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ABSTRACT 
 

 

Autoregressive Conditional Heteroscedasticity (ARCH) models have 

successfully been employed in order to predict asset return volatility. Predicting 

volatility is of great importance in pricing financial derivatives, selecting portfolios, 

measuring and managing investment risk more accurately. 

Most of the methods used in the ARCH literature for selecting the appropriate 

model are based on evaluating the ability of the models to describe the data. In this 

thesis, the approach taken is based on evaluating the ability of the models to predict 

the conditional variance rather than on the ability of the models to describe the data. 

Based on a standardized prediction error criterion (SPEC), a model selection 

algorithm is developed. According to this algorithm, the ARCH model with the 

lowest sum of squared standardized forecasting errors as judged by the value of the 

ratio of two correlated gamma variables is selected for predicting future volatility. 

The proposed model selection method allows the use of a virtually different model for 

prediction at each of a sequence of points in time. 

A number of evaluation criteria are used to examine whether the SPEC model 

selection procedure has a satisfactory performance in selecting that model that 

generates “better” volatility predictions. Moreover, we consider assessing model 

performance through computing real and simulated option prices based on the 

volatility forecasts of the underlying asset returns, devising trading rules to trade 

options on a daily basis and comparing the resulting profits. The results show that 

traders using the SPEC algorithm for deciding which model’s forecasts to use at any 

given point in time achieve the highest profits. 

Finally, a multi-model selection procedure is proposed, which leads to the 

selection of the model with the lowest sum of squared standardized one-step-ahead 

prediction errors. The form of the exact distribution of the test statistic is explicitly 

derived and the procedure is illustrated in the case of three modes using real data on 

stock returns. 
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ΠΕΡΙΛΗΨΗ 
 

Τα αυτοπαλίνδροµα µοντέλα δεσµευµένης ετεροσκεδαστικότητας 

(Autoregressive Conditional Heteroscedasticity - ARCH) έχουν εφαρµοστεί µε 

επιτυχία για την πρόβλεψη της διακύµανσης της απόδοσης διαφόρων 

χρηµατοοικονοµικών προϊόντων, όπως µετοχές, συναλλαγµατικές ισοτιµίες, 

χρηµατιστηριακοί δείκτες, αµοιβαία κεφάλαια κ.ο.κ. Η ακριβής πρόβλεψη της 

διακύµανσης έχει ιδιαίτερη σηµασία στην τιµολόγηση παραγώγων, στην κατασκευή 

χαρτοφυλακίων, στη µέτρηση και διαχείριση του επενδυτικού κινδύνου.  

Η παρούσα διατριβή έχει στόχο να παρουσιάσει µια µέθοδο επιλογής ARCH 

µοντέλων µε βάση την προβλεπτική τους ικανότητα. Συγκεκριµένα, στο κεφάλαιο 2, 

παρουσιάζονται τόσο τα µονοµεταβλητά, όσο και τα πολυµεταβλητά ARCH µοντέλα 

που υπάρχουν στη βιβλιογραφία, οι µέθοδοι εκτίµησής τους καθώς και τα 

χαρακτηριστικά των χρηµατοοικονοµικών σειρών, τα οποία ερµηνεύουν. Μία 

συστηµατική παρουσίαση των ARCH µοντέλων είναι πάρα πολύ χρήσιµη έτσι ώστε 

να µπορεί ένας ερευνητής να επιλέξει το κατάλληλο µοντέλο για τη συγκεκριµένη 

εργασία που θέλει. 

Στο κεφάλαιο 3, εφαρµόζουµε µία σειρά από Monte Carlo προσοµοιώσεις από 

τις οποίες φαίνεται ότι τα εκτιµώµενα τυποποιηµένα κατάλοιπα από διάφορα ARCH 

µοντέλα κατανέµονται ανεξάρτητα. Μία υπόθεση πολύ σηµαντική για τα υπόλοιπα 

κεφάλαια της διατριβής. 

Η πλειοψηφία των µεθόδων επιλογής µοντέλων στην ARCH βιβλιογραφία 

βασίζεται στην αξιολόγηση της ικανότητας των µοντέλων να περιγράψουν τα 

δεδοµένα. Στο κεφάλαιο 4, εξετάζεται ο έλεγχος υποθέσεων που εισήχθη από τους 

Xekalaki et al. (2003) για την συγκριτική αξιολόγηση δύο µοντέλων παλινδρόµησης, 

για την περίπτωση ARCH µοντέλων. Συγκεκριµένα, προτείνεται η σύγκριση ARCH 

µοντέλων µέσω του ελέγχου της µηδενικής υπόθεσης ότι τα δύο µοντέλα έχουν την 

ίδια προβλεπτική ικανότητα, έναντι της εναλλακτικής, ότι το µοντέλο µε το 

µικρότερο άθροισµα των τετραγωνικών τυποποιηµένων κατάλοιπων έχει την 

υψηλότερη προβλεπτική ικανότητα. Ο έλεγχος αυτός οδηγεί στην κατασκευή ενός 

αλγορίθµου επιλογής µοντέλων µε κριτήριο βασιζόµενο στα τυποποιηµένα σφάλµατα 

πρόβλεψης, τον Standardized Prediction Error Criterion (SPEC) αλγόριθµο επιλογής 

µοντέλων. Σύµφωνα µε τον SPEC αλγόριθµο, από ένα σύνολο ARCH µοντέλων, 
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αυτό το οποίο έχει το µικρότερο άθροισµα των τετραγωνικών τυποποιηµένων 

κατάλοιπων, επιλέγεται για την πρόβλεψη της δεσµευµένης διακύµανσης της 

επόµενης χρονικής στιγµής. Η µεθοδολογία που αναπτύσσεται βασίζεται σε ανά δύο 

συγκρίσεις των υπό εξέταση µοντέλων. Βέβαια, κάθε φορά που ο SPEC αλγόριθµος 

εφαρµόζεται, το µοντέλο που θα χρησιµοποιηθεί για την πρόβλεψη της διακύµανσης, 

είναι εν γένει διαφορετικό. 

Στα επόµενα κεφάλαια η αξιολόγηση της SPEC µεθοδολογίας επιλογής 

µοντέλων γίνεται µέσω της χρήσης της σε διάφορες χρηµατοοικονοµικές εφαρµογές. 

Συγκεκριµένα, στο κεφάλαιο 5, µία σειρά από στατιστικά κριτήρια αξιολόγησης της 

προβλεπτικής ικανότητας χρησιµοποιούνται για να δούµε ποιο  ARCH µοντέλο έχει 

τη µεγαλύτερη προβλεπτική ικανότητα για χρονικούς ορίζοντες από µία έως εκατό 

χρονικές µονάδες µπροστά. Στη συνέχεια, αξιολογούµε την προβλεπτική ικανότητα 

διαφόρων µεθόδων επιλογής µοντέλων, µεταξύ των οποίων είναι και ο SPEC 

αλγόριθµος. Τα αποτελέσµατα δείχνουν ότι η SPEC µέθοδος έχει πολύ καλή απόδοση 

στο να επιλέγει το µοντέλο µε τη µεγαλύτερη προβλεπτική ικανότητα σε σχέση µε 

άλλες µεθόδους επιλογής µοντέλων περιλαµβανοµένων και µεθόδων βασιζόµενων 

στη χρήση ενός µοναδικού ARCH µοντέλου.  

Στο κεφάλαιο 6, αξιολογείται η ικανότητα τόσο του SPEC αλγορίθµου όσο 

και διαφόρων άλλων µεθόδων επιλογής µοντέλων στο πλαίσιο προβληµάτων 

τιµολόγησης δικαιωµάτων προαίρεσης στο χρηµατιστήριο παραγώγων του Σικάγο. 

Χρησιµοποιούνται δεδοµένα από δικαιώµατα προαίρεσης του χρηµατιστηριακού 

δείκτη S&P500. Μέσα από τα αποτελέσµατα της σύγκρισης των µεθόδων επιλογής 

µοντέλων, προκύπτει ότι ο επενδυτής που χρησιµοποιεί τον SPEC αλγόριθµο, έχει 

την ικανότητα να επιλέγει αυτά τα ARCH µοντέλα τα οποία δίνουν τη µεγαλύτερη 

δυνατή απόδοση από κάθε άλλη µέθοδο επιλογής µοντέλων. Επειδή, ενίοτε, τα 

πραγµατικά δεδοµένα που χρησιµοποιούνται από την αγορά παραγώγων ενδέχεται να 

µεροληπτούν υπέρ µίας µεθοδολογίας, στο κεφάλαιο 7, προσοµοιώνουµε µία αγορά 

παραγώγων, στην οποία κάθε επενδυτής χρησιµοποιεί µία µέθοδο πρόβλεψης της 

µελλοντικής τιµής του δικαιώµατος προαίρεσης. Και σε αυτή την περίπτωση, οι 

επενδυτές που βασίζονται στην SPEC µεθοδολογία επιτυγχάνουν τις µέγιστες 

αποδόσεις. 

Τέλος, στο κεφάλαιο 8, προτείνεται µια εναλλακτική µέθοδος επιλογής 

µοντέλων από n  διαθέσιµα µοντέλα ( )2≥n  η οποία οδηγεί στην επιλογή του 
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µοντέλου του οποίου το άθροισµα  τετραγώνων των τυποποιηµένων σφαλµάτων 

πρόβλεψης έχει την πιο χαµηλή τιµή. Η µεθοδολογία που χρησιµοποιείται διαφέρει 

από αυτήν του κεφαλαίου 4, η οποία κάνει χρήση των ανα δύο λόγων των 

αθροισµάτων τετραγώνων των τυποποιηµένων σφαλµάτων πρόβλεψης. Η ακριβής 

µορφή της κατανοµής της ελεγχοσυνάρτησης προσδιορίζεται  ως η κατανοµή της 

ελάχιστης συνιστώσας ενός τυχαίου διανύσµατος που ακολουθεί την πολυµεταβλητή 

γάµµα κατανοµή. Αυτός ο έλεγχος υποθέσεων µπορεί να εφαρµοστεί για την 

αξιολόγηση της ικανότητας των µοντέλων να προβλέπουν τόσο την δεσµευµένη µέση 

τιµή όσο και τη δεσµευµένη διακύµανση. Η διαδικασία ελέγχου εφαρµόζεται για την 

περίπτωση τριών µοντέλων σε δεδοµένα από την Ελληνική κεφαλαιαγορά. 

Είναι χρήσιµο να αναφερθεί ότι µε βάση τα ευρήµατα των παραπάνω 

κεφαλαίων, η SPEC µέθοδος είναι ένα εργαλείο πολύ χρήσιµο για την επιλογή των 

κατάλληλων µοντέλων για την πρόβλεψη της διακύµανσης, µε εφαρµογές όχι µόνο 

στην αξιολόγηση χαρτοφυλακίων και στη διαχείριση κινδύνου, αλλά και στη 

δηµιουργία κερδοσκοπικών στρατηγικών στο χρηµατιστήριο παραγώγων. 
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Cha p te r  1  

In t roduc t i on  
 

 

Autoregressive Conditional Heteroscedasticity (ARCH) models have successfully 

been employed in order to predict asset return volatility. However, the last two decades 

numerous formulations of volatility modelling have been proposed and a vast number of 

studies that evaluate the ability of ARCH models in forecasting volatility have been 

conducted yielding in several cases contradictory results. This thesis aims at shedding 

some light in the area of model selection for volatility forecasting. We try to define a 

unified criterion, for as many classes of ARCH processes as possible, that is based on a 

rating of the predictability of ARCH models. Subsequently, we evaluate the accuracy of 

that criterion in suggesting at each point in time the model that will be used in obtaining 

volatility forecasts. 

The number of possible conditional volatility formulations is vast. Therefore, a 

systematic presentation of the models that have been considered in the ARCH literature 

can be useful in guiding one’s choice of a model for exploiting future volatility, with 

applications in financial markets. In chapter 2, a number of univariate and multivariate 

ARCH models, their estimating methods and the characteristics of financial time series, 

which are captured by volatility models, are presented. 

Quite often, the testing procedure requires independence in a sequence of 

recursive standardized prediction errors, which cannot always be readily deduced 

particularly in the case of econometric modeling. In chapter 3, on the basis of the results 

of a series of Monte Carlo simulations, it is conjectured that independence holds and the 

sum of squared standardized one-step-ahead prediction errors is Chi-square distributed. 

The results of our simulation are confirmed analytically in chapter 4. 

Most of the methods used in the ARCH literature for selecting the appropriate 

model are based on evaluating the ability of the models to describe the data. In chapter 

4, Xekalaki et al.’s (2003) hypothesis test for two regression models is considered in the 

context of ARCH models. In particular, it is suggested that two ARCH processes can be 

compared through testing a null hypothesis of equivalence of the models in their 

predictability. Instead of being based on evaluating the ability of the models to describe 

the data, the proposed approach is based on evaluating the ability of the models to 
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predict the conditional variance. This comparative evaluation approach leads to what is 

termed in the sequel the Standardized Prediction Error Criterion (SPEC) model selection 

algorithm. According to this algorithm, the ARCH model with the lowest sum of squared 

standardized forecasting errors is selected for predicting future volatility. Each time the 

model selection method is applied, the model used to predict the conditional variance is 

revised. 

The ability of the SPEC algorithm to predict future volatility is also examined. In 

the chapter 5, in particular, a number of statistical measures are used to examine the 

performance of a model to predict future volatility, for forecasting horizons ranging from 

one day to one hundred days ahead. The results show that the SPEC model selection 

procedure has a satisfactory performance in selecting that model that generates “better” 

volatility predictions. 

The next two chapters look at the evaluation of the SPEC method not with the 

use of statistical measures but through assessing the potential added value of the SPEC 

algorithm in financial applications such as options’ forecasting. So, in chapter 6, we 

consider assessing model performance through computing option prices based on the 

volatility forecasts of the underlying asset returns, devising trading rules to trade options 

on a daily basis and comparing the resulting profits. The comparative evaluation is 

performed using S&P500 straddle options on the basis of the cumulative profits of 

traders always using variance forecasts obtained by a single model on the one hand and 

the cumulative profits of traders using variance forecasts obtained by models suggested 

by the SPEC algorithm on the other. The results of the study show that traders using this 

algorithm for deciding which model’s forecasts to use at any given point in time achieve 

higher cumulative profits than those using only a single model all the time. A comparison 

of the SPEC algorithm with a set of other model evaluation criteria yields similar findings. 

In chapter 7, the evaluation of the presented algorithm is performed by 

comparing different volatility forecasts in option pricing through the simulation of an 

options market. Traders employing the SPEC model selection algorithm use the model 

with the lowest sum of squared standardized one-step-ahead prediction errors for 

obtaining their volatility forecast. The cumulative profits of the participants in pricing one-

day index straddle options always using variance forecasts obtained by GARCH, 

EGARCH and TARCH models are compared to those made by the participants using 

variance forecasts obtained by models suggested by the SPEC algorithm. The straddles 

are priced on the S&P500 index. It is concluded that traders, who base their selection of 



Chapter 1  

3 

an ARCH model on the SPEC algorithm, achieve higher profits than those, who use only 

a single ARCH model. Moreover, the SPEC algorithm is compared with other criteria of 

model selection that measure the ability of the ARCH models to forecast the realized 

intra-day volatility. In this case too, the SPEC algorithm users achieve the highest 

returns. Thus, the SPEC model selection method appears to be a useful tool in selecting 

the appropriate model for estimating future volatility in pricing derivatives. 

In chapter 8, an alternative model selection approach is proposed. It is a multi-

model selection procedure, which leads to the selection of the model with the lowest sum 

of squared standardized one-step-ahead prediction errors. The theoretical framework 

considered in chapter 8 differs from the one in chapter 4, which is based on pairwise 

comparisons of the sums of squared standardized one-step-ahead forecasting errors of 

the candidate models. The form of the exact distribution of the test statistic is explicitly 

derived as the distribution of the minimum value of n  variables that are jointly 

multivariate gamma distributed. These represent the sums of squared standardized 

prediction errors of n  models. The null hypothesis that the n  models are of equivalent 

predictive ability is therefore tested against the alternative hypothesis that the model with 

the lowest loss function has the highest predictive ability using this statistic. The 

suggested testing procedure can be applied in evaluating the accuracy of either the 

conditional mean or the conditional variance forecasts and is illustrated in the case of 

three models using real data on index stock returns. Finally, in chapter 9, a brief 

discussion on topics for future research is provided. 

It would be worth mentioning that the SPEC model selection algorithm appears, 

on the basis of our findings to offer a useful tool in guiding one’s choice of the 

appropriate model for predicting future volatility, with applications in evaluating portfolios, 

managing financial risk and creating speculative strategies with options. 
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Cha p te r  2  

Au toreg res s i ve  Cond i t i on a l  He te ro scedas t i c i t y  

(ARCH)  Mode l s :  Rev i ew  o f  t he  L i t e ra tu re  
 

2 . 1 .  I n t r o d u c t i o n  

 

Since the first decades of the 20th century, asset returns have been assumed to 

form an independently and identically distributed (i.i.d) random process with zero mean 

and constant variance. Bachelier (1900) was the first who contributed the theoretical 

random walk model for the analysis of speculative prices. For { }tP  denoting the discrete 

time asset price process and { }ty  denoting the process of the continuously compounded 

returns, defined by ( )1ln −= ttt PPy , the early literature viewed the system that generates 

the asset price process as a fully unpredictable random walk process: 

( ),,0~ 2
...

1

σε

ε

N

PP
dii

t

ttt += −
 

where tε  is a zero-mean i.i.d. normal process. However, the assumptions of normality, 

independence and homoscedasticity do not always hold with real data. 

Figures 2.1 to 2.3 depict the continuously compounded daily returns of the 

Chicago Standard and Poor’s 500 Composite (S&P500) index, Frankfurt DAX30 stock 

index and Athens Stock Exchange (ASE) index. The data cover the period from 2nd 

January 1990 to 27th June 2000. A visual inspection shows clearly, that the mean is 

constant, but the variance changes over time, so the return series is not a sequence of 

independently and identically distributed (i.i.d.) random variables. A characteristic of 

asset returns, which is noticeable from the figures, is the volatility clustering first noted by 

Mandelbrot (1963): “Large changes tend to be followed by large changes, of either sign, 

and small changes tend to be followed by small changes”. Fama (1970) also observed 

the alternation between periods of high and low volatility: “Large price changes are 

followed by large price changes, but of unpredictable sign”. 
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Figure 2.1. S&P500 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00 
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Figure 2.2. DAX 30 Continuously Compounded Daily Returns from 2/1/90 to 27/06/00 
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Figure 2.3. ASE Continuously Compounded Daily Returns from 18/1/90 to 27/06/00 
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A non-constant variance of asset returns should lead to a non-normal distribution. 

Figure 2.4 represents the histograms and the descriptive statistics of the stock market 

series plotted in Figures 2.1 to 2.3. Asset returns are highly leptokurtic and slightly 

asymmetric, a phenomenon correctly observed by Mandelbrot (1963): “The empirical 

distributions of price changes are usually too “peaked” to be relative to samples from 

Gaussian populations … the histograms of price changes are indeed unimodal and their 

central bells remind the Gaussian ogive. But, there are typically so many outliers that 

ogives fitted to the mean square of price changes are much lower and flatter than the 

distribution of the data themselves.” In the sixties and seventies, the regularity of 

leptokurtosis led to a literature on modeling asset returns as independently and 

identically distributed random variables having some thick-tailed distribution (Blattberg 

and Gonedes (1974), Clark (1973), Hagerman (1978), Mandelbrot (1963,1964), Officer 

(1972), Praetz (1972)). 

 

Figure 2.4. Histogram and Descriptive Statistics for S&P500, DAX 30 and ASE Stock 
Market Returns. 
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 S&P500 DAX 30 ASE 
Mean 0.05% 0.05% 0.08% 

Standard 
Deviation 0.93% 1.28% 1.91% 

Skewness -0.346 -0.438 0.142 
Kurtosis 8.184 7.716 7.349  
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 These models, although able to capture the leptokurtosis, could not account for 

the existence of non-linear temporal dependence as the volatility clustering observed 

from the data. For example, applying an autoregressive model to remove the linear 

dependence from an asset returns series and testing the residuals for a higher-order 

dependence using the Brock, Dechert and Scheinkman (BDS) test (Brock et al. (1987), 

Brock et al. (1991), Brock et al. (1996)), the null hypothesis, that the residuals are i.i.d., 

is rejected. 

 In this chapter, a number of univariate and multivariate ARCH models are 

presented and their estimation is discussed. The main features of what seem to be most 

widely used ARCH models are described with emphasis on their practical relevance. It is 

not an attempt to cover the whole of the literature on the technical details of the models, 

which is very extensive. (A comprehensive survey of the most important theoretical 

developments in ARCH type modeling covering the period up to 1993 was given by 

Bollerslev et al. (1994)). The aim is to give the broad framework of the most important 

models used today in the economic applications. A careful selection of references is 

provided so that the interested reader can make more detailed examination of particular 

topics. In particular, an anthology of representations of ARCH models that have been 

considered in the literature is provided (section 2.2), including representations that have 

been proposed for accounting for relationships between the conditional mean and the 

conditional variance (section 2.3) and methods of estimation of their parameters (section 

2.4). Generalizations of these models suggested in the literature in multivariate contexts 

are also discussed (section 2.5). Section 2.6 gives a brief description of other methods of 

estimating volatility. Finally, section 2.7 is concerned with interpretation and 

implementation issues of ARCH models in financial applications. 

 The remaining of the present section looks at the influence that various factors 

have on a time series and in particular at effects, which as reflected in the data, are 

known as the “leverage effect”, the “non-trading period effect”, and the “non-

synchronous trading effect”. 

  

2 . 1 . 1  T h e  L e v e r a g e  E f f e c t  

 

 Black (1976) first noted that often, changes in stock returns display a tendency to 

be negatively correlated with changes in returns volatility, i.e., volatility tends to rise in 

response to “bad news” and to fall in response to “good news”. This phenomenon is 
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termed the “leverage effect” and can only be partially interpreted by fixed costs such as 

financial and operating leverage (see, e.g. Black (1976) and Christie (1982). The 

asymmetry present in the volatility of stock returns is too large to be fully explained by 

leverage effect. 

Figure 2.5. Daily Log-values and Recursive Standard Deviation of Returns for the 
S&P500 Stock Market. 
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Figure 2.6. Daily Log-values and Recursive Standard Deviation of Returns for the DAX 
30 Stock Market. 
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Figure 2.7. Daily Log-values and Recursive Standard Deviation of Returns for the ASE 
Stock Market. 
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Table 2.1. Mean and Annualized Standard Deviation of the S&P500, DAX 30 and 
ASE Index Returns. 
 Overall Monday Tuesday Wednesday Thursday Friday 

S&P500 
Mean 0.05% 0.12% 0.06% 0.07% -0.01% 0.04% 
St. Deviation 14.80% 15.84% 15.43% 12.57% 14.81% 15.22% 
N. of observations 2649 505 543 541 532 528 

DAX 30 
Mean 0.05% 0.07% 0.04% 0.09% 0.00% 0.06% 
St. Deviation 20.34% 23.91% 19.79% 18.74% 19.49% 19.46% 
N. of observations 2625 518 537 530 516 524 

ASE 500 
Mean 0.08% 0.12% -0.01% 0.06% -0.01% 0.26% 
St. Deviation 30.27% 39.06% 30.60% 25.98% 28.68% 25.16% 
N. of observations 2548 494 523 517 519 495 
Annualized standard deviation is computed by multiplying the standard deviation of daily returns by 
2521/2, the square root of the number of trading days per year. 

 

We can observe the phenomenon of “leverage effect” by plotting the market prices and 

their volatility. As a naïve estimate of volatility at day t , the standard deviation of the 22 

most recent trading days, ( ) ( )( ) 2222
22

2

22
22 ∑ ∑−= −=

−=
t

ti

t

ti iit yyσ , is used. Figures 

2.5 to 2.7 plot daily log-values of stock market indices and the relevant standard 

deviations of the continuously compounded returns. The periods of market drops are 

characterized by a high increase in volatility. 

 

2 . 1 . 2  T h e  N o n - t r a d i n g  P e r i o d  E f f e c t  
 

Financial markets appear to be affected by the accumulation of information 

during non-trading periods as reflected in the prices when the markets reopen following 

a close. As a result, the variance of returns displays a tendency to increase. This is 

known as the “non-trading period effect”. It is worth noting that the increase in the 

variance of returns is not nearly proportional to the market close duration as would be 

anticipated if the information accumulation rate were constant over time. In fact, as Fama 

(1965) and French and Roll (1986) observed, information accumulates at a lower rate 

when markets are closed than when they are open. Also, as reflected by the findings of 

French and Roll (1986) and Baillie and Bollerslev (1989), the returns variance tends to 

be higher following weekends and holidays than on other days, but not by as much as it 

would be under a constant news arrival rate. Table 2.1 shows the annualized standard 

deviations of stock market returns for each day for the indices S&P500, DAX30 and 
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ASE. The standard deviation on Monday is higher than on other days, mainly for the 

DAX 30 and ASE indices. 

 
2 . 1 . 3  N o n - s y n c h r o n o u s  T r a d i n g  E f f e c t  

 
The fact that the values of time series are often taken to have been recorded at 

time intervals of one length when in fact they were recorded at time intervals of other, not 

necessarily regular, length is an important factor affecting the return series with an effect 

known as the “non-synchronous trading effect” (see, e.g. Campbell et al. (1997)). For 

example, the daily prices of securities, usually analyzed, are the closing prices. The 

closing price of a security is the price at which the last transaction occurred. The last 

transaction of each security is not implemented at the same time each day. So, it is 

falsely assumed that the daily prices are equally spaced at 24-hour intervals. The 

importance of non-synchronous trading was first recognized by Fisher (1966) and further 

developed by many researchers such as Atchison et al. (1987), Cohen et al. (1978), 

Cohen et al. (1979, 1983), Dimson (1979), Lo and MacKinlay (1988, 1990a, 1990b), 

Scholes and Williams (1977). 

Non-synchronous trading in the stocks making up an index induces 

autocorrelation in the return series, primarily when high frequency data are used. To 

control this, Scholes and Williams (1977) suggested a first order moving average 

( )[ ]1MA  form for index returns, while Lo and MacKinlay (1988) suggested a first order 

autoregressive ( )[ ]1AR  form. Nelson (1991) wrote “as a practical matter, there is little 

difference between an ( )1AR  and an ( )1MA  when the AR  and MA  coefficients are 

small and the autocorrelations at lag one are equal, since the higher-order 

autocorrelations die out very quickly in the AR  model”. 

 

2 . 2 .  T h e  A u t o r e g r e s s i v e  C o n d i t i o n a l  H e t e r o s c e d a s t i c i t y  

( A R C H )  P r o c e s s  

 

Autoregressive Conditional Heteroscedasticity (ARCH) models have been widely 

used in financial time series analysis and particularly in analyzing the risk of holding an 

asset, evaluating the price of an option, forecasting time varying confidence intervals 

and obtaining more efficient estimators under the existence of heteroscedasticity. 
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Let ( ){ }θty  refer to the univariate discrete time real-valued stochastic process to 

be predicted  (e.g. the rate of return of a particular stock or market portfolio from time 

1−t  to t ) where θ  is a vector of unknown parameters and 

( )( ) ( )( ) ( )θµθθ ttttt yEIyE ≡≡ −− 11|  denotes the conditional mean given the information 

set 1−tI  (sigma-field) available in time 1−t . The innovation process for the conditional 

mean, ( ){ }θε t , is then given by ( ) ( ) ( )θµθθε ttt y −=  with corresponding unconditional 

variance ( )( ) ( )( ) ( )θσθεθε 22 ≡= tt EV , zero unconditional mean and ( ) ( )( ) 0=θεθε stE , 

st ≠∀ . The conditional variance of the process given 1−tI  is defined by 

( )( ) ( )( ) ( )( ) ( )θσθεθθ 22
111| ttttttt EyVIyV ≡≡≡ −−− . Since investors would know the 

information set 1−tI  when they make their investment decisions at time 1−t , the relevant 

expected return to the investors and volatility are ( )θµ t  and ( )θσ 2
t , respectively. 

An ARCH process, ( ){ }θε t , can be presented as: 

( ) ( )

( ) ( )[ ]
( ) ( ) ( ) ( ) ( )( ),,...,,...;,,...;,

1,0~

212121
2

...

−−−−−−=

==

=

ttttttt

tt

dii

t

ttt

g

zVzEfz

z

υυθεθεθσθσθσ

θσθε

 (2.2.1)

where ( ) 0=tzE , ( ) 1=tzV , ( ).f  is the density function of tz , ( )θσ t  is a time-varying, 

positive and measurable function of the information set at time 1−t , tυ  is a vector of 

predetermined variables included in tI , and ( ).g  is a linear or nonlinear functional form. 

By definition, ( )θε t  is serially uncorrelated with mean zero, but with a time varying 

conditional variance equal to ( )θσ 2
t . The conditional variance is a linear or nonlinear 

function of lagged values of tσ  and tε , and predetermined variables ( ),..., 21 −− tt υυ  

included in 1−tI . In the sequel, for notational convenience, no explicit indication of the 

dependence on the vector of parameters, θ , is given when obvious from the context. 

Since very few financial time series have a constant conditional mean of zero, an 

ARCH model can be presented in a regression form by letting tε  be the innovation 

process in a linear regression: 
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 (2.2.2)

where tx  is a 1×k  vector of endogenous and exogenous explanatory variables included 

in the information set 1−tI  and β  is a 1×k  vector of unknown parameters. 

 

2 . 2 . 1  A R C H  M o d e l s  

 

In the literature, one can find a large number of specifications of ARCH models 

that have been considered for the description of the characteristics of financial markets. 

A wide range of proposed ARCH processes is covered in surveys such as Andersen and 

Bollerslev (1998c), Bera and Higgins (1993), Bollerslev et al. (1992), Bollerslev et al. 

(1994), Gouriéroux (1997), Li et al. (2001) and Palm (1996). A good account of the state 

of the art up to 1995 can be found in Engle (1995). 

Engle (1982) introduced the original form of ( ).2 gt =σ , in equation (2.2.1), as a 

linear function of the past q  squared innovations: 

( )∑
=

−+=
q

i
itit aa

1

2
0

2 εσ . (2.2.3)

For the linear ARCH(q) process to be well defined and the conditional variance to be 

positive, almost surely the parameters must satisfy 00 >a , 0≥ia , for qi ,...,1= . An 

equivalent representation of the ARCH(q) process is given by: 

( ) 2
0

2
tt LAa εσ += , (2.2.4)

where L  denotes the lag operator and ( ) ( )q
q LaLaLaLA +++= ...2

21 . Defining 

22
tttv σε −= , the model is rewritten as: 

( ) ttt vLAa ++= 2
0

2 εε . (2.2.5)

By its definition, tv  is serially uncorrelated with ( ) 01 =− tt vE  but neither independently 

nor identically distributed. The ARCH(q) model is interpreted as an autoregressive 

process in the squared innovations and is covariance stationary if and only if the roots of 

( ) 1
1

=∑
=

q

i

i
i La  lie outside the unit circle, or, equivalently, the sum of the positive 
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autoregressive parameters is less than one. If the process is covariance stationary, its 

unconditional variance is equal to ( ) ( )( ) 1

10
2 1

−

=∑−=≡
q

i it aaV σε . 

Also, by definition, the innovation process is serially uncorrelated but not 

independently distributed. On the other hand, the standardized innovations are time 

invariant distributed. Thus, the unconditional distribution for the innovation process will 

have fatter tails than the distribution for the standardized innovations. For example, 

consider the kurtosis for the ARCH(1) process with conditional normally distributed 

innovations is ( ) ( ) ( ) ( )2
1

2
1

224 3113 ααεε −−=tt EE  if 13 2
1 <a , and ( ) ( ) ∞=

224
tt EE εε  

otherwise, i.e., greater than 3, the kurtosis value of the normal distribution. Generally 

speaking, an ARCH process always has fatter tails than the normal distribution: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )222222422244224 33 tttttttttt EEEEzEzEEE σσσσσσεε ≥== , 

where the first equality comes from the independence of tσ  and tz , and the inequality is 

implied by Jensen’s inequality. 

 In empirical applications of the ARCH(q) model, a relatively long lag in the 

conditional variance equation is often called for, and to avoid problems of negative 

variance parameter estimates a fixed lag structure is typically imposed (see, for 

example, Engle (1982, 1983), and Engle and Kraft (1983)). To circumvent this problem, 

Bollerslev (1986) proposed a generalization of the ARCH(q) process to allow for past 

conditional variances in the current conditional variance equation, the generalized 

ARCH, or GARCH(p,q), model: 

( ) ( ) ( ) ( ) 22
0

1

2

1

2
0

2
tt

p

j
jtj

q

i
itit LBLAabaa σεσεσ ++=++= ∑∑

=
−

=
− . (2.2.6)

For 00 >a , 0≥ia , qi ,...,1=  and 0≥jb , pj ,...,1= , the conditional variance is well 

defined. Taylor (1986) independently proposed the GARCH model using a different 

acronym. Nelson and Cao (1992) showed that the non-negativity constraints on the 

parameters of the process could be substantially weakened, so they should not be 

imposed in estimation. Provided that the roots of ( ) 1=LB  lie outside the unit circle and 

the polynomials ( )LB−1  and ( )LA  have no common roots, the positivity constraint is 

satisfied if all the coefficients in the infinite power series expansion for ( ) ( )( ) 11 −− LBLB  

are non-negative. In the GARCH(1,2) model, for example, the conditions of non-
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negativity are that 00 ≥a , 10 1 <≤ b , 01 ≥a  and 0211 ≥+ aab . In the GARCH(2,1) 

model, the necessary conditions require that 00 ≥a , 01 ≥b , 01 ≥a , 121 <+ bb  and 

04 2
2

1 ≥+ bb . Thus, slightly negative values of parameters, for higher order lags, do not 

result in negative conditional variance. Rearranging the GARCH(p,q) model, it can be 

presented as an autoregressive moving average process in the squared innovations  of 

orders ( )qp,max  and p , ( )( )[ ]pqpARMA ,,max , respectively: 

 
( ) ( ) ( ) t

p

j
jtj

p

j
jtj

q

i
itit vvbbaa +−++= ∑∑∑

=
−

=
−

=
−

11

2

1

2
0

2 εεε . (2.2.7)

The model is second order stationary if the roots of ( ) ( ) 1=+ LBLA  lie outside the unit 

circle, or equivalently if 1
11

<+∑∑ ==

p

j j
q

i i ba . Its unconditional variance is equal to 

( ) 1

110
2 1

−

== ∑∑ −−=
p

j j
q

i i baaσ . 

Very often, in connection with applications, the estimate for ( ) ( )LBLA +  turns out 

to be very close to unity. This provided an empirical motivation, for the development of 

the so-called integrated GARCH(p,q) or IGARCH(p,q) model by Engle and Bollerslev 

(1986): 

( ) ( ) 22
0

2
ttt LBLAa σεσ ++= , for ( ) ( ) 1=+ LBLA , (2.2.8)

where the polynomial ( ) ( ) 1=+ LBLA  has 0>d  unit roots and ( ) dqp −,max  roots 

outside the unit circle. 

Moreover, Nelson (1990a) showed that the GARCH(1,1) model is strictly 

stationary even if 111 >+ ba , as long as ( )( ) 0log 2
11 <+ tzabE . Thus, the conditional 

variance in IGARCH(1,1) with 00 =a , collapses to zero almost surely, and in 

IGARCH(1,1) with 00 >a  is strictly stationary. Therefore, a process that is integrated in 

the mean is not stationary in any sense, while an IGARCH process is strictly stationary 

but covariance non-stationary. 

Consider the IGARCH(1,1) model, ( ) 2
11

2
110

2 1 −− −++= ttt aaa σεσ , where 

10 1 << a . The conditional variance h-steps in the future takes the form: 

( ) 0
22

|
2 haE tththtt +== ++ σσσ , (2.2.9)
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which looks very much like a linear random walk with drift 0a . A linear random walk is 

strictly non-stationary (no stationary distribution and covariance non-stationary) and it 

has no unconditional first or second moments. In the case of IGARCH(1,1), the 

conditional variance is strictly stationary even though its stationary distribution generally 

lacks unconditional moments. In the case where 00 =a , equation (2.2.9) reduces to 

22
| ttht σσ ≡+ , a bounded martingale as it cannot take negative values. According to the 

martingale convergence theorem (Dudley (1989)), a bounded martingale must converge, 

and, in this case, the only value to which it can converge is zero. Thus, the stationary 

distributions for 2
tσ  and tε  have moments, but they are all trivially zero. In the case of 

00 >a , Nelson (1990a) showed that there is a non-degenerate stationary distribution for 

the conditional variance, but with no finite mean or higher moments. The innovation 

process tε  then has a stationary distribution with zero mean, but with tails that are so 

thick that no second or higher order moments exist. Furthermore, if the variable tz  

follows the standard normal distribution, Nelson (1990a) showed that: 

( )( ) ( ) ( )
( ) ( ) ( ) ( ),2;5.1,2;1,12;5.1;5.02                             

212lnln

11221111
2/11

11

1
2

11

abFababab

azabE t

−Φ+

+=+
−π

ψ
 (2.2.10)

where ( ).ψ  denotes the Euler Psi function, with ( ) 96351.121 −≈ψ  (Davis (1965)), 

( ).;.;.Φ  the confluent hypergeometric function (Lebedev (1972)), and ( ).,.;.,.;.22 F  the 

generalized hypergeometric function (Lebedev (1972)). Bougerol and Picard (1992) 

extended Nelson’s work and showed that the general GARCH(p,q) model is strictly 

stationary and ergodic. Choudhry (1995), by means of the IGARCH(1,1) model, studied 

the persistence of stock return volatility in European markets during the 1920’s and 

1930’s and argued that the 1929 stock market crash did not reduce stock market 

volatility. Using monthly stock returns from 1919 to 1936 in markets of Czechoslovakia, 

France, Italy, Poland and Spain, Choudhry mentioned that in the GARCH(1,1) model the 

sum of  1a  and 1b  approaches unity, which implies persistence of a forecast of the 

conditional variance over all finite horizons. 

 The GARCH(p,q) model successfully captures several characteristics of financial 

time series, such as thick tailed returns and volatility clustering. On the other hand, its 

structure imposes important limitations. The variance only depends on the magnitude 
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and not the sign of tε , which is somewhat at odds with the empirical behavior of stock 

market prices where the “leverage effect” may be present. The models that have been 

considered so far are symmetric in that only the magnitude and not the positivity or 

negativity of innovations determines 2
tσ . In order to capture the asymmetry manifested 

by the data, a new class of models, in which good news and bad news have different 

predictability for future volatility, was introduced. 

 The most popular method proposed to capture the asymmetric effects is Nelson’s 

(1991) exponential GARCH, or EGARCH, model. He proposed the following form for the 

evolution of the conditional variance: 

( ) ,log
1

0
2 ∑

∞

= −

−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

i it

it
it ga

σ
ε

πσ   11 ≡π , (2.2.11)

and accommodated the asymmetric relation between stock returns and volatility changes  

by making ( )ttg σε  a linear combination of tt σε  and tt σε : 

( ) ( ) ( )tttttttt Eg σεγσεσεθσε +−≡ , (2.2.12)

where θ  and γ  are constants. By construction, equation (2.2.12) is a zero mean i.i.d. 

sequence (note that tttz σε≡ ). Over the range ∞<< tz0 , ( )tzg  is linear in tz  with 

slope γθ +  and over the range 0≤<∞− tz , ( )tzg  is linear with slope θγ − . The first 

term of (2.2.12), ( )tt zEz −θ , represents the magnitude effect as in the GARCH model, 

while the second term, ( )tzγ , represents the leverage effect. To make this tangible, 

assume that 0>θ  and 0=γ . The innovation in ( )2log tσ  is then positive (negative) 

when the magnitude of tz  is larger (smaller) than its expected value. Assume now that 

0=θ  and 0<γ . In this case the innovation in ( )2log tσ  is positive (negative) when 

innovations are negative (positive). Moreover, the conditional variance is positive 

regardless of whether the iπ  coefficients are positive. Thus, in contrast to GARCH 

models, no inequality constraints need to be imposed for estimation. Nelson (1991) 

showed that ( )2log tσ  and tε  are strictly stationary as long as ∞<∑∞

=1
2

i iπ . A natural 

parameterization is to model the infinite moving average representation of equation 

(2.2.11) as an autoregressive moving average model: 
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or equivalently: 

( ) ( )( ) ( )( ) ( )1
1

0
2 11ln −

−−++= tt zgLBLAaσ . (2.2.13b) 

 Another popular way to model the asymmetry of positive and negative 

innovations is the use of indicator functions. Glosten et al. (1993) presented the 

GJR(p,q) model: 

( ) ( )( ) ( )∑∑∑
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0

2 0 σεεγεσ , (2.2.14)

where iγ , for qi ,...,1= , are parameters that have to be estimated, ( ).d   denotes the 

indicator function (i.e. ( ) 10 =<−itd ε  if 0<−itε , and ( ) 00 =<−itd ε  otherwise). The GJR 

model allows good news, ( )0>−itε , and bad news, ( )0<−itε , to have differential effects 

on the conditional variance. Therefore, in the case of the GJR(0,1) model, good news 

has an impact of 1a , while bad news has an impact of 11 γ+a . For 01 >γ , the “leverage 

effect” exists. 

A similar way to model asymmetric effects on the conditional standard deviation 

was introduced by Zakoian (1990), and developed further in Rabemananjara and 

Zakoian (1993), by defining the threshold GARCH, or TGARCH(p,q), model: 

( ) ( ) ( )∑∑∑
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111
0 σεγεσ , (2.2.15)

where tt εε ≡+  if 0>tε , 0≡+
tε  otherwise and +− −≡ ttt εεε . 

 Engle and Ng (1993) recommended the “news impact curve” as a measure of 

how news is incorporated into volatility estimates by alternative ARCH models. In their 

recent comparative study of the EGARCH model to the GJR model, Friedmann and 

Sanddorf-Köhle (2002) proposed a modification of the news impact curve termed the 

“conditional news impact curve”. Engle and Ng argued that the GJR model is better than 

the EGARCH model because the conditional variance implied by the latter is too high 

due to its exponential functional form. On the other hand, Friedmann and Sanddorf-

Köhle (2002) argued that the EGARCH model does not overstate the predicted volatility. 

The number of formulations presented in the financial and econometric literature 

is vast. In the sequel, the best known variations of ARCH modeling are presented. 
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Taylor (1986) and Schwert (1989a,b) assumed that the conditional standard 

deviation is a distributed lag of absolute innovations, and introduced the absolute 

GARCH, or AGARCH(p,q), model: 

∑∑
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=

− ++=
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j
jtj

q

i
itit baa

11
0 σεσ . (2.2.16)

Geweke (1986), Pantula (1986) and Milhǿj (1987) suggested a specification in which the 

log of the conditional variance depends linearly on past logs of squared innovations. 

Their model is the multiplicative ARCH, or Log-GARCH(p,q), model defined by 
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Schwert (1990) built the autoregressive standard deviation, or Stdev-ARCH(q), model: 
2
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Higgins and Bera (1992) introduced the non-linear ARCH, or NARCH(p,q), model: 
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δ σεσ , (2.2.19)

while Engle and Bollerslev (1986) proposed a simpler non-linear ARCH model: 
2

11110
2

−− ++= ttt baa σεσ δ . (2.2.20)

In order to introduce asymmetric effects, Engle (1990), proposed the asymmetric 

GARCH, or AGARCH(p,q), model: 
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where a negative value of iγ  means that positive returns increase volatility less than 

negative returns. Moreover, Engle and Ng (1993) presented two more ARCH models 

that incorporate asymmetry for good and bad news, the non-linear asymmetric GARCH, 

or NAGARCH(p,q), model: 
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 and the VGARCH(p,q) model: 
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Ding et al. (1993) introduced the asymmetric power ARCH, or APARCH(p,q), 

model, which includes seven ARCH models as special cases (ARCH, GARCH, 

AGARCH, GJR, TARCH, NARCH and logARCH): 

( ) ∑∑
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−− +−+=
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jtj
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11
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δδδ σεγεσ , (2.2.24)

where 00 >a , 0≥δ , 0≥jb , pj ,...,1= , 0≥ia  and 11 <<− iγ , qi ,...,1= . The model 

imposes a Box and Cox (1964) power transformation of the conditional standard 

deviation process and the asymmetric absolute innovations. The functional form for the 

conditional standard deviation is familiar to economists as the constant elasticity of 

substitution (CES) production function. Ling and McAleer (2001) provided sufficient 

conditions for the stationarity and ergodicity of the APARCH(p,q), model. Brooks et al. 

(2000) applied the APARCH(1,1) model for 10 series of national stock market index 

returns. The optimal power transformation was found to be remarkably similar across 

countries. 

Sentana (1995) introduced the quadratic GARCH, or GQARCH(p,q), model of the 

form: 
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Setting 0=iγ , for qi ,...,1= , leads to the Augmented ARCH model of Bera and Lee 

(1990). It does encompass all the ARCH models of quadratic variance functions, but it 

does not include models in which the variance is quadratic in the absolute value of 

innovations, as the APARCH model. 

 Hentschel (1995) gave a complete parametric family of ARCH models. This 

family nests the most popular symmetric and asymmetric ARCH models, thereby 

highlighting the relation between the models and their treatment of asymmetry. 

Hentschel presents the variance equation as: 

( )
λ

σ
βεσω

λ
σ λ

λ
λ 11 1

1
−

++=
− −

−
t

t
v

t
t fa , (2.2.26)

where ( ).f  denotes the absolute value function of innovations, 

( ) ( )βεζβεε −−−= tttf . (2.2.27)

In general, this is a law of the Box-Cox transformation of the conditional standard 

deviation (as in the case of the APARCH model), and the parameter λ  determines the 



Chapter 2  

21 

shape of the transformation. For 1>λ , the transformation of tσ  is convex, while for 

1<λ , it is concave. The parameter v  serves to transform the absolute value function. 

For different restrictions on the parameters in equations (2.2.26) and (2.2.27), almost all 

the popular symmetric and asymmetric ARCH models are obtained. For example, for 

0=λ , 1=v , 1=β  and free ζ , we obtain Nelson’s exponential GARCH model. 

However, some models, as Sentana’s quadratic model, are excluded. 

 Gouriéroux and Monfort (1992) proposed the qualitative threshold GARCH, or 

GQTARCH(p,q), model with the following specification: 
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− ++=
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1 1
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Assuming constant conditional variance over various observation intervals, Gouriéroux 

and Monfort (1992) divided the space of tε  into J  intervals and let ( )tjI ε  be 1 if tε  is in 

the thj  interval. 

 Another important class of models, proposed independently by Cai (1994) and 

Hamilton and Susmel (1994), is the class of regime switching ARCH models, a natural 

extension of regime-switching models for the conditional mean, introduced by Hamilton 

(1989). These models allow the parameters of the ARCH process to come from one of 

several different regimes, with transitions between regimes governed by an unobserved 

Markov chain. Let tε
~  be the innovation process and let ts  denote an unobserved 

random variable that can take on the values K,...,2,1 . Suppose that ts  can be described 

by a Markov chain, ( ) ijttttt pksisjsP ==== −−−− ,...~,~,...,,| 2121 εε , for Kji ,...,2,1, = . The 

idea is to model the innovation process, tε
~ , as tst t

g εε ≡~ , where tε  is assumed to 

follow an ARCH process. So, the underlying ARCH variable, tε , is multiplied by the 

constant 1g  when the process is in the regime presented by 1=ts , is multiplied by 

2g  when 2=ts , and so on. The factor for the first stage, 1g , is normalized at unity 

with 1≥jg  for Kj ,...,3,2= . The idea is, thus, to model changes in regime as changes 

in the scale of the process. Dueker (1997) and Hansen (1994) extended the approach to 

GARCH models. 

 Fornari and Mele (1995) introduced the volatility-switching ARCH model, or 

VSARCH(p,q), model: 



Chapter 2  

22 

∑∑
=

−
−

−
−

=
− +++=

p

j
jtj

t

t
t

q

i
itit bSa

1

2
2

1

2
1

1
1

22 σ
σ
ε

γεωσ , (2.2.29)

where tS  is an indicator factor that equals one if 0>tε , minus one if 0<tε , and 

22
tt σε  measures the difference between the forecast of the volatility at time t  on the 

basis of the information set dated at 1−t , 2
tσ , and the realized value 2

tε . As Fornari and 

Mele (1995) mentioned, the volatility-switching model is able to capture a phenomenon 

that has not been modeled before. It implies that asymmetries can become inverted, with 

positive innovations inducing more volatility than negative innovations of the same size 

when the observed value of the conditional variance is lower than expected. Fornari and 

Mele (1996) built a mixture of the GJR and the VSARCH models, named it asymmetric 

volatility-switching ARCH, or AVSARCH(p,q), model and estimated it for 1== qp : 
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−−−−−−− −++++= tttttttt SkSbaa σεδεγσεσ . (2.2.30)

The first four terms are the GJR(1,1) model, except that tS  is a dummy that equals one 

or minus one instead of zero or one, respectively. The last term captures the reversal of 

asymmetry observed when 2
1

2
1 −− tt σε reaches k , the threshold value. Note that the 

AVSARCH model is able to generate kurtosis higher than the GARCH or GJR models. 

 Hagerud (1996), inspired by the Smooth Transition Autoregressive (STAR) model 

of Luukkonen et al. (1988), proposed the smooth transition ARCH model. In the STAR 

model, the conditional mean is a non-linear function of lagged realizations of the series 

introduced via a transition function. The smooth transition GARCH(p,q) model has the 

form: 
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where ( ).F  is either the logistic or the exponential transition function, the two most 

commonly used transition functions for STAR models (for details see Teräsvirta (1994)). 

The logistic function considered is 

( ) ( )( ) 5.0exp1 1 −−+= −
−− ititF θεε , for 0>θ , (2.2.32)

and the exponential function is 

( ) ( )2exp1 ititF −− −−= θεε , for 0>θ . (2.2.33)
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The two resulting models termed logistic and exponential smooth transition GARCH, or 

LST-GARCH(p,q) and EST-GARCH(p,q), models, respectively. The smooth transition 

models allow for the possibility of intermediate positions between different regimes. For 

∞<<∞− tε , the logistic transition function takes values in ( ) 5.0.5.0 ≤≤− F  and 

generates data where the dynamics of the conditional variance differ depending on the 

sign of innovations. On the other hand, the exponential function generates a return 

process for which the dynamics of the conditional variance depend on the magnitude of 

the innovations, as for ∞→tε  the transition function will be equal to unity, and when 

0=tε  the transition function is equal to zero. Thus, contrary to the regime switching 

models, the transition between states is smooth as the conditional variance is a 

continuous function of innovations. A model similar to the LST-GARCH model was 

independently proposed by González-Rivera (1996). Recently, Nam et al. (2002) 

provided an application of a smooth transition ARCH model with a logistic function in the 

following form 
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which they termed asymmetric nonlinear smooth transition GARCH, or ANST-GARCH 

model. Nam et al. explored the asymmetric reverting property of short-horizon expected 

returns and have found that the asymmetric return reversals can be exploited for the 

contrarian profitability1. Note that when 020 == bb  the ANST-GARCH model reduces to 

González-Rivera’s specification. Lubrano (1998) suggested an improvement over these 

transition functions, introducing an extra parameter, the threshold c , which determines 

at which magnitude of past innovations the change of regime occurs. The generalized 

logistic transition function is given by: 

( ) ( )
( )( )22

2

exp1
exp1

c
F

it

it
it −−+

−−
=

−

−
− εθ

θε
ε . (2.2.34)

The exponential transition function can also be generalized in the form: 

( ) ( )( )2exp1 cF itit −−−= −− εθε . (2.2.35)

                                                 
1 Contrarian investment strategies are contrary to the general market direction. Interpretation of the 
contrarian profitability is in a debate between the two competing hypotheses: the time varying rational 
expectation hypothesis and the stock market overreaction hypothesis. For details see Chan (1988), Chopra 
et al. (1992), Conrad and Kaul (1993), DeBondt and Thaler (1985, 1987,1989), Lo and MacKinlay (1990b), 
Veronesi (1999), Zarowin (1990). 
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Engle and Lee (1993) proposed the component GARCH model in order to 

investigate the long-run and the short-run movement of volatility. The GARCH(1,1) 

model can be written as: 

( ) ( )22
11

22
11

22 σσσεσσ −+−+= −− ttt ba , (2.2.36)

for ( ) 1
110

2 1 −−−= baaσ  denoting the unconditional variance. The conditional variance 

in the GARCH(1,1) model shows mean reversion to the unconditional variance, which is 

constant for all time. By contrast, the component GARCH, or CGARCH(1,1), model 

allows mean reversion to a time varying level tq . The CGARCH(1,1) model is defined 

as: 
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The difference between the conditional variance and its trend, tt q−2σ , is the transitory 

or short-run component of the conditional variance, while tq  is the time varying long-run 

volatility. Combining the transitory and permanent equations the model reduces to: 
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which shows that the CGARCH(1,1) is a restricted GARCH(2,2) model. Moreover, 

because of the existence of the “leverage effect”, Engle and Lee (1993) combine the 

component model with the GJR model to allow shocks to affect the volatility components 

asymmetrically. The asymmetric component GARCH, or the ACGARCH(1,1), model 

becomes: 
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 (2.2.39)

where ( ).d  denotes the indicator function (i.e. ( ) 10 =<−itd ε  if 0<−itε , and 

( ) 00 =<−itd ε  otherwise). 

Baillie et al. (1996), motivated by the Fractionally Integrated Autoregressive 

Moving Average, or ARFIMA, model, presented the Fractionally Integrated Generalized 

Autoregressive Conditional Heteroscedasticity, or FIGARCH, model. The ARFIMA(k,d,l) 

model for the discrete time real-valued process { }ty , initially developed in Granger 

(1980) and Granger and Joyeux (1980), is defined as: 
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( )( ) ( ) tt
d LByLLA ε=−1 , (2.2.40)

where ( )LA  and ( )LB  denote the lag operators of order k  and l  respectively, and { }tε  

is a mean-zero serially uncorrelated process. The fractional differencing operator, 

( )dL−1 , is usually interpreted in its binomial expansion given by: 

( ) ∑
∞
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=−
0

1
j

j
j

d LL π , for 
( )

( ) ( ) ∏
=

−−
=

−Γ+Γ
−Γ

=
j

k
j k

dk
dj

dj
0

1
1

π , (2.2.41)

where ( ).Γ  denotes the gamma function. 

 The stationary ARMA process, equation (2.2.40) for 0=d , is a short memory 

process, the autocorrelations of which are geometrically bounded: 

( ) m
mtt cryyCor ≤+, ,  

for ,...2,1=m , where 0>c  and 10 << r . As ∞→m  the dependence, or memory, 

between ty  and mty +  decreases rapidly. However, some observed time series appeared 

to exhibit a substantially larger degree of persistence than allowed for by stationary 

ARMA processes. For example, Ding et al. (1993) found that the absolute values or 

powers, particularly squares, of returns on S&P500 index tend to have very slowly 

decaying autocorrelations. Similar evidence of this feature for other types of financial 

series is contained in Dacarogna et al. (1993), Mills (1996) and Taylor (1986). Such time 

series have autocorrelations that seem to satisfy the condition:  

( ) 12, −
+ ≈ d

mtt cmyyCor ,  

as ∞→m , where 0≠c  and 5.0<d . Such processes are said to have long memory 

because the autocorrelations display substantial persistence. 

 The concept of long memory and fractional Brownian motion was originally 

developed by Hurst (1951) and extended by Mandelbrot (1963, 1982) and Mandelbrot 

and Van Ness (1968). However, the ideas became essentially applicable by Granger 

(1980,1981), Granger and Joyeux (1980) and Hosking (1981). Hurst was a hydrologist 

who worked on the Nile river dam project. He had studied an 847-years record of the 

Nile’s overflows and observed that larger than average overflows were more likely to be 

followed by more large overflows. Suddenly, the water flow would change to a lower than 

average overflow which would be followed by lower than average overflows. Such a 

process could be examined neither with standard statistical correlation analysis nor by 

assuming that the water inflow is a random process, so it could be analyzed as a 
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Brownian motion. Einstein (1905) worked on Brownian motion and found that the 

distance a random particle covers increases with the square root of time used to 

measure it, or: 
2/1td = , (2.2.42)

where d  is the distance covered and t  is the time index. But this applies only to time 

series that are in Brownian motion, i.e. mean-zero and unity variance independent 

processes. Hurst generalized (2.2.42) to account for processes other than Brownian 

motion in the form: 
Hctsd = . (2.2.43)

For any process { }T
tty 1=  (e.g. asset returns) with mean ∑

=

−=
T

t
tT yTy

1

1 , d  is given by 

( ) ( )∑∑
=≤≤=≤≤

−−−=
k

t
TtTk

k

t
TtTk

yyMinyyMaxd
1111

, (2.2.44)

where s  is the standard deviation of { }T
tty 1=  and c  is a constant. The ratio sd  is called 

rescaled range and H  is the Hurst exponent. If { }ty  is a sequence of independently and 

identically distributed random variables, then 5.0=H . Hurst’s investigations for the Nile 

lead to 9.0=H . Thus, the rescaled range was increasing at a faster rate than the 

square root of time.  

 The IGARCH(p,q) model in equation (2.2.8) could be rewritten as: 

( )( ) ( )( ) tt vLBaLL −+=−Φ 11 0
2ε , (2.2.45)

where ( ) ( ) ( )( )( ) 111 −−−−≡Φ LLBLAL  is of order ( )[ ]1,max −qp . The FIGARCH model 

is simply obtained by replacing the first difference operator in equation (2.2.45) with the 

fractional differencing operator. Rearranging terms in equation (2.2.45) the 

FIGARCH(p,d,q) model is given as: 

( ) ( )( )( ) ( ) 22
0

2 11 tt
d

t LBLLLBa σεσ +−Φ−−+= , (2.2.46)

which is strictly stationary and ergodic for 10 ≤≤ d . In contrast to the GARCH and 

IGARCH models where shocks to the conditional variance either dissipate exponentially 

or persist indefinitely, for the FIGARCH model the response of the conditional variance 

to past shocks decays at a slow hyperbolic rate. The sample autocorrelations of the daily 

absolute returns, or ty , as investigated by Ding et al. (1993) and Bollerslev and 

Mikkelsen (1996) among others, exceed the 95% confidence intervals for no serial 



Chapter 2  

27 

dependence for more than 1000 lags. Moreover, the sample autocorrelations for the first 

difference of absolute returns, ( ) tyL−1 , still show statistically significant long-term 

dependence. On the contrary, the fractional difference of absolute returns, ( ) tyL 5.01− , 

shows much less long-term dependence. Bollerslev and Mikkelsen (1996) provided 

evidence that illustrates the importance of using fractional integrated conditional 

variance models in the context of pricing options with maturity time of one year or longer. 

Note that the practical importance of the fractional integrated variance models stems 

from the added flexibility when modeling long run volatility characteristics. 

As Mills (1999) stated, the implication of IGARCH models that shocks to the 

conditional variance persist indefinitely does not reconcile with the persistence observed 

after large shocks, such as the crash of October 1987, and with the perceived behavior 

of agents who do not appear to frequently and radically alter the composition of their 

portfolios. So the widespread observation of the IGARCH behavior may be an artifact of 

a long memory FIGARCH data generating process. Baillie et al. (1996) provided a 

simulation experiment that provides considerable support of this line of argument. Beine 

et al. (2002) applied the FIGARCH(1,d,1) model in order to investigate the effects of 

official interventions on the volatility of exchange rates. One of their interesting remarks 

is that measuring the volatility of exchange rates through the FIGARCH model instead of 

a traditional ARCH model leads to different results. The GARCH and IGARCH models 

tend to underestimate the effect of the central bank interventions on the volatility of 

exchange rates. Vilasuso (2002) fitted conditional volatility models to daily spot 

exchange rates and found that the FIGARCH(1,d,1) model generates superior volatility 

forecasts compared to those generated by a GARCH(1,1) or IGARCH(1,1) model. 

Bollerslev and Mikkelsen (1996) extended the idea of fractional integration to the 

exponential GARCH model, whereas Tse (1998) built the fractional integration form of 

the APARCH model. Factorizing the autoregressive polynomial 

( )( ) ( )( )dLLLB −Φ=− 11 , where all the roots of ( ) 0=Φ z  lie outside the unit circle, the 

fractionally integrated exponential GARCH, or FIEGARCH(p,d,q), model is defined as: 

( ) ( ) ( ) ( )( ) ( )1
1

0
2 11ln −

−− +−Φ+= t
d

t zgLALLaσ . (2.2.47)

The fractionally integrated asymmetric power ARCH, or FIAPARCH(p,d,q), model has 

the following form: 

( )( ) ( )( )( )( )δδ γεεσ tt
d

t LLLBa −−Φ−−+= −− 111 1
0 . (2.2.48)
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Finally, Hwang (2001) presented the asymmetric fractionally integrated family 

GARCH(1,d,1), or ASYMM FIFGARCH(1,d,1), model, which is defined as: 
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 (2.2.49)

for 1≤c . Hwang points out that, for different parameter values in (2.2.49), the following 

fractionally integrated ARCH models are obtained: FIEGARCH, for 0=λ , 1=v , 

FITGARCH for 1=λ , 1=v , FIGARCH for 2=λ , 2=v , and FINGARCH, for v=λ  but 

otherwise unrestricted. 

 However, Ruiz and Pérez (2003) noted that Hwang’s model is poorly specified 

and does not nest the FIEGARCH model. Thus, they suggested an alternative 

specification, which is a direct generalization of Hentschel’s model in (2.2.26): 
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Imposing appropriate restrictions on the parameters of (2.2.50), a number of models are 

obtained as special cases (e.g. the FIGARCH model in (2.2.46), the FIEGARCH model 

in (2.2.47), Hentschel’s model in (2.2.26)). 

Nowicka-Zagrajek and Weron (2001) replaced the constant term in the 

GARCH(p,q) model with a linear function of i.i.d. stable random variables and defined 

the randomized GARCH, or R-GARCH(r,p,q), model: 
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where 0≥∗ic , ri ,...,1=∗ , 0≥ia , qi ,...,1= , 0≥jb , pj ,...,1= , the innovations tη  are 

positive i.i.d. stable random variables expressed by the characteristic function in (2.4.16), 

and { }tη  and { }tz  are independent. 

Müller et al. (1997), based on the hypothesis that participants in a heterogeneous 

market make volatilities of different time resolutions behave differently, proposed the 

heterogeneous interval GARCH, or H-GARCH(p,n), model that takes into account the 

squared price changes over time intervals of different sizes:  
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where 00 >a , 0≥ika , for ni ,...,1= , ik ,...,1= , 0≥jb , pj ,...,1= .  

 Many financial markets impose restrictions on the maximum allowable daily 

change in price.  As pointed out by Wei and Chiang (1997), the common practice of 

ignoring the problem by treating the observed censored observations as if they were 

actually the equilibrium prices, or dropping the limited prices from the studied sample, 

leads to the underestimation of conditional volatility. Morgan and Trevor (1997) proposed 

the Rational Expectation (RE) algorithm (which can be interpreted as an EM algorithm 

(Dempster et al. (1977)) for censored observations in the presence of heteroscedasticity, 

which replaces the unobservable components of the likelihood function of the ARCH 

model by their rational expectations. As an alternative to the RE algorithm, Wei (2002), 

based on Kodres’s (1993) study, proposed a censored-GARCH model and developed a 

Bayesian estimation procedure for the proposed model. Moreover, on the basis of 

Kodres’s (1988) research, Lee (1999a), Wei (1999) and Calzolari and Fiorentini (1998) 

developed the class of Tobit-GARCH models.  

Brooks et al. (2001) reviewed the most known software packages for estimation 

of ARCH models, and concluded that the estimation results differ considerably from one 

another. Table 2.2, in the Appendix, contains the ARCH models that have been 

presented in this section. 
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2 . 3 .  T h e  R e l a t i o n s h i p  B e t w e e n  C o n d i t i o n a l  V a r i a n c e  a n d  

C o n d i t i o n a l  M e a n  

 

2 . 3 . 1  T h e  A R C H  i n  M e a n  M o d e l  

 

Financial theory suggests that an asset with a higher expected risk would pay a 

higher return on average. Let ty  denote the rate of return of a particular stock or market 

portfolio from time t  to 1−t  and trf  be the return on a riskless asset (i.e. treasury bills). 

Then, the excess return (asset return minus the return on a riskless asset) can be 

decomposed into a component anticipated by investors at time 1−t , tµ , and a 

component that was unanticipated, tε : 

tttt rfy εµ +=− . 

The relationship between investors’ expected return and risk was presented in an ARCH 

framework, by Engle et al. (1987). They introduced the ARCH in mean, or ARCH-M, 

model where the conditional mean is an explicit function of the conditional variance of 

the process in framework (2.2.1). The estimated coefficient on the expected risk is a 

measure of the risk-return tradeoff. Thus, the ARCH regression model, in framework 

(2.2.2), can be presented as: 

( )
[ ]

( ). ,...,,...;,,...;,

,0~|

212121
2

2
1

2

−−−−−−

−

=

++′=

ttttttt

ttt

tttt

g

fI

xy

υυεεσσσ

σε

εσφβ

  

where ( )2
tσφ  represents the risk premium, i.e., the increase in the expected rate of 

return due to an increase in the variance of the return. Although earlier studies 

concentrated on detecting a constant risk premium, the ARCH in mean model provided a 

new approach by which a time varying risk premium can be estimated. The most 

commonly used specifications of the ARCH-M model are in the form: 

( ) 2
10

2
tt cc σσφ += , (Nelson (1991), Bollerslev et al. (1994)),  

( ) tt cc σσφ 10
2 += , (Domowitz and Hakkio (1985), Bollerslev et al. (1988)),  

( ) ( )2
10

2 log tt cc σσφ += , (Engle et al. (1987)).  

A positive as well as a negative risk return tradeoff could be consistent with the financial 

theory. A positive relationship is expected if we assume a rational risk averse investor 
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who requires a larger risk premium during the times when the payoff of the security is 

riskier. On the other hand, a negative relationship is expected under the assumption that 

during relatively riskier periods the investors may want to save more. In applied research 

work, there is evidence for both positive and negative relationship. French et al. (1987) 

found positive risk return tradeoff for the excess returns on the S&P500 composite 

portfolio although not statistically significant in all the examined periods. Nelson (1991) 

found a negative but insignificant relationship for the excess returns on the Center for 

Research in Security Prices (CRSP) value weighted market index. Bollerslev et al. 

(1994) found a positive, not always statistically significant, relationship for the returns on 

Dow Jones and S&P500 indices. Interesting studies employing the ARCH-M model were 

conducted by Devaney (2001) and Elyasiani and Mansur (1998). The former examined 

the tradeoff between conditional variance and excess returns for stocks of the 

commercial bank sector, while the latter investigated the time varying risk premium for 

real estate investment trusts. 

 

2 . 3 . 2  V o l a t i l i t y  a n d  S e r i a l  C o r r e l a t i o n  

 

LeBaron (1992) found a strong inverse relation between volatility and serial 

correlation for S&P500, CRSP value weighted market index, Dow Jones and IBM 

returns. He introduced the exponential autoregressive GARCH, or EXP-GARCH(p,q), 

model in which the conditional mean is a non-linear function of the conditional variance. 

Based on LeBaron (1992), the ARCH regression model, in framework (2.2.2), can be 

presented as: 
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 (2.3.1)

The model is a mixture of the GARCH model and the exponential AR model of Ozaki 

(1980). For the data set LeBaron used, 2c  is significantly negative and remarkably 

robust to the choice of sample period, market index, measurement interval and volatility 

measure. As LeBaron stated, it is difficult to estimate 3c  in conjunction with 2c  when 

using a gradient type of algorithm. So, 3c  is set to the sample variance of the series. 

Generally, the first order autocorrelations are larger for periods of lower volatility and 
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smaller during periods of higher volatility. The accumulation of news2 and the non-

synchronous trading3 were mentioned as the possible reasons. The stocks do not trade 

close to the end of the day and information arriving during this period is reflected on the 

next day’s trading, inducing serial correlation. As new information reaches market very 

slowly, traders optimal action is to do nothing until enough information is accumulated. 

Because of the non-trading, the trading volume, which is strongly positive related with 

volatility, lowers. Thus, we have a market with low trade volume and high correlation. 

 Kim (1989), Sentana and Wadhwani (1991) and Oedegaard (1991) have also 

investigated the relationship between autocorrelation and volatility and found an inverse 

relation between volatility and autocorrelation. Moreover, Oedegaard (1991) found that 

the evidence of autocorrelation, for the S&P500 daily index, decreased over time, 

possibly because of the introduction of financial derivatives (options and futures) on the 

index. 

 

2 . 4 .  E s t i m a t i o n  
 
2 . 4 . 1  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

 

 In ARCH models, the most commonly used method in estimating the vector of 

unknown parameters, θ , is the method of maximum likelihood (MLE). Under the 

assumption of independently and identically distributed standardized innovations, 

( ) ( ) ( )θσθεθ tttz ≡ , in framework (2.2.2), let us denote their density function as ( )wzf t ; , 

where wRWw
(

⊆∈  is the vector of the parameters of f  to be estimated. So, for 

( )w′′=′ ,θψ  denoting the whole set of the w(
(( +=θψ  parameters that have to be 

estimated for the conditional mean, variance and density function, the log-likelihood 

function for ( ){ }θty  is: 

( ) ( )( )( ) ( )( )θσθψ 2ln
2
1;ln; tttt wzfyl −= . (2.4.1)

The full sample log-likelihood function for a sample of T observations is simply: 

{ }( ) ( )∑
=

=
T

t
tttT ylyL

1
;; ψψ . (2.4.2)

                                                 
2 See section 2.1.2. 
3 See section 2.1.3. 
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If the conditional density, the mean and the variance functions are differentiable for each 

possible ψψ
(

RW ⊆Ψ≡×Θ∈ , the MLE estimator ψ̂  for the true parameter vector 0ψ  is 

found by maximizing equation (2.4.2), or equivalently by solving the equation 
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0

;
1

=
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t

tt yl
ψ
ψ

. (2.4.3)

 If the density function does not require the estimation of any parameter, as in the case 

of the normal distribution that is uniquely determined by its first two moments, then 

0=w( . In such cases, equation (2.4.3) becomes: 
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Let us, for example, estimate the parameters of framework (2.2) for normal distributed 

innovations and the GARCH(p,q) functional form for the conditional variance as given in 

equation (2.2.6). The density function of the standard normal distribution is: 
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For convenience equation (2.2.6) is written as tt sωσ ′=2 , where 

( )pqaaa ββω ,...,,,...,, 110=′  and ( )22
1

22
1 ,...,,,...,,1 pttqttts −−−−= σσεε . The vector of 

parameters that have to be estimated is ( )ωβθψ ′=′=′ ,' . For normally distributed 

standardized innovations, tz , the log-likelihood function in equation (2.4.1), is: 
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and the full sample log-likelihood function in equation  (2.4.2), becomes: 
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The first and the second derivatives of the log-likelihood for the tht  observation with 

respect to the variance parameter vector are: 
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The first and second derivatives of the log-likelihood with respect to the mean parameter 

vector are: 
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The information matrix corresponding to ω  is given as: 
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The information matrix corresponding to b  is given as: 
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The elements in the off-diagonal block of the information matrix are zero, i.e., 
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So, ω  can be estimated without loss of asymptotic efficiency based on a consistent 

estimate of β  and vice versa. At this point, it should be noticed that although the block 

diagonality holds for models as the GARCH, NARCH and Log-GARCH models, it does 

not hold for asymmetric models, i.e. the EGARCH model, and for the ARCH in mean 

models. In such cases, the parameters have to be estimated jointly. 
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 Even in the case of the symmetric GARCH(p,q) model with normally distributed 

innovations, we have to solve a set of 1+++= qpkθ
(

 non-linear equations in (2.4.4). 

Numerical techniques are used in order to estimate the vector of parameters ψ . 

 

2 . 4 . 2  N u m e r i c a l  E s t i m a t i o n  A l g o r i t h m s  

 

The problem faced in non-linear estimation, as in the case of the ARCH models, 

is that there are no closed form solutions. So, an iterative method has to be applied to 

obtain a solution. Iterative optimization algorithms work by taking an initial set of values 

for the parameters, say ( )0ψ , then performing calculations based on these values to 

obtain a better set of parameters values ( )1ψ . This process is repeated until the 

likelihood function, in equation (2.4.2), no longer improves between iterations. If ( )0ψ  is a 

trial value of the estimate, then expanding { }( ) ψψ ∂;tT yL  and retaining only the first 

power of ( )0ψψ − , we obtain 
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At the maximum, ψ∂TL  should equal zero. Rearranging terms, the correction for the 

initial value, ( )0ψ , obtained is 
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Let ( )iψ  denote the parameter estimates after the thi  iteration. Based on (2.4.6) the 

Newton-Raphson algorithm computes ( )1+iψ  as: 
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The scoring algorithm is a method closely related to the Newton-Raphson algorithm and 

was applied by Engle (1982) to estimate the parameters of the ARCH(p) model. The 

difference between the Newton-Raphson method and the method of scoring is that the 

former depends on observed second derivatives, while the latter depends on the 

expected values of the second derivatives. So, the scoring algorithm computes ( )1+iψ  as: 
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An alternative procedure suggested by Berndt et al. (1974), which uses first derivatives 

only, is the Berndt, Hall, Hall and Hausman (BHHH) algorithm. The BHHH algorithm is 

similar to the Newton-Raphson algorithm, but, instead of the Hessian  (second derivative 

of the log likelihood function with respect to the vector of unknown parameters), it is 

based on an approximation formed by the sum of the outer product of the gradient 

vectors for the contribution of each observation to the objective function. This 

approximation is asymptotically equivalent to the actual Hessian when evaluated at the 

parameter values, which maximize the function. The BHHH algorithm computes ( )1+iψ  

as: 
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When the outer product is near singular, a ridge correction may be used in order to 

handle numerical problems and improve the convergence rate. Marquardt (1963) 

modified the BHHH algorithm by adding a correction matrix to the sum of the outer 

product of the gradient vectors. The Marquardt updating algorithm is computed as: 

( ) ( )
( ) ( ) ( )

ψψψ
ψψ

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
′∂

∂
∂
∂

+=
−

=

+ ∑
i

T
T

t

i
t

i
tii L

aI
ll

1

1

1 , (2.4.10)

where I  is the identity matrix and a  is a positive number chosen by the algorithm. The 

effect of this modification is to push the parameter estimates in the direction of the 

gradient vector. The idea is that when we are far from the maximum, the local quadratic 

approximation to the function may be a poor guide to its overall shape, so it may be 

better off simply following the gradient. The correction may provide a better performance 

at locations far from the optimum, and allows for computation of the direction vector in 

cases where the Hessian is near singular. 

 

2 . 4 . 3  M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  u n d e r  N o n - N o r m a l i t y  

 

As already mentioned, an attractive feature of the ARCH process is that even 

though the conditional distribution of the innovations is normal, the unconditional 

distribution has thicker tails than the normal one. However, the degree of leptokurtosis 
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induced by the ARCH process often does not capture all of the leptokurtosis present in 

high frequency speculative prices. Thus, there is a fair amount of evidence that the 

conditional distribution of tε  is non-normal as well. 

To circumvent this problem, Bollerslev (1987) proposed using the standardized t 

distribution with 2>ν  degrees of freedom: 
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where ( ).Γ  is the gamma function. The degrees of freedom are regarded as parameter 

to be estimated, ( )ν=w . The t distribution is symmetric around zero and for 4>ν  the 

conditional kurtosis equals ( )( ) 1423 −−− νν , which exceeds the normal value of three, 

but for ∞→ν , (2.4.11) converges to (2.4.5), the standard normal distribution. 

Nelson (1991) suggested the use of the generalized error distribution, or GED4: 

( ) ( )
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t

z
zf ,   0>ν , (2.4.12)

where v  is the tail-thickness parameter and ( ) ( )112 3/2 −−− ΓΓ≡ ννλ ν . (For more details 

on the GED, see Harvey (1981) and Box and Tiao (1973)). When 2=ν , tz  is standard 

normally distributed and so (2.4.12) reduces to (2.4.5). For 2<ν , the distribution of tz  

has thicker tails than the normal distribution (e.g., for 1=ν , tz  has a double exponential 

distribution) while for 2>ν , the distribution of tz  has thinner tails than the normal 

distribution (e.g., for ∞=ν , tz  has a uniform distribution on the interval )3,3(− ). 

The densities presented above account for fat tails but they are symmetric. Lee 

and Tse (1991) suggested that not only the conditional distribution of innovations may be 

leptokurtotic, but also asymmetric. Allowing for skewness may be important in modeling 

interest rates as they are lower bounded by zero and may therefore be skewed. To allow 

for both skewness and leptokurtosis, they used a Gram Charlier type distribution (see 

Kendall and Stuart (1969), p.157) with density function given by: 

( ) ( ) ( ) ( )⎟
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)
, (2.4.13)

                                                 
4 The GED sometimes referred as the exponential power distribution. 
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where ( ).f
)

 is the standard normal density function, and ( ) ttt zzzH 33
3 −≡  and 

( ) 36 24
4 +−≡ ttt zzzH  are the Hermite polynomials. The quantities v  and g  are the 

measures of skewness and kurtosis, respectively. Jondeau and Rockinger (2001) 

examined the properties of the Gram Charlier conditional density function and estimated 

ARCH models with a Gram Charlier density function for a set of exchange rate series. 

 Bollerslev et al. (1994) applied the generalized t distribution (McDonald and 

Newey (1988)): 

( )
( ) ( )( ) ννννν σενσ

ν 111 1,2
,; +− +

= g

ttt

t
gbgBbg

vgzf , 0>ν , 0>g  and 

2>gν , 

(2.4.14)

where ( ) ( ) ( ) ( )gggB +ΓΓΓ≡ −−− 111 , ννν  is the beta function and 

( ) ( ) ( ) ( )111 23 −−− −ΓΓΓΓ≡ ννν ggb . The generalized t distribution has the advantage 

that nests both (2.4.11) and (2.4.12). For 2=ν  and 5.0=g  times the degrees of 

freedom, (2.4.14) is set to the t distribution, and for ∞=ν , the GED is obtained. 

Moreover, the two shape parameters ν  and g  allow for fitting both the tails and the 

central part of the conditional distribution. 

Lambert and Laurent (2000, 2001) extended the skewed Student t density 

proposed by Fernandez and Steel (1998) to the ARCH framework, in the following 

density function: 
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where g  is the asymmetry parameter, ν  denotes the number of degrees of freedom of 

the distribution, ( ).Γ  is the gamma function, 1=tII  if 1−−≥ mszt , and 1−=tII  

otherwise, ( )( ) ( ) ( )( ) ( )11
2221 −−

−Γ−−Γ= ggm πννν  and 1222 −−+= − mggs . 

Angelidis and Degiannakis (2004), Degiannakis (2004) and Giot Laurent (2003) suggest 

using ARCH models based on the skewed Student distribution to fully take into account 

the fat left and right tails of the returns distribution. 

 De Vries (1991) noted that the unconditional distribution of variaties from an 

ARCH process can be stable and that under suitable conditions the conditional 

distribution is stable as well. Stable Paretian conditional distributions have been 
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introduced in ARCH models by Liu and Brorsen (1995), Mittnik et al. (1999), and 

Panorska et al. (1995). As the stable Paretian distribution does not have an analytical 

expression for its density function, it is expressed by its characteristic function: 
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where 20 ≤< a  is the characteristic exponent, 11 ≤≤− β  is the skewness parameter, 

0>σ  is the scale parameter, ℜ∈µ  is the location parameter, and 

( )
⎪
⎩

⎪
⎨

⎧

=−

≠
=

1.  ,log2

1  ,
2

tan
,

at

aa

at

π

π

ω   

The standardized innovations, tz , are assumed as independently, identically stable 

Pareto distributed random variables with zero location parameter and unit scale 

parameter. The way that GARCH models are built imposes limits on the heaviness of the 

tails of their unconditional distribution. Given that a wide range of financial data exhibit 

remarkable fat tails, this assumption represents a major shortcoming of GARCH models 

in financial time series analysis. Stable Paretian conditional distributions have been 

employed in a number of studies, such as Mittnik et al. (1998a, 1998b) and Mittnik and 

Paolella (2001). Tsionas (1999) established a framework for Monte Carlo posterior 

inference in models with stable distributed errors by combining a Gibbs sampler with 

Metropolis independence chains and representing the symmetric stable variates as 

normal scale mixtures. Mittnik et al. (2002) and Panorska et al. (1995) derived conditions 

for strict stationarity of GARCH and APARCH models with stable Paretian conditional 

distributions. De Vries (1991) provided relationships between ARCH and stable 

processes. Tsionas (2002) compared a stable Paretian model with ARCH errors with a 

stable Paretian model with stochastic volatility. The Randomized GARCH model with 

stable Paretian innovations totally skewed to the right and with 10 << a  was studied by 

Nowicka-Zagrajek and Weron (2001). They derived the unconditional distributions and 

analyzed the dependence structure by means of the codifference. It turns out that R-

GARCH models with conditional variance dependent on the past can have very heavy 

tails. The class is very flexible as it includes GARCH models and de Vries process 

(1991) as special cases. 
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 Hansen (1994) suggested an approach that allows not only the conditional 

variance to be time varying but also the higher moments of conditional distribution such 

as skewness and kurtosis. He suggested the autoregressive conditional density, or the 

ARCD, model, where the density function, ( )wzf t ; , is presented as: 

( )1|; −ttt Iwzf . (2.4.17)

The parameter vector of the conditional density function in (2.4.17) is assumed to be a 

function of the current information set, 1−tI . 

Other distributions, that have been employed, include the normal Poisson mixture 

distribution (Brorsen and Yang (1994), Drost et al. (1998), Jorion (1988), Lin and Yeh 

(2000), and Vlaar and Palm (1993)), the normal lognormal mixture (Hsieh (1989)), and 

serially dependent mixture of normally distributed variables (Cai (1994)) or student t 

distributed variables (Hamilton and Susmel (1994))5. Recently, Politis (2003a, 2003b, 

2004) developed an implicit ARCH model that gives motivation towards a more natural 

and less ad hoc distribution for the residuals. He proposed to studentize the ARCH 

residuals by dividing with a time-localized measure of standard deviation. 

 

2 . 4 . 4  Q u a s i - M a x i m u m  L i k e l i h o o d  E s t i m a t i o n  

 

The assumption of normally distributed standardized innovations is often violated 

by the data. This has motivated the use of alternative distributional assumptions, 

presented in the previous section.  Alternatively, the MLE based on the normal density 

may be given a quasi-maximum likelihood interpretation. Bollerslev and Wooldridge 

(1992), based on Weiss (1986) and Pagan and Sabau (1987), showed that the 

maximization of the normal log-likelihood function can provide consistent estimates of 

the parameter vector θ  even when the distribution of tz  in non-normal, provided that: 
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This estimator is, however, inefficient with the degree of inefficiency increasing with the 

degree of departure from normality. So, the standard errors of the parameters have to be 

adjusted. Let θ̂  be the estimate that maximizes the normal log-likelihood function, in 

                                                 
5 Cai (1994) and Hamilton and Susmel (1994) used the mixtures to estimate the class of regime switching 
ARCH models, presented in section 2.2.1. 
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equation (2.4.2), based on the normal density function in (2.4.5), and let 0θ  be the true 

value. Then, even when tz  is non-normal, under certain regularity conditions: 

( ) ( )11
0 ,0ˆ −−→− BAANT

D
θθ , (2.4.17)
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for tl  denoting the correctly specified log-likelihood function. The matrices A  and B  can 

be consistently estimated by: 
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where tl  is the incorrectly specified log-likelihood function under the assumption of 

normal density function. Thus, standard errors for θ̂  that are robust to misspecification 

of the family of densities can be obtained from the square root of diagonal elements of: 
111 ˆˆˆ −−− ABAT . 

Recall that if the model is correctly specified and the data are in fact generated by the 

normal density function, then BA = , and, hence, the variance covariance matrix, 
111 ˆˆˆ −−− ABAT , reduces to the usual asymptotic variance covariance matrix for maximum 

likelihood estimation: 
11 ˆ −− AT . 

For symmetric departures from normality, the quasi-maximum likelihood estimation is 

generally close to the exact MLE. But, for non-symmetric distributions, Engle and 

González-Rivera (1991), showed that the loss in efficiency may be quite high (Bai and 

Ng (2001) proposed a procedure for testing conditional symmetry.). In such a case, other 

methods of estimation should be considered. Lumsdaine (1991, 1996) and Lee and 

Hansen (1991, 1994) established the consistency and asymptotic normality of the quasi-
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maximum likelihood estimators of the IGARCH(1,1) model. Lee (1991) extended the 

asymptotic properties to the IGARCH(1,1) in Mean model, Berkes et al. (2003) and 

Berkes and Horváth (2003) studied the asymptotic properties of the quasi-maximum 

likelihood estimators of the GARCH(p,q) model under a set of weaker conditions, and 

Baille et al. (1996) showed that the quasi-maximum likelihood estimators of the 

FIGARCH(1,d,0) model are both consistent and asymptotically normally distributed. 

 

2 . 4 . 5  O t h e r  E s t i m a t i n g  M e t h o d s  

 

Other estimation methods, except for MLE, have been appeared in the ARCH 

literature. Harvey et al. (1992) presented the unobserved components structural ARCH, 

or STARCH, model and proposed an estimation method based on the Kalman filter. 

These are state space models or factor models in which the innovation is composed of 

several sources of error where each of the error sources has a heteroscedastic 

specification of the ARCH form. Since the error components cannot be separately 

observed given the past observations, the independent variables in the variance 

equations are not measurable with respect to the available information set, which 

complicates inference procedures. 

Pagan and Hong (1991) applied a nonparametric Kernel estimate of the expected 

value of squared innovations. Pagan and Schwert (1990) used a collection of 

nonparametric estimation methods, including Kernels, Fourier series and two-stage least 

squares regressions. They found that the non-parametric methods did good job in-

sample forecasts though the parametric models yielded superior out-of-sample 

forecasts.  Gouriéroux and Monfort (1992) also proposed a nonparametric estimation 

method in order to estimate the GQTARCH model in equation (2.2.28). Bühlmann and 

McNeil (2002) proposed a nonparametric estimation iterative algorithm, that requires 

neither the specification of the conditional variance functional form nor that of the 

conditional density function, and showed that their algorithm gives more precise 

estimates of the volatility in the presence of departures from the assumed ARCH 

specification. 

Engle and González-Rivera (1991), Engle and Ng (1993), Gallant and Tauchen 

(1989), Gallant et al. (1991), Gallant et al. (1993) among others, combined parametric 

specifications for the conditional variance with a nonparametric estimate of the 

conditional density function. In a Monte Carlo study, Engle and González-Rivera (1991) 
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found that their semi-parametric method could improve the efficiency of the parameter 

estimates up to 50 per cent over the QMLE, particularly when the density was highly 

non-normal and skewed, but it did not seem to capture the total potential gain in 

efficiency. 

Another attractive way to estimate ARCH models without assuming normality is 

to apply the generalized method of moments (GMM) approach. (For details, see Bates 

and White (1988), Ferson (1989), Mark (1988), Rich et al. (1991), Simon (1989)). Let us, 

for example, represent the GARCH(p,q) model as tt sωσ ′=2 , where 

( )pq bbaaa ,...,,,...,, 110=′ω  and ( )22
1

22
1 ,...,,,...,,1 pttqttts −−−−= σσεε . Under the assumption 

of: 
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the parameters could be estimated by GMM by choosing the vector ( )ωβθ ′=′ ,'  so as to 

minimize: 
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and the matrix Ŝ  can be constructed by any of the methods that have been considered 

in the GMM literature. 

Geweke (1988a,b, 1989) argued that a Bayesian approach, rather than the 

classical one, might be more suitable for estimating ARCH models due to the distinct 

features of these models. In order to ensure positivity of the conditional variance, some 

inequality restrictions should be imposed. Although difficult to impose such restrictions in 

the classical approach, under the Bayesian framework, diffuse priors can incorporate 

these inequalities. Also, as the main interest in not in the individual parameters but rather 

in the conditional variance itself, in the Bayesian framework exact posterior distributions 

of the conditional variance can be obtained. 

Giraitis and Robinson (2000) estimated the parameters of the GARCH process 

using the Whittle estimation technique and demonstrated that the Whittle estimator is 
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strongly consistent and asymptotically normal, provided the GARCH process has finite 

8th moment marginal distribution. Whittle (1953) proposed an estimation technique that 

works in the spectral domain of the process6. Moreover, Mikosch and Straumann (2002) 

showed that the Whittle estimator is consistent as long as the 4th moment is finite and 

inconsistent when the 4th moment is infinite. Thus, as noted by Mikosch and Straumann, 

the Whittle estimator for GARCH processes is unreliable as the ARCH models are 

applied in heavy-tailed data, sometimes without finite 5th, 4th, or even 3rd moments. 

Hall and Yao (2003) showed that for heavy tailed innovations, the asymptotic 

distribution of quasi-maximum likelihood parameter estimators is non-normal and 

suggested percentile-t subsample bootstrap approximations to estimator distributions. 

 

2 . 5 .  M u l t i v a r i a t e  A R C H  M o d e l s  

 

 All the ARCH models that have been discussed are univariate. However, assets 

and markets affect each other not only in terms of expected returns but also in terms of 

volatility. Thus, the accurate estimation of time-varying covariances between asset 

returns has been crucial for asset pricing and risk management. The generalization of 

univariate models to a multivariate context leads to a straightforward application of 

ARCH models to portfolio selection and asset pricing theory. 

Let the ( )1×n  vector { }ty  refer to the multivariate discrete time real-valued 

stochastic process to be predicted, where ( ) tttE µy ≡−1  denotes the conditional mean. 

The innovation process for the conditional mean ttt µyε −≡  has an ( )nn×  conditional 

covariance matrix ( ) tttV Hy ≡−1 . For a system of n  regression equations, the natural 

extension of (2.2) to a multivariate framework could be presented as: 
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( ),,...,,...,,
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εεHHH
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 (2.5.1)

where B  is a nk ×  matrix of unknown parameters, tx  a 1×k  vector of endogenous and 

exogenous explanatory variables included in the available information set, 1−tI , ( ).f  the 

                                                 
6 For further details about the Whittle estimation technique for ARMA processes see Brockwell and Davis 
(1991). 
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conditional multivariate density function of innovation process and ( ).g  a function of the 

lagged conditional covariance matrices and innovation process. 

 The natural multivariate extension of the GARCH(p,q) model in equation (2.2.6) 

is: 

( ) ( )∑∑
=

−
=

−− ′+′′+′=
p

j
jjtj

q

i
iititit

11

BHBAεεAAAH 00 , (2.5.2)

where 0A  is a lower triangular matrix with ( )( )21+nn  parameters and, iA  and jB  

denote ( )nn×  matrices with 2n  parameters each. Engle and Kroner (1995), based on 

an earlier work of Baba et al. (1990), proposed model (2.5.2) to which they referred as 

the BEKK model. This parameterization guarantees that tH  is positive definite and 

requires the estimation of ( )( ) ( )pqnnn +++ 221  parameters. For example, for 3=n , 

the multivariate GARCH(1,1) model contains 24 parameters for estimation. Lee (1999b) 

investigated the output-inflation variability tradeoff using the bivariate BEKK model. 

Recently, Moschini and Myers (2002), in order to estimate time-varying optimal hedge 

ratios in commodity markets, modified the BEKK model of (2.5.2) in the form: 
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As Moschini and Myers noted, the covariance matrix is positive definite as long as tΓ  is 

a positive definite matrix.  

A simpler expression of tH  can be obtained through the use of the ( ).vech  

operator that stacks the lower portion of a ( )nn×  matrix as an ( )( ) 121 ×+nn  vector. So, 

the equation (2.5.2) is rewritten as: 

( ) ( ) ( )( ) ( )( )∑∑
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11

~~ HBεεAAAH 00 , (2.5.3)

where iA~  and jB~  are parameter matrices of dimension ( ) ( )( )2121 +×+ nnnn . Engle 

et al. (1986) published the first paper on multivariate ARCH models applying the 

multivariate ARCH(2) model. However, in the multivariate expression of the GARCH(p,q) 

model, serious problems arise: i) the model might not yield a positive definite covariance 

matrix unless nonlinear inequality restrictions are imposed, and ii) the number of 

parameters has to be estimated is ( )( ) ( )( )( )( )pqnnnn ++++ 21121 , a very large 



Chapter 2  

46 

number even for low dimensions of n . For example, for 3=n , the multivariate 

GARCH(1,1) model contains 78 parameters for estimation. 

 A number of models, considered in the financial literature, have dealt with 

imposing constraints in multivariate GARCH models in order to reduce the number of 

parameters that should be estimated. These constraints have to be compatible with a 

positive definite conditional covariance matrix and must lead to tractable estimation 

procedures. Bollerslev et al. (1988) proposed the diagonal multivariate GARCH(p,q) 

model where the iA~  and jB~  matrices are supposed to be diagonal. Thus, the number of 

parameters is reduced to ( )( )( )pqnn +++ 121 . So, for example, for 3=n , the diagonal 

GARCH(1,1) model requires the estimation of 18 parameters. Bollerslev et al. (1988) 

used this model for analyzing returns on bills, bonds and stocks, while Baillie and Myers 

(1991), Bera et al. (1991) and Myers (1991) estimated hedge ratios in commodity 

markets. Ding and Engle (2001) gave sufficient conditions for the diagonal multivariate 

GARCH(1,1) model to be positive definite and proposed four models, which are nested 

to the multivariate diagonal multivariate GARCH(1,1) model.  

A special case of the BEKK model, for 1== qp , is the factor GARCH model first 

proposed in Engle (1987). The factor GARCH(1,1) model was constructed to overcome 

the problem of estimating a vast number of parameters, while retaining the benefits of 

positive definiteness. The model has the form: 

( )( )wHwεwλλAAH 1t00 1
2

−− ′+′′+′= tt βα , (2.5.4)

where α  and β  are scalars,  λ  and w  are ( )1×n  vectors. The vector w  can be 

considered as a vector of portfolio weights and it is convenient to restrict in the case 

1=′wι , where ι  is a vector of ones. This model is a special case of the BEKK model 

where the matrices 1A  and 1B  have rank 1: λwA ′= α1  and λwB ′= β1 . The 

number of parameters is ( ) 2252 ++ nn . So for example, for 3=n  we have to estimate 

14 parameters. The model can be extended to allow for K  factors and a higher order 

GARCH structure. So, the K  factor GARCH(p,q) model is represented by 
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and has ( ) ( ) 212 ++++ nnqpnK  free parameters. Engle et al. (1990b) and Ng et al. 

(1992) applied factor GARCH models on treasury bills and stock returns.   Diebold and 
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Nerlove (1989), Harvey et al. (1992), King et al. (1994) and Alexander (2000) proposed 

latent factor GARCH models, based on the assumption that only a few factors influence 

the conditional variances and covariances of asset returns, which are not functions of 

the information set. 

The constant conditional correlation model, introduced by Bollerslev (1990), is a 

popular method to model multivariate GARCH models, where univariate GARCH models 

are estimated for each asset and then the correlation matrix is estimated. The time-

varying conditional covariances are parameterized to be proportional to the product of 

the corresponding conditional standard deviations. This assumption greatly simplifies the 

estimation of the model and reduces the computational cost. Let us assume that the 

covariance matrix can be decomposed thus 2/12/1
tttt ΣCΣH = , where tΣ  is the diagonal 

matrix with the conditional variances along the diagonal and tC  is the matrix of 

conditional correlations. The constant conditional correlation model assumes that the 

matrix of conditional correlations is time invariant, so that the temporal variation of tH  

can be determined solely by the conditional variances: 
2/12/1

ttt CΣΣH = . (2.5.6)

tH  is positive definite if C  is positive definite and the conditional variances are positive. 

The number of parameters reduces to ( )( ) ( )pqnnn +++− 121 . So, for 3=n  the 

constant conditional correlation GARCH(1,1) model requires the estimation of 12 

parameters. Several authors have considered this representation, e.g. Baillie and 

Bollerslev (1990), Brown and Ligeralde (1990), Cecchetti et al. (1988), Fornari et al. 

(2002), Kim (2000), Kroner and Claessens (1991), Kroner and Lastrapes (1991), Kroner 

and Sultan (1991,1993), Lien and Tse (1998) and Park and Switzer (1995). 

 However, recent studies have considered test statistics, which reject the 

constancy of conditional correlation. Bera and Kim (1996), who proposed the Information 

Matrix test, were led to the rejection of a constant correlation hypothesis for USA, 

European and Japan stock markets, while Tse (2000), who derived a Lagrange Multiplier 

test for the conditional correlation stability hypothesis, rejected the hypothesis for Asian 

stock markets. Tsui and Yu (1999), adopting the Information Matrix test, examined the 

China stock market and found that the constant conditional correlation hypothesis is not 

supported. Longin and Solnik (1995) rejected the hypothesis of constant conditional 

correlation in international equity returns against three alternative sources of variability of 
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the correlation such as a time trend, the presence of threshold and asymmetry and the 

influence of information variables. 

As the hypothesis of constancy of correlation was rejected in a number of papers, 

Engle (2000) and Engle and Sheppard (2001) introduced a new form of multivariate 

ARCH model, the Dynamic Conditional Correlation GARCH, or DCC-GARCH(C,M), 

model. The model is estimated in two steps. The first is a series of univariate GARCH 

estimates. The second step, using the residuals resulting for the first stage, evaluates 

the conditional correlation estimator. The success of the DCC-GARCH model depends 

on the estimability of extremely large time varying covariance matrices. Engle proposed 

to use the decomposed covariance matrix 2/12/1
tttt ΣCΣH =  and suggested a time 

varying correlation matrix of the following form: 
2/1*2/1* −−= tttt QQQC . (2.5.7)

The conditional variances, 2
,tkσ , are estimated as univariate GARCH( kk qp , ) models, 

allowing for different lag lengths for each series nk ,...,2,1= , 
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The correlation matrix is computed using 
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where tz  are the residuals standardized by their conditional standard deviation, Q  is 

the unconditional covariance of the standardized residuals and 2/1*−
tQ  is a diagonal 

matrix composed of the square roots of the diagonal elements of tQ . Engle and 

Sheppard (2001) proved the consistency and asymptotic normality of the two-step 

estimators as well as the positive definiteness of the covariance matrix. They have also 

proposed a test of the null hypothesis of constant correlation against an alternative of 

dynamic conditional correlation. Christodoulakis and Satchell (2002) considered an 

alternative extension of the constant conditional correlation model of Bollerslev (1990) 

and developed a bivariate ARCH model with time varying conditional variances and 

correlations, named Correlated ARCH, or CorrARCH, model. 

 The multivariate ARCH models, that have been presented, although simplifying 

the estimation and inference procedures, do not account for empirical regularities such 
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as the asymmetric effects. In to order to capture the “leverage effect” in a multivariate 

framework, Braun et al. (1995) introduced a bivariate version of the EGARCH model in 

equation (2.2.13). Sentana (1995), in the presentation of the quadratic GARCH model, 

applied a multivariate version of his model to U.K. stock returns. Kroner and Ng (1998), 

following Hentschel’s (1995) approach, introduced a general multivariate GARCH model 

which nests the BEKK, diagonal, factor and constant conditional correlation GARCH 

models and their natural asymmetric extensions. Their model can be regarded as a 

multivariate extension of the GJR model in equation (2.2.13). Bekaert and Wu (1997), 

Ding and Engle (2001) and Tai (2001) have also modified multivariate ARCH models to 

accommodate asymmetric effects on conditional variances and covariances. Brunetti 

and Gilbert (1998), based on Bollerslev’s (1990) parameterization, proposed the 

bivariate constant correlation FIGARCH model and Brunetti and Gilbert (2000) applied 

the model to the crude oil market. Finally, Bayesian analysis of symmetric and 

asymmetric multivariate ARCH processes was considered in a number of articles such 

as Aguilar and West (2000), Giakoumatos et al. (2005) and Vrontos et al. (2000, 2001, 

2003). 
 

2 . 6 .  O t h e r  M e t h o d s  o f  V o l a t i l i t y  M o d e l i n g  

 

“Stochastic volatility” models (Barndorff-Nielsen et al. (2002), Chib et al. (1998), 

Giakoumatos (2004), Ghysels et al. (1996), Harvey and Shephard (1993), Jacquier et al. 

(1994), Shephard (1996), Taylor (1994)), “implied volatility” models (Day and Lewis 

(1988), Latane and Rendleman (1976), Schmalensee and Trippi (1978)), “historical 

volatility” models (Beckers (1983), Garman and Klass (1980), Kunitomo (1992), 

Parkinson (1980), Rogers and Satchell (1991)) and “realized volatility” models are 

examples from the financial econometric literature of estimating volatility of asset returns.  

A typical presentation of a stochastic volatility model can be given by 
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where σ  is a positive scale parameter, 1<a , and the error terms tz ,1  and tz ,2  could be 

contemporaneously correlated. The additional error term, tz ,2 , in the conditional variance 

equation makes the stochastic volatility model have no closed form solution. Hence, the 

estimation of the parameters is a quite difficult task. For this reason, stochastic volatility 

models are not as popular as the ARCH processes. Jacquier et al. (1994) considered a 

Markov Chain Monte Carlo (MCMC) framework in order to estimate stochastic volatility 

models and Jacquier et al. (1999, 2004) extended the MCMC technique to allow for the 

leverage effect and fat tailed conditional errors. For extensions and applications of 

MCMC techniques of ARCH models the interested reader may be referred to Brooks et 

al. (1997), Dellaportas and Roberts (2003), Dellaportas et al. (2002), Giakoumatos et al. 

(1999), Kaufmann and Fruhwirth-Schnatter (2002) and Nakatsuma (2000). Nelson 

(1990b) was the first to show that the continuous time limit of an ARCH process, which is 

a stochastic difference equation, is a diffusion process with stochastic volatility (which is 

a stochastic differential equation). Duan (1996) extended Nelson’s study. 

 Models based on the daily open, high, low and close asset prices, and 

exponential smoothing methods, such as the Riskmetrics method by J.P. Morgan, are 

procedures which are included to the historical volatility models. 

Implied volatility is the instantaneous standard deviation of the return on the 

underlying asset, which would have to be input into a theoretical pricing model in order 

to yield a theoretical value identical to the price of the option in the marketplace, 

assuming all other inputs are known. Day and Lewis (1992) examined whether implied 

volatilities contain incremental information relative to the estimated volatility from ARCH 

models. Noh et al. (1994) compared the forecasting performance of ARCH and implied 

volatility models in the context of option pricing. Andersen et al. (2004) reviewed a 

systematically categorization of various ways of modeling volatility. Recently, Poon and 

Granger (2001) conducted a comparative review based on the forecasting performance 

of ARCH, implied volatility, and historical volatility models. 

Although the presentation of the above methods of volatility estimation is beyond 

the scope of this chapter, we briefly refer to the modeling of realized volatility, as it is a 

recently developed promising area of volatility model building. 
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2 . 6 . 1  I n t r a - D a y  R e a l i z e d  V o l a t i l i t y  M o d e l s  

 

The modeling of realized volatility is based on the idea of using higher frequency 

data to generate more accurate volatility estimates of lower frequency. Andersen and 

Bollerslev (1998a) introduced an alternative volatility measure, the “realized volatility”. 

For tP  denoting the price of an asset at day t , let the difference of the log-prices, 

( ) ( ) ( )mtttm PPy 1, lnln −−= , where ,...2,1 mmt = , (2.6.2) 

denote the discretely observed series of continuously compounded returns with m  

observations per day. The realized volatility for a horizon of N  days ahead is: 
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Andersen at al. (2000b, 2001a, 2003) and Andersen at al. (2001b) were the first studies 

that explored the distributional properties of the realized volatility. The main results are 

that i) although the distribution of asset returns is non-normal (highly skewed and 

kurtosed), the distribution of returns scaled by the realized standard deviation is 

approximately Gaussian and ii) the realized logarithmic standard deviation is also nearly 

Gaussian. The concept of the realized volatility is based on the “integrated volatility”, 

which is central to the stochastic volatility option pricing in Hull and White (1987). Over 

an interval of length h , the integrated volatility is defined as: 

∫ +−=
h

rhtth drsy
0

22
, , (2.6.4) 

where ts  is the volatility of the instantaneous returns process, generated by the 

continuous time martingale, ( ) ttt dWsPd =ln , ( tW  is the standard Wiener process). In 

the case of discrete time with a sample frequency of mh 1= , ( )
2

,1 thy  is an unbiased 

estimator of 2
,thy . As noted by Ebens (1999) and Andersen and Bollerslev (1998a) for 

daily volatility forecasts, or ( )1=h , the discretely sampled daily returns, for ( )1=m , 

constitute a noisy estimator, but the accuracy improves as the sampling frequency is 

increasing, ( )∞→m . However, the observed tick-by-tick asset prices are available only 

at discrete points in time and asset returns are characterized by the effect of non-

synchronous trading. Thus, the sampling frequency should be as high as the market 

microstructure features do not induce bias to volatility estimator, i.e. Andersen and 

Bollerslev (1998a), Andersen et al. (1999), Andersen et al. (2000a), Andersen et al. 
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(2001a), Areal and Taylor (2000), Kayahan et al. (2002) used a sampling frequency of 5-

minites for heavily traded assets. The 5-minites sampling frequency were also used in 

the majority of the subsequent studies.  

 Ebens (1999), Giot and Laurent (2001), and Thomakos and Wang (2002) 

proposed the use of an ARFIMA model, in the form of (2.2.40), in order to fit the 

logarithmic realized variance. For more information and reference about applications and 

properties of the realized volatility and the use of intraday data see Andersen (2000), 

Andersen and Bollerslev (1997), Andersen and Bollerslev (1998b), Andersen et al. 

(2003), Andersen et al. (2004), Angelidis and Degiannakis (2005a), Barndorff-Nielsen 

and Shephard (2002, 2005), Bollerslev and Wright (2001), Oomen (2001) and Taylor 

and Xu (1997). 

 

2 . 7 .  I n t e r p r e t a t i o n  o f  A R C H  P r o c e s s  

 

 A number of studies have aimed at explaining the prominence of ARCH process 

in financial applications. Stock (1987, 1988) established the time deformation model, in 

which economic and calendar time proceed at different speed, and linked the relation 

between time deformation and ARCH models. Any economic variable evolves on an 

operational time scale, while in practice it is measured on a calendar time scale. The 

inappropriate use of calendar time scale leads to volatility clustering since relative to the 

calendar time, the variable may evolve quicker or slower. The time deformation model 

for a random variable ty  has the form: 
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 (2.7.1)

According to Stock, when a long segment of operational time elapsed during a unit of 

calendar time, tp  is small and 2
tσ  is large. In order words, the time varying 

autoregressive parameter is inversely related to the conditional variance. 

  Mizrach (1990) developed a model in which the errors, made by the participants 

of the market on investing, are strongly dependent on all past errors. The highly 

persistence on the errors forces the volatility of asset returns to have an ARCH like 

structure. 
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Gallant et al. (1991), based on some earlier work by Clark (1973), Mandelbrot 

and Taylor (1967), Tauchen and Pitts (1983), and Westerfield (1977) provided a 

theoretical interpretation of ARCH effect. Let us assume that the asset returns are 

defined by a stochastic number of intra-period price revisions so that they can be 

decomposed to: 
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, (2.7.2)

where tµ  is the forecastable component, ( )2
...

,0~ sN
dii

iζ  denotes the incremental 

changes and tω  is the number of times new information comes to the market in time t . 

tω  is an unobservable random variable and is independent of the incremental changes. 

In such a case, the asset returns are not normally distributed, as their distribution is a 

mixture of normal distributions. Rewriting the equation (2.7.2) as: tttt zsy ωµ 2+= , 

with tz , ,...2,1=t  as i.i.d. standard normal variables, the ty  conditional on any 

information set, tω  and 1−Ι t , is normally distributed: 

( ) ( )ttttt sNIy ωµω 2
1 ,~,| − . (2.7.3)

However, the knowledge of information that flows into the market is an unrealistic 

assumption. Hence, the ty  conditional on the information set available to the market 

participants is: 

( )( )ttttt EsNIy ωµ 1
2

1 ,~| −− . (2.7.4)

Note that the conditional kurtosis, ( ) ( )2
1

2
13 tttt EE ωω −− , exceeds 3, as in the ARCH 

process where the innovation, tε , always has fatter tails than its unconditional normal 

distribution: 

( ) ( ) 3224 ≥tt EE εε . (2.7.5)

 Lamoureux and Lastrapes (1990) assumed that the number of information 

arrivals is serially correlated and used the daily trading volume as a proxy variable for 

the daily information that flows into the stock market. Hence, tω  can be expressed as an 

autoregressive process: 



Chapter 2  

54 

( )1,0~

1
0

Nz

zbb

iid

t

t
i

itit ++= ∑
=

−

κ

ωω
 (2.7.6) 

From (2.7.4) we know that ( )( ) tttt sIyE ωµ 2
1

2 | =− − , thus (2.7.6) becomes 
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The structure in (2.7.7) expresses the persistence in conditional variance, a 

characteristic that is captured by the ARCH process. Lamoureux and Lastrapes (1990) 

used the trading volume as a proxy variable for tω . Including the daily trading volume, 

tV , as an exogenous variable in the GARCH(1,1) model, they found that its coefficient 

was highly significant whereas the ARCH coefficients became negligible: 

tttt Vbaa δσεσ +++= 2
1

2
10

2 . (2.7.8)

The heteroscedastic mixture model assumes that 0>δ  and that the persistence of 

variance as measured by 11 ba +  should become negligible. Their work provided 

empirical evidence that the ARCH process is a manifestation of the time dependence on 

the rate of information arrival to the market.  

Brailsford (1996) and Pyun et al. (2000) applied versions of the heteroscedastic 

mixture model and reported that the degree of persistence reduced as a proxy for 

information arrival enters into the variance equation. On the other hand, a number of 

studies (i.e. Abhyankar (1995), Bessembinder and Seguin (1993), Najand and Yung 

(1991), Locke and Sayers (1993), Sharma et al. (1996)) tested the mixture of 

distributions hypothesis, for various sets of data, and found that the ARCH coefficients 

remain statistically significant even after a trading volume is included as an exogenous 

variable in the model. This contradiction forced Miyakoshi (2002) to reexamine the 

relation between ARCH effects and rate of information arrival to the market. By using 

data from the Tokyo Stock Exchange, Miyakoshi showed that for periods with important 

market announcements, the trading volume affects the return volatility and the ARCH 

coefficients become negligible, while for periods which lack of “big news” the ARCH 

structure characterizes the conditional variance, adequately. The mixture of distributions 

hypothesis was also reexamined by Luu and Martens (2002) in the context of “realized 

volatility”. 
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 Engle et al. (1990a) evaluated the role of the information arrival process in the 

determination of volatility in a multivariate framework providing a test of two hypotheses: 

heat waves and meteor showers. Using meteorological analogies, they supposed that 

information follows a process like a heat wave so that a hot day in New York is likely to 

be followed by another hot day in New York but not typically by a hot day in Tokyo. On 

the other hand, a meteor shower in New York, which rains down on the earth as it turns, 

will almost surely be followed by one in Tokyo. Thus, the heat wave hypothesis is that 

the volatility has only country specific autocorrelation, while the meteor shower 

hypothesis states that volatility in one market spills over to the next.  They examined 

intra daily volatility in the foreign exchange markets, focusing on time periods 

corresponding to the business hours of different countries. Their research based on the 

Yen/Dollar exchange rate while the Tokyo, European and New York market are open. 

They found that the foreign news was more important than the past domestic news. So, 

the major effect is more like a meteor shower, i.e. Japanese news had a greater impact 

on the volatility of all markets except the Tokyo market. This is interpreted as evidence 

that volatility in part arises from trading rather than purely from news. Conrad et al. 

(1991), Pyun et al. (2000) and Ross (1989) examined the volatility spillover effect across 

large and small capitalization companies. The main finding is that volatility propagates 

asymmetrically in sense that the effect of shocks of larger firms on the volatility of 

smaller companies is more significant than that from smaller firms to larger companies. 

 Bollerslev and Domowitz (1991) showed how the actual market mechanisms may 

themselves result in a very different temporal dependence in the volatility of transaction 

prices, with a particular automated trade execution system inducing a very high degree 

of persistence in the conditional variance process. 

 Alternative expositions for theoretical evidence on the sources of ARCH effect 

have been presented by Attanasio and Wadhwani (1989), Backus et al. (1989), Brock 

and Kleidon (1990), Diebold and Pauly (1988), Domowitz and Hakkio (1985), Engle and 

Susmel (1990), Giovannini and Jorion (1989), Hodrick (1989), Hong and Lee (2001), 

Hsieh (1988), Lai and Pauly (1988), Laux and Ng (1993), Ng (1988), Schwert (1989a), 

Smith (1987) and Thum (1988). Nelson (1990b) was the first to show how ARCH models 

can emerge from diffusion processes. The problem of estimation of discretely sampled 

diffusions, such as ARCH processes, and their relationship with continuous time models 

has also been considered in the literature (see, e.g., Aït-Sahalia (2001, 2002), and the 

references therein). 
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Cha p te r  3  

A  Con jec tu re  on  t he  In depend ence  o f  t he  

S ta n d a r d i z ed  On e -S t ep - Ah ead  Pred i c t i on  Error s  o f  

t h e  ARCH Mo de l  
 

3 . 1 .  I n t r o d u c t i o n  
 
 In statistical modeling contexts the use of one-step-ahead prediction errors for 

testing hypotheses on the forecasting ability of an assumed model has been widely 

considered. Quite often, the testing procedure requires independence in a sequence of 

recursive standardized prediction errors, which cannot always be readily deduced 

particularly in the case of econometric modeling. In this chapter, on the basis of the 

results of a series of Monte Carlo simulations, it is conjectured that independence holds 

and the sum of squared standardized one-step-ahead prediction errors is Chi-square 

distributed. The methodologies used in the remainder of the thesis are based on the 

assumption that the standardized one-step-ahead prediction errors are a collection of 

independently and identically distributed variables. Thus, the question of whether the 

above quantities are indeed independently distributed is crucially important. 

 

3 . 2 .  M o n t e  C a r l o  S t u d y :  S i m u l a t i n g  t h e  A R ( 1 ) G A R C H ( 1 , 1 )  

P r o c e s s  
 

An ARCH process, tε , is presented as: 

( )
( ),...,,...,,

1,0~

2121
2

...

−−−−=

=

ttttt

dii

t

ttt

g

Nz

z

εεσσσ

σε

 (3.2.1)

where tz  is a sequence of independently and identically distributed random variables, 

tσ  is a time-varying, positive measurable function of the information set at time 1−t  and 

( ).g  could be a linear or nonlinear functional form that has been presented in the ARCH 

literature. 
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The squared value of the i.i.d. standard normal process is Chi-square distributed 

with 1 degree of freedom, or 2
1

2 ~ χtz , and the sum of T  i.i.d. standard normal 

processes is Chi-square distributed with T  degrees of freedom, or 2

1

2 ~ T

T

t
tz χ∑

=

. The 

expected value and the variance of the Chi-square distributed process with T  degrees 

of freedom are ( ) TzE T

t t =∑ =1
2  and ( ) TzV T

t t 2
1

2 =∑ =
, respectively. Moreover, if tz  is an 

i.i.d. random sequence then the autocorrelation, ( )τ+tt zzCor , , is approximately 

( )1,0 −TN  and any transformation of tz  is also an i.i.d. random sequence (see Ding et al. 

(1993)). 

Since very few financial time series have a constant conditional mean of zero, an 

ARCH model can be presented in a thκ  order autoregressive form by letting tε  be the 

innovation process in a linear regression: 

( )

( )
( )

( ),...,,...,,

1,0~

,0~|

2121
2

...

2
1

1

−−−−

−

=
−

=

≡

+= ∑

ttttt

dii

t

ttttt

t
i

itit

g

Nz

NzI

ycy

εεσσσ

σσε

ε
κ

 (3.2.2)

The disturbances, tε , are normally distributed with time varying conditional variance 

( )2
1

2
ttt E εσ −= . The most commonly used conditional variance function is the 

GARCH(1,1) model: 
2

11
2

110
2

−− ++= ttt baa σεσ . 

In the sequel, a Monte Carlo simulation is used to provide evidence for the 

assumption of independently and identically distributed standardized one-step-ahead 

prediction errors. Our strategy runs as follow: 

1) Generate data from the AR(1)GARCH(1,1) process. 

• Generate a series of 32.000 values from the standard normal distribution 

( )1,0~
...
Nz

dii

t . 
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• Generate the ARCH process, { }32000
1=ttε , by multiplying the i.i.d. random sequence 

with a specific conditional variance form, or 2
ttt z σε = , for 

2
1

2
1

2 8.012.00001.0 −− ++= ttt σεσ . 

• Generate a first order autoregressive processes, ttt yy ε+= −106.0 , for the 

conditional mean, based on the { }32000
1=ttε  process. 

Figure 3.1 plots the simulated processes, Figure 3.2 presents the relevant histograms 

and descriptive statistics, and Figure 3.3 depicts the histograms of the Chi-square 

distribution with T  degrees of freedom. The figures are presented in the Appendix. The 

Chi-square distributed process, with T  degrees of freedom, is constructed as ∑
=

T

t
tz

1

2 . 

According to the literature (e.g. Engle and Mustafa (1992)), the shocks to the variance,  

( ) ( ) ttttttt vEE ≡−=− −
222

1
2 σεεε , 

generate a martingale difference sequence (in the sense that it cannot be predicted from 

its past). These shocks are neither serially independent nor identically distributed.  Let us 

take a glance at the autocorrelations of the variables. tz  has to be serially uncorrelated, 

the shocks to the variance tv  should be autocorrelated, and the conditional variance 2
tσ  

would be highly correlated. As tz  is an i.i.d. random sequence, the transformations of 

tz , ( d
tz , 0>∀d ), are uncorrelated in each case.  Figure 3.4, in the Appendix, 

presents the autocorrelation of transformations of the processes tz , tv , tσ , tε . The half 

length of the 95% confidence interval for the estimated sample autocorrelation equals 

0113.0/96.1 =T , if the process is i.i.d. normally distributed. On the other hand, 2
tσ  is 

autocorrelated at any lag, while both tv  and tε  are autocorrelated in half of the cases. 

Ding and Ganger (1996) and Karanasos (1996) give the autocorrelation function 

of the squared errors for the GARCH(1,1) process and Karanasos (1999) extends the 

results to the GARCH(p,q) model. He and Teräsvirta (1999) derive the autocorrelation 

function of the squared and absolute errors for a family of first order ARCH processes.  

The number of estimated autocorrelations that are outside the 95% confidence 

interval is presented in the Table that follows. 
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Table 3.1. Percentage of autocorrelations outside the 95% confidence 
interval ( 100,...,2,1=τ ). 

=d  0.5 1 1.5 2 2.5 3 

( )d
t

d
t zzCor τ+,  6% 6% 5% 4% 5% 6% 

( )d
t

d
tCor τεε +,  36% 44% 45% 47% 47% 44% 

( )d
t

d
t vvCor τ+,  56% 54% 44% 30% 20% 15% 

( )d
t

d
tCor τσσ +,  92% 97% 98% 95% 93% 86% 

 

2) Estimate the parameters of the AR(1)GARCH(1,1) model. 

• The AR(1)GARCH(1,1) model is applied, for the data produced from the 

AR(1)GARCH(1,1) process. Dropping out the first 1000 data, maximum likelihood 

estimates of the parameters are obtained by numerical maximization of the log-likelihood 

function, using a rolling sample of constant size equal to 10001. At each of a sequence of 

points in time, the maximum likelihood parameter vector, ( )ttttt baac ,1,1,0,1
ˆ,ˆ,ˆ,ˆˆ ≡θ , is being 

estimated in order to compute the conditional mean and variance: 

tttt ycy ,1|1 ˆˆ =+  

2
|,1

2
|,1,0

2
|1

ˆˆˆˆ ttttttttt baa σεσ ++=+ . 

Thus, the model is estimated 30.000 times. Note that 2
|ttε  and 2

|ttσ  belong to the tI , so 

are considered as observable. 

3) Compute the standardized one-step-ahead prediction errors, { }30000
1|1ˆ

=+ tttz , 

( ) 1
|1|11|1 ˆˆˆ −

++++ −= ttttttt yyz σ . The SPEC model selection algorithm uses the sum of the 

squared standardized one-step-ahead prediction errors, or ∑
=

−

T

t
ttz

1

2
1|ˆ . 

• The one-step-ahead estimated processes are presented in Figure 3.5, Figure 

3.6, in the Appendix, presents the relevant histograms and the descriptive statistics, 

respectively. The one-step-ahead standardized prediction error process, conditional on 

the information set available at time t , ( ) 1
|1|11|1 ˆˆˆ −

++++ −= ttttttt yyz σ , is approximately 

normally distributed, while 2
|1ˆ ttz +  is Chi-square distributed with 1 degree of freedom. 

                                                           
1 Maximum likelihood estimates of the parameters are obtained by numerical maximization of the log-
likelihood function using the Marquardt algorithm (Marquardt (1963)). The quasi-maximum likelihood 
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Moreover, if 2
|1ˆ ttz +  is independently Chi-square distributed, ∑

=
+

T

t
ttz

1

2
|1ˆ  should be, also, Chi-

square distributed with T  degrees of freedom, with mean and variance: 

TzE
T

t
tt =⎥
⎦

⎤
⎢
⎣

⎡∑
=

+
1

2
|1ˆ  and TzV

T

t
tt 2ˆ

1

2
|1 =⎥
⎦

⎤
⎢
⎣

⎡∑
=

+ . 

Figure 3.7, in the Appendix, plots the histograms of ∑
=

+

T

t
ttz

1

2
|1ˆ . All the histograms are 

almost identical to the simulated Chi-squared histograms. Moreover, if ttz |1ˆ +  is an i.i.d. 

random sequence then the sample autocorrelation, ( )ττ ++++ tttt zzCor |1|1 ˆ,ˆ , is approximately 

( )1,0 −TN  and the autocorrelation of any transformation of ttz |1ˆ + , ( )d
tt

d
tt zzCor ττ ++++ |1|1 ˆ,ˆ , 

0>∀d , is also ( )1,0 −TN . Figure 3.8, in the Appendix, presents the autocorrelation of 

transformations of the processes ttz |1ˆ + , tt |1ˆ +ε , ttv |1ˆ + , tt |1ˆ +σ . 

As the sum of squared standardized one-step-ahead prediction errors is Chi-square 

distributed, and the transformations of ttz |1ˆ +  are not autocorrelated, the standardized 

one-step-ahead innovations, ttz |1ˆ + , should be independent.  

 
3 . 3 .  M o n t e  C a r l o  S t u d y :  S i m u l a t i n g  t h e  G A R C H ,  E G A R C H  

a n d  T A R C H  P r o c e s s e s  
 

In the sequel the assumption that the standardized one-step-ahead prediction errors 

are independently and identically distributed (or equivalently that the sum of T one-step-

ahead prediction errors is Chi-square distributed) is investigated for a higher order of 

autoregressive process for the conditional mean and the following conditional variance 

functions: 

The GARCH(p,q) model, Bollerslev (1986)  

( ) ( )∑∑
=

−
=

− ++=
p

i
iti

q

i
itit baa

1

2

1

2
0

2 σεσ  (3.3.1) 

                                                                                                                                                                             
estimator (QMLE) is used, as according to Bollerslev and Wooldridge (1992), it is generally consistent, has 
a normal limiting distribution and provides asymptotic standard errors that are valid under non-normality. 
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The EGARCH(p,q) model, Nelson (1991)  
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The TARCH(p,q) model, Glosten et al. (1993)  

( ) ( )∑∑
=

−−−
=

− +++=
p

i
ititt

q

i
itit bdaa

1

2
1

2
11

1

2
0

2 σεγεσ , (3.3.3) 

 where 1=td  if 0<tε , and 0=td  otherwise. 

1. Eight processes have been generated with the coefficients presented in the 

following Table. 

Table 3.2. Coefficients of the simulated processes. 

Parameters 
Model 

1c  2c  3c  0a  1a  2a  1b  1γ  

a) AR(1)GARCH(1,1) 0.05 - - 0.002 0.05 - 0.91 - 

b) AR(1)EGARCH(1,1) 0.05 - - 0.2 0.05 - 0.2 0.1 

c) AR(1)TARCH(1,1) 0.05 - - 0.002 0.15 - 0.7 -0.08 

d) AR(1)GARCH(1,2) 0.05 - - 0.002 0.05 0.08 0.8 - 

e) AR(1)TARCH(1,2) 0.05 - - 0.002 0.15 0.05 0.7 -0.08 

f) AR(3)GARCH(1,1) 0.1 0.03 -0.02 0.002 0.05 - 0.91 - 

g) AR(3)EGARCH(1,1) 0.12 0.07 -0.03 0.001 0.05 - 0.2 0.1 

h) AR(3)TARCH(1,1) 0.1 0.03 -0.02 0.002 0.15 - 0.7 -0.08 

 

2. Estimate the parameters of the simulated processes. 

• At each of a sequence of points in time, the maximum likelihood parameter vector 

( )tttttttttt baaaccc ,2,1,1,2,1,0,3,2,1 ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆ,ˆˆ γγθ ≡  is being estimated. The models are 

estimated 30.000 times and the conditional mean and variance are computed in 

(3.3.4)-(3.3.7): 

The thκ  order Autoregressive process  

( )∑
=

−++ =
κ

1
1,|1 ˆˆ

i
ittitt ycy  (3.3.4) 

The GARCH(1,q) model  

( ) 2
|,1

1

2
|1,,0

2
|1

ˆˆˆˆ ttt

q

i
tittittt baa σεσ ++= ∑

=
+−+  (3.3.5) 
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The EGARCH(1,q) model  
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⎠
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The TARCH(1,q) model  

( ) 2
|,1

2
|,1

1

2
|1,,0

2
|1

ˆˆˆˆˆ ttttttt

q

i
tittittt bdaa σεγεσ +++= ∑

=
+−+ , (3.3.7) 

 where 1=td  if 0<tε , and 0=td  otherwise. 

3. Compute the standardized one-step-ahead prediction errors 

( ) 1
|1|11|1 ˆˆˆ −

++++ −= ttttttt yyz σ  and examine the following properties: 

• Histogram, mean and variance of { }30000

1
2

|1ˆ
=+ tttz . 

• Histogram, mean and variance of { }∑ +−= +
t

Ttj jjz
1

2
|1ˆ , for ( )30000TTt = .2 

• Sample autocorrelation, ( )ττ ++++ tttt zzCor |1|1 ˆ,ˆ , for ( )10011=τ . 

• Sample autocorrelation of transformations of ttz |1ˆ + , ( )d
tt

d
tt zzCor ττ ++++ |1|1 ˆ,ˆ , for 

( )10011=τ  and ( )35.05.0=d . 

Figures 3.9, 3.10 and 3.11, in the Appendix, plot the histograms of { }30000

1
2

|1ˆ
=+ tttz , the 

histograms of { }∑ +−= +
t

Ttj jjz
1

2
|1ˆ , for ( )30000TTt =  and the autocorrelation of the 

processes ( )d
tt

d
tt zzCor ττ ++++ |1|1 ˆ,ˆ , for ( )10011=τ  and ( )35.05.0=d , for each of the 

eight generated processes. The property of independently and identically distributed 

standardized one-step-ahead prediction errors holds. 

 

3 . 4 .  M o n t e  C a r l o  S t u d y :  S i m u l a t i n g  t h e  G A R C H ( 1 , 1 )  P r o c e s s  

f o r  V a r i o u s  C o e f f i c i e n t  V a l u e s   
 

Simulate one more set of GARCH(1,1) processes in order to investigate if changes in 

the  coefficients change the distribution of squared standardized one-step-ahead 

prediction errors. 

                                                           
2 Here, ( )cbaT =  denotes c,,...,2,, bcbabaaT −++= . 
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• Generate 18 series of 5.000 values from the standard normal distribution 

( )1,0~
...
Nz

dii

t . 

• Generate 18 GARCH(1,1) processes { }20000
1=ttε  by multiplying the i.i.d. random 

sequence with tσ  from ( ) 2
11

2
1

2 05.0002.0 −− ++= t
k

tt b σεσ  where ( ) kb k *05.01 =  for 

18,...,2,1=k .  

• Estimate the parameters of the 18 GARCH(1,1) models. 

• Compute ( ) 1
|1|11|1 ˆˆˆ −

++++ −= ttttttt yyz σ . 

The histograms of { }∑ +−= +
t

Ttj jjz
1

2
|1ˆ , for ( )30000TTt =  and the autocorrelation functions 

( )d

tt

d

tt zzCor ττ ++++ |1|1 ˆ,ˆ , ( )10011=τ  and ( )35.05.0=d , are similar to these plotted in the 

previous sections. 

 

3 . 5 .  C o n c l u s i o n  
 

The sum of squared standardized one-step-ahead prediction errors is Chi-square 

distributed, and any transformation of the ttz |1ˆ +  process is not autocorrelated. A property 

that is robust to the type of conditional variance function, the order of the autoregressive 

process of the conditional mean and the values of the coefficients, applied. Hence, the 

simulated evidence provides evidence that the estimated standardized one-step-ahead 

prediction errors are asymptotically independently standard normally distributed. The 

results of our simulation are confirmed analytically in the next chapter. 
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Cha p te r  4  

Pred i c tab i l i t y  an d  Mo de l  S e l ec t i on  i n  t h e  Co n tex t  

o f  A RCH  M o d e l s  
 

4 . 1 .  I n t r o d u c t i o n  
 

The richness of the family of parametric ARCH models certainly complicates the 

search for the true model, and leaves quite a bit of arbitrariness in the model selection 

stage. The problem of selecting the model that describes best the movement of the 

series under study is, therefore, of practical importance. Most of the methods used in the 

ARCH literature for selecting the appropriate model are based on evaluating the ability of 

the models to describe the data. An alternative model selection approach is examined 

based on the evaluation of the predictability of the models in terms of standardized 

prediction errors. 

The aim of this chapter is to develop a model selection method based on the 

evaluation of the predictability of the ARCH models. Section 4.2 provides a brief 

description of the methods used in the literature for selecting the appropriate model 

based on evaluating the ability of the models to describe the data. In section 4.3, 

Xekalaki et al.’s (2003) model selection method based on a standardized prediction error 

criterion is examined in the context of ARCH models. In section 4.4 the suggested model 

selection method is applied using return data for the Athens Stock Exchange (ASE) 

index over the period August 30th, 1993 to November 4th, 1996, while, in section 4.5, a 

selection method based on the ability of the models describing the data is investigated. 

Finally, in section 4.6 a brief discussion of the results is provided.  

 

4 . 2 .  M o d e l  S e l e c t i o n  M e t h o d s  
 

Most of the methods used in the literature for selecting the appropriate model are 

based on evaluating the ability of the models to describe the data. Standard model 

selection criteria such as the Akaike Information Criterion (AIC) (Akaike (1973)) and the 

Schwarz Bayesian Criterion (SBC) (Schwarz (1978)) have widely been used in the 

ARCH literature, despite the fact that their statistical properties in the ARCH context are 
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unknown1. These are defined in terms of ( )θ̂Tl , the maximized value of the log-likelihood 

function of a model, where θ̂  is the maximum likelihood estimator of θ  based on a 

sample of size T  and θ
(

 denotes the dimension of θ , thus: 

( ) θθ
(

−= ˆ
TlAIC  (4.2.1) 

( ) ( ). ln2ˆ 1 TlSBC T θθ
(

−−=  (4.2.2) 

In addition, the evaluation of loss functions for alternative models is mainly used 

in model selection. When we focus on estimation of means, the loss function of choice is 

typically the mean squared error (MSE): 

∑
=

−=
T

t
tTMSE

1

21 ε .    (4.2.3) 

When the same strategy is applied to variance estimation, the choice of the mean 

squared error is much less clear. Because of high non-linearity in volatility models, a 

number of researchers constructed heteroscedasticity-adjusted loss functions. Bollerslev 

et al. (1994) present four types of loss functions: 

( ) ,
1

222
1 ∑
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t
ttL σε  (4.2.4) 
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Pagan and Schwert (1990) used the first two of the loss functions to compare alternative 

estimators with in-sample and out-of-sample data sets. Andersen et al. (1999), Heynen 

and Kat (1994), Hol and Koopman (2000), are some examples from the literature that 

applied loss functions to compare the forecast performance of various volatility models. 

Moreover, loss functions have been constructed, based upon the goals of the 

particular application. West et al. (1993) developed such a criterion based on the 

portfolio decisions of a risk averse investor. Engle et al. (1993) assumed that the 
                                                           
1 Kavalieris (1989) provided a thorough discussion for methods of selection of autoregressive models and 
asymptotic equivalence of the AIC criterion to predictive cross-validation. His work may have some nice 
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objective was to price options and developed a loss function from the profitability of a 

particular trading strategy. 

 

4 . 3 .  M o d e l  S e l e c t i o n  B a s e d  o n  a  S t a n d a r d i z e d  P r e d i c t i o n  

E r r o r  C r i t e r i o n  ( S P E C )  
 

Let ( ){ } 1≥tty θ  refer to the univariate discrete time real-valued stochastic process 

to be predicted where θ  is a vector of unknown parameters. According to section 2.2 of 

the 2nd chapter, an ARCH process, ( ){ } 1≥tt θε , can be presented as: 

( ) ( )
( ) ( )

( ) ( )[ ]
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 (4.3.1) 

where tx  is a 1×k  vector of endogenous and exogenous explanatory variables included 

in the information set 1−tI , β  is a 1×k  vector of unknown parameters, ( ).f  is the 

density function of tz , ( )θσ t  is a time-varying, positive and measurable function of the 

information set at time 1−t , tυ  is a vector of predetermined variables included in tI , 

and ( ).g  is a linear or nonlinear functional form. A wide range of ARCH models is 

reviewed in section 2.2.1 of chapter 2.  In the sequel for notational convenience, no 

explicit indication of the dependence on the vector of parameters, θ , is given when 

obvious from the context. 

The conditional mean, ( )1| −= ttt IyEµ , can be adequately described by a thκ  

order autoregressive ( )[ ]κAR  model: 

( ) t
i

itit yccy ε
κ

++= ∑
=

−
1

0 . (4.3.2) 

Usually, the conditional mean is either the overall mean or a first order autoregressive 

process. Theoretically, the ( )1AR  process allows for the autocorrelation induced by 

discontinuous (or non-synchronous) trading in the stocks making up an index2. Higher 

                                                                                                                                                                             
extension to the case of ARCH specification. 
2 For more details on non-synchronous trading see section 2.1.3 of the 2nd chapter. 
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orders of the autoregressive process are considered in order to investigate if they are 

adequate to produce more accurate predictions. 

Let us assume that a researcher is interested in evaluating the ability of the 

ARCH models to forecast the conditional variance. Consider the simple case of a 

regression model: ttt xy εβ +′=  where β  is a vector of k  unknown parameters to be 

estimated, tx  is a vector of explanatory variables included in the information set at time 

1−t  and ( )2
...

,0~ σε N
dii

t . At time 1−t , the expected value tµ  of ty  is estimated on the 

basis of the information available at time 1−t , i.e. 11|
ˆˆˆ −− ′== ttttt xy βµ , where 

( ) ( )11
1

111
ˆ

−−
−

−−− ′′= ttttt YXXXβ  is the least square estimator of β  at time 1−t , tY  is the 

( )1×tl  vector of tl  observations on the dependent variable ty , and tX  is the ( )klt ×  

matrix whose rows comprise the k -dimensional vectors tx  of the explanatory variables 

included in the information set, so that ⎥
⎦

⎤
⎢
⎣

⎡
′

= −

t

t
t x

1X
X , ⎥

⎦

⎤
⎢
⎣

⎡
= −

t

t
t y

1Y
Y . Here kl >0 , 11 +=+ tt ll  

and 0≠′ tt XX , ,...1,0=t . In a manner of speaking, tty |ˆ  and 1|ˆ −tty  can be considered as 

in-sample and out-of-sample forecasts, respectively. In other words, tty |ˆ  is measured on 

the basis of tI , the information set available at time t , while 1|ˆ −tty  is measured on the 

basis of 1−tI , the information set available at time 1−t . 

The most commonly used way to model the conditional variance is the 

GARCH(p,q) process: 

( ) ( )∑∑
=

−
=

− ++=
p

i
iti

q

i
itit baa

1

2

1

2
0

2 σεσ , (4.3.3) 

The GARCH(p,q) process may be rewritten as3: 

( )( )ωζησ ,,,,2 vwu tttt ′′′= , 

where ( )22
1,...,,1 qtttu −−=′ εε , 0=′tη , ( )22

1,..., ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , 0=′ζ , 

( )pbb ,...,1=′ω . 

 

                                                           
3 The conditional variance is written in the form: ( )( )ωζη ,,,, vwu ttt ′′′ , which includes the most widely used 
ARCH models such as the TARCH and the EGARCH processes. 
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The vector ( )ωζβθ ′′′′= ,,,v  denotes the set of parameters to be estimated for both the 

conditional mean and the conditional variance at time t . In the sequel, the density 

function ( ).f , in equation (4.3.1), is assumed to be that of the normal distribution and 

1
1|1|1| ˆˆˆ −
−−− ≡ ttttttz σε  denotes the standardized one-step-ahead prediction errors4. 

The residual 1|1| ˆˆ −− −≡ ttttt yyε  reflects the difference between the forecast and the 

observed value of the stochastic process. Xekalaki et al. (2003) suggested measuring 

the predictive behavior of linear regression models on the basis of the standardized 

distance between the predicted and the observed value of the dependent random 

variable. The estimate of the standardized distance was defined by: 

( )1|

1|

ˆ

ˆ

−

−−
=

tt

ttt
t yV

yy
r ,  

where ( ) ( ) ( ) ( )( )( ) 1
1

1
111111111| 1ˆˆˆ −

−
−

−−−−−−−−− −′′+−
′

−= klxxyV ttttttttttttt XXXYXY ββ . A 

scoring rule to rate the performance of the model at time t  for a series of T  points in 

time, ( )Tt ,...,1= , was defined by 

∑
=

−=
T

t
tT rTR

1

21 , (4.3.4) 

the average of the squared standardized residuals. As an ARCH model estimates 

simultaneously the conditional mean and the conditional variance, its evaluation is two 

fold. In the sequel, this approach is adopted using the average of the squared 

standardized one-step-ahead prediction errors as a scoring rule in order to rate the 

performance of an ARCH model to forecast both the conditional mean and the 

conditional variance, in particular, 

T

z
R

T

t
tt

T

∑
=

−

= 1

2
1|ˆ

. 
(4.3.5) 

1
1|1|1| ˆˆˆ −
−−− ≡ ttttttz σε  is the estimated standardized distance between the predicted and the 

observed value of the dependent random variable, when the conditional standard 
                                                           
4 Consider the case of the AR(1)GARCH(1,1) model as defined by equations (4.3.2) and (4.3.3), for 1=κ  
and 1== qp , respectively. The estimators of the one-step-ahead prediction error and its variance 
conditional on the information set available at time 1−t  are given by 11,11,01| ˆˆˆ

−−−− −−= tttttt yccyε  and 
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deviation of the dependent variable given 1−tI  is defined by an ARCH model, 

( ) 2
1| ttt IyV σ≡− . 

 

Theorem 1: Let ( )tθ  denote the vector of unknown parameters to be estimated at time t . 

Under the assumption of constancy of parameters over time, 

( ) ( ) ( ) ( )θθθθ ==== T...21 , the estimated standardized one-step-ahead prediction 

errors 1||11| ˆ,...,ˆ,ˆ −+− TTtttt zzz  are asymptotically independently standard normally distributed. 

Symbolically, 

( ) ( )1,0~ˆˆˆ 1
1|1|1| Nyyz ttttttt

−
−−− −≡ σ , Tt ,...,2,1= . (4.3.6) 

Proof: To prove the theorem, we need the following lemmas. 

 

Lemma 1: (Slutsky’s theorem) (see, e.g. Greene (1997, p.118)): For a continuous 

function ( )Txg  that is not a function of T , ( ) ( )TT xpgxgp limlim = . 

(Here limp  denotes the limit in probability as ∞→T .) 

The following two Lemmas are implications of Slutsky’s theorem. 

 

Lemma 2: (see, e.g. Hamilton, 1994, p. 182): Let { }TX  denote a sequence of ( )1×n  

random vectors with cXp T =lim , i.e., cX
p

T → . Let ( ).g  be a vector-valued function, 

mn RRg →: , which is continuous at c  and does not depend on T . Then ( ) ( )cgXg
p

T → . 

 

Lemma 3: (see, e.g. Hamilton (1994, p. 182)): Let { }TX1  denote a sequence of ( )nn×  

random matrices with 11 CX
p

T → , where 1C  is a non-singular matrix. Let TX 2  denote a 

sequence of ( )1×n  random vectors with 22 cX
p

T → , where 2c  is a constant. Then, 

( ) ( ) 2
1

12
1

1 cCXX
p

TT
−− → , or ( ) ( ) 2

1
12

1
1lim cCXXp TT

−− = . 

 

We now prove the following lemma. 

                                                                                                                                                                             
2

1|11,1
2

1|11,11,0
2

1| ˆˆˆˆˆˆ
−−−−−−−− ++= ttttttttt baa σεσ , respectively. The estimated parameters are indexed by the subscript t  

to indicate that they may vary with time. 



Chapter 4 

 71 

Lemma 4: Let { }iTX , for ni ,...,1= , denote a sequence of random vectors with 

iiT WXp =lim , where iW , ni ,...,1=  are independently and identically distributed with 

some distribution function ( ).F . Then ( ) ( )nnTnn WWWXXXp ,...,,,...,,lim 2121 = , and 

nTTT XXX ,...,, 21  are asymptotically independently and identically distributed with 

distribution function ( ).F . 

Proof of Lemma 4: Let ( ).~g  be a vector-valued real function, ( ) nn RRg →:.~ : 

( ) ( ) ( ) ( ) ( )( )nnnnnn xxxgxxxgxxxgxxxgxxx ,...,,,...,,...,,,,...,,,...,,~,...,, 212122112121 ≡→ . 

Assume that ( ).~g  is continuous at iz , ni ,...,1=∀ , and does not depend on T . 

According to Slutsky’s theorem (Lemma 1), for a continuous function ( )Txg  that is not a 

function of T , ( ) ( )TT xpgxgp limlim = . Thus, 

( ) ( ) ( ) ( )( )nnnnnTTT XXXgXXXgXXXgXXXgp ,...,,,...,,...,,,,...,,,...,,~lim 2121221121 = . 

By setting ( ) ( )nn xxxxxxg ,...,,,...,,~
2121 = , (i.e. ( ) nixxxxg ini ,...,1 ,,...,, 21 =∀= ), and 

applying Slutsky’s theorem we obtain 

( ) ( ) ( ) ( )nnnTTTnTTT WWWWWWgXXXpXXXgp ,...,,,...,,~,...,,lim,...,,~lim 21212121 ≡=≡  

Let ( )( )nXXX xxxF
nTTT

,...,, 21,...,, 21
 denote the joint density distribution of the random 

variables nTTT XXX ,...,, 21 . As convergence in probability implies convergence in 

distribution, we have 

( )( ) ( )( ) ==
∞→ nWWWnXXXT

xxxFxxxF
nnTTT

,...,,,...,,lim 21,...,,21,...,, 2121
 

( ) ( ) ( ) ( ) ( ) ( )nXTXTXTnWWW xFxFxFxFxFxF
nTTTn ∞→∞→∞→

⋅⋅⋅=⋅⋅⋅= lim...limlim... 2121 2121
 

As the joint density is asymptotically the product of the marginal densities, 

nTTT XXX ,...,, 21  are asymptotically independently distributed, each with distribution 

function ( ).F . 

 

Let us now return to the proof of Theorem 1: At time 1−t , the expected value of 

ty  is estimated on the basis of the information available at time 1−t , i.e. 11|
ˆˆ −− ′= tttt xy β  

and the expected value of the conditional variance is estimated on the basis of the 

information available at time 1−t , i.e. ( ) ( )111
2

1| ˆ,ˆ,ˆ ,,ˆ −−−− ′′′= tttttttt vwu ωζησ . Note that the 
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elements of the vector ( )ttt wu ′′′ ,,η  belong to the 1−tI , so are considered as known 

values. The 1|ˆ −ttz  can be written as: 

( )

( )

( )( )
=

−′
+=

=
′−+′

=

=
−

=

−

−

−

−

−

−

−
−

2
1|

1

2
1|

2
1|

1

2
1|

1|
1|

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ
ˆ

tt

tt

tt

t

tt

tttt
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ββ

σ

ε

σ

βεβ

σ

 

( )( )
=

−′
+=

−

−

−
2

1|

1

2
1|

2

ˆ

ˆ

ˆ tt
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tt

tt xz

σ

ββ

σ

σ
 

( ) ( )( )
( ) ( )( )

( )( )
( ) ( )( ) 2/1

111

1
2/1

111

2/1

ˆ,ˆ,ˆ ,,

ˆ

ˆ,ˆ,ˆ ,,

,, ,,

−−−

−

−−− ′′′

−′
+

′′′

′′′
=

tttttt

tt

tttttt

tttt

vwu

x

vwu

vwuz

ωζη

ββ

ωζη

ωζη
 

We assume that a sample of T  observations has been used to estimate the vector of 

unknown parameters. According to Bollerslev (1986), the maximum likelihood estimate 

tθ̂  is strongly consistent for θ  and asymptotically normal with mean θ . In other words, 

( ) ( ) ( )ωζβωζβθθ ′′′′=′′′′⇔= ,,,ˆ,ˆ,ˆ,ˆlimˆlim vvpp ttttt , where limp  denotes limit in 

probability as the size of the sample, T , goes to infinity. According to Lemma 2: 

( ) =−1|ˆlim ttzp  

( ) ( )( )
( ) ( )( )

( )( )
( ) ( )( ) =⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′′′

−′
+⎟

⎟

⎠

⎞

⎜
⎜

⎝

⎛

′′′

′′′
=

−−−

−

−−−

2/1

111

1
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ˆ,ˆ,ˆ ,,

ˆ
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ˆ,ˆ,ˆ ,,

,, ,,
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x
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vwuz
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ωζη

ββ

ωζη

ωζη
 

Then, based on Lemma 3: 

( ) ( )( )
( ) ( )( )

( )( )
( ) ( )( )( ) =

′′′

−′
+

′′′

′′′
=

−−−

−

−−−

2/1

111

1
2/1

111

2/1

ˆ,ˆ,ˆ ,,lim

ˆlim

ˆ,ˆ,ˆlim ,,
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ωζη
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=
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−
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As convergence in probability implies convergence in distribution, the 1||11| ˆ,...,ˆ,ˆ −+− TTtttt zzz  

are asymptotically standard normally distributed: 

( )1,0~ˆˆ 1|1| Nzzzz t

d

ttt

p

tt →⇒→ −−   

 This result, combined with Lemma 4, implies that the 1||11| ˆ,...,ˆ,ˆ −+− TTtttt zzz  are 

asymptotically independently standard normally distributed, i.e., 

( )1,0~ˆ
...

1| Nzz
dii

t

d

tt →− . 

Hence, the theorem has been established. 

 

The result of the theorem is valid for all the conditional variance functions with 

consistent estimators of the parameters. 

 

Remark: As concerns the EGARCH and the TARCH models, the maximum likelihood 

estimator ( )ttttt v ωζβθ ˆ,ˆ,ˆ,ˆˆ ′′′′=  is consistent and asymptotically normal. 

Consider the EGARCH(p,q) model in the following form  

( ) ( )( )∑∑
=

−
= −

−

−

− +⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++=

p

i
iti

q

i it

it
i

it

it
it baa

1

2

1
0

2 lnln σ
σ
εγ

σ
εσ  (4.3.7) 

which can be written as: 

( )( )ωζησ ,,,,ln 2 vwu tttt ′′′=  

where ( )qtqttttu −−−−=′ σεσε ,...,,1 11 , [ ] [ ]( )qtqtttt −−−−=′ σεσεη ,...,11 , 

( )22
1 ln,...,ln ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , ( )qγγζ ,...,1=′ , ( )pbb ,...,1=′ω . 

 

According to Nelson (1991), under sufficient regularity conditions, the maximum 

likelihood estimator ( )ttttt v ωζβθ ˆ,ˆ,ˆ,ˆˆ ′′′′=  is consistent and asymptotically normal. Also, for 

the TARCH(p,q) process, the conditional variance can take the form: 

( ) ( )∑∑
=

−−−
=

− +++=
p

i
ititt

q

i
itit bdaa

1

2
1

2
1

1

2
0

2 σγεεσ , (4.3.8) 

which can be written as: 

( )( )ωζησ ,,,,2 vwu tttt ′′′=  

where ( )22
1,...,,1 qtttu −−=′ εε , ( )2

11 −−=′ ttt d εη , ( )22
1,..., ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , 
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( )γζ =′ , ( )pbb ,...,1=′ω , 1=td  if 0<tε , and 0=td otherwise. 

As pointed out by Glosten et al. (1993), as long as the conditional mean and variance 

are correctly specified, the maximum likelihood estimates will be consistent and 

asymptotically normal.  

According to Lemma 1, if )1,0(~ˆlim 1| Nzzp ttt =−  and ( ) ( )∑
=

−− =
T

t
tttt zzg

1

2
1|1| ˆˆ , which 

is a continuous function, then ( ) ( )∑∑
==

− =
T

t
t

T

t
tt zzp

1

2

1

2
1|ˆlim . As convergence in probability 

implies convergence in distribution, ( ) ( ) 2

1

2

1

2
1| ~ˆ T

T

t
t

dT

t
tt zz χ∑∑

==
− → . Hence, as 1|ˆ −ttz  are 

asymptotically standard normal variables, the variable TTR  is asymptotically 2χ  

distributed with T  degrees of freedom, i.e., 

2
T

d

TTR χ→ . (4.3.9) 

Also, for two processes A  and B  with 1T  and 2T  observations, respectively, the ratio of 

the scoring rules ( ) ( )∑
=

−
−≡

T

t

A
tt

A
T zTR

1

2
1|

1
1 ˆ

1
 and ( ) ( )∑

=
−

−≡
T

t

B
tt

B
T zTR

1

2
1|

1
2 ˆ

2
 is F  distributed with 1T  and 

2T  degrees of freedom, i.e., 
( )

( ) 21

2

1

21 ,~ TTB
T

A
T

TT F
R
R

R ≡ , (4.3.10) 

if ( )A
TR

1
 and ( )B

TR
2

 are independently distributed. 

According to Kibble (1941), if, for Tt ,...,2,1= , ( )A
ttz 1|ˆ −  and ( )B

ttz 1|ˆ −  are standard 

normally distributed variables, following jointly the bivariate standard normal distribution, 

then the joint distribution of ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ B

T
A

T RTRT
2

,
2

 is the bivariate gamma distribution with 

probability density function (p.d.f) given by: 

( )
( )( )
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( ) ( )( ) ( )( ) 0,,
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−− yxxy
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i
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i

TRTRT B
T

A
T

ρρ
ρ
ρ

, (4.3.11) 

where ( ).Γ  is the gamma function and ρ  is the correlation coefficient between ( )A
ttz 1|ˆ −  and 

( )B
ttz 1|ˆ − , ( ) ( )( )B

tt
A
tt zzCor 1|1| ˆ,ˆ −−≡ρ . Xekalaki et al. (2003) showed that, when the joint distribution 
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of ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛ B

T
A

T RTRT
2

,
2

 is Kibble's bivariate gamma, the distribution of the ratio 

( ) ( ) ( )B
T

A
T

BA
T RRZ ≡,  is defined by the following p.d.f.: 

( ) ( ) ( )
( ) ( ) 0,

1
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2,2

1 2
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2
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, >
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, (4.3.12)

where ( )TTTTB Γ⎟
⎠
⎞

⎜
⎝
⎛Γ=⎟

⎠
⎞

⎜
⎝
⎛

2

22
,

2
. Symbolically, 

( ) ( ) ( ) ( )ρ,~ˆˆ
1

2
1|

1

2
1|

, kCGRzzZ
T

t

A
tt

T

t

B
tt

BA
T ∑∑

=
−

=
−≡ , (4.3.13) 

where 2Tk = . Xekalaki et al. (2003) referred to the distribution in (4.3.12) as the 

Correlated gamma ratio (CGR) distribution. A sample of tables of its percentage points 

and of graphs depicting its probability density function is given in the Appendix.  

As pointed out by Xekalaki et al. (2003), ( )A
TR  and ( )B

TR  could represent the sum 

of the squared standardized prediction errors from two regression models (not 

necessarily nested) but with a common dependent variable. Thus, two regression 

models can be compared through testing a null hypothesis of equivalence of the models 

in their predictability against the alternative that model ( )A  produces “better” predictions. 

Here, the notion of the equivalence of two models with respect to their predictive ability is 

considered in Xekalaki et al.’s (2003) sense to be defined implicitly through their mean 

squared prediction errors. Following Xekalaki et al.’s (2003) rationale, the closest 

description of the hypothesis to be tested is 

    H0: Models A  and B  have equal mean squared prediction errors 

Versus  

    H1: Model A  has lower mean squared prediction error than model B  

using ( )BA
TZ ,  as a test statistic, i.e., using the ratio of the sum of the squared 

standardized one-step-ahead prediction errors 1|ˆ −ttz  of the two competing models. The 

null hypothesis is rejected if ( ) ( )akCGRZ BA
T ,,, ρ> , where ( )akCGR ,,ρ  is the ( )a−1100  

percentile of the CGR distribution. In the case of independence between ( )A
TR  and ( )B

TR , 

the CGR density function reduces to the form: 
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( )
( )( ) ( )

( ) ( )( ) TBA
T

TBA
T

BA
TZ

ZZTTB
Zf BA

T

−−
+= ,12,, 1

2,2

1
, , (4.3.14) 

which is the p.d.f. of the F  distribution with T  and T  degrees of freedom. 

Since very few financial time series have a constant conditional mean of zero, in 

order to estimate the conditional variance, the conditional mean should have been 

defined. Thus, both the conditional mean and variance are estimated simultaneously. 

According to the SPEC model selection algorithm, the models that are considered as 

having a “better” ability to predict future values of the dependent variable, are those with 

the lowest sum of squared standardized one-step-ahead prediction errors. It becomes 

evident, therefore, that these models can potentially be regarded as the most 

appropriate to use for volatility forecasts too. 

 

4 . 4 .  E m p i r i c a l  R e s u l t s  
 

The suggested model selection procedure is illustrated on data referring to the 

daily returns of the Athens Stock Exchange (ASE) index. Let ( )1ln −= ttt PPy  denote the 

continuously compound rate of return from time 1−t  to t , where tP  is the ASE closing 

price at time t .  The data set covers the period from August 30th, 1993 to November 4th, 

1996, a total of 800 trading days. Table 4.1 presents the descriptive statistics. For an 

estimated kurtosis equal to 7.25 and an estimated skewness equal to 0.08, the 

distribution of returns is flat (platykurtic) and has a long right tail relative to the normal 

distribution. The Jarque Bera (JB) statistic (Jarque and Bera (1980)) is used to test 

whether the series is normally distributed. The test statistic measures the difference of 

the skewness and kurtosis of the series from those of the normal distribution. The JB 

statistic is computed as: 

( )( )( ) 643 22 −+= KSTJB , (4.4.1) 

where T  is the number of observations, S  is the skewness and K  is the kurtosis. 

Under the null hypothesis of a normal distribution, the JB statistic is 2χ  distributed with 2 

degrees of freedom. From Table 4.1, the value of the JB statistic obtained is 602.38 with 

a very low p-value (practically zero). So, the null hypothesis of normality is rejected. In 

order to determine whether { }ty  is a stationary process, the Augmented Dickey Fuller 
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test (ADF) (Dickey and Fuller (1979)) and the nonparametric Phillips Perron (PP) test 

(Phillips (1987), Phillips and Perron (1988)) are conducted. 

The ADF test examines the null hypothesis, 0:0 =γH , versus the alternative, 

0:1 <γH , in the following regression: 

t
i

ititt yycy εϕγ
κ

+∆++=∆ ∑
=

−−
1

1 , (4.4.2) 

where ∆  denotes the difference operator. According to the ADF test, the null hypothesis 

of non-stationarity is rejected at the 1% level of significance for any lag order up to 

12=κ . The test regression for the PP test is the AR(1) process: 

ttt ycy εγ ++=∆ −1 . (4.4.3) 

 

Table 4.1. Descriptive Statistics of the daily returns of the ASE index  

(30th August 1993 to 4th November 1996 (800 observations)) 

   Observations 800    
   Mean 5.72E-05    
   Median -0.00018    
   Standard Deviation 0.012    
   Skewness 0.08    
   Kurtosis 7.25    
   Jarque Bera (JB) 602.38    
   probability <0.000001    
   Augmented Dickey Fuller (ADF) -12.67    
   1% critical value -3.44    
   Phillips Perron  (PP) -24.57    
   1% critical value -3.44    

The skewness of a symmetric distribution, as the normal distribution, is zero. Positive skewness implies that the 
distribution has a long right tail. Negative skewness implies a long left tail distribution.  

The kurtosis of the normal distribution is 3. If the kurtosis exceeds 3, the distribution is peaked (leptokurtic) relative 
to the normal. If the kurtosis is less than 3, the distribution is flat (platykurtic) relative to the normal. 

Under the null hypothesis of a normal distribution, the JB statistic is χ2 distributed with 2 degrees of freedom. The 
reported probability is the probability that the JB statistic exceeds, in absolute value, the observed value under the null 
hypothesis. 

ADF: The null hypothesis of non-stationarity is rejected if the ADF value is less than the critical value. (4 lagged 
differences). 

PP: The null hypothesis of non-stationarity is rejected if the PP value is less than the critical value.  (4 truncation 
lags). 
 

While the ADF test corrects for higher order serial correlation by adding lagged 

differenced terms on the right hand side, the PP test makes a correction to the t statistic 

of the γ  coefficient from the AR(1) regression to account for the serial correlation in tε . 

The correction is nonparametric since an estimate of the spectrum of tε  at frequency 

zero, that is robust to heteroscedasticity and autocorrelation of unknown form, is used. 
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According to the PP test, the null hypothesis is also rejected at the 1% level of 

significance. 

The most commonly used test, for examining the null hypothesis of 

homoscedasticity against the alternative hypothesis of heteroscedasticity, is Engle’s 

(1982) Lagrange multiplier (LM) test. The ARCH LM test statistic is computed from an 

auxiliary test regression. To test the null hypothesis of no ARCH effects up to order q in 

the residuals, the regression model 

t

q

i
itit u++= ∑

=
−

1

2
0

2 εββε , (4.4.4) 

with cytt −=ε  is run. Engle’s test statistic is computed as the product of the number of 

observations times the value of the coefficient of variation 2R  of the auxiliary test 

regression. From Table 4.2, the values of the LM test statistic for 8,...,1=q  are highly 

significant at any reasonable level. 

 

Table 4.2. Lagrange multiplier (LM) test. Test the null hypothesis of no ARCH effects in 

the residuals up to order q. 
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   Q LM statistic p-value   
   1 108.203 0.00   
   2 113.315 0.00   
   3 127.947 0.00   
   4 128.577 0.00   
   5 130.691 0.00   
   6 133.467 0.00   
   7 131.573 0.00   
   8 129.496 0.00   

The LM statistic is computed as the number of observations times the R2 from the auxiliary test regression. It converges 
in distribution to a χ2

q. 
 

As, according to the results of the above tests, the assumptions of stationarity 

and ARCH effects seem to be plausible for the process { }ty  of daily returns, several 

ARCH models are considered in the sequel. It is assumed, specifically, that the 

conditional mean is considered as a thκ  order autoregressive process as defined in 

(4.3.2) and the conditional variance 2
tσ  is assumed to be related to lagged values of tε  
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and tσ  according to a GARCH( p , q ) model, an EGARCH( p , q ) model or a 

TARCH( p , q ) model as defined by (4.3.3), (4.3.7) and (4.3.8), respectively. Thus, the 

AR(κ )GARCH( p , q ), AR(κ )EGARCH( p , q ) and AR(κ )TARCH( p , q ) models are 

applied, for 4,...,0=κ , 2 ,1 ,0=p  and 2 ,1=q , yielding a total of 90 cases. 

Since, in estimating non-linear models, no closed form expressions are 

obtainable for the parameter estimators, an iterative method has to be employed. The 

value of the parameter vector θ  that maximizes ( )θtl , the log likelihood contribution for 

each observation t , is to be found. Iterative optimization algorithms work by starting with 

an initial set of values for the parameter vector θ , say ( )0θ , and obtaining a set of 

parameter values ( )1θ  which corresponds to a higher value of ( )θtl . This process is 

repeated until the objective function ( )θtl  no longer improves between iterations. In the 

sequel, the Marquardt algorithm (Marquardt (1963)) is used. This algorithm modifies the 

Berndt, Hall, Hall and Hausman, or BHHH, algorithm (Berndt et al. (1974)) by adding a 

correction matrix to the Hessian approximation (i.e., to the sum of the outer product of 

the gradient vectors for each observation’s contribution to the objective function). The 

Marquardt updating algorithm is computed as: 

( ) ( )
( ) ( ) ( )

∑∑
=

−

=

+

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

′∂
∂

∂
∂

+=
T

t

i
t

T

t

i
t

i
tii l

aI
ll

1

1

1

1

θθθ
θθ , (4.4.9) 

where I  is the identity matrix and a  is a positive number chosen by the algorithm. The 

effect of this modification is to push the parameter estimates in the direction of the 

gradient vector. The idea is that when we are far from the maximum, the local quadratic 

approximation to the function may be a poor guide to its overall shape, so it may be 

better off to simply follow the gradient. The correction may provide a better performance 

at locations far from the optimum, and allows for computation of the direction vector in 

cases where the Hessian is near singular.  

The quasi-maximum likelihood estimator (QMLE) is used, as according to 

Bollerslev and Wooldridge (1992), it is generally consistent, has a limiting normal 

distribution and provides asymptotic standard errors that are valid under non-normality. 

In order to compute the sum of squared standardized one-step-ahead prediction 

errors, a rolling sample of constant size equal to 500 is used, or 500=T , so 300 one-

step-ahead daily forecasts are estimated. Combined 90 model specifications and 300 
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replications for each model, our approach produces a total of 27.000 model estimations. 

In the chapters follow, ARCH models are estimated for larger number of data windows 

increasing even more the total number of one-step-ahead estimates. Unfortunately, it is 

not possible to use updating procedures that help cut down on computing time, expect 

from fixing, at each point in time, the initial values of the parameters to be estimated to 

their previously estimated values. On average, the computation of the 90 models 

requires 12 minutes per trading day5.  

Although, large data sets are often used in the literature for the estimation of 

ARCH models, we consider here using a not too large sample, which would expectantly 

incorporate changes in trading behavior more efficiently as the evidence is from various 

findings in the literature (e.g. Engle et al. 1993, Frey and Michaud 1997 and Angelidis et 

al. 2004). Moreover, in the 7th chapter samples of 1000 and 2000 observations were 

considered.  

The out-of-sample data set is split into 5 subperiods and the SPEC model 

selection algorithm is applied in each subperiod separately. Thus, the model selection is 

revised every 60 trading days and the information set includes daily continuously 

compound returns of the two most recently years, or 500 trading days. The choice of a 

60-day length for each subperiod is arbitrary. The sum of the squared one-step-ahead 

prediction errors, ( )∑ +

+= −
sT

Tt ttz
1

2
1|ˆ , is estimated for each model and presented in Table 4.3, 

in the end of chapter. The models selected for each subperiod and their sums of the 

squared standardized one-step-ahead prediction errors are: 

Subperiod Model Selected ( )( )∑ +

+= −
sT

Tt ttz
1

2
1|ˆmin

1. 25 August 1995 - 16 November 1995 AR(2) EGARCH(0,1) 21.961 
2. 17 November 1995 - 13 February 1996 AR(0) EGARCH(0,1) 76.315 
3. 14 February 1996 - 14 May 1996 AR(0) EGARCH(0,1) 42.176 
4. 15 May 1996 – 8 August 1996 AR(3) EGARCH(0,1) 27.308 
5. 9 August 1996 - 4 November 1996 AR(1) EGARCH(0,1) 43.920 

 

According to the SPEC selection method, the exponential GARCH(0,1) model describes 

best the conditional variance for the total examined period of 300 trading days. It is 

selected by the SPEC selection method in each subperiod. Figure 4.1 shows the daily 

                                                           
5 In the 6th chapter, an options trading strategy that is based on the SPEC algorithm is constructed. The 
trading game assumes that there is enough time to forecast the next day’s option prices. In order to compute 
option prices for the next trading day, the required computational time per day should be less than 15 
minutes. 
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value of the ASE index and the one-step-ahead conditional standard deviation of its 

returns. 

Figure 4.1. The ASE index and the one step ahead conditional standard deviation of its 

returns estimated by the EGARCH(0,1) 
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Figure 4.2. The parameters of the estimated EGARCH(0,1) models 
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Figure 4.3. The standard error for the parameters of the estimated EGARCH(0,1) models 
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Despite the fact that an asymmetric model is selected by the SPEC algorithm, 

there are no asymmetries in the ASE index volatility. According to Figure 4.1, the major 

episodes of high volatility are not associated with market changes of the same sign. 

Figure 4.2 presents the values of the parameters 1a  and 1γ  of the 300 estimated 

EGARCH(0,1) models, while Figure 4.3 depicts the relevant standard errors for the 

parameters 1a  and 1γ . Obviously, the 1γ  parameter, which allows for the asymmetric 

effect, is positive but statistically insignificant. Therefore, the asymmetric relation 

between returns and changes in volatility does not characterize the examined period. 

An interesting point is that the higher order of the conditional mean 

autoregressive process is chosen as adequate to produce more accurate predictions for 

the first and the fourth subperiods. As concerns the first subperiod, the 

AR(2)EGARCH(0,1) model 

tttt ycyccy ε+++= −− 22110  
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(4.4.10) 

is the one with the lowest  value of ( )∑ = −
560

501
2

1|ˆ
t ttz  equal to 21.961. The hypothesis: 

 H0: The model AR(2)EGARCH(0,1) has equivalent predictive ability to model X  

is tested versus 
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H1: The model AR(2)EGARCH(0,1) produces “better” predictions than model X , 

with X  denoting any one of the remainder models. 

 The CGR distribution depends on the correlations among standardized prediction 

errors from different models. Assuming that replacing the unknown parameters by their 

estimates should work in large samples, the correlation is estimated from the data. The 

correlation between the standardized one-step-ahead prediction errors is greater than 

0.9 in each case, which is naturally the case for predicted values specially when they are 

derived from similar model frameworks. If ( ) ( )∑ = −
−≡

560

501
2

1|
1),1,0()2(

60 ˆ96.21
t

X
tt

XEGARCHAR zZ  

( )akCGR ,9.0,30 >=> ρ , the null hypothesis of equivalent predictive ability of the 

models is rejected at %100a  level of significance and the AR(2)EGARCH(0,1) model is 

regarded as “better” than model X . Table 4.4, in the end of chapter, summarizes the 

results of the hypothesis tests, for each subperiod. 

Figure 4.4, in the end of chapter, depicts the one-step-ahead 95 per cent 

prediction intervals for the models with the lowest ( )∑ +

+= −
sT

Tt ttz
1

2
1|ˆ  in each subperiod. The 

prediction intervals are constructed as the expected rate of return plus\minus 1.96 times 

the conditional standard deviation, both measurable to 1−t  information set: 

1|1| ˆ96.1ˆ −− ± tttt σµ . So, each time next day’s prediction interval is plotted, only information 

available at current day is used. Remark that around November 1995, a volatile period, 

the prediction interval in Figure 4.4 tracked the movement of the returns quite closely  

(seven outliers, or 2.33%, were observed). 

 

4 . 5 .  A n  A l t e r n a t i v e  A p p r o a c h  
 

In this section an in-sample analysis is performed in order to select the 

appropriate models describing the data. Then, the selected models are used to estimate 

the one-step-ahead forecasts. Having assumed that the conditional mean of the returns 

follows a thκ  order autoregressive process, as in (4.5), Richardson and Smith (1994) 

developed a test for autocorrelation. It is a robust version of the standard Box Pierce 

(Box and Pierce (1970)) procedure. For ip  denoting the estimated autocorrelation 

between the returns at time t  and it − , the test is formulated as: 
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( ) ∑
= +

=
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1

2

1
, (4.5.1)

where T  is the sample size and ic  is the adjustment factor for heteroscedasticity, which 

is calculated as: 

( )
( )2

22 ,

t

itt
i yVar

yyCov
c −= , (4.5.2) 

where ∑ =
−−=

T

t ttt yTyy
1

1 . Under the null hypothesis of no autocorrelation, the statistic 

is asymptotically distributed as 2χ  with r  degrees of freedom. If the null hypothesis of 

no autocorrelation cannot be rejected, then the returns’ process is equal to a constant 

plus the residuals, tε . In other words, { }ty  follows the AR(0) process. If the null of no 

autocorrelation is rejected, then { }ty  follows the AR(1) process. In order to test for the 

existence of a higher order autocorrelation, the test is applied on the estimated residuals 

from the AR(1) model. In this case, the statistic, under the null hypothesis, is 

asymptotically distributed as 2χ  with 1−r  degrees of freedom. The test is calculated on 

7 autocorrelations ( )7=r  for 800 observations yielding a value equal to 

( ) 2
05.0 ,786,147 χ>=RS . As the null hypothesis of no autocorrelation is rejected the test is 

run on the estimated residuals from the AR(1) model that gives ( ) 2
05.0 ,633,126 χ<=RS . 

Thus, a first order autocorrelation is detected for the returns’ process. Note that the 

AR(1) form allows for the autocorrelation imposed by discontinuous trading. 

 Having defined the conditional mean equation, the next step is the estimation of 

the conditional variance function. The AIC and the SBC criteria are used to select the 

appropriate conditional variance equation. Note that the AIC mainly chooses as best the 

less parsimonious model. Also, under certain regularity conditions, the SBC is 

consistent, in the sense that for large samples it leads to the correct model choice, 

assuming the “true” model does belong to the set of models examined. Thus, the SBC 

may be preferable to use. As concerns the specific dataset, both the AIC and SBC select 

the GARCH(1,1) model as the most appropriate function to describe the conditional 

variance. So, performing an in-sample analysis the AR(1)GARCH(1,1) model is regarded 

as the most suitable, which is the model applied in most researches. Figure 4.5 presents 

the in-sample 95 per cent confidence interval for the AR(1)GARCH(1,1) model. There 

are fourteen observations, or 4.66%, outside the confidence interval. 
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 In order to compare the model selection methods, the choice of the models 

should be conducted at the same time points. Thus, the Richardson Smith test for 

autocorrelation detection and the information criteria for model selection are used in 

each subperiod separately. The models selected for in each subperiod are: 

Subperiod Richardson Smith 
Model selection 

SBC  
Model Selection 

AIC  
Model Selection 

1. AR(3) GARCH(1,1) EGARCH(1,2) 
2. AR(2) GARCH(2,1) GARCH(2,1) 
3. AR(0) GARCH(1,1) GARCH(1,1) 
4. AR(0) GARCH(1,1) GARCH(1,1) 
5. AR(0) GARCH(1,1) TARCH(1,1) 

Based on Table 4.4, the hypothesis that the model selected by the in-sample analysis is 

equivalent to the model with minimum value of ( )∑ +

+= −
sT

Tt ttz
1

2
1|ˆ  is rejected in the majority of 

the cases. 

Proceeding as in the previous section, the one-step-ahead prediction intervals, 

for the models selected in each subperiod, are created. As in section 4.5, next day’s 

prediction is based only on information available at current day. Figures 4.6 and 4.7 

present the one-step-ahead 95 per cent prediction intervals for the models selected by 

the SBC and AIC, respectively. There are thirteen observations, or 4.33%, outside the 

prediction interval for the models selected by the SBC, whereas there are fourteen 

outliers, or 4.66%, for the models selected by the AIC. Therefore, the importance of 

selecting a conditional variance model based on its ability to forecast and not on fitting 

the data gains a lead over. Of course, the construction of the prediction intervals is a 

naïve way to examine the accuracy of our method’s predictability. 

 

4 . 6 .  C o n c l u s i o n  
 

An alternative model selection approach, based on the CGR distribution, was 

introduced. Instead of being based on evaluating the ability of the models to describe the 

data (Akaike information and Schwarz Bayesian criteria), the proposed approach is 

based on evaluating the ability of the models to predict the conditional variance. The 

method was applied to 800 daily returns of the ASE index, a dataset covers the period 

from August 30th, 1993 to November 4th, 1996. The first T  observations were used to 

estimate the one-step-ahead prediction of the conditional mean and variance at 1+T . 

For 500=T , a total of 300 one-step-ahead predictions of the conditional mean and 

variance were obtained. The out-of-sample data set was split to 5 subperiods and the 
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SPEC model selection algorithm was applied in each subperiod separately. Thus, the 

model selection was revised every 60 trading days. 

The idea of “jumping” from one model to another, as stock market behavior 

alters, is introduced. The transition from one model to another is done according to the 

SPEC model selection algorithm. Each time the model selection method is applied, the 

model is used to predict the conditional variance is revised. Of course, the idea of 

switching from one regime to another has been already applied to the class of switch 

regime ARCH models introduced by Cai (1994) and Hamilton and Susmel (1994) and 

extended by several authors such as Dueker (1997) and Hansen (1994). However, 

these models allow the parameters of a specific ARCH model to come from one of 

several different regimes, with transitions between regimes governed by an unobserved 

Markov chain. 

Using an alternative approach, based on evaluating the ability of fitting the data, 

the conditional mean is first modeled and subsequently, an appropriate form for the 

conditional variance is chosen. Applying the SPEC model selection algorithm, the null 

hypothesis, that the model selected by the in-sample analysis is equivalent to the model 

with minimum value of ( )∑ +

+= −
sT

Tt ttz
1

2
1|ˆ , is rejected in the plurality of the cases at less than 

5% level of significance. The in-sample model selection methods and the predictability-

based method do not coincide in the sifting of the appropriate conditional variance 

model. Moreover, 2.33% and 4.33% of the data were outside the 1|1| ˆ96.1ˆ −− ± tttt σµ  

prediction interval constructed based on the SPEC and the SBC model selection 

methods, respectively. 

The predictive ability of the SPEC model selection algorithm is further 

investigated in the next chapters. Among the financial applications where this method 

could have a potential use are in the fields of portfolio analysis, risk management and 

trading option derivatives. 



Chapter 4

κ=0* κ=1 κ=2 κ=3 κ=4 κ=0* κ=1 κ=2 κ=3 κ=4 κ=0* κ=1 κ=2 κ=3 κ=4
GARCH(p,q) GARCH(p,q) GARCH(p,q)

p=0, q=1 26.371 25.465 24.843 25.173 26.570 p=0, q=1 81.183 79.657 79.913 83.204 89.584 p=0, q=1 45.970 46.740 46.793 47.855 47.882
p=0, q=2 30.150 29.493 28.940 29.109 30.835 p=0, q=2 88.007 85.947 88.135 89.575 95.825 p=0, q=2 46.138 46.323 46.039 47.496 47.382
p=1, q=1 39.076 38.848 38.289 38.496 38.466 p=1, q=1 79.571 84.410 85.070 85.671 86.749 p=1, q=1 50.273 50.205 49.959 50.363 49.320
p=1, q=2 39.129 38.709 38.159 38.533 38.456 p=1, q=2 80.684 85.214 85.554 87.046 89.907 p=1, q=2 50.429 50.097 49.814 50.223 49.330
p=2, q=1 39.183 38.304 37.882 37.829 37.889 p=2, q=1 79.703 83.700 86.917 84.920 87.420 p=2, q=1 50.650 50.334 49.547 49.917 49.843
p=2, q=2 39.511 38.742 38.336 39.223 38.377 p=2, q=2 81.230 84.534 85.143 82.863 88.940 p=2, q=2 50.811 50.126 50.051 50.330 48.975

TARCH(p,q) TARCH(p,q) TARCH(p,q)
p=0, q=1 26.795 25.892 25.270 25.683 27.300 p=0, q=1 81.505 80.810 81.158 84.704 90.674 p=0, q=1 45.947 46.731 46.749 47.769 47.806
p=0, q=2 31.151 30.981 30.442 30.619 32.125 p=0, q=2 88.977 88.465 91.004 92.734 98.915 p=0, q=2 46.114 46.311 46.001 47.422 47.263
p=1, q=1 39.070 38.624 38.146 38.506 38.550 p=1, q=1 81.296 85.321 86.339 87.601 88.412 p=1, q=1 50.461 50.262 50.006 50.396 49.368
p=1, q=2 39.016 38.667 38.185 38.660 38.482 p=1, q=2 86.517 87.338 88.246 92.729 98.976 p=1, q=2 50.677 50.145 49.830 50.229 49.512
p=2, q=1 39.279 37.836 37.422 38.005 38.290 p=2, q=1 81.609 86.085 85.458 84.975 90.097 p=2, q=1 50.769 49.491 48.737 50.231 49.613
p=2, q=2 40.975 38.732 38.180 38.755 38.398 p=2, q=2 89.614 86.608 87.364 91.126 98.289 p=2, q=2 51.664 49.794 50.262 50.548 50.133

EGARCH(p,q) EGARCH(p,q) EGARCH(p,q)
p=0, q=1 23.770 22.644 21.961 22.047 22.722 p=0, q=1 76.315 78.689 78.342 78.551 84.422 p=0, q=1 42.176 42.724 42.688 43.561 43.383
p=0, q=2 27.289 27.340 26.731 26.896 28.312 p=0, q=2 87.867 91.361 92.862 93.526 101.216 p=0, q=2 43.712 44.279 44.178 45.395 44.838
p=1, q=1 44.281 43.555 43.131 43.321 41.934 p=1, q=1 88.246 96.778 98.579 99.805 99.650 p=1, q=1 49.382 48.836 48.837 49.369 48.644
p=1, q=2 43.754 42.427 41.360 42.235 41.231 p=1, q=2 98.798 103.714 105.834 107.774 108.783 p=1, q=2 49.140 48.716 48.592 49.065 48.608
p=2, q=1 44.620 43.216 43.138 43.142 42.077 p=2, q=1 90.043 98.056 99.570 101.509 101.531 p=2, q=1 49.422 48.384 48.301 48.452 48.380
p=2, q=2 43.926 42.915 42.231 42.645 41.138 p=2, q=2 93.750 102.953 112.441 105.882 ** p=2, q=2 51.970 49.555 ** 48.992 **

κ=0* κ=1 κ=2 κ=3 κ=4 κ=0* κ=1 κ=2 κ=3 κ=4
GARCH(p,q) GARCH(p,q)

p=0, q=1 30.568 30.619 29.473 29.346 29.534 p=0, q=1 48.288 47.469 47.437 49.749 50.771
p=0, q=2 31.557 32.105 30.967 30.861 30.813 p=0, q=2 50.795 49.575 49.484 51.426 52.236
p=1, q=1 36.016 36.440 35.335 35.175 35.013 p=1, q=1 55.915 54.344 54.572 54.967 55.281
p=1, q=2 36.098 36.951 35.846 35.706 35.431 p=1, q=2 56.099 54.631 54.872 55.163 55.399
p=2, q=1 35.732 37.374 36.069 36.020 35.628 p=2, q=1 55.807 55.420 55.335 56.306 56.075
p=2, q=2 35.859 36.647 36.252 35.446 35.437 p=2, q=2 56.102 54.814 55.145 55.137 55.359

TARCH(p,q) TARCH(p,q)
p=0, q=1 30.747 30.605 29.419 29.352 29.593 p=0, q=1 47.179 47.143 47.101 49.494 50.529
p=0, q=2 31.821 31.978 30.804 30.785 30.811 p=0, q=2 49.483 49.131 49.030 51.031 51.935
p=1, q=1 36.029 36.326 35.157 35.147 35.075 p=1, q=1 53.866 53.341 53.616 53.897 54.272
p=1, q=2 36.117 36.636 35.489 35.482 35.298 p=1, q=2 54.065 53.684 53.835 54.075 54.327
p=2, q=1 36.279 37.214 35.789 36.224 35.946 p=2, q=1 53.925 54.199 53.999 54.245 56.211
p=2, q=2 35.945 37.646 35.776 36.005 36.030 p=2, q=2 54.181 54.482 54.725 55.039 54.846

EGARCH(p,q) EGARCH(p,q)
p=0, q=1 29.252 28.733 27.428 27.308 27.330 p=0, q=1 44.260 43.920 44.047 45.908 46.528
p=0, q=2 30.310 30.109 28.772 28.644 28.563 p=0, q=2 46.453 45.986 46.035 47.513 47.990
p=1, q=1 35.972 36.142 34.806 34.716 34.754 p=1, q=1 52.752 53.271 53.285 53.801 53.944
p=1, q=2 36.251 36.923 35.548 35.477 35.460 p=1, q=2 53.233 54.767 54.191 54.450 54.617
p=2, q=1 35.706 37.371 36.176 36.190 36.266 p=2, q=1 53.922 55.703 55.410 55.596 55.726
p=2, q=2 35.562 35.109 34.329 34.210 34.777 p=2, q=2 52.438 54.052 53.963 ** 54.716

Table 4.3. Sum of squared standardized one step ahead prediction errors for each subperiod. The AR(κ)GARCH(p,q), AR(κ)EGARCH(p,q) 
and AR(κ)TARCH(p,q) models are applied, for κ=0,…,4, p=0,1,2 and q=1,2.

Table 3.d Table 3.e

Table 3.c
14 February 1996 - 14 May 1996 (s=[621,680])

15 May 1996 - 8 August 1996 (s=[681,740]) 9 August 1996 - 4 November 1996 (s=[741,800])

Table 3.a Table 3.b
25 August 1995 - 16 November 1995 (s=[501,560]) 17 November 1995 - 13 February 1996 (s=[561,620])

*Regress the depedent variable on a constant.
** Model fails to converge at least once.
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AR(0) AR(1) AR(2) AR(3) AR(4) AR(0) AR(1) AR(2) AR(3) AR(4)
GARCH(0,1) 1.201 1.160 1.131 1.146 1.210 GARCH(0,1) 1.064 1.044 1.047 1.090 1.174

p-value <0.10 <0.10 <0.25 <0.25 <0.05 p-value >0.25 >0.25 >0.25 <0.25 <0.1
GARCH(0,2) 1.373 1.343 1.318 1.326 1.404 GARCH(0,2) 1.153 1.126 1.155 1.174 1.256

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.25 <0.25 <0.25 <0.1 <0.05
GARCH(1,1) 1.779 1.769 1.744 1.753 1.752 GARCH(1,1) 1.043 1.106 1.115 1.123 1.137

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.25
GARCH(1,2) 1.782 1.763 1.738 1.755 1.751 GARCH(1,2) 1.057 1.117 1.121 1.141 1.178

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
GARCH(2,1) 1.784 1.744 1.725 1.723 1.725 GARCH(2,1) 1.044 1.097 1.139 1.113 1.146

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.25
GARCH(2,2) 1.799 1.764 1.746 1.786 1.748 GARCH(2,2) 1.064 1.108 1.116 1.086 1.165

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
TARCH(0,1) 1.220 1.179 1.151 1.170 1.243 TARCH(0,1) 1.068 1.059 1.063 1.110 1.188

p-value <0.05 <0.10 <0.25 <0.10 <0.05 p-value >0.25 >0.25 >0.25 <0.25 <0.1
TARCH(0,2) 1.418 1.411 1.386 1.394 1.463 TARCH(0,2) 1.166 1.159 1.192 1.215 1.296

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.1 <0.1 <0.1 <0.05 <0.05
TARCH(1,1) 1.779 1.759 1.737 1.753 1.755 TARCH(1,1) 1.065 1.118 1.131 1.148 1.159

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
TARCH(1,2) 1.777 1.761 1.739 1.760 1.752 TARCH(1,2) 1.134 1.144 1.156 1.215 1.297

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.25 <0.25 <0.25 <0.05 <0.05
TARCH(2,1) 1.789 1.723 1.704 1.731 1.744 TARCH(2,1) 1.069 1.128 1.120 1.113 1.181

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value >0.25 <0.25 <0.25 <0.25 <0.1
TARCH(2,2) 1.866 1.764 1.739 1.765 1.748 TARCH(2,2) 1.174 1.135 1.145 1.194 1.288

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.1 <0.25 <0.25 <0.1 <0.05
E-GARCH(0,1) 1.082 1.031 1.004 1.035 E-GARCH(0,1) 1.031 1.027 1.029 1.106

p-value <0.25 >0.25 >0.25 >0.25 p-value >0.25 >0.25 >0.25 <0.25
E-GARCH(0,2) 1.243 1.245 1.217 1.225 1.289 E-GARCH(0,2) 1.151 1.197 1.217 1.226 1.326

p-value <0.05 <0.05 <0.05 <0.05 <0.05 p-value <0.25 <0.1 <0.05 <0.05 <0.01
E-GARCH(1,1) 2.016 1.983 1.964 1.973 1.909 E-GARCH(1,1) 1.156 1.268 1.292 1.308 1.306

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.25 <0.05 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.992 1.932 1.883 1.923 1.878 E-GARCH(1,2) 1.295 1.359 1.387 1.412 1.425

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.05 <0.01 <0.01 <0.01 <0.01
E-GARCH(2,1) 2.032 1.968 1.964 1.965 1.916 E-GARCH(2,1) 1.180 1.285 1.305 1.330 1.330

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.1 <0.05 <0.05 <0.01 <0.01
E-GARCH(2,2) 2.000 1.954 1.923 1.942 1.873 E-GARCH(2,2) 1.228 1.349 1.473 1.387 **

p-value <0.01 <0.01 <0.01 <0.01 <0.01 p-value <0.05 <0.01 <0.01 <0.01
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Testing the null hypothesis that the model with the lowest sum of the squared standardized one step ahead prediction errors 
has equivalent predictive ability to model X, with X denoting any of the remainder models.

Model for Conditional Mean Model for Conditional Mean
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Table 4.4

Table 4.a: 25 August 1995 - 16 November 1995 (1st subperiod)

H0: The model AR(2)-EGARCH(0,1) is equivalent to model X                      
versus H1: The model AR(2)-EGARCH(0,1) is "better" than model X.

Table 4.b: 17 November 1995 - 13 February 1996  (2nd subperiod)

H0: The model AR(0)-EGARCH(0,1) is equivalent to model X                  
versus H1: The model AR(0)-EGARCH(0,1) is "better" than model X.

** Model fails to converge at least once.
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AR(0) AR(1) AR(2) AR(3) AR(4) AR(0) AR(1) AR(2) AR(3) AR(4)
GARCH(0,1) 1.090 1.108 1.109 1.135 1.135 GARCH(0,1) 1.119 1.121 1.079 1.075 1.081

p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.25 <0.25 <0.25 >0.25 <0.25
GARCH(0,2) 1.094 1.098 1.092 1.126 1.123 GARCH(0,2) 1.156 1.176 1.134 1.130 1.128

p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.25 <0.1 <0.25 <0.25 <0.25
GARCH(1,1) 1.192 1.190 1.185 1.194 1.169 GARCH(1,1) 1.319 1.334 1.294 1.288 1.282

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.05 <0.05 <0.05
GARCH(1,2) 1.196 1.188 1.181 1.191 1.170 GARCH(1,2) 1.322 1.353 1.313 1.308 1.297

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.05 <0.05
GARCH(2,1) 1.201 1.193 1.175 1.184 1.182 GARCH(2,1) 1.308 1.369 1.321 1.319 1.305

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.01 <0.05
GARCH(2,2) 1.205 1.188 1.187 1.193 1.161 GARCH(2,2) 1.313 1.342 1.328 1.298 1.298

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.05 <0.05
TARCH(0,1) 1.089 1.108 1.108 1.133 1.133 TARCH(0,1) 1.126 1.121 1.077 1.075 1.084

p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.25 <0.25 >0.25 >0.25 <0.25
TARCH(0,2) 1.093 1.098 1.091 1.124 1.121 TARCH(0,2) 1.165 1.171 1.128 1.127 1.128

p-value <0.25 <0.25 <0.25 <0.25 <0.25 p-value <0.1 <0.1 <0.25 <0.25 <0.25
TARCH(1,1) 1.196 1.192 1.186 1.195 1.171 TARCH(1,1) 1.319 1.330 1.287 1.287 1.284

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.05 <0.05 <0.05
TARCH(1,2) 1.202 1.189 1.181 1.191 1.174 TARCH(1,2) 1.323 1.342 1.300 1.299 1.293

p-value <0.1 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.05 <0.05 <0.05
TARCH(2,1) 1.204 1.173 1.156 1.191 1.176 TARCH(2,1) 1.329 1.363 1.311 1.327 1.316

p-value <0.1 <0.1 <0.25 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.01 <0.01
TARCH(2,2) 1.225 1.181 1.192 1.199 1.189 TARCH(2,2) 1.316 1.379 1.310 1.318 1.319

p-value <0.05 <0.1 <0.1 <0.1 <0.1 p-value <0.01 <0.01 <0.01 <0.01 <0.01
E-GARCH(0,1) 1.013 1.012 1.033 1.029 E-GARCH(0,1) 1.071 1.052 1.004 1.001

p-value >0.25 >0.25 >0.25 >0.25 p-value >0.25 >0.25 >0.25 >0.25
E-GARCH(0,2) 1.036 1.050 1.047 1.076 1.063 E-GARCH(0,2) 1.110 1.103 1.054 1.049 1.046

p-value >0.25 >0.25 >0.25 >0.25 >0.25 p-value <0.25 <0.25 >0.25 >0.25 >0.25
E-GARCH(1,1) 1.171 1.158 1.158 1.171 1.153 E-GARCH(1,1) 1.317 1.323 1.275 1.271 1.273

p-value <0.1 <0.1 <0.1 <0.1 <0.25 p-value <0.01 <0.01 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.165 1.155 1.152 1.163 1.153 E-GARCH(1,2) 1.327 1.352 1.302 1.299 1.299

p-value <0.1 <0.25 <0.25 <0.1 <0.25 p-value <0.01 <0.01 <0.05 <0.05 <0.05
E-GARCH(2,1) 1.172 1.147 1.145 1.149 1.147 E-GARCH(2,1) 1.308 1.368 1.325 1.325 1.328

p-value <0.1 <0.25 <0.25 <0.25 <0.25 p-value <0.05 <0.01 <0.01 <0.01 <0.01
E-GARCH(2,2) 1.232 1.175 ** 1.162 ** E-GARCH(2,2) 1.302 1.286 1.257 1.253 1.274

p-value <0.05 <0.1 <0.1 p-value <0.05 <0.05 <0.05 <0.05 <0.05

Table 4.4 (continued)

Testing the null hypothesis that the model with the lowest sum of the squared standardized one step ahead prediction errors 
has equivalent predictive ability to model X, with X denoting any of the remainder models.

Table 4.d: 15 May 1996 - 8 August 1996  (4th subperiod)
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Model for Conditional Mean Model for Conditional Mean

Table 4.c: 14 February 1996 - 14 May 1996  (3rd subperiod)

H0: The model AR(2)-EGARCH(0,1) is equivalent to model X                      
versus H1: The model AR(2)-EGARCH(0,1) is "better" than model X.
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H0: The model AR(3)-EGARCH(0,1) is equivalent to model X                  
versus H1: The model AR(3)-EGARCH(0,1) is "better" than model X.

** Model fails to converge at least once.
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AR(0) AR(1) AR(2) AR(3) AR(4)
GARCH(0,1) 1.099 1.081 1.080 1.133 1.156

p-value <0.25 <0.25 <0.25 <0.25 <0.25
GARCH(0,2) 1.157 1.129 1.127 1.171 1.189

p-value <0.25 <0.25 <0.25 <0.1 <0.1
GARCH(1,1) 1.273 1.237 1.243 1.252 1.259

p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(1,2) 1.277 1.244 1.249 1.256 1.261

p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(2,1) 1.271 1.262 1.260 1.282 1.277

p-value <0.05 <0.05 <0.05 <0.05 <0.05
GARCH(2,2) 1.277 1.248 1.256 1.255 1.260

p-value <0.05 <0.05 <0.05 <0.05 <0.05
TARCH(0,1) 1.074 1.073 1.072 1.127 1.150

p-value >0.25 >0.25 >0.25 <0.25 <0.25
TARCH(0,2) 1.127 1.119 1.116 1.162 1.183

p-value <0.25 <0.25 <0.25 <0.1 <0.1
TARCH(1,1) 1.226 1.215 1.221 1.227 1.236

p-value <0.05 <0.05 <0.05 <0.05 <0.05
TARCH(1,2) 1.231 1.222 1.226 1.231 1.237

p-value <0.05 <0.05 <0.05 <0.05 <0.05
TARCH(2,1) 1.228 1.234 1.230 1.235 1.280

p-value <0.05 <0.05 <0.05 <0.05 <0.05
TARCH(2,2) 1.234 1.240 1.246 1.253 1.249

p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(0,1) 1.008 1.003 1.045 1.059

p-value >0.25 >0.25 >0.25 >0.25
E-GARCH(0,2) 1.058 1.047 1.048 1.082 1.093

p-value >0.25 >0.25 >0.25 <0.25 <0.25
E-GARCH(1,1) 1.201 1.213 1.213 1.225 1.228

p-value <0.1 <0.05 <0.05 <0.05 <0.05
E-GARCH(1,2) 1.212 1.247 1.234 1.240 1.244

p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(2,1) 1.228 1.268 1.262 1.266 1.269

p-value <0.05 <0.05 <0.05 <0.05 <0.05
E-GARCH(2,2) 1.194 1.231 1.229 ** 1.246

p-value <0.1 <0.05 <0.05 <0.05

H0: The model AR(1)-EGARCH(0,1) is equivalent to model X                      
versus H1: The model AR(1)-EGARCH(0,1) is "better" than model X.

Table 4.e: 9 August 1996 - 4 November 1996  (5th subperiod)

Testing the null hypothesis that the model with the lowest sum 
of the squared standardized one step ahead prediction errors 

has equivalent predictive ability to model X, with X denoting any 
of the remainder models.

Table 4.4 (continued)

Model for Conditional Mean
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** Model fails to converge at least once.
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Figure 4.4 
One Step Ahead 95% Forecasted Interval for the Models with the Lowest Sum of the Squared Standardized One

Step Ahead Prediction Errors
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Figure 4.5 
In-Sample 95% Confidence Interval for the AR(1) GARCH(1,1) Model
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Figure 4.6 
One Step Ahead 95% Forecasted Intervals for the Models Selected by the SBC
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Figure 4.7 
One Step Ahead 95% Forecasted Intervals for the Models Selected by the AIC
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Cha p te r  5  

A s s es s ing  t he  Per fo r m a n ce  o f  t h e  S ta n d a r d i z ed  

Pred i c t i on  Erro r  Cr i t e r ion  Mod e l  Se l ec t i on  

A lg or i t hm  
 

5 . 1 .  I n t r o d u c t i o n  
 

Predicting volatility is of great importance in pricing financial derivatives, selecting 

portfolios, measuring and managing investment risk more accurately. To evaluate their 

accuracy, volatility forecasts have to be compared with realized volatility, which cannot 

be observed. In this chapter, a number of evaluation criteria are used to examine the 

ability of the SPEC model selection algorithm to indicate the ARCH model that generates 

“better” volatility predictions, for a forecasting horizon ranging from one day to one 

hundred days ahead. The results show that the SPEC model selection procedure has a 

satisfactory performance in selecting that ARCH model that tracks realized volatility 

closer, for a forecasting horizon ranging from 16 days to 36 days ahead. So, it is 

possible to use this model selection method in financial applications requiring volatility 

forecasts for a period longer than one day, i.e. option pricing, risk management. The 

majority of studies investigate the volatility forecasting accuracy for daily horizons, 

despite the fact that the practitioners require predictions of lower frequency (the Basle 

Committee on Banking Supervision (Basle Committee on Banking Supervision, 1998) for 

the use of Value-at-Risk methods requires the use of 10-days-ahead volatility 

predictions, whereas fund managers re-balance their portfolios on at least a monthly 

basis). 

In section 5.2 of the present chapter, the forecast recursive relations of the 

GARCH, TARCH and EGARCH models and the estimation steps comprising the SPEC 

approach are presented. Section 5.3 provides a brief description of the evaluation 

criteria and the inter-day realized volatility measures considered. In section 5.4, the 

ability of the method proposed to select the ARCH model that generates “better” 

predictions of the volatility, is examined. In section 5.5, the proposed model selection 

method is compared to other methods of model selection. Finally, in section 5.6, a brief 

discussion of the results is provided.  
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5.2. T h e  f o r e c a s t  r e c u r s i o n  r e l a t i o n s  o f  A R C H  P r o c e s s e s  
 

For tP  denoting the price of an asset at time t, let ( )1ln −= ttt PPy  denote the 

continuously compounded return series of interest. The return series is decomposed into 

two parts, the predictable and unpredictable component: 

( ) tttt yEy ε+= −1| , (5.2.1) 

where ( )1| −ttyE  is the conditional mean of return at period t  depending upon the 

information set available at time 1−t  and tε  is the prediction error. Usually, the 

predictable component is either the overall mean or a first order autocorrelated process 

(imposed by non-synchronous trading1). The conditional mean, unfortunately, does not 

have the ability to give useful predictions. That is why modern financial theory assumes 

the asset returns are unpredictable. Before the start of the 1980’s, the view taken about 

returns in financial markets was that they behave as random walks and the Brock et al. 

(1987) (BDS) statistic has widely been used to test the null hypothesis that asset returns 

are independently and identically distributed. This hypothesis, however, has been 

rejected in a vast number of applications. A rejection of the null hypothesis is consistent 

with some types of dependence in the data, which could result in from a linear stochastic 

system, a nonlinear stochastic system, or a nonlinear deterministic system. Thus, a 

question arises: “Are the nonlinearities connected with the conditional mean (so, as to be 

used to predict future returns) or with higher order conditional moments?” Artificial neural 

networks2, chaotic dynamical systems3, nonlinear parametric and nonparametric 

models4 are some examples from the literature dealing with conditional mean 

predictions. ARCH models and Stochastic Volatility models5 are examples from the 

literature dealing with conditional variance modeling. However, no nonlinear models that 

can significantly outperform even the simplest linear model in out-of-sample forecasting 

seem to exist in the literature (neither in the field of stochastic nonlinear models nor in 

the field of deterministic chaotic systems). On the other hand, the ARCH processes and 

                                                 
1 For more details on non-synchronous trading see section 2.1.3 of the 2nd chapter. 
2 For an overview of the Neural Networks literature see Poggio and Girosi (1990), Hertz et al. (1991), 
White (1992), Hutchinson et al. (1994). 
3 Brock (1986), Holden (1986), Thompson and Stewart (1986) and Hsieh (1991) review applications of 
chaotic systems to financial markets. 
4 Priestley (1988), Tong (1990) and Teräsvirta et al. (1994) cover a wide variety of nonlinear models. 
5 See for details Taylor (1994) and Shephard (1996). 
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Stochastic Volatility models appear to be more appropriate to interpret nonlinearities in 

financial systems on the basis of the conditional variance. If an ARCH process is the true 

data generating mechanism, the nonlinearities cannot be exploited to generate improved 

point predictions relative to a linear model. 

In the sequel, the conditional mean is considered as an thκ  order autoregressive 

process defined by 

( ) ∑
=

−− +=
κ

1
01|

i
ititt yccyE . (5.2.2) 

Assuming the unpredictable component in (5.2.1) is an ARCH process, it can be 

represented as: 
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where { }tz  is a sequence of independently and identically distributed random variables, 

tσ  is a time-varying, positive measurable function of the information set at time 1t − , 

1−tI , tυ  is a vector of predetermined variables included in tI  and ( ).g  could be a linear 

or nonlinear functional form as it is usually assumed in the ARCH literature. A 

researcher, who is looking for the “best” model, would have in mind a variety of 

candidate models. The most commonly used conditional variance functions are the 

GARCH (Bollerslev (1986)), the Exponential GARCH, or EGARCH, (Nelson (1991)) and 

the Threshold GARCH, or TARCH, (Glosten et al. (1993)) functions. We rewrite these 

ARCH models from the 4th chapter: 

The GARCH(p,q) model  
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The EGARCH(p,q) model  
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The TARCH(p,q) model  
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 where 1=td  if 0<tε , and 0=td  otherwise. 

Maximum likelihood estimates of the parameters are obtained by numerical 

maximization of the log-likelihood function using the Marquardt algorithm (Marquardt 

(1963)). The quasi-maximum likelihood estimator (QMLE) is used, as according to 

Bollerslev and Wooldridge (1992), it is generally consistent, has a normal limiting 

distribution and provides asymptotic standard errors that are valid under non-normality. 

The majority of practical applications, i.e. option pricing, determination of the 

value-at-risk, require more than one-day-ahead volatility forecasts. More than one-step-

ahead forecasts can be computed by repeated substitution. The forecast recursion 

relation of the GARCH(p,q) model is: 

(5.2.7.a) 
( ) ( )( ) ( )( )∑∑

=
+−

=
+−+ ++=

p

i
it

t
i

q

i
it

t
i

t
tt baa

1

2
1

1

2
10

2
|1ˆ σεσ  

( ) ( )( ) ( )( ) ( )( )∑∑∑
=

+−

≥
=

+−

<
=

+−+ +++=
p

i
sit

t
i

q

sifor
si

sit
t

i

q

sifor
i

sit
t

i
t

tst baaa
1

2

 

2

 
1

2
0

2
|ˆ σεσσ , 

(5.2.7.b) 

For ts > , the forecast of the predictive error sε  conditional on information available at 

time t  equals to its zero expected value, ( ) 0| =ts IE ε . On the other hand, the estimated 

value of 2
sε  measured at time t should be equal to 2

|tsσ  for ts > . For ts ≤ , the predictive 

error and its square are computed by the model with the available information at time t . 

The forecast recursion relationship associated with the EGARCH(p,q) model is: 
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that associated with the TARCH(p,q) model is: 

(5.2.9.a) 
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Here, ( )tdE  denotes the percentage of negative innovations out of all innovations. 

Under the assumption of normally distributed innovations, the expected number of 

negative shocks is equal to the expected number of positive shocks, or ( ) 5.0=tdE . The 

forecast of the conditional variance at time t  over a horizon of N  days ahead is simply 

the average of the estimated future variance conditional on information given at time t  is 

given by 

( ) ∑
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+
−=

N

i
titNt N
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2
|

12 σ̂σ . (5.2.10) 

Let us now assume that we are interested in comparing the predictive ability of 

two ARCH models: 

Model A Model B 
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According to the SPEC model selection algorithm, the models that are 

considered as having a “better” ability to predict future values of the dependent variable 

are those with the lowest sum of squared standardized one-step-ahead prediction errors. 

, ( ) ( ) ( )∑∑
+−=

−−
+−=

≡
k

Tkt

m
tt

m
tt

k

Tkt

m
tz

1

2
1|

2
1|

1

2 ˆˆˆ σε . Here, )(
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)()(
1

ˆ'ˆ m
t

m
tt

m
tt xy −− −= βε  is the one-step-ahead 

prediction error of model m, where )(
1

ˆ m
t−β  is the estimator of )(mβ  based on the 

information set that is available at time 1−t  and )(2
1ˆ m

tt −σ  is the one-step-ahead conditional 

variance forecast of model m. It becomes evident, therefore, that these models can 

potentially be regarded as the most appropriate to use for volatility forecasts too. 

Let us assume that M  candidate ARCH models are available and that we are 

looking for the “most suitable” model at each of a sequence of points in time. At time k , 

selecting a strategy for the most appropriate model to forecast volatility at time 1+k  

( ,...1, += TTk ) could naturally amount to selecting the model, which, at time k , has the 

lowest sum of squared standardized one-step-ahead prediction errors, on the basis of 

the SPEC algorithm. Table 5.1 summarizes the estimation steps comprising this 

approach. The rows of this table refer to candidate ARCH models, the columns refer to 
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days, while its entries represent the sums of the squares of the T  most recent 

standardized one-step-ahead prediction errors of each of the M  models. Each day, the 

choice of the model to be used to predict the conditional variance for the next day is 

determined by the entry of the corresponding column of table 5.1 that has the minimum 

value. In particular, model im =  will be chosen at time jTk +=  if it is the one that 

corresponds to the cell of column jT +  that has the minimum value of ( )∑
+

+=

jT

jt

i
tz

1

2ˆ . 

Table 5.1 

The estimation steps required at time k  for each model m  by the SPEC 

model selection algorithm. At time k  ( ,...1, += TTk ), select the model 

m  with the minimum value for the sum of the squares of the T  most 

recent standardized one-step-ahead prediction errors, 
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In the next section, the methodology applied to evaluate the performance of a 

model in estimating future volatility is presented, while in section 5.4, the ability of the 

SPEC model selection algorithm to indicate those ARCH models that generate “better” 

volatility predictions is illustrated on a set of real data on daily returns of the S&P500 

stock index. 
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5.3. E v a l u a t i n g  t h e  V o l a t i l i t y  F o r e c a s t  P e r f o r m a n c e  

 
The main problem in evaluating the predictive performance of a model is the 

choice of the function one should use to measure the distance between estimations and 

observations. Evaluating the performance of the variance forecasts requires knowledge 

of the actual volatility, which is unobservable. Thus, in evaluating the predictive 

performance of a variance model a question of a dual nature arises: that of determining 

the realized volatility and of considering the appropriate measure to evaluate the 

closeness of the forecasts to the corresponding realizations. 

 

5.3.1 Realized Volatility Measures 
Practitioners’ most popular volatility measures are the average of squared daily 

returns and the variance of the daily returns. These measures, expressed on a daily 

basis for a horizon of N  days ahead, are: 
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respectively, where ( ) ∑
=

+
−=

N

i
itNt yNy

1

1  is the average return. The inter-day volatity 

measures are the most popular measures. However, as noted in the literature (e.g. 

Ebens (1999)), although the squared daily returns are unbiased volatility estimators, they 

are very noisy. Note that, under the ARCH process, the squared return can be 

represented by 222
ttt zy σ= . It is therefore defined as the product of the true volatility 

times the square of a normally distributed process. In the present chapter, we decide to 

use the popular among practitioners inter-day measures while in the 7th chapter an 

investigation that is based on the intra-day realized volatility is conducted6. 

 

                                                 
6 For details and references about intra-day realized volatility see section 2.7 in chapter 2. 
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5.3.2 Evaluation Criteria 
A large number of forecast evaluation criteria exists in the literature. However, 

none is generally acceptable. Because of high non-linearity in volatility models and the 

variety of statistical evaluation criteria, a number of researchers constructed economic 

criteria based upon the goals of their particular application. West et al. (1993) develop a 

criterion based on the decisions of a risk averse investor. Engle et al. (1993) assume 

that the objective is to price options and develop a loss function from the profitability of a 

particular trading strategy. Gonzalez-Rivera et al. (2004) compared the performance of 

various volatility models with economic and statistical loss functions and find that there is 

not a unique model that is the best performer across various loss functions. Brooks and 

Persand (2003) also found that the forecasting accuracy of the various methods is highly 

sensitive to the measure used to evaluate them. Hence, different loss functions 

proposed different models as the most appropriate in volatility forecasting. In the sequel, 

we focus on statistical criteria to measure the closeness of the forecasts to the 

realizations, in order to avoid restrictions imposed by economic theory. Moreover, we 

consider statistical criteria that are robust to non-linearity and heteroscedasticity. Pagan 

and Schwert (1990) use statistical criteria to compare parametric and non-parametric 

ARCH models with in-sample and out-of-sample data. Besides, Heynen and Kat (1994) 

investigate the predictive performance of ARCH and Stochastic Volatility models and Hol 

and Koopman (2000) compare the predictive ability of Stochastic Volatility and Implied 

Volatility models. Andersen et al. (1999a) applied heteroscedasticity-adjusted statistics 

to examine the forecasting performance of intraday returns. Denoting the forecasting 

variance over an N  day period measured at day t  by ( )
2

Ntσ , and the realized variance 

over the same period by ( )
2

Nts , the following evaluation criteria are considered: 

Squared Error (SE): ( ) ( )( )222
NtNt s−σ  (5.3.3) 

Absolute Error (AE): ( ) ( )
22

NtNt s−σ  (5.3.4) 

Heteroscedasticity Adjusted Squared Error (HASE): ( ) ( )( )2221 NtNts σ−  (5.3.5) 

Heteroscedasticity Adjusted Absolute Error (HAAE): ( ) ( )
221 NtNts σ−  (5.3.6) 

Logarithmic Error (LE): ( ) ( )( )222ln NtNts σ  (5.3.7) 

The first two functions have been widely used in the literature (see, e.g. Brooks and 

Persand (2003), Heynen and Kat (1994) and West and Cho (1995)). The HASE and 
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HAAE functions were considered by Andersen et al. (1999b), while the LE function was 

utilized by Pagan and Schwert (1990). 

Usually, the average of the evaluation criteria is computed. However, when 

simulating an AR(1)GARCH(1,1) process, which is the most commonly used model in 

financial applications, the distributions of ( ) ( )( )22
NtNt s−σ , ( ) ( )( )221 NtNts σ−  and 

( ) ( )( )22ln NtNts σ  are asymmetric with extreme outliers. It would therefore be advisable to 

compute both the mean and the median of the evaluation criteria. Figure 5.1 depicts the 

histograms of the one-step forecast error distribution from the following simulated 

process: 
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5.4. E x a m i n i n g  t h e  P e r f o r m a n c e  o f  t h e  S P E C  M o d e l  

S e l e c t i o n  A l g o r i t h m  

 
In this section, the ability of the SPEC model selection algorithm to lead to the 

ARCH models that track closer future volatility is illustrated on a series of daily log-

returns. As follows from section 5.2, the return series can be modeled in the following 

form: 
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In the sequel, the above form is considered in connection with the ARCH models defined 

by (5.2.4), (5.2.5) and (5.2.6), for 4,3,2,1,0=κ , 2,1,0=p  and 2,1=q , thus yielding a 

total of 85 cases7. 

                                                 
7 Numerical maximization of the log-likelihood function, for the EGARCH(2,2) model, frequently failed to 
converge. So the five EGARCH models for 2== qp  were excluded. 
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Figure 5.1. 

Histogram of ( )
22

1 tt y−σ  from an 

AR(1)GARCH(1,1) simulated process 

Histogram of ( )
2

1
21 tty σ−  from an 

AR(1)GARCH(1,1) simulated process 

  

Histogram of ( )( )2
1

2ln tty σ  from an 

AR(1)GARCH(1,1) simulated process 

 
 

The data set consists of 1661 S&P500 stock index daily returns in the period 

from November 24th, 1993 to June 26th, 2000. The ARCH processes are estimated using 

a rolling sample of constant size equal to 5008. Thus, the first one-step-ahead volatility 

prediction, 2
|1ˆ tt+σ , is available at time 500=t . Applying the SPEC model selection 

algorithm, the sum of squared standardized one-step-ahead prediction errors, ∑ = −
T

t ttz
1

2
1|ˆ , 

was estimated considering various values for T , and, in particular, ( )8055=T . This is 

                                                 
8 Section 6.5 provides motivation for the choice of a 500-observations window. 



Chapter 5   

103 

 

an indirect way to examine the performance of the SPEC model selection algorithm for 

various values of T . Thus, the evaluation criteria were applied on the one-step-ahead 

forecasts using 1081805001661 =−−  data points, on the two-step-ahead forecasts 

using 1080815001661 =−−  data points, …, and on the kth-step-ahead forecasts using 

11081 +− k  data points. 

Adopting Brooks and Persand’s (2003) approach we consider evaluating multi-

step-ahead forecasts based on overlapping time periods. In particular, most of the 

studies in the literature evaluate the multi-step forecasts using non-overlapping time 

periods in order to infer about the statistical significance of the ranking. 

Our main purpose is to examine the application potential of the SPEC algorithm 

of selection of models on the basis of their forecasting ability in terms of volatility. So, the 

mean and the median value of each of the 5 evaluation criteria, in equations (5.3.3)-

(5.3.7), were computed, yielding a total of 10 evaluation criteria for each forecasting 

horizon from one day to one hundred days ahead. However, volatility is expressed either 

as the variance or as the standard deviation. Thus, in order to examine possible 

differences between forecasting the variance and its square root, the evaluation criteria 

were, also, applied on the standard deviation. Therefore, ( )
2

Ntσ  and ( )
2

Nts , in equations 

(5.3.3)-(5.3.7), were replaced by ( )Ntσ  and ( )Nts , respectively and 10 more evaluation 

criteria were computed. In total, 20 evaluation criteria were computed for a horizon 

ranging from one trading day to five trading months. In section 5.3.1, two realized 

volatility measures were mentioned. As, qualitatively, they are of the same nature, in the 

sequel, we base the analysis on the realized volatility as defined by ( )
2

Nts .  

It was examined whether the ARCH models selected by the SPEC algorithm 

achieve the lowest value of the evaluation criteria. The main focus was on the median 

values of the criteria and mainly on the heteroscedasticity adjusted criteria since they are 

more robust to asymmetry. The comparative evaluation is performed by computing the 

loss functions for variance forecasts always obtained by a single model on the one hand, 

and for variance forecasts obtained by models picked by the SPEC algorithm on the 

other. Table 5.2, in the Appendix, presents the minimum and maximum values of the 

evaluation criteria that were achieved by each of the 85 ARCH models and the ARCH 

models suggested by the SPEC model selection algorithm. The SPEC algorithm is 

applied for 16 values for T , and, in particular, ( )8055=T . The minSPEC (maxSPEC) 
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value refers to the minimum (maximum) of the 16 values of the evaluation criteria 

achieved by the models selected by the SPEC algorithm. Moreover, for each of the 85 

estimated ARCH models the evaluation criteria have been computed. The minARCH 

(maxARCH) value refers to the minimum (maximum) of the 85 values of the evaluation 

criteria achieved by the ARCH models. 

Figure 5.2, in the Appendix, shows, for each evaluation criterion and each 

forecasting horizon, whether ARCH models selected by the SPEC algorithm achieve the 

lowest value of the evaluation criteria. In the first part of Figure 5.2, the performance of 

the models, which are selected by the SPEC algorithm, on the basis of the conditional 

variance is depicted, while, the second part refers to their performance on forecasting 

standard deviation. The general conclusion is that the SPEC algorithm lead to the 

selection of the ARCH processes which track closer the realized volatility in the majority 

of the cases. Specifically, for the forecasting horizon ranging from 11 to 52 days, the 

models selected by the SPEC algorithm achieve the lowest criteria values, irrespectively 

of the evaluation criteria. The percentage of cases, that the models selected by the 

SPEC algorithm achieve the lowest value of the evaluation criteria, is higher around the 

forecasting horizon ranging from 16 to 36 days ahead, or 4 to 7 trading weeks ahead. 

Table 5.3, in the Appendix, presents the percentage of cases the models selected by the 

SPEC algorithm perform “better” as judged by the evaluation criteria, for 3 different 

horizon ranges. Note that, in terms of the MSE and MAE criteria, none of the models 

chosen by the SPEC algorithm appears to perform better in any of the forecasting 

horizons considered. But, in terms of the median values of the criteria and the 

heteroscedasticity adjusted criteria, which are robust to asymmetry, the models selected 

by the SPEC algorithm appear to have a better performance in all the forecasting 

horizons considered.  

It is interesting to note that, via the evaluation criteria, the suggested sample size, 

T , for the SPEC model selection algorithm can be determined. The SPEC model 

selection algorithm has been applied for ( )8055=T . In the sequel, the value of T  for 

which the SPEC selection method achieves the best performance according to the 

evaluation criteria used, is examined. Figure 5.3 shows a plot of the average T , 

suggested by the evaluation criteria, across the forecasting horizons. The bar charts of 

Figure 5.3 are a graphical representation of the number of evaluation criteria by which 

the performance of the models selected by the SPEC algorithm were judged “better” 
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than the performance of any other single model (measured on the right hand side 

vertical axis). 

For a 16 to 36 day ahead forecasting horizon, the appropriate T , as concerns 

the specific data, ranges around 20 days with a standard deviation of 3.6 days. Table 

5.4, in the Appendix, provides more details for the sample size of the SPEC selection 

method suggested by the evaluation criteria and its standard deviation for both the entire 

16 to 36 day ahead forecasting horizon and for each day individually. The SPEC model 

selection algorithm shows a better performance for a sample size of about 20 days. 

 

Figure 5.3. Sample size of the SPEC model selection algorithm, suggested by the 

Evaluation Criteria. 
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Figure 5.4.a. The percentage of evaluation criteria rating the performance of the SPEC 

algorithm 'best'. Forecasting horizon ranging from 16 to 36 days. 
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In order to test the importance of selecting the appropriate T , for the model 

selection method suggested, the evaluation criteria were run for ( )8055=T . The results 

are indeed in support of a sample size of around 20 days for the SPEC algorithm to 

manifest a better performance. Figure 5.4 presents the percentage of the evaluation 

criteria by which the SPEC algorithm, with specific T , selects those ARCH models that 

generate “better” volatility predictions. For T  ranging from 15 to 35, the SPEC selection 

method appears to have the highest performance. 

 
Figure 5.4.b. The percentage of evaluation criteria rating the performance of the SPEC 

algorithm 'best'. Forecasting horizon ranging from 1 to 100 days. 
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5.5. C o m p a r i s o n  o f  t h e  S P E C  C r i t e r i o n  t o  O t h e r  M e t h o d s  o f  

M o d e l  S e l e c t i o n  

 
Most of the methods used in the time series literature for selecting the 

appropriate model are based on evaluating the ability of the models to describe the data. 

Standard model selection criteria such as the Akaike Information Criterion [AIC] and the 

Schwarz Bayesian Criterion [SBC] have widely been used in the ARCH literature, 

despite the fact that their statistical properties in the ARCH context are unknown. These 

are defined in terms of ( )θ̂nl , the maximized value of the log-likelihood function of a 

model, where θ̂  is the maximum likelihood estimator of the parameter vector θ  based 

on a sample of size n  and θ
(

 denotes the dimension of θ , thus: 

( ) θθ
(

−= ˆ
nlAIC   

( ) ( ). ln2ˆ 1 nlSBC n θθ
(

−−=   
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In addition, model selection is mainly based on the evaluation of some loss 

function for each of the competing models. In this section, the statistical criteria, which 

were considered in section 5.3 as measures in evaluating the predictive performance of 

a variance model, are considered as criteria for the selection of ARCH models. In 

particular, the model selection methods presented in Table 5.5, are considered and their 

ability to predict future volatility is investigated. 

Applying the SPEC model selection algorithm, the sum of squared standardized 

one-step-ahead prediction errors, ∑ = −−
T

t tttt1
2

1|
2

1| ˆˆ σε , was estimated considering various 

values for T . Therefore, each of the model selection criteria, in Table 5.5, was computed 

considering various values for T , and, in particular, ( )801010=T . The AIC and SBC 

criteria were computed based on the rolling sample of constant size equal to 500, or 

500=n , that is used at each time to estimate the parameters of the models. Based on 

Table 5.1, selecting a strategy for each method of model selection naturally amounts to 

selecting the model, which, at time k , has the lowest value of the formula is indicated in 

Table 5.5.  

Tables 5.6.1 to 5.6.11, in the 5th Appendix, presents the percentage of cases the 

models selected by each model selection method perform “better” as judged by the 

evaluation criteria, for 3 different horizon ranges. As concerns the AIC and SBC 

selection methods, they do not achieve the lowest value of the evaluation criteria in 

almost all the cases, which is indicative of the inability of the in-sample model selection 

methods to suggest the models with superior volatility forecasting performance. The 

general conclusion is that the loss functions presented in Table 5.5 do not led to the 

selection of the ARCH processes which track closer the realized volatility. The HASEVar, 

HAAEVar and HASEDev criteria show a better performance, as they select the ARCH 

models with the lowest value of the evaluation criteria, around the forecasting horizon 

ranging from 16 to 36 days ahead. So, they might be used in selecting that model that 

generates “better” volatility predictions. In order to investigate whether the suggested 

model selection method or the loss functions indicate the ARCH models that track closer 

the realized volatility, the predictive ability of these loss functions must be compared to 

the volatility forecasting ability of the SPEC criterion, and mainly for a forecasting horizon 

ranging from 16 days to 36 days ahead.  

Of main interest is whether the ARCH models selected by the SPEC algorithm 

yield values for the evaluation criteria that are lower than those corresponding to the 
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ARCH models selected by the model selection methods summarized in Table 5.5. 

Tables 5.7.1 to 5.7.11, in the Appendix, presents the percentage of times the ARCH 

models selected by the SPEC algorithm achieve lower values for the corresponding 

evaluation criteria and the specific forecasting horizons than the models selected by the 

other model selection methods. As concerns forecasting horizons of 4 to 7 trading weeks 

ahead the performance of the SPEC algorithm is by far the best. 

 

Table 5.5. Methods of selection of ARCH models. ( )
2

Ntσ denotes the forecasting 

variance over an N  day period measured at day t  and ( )
2

Nts denotes the realized 

variance over the same period. 

 1. Square Error of Conditional Variance (SEVar): 

( ) ( )( )( )∑
=

−
T

t
NtNt s

1

222σ  (5.5.1)

 2. Absolute Error of Conditional Variance (AEVar): 

( ) ( )( )∑
=

−
T

t
NtNt s

1

22σ  (5.5.2)

 3. Square Error of Conditional Standard Deviation (SEDev): 

( ) ( )( )( )∑
=

−
T

t
NtNt s

1

2
σ  (5.5.3)

 4. Absolute Error of Conditional Standard Deviation (AEDev): 

( ) ( )( )∑
=

−
T

t
NtNt s

1
σ  (5.5.4)

 5. Heteroscedasticity Adjusted Squared Error of Cond. Variance (HASEVar): 

( ) ( )( )( )∑
=

−
T

t
NtNts

1

2221 σ  (5.5.5)

 6. Heteroscedasticity Adjusted Absolute Error of Cond. Variance (HAAEVar): 

( ) ( )( )∑
=

−
T

t
NtNts

1

221 σ  (5.5.6)

 7. Heteroscedasticity Adjusted Squared Error of Cond. St. Deviation (HASEDev): 

( ) ( )( )( )∑
=

−
T

t
NtNts

1

21 σ  (5.5.7)

 8. Heteroscedasticity Adjusted Absolute Error of Cond. St. Deviation (HAAEDev): 

( ) ( )( )∑
=

−
T

t
NtNts

1
1 σ  (5.5.8)

 9. Logarithmic Error of Conditional Variance (LEVar): 

( ) ( )( )( )∑
=

T

t
NtNts

1

222ln σ  (5.5.9)

 10. Akaike Information Criterion (AIC): 
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( ) θθ
(

−= ˆ
nlAIC  (5.5.10)

11. Schwarz Bayesian Criterion (SBC): 
( ) ( ) ln2ˆ 1 nlSBC n θθ

(
−−=  (5.5.11)

 

The SPEC model selection algorithm performs “better” than the other methods of 

model selection in about 90% of the cases. This percentage is lower when the SPEC 

algorithm is compared to the HASEVar, HAAEVar and HASEDev methods. 

Nevertheless, even in such cases, the opponent methods select the ARCH models that 

track closer future volatility much less frequently than the SPEC algorithm. The 

percentage of times, an opponent to the SPEC algorithm selects the most appropriate 

models in forecasting future volatility, is highest in the case of the HAAEVar method. 

However, only in the 23% of cases, the ARCH models selected by the HAAEVar method 

perform "better" than the models selected by the SPEC criterion, for any of the 3 horizon 

ranges. 

 

5.6. C o n c l u s i o n s  
 

The SPEC method, for selecting an ARCH model among several competing 

models was suggested, amounts to choosing the model with the lowest sum of squared 

standardized forecasting errors. A number of evaluation criteria, for forecasting horizons 

ranging from one day to one hundred days ahead, were applied and it was found that 

the ARCH models, selected by the SPEC model selection algorithm, generate “better” 

predictions of the volatility. Here, Brooks and Persand’s (2003) evaluation approach was 

adopted and multi-step-ahead forecasts were evaluated based on overlapping time 

periods. Alternatively, one might like to consider non-overlapping time periods and apply 

other evaluation schemes, such as those proposed by Diebold and Mariano (1995), 

Hansen and Lund (2003) or Hansen et al. (2003). Thus, the SPEC selection method 

appears to be a useful tool in guiding one’s choice of the appropriate model for 

estimating future volatility, with applications in evaluating portfolios, derivatives and 

financial risk. 

Granger and Pesaran (2000a, 2000b) addressed the problem of forecast 

evaluation in the context of a realistic decision problem. They noted that “each forecast 

is linked with a value or cost function, as making a forecast error will cause a cost to 

some decision maker”. In the next chapter, we consider evaluating the SPEC method 
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along such lines. Specifically, the performance of the SPEC algorithm is examined 

through the use of economic loss functions and in particular, the cumulative returns from 

trading volatility forecasts. 
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Chap te r  6  

Us ing  t he  S tandard i z ed  Pred i c t i on  Er ror  

Cr i t e r ion  f o r  ARCH Mode l  Se l ec t i on  i n  

Forecas t i ng  Op t ion  Pr i ce s  
 

6 . 1 .  I n t r o d u c t i o n  

 
The common way to measure the performance of volatility forecasting models 

is through assessing their ability to predict future volatility. However, as volatility is 

unobservable, there is no natural metric for measuring the accuracy of any particular 

model. Noh et al. (1994) considered assessing model performance through 

computing option prices based on the volatility forecasts of the underlying asset 

returns, devising trading rules to trade options on a daily basis and comparing the 

resulting profits. 

Within this framework, the present chapter examines the performance of a 

number of ARCH-model based methods of predicting volatility in pricing options. The 

focus is on a method that allows the trader flexibility as to the choice of the model to 

use for prediction at each of a sequence of points in time based on the SPEC 

algorithm. The comparative evaluation is performed using options data on the basis 

of the cumulative profits of traders always using variance forecasts obtained by a 

single model on the one hand and the cumulative profits of traders using variance 

forecasts obtained by models suggested by the SPEC algorithm on the other. The 

results of the study show that traders using this algorithm for deciding which model’s 

forecasts to use at any given point in time achieve higher cumulative profits than 

those using only a single model all the time. A comparison of the SPEC algorithm 

with a set of other model evaluation criteria yields similar findings. 

Noh et al. (1994) considered the problem of assessing the performance of 

two model based methods for volatility-forecasting, the ARCH modeling based 

method and the implied volatility regression method, by trading options. The ARCH 

models provide one common conditional volatility estimate for both call and put 

option prices, while the implied-volatility forecasting method provides different 

volatility estimates for call and put option prices. Over the April 1986 to December 

1991 period, for S&P500 index options, the ARCH model based forecasting method 

led to a greater profit than the rule based on the implied volatility regression model. In 
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particular, by the trading strategy based on the ARCH model a daily profit of 0.89% 

was earned, while by the implied volatility method a daily loss of 1.26% was made. 

A comparative evaluation is performed through comparing their volatility 

forecasts in terms of the profits of traders pricing derivatives in a real market based 

on these forecasts. The focus is on the model forecasting ability rating based 

selection algorithm considered in 4th chapter. According to the SPEC algorithm, each 

trading day, the ARCH model with the lowest sum of squared standardized one-step-

ahead prediction errors is selected for estimating future volatility of underlying asset 

returns. The advantage of this method over other single model based methods lies in 

the fact that the trader is flexible as to the choice of the model at each of a sequence 

of points in time. Forecasts of option prices used in the comparative evaluation are 

calculated using the Black and Scholes (BS) pricing formula (Black and Scholes 

1973). The obtained results indicate that the SPEC has a satisfactory performance in 

selecting the ARCH models that yield better volatility predictions for option pricing. It 

is demonstrated in particular, that over the period from March 1998 to June 2000, 

taking into consideration a transaction cost of $2, an agent who would consider using 

this model selection algorithm could make a daily profit of 1.46% from trading 

S&P500 index options. Section 6.2 provides a brief description of the BS pricing 

formula and introduces the reader to the notion of trading options and computing the 

relative cash flows. Section 6.3 presents the trading rules considered by Noh et al. 

(1994) for the performance of volatility-forecasting methods. In sections 6.4 to 6.7, 

the cash flows, from trading options based on i) a set of ARCH processes, ii) the 

SPEC model selection algorithm, and iii) a number of other methods of model 

selection, are computed. Finally, in section 6.8, a brief discussion of the results is 

provided. 

 

6 . 2 .  O p t i o n s  

 

An option is a security that gives its owner the right, not the obligation, to buy 

or sell an asset at a fixed price (exercise price) within a specified period of time, 

subject to certain conditions. There are two main types of options: calls and puts. A 

call option is the right to buy a number of shares, of the underlying asset, at a fixed 

price on or before the maturity day. A put option is a right to sell a number of shares, 

of the underlying asset, at a fixed price on or before the maturity day. A straddle 

option is the purchase (or sale) of both a call and a put option, of the underlying 

asset, with the same expiration day. The maturity day is the latest date that the 

option can be exercised. If the option can be exercised only on the maturity day, it is 
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termed a European option, whereas an American option can be exercised on or 

before the expiration day.  

The purchaser of a call (put) option acquires the right to buy (sell) a share of a 

stock for a given price on or before time T  and pays for the right at the time of 

purchase. On the other hand, the writer of this call (put) collects both the option price 

today and the obligation to deliver (buy) one share of stock in the future for the 

exercise price, if the purchaser of the call (put) demands.  

 

6.2.1 Stock and Exercise Price Relationship 
The exercise price of the “at the money“ option is equal to the price of the 

underlying asset. The exercise price of the “near the money” option is approximately 

the same as the price of the underlying asset. A call (put) option is said to be “in the 

money” if its exercise price is less (greater) than the current price of the underlying 

asset. A call (put) option is said to be “out of the money” if its exercise price is greater 

(less) than the price of the underlying asset. 

 

6.2.2 Black and Scholes Option Pricing Formula 
The pricing of options is a cornerstone of financial literature. The BS option 

pricing model is a very important and useful model in estimating the fair value of an 

option. Based on the law of one price or no arbitrage condition, the option pricing 

models of Black and Scholes (1973) and Merton (1973) gained an almost immediate 

acceptance among academics and investments professionals1. Their approach can 

be used to price any security whose payoffs depend on the prices of other securities. 

The main idea is to create a costless self-financing portfolio strategy, whereby long 

positions are completely financed by short positions, which can replicate the payoff of 

the derivative. Under the no-arbitrage condition, the dynamic strategy reduces to a 

partial differential equation subject to a set of boundary conditions that are 

determined by the specific terms of the derivative security. 

                                                 
1 The 1997 Nobel Prize in Economics was awarded to Robert C. Merton and Myron S. Scholes for their 
work, along with Fischer Black, in developing the Fischer-Black options pricing model. Black, who 
died in 1995, would undoubtedly have shared in the prize had he still been alive. (American 
Mathematical Society; www.ams.org/new-in-math/nobel1997econ.html). 
“An early version of Black and Scholes (1973) was submitted in the summer of 1970, but both the 
Journal of Political Economy and the Review of Economics and Statistics rejected the paper – perhaps 
because the ideas were so new and/or because Black was not an academic. After revising the approach 
and receiving encouragement from the University of Chicago professors Merton Miller and Eugene 
Fama, an article testing the model empirically was published in 1972 in the Journal of Finance, (Black 
and Scholes 1972). The proof of the model was published in 1973 in the Journal of Political Economy, 
published by the University of Chicago”. (Daigler 1994, page 128). 
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The pricing of index options is based on the Black & Scholes option pricing 

formula (Black and Scholes (1973)). In particular, the forecast price of a call and a 

put option at time 1+t  given the information available at time t , with τ  days to 

maturity, denoted, respectively, by ( )τ
ttC |1+  and ( )τ

ttP |1+  are given by 

( ) ( ) ( )21|1 dNKedNSC trf
ttt

ττ −
+ −= , 

( ) ( ) ( )21|1 dNKedNSP trf
ttt −+−−= −

+
ττ , 

where 

( )( )( )
( ) τσ

τσ

τ

τ

tt

ttt
t rfK

S

d
|1

2
|1

1

2
1ln

+

+++⎟
⎠
⎞⎜

⎝
⎛

=
 

 and ( ) τσ τ
ttdd |112 +−= . 

(6.2.1)

Here, tS  is the market closing price of the stock (or portfolio) at time t  (used as a 

forecast for 1+tS ), trf  is the daily continuously compounded risk free interest rate 

and K  is the exercise (or strike) price at maturity day, while, ( ).N  and ( )τσ tt |1+  denote, 

respectively, the cumulative normal distribution function and the standard deviation of 

the rate of return during the life of the option, from 1+t  until the maturity day, given 

the information available at time t . 

 

6.2.3 An Example in Computing Theoretical Option Prices 
Consider a trader who wants to evaluate the BS theoretical price of a 

European call and put option with three months to expiry. The stock price is $60, the 

strike price is $65, the risk free rate is 8% per annum (the return of three month 

treasury bills), the dividend yield is 5% per annum and the volatility is 30% per 

annum. Thus, 60=tS , 65=K , 25.0=τ , 08.0=trf , 05.0=tγ  and 3.0=tσ . 

Computing: 

( ) ( )
( ) ( ) ,712.0    ,288.0    ,559.0

,659.0    ,341.0    ,409.0

222

111

=−=−=
=−=−=

dNdNd
dNdNd

  

the price of the call option is: 8674.1$288.065341.060 25,0*08.025.0*05.0 =−= −− eeCt  and 

the price of the put option is: 3256.6$712.065659.060 25.0*08.025.0*05.0 =+−= −− eePt . 

6.2.4 Option Strategies and Cash Flows 

Suppose the price of stock at time t  is tS  and the price of a call and put 

option, with expiration day T  and exercise price K , are tC  and tP , respectively. In 

terms of cash flows, the purchaser of an option (a long option position) always has an 

initial negative cash flow, the price of the option, and a future cash flow that is at 
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worst zero. The writer of the option (a sort option position) has an initial positive cash 

flow followed by a terminal cash flow that is at best zero. At expiration day, T , the 

call option is exercised only if KST > . Thus, the cash flow, at time T , of the call 

purchaser is2: 

( ) ( )
( )

( )
⎩
⎨
⎧

>−−
≤−

=−−
−

−
−

.
,0max

KSifCeKS
KSifCe

CeKS
Tt

tTrf
T

Tt
tTrf

t
tTrf

T t

t
t

 
 

 (6.2.2) 

The cash flow of the call writer is opposite to that of the call purchaser: 

( ) ( )
( )

( )
⎩
⎨
⎧

>−+
≤

=−−
−

−
−

.
,0max

KSifSKCe
KSifCe

KSCe
TTt

tTrf
Tt

tTrf

Tt
tTrf

t

t
t

 
 

 (6.2.3) 

Moreover, the put is exercised only if KST < . Thus, at maturity day, the cash flow of 

the put purchaser is:  

( ) ( )
( )

( )
⎩
⎨
⎧

<−−
≥−

=−−
−

−
−

KSifPeSK
KSifPe

PeSK
Tt

tTrf
T

Tt
tTrf

t
tTrf

T t

t
t

 
 

,0max  (6.2.4) 

and the cash flow of the put writer is: 

( ) ( )
( )

( )
⎩
⎨
⎧

<−+
≥

=−−
−

−
−

.
,0max

KSifKSPe
KSifPe

SKPe
TTt

tTrf
Tt

tTrf

Tt
tTrf

t

t
t

 
 

 (6.2.5) 

Figure 6.7 presents the profit and loss performance of buying and writing 

options. A long straddle position is an option strategy in which a call and a put of the 

same exercise price, maturity and underlying terms are purchased. This position is 

called a straddle since it will profit from a substantial change in the stock price in 

either direction. Traders purchase a straddle under one of two circumstances. The 

first circumstance exists when a large change in the stock price is expected, but the 

direction of the change is unknown. Examples include an upcoming announcement 

of earning, uncertain takeover or merger speculation, a court case for damages, a 

new product announcement, or an uncertain economic announcement such as 

inflation figures or a change in the prime interest rate. A straddle seems a risk free 

trading strategy when a large change in the price of a stock is expected. 

 However, in the real world, this is not necessarily the case. If the general view 

of the market is that there will be a big jump in the stock price soon, the option prices 

should reflect the increase in the potential volatility of the stock. A trader will find 

options on the stock to be significantly more expensive than options on a similar 

stock for which no jump is expected. For a straddle to be an effective strategy, the 

                                                 
2 It is assumed that investors, at time t , are borrowing and lending at the same risk free rate, trf . Thus, 
the money during the period from t  to T  is investing with a daily return of ( ) ( )tt rfrf exp1 ≈+ . 
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trader must believe that big movements in the stock price are likely and this belief 

must be different from that of most of the other market participants.  

 

Figures 6.1-6.6. Relationship between option prices and variables involved in the BS 

formula. 

Figure 1. 
Relationship between Option price and Time to maturity
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Figure 2.
Relationship between Option price and Volatility
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Figure 3.

Relationship between Option price and Stock Price

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

23
00

23
20

23
40

23
60

23
80

24
00

24
20

24
40

24
60

24
80

25
00

25
20

25
40

25
60

25
80

26
00

26
20

26
40

26
60

26
80

27
00

27
20

27
40

27
60

27
80

Stock Price

O
pt

io
n 

Pr
ic

e

Call 
Put 

 

Figure 4.
Relationship between Option price and Exercise Price
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Figure 5.
Relationship between Option price and Risk Free Rate
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Figure 6.
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The second circumstance in which straddles are purchased occurs when the trader 

estimates that the true future volatility of the stock will be greater that the volatility 

that is currently impounded in the option prices. Note that although the long straddle 

has theoretically unlimited potential profit and limited risk, it should not be viewed as 

a low risk strategy. Options can lose their value very quickly, and in the case of a 

straddle, there is twice the amount of erosion of time value as compared to the 
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purchase of a call or put. The opposite of a long straddle strategy is a short straddle 

position. This strategy has unlimited risk and limited profit potential, and is therefore 

only appropriate for experienced investors with a high tolerance for risk. The short 

straddle will profit from limited stock movement and will suffer losses if the underlying 

asset moves substantially in either direction. Figure 6.8 presents the payoffs of taking 

long and sort straddle positions. At expiration day, T , the cash flows of taking a long 

and a sort straddle position are: 
( ) ( )

( )( ) ,KSPCe

PCeKS

Ttt
tTrf

tt
tTrf

T

t

t

−−+

+−−
−

−

 (6.2.6) 

respectively. 
 

Figure 6.7. The cash flows of taking long and sort positions in call and put options. 

 

Figure 6.8. The cash flows of taking long and sort straddle positions. 

 
6.2.5 An Example of Straddle Trading 
Consider a trader who feels that the price of a certain stock, currently valued at $54 

by the market, will move significantly in the next three months. The trader could 

create a straddle by buying both a put and a call with a strike price of $55 and an 
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expiration date in three months. Suppose that the call and the put costs are $5 and 

$4, respectively. The most that can be lost is the amount paid, or $9, if the stock 

price moves to  $55. If the stock price moves above $63 or below $45, the long 

position earns a profit. In the case of taking a short straddle position, the maximum 

profit is the premium received, or $9. The maximum loss is unlimited, and the sort 

position will lose if the stock price moves above $63 or below $45. 

 

6 . 3 .  A s s e s s i n g  t h e  P e r f o r m a n c e  o f  V o l a t i l i t y  F o r e c a s t i n g  

M e t h o d s  

 

Noh et al. (1994) devised rules to trade “near the money” straddles. If the 

straddle price forecast is greater than the market straddle price, the straddle is 

bought. If the straddle price forecast is less than the market straddle price, the 

straddle is sold, i.e. 

If ( ) ( ) ( ) ( ) ⇒+>+ ++
ττττ

tttttt CPPC |1|1 The straddle is bought at time t . (6.3.1) 

If  ( ) ( ) ( ) ( ) ⇒+<+ ++
ττττ

tttttt CPPC |1|1 The straddle is sold at time t . (6.3.2) 

The strategy can be understood with the help of the following example: On Monday, 

after the stock market closes3, Tuesday’s price of an option that expires on Friday, is 

estimated. The remaining life of the option is 3 days, from Tuesday to Friday.  If 

option’s prediction price on Tuesday is higher than the observed option price on 

Monday, the option is bought in order to be sold on Tuesday. If the predicted option 

price on Tuesday is lower than the observed option price on Monday, the option is 

sort-sold in order to be bought on Tuesday. 

Monday t  
Tuesday 1+t
Wednesday 2+t
Thursday 3+t
Friday 4+t

The rate of return from trading an option is: 

11

11

−−

−−

+
−−+

=
tt

tttt
t PC

PCPC
RT , on buying a straddle, (6.3.3) 

11

11

−−

−−

+
++−−

=
tt

tttt
t PC

PCPC
RT , on sort-selling a straddle. (6.3.4) 

                                                 
3 The trading strategy assumes that there is enough time to forecast the option prices given all the 
information at time t (closing prices of stocks) so as the trader to be able to decide the trading of an 
option at time t (before the option market closes). For example, the Chicago Stock Market closes at 
3:00 pm local time and the Chicago Board of Option Exchange closes as 3:15 pm local time. 
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Note that the transaction costs, X , should be taken into account. If this is the case, 

the net rate of return from trading an option is given as: 

11 −− +
−=

tt
tt PC

XRTNRT . (6.3.5) 

Moreover, a filter can be applied in the trading strategy, so as to trade an option only 

when the difference between forecast and today’s option price exceeds the amount 

of the filter. 

Noh et al. (1994) applied the AR(1)-GARCH(1,1) model in order to forecast 

the future volatility. Forecasts of option prices, on the next trading day, are calculated 

using the BS option pricing formula and conditional volatility forecasts. The volatility 

during the life of the option is computed as the square root of the average forecast 

conditional variance: 

( )
2/11

2

2
|

1
|1 ˆ ⎟

⎠

⎞
⎜
⎝

⎛
= ∑

+

=
+

−
+

τ
τ στσ

i
tittt , (6.3.6) 

where 2
|ˆ tit+σ  denotes the prediction of the conditional variance at time it +  given the 

information set available at time t . 

Noh et al. (1994) assessed the performance of the AR(1)-GARCH(1,1) model 

for straddles written on the S&P500 index over the period from April 1986 to 

December 1991 and found that the model earns a profit of $0.885 per straddle in 

excess of a $0.25 transaction cost and applying a $0.5 filter. Gonzalez-Rivera et al. 

(2004) had also evaluated the ability of various volatility models in predicting one-

period ahead call options on the S&P500 index, with expiration dates ranging from 

January 2000 through November 2000, and found that simple models like the EWMA 

of RiskmetricsTM (1995) performed as well as sophisticated ARCH specifications. 

 

6 . 4 .  O p t i o n  P r i c i n g  U s i n g  a  S e t  o f  A R C H  P r o c e s s e s  a n d  

M o d e l  S e l e c t i o n  A l g o r i t h m s  

 

The GARCH(1,1) is the most commonly used model in financial applications. 

The question that arises at this point is: “Why should one use the simple 

GARCH(1,1) model instead of using a higher order of GARCH(p,q) model, an 

asymmetric ARCH model, or even a more complicated form of an ARCH process?”. 

There is a vast number of ARCH models. Which one should be preferred? The 

volatility prediction model, which gives the highest rate of return in trading options, 

should be the preferable one. Moreover, under the assumption that the BS formula 

describes perfectly the dynamics of the market that affects the price of the option, the 
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model gives the most precise prediction of conditional volatility should be the model 

that gives the highest rate of return. Unfortunately, an important limitation still 

remains. Even if one could find the model, which predicts the volatility precisely, it is 

well known that the BS formula does not describe the dynamics pricing the options 

perfectly.4 Moreover, the validity of the variance forecasts depends on which option 

pricing formula is used. Engle et al. (1997) used Hull and White’s (1987) modification 

to the BS formula for pricing straddles on a simulated options market. A series of 

studies such as Barone-Adesi et al. (2004), Duan (1995), Duan et al. (1999), Heston 

and Nandi (2000), Ritchken and Trevor (1999) and Sabbatini and Linton (1998), 

derived ARCH-based option pricing models assuming that a specific ARCH process 

generates the variance of the asset. . However, despite its limitations, the BS pricing 

formula has had a wide acceptance by floor traders on option exchanges. 

In this chapter, since the ARCH-based option pricing models considered in 

the literature for the various models being compared are different or no ARCH based 

pricing formula exists for some of them, the BS option pricing model is adopted. In 

the sequel, a variety of volatility prediction models are estimated using S&P500 stock 

index daily returns and the rate of return from trading straddles, based on the 

volatility predictions, is calculated. The SPEC model selection algorithm is 

subsequently applied in order to choose for each particular day the appropriate 

ARCH model for estimating the price of an option. The day-by-day rates of return are 

reflective of the corresponding predictive performances of the models. Comparing the 

results, provides an indirect comparative assessment of a trading strategy based on 

option prices forecasts provided by any one of these models to the trading strategy of 

deciding each day on the basis of the option price forecast by the model selected by 

the SPEC algorithm as the most appropriate for that particular day. 

 

6 . 5 .  T r a d i n g  S t r a d d l e s  B a s e d  o n  a  S e t  O f  A R C H  

P r o c e s s e s  

 
For ( )1ln −= ttt SSy  denoting the continuously compound rate of return from 

time 1−t  to t , where tS  is the asset price at time t , a set of ARCH models are 

estimated. The conditional mean is considered as a thκ  order autoregressive 

process ( ( )κAR ): 

                                                 
4 There is a large number of articles that examine the biasedness of BS formula. For details see Daigler 
(1994) and Natenberg (1994). 
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( )

( ) , 1,0~
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1
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ycc

zy

dii
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−+=

+=
κ

µ

σµ

 (6.5.1) 

and the conditional variance is regarded as a GARCH( qp, ), an EGARCH( qp, ) or a 

TARCH( qp, ) function of the forms (5.2.4) – (5.2.6) considered in chapter 5. Thus, 

the AR(κ )GARCH( qp, ), AR(κ )EGARCH( qp, ) and AR(κ )TARCH( qp, ) models 

are applied, for 4,...,0=κ , 2 ,1 ,0=p  and 2 ,1=q , yielding a total of 85 cases5. The 

conditional variance for the GARCH(p,q) process may be rewritten as: 

( )( )ωζησ ,,,,2 vwu tttt ′′′= , 

where ( )22
1,...,,1 qtttu −−=′ εε , 0=′tη , ( )22

1,..., ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , 0=′ζ , 

( )pbb ,...,1=′ω . 

(6.5.2) 

For the EGARCH(p,q) process, the conditional variance can be expressed as: 

( )( )ωζησ ,,,,ln 2 vwu tttt ′′′= , 

where ( )qtqttttu −−−−=′ σεσε ,...,,1 11 , ( )qtqtttt −−−−=′ σεσεη ,...,11 , 

( )22
1 ln,...,ln ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , ( )qγγζ ,...,1=′ , ( )pbb ,...,1=′ω . 

(6.5.3) 

Also, for the TARCH(p,q) process, the conditional variance can take the form: 

( )( )ωζησ ,,,,2 vwu tttt ′′′= , 

where ( )22
1,...,,1 qtttu −−=′ εε , ( )2

11 −−=′ ttt d εη , ( )22
1,..., ptttw −−=′ σσ , ( )qaaav ,...,, 10=′ , 

( )γζ =′ , ( )pbb ,...,1=′ω , 1=td  if 0<tε , and 0=td  otherwise. 

(6.5.4) 

In general, the conditional variance forecast recursion relations (5.2.7) – (5.2.9), in 

the 5th chapter, could be presented as: 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( ).,,,,,,|,,|ˆ |||
22

|  ttt
tsttsttst

ttt
tstststtsttst vwuvIwuEIE ωζηωζησσ ++++++++ ′′′=′′′=≡  (6.5.5) 

In the 4th chapter we have considered a comparative evaluation of two ARCH 

models (i.e. model A  and model B ), on the basis of their ability to predict the future 

values of the dependent variable and its volatility forecasts. For ttttt yy |11|1 ˆˆ +++ −≡ε  and 

2
|1ˆ tt+σ  denoting the one-step-ahead prediction error and the prediction of the 

conditional variance at time 1+t  given the information available at time t , the 

predictive abilities of models A  and B  can be compared through testing a null 

                                                 
5 Numerical maximization of the log-likelihood function, for the E-GARCH(2,2) model, frequently 
failed to converge. So the five E-GARCH models for 2== qp  were excluded. 
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hypothesis that the two models are of equivalent predictive ability. Let us assume 

that a set of candidate ARCH models is available and the most suitable model is 

sought for predicting conditional volatility. The ARCH model, with the lowest value of 

the sum of the T  most recently estimated squared standardized one-step-ahead 

prediction errors, ∑
=

++

T

t
tttt

1

2
|1

2
|1 ˆˆ σε , can be considered for obtaining one-step-ahead 

forecast of the conditional volatility. Consider a set of M  competing ARCH 

processes, which have been estimated T  times, using a rolling sample of s  

observations. The SPEC algorithm for selecting the most suitable of M  candidate 

models at each of a series of points in time is comprised of the following steps. 

• For model m , ( Mm ,...,2,1= ) and for each point in time t , 

( )1,...,1, −++= sTsst , the vector of coefficients is estimated using a rolling 

sample of s  observations6: 
( ) ( )( ) ( ) ( ) ( )( ))()()()( ˆ,ˆ,ˆ,ˆˆ tmtmtmtmtm v ωζβθ ≡ . 

• Using the vector of coefficients ( ) )(ˆ tmθ , estimate the vector: 
( ) ( )( )m

tt
m

tty 2
|1|1 ˆ,ˆ ++ σ . 

• Compute: 

( )
( )( )

( )m
tt

m
tttm

tt

yy
z 2

|1

2
|112

|1 ˆ
ˆ

ˆ
+

++
+

−
≡

σ
. 

• Compute: 

( ) ( )∑
−+

=
++ ≡

1
2

|1ˆ
sT

st

m
tt

m
sT zR . 

The most suitable model to forecast volatility at time sT +  is the model m  with the 

minimum value of ( )m
sTR + . The algorithm is repeated for each of a sequence of points in 

time for the selection of the most appropriate model to be used for obtaining a 

volatility forecast for the next point in time. 

In a theoretical framework, the SPEC model selection method would be able 

to select the model with the better prediction of the conditional variance of the 

dependent variable. The question of whether a trader using models for volatility 

forecasts picked by the SPEC algorithm makes profits from option pricing is 

investigated in the sequel. Its advantage in predicting realized volatility, for forecast 

horizons ranging from one day ahead to one hundred days ahead, has also been 

                                                 
6 ( )( ) ( )( ) ( )( ) ( )( )( )′= tm

k
tmtm

o
tm ccc ˆ,....,ˆ,ˆˆ

1β  
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examined in the previous chapter but next sections look into the added value from 

using the algorithm in the case of real world options data. The profit from trading 

options will be used for measuring the performance of variance forecasts. Next 

section describes the strategy an agent follows to trade straddles and the method of 

measuring the total return of the strategy. 

The data set consists of 1064 S&P500 stock index daily returns in the period 

from March 14th, 1996 to June 2nd, 2000. Larger data sets are often used for the 

estimation of ARCH models. However, as already noted in the 4th chapter, the use of 

a restricted sample size incorporates changes in trading behavior more efficiently. 

Among others, Angelidis, Benos and Degiannakis (2004), Engle et al. (1993) and 

Frey and Michaud (1997) supported the use of restricted samples and provided 

empirical evidence that they better capture changes in market activity.  Also, Hoppe 

(1998) investigating the issue of the sample size in the context of Value-at-Risk, 

argued that a smaller sample could lead to more accurate estimates than a larger 

one. On the other hand, in the next chapter we consider samples of 500, 1000 and 

2000 observations and demonstrate that the results of our simulation study are not 

appreciably affected by the sample size.  

In the sequel, a rolling sample of constant size equal to 500 is considered. 

Hence, the first one-step-ahead volatility prediction, 2
|1ˆ tt+σ , is available at time 

500=t , or on March 11th, 1998. Maximum likelihood estimates of the parameters are 

obtained by numerical maximization of the log-likelihood function using the Marquardt 

algorithm (Marquardt 1963), a modification of the BHHH algorithm (Berndt et al. 

1974). The quasi-maximum likelihood estimator is used, as according to Bollerslev 

and Wooldridge (1992), it is generally consistent, has a normal limiting distribution 

and provides asymptotic standard errors that are valid under non-normality. 

The S&P500 index options7 data were obtained from the Datastream for the 

period from March 11th, 1998 through June 2nd, 2000, totally 564 trading days. 

Unfortunately, the data record is not adequate for all the trading days. Proper data 

are available for 456 trading days and contains information for the closing price of the 

call and put options, exercise price, expiration date, and the number of contracts 

traded. In total, 49500 call and put prices were collected. However, in order to 

minimize the biasedness of the BS formula, only the straddle options with exercise 

prices closest to the index level, maturity longer than 10 trading days and trading 

volume greater than 100 were considered from the entire dataset for each trading 

day. The choice of these data points was based on considerations for the optimal 
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performance of the option pricing model. Sabbatini and Linton (1998) employing 

Duan’s (1995) option pricing model in estimating the volatility of the Swiss market 

index, for example, used under such considerations a two-year period of daily closing 

prices of “near the money” options and with a period to maturity of at least 15 days. 

In our case, “near the money” trading is considered since practice has shown that the 

BS pricing model tends to misprice “deep out of the money” and “deep in the money” 

options (see, e.g. Black (1975), Merton (1976) and MacBeth and Merville (1979, 

1980)), while it works better for “near the money” options (see, e.g. Daigler (1994, p. 

153)). 

 

Table 6.1. Mean and standard deviation of the S&P500 option prices and their trading 

volumes for the trading days collected in the data record (11 March 1998 – 2 June 2000) 

Option Prices Trading Volume Type of 
Option 

Trading 
Days Mean Standard 

Deviation Mean Standard 
Deviation 

Call 456 33,6 10,09 1418 1861 
Put 456 28,1 11,91 1680 2185 

Straddle 456 61,7 18,44 1549 2032 
 

Also, a maturity period of length no shorter than 10 trading days is considered to 

avoid mispricings attributable to causes of practical as well as of theoretical nature. In 

particular, experience has shown that traders pay less and less attention to the 

values generated by the pricing model as expiration approaches (e.g. Natenberg 

(1994, p. 398)). From the theoretical point of view, there is often a departure from the 

BS model’s assumption that stock prices are realizations of a continuous diffusion 

process, as in most markets the underlying contracts conform to a combination of 

both a diffusion process and a jump process8. According to Dumas et al. (1998) the 

volatility estimation of close to expiration options is extremely sensitive to possible 

measurement errors. Most of the time, asset prices change smoothly and 

continuously with no gaps. However, every now and then a gap will occur, 

instantaneously sending the price to a new level. These prices will again be followed  

                                                                                                                                            
7 S&P500 index options are traded on the Chicago Board Options Exchange (CBOE). 
8 A variation of the BS model, which assumes that the underlying contract follows a jump diffusion 
process, has been developed. See for example Merton (1976) and Beckers (1981). Unfortunately, the 
model is considerably more complex mathematically than the traditional BS model. Moreover, in 
addition to the five customary inputs, the model also requires two new inputs: the average size of a 
jump in the underlying market and the frequency with which such jumps are likely to occur. Unless the 
trader can adequately estimate these new inputs, the values generated by a jump diffusion model may 
be no better, and might be worse, than those generated by the traditional model. Most traders take the 
view that whatever weakness are encountered in a traditional model can be best offset through 
intelligent decision making based on actual trading experience, rather than through the use of a more 
complex jump diffusion model. 
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Table 6.2. Mean and standard deviation of the S&P500 option prices based on the ARCH 

volatility forecasts for the trading days collected in the data record (11 March 1998 – 2 June 

2000). 

Call Option Put Option Straddle 
Option Call Option Put Option Straddle 

Option ARCH Model 
Mean Stand. 

Dev. Mean Stand. 
Dev. Mean Stand. 

Dev. 

ARCH Model 
Mean Stand. 

Dev. Mean Stand. 
Dev. Mean Stand. 

Dev.
AR(0)GARCH(0,1) 29.2 9.0 25.2 7.3 54.5 14.9 AR(3)TARCH(1,1) 30.3 9.9 26.3 9.1 56.5 17.8
AR(1)GARCH(0,1) 29.1 9.1 25.2 7.4 54.3 15.1 AR(4)TARCH(1,1) 30.4 9.9 26.4 9.1 56.7 17.9
AR(2)GARCH(0,1) 29.1 9.1 25.2 7.4 54.3 15.1 AR(0)TARCH(1,2) 29.5 9.9 25.5 9.0 54.9 17.6
AR(3)GARCH(0,1) 29.1 9.1 25.1 7.4 54.2 15.1 AR(1)TARCH(1,2) 30.2 9.8 26.2 9.0 56.5 17.6
AR(4)GARCH(0,1) 29.1 9.1 25.1 7.4 54.2 15.1 AR(2)TARCH(1,2) 30.3 9.8 26.3 9.1 56.5 17.6
AR(0)GARCH(0,2) 29.4 8.9 25.4 7.3 54.8 14.8 AR(3)TARCH(1,2) 30.1 9.8 26.1 9.0 56.2 17.5
AR(1)GARCH(0,2) 29.4 8.9 25.5 7.3 54.9 14.8 AR(4)TARCH(1,2) 30.1 9.7 26.1 8.9 56.2 17.3
AR(2)GARCH(0,2) 29.5 8.9 25.5 7.3 55.0 14.9 AR(0)TARCH(2,1) 29.4 9.8 25.4 8.9 54.7 17.4
AR(3)GARCH(0,2) 29.7 9.0 25.7 7.4 55.5 15.0 AR(1)TARCH(2,1) 30.1 9.9 26.1 9.0 56.3 17.6
AR(4)GARCH(0,2) 29.8 9.0 25.9 7.5 55.7 15.1 AR(2)TARCH(2,1) 30.4 10.1 26.4 9.3 56.8 18.1
AR(0)GARCH(1,1) 31.1 10.1 27.1 9.4 58.2 18.4 AR(3)TARCH(2,1) 30.3 10.0 26.3 9.2 56.6 17.9
AR(1)GARCH(1,1) 30.9 10.1 27.0 9.3 57.9 18.2 AR(4)TARCH(2,1) 30.4 10.0 26.4 9.1 56.8 17.9
AR(2)GARCH(1,1) 30.9 10.2 26.9 9.4 57.8 18.3 AR(0)TARCH(2,2) 29.4 10.0 25.4 9.2 54.8 18.0
AR(3)GARCH(1,1) 30.8 10.2 26.9 9.4 57.7 18.5 AR(1)TARCH(2,2) 30.1 9.9 26.1 9.2 56.2 17.9
AR(4)GARCH(1,1) 30.8 10.2 26.8 9.5 57.6 18.5 AR(2)TARCH(2,2) 30.3 10.1 26.3 9.3 56.5 18.1
AR(0)GARCH(1,2) 31.0 10.1 27.1 9.4 58.1 18.2 AR(3)TARCH(2,2) 30.1 10.1 26.1 9.3 56.2 18.1
AR(1)GARCH(1,2) 31.0 10.2 27.1 9.4 58.1 18.3 AR(4)TARCH(2,2) 30.1 10.0 26.1 9.2 56.2 17.9
AR(2)GARCH(1,2) 31.0 10.2 27.0 9.4 57.9 18.4 AR(0)EGARCH(0,1) 28.6 9.1 24.7 7.3 53.3 15.0
AR(3)GARCH(1,2) 30.9 10.2 26.9 9.4 57.8 18.5 AR(1)EGARCH(0,1) 28.9 9.1 24.9 7.3 53.8 15.1
AR(4)GARCH(1,2) 30.8 10.2 26.9 9.5 57.7 18.5 AR(2)EGARCH(0,1) 28.9 9.1 24.9 7.3 53.7 15.1
AR(0)GARCH(2,1) 31.0 10.1 27.0 9.3 58.0 18.2 AR(3)EGARCH(0,1) 28.8 9.1 24.9 7.3 53.7 15.0
AR(1)GARCH(2,1) 30.8 10.1 26.9 9.3 57.7 18.1 AR(4)EGARCH(0,1) 28.8 9.1 24.9 7.3 53.7 15.0
AR(2)GARCH(2,1) 30.8 10.2 26.8 9.3 57.6 18.3 AR(0)EGARCH(0,2) 27.7 8.8 23.7 7.0 51.5 14.5
AR(3)GARCH(2,1) 30.8 10.1 26.8 9.3 57.5 18.2 AR(1)EGARCH(0,2) 28.1 8.9 24.2 7.1 52.3 14.7
AR(4)GARCH(2,1) 30.7 10.1 26.7 9.4 57.4 18.3 AR(2)EGARCH(0,2) 28.1 8.9 24.1 7.1 52.3 14.6
AR(0)GARCH(2,2) 30.9 10.0 26.9 9.2 57.8 18.0 AR(3)EGARCH(0,2) 28.1 8.8 24.1 7.1 52.1 14.5
AR(1)GARCH(2,2) 30.9 10.1 27.0 9.2 57.9 18.1 AR(4)EGARCH(0,2) 28.0 8.8 24.1 7.1 52.1 14.5
AR(2)GARCH(2,2) 30.9 10.1 26.9 9.2 57.9 18.1 AR(0)EGARCH(1,1) 28.2 9.0 24.3 7.5 52.5 15.1
AR(3)GARCH(2,2) 30.9 10.2 26.9 9.3 57.8 18.3 AR(1)EGARCH(1,1) 29.0 9.1 25.0 7.6 53.9 15.3
AR(4)GARCH(2,2) 30.8 10.2 26.8 9.4 57.7 18.4 AR(2)EGARCH(1,1) 28.8 9.1 24.8 7.6 53.6 15.4
AR(0)TARCH(0,1) 29.8 9.1 25.8 7.6 55.5 15.3 AR(3)EGARCH(1,1) 28.8 9.1 24.8 7.6 53.6 15.3
AR(1)TARCH(0,1) 30.0 9.1 26.0 7.6 56.1 15.3 AR(4)EGARCH(1,1) 28.8 9.2 24.8 7.7 53.7 15.5
AR(2)TARCH(0,1) 30.1 9.0 26.1 7.5 56.2 15.1 AR(0)EGARCH(1,2) 27.8 9.1 23.8 7.5 51.6 15.3
AR(3)TARCH(0,1) 30.0 9.0 26.1 7.5 56.1 15.1 AR(1)EGARCH(1,2) 28.8 9.4 24.8 7.7 53.5 15.8
AR(4)TARCH(0,1) 30.1 9.0 26.1 7.5 56.3 15.1 AR(2)EGARCH(1,2) 28.7 9.3 24.7 7.7 53.4 15.6
AR(0)TARCH(0,2) 29.0 9.1 24.9 7.5 53.9 15.2 AR(3)EGARCH(1,2) 28.6 9.3 24.6 7.6 53.3 15.6
AR(1)TARCH(0,2) 29.3 8.9 25.2 7.3 54.5 14.9 AR(4)EGARCH(1,2) 28.7 9.4 24.7 7.7 53.3 15.7
AR(2)TARCH(0,2) 29.3 9.0 25.3 7.4 54.6 15.0 AR(0)EGARCH(2,1) 28.2 9.0 24.3 7.5 52.5 15.0
AR(3)TARCH(0,2) 29.5 9.0 25.4 7.4 54.9 15.1 AR(1)EGARCH(2,1) 29.1 9.0 25.1 7.6 54.1 15.3
AR(4)TARCH(0,2) 29.6 9.0 25.6 7.5 55.2 15.2 AR(2)EGARCH(2,1) 29.1 9.0 25.1 7.6 54.1 15.3
AR(0)TARCH(1,1) 29.4 9.8 25.3 8.9 54.7 17.4 AR(3)EGARCH(2,1) 29.1 9.1 25.1 7.7 54.1 15.4
AR(1)TARCH(1,1) 30.3 9.9 26.3 9.1 56.5 17.8 AR(4)EGARCH(2,1) 29.1 9.1 25.1 7.6 54.1 15.4
AR(2)TARCH(1,1) 30.4 10.0 26.4 9.2 56.8 18.0        
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by a smooth diffusion process until another gap will occur. Further, as Natenberg 

(1994, p.397) commented: “since a gap in the market will have its greatest effect on 

“at the money” options close to expiration9, it is these options that are likely to 

be mispriced by the traditional BS pricing model with its continuous diffusion 

process.” 

As mentioned before, we have on the one hand traders who always choose to 

use one and the same ARCH model for their forecasts and traders who at each point 

in time choose to use the ARCH model suggested by the SPEC algorithm on the 

other. This leads us to comparing 86 forecasting methods: 85 single-model methods, 

one for each of 85 ARCH models, each amounting to the utilization of the forecasts 

of one and the same model at any point in time and the SPEC model selection 

algorithm. 

The average and the standard deviation of the collected S&P500 option prices are 

presented in Table 6.1. On each trading day, for each of the 85 ARCH models, the 

call and put option prices are forecasted. Table 6.2 presents the mean and the 

standard deviation of the predicted option prices, indicatively, for 12 of the 85 ARCH 

models. The ARCH forecasts for both call and put options are lower than the actual 

option prices, which is in accordance to Noh’s et al. (1994) research. 

 
Figure 6.9. Cumulative rate of return of the AR(3)EGARCH(1,1) agent  from trading 

straddles on the S&P500 index (11 March 1998 – 2 June 2000). 
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9 A gap in the market has its greatest effect on a high Gamma option and “at the money” options close 
to expiration have the highest Gamma. Delta, Lambda, Gamma, Theta, Vega and Rho comprise the 
pricing sensitivities and represent the key relationships between the individual characteristics of the 
option and the option price. For more details on options sensitivities see appendix 6.2 of the 6th chapter. 
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Let us assume that there are 85 traders and each trader employs an ARCH 

model to forecast future volatility and straddle prices. Each trading day, if the straddle 

price forecast is greater than the market straddle price, the straddle is bought, 

otherwise the straddle is sold. For each trader, the daily rate of return from trading 

straddles for 456 days is computed as in equations (6.3.3) to (6.3.4) and is presented 

in the second column of Table 6.310, in the Appendix 6.1. According to the t-ratios, 

computed as ratios of the mean to the standard deviation divided by the square root 

of the trading days, all the traders achieve profits significantly greater than zero. 

However, the trader who employs the AR(3)EGARCH(1,1) model achieves the 

highest profits. The AR(3)EGARCH(1,1) agent makes 4.42 per cent per day trading 

for 456 days, with a t-ratio of 5.32. Figure 6.9 depicts the cumulative returns of the 

AR(3)EGARCH(1,1) agent  from trading straddles on a daily basis. However, each 

time an agent trades a contract has to pay a transaction cost. Taking into 

consideration a transaction cost of $2, which reflects the bid – ask spread11, the rate 

of return would naturally be lower.  Table 6.3 also presents for each trader the net 

rate of return after a trading cost of $2, as computed in (6.3.5). 

 

Table 6.4. ARCH models that yield the highest rate of return from trading straddles on the 

S&P500 index (11 March 1998 – 2 June 2000). 

Trans. Cost - 
Filter Model Mean St.Dev t-ratio p-value Trading 

Days 
Total 

Returns
$0.00 - $0.00 AR(3)EGARCH(1,1) 4.42% 17.75% 5.32 0.00 456 2015%
$2.00 - $0.00 AR(3)EGARCH(1,1) 0.77% 17.21% 0.95 0.34 456 349% 
$2.00 - $1.25 AR(2)EGARCH(1,1) 0.90% 17.34% 1.06 0.29 421 378% 
$2.00 - $1.75 AR(0)GARCH(2,2) 1.06% 18.46% 1.13 0.26 385 408% 
$2.00 - $2.00 AR(0)GARCH(1,2) 1.10% 18.53% 1.16 0.25 381 420% 
$2.00 - $2.25 AR(0)GARCH(1,2) 1.35% 18.50% 1.39 0.17 362 490% 
$2.00 - $2.75 AR(4)GARCH(0,2) 1.60% 17.60% 1.69 0.09 346 553% 
$2.00 - $3.50 AR(3)GARCH(0,2) 1.89% 18.11% 1.87 0.06 322 607% 

 

However, a rational trader will trade straddles only when profits are predicted 

to exceed transaction costs. So, straddles are traded only when the absolute 

                                                 
10 Because of the large amount of data, Table 6.3, in the Appendix, is decomposed into four parts. 
11 Bid price is the price that a trader is offering to pay for the option. Ask price is the price that a trader 
is offering to sell the option. The ask price is higher that the bid price and the amount by which the ask 
exceeds the bid is referred to as the bid – ask spread. The exchange sets the upper limits for the bid – 
ask spread. For example, according to the CBOE rules, the width is supposed to be a dollar wide for 
contracts above $20.  However, Exchange rules allow for doubling and even tripling the width 
depending upon the market conditions. For a retail investor, cost is higher and varies significantly from 
broker to broker. The actual amount charged is usually calculated as a fixed cost plus a proportion of 
the dollar amount of the trade, i.e. from a discount broker the purchase of contracts of  $10.000 would 
cost $145 in commissions. Retail commissions from full service brokers are higher. 
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difference between forecast and today’s option price exceeds the amount of the filter, 

ilF , yielding a net rate of return of: 

( ) ( )
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 (6.5.6) 

Various values for the filter are applied (i.e. $1.25, $1.75, $2.00, $2.25, $2.75, $3.50). 

Notice that although the “before transaction cost” profits are significantly greater than 

zero, applying a $2 transaction cost, the profits are not significantly greater than zero 

for any of the agents. According to Table 6.4, the models that achieve the highest 

rate of return are not the same for each filter strategy. 

 
6 . 6 .  T r a d i n g  S t r a d d l e s  B a s e d  o n  t h e  S P E C  M o d e l  

S e l e c t i o n  A l g o r i t h m  

 
The main purpose is to examine the application of the SPEC algorithm of 

selection of volatility models on the basis of forecasting option prices and creating 

trading strategies that yield abnormal returns. The term “abnormal returns” refers to 

profits that are uncorrelated with the market rate of return as the “at the money” 

straddle trading is a delta neutral12 trading strategy. According to the SPEC model 

selection algorithm, the most appropriate model, among a set of candidate ARCH 

models, to forecast one-day-ahead volatility is the model with the lowest sum of the 

most recently estimated squared standardized one-step-ahead prediction errors. To 

price an option, we need a forecast of the average daily variance over the lifetime of 

the option, as given in (6.3.6), whereas the SPEC algorithm looks at the sum of the 

one-step-ahead forecasts over some horizon T . Indeed, the SPEC method of model 

selection does not pick the model that would have had the best performance in 

estimating the volatility for option pricing but indicates the model that would have had 

the best performance in forecasting the one-day-ahead volatility. In the 4th chapter we 

have shown that ( )
( )( )
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tt
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σ
 is asymptotically standard normally distributed 

for all the considered volatility specifications. On the other hand, there is not a 

uniform method to compare the models based on average variance over the lifetime 

of the option because the distribution of ( )m
tstz |ˆ + , for 1>s , is not common for all the 

                                                 
12 Delta is the change in the option price for a given change in the stock price. An option is termed delta 
neutral when the sum total of all the positive and negative deltas adds up to approximately zero. The 
rate of return of a delta neutral trading strategy is indifferent to any change in the underlying stock 
price. For more details on Delta see appendix 6.2 of the 6th chapter. 
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ARCH models. However, our findings indicate that the models picked by the SPEC 

algorithm appear to be at the same time the models that have had the best 

performance in estimating volatility for option pricing. Therefore, we investigate the 

gains from the use of the SPEC algorithm, a criterion that evaluates the one-step-

ahead volatility predictions, in pricing options with lifetime greater than one day.   

Table 6.5. Daily rates of return from trading straddles on the S&P500 index based on the ARCH

models selected by the SPEC model selection algorithm. Applying the SPEC model selection

algorithm, ∑ = −
T

t ttz
1

2
1|ˆ  was estimated considering various values for T , and, in particular, 

( )8055=T . I.e. SPEC(5) corresponds to the SPEC model selection algorithm for 5=T . 

Without transaction cost $2 transaction cost 
 

Without filter Without filter $1.25 filter $1.75 filter 
Model Selection 

Method Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days

SPEC(5) 4.06% 17.84% 4.86 456 0.41% 17.42% 0.50 456 0.73% 17.99% 0.83 416 0.80% 18.38% 0.86 395 
SPEC(10) 4.05% 17.84% 4.84 456 0.40% 17.47% 0.48 456 0.74% 18.03% 0.84 414 0.83% 18.20% 0.92 401 
SPEC(15) 4.04% 17.84% 4.83 456 0.38% 17.49% 0.47 456 0.86% 18.00% 0.97 414 0.96% 18.24% 1.06 398 
SPEC(20) 3.92% 17.87% 4.68 456 0.27% 17.51% 0.33 456 0.83% 18.07% 0.93 412 0.92% 18.22% 1.01 400 
SPEC(25) 4.04% 17.84% 4.84 456 0.39% 17.47% 0.48 456 0.96% 17.96% 1.08 414 1.10% 18.17% 1.21 399 
SPEC(30) 4.06% 17.84% 4.86 456 0.41% 17.47% 0.50 456 0.88% 18.07% 0.99 413 0.91% 18.27% 0.99 396 
SPEC(35) 3.87% 17.88% 4.62 456 0.22% 17.52% 0.27 456 0.82% 18.00% 0.93 412 0.94% 18.29% 1.02 394 
SPEC(40) 3.96% 17.86% 4.73 456 0.31% 17.50% 0.37 456 0.90% 18.08% 1.01 407 0.99% 18.23% 1.08 395 
SPEC(45) 3.70% 17.91% 4.41 456 0.04% 17.56% 0.05 456 0.88% 18.13% 0.98 406 0.97% 18.32% 1.05 392 
SPEC(50) 3.69% 17.92% 4.40 456 0.04% 17.56% 0.05 456 0.67% 18.09% 0.75 411 0.78% 18.23% 0.85 399 
SPEC(55) 4.17% 17.81% 5.00 456 0.52% 17.26% 0.64 456 0.73% 17.91% 0.82 406 0.94% 18.12% 1.03 392 
SPEC(60) 3.84% 17.88% 4.59 456 0.19% 17.35% 0.24 456 0.50% 17.95% 0.56 407 0.69% 18.09% 0.76 396 
SPEC(65) 4.11% 17.82% 4.92 456 0.46% 17.29% 0.57 456 0.65% 17.63% 0.76 414 0.79% 17.84% 0.89 401 
SPEC(70) 4.12% 17.82% 4.94 456 0.47% 17.28% 0.58 456 0.55% 17.73% 0.63 411 0.67% 17.88% 0.75 401 
SPEC(75) 4.08% 17.83% 4.89 456 0.43% 17.31% 0.53 456 0.80% 17.76% 0.91 404 0.89% 18.02% 0.98 391 
SPEC(80) 3.81% 17.89% 4.55 456 0.16% 17.47% 0.20 456 0.54% 18.06% 0.60 404 0.64% 18.33% 0.69 391 

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 
Model Selection 

Method Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days

SPEC(5) 0.78% 18.06% 0.85 384 1.04% 18.31% 1.09 370 1.23% 18.70% 1.23 351 2.00% 18.64% 1.95 329 
SPEC(10) 0.92% 18.06% 1.01 394 1.01% 18.32% 1.07 382 1.24% 18.24% 1.29 363 1.53% 18.72% 1.50 334 
SPEC(15) 1.15% 18.20% 1.24 387 1.20% 18.43% 1.26 377 1.04% 18.47% 1.07 362 1.44% 18.49% 1.42 331 
SPEC(20) 1.07% 18.05% 1.17 395 1.16% 18.31% 1.24 383 1.02% 18.38% 1.06 366 1.31% 18.35% 1.32 338 
SPEC(25) 1.30% 18.11% 1.42 389 1.36% 18.26% 1.46 382 1.35% 18.19% 1.42 367 1.57% 18.12% 1.60 342 
SPEC(30) 1.10% 18.21% 1.19 386 1.20% 18.43% 1.27 376 1.30% 18.45% 1.33 358 1.52% 18.13% 1.55 342 
SPEC(35) 1.12% 18.23% 1.21 384 1.21% 18.46% 1.26 374 1.21% 18.50% 1.23 356 1.59% 18.36% 1.59 338 
SPEC(40) 1.17% 18.24% 1.25 382 1.31% 18.58% 1.35 367 1.32% 18.58% 1.33 351 1.78% 18.52% 1.75 330 
SPEC(45) 1.12% 18.24% 1.20 383 1.23% 18.51% 1.28 371 1.20% 18.48% 1.22 356 1.60% 18.46% 1.58 334 
SPEC(50) 0.77% 18.45% 0.83 389 1.02% 18.42% 1.08 378 1.09% 18.64% 1.10 356 1.42% 18.57% 1.41 337 
SPEC(55) 0.98% 18.30% 1.05 383 1.05% 18.55% 1.09 372 1.20% 18.66% 1.21 356 1.50% 18.55% 1.49 338 
SPEC(60) 0.68% 18.30% 0.73 386 0.71% 18.46% 0.75 379 1.11% 18.33% 1.15 358 1.23% 18.54% 1.23 341 
SPEC(65) 0.83% 18.06% 0.91 390 0.92% 18.33% 0.97 377 1.62% 18.32% 1.65 352 1.55% 18.38% 1.56 339 
SPEC(70) 0.70% 18.15% 0.76 388 0.79% 18.47% 0.83 373 1.17% 18.96% 1.15 347 1.47% 18.49% 1.45 333 
SPEC(75) 0.92% 18.28% 0.97 379 0.98% 18.48% 1.02 370 1.27% 18.88% 1.26 349 1.44% 18.60% 1.40 327 
SPEC(80) 0.86% 18.33% 0.91 378 0.97% 18.48% 1.01 371 1.06% 18.81% 1.07 356 0.92% 18.86% 0.90 334 
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Applying the SPEC model selection algorithm, the sum of squared standardized one-

step-ahead prediction errors, ∑ = −
T

t ttz
1

2
1|ˆ , was estimated considering various values 

for T , and, in particular, ( )8055=T . Thus, it is assumed that there are 16 traders 

each of which uses on each trading day, the ARCH model picked by the SPEC 

algorithm to forecast volatility and straddle prices for the next trading day. Table 6.5 

presents, for each trader following the SPEC model selection strategy, the net rate of 

return from trading straddles on a daily basis. With transaction costs of $2 and a filter 

of $3.5, the trader utilizing the SPEC algorithm with 5=T  achieves the highest rate 

of return. The agent based on the SPEC(5) forecast algorithm makes 2.00%  per day 

trading for 329 days, with a t-ratio of 1.95. 

 

Table 6.6. Number of ARCH models selected by the SPEC(5) algorithm 

for trading straddles on the S&P500 index with transaction costs of $2.00 

and a $3.5 filter (11 March 1998 – 2 June 2000), classified by the types of 

models considered for their conditional means and variances. 

Type of Conditional Mean Model   

AR(0) AR(1) AR(2) AR(3) AR(4) Total 
GARCH(0,1) 27 6 4 4 4 45 
GARCH(0,2) 1  4 4 6 15 
GARCH(1,1) 7 2 1 2 9 21 
GARCH(1,2) 9 2 3 2 4 20 
GARCH(2,1) 1 1   1 3 
GARCH(2,2) 5 3   2 10 
TARCH(0,1) 1  2  3 6 
TARCH(0,2)     2 2 
TARCH(1,1) 5 9 1 3 1 19 
TARCH(1,2) 12 2  3 2 19 
TARCH(2,1) 2 2 6 9 5 24 
TARCH(2,2) 3 5 2 3 6 19 
EGARCH(0,1) 16 12 2 10 1 41 
EGARCH(0,2) 1 6 5 16 8 36 
EGARCH(1,1) 1    1 2 
EGARCH(1,2) 9 5 5 7 6 32 

Ty
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EGARCH(2,1) 8 1 1 3 2 15 
 Total 108 56 36 66 63  329 

 

The models picked by the SPEC(5) algorithm are presented in Table 6.6. So, 

for example, the model with AR(0) conditional mean and GARCH(0,1) conditional 

variance was picked on 27 trading days. The selection algorithm chooses higher 

orders of the conditional mean autoregressive process for half the number of trading 

days. As concerns the conditional variance function, the GARCH, E-GARCH and 
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TARCH models are suggested as the most suitable in the 35%, 27%, and 38% of the 

cases, respectively. Consequently, the SPEC algorithm does not appear to be 

noticeably biased towards selecting a specific type of model. 

In order to compare the strategy performances over the entire sample, agents 

are assumed to invest at the risk free rate when they do not trade. Thus, the net rate 

of return is now computed as:  
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 (6.6.1) 

For 00.2$=X  and 50.3$=ilF , the trader using the AR(3)GARCH(0,2) 

forecasts makes a daily profit of 1.35% with a corresponding standard deviation of 

15.24% and a t-ratio of 1.89 (or p-value 0.06). On the other hand, the agent that 

follows the SPEC(5) model selection algorithm achieves a profit of 1.46% per day 

with a corresponding standard deviation of 15.85% and a t-ratio of 1.97 (or p-value 

0.05). Even marginally, the SPEC(5) model selection algorithm achieves higher 

cumulative returns than those of any other trader who is based only on a single 

ARCH model. Moreover, a t-ratio of 1.97 indicates that profits from the SPEC(5) 

algorithm are significantly different from zero. Thus, the SPEC model selection 

algorithm has a satisfactory performance in selecting those models that generate 

better volatility predictions. 

 

6 . 7 .  T r a d i n g  S t r a d d l e s  B a s e d  o n  O t h e r  M e t h o d s  O f  M o d e l  

S e l e c t i o n  

 
As we already mentioned in the 5th chapter, most of the methods used in the 

time series literature for selecting the appropriate model are based on evaluating the 

ability of the models to describe the data. Standard model selection criteria such as 

the AIC and the SBC information criteria have widely been used in the ARCH 

literature. In addition, the evaluation of loss functions for alternative models is mainly 

used in model selection. When the focus is mainly on estimation of means, the loss 

function of choice is typically the mean squared error. However, when the same 

strategy is applied to variance estimation, the choice of the mean squared error is 

much less clear. Because of high non-linearity in volatility models a number of 

researchers constructed heteroscedasticity adjusted loss functions. Denoting the 
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forecasting variance over an N  day period measured at day t  by 

( ) ∑
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+
−=
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12 σ̂σ , and the realized variance over the same period by 
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+
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N

i
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212 , a set of statistical criteria to measure the closeness of the 

forecasts to the realizations were presented in Table 5.5 of the 5th chapter. 

Applying the SPEC model selection algorithm, the sum of squared 

standardized one-step-ahead prediction errors, ∑ = −−
T

t tttt1
2

1|
2

1| ˆˆ σε , was estimated 

considering various values for T . Therefore, each of the model selection criteria, in 

Table 5.5 of the 5th chapter, was computed considering various values for T , and, in 

particular, ( )801010=T . The AIC and SBC criteria were computed based on the 

rolling sample of constant size equal to 500 that is used at each time to estimate the 

parameters of the models. Selecting a strategy based on any of several competing 

methods of model selection naturally amounts to selecting the ARCH model that, at 

each of a sequence of points in time, has the lowest value of the evaluation function. 

 

Table 6.7. Daily rate of return from trading straddles on the S&P500 index based on 

the SPEC model selection algorithm and the ARCH model selection algorithms with 

transaction costs of $2.00 and a $3.5 filter. The column “sample size” refers to the 

sample size, T, for which the corresponding model selection algorithm leads to the 

highest rate of return. Agents are assumed to invest at the risk free rate when they 

do not trade. The net rate of return is computed as in equation (6.6.1). 

Trans. Cost – 
Filter 

Model 
Selection 
Method 

Sample 
size Mean Stand. Dev. t-ratio Days 

$2.00 -$3.50 SPEC T=5 1.46% 15.85% 1.97 456 
$2.00 -$3.50 AIC - 0.90% 15.57% 1.23 456 
$2.00 -$3.50 SBC - 1.06% 15.93% 1.42 456 
$2.00 -$3.50 SEVar T = 40 0.61% 16.34% 0.80 456 
$2.00 -$3.50 AEVar T = 60 0.76% 15.82% 1.03 456 
$2.00 -$3.50 SEDev T = 60 0.74% 16.29% 0.97 456 
$2.00 -$3.50 AEDev T = 60 0.81% 15.96% 1.08 456 
$2.00 -$3.50 HASEVar T = 10 1.10% 15.98% 1.47 456 
$2.00 -$3.50 HAAEVar T = 40 1.24% 16.12% 1.65 456 
$2.00 -$3.50 HASEDev T = 20 0.90% 16.32% 1.18 456 
$2.00 -$3.50 HAAEDev T = 30 1.12% 16.47% 1.45 456 
$2.00 -$3.50 LEVar T = 80 0.75% 15.92% 1.00 456 
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Assuming that the agents invest at the risk free rate when they do not trade, Table 

6.7 presents the daily rate of returns from trading straddles on the S&P500 index 

based on the ARCH models selected by the 11 model selection methods presented 

in this section. Detailed tables for the daily rate of return from trading straddles based 

on the ARCH models selected by the 11 model selection methods are presented in 

Tables 6.8 to 6.17, in the Appendix 6.1. After transaction costs of $2, the agents 

based on the HASEVar, HAAEVar, HASEDev and HAAEDev criteria achieve the 

higher returns. Moreover, a trader who selects the volatility forecasts models 

according to the standard model selection criteria, SBC and AIC, makes a cumulative 

profit higher than in the case he/she would select ARCH models based on the 

heteroscedasticity unadjusted and logarithmic error functions. However, in none of 

the cases, the daily returns came out to be significantly different from zero (according 

to the t-ratios of Table 6.7) or higher than the returns achieved by the SPEC 

algorithm. 

The net rate of return is computed according to equation (6.6.1). The SPEC 

model selection algorithm, for 5=T , leads to the highest profit of 1.46% per day and 

a t-ratio of 1.97. Of the remaining model selection criteria considered in this section, 

the HAAEVar selection algorithm, for 40=T , yielded the highest daily profit (1.24%) 

with a corresponding standard deviation of 16.12% and a t-ratio of 1.65. Thus, none 

of the model selection algorithms considered appears to lead to daily returns that are 

higher than the returns attained using the SPEC algorithm. Even the 

AR(3)GARCH(0,2) model, which yields a daily profit of 1.35%, achieves a higher rate 

of return than that of the models picked by the other model selection criteria. This is 

an indication of the superiority of the SPEC algorithm over the other methods in the 

ability to select the models that would produce accurate volatility estimations for 

option pricing predictions. 

 

6 . 8 .  D i s c u s s i o n  

 
Selecting a model that can produce accurate volatility predictions for pricing 

next day’s options is an intriguing problem. In this chapter, a number of single ARCH 

model-based methods of predicting volatility were compared to poly-model SPEC 

algorithm method in terms of profits from trading real options of the S&P500 index 

returns. Over the March 1998 to June 2000 period, forecasts of option prices were 

calculated by feeding the volatility estimated by the ARCH models into the BS option 

pricing model, which is commonly used in option exchanges worldwide despite the 

fact that it assumes a constant variance for the rate of return. Actually, as in the case 
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of Noh et al.’s (1994) study, our results imply that option prices can be predicted 

even with the use of a misspecified model if asset volatilities can be predicted. The 

results of our study showed that the SPEC algorithm outperformed all of the single 

ARCH model-based methods as well as a set of other methods of model selection. 

Moreover, in the 7th chapter we make a comparative study among a set of 

ARCH model selection algorithms in order to examine which method yields the 

highest profits by trading straddles, in a simulated options market, based on variance 

forecast option prices. The simulated option market was considered to avoid the bias 

induced by the use of actual option prices. The results also showed that the SPEC 

algorithm for 5=T  achieved the highest rate of return. One may therefore infer that 

the evidence is rather in support of the assumption that the increase in profits is due 

to improved volatility prediction and that the SPEC model selection algorithm offers a 

potential tool in picking the model that would yield the best volatility prediction. If the 

increase in profits were random, the SPEC algorithm would not achieve the highest 

profits in both the simulated market and in the present study that is based on real 

world options data. 
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Chap te r  7  

Eva lua t i ng  Vo la t i l i t y  Forecas t s  i n  Op t ion  

Pr i c ing  i n  t he  Con tex t  o f  a  S imu la t ed  Op t ions  

Marke t  

 

7 . 1 .  I n t r o d u c t i o n  

 

The evaluation of the SPEC algorithm is performed by comparing different 

volatility forecasts in option pricing through the simulation of an options market. 

Traders employing the SPEC model selection algorithm use the model with the 

lowest sum of squared standardized one-step-ahead prediction errors for obtaining 

their volatility forecast. The cumulative profits of the participants in pricing one-day 

index straddle options always using variance forecasts obtained by GARCH, 

EGARCH and TARCH models are compared to those made by the participants using 

variance forecasts obtained by models suggested by the SPEC algorithm. The 

straddles are priced on the S&P500 index. It is concluded that traders, who base 

their selection of an ARCH model on the SPEC algorithm, achieve higher profits than 

those, who use only a single ARCH model. Moreover, the SPEC algorithm is 

compared with other criteria of model selection that measure the ability of the ARCH 

models to forecast the realized intra-day volatility. In this case too, the SPEC 

algorithm users achieve the highest returns. Thus, the SPEC model selection method 

appears to be a useful tool in selecting the appropriate model for estimating future 

volatility in pricing derivatives. 

In this chapter, inspired by Engle et al.’s (1993) approach to assess 

incremental profits for a set of competing forecasts of the variance for a given 

portfolio, we examine the usage of the SPEC model selection algorithm, in pricing 

contingent claims. The goal of the present chapter is to evaluate the SPEC algorithm 

for volatility model selection through the simulation of an options market. In particular, 

section 7.2 presents Engle et al.’s (1993) data generated set-up of evaluating 

volatility forecasts. In sections 7.3 and 7.4, based on Engle et al.’s (1993) technique, 

the suggested model selection method is evaluated using daily return data for the 

S&P500 stock index over the period from June 26th, 1991 to October 18th, 2002. The 

use of a model selection method is a tedious procedure as it presupposes the 

estimation of a set of models. In order to examine whether there is any added value 

in using the suggested model selection algorithm instead of any other method of 
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using only a single ARCH model in the study, the performance of the SPEC algorithm 

in investigated against a set of such methods for a range of ARCH models. The 

results of section 7.3 provide evidence that this is indeed the case since they indicate 

that the SPEC model selection algorithm offers a useful tool in providing information 

related to the appropriate model. In section 7.4, the algorithm is compared with other 

methods of model selection. In particular, model selection criteria that measure the 

accuracy of the models to predict the realized volatility are constructed. The SPEC 

method is then compared with those model selection methods. Clearly, the SPEC 

algorithm outperforms all of the other methods of model selection considered. 

Samples of 500 and 2000 observations were also considered, in the 7.5 section, 

leading to similar findings, thus demonstrating that the results of the simulation study 

are not appreciably affected by the sample size. Finally, in section 7.6 a brief 

discussion of the results is provided. 

 

7 . 2 .  E v a l u a t i o n  o f  V a r i a n c e  F o r e c a s t s  w i t h  S i m u l a t e d  

O p t i o n  P r i c e s  

 

As Engle et al. (1997 p.120) noted, “a natural criterion for choosing between 

any pair of competing methods to forecast the variance of the rate of return on an 

asset would be the expected incremental profit from replacing the lesser forecast with 

the better one’’. Engle et al. (1993) considered evaluating variance forecasts of the 

NYSE index using generated index option prices instead of actual ones, thus 

avoiding the perennial problems inherent in observed option prices. The wildcard 

delivery option on cash-settled options (the right of an option buyer to exercise up an 

option at the closing price for a period of time after the close of stock market), the 

existence of bid-ask spread and transaction costs, the non-synchronous coexistence 

of option and stock prices, are some of the difficulties that are induced in empirical 

studies by the use of the actual index-option prices. In particular, Engle et al. (1993) 

used a set of competing methods to generate alternative daily forecasts for the 

variance of the returns on the NYSE index and applied these forecasts to price one-

day options on $1 shares of the NYSE index. The moving average variance, the 

ordinary least squares, the ARMA(1,1) in the squared residuals and the GARCH(1,1) 

models were applied for three sample lengths of i) 300 days, ii) 1000 days, and iii) 

5000 days. The four models and the three sample lengths produce 12 variance 

forecasts predicting methods.  To these, Engle et al. (1993) added 3 more predicting 

methods by considering the average of all daily forecasts, the daily minimum and the 

daily maximum forecasts. As reported by Kane and Marks (1987), the average of 
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conditionally independent forecasts converges rapidly to a perfect forecast, so that 

any failure of the average forecast might be indicative of departures from quality and 

conditional independence of the individual forecasts. As a check for the presence of 

bias, Engle et al. (1993) added the minimum and maximum of the daily forecasts. So, 

for example, in case of a significant downward bias, the maximum forecast will beat 

the minimum forecast and all of the individual forecasts that are more severe biased. 

Each agent applies a variance-forecast method and trades one-day options 

on a $1 share of the NYSE portfolio. The exercise price is taken to be ( )trfexp . Thus, 

for 1=tS , 1=τ , ( )trfK exp= , ( )
tttt |1

1
|1 ˆ ++ ≡ σσ , ( )

tttt CC |1
1

|1 ++ ≡  and ( )
tttt PP |1

1
|1 ++ ≡ , the Black 

& Scholes option pricing formula (equation 6.2.1 in chapter 6) reduces to: 

( ) 1ˆ5.02 |1|1|1 −== +++ tttttt NPC σ . (7.2.1)

The way in which the simulated options market operates is the following: The 

daily differences in the variance forecasts of the various methods considered lead to 

different reservation prices for one-day options on the index considered. These, in 

turn, trigger option trading among fictitious agents, each using one of the forecast 

methods considered. A trader with a higher (or lower) variance forecast and, hence, 

with a higher (or lower) reservation price for the option would buy (or sell) a straddle 

on a $1 share of index considered from any of the remaining traders with lower (or 

higher) reservation prices for the option. A straddle option is the purchase (or sale) of 

both a call and a put option, of the underlying asset, with the same maturity day. The 

straddle trading is used because a straddle, that has its stock price equal to the 

exercise price, is Delta neutral. Delta1 is the change in the option price for a given 

change in the stock price: 

( ) 01 >=
∂
∂

=∆ − dNe
S
C

CALL
γτ , 

and 

( )( ) 011 <−=
∂
∂

=∆ − dNe
S
P

PUT
γτ . 

 

The day t  payoff to agent i  from holding the straddle is: 

( ) ( ) ( ) ( )( )ttttt yrry expexp,expexpmax −−=π , (7.2.2)

which is identical for each agent. A trade between two agents, i  and ∗i , is executed 

at the average of the reservation prices of the two agents, that is, at the bid/ask 

                                                 
1 Delta, Lambda, Gamma, Theta, Vega and Rho comprise the option sensitivities and represent the key 
relationships between the individual characteristics of the option and the option price. For more details 
on options sensitivities see appendix 6.2 of the 6th chapter. 
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prices. The transaction that is executed at the average of the bid and ask price, 

yields to agent i  a profit given by 

( ) ( ) ( )( ) ( ) ( )
( ) ( )( ) ( ) ( )⎪⎩

⎪
⎨
⎧

<−+

>+
=

∗∗

∗∗∗

+++++

+++++
+
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ittittittitttii
t CCCC

CCCC

,|1,|11,|1,|1

,|1,|1,|1,|11,
1 for     ,

for     ,-
π

π
π . (7.2.3)

In Engle et al. (1993), the GARCH(1,1) forecast method achieves the highest 

cumulative profits for the three sample lengths. Moreover, the GARCH(1,1) method 

for a rolling sample of 1000 observations yields the highest profit, dominating even 

the average of all  variance forecast methods. 

 

7 . 3 .  E v a l u a t i n g  t h e  S P E C  M o d e l  S e l e c t i o n  A l g o r i t h m  o n  

S i m u l a t e d  O p t i o n s  

 

In the 5th chapter, a number of statistical evaluation criteria were applied in 

order to examine the ability of the SPEC model selection algorithm to select the 

ARCH model that best predicts future volatility, for forecast horizons ranging from 

one day ahead to one hundred days ahead. The results showed that the SPEC 

model selection procedure has a satisfactory performance in selecting that model 

that generates “better” volatility predictions. Moreover, in the 6th chapter we made a 

comparative study among a set of ARCH model selection algorithms in order to 

examine which method yields the highest profits in straddle trading based on volatility 

forecasts using actual option price data. The results showed that the SPEC algorithm 

for 5=T  achieved the highest rate of return.  

In the sequel, the performance of the SPEC algorithm as an ARCH model 

selection criterion is evaluated in the context of a simulated options market in order to 

avoid biases induced by the use of actual index-option prices. In particular, following 

Engle et al.’s (1993) approach, an economic criterion to evaluate the SPEC model 

selection algorithm is adopted: the profit from variance forecasts in pricing one-day 

index straddle options. A simulated market of option trading among 104 fictitious 

agents is created, whereby traders use variance forecasts obtained by the models of 

their choice to price a straddle on the S&P500 index for the next day. The 

performance of the SPEC algorithm is evaluated through comparing the different 

volatility forecasts. The comparison is performed on the basis of the cumulative 

profits of traders each of which always uses volatility forecasts obtained by the same 

GARCH, EGARCH or TARCH model on the one hand and cumulative profits by 

traders using volatility forecasts obtained by models suggested by the SPEC criterion 

on the other. So, traders can be thought of a having different “methods” or 
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“strategies” for obtaining variance forecasts (amounting to the utilization of the 

forecasts of a model at each point in time) and can be classified into two categories: 

Those who choose to always use one and the same ARCH model and those who at 

each point in time choose to use the ARCH model suggested by the SPEC algorithm. 

The variance forecast methods that are compared are: 85 selection “methods” 

(strategies), one for each of 85 ARCH models, each amounting to the utilization of 

the forecasts of the same model at any point in time, the SPEC model selection 

algorithm for 16 different sample sizes, the average, the minimum and the maximum 

of all daily forecasts methods.  

The data set consists of S&P500 stock index daily returns in the period from 

June 26th, 1991 to October 18th, 2002, totally 2853 trading days. 

The conditional mean is considered as a thκ  order autoregressive process: 

tttt zy σµ += , 

( )∑
=

−+=
κ

µ
1

0
i

itit ycc , 

( ) 1,0~
...
Nz

dii

t . 

(7.3.1)

Usually, the conditional mean is either the overall mean or a first order 

autoregressive process. Theoretically, the ( )1AR  process allows for the 

autocorrelation induced by discontinuous (or non-synchronous) trading in the stocks 

making up an index. For more details on non-synchronous trading see section 2.1.3 

of the 2nd chapter. 

The conditional variance is regarded as a GARCH( qp, ), an EGARCH( qp, ) 

and a TARCH( qp, ) function in the forms of (5.2.4), (5.2.5) and (5.2.6) of the 5th 

chapter, respectively. Thus, the AR(κ )GARCH( qp, ), AR(κ )EGARCH( qp, ) and 

AR(κ )TARCH( qp, ) models are applied, for 4,...,0=κ , 2 ,1 ,0=p  and 2 ,1=q , 

yielding a total of 85 cases. Numerical maximization of the log-likelihood function, for 

the E-GARCH(2,2) model, frequently failed to converge. So the five E-GARCH 

models for 2== qp  were excluded. Maximum likelihood estimates of the 

parameters are obtained by numerical maximization of the log-likelihood function 

using the Marquardt algorithm (Marquardt (1963)). The quasi-maximum likelihood 

estimator (QMLE) is used, as according to Bollerslev and Wooldridge (1992), it is 

generally consistent, has a limiting normal distribution and provides asymptotic 

standard errors that are valid under non-normality. The one step-ahead volatility 

forecasts of the models are: 
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One-step-ahead forecast of the GARCH(p,q) model  
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One-step-ahead forecast of the EGARCH(p,q) model  
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One-step-ahead forecast of the TARCH(p,q) model  
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where 1=td  if 0<tε , and 0=td  otherwise. The ARCH processes are estimated 

using a rolling sample of constant size equal to 1000. Thus, the first one-step-ahead 

volatility prediction, 2
|1ˆ tt+σ , is available at time 1000=t .  

The SPEC model selection algorithm is applied for various values of T , and, 

in particular, for ( )80 55=T . Let us consider the set of M  candidate ARCH models 

of the form,  
( ) ( ) ( )m

t
mm

tt xy εβ +′= , 
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t z σε  ,1= , 

( )1,0~,1 Nz
iid

t , 

and 
( ) ( ) ( ) ( ) ( ) ( ) ( )( ),...,,,...,,,..., 21

22
1

22
1

2 m
t

m
t

m
qt

m
t

m
pt

m
t

m
t g −−−−−−= υυεεσσσ , 

where the superscript m refers to model m, m=1, 2, …, M. Assume that, at each of a 

series of points in time, we are interested in looking for the most suitable of the M  

competing models for obtaining a volatility forecast. According to the SPEC model 

selection algorithm, the model with the lowest sum of squared standardized one-

step-ahead prediction errors is considered as having a better ability to predict the 

conditional variance of the dependent variable. Thus, at time k , selecting a strategy 

for the most appropriate model to forecast volatility at time 1+k  ( ,...1, += TTk ) 

could naturally amount to selecting the model, which, at time k , has the lowest value 

of standardized one-step-ahead prediction errors, ( ) ( ) ( )∑∑
+−=
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estimation steps comprising the SPEC model selection algorithm are summarized in 
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Table 5.1 in chapter 5. Thus, based on the SPEC model selection algorithm, sixteen 

agents are assumed to take part in the simulated options market.   

 

Table 7.1 

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices. 

Rank Algorithm Profit 

T-

Ratio Rank Algorithm Profit 

T-

Ratio Rank Algorithm Profit T-Ratio 

1 SPEC(T=5) 22.34% 6.76 36 AR(2)EGARCH(2,1) 8.71% 4.12 71 AR(2)GARCH(1,2) -4.69% -1.77 
2 SPEC(T=10) 20.09% 6.64 37 AR(0)EGARCH(2,1) 8.64% 3.98 72 AR(4)GARCH(1,2) -5.04% -1.85 
3 SPEC(T=15) 17.94% 6.53 38 AR(4)EGARCH(1,1) 8.44% 4.36 73 AR(0)EGARCH(0,2) -6.45% -1.89 
4 SPEC(T=25) 16.58% 6.70 39 AR(4)TARCH(1,2) 8.11% 3.36 74 AR(1)EGARCH(0,2) -6.90% -2.02 
5 SPEC(T=20) 16.56% 6.49 40 AR(0)TARCH(1,1) 7.80% 3.58 75 AR(2)EGARCH(0,2) -7.20% -2.11 
6 AR(0)EGARCH(1,2) 14.44% 5.49 41 AR(1)EGARCH(2,1) 7.62% 3.69 76 AR(3)EGARCH(0,2) -7.60% -2.24 
7 SPEC(T=50) 14.42% 6.35 42 AR(3)EGARCH(2,1) 7.53% 3.71 77 AR(4)EGARCH(0,2) -7.83% -2.31 
8 SPEC(T=40) 14.29% 5.91 43 AR(0)TARCH(2,1) 7.26% 3.33 78 MAXIMUM -10.38% -2.27 
9 SPEC(T=30) 13.93% 5.78 44 AR(4)EGARCH(2,1) 6.87% 3.44 79 AR(0)TARCH(0,2) -11.66% -4.01 

10 SPEC(T=45) 13.85% 5.73 45 AR(2)TARCH(1,1) 6.72% 3.01 80 AR(2)TARCH(0,2) -12.18% -4.19 
11 SPEC(T=35) 13.80% 5.69 46 AR(1)TARCH(1,1) 6.50% 2.82 81 AR(3)TARCH(0,2) -12.57% -4.26 
12 SPEC(T=80) 13.49% 5.75 47 AR(2)TARCH(2,1) 6.14% 2.87 82 AR(1)TARCH(0,2) -12.69% -4.35 
13 SPEC(T=55) 13.10% 5.56 48 AR(1)TARCH(2,1) 6.02% 2.75 83 AR(4)TARCH(0,2) -13.00% -4.30 
14 SPEC(T=70) 13.04% 5.48 49 AR(3)TARCH(2,1) 5.91% 2.82 84 AR(0)GARCH(0,2) -13.35% -4.48 
15 SPEC(T=60) 12.84% 5.43 50 AR(3)TARCH(1,1) 5.61% 2.60 85 AR(1)GARCH(0,2) -13.80% -4.66 
16 SPEC(T=65) 12.70% 5.39 51 AR(4)TARCH(1,1) 5.54% 2.56 86 AR(2)GARCH(0,2) -13.84% -4.66 
17 AR(0)TARCH(2,2) 12.61% 5.65 52 AR(4)TARCH(2,1) 4.65% 2.25 87 AR(3)GARCH(0,2) -14.29% -4.72 
18 AR(1)EGARCH(1,2) 12.54% 4.88 53 AR(0)GARCH(2,1) -0.49% -0.19 88 AR(4)GARCH(0,2) -14.33% -4.64 
19 AR(2)EGARCH(1,2) 12.44% 4.96 54 AR(0)GARCH(1,2) -0.66% -0.27 89 AR(0)EGARCH(0,1) -16.93% -5.43 
20 AR(3)EGARCH(1,2) 12.12% 4.88 55 AR(0)GARCH(2,2) -0.68% -0.27 90 AR(1)EGARCH(0,1) -17.79% -5.61 
21 SPEC(T=75) 12.02% 5.11 56 AR(0)GARCH(1,1) -1.50% -0.59 91 AR(2)EGARCH(0,1) -17.91% -5.59 
22 AR(4)EGARCH(1,2) 12.01% 4.82 57 AR(1)GARCH(2,1) -1.59% -0.60 92 AR(3)EGARCH(0,1) -18.22% -5.68 
23 AR(0)EGARCH(1,1) 11.32% 5.41 58 AR(3)GARCH(2,2) -1.89% -0.71 93 AR(4)EGARCH(0,1) -18.27% -5.68 
24 AR(1)TARCH(2,2) 11.04% 4.95 59 AR(1)GARCH(2,2) -1.94% -0.74 94 AR(0)GARCH(0,1) -20.26% -6.39 
25 AR(0)TARCH(1,2) 10.88% 4.52 60 AR(2)GARCH(2,1) -1.99% -0.75 95 AR(1)GARCH(0,1) -20.49% -6.35 
26 AR(2)TARCH(2,2) 10.74% 4.88 61 AR(3)GARCH(2,1) -2.00% -0.75 96 AR(2)GARCH(0,1) -20.89% -6.45 
27 AR(2)EGARCH(1,1) 10.69% 5.31 62 AR(2)GARCH(2,2) -2.62% -1.00 97 AR(3)GARCH(0,1) -21.10% -6.45 
28 AR(2)TARCH(1,2) 10.31% 4.17 63 AR(1)GARCH(1,2) -2.70% -1.03 98 AR(0)TARCH(0,1) -21.29% -6.84 
29 AR(1)EGARCH(1,1) 10.24% 4.89 64 AR(4)GARCH(2,1) -2.72% -1.02 99 AR(4)GARCH(0,1) -21.64% -6.54 
30 AR(3)TARCH(2,2) 10.05% 4.68 65 AR(1)GARCH(1,1) -3.22% -1.26 100 AR(1)TARCH(0,1) -21.90% -6.94 
31 AR(4)TARCH(2,2) 9.41% 4.31 66 AR(3)GARCH(1,1) -3.29% -1.24 101 AR(2)TARCH(0,1) -22.00% -6.95 
32 AVERAGE 9.28% 9.33 67 AR(2)GARCH(1,1) -3.63% -1.40 102 AR(3)TARCH(0,1) -22.24% -7.08 
33 AR(3)EGARCH(1,1) 9.23% 4.72 68 AR(4)GARCH(1,1) -3.64% -1.37 103 AR(4)TARCH(0,1) -22.25% -7.02 
34 AR(1)TARCH(1,2) 8.94% 3.53 69 AR(4)GARCH(2,2) -3.65% -1.37 104 MINIMUM -37.99% -8.20 
35 AR(3)TARCH(1,2) 8.89% 3.77 70 AR(3)GARCH(1,2) -4.28% -1.62         

 

Each agent, who follows the SPEC algorithm, selects the ARCH model with 

the lowest sum of T  squared standardized one-step-ahead prediction errors, 

∑ = −
T

t ttz
1

2
1|ˆ , in order to forecast next day’s variance. As in Engle et al. (1993), three 

more daily forecasts are added: the average of all daily forecasts, the daily minimum 

and daily maximum forecasts. In the sequel, the resulting forecast methods will be 
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referred to as the AVERAGE, the MINIMUM and the MAXIMUM method, 

respectively. 

Thus, the simulated options market that has been created is comprised by 

104 competitors. Each trader applies a trading strategy for the period ranging from 

October 4th 1995 to October 18th, 2002 on the S&P500 index, totally 1773 trading 

days. For 1773 trading days and 104 agents, the ith  agent’s daily profit per straddle 

is computed as: 
( ) ( )( )( )∑ ∑= =∗

∗

=
1773

1

103

1
, 1773103

t i
ii

t
i ππ . (7.3.5)

Any method that yields superior profits relative to the AVERAGE method 

appears more suitable in predicting volatility for pricing contingent claims. Table 7.1 

presents the profits per competitor per straddle and the corresponding t-ratios (ratio 

of average daily profit to its standard deviation divided by the square root of the 

trading days). The agents based on the SPEC model selection algorithm clearly 

outperform the others. All the SPEC model selection based algorithms achieve 

returns higher than the AVERAGE method. The highest annualized daily returns are 

achieved by the SPEC(5) model selection algorithm, which is in accordance to 

previous chapter’s results. 

Moreover, the agents that employ the SPEC model selection algorithm rank 

at the sixteenth of the twenty-two top positions. The MINIMUM forecast takes the last 

positions and the MAXIMUM forecast achieves negative and statistically significant 

returns, an indication that neither a downward nor an upward forecast bias, that could 

affect profits significantly, is present. It is interesting to note that the EGARCH(1,2) 

and the TARCH(2,2) model selection algorithms perform distinctly better that the 

remaining ARCH  models. The more flexible models, which account for the leverage 

effect and have a higher order of qp, , outperform the parsimonious models (i.e. 

GARCH(0,1), TARCH(0,1) and EGARCH(0,1)). Degiannakis (2004), Giot and 

Laurent (2003), Hansen and Lunde (2003) and Vilasuso (2002), among others, have 

found that more flexible models beat the forecasting ability of the parsimonious ones. 

Of course, as the number of candidate models increases, the probability of finding 

models with superior predictive ability will increase as well. Note that in our 

simulation study, we include 3 conditional variance specifications and in the 2nd 

chapter we have presented 31 conditional variance specifications in the context of 

the ARCH framework. However, the investigation of the SPEC algorithm 

performance with a set of more flexible ARCH models, which account for recent 

developments in the area of asset returns volatility, is suggested for further research. 

 



Chapter 7 

143 

Table 7.2 

Ranks of the methods based on the SPEC model selection algorithm and of the AVERAGE method by 

dropping out the least profitable agent at a time. 

  Algorithm 
Number 

of 
traders 

SPEC 
(T=5) 

SPEC 
(T=10) 

SPEC 
(T=15) 

SPEC 
(T=20)

SPEC 
(T=25) 

SPEC 
(T=30) 

SPEC 
(T=35)

SPEC 
(T=40)

SPEC 
(T=45)

SPEC 
(T=50)

SPEC 
(T=55)

SPEC 
(T=60)

SPEC 
(T=65) 

SPEC 
(T=70) 

SPEC 
(T=75) 

SPEC 
(T=80) AVERAGE

104 1 2 3 5 4 9 11 8 10 6 12 15 17 14 22 13 31 

103 1 2 3 5 4 9 10 8 11 6 12 15 17 14 22 13 32 

102 1 2 3 5 4 9 10 7 11 6 12 15 17 14 21 13 32 

101 1 2 3 5 4 9 10 7 11 6 12 15 17 14 21 13 32 

100 1 2 3 5 4 9 10 7 11 6 12 14 17 15 21 13 32 

95 1 2 3 5 4 9 10 6 11 7 12 14 17 15 21 13 35 

90 1 2 3 5 4 9 10 7 11 8 12 14 17 16 21 13 36 

85 1 2 3 4 5 9 10 7 11 8 12 15 18 16 21 13 37 

80 1 2 3 4 5 9 10 7 11 8 12 15 18 16 22 14 40 

75 1 2 3 4 5 8 10 7 11 9 13 15 18 16 23 14 41 

70 1 2 3 5 4 8 10 7 11 9 13 14 17 16 22 15 41 

65 1 2 3 5 4 8 9 7 11 10 13 14 18 16 23 15 42 

60 1 2 3 5 4 8 9 7 11 10 13 14 17 16 23 15 43 

55 1 2 3 5 4 8 9 7 11 10 13 14 15 16 24 17 43 

50 1 2 3 5 4 7 9 8 12 10 14 13 15 17 24 18 43 

45 1 2 3 5 4 8 9 7 11 10 13 14 15 17 24 18 42 

40 1 2 3 5 4 8 9 7 11 10 12 13 15 16 21 17 39 

35 1 2 3 5 4 8 9 7 11 10 12 13 15 17 22 19  

30 1 2 4 5 3 9 8 7 11 10 13 12 14 17 21 19  

25 1 2 4 5 3 9 7 8 10 11 13 12 15 18 22 19  

20 1 2 3 5 4 10 7 8 9 11 13 12 17 19  20  

15 1 2 3 5 4 9 7 8 10 12 13 11      

14 1 2 3 5 4 10 7 8 9 12 13 11      

13 1 2 3 5 4 10 7 9 8 12 13 11      

12 1 2 3 5 4 11 7 9 10 12  8      

11 1 2 3 5 4 11 7 9 10   8      

10 1 2 3 5 4  7 9 10   8      

9 1 2 3 5 4  8 7    9      

8 1 2 3 5 4  8 7          

7 1 2 3 5 4   7          

6 1 2 3 5 4             

5 1 2 3 5 4             

4 1 2 3  4             

3 1 2 3               

2 1 2                
 

7.3.1 Ranking of Methods Dropping Out the Least Profitable Agent 

 
 An interesting question to investigate is whether the performance of the 

SPEC algorithm is unaffected by the models that are included in the simulation. This 
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is examined in the sequel by repeatedly running the simulation, each time having 

dropped out the trader using the least profitable method and calculating the 

cumulative profits of the remaining participating agents. If the performance of the 

algorithm is not affected by the models considered, the profits of participants who 

trade options using the SPEC algorithm should occupy the top places of the ranking. 

The resulting ranks of the SPEC algorithm based methods and the AVERAGE 

method are summarized in Table 7.2. The first column shows the number of 

participants in each group and the rows present the ranking of the SPEC model 

selection methods and the AVERAGE method within each group. As there are 104 

traders, 103 groups are created. Although there are some slight changes in the rank, 

the traders based on the SPEC model selection algorithm keep the first places in the 

ranking. The SPEC(5) model selection algorithm achieves the highest returns in all 

the cases, thus indicating that the forecasting ability is not sensitive to the models 

that are used. On the other hand, the AVERAGE method deteriorates as the group 

becomes smaller. An expected feature as the sample becomes smaller by dropping 

out the least accurate forecasts. 

 

7.3.2 Exercise Price and Relative Profits 

 
Following Engle et al.’s (1993) approach, the sensitivity of agents’ profits to 

exercise price is examined. Table 7.3 shows the ranking and cumulative profits of the 

competitors trading one-day straddles with exercise prices equal to trfe5  and trfe 3− . 

The call and put option prices are calculated as: 

( ) ( ) ( )2 2
11| 1|

1|
1| 1|

2 1 2 1
2 2

tK rft t t t t t
t t

t t t t

K rf K rf
C N e N

σ σ
σ σ

−+ +
+

+ +

⎛ ⎞ ⎛ ⎞− + − −
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⎝ ⎠ ⎝ ⎠
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and 
( )1

1| 1| 1tK rf
t t t tP C e −
+ += + − , 

(7.3.6)

for 5,K =  − 3 . The rank of the traders does not change significantly. So, the 

cumulative profits in the simulated market are not sensitive to the exercise price that 

is used. 

 

7 . 4 .  C o m p a r i n g  M e t h o d s  o f  M o d e l  S e l e c t i o n  o n  S i m u l a t e d  

O p t i o n s  

 

The selection of the appropriate model is one of the most challenging areas in 

statistical modeling. Usually, a researcher has to choose among a set of candidate 
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models. Methods of model selection examine the ability of the models either to 

describe or to forecast the variable under investigation.  

 

Table 7.3 

The rank and annualized daily profits of the competitors trading one-day straddles with different exercise prices. 
trfe5

 trfe 3−
 trfe5

 trfe 3−
 trfe5

 trfe 3−
 Forecasts 

Profit Rank Profit Rank 
Forecasts 

Profit Rank Profit Rank
Forecasts 

Profit Rank Profit Rank

SPEC(T=5) 22.46% 1 22.52% 1 AR(1)GARCH(1,2) -2.48% 64 -2.47% 64 AR(1)TARCH(2,1) 5.95% 48 5.94% 48 

SPEC(T=10) 20.29% 2 20.34% 2 AR(2)GARCH(1,2) -4.45% 71 -4.44% 71 AR(2)TARCH(2,1) 6.12% 47 6.12% 47 

SPEC(T=15) 17.84% 3 17.89% 3 AR(3)GARCH(1,2) -4.03% 70 -4.02% 70 AR(3)TARCH(2,1) 5.92% 49 5.91% 49 

SPEC(T=20) 16.42% 5 16.46% 5 AR(4)GARCH(1,2) -4.77% 72 -4.77% 72 AR(4)TARCH(2,1) 4.63% 52 4.63% 52 

SPEC(T=25) 16.50% 4 16.53% 4 AR(0)GARCH(2,1) -0.23% 53 -0.22% 53 AR(0)TARCH(2,2) 12.69% 16 12.70% 16 

SPEC(T=30) 13.81% 10 13.84% 9 AR(1)GARCH(2,1) -1.46% 57 -1.45% 57 AR(1)TARCH(2,2) 11.03% 24 11.03% 24 

SPEC(T=35) 13.79% 11 13.82% 11 AR(2)GARCH(2,1) -1.76% 60 -1.76% 60 AR(2)TARCH(2,2) 10.79% 26 10.79% 26 

SPEC(T=40) 14.21% 8 14.24% 8 AR(3)GARCH(2,1) -1.78% 61 -1.77% 61 AR(3)TARCH(2,2) 10.14% 29 10.14% 29 

SPEC(T=45) 13.81% 9 13.83% 10 AR(4)GARCH(2,1) -2.44% 63 -2.44% 63 AR(4)TARCH(2,2) 9.50% 31 9.50% 31 

SPEC(T=50) 14.40% 6 14.41% 6 AR(0)GARCH(2,2) -0.36% 54 -0.35% 54 AR(0)EGARCH(0,1) -17.14% 89 -17.17% 89 

SPEC(T=55) 13.41% 12 13.43% 12 AR(1)GARCH(2,2) -1.67% 59 -1.66% 59 AR(1)EGARCH(0,1) -17.99% 90 -18.01% 90 

SPEC(T=60) 12.83% 15 12.85% 15 AR(2)GARCH(2,2) -2.33% 62 -2.32% 62 AR(2)EGARCH(0,1) -18.15% 91 -18.17% 91 

SPEC(T=65) 12.55% 17 12.56% 17 AR(3)GARCH(2,2) -1.58% 58 -1.57% 58 AR(3)EGARCH(0,1) -18.44% 92 -18.47% 92 

SPEC(T=70) 12.89% 14 12.90% 14 AR(4)GARCH(2,2) -3.33% 67 -3.33% 67 AR(4)EGARCH(0,1) -18.52% 93 -18.55% 93 

SPEC(T=75) 11.88% 22 11.89% 22 AR(0)TARCH(0,1) -21.45% 98 -21.47% 98 AR(0)EGARCH(0,2) -7.03% 73 -7.06% 73 

SPEC(T=80) 13.34% 13 13.35% 13 AR(1)TARCH(0,1) -22.06% 100 -22.08% 100 AR(1)EGARCH(0,2) -7.48% 74 -7.50% 74 

MINIMUM -38.14% 104 -38.24% 104 AR(2)TARCH(0,1) -22.13% 101 -22.15% 101 AR(2)EGARCH(0,2) -7.78% 75 -7.81% 75 

MAXIMUM -10.43% 78 -10.30% 78 AR(3)TARCH(0,1) -22.38% 102 -22.40% 102 AR(3)EGARCH(0,2) -8.20% 76 -8.22% 76 

AVERAGE 9.46% 32 9.46% 32 AR(4)TARCH(0,1) -22.39% 103 -22.42% 103 AR(4)EGARCH(0,2) -8.47% 77 -8.50% 77 

AR(0)GARCH(0,1) -20.47% 94 -20.49% 94 AR(0)TARCH(0,2) -11.33% 79 -11.35% 79 AR(0)EGARCH(1,1) 11.15% 23 11.16% 23 

AR(1)GARCH(0,1) -20.70% 95 -20.72% 95 AR(1)TARCH(0,2) -12.38% 82 -12.41% 82 AR(1)EGARCH(1,1) 10.07% 30 10.07% 30 

AR(2)GARCH(0,1) -21.05% 96 -21.07% 96 AR(2)TARCH(0,2) -11.92% 80 -11.95% 80 AR(2)EGARCH(1,1) 10.52% 27 10.52% 27 

AR(3)GARCH(0,1) -21.26% 97 -21.29% 97 AR(3)TARCH(0,2) -12.26% 81 -12.28% 81 AR(3)EGARCH(1,1) 9.12% 33 9.12% 33 

AR(4)GARCH(0,1) -21.82% 99 -21.85% 99 AR(4)TARCH(0,2) -12.68% 83 -12.70% 83 AR(4)EGARCH(1,1) 8.34% 38 8.34% 38 

AR(0)GARCH(0,2) -12.95% 84 -12.97% 84 AR(0)TARCH(1,1) 7.68% 40 7.68% 40 AR(0)EGARCH(1,2) 14.32% 7 14.33% 7 

AR(1)GARCH(0,2) -13.43% 85 -13.45% 85 AR(1)TARCH(1,1) 6.39% 46 6.39% 46 AR(1)EGARCH(1,2) 12.38% 18 12.39% 18 

AR(2)GARCH(0,2) -13.51% 86 -13.54% 86 AR(2)TARCH(1,1) 6.70% 45 6.70% 45 AR(2)EGARCH(1,2) 12.32% 19 12.33% 19 

AR(3)GARCH(0,2) -13.91% 87 -13.94% 87 AR(3)TARCH(1,1) 5.56% 50 5.56% 50 AR(3)EGARCH(1,2) 12.03% 20 12.04% 20 

AR(4)GARCH(0,2) -13.96% 88 -13.98% 88 AR(4)TARCH(1,1) 5.39% 51 5.38% 51 AR(4)EGARCH(1,2) 11.94% 21 11.95% 21 

AR(0)GARCH(1,1) -1.32% 56 -1.31% 56 AR(0)TARCH(1,2) 10.80% 25 10.81% 25 AR(0)EGARCH(2,1) 8.51% 37 8.52% 37 

AR(1)GARCH(1,1) -3.03% 65 -3.02% 65 AR(1)TARCH(1,2) 8.92% 35 8.93% 35 AR(1)EGARCH(2,1) 7.51% 41 7.50% 41 

AR(2)GARCH(1,1) -3.44% 68 -3.43% 68 AR(2)TARCH(1,2) 10.37% 28 10.37% 28 AR(2)EGARCH(2,1) 8.64% 36 8.64% 36 

AR(3)GARCH(1,1) -3.10% 66 -3.09% 66 AR(3)TARCH(1,2) 8.99% 34 8.98% 34 AR(3)EGARCH(2,1) 7.42% 42 7.42% 42 

AR(4)GARCH(1,1) -3.44% 69 -3.44% 69 AR(4)TARCH(1,2) 8.17% 39 8.17% 39 AR(4)EGARCH(2,1) 6.81% 44 6.81% 44 

AR(0)GARCH(1,2) -0.40% 55 -0.40% 55 AR(0)TARCH(2,1) 7.12% 43 7.12% 43           
 

The Akaike information criterion (Akaike (1973)) and the Schwarz Bayesian criterion 

(Schwarz (1978)) are model selection methods that are based on the maximized 

value of the log-likelihood function and evaluate the ability of the models to describe 

the data. In the case we are interesting in using a model for forecasting, the 
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evaluation of the models would naturally be based on their ability to produce valuable 

forecasts. Loss functions, which measure either the distance between actual and 

predicted values or the benefit from the use of these forecasts, are used to evaluate 

the forecasting ability of the models. Poon and Granger (2003) reviewed a detailed 

record of volatility forecasting loss functions and relative references. 

In the sequel, the SPEC model selection algorithm is compared with other 

criteria of selection that measure the ability of the models to forecast volatility again 

on the basis of the profits of the participants in a simulated options market. Denoting 

the realized at time 1+t  by 2
1+ts , the following loss functions were considered: 

 1. Mean Square Error of Variance (MSEV): 
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 2. Mean Absolute Error of Variance (MAEV): 
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 3. Mean Square Error of Deviation (MSED): 
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 4. Mean Absolute Error of Deviation (MAED): 
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 5. Heteroscedasticity Adjusted Mean Squared Error of Variance (HAMSEV): 
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 6. Heteroscedasticity Adjusted Mean Absolute Error of Variance (HAMAEV): 
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 7. Heteroscedasticity Adjusted Mean Squared Error of Deviation (HAMSED): 
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 8. Heteroscedasticity Adjusted Mean Absolute Error of Deviation (HAMAED): 
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 9. Mean Logarithmic Error of Variance (MLEV): 



Chapter 7 

147 

( )∑
=

++
−

T

t
tttsT

1

22
|1

2
1

1 ˆln σ . (7.4.9)

 10. Gaussian Maximum Likelihood Error of Variance (GMLEV): 
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 11. Gaussian Maximum Likelihood Error of Deviation (GMLED): 
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where T  is the number of the one-step-ahead volatility forecasts. The first four loss 

functions have been widely used in applied studies. The heteroscedasticity adjusted 

functions were introduced by Andersen et al. (1999) and Bollerslev and Ghysels 

(1996), while mean logarithmic error function was utilized by Pagan and Schwert 

(1990). The GMLE function, which was presented in Bollerslev et al. (1994), 

measures the forecast error according to the likelihood function that is used in 

estimating the models. 

As the actual volatility is unobservable, the common way to determine the 

daily realized volatility is the squared daily returns, which is an unbiased but noisy 

volatility estimator. Andersen and Bollerslev (1998a) introduced the use of the sum 

squared finely sampled high frequency data as an alternative volatility measure. For 

a detailed description of the realized intra-day volatility, the interested reader is 

referred to section 2.6.1 in chapter 2 and references therein. Based on Andersen et 

al. (1999), Andersen et al. (2001b) and Kayahan et al. (2002), we compute the 

realized intra-day volatility of day t  as: 
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j
tmjtmjt PPs , (7.4.12) 

where ( ) tmP ,  denotes five-minute linearly interpolated prices of S&P500 at day t  with 

m  observations per day. The intra-day quotation data are available from April 28th 

1997 to October 18th 2002 and were provided by Olsen and Associates. 

Each loss function is computed for ( )801010  =T . In order to compare the 

SPEC algorithm with the 11 loss functions, a simulated options market is created. 

Each agent selects the ARCH model with the lowest value of its the loss function in 

order to forecast next day’s variance. The simulated market is consisting of 99 

traders: the 12 model selection algorithms for 8 different sample sizes (including the 

SPEC algorithm), the average, the minimum and the maximum of all daily forecasts 

methods. The comparison is carried out on the basis of the annualized daily profits of 
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the participants.  

  

Table 7.4 

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices. 

Rank 
Model Selection 

Algorithm 
Profit T-Ratio Rank 

Model Selection 

Algorithm 
Profit T-Ratio Rank 

Model Selection 

Algorithm 
Profit T-Ratio 

1 SPEC(T=10) 16.42% 3.51 34 MAEV(T=10) -7.72% -1.82 67 GMLEV(T=60) -10.97% -2.88 
2 SPEC(T=20) 13.73% 3.09 35 HAMSED(T=20) -7.79% -1.96 68 GMLEV(T=30) -11.02% -2.95 
3 SPEC(T=50) 13.59% 3.17 36 MSEV(T=70) -8.06% -2.17 69 MAED(T=80) -11.07% -2.90 
4 AVERAGE 13.30% 4.67 37 MSEV(T=60) -8.08% -2.19 70 GMLEV(T=50) -11.08% -2.91 
5 SPEC(T=30) 11.87% 2.74 38 GMLEV(T=20) -8.35% -2.06 71 HAMAED(T=40) -11.20% -2.93 
6 SPEC(T=40) 11.64% 2.68 39 HAMAED(T=20) -8.38% -2.10 72 GMLEV(T=70) -11.25% -2.96 
7 SPEC(T=60) 11.50% 2.65 40 MSEV(T=50) -8.46% -2.19 73 MSED(T=80) -11.57% -3.09 
8 SPEC(T=70) 10.63% 2.48 41 MSEV(T=80) -8.58% -2.35 74 GMLED(T=70) -11.75% -3.02 
9 SPEC(T=80) 8.62% 2.03 42 GMLED(T=50) -8.60% -2.34 75 MLEV(T=70) -11.80% -3.04 

10 HAMSEV(T=10) 0.87% 0.21 43 HAMAEV(T=40) -8.70% -2.40 76 HAMAED(T=80) -11.83% -3.05 
11 HAMAEV(T=10) 0.53% 0.13 44 HAMSED(T=40) -8.94% -2.41 77 GMLED(T=60) -12.11% -3.13 
12 HAMSEV(T=20) 0.38% 0.09 45 HAMSED(T=60) -9.30% -2.54 78 MSED(T=60) -12.42% -3.27 
13 HAMSEV(T=30) 0.04% 0.01 46 GMLED(T=20) -9.61% -2.41 79 HAMAED(T=50) -12.44% -3.29 
14 HAMSED(T=10) -0.29% -0.07 47 MSED(T=70) -9.90% -2.58 80 MSED(T=30) -12.45% -3.12 
15 HAMSEV(T=60) -0.96% -0.26 48 MSEV(T=20) -9.92% -2.40 81 MAEV(T=50) -12.46% -3.21 
16 HAMSEV(T=80) -1.05% -0.28 49 HAMAEV(T=70) -9.95% -2.70 82 MLEV(T=30) -12.65% -3.22 
17 MAX -1.18% -0.21 50 HAMAEV(T=50) -10.04% -2.81 83 MAED(T=50) -12.68% -3.24 
18 HAMSEV(T=70) -1.22% -0.34 51 GMLED(T=30) -10.11% -2.66 84 HAMAED(T=70) -12.87% -3.23 
19 GMLEV(T=10) -1.66% -0.40 52 HAMAEV(T=60) -10.14% -2.79 85 MAED(T=70) -13.39% -3.44 
20 GMLED(T=10) -1.93% -0.47 53 MLEV(T=60) -10.26% -2.70 86 MSEV(T=30) -13.44% -3.34 
21 HAMSEV(T=50) -2.95% -0.78 54 MLEV(T=20) -10.32% -2.58 87 MAEV(T=60) -13.46% -3.45 
22 MLEV(T=10) -3.20% -0.77 55 HAMSED(T=30) -10.38% -2.72 88 HAMAED(T=60) -13.70% -3.44 
23 HAMSEV(T=40) -3.33% -0.87 56 GMLEV(T=80) -10.46% -2.79 89 MAEV(T=20) -13.74% -3.30 
24 HAMAED(T=10) -3.81% -0.94 57 MLEV(T=50) -10.46% -2.79 90 MAED(T=20) -14.23% -3.46 
25 MSED(T=10) -4.01% -0.95 58 GMLED(T=40) -10.51% -2.76 91 MAEV(T=70) -14.25% -3.60 
26 MSEV(T=10) -4.28% -1.01 59 HAMAEV(T=30) -10.54% -2.83 92 MAED(T=40) -14.28% -3.62 
27 MAED(T=10) -5.19% -1.23 60 MLEV(T=40) -10.55% -2.82 93 MAEV(T=30) -14.30% -3.55 
28 GMLEV(T=40) -5.84% -1.57 61 GMLED(T=80) -10.61% -2.76 94 MAEV(T=80) -14.33% -3.71 
29 HAMAEV(T=80) -6.44% -1.77 62 MSED(T=20) -10.67% -2.64 95 MAED(T=30) -14.53% -3.60 
30 HAMSED(T=80) -6.66% -1.80 63 MLEV(T=80) -10.72% -2.86 96 MAED(T=60) -14.60% -3.82 
31 HAMSED(T=70) -7.18% -1.91 64 MSED(T=40) -10.73% -2.79 97 MAEV(T=40) -16.09% -4.06 
32 HAMAEV(T=20) -7.52% -1.89 65 MSED(T=50) -10.78% -2.89 98 HAMAED(T=30) -16.14% -4.06 
33 MSEV(T=40) -7.71% -1.97 66 HAMSED(T=50) -10.82% -2.86 99 MIN -33.42% -6.12 

 

The resulting ranking of the criteria is summarized in Table 7.4. For each 

model selection criterion, the highest annualized daily profits are given along with the 

values of the corresponding t-ratios defined as in Table 7.1 and the sample sizes 

(values of T) at which the maximum returns are attained (in parentheses).  

The results in the table indicate that traders who are based on the SPEC algorithm 

achieve the highest returns, despite the use of the realized intra-day volatility by the 

loss functions. Moreover, the SPEC method appears more suitable in predicting 

volatility for pricing contingent claims, as it is the only model selection method that 
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produces returns higher that the AVERAGE algorithm does. An interesting point is 

that, with the exception of HAMSEV, all the algorithms achieve their highest returns 

for 10=T . 

 

Table 7.5 

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask 

prices, using rolling samples of 500 observations. 

Rank Algorithm Profit T-Ratio Rank Algorithm Profit T-Ratio Rank Algorithm Profit T-Ratio

1 SPEC(T=5) 21.79% 5.4 36 AR(3)TARCH(2,1) 5.74% 1.6 71 AR(0)GARCH(0,2) -8.80% -2.5 

2 SPEC(T=30) 19.92% 6.3 37 AR(2)EGARCH(1,2) 5.72% 1.8 72 AR(4)TARCH(0,2) -8.97% -2.5 

3 SPEC(T=10) 19.59% 5.3 38 AR(2)EGARCH(2,1) 5.60% 2.0 73 AR(1)EGARCH(0,2) -9.02% -2.9 

4 SPEC(T=25) 19.03% 6.0 39 AR(1)EGARCH(1,2) 4.48% 1.4 74 AR(2)TARCH(0,2) -9.04% -2.5 

5 SPEC(T=35) 18.55% 6.4 40 AR(0)TARCH(2,1) 4.46% 1.2 75 AR(1)TARCH(0,2) -9.06% -2.5 

6 SPEC(T=20) 18.41% 5.5 41 AR(3)TARCH(0,1) 4.06% 1.2 76 AR(3)GARCH(2,1) -9.14% -2.8 

7 SPEC(T=15) 18.22% 5.3 42 AR(2)TARCH(0,1) 4.01% 1.3 77 AR(2)GARCH(2,1) -9.22% -3.0 

8 AR(4)TARCH(1,2) 15.87% 6.1 43 AR(3)EGARCH(1,2) 3.85% 1.2 78 AR(4)GARCH(1,1) -9.26% -2.9 

9 SPEC(T=45) 15.73% 5.7 44 AR(4)EGARCH(1,2) 3.73% 1.1 79 AR(1)GARCH(1,1) -9.26% -3.1 

10 AR(0)TARCH(1,2) 15.06% 5.9 45 AR(4)TARCH(0,1) 3.25% 1.0 80 AR(3)TARCH(0,2) -9.29% -2.5 

11 AR(2)TARCH(1,2) 14.94% 5.8 46 AR(2)EGARCH(1,1) 2.61% 0.9 81 AR(4)EGARCH(0,2) -9.32% -2.8 

12 AR(1)TARCH(1,2) 14.85% 5.7 47 AR(3)EGARCH(2,1) 2.30% 0.8 82 AR(3)EGARCH(0,2) -9.37% -2.9 

13 AR(3)TARCH(1,2) 14.81% 5.8 48 AR(4)EGARCH(2,1) 1.76% 0.6 83 AR(2)EGARCH(0,2) -9.38% -3.0 

14 SPEC(T=40) 14.47% 5.2 49 AR(1)EGARCH(2,1) 1.72% 0.6 84 AR(1)GARCH(2,1) -9.60% -3.0 

15 SPEC(T=60) 13.99% 5.0 50 AR(1)EGARCH(1,1) 1.60% 0.5 85 AR(4)GARCH(1,2) -9.97% -3.0 

16 AVERAGE 13.65% 12.3 51 AR(4)EGARCH(1,1) 1.25% 0.4 86 AR(3)GARCH(1,2) -10.35% -3.1 

17 SPEC(T=80) 13.60% 4.5 52 AR(3)EGARCH(1,1) 1.07% 0.4 87 AR(1)GARCH(1,2) -10.52% -3.3 

18 SPEC(T=50) 13.59% 5.0 53 AR(4)TARCH(1,1) -1.56% -0.4 88 AR(1)GARCH(0,2) -11.07% -3.2 

19 SPEC(T=55) 13.22% 4.7 54 AR(3)TARCH(1,1) -1.68% -0.4 89 AR(2)GARCH(1,2) -11.19% -3.5 

20 SPEC(T=70) 13.15% 4.7 55 AR(1)TARCH(1,1) -1.79% -0.4 90 AR(0)GARCH(0,1) -11.39% -3.2 

21 SPEC(T=65) 13.13% 4.7 56 AR(0)TARCH(1,1) -1.81% -0.4 91 AR(2)GARCH(0,2) -11.51% -3.3 

22 AR(1)TARCH(2,2) 12.82% 4.7 57 AR(2)TARCH(1,1) -2.41% -0.6 92 AR(1)GARCH(0,1) -11.62% -3.1 

23 SPEC(T=75) 12.62% 4.3 58 AR(0)GARCH(1,1) -2.87% -1.2 93 AR(2)GARCH(0,1) -12.20% -3.3 

24 AR(2)TARCH(2,2) 10.19% 3.8 59 AR(0)GARCH(2,2) -3.58% -1.2 94 AR(3)GARCH(0,2) -12.37% -3.5 

25 AR(3)TARCH(2,2) 9.69% 3.6 60 AR(0)GARCH(2,1) -3.83% -1.5 95 AR(3)GARCH(0,1) -12.56% -3.3 

26 AR(0)TARCH(2,2) 9.43% 3.2 61 AR(0)GARCH(1,2) -4.12% -1.4 96 AR(4)GARCH(0,2) -12.68% -3.4 

27 AR(4)TARCH(2,2) 9.35% 3.4 62 AR(0)EGARCH(0,2) -6.81% -2.1 97 AR(4)GARCH(0,1) -12.92% -3.4 

28 AR(2)TARCH(2,1) 8.56% 2.4 63 AR(1)GARCH(2,2) -7.36% -2.3 98 AR(1)EGARCH(0,1) -16.17% -4.4 

29 AR(0)TARCH(0,1) 8.35% 2.9 64 AR(3)GARCH(1,1) -7.62% -2.5 99 AR(2)EGARCH(0,1) -16.94% -4.5 

30 AR(1)TARCH(2,1) 7.84% 2.3 65 AR(4)GARCH(2,2) -7.69% -2.3 100 AR(0)EGARCH(0,1) -17.14% -4.6 

31 AR(4)TARCH(2,1) 7.03% 1.9 66 AR(0)TARCH(0,2) -7.70% -2.2 101 AR(3)EGARCH(0,1) -17.52% -4.7 

32 AR(0)EGARCH(1,2) 6.87% 2.3 67 AR(4)GARCH(2,1) -7.81% -2.4 102 AR(4)EGARCH(0,1) -17.92% -4.7 

33 AR(0)EGARCH(2,1) 6.42% 2.4 68 AR(2)GARCH(2,2) -7.88% -2.4 103 MAXIMUM -18.60% -3.3 

34 AR(0)EGARCH(1,1) 6.07% 2.2 69 AR(3)GARCH(2,2) -8.13% -2.4 104 MINIMUM -33.35% -5.9 

35 AR(1)TARCH(0,1) 5.82% 1.8 70 AR(2)GARCH(1,1) -8.16% -2.7     
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7 . 5  I n v e s t i g a t e  t h e  p e r f o r m a n c e  o f  t h e  S P E C  a l g o r i t h m  

u s i n g  l a r g e r  s a m p l e  s i z e s  f o r  t h e  e s t i m a t i o n  o f  t h e  A R C H  

m o d e l s  

 
As has been noted in the literature, although the use of the entire set of 

available data is common practice in forecasting volatility, at least for some cases, a 

restricted sample size could generate more accurate one-step-ahead forecasts, since 

it incorporates changes in trading behaviour more efficiently. For example, Hoppe 

(1998) examined the issue of the sample size, in the context of value-at-risk, and 

argued that a smaller sample could lead to more accurate estimates than a larger 

one. Frey and Michaud (1997) supported the use of small sample sizes in order to 

capture the structural changes over time due to changes in trading behaviour. 

Angelidis, Benos and Degiannakis (2004) noted similar findings.  

In order to investigate whether the use of a rolling sample size of 1000 

observations induces a bias on the results of the simulation, we re-run the simulation 

study with larger datasets. We used rolling samples of 500 and 2000 observations 

and we found out that the results in the previous sections are not appreciably 

different when using sample sizes of 500, 1000 or 2000 observations. 

Tables 7.5 and 7.6 present the profits per competitor per straddle and the 

corresponding t-ratios when we use rolling samples of 500 and 2000 observations, 

respectively. There is no qualitative difference among the used sample sizes. The 

SPEC algorithm performs best for low values of T, (T=5, 10), in the new simulation 

studies, which is in complete agreement with the originally obtained results on the 

basis of a 1000-observation rolling sample. The MINIMUM forecast takes the last 

positions and the MAXIMUM forecast achieves negative and statistically significant 

returns, an indication that neither a downward nor an upward forecast bias, that could 

affect profits significantly, is present. 

As there is no qualitative difference between the use of sample sizes of 500 

and 2000 observations, we present the results based on the sample size of 500. 

Dropping out the trader with the least profitable method at a time, the cumulative 

profits of the participants in the simulated market are calculated. The SPEC(5) model 

selection algorithm achieves the highest returns in all the cases, thus indicating that 

the forecasting ability is not sensitive to the models that are used. As concerns the 

sample size of 500 observations, Table 7.7 presents the transitivity of the profitability 

of competitors, who employ the SPEC model selection algorithm and the AVERAGE 

method. Table 7.8 shows the ranking and cumulative profits of the competitors 

trading straddles with exercise prices equal to trfe5 , trfe  and trfe 3− . The rank of the 
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traders does not change significantly. So, the cumulative profits in the simulated 

market are not sensitive to the exercise price is used. The results of Table 7.7 and 

7.8 are almost identical to those presented in the previous section for a sample size 

of 1000 observations. 

Table 7.6 

The annualised daily profits per competitor per straddle for trades that are at the average of the bid/ask prices, using 

rolling samples of 2000 observations. 
Rank Algorithm Profit T-Ratio Rank Algorithm Profit T-Ratio Rank Algorithm Profit T-Ratio 

1 SPEC(T=5) 19.08% 5.63 36 AR(4)EGARCH(2,1) 9.82% 5.27 71 AR(1)GARCH(2,1) -5.20% -2.16 
2 SPEC(T=10) 17.29% 5.69 37 AR(0)EGARCH(2,1) 9.82% 5.12 72 AR(3)GARCH(2,1) -5.22% -2.18 
3 SPEC(T=40) 16.52% 7.09 38 AR(3)EGARCH(2,1) 9.51% 5.14 73 MAXIMUM -9.42% -2.04 
4 SPEC(T=55) 16.24% 7.10 39 AR(3)TARCH(2,2) 9.42% 4.25 74 AR(0)EGARCH(0,2) -10.19% -2.82 
5 SPEC(T=50) 15.89% 7.04 40 AVERAGE 9.37% 8.13 75 AR(4)EGARCH(0,2) -10.25% -2.83 
6 SPEC(T=25) 15.43% 6.26 41 AR(2)EGARCH(2,1) 8.98% 4.56 76 AR(3)EGARCH(0,2) -10.29% -2.86 
7 SPEC(T=65) 15.41% 6.88 42 AR(0)TARCH(1,1) 8.93% 4.07 77 AR(2)EGARCH(0,2) -10.58% -2.95 
8 SPEC(T=45) 15.38% 6.65 43 AR(0)TARCH(2,1) 8.88% 4.20 78 AR(1)EGARCH(0,2) -10.63% -2.95 
9 SPEC(T=35) 15.26% 6.63 44 AR(1)EGARCH(2,1) 8.73% 4.30 79 AR(0)TARCH(0,2) -11.50% -3.70 

10 SPEC(T=15) 15.19% 5.47 45 AR(1)TARCH(2,1) 7.60% 3.56 80 AR(0)GARCH(0,2) -12.52% -4.03 
11 SPEC(T=20) 14.85% 5.73 46 AR(2)TARCH(1,1) 7.16% 3.30 81 AR(1)TARCH(0,2) -13.32% -4.30 
12 SPEC(T=60) 14.82% 6.44 47 AR(1)TARCH(1,1) 7.02% 3.22 82 AR(4)TARCH(0,2) -13.58% -4.28 
13 SPEC(T=70) 14.61% 6.37 48 AR(2)TARCH(2,1) 6.66% 3.19 83 AR(2)TARCH(0,2) -13.60% -4.35 
14 SPEC(T=30) 14.51% 6.26 49 AR(4)TARCH(1,1) 6.53% 3.25 84 AR(3)TARCH(0,2) -13.65% -4.35 
15 AR(0)EGARCH(1,2) 14.22% 5.43 50 AR(4)TARCH(2,1) 6.50% 3.16 85 AR(1)GARCH(0,2) -14.02% -4.49 
16 AR(1)EGARCH(1,1) 13.57% 7.18 51 AR(3)TARCH(1,1) 5.60% 2.66 86 AR(4)GARCH(0,2) -14.29% -4.50 
17 AR(2)EGARCH(1,1) 13.26% 7.09 52 AR(3)TARCH(2,1) 4.64% 2.25 87 AR(2)GARCH(0,2) -14.50% -4.60 
18 AR(0)TARCH(1,2) 12.92% 5.02 53 AR(0)GARCH(1,2) -0.12% -0.05 88 AR(3)GARCH(0,2) -14.50% -4.58 
19 AR(1)EGARCH(1,2) 12.85% 5.05 54 AR(0)GARCH(2,2) -0.29% -0.12 89 AR(0)EGARCH(0,1) -16.91% -5.10 
20 AR(4)EGARCH(1,1) 12.74% 6.85 55 AR(1)GARCH(2,2) -1.64% -0.66 90 AR(1)EGARCH(0,1) -17.02% -5.08 
21 AR(0)EGARCH(1,1) 12.67% 6.68 56 AR(1)GARCH(1,2) -1.74% -0.73 91 AR(2)EGARCH(0,1) -17.42% -5.20 
22 AR(2)EGARCH(1,2) 12.50% 5.00 57 AR(4)GARCH(2,2) -1.82% -0.74 92 AR(3)EGARCH(0,1) -17.50% -5.20 
23 AR(0)TARCH(2,2) 12.31% 5.47 58 AR(3)GARCH(2,2) -2.96% -1.17 93 AR(4)EGARCH(0,1) -17.87% -5.26 
24 AR(4)EGARCH(1,2) 12.21% 4.81 59 AR(3)GARCH(1,2) -3.11% -1.23 94 AR(3)GARCH(0,1) -20.29% -6.19 
25 AR(3)EGARCH(1,1) 12.16% 6.75 60 AR(0)GARCH(1,1) -3.12% -1.27 95 AR(2)GARCH(0,1) -20.59% -6.30 
26 AR(1)TARCH(2,2) 12.01% 5.18 61 AR(2)GARCH(1,2) -3.36% -1.35 96 AR(0)GARCH(0,1) -20.75% -6.43 
27 AR(2)TARCH(1,2) 12.00% 4.79 62 AR(2)GARCH(2,2) -3.41% -1.36 97 AR(1)GARCH(0,1) -20.87% -6.33 
28 SPEC(T=75) 12.00% 5.49 63 AR(4)GARCH(1,2) -3.70% -1.47 98 AR(0)TARCH(0,1) -21.15% -6.22 
29 AR(3)EGARCH(1,2) 11.15% 4.49 64 AR(3)GARCH(1,1) -3.74% -1.46 99 AR(4)GARCH(0,1) -21.17% -6.36 
30 AR(1)TARCH(1,2) 10.99% 4.24 65 AR(0)GARCH(2,1) -4.00% -1.67 100 AR(1)TARCH(0,1) -21.34% -6.26 
31 AR(3)TARCH(1,2) 10.49% 4.16 66 AR(1)GARCH(1,1) -4.15% -1.68 101 AR(2)TARCH(0,1) -21.59% -6.36 
32 AR(2)TARCH(2,2) 10.22% 4.56 67 AR(4)GARCH(1,1) -4.23% -1.66 102 AR(3)TARCH(0,1) -21.78% -6.37 
33 SPEC(T=80) 10.21% 4.62 68 AR(4)GARCH(2,1) -4.34% -1.72 103 AR(4)TARCH(0,1) -22.14% -6.39 
34 AR(4)TARCH(1,2) 9.84% 3.84 69 AR(2)GARCH(2,1) -4.77% -1.98 104 MINIMUM -43.47% -9.24 
35 AR(4)TARCH(2,2) 9.84% 4.54 70 AR(2)GARCH(1,1) -5.08% -2.03     
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7 . 6 .  D i s c u s s i o n  

 

Adopting Engle et al.’s (1993) approach to comparing several variance 

forecast methods using an economic value criterion, the performance of the SPEC 

model selection algorithm was examined. Simulating an options market, in order to 

avoid problems related to observed actual option prices, 104 traders were assumed 

to trade one-day straddles on $1 shares of the S&P500 index, for the period from 

October 4th 1995 to October 18th, 2002 (1773 trading days). Traders were also 

assumed to use variance forecast methods of their choice. The variance forecast 

methods considered were: 85 selection “methods” (strategies), one for each of 85 

ARCH models, each amounting to the utilization of the forecasts of the same model 

at any point in time, the SPEC model selection algorithm for 16 different sample 

sizes, the average, the minimum and the maximum of all daily forecasts methods. 

Traders using SPEC algorithm based methods appear to achieve higher profits than 

traders using any of the 85 single ARCH model based methods considered in the 

simulation. Moreover, traders, who apply the SPEC model selection algorithm for 

sample sizes ( ) 555 2 =T , appear to achieve the highest profits, a conclusion which is 

in agreement to chapter’s 6 findings in the case of real index-option prices. The 

ability of the SPEC model selection algorithm was also compared with loss functions 

that measure the ability of the models to forecast volatility. Even though, the other 

criteria (loss functions) used the realized intra-day volatility, the SPEC algorithm, for 

10=T , led to the highest profits. It appears, therefore, that the results support the 

conclusion that the increase in profits cannot be attributed to chance but to improved 

volatility prediction. Hence, the SPEC selection method offers a useful model 

selection tool in estimating future volatility, with applications in pricing derivatives. 
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Table 7.7 

Rank of the methods based on the SPEC model selection algorithm by dropping out the least profitable 

agent at a time, using rolling samples of 500 observations. 

 Algorithm 
Ranks in 
Groups 
by Size 

SPEC 
(T=5) 

SPEC 
(T=10) 

SPEC 
(T=15) 

SPEC 
(T=20)

SPEC 
(T=25) 

SPEC 
(T=30) 

SPEC 
(T=35)

SPEC 
(T=40)

SPEC 
(T=45)

SPEC 
(T=50)

SPEC 
(T=55)

SPEC 
(T=60)

SPEC 
(T=65) 

SPEC 
(T=70) 

SPEC 
(T=75) 

SPEC 
(T=80) AVERAGE

104 1 3 7 6 4 2 5 14 9 18 19 15 21 20 23 17 16 

103 1 3 7 6 4 2 5 14 9 17 19 15 21 20 23 18 16 

102 1 3 7 6 4 2 5 14 9 17 19 15 21 20 23 18 16 

101 1 3 7 6 4 2 5 14 9 16 19 15 21 20 23 18 17 

100 1 3 7 6 4 2 5 14 9 16 19 15 20 21 23 18 17 

95 1 3 6 7 4 2 5 14 8 16 19 15 20 21 23 17 18 

90 1 3 6 7 4 2 5 13 8 16 18 15 19 20 23 17 21 

85 1 2 6 7 4 3 5 13 8 16 19 15 18 20 23 17 22 

80 1 2 5 7 4 3 6 12 8 16 19 15 18 20 22 17 23 

75 1 2 5 7 4 3 6 10 8 16 19 15 18 20 22 17 23 

70 1 2 4 7 5 3 6 10 8 14 19 16 18 20 21 17 23 

65 1 2 4 7 5 3 6 10 8 12 20 13 18 19 21 17 23 

60 1 2 4 6 5 3 7 10 8 11 21 13 18 19 20 17 25 

55 1 2 4 6 5 3 7 10 8 11 21 12 16 19 20 15 27 

50 1 2 4 6 5 3 7 10 8 11 21 12 15 19 20 16 28 

45 1 2 4 6 5 3 7 10 8 11 21 12 14 18 20 15 29 

40 1 2 4 6 5 3 7 11 9 13 21 16 18 19 20 14 31 

35 1 2 4 6 5 3 7 11 8 13 20 15 16 19 21 14 31 

30 1 2 4 6 5 3 7 10 8 14 20 15 16 19 22 13  

25 1 2 4 6 5 3 7 9 8 14 20 16 15 19 21 13  

20 1 2 4 6 5 3 7 9 8 14 19 17 16 18  10  

15 1 2 5 6 4 3 7 11 8 13      15  

14 1 2 5 6 4 3 7 12 8 14        

13 1 2 5 6 4 3 7 12 8         

12 1 2 5 6 4 3 7 10 8         

11 1 2 5 6 4 3 7 10 8         

10 1 2 5 6 4 3 7 10 8         

9 1 2 5 6 4 3 7  8         

8 1 2 6 5 4 3 7  8         

7 1 2 6 5 4 3 7           

6 1 2 6 5 3 4            

5 1 2  5 4 3            

4 1 2   4 3            

3 1 2    3            

2 1 2                
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Table 7.8 

 The rank and annualized daily profits of the competitors trading one-day straddles with different exercise prices, 

using rolling samples of 500 observations. 

trfe5
 trfe 3−

 trfe5
 trfe 3−

 trfe5
 trfe 3−

 Forecasts 
Profit Rank Profit Rank 

Forecasts 
Profit Rank Profit Rank

Forecasts 
Profit Rank Profit Rank

SPEC(T=5) 21.60% 1 21.66% 1 AR(1)GARCH(1,2) -10.53% 87 -10.52% 87 AR(1)EGARCH(2,1) 1.78% 49 1.78% 49 

SPEC(T=10) 19.43% 3 19.48% 3 AR(2)GARCH(1,2) -11.24% 89 -11.23% 89 AR(2)EGARCH(2,1) 5.65% 38 5.65% 38 

SPEC(T=15) 18.09% 7 18.12% 7 AR(3)GARCH(1,2) -10.41% 86 -10.40% 86 AR(3)EGARCH(2,1) 2.34% 47 2.34% 47 

SPEC(T=20) 18.30% 6 18.33% 6 AR(4)GARCH(1,2) -10.03% 85 -10.02% 85 AR(4)EGARCH(2,1) 1.80% 48 1.80% 48 

SPEC(T=25) 18.93% 4 18.95% 4 AR(0)GARCH(2,1) -3.87% 60 -3.87% 60 AR(0)TARCH(0,1) 8.39% 29 8.39% 29 

SPEC(T=30) 19.83% 2 19.85% 2 AR(1)GARCH(2,1) -9.58% 84 -9.58% 84 AR(1)TARCH(0,1) 5.86% 35 5.86% 35 

SPEC(T=35) 18.47% 5 18.48% 5 AR(2)GARCH(2,1) -9.26% 79 -9.25% 77 AR(2)TARCH(0,1) 4.04% 42 4.04% 42 

SPEC(T=40) 14.40% 14 14.42% 14 AR(3)GARCH(2,1) -9.18% 76 -9.17% 76 AR(3)TARCH(0,1) 4.09% 41 4.09% 41 

SPEC(T=45) 15.66% 9 15.67% 9 AR(4)GARCH(2,1) -7.87% 67 -7.86% 67 AR(4)TARCH(0,1) 3.28% 45 3.28% 45 

SPEC(T=50) 13.52% 17 13.54% 17 AR(0)GARCH(2,2) -3.63% 59 -3.62% 59 AR(0)TARCH(0,2) -7.66% 64 -7.68% 65 

SPEC(T=55) 13.17% 19 13.18% 19 AR(1)GARCH(2,2) -7.36% 63 -7.35% 63 AR(1)TARCH(0,2) -9.04% 75 -9.05% 75 

SPEC(T=60) 13.93% 15 13.94% 15 AR(2)GARCH(2,2) -7.93% 68 -7.92% 68 AR(2)TARCH(0,2) -9.01% 74 -9.02% 74 

SPEC(T=65) 13.05% 21 13.06% 21 AR(3)GARCH(2,2) -8.18% 69 -8.17% 69 AR(3)TARCH(0,2) -9.26% 78 -9.27% 78 

SPEC(T=70) 13.08% 20 13.09% 20 AR(4)GARCH(2,2) -7.74% 66 -7.73% 66 AR(4)TARCH(0,2) -8.94% 72 -8.95% 72 

SPEC(T=75) 12.54% 23 12.55% 23 AR(0)EGARCH(0,1) -17.09% 100 -17.11% 100 AR(0)TARCH(1,1) -1.73% 56 -1.75% 56 

SPEC(T=80) 13.52% 18 13.53% 18 AR(1)EGARCH(0,1) -16.15% 98 -16.16% 98 AR(1)TARCH(1,1) -1.71% 55 -1.73% 55 

MINIMUM -32.93% 104 -33.02% 104 AR(2)EGARCH(0,1) -16.91% 99 -16.92% 99 AR(2)TARCH(1,1) -2.33% 57 -2.35% 57 

MAXIMUM -18.96% 103 -18.83% 103 AR(3)EGARCH(0,1) -17.48% 101 -17.49% 101 AR(3)TARCH(1,1) -1.59% 54 -1.61% 54 

AVERAGE 13.63% 16 13.62% 16 AR(4)EGARCH(0,1) -17.87% 102 -17.88% 102 AR(4)TARCH(1,1) -1.47% 53 -1.49% 53 

AR(0)GARCH(0,1) -11.35% 90 -11.37% 90 AR(0)EGARCH(0,2) -6.74% 62 -6.76% 62 AR(0)TARCH(1,2) 15.07% 10 15.06% 10 

AR(1)GARCH(0,1) -11.60% 92 -11.61% 92 AR(1)EGARCH(0,2) -8.97% 73 -8.99% 73 AR(1)TARCH(1,2) 14.87% 12 14.86% 12 

AR(2)GARCH(0,1) -12.17% 93 -12.19% 93 AR(2)EGARCH(0,2) -9.32% 83 -9.34% 83 AR(2)TARCH(1,2) 14.96% 11 14.95% 11 

AR(3)GARCH(0,1) -12.52% 95 -12.54% 95 AR(3)EGARCH(0,2) -9.31% 80 -9.33% 82 AR(3)TARCH(1,2) 14.83% 13 14.83% 13 

AR(4)GARCH(0,1) -12.89% 97 -12.90% 97 AR(4)EGARCH(0,2) -9.25% 77 -9.27% 79 AR(4)TARCH(1,2) 15.90% 8 15.89% 8 

AR(0)GARCH(0,2) -8.73% 71 -8.75% 71 AR(0)EGARCH(1,1) 6.11% 34 6.11% 34 AR(0)TARCH(2,1) 4.52% 39 4.51% 39 

AR(1)GARCH(0,2) -11.03% 88 -11.04% 88 AR(1)EGARCH(1,1) 1.60% 50 1.61% 50 AR(1)TARCH(2,1) 7.89% 30 7.88% 30 

AR(2)GARCH(0,2) -11.46% 91 -11.47% 91 AR(2)EGARCH(1,1) 2.61% 46 2.61% 46 AR(2)TARCH(2,1) 8.60% 28 8.59% 28 

AR(3)GARCH(0,2) -12.30% 94 -12.32% 94 AR(3)EGARCH(1,1) 1.10% 52 1.10% 52 AR(3)TARCH(2,1) 5.79% 36 5.78% 36 

AR(4)GARCH(0,2) -12.61% 96 -12.63% 96 AR(4)EGARCH(1,1) 1.30% 51 1.30% 51 AR(4)TARCH(2,1) 7.08% 31 7.07% 31 

AR(0)GARCH(1,1) -2.90% 58 -2.90% 58 AR(0)EGARCH(1,2) 6.91% 32 6.91% 32 AR(0)TARCH(2,2) 9.48% 26 9.47% 26 

AR(1)GARCH(1,1) -9.32% 81 -9.31% 81 AR(1)EGARCH(1,2) 4.45% 40 4.46% 40 AR(1)TARCH(2,2) 12.84% 22 12.84% 22 

AR(2)GARCH(1,1) -8.23% 70 -8.21% 70 AR(2)EGARCH(1,2) 5.73% 37 5.74% 37 AR(2)TARCH(2,2) 10.21% 24 10.21% 24 

AR(3)GARCH(1,1) -7.68% 65 -7.67% 64 AR(3)EGARCH(1,2) 3.89% 43 3.89% 43 AR(3)TARCH(2,2) 9.72% 25 9.71% 25 

AR(4)GARCH(1,1) -9.32% 82 -9.31% 80 AR(4)EGARCH(1,2) 3.77% 44 3.77% 44 AR(4)TARCH(2,2) 9.38% 27 9.38% 27 

AR(0)GARCH(1,2) -4.16% 61 -4.15% 61 AR(0)EGARCH(2,1) 6.46% 33 6.46% 33           
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Cha p te r  8  

The  D i s t r i bu t i on  o f  t he  Min imum Componen t  o f  a  

Vec to r  Hav ing  a  Mu l t i var ia t e  Ga mma Fu nc t io n  

 

 

8 . 1 .  I n t r o d u c t i o n  

 

Numerous methods of model evaluation have been derived in the statistical 

literature. Most of them are based on measuring the ability of the models to fit in the data 

(i.e. Akaike 1973 and Schwarz 1978). In the case where we are interested in evaluating a 

model’s forecasting ability, a loss function, which takes into consideration the 

characteristics of the predicting variable as well as the utility of the forecasts, is mainly 

constructed. For example, loss functions that are robust to heteroscedasticity are used by 

Andersen et al. (1999), Heynen and Kat (1994) and Pagan and Schwert (1990) for 

evaluating the predictive ability of volatility forecasting models because of high non-

linearity of the variable under investigation. Engle et al. (1993), Granger (2001), Granger 

and Pesaran (2000) and West et al. (1993), among others, defined loss functions that 

evaluated the models according to their predictions’ utility. As Hendry and Clements 

(2001) noted “it seems natural that a stock broker measures the value of forecasts by their 

monetary return, not their mean squared error”. Although loss functions are measures of 

accuracy, which are constructed based upon the goals of their particular application, in the 

majority of the cases, their statistical properties are unknown. The superiority of a loss 

function against others cannot be judged by a statistical-theoretical ground but just from 

their empirical motivations. 

Even though we cannot investigate the statistical properties of a loss function, we 

are capable to use it for measuring whether two forecasts have statistically equal 

forecasting accuracy. Diebold and Mariano (1995) derived a test of the null hypothesis of 

no difference in the accuracy of two competing forecasts. In particular, for ( ){ }T

t
m

ty 1
1ˆ =  and 

( ){ }T

t
m

ty 1
2ˆ =  denoting two forecasts of the variable under investigation { }T

tty 1= , Diebold and 

Mariano considered the time- t  loss associated with forecast im , for 2,1=i , to be an 
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arbitrary function of realization and prediction, ( )( )im
tt yyf ˆ, . The null hypothesis of equal 

forecast accuracy is ( )( )( ) ( )( )( )21 ˆ,ˆ, m
tt

m
tt yyfEyyfE = . 

On the other hand, Xekalaki et al. (2003), based on a loss function, derived a two-

model hypothesis testing procedure to test whether the models have equal ability in 

predicting the dependent variable of a regression model. In the 4th chapter, the hypothesis 

test was extended in comparing the ability of two models to forecast the conditional 

variance of ARCH models. Their hypothesis test is based on the sum of squared 

standardized one-step-ahead prediction errors, 
( )( )

( )( )∑
= −

−− −
=

T

t
m
tt

m
ttt

m i

i

i yV
yy

X
1 1|

2
1|1

ˆ
ˆ

2 . The loss 

function, 
imX , is asymptotically chi-square distributed, whereas the ratio 

12 mm XX  follows 

the CGR distribution. The null hypothesis, that models 1m  and 2m  have equal 

predictability against the alternative that model 1m  has a better predictive ability, is 

rejected at the %100 p  level of significance if 
12 mm XX  is greater than the ( )p−1100  

percentile of the CGR distribution. Moreover, the SPEC algorithm of ARCH model 

selection was considered based on the former hypothesis test. According to the SPEC 

model selection algorithm, the model, which, among a set of n  models, im , ni ,...,2,1= , 

has the lowest sum of squared standardized one-step-ahead prediction errors, is 

considered as having a superior ability to predict the conditional variance of the dependent 

variable. In the previous chapter, the performance of the SPEC algorithm was evaluated 

by comparing different volatility forecasts in option pricing through the simulation of an 

options market and concluded that traders, who base their selection of an ARCH model on 

the SPEC algorithm, achieve higher profits than those, who use other methods of model 

selection. 
In the present chapter, the exact from of the distribution of the loss function for the 

model with the lowest value, ( ) ( )
nmmm XXXX ,...,,min

211 ≡ , is determined in order to derive 

the statistical properties of ( )1X  on which the SPEC model selection algorithm is based. In 

section 8.2, the cumulative distribution function of ( )1X , named minimum multivariate 

gamma (MMG) distribution, is derived while section 8.3 provides the percentage points of 

the tri-variate version. Based on the MMG distribution function, in the 8.4 section, a testing 

procedure is constructed where the null hypothesis that n  available models are of 
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equivalent predictive ability is tested against the alternative hypothesis that the model ( )1m  

with the lowest value of the loss function 
imX  has the highest predictive ability. According 

to authors’ knowledge, the hypothesis tests, which exist in the forecasting literature, 

compare the ability of two models in producing accurate predictions. The advantage of the 

MMG hypothesis test is that it takes into consideration the forecasting ability of n  ( )2≥n  

candidate models in order to infer whether the model ( )1m  has the highest predictive ability. 

In section 8.5 the suggested hypothesis test is applied using return data for the Athens 

Stock Exchange (ASE) index over the period August 30th, 1993 to November 4th and a 

short discussion is provided in section 8.6. 

 

8 . 2 .  T h e  D i s t r i b u t i o n  o f  t h e  M i n i m u m  C o m p o n e n t  o f  a  V e c t o r  

( )nXXX ,...,, 21=Χ  H a v i n g  a  M u l t i v a r i a t e  G a m m a  D i s t r i b u t i o n  

 

In the sequel, two theorems are provided, which are subsequently used for the 

derivation of the cumulative function of the MMG distribution. Theorem 1 defines the 

cumulative distribution function of ( )1X  under the assumption that nXXX ,...,, 21  are 

identically but not independently distributed. Theorem 2 derives the cumulative distribution 

function of n  random variables having Krishnamoorthy and Parthasarathy’s (1951) 

multivariate gamma distribution. Finally, Lemma 3 combines the two theorems and 

develops the cumulative function of ( )1X  when nXXX ,...,, 21  are multivariate gamma 

distributed. 

 

8 . 2 . 1  D e t e r m i n i n g  t h e  C u m u l a t i v e  F u n c t i o n  o f  t h e  M i n i m u m  

C o m p o n e n t ,  ( )1X  

 
Theorem 1: 

Let nXXX ,...,, 21  be non-negative, identically distributed random variables with 

distribution function ( ) ( )..
1XX FF

i
= , for ni ,...,2,1= . Denote by ( ) ( ) ( )nXXX ,...,, 21  the same 

variables arranged in an ascending order. Let the joint distribution function of 

( )nXXX ,...,, 21  be ( ) ( )nnnXXX xXxXxXPxxxF
n

≤≤≤= ,...,,,...,, 221121,...,, 21
 and denote 
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their joint probability density function by ( )nXXX xxxf
n

,...,, 21,...,, 21
. Then, the cumulative 

distribution function of ( ) ( )nXXXX ,...,,min 211 ≡  is 

( )
( ) ( ) ( )∑ ∑

=

−−=
n

j jn
XXX

j
X xxxFxF

jiii
1

,,...,,
1 ,...,,1

211
, (8.2.1)

 
where ∑

jn

denotes summation over the set ( ){ }kjnniii kkk +−∧++= −− ,...,2,1 11 , for   

jk ,...,2,1= , ( 00 =i 1), i.e., ∑ ∑ ∑ ∑ ∑∑
+−∧

=

+−∧

+=

+−∧

+=
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+= +=− −− −
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1
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1 1
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1 1
......
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  ......  
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kk jj jj

jj
xx . 

Proof: 

We have by the definition of the cumulative distribution function of a random variable that: 

( )
( ) ( )( ) ( )( ) ( )
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1
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1

4

4

3
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2
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432114321

432132121
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i
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where ∑
jn

denotes summation over the set ( ){ }kjnniii kkk +−∧++= −− ,...,2,1 11 , for   

jk ,...,2,1= , ( 00 =i ), i.e., ∑ ∑ ∑ ∑ ∑∑
+−∧

=

+−∧

+=

+−∧

+=

−∧

+= +=− −− −

=
1

1

2

1 1

1

1 1
......

1 12 1 21 1

2121
  ......  

jnn

i

jnn

ii

kjnn

ii

nn

ii

n

ii
iii

jn
iii

kk jj jj

jj
xx .  

Noting that ( ) ( )∑∑ =
= 11 n

X

n

i
X xFxF

ii
 and ( ) ( )∑=

nn
XXXXXX xxxFxxxF

nn
,...,,,...,, ...... 2121

, the 

above relationship leads to (8.2.1) and, hence, to the result. 

 
                                                 
1 ( ) ( )kjnnkjnn +−≡+−∧ ,min . 



Chapter 8  

 159 

8 . 2 . 2  D e t e r m i n i n g  t h e  C u m u l a t i v e  F u n c t i o n  o f  t h e  

M u l t i v a r i a t e  G a m m a  D i s t r i b u t i o n ,  ( )xxF
nXX ,...,,...,1

 

 
Theorem 2: 

Suppose that ( )nXXX ,...,, 21  are n  random variables having Krishnamoorthy and 

Parthasarathy’s (1951) multivariate gamma distribution with joint probability density 

function given by 

( )
( )

( ) ( ) ( )
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ex

xxxf n
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j jn
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j

 (8.2.2)

 

 

where ( )ixf  denotes the marginal density of iX , ni ,...,1= , for 0≥ix , 0>a , 
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Let us denote the joint distribution function of ( )nXXX ,...,, 21  by 

( ) ( )nnnXXX xXxXxXPxxxF
n

≤≤≤= ,...,,,...,, 221121,...,, 21
. Then, 
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where ( ) ( ) ( )∫=
x

kkkrr dxxfaxLaxI
0

,,  and can be evaluated for 4,3,2,1,0=r  by relationships 

(8.2.13) to (8.2.17) and for 5>r  by relationship (8.2.18) given below. 
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Proof: 

Defining 0
1

=iC , we can write (8.2.2) as 
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where ∏
jn

denotes the product ∏ ∏ ∏ ∏∏
+−∧

=

+−∧

+=

+−∧

+= +=− −

=
1

1

2

1 1 1
......

1 12 1 1

2121
......  

jnn

i

jnn

ii

mjnn

ii

n

ii
iii

jn
iii

mm jj

jj
xx  and by 

defining 0
1

=ir . As the ∑
jn

iii j
r ...21

 has ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
j
n

 terms, then the ∑∑
=

n

j jn
iii j

r
1

...21
 has 12

1

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

n
n

j j
n

 

terms2. Rewriting ( )∏
=

n

i
ixf

1

 as ( )∏
=

n

j
jxf

1

 and using Lemma 1, we have  

( ) ( ) ( )∑ ∏∏∏
∞<≤ =

∑ ∑/

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∑ ∑
=

=

=
n

n

j jiiik

j

jiii

j

n

j jn
jiiirrr

n

k

r
k

k

n

j jn iii

r
iii

r
n a

axLxf
r
C

axxxf
...1221

1
...21

21

...21

21

1
...21,...,,0 11 ...

...
21

,
!

,...,, ,  

where k∑/  denotes summation over the set: 

{ }jmmjniiiki mmm ,...,3,2,,...,2,1;,...,2,1 111 =+−++== −− . 

Finally using relationship (8.2.3), we have 

                                                 
2 There are 12 −n  terms in the summation ∑

∞<≤ nrrr ...1221 ,...,,0

, i.e., for 3=n , the terms correspond to the indices 

123231312321 ,,,,,, rrrrrrr . 
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where ( ) ( ) ( )∫= kx

kkrkkr dtatLtfaxI
0

 ,,  with ( ) ∫
∞ −−=Γ
 

0

1dttea at  and ( )axΓ  denoting the 

incomplete gamma function defined by ( ) ∫
∞ −−=Γ
 

x

at
x dttea 1 , 0>x . 

For ,...2,1,0=r , the Laguerre (1879) Polynomials, ( )
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r
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k
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( ) ( ) ( )( ) axxLaxL kk
a

k −=−≡ −1
11 1,  (8.2.8) 

( ) ( ) ( )( ) 221
2

2
2 2221, kkkk

a
k xaxxaaxLaxL +−−+=−≡ −  (8.2.9) 

( ) ( ) ( )( ) 3222321
3

3
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a
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In order to compute Laguerre Polynomials of higher order we can use the following 

recursive formula, 
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As concerns the integral ( ) ( ) ( )∫=
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0

 ,, , for ,...2,1,0=r , is computed as 
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According to Lemma 2, a generalized form of ( )axI kr ,  is the following 
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Thus, the form of ( )xxF
nXX ,...,,...,1

 is 

( )
∑ ∏∏∏

∞<≤ =
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∑ ∑/

∑ ∑/

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛

∑∑
=

=

=
n n

j jiiik

n

j jiiik

j

jiii

j

n

j jn
jiiirrr

n

k
r

rn

j jn iii

r
iii

r a

axI

r
C

a
...1221

1
...21

1
...21

21

...21

21

1
...21,...,,0 11 ...

...

,

!
, (8.2.19) 

with ( )axIr ,  as given by relationships (8.2.13) to (8.2.18). 
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Proof: 
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Lemma 2: 

The generalized form of ( ) ( ) ( )∫=
kx

rkr dtatLtfaxI
0

 ,,  is computed as: 
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Proof: 
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where ( ) ( )( )
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8 . 2 . 3  D e t e r m i n i n g  t h e  D i s t r i b u t i o n  o f  t h e  M i n i m u m  

C o m p o n e n t  ( )1X  o f  a  V e c t o r  ( )nXXX ,...,, 21  H a v i n g  a  M u l t i v a r i a t e  

G a m m a  D i s t r i b u t i o n  
 

Lemma 3: 

Suppose that ( )nXXX ,...,, 21  are n  random variables having Krishnamoorthy and 

Parthasarathy’s (1951) multivariate gamma distribution with cumulative distribution 

function given by (8.2.19) and parameters a  and nC ...12 . Then, the cumulative distribution 

function of ( ) ( )nXXXX ,...,,min 211 ≡  is computed in (8.2.20). 

 

Proof: 

Combining (8.2.1) with (8.2.19), the form of 
( )
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1

, the MMG cumulative 

distribution function is, 
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(8.2.20)

8 . 3 .  T a b u l a t i n g  t h e  D i s t r i b u t i o n  F u n c t i o n  o f  )1(X  

 

In the sequel, we compute selected values of 
( )

( )npX CaF ...121 ,;
1 −ω , for various values 

of 01 ≥− pω , ,p  α  and the non-diagonal elements of nC ...12  using the tri-variate version of 

Krishnamoorthy and Parthasarathy’s distribution.  
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The form of ( )xxF
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, for 3,2,1=n  is computed as: 
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From (8.2.20) and as ( ) ( )xFxF XX i 1
= , ni ,...,1=∀ , we find that 
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i i
XXXX ii
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321

1 2
2111 ,,
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2
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( )
( )1231 ,;

1
CaF pX −ω  is computed for various values of 01 ≥− pω , 0< p <1,  0>a  and 

10 1, <≤ +iiρ , for 2,1=i , the non-diagonal elements of 123C . Tables of selected values of 

( )
( )1231 ,;

1
CaF pX −ω  as well as graphs depicting the cumulative density function of the tri-

variate MMG are presented in the Appendix 8. 

 

8 . 4 .  H y p o t h e s i s  T e s t i n g  f o r  t h e  T r u e  V a l u e  o f  t h e  M i n i m u m  

C o m p o n e n t  ( )1X  

 
The distribution function of ( ) ( )

nmmm XXXX ,...,,min
211 ≡ , when 

nmmm XXX ,...,,
21

 are 

identically distributed random variables with Krishnamoorthy and Parthasarathy’s 

multivariate gamma distribution function, can be used to compare the predictability of a set 

of models.  

Let us assume that we are interested in examining the ability of im , for ni ,...,2,1= , 

ARCH models in predicting the one-step-ahead conditional variance of the dependent 

variable. Consider the ARCH process, ( )( ){ }im
t θε , as innovations in a linear regression 
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where ( )im
tx  is a vector of endogenous and exogenous explanatory variables included in 

the information set ( )im
tI , ( )imθ  is a vector of unknown parameters, ( )imβ  belongs to ( )imθ , 

( )( )im
t θσ  is a measurable function of the information set at time 1−t  that represents the 

conditional variance of ( )( )im
t θε , ( )im

tυ  is a vector of predetermined variables included in 

( )im
tI , and ( ).g  is a linear or non-linear functional form. In the 4th chapter it was shown that 

under the assumption of constancy of parameters over time, 
( )( ) ( )( ) ( )( ) ( )( )iiii mm

T
mm θθθθ ==== ...21 , the estimated standardized one-step-ahead prediction 

errors ( ) ( ) ( )iii m
TT

m
tt

m
tt zzz 1||11| ˆ,...,ˆ,ˆ −+−  are asymptotically independently standard normally distributed, 

( ) ( )( ) ( ) ( )1,0~ˆˆˆ
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1
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ttt

m
tt

iii −
−−− −≡ σ , (8.4.2) 

where ( ) ( ) ( )iii m
t

m
t

m
tt xy 111|

ˆˆ −−− ′= β  and ( )im
tt 1|ˆ −σ  is the one-step-ahead conditional standard deviation 

whose computation depends on the functional form of the im  ARCH process. Kibble 

(1941) showed that if two variables follow jointly the standard normal distribution, then the 

joint distribution of ( ) ( ) ⎟
⎠

⎞
⎜
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ttm zXzX
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2
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1
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2
1|

1 2

2

1

1
ˆ2,ˆ2  is the bivariate gamma. 

Krishnamoorthy and Parthasarathy extended Kibble’s distribution to n  variables. The null 

hypothesis of equivalent predictive ability of models im , for ni ,...,2,1= , can be tested 

against the alternative hypothesis that model ( )1m  (the model with the lowest half-sum of 

squared standardized one-step-ahead prediction errors) is superior in forecasting the one- 

step-ahead conditional variance: 

 H0: Models im  are of equivalent predictive ability, 

versus,  

 H1: Model ( )1m  has the highest predictive ability. 
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The null hypothesis is rejected if the test statistic ( )
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Obviously, this hypothesis test can be applied for comparing the ability of models in 

predicting the conditional mean. Consider the case that the im , for ni ,...,2,1= , models 

are in the form of a linear regression 
( ) ( ) ( )

( ) ( )( ),,0~ 2
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where ( )imβ  is a vector of ( )imk  unknown parameters to be estimated and ( )im
tx  is a vector 

of explanatory variables included in 1−tI . In such a case, the quantity 
imX  is computed as 
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tY  is the ( )1×tl  vector of tl  observations on the dependent variable ty , and ( )im
tX  is the 

( )( )im
t kl ×  matrix of ( )im

tx  explanatory variables, so that ( )
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8 . 5 .  A n  E m p i r i c a l  A p p l i c a t i o n  

 

A thorough investigation of the predictive ability of ARCH model with the lowest 

sum of standardized one-step-ahead prediction errors was conducted in chapters 5 to 7. In 

the present section we are not trying to evaluate the usage of selecting the model with the 

minimum value of the test statistic, ( )1X , but we illustrate the application of the MMG 
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hypothesis test. The reader who is interested in the predictability of the ARCH models with 

( )1X  is referred to the relevant chapters mentioned above. 

For ( )1ln −= ttt PPy  denoting the daily log-returns, where tP  is the ASE closing 

price at day t , we estimate three ARCH processes. More specifically, framework (8.4.1) is 

considered as a first order autoregressive process, AR(1), and the conditional variance is 

modelled as Glosten’s et al. (1993) Threshold ARCH, or TARCH(p,q), process: 
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where ( ) 10 =≤td ε  if 0≤tε , and ( ) 00 =≤td ε  otherwise. The TARCH(p,q) model allows 

a response of conditional variance to news with different coefficients for good ( )01 >−tε  

and bad ( )01 ≤−tε  news. Therefore, good news has an impact of ∑
=

q

i
ia

1
, while bad news 

has an impact of ( ) γ+∑
=

q

i
ia

1
. For 0=γ  the TARCH model reduces to Bollerslev’s (1986) 

representation of the GARCH(p,q) model. We arbitrarily choose to estimate the 

GARCH(0,1), the GARCH(1,1) and the TARCH(2,2) models using the same data set of the 

4th   chapter, on the Athens Stock Exchange (ASE) index which cover the period from 30th 

of August 1993 to 4th November of 1996. A rolling sample of constant size equal to 500 is 

used and 300 one-day-ahead conditional mean and variance forecasts are computed, 

which are divided into 5 sub-groups of 60 trading days each. The half sum of squared 

standardized prediction errors of the three models, ( )∑
=

−
−≡
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2
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m
ttm
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i
zX , for 3,2,1=i , is 

computed separately for each sub-group and they are presented in Table 8.1. The 

standardized one-day-ahead prediction error of the TARCH(p,q) model is computed as 
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where ( )pibqiacc tittitto ,...,1,ˆ,ˆ,,...,0,ˆ,ˆ,ˆ 1,11,1,11, == −−−−− γ  is the estimating vector of unknown 

parameters θ  given the available information at time 1−t . 

 

Table 8.1. The half-sum of squared standardized one-day-ahead prediction errors of 

the three estimated ARCH models, ( )∑
=

−
−≡

60

1

2
1|

1 ˆ2
t

m
ttm

i

i
zX , for 3,2,1=i . 

Sub-period AR(1)-GARCH(0,1) AR(1)-GARCH(1,1) AR(1)-TARCH(2,2) 
1.  12.73 19.42 19.37 
2.  39.83 42.21 43.30 
3.  23.37 25.10 24.90 
4.  15.31 18.22 18.82 
5.  23.73 27.17 27.24 

 

The AR(1)-GARCH(0,1) model appears to achieve the lowest value of the test statistic in 

all the sub-periods. The null hypothesis 

 H0: All the three models are of equivalent predictive ability 

would, therefore, be interesting to be tested versus the alternative 

H1: The model AR(1)-GARCH(0,1) has the highest predictive ability. 

For any level of significance greater that 
( )

( )1231 ,30;1
1

CaF pX =− −ω  the null hypothesis is 

rejected at %100 p  level of significance. Hence the evidence is in support of the 

hypothesis that the AR(1)-GARCH(0,1) model has the highest predictive ability. Using 

Table 8.2, one can test the above hypotheses for each sub-period. Note that %95>ijρ , 

for each model in every sub-group. The null hypothesis is rejected at any level of 

significance greater than or equal to 
( )

( )1231 ,30;1
1

CaF pX =− −ω . 

 

Table 8.2. Selected values of the cumulative density function, 
( )

( )1231 ,30;
1

CaF pX =−ω .  

 Sub-period ( )
( )1231 ,30;

1
CaF pX =−ω  

 1. 0.00008  
 2. 0.98347  
 3. 0.16725  
 4. 0.00178  
 5. 0.18515  

 

We find that the null hypothesis is rejected at any reasonable level of significance only in 

the second sub-period. Despite the fact that the AR(1)-GARCH(0,1) model has the lowest 

value of the test statistic in all the periods, it is not selected by the MMG test among the 
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three candidate models as the most accurate in forecasting the one-day-ahead ASE index 

volatility. 

 

8 . 6 .  C o n c l u s i o n  

 

The present chapter investigates the selection of a model from a set of available 

models making simultaneous use of the information that is available from the candidate 

forecasting models. The approach to compare statistically the predictive accuracy of a set 

of forecasting models is commonly through pair wise comparisons. However, the 

hypothesis testing procedure considered in this chapter, although complicated, provides 

the researchers with a tool that allows the study of the joint fluctuations of the prediction 

errors of the models. The presented multivariate test can be applied in the selection of 

models forecasting either the conditional mean or the conditional variance. In future work, 

we plan to study the gains in the forecasting accuracy that the use of the MMG test would 

achieve compared to methods based on the use of classical two-model comparisons in 

empirical applications. Morever, it should be pointed out that the practical applicability of 

the MMG test could be extended to a comparison of a group of models of arbitrary size. 

Instead of relying on tabulated values for the distribution of the minimum of a multivariate 

Gamma distribution, one might approximate the quantiles of the minimum by a Monte 

Carlo computer simulation. Approached such that of Hansen (2001) and Hansen and 

Lunde (2003) where the p-values of the test statistic are obtained by using the bootstrap 

method of Politis and Romano (1994) could be very instructive. 
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Cha p te r  9  

Scope  f o r  Fur ther  Research  

 
The present study provided an evaluation of the ability of a model selection 

criterion in selecting the appropriate model to predict the conditional variance. According to 

that criterion, named SPEC algorithm, the ARCH model with the lowest sum of squared 

standardized one-step-ahead forecasting errors is selected for predicting one-step-ahead 

future volatility. Two different theoretical frameworks have been considered. One based on 

pairwise comparisons of the sums of squared standardized one-step-ahead forecasting 

errors of the candidate models (chapter 4) and one utilizing their overall minimum (chapter 

8). In chapters 5 to 7, we considered various approaches to explore whether the models 

picked by the SPEC method achieve the highest predictive ability compared to those 

picked by other methods of model selection, including single-model methods. 

In the sequel, we refer to a number of topics worth future exploration. 

• An important issue is the theoretical motivation of the SPEC algorithm application in 

ARCH models with non-normally distributed conditional innovations. According to the 

SPEC method of model selection, either in the case of a non-normal conditional 

distribution for the residuals, the ARCH model with the lowest sum of squared 

standardized one-step-ahead forecasting errors should be the most appropriate in 

forecasting one-step-ahead volatility. However, the theoretical background in the case of 

other distributions such as the student-t, the generalized error distribution and the skew 

student-t distribution has to be further explored. Politis (2003b, 2004) considered 

transforming the innovations to empirical ratios that are normally distributed by dividing the 

ARCH process with a time-localized measure of standard deviation. Such approached 

may add power in the applicability of the SPEC method. 

• In the previous chapters, we included 3 conditional variance specifications, the 

GARCH, the EGARCH and the TARCH models, but in the 2nd chapter we have presented 

31 conditional variance specifications in the context of the ARCH framework. Hence, 

investigating the performance of the SPEC algorithm over a set of more flexible ARCH 

models, which account for recent developments in the area of asset returns volatility, 

would be an interesting problem. 
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• Recent developments in financial forecasting have provided evidence on statistically 

significant predictability of asset returns. As already mentioned, in most of the cases, the 

predictable component is either the overall mean or a first order autocorrelated process. In 

the present thesis, the mean specification was considered as an autoregressive process. 

However, artificial neural networks (Poggio and Girosi (1990), Hertz et al. (1991), White 

(1992), Hutchinson et al. (1994)), chaotic dynamical systems (Brock (1986), Holden 

(1986), Thompson and Stewart (1986) and Hsieh (1991)), nonlinear parametric and 

nonparametric models (Tong (1990) and Teräsvirta et al. (1994)) are some examples from 

the literature dealing with conditional mean predictions. It would be interesting to 

investigate whether there is added value in applying the SPEC model selection method for 

such models for the conditional mean specification. 

• We have investigated the added value of the SPEC model selection method in 

forecasting volatility for options pricing. Value-at-Risk (VaR) at a given probability level p , 

is the predicted amount of financial loss of a portfolio over a given time horizon. The 

forecasting of the VaR number is another area of applied financial statistics that the added 

value of the SPEC method should be explored. Angelidis and Degiannakis (2005b), Billio 

and Pelizzon (2000), Brooks and Persand (2003) and Giot and Laurent (2003a, 2003b) are 

examples of recent studies that investigate the forecasting ability of ARCH models in 

predicting the VaR number. 

• In section 2.6.1 we have noted the use of intra-day data as an alternative volatility 

measure that introduced by Andersen and Bollerslev (1998a). In the 7th chapter, the ability 

of the SPEC model selection algorithm was compared with loss functions that used the 

realized intra-day volatility and the SPEC algorithm led to the highest profits. However, the 

SPEC method can be compared to models that are based on intra-day datasets, like the 

ARFIMA methodology described in equation 2.2.40 of the 2nd chapter. As concerns the 

question whether an ARFIMA model, which uses intra-day data, delivers more accurate 

volatility forecasts than an ARCH model, which is based on daily returns, the answer may 

not always positive. For example, Giot and Laurent (2004) concluded that an adequately 

specified ARCH model has equivalent predictive ability with an ARFIMA specification in 

predicting the one-day-ahead VaR. So, a future application of the SPEC model selection 

method on inter-day and intra-day models would be interested.  

• The SPEC algorithm is interesting to be applied in more data sets such as stocks, 

stock indices, bonds, commodities and exchange rates. 
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• At each point in time at which the SPEC method is applied, a specific model is picked 

as the most appropriate for predicting future volatility. In Table 6.6 of the 6th chapter, we 

have seen that the SPEC algorithm does not appear to be noticeably biased towards 

selecting a specific type of model. However, there are studies in the literature such as 

Christoffersen and Jacobs (2003), Ferreira and Lopez (2003) and Lopez and Walter 

(2001), which support the assumption that the simplest model specifications are chosen a 

disproportionately large percentage of the time. On the other hand, Angelidis, Benos and 

Degiannakis (2004), Degiannakis (2004), Giot and Laurent (2003a, 2004) among others 

concluded that the more flexible an ARCH model is, the more adequate it is in volatility 

forecasting, compared to parsimonious models. For further research, it may be interesting 

to investigate whether the selection of specific models is related to certain economic 

factors. 

•  The MMG hypothesis testing is a multi-model selection procedure, which leads to the 

selection of the model with the lowest sum of squared standardized one-step-ahead 

prediction errors. The form of the exact distribution of the test statistic is explicitly derived 

as the distribution of the minimum value of n  variables that are multivariate gamma 

distributed. The derived exact distribution of the test statistic should not be considered only 

as the theoretical justification of the SPEC algorithm. Studying the gains in forecasting 

accuracy in empirical applications from the use of the proposed test procedure is worth 

exploration. 
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A p p e n d i c e s  o f  C h a p t e r s  2 ,  3 ,  4 ,  5 ,  6  a n d  8
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A p p e n d i x  2  

 

•  T h e  A R C H  m o d e l s  t h a t  h a v e  b e e n  p r e s e n t e d  

 

Table 2.2. The ARCH models that have been presented in Section 2.1. The reader who is interested 
in more information for an ARCH model should recur to the equation referred in the last column. 
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Figure 3.1. The simulated processes. 
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Figure 3.2. Histograms and descriptive statistics of the simulated processes. 
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Figure 3.3. Histograms of simulated Chi-square distributed process with T  

degrees of freedom. 
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Figure 3.3. Histograms of simulated Chi-square distributed process with T  

degrees of freedom. 
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Figure 3.4. Autocorrelation of transformations of the processes tz , tε , tv , tσ . 
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Figure 3.4. Autocorrelation of transformations of the processes tz , tε , tv , tσ . 
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Figure 3.5. The one-step-ahead estimated processes. 
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Figure 3.6. Histograms and descriptive statistics of the one-step-ahead estimated 

processes. 
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Figure 3.7. Histograms and descriptive statistics of { }∑ +−= +
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Figure 3.7. Histograms and descriptive statistics of { }∑ +−= +
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Figure 3.8. Autocorrelation of transformations of the processes ttz |1ˆ + , tt |1ˆ +ε , ttv |1ˆ + , tt |1ˆ +σ . 
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Figure 3.8. Autocorrelation of transformations of the processes ttz |1ˆ + , tt |1ˆ +ε , ttv |1ˆ + , tt |1ˆ +σ . 
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Figure 3.9. Histograms and descriptive statistics of the squared standardized one-

step-ahead prediction errors. 
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Figure 3.9. Histograms and descriptive statistics of the squared standardized one-

step-ahead prediction errors. 
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Figure 3.10. Histograms and descriptive statistics of { }∑ +−= +
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Figure 3.10. Histograms and descriptive statistics of { }∑ +−= +
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Figure 3.10. Histograms and descriptive statistics of{ }∑ +−= +

t

Ttj jjz
1

2
|1ˆ , ( )30000TTt = . 

10=T  
e) AR(1)TARCH(1,2) 

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35  
Mean  10.14403 

Variance  21.69734 
Observations  3000.000  

10=T  
f) AR(3)GARCH(1,1) 

0

50

100

150

200

250

300

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34  
Mean  10.13256 

Variance  21.12526 
Observations  3000.000  

10=T  
g) AR(3)EGARCH(1,1) 

0

100

200

300

400

0 5 10 15 20 25 30 35  
Mean  10.11744 

Variance  21.04838 
Observations  3000.000  

10=T  
h) AR(3)TARCH(1,1) 

0

50

100

150

200

250

300

0 5 10 15 20 25 30 35  
Mean  10.14928 

Variance  21.53689 
Observations  3000.000  

 



Chapter 3  

199 

 
Figure 3.11. Autocorrelation of transformations of the processes 
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Figure 4.8. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.9. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.10. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.11. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.12. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.13. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Figure 4.14. The probability density function of the Correlated Gamma Ratio 
Distribution 
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Table 4.5. Percentage Points of the Correlated Gamma Ratio Distribution for 25.0=a  
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1 ρρ  

z
 

 
 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 3.008 3.004 2.993 2.974 2.947 2.913 2.871 2.821 2.763 2.697 

2 2.064 2.062 2.057 2.048 2.035 2.019 1.999 1.975 1.947 1.915 

3 1.782 1.781 1.777 1.771 1.762 1.751 1.736 1.72 1.7 1.678 

4 1.64 1.639 1.636 1.631 1.624 1.615 1.603 1.59 1.574 1.557 

5 1.551 1.55 1.548 1.544 1.538 1.53 1.521 1.509 1.496 1.481 

6 1.49 1.489 1.487 1.484 1.478 1.472 1.463 1.453 1.442 1.429 

7 1.445 1.444 1.442 1.439 1.434 1.428 1.421 1.412 1.402 1.39 

8 1.41 1.409 1.407 1.404 1.4 1.395 1.388 1.38 1.37 1.359 

9 1.381 1.381 1.379 1.376 1.372 1.367 1.361 1.354 1.345 1.335 

10 1.358 1.357 1.356 1.353 1.35 1.345 1.339 1.332 1.324 1.315 

11 1.338 1.338 1.336 1.334 1.33 1.326 1.321 1.314 1.306 1.297 

12 1.321 1.321 1.32 1.317 1.314 1.31 1.305 1.298 1.291 1.283 

13 1.307 1.306 1.305 1.303 1.3 1.296 1.291 1.285 1.278 1.27 

14 1.294 1.293 1.292 1.29 1.287 1.283 1.279 1.273 1.266 1.259 

15 1.282 1.282 1.281 1.279 1.276 1.272 1.268 1.262 1.256 1.249 

16 1.272 1.272 1.271 1.269 1.266 1.262 1.258 1.253 1.247 1.24 

17 1.263 1.262 1.261 1.259 1.257 1.254 1.249 1.244 1.239 1.232 

18 1.254 1.254 1.253 1.251 1.249 1.245 1.241 1.237 1.231 1.224 

19 1.247 1.246 1.245 1.244 1.241 1.238 1.234 1.229 1.224 1.218 

20 1.24 1.239 1.238 1.237 1.234 1.231 1.227 1.223 1.218 1.212 

21 1.233 1.233 1.232 1.23 1.228 1.225 1.221 1.217 1.212 1.206 

22 1.227 1.227 1.226 1.224 1.222 1.219 1.216 1.211 1.206 1.201 

23 1.222 1.221 1.22 1.219 1.217 1.214 1.21 1.206 1.201 1.196 

24 1.216 1.216 1.215 1.214 1.212 1.209 1.205 1.201 1.197 1.191 

25 1.212 1.211 1.21 1.209 1.207 1.204 1.201 1.197 1.192 1.187 

26 1.207 1.207 1.206 1.204 1.202 1.2 1.197 1.193 1.188 1.183 

27 1.203 1.202 1.202 1.2 1.198 1.196 1.193 1.189 1.184 1.179 

28 1.199 1.198 1.198 1.196 1.194 1.192 1.189 1.185 1.181 1.176 

29 1.195 1.195 1.194 1.192 1.191 1.188 1.185 1.181 1.177 1.172 

30 1.191 1.191 1.19 1.189 1.187 1.185 1.182 1.178 1.174 1.169 
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Percentage Points of the Correlated Gamma Ratio Distribution for 25.0=a  
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.188 1.188 1.187 1.186 1.184 1.181 1.178 1.175 1.171 1.166 

32 1.185 1.184 1.184 1.182 1.181 1.178 1.175 1.172 1.168 1.163 

33 1.181 1.181 1.181 1.179 1.178 1.175 1.172 1.169 1.165 1.161 

34 1.179 1.178 1.178 1.176 1.175 1.172 1.17 1.166 1.163 1.158 

35 1.176 1.176 1.175 1.174 1.172 1.17 1.167 1.164 1.16 1.156 

36 1.173 1.173 1.172 1.171 1.169 1.167 1.164 1.161 1.158 1.153 

37 1.17 1.17 1.17 1.168 1.167 1.165 1.162 1.159 1.155 1.151 

38 1.168 1.168 1.167 1.166 1.164 1.162 1.16 1.157 1.153 1.149 

39 1.166 1.165 1.165 1.164 1.162 1.16 1.157 1.154 1.151 1.147 

40 1.163 1.163 1.163 1.161 1.16 1.158 1.155 1.152 1.149 1.145 

41 1.161 1.161 1.16 1.159 1.158 1.156 1.153 1.15 1.147 1.143 

42 1.159 1.159 1.158 1.157 1.156 1.154 1.151 1.148 1.145 1.141 

43 1.157 1.157 1.156 1.155 1.154 1.152 1.149 1.147 1.143 1.139 

44 1.155 1.155 1.154 1.153 1.152 1.15 1.148 1.145 1.141 1.138 

45 1.153 1.153 1.153 1.151 1.15 1.148 1.146 1.143 1.14 1.136 

46 1.152 1.151 1.151 1.15 1.148 1.146 1.144 1.141 1.138 1.134 

47 1.15 1.15 1.149 1.148 1.147 1.145 1.142 1.14 1.136 1.133 

48 1.148 1.148 1.147 1.146 1.145 1.143 1.141 1.138 1.135 1.131 

49 1.146 1.146 1.146 1.145 1.143 1.141 1.139 1.137 1.133 1.13 

50 1.145 1.145 1.144 1.143 1.142 1.14 1.138 1.135 1.132 1.128 

51 1.143 1.143 1.143 1.142 1.14 1.138 1.136 1.134 1.131 1.127 

52 1.142 1.142 1.141 1.14 1.139 1.137 1.135 1.132 1.129 1.126 

53 1.14 1.14 1.14 1.139 1.137 1.136 1.134 1.131 1.128 1.125 

54 1.139 1.139 1.138 1.137 1.136 1.134 1.132 1.13 1.127 1.123 

55 1.138 1.137 1.137 1.136 1.135 1.133 1.131 1.128 1.125 1.122 

56 1.136 1.136 1.136 1.135 1.133 1.132 1.13 1.127 1.124 1.121 

57 1.135 1.135 1.134 1.133 1.132 1.13 1.128 1.126 1.123 1.12 

58 1.134 1.134 1.133 1.132 1.131 1.129 1.127 1.125 1.122 1.119 

59 1.133 1.132 1.132 1.131 1.13 1.128 1.126 1.124 1.121 1.118 

60 1.131 1.131 1.131 1.13 1.129 1.127 1.125 1.123 1.12 1.117 
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Percentage Points of the Correlated Gamma Ratio Distribution for 25.0=a  
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 2.623 2.54 2.448 2.346 2.234 2.111 1.974 1.822 1.646 1.431 

2 1.879 1.839 1.794 1.743 1.687 1.624 1.554 1.474 1.379 1.26 

3 1.652 1.623 1.591 1.555 1.515 1.47 1.419 1.36 1.29 1.2 

4 1.536 1.513 1.487 1.458 1.426 1.389 1.348 1.3 1.243 1.169 

5 1.464 1.444 1.422 1.398 1.37 1.339 1.303 1.262 1.212 1.148 

6 1.413 1.396 1.377 1.355 1.331 1.303 1.272 1.235 1.191 1.133 

7 1.376 1.361 1.343 1.324 1.302 1.277 1.248 1.215 1.175 1.122 

8 1.347 1.333 1.317 1.299 1.279 1.256 1.23 1.199 1.162 1.114 

9 1.323 1.31 1.295 1.279 1.26 1.239 1.215 1.186 1.152 1.107 

10 1.304 1.292 1.278 1.262 1.245 1.225 1.202 1.175 1.143 1.101 

11 1.287 1.276 1.263 1.248 1.232 1.213 1.192 1.166 1.136 1.096 

12 1.273 1.262 1.25 1.236 1.221 1.203 1.182 1.159 1.13 1.091 

13 1.261 1.251 1.239 1.226 1.211 1.194 1.174 1.152 1.124 1.087 

14 1.25 1.24 1.229 1.216 1.202 1.186 1.167 1.146 1.119 1.084 

15 1.24 1.231 1.22 1.208 1.195 1.179 1.161 1.14 1.115 1.081 

16 1.232 1.223 1.212 1.201 1.188 1.173 1.156 1.135 1.111 1.078 

17 1.224 1.215 1.205 1.194 1.182 1.167 1.15 1.131 1.107 1.076 

18 1.217 1.209 1.199 1.188 1.176 1.162 1.146 1.127 1.104 1.073 

19 1.211 1.202 1.193 1.183 1.171 1.157 1.142 1.123 1.101 1.071 

20 1.205 1.197 1.188 1.177 1.166 1.153 1.138 1.12 1.098 1.07 

21 1.199 1.191 1.183 1.173 1.162 1.149 1.134 1.117 1.096 1.068 

22 1.194 1.187 1.178 1.168 1.158 1.145 1.131 1.114 1.093 1.066 

23 1.189 1.182 1.174 1.164 1.154 1.142 1.128 1.111 1.091 1.065 

24 1.185 1.178 1.17 1.161 1.15 1.138 1.125 1.109 1.089 1.063 

25 1.181 1.174 1.166 1.157 1.147 1.135 1.122 1.106 1.087 1.062 

26 1.177 1.17 1.162 1.154 1.144 1.133 1.12 1.104 1.086 1.061 

27 1.173 1.167 1.159 1.151 1.141 1.13 1.117 1.102 1.084 1.059 

28 1.17 1.163 1.156 1.148 1.138 1.127 1.115 1.1 1.082 1.058 

29 1.167 1.16 1.153 1.145 1.136 1.125 1.113 1.098 1.081 1.057 

30 1.164 1.157 1.15 1.142 1.133 1.123 1.111 1.097 1.079 1.056 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.161 1.155 1.148 1.14 1.131 1.121 1.109 1.095 1.078 1.055 

32 1.158 1.152 1.145 1.137 1.129 1.119 1.107 1.093 1.077 1.054 

33 1.155 1.15 1.143 1.135 1.127 1.117 1.105 1.092 1.075 1.054 

34 1.153 1.147 1.141 1.133 1.125 1.115 1.104 1.09 1.074 1.053 

35 1.151 1.145 1.138 1.131 1.123 1.113 1.102 1.089 1.073 1.052 

36 1.148 1.143 1.136 1.129 1.121 1.111 1.101 1.088 1.072 1.051 

37 1.146 1.141 1.134 1.127 1.119 1.11 1.099 1.087 1.071 1.05 

38 1.144 1.139 1.132 1.125 1.117 1.108 1.098 1.085 1.07 1.05 

39 1.142 1.137 1.131 1.124 1.116 1.107 1.096 1.084 1.069 1.049 

40 1.14 1.135 1.129 1.122 1.114 1.105 1.095 1.083 1.068 1.048 

41 1.138 1.133 1.127 1.12 1.113 1.104 1.094 1.082 1.067 1.048 

42 1.136 1.131 1.125 1.119 1.111 1.103 1.093 1.081 1.067 1.047 

43 1.135 1.13 1.124 1.117 1.11 1.101 1.092 1.08 1.066 1.047 

44 1.133 1.128 1.122 1.116 1.109 1.1 1.09 1.079 1.065 1.046 

45 1.132 1.127 1.121 1.115 1.107 1.099 1.089 1.078 1.064 1.046 

46 1.13 1.125 1.12 1.113 1.106 1.098 1.088 1.077 1.063 1.045 

47 1.129 1.124 1.118 1.112 1.105 1.097 1.087 1.076 1.063 1.045 

48 1.127 1.122 1.117 1.111 1.104 1.096 1.086 1.076 1.062 1.044 

49 1.126 1.121 1.116 1.109 1.103 1.095 1.086 1.075 1.061 1.044 

50 1.124 1.12 1.114 1.108 1.101 1.094 1.085 1.074 1.061 1.043 

51 1.123 1.118 1.113 1.107 1.1 1.093 1.084 1.073 1.06 1.043 

52 1.122 1.117 1.112 1.106 1.099 1.092 1.083 1.072 1.06 1.042 

53 1.121 1.116 1.111 1.105 1.098 1.091 1.082 1.072 1.059 1.042 

54 1.119 1.115 1.11 1.104 1.097 1.09 1.081 1.071 1.058 1.042 

55 1.118 1.114 1.109 1.103 1.097 1.089 1.08 1.07 1.058 1.041 

56 1.117 1.113 1.108 1.102 1.096 1.088 1.08 1.07 1.057 1.041 

57 1.116 1.112 1.107 1.101 1.095 1.087 1.079 1.069 1.057 1.04 

58 1.115 1.111 1.106 1.1 1.094 1.087 1.078 1.068 1.056 1.04 

59 1.114 1.11 1.105 1.099 1.093 1.086 1.078 1.068 1.056 1.04 

60 1.113 1.109 1.104 1.098 1.092 1.085 1.077 1.067 1.055 1.039 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 4.013 4.006 3.988 3.958 3.915 3.861 3.794 3.714 3.622 3.518 

2 2.483 2.48 2.472 2.459 2.44 2.416 2.387 2.352 2.311 2.265 

3 2.062 2.06 2.055 2.046 2.033 2.017 1.997 1.973 1.945 1.914 

4 1.856 1.855 1.851 1.844 1.834 1.821 1.806 1.787 1.765 1.741 

5 1.732 1.73 1.727 1.721 1.713 1.702 1.689 1.674 1.656 1.635 

6 1.646 1.645 1.642 1.637 1.63 1.621 1.61 1.596 1.58 1.562 

7 1.584 1.583 1.58 1.576 1.57 1.561 1.551 1.539 1.525 1.509 

8 1.536 1.535 1.533 1.528 1.523 1.515 1.506 1.495 1.482 1.468 

9 1.497 1.497 1.494 1.491 1.485 1.478 1.47 1.46 1.448 1.435 

10 1.466 1.465 1.463 1.459 1.454 1.448 1.44 1.431 1.42 1.407 

11 1.439 1.438 1.436 1.433 1.429 1.423 1.415 1.407 1.396 1.385 

12 1.416 1.416 1.414 1.411 1.406 1.401 1.394 1.386 1.376 1.365 

13 1.397 1.396 1.394 1.391 1.387 1.382 1.375 1.368 1.359 1.348 

14 1.379 1.379 1.377 1.374 1.371 1.365 1.359 1.352 1.343 1.333 

15 1.364 1.364 1.362 1.359 1.356 1.351 1.345 1.338 1.329 1.32 

16 1.35 1.35 1.348 1.346 1.342 1.338 1.332 1.325 1.317 1.308 

17 1.338 1.338 1.336 1.334 1.33 1.326 1.32 1.314 1.306 1.297 

18 1.327 1.327 1.325 1.323 1.32 1.315 1.31 1.304 1.296 1.288 

19 1.317 1.316 1.315 1.313 1.31 1.306 1.3 1.294 1.287 1.279 

20 1.308 1.307 1.306 1.304 1.301 1.297 1.292 1.286 1.279 1.271 

21 1.299 1.299 1.297 1.295 1.292 1.288 1.284 1.278 1.271 1.263 

22 1.291 1.291 1.29 1.287 1.285 1.281 1.276 1.271 1.264 1.257 

23 1.284 1.283 1.282 1.28 1.277 1.274 1.269 1.264 1.257 1.25 

24 1.277 1.277 1.275 1.274 1.271 1.267 1.263 1.258 1.251 1.244 

25 1.271 1.27 1.269 1.267 1.265 1.261 1.257 1.252 1.246 1.239 

26 1.265 1.264 1.263 1.261 1.259 1.255 1.251 1.246 1.24 1.233 

27 1.259 1.259 1.258 1.256 1.253 1.25 1.246 1.241 1.235 1.229 

28 1.254 1.253 1.252 1.251 1.248 1.245 1.241 1.236 1.23 1.224 

29 1.249 1.248 1.247 1.246 1.243 1.24 1.236 1.231 1.226 1.22 

30 1.244 1.244 1.243 1.241 1.239 1.236 1.232 1.227 1.222 1.215 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.24 1.239 1.238 1.237 1.234 1.231 1.228 1.223 1.218 1.212 

32 1.235 1.235 1.234 1.232 1.23 1.227 1.224 1.219 1.214 1.208 

33 1.231 1.231 1.23 1.229 1.226 1.223 1.22 1.215 1.21 1.204 

34 1.228 1.227 1.226 1.225 1.223 1.22 1.216 1.212 1.207 1.201 

35 1.224 1.224 1.223 1.221 1.219 1.216 1.213 1.208 1.204 1.198 

36 1.22 1.22 1.219 1.218 1.216 1.213 1.209 1.205 1.2 1.195 

37 1.217 1.217 1.216 1.214 1.212 1.21 1.206 1.202 1.197 1.192 

38 1.214 1.214 1.213 1.211 1.209 1.207 1.203 1.199 1.194 1.189 

39 1.211 1.211 1.21 1.208 1.206 1.204 1.2 1.196 1.192 1.186 

40 1.208 1.208 1.207 1.205 1.203 1.201 1.198 1.194 1.189 1.184 

41 1.205 1.205 1.204 1.203 1.201 1.198 1.195 1.191 1.187 1.181 

42 1.202 1.202 1.201 1.2 1.198 1.195 1.192 1.189 1.184 1.179 

43 1.2 1.2 1.199 1.197 1.195 1.193 1.19 1.186 1.182 1.177 

44 1.197 1.197 1.196 1.195 1.193 1.19 1.187 1.184 1.179 1.175 

45 1.195 1.195 1.194 1.192 1.191 1.188 1.185 1.182 1.177 1.172 

46 1.193 1.192 1.191 1.19 1.188 1.186 1.183 1.179 1.175 1.17 

47 1.19 1.19 1.189 1.188 1.186 1.184 1.181 1.177 1.173 1.168 

48 1.188 1.188 1.187 1.186 1.184 1.182 1.179 1.175 1.171 1.166 

49 1.186 1.186 1.185 1.184 1.182 1.18 1.177 1.173 1.169 1.165 

50 1.184 1.184 1.183 1.182 1.18 1.178 1.175 1.171 1.167 1.163 

51 1.182 1.182 1.181 1.18 1.178 1.176 1.173 1.17 1.166 1.161 

52 1.18 1.18 1.179 1.178 1.176 1.174 1.171 1.168 1.164 1.159 

53 1.178 1.178 1.177 1.176 1.174 1.172 1.169 1.166 1.162 1.158 

54 1.176 1.176 1.175 1.174 1.173 1.17 1.168 1.164 1.161 1.156 

55 1.175 1.174 1.174 1.172 1.171 1.169 1.166 1.163 1.159 1.155 

56 1.173 1.173 1.172 1.171 1.169 1.167 1.164 1.161 1.157 1.153 

57 1.171 1.171 1.17 1.169 1.168 1.165 1.163 1.16 1.156 1.152 

58 1.17 1.169 1.169 1.168 1.166 1.164 1.161 1.158 1.154 1.15 

59 1.168 1.168 1.167 1.166 1.164 1.162 1.16 1.157 1.153 1.149 

60 1.167 1.166 1.166 1.165 1.163 1.161 1.158 1.155 1.152 1.148 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 3.4 3.269 3.125 2.966 2.792 2.602 2.394 2.163 1.902 1.591 

2 2.212 2.153 2.088 2.015 1.935 1.846 1.746 1.634 1.503 1.34 

3 1.878 1.837 1.792 1.742 1.686 1.623 1.553 1.473 1.378 1.259 

4 1.712 1.68 1.645 1.605 1.561 1.511 1.455 1.39 1.314 1.216 

5 1.611 1.584 1.555 1.521 1.484 1.442 1.394 1.339 1.273 1.189 

6 1.542 1.518 1.492 1.463 1.43 1.393 1.351 1.303 1.245 1.17 

7 1.491 1.47 1.446 1.42 1.391 1.358 1.32 1.276 1.224 1.156 

8 1.451 1.432 1.411 1.387 1.36 1.33 1.295 1.255 1.207 1.144 

9 1.419 1.402 1.382 1.36 1.335 1.307 1.275 1.238 1.194 1.135 

10 1.393 1.377 1.359 1.338 1.315 1.289 1.259 1.224 1.182 1.128 

11 1.371 1.356 1.339 1.319 1.298 1.273 1.245 1.212 1.173 1.121 

12 1.352 1.338 1.322 1.304 1.283 1.26 1.233 1.202 1.165 1.115 

13 1.336 1.322 1.307 1.29 1.27 1.248 1.223 1.193 1.157 1.11 

14 1.322 1.309 1.294 1.277 1.259 1.238 1.214 1.185 1.151 1.106 

15 1.309 1.296 1.282 1.267 1.249 1.229 1.205 1.178 1.145 1.102 

16 1.298 1.286 1.272 1.257 1.24 1.22 1.198 1.172 1.14 1.099 

17 1.287 1.276 1.263 1.248 1.232 1.213 1.191 1.166 1.136 1.096 

18 1.278 1.267 1.254 1.24 1.224 1.206 1.185 1.161 1.132 1.093 

19 1.269 1.259 1.247 1.233 1.218 1.2 1.18 1.156 1.128 1.09 

20 1.262 1.251 1.24 1.226 1.211 1.194 1.175 1.152 1.124 1.088 

21 1.255 1.244 1.233 1.22 1.206 1.189 1.17 1.148 1.121 1.085 

22 1.248 1.238 1.227 1.215 1.201 1.184 1.166 1.144 1.118 1.083 

23 1.242 1.232 1.221 1.209 1.196 1.18 1.162 1.141 1.115 1.081 

24 1.236 1.227 1.216 1.204 1.191 1.176 1.158 1.138 1.113 1.08 

25 1.231 1.222 1.211 1.2 1.187 1.172 1.155 1.135 1.11 1.078 

26 1.226 1.217 1.207 1.196 1.183 1.168 1.152 1.132 1.108 1.076 

27 1.221 1.212 1.203 1.192 1.179 1.165 1.148 1.129 1.106 1.075 

28 1.217 1.208 1.199 1.188 1.175 1.162 1.146 1.127 1.104 1.073 

29 1.212 1.204 1.195 1.184 1.172 1.159 1.143 1.124 1.102 1.072 

30 1.208 1.2 1.191 1.181 1.169 1.156 1.14 1.122 1.1 1.071 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.205 1.197 1.188 1.178 1.166 1.153 1.138 1.12 1.098 1.07 

32 1.201 1.193 1.184 1.174 1.163 1.15 1.135 1.118 1.097 1.068 

33 1.198 1.19 1.181 1.172 1.16 1.148 1.133 1.116 1.095 1.067 

34 1.194 1.187 1.178 1.169 1.158 1.145 1.131 1.114 1.094 1.066 

35 1.191 1.184 1.176 1.166 1.155 1.143 1.129 1.112 1.092 1.065 

36 1.188 1.181 1.173 1.164 1.153 1.141 1.127 1.111 1.091 1.064 

37 1.186 1.178 1.17 1.161 1.151 1.139 1.125 1.109 1.09 1.063 

38 1.183 1.176 1.168 1.159 1.149 1.137 1.123 1.108 1.088 1.062 

39 1.18 1.173 1.166 1.157 1.147 1.135 1.122 1.106 1.087 1.062 

40 1.178 1.171 1.163 1.154 1.145 1.133 1.12 1.105 1.086 1.061 

41 1.175 1.169 1.161 1.152 1.143 1.131 1.119 1.103 1.085 1.06 

42 1.173 1.167 1.159 1.15 1.141 1.13 1.117 1.102 1.084 1.059 

43 1.171 1.164 1.157 1.149 1.139 1.128 1.116 1.101 1.083 1.059 

44 1.169 1.162 1.155 1.147 1.137 1.127 1.114 1.1 1.082 1.058 

45 1.167 1.16 1.153 1.145 1.136 1.125 1.113 1.098 1.081 1.057 

46 1.165 1.158 1.151 1.143 1.134 1.124 1.112 1.097 1.08 1.057 

47 1.163 1.157 1.15 1.142 1.133 1.122 1.11 1.096 1.079 1.056 

48 1.161 1.155 1.148 1.14 1.131 1.121 1.109 1.095 1.078 1.055 

49 1.159 1.153 1.146 1.138 1.13 1.12 1.108 1.094 1.077 1.055 

50 1.158 1.151 1.145 1.137 1.128 1.118 1.107 1.093 1.076 1.054 

51 1.156 1.15 1.143 1.136 1.127 1.117 1.106 1.092 1.076 1.054 

52 1.154 1.148 1.142 1.134 1.126 1.116 1.105 1.091 1.075 1.053 

53 1.153 1.147 1.14 1.133 1.124 1.115 1.103 1.09 1.074 1.053 

54 1.151 1.145 1.139 1.131 1.123 1.113 1.102 1.089 1.073 1.052 

55 1.15 1.144 1.137 1.13 1.122 1.112 1.101 1.089 1.073 1.052 

56 1.148 1.143 1.136 1.129 1.121 1.111 1.1 1.088 1.072 1.051 

57 1.147 1.141 1.135 1.128 1.12 1.11 1.1 1.087 1.071 1.051 

58 1.145 1.14 1.134 1.127 1.118 1.109 1.099 1.086 1.071 1.05 

59 1.144 1.139 1.132 1.125 1.117 1.108 1.098 1.085 1.07 1.05 

60 1.143 1.137 1.131 1.124 1.116 1.107 1.097 1.085 1.07 1.049 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 5.689 5.679 5.649 5.599 5.528 5.438 5.327 5.197 5.045 4.873 

2 3.092 3.088 3.076 3.056 3.028 2.992 2.949 2.896 2.836 2.767 

3 2.449 2.447 2.439 2.426 2.408 2.385 2.356 2.322 2.282 2.237 

4 2.149 2.147 2.141 2.131 2.117 2.099 2.077 2.051 2.021 1.986 

5 1.97 1.969 1.964 1.956 1.945 1.93 1.912 1.89 1.865 1.837 

6 1.851 1.849 1.845 1.838 1.829 1.816 1.801 1.782 1.761 1.736 

7 1.764 1.763 1.759 1.753 1.744 1.733 1.72 1.703 1.684 1.662 

8 1.698 1.697 1.693 1.688 1.68 1.67 1.658 1.643 1.626 1.606 

9 1.645 1.644 1.641 1.636 1.629 1.62 1.609 1.595 1.579 1.561 

10 1.602 1.601 1.599 1.594 1.587 1.579 1.568 1.556 1.541 1.525 

11 1.566 1.566 1.563 1.559 1.553 1.545 1.535 1.523 1.51 1.494 

12 1.536 1.535 1.533 1.529 1.523 1.515 1.506 1.495 1.483 1.468 

13 1.51 1.509 1.507 1.503 1.497 1.49 1.482 1.471 1.459 1.445 

14 1.487 1.486 1.484 1.48 1.475 1.468 1.46 1.45 1.439 1.426 

15 1.466 1.466 1.464 1.46 1.455 1.449 1.441 1.432 1.421 1.408 

16 1.448 1.448 1.446 1.442 1.438 1.431 1.424 1.415 1.405 1.393 

17 1.432 1.431 1.429 1.426 1.422 1.416 1.409 1.4 1.39 1.379 

18 1.417 1.417 1.415 1.412 1.407 1.402 1.395 1.387 1.377 1.366 

19 1.404 1.403 1.402 1.399 1.394 1.389 1.382 1.374 1.365 1.354 

20 1.392 1.391 1.389 1.387 1.383 1.377 1.371 1.363 1.354 1.344 

21 1.381 1.38 1.378 1.376 1.372 1.367 1.36 1.353 1.344 1.334 

22 1.37 1.37 1.368 1.365 1.362 1.357 1.351 1.343 1.335 1.325 

23 1.361 1.36 1.358 1.356 1.352 1.347 1.342 1.335 1.326 1.317 

24 1.352 1.351 1.35 1.347 1.343 1.339 1.333 1.326 1.318 1.309 

25 1.343 1.343 1.341 1.339 1.335 1.331 1.325 1.319 1.311 1.302 

26 1.336 1.335 1.334 1.331 1.328 1.323 1.318 1.311 1.304 1.295 

27 1.328 1.328 1.326 1.324 1.321 1.316 1.311 1.305 1.297 1.289 

28 1.321 1.321 1.32 1.317 1.314 1.31 1.305 1.298 1.291 1.283 

29 1.315 1.314 1.313 1.311 1.308 1.304 1.299 1.292 1.285 1.277 

30 1.309 1.308 1.307 1.305 1.302 1.298 1.293 1.287 1.28 1.272 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.303 1.303 1.301 1.299 1.296 1.292 1.287 1.282 1.275 1.267 

32 1.298 1.297 1.296 1.294 1.291 1.287 1.282 1.276 1.27 1.262 

33 1.292 1.292 1.291 1.289 1.286 1.282 1.277 1.272 1.265 1.258 

34 1.287 1.287 1.286 1.284 1.281 1.277 1.273 1.267 1.261 1.253 

35 1.283 1.282 1.281 1.279 1.276 1.273 1.268 1.263 1.256 1.249 

36 1.278 1.278 1.277 1.275 1.272 1.268 1.264 1.259 1.252 1.245 

37 1.274 1.274 1.272 1.27 1.268 1.264 1.26 1.255 1.249 1.241 

38 1.27 1.269 1.268 1.266 1.264 1.26 1.256 1.251 1.245 1.238 

39 1.266 1.265 1.264 1.262 1.26 1.256 1.252 1.247 1.241 1.234 

40 1.262 1.262 1.261 1.259 1.256 1.253 1.249 1.244 1.238 1.231 

41 1.258 1.258 1.257 1.255 1.253 1.249 1.245 1.24 1.235 1.228 

42 1.255 1.255 1.254 1.252 1.249 1.246 1.242 1.237 1.231 1.225 

43 1.252 1.251 1.25 1.248 1.246 1.243 1.239 1.234 1.228 1.222 

44 1.248 1.248 1.247 1.245 1.243 1.24 1.236 1.231 1.226 1.219 

45 1.245 1.245 1.244 1.242 1.24 1.237 1.233 1.228 1.223 1.216 

46 1.242 1.242 1.241 1.239 1.237 1.234 1.23 1.225 1.22 1.214 

47 1.239 1.239 1.238 1.236 1.234 1.231 1.227 1.223 1.217 1.211 

48 1.237 1.236 1.235 1.234 1.231 1.228 1.225 1.22 1.215 1.209 

49 1.234 1.234 1.233 1.231 1.229 1.226 1.222 1.218 1.212 1.206 

50 1.231 1.231 1.23 1.228 1.226 1.223 1.22 1.215 1.21 1.204 

51 1.229 1.228 1.227 1.226 1.224 1.221 1.217 1.213 1.208 1.202 

52 1.226 1.226 1.225 1.223 1.221 1.218 1.215 1.211 1.206 1.2 

53 1.224 1.224 1.223 1.221 1.219 1.216 1.213 1.208 1.203 1.198 

54 1.222 1.221 1.22 1.219 1.217 1.214 1.21 1.206 1.201 1.196 

55 1.219 1.219 1.218 1.217 1.214 1.212 1.208 1.204 1.199 1.194 

56 1.217 1.217 1.216 1.214 1.212 1.21 1.206 1.202 1.197 1.192 

57 1.215 1.215 1.214 1.212 1.21 1.208 1.204 1.2 1.195 1.19 

58 1.213 1.213 1.212 1.21 1.208 1.206 1.202 1.198 1.194 1.188 

59 1.211 1.211 1.21 1.208 1.206 1.204 1.2 1.196 1.192 1.186 

60 1.209 1.209 1.208 1.206 1.204 1.202 1.198 1.195 1.19 1.185 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 4.681 4.467 4.232 3.975 3.695 3.391 3.059 2.697 2.295 1.828 

2 2.689 2.603 2.507 2.401 2.284 2.155 2.013 1.853 1.67 1.447 

3 2.186 2.128 2.064 1.994 1.915 1.828 1.731 1.621 1.493 1.334 

4 1.947 1.903 1.853 1.799 1.738 1.67 1.593 1.507 1.405 1.276 

5 1.804 1.768 1.727 1.681 1.63 1.574 1.51 1.436 1.35 1.24 

6 1.708 1.676 1.641 1.601 1.557 1.508 1.452 1.388 1.312 1.215 

7 1.638 1.61 1.578 1.543 1.504 1.46 1.41 1.352 1.284 1.196 

8 1.584 1.558 1.53 1.498 1.463 1.423 1.377 1.325 1.262 1.182 

9 1.541 1.518 1.492 1.462 1.43 1.393 1.351 1.302 1.245 1.17 

10 1.506 1.484 1.46 1.433 1.402 1.368 1.329 1.284 1.23 1.16 

11 1.476 1.456 1.434 1.408 1.38 1.348 1.311 1.269 1.218 1.152 

12 1.451 1.432 1.411 1.387 1.36 1.33 1.295 1.255 1.207 1.144 

13 1.429 1.412 1.391 1.369 1.343 1.315 1.282 1.244 1.198 1.138 

14 1.411 1.393 1.374 1.353 1.329 1.301 1.27 1.234 1.19 1.133 

15 1.394 1.377 1.359 1.339 1.315 1.289 1.259 1.224 1.183 1.128 

16 1.379 1.363 1.346 1.326 1.304 1.279 1.25 1.216 1.176 1.123 

17 1.365 1.35 1.333 1.315 1.293 1.269 1.241 1.209 1.17 1.119 

18 1.353 1.339 1.322 1.304 1.284 1.26 1.234 1.202 1.165 1.116 

19 1.342 1.328 1.312 1.295 1.275 1.252 1.227 1.196 1.16 1.112 

20 1.332 1.318 1.303 1.286 1.267 1.245 1.22 1.191 1.156 1.109 

21 1.323 1.31 1.295 1.278 1.26 1.238 1.214 1.186 1.151 1.106 

22 1.314 1.301 1.287 1.271 1.253 1.232 1.209 1.181 1.148 1.104 

23 1.306 1.294 1.28 1.264 1.246 1.226 1.203 1.177 1.144 1.101 

24 1.298 1.287 1.273 1.258 1.241 1.221 1.199 1.173 1.141 1.099 

25 1.292 1.28 1.267 1.252 1.235 1.216 1.194 1.169 1.138 1.097 

26 1.285 1.274 1.261 1.246 1.23 1.211 1.19 1.165 1.135 1.095 

27 1.279 1.268 1.255 1.241 1.225 1.207 1.186 1.162 1.132 1.093 

28 1.273 1.262 1.25 1.236 1.221 1.203 1.182 1.159 1.13 1.091 

29 1.268 1.257 1.245 1.232 1.216 1.199 1.179 1.156 1.127 1.09 

30 1.263 1.252 1.241 1.227 1.212 1.195 1.176 1.153 1.125 1.088 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.258 1.248 1.236 1.223 1.208 1.192 1.172 1.15 1.123 1.086 

32 1.253 1.243 1.232 1.219 1.205 1.188 1.169 1.147 1.121 1.085 

33 1.249 1.239 1.228 1.215 1.201 1.185 1.167 1.145 1.119 1.084 

34 1.245 1.235 1.224 1.212 1.198 1.182 1.164 1.143 1.117 1.082 

35 1.241 1.231 1.221 1.209 1.195 1.179 1.161 1.14 1.115 1.081 

36 1.237 1.228 1.217 1.205 1.192 1.177 1.159 1.138 1.113 1.08 

37 1.233 1.224 1.214 1.202 1.189 1.174 1.157 1.136 1.112 1.079 

38 1.23 1.221 1.211 1.199 1.186 1.171 1.154 1.134 1.11 1.078 

39 1.227 1.218 1.208 1.196 1.184 1.169 1.152 1.132 1.108 1.077 

40 1.223 1.215 1.205 1.194 1.181 1.167 1.15 1.131 1.107 1.076 

41 1.22 1.212 1.202 1.191 1.179 1.164 1.148 1.129 1.106 1.075 

42 1.217 1.209 1.199 1.189 1.176 1.162 1.146 1.127 1.104 1.074 

43 1.215 1.206 1.197 1.186 1.174 1.16 1.144 1.126 1.103 1.073 

44 1.212 1.204 1.194 1.184 1.172 1.158 1.143 1.124 1.102 1.072 

45 1.209 1.201 1.192 1.182 1.17 1.156 1.141 1.123 1.1 1.071 

46 1.207 1.199 1.19 1.179 1.168 1.154 1.139 1.121 1.099 1.07 

47 1.204 1.196 1.187 1.177 1.166 1.153 1.138 1.12 1.098 1.069 

48 1.202 1.194 1.185 1.175 1.164 1.151 1.136 1.119 1.097 1.069 

49 1.2 1.192 1.183 1.173 1.162 1.149 1.135 1.117 1.096 1.068 

50 1.197 1.19 1.181 1.171 1.16 1.148 1.133 1.116 1.095 1.067 

51 1.195 1.188 1.179 1.17 1.159 1.146 1.132 1.115 1.094 1.067 

52 1.193 1.186 1.177 1.168 1.157 1.145 1.13 1.114 1.093 1.066 

53 1.191 1.184 1.175 1.166 1.155 1.143 1.129 1.112 1.092 1.065 

54 1.189 1.182 1.174 1.164 1.154 1.142 1.128 1.111 1.091 1.065 

55 1.187 1.18 1.172 1.163 1.152 1.14 1.126 1.11 1.09 1.064 

56 1.186 1.178 1.17 1.161 1.151 1.139 1.125 1.109 1.09 1.063 

57 1.184 1.177 1.169 1.16 1.149 1.138 1.124 1.108 1.089 1.063 

58 1.182 1.175 1.167 1.158 1.148 1.136 1.123 1.107 1.088 1.062 

59 1.18 1.173 1.166 1.157 1.147 1.135 1.122 1.106 1.087 1.062 

60 1.179 1.172 1.164 1.155 1.145 1.134 1.121 1.105 1.086 1.061 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 9.05 9.032 8.977 8.886 8.758 8.594 8.393 8.156 7.881 7.571 

2 4.107 4.101 4.082 4.051 4.007 3.951 3.882 3.8 3.705 3.597 

3 3.055 3.051 3.039 3.02 2.992 2.957 2.914 2.863 2.804 2.737 

4 2.589 2.586 2.578 2.564 2.543 2.517 2.485 2.447 2.403 2.353 

5 2.323 2.32 2.313 2.302 2.285 2.264 2.239 2.208 2.172 2.131 

6 2.147 2.145 2.14 2.13 2.116 2.098 2.076 2.05 2.02 1.985 

7 2.022 2.021 2.016 2.007 1.995 1.979 1.96 1.937 1.911 1.88 

8 1.928 1.927 1.922 1.914 1.904 1.89 1.872 1.852 1.828 1.801 

9 1.854 1.853 1.848 1.841 1.832 1.819 1.803 1.785 1.763 1.738 

10 1.794 1.793 1.789 1.782 1.773 1.762 1.747 1.73 1.71 1.688 

11 1.744 1.743 1.739 1.733 1.725 1.714 1.701 1.685 1.667 1.645 

12 1.702 1.701 1.697 1.692 1.684 1.674 1.662 1.647 1.629 1.61 

13 1.666 1.665 1.661 1.656 1.649 1.639 1.628 1.614 1.597 1.579 

14 1.634 1.633 1.63 1.625 1.618 1.609 1.598 1.585 1.57 1.552 

15 1.606 1.606 1.603 1.598 1.591 1.583 1.572 1.56 1.545 1.528 

16 1.582 1.581 1.578 1.574 1.568 1.559 1.549 1.537 1.523 1.507 

17 1.56 1.559 1.556 1.552 1.546 1.538 1.529 1.517 1.504 1.488 

18 1.54 1.539 1.537 1.533 1.527 1.519 1.51 1.499 1.486 1.471 

19 1.522 1.521 1.519 1.515 1.509 1.502 1.493 1.483 1.47 1.456 

20 1.506 1.505 1.503 1.499 1.493 1.486 1.478 1.468 1.456 1.442 

21 1.491 1.49 1.488 1.484 1.479 1.472 1.464 1.454 1.442 1.429 

22 1.477 1.476 1.474 1.47 1.465 1.459 1.451 1.441 1.43 1.417 

23 1.464 1.463 1.461 1.458 1.453 1.446 1.439 1.429 1.419 1.406 

24 1.452 1.451 1.449 1.446 1.441 1.435 1.428 1.419 1.408 1.396 

25 1.441 1.44 1.438 1.435 1.43 1.424 1.417 1.408 1.398 1.386 

26 1.431 1.43 1.428 1.425 1.42 1.415 1.407 1.399 1.389 1.377 

27 1.421 1.42 1.418 1.415 1.411 1.405 1.398 1.39 1.38 1.369 

28 1.412 1.411 1.409 1.406 1.402 1.397 1.39 1.382 1.372 1.361 

29 1.403 1.403 1.401 1.398 1.394 1.388 1.382 1.374 1.364 1.354 

30 1.395 1.395 1.393 1.39 1.386 1.381 1.374 1.366 1.357 1.347 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.388 1.387 1.385 1.382 1.378 1.373 1.367 1.359 1.35 1.34 

32 1.38 1.38 1.378 1.375 1.371 1.366 1.36 1.353 1.344 1.334 

33 1.373 1.373 1.371 1.369 1.365 1.36 1.354 1.346 1.338 1.328 

34 1.367 1.366 1.365 1.362 1.358 1.354 1.348 1.34 1.332 1.322 

35 1.361 1.36 1.359 1.356 1.352 1.348 1.342 1.335 1.326 1.317 

36 1.355 1.354 1.353 1.35 1.347 1.342 1.336 1.329 1.321 1.312 

37 1.349 1.349 1.347 1.345 1.341 1.337 1.331 1.324 1.316 1.307 

38 1.344 1.343 1.342 1.339 1.336 1.331 1.326 1.319 1.311 1.302 

39 1.339 1.338 1.337 1.334 1.331 1.326 1.321 1.314 1.307 1.298 

40 1.334 1.333 1.332 1.329 1.326 1.322 1.316 1.31 1.302 1.293 

41 1.329 1.328 1.327 1.325 1.321 1.317 1.312 1.305 1.298 1.289 

42 1.324 1.324 1.323 1.32 1.317 1.313 1.307 1.301 1.294 1.285 

43 1.32 1.32 1.318 1.316 1.313 1.308 1.303 1.297 1.29 1.282 

44 1.316 1.315 1.314 1.312 1.309 1.304 1.299 1.293 1.286 1.278 

45 1.312 1.311 1.31 1.308 1.305 1.301 1.296 1.29 1.282 1.274 

46 1.308 1.307 1.306 1.304 1.301 1.297 1.292 1.286 1.279 1.271 

47 1.304 1.304 1.302 1.3 1.297 1.293 1.288 1.282 1.276 1.268 

48 1.3 1.3 1.299 1.297 1.294 1.29 1.285 1.279 1.272 1.265 

49 1.297 1.296 1.295 1.293 1.29 1.286 1.281 1.276 1.269 1.261 

50 1.293 1.293 1.292 1.29 1.287 1.283 1.278 1.273 1.266 1.258 

51 1.29 1.29 1.289 1.286 1.284 1.28 1.275 1.27 1.263 1.256 

52 1.287 1.287 1.285 1.283 1.28 1.277 1.272 1.267 1.26 1.253 

53 1.284 1.283 1.282 1.28 1.277 1.274 1.269 1.264 1.257 1.25 

54 1.281 1.28 1.279 1.277 1.274 1.271 1.266 1.261 1.255 1.248 

55 1.278 1.278 1.276 1.274 1.272 1.268 1.264 1.258 1.252 1.245 

56 1.275 1.275 1.274 1.272 1.269 1.265 1.261 1.256 1.25 1.243 

57 1.272 1.272 1.271 1.269 1.266 1.263 1.258 1.253 1.247 1.24 

58 1.27 1.269 1.268 1.266 1.264 1.26 1.256 1.251 1.245 1.238 

59 1.267 1.267 1.266 1.264 1.261 1.258 1.253 1.248 1.242 1.236 

60 1.265 1.264 1.263 1.261 1.259 1.255 1.251 1.246 1.24 1.233 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 7.223 6.838 6.416 5.955 5.456 4.917 4.336 3.707 3.022 2.249 

2 3.475 3.34 3.191 3.027 2.848 2.651 2.436 2.197 1.928 1.607 

3 2.661 2.576 2.481 2.377 2.263 2.137 1.997 1.84 1.66 1.441 

4 2.296 2.233 2.162 2.083 1.997 1.901 1.794 1.673 1.533 1.36 

5 2.085 2.034 1.976 1.912 1.841 1.762 1.674 1.573 1.457 1.31 

6 1.946 1.902 1.853 1.798 1.737 1.669 1.593 1.506 1.404 1.276 

7 1.846 1.807 1.764 1.716 1.662 1.602 1.534 1.457 1.366 1.251 

8 1.77 1.735 1.696 1.653 1.605 1.55 1.489 1.419 1.337 1.232 

9 1.71 1.679 1.643 1.604 1.559 1.51 1.454 1.389 1.313 1.216 

10 1.662 1.632 1.6 1.563 1.522 1.476 1.424 1.365 1.294 1.203 

11 1.621 1.594 1.564 1.529 1.491 1.448 1.4 1.344 1.278 1.192 

12 1.587 1.561 1.533 1.501 1.465 1.425 1.379 1.326 1.264 1.183 

13 1.557 1.533 1.506 1.476 1.442 1.404 1.361 1.311 1.252 1.175 

14 1.532 1.509 1.483 1.455 1.423 1.386 1.345 1.298 1.241 1.167 

15 1.509 1.487 1.463 1.436 1.405 1.371 1.331 1.286 1.231 1.161 

16 1.489 1.468 1.445 1.419 1.389 1.356 1.319 1.275 1.223 1.155 

17 1.471 1.451 1.429 1.404 1.375 1.344 1.308 1.266 1.215 1.15 

18 1.455 1.435 1.414 1.39 1.363 1.332 1.297 1.257 1.209 1.145 

19 1.44 1.421 1.401 1.377 1.351 1.322 1.288 1.249 1.202 1.141 

20 1.426 1.408 1.388 1.366 1.341 1.312 1.28 1.242 1.196 1.137 

21 1.414 1.397 1.377 1.356 1.331 1.303 1.272 1.235 1.191 1.134 

22 1.402 1.386 1.367 1.346 1.322 1.295 1.265 1.229 1.186 1.13 

23 1.392 1.376 1.357 1.337 1.314 1.288 1.258 1.223 1.182 1.127 

24 1.382 1.366 1.348 1.329 1.306 1.281 1.252 1.218 1.177 1.124 

25 1.373 1.357 1.34 1.321 1.299 1.274 1.246 1.213 1.173 1.121 

26 1.364 1.349 1.332 1.314 1.292 1.268 1.241 1.208 1.17 1.119 

27 1.356 1.342 1.325 1.307 1.286 1.262 1.235 1.204 1.166 1.117 

28 1.349 1.334 1.318 1.3 1.28 1.257 1.231 1.2 1.163 1.114 

29 1.341 1.328 1.312 1.294 1.274 1.252 1.226 1.196 1.16 1.112 

30 1.335 1.321 1.306 1.289 1.269 1.247 1.222 1.192 1.157 1.11 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.328 1.315 1.3 1.283 1.264 1.243 1.218 1.189 1.154 1.108 

32 1.322 1.309 1.295 1.278 1.259 1.238 1.214 1.186 1.151 1.106 

33 1.317 1.304 1.29 1.273 1.255 1.234 1.21 1.183 1.149 1.105 

34 1.311 1.299 1.285 1.269 1.251 1.23 1.207 1.18 1.146 1.103 

35 1.306 1.294 1.28 1.264 1.247 1.227 1.204 1.177 1.144 1.101 

36 1.301 1.289 1.275 1.26 1.243 1.223 1.2 1.174 1.142 1.1 

37 1.296 1.285 1.271 1.256 1.239 1.22 1.197 1.171 1.14 1.098 

38 1.292 1.28 1.267 1.252 1.235 1.216 1.194 1.169 1.138 1.097 

39 1.288 1.276 1.263 1.249 1.232 1.213 1.192 1.167 1.136 1.096 

40 1.283 1.272 1.259 1.245 1.229 1.21 1.189 1.164 1.134 1.094 

41 1.28 1.268 1.256 1.242 1.226 1.207 1.186 1.162 1.132 1.093 

42 1.276 1.265 1.252 1.238 1.223 1.205 1.184 1.16 1.131 1.092 

43 1.272 1.261 1.249 1.235 1.22 1.202 1.182 1.158 1.129 1.091 

44 1.269 1.258 1.246 1.232 1.217 1.199 1.179 1.156 1.127 1.09 

45 1.265 1.255 1.243 1.229 1.214 1.197 1.177 1.154 1.126 1.089 

46 1.262 1.251 1.24 1.227 1.212 1.195 1.175 1.152 1.124 1.088 

47 1.259 1.248 1.237 1.224 1.209 1.192 1.173 1.15 1.123 1.087 

48 1.256 1.246 1.234 1.221 1.207 1.19 1.171 1.149 1.122 1.086 

49 1.253 1.243 1.231 1.219 1.204 1.188 1.169 1.147 1.12 1.085 

50 1.25 1.24 1.229 1.216 1.202 1.186 1.167 1.145 1.119 1.084 

51 1.247 1.237 1.226 1.214 1.2 1.184 1.165 1.144 1.118 1.083 

52 1.244 1.235 1.224 1.212 1.198 1.182 1.164 1.142 1.116 1.082 

53 1.242 1.232 1.221 1.209 1.196 1.18 1.162 1.141 1.115 1.081 

54 1.239 1.23 1.219 1.207 1.194 1.178 1.16 1.14 1.114 1.081 

55 1.237 1.227 1.217 1.205 1.192 1.176 1.159 1.138 1.113 1.08 

56 1.234 1.225 1.215 1.203 1.19 1.175 1.157 1.137 1.112 1.079 

57 1.232 1.223 1.213 1.201 1.188 1.173 1.156 1.136 1.111 1.078 

58 1.23 1.221 1.211 1.199 1.186 1.171 1.154 1.134 1.11 1.078 

59 1.228 1.219 1.209 1.197 1.184 1.17 1.153 1.133 1.109 1.077 

60 1.226 1.217 1.207 1.195 1.183 1.168 1.151 1.132 1.108 1.076 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 19.202 19.158 19.02 18.808 18.50 18.109 17.62 17.06 16.40 15.663 

2 6.388 6.377 6.342 6.283 6.202 6.097 5.968 5.816 5.64 5.441 

3 4.284 4.277 4.257 4.224 4.177 4.117 4.043 3.956 3.855 3.74 

4 3.438 3.433 3.419 3.396 3.362 3.32 3.267 3.205 3.133 3.051 

5 2.978 2.975 2.963 2.945 2.919 2.885 2.844 2.795 2.739 2.674 

6 2.687 2.684 2.674 2.659 2.637 2.609 2.575 2.535 2.487 2.434 

7 2.484 2.481 2.473 2.46 2.441 2.417 2.388 2.353 2.312 2.265 

8 2.333 2.331 2.324 2.312 2.296 2.275 2.249 2.218 2.182 2.141 

9 2.217 2.215 2.209 2.198 2.184 2.164 2.141 2.113 2.081 2.044 

10 2.124 2.122 2.117 2.107 2.093 2.076 2.055 2.029 2 1.966 

11 2.048 2.046 2.041 2.032 2.019 2.003 1.984 1.96 1.933 1.902 

12 1.984 1.982 1.977 1.969 1.957 1.943 1.924 1.902 1.877 1.848 

13 1.929 1.928 1.923 1.915 1.905 1.891 1.874 1.853 1.829 1.802 

14 1.882 1.881 1.876 1.869 1.859 1.846 1.83 1.81 1.788 1.762 

15 1.841 1.84 1.835 1.829 1.819 1.807 1.791 1.773 1.752 1.727 

16 1.804 1.803 1.799 1.793 1.784 1.772 1.757 1.74 1.72 1.697 

17 1.772 1.771 1.767 1.761 1.752 1.741 1.727 1.711 1.691 1.669 

18 1.743 1.742 1.738 1.732 1.724 1.713 1.7 1.684 1.666 1.644 

19 1.717 1.716 1.712 1.706 1.698 1.688 1.675 1.66 1.643 1.622 

20 1.693 1.692 1.688 1.683 1.675 1.665 1.653 1.638 1.621 1.602 

21 1.671 1.67 1.667 1.661 1.654 1.644 1.633 1.619 1.602 1.583 

22 1.651 1.65 1.647 1.642 1.635 1.625 1.614 1.6 1.584 1.566 

23 1.632 1.631 1.629 1.624 1.617 1.608 1.597 1.584 1.568 1.55 

24 1.615 1.614 1.612 1.607 1.6 1.591 1.581 1.568 1.553 1.536 

25 1.599 1.599 1.596 1.591 1.585 1.576 1.566 1.553 1.539 1.522 

26 1.585 1.584 1.581 1.577 1.57 1.562 1.552 1.54 1.526 1.51 

27 1.571 1.57 1.567 1.563 1.557 1.549 1.539 1.527 1.514 1.498 

28 1.558 1.557 1.555 1.55 1.544 1.536 1.527 1.515 1.502 1.487 

29 1.546 1.545 1.542 1.538 1.532 1.525 1.516 1.504 1.491 1.476 

30 1.534 1.534 1.531 1.527 1.521 1.514 1.505 1.494 1.481 1.466 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.524 1.523 1.52 1.516 1.511 1.504 1.495 1.484 1.472 1.457 

32 1.513 1.513 1.51 1.506 1.501 1.494 1.485 1.475 1.462 1.448 

33 1.504 1.503 1.501 1.497 1.491 1.485 1.476 1.466 1.454 1.44 

34 1.494 1.494 1.491 1.488 1.482 1.476 1.467 1.457 1.446 1.432 

35 1.486 1.485 1.483 1.479 1.474 1.467 1.459 1.449 1.438 1.425 

36 1.477 1.477 1.475 1.471 1.466 1.459 1.451 1.442 1.431 1.418 

37 1.469 1.469 1.467 1.463 1.458 1.452 1.444 1.434 1.423 1.411 

38 1.462 1.461 1.459 1.456 1.451 1.445 1.437 1.428 1.417 1.404 

39 1.455 1.454 1.452 1.449 1.444 1.438 1.43 1.421 1.41 1.398 

40 1.448 1.447 1.445 1.442 1.437 1.431 1.424 1.415 1.404 1.392 

41 1.441 1.44 1.438 1.435 1.431 1.425 1.417 1.408 1.398 1.386 

42 1.435 1.434 1.432 1.429 1.424 1.419 1.411 1.403 1.393 1.381 

43 1.429 1.428 1.426 1.423 1.418 1.413 1.406 1.397 1.387 1.376 

44 1.423 1.422 1.42 1.417 1.413 1.407 1.4 1.392 1.382 1.371 

45 1.417 1.416 1.415 1.412 1.407 1.402 1.395 1.386 1.377 1.366 

46 1.412 1.411 1.409 1.406 1.402 1.396 1.39 1.381 1.372 1.361 

47 1.406 1.406 1.404 1.401 1.397 1.391 1.385 1.377 1.367 1.356 

48 1.401 1.401 1.399 1.396 1.392 1.387 1.38 1.372 1.363 1.352 

49 1.396 1.396 1.394 1.391 1.387 1.382 1.375 1.367 1.358 1.348 

50 1.392 1.391 1.389 1.387 1.383 1.377 1.371 1.363 1.354 1.344 

51 1.387 1.387 1.385 1.382 1.378 1.373 1.367 1.359 1.35 1.34 

52 1.383 1.382 1.381 1.378 1.374 1.369 1.362 1.355 1.346 1.336 

53 1.378 1.378 1.376 1.373 1.37 1.365 1.358 1.351 1.342 1.332 

54 1.374 1.374 1.372 1.369 1.366 1.361 1.354 1.347 1.339 1.329 

55 1.37 1.37 1.368 1.365 1.362 1.357 1.351 1.343 1.335 1.325 

56 1.366 1.366 1.364 1.362 1.358 1.353 1.347 1.34 1.331 1.322 

57 1.363 1.362 1.361 1.358 1.354 1.349 1.343 1.336 1.328 1.319 

58 1.359 1.358 1.357 1.354 1.351 1.346 1.34 1.333 1.325 1.315 

59 1.355 1.355 1.353 1.351 1.347 1.342 1.337 1.33 1.322 1.312 

60 1.352 1.351 1.35 1.347 1.344 1.339 1.333 1.327 1.319 1.309 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 14.835 13.92 12.91 11.83 10.65 9.392 8.041 6.596 5.049 3.368 

2 5.217 4.969 4.696 4.397 4.072 3.719 3.336 2.919 2.456 1.923 

3 3.611 3.467 3.309 3.135 2.944 2.736 2.507 2.255 1.971 1.633 

4 2.959 2.856 2.742 2.616 2.478 2.327 2.159 1.973 1.76 1.503 

5 2.601 2.52 2.429 2.33 2.22 2.098 1.964 1.813 1.64 1.428 

6 2.373 2.305 2.229 2.145 2.053 1.951 1.837 1.709 1.56 1.377 

7 2.213 2.154 2.088 2.016 1.935 1.846 1.747 1.634 1.503 1.34 

8 2.094 2.042 1.984 1.919 1.847 1.768 1.679 1.578 1.46 1.312 

9 2.002 1.954 1.902 1.843 1.779 1.706 1.625 1.533 1.425 1.29 

10 1.927 1.884 1.836 1.783 1.723 1.657 1.582 1.497 1.397 1.272 

11 1.866 1.826 1.782 1.732 1.677 1.616 1.546 1.467 1.374 1.256 

12 1.815 1.778 1.736 1.69 1.638 1.581 1.516 1.442 1.354 1.243 

13 1.771 1.736 1.697 1.654 1.605 1.551 1.49 1.42 1.337 1.232 

14 1.733 1.7 1.663 1.622 1.577 1.525 1.467 1.401 1.322 1.222 

15 1.7 1.669 1.634 1.595 1.551 1.502 1.447 1.384 1.309 1.213 

16 1.67 1.641 1.607 1.57 1.529 1.482 1.43 1.369 1.297 1.205 

17 1.644 1.616 1.584 1.548 1.509 1.464 1.414 1.356 1.287 1.198 

18 1.62 1.593 1.563 1.529 1.491 1.448 1.399 1.344 1.277 1.192 

19 1.599 1.573 1.544 1.511 1.474 1.433 1.386 1.333 1.269 1.186 

20 1.58 1.554 1.526 1.495 1.459 1.42 1.375 1.323 1.261 1.181 

21 1.562 1.538 1.51 1.48 1.446 1.407 1.364 1.313 1.253 1.176 

22 1.545 1.522 1.496 1.466 1.433 1.396 1.354 1.305 1.247 1.171 

23 1.53 1.508 1.482 1.454 1.421 1.385 1.344 1.297 1.24 1.167 

24 1.516 1.494 1.47 1.442 1.411 1.376 1.336 1.29 1.234 1.163 

25 1.503 1.482 1.458 1.431 1.401 1.367 1.328 1.283 1.229 1.159 

26 1.491 1.47 1.447 1.421 1.391 1.358 1.32 1.276 1.224 1.156 

27 1.48 1.46 1.437 1.411 1.382 1.35 1.313 1.27 1.219 1.153 

28 1.469 1.449 1.427 1.402 1.374 1.343 1.307 1.265 1.215 1.15 

29 1.459 1.44 1.418 1.394 1.366 1.336 1.3 1.26 1.211 1.147 

30 1.45 1.431 1.41 1.386 1.359 1.329 1.294 1.255 1.207 1.144 
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 ρ  

k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.441 1.422 1.402 1.378 1.352 1.323 1.289 1.25 1.203 1.141 

32 1.432 1.414 1.394 1.371 1.346 1.317 1.284 1.245 1.199 1.139 

33 1.425 1.407 1.387 1.365 1.339 1.311 1.279 1.241 1.196 1.137 

34 1.417 1.4 1.38 1.358 1.334 1.306 1.274 1.237 1.193 1.135 

35 1.41 1.393 1.374 1.352 1.328 1.301 1.269 1.233 1.189 1.132 

36 1.403 1.386 1.367 1.346 1.323 1.296 1.265 1.229 1.186 1.13 

37 1.396 1.38 1.362 1.341 1.317 1.291 1.261 1.226 1.184 1.128 

38 1.39 1.374 1.356 1.335 1.313 1.287 1.257 1.223 1.181 1.127 

39 1.384 1.368 1.35 1.33 1.308 1.282 1.253 1.219 1.178 1.125 

40 1.378 1.363 1.345 1.326 1.303 1.278 1.25 1.216 1.176 1.123 

41 1.373 1.358 1.34 1.321 1.299 1.274 1.246 1.213 1.174 1.122 

42 1.368 1.353 1.336 1.316 1.295 1.271 1.243 1.21 1.171 1.12 

43 1.363 1.348 1.331 1.312 1.291 1.267 1.24 1.208 1.169 1.118 

44 1.358 1.343 1.327 1.308 1.287 1.264 1.236 1.205 1.167 1.117 

45 1.353 1.339 1.322 1.304 1.283 1.26 1.233 1.202 1.165 1.116 

46 1.348 1.334 1.318 1.3 1.28 1.257 1.231 1.2 1.163 1.114 

47 1.344 1.33 1.314 1.297 1.276 1.254 1.228 1.198 1.161 1.113 

48 1.34 1.326 1.31 1.293 1.273 1.251 1.225 1.195 1.159 1.112 

49 1.336 1.322 1.307 1.29 1.27 1.248 1.223 1.193 1.157 1.11 

50 1.332 1.318 1.303 1.286 1.267 1.245 1.22 1.191 1.156 1.109 

51 1.328 1.315 1.3 1.283 1.264 1.242 1.218 1.189 1.154 1.108 

52 1.324 1.311 1.296 1.28 1.261 1.24 1.215 1.187 1.152 1.107 

53 1.321 1.308 1.293 1.277 1.258 1.237 1.213 1.185 1.151 1.106 

54 1.317 1.305 1.29 1.274 1.255 1.235 1.211 1.183 1.149 1.105 

55 1.314 1.301 1.287 1.271 1.253 1.232 1.209 1.181 1.148 1.104 

56 1.311 1.298 1.284 1.268 1.25 1.23 1.207 1.179 1.146 1.103 

57 1.308 1.295 1.281 1.266 1.248 1.228 1.205 1.178 1.145 1.102 

58 1.305 1.292 1.279 1.263 1.245 1.225 1.203 1.176 1.144 1.101 

59 1.302 1.289 1.276 1.26 1.243 1.223 1.201 1.174 1.142 1.1 

60 1.299 1.287 1.273 1.258 1.241 1.221 1.199 1.173 1.141 1.099 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

1 100 100 100 100 99.95 97.546 94.60 91.141 87.15 82.665 

2 15.977 15.942 15.83 15.66 15.41 15.096 14.70 14.25 13.72 13.121 

3 8.466 8.449 8.399 8.316 8.199 8.048 7.865 7.647 7.396 7.11 

4 6.029 6.018 5.986 5.932 5.856 5.759 5.64 5.499 5.336 5.151 

5 4.849 4.841 4.817 4.777 4.721 4.649 4.561 4.457 4.336 4.198 

6 4.155 4.149 4.13 4.098 4.053 3.996 3.926 3.842 3.746 3.636 

7 3.698 3.692 3.676 3.65 3.612 3.564 3.506 3.436 3.355 3.263 

8 3.372 3.367 3.354 3.331 3.299 3.257 3.207 3.146 3.077 2.997 

9 3.128 3.124 3.112 3.092 3.063 3.027 2.982 2.929 2.867 2.797 

10 2.938 2.934 2.923 2.905 2.88 2.847 2.807 2.759 2.704 2.641 

11 2.785 2.782 2.772 2.755 2.732 2.702 2.666 2.622 2.572 2.515 

12 2.659 2.656 2.647 2.632 2.611 2.583 2.55 2.51 2.464 2.411 

13 2.554 2.551 2.542 2.528 2.509 2.483 2.452 2.415 2.372 2.323 

14 2.464 2.461 2.453 2.44 2.422 2.398 2.369 2.335 2.295 2.249 

15 2.386 2.384 2.376 2.364 2.347 2.325 2.297 2.265 2.227 2.184 

16 2.318 2.316 2.309 2.297 2.281 2.26 2.235 2.204 2.168 2.128 

17 2.258 2.256 2.25 2.239 2.223 2.203 2.179 2.15 2.116 2.078 

18 2.205 2.203 2.197 2.186 2.172 2.153 2.13 2.102 2.07 2.033 

19 2.157 2.155 2.149 2.139 2.126 2.108 2.085 2.059 2.029 1.993 

20 2.114 2.112 2.107 2.097 2.084 2.067 2.045 2.02 1.991 1.957 

21 2.075 2.073 2.068 2.059 2.046 2.029 2.009 1.985 1.957 1.925 

22 2.04 2.038 2.033 2.024 2.011 1.996 1.976 1.953 1.926 1.895 

23 2.007 2.005 2 1.992 1.98 1.965 1.946 1.923 1.897 1.867 

24 1.977 1.975 1.97 1.962 1.951 1.936 1.918 1.896 1.871 1.842 

25 1.949 1.947 1.943 1.935 1.924 1.909 1.892 1.871 1.847 1.819 

26 1.923 1.922 1.917 1.909 1.899 1.885 1.868 1.848 1.824 1.797 

27 1.899 1.898 1.893 1.886 1.876 1.862 1.846 1.826 1.803 1.777 

28 1.877 1.875 1.871 1.864 1.854 1.841 1.825 1.806 1.783 1.758 

29 1.856 1.855 1.85 1.843 1.834 1.821 1.805 1.787 1.765 1.74 

30 1.836 1.835 1.831 1.824 1.814 1.802 1.787 1.769 1.748 1.724 
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 ρ  

k  0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 

31 1.818 1.816 1.813 1.806 1.797 1.785 1.77 1.752 1.732 1.708 

32 1.8 1.799 1.795 1.789 1.78 1.768 1.754 1.736 1.716 1.693 

33 1.784 1.783 1.779 1.773 1.764 1.752 1.738 1.721 1.702 1.679 

34 1.768 1.767 1.763 1.757 1.749 1.737 1.724 1.707 1.688 1.666 

35 1.754 1.752 1.749 1.743 1.734 1.723 1.71 1.694 1.675 1.654 

36 1.74 1.738 1.735 1.729 1.721 1.71 1.697 1.681 1.663 1.642 

37 1.726 1.725 1.722 1.716 1.708 1.697 1.684 1.669 1.651 1.63 

38 1.714 1.713 1.709 1.704 1.696 1.685 1.673 1.658 1.64 1.62 

39 1.702 1.701 1.697 1.692 1.684 1.674 1.661 1.647 1.629 1.609 

40 1.69 1.689 1.686 1.68 1.673 1.663 1.651 1.636 1.619 1.6 

41 1.679 1.678 1.675 1.669 1.662 1.652 1.64 1.626 1.609 1.59 

42 1.668 1.667 1.664 1.659 1.652 1.642 1.63 1.616 1.6 1.581 

43 1.658 1.657 1.654 1.649 1.642 1.632 1.621 1.607 1.591 1.573 

44 1.649 1.648 1.645 1.64 1.632 1.623 1.612 1.598 1.582 1.564 

45 1.639 1.638 1.635 1.63 1.623 1.614 1.603 1.59 1.574 1.556 

46 1.63 1.629 1.626 1.622 1.615 1.606 1.595 1.582 1.566 1.549 

47 1.622 1.621 1.618 1.613 1.606 1.597 1.587 1.574 1.559 1.541 

48 1.613 1.612 1.61 1.605 1.598 1.59 1.579 1.566 1.551 1.534 

49 1.605 1.604 1.602 1.597 1.59 1.582 1.571 1.559 1.544 1.527 

50 1.598 1.597 1.594 1.589 1.583 1.574 1.564 1.552 1.537 1.521 

51 1.59 1.589 1.587 1.582 1.576 1.567 1.557 1.545 1.531 1.514 

52 1.583 1.582 1.579 1.575 1.569 1.56 1.55 1.538 1.524 1.508 

53 1.576 1.575 1.573 1.568 1.562 1.554 1.544 1.532 1.518 1.502 

54 1.569 1.568 1.566 1.561 1.555 1.547 1.538 1.526 1.512 1.496 

55 1.563 1.562 1.559 1.555 1.549 1.541 1.531 1.52 1.506 1.491 

56 1.556 1.556 1.553 1.549 1.543 1.535 1.526 1.514 1.501 1.485 

57 1.55 1.549 1.547 1.543 1.537 1.529 1.52 1.509 1.495 1.48 

58 1.544 1.544 1.541 1.537 1.531 1.524 1.514 1.503 1.49 1.475 

59 1.539 1.538 1.535 1.531 1.525 1.518 1.509 1.498 1.485 1.47 

60 1.533 1.532 1.53 1.526 1.52 1.513 1.504 1.493 1.48 1.465 
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k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

1 77.666 72.171 66.18 59.724 52.79 45.398 37.55 29.277 20.566 11.419 

2 12.45 11.707 10.894 10.008 9.05 8.018 6.91 5.721 4.442 3.04 

3 6.791 6.437 6.049 5.625 5.164 4.666 4.128 3.545 2.907 2.184 

4 4.944 4.714 4.46 4.183 3.882 3.554 3.197 2.808 2.376 1.876 

5 4.044 3.873 3.684 3.477 3.251 3.004 2.734 2.438 2.106 1.715 

6 3.512 3.375 3.223 3.056 2.874 2.674 2.455 2.213 1.94 1.614 

7 3.159 3.044 2.917 2.776 2.622 2.453 2.267 2.061 1.826 1.544 

8 2.908 2.808 2.697 2.575 2.441 2.294 2.132 1.95 1.743 1.493 

9 2.718 2.629 2.532 2.423 2.304 2.173 2.028 1.866 1.68 1.453 

10 2.569 2.49 2.402 2.304 2.197 2.078 1.946 1.799 1.629 1.421 

11 2.45 2.377 2.297 2.208 2.109 2.001 1.88 1.744 1.587 1.394 

12 2.351 2.284 2.21 2.128 2.037 1.936 1.825 1.698 1.553 1.372 

13 2.268 2.206 2.137 2.061 1.976 1.882 1.778 1.66 1.523 1.353 

14 2.197 2.139 2.074 2.003 1.924 1.836 1.737 1.626 1.497 1.337 

15 2.136 2.081 2.02 1.953 1.878 1.795 1.702 1.597 1.475 1.322 

16 2.082 2.03 1.973 1.909 1.838 1.76 1.672 1.572 1.455 1.309 

17 2.034 1.985 1.931 1.87 1.803 1.728 1.644 1.549 1.438 1.298 

18 1.992 1.945 1.893 1.835 1.771 1.7 1.62 1.529 1.422 1.288 

19 1.954 1.909 1.86 1.804 1.743 1.674 1.598 1.51 1.407 1.278 

20 1.919 1.877 1.829 1.776 1.717 1.651 1.577 1.493 1.394 1.27 

21 1.888 1.847 1.801 1.75 1.694 1.63 1.559 1.478 1.383 1.262 

22 1.86 1.82 1.776 1.727 1.672 1.611 1.542 1.464 1.372 1.255 

23 1.833 1.795 1.753 1.705 1.652 1.593 1.527 1.451 1.361 1.248 

24 1.809 1.772 1.731 1.685 1.634 1.577 1.513 1.439 1.352 1.242 

25 1.787 1.751 1.711 1.667 1.617 1.562 1.499 1.428 1.343 1.236 

26 1.766 1.732 1.693 1.65 1.602 1.548 1.487 1.418 1.335 1.231 

27 1.747 1.713 1.676 1.634 1.587 1.535 1.476 1.408 1.328 1.226 

28 1.729 1.696 1.66 1.619 1.573 1.522 1.465 1.399 1.321 1.221 

29 1.712 1.68 1.645 1.605 1.56 1.511 1.455 1.39 1.314 1.216 

30 1.696 1.665 1.63 1.592 1.548 1.5 1.445 1.382 1.308 1.212 
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k  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 

31 1.681 1.651 1.617 1.579 1.537 1.49 1.436 1.375 1.302 1.208 

32 1.667 1.637 1.604 1.568 1.526 1.48 1.428 1.367 1.296 1.204 

33 1.654 1.625 1.593 1.556 1.516 1.471 1.42 1.361 1.291 1.201 

34 1.641 1.613 1.581 1.546 1.506 1.462 1.412 1.354 1.286 1.197 

35 1.629 1.602 1.571 1.536 1.497 1.454 1.405 1.348 1.281 1.194 

36 1.618 1.591 1.56 1.527 1.489 1.446 1.398 1.342 1.276 1.191 

37 1.607 1.58 1.551 1.518 1.48 1.439 1.391 1.337 1.272 1.188 

38 1.597 1.571 1.542 1.509 1.472 1.431 1.385 1.331 1.268 1.185 

39 1.587 1.561 1.533 1.501 1.465 1.425 1.379 1.326 1.264 1.183 

40 1.577 1.552 1.524 1.493 1.458 1.418 1.373 1.321 1.26 1.18 

41 1.568 1.544 1.516 1.485 1.451 1.412 1.368 1.317 1.256 1.178 

42 1.56 1.536 1.508 1.478 1.444 1.406 1.362 1.312 1.252 1.175 

43 1.551 1.528 1.501 1.471 1.438 1.4 1.357 1.308 1.249 1.173 

44 1.544 1.52 1.494 1.465 1.432 1.395 1.353 1.304 1.246 1.171 

45 1.536 1.513 1.487 1.458 1.426 1.389 1.348 1.3 1.243 1.169 

46 1.529 1.506 1.481 1.452 1.42 1.384 1.343 1.296 1.24 1.166 

47 1.522 1.499 1.474 1.446 1.415 1.379 1.339 1.292 1.237 1.165 

48 1.515 1.493 1.468 1.44 1.409 1.374 1.335 1.289 1.234 1.163 

49 1.508 1.487 1.462 1.435 1.404 1.37 1.331 1.285 1.231 1.161 

50 1.502 1.481 1.457 1.43 1.399 1.365 1.327 1.282 1.228 1.159 

51 1.496 1.475 1.451 1.425 1.395 1.361 1.323 1.279 1.226 1.157 

52 1.49 1.469 1.446 1.42 1.39 1.357 1.319 1.276 1.223 1.156 

53 1.484 1.464 1.441 1.415 1.386 1.353 1.316 1.273 1.221 1.154 

54 1.479 1.458 1.436 1.41 1.381 1.349 1.312 1.27 1.219 1.152 

55 1.473 1.453 1.431 1.406 1.377 1.345 1.309 1.267 1.216 1.151 

56 1.468 1.448 1.426 1.401 1.373 1.342 1.306 1.264 1.214 1.149 

57 1.463 1.443 1.422 1.397 1.369 1.338 1.303 1.262 1.212 1.148 

58 1.458 1.439 1.417 1.393 1.366 1.335 1.3 1.259 1.21 1.146 

59 1.453 1.434 1.413 1.389 1.362 1.331 1.297 1.256 1.208 1.145 

60 1.449 1.43 1.409 1.385 1.358 1.328 1.294 1.254 1.206 1.144 

 



Chapter 5  

235 

A p p e n d i x  5  

 

•  T a b l e  5 . 2 .  T h e  t a b l e  p r e s e n t s  t h e  m i n i m u m  a n d  

m a x i m u m  v a l u e s  o f  t h e  e v a l u a t i o n  c r i t e r i a  t h a t  w e r e  

a c h i e v e d  b y  e a c h  o f  t h e  A R C H  m o d e l s  a n d  t h e  A R C H  

m o d e l s  s u g g e s t e d  b y  t h e  S P E C  m o d e l  s e l e c t i o n  

a l g o r i t h m ,  r e s p e c t i v e l y ,  f o r  a  s u b s e t  o f  t h e  

f o r e c a s t i n g  h o r i z o n  w h i c h  r a n g e s  f r o m  2  t o  1 0 0  d a y s  

•  F i g u r e  5 . 2 .  T h e  p l o t s  i n d i c a t e  w h e t h e r  t h e  A R C H  

m o d e l s  s e l e c t e d  b y  t h e  S P E C  a l g o r i t h m  a c h i e v e  t h e  

l o w e s t  v a l u e  o f  t h e  e v a l u a t i o n  c r i t e r i o n ,  f o r  a  

f o r e c a s t i n g  h o r i z o n  r a n g i n g  f r o m  o n e  d a y  t o  o n e  

h u n d r e d  d a y s  a h e a d  

•  T a b l e  5 . 3 .  T h e  p e r c e n t a g e  o f  t i m e s  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  S P E C  a l g o r i t h m  p e r f o r m  " b e t t e r "  a s  

j u d g e d  b y  t h e  e v a l u a t i o n  c r i t e r i a  

•  T a b l e  5 . 4 .  A v e r a g e  s a m p l e  s i z e  f o r  t h e  S P E C  m o d e l  

s e l e c t i o n  a l g o r i t h m  s u g g e s t e d  b y  t h e  E v a l u a t i o n  

C r i t e r i a  f o r  b o t h  t h e  e n t i r e  1 6  t o  3 6  d a y  a h e a d  

f o r e c a s t i n g  h o r i z o n  a n d  f o r  e a c h  d a y  i n d i v i d u a l l y  

•  T a b l e s  5 . 6 . 1  t o  5 . 6 . 1 1  p r e s e n t s  t h e  p e r c e n t a g e  o f  

c a s e s  t h e  m o d e l s  s e l e c t e d  b y  e a c h  m o d e l  s e l e c t i o n  

m e t h o d  p e r f o r m  “ b e t t e r ”  a s  j u d g e d  b y  t h e  e v a l u a t i o n  

c r i t e r i a  

•  T a b l e s  5 . 7 . 1  t o  5 . 7 . 1 1  p r e s e n t  t h e  p e r c e n t a g e  o f  t i m e s  

t h e  A R C H  m o d e l s  s e l e c t e d  b y  t h e  S P E C  a l g o r i t h m  

p e r f o r m  " b e t t e r "  t h a n  t h e  A R C H  m o d e l s  s e l e c t e d  b y  

t h e  o t h e r  m o d e l  s e l e c t i o n  m e t h o d s  
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Squared Error (SE) :

Absolute Error (AE) :
Heteroscedasticity Adjusted Squared Error (HASE) :
Heteroscedasticity Adjusted Absolute Error (HAAE):
Logarithmic Error (LE):

5 10 15 16 18 20 22 24 26 28 30 32 34 35 40 45 50 60 70 80 90 100
MeanSE

minSPEC 0.187 0.126 0.097 0.092 0.083 0.077 0.072 0.069 0.067 0.065 0.064 0.063 0.062 0.061 0.059 0.056 0.053 0.049 0.045 0.041 0.038 0.036
maxSPEC 0.208 0.140 0.107 0.102 0.094 0.089 0.084 0.082 0.079 0.077 0.075 0.073 0.072 0.072 0.068 0.065 0.061 0.056 0.050 0.046 0.043 0.041
minARCH 0.177 0.116 0.087 0.083 0.076 0.070 0.066 0.063 0.061 0.058 0.057 0.055 0.054 0.054 0.050 0.047 0.044 0.040 0.037 0.034 0.031 0.030
maxARCH 0.220 0.160 0.129 0.123 0.114 0.107 0.101 0.098 0.096 0.094 0.094 0.094 0.094 0.095 0.095 0.094 0.093 0.092 0.091 0.092 0.091 0.091

MeanAE
minSPEC 1.964 1.683 1.541 1.513 1.458 1.423 1.402 1.395 1.386 1.378 1.366 1.360 1.361 1.363 1.356 1.353 1.351 1.340 1.329 1.317 1.305 1.291
maxSPEC 2.176 1.869 1.708 1.674 1.605 1.550 1.532 1.527 1.521 1.509 1.498 1.490 1.493 1.492 1.472 1.465 1.464 1.448 1.431 1.415 1.388 1.371
minARCH 1.844 1.588 1.492 1.471 1.432 1.409 1.395 1.386 1.374 1.359 1.350 1.337 1.335 1.331 1.314 1.292 1.283 1.263 1.241 1.233 1.214 1.201
maxARCH 2.217 1.963 1.840 1.812 1.761 1.722 1.701 1.692 1.677 1.667 1.660 1.656 1.666 1.670 1.671 1.677 1.681 1.692 1.702 1.701 1.692 1.687

MedSE
minSPEC 0.0119 0.0077 0.0066 0.0064 0.0055 0.0052 0.0051 0.0050 0.0050 0.0048 0.0047 0.0047 0.0045 0.0043 0.0047 0.0044 0.0046 0.0041 0.0045 0.0050 0.0053 0.0056
maxSPEC 0.0162 0.0115 0.0090 0.0090 0.0074 0.0068 0.0066 0.0063 0.0060 0.0058 0.0055 0.0054 0.0053 0.0055 0.0053 0.0056 0.0058 0.0061 0.0059 0.0064 0.0070 0.0074
minARCH 0.0094 0.0068 0.0061 0.0056 0.0059 0.0057 0.0055 0.0056 0.0052 0.0049 0.0048 0.0048 0.0045 0.0047 0.0044 0.0043 0.0047 0.0043 0.0042 0.0048 0.0048 0.0045
maxARCH 0.0151 0.0119 0.0098 0.0096 0.0084 0.0082 0.0083 0.0085 0.0085 0.0082 0.0079 0.0079 0.0075 0.0078 0.0082 0.0082 0.0092 0.0106 0.0113 0.0118 0.0121 0.0132

MedAE
minSPEC 1.089 0.877 0.815 0.799 0.742 0.723 0.717 0.708 0.708 0.690 0.684 0.683 0.668 0.658 0.683 0.661 0.681 0.642 0.672 0.706 0.729 0.749
maxSPEC 1.274 1.073 0.947 0.951 0.859 0.827 0.810 0.797 0.776 0.758 0.740 0.738 0.728 0.745 0.726 0.751 0.759 0.779 0.766 0.801 0.835 0.860
minARCH 0.970 0.824 0.784 0.751 0.770 0.755 0.740 0.748 0.722 0.703 0.696 0.690 0.674 0.682 0.666 0.653 0.689 0.657 0.650 0.694 0.690 0.671
maxARCH 1.228 1.089 0.988 0.981 0.915 0.906 0.909 0.920 0.923 0.907 0.890 0.890 0.868 0.881 0.906 0.906 0.958 1.028 1.063 1.088 1.100 1.150
MeanHASE

minSPEC 208.9 146.0 111.0 104.7 93.2 85.1 78.9 75.2 73.3 71.3 70.3 69.7 68.5 68.2 65.9 63.4 61.7 62.4 61.3 59.1 57.3 57.5
maxSPEC 250.3 170.1 131.0 128.1 121.0 114.6 113.9 111.1 109.0 106.1 103.2 101.0 98.6 97.7 93.3 89.5 85.8 81.9 76.3 71.1 67.2 66.2
minARCH 236.8 158.5 117.6 111.5 99.5 91.9 86.5 82.1 78.9 76.6 75.0 73.7 72.5 72.3 68.1 64.6 60.5 57.2 54.5 51.5 48.1 47.9
maxARCH 414.9 279.8 232.7 226.3 214.7 203.8 196.3 189.0 183.6 178.7 174.5 170.9 167.5 166.1 159.1 153.1 147.9 141.3 136.3 132.2 128.7 126.8
MeanHAAE
minSPEC 64.52 56.37 52.23 51.22 49.53 48.15 47.53 47.37 47.38 47.33 47.15 47.32 47.51 47.68 47.99 48.49 49.09 50.71 51.74 52.64 53.31 54.09
maxSPEC 68.19 60.02 56.63 56.30 55.61 55.29 55.49 55.52 55.48 55.14 54.76 54.63 54.79 54.78 54.32 54.61 55.13 55.98 56.32 56.65 56.86 57.32
minARCH 70.92 61.82 57.56 56.56 54.71 53.32 52.69 52.21 51.80 51.33 50.95 50.90 51.11 51.18 51.17 50.88 50.26 50.48 50.53 50.73 50.18 50.25
maxARCH 91.12 82.42 79.46 79.09 78.44 77.80 77.13 76.70 76.40 76.39 76.43 76.62 76.87 76.99 77.49 77.90 78.38 78.82 79.31 80.12 80.66 81.69

Table 5.2
The table presents the minimum and maximum values of the evaluation criteria that were achieved by each of the ARCH models and the ARCH models suggested by the SPEC model selection algorithm, 
respectively, for a subset of the forecasting horizon which ranges from 5 to 100 days. The first panel refers to the variance, (k=2), whereas the second panel accounts for the standard deviation, (k=1). The 
evaluation criteria are the annualized mean and median values of the following loss functions:

Evaluation Criteria for the Conditional Variance, k=2
Forecast Horizon in days
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5 10 15 16 18 20 22 24 26 28 30 32 34 35 40 45 50 60 70 80 90 100
MedHASE

minSPEC 19.52 12.27 10.81 10.01 9.10 8.42 8.45 8.14 7.95 7.56 7.77 7.54 7.44 7.43 7.80 7.38 8.08 8.41 8.22 9.39 8.33 8.74
maxSPEC 21.91 15.01 11.88 11.16 11.31 10.54 10.39 10.35 10.25 10.01 10.66 10.39 10.27 10.22 10.77 10.96 10.95 11.10 11.97 11.28 11.29 11.94
minARCH 19.53 12.50 10.08 9.82 9.69 9.02 9.24 9.43 9.22 8.51 8.85 8.42 8.43 8.86 8.45 8.40 8.72 8.36 8.57 8.38 8.80 8.33
maxARCH 28.21 20.02 17.90 17.26 15.91 16.05 15.27 15.08 15.30 14.95 14.90 15.31 15.77 15.53 15.46 15.09 15.92 16.42 19.19 22.97 27.93 36.67

MedHAAE
minSPEC 44.19 35.03 32.88 31.64 30.17 29.02 29.07 28.54 28.19 27.49 27.88 27.46 27.27 27.25 27.93 27.17 28.43 29.01 28.67 30.65 28.87 29.57
maxSPEC 46.80 38.75 34.47 33.41 33.63 32.47 32.23 32.17 32.02 31.63 32.65 32.24 32.05 31.98 32.82 33.10 33.10 33.31 34.60 33.58 33.61 34.55
minARCH 44.20 35.35 31.75 31.33 31.12 30.04 30.39 30.70 30.37 29.17 29.74 29.02 29.03 29.77 29.07 28.97 29.52 28.91 29.28 28.95 29.67 28.86
maxARCH 53.11 44.75 42.31 41.55 39.89 40.07 39.07 38.83 39.11 38.67 38.60 39.13 39.71 39.41 39.32 38.85 39.90 40.52 43.81 47.93 52.85 60.55

MeanLE
minSPEC 68.24 39.93 31.75 30.99 29.04 27.71 27.07 26.43 26.07 25.85 25.66 25.40 25.24 25.16 24.94 24.85 24.84 25.09 25.16 25.22 25.22 25.55
maxSPEC 77.35 46.44 37.00 35.93 33.76 32.67 32.14 31.50 31.09 30.71 30.34 30.02 29.86 29.72 29.16 28.93 28.89 28.89 28.37 28.03 27.70 27.74
minARCH 63.02 40.18 33.82 33.10 31.36 29.90 29.03 28.31 27.70 27.19 26.84 26.42 26.21 26.06 25.40 24.77 24.41 23.99 23.40 23.01 22.44 22.27
maxARCH 79.54 52.04 45.60 44.76 43.33 42.18 41.65 41.27 40.98 40.91 40.83 40.71 40.81 40.81 40.78 40.94 41.10 42.78 44.33 45.35 45.72 46.73

MedLE
minSPEC 22.80 14.22 10.94 10.65 10.04 8.65 9.27 8.49 8.02 8.19 7.59 7.72 8.17 8.33 8.36 8.20 9.10 9.06 9.62 9.73 9.52 9.14
maxSPEC 26.63 17.41 13.00 12.72 12.03 11.30 11.22 11.42 11.29 10.87 10.79 10.49 10.38 10.65 10.77 10.81 11.51 12.07 12.94 12.35 12.36 13.03
minARCH 21.60 13.53 11.27 11.10 10.41 9.46 9.86 10.03 9.81 9.32 9.14 8.65 8.92 9.11 9.07 8.68 9.19 8.61 9.34 9.46 9.22 8.83
maxARCH 32.39 22.40 18.06 17.53 16.90 16.38 15.43 15.85 15.30 14.79 14.31 13.37 13.68 14.18 14.83 15.71 17.07 18.56 21.65 21.97 23.58 26.19

5 10 15 16 18 20 22 24 26 28 30 32 34 35 40 45 50 60 70 80 90 100
MeanSE

minSPEC 0.535 0.398 0.335 0.323 0.301 0.288 0.277 0.271 0.267 0.265 0.263 0.260 0.259 0.259 0.255 0.250 0.245 0.239 0.234 0.227 0.220 0.216
maxSPEC 0.617 0.459 0.383 0.371 0.349 0.338 0.332 0.327 0.322 0.318 0.314 0.310 0.309 0.308 0.300 0.294 0.288 0.279 0.266 0.254 0.243 0.237
minARCH 0.507 0.396 0.343 0.333 0.316 0.301 0.292 0.283 0.277 0.271 0.268 0.265 0.262 0.261 0.252 0.242 0.235 0.224 0.214 0.206 0.196 0.191
maxARCH 0.656 0.513 0.448 0.435 0.414 0.400 0.392 0.386 0.380 0.375 0.371 0.367 0.364 0.363 0.358 0.353 0.347 0.345 0.343 0.341 0.334 0.333

MeanAE
minSPEC 4.944 4.111 3.759 3.698 3.583 3.504 3.466 3.448 3.431 3.416 3.388 3.381 3.386 3.393 3.394 3.410 3.433 3.464 3.466 3.484 3.493 3.491
maxSPEC 5.396 4.519 4.142 4.074 3.913 3.822 3.798 3.792 3.783 3.757 3.728 3.713 3.725 3.725 3.687 3.696 3.721 3.733 3.734 3.737 3.706 3.692
minARCH 4.697 4.001 3.766 3.718 3.632 3.576 3.543 3.535 3.515 3.487 3.465 3.432 3.430 3.423 3.401 3.360 3.356 3.338 3.315 3.327 3.308 3.284
maxARCH 5.460 4.762 4.483 4.428 4.337 4.261 4.235 4.228 4.203 4.184 4.166 4.156 4.173 4.180 4.194 4.229 4.268 4.356 4.443 4.497 4.507 4.549

MedSE
minSPEC 0.1322 0.0823 0.0739 0.0699 0.0597 0.0551 0.0560 0.0549 0.0538 0.0521 0.0499 0.0480 0.0474 0.0478 0.0498 0.0470 0.0490 0.0515 0.0531 0.0538 0.0542 0.0536
maxSPEC 0.1768 0.1218 0.0840 0.0806 0.0742 0.0696 0.0677 0.0665 0.0646 0.0605 0.0602 0.0613 0.0596 0.0628 0.0617 0.0647 0.0700 0.0689 0.0745 0.0717 0.0654 0.0685
minARCH 0.1211 0.0783 0.0653 0.0632 0.0624 0.0596 0.0573 0.0575 0.0565 0.0536 0.0548 0.0499 0.0507 0.0523 0.0500 0.0516 0.0518 0.0500 0.0506 0.0531 0.0516 0.0486
maxARCH 0.1693 0.1278 0.1077 0.1046 0.0967 0.0920 0.0929 0.0827 0.0860 0.0785 0.0819 0.0805 0.0859 0.0896 0.0864 0.0936 0.1001 0.1131 0.1401 0.1410 0.1492 0.1542

MedAE
minSPEC 3.636 2.868 2.719 2.645 2.444 2.347 2.367 2.344 2.319 2.282 2.234 2.190 2.177 2.186 2.232 2.168 2.213 2.269 2.304 2.319 2.327 2.315
maxSPEC 4.205 3.491 2.898 2.838 2.723 2.638 2.601 2.578 2.543 2.459 2.453 2.476 2.442 2.506 2.484 2.544 2.646 2.625 2.729 2.678 2.557 2.617
minARCH 3.479 2.798 2.555 2.514 2.499 2.441 2.394 2.398 2.377 2.316 2.340 2.234 2.252 2.286 2.236 2.272 2.275 2.235 2.250 2.305 2.271 2.204
maxARCH 4.115 3.576 3.282 3.234 3.110 3.034 3.047 2.876 2.932 2.802 2.861 2.837 2.931 2.993 2.939 3.059 3.163 3.362 3.743 3.755 3.863 3.927
MeanHASE

minSPEC 18.50 14.04 11.92 11.59 10.81 10.32 9.91 9.68 9.57 9.47 9.41 9.37 9.31 9.30 9.18 9.07 8.99 9.19 9.23 9.16 9.08 9.22
maxSPEC 19.98 15.57 13.59 13.38 13.00 12.68 12.77 12.68 12.62 12.48 12.31 12.19 12.06 11.99 11.65 11.45 11.26 11.21 10.85 10.53 10.26 10.25
minARCH 20.34 15.77 13.49 13.06 12.25 11.68 11.34 11.04 10.82 10.64 10.52 10.45 10.32 10.25 9.91 9.57 9.30 9.05 8.74 8.45 8.11 8.03
maxARCH 28.78 23.16 21.45 21.21 20.76 20.28 19.97 19.68 19.47 19.28 19.13 19.01 18.90 18.85 18.63 18.44 18.30 18.11 18.01 17.93 17.83 17.81

Forecast Horizon in days
Evaluation Criteria for the Conditional Standard Deviation, k=1

Table 5.2 (continued)
Forecast Horizon in days
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5 10 15 16 18 20 22 24 26 28 30 32 34 35 40 45 50 60 70 80 90 100
MeanHAAE
minSPEC 29.45 24.54 22.61 22.24 21.57 21.05 20.78 20.68 20.64 20.60 20.47 20.50 20.57 20.63 20.75 20.97 21.25 21.82 22.17 22.54 22.79 23.00
maxSPEC 30.68 25.95 24.17 24.00 23.64 23.45 23.41 23.41 23.39 23.24 23.07 23.01 23.08 23.08 22.90 23.06 23.31 23.62 23.82 23.97 24.09 24.24
minARCH 30.46 26.09 24.45 24.12 23.53 23.09 22.82 22.72 22.58 22.41 22.24 22.05 21.98 21.95 21.83 21.66 21.66 21.64 21.59 21.71 21.58 21.52
maxARCH 36.16 31.96 30.45 30.28 30.01 29.78 29.49 29.33 29.23 29.26 29.31 29.42 29.57 29.63 29.93 30.17 30.44 30.66 31.45 32.19 32.62 33.28

MedHASE
minSPEC 5.560 3.343 2.845 2.602 2.444 2.179 2.252 2.146 1.972 2.001 2.003 1.887 1.991 2.012 2.147 1.944 2.176 2.243 2.259 2.348 2.260 2.271
maxSPEC 6.158 4.088 3.167 2.888 3.001 2.757 2.702 2.759 2.645 2.724 2.678 2.676 2.552 2.618 2.773 2.718 2.767 2.940 3.195 2.951 2.913 3.147
minARCH 5.366 3.329 2.523 2.652 2.564 2.372 2.441 2.485 2.444 2.270 2.247 2.173 2.269 2.273 2.198 2.124 2.264 2.144 2.242 2.356 2.185 2.124
maxARCH 7.855 5.423 4.480 4.480 4.143 4.020 3.904 3.863 3.960 3.813 3.723 3.698 3.733 3.664 3.711 3.899 3.961 4.259 5.022 5.826 6.754 7.586

MedHAAE
minSPEC 23.58 18.29 16.87 16.13 15.63 14.76 15.01 14.65 14.04 14.15 14.15 13.74 14.11 14.19 14.65 13.94 14.75 14.98 15.03 15.32 15.03 15.07
maxSPEC 24.82 20.22 17.80 16.99 17.32 16.60 16.44 16.61 16.26 16.51 16.36 16.36 15.98 16.18 16.65 16.49 16.63 17.15 17.88 17.18 17.07 17.74
minARCH 23.17 18.25 15.89 16.29 16.01 15.40 15.62 15.76 15.63 15.07 14.99 14.74 15.06 15.08 14.83 14.57 15.05 14.64 14.97 15.35 14.78 14.57
maxARCH 28.03 23.29 21.16 21.17 20.36 20.05 19.76 19.66 19.90 19.53 19.29 19.23 19.32 19.14 19.26 19.75 19.90 20.64 22.41 24.14 25.99 27.54

MeanLE
minSPEC 17.06 9.98 7.94 7.75 7.26 6.93 6.77 6.61 6.52 6.46 6.41 6.35 6.31 6.29 6.24 6.21 6.21 6.27 6.29 6.30 6.30 6.39
maxSPEC 19.34 11.61 9.25 8.98 8.44 8.17 8.03 7.88 7.77 7.68 7.59 7.51 7.47 7.43 7.29 7.23 7.22 7.22 7.09 7.01 6.92 6.94
minARCH 15.75 10.04 8.46 8.27 7.84 7.47 7.26 7.08 6.92 6.80 6.71 6.61 6.55 6.52 6.35 6.19 6.10 6.00 5.85 5.75 5.61 5.57
maxARCH 19.89 13.01 11.40 11.19 10.83 10.55 10.41 10.32 10.24 10.23 10.21 10.18 10.20 10.20 10.20 10.23 10.27 10.70 11.08 11.34 11.43 11.68

MedLE
minSPEC 5.701 3.555 2.734 2.661 2.510 2.162 2.319 2.123 2.006 2.049 1.896 1.930 2.043 2.083 2.089 2.050 2.276 2.264 2.404 2.432 2.380 2.285
maxSPEC 6.657 4.352 3.249 3.179 3.007 2.825 2.806 2.854 2.821 2.718 2.698 2.623 2.595 2.662 2.693 2.703 2.877 3.018 3.235 3.089 3.090 3.257
minARCH 5.400 3.383 2.818 2.774 2.603 2.364 2.465 2.507 2.452 2.329 2.285 2.163 2.229 2.278 2.268 2.169 2.297 2.152 2.335 2.366 2.306 2.207
maxARCH 8.099 5.599 4.514 4.382 4.224 4.096 3.857 3.963 3.825 3.698 3.577 3.344 3.420 3.546 3.708 3.928 4.267 4.639 5.412 5.491 5.894 6.548

Forecast Horizon in days
Table 5.2 (continued)
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Figure 5.2a

The plots indicate whether the ARCH models selected by the SPEC algorithm achieve the 
lowest value of the evaluation criterion, for a forecasting horizon ranging from one day to one 
hundred days ahead. The value 2 indicates that the ARCH model selected by the SPEC 
algorithm achieves the lowest value for the corresponding criterion and the specific forecasting
horizon. The value 1 indicates the opposite. The realized volatilty measure is expressed as in 
(4.1). The evaluation criteria are the mean and the median values of the functions defined by 
(4.3), (4.4), (4.5), (4.6) and (4.7).
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The plots indicate whether the ARCH models selected by the SPEC algorithm achieve the 
lowest value of the evaluation criterion, for a forecasting horizon ranging from one day to one 
hundred days ahead. The value 2 indicates that the ARCH model selected by the SPEC 
algorithm achieves the lowest value for the corresponding criterion and the specific forecasting
horizon. The value 1 indicates the opposite. The realized volatilty measure is expressed as the 
square root of (4.1). The evaluation criteria are the mean and the median values of the 
functions defined by (4.3), (4.4), (4.5), (4.6) and (4.7).

Figure 5.2b
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 47% 56% 34% 26% 26% 54% 56% 34%
11-52 0% 0% 88% 100% 79% 62% 62% 100% 100% 79%
16-36 0% 0% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 40% 40% 65% 65% 35% 38% 38% 50% 50% 35%
11-52 64% 64% 88% 88% 83% 81% 81% 93% 93% 83%
16-36 86% 86% 95% 95% 100% 90% 90% 100% 100% 100%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
minSPEC
maxSPEC
MedLE: Median Logarithmic Error

366 19.7 3.6 420 19.9 3.7
12 23.8 1.7 20 26.0 2.5
14 20.7 1.5 20 23.5 2.9
18 24.7 2.8 20 24.3 2.7
18 25.0 3.3 20 24.3 3.3
18 23.6 3.3 20 23.0 3.3
18 23.3 3.4 20 22.5 3.4
18 20.0 3.8 20 19.5 3.6
18 19.4 3.8 20 19.0 3.7
18 19.4 3.8 20 19.0 3.7
18 17.2 2.9 20 17.0 2.8
18 17.2 2.9 20 17.0 2.8
18 17.8 3.6 20 17.5 3.4
18 18.3 3.1 20 18.0 2.9
18 18.3 3.1 20 18.0 2.9
18 20.6 6.5 20 20.0 6.2
18 16.1 1.4 20 16.0 1.4
18 17.8 3.6 20 17.5 3.4
16 15.6 0.8 20 20.0 6.2
18 21.1 4.7 20 20.5 4.5
18 17.8 3.6 20 17.5 3.4
18 17.8 2.9 20 17.5 2.8

Median

The percentage of times the ARCH models selected by the SPEC algorithm perform "better" as judged by the 
evaluation criteria. The first and the second panel correspond to the mean and the median of the evaluation 
criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the varianc
and the standard deviation of the returns, respectively.

Table 5.3

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Standard 
Deviation

Number of 
Criteria

Number of 
Criteria

Table 5.4

Average sample size suggested by all 
the Evaluation Criteria considered.

Average sample size suggested by the 
Evaluation Criteria rating the 

performance of the SPEC selection 
algorithm "best".

Standard 
Deviation

Forecasting Horizon (in 
number of days ahead)

Average 
sample size

Average 
sample size

16-36
16
17
18
19
20
21
22

30

23
24
25
26

35
36

Average sample size for the SPEC model selection algorithm suggested by the Evaluation Criteria for 
both the entire 16 to 36 day ahead forecasting horizon  and for each day individually.

31
32
33
34

27
28
29
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 2% 2% 1% 1% 3% 2% 2% 1% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 4% 4% 2% 2% 3% 2% 2% 1% 1% 3%
11-52 2% 2% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 5% 5% 0% 0% 0% 0% 0% 0% 0% 0%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 0% 0% 3% 2% 3% 0% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 9% 9% 1% 1% 2% 6% 6% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 3% 1% 0% 3% 2% 3% 1% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 8% 8% 1% 1% 2% 5% 5% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 5.6.2
The percentage of times the ARCH models selected by the  AEVar method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.3
The percentage of times the ARCH models selected by the SEDev method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Median

The percentage of times the ARCH models selected by the SEVar method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Table 5.6.1

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 3% 0% 0% 3% 2% 3% 0% 1% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 9% 9% 1% 1% 2% 6% 6% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 8% 16% 0% 0% 11% 12% 34% 0%
11-52 0% 0% 0% 14% 0% 0% 26% 5% 57% 0%
16-36 0% 0% 0% 5% 0% 0% 52% 0% 90% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 40% 40% 21% 21% 22% 26% 26% 20% 20% 22%
11-52 67% 67% 45% 45% 48% 57% 57% 45% 45% 48%
16-36 95% 95% 81% 81% 86% 86% 86% 81% 81% 86%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 2% 1% 4% 16% 0% 1% 12% 9% 34% 0%
11-52 0% 0% 0% 14% 0% 0% 29% 0% 57% 0%
16-36 0% 0% 0% 5% 0% 0% 57% 0% 90% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 26% 26% 24% 26% 26% 24% 24% 24%
11-52 64% 64% 52% 52% 52% 60% 60% 50% 50% 52%
16-36 90% 90% 100% 100% 100% 86% 86% 95% 95% 100%

Median

The percentage of times the ARCH models selected by the AEDev method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Table 5.6.4

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.6
The percentage of times the ARCH models selected by the HAAEVar method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.5
The percentage of times the ARCH models selected by the HASEVar method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 3% 6% 0% 2% 2% 5% 8% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 25% 25% 25% 25% 25% 21% 21% 27% 27% 25%
11-52 50% 50% 43% 43% 45% 48% 48% 48% 48% 45%
16-36 86% 86% 81% 81% 86% 76% 76% 90% 90% 86%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 3% 2% 2% 2% 2% 2% 2% 2% 3% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 3% 3% 8% 8% 6% 5% 5% 7% 7% 6%
11-52 5% 5% 5% 5% 5% 7% 7% 10% 10% 5%
16-36 10% 10% 10% 10% 10% 10% 10% 19% 19% 10%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 1% 2% 0% 0% 3% 2% 2% 0% 0% 3%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 8% 8% 1% 1% 2% 5% 5% 1% 1% 2%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Median

The percentage of times the ARCH models selected by the HASEDev method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Table 5.6.7

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.9
The percentage of times the ARCH models selected by the LEVar method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.8
The percentage of times the ARCH models selected by the HAAEDev method perform "better" as judged by the evaluation criteria. The 
first and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of 
the panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 1% 1% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 0% 0% 0% 0% 0% 1% 1% 0% 0% 0%
11-52 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
16-36 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Table 5.6.10
The percentage of times the ARCH models selected by the AIC method perform "better" as judged by the evaluation criteria. The first 
and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of the 
panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.6.11
The percentage of times the ARCH models selected by the SBC method perform "better" as judged by the evaluation criteria. The first 
and the second panel correspond to the mean and the median of the evaluation criteria, respectively. The left and the right part of the 
panels correspond to the volatility expressed as the variance and the standard deviation of the returns, respectively.

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 96% 92% 100% 100% 95% 97% 94% 100% 99% 95%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 84% 84% 97% 97% 92% 85% 85% 95% 95% 92%
11-52 86% 86% 100% 100% 100% 88% 88% 100% 100% 100%
16-36 90% 90% 100% 100% 100% 95% 95% 100% 100% 100%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 94% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 88% 88% 99% 99% 96% 91% 91% 98% 98% 96%
11-52 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 96% 93% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 88% 88% 99% 99% 96% 91% 91% 98% 98% 96%
11-52 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.7.2
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
AEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.3
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
SEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Median

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
SEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.

Table 5.7.1

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 93% 100% 100% 95% 97% 95% 100% 100% 95%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 87% 87% 98% 98% 96% 91% 91% 98% 98% 96%
11-52 93% 93% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 93% 89% 100% 100% 94% 94% 91% 99% 98% 94%
11-52 100% 98% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 92% 92% 84% 48% 48% 90% 90% 84%
11-52 33% 33% 90% 90% 81% 55% 55% 90% 90% 81%
16-36 38% 38% 90% 90% 81% 52% 52% 90% 90% 81%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 0% 60% 99% 99% 93% 94% 89% 98% 96% 93%
11-52 0% 95% 100% 100% 100% 100% 98% 100% 100% 100%
16-36 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 36% 36% 92% 92% 83% 59% 57% 88% 88% 83%
11-52 26% 26% 93% 93% 79% 52% 52% 88% 88% 79%
16-36 19% 19% 90% 90% 76% 43% 43% 86% 86% 76%

Median

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
AEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.

Table 5.7.4

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.6
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
HAAEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.5
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
HASEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 82% 88% 100% 100% 93% 94% 91% 99% 98% 93%
11-52 100% 95% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 45% 45% 88% 88% 88% 60% 60% 87% 87% 88%
11-52 45% 45% 93% 93% 93% 60% 60% 93% 93% 93%
16-36 33% 33% 95% 95% 100% 43% 43% 100% 100% 100%

MSE: Mean Square Error
MAE: Mean Absolute Error
MHASE: Mean Heteroscedasticity Adjusted Squared Error
MHAAE: Mean Heteroscedasticity Adjusted Absolute Error
MLE: Mean Logarithmic Error
MedSE: Median Square Error
MedAE: Median Absolute Error
MedHASE: Median Heteroscedasticity Adjusted Squared Error
MedHAAE: Median Heteroscedasticity Adjusted Absolute Error
MedLE: Median Logarithmic Error

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 30% 86% 100% 99% 95% 96% 92% 99% 98% 95%
11-52 71% 90% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 71% 71% 94% 94% 92% 80% 81% 93% 93% 92%
11-52 86% 86% 100% 100% 95% 86% 86% 100% 100% 95%
16-36 90% 90% 100% 100% 100% 95% 95% 100% 100% 100%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 97% 94% 100% 100% 96% 97% 95% 100% 100% 96%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 90% 90% 100% 100% 97% 92% 92% 99% 99% 97%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Median

The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
HASEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.

Table 5.7.7

Variance Standard Deviation

Days ahead 
forecasting 

horizon

Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.9
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
LEVar criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.8
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
HAAEDev criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation
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MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 99% 97% 100% 100% 96% 100% 96% 100% 100% 96%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 89% 89% 100% 100% 100% 93% 93% 99% 99% 100%
11-52 95% 95% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MSE MAE MHASE MHAAE MLE MSE MAE MHASE MHAAE MLE
1-100 98% 97% 100% 100% 96% 99% 96% 100% 100% 96%
11-52 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

MedSE MedAE MedHASE MedHAAE MedLE MedSE MedAE MedHASE MedHAAE MedLE
1-100 91% 91% 99% 99% 97% 92% 92% 99% 99% 97%
11-52 98% 98% 100% 100% 100% 100% 100% 100% 100% 100%
16-36 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Table 5.7.10
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  AIC 
criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the evaluation 
criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the standard 
deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation

Table 5.7.11
The percentage of times the ARCH models selected by the SPEC method perform "better" than the ARCH models selected by the  
SBC criterion as judged by the evaluation criteria. The first and the second panel correspond to the mean and the median of the 
evaluation criteria, respectively. The left and the right part of the panels correspond to the volatility expressed as the variance and the 
standard deviation of the returns, respectively.
Days ahead 
forecasting 

horizon

Mean
Variance Standard Deviation

Days ahead 
forecasting 

horizon

Median
Variance Standard Deviation
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A p p e n d i x  6  

 

•  T a b l e  6 . 3 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  8 5  A R C H  v o l a t i l i t y  

m o d e l s .  

•  T a b l e  6 . 8 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  S E V a r  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 9 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  A E V a r  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 0 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  S E D e v  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 1 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  A E D e v  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 2 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  H A S E V a r  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 3 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  H A A E V a r  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 4 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  H A S E D e v  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 5 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  H A A E D e v  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 6 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  L E V a r  m o d e l  s e l e c t i o n  m e t h o d .  

•  T a b l e  6 . 1 7 .  D a i l y  r a t e  o f  r e t u r n  f r o m  t r a d i n g  s t r a d d l e s  

o n  t h e  S & P 5 0 0  i n d e x  b a s e d  o n  t h e  A R C H  m o d e l s  

s e l e c t e d  b y  t h e  A I C  a n d  S B C  m o d e l  s e l e c t i o n  

m e t h o d s .  
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•  C o n s t r u c t i o n  o f  t h e  B l a c k  a n d  S c h o l e s  O p t i o n  P r i c i n g  

F o r m u l a .  

• O p t i o n s  S e n s i t i v i t i e s .  
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Table 6.3.a. Daily rate of return from trading straddles on the S&P500 index based on the 85 

ARCH volatility forecasts (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
Without filter $1.25 filter $1.75 filter ARCH Model 

Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

AR(0)GARCH(0,1) 3.45% 17.96% 4.10 456 -0.21% 17.60% -0.25 456 0.43% 17.94% 0.48 409 0.59% 18.43% 0.63 382
AR(1)GARCH(0,1) 3.45% 17.96% 4.10 456 -0.20% 17.60% -0.25 456 0.47% 17.96% 0.53 408 0.58% 18.36% 0.62 385
AR(2)GARCH(0,1) 3.45% 17.96% 4.10 456 -0.20% 17.60% -0.25 456 0.45% 17.92% 0.51 410 0.59% 18.34% 0.63 386
AR(3)GARCH(0,1) 3.42% 17.97% 4.06 456 -0.24% 17.60% -0.29 456 0.47% 17.94% 0.53 409 0.57% 18.29% 0.62 388
AR(4)GARCH(0,1) 3.42% 17.97% 4.06 456 -0.24% 17.60% -0.29 456 0.47% 17.94% 0.53 409 0.56% 18.27% 0.61 389
AR(0)GARCH(0,2) 3.75% 17.90% 4.48 456 0.10% 17.46% 0.12 456 0.82% 17.19% 0.96 402 0.85% 17.46% 0.96 383
AR(1)GARCH(0,2) 3.63% 17.93% 4.32 456 -0.02% 17.50% -0.03 456 0.48% 18.10% 0.53 404 0.70% 18.49% 0.74 381
AR(2)GARCH(0,2) 3.64% 17.93% 4.34 456 -0.01% 17.50% -0.01 456 0.47% 18.12% 0.52 403 0.66% 18.51% 0.70 380
AR(3)GARCH(0,2) 3.64% 17.92% 4.34 456 -0.01% 17.50% -0.01 456 0.48% 18.20% 0.53 397 0.65% 18.52% 0.69 380
AR(4)GARCH(0,2) 3.81% 17.89% 4.55 456 0.16% 17.45% 0.19 456 0.55% 18.23% 0.60 393 0.67% 18.68% 0.69 373
AR(0)GARCH(1,1) 3.73% 17.91% 4.44 456 0.07% 17.52% 0.09 456 0.58% 18.21% 0.65 405 0.74% 18.62% 0.78 383
AR(1)GARCH(1,1) 3.89% 17.87% 4.65 456 0.24% 17.46% 0.29 456 0.56% 18.29% 0.61 403 0.58% 18.65% 0.61 386
AR(2)GARCH(1,1) 3.85% 17.88% 4.60 456 0.20% 17.47% 0.25 456 0.68% 18.11% 0.76 402 0.81% 18.47% 0.86 384
AR(3)GARCH(1,1) 3.91% 17.87% 4.67 456 0.25% 17.46% 0.31 456 0.65% 18.18% 0.72 405 0.75% 18.59% 0.79 384
AR(4)GARCH(1,1) 4.02% 17.84% 4.81 456 0.37% 17.44% 0.45 456 0.50% 18.24% 0.55 405 0.60% 18.58% 0.64 383
AR(0)GARCH(1,2) 4.09% 17.83% 4.90 456 0.44% 17.41% 0.54 456 0.70% 18.13% 0.78 407 1.03% 18.45% 1.09 386
AR(1)GARCH(1,2) 4.16% 17.81% 4.99 456 0.51% 17.40% 0.62 456 0.74% 18.21% 0.81 405 0.95% 18.55% 1.01 386
AR(2)GARCH(1,2) 4.21% 17.80% 5.05 456 0.56% 17.39% 0.68 456 0.67% 18.04% 0.76 412 0.92% 18.52% 0.98 387
AR(3)GARCH(1,2) 4.09% 17.83% 4.90 456 0.44% 17.42% 0.54 456 0.71% 18.06% 0.80 410 0.93% 18.43% 1.00 391
AR(4)GARCH(1,2) 4.20% 17.80% 5.04 456 0.55% 17.39% 0.68 456 0.75% 18.23% 0.83 401 0.86% 18.48% 0.92 389
AR(0)GARCH(2,1) 3.81% 17.89% 4.54 456 0.15% 17.48% 0.19 456 0.54% 18.22% 0.60 406 0.61% 18.39% 0.65 386
AR(1)GARCH(2,1) 3.95% 17.86% 4.72 456 0.30% 17.42% 0.36 456 0.72% 18.01% 0.81 404 0.88% 18.49% 0.93 380
AR(2)GARCH(2,1) 3.86% 17.88% 4.61 456 0.21% 17.47% 0.25 456 0.68% 18.13% 0.75 400 0.78% 18.45% 0.83 380
AR(3)GARCH(2,1) 3.88% 17.88% 4.63 456 0.22% 17.47% 0.27 456 0.66% 17.87% 0.75 412 0.77% 18.25% 0.83 392
AR(4)GARCH(2,1) 3.98% 17.85% 4.76 456 0.33% 17.44% 0.40 456 0.57% 18.05% 0.63 405 0.62% 18.13% 0.68 391
AR(0)GARCH(2,2) 4.04% 17.84% 4.84 456 0.39% 17.43% 0.48 456 0.71% 18.13% 0.79 407 1.06% 18.46% 1.13 385
AR(1)GARCH(2,2) 4.10% 17.83% 4.91 456 0.45% 17.41% 0.55 456 0.69% 18.05% 0.77 412 0.61% 18.20% 0.67 392
AR(2)GARCH(2,2) 4.22% 17.80% 5.06 456 0.57% 17.39% 0.70 456 0.69% 18.03% 0.78 413 0.77% 18.45% 0.82 387
AR(3)GARCH(2,2) 4.18% 17.81% 5.01 456 0.52% 17.40% 0.64 456 0.62% 17.90% 0.70 414 0.67% 18.15% 0.73 393
AR(4)GARCH(2,2) 4.21% 17.80% 5.05 456 0.56% 17.39% 0.68 456 0.69% 18.07% 0.77 405 0.64% 18.21% 0.70 390
AR(0)TARCH(0,1) 3.43% 17.97% 4.08 456 -0.22% 17.61% -0.27 456 0.38% 18.18% 0.41 397 0.43% 18.49% 0.45 381
AR(1)TARCH(0,1) 3.56% 17.94% 4.24 456 -0.09% 17.58% -0.11 456 0.43% 18.19% 0.47 399 0.57% 18.68% 0.59 372
AR(2)TARCH(0,1) 3.69% 17.92% 4.40 456 0.04% 17.53% 0.05 456 0.38% 18.20% 0.42 399 0.70% 18.80% 0.72 370
AR(3)TARCH(0,1) 3.47% 17.96% 4.13 456 -0.18% 17.60% -0.22 456 0.47% 18.25% 0.51 396 0.61% 18.69% 0.63 375
AR(4)TARCH(0,1) 3.27% 18.00% 3.88 456 -0.38% 17.65% -0.46 456 0.45% 18.30% 0.49 394 0.61% 18.69% 0.63 375
AR(0)TARCH(0,2) 3.41% 17.97% 4.05 455 -0.25% 17.55% -0.30 455 0.42% 17.75% 0.48 412 0.54% 18.15% 0.60 393
AR(1)TARCH(0,2) 3.54% 17.95% 4.20 455 -0.12% 17.54% -0.15 455 0.49% 17.96% 0.55 403 0.53% 18.18% 0.58 390
AR(2)TARCH(0,2) 3.53% 17.95% 4.20 455 -0.12% 17.54% -0.15 455 0.49% 17.93% 0.55 404 0.73% 17.96% 0.80 387
AR(3)TARCH(0,2) 3.54% 17.95% 4.21 455 -0.11% 17.53% -0.14 455 0.51% 18.04% 0.57 402 0.83% 18.15% 0.89 379
AR(4)TARCH(0,2) 3.51% 17.95% 4.17 455 -0.15% 17.54% -0.18 455 0.59% 18.10% 0.66 398 0.81% 18.23% 0.86 376
AR(0)TARCH(1,1) 4.13% 17.84% 4.94 455 0.48% 17.28% 0.59 455 0.41% 17.60% 0.47 423 0.30% 17.68% 0.34 408
AR(1)TARCH(1,1) 3.83% 17.91% 4.57 455 0.18% 17.38% 0.22 455 0.64% 17.67% 0.74 417 0.79% 17.95% 0.88 400
AR(2)TARCH(1,1) 4.19% 17.82% 5.02 455 0.54% 17.27% 0.67 455 0.70% 17.75% 0.80 413 0.79% 18.01% 0.87 399
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Table 6.3.b. Daily rate of return from trading straddles on the S&P500 index based on the 85 

ARCH volatility forecasts (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
Without filter $1.25 filter $1.75 filter ARCH Model 

Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

AR(3)TARCH(1,1) 4.26% 17.79% 5.11 456 0.61% 17.24% 0.75 456 0.61% 17.73% 0.70 415 0.74% 17.97% 0.83 402
AR(4)TARCH(1,1) 4.12% 17.82% 4.94 456 0.47% 17.27% 0.58 456 0.61% 17.71% 0.70 417 0.74% 17.90% 0.83 405
AR(0)TARCH(1,2) 4.39% 17.78% 5.27 455 0.74% 17.24% 0.91 455 0.67% 17.56% 0.79 424 0.56% 17.57% 0.65 409
AR(1)TARCH(1,2) 3.64% 17.96% 4.31 454 -0.02% 17.54% -0.02 454 0.63% 17.52% 0.73 421 0.81% 17.74% 0.92 407
AR(2)TARCH(1,2) 3.43% 18.00% 4.06 454 -0.22% 17.59% -0.27 454 0.52% 17.46% 0.61 417 0.69% 17.60% 0.79 406
AR(3)TARCH(1,2) 3.77% 17.92% 4.49 455 0.11% 17.39% 0.14 455 0.39% 17.66% 0.45 419 0.59% 17.84% 0.66 405
AR(4)TARCH(1,2) 3.76% 17.94% 4.47 454 0.11% 17.41% 0.13 454 0.45% 17.59% 0.52 418 0.50% 17.84% 0.57 405
AR(0)TARCH(2,1) 3.69% 17.93% 4.39 455 0.04% 17.40% 0.05 455 0.54% 17.45% 0.64 420 0.46% 17.49% 0.52 403
AR(1)TARCH(2,1) 3.65% 17.94% 4.34 455 0.00% 17.37% 0.00 455 0.11% 17.70% 0.13 418 0.40% 17.88% 0.44 403
AR(2)TARCH(2,1) 3.91% 17.89% 4.66 455 0.25% 17.35% 0.31 455 0.45% 17.83% 0.51 412 0.58% 17.98% 0.64 400
AR(3)TARCH(2,1) 3.78% 17.90% 4.51 456 0.13% 17.36% 0.16 456 0.28% 17.68% 0.32 415 0.40% 17.90% 0.45 402
AR(4)TARCH(2,1) 3.80% 17.90% 4.53 455 0.14% 17.36% 0.18 455 0.19% 17.58% 0.21 412 0.32% 17.67% 0.37 399
AR(0)TARCH(2,2) 3.43% 18.00% 4.06 454 -0.22% 17.48% -0.27 454 0.11% 17.75% 0.13 422 0.23% 17.69% 0.27 405
AR(1)TARCH(2,2) 3.42% 17.99% 4.06 455 -0.23% 17.57% -0.28 455 0.45% 17.71% 0.52 416 0.58% 17.84% 0.66 405
AR(2)TARCH(2,2) 3.67% 17.94% 4.36 455 0.02% 17.52% 0.02 455 0.58% 17.62% 0.68 418 0.68% 17.80% 0.78 408
AR(3)TARCH(2,2) 3.41% 18.01% 4.03 454 -0.25% 17.59% -0.30 454 0.48% 17.52% 0.56 424 0.55% 17.68% 0.63 414
AR(4)TARCH(2,2) 3.45% 18.00% 4.08 454 -0.21% 17.59% -0.26 454 0.42% 17.69% 0.48 416 0.49% 17.77% 0.55 410

AR(0)EGARCH(0,1) 3.38% 17.98% 4.01 456 -0.27% 17.61% -0.33 456 0.23% 17.86% 0.27 416 0.19% 17.80% 0.21 393
AR(1)EGARCH(0,1) 3.37% 17.98% 4.00 456 -0.28% 17.62% -0.34 456 0.38% 18.00% 0.43 408 0.51% 18.14% 0.56 394
AR(2)EGARCH(0,1) 3.35% 17.98% 3.98 456 -0.30% 17.62% -0.37 456 0.38% 18.00% 0.43 408 0.37% 17.93% 0.41 392
AR(3)EGARCH(0,1) 3.37% 17.98% 4.00 456 -0.28% 17.62% -0.34 456 0.38% 17.96% 0.43 410 0.38% 17.96% 0.41 391
AR(4)EGARCH(0,1) 3.37% 17.98% 4.00 456 -0.28% 17.62% -0.34 456 0.38% 17.96% 0.43 410 0.38% 17.96% 0.41 391
AR(0)EGARCH(0,2) 2.53% 18.12% 2.98 456 -1.12% 17.79% -1.35 456 -0.46% 17.34% -0.55 431 -0.37% 17.21% -0.44 420
AR(1)EGARCH(0,2) 2.90% 18.06% 3.43 456 -0.75% 17.71% -0.91 456 -0.44% 17.60% -0.52 422 -0.06% 17.52% -0.07 408
AR(2)EGARCH(0,2) 2.89% 18.06% 3.41 456 -0.77% 17.72% -0.92 456 -0.44% 17.58% -0.52 423 -0.08% 17.52% -0.09 408
AR(3)EGARCH(0,2) 2.86% 18.07% 3.38 456 -0.79% 17.72% -0.95 456 -0.45% 17.54% -0.53 425 -0.16% 17.46% -0.19 412
AR(4)EGARCH(0,2) 2.86% 18.07% 3.38 456 -0.79% 17.72% -0.95 456 -0.47% 17.52% -0.55 426 -0.19% 17.45% -0.22 413
AR(0)EGARCH(1,1) 4.14% 17.82% 4.96 456 0.49% 17.28% 0.60 456 0.32% 17.30% 0.39 427 0.50% 17.33% 0.58 415
AR(1)EGARCH(1,1) 4.33% 17.77% 5.20 456 0.67% 17.24% 0.84 456 0.81% 17.52% 0.95 423 0.84% 17.39% 0.97 406
AR(2)EGARCH(1,1) 4.40% 17.75% 5.29 456 0.75% 17.22% 0.93 456 0.90% 17.34% 1.06 421 0.85% 17.35% 0.99 407
AR(3)EGARCH(1,1) 4.42% 17.75% 5.32 456 0.77% 17.21% 0.95 456 0.83% 17.56% 0.97 419 0.84% 17.25% 0.98 406
AR(4)EGARCH(1,1) 4.39% 17.76% 5.28 456 0.74% 17.23% 0.92 456 0.68% 17.43% 0.80 425 0.83% 17.19% 0.97 407
AR(0)EGARCH(1,2) 3.16% 18.02% 3.74 456 -0.49% 17.51% -0.60 456 -0.14% 17.75% -0.17 426 -0.14% 17.42% -0.17 414
AR(1)EGARCH(1,2) 3.63% 17.93% 4.33 456 -0.02% 17.41% -0.02 456 0.19% 17.82% 0.22 416 0.25% 18.10% 0.28 402
AR(2)EGARCH(1,2) 3.27% 18.00% 3.88 456 -0.38% 17.58% -0.46 456 0.11% 17.85% 0.12 417 0.19% 18.11% 0.20 401
AR(3)EGARCH(1,2) 3.41% 17.97% 4.06 456 -0.24% 17.45% -0.29 456 0.04% 17.93% 0.04 415 0.04% 18.19% 0.04 401
AR(4)EGARCH(1,2) 3.53% 17.95% 4.20 456 -0.12% 17.43% -0.15 456 0.16% 17.91% 0.18 412 0.26% 18.18% 0.28 396
AR(0)EGARCH(2,1) 4.07% 17.83% 4.87 456 0.42% 17.30% 0.52 456 0.29% 17.32% 0.34 427 0.43% 17.34% 0.51 416
AR(1)EGARCH(2,1) 4.31% 17.78% 5.18 456 0.66% 17.25% 0.81 456 0.76% 17.63% 0.88 418 0.86% 17.46% 0.98 403
AR(2)EGARCH(2,1) 4.40% 17.76% 5.29 456 0.74% 17.22% 0.92 456 0.80% 17.29% 0.95 427 0.81% 17.39% 0.94 407
AR(3)EGARCH(2,1) 4.32% 17.77% 5.19 456 0.67% 17.24% 0.83 456 0.79% 17.77% 0.91 420 0.82% 17.33% 0.95 402
AR(4)EGARCH(2,1) 4.33% 17.77% 5.21 456 0.68% 17.24% 0.84 456 0.78% 17.48% 0.92 427 0.89% 17.40% 1.03 407
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Table 6.3.c. Daily rate of return from trading straddles on the S&P500 index based on the 85 ARCH 

volatility forecasts (11 March 1998 – 2 June 2000). 

$2 transaction cost 
$2.00 filter $2.25 filter $2.75 filter $3.50 filter ARCH Model 

Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio
Day

s Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days

AR(0)GARCH(0,1) 0.61% 18.60% 0.63 374 0.95% 18.55% 0.98 363 1.29% 18.51% 1.30 348 1.36% 18.88% 1.31 328 
AR(1)GARCH(0,1) 0.61% 18.59% 0.63 374 0.88% 18.53% 0.90 363 1.07% 18.30% 1.09 347 1.19% 18.64% 1.15 327 
AR(2)GARCH(0,1) 0.57% 18.58% 0.59 374 0.91% 18.54% 0.93 362 1.07% 18.30% 1.09 347 1.19% 18.64% 1.15 327 
AR(3)GARCH(0,1) 0.60% 18.56% 0.63 376 0.82% 18.53% 0.85 364 1.24% 18.54% 1.25 348 1.15% 18.59% 1.12 329 
AR(4)GARCH(0,1) 0.55% 18.55% 0.57 375 0.82% 18.53% 0.85 364 1.24% 18.54% 1.25 348 1.15% 18.59% 1.12 329 
AR(0)GARCH(0,2) 1.04% 17.36% 1.16 374 1.14% 17.60% 1.23 362 1.44% 17.50% 1.52 344 1.48% 17.62% 1.51 326 
AR(1)GARCH(0,2) 0.92% 18.44% 0.96 367 1.04% 18.27% 1.08 359 1.26% 18.56% 1.26 346 1.51% 17.66% 1.54 324 
AR(2)GARCH(0,2) 0.89% 18.44% 0.92 367 1.03% 18.22% 1.07 361 1.17% 18.46% 1.18 350 1.77% 18.01% 1.76 321 
AR(3)GARCH(0,2) 0.90% 18.53% 0.93 365 1.06% 18.31% 1.10 359 1.21% 18.55% 1.22 347 1.89% 18.11% 1.87 322 
AR(4)GARCH(0,2) 0.81% 18.54% 0.83 364 1.09% 18.32% 1.12 358 1.60% 17.60% 1.69 346 1.88% 18.12% 1.86 321 
AR(0)GARCH(1,1) 0.99% 18.60% 1.03 370 1.06% 18.74% 1.08 363 1.19% 19.13% 1.15 341 1.75% 19.40% 1.61 317 
AR(1)GARCH(1,1) 0.64% 18.82% 0.66 377 0.98% 19.04% 0.98 362 1.25% 19.17% 1.21 344 1.44% 19.16% 1.33 313 
AR(2)GARCH(1,1) 0.82% 18.55% 0.86 380 1.08% 18.82% 1.10 364 1.16% 18.61% 1.16 350 1.44% 18.97% 1.36 321 
AR(3)GARCH(1,1) 0.79% 18.71% 0.82 379 0.97% 18.56% 1.01 368 0.91% 18.80% 0.91 353 1.64% 18.72% 1.57 320 
AR(4)GARCH(1,1) 0.69% 18.64% 0.72 378 0.77% 18.73% 0.79 372 0.96% 18.66% 0.97 357 1.25% 18.65% 1.22 328 
AR(0)GARCH(1,2) 1.10% 18.53% 1.16 381 1.35% 18.50% 1.39 362 1.23% 18.61% 1.23 345 1.39% 19.24% 1.28 317 
AR(1)GARCH(1,2) 0.95% 18.75% 0.98 376 0.85% 18.74% 0.87 365 0.99% 19.21% 0.96 344 1.60% 19.20% 1.50 322 
AR(2)GARCH(1,2) 0.96% 18.71% 1.00 378 0.91% 18.76% 0.93 369 0.89% 18.92% 0.89 356 1.46% 18.91% 1.41 334 
AR(3)GARCH(1,2) 0.72% 18.42% 0.76 380 0.75% 18.74% 0.76 365 0.91% 19.01% 0.90 353 1.42% 18.97% 1.36 332 
AR(4)GARCH(1,2) 0.82% 18.61% 0.86 379 0.69% 18.68% 0.71 368 1.08% 19.07% 1.06 348 1.28% 19.18% 1.20 325 
AR(0)GARCH(2,1) 0.98% 18.08% 1.05 375 0.93% 18.16% 0.98 367 1.24% 18.68% 1.23 343 1.46% 19.15% 1.37 321 
AR(1)GARCH(2,1) 0.95% 18.74% 0.98 368 1.00% 18.86% 1.01 363 1.07% 19.06% 1.04 341 1.49% 19.13% 1.38 315 
AR(2)GARCH(2,1) 0.80% 18.65% 0.83 370 0.86% 18.77% 0.87 365 0.82% 18.78% 0.82 347 1.28% 19.12% 1.19 317 
AR(3)GARCH(2,1) 0.87% 18.36% 0.93 384 0.83% 18.47% 0.87 375 0.89% 18.86% 0.88 350 1.58% 18.71% 1.51 321 
AR(4)GARCH(2,1) 0.69% 18.34% 0.74 381 0.80% 18.53% 0.83 372 0.85% 18.85% 0.84 351 1.26% 18.94% 1.20 325 
AR(0)GARCH(2,2) 1.04% 18.55% 1.09 376 1.03% 18.24% 1.08 363 1.25% 18.60% 1.24 345 1.28% 18.98% 1.21 324 
AR(1)GARCH(2,2) 0.73% 18.40% 0.77 379 0.87% 18.69% 0.89 366 1.00% 18.98% 0.98 346 1.31% 19.17% 1.23 324 
AR(2)GARCH(2,2) 0.74% 18.54% 0.77 375 0.83% 18.70% 0.85 367 1.04% 18.94% 1.03 352 1.37% 18.99% 1.30 328 
AR(3)GARCH(2,2) 0.75% 18.41% 0.80 380 0.78% 18.68% 0.81 369 0.98% 18.97% 0.97 353 1.37% 18.99% 1.30 328 
AR(4)GARCH(2,2) 0.63% 18.29% 0.68 386 0.73% 18.59% 0.76 373 1.21% 18.65% 1.22 353 1.41% 19.15% 1.33 324 
AR(0)TARCH(0,1) 0.75% 18.41% 0.78 371 0.91% 18.64% 0.92 360 1.05% 19.07% 1.02 342 1.53% 19.16% 1.42 317 
AR(1)TARCH(0,1) 0.59% 18.75% 0.60 369 0.83% 18.75% 0.84 357 1.21% 18.85% 1.18 338 1.76% 19.46% 1.60 311 
AR(2)TARCH(0,1) 0.70% 18.90% 0.71 366 0.69% 19.00% 0.68 358 1.27% 18.89% 1.23 336 1.81% 19.44% 1.64 311 
AR(3)TARCH(0,1) 0.72% 18.90% 0.73 366 0.94% 18.78% 0.95 357 1.22% 18.73% 1.21 342 1.79% 19.39% 1.64 313 
AR(4)TARCH(0,1) 0.86% 18.52% 0.89 368 0.96% 18.76% 0.97 358 1.45% 18.99% 1.40 334 1.76% 19.43% 1.60 312 
AR(0)TARCH(0,2) 0.54% 18.18% 0.58 385 0.59% 18.36% 0.62 377 0.69% 18.38% 0.71 357 1.01% 18.61% 0.98 330 
AR(1)TARCH(0,2) 0.78% 18.23% 0.83 375 0.88% 18.48% 0.91 364 1.16% 18.47% 1.17 344 1.25% 18.64% 1.21 325 
AR(2)TARCH(0,2) 0.81% 18.34% 0.85 370 0.82% 18.46% 0.85 365 0.95% 18.75% 0.94 347 1.20% 18.65% 1.16 325 
AR(3)TARCH(0,2) 0.88% 18.36% 0.92 370 0.93% 18.50% 0.96 364 1.02% 18.84% 1.01 348 1.29% 18.74% 1.23 321 
AR(4)TARCH(0,2) 0.89% 18.41% 0.93 368 0.89% 18.50% 0.92 364 1.02% 18.85% 1.01 349 1.54% 19.08% 1.46 324 
AR(0)TARCH(1,1) 0.39% 17.87% 0.44 397 0.62% 17.72% 0.69 392 0.62% 17.62% 0.69 383 0.60% 17.49% 0.65 369 
AR(1)TARCH(1,1) 0.85% 18.04% 0.94 395 0.86% 18.14% 0.94 390 0.84% 18.03% 0.90 377 1.23% 18.29% 1.26 351 
AR(2)TARCH(1,1) 0.87% 18.11% 0.95 392 0.98% 18.11% 1.06 389 0.96% 18.10% 1.03 379 1.26% 18.32% 1.30 356 
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Table 6.3.d. Daily rate of return from trading straddles on the S&P500 index based on the 85 ARCH 

volatility forecasts (11 March 1998 – 2 June 2000). 

$2 transaction cost 
$2.00 filter $2.25 filter $2.75 filter $3.50 filter ARCH Model 

Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio
Day

s Mean Stand. 
Dev. 

t 
ratio Days Mean Stand. 

Dev. 
t 

ratio Days

AR(3)TARCH(1,1) 0.77% 18.07% 0.85 397 0.83% 18.21% 0.90 388 0.98% 18.13% 1.05 378 1.12% 18.30% 1.15 357 
AR(4)TARCH(1,1) 0.75% 18.00% 0.83 400 0.88% 18.16% 0.95 391 1.00% 18.19% 1.06 375 1.05% 18.41% 1.07 351 
AR(0)TARCH(1,2) 0.67% 17.63% 0.76 404 0.74% 17.76% 0.83 396 0.73% 17.52% 0.82 386 0.49% 17.19% 0.55 370 
AR(1)TARCH(1,2) 0.71% 17.70% 0.81 401 0.75% 17.81% 0.84 395 0.83% 17.84% 0.91 383 1.05% 18.27% 1.09 357 
AR(2)TARCH(1,2) 0.69% 17.67% 0.78 403 0.73% 17.77% 0.82 398 0.84% 17.81% 0.93 384 1.07% 18.34% 1.10 354 
AR(3)TARCH(1,2) 0.56% 17.92% 0.63 401 0.61% 18.02% 0.67 396 0.92% 18.05% 1.00 383 0.93% 18.36% 0.96 360 
AR(4)TARCH(1,2) 0.74% 17.81% 0.82 394 0.76% 17.83% 0.85 393 0.88% 17.94% 0.96 386 1.06% 18.33% 1.09 358 
AR(0)TARCH(2,1) 0.44% 17.59% 0.49 397 0.50% 17.68% 0.55 391 0.48% 17.30% 0.54 380 0.32% 17.18% 0.35 367 
AR(1)TARCH(2,1) 0.42% 18.04% 0.46 395 0.33% 18.01% 0.36 391 0.26% 18.12% 0.28 378 0.48% 18.52% 0.49 360 
AR(2)TARCH(2,1) 0.68% 18.10% 0.75 393 0.73% 18.18% 0.79 389 0.64% 18.29% 0.67 375 0.84% 18.58% 0.85 354 
AR(3)TARCH(2,1) 0.52% 18.02% 0.57 393 0.51% 18.17% 0.55 386 0.62% 18.12% 0.67 376 0.72% 18.50% 0.73 356 
AR(4)TARCH(2,1) 0.35% 17.84% 0.39 391 0.44% 17.97% 0.48 383 0.52% 18.05% 0.56 374 0.69% 18.57% 0.69 344 
AR(0)TARCH(2,2) 0.45% 17.58% 0.51 400 0.53% 17.63% 0.59 396 0.63% 17.80% 0.69 384 0.46% 17.43% 0.50 370 
AR(1)TARCH(2,2) 0.50% 17.78% 0.56 400 0.59% 17.80% 0.66 397 0.69% 18.06% 0.75 385 0.83% 18.46% 0.85 358 
AR(2)TARCH(2,2) 0.63% 17.75% 0.71 400 0.60% 17.86% 0.67 395 0.76% 18.02% 0.83 386 1.03% 18.11% 1.08 365 
AR(3)TARCH(2,2) 0.61% 17.85% 0.69 405 0.62% 17.94% 0.69 401 0.66% 17.98% 0.72 388 0.86% 18.47% 0.89 363 
AR(4)TARCH(2,2) 0.62% 17.83% 0.70 404 0.71% 17.96% 0.79 397 0.69% 18.01% 0.75 386 1.12% 18.40% 1.15 356 

AR(0)EGARCH(0,1) 0.38% 17.75% 0.42 383 0.49% 17.86% 0.53 377 0.61% 18.16% 0.64 357 0.94% 18.16% 0.94 334 
AR(1)EGARCH(0,1) 0.31% 18.19% 0.33 375 0.51% 18.12% 0.54 366 0.73% 18.51% 0.73 348 1.12% 18.40% 1.11 330 
AR(2)EGARCH(0,1) 0.33% 18.12% 0.35 378 0.52% 18.14% 0.55 365 0.73% 18.49% 0.74 349 1.12% 18.40% 1.11 330 
AR(3)EGARCH(0,1) 0.31% 18.07% 0.34 380 0.52% 18.14% 0.54 365 0.71% 18.44% 0.73 351 1.11% 18.32% 1.11 333 
AR(4)EGARCH(0,1) 0.31% 18.07% 0.34 380 0.52% 18.17% 0.55 364 0.71% 18.44% 0.73 351 1.11% 18.32% 1.11 333 
AR(0)EGARCH(0,2) -0.34% 17.31% -0.40 415 -0.08% 17.45% -0.10 402 0.18% 17.51% 0.21 388 0.51% 17.68% 0.55 362 
AR(1)EGARCH(0,2) 0.00% 17.59% 0.00 398 0.26% 17.48% 0.29 390 0.30% 17.58% 0.34 376 0.77% 18.00% 0.81 351 
AR(2)EGARCH(0,2) 0.07% 17.37% 0.08 400 0.26% 17.48% 0.29 390 0.33% 17.59% 0.36 375 0.78% 17.97% 0.82 352 
AR(3)EGARCH(0,2) -0.06% 17.24% -0.07 409 0.05% 17.36% 0.05 401 0.19% 17.55% 0.21 382 0.72% 17.91% 0.76 355 
AR(4)EGARCH(0,2) -0.06% 17.24% -0.07 409 0.06% 17.36% 0.07 401 0.19% 17.55% 0.21 382 0.72% 17.88% 0.76 356 
AR(0)EGARCH(1,1) 0.40% 17.02% 0.47 410 0.34% 17.08% 0.40 406 0.46% 17.05% 0.53 389 0.72% 17.41% 0.79 369 
AR(1)EGARCH(1,1) 0.97% 17.52% 1.09 390 1.01% 17.67% 1.11 382 1.18% 17.94% 1.26 366 1.50% 18.05% 1.54 344 
AR(2)EGARCH(1,1) 0.85% 17.39% 0.98 397 0.95% 17.43% 1.08 392 1.10% 17.72% 1.20 375 1.31% 17.82% 1.39 354 
AR(3)EGARCH(1,1) 0.91% 17.41% 1.04 397 1.02% 17.52% 1.15 388 1.13% 17.81% 1.22 370 1.61% 17.96% 1.68 351 
AR(4)EGARCH(1,1) 0.86% 17.30% 1.00 401 0.90% 17.45% 1.02 393 1.20% 17.74% 1.30 371 1.69% 17.95% 1.76 349 
AR(0)EGARCH(1,2) -0.09% 17.48% -0.11 408 -0.11% 17.60% -0.12 401 0.14% 17.84% 0.15 385 0.32% 17.82% 0.34 367 
AR(1)EGARCH(1,2) 0.23% 18.21% 0.25 396 0.51% 18.07% 0.56 388 0.73% 18.47% 0.76 368 0.87% 18.71% 0.87 349 
AR(2)EGARCH(1,2) 0.49% 17.75% 0.55 395 0.54% 17.84% 0.59 390 0.68% 18.01% 0.73 378 0.84% 18.34% 0.85 350 
AR(3)EGARCH(1,2) 0.12% 18.23% 0.13 398 0.41% 17.86% 0.45 393 0.60% 18.06% 0.65 380 0.92% 18.46% 0.94 353 
AR(4)EGARCH(1,2) 0.32% 18.27% 0.35 392 0.66% 17.91% 0.73 386 0.86% 18.07% 0.92 375 1.01% 18.41% 1.03 353 
AR(0)EGARCH(2,1) 0.20% 17.01% 0.24 413 0.24% 17.18% 0.28 403 0.45% 17.13% 0.52 393 0.70% 17.44% 0.77 374 
AR(1)EGARCH(2,1) 0.88% 17.48% 1.00 393 0.94% 17.53% 1.06 390 0.93% 17.91% 1.00 371 1.11% 18.27% 1.14 354 
AR(2)EGARCH(2,1) 0.85% 17.36% 0.98 399 0.94% 17.46% 1.07 393 1.09% 17.63% 1.20 380 1.26% 18.13% 1.31 354 
AR(3)EGARCH(2,1) 0.92% 17.43% 1.04 393 0.99% 17.53% 1.12 388 0.96% 17.77% 1.05 376 1.17% 18.12% 1.21 354 
AR(4)EGARCH(2,1) 0.95% 17.48% 1.08 399 0.99% 17.55% 1.12 395 1.10% 17.66% 1.22 378 1.35% 18.08% 1.41 356 

 



Chapter 6  

257 

 
Table 6.8. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the SEVar model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.09% 18.03% 3.66 456 -0.56% 17.68% -0.68 456 -0.13% 17.81% -0.14 419 -0.04% 17.57% -0.04 397 
T = 20 3.13% 18.02% 3.71 456 -0.52% 17.69% -0.63 456 -0.42% 17.82% -0.48 423 -0.13% 17.79% -0.15 409 
T = 30 3.28% 18.00% 3.89 456 -0.37% 17.48% -0.46 456 -0.14% 17.69% -0.17 416 -0.16% 17.97% -0.18 401 
T = 40 3.03% 18.04% 3.58 456 -0.63% 17.66% -0.76 456 -0.32% 18.20% -0.36 411 0.05% 18.10% 0.05 393 
T = 50 3.04% 18.04% 3.60 456 -0.61% 17.55% -0.74 456 -0.35% 17.99% -0.39 416 -0.20% 18.07% -0.22 404 
T = 60 3.18% 18.01% 3.77 456 -0.47% 17.52% -0.57 456 -0.25% 17.97% -0.28 416 0.04% 17.84% 0.04 403 
T = 70 3.28% 18.00% 3.89 456 -0.37% 17.49% -0.45 456 -0.08% 17.96% -0.09 415 0.23% 17.86% 0.25 400 
T = 80 3.32% 17.99% 3.94 456 -0.34% 17.49% -0.41 456 -0.06% 17.98% -0.07 415 0.18% 18.26% 0.20 392 

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 0.14% 17.35% 0.16 392 0.22% 17.42% 0.25 387 0.11% 17.33% 0.12 379 0.56% 17.59% 0.59 351 
T = 20 -0.02% 17.62% -0.02 404 0.10% 17.71% 0.11 397 0.12% 17.88% 0.13 389 0.45% 18.23% 0.48 368 
T = 30 0.06% 17.86% 0.07 394 0.20% 17.99% 0.21 386 0.16% 18.10% 0.17 374 0.49% 18.32% 0.51 351 
T = 40 0.24% 18.00% 0.26 384 0.34% 18.16% 0.36 376 0.41% 18.34% 0.43 368 0.78% 18.69% 0.78 349 
T = 50 -0.04% 18.00% -0.04 395 0.21% 17.89% 0.23 389 0.41% 18.08% 0.44 377 0.74% 18.50% 0.75 355 
T = 60 0.16% 17.65% 0.18 400 0.24% 17.83% 0.27 391 0.38% 18.10% 0.41 378 0.65% 18.51% 0.66 356 
T = 70 0.19% 17.35% 0.22 394 0.26% 17.52% 0.30 385 0.32% 17.72% 0.35 376 0.56% 17.98% 0.59 356 
T = 80 0.11% 17.79% 0.12 384 0.16% 17.97% 0.17 375 0.29% 18.16% 0.30 366 0.52% 18.58% 0.51 341 

 
Table 6.9. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the AEVar model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 4.06% 17.83% 4.86 456 0.41% 17.30% 0.51 456 0.44% 17.23% 0.53 422 0.28% 17.10% 0.33 410
T = 20 3.21% 18.01% 3.81 456 -0.44% 17.50% -0.54 456 -0.36% 17.79%-0.42 425 -0.21% 18.00% -0.23 407
T = 30 2.89% 18.06% 3.42 456 -0.76% 17.57% -0.92 456 -0.39% 17.88%-0.45 419 -0.12% 18.01% -0.13 402
T = 40 3.32% 17.99% 3.95 456 -0.33% 17.47% -0.40 456 -0.19% 17.69%-0.22 413 -0.24% 17.80% -0.28 402
T = 50 3.14% 18.02% 3.72 456 -0.51% 17.50% -0.62 456 -0.05% 17.93%-0.05 411 0.11% 18.08% 0.12 395
T = 60 3.20% 18.01% 3.79 456 -0.45% 17.63% -0.55 456 0.03% 17.76% 0.04 419 0.25% 17.94% 0.28 401
T = 70 3.35% 17.98% 3.98 456 -0.30% 17.58% -0.36 456 0.34% 17.91% 0.38 409 0.33% 18.08% 0.36 395
T = 80 3.23% 18.00% 3.83 456 -0.42% 17.65% -0.51 456 0.16% 17.66% 0.18 411 0.26% 18.07% 0.28 391

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 0.48% 16.91% 0.57 406 0.48% 16.95% 0.57 404 0.46% 16.97% 0.54 389 0.85% 17.33% 0.94 364
T = 20 0.10% 17.88% 0.11 398 0.16% 17.96% 0.18 393 0.33% 18.06% 0.36 383 0.63% 18.41% 0.65 363
T = 30 0.09% 17.90% 0.10 395 0.30% 17.86% 0.33 386 0.59% 18.12% 0.63 369 0.76% 18.39% 0.77 349
T = 40 -0.04% 17.81% -0.05 389 0.20% 17.77% 0.22 380 0.43% 17.79% 0.46 361 0.64% 18.08% 0.65 345
T = 50 0.10% 18.21% 0.11 388 0.27% 18.12% 0.29 382 0.48% 18.16% 0.50 363 0.70% 18.35% 0.70 339
T = 60 0.32% 18.01% 0.36 397 0.57% 18.01% 0.62 386 0.66% 17.94% 0.71 373 0.99% 18.17% 1.01 346
T = 70 0.53% 17.95% 0.58 389 0.80% 17.92% 0.87 379 0.72% 17.77% 0.77 364 0.90% 18.21% 0.92 345
T = 80 0.35% 17.82% 0.39 385 0.59% 17.76% 0.65 376 0.68% 17.95% 0.72 365 0.96% 18.29% 0.97 346
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Table 6.10. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the SEDev model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.68% 17.92% 4.39 456 0.03% 17.38% 0.04 456 0.04% 17.35% 0.05 421 0.07% 17.61% 0.08 408
T = 20 3.31% 17.99% 3.93 456 -0.34% 17.47% -0.42 456 -0.39% 17.68%-0.46 429 -0.24% 17.91% -0.27 414
T = 30 3.03% 18.04% 3.59 456 -0.62% 17.54% -0.76 456 -0.55% 17.64%-0.64 421 -0.32% 17.82% -0.36 402
T = 40 3.10% 18.03% 3.67 456 -0.56% 17.51% -0.68 456 -0.40% 17.61%-0.47 421 -0.20% 17.65% -0.23 408
T = 50 2.81% 18.08% 3.32 456 -0.84% 17.58% -1.03 456 -0.43% 17.96%-0.49 415 -0.13% 17.85% -0.15 402
T = 60 3.18% 18.01% 3.77 456 -0.47% 17.54% -0.58 456 -0.15% 17.96%-0.17 416 0.15% 17.88% 0.17 401
T = 70 3.24% 18.00% 3.85 456 -0.41% 17.50% -0.50 456 -0.08% 17.87%-0.09 418 0.21% 17.84% 0.24 401
T = 80 3.29% 17.99% 3.90 456 -0.36% 17.50% -0.44 456 -0.12% 18.01%-0.13 413 0.24% 18.04% 0.26 393

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 0.00% 16.94% 0.00 403 0.09% 17.04% 0.11 396 -0.03% 16.91%-0.03 389 0.40% 17.39% 0.44 359
T = 20 -0.05% 17.83% -0.06 406 0.04% 17.90% 0.04 401 0.21% 18.08% 0.23 388 0.49% 18.45% 0.51 367
T = 30 -0.14% 17.71% -0.15 395 -0.02% 17.82% -0.02 388 0.15% 18.03% 0.16 376 0.41% 18.28% 0.42 353
T = 40 -0.06% 17.62% -0.07 397 0.04% 17.85% 0.04 386 0.49% 18.03% 0.52 368 0.56% 18.30% 0.58 351
T = 50 0.00% 17.76% 0.00 394 0.06% 17.89% 0.07 388 0.47% 18.06% 0.50 372 0.65% 18.50% 0.66 353
T = 60 0.29% 17.72% 0.33 396 0.42% 17.90% 0.46 387 0.80% 17.98% 0.86 375 0.93% 18.41% 0.95 357
T = 70 0.37% 17.68% 0.41 396 0.48% 17.88% 0.53 386 0.70% 17.97% 0.75 376 0.79% 18.40% 0.81 354
T = 80 0.33% 17.88% 0.36 388 0.39% 18.03% 0.42 381 0.58% 18.24% 0.61 370 0.79% 18.58% 0.80 348

 
Table 6.11. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the AEDev model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.52% 17.95% 4.18 456 -0.14% 17.42% -0.17 456 -0.18% 17.55%-0.21 423 -0.37% 17.42% -0.43 411
T = 20 3.66% 17.92% 4.36 456 0.00% 17.38% 0.00 456 -0.04% 17.61%-0.04 421 -0.02% 17.90% -0.02 406
T = 30 2.97% 18.05% 3.52 456 -0.68% 17.55% -0.83 456 -0.40% 17.80%-0.46 418 -0.24% 17.93% -0.27 403
T = 40 3.21% 18.01% 3.81 456 -0.44% 17.50% -0.54 456 -0.28% 17.70%-0.32 415 -0.36% 17.86% -0.40 402
T = 50 2.94% 18.05% 3.48 456 -0.71% 17.56% -0.86 456 -0.34% 17.79%-0.39 418 -0.10% 17.95% -0.11 399
T = 60 3.18% 18.01% 3.76 456 -0.48% 17.64% -0.58 456 0.08% 17.85% 0.09 415 0.30% 18.00% 0.34 399
T = 70 2.91% 18.06% 3.44 456 -0.75% 17.69% -0.90 456 0.04% 17.77% 0.05 414 0.10% 18.00% 0.11 396
T = 80 3.29% 17.99% 3.90 456 -0.36% 17.52% -0.44 456 0.08% 17.63% 0.10 414 0.15% 17.92% 0.17 393

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 -0.19% 17.23% -0.22 408 -0.15% 17.24% -0.17 406 -0.16% 17.13%-0.18 395 0.10% 17.62% 0.11 368
T = 20 0.21% 17.78% 0.23 399 0.27% 17.84% 0.30 395 0.46% 17.93% 0.51 385 0.76% 18.35% 0.79 362
T = 30 -0.17% 18.08% -0.19 396 0.08% 18.04% 0.09 386 0.10% 17.98% 0.10 372 0.49% 18.01% 0.51 355
T = 40 -0.28% 18.08% -0.30 391 -0.05% 18.02% -0.06 383 0.13% 18.04% 0.13 365 0.57% 18.09% 0.59 347
T = 50 -0.15% 18.04% -0.16 393 0.04% 17.97% 0.05 386 0.34% 17.95% 0.36 367 0.66% 18.07% 0.68 350
T = 60 0.33% 18.10% 0.36 394 0.60% 18.06% 0.65 385 0.68% 17.96% 0.74 373 1.02% 18.17% 1.06 352
T = 70 0.13% 18.09% 0.15 391 0.41% 18.09% 0.44 380 0.41% 18.02% 0.44 366 0.76% 18.08% 0.78 351
T = 80 0.19% 17.97% 0.21 390 0.50% 17.88% 0.54 380 0.70% 17.96% 0.75 371 0.99% 18.00% 1.04 357
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Table 6.12. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the HASEVar model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 4.04% 17.84% 4.84 456 0.39% 17.47% 0.47 456 0.68% 17.96% 0.78 419 1.07% 18.00% 1.19 400
T = 20 3.95% 17.86% 4.72 456 0.29% 17.48% 0.36 456 0.64% 18.02% 0.72 416 0.94% 18.05% 1.04 399
T = 30 3.67% 17.92% 4.37 456 0.01% 17.59% 0.02 456 0.51% 18.06% 0.58 417 0.66% 18.34% 0.72 400
T = 40 3.29% 17.99% 3.90 456 -0.37% 17.67% -0.44 456 0.17% 18.15% 0.19 416 0.28% 18.42% 0.31 398
T = 50 3.37% 17.98% 4.01 456 -0.28% 17.51% -0.34 456 0.14% 17.96% 0.15 412 0.34% 18.13% 0.37 397
T = 60 3.53% 17.95% 4.20 456 -0.12% 17.44% -0.15 456 0.28% 17.96% 0.32 412 0.34% 17.92% 0.38 402
T = 70 3.38% 17.98% 4.02 456 -0.27% 17.48% -0.33 456 0.04% 18.05% 0.05 410 0.26% 18.17% 0.29 398
T = 80 3.35% 17.98% 3.98 456 -0.30% 17.49% -0.37 456 0.07% 18.09% 0.08 408 0.22% 18.20% 0.25 398

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 1.04% 18.13% 1.13 392 1.08% 18.33% 1.15 383 1.15% 18.49% 1.19 367 1.45% 18.47% 1.45 341
T = 20 0.86% 18.16% 0.94 392 0.87% 18.30% 0.94 386 0.97% 18.35% 1.02 372 1.22% 18.72% 1.21 347
T = 30 0.79% 18.26% 0.85 390 0.82% 18.47% 0.87 381 1.12% 18.60% 1.16 370 1.41% 18.65% 1.41 349
T = 40 0.27% 18.54% 0.29 392 0.49% 18.48% 0.52 383 0.73% 18.59% 0.76 372 1.22% 18.25% 1.27 360
T = 50 0.34% 18.32% 0.37 388 0.42% 18.49% 0.44 379 0.58% 18.54% 0.60 372 1.00% 18.17% 1.04 354
T = 60 0.12% 17.80% 0.13 390 0.16% 17.92% 0.18 383 0.37% 18.02% 0.40 373 0.74% 18.08% 0.78 357
T = 70 0.05% 18.04% 0.06 386 0.04% 18.23% 0.05 378 0.32% 18.45% 0.33 363 0.52% 18.40% 0.53 347
T = 80 0.03% 18.08% 0.03 386 0.02% 18.27% 0.02 378 0.24% 18.44% 0.25 365 0.45% 18.37% 0.46 350

 
Table 6.13. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the HAAEVar model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.48% 17.96% 4.14 456 -0.17% 17.63% -0.21 456 0.23% 17.95% 0.26 422 0.43% 18.17% 0.47 407
T = 20 4.14% 17.82% 4.97 456 0.49% 17.45% 0.60 456 0.81% 17.93% 0.92 415 1.02% 18.21% 1.12 398
T = 30 3.62% 17.93% 4.31 456 -0.03% 17.60% -0.04 456 0.34% 18.11% 0.38 413 0.45% 18.36% 0.49 398
T = 40 3.56% 17.94% 4.23 456 -0.09% 17.58% -0.11 456 0.39% 18.20% 0.43 410 0.47% 18.50% 0.50 392
T = 50 3.80% 17.89% 4.54 456 0.15% 17.40% 0.18 456 0.60% 17.86% 0.68 412 0.59% 18.16% 0.65 396
T = 60 3.80% 17.89% 4.54 456 0.15% 17.39% 0.18 456 0.36% 17.93% 0.41 413 0.42% 18.09% 0.46 396
T = 70 3.70% 17.91% 4.41 456 0.04% 17.42% 0.05 456 0.48% 17.95% 0.54 411 0.55% 18.19% 0.61 398
T = 80 3.39% 17.97% 4.03 456 -0.26% 17.49% -0.32 456 0.21% 18.07% 0.23 408 0.29% 18.37% 0.32 394

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 0.36% 18.21% 0.39 404 0.50% 18.11% 0.55 397 0.44% 18.22% 0.47 378 0.90% 18.45% 0.91 346
T = 20 0.98% 18.31% 1.06 393 1.17% 18.24% 1.25 384 1.23% 18.18% 1.30 370 1.59% 18.02% 1.64 345
T = 30 0.60% 18.32% 0.65 388 0.85% 18.34% 0.90 375 1.08% 18.54% 1.11 363 1.50% 18.44% 1.51 343
T = 40 0.80% 18.23% 0.85 380 0.84% 18.42% 0.88 372 1.05% 18.60% 1.07 360 1.66% 18.74% 1.63 337
T = 50 0.63% 18.47% 0.66 382 0.69% 18.61% 0.72 375 0.85% 18.82% 0.85 354 1.19% 18.70% 1.17 337
T = 60 0.46% 18.28% 0.49 386 0.57% 18.46% 0.60 377 0.91% 18.84% 0.91 355 1.19% 18.78% 1.16 339
T = 70 0.65% 18.47% 0.69 384 0.72% 18.63% 0.75 377 1.04% 19.10% 1.02 352 1.28% 19.06% 1.23 337
T = 80 0.38% 18.61% 0.40 382 0.54% 18.57% 0.56 374 0.79% 18.96% 0.78 353 1.02% 18.94% 0.99 337
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Table 6.14. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the HASEDev model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.34% 17.98% 3.97 456 -0.31% 17.71% -0.37 456 0.10% 18.00% 0.12 417 0.18% 17.65% 0.20 401
T = 20 3.76% 17.90% 4.49 456 0.11% 17.56% 0.13 456 0.35% 18.15% 0.39 414 0.66% 18.18% 0.73 397
T = 30 3.92% 17.87% 4.69 456 0.27% 17.35% 0.33 456 0.58% 17.85% 0.66 415 0.67% 18.01% 0.74 404
T = 40 3.55% 17.94% 4.22 456 -0.10% 17.44% -0.13 456 0.14% 18.03% 0.16 410 0.26% 18.29% 0.28 395
T = 50 3.39% 17.97% 4.03 456 -0.26% 17.48% -0.32 456 0.03% 17.96% 0.03 415 0.19% 18.14% 0.20 400
T = 60 2.83% 18.07% 3.34 456 -0.83% 17.58% -1.00 456 -0.55% 18.07%-0.63 416 -0.33% 18.23% -0.36 401
T = 70 2.78% 18.08% 3.29 456 -0.87% 17.59% -1.05 456 -0.52% 18.01%-0.59 417 -0.41% 18.17% -0.45 406
T = 80 2.92% 18.06% 3.46 456 -0.73% 17.56% -0.88 456 -0.53% 18.06%-0.60 414 -0.24% 18.05% -0.27 401

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 0.19% 17.48% 0.21 394 0.23% 17.56% 0.26 389 0.32% 17.76% 0.35 378 0.59% 18.11% 0.62 353
T = 20 0.56% 18.27% 0.60 391 0.61% 18.41% 0.65 384 0.88% 18.53% 0.92 373 1.17% 18.68% 1.17 348
T = 30 0.66% 18.13% 0.73 398 0.68% 18.27% 0.74 392 0.85% 18.40% 0.90 375 1.13% 18.41% 1.15 353
T = 40 0.22% 18.41% 0.23 389 0.43% 18.39% 0.45 380 0.68% 18.52% 0.70 370 1.12% 18.60% 1.13 353
T = 50 0.19% 18.31% 0.20 392 0.37% 18.20% 0.40 385 0.59% 18.40% 0.62 372 1.06% 18.56% 1.07 352
T = 60 -0.33% 18.45% -0.36 390 -0.09% 18.40% -0.09 381 0.13% 18.68% 0.13 364 0.48% 18.68% 0.48 352
T = 70 -0.42% 18.42% -0.46 393 -0.40% 18.62% -0.42 384 -0.11% 19.04%-0.11 361 0.10% 18.96% 0.10 347
T = 80 -0.18% 18.25% -0.20 390 -0.18% 18.36% -0.19 385 0.08% 18.58% 0.08 369 0.29% 18.52% 0.30 354

 
Table 6.15. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the HAAEDev model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 2.69% 18.09% 3.18 456 -0.96% 17.80% -1.15 456 -0.71% 18.18%-0.80 421 -0.67% 18.44% -0.73 406
T = 20 4.02% 17.84% 4.81 456 0.37% 17.36% 0.45 456 0.32% 17.74% 0.37 415 0.33% 17.92% 0.38 406
T = 30 4.01% 17.85% 4.79 456 0.35% 17.32% 0.44 456 0.62% 17.78% 0.70 415 0.60% 17.92% 0.67 408
T = 40 3.47% 17.96% 4.13 456 -0.18% 17.45% -0.22 456 -0.03% 17.89%-0.03 411 0.07% 18.15% 0.07 398
T = 50 2.84% 18.07% 3.36 456 -0.81% 17.57% -0.99 456 -0.60% 17.88%-0.68 418 -0.60% 18.13% -0.67 406
T = 60 2.98% 18.05% 3.52 456 -0.67% 17.54% -0.82 456 -0.53% 17.94%-0.60 415 -0.50% 18.20% -0.55 402
T = 70 2.84% 18.07% 3.36 456 -0.81% 17.57% -0.98 456 -0.59% 18.04%-0.67 417 -0.57% 18.28% -0.63 405
T = 80 2.88% 18.06% 3.41 456 -0.77% 17.56% -0.94 456 -0.48% 18.10%-0.54 414 -0.49% 18.34% -0.54 402

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 -0.57% 18.33% -0.62 398 -0.35% 18.16% -0.38 393 -0.36% 18.32%-0.38 380 -0.04% 18.87% -0.04 348
T = 20 0.49% 17.81% 0.55 399 0.52% 17.96% 0.57 391 0.74% 18.02% 0.80 383 1.16% 18.11% 1.22 363
T = 30 0.81% 17.86% 0.91 399 0.88% 17.94% 0.97 394 1.14% 18.08% 1.23 382 1.38% 18.40% 1.43 365
T = 40 0.23% 18.16% 0.25 386 0.40% 18.14% 0.43 377 0.70% 18.26% 0.73 366 0.84% 18.63% 0.85 350
T = 50 -0.58% 18.26% -0.63 400 -0.43% 18.20% -0.46 393 -0.14% 18.54%-0.15 372 0.31% 18.84% 0.31 347
T = 60 -0.46% 18.33% -0.50 396 -0.27% 18.27% -0.29 389 0.11% 18.61% 0.11 367 0.43% 18.82% 0.43 347
T = 70 -0.52% 18.40% -0.56 399 -0.36% 18.37% -0.38 391 0.08% 18.76% 0.09 367 0.27% 18.87% 0.27 346
T = 80 -0.51% 18.47% -0.55 395 -0.35% 18.37% -0.38 390 0.05% 18.72% 0.05 368 0.21% 18.78% 0.21 349

 



Chapter 6  

261 

 
Table 6.16. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the LEVar model selection method (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 3.52% 17.95% 4.18 456 -0.14% 17.41% -0.17 456 -0.42% 17.62%-0.49 421 -0.40% 17.87% -0.45 407
T = 20 3.32% 17.99% 3.94 456 -0.33% 17.47% -0.41 456 -0.34% 17.78%-0.39 419 -0.35% 18.00% -0.39 408
T = 30 2.81% 18.07% 3.32 456 -0.84% 17.57% -1.02 456 -0.69% 17.84%-0.79 423 -0.35% 17.80% -0.39 406
T = 40 3.31% 17.99% 3.93 456 -0.34% 17.48% -0.42 456 -0.06% 17.87%-0.07 418 0.06% 17.81% 0.07 404
T = 50 3.01% 18.04% 3.56 456 -0.64% 17.53% -0.78 456 -0.28% 17.98%-0.32 412 0.08% 17.99% 0.09 392
T = 60 3.29% 17.99% 3.90 456 -0.37% 17.51% -0.45 456 -0.24% 17.80%-0.27 419 0.18% 17.76% 0.20 401
T = 70 3.18% 18.01% 3.78 456 -0.47% 17.55% -0.57 456 -0.23% 17.72%-0.27 415 0.17% 17.61% 0.19 397
T = 80 3.07% 18.03% 3.63 456 -0.58% 17.55% -0.71 456 -0.18% 17.73%-0.20 413 0.23% 17.69% 0.26 391

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days Mean Stand. 
Dev. 

t 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

T = 10 -0.44% 17.34% -0.51 403 -0.34% 17.36% -0.39 397 -0.29% 17.17%-0.33 388 -0.05% 17.71% -0.06 361
T = 20 -0.31% 18.09% -0.34 403 -0.19% 18.24% -0.20 394 -0.26% 18.19%-0.28 380 0.15% 18.33% 0.15 358
T = 30 -0.32% 17.94% -0.35 399 -0.24% 18.01% -0.26 394 -0.04% 17.81%-0.04 378 0.38% 17.93% 0.40 357
T = 40 0.12% 18.02% 0.13 393 0.28% 18.20% 0.30 382 0.46% 18.22% 0.49 363 0.93% 18.35% 0.94 342
T = 50 0.14% 18.08% 0.15 386 0.17% 18.22% 0.18 380 0.44% 18.18% 0.46 363 0.78% 18.35% 0.79 344
T = 60 0.23% 17.86% 0.26 394 0.28% 18.01% 0.30 387 0.40% 17.91% 0.43 372 0.79% 18.14% 0.82 350
T = 70 0.21% 17.62% 0.24 394 0.30% 17.82% 0.32 384 0.55% 18.02% 0.58 369 0.85% 18.20% 0.87 345
T = 80 0.23% 17.71% 0.25 390 0.31% 17.94% 0.33 379 0.60% 18.12% 0.63 366 0.96% 18.25% 0.98 347

 
 

Table 6.17. Daily rate of return from trading straddles on the S&P500 index based on the ARCH 

models selected by the AIC and SBC model selection methods (11 March 1998 – 2 June 2000). 

Without transaction cost $2 transaction cost 
 

Without filter $1.25 filter $1.75 filter 

Sample size Mean Stand. 
Dev. 

T 
 ratio Days Mean Stand. 

Dev. 
T 

 ratio Days Mean Stand. 
Dev. 

T 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

AIC 4.05% 17.84% 4.85 456 0.40% 17.31% 0.49 456 0.66% 17.69% 0.76 414 0.78% 17.75% 0.88 401
SBC 3.74% 17.90% 4.47 456 0.09% 17.37% 0.11 456 0.52% 17.82% 0.59 412 0.65% 18.15% 0.71 394

$2 transaction cost 
 

$2.00 filter $2.25 filter $2.75 filter $3.50 filter 

Sample size Mean Stand. 
Dev. 

T 
 ratio Days Mean Stand. 

Dev. 
T 

 ratio Days Mean Stand. 
Dev. 

T 
 ratio Days Mean Stand. 

Dev. 
t 

 ratio Days

AIC 0.90% 17.86% 1.00 394 0.96% 18.00% 1.05 386 1.03% 17.95% 1.10 366 1.21% 18.22% 1.21 333
SBC 0.88% 18.23% 0.94 385 0.95% 18.37% 1.01 378 0.98% 18.25% 1.03 364 1.41% 18.49% 1.40 338
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A p p e n d i x  6 . 1 .  

C o n s t r u c t i o n  o f  t h e  B l a c k  a n d  S c h o l e s  O p t i o n  P r i c i n g  

F o r m u l a  

 

The lines following present the Black and Scholes approach in constructing 

their option pricing formula. Suppose we have an option whose value, ( )tSC , , depends 

only on the stock price, S , and time, t . It is not necessary at this stage to determine 

whether C  is a call or put. Let’s create a riskless hedge portfolio, consisting of a long 

position in the stock (buy the stock) and short position in the option (sell the option) 

under the assumption investors have full access to information, are borrowing and 

lending at the continuously compounded risk free interest rate and are trading 

continuously in a frictionless capital market with no transaction costs, no taxes, no 

short sales constraints. Moreover, we assume that the stock price follows a geometric 

Brownian motion: 

( ) ( ) ( ) ( )tdBtSdttStdS σµ += , 

where µ  is the expected instantaneous rate of return on the underlying asset, σ  is the 

instantaneous variance of the rate of return and ( )tB  is a standard Brownian motion. If 

we write as SQ  the number of stocks and CQ  the number of options then the value HV  

of that riskless hedge portfolio and its changes HdV  in short intervals will be 

determined as: 

dCQdSQVd
CQSQV

CSH

CSH

+=
+=

 
 

 
If we assume that the short position (writing call options) is changed continuously, we 

can use Ito’s Lemma to expand ( ) ( )tSCdttdSSCdC ,, −++= : 

( ) dtS
S
Cdt

t
CdS

S
CtSdC 22

2

2

2
1, σ

∂
∂

+
∂
∂

+
∂
∂

= . 

We determine SQ  and CQ  such as the risk factor is eliminated: 

0=
∂
∂

+ dS
S
CQdSQ CS . 

We find out that the ratio of stocks to options must be instantaneously adjusted at the 

rate of - ∂C/∂S, 

C
S

Q
Q

S

C

∂
∂

−= . 



Chapter 6  

263 

Normalizing 1=SQ , the above equation shows that for each stock purchased we have 

to write (negative sing) ∂C/∂S options on it. Moreover, since the return on the equity on 

the hedge portfolio is certain, it must be equal to the risk free rate: 

dtr
V
dV

f
H

H = . 

Thus, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+
∂
∂

∂
∂−

= dtS
S
Cdt

t
C

C
SdVH

22
2

2

2
1 σ  and solving for tC ∂∂  we reach: 

22
2

2

2
1 S

S
C

S
CVr

t
C

Hf σ
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−=
∂
∂

. 

Combining ( )( )SCCSVH ∂∂−= /1  with the above equation and rearranging, we reach 

to the following partial differential equation for the value of the option: 

0
2
1

2

2
22 =−

∂
∂

+
∂
∂

+
∂
∂ Cr

T
C

S
CSr

S
CS ffσ , 

which is uniquely solved subject to a set of boundary conditions.  

Having derived the Black and Scholes equation for the value of an option, we 

must next consider the boundary conditions yielding a unique solution to the partial 

differential equation. First, we are dealing with pricing a European call, ( )tSC , , with 

exercise price K  and expiry date T . At maturity day the value of the call is known with 

certainty and is the payoff, ( )( ) ( )[ ]KTSTTSC −= ,0max, . Moreover, if 0=S  then the 

call option is worthless even if there is a long time to expiry, ( ) 0,0 =tC . Finally, as the 

stock price increases without bound, it becomes even more likely that the option will be 

exercised and the magnitude of the exercise price becomes less and less important. 

Thus, as ∞→S  the value of the option become that of the asset, ( ) StSC ≈,  as 

∞→S . 

The boundary conditions to price a European put, denoted by ( )tSP , , with 

exercise price K  and expiry date T , claim that at maturity day the value of the put is 

known with certainty and is the payoff, ( )( ) ( )[ ]TSKTTSP −= ,0max, . If the stock price 

is zero the put price is the present value of the exercise price received at maturity day: 

( ) ( )( )KtTrtP f −−= exp,0 . Finally, as the asset price increases without bound the 

option is unlikely to be exercised: ( ) 0, →tSP  as ∞→S . 

The unique solution of the partial differential equation, subject to the boundary 

conditions, yields the Black and Scholes Option Pricing Formula.  
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( )( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( )

( ) ( )( )

tTdd
tT

tTrK
tS

d

dNtSdNKettSP

dNKedNtSttSC

f

tTr

tTr

f

f

−−=

−

−++⎟
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⎞⎜

⎝
⎛

=

−−−=

−=
−−

−−

σ
σ

σ

12
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1

12

21

2
1ln

,

,

, 

where ( ).N  is the standard normal cumulative distribution function and ( )tT −  is the 

time to maturity of the option. 

 Merton (1973b) extended the Black & Scholes model to allow for dividend yield. 

The model can be used to price European call and put options on a stock or stock 

index paying a known dividend yield equal to γ . Suppose that in time dt  the 

underlying asset pays a dividend Sdtγ . The asset price should fall by the amount of the 

dividend payment, thus the asset price distribution is: 

( ) ( ) ( ) ( ) ( )tdBtSdttStdS σγµ +−= . 

Proceeding exactly as before we reach to a partial differential equation of the form: 

( ) 0
2
1

2

2
22 =−

∂
∂

+
∂
∂

−+
∂
∂ Cr

T
C

S
CSr

S
CS ff γσ , 

which is uniquely solved subject to the same set of boundary conditions, except from 

the value of the option when the asset price increases without bound. As ∞→S  the 

value of the call equals to the price of the asset without its dividend: 

( ) ( )( )tTStSC −−≈ γexp, . Adding a constant dividend yield the option pricing formula 

is: 

( )( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

tTdd
tT

tTrK
tS

d

dNetSdNKettSP
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,

, 

 Note that in order to derive the option pricing formula we do assume nothing 

about investors’ preferences. Both an economy consisting of risk-neutral investors and 

an economy consisting of risk-averse investors must yield the same price for the 

derivative security. Cox and Ross (1976) assume a risk neutral economy and define 

the price of the option as the expected value of its payoff discounted at the risk free 

rate: 

( )( ) ( ) ( )[ ]( )t
tTr IKTSEetTSC f |~,0max,~

−= −− . 
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The expectation is evaluated conditional to the information available at time t. The 

( )TS~  denotes the terminal stock price adjusted for risk neutrality. The procedure is 

applied to solve the conditional expectation is called risk-neutral pricing method and the 

solution yields to the Black and Scholes formula. 

 Cox et al. (1979) and Rendleman and Bartter (1979) independently derive the 

Binomial option pricing formula. They assume that the stock price follows a 

multiplicative binomial process over discrete period. At the limit, a binomial tree is 

equivalent to the continuous time Black and Scholes formula for pricing European 

options. The Binomial method provides solutions not only for a closed form European 

option pricing model but also for the more difficult American option problem where 

numerical solutions must be employed. To price European call and put options with τ  

days to maturity, the model is expressed as: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )∑

∑
−

=

−−−

=

−−−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=

1

0

1
!!

!

1
!!

!

a

i

iniinir

n

ai

iniinir

dSuKpp
ini

netP

KdSupp
ini

netC

f

f

τ

τ

 . 

The stock price can either increase by a fixed amount u  with a probability p , or 

decrease by a fixed amount d  with probability p−1 . The number of time steps is n  

and a  is the smallest nonnegative integer greater than ( ) ( )duSdK n lnln . The stock 

price at each node is set equal to ijidSu −  for ji ,...,1= . The upward and downward 

jump size that the stock can take place at each time step nττ =∆  is given by 

( )τσ ∆= expu  and ( )τσ ∆−= expd  respectively, where n  is the number of time 

steps. The probability of the stock price increasing at the next time step is 

( )( )( ) ( )dudrp f −−∆−= τγexp  and the probability of going down is p−1 . 
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A p p e n d i x  6 . 2 .  

O p t i o n s  S e n s i t i v i t i e s  

 
Delta, Lambda, Gamma, Theta, Vega and Rho comprise the pricing sensitivities 

and represent the key relationships between the individual characteristics of the option 

and the option price. The option sensitivities are the partial derivatives of the BS option 

price in relation to each individual factor that affects the price of the option. In the 

formulas following we omit the subscript symbol indicates the time, t , for notational 

simplicity. 

Delta is the change in the option price for a given change in the stock price, that is, 

the hedge ratio. 

( )

( )( ) 01

0

1

1

<−=
∂
∂

=∆

>=
∂
∂

=∆

−

−

dNe
S
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dNe
S
C

PUT

CALL

γτ

γτ

 

For example, a trader who buys one call option with ∆=0.6, and sells a different call 

option with ∆=0.4, has a net ∆=0.6-0.4=0.2. Thus, a $1 change in the stock price 

creates a +$0.2 increase in the combined option position. 

 Lambda or Elasticity measures the percentage change in the option price for a 

given percentage change in the stock price. 

( )
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PUT
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A Lambda of 5 means that a 1% increase in the price of the stock causes a 5% 

increase in the price of the option. Leverage is an important characteristic of options 

that attracts speculators. 

 Rho measures the change in the option price for a given change in the risk free 

interest rate. 
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Option traders have only a minor interest in Pho, as an increase in risk free rate have 

only a minimal effect on the value of an option. 
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 Theta is the change in the option price for a given a change in the time, until 

option expiration. As time to maturity decreases, it is normal to express the Theta as 

minus the partial derivative with respect to time. 
( )

( ) ( )
( )

( ) ( )21

2/
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22

22
2
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2
1
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 Gamma measures the change in the delta for a given change in the stock price. 

Gamma is identical for call and put options.  
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d

PUTCALL  

Gamma is one measure of the effect of instability on the option position (the other is 

Vega). It shows the risk inherent in Delta. If Gamma is small, Delta is not sensitive to 

changes in the stock price. If Gamma is large, Delta is sensitive to stock price changes. 

If Gamma is 0.5 and the current Delta is 0, then an increase in the stock price of $1 

causes the Delta to increase from 0 to 0.5. Now, the new Delta means that an increase 

in the stock price of $1 will now increase the option price by $0.5. 

 Vega is the change in the option price for a given change in the volatility of the 

stock. Vega is equal for call and put options. 
( )
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π
τ

σσ

γτ d

PUTCALL
SePCV  

If V=18, then an increase in the annual standard deviation of the stock of 1% causes 

the option price to increase by $18. Traders often attempt to find out which options are 

cheaper or more expensive in terms of volatility than the market believes. Moreover, a 

relatively small change in the annual volatility of returns causes a relatively large 

change in the option price. Volatility is the only factor in BS formula that is not directly 

observable, so the traders forecast the future volatility to value options. Therefore, 

changes in implied volatility have a major impact on option prices. Strategies with 

positive Vega (buy an option) are profit when volatility increases and strategies with 

negative Vega (sell an option) are profit when volatility is stable or decreases. Both 

Gamma and Vega are dealing with volatility of the underlying asset, but they have a 

main difference. Vega indicates the sensitivity of our position to a change in the implied 

volatility of the stock. On the other hand, Gamma indicates the effect of the current 

volatility on the option price as the stock price changes. 

Consider the example of computing the theoretical option prices in section 6.2.3 of the 

6th chapter. The option sensitivities for the call and put options are the following: 
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 Price Delta Lambda Rho Theta Gamma Vega 

Call 1,867 0,337 10,833 4,591 -6,981 0,040 10,873 

Put 6,326 -0,650 -6,169 -11,337 -4,847 0,040 10,873 
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A p p e n d i x  8  

 

•  F i g u r e s  8 . 1 - 8 . 8 .  T h e  C u m u l a t i v e  D e n s i t y  F u n c t i o n  o f  

t h e  M i n i m u m  C o m p o n e n t  o f  a  T r i - V a r i a t e  G a m m a  

V e c t o r  

 

•  T a b l e s  8 . 3 - 8 . 2 0 .  T h e  P r o b a b i l i t y  ( )p−1  t h a t  t h e  

M i n i m u m  ( )1X  o f  a  T r i v a r i a t e  G a m m a  V e c t o r  i s  L e s s  

t h a n  o r  E q u a l  t o  p−1ω  f o r  502 1 ≥≥ − pω ,  505 ≥≥ a  
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Figure 8.1. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %52,1 =ρ , %303,1 =ρ  

and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( ) ( ) ( )xxxFxxFxFCaxF XXX

i i
XXXX ii

,,,3,;
321

1 2
2111 ,,

2

1

3

2
,123 +−= ∑∑

= =

 

0

20

40

60

20

40

60

80

100

0
0.25

0.5
0.75

1

0

20

40

 
Figure 8.2. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %52,1 =ρ , %603,1 =ρ  

and %953,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.3. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %302,1 =ρ , %303,1 =ρ  

and %303,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.4. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %302,1 =ρ , %603,1 =ρ  

and %953,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.5. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %602,1 =ρ , %603,1 =ρ  

and %603,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.6. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %602,1 =ρ , %603,1 =ρ  

and %953,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.7. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %602,1 =ρ , %953,1 =ρ  

and %953,2 =ρ , the non-diagonal elements of 123C . 
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Figure 8.8. The cumulative density function of the minimum component of a tri-variate 

gamma vector, for 060 ≥≥ x , 0100 >≥ a , and %952,1 =ρ , %953,1 =ρ  

and %953,2 =ρ , the non-diagonal elements of 123C . 
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Table 8.3 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%53,1 =ρ  and %53,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1497 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7508 0.0242 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9766 0.2311 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9990 0.6314 0.0509 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 1.0000 0.9034 0.2299 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9856 0.5394 0.0625 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9987 0.8137 0.2123 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9999 0.9499 0.4637 0.0654 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9908 0.7236 0.1910 0.0177 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9988 0.8954 0.4001 0.0640 0.0045 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9999 0.9710 0.6389 0.1699 0.0190 0.0011 0.0000 0.0000

24 1.0000 1.0000 1.0000 0.9940 0.8293 0.3460 0.0604 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9991 0.9375 0.5618 0.1502 0.0192 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9999 0.9822 0.7580 0.2998 0.0559 0.0056 0.0003

30 1.0000 1.0000 1.0000 1.0000 0.9960 0.8918 0.4927 0.1324 0.0187 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9993 0.9610 0.6860 0.2601 0.0510 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9999 0.9887 0.8371 0.4314 0.1164 0.0178

36 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 0.9298 0.6163 0.2259 0.0461

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9750 0.7769 0.3774 0.1023

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9926 0.8895 0.5506 0.1964

42 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9537 0.7142 0.3299

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9836 0.8419 0.4898

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9951 0.9245 0.6515

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9690 0.7891

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9890 0.8880
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Table 8.4 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%53,1 =ρ  and %303,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1491 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7438 0.0242 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9733 0.2296 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9986 0.6250 0.0507 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 1.0000 0.8971 0.2283 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9832 0.5338 0.0623 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9982 0.8063 0.2108 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9999 0.9452 0.4590 0.0652 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9891 0.7162 0.1897 0.0177 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9984 0.8889 0.3962 0.0638 0.0045 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9998 0.9675 0.6321 0.1688 0.0189 0.0011 0.0000 0.0000

24 1.0000 1.0000 1.0000 0.9928 0.8219 0.3428 0.0602 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9987 0.9322 0.5557 0.1493 0.0191 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9998 0.9796 0.7504 0.2972 0.0557 0.0056 0.0003

30 1.0000 1.0000 1.0000 1.0000 0.9951 0.8852 0.4875 0.1316 0.0187 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9990 0.9569 0.6787 0.2579 0.0508 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9998 0.9867 0.8297 0.4270 0.1158 0.0178

36 1.0000 1.0000 1.0000 1.0000 1.0000 0.9966 0.9243 0.6096 0.2242 0.0460

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9718 0.7692 0.3736 0.1018

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9912 0.8829 0.5446 0.1950

42 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9492 0.7067 0.3268

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9811 0.8346 0.4845

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9940 0.9188 0.6444

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9654 0.7815

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9872 0.8813
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Table 8.5 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%53,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1461 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7199 0.0240 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9631 0.2227 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9972 0.6024 0.0500 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9999 0.8771 0.2211 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9756 0.5137 0.0612 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9966 0.7823 0.2042 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9997 0.9301 0.4415 0.0640 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9835 0.6916 0.1839 0.0175 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9970 0.8683 0.3812 0.0626 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9996 0.9562 0.6087 0.1638 0.0187 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9999 0.9885 0.7981 0.3300 0.0591 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9976 0.9155 0.5344 0.1450 0.0189 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9996 0.9711 0.7256 0.2863 0.0547 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9999 0.9919 0.8642 0.4685 0.1280 0.0185 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9981 0.9437 0.6543 0.2488 0.0499 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9996 0.9803 0.8061 0.4104 0.1127 0.0176

36 1.0000 1.0000 1.0000 1.0000 0.9999 0.9942 0.9067 0.5866 0.2165 0.0452

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9615 0.7445 0.3593 0.0992

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9863 0.8618 0.5234 0.1886

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9958 0.9348 0.6819 0.3145

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9731 0.8111 0.4655

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9903 0.9006 0.6205

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9969 0.9538 0.7568

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9991 0.9810 0.8601
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Table 8.6 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%53,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1317 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6599 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9395 0.1943 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9936 0.5434 0.0456 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9995 0.8320 0.1922 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9569 0.4584 0.0550 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9924 0.7275 0.1773 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9990 0.8948 0.3908 0.0572 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9999 0.9692 0.6338 0.1596 0.0164 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9932 0.8208 0.3353 0.0558 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9987 0.9290 0.5514 0.1422 0.0175 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9998 0.9777 0.7437 0.2889 0.0526 0.0050 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9943 0.8761 0.4796 0.1260 0.0176 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9987 0.9503 0.6681 0.2497 0.0488 0.0054 0.0003

30 1.0000 1.0000 1.0000 0.9998 0.9836 0.8157 0.4171 0.1113 0.0171 0.0015

32 1.0000 1.0000 1.0000 1.0000 0.9954 0.9120 0.5965 0.2164 0.0446 0.0055

34 1.0000 1.0000 1.0000 1.0000 0.9988 0.9644 0.7517 0.3630 0.0982 0.0163

36 1.0000 1.0000 1.0000 1.0000 0.9997 0.9877 0.8652 0.5301 0.1879 0.0405

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9364 0.6871 0.3160 0.0866

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9741 0.8127 0.4695 0.1635

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9907 0.9003 0.6238 0.2753

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9970 0.9534 0.7568 0.4148

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9991 0.9808 0.8578 0.5631

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9929 0.9256 0.6995

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9976 0.9655 0.8106
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Table 8.7 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%303,1 =ρ  and %303,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1485 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7370 0.0241 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9699 0.2281 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9981 0.6188 0.0506 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9999 0.8908 0.2267 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9807 0.5284 0.0621 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9977 0.7990 0.2094 0.0150 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9998 0.9403 0.4545 0.0650 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9872 0.7089 0.1885 0.0177 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9980 0.8824 0.3924 0.0636 0.0045 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9997 0.9638 0.6254 0.1678 0.0189 0.0011 0.0000 0.0000

24 1.0000 1.0000 1.0000 0.9914 0.8146 0.3397 0.0600 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9984 0.9268 0.5498 0.1484 0.0191 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9997 0.9768 0.7429 0.2946 0.0555 0.0056 0.0003

30 1.0000 1.0000 1.0000 1.0000 0.9940 0.8786 0.4824 0.1309 0.0186 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9987 0.9526 0.6716 0.2558 0.0507 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9998 0.9846 0.8224 0.4226 0.1152 0.0178

36 1.0000 1.0000 1.0000 1.0000 1.0000 0.9958 0.9186 0.6030 0.2224 0.0459

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9684 0.7617 0.3700 0.1013

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9896 0.8762 0.5387 0.1936

42 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9970 0.9445 0.6993 0.3237

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9785 0.8273 0.4794

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9928 0.9130 0.6374

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9979 0.9616 0.7739

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9851 0.8746
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Table 8.8 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%303,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1455 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7139 0.0239 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9596 0.2213 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9966 0.5968 0.0499 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9998 0.8710 0.2197 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9728 0.5088 0.0610 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9959 0.7755 0.2028 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9995 0.9252 0.4374 0.0638 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9813 0.6849 0.1827 0.0175 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9963 0.8619 0.3777 0.0624 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9994 0.9523 0.6026 0.1628 0.0187 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9999 0.9868 0.7912 0.3272 0.0589 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9970 0.9100 0.5290 0.1442 0.0189 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9994 0.9680 0.7186 0.2840 0.0545 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9999 0.9905 0.8578 0.4638 0.1273 0.0184 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9976 0.9392 0.6477 0.2469 0.0498 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9995 0.9779 0.7991 0.4064 0.1122 0.0176

36 1.0000 1.0000 1.0000 1.0000 0.9999 0.9931 0.9010 0.5805 0.2149 0.0451

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9578 0.7374 0.3559 0.0987

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9844 0.8553 0.5180 0.1873

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9949 0.9299 0.6751 0.3117

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9701 0.8041 0.4608

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9888 0.8948 0.6140

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9497 0.7496

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9786 0.8535
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Table 8.9 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%303,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1313 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6554 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9363 0.1934 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9926 0.5390 0.0455 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9994 0.8267 0.1912 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9539 0.4546 0.0548 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9913 0.7217 0.1764 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9987 0.8901 0.3876 0.0570 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9998 0.9665 0.6282 0.1588 0.0164 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9921 0.8152 0.3326 0.0556 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9985 0.9248 0.5464 0.1415 0.0174 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9997 0.9753 0.7377 0.2867 0.0525 0.0050 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9934 0.8710 0.4752 0.1254 0.0176 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9985 0.9467 0.6622 0.2479 0.0486 0.0054 0.0003

30 1.0000 1.0000 1.0000 0.9997 0.9816 0.8099 0.4133 0.1108 0.0171 0.0015

32 1.0000 1.0000 1.0000 0.9999 0.9946 0.9073 0.5909 0.2149 0.0445 0.0055

34 1.0000 1.0000 1.0000 1.0000 0.9986 0.9613 0.7457 0.3598 0.0978 0.0163

36 1.0000 1.0000 1.0000 1.0000 0.9997 0.9861 0.8597 0.5251 0.1867 0.0404

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9956 0.9322 0.6811 0.3133 0.0863

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9714 0.8067 0.4650 0.1625

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9894 0.8952 0.6180 0.2731

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9965 0.9497 0.7507 0.4109

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9989 0.9787 0.8521 0.5577

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9919 0.9211 0.6934

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9972 0.9624 0.8045
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Table 8.10 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%603,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1428 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6934 0.0238 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9493 0.2151 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9947 0.5769 0.0492 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9996 0.8523 0.2131 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9644 0.4909 0.0599 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9937 0.7535 0.1968 0.0147 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9991 0.9101 0.4217 0.0626 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9999 0.9746 0.6627 0.1773 0.0174 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9943 0.8422 0.3641 0.0612 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9989 0.9403 0.5815 0.1581 0.0185 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9998 0.9815 0.7691 0.3156 0.0578 0.0051 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9952 0.8933 0.5098 0.1401 0.0187 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9989 0.9585 0.6959 0.2741 0.0535 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9998 0.9863 0.8376 0.4467 0.1239 0.0182 0.0015

32 1.0000 1.0000 1.0000 1.0000 0.9961 0.9253 0.6255 0.2386 0.0489 0.0057

34 1.0000 1.0000 1.0000 1.0000 0.9990 0.9703 0.7770 0.3914 0.1093 0.0174

36 1.0000 1.0000 1.0000 1.0000 0.9998 0.9897 0.8834 0.5596 0.2079 0.0443

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9969 0.9464 0.7145 0.3429 0.0963

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9783 0.8348 0.4989 0.1814

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9922 0.9149 0.6524 0.3005

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9975 0.9609 0.7819 0.4436

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9839 0.8766 0.5923

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9941 0.9371 0.7266

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9980 0.9711 0.8329
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Table 8.11 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%603,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1297 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6396 0.0226 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9281 0.1892 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9907 0.5227 0.0450 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9991 0.8111 0.1864 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9999 0.9462 0.4397 0.0540 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9885 0.7031 0.1717 0.0139 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9981 0.8769 0.3744 0.0561 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9998 0.9594 0.6092 0.1545 0.0163 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9894 0.7983 0.3212 0.0547 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9978 0.9133 0.5282 0.1377 0.0173 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9996 0.9692 0.7188 0.2769 0.0516 0.0050 0.0002 0.0000

26 1.0000 1.0000 0.9999 0.9909 0.8558 0.4585 0.1221 0.0174 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9977 0.9367 0.6426 0.2396 0.0478 0.0053 0.0003

30 1.0000 1.0000 1.0000 0.9995 0.9764 0.7922 0.3985 0.1080 0.0170 0.0015

32 1.0000 1.0000 1.0000 0.9999 0.9925 0.8939 0.5718 0.2079 0.0438 0.0055

34 1.0000 1.0000 1.0000 1.0000 0.9979 0.9527 0.7265 0.3468 0.0954 0.0162

36 1.0000 1.0000 1.0000 1.0000 0.9995 0.9817 0.8436 0.5069 0.1808 0.0397

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9938 0.9204 0.6613 0.3021 0.0843

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9642 0.7886 0.4483 0.1576

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9858 0.8806 0.5983 0.2634

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9950 0.9395 0.7312 0.3958

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9726 0.8352 0.5388

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9889 0.9080 0.6734

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9536 0.7860
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Table 8.12 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %52,1 =ρ , 

%953,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1223 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.5895 0.0216 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9171 0.1695 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9904 0.4708 0.0417 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9992 0.7790 0.1635 0.0094 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9369 0.3898 0.0492 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9851 0.6594 0.1493 0.0132 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9976 0.8546 0.3281 0.0507 0.0032 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9998 0.9487 0.5602 0.1339 0.0153 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9853 0.7644 0.2789 0.0492 0.0042 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9969 0.8942 0.4778 0.1191 0.0162 0.0010 0.0000 0.0000

24 1.0000 1.0000 0.9996 0.9586 0.6767 0.2388 0.0463 0.0048 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9870 0.8281 0.4090 0.1056 0.0162 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9969 0.9190 0.5955 0.2056 0.0429 0.0051 0.0003

30 1.0000 1.0000 1.0000 0.9995 0.9670 0.7567 0.3512 0.0935 0.0158 0.0015

32 1.0000 1.0000 1.0000 1.0000 0.9891 0.8693 0.5223 0.1779 0.0393 0.0053

34 1.0000 1.0000 1.0000 1.0000 0.9971 0.9368 0.6847 0.3026 0.0828 0.0151

36 1.0000 1.0000 1.0000 1.0000 0.9994 0.9738 0.8125 0.4571 0.1544 0.0358

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9910 0.8980 0.6151 0.2614 0.0733

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9975 0.9504 0.7516 0.3996 0.1345

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9793 0.8525 0.5497 0.2265

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9927 0.9195 0.6893 0.3491

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9978 0.9610 0.8019 0.4892

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9837 0.8824 0.6278

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9941 0.9362 0.7479
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Table 8.13 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%303,1 =ρ  and %303,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1479 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7297 0.0241 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9658 0.2266 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9974 0.6123 0.0505 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9999 0.8839 0.2252 0.0103 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9776 0.5229 0.0619 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9969 0.7914 0.2079 0.0149 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9997 0.9349 0.4499 0.0648 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 1.0000 0.9850 0.7015 0.1872 0.0177 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9973 0.8755 0.3886 0.0634 0.0045 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9996 0.9597 0.6186 0.1667 0.0189 0.0011 0.0000 0.0000

24 1.0000 1.0000 1.0000 0.9897 0.8070 0.3366 0.0598 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9978 0.9210 0.5439 0.1476 0.0191 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9996 0.9737 0.7353 0.2920 0.0553 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9999 0.9927 0.8716 0.4773 0.1302 0.0186 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9983 0.9479 0.6643 0.2537 0.0505 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9997 0.9822 0.8148 0.4183 0.1146 0.0177

36 1.0000 1.0000 1.0000 1.0000 0.9999 0.9948 0.9126 0.5964 0.2207 0.0457

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9647 0.7540 0.3664 0.1008

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9877 0.8693 0.5328 0.1922

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9963 0.9395 0.6919 0.3207

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9756 0.8198 0.4743

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9913 0.9068 0.6304

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9973 0.9575 0.7662

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9828 0.8676
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Table 8.14 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%303,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1449 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.7063 0.0239 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9544 0.2199 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9955 0.5904 0.0497 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9997 0.8635 0.2181 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 1.0000 0.9689 0.5034 0.0608 0.0021 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9947 0.7676 0.2015 0.0148 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9993 0.9190 0.4330 0.0636 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9999 0.9783 0.6776 0.1815 0.0175 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9953 0.8546 0.3741 0.0622 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9992 0.9474 0.5960 0.1618 0.0187 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9999 0.9845 0.7835 0.3242 0.0587 0.0052 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9962 0.9037 0.5233 0.1433 0.0189 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9992 0.9641 0.7111 0.2816 0.0543 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9999 0.9887 0.8505 0.4590 0.1266 0.0184 0.0016

32 1.0000 1.0000 1.0000 1.0000 0.9969 0.9338 0.6407 0.2449 0.0496 0.0058

34 1.0000 1.0000 1.0000 1.0000 0.9993 0.9748 0.7915 0.4023 0.1116 0.0175

36 1.0000 1.0000 1.0000 1.0000 0.9998 0.9917 0.8945 0.5742 0.2133 0.0449

38 1.0000 1.0000 1.0000 1.0000 1.0000 0.9976 0.9534 0.7298 0.3525 0.0983

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9819 0.8480 0.5125 0.1860

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9938 0.9243 0.6678 0.3089

44 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9981 0.9665 0.7965 0.4560

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9868 0.8882 0.6073

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9953 0.9449 0.7420

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9756 0.8463
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Table 8.15 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%303,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1306 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6473 0.0227 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9292 0.1920 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9906 0.5326 0.0454 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9991 0.8180 0.1899 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9999 0.9486 0.4495 0.0547 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9892 0.7133 0.1752 0.0140 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9982 0.8828 0.3836 0.0568 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9997 0.9622 0.6208 0.1578 0.0164 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9902 0.8072 0.3294 0.0554 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9979 0.9187 0.5400 0.1406 0.0174 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9996 0.9717 0.7297 0.2841 0.0524 0.0050 0.0002 0.0000

26 1.0000 1.0000 0.9999 0.9918 0.8637 0.4698 0.1247 0.0175 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9979 0.9414 0.6547 0.2458 0.0485 0.0054 0.0003

30 1.0000 1.0000 1.0000 0.9995 0.9786 0.8022 0.4089 0.1103 0.0171 0.0015

32 1.0000 1.0000 1.0000 0.9999 0.9932 0.9008 0.5842 0.2133 0.0444 0.0055

34 1.0000 1.0000 1.0000 1.0000 0.9981 0.9569 0.7379 0.3561 0.0974 0.0163

36 1.0000 1.0000 1.0000 1.0000 0.9995 0.9836 0.8525 0.5191 0.1854 0.0403

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9945 0.9265 0.6736 0.3104 0.0859

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9983 0.9677 0.7991 0.4599 0.1615

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9995 0.9874 0.8886 0.6111 0.2707

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9955 0.9448 0.7430 0.4065

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9755 0.8449 0.5515

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9902 0.9151 0.6860

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9964 0.9581 0.7970
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Table 8.16 depicts the probability ( )p−1  that the minimum  ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%603,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1421 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6839 0.0237 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9419 0.2136 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9927 0.5697 0.0490 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9993 0.8430 0.2116 0.0102 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9999 0.9590 0.4852 0.0598 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9917 0.7446 0.1954 0.0147 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9986 0.9024 0.4171 0.0624 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9998 0.9703 0.6548 0.1761 0.0173 0.0007 0.0000 0.0000 0.0000

20 1.0000 1.0000 0.9926 0.8336 0.3605 0.0610 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9984 0.9340 0.5747 0.1571 0.0185 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9997 0.9781 0.7605 0.3126 0.0576 0.0051 0.0002 0.0000

26 1.0000 1.0000 1.0000 0.9938 0.8857 0.5040 0.1393 0.0187 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9985 0.9533 0.6879 0.2718 0.0533 0.0056 0.0003

30 1.0000 1.0000 1.0000 0.9997 0.9835 0.8293 0.4419 0.1232 0.0182 0.0015

32 1.0000 1.0000 1.0000 0.9999 0.9949 0.9187 0.6183 0.2367 0.0487 0.0057

34 1.0000 1.0000 1.0000 1.0000 0.9986 0.9661 0.7686 0.3874 0.1087 0.0174

36 1.0000 1.0000 1.0000 1.0000 0.9997 0.9875 0.8758 0.5532 0.2064 0.0442

38 1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9408 0.7064 0.3396 0.0958

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9988 0.9749 0.8267 0.4934 0.1802

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9904 0.9081 0.6449 0.2978

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9967 0.9562 0.7737 0.4388

46 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9990 0.9811 0.8691 0.5855

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9997 0.9926 0.9312 0.7186

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9974 0.9671 0.8249
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Table 8.17 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%603,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1283 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6269 0.0225 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9155 0.1873 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9867 0.5140 0.0448 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9983 0.7977 0.1848 0.0098 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9998 0.9374 0.4333 0.0538 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9848 0.6915 0.1704 0.0139 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9970 0.8659 0.3697 0.0559 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9995 0.9525 0.5996 0.1535 0.0162 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9999 0.9861 0.7870 0.3176 0.0545 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9966 0.9042 0.5205 0.1369 0.0173 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9993 0.9634 0.7083 0.2742 0.0515 0.0050 0.0002 0.0000

26 1.0000 1.0000 0.9999 0.9880 0.8457 0.4524 0.1215 0.0174 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9966 0.9289 0.6333 0.2375 0.0477 0.0053 0.0003

30 1.0000 1.0000 1.0000 0.9991 0.9715 0.7820 0.3936 0.1075 0.0169 0.0015

32 1.0000 1.0000 1.0000 0.9998 0.9900 0.8848 0.5637 0.2063 0.0437 0.0055

34 1.0000 1.0000 1.0000 1.0000 0.9969 0.9461 0.7167 0.3429 0.0950 0.0161

36 1.0000 1.0000 1.0000 1.0000 0.9991 0.9776 0.8339 0.5001 0.1796 0.0397

38 1.0000 1.0000 1.0000 1.0000 0.9998 0.9917 0.9123 0.6522 0.2990 0.0839

40 1.0000 1.0000 1.0000 1.0000 0.9999 0.9972 0.9585 0.7788 0.4427 0.1566

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9823 0.8717 0.5903 0.2610

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9932 0.9323 0.7219 0.3912

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9976 0.9677 0.8259 0.5317

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9992 0.9860 0.8999 0.6646

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9944 0.9473 0.7767
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Table 8.18 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %302,1 =ρ , 

%953,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1166 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.5634 0.0213 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.8863 0.1678 0.0040 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9808 0.4573 0.0411 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9970 0.7512 0.1624 0.0093 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9997 0.9190 0.3814 0.0488 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9768 0.6378 0.1485 0.0131 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9948 0.8340 0.3225 0.0504 0.0032 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9992 0.9344 0.5442 0.1333 0.0152 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9999 0.9784 0.7440 0.2752 0.0491 0.0041 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9941 0.8769 0.4662 0.1188 0.0161 0.0010 0.0000 0.0000

24 1.0000 1.0000 0.9987 0.9476 0.6583 0.2363 0.0463 0.0048 0.0002 0.0000

26 1.0000 1.0000 0.9998 0.9810 0.8103 0.4007 0.1055 0.0162 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9941 0.9047 0.5799 0.2039 0.0429 0.0051 0.0003

30 1.0000 1.0000 1.0000 0.9985 0.9578 0.7395 0.3454 0.0935 0.0158 0.0015

32 1.0000 1.0000 1.0000 0.9997 0.9837 0.8535 0.5097 0.1768 0.0393 0.0053

34 1.0000 1.0000 1.0000 0.9999 0.9946 0.9249 0.6688 0.2984 0.0828 0.0150

36 1.0000 1.0000 1.0000 1.0000 0.9985 0.9659 0.7965 0.4473 0.1537 0.0358

38 1.0000 1.0000 1.0000 1.0000 0.9996 0.9863 0.8843 0.6009 0.2585 0.0734

40 1.0000 1.0000 1.0000 1.0000 0.9999 0.9952 0.9401 0.7363 0.3921 0.1341

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9986 0.9723 0.8379 0.5375 0.2245

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9886 0.9074 0.6750 0.3435

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9959 0.9519 0.7873 0.4790

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9987 0.9774 0.8691 0.6148

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9905 0.9254 0.7339
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Table 8.19 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %602,1 =ρ , 

%603,1 =ρ  and %603,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1392 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6612 0.0235 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.9267 0.2076 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9886 0.5495 0.0483 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9985 0.8211 0.2054 0.0101 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9998 0.9468 0.4678 0.0588 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9872 0.7213 0.1897 0.0146 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9974 0.8839 0.4022 0.0613 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9995 0.9603 0.6324 0.1712 0.0172 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9999 0.9885 0.8117 0.3479 0.0599 0.0044 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9971 0.9186 0.5542 0.1528 0.0183 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9994 0.9698 0.7374 0.3019 0.0566 0.0051 0.0002 0.0000

26 1.0000 1.0000 0.9999 0.9902 0.8663 0.4857 0.1357 0.0185 0.0013 0.0001

28 1.0000 1.0000 1.0000 0.9972 0.9405 0.6651 0.2627 0.0524 0.0055 0.0003

30 1.0000 1.0000 1.0000 0.9993 0.9766 0.8075 0.4258 0.1201 0.0180 0.0015

32 1.0000 1.0000 1.0000 0.9998 0.9918 0.9019 0.5967 0.2291 0.0479 0.0057

34 1.0000 1.0000 1.0000 1.0000 0.9974 0.9554 0.7457 0.3735 0.1061 0.0172

36 1.0000 1.0000 1.0000 1.0000 0.9993 0.9818 0.8559 0.5334 0.2000 0.0435

38 1.0000 1.0000 1.0000 1.0000 0.9998 0.9933 0.9264 0.6835 0.3276 0.0936

40 1.0000 1.0000 1.0000 1.0000 1.0000 0.9977 0.9659 0.8049 0.4754 0.1748

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.9856 0.8904 0.6228 0.2875

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9945 0.9438 0.7509 0.4229

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9980 0.9736 0.8489 0.5647

48 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9886 0.9157 0.6957

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9955 0.9566 0.8031
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Table 8.20 depicts the probability ( )p−1  that the minimum  ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %602,1 =ρ , 

%603,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1253 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.6031 0.0223 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.8943 0.1844 0.0041 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9822 0.4931 0.0443 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9962 0.7733 0.1805 0.0097 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9995 0.9232 0.4167 0.0532 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9770 0.6675 0.1662 0.0138 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9942 0.8459 0.3563 0.0552 0.0033 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9989 0.9387 0.5776 0.1499 0.0161 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9998 0.9789 0.7645 0.3067 0.0538 0.0043 0.0002 0.0000 0.0000

22 1.0000 1.0000 0.9938 0.8861 0.5011 0.1338 0.0171 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9984 0.9513 0.6854 0.2652 0.0508 0.0049 0.0002 0.0000

26 1.0000 1.0000 0.9996 0.9817 0.8249 0.4356 0.1189 0.0172 0.0013 0.0001

28 1.0000 1.0000 0.9999 0.9940 0.9126 0.6114 0.2301 0.0471 0.0053 0.0003

30 1.0000 1.0000 1.0000 0.9982 0.9610 0.7598 0.3793 0.1053 0.0168 0.0015

32 1.0000 1.0000 1.0000 0.9995 0.9844 0.8656 0.5435 0.2002 0.0431 0.0055

34 1.0000 1.0000 1.0000 0.9999 0.9944 0.9317 0.6943 0.3307 0.0932 0.0160

36 1.0000 1.0000 1.0000 1.0000 0.9982 0.9685 0.8129 0.4819 0.1746 0.0392

38 1.0000 1.0000 1.0000 1.0000 0.9994 0.9869 0.8948 0.6305 0.2888 0.0824

40 1.0000 1.0000 1.0000 1.0000 0.9998 0.9950 0.9458 0.7569 0.4265 0.1526

42 1.0000 1.0000 1.0000 1.0000 1.0000 0.9982 0.9744 0.8520 0.5697 0.2525

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9890 0.9166 0.6998 0.3770

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9956 0.9565 0.8048 0.5127

48 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9984 0.9791 0.8816 0.6431

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9907 0.9331 0.7549
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Table 8.21 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %602,1 =ρ , 

%953,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1176 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.4204 0.0200 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.8393 0.2360 0.0037 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9028 0.3163 0.0435 0.0007 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9663 0.7353 0.1663 0.0093 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9972 0.8391 0.3099 0.0527 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000

14 1.0000 0.9428 0.6177 0.1456 0.0131 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9728 0.8747 0.2840 0.0529 0.0032 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9989 0.9094 0.5227 0.1305 0.0153 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9999 0.9464 0.7544 0.2524 0.0504 0.0041 0.0002 0.0000 0.0000

22 1.0000 0.9999 0.9844 0.8637 0.4459 0.1167 0.0163 0.0010 0.0000 0.0000

24 1.0000 0.9999 0.9985 0.9142 0.6531 0.2220 0.0471 0.0048 0.0002 0.0000

26 1.0000 1.0000 0.9998 0.9590 0.8030 0.3826 0.1041 0.0164 0.0013 0.0001

28 1.0000 1.0000 0.9997 0.9893 0.8727 0.5682 0.1946 0.0434 0.0051 0.0003

30 1.0000 1.0000 0.9999 0.9977 0.9300 0.7318 0.3299 0.0926 0.0159 0.0015

32 1.0000 1.0000 1.0000 0.9993 0.9701 0.8261 0.4960 0.1706 0.0397 0.0053

34 1.0000 1.0000 1.0000 0.9996 0.9909 0.8953 0.6580 0.2857 0.0823 0.0152

36 1.0000 1.0000 1.0000 0.9999 0.9971 0.9444 0.7749 0.4337 0.1496 0.0361

38 1.0000 1.0000 1.0000 1.0000 0.9989 0.9771 0.8545 0.5873 0.2483 0.0731

40 1.0000 1.0000 1.0000 1.0000 0.9995 0.9917 0.9147 0.7188 0.3795 0.1314

42 1.0000 1.0000 1.0000 1.0000 0.9998 0.9969 0.9563 0.8097 0.5226 0.2165

44 1.0000 1.0000 1.0000 1.0000 0.9999 0.9987 0.9813 0.8805 0.6593 0.3323

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9994 0.9923 0.9306 0.7624 0.4643

48 1.0000 1.0000 1.0000 1.0000 1.0000 0.9998 0.9968 0.9651 0.8417 0.5992

50 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9986 0.9841 0.9014 0.7126
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Table 8.22 depicts the probability ( )p−1  that the minimum ( )1X  of a trivariate gamma 

vector is less than or equal to p−1ω  for 502 1 ≥≥ − pω , 505 ≥≥ a , and %952,1 =ρ , 

%953,1 =ρ  and %953,2 =ρ , the non-diagonal elements of 123C . 

( )
( ) ( )( ) pXPCaF ppX −=≤= −− 1,; 1112311

ωω  

 

p−1ω  
 

 a  

p−1ω  5 10 15 20 25 30 35 40 45 50 

2 0.1185 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

4 0.5480 0.0231 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

6 0.8673 0.1715 0.0042 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

8 0.9615 0.4650 0.0463 0.0008 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

10 0.9894 0.7322 0.1752 0.0101 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

12 0.9981 0.8835 0.4000 0.0558 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000

14 0.9998 0.9512 0.6324 0.1657 0.0145 0.0004 0.0000 0.0000 0.0000 0.0000

16 1.0000 0.9838 0.7967 0.3471 0.0582 0.0034 0.0001 0.0000 0.0000 0.0000

18 1.0000 0.9959 0.8963 0.5522 0.1521 0.0170 0.0007 0.0000 0.0000 0.0000

20 1.0000 0.9992 0.9523 0.7162 0.3029 0.0571 0.0044 0.0002 0.0000 0.0000

22 1.0000 0.9999 0.9825 0.8337 0.4844 0.1378 0.0182 0.0011 0.0000 0.0000

24 1.0000 1.0000 0.9948 0.9091 0.6444 0.2653 0.0542 0.0051 0.0002 0.0000

26 1.0000 1.0000 0.9988 0.9568 0.7695 0.4260 0.1238 0.0184 0.0013 0.0001

28 1.0000 1.0000 0.9998 0.9831 0.8597 0.5800 0.2330 0.0505 0.0055 0.0003

30 1.0000 1.0000 1.0000 0.9944 0.9215 0.7075 0.3751 0.1108 0.0179 0.0015

32 1.0000 1.0000 1.0000 0.9985 0.9621 0.8072 0.5216 0.2051 0.0464 0.0057

34 1.0000 1.0000 1.0000 0.9997 0.9845 0.8804 0.6491 0.3307 0.0989 0.0171

36 1.0000 1.0000 1.0000 0.9999 0.9946 0.9328 0.7541 0.4681 0.1807 0.0423

38 1.0000 1.0000 1.0000 1.0000 0.9984 0.9673 0.8361 0.5943 0.2918 0.0880

40 1.0000 1.0000 1.0000 1.0000 0.9996 0.9862 0.8980 0.7019 0.4193 0.1594

42 1.0000 1.0000 1.0000 1.0000 0.9999 0.9949 0.9430 0.7902 0.5429 0.2576

44 1.0000 1.0000 1.0000 1.0000 1.0000 0.9984 0.9720 0.8597 0.6515 0.3749

46 1.0000 1.0000 1.0000 1.0000 1.0000 0.9996 0.9879 0.9131 0.7438 0.4945

48 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9954 0.9518 0.8194 0.6032

50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 0.9763 0.8797 0.6978
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Glossary  

 
American Option : An option which can be exercised at any time prior to expiration. 

At the Money : An option whose exercise price is equal to the current price of the 

underlying contract. On listed option exchanges the term is more commonly 

used to refer to the option whose exercise price is closest to the current price of 

the underlying contract. 

Buy/Write : The purchase of an underlying contract together with the sale of a call 

option on that contract. 

Call Option : A contract between a buyer and a seller whereby the buyer acquires 

the right, but not to the obligation, to purchase a specified underlying contract at 

a fixed price on or before a specified date. The seller of the call option assumes 

the obligation of delivering the underlying contract should the buyer wish to 

exercise his option. 

Delta (∆) : The sensitivity of an option’s theoretical value to a change in the price of 

the underlying contract. 

Delta Neutral : A position where the sum total of all the positive and negative deltas 

adds up to approximately zero. 

Exercise : The process by which the holder of  an option notifies the seller of his 

intention to take  delivery of the underlying contract, in the case of a call, or to 

make delivery of the underlying contract, in the case of a put, at the specified 

exercise price. 

Exercise Price : The price at which the underlying contract  will be delivered in the 

event an option is exercised. 

Expiration (Expiry) : The date and time after which an option may no longer be 

exercised. 

European Option : An option which may only be exercised at expiration. 

Fair Value : Theoretical value. 

Gamma (Γ) :The sensitivity of an option’s delta to a change in the price of the 

underlying contract. 

Hedge Ratio : Delta. 

Implied Volatility : Assuming all other inputs are known, the volatility which would 

have to be input into a theoretical pricing model in order to yield a theoretical 

value identical to the price of the option in the marketplace. 

In the Money : A call (put) option whose exercise price is lower (higher) than the 

current price of the underlying contract. 
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Intrinsic Value : The amount by which an option  is in the money. Out of the money 

options have no intrinsic value. 

Long : A position resulting the purchase of a contract. The term is also used to 

describe a position, which will theoretical increase (decrease) in value should 

the price of the underlying contract rise (fall). Note that a long (short) put 

position is a short (long) market position. 

Omega (Ω) : The Greek letter sometimes used to denote an option’s elasticity. 

Out of the Money : An option which currently has no intrinsic value. A call (put) is 

out of the money if its exercise price is more (less) than the current price of the 

underlying contract.  

Put Option : A contract between a buyer and a seller whereby the buyer acquires 

the right, but not the obligation , to sell a specified underlying contract at a fixed 

price on or before a specified date. The seller of the put option assumes the 

obligation of taking delivery of the underlying contract should the buyer wish to 

exercise his option. 

Rho (ρ) : The sensitivity of an option’s theoretical value to change in interest rates. 

Series : All options with the same underlying contract, same exercise price, and 

same expiration date. 

Short : A position resulting from the sale of a contract. The term is also used to 

describe a position which will theoretically increase (decrease) in value should 

the price of the underlying contract fall (rise). Note that a short (long) put 

position is a long (short) market position. 

Sigma (σ) : The commonly used notation for standard deviation. Since volatility is 

usually expressed as a standard deviation, the same notation is often used to 

denote volatility.  

Straddle : A long (short) call and a long (short) put, where both options have the 

same underlying contract, the same expiration date, and the same exercise 

price.  

Strike Price (Strike) : Exercise price. 

Tau (τ) : The commonly used notation for the amount of time remaining to expiration. 

Theoretical Value : An option value generated by a mathematical model given 

certain prior assumptions about the terms of the option, the characteristics of 

the underlying contract, and prevailing interest rates. 

Theta (θ) : The sensitivity of an option’s theoretical value to a change in the amount 

of time remaining to expiration. 

Underlying : The instrument to be delivered in the event an option is exercised. 

Vega : The sensitivity of an option’s theoretical value to a change in volatility. 
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Volatility : The degree to which the price of an underlying instrument tends to 

fluctuate over time. 

Write : Sell an option. 
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