .

F
X()

(@, :8.C)=P(Xy <@ )=1-p

a

w,_, 5 10 15 20 25 30 35 40 45 50

2 0.1283 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6269 0.0225 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9155 0.1873 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9867 0.5140 0.0448 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9983 0.7977 0.1848 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9998 0.9374 0.4333 0.0538 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9848 0.6915 0.1704 0.0139 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9970 0.8659 0.3697 0.0559 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9995 0.9525 0.5996 0.1535 0.0162 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 0.9999 0.9861 0.7870 0.3176 0.0545 0.0043 0.0002 0.0000 0.0000
22 | 1.0000 1.0000 0.9966 0.9042 0.5205 0.1369 0.0173 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9993 0.9634 0.7083 0.2742 0.0515 0.0050 0.0002 0.0000
26 | 1.0000 1.0000 0.9999 0.9880 0.8457 0.4524 0.1215 0.0174 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9966 0.9289 0.6333 0.2375 0.0477 0.0053 0.0003
30 |1.0000 1.0000 1.0000 0.9991 0.9715 0.7820 0.3936 0.1075 0.0169 0.0015
32 | 1.0000 1.0000 1.0000 0.9998 0.9900 0.8848 0.5637 0.2063 0.0437 0.0055
34 | 1.0000 1.0000 1.0000 1.0000 0.9969 0.9461 0.7167 0.3429 0.0950 0.0161
36 | 1.0000 1.0000 1.0000 1.0000 0.9991 0.9776 0.8339 0.5001 0.1796 0.0397
38 |1.0000 1.0000 1.0000 1.0000 0.9998 0.9917 0.9123 0.6522 0.2990 0.0839
40 |[1.0000 1.0000 1.0000 1.0000 0.9999 0.9972 0.9585 0.7788 0.4427 0.1566
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9823 0.8717 0.5903 0.2610
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9932 0.9323 0.7219 0.3912
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9976 0.9677 0.8259 0.5317
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9860 0.8999 0.6646
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9944 0.9473 0.7767
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Table 8.18 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to @, , for 2>2®,_, 250, 522250, and p,, =30%,

P13 =95% and p, ; =95%, the non-diagonal elements of C,,; .

F
X()

(@, :8.C)=P(Xy <@ )=1-p

a

w,_, 5 10 15 20 25 30 35 40 45 50

2 0.1166 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.5634 0.0213 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.8863 0.1678 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9808 0.4573 0.0411 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9970 0.7512 0.1624 0.0093 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9997 0.9190 0.3814 0.0488 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9768 0.6378 0.1485 0.0131 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9948 0.8340 0.3225 0.0504 0.0032 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9992 0.9344 0.5442 0.1333 0.0152 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 0.9999 0.9784 0.7440 0.2752 0.0491 0.0041 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9941 0.8769 0.4662 0.1188 0.0161 0.0010 0.0000 0.0000
24 | 1.0000 1.0000 0.9987 0.9476 0.6583 0.2363 0.0463 0.0048 0.0002 0.0000
26 | 1.0000 1.0000 0.9998 0.9810 0.8103 0.4007 0.1055 0.0162 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9941 0.9047 0.5799 0.2039 0.0429 0.0051 0.0003
30 |1.0000 1.0000 1.0000 0.9985 0.9578 0.7395 0.3454 0.0935 0.0158 0.0015
32 | 1.0000 1.0000 1.0000 0.9997 0.9837 0.8535 0.5097 0.1768 0.0393 0.0053
34 | 1.0000 1.0000 1.0000 0.9999 0.9946 0.9249 0.6688 0.2984 0.0828 0.0150
36 | 1.0000 1.0000 1.0000 1.0000 0.9985 0.9659 0.7965 0.4473 0.1537 0.0358
38 |1.0000 1.0000 1.0000 1.0000 0.9996 0.9863 0.8843 0.6009 0.2585 0.0734
40 |(1.0000 1.0000 1.0000 1.0000 0.9999 0.9952 0.9401 0.7363 0.3921 0.1341
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9723 0.8379 0.5375 0.2245
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9886 0.9074 0.6750 0.3435
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9519 0.7873 0.4790
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9774 0.8691 0.6148
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9905 0.9254 0.7339
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Table 8.19 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to o, for 2> O, 2 50, 52a=>50, and Py = 60%,

P15 =60% and p, ; =60%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

a

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1392 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6612 0.0235 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.9267 0.2076 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9886 0.5495 0.0483 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9985 0.8211 0.2054 0.0101 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9998 0.9468 0.4678 0.0588 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9872 0.7213 0.1897 0.0146 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9974 0.8839 0.4022 0.0613 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9995 0.9603 0.6324 0.1712 0.0172 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 0.9999 0.9885 0.8117 0.3479 0.0599 0.0044 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9971 0.9186 0.5542 0.1528 0.0183 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9994 0.9698 0.7374 0.3019 0.0566 0.0051 0.0002 0.0000
26 | 1.0000 1.0000 0.9999 0.9902 0.8663 0.4857 0.1357 0.0185 0.0013 0.0001
28 |1.0000 1.0000 1.0000 0.9972 0.9405 0.6651 0.2627 0.0524 0.0055 0.0003
30 |1.0000 1.0000 1.0000 0.9993 0.9766 0.8075 0.4258 0.1201 0.0180 0.0015
32 | 1.0000 1.0000 1.0000 0.9998 0.9918 0.9019 0.5967 0.2291 0.0479 0.0057
34 | 1.0000 1.0000 1.0000 1.0000 0.9974 0.9554 0.7457 0.3735 0.1061 0.0172
36 | 1.0000 1.0000 1.0000 1.0000 0.9993 0.9818 0.8559 0.5334 0.2000 0.0435
38 |1.0000 1.0000 1.0000 1.0000 0.9998 0.9933 0.9264 0.6835 0.3276 0.0936
40 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9977 0.9659 0.8049 0.4754 0.1748
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9856 0.8904 0.6228 0.2875
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9945 0.9438 0.7509 0.4229
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9980 0.9736 0.8489 0.5647
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9886 0.9157 0.6957
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9955 0.9566 0.8031
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Table 8.20 depicts the probability (1 - p) that the minimum X(l) of a trivariate gamma
vector is less than or equal to @, , for 2> ®,_, 250, 522250, and p,, =60%,
P13 =60% and p, ; =95%, the non-diagonal elements of C,,; .

Fx (a)l—p;a7C123): P(X(l) < a)l—p)zl_ Y

(0]

W_, 5 10 15 20 25 30 35 40 45 50

2 0.1253 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.6031 0.0223 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.8943 0.1844 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9822 0.4931 0.0443 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9962 0.7733 0.1805 0.0097 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9995 0.9232 0.4167 0.0532 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9770 0.6675 0.1662 0.0138 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9942 0.8459 0.3563 0.0552 0.0033 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9989 0.9387 0.5776 0.1499 0.0161 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 0.9998 0.9789 0.7645 0.3067 0.0538 0.0043 0.0002 0.0000 0.0000
22 |1.0000 1.0000 0.9938 0.8861 0.5011 0.1338 0.0171 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9984 0.9513 0.6854 0.2652 0.0508 0.0049 0.0002 0.0000
26 | 1.0000 1.0000 0.9996 0.9817 0.8249 0.4356 0.1189 0.0172 0.0013 0.0001
28 |1.0000 1.0000 0.9999 0.9940 0.9126 0.6114 0.2301 0.0471 0.0053 0.0003
30 |1.0000 1.0000 1.0000 0.9982 0.9610 0.7598 0.3793 0.1053 0.0168 0.0015
32 | 1.0000 1.0000 1.0000 0.9995 0.9844 0.8656 0.5435 0.2002 0.0431 0.0055
34 | 1.0000 1.0000 1.0000 0.9999 0.9944 0.9317 0.6943 0.3307 0.0932 0.0160
36 | 1.0000 1.0000 1.0000 1.0000 0.9982 0.9685 0.8129 0.4819 0.1746 0.0392
38 | 1.0000 1.0000 1.0000 1.0000 0.9994 0.9869 0.8948 0.6305 0.2888 0.0824
40 |[1.0000 1.0000 1.0000 1.0000 0.9998 0.9950 0.9458 0.7569 0.4265 0.1526
42 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9744 0.8520 0.5697 0.2525
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9890 0.9166 0.6998 0.3770
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9956 0.9565 0.8048 0.5127
48 |(1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9984 0.9791 0.8816 0.6431
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9907 0.9331 0.7549

291



Chapter 8

Table 8.21 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to o, for 2> O, 2 50, 52a=>50, and Py = 60%,

P15 =95% and p,; =95%, the non-diagonal elements of C,,, .

Fx(l)(a)pp;a,clﬂ): P(X(l) < Col,p)=1— D

a

o_, 5 10 15 20 25 30 35 40 45 50

2 0.1176 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.4204 0.0200 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.8393 0.2360 0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9028 0.3163 0.0435 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9663 0.7353 0.1663 0.0093 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9972 0.8391 0.3099 0.0527 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000
14 [1.0000 0.9428 0.6177 0.1456 0.0131 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9728 0.8747 0.2840 0.0529 0.0032 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9989 0.9094 0.5227 0.1305 0.0153 0.0007 0.0000 0.0000 0.0000
20 | 1.0000 0.9999 0.9464 0.7544 0.2524 0.0504 0.0041 0.0002 0.0000 0.0000
22 | 1.0000 0.9999 0.9844 0.8637 0.4459 0.1167 0.0163 0.0010 0.0000 0.0000
24 | 1.0000 0.9999 0.9985 0.9142 0.6531 0.2220 0.0471 0.0048 0.0002 0.0000
26 | 1.0000 1.0000 0.9998 0.9590 0.8030 0.3826 0.1041 0.0164 0.0013 0.0001
28 |1.0000 1.0000 0.9997 0.9893 0.8727 0.5682 0.1946 0.0434 0.0051 0.0003
30 |1.0000 1.0000 0.9999 0.9977 0.9300 0.7318 0.3299 0.0926 0.0159 0.0015
32 | 1.0000 1.0000 1.0000 0.9993 0.9701 0.8261 0.4960 0.1706 0.0397 0.0053
34 | 1.0000 1.0000 1.0000 0.9996 0.9909 0.8953 0.6580 0.2857 0.0823 0.0152
36 | 1.0000 1.0000 1.0000 0.9999 0.9971 0.9444 0.7749 0.4337 0.1496 0.0361
38 |1.0000 1.0000 1.0000 1.0000 0.9989 0.9771 0.8545 0.5873 0.2483 0.0731
40 |[1.0000 1.0000 1.0000 1.0000 0.9995 0.9917 0.9147 0.7188 0.3795 0.1314
42 |1.0000 1.0000 1.0000 1.0000 0.9998 0.9969 0.9563 0.8097 0.5226 0.2165
44 {1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9813 0.8805 0.6593 0.3323
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9923 0.9306 0.7624 0.4643
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9968 0.9651 0.8417 0.5992
50 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9986 0.9841 0.9014 0.7126
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Table 8.22 depicts the probability (1— p) that the minimum X(l) of a trivariate gamma

vector is less than or equal to @, , for 2>2®,_, 250, 522250, and p,, =95%,

P13 =95% and p, ; =95%, the non-diagonal elements of C,,; .

F
X()

(@, :8.C)=P(Xy <@ )=1-p

a

w,_, 5 10 15 20 25 30 35 40 45 50

2 0.1185 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
4 0.5480 0.0231 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.8673 0.1715 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 0.9615 0.4650 0.0463 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10 [0.9894 0.7322 0.1752 0.0101 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000
12 [0.9981 0.8835 0.4000 0.0558 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000
14 [0.9998 0.9512 0.6324 0.1657 0.0145 0.0004 0.0000 0.0000 0.0000 0.0000
16 [1.0000 0.9838 0.7967 0.3471 0.0582 0.0034 0.0001 0.0000 0.0000 0.0000
18 [1.0000 0.9959 0.8963 0.5522 0.1521 0.0170 0.0007 0.0000 0.0000 0.0000
20 |1.0000 0.9992 0.9523 0.7162 0.3029 0.0571 0.0044 0.0002 0.0000 0.0000
22 | 1.0000 0.9999 0.9825 0.8337 0.4844 0.1378 0.0182 0.0011 0.0000 0.0000
24 | 1.0000 1.0000 0.9948 0.9091 0.6444 0.2653 0.0542 0.0051 0.0002 0.0000
26 | 1.0000 1.0000 0.9988 0.9568 0.7695 0.4260 0.1238 0.0184 0.0013 0.0001
28 |1.0000 1.0000 0.9998 0.9831 0.8597 0.5800 0.2330 0.0505 0.0055 0.0003
30 |1.0000 1.0000 1.0000 0.9944 0.9215 0.7075 0.3751 0.1108 0.0179 0.0015
32 | 1.0000 1.0000 1.0000 0.9985 0.9621 0.8072 0.5216 0.2051 0.0464 0.0057
34 | 1.0000 1.0000 1.0000 0.9997 0.9845 0.8804 0.6491 0.3307 0.0989 0.0171
36 | 1.0000 1.0000 1.0000 0.9999 0.9946 0.9328 0.7541 0.4681 0.1807 0.0423
38 |1.0000 1.0000 1.0000 1.0000 0.9984 0.9673 0.8361 0.5943 0.2918 0.0880
40 |[1.0000 1.0000 1.0000 1.0000 0.9996 0.9862 0.8980 0.7019 0.4193 0.1594
42 (1.0000 1.0000 1.0000 1.0000 0.9999 0.9949 0.9430 0.7902 0.5429 0.2576
44 {1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9720 0.8597 0.6515 0.3749
46 |1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9879 0.9131 0.7438 0.4945
48 |[1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9954 0.9518 0.8194 0.6032
50 |1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9763 0.8797 0.6978
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American Option : An option which can be exercised at any time prior to expiration.

At the Money : An option whose exercise price is equal to the current price of the
underlying contract. On listed option exchanges the term is more commonly
used to refer to the option whose exercise price is closest to the current price of
the underlying contract.

Buy/Write : The purchase of an underlying contract together with the sale of a call
option on that contract.

Call Option : A contract between a buyer and a seller whereby the buyer acquires
the right, but not to the obligation, to purchase a specified underlying contract at
a fixed price on or before a specified date. The seller of the call option assumes
the obligation of delivering the underlying contract should the buyer wish to
exercise his option.

Delta (A) : The sensitivity of an option’s theoretical value to a change in the price of
the underlying contract.

Delta Neutral : A position where the sum total of all the positive and negative deltas
adds up to approximately zero.

Exercise : The process by which the holder of an option notifies the seller of his
intention to take delivery of the underlying contract, in the case of a call, or to
make delivery of the underlying contract, in the case of a put, at the specified
exercise price.

Exercise Price : The price at which the underlying contract will be delivered in the
event an option is exercised.

Expiration (Expiry) : The date and time after which an option may no longer be
exercised.

European Option : An option which may only be exercised at expiration.

Fair Value : Theoretical value.

Gamma (I') :The sensitivity of an option’s delta to a change in the price of the
underlying contract.

Hedge Ratio : Delta.

Implied Volatility : Assuming all other inputs are known, the volatility which would
have to be input into a theoretical pricing model in order to yield a theoretical
value identical to the price of the option in the marketplace.

In the Money : A call (put) option whose exercise price is lower (higher) than the

current price of the underlying contract.
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Intrinsic Value : The amount by which an option is in the money. Out of the money
options have no intrinsic value.

Long : A position resulting the purchase of a contract. The term is also used to
describe a position, which will theoretical increase (decrease) in value should
the price of the underlying contract rise (fall). Note that a long (short) put
position is a short (long) market position.

Omega (Q) : The Greek letter sometimes used to denote an option’s elasticity.

Out of the Money : An option which currently has no intrinsic value. A call (put) is
out of the money if its exercise price is more (less) than the current price of the
underlying contract.

Put Option : A contract between a buyer and a seller whereby the buyer acquires
the right, but not the obligation , to sell a specified underlying contract at a fixed
price on or before a specified date. The seller of the put option assumes the
obligation of taking delivery of the underlying contract should the buyer wish to
exercise his option.

Rho (p) : The sensitivity of an option’s theoretical value to change in interest rates.

Series : All options with the same underlying contract, same exercise price, and
same expiration date.

Short : A position resulting from the sale of a contract. The term is also used to
describe a position which will theoretically increase (decrease) in value should
the price of the underlying contract fall (rise). Note that a short (long) put
position is a long (short) market position.

Sigma (o) : The commonly used notation for standard deviation. Since volatility is
usually expressed as a standard deviation, the same notation is often used to
denote volatility.

Straddle : A long (short) call and a long (short) put, where both options have the
same underlying contract, the same expiration date, and the same exercise
price.

Strike Price (Strike) : Exercise price.

Tau (1) : The commonly used notation for the amount of time remaining to expiration.

Theoretical Value : An option value generated by a mathematical model given
certain prior assumptions about the terms of the option, the characteristics of
the underlying contract, and prevailing interest rates.

Theta (0) : The sensitivity of an option’s theoretical value to a change in the amount
of time remaining to expiration.

Underlying : The instrument to be delivered in the event an option is exercised.

Vega : The sensitivity of an option’s theoretical value to a change in volatility.
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Volatility : The degree to which the price of an underlying instrument tends to

fluctuate over time.

Write : Sell an option.
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