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Discrete, continuous and machine learning models with applications in credit
risk

by Kyriakos GEORGIOU

Credit risk modelling is a versatile and dynamic area of financial mathematics, with
important practical implications, as has been historically established. In particular,
the last financial crisis made it clear that credit risk models had to become more rig-
orous. For this reason, the recent International Financial Reporting Standards (IFRS)
9 have introduced a framework making credit risk modelling forward-looking, thereby
increasing the need for robust mathematical tools. The goal of this thesis is to de-
velop and explore such mathematical tools and models, motivated by specific open
problems that arise due to these regulations, and develop frameworks that are both
mathematically-sound and can be efficiently applied by practitioners.

We begin with discrete models, specifically Markov chains which are well estab-
lished in the field of credit risk, and develop a framework that can be implemented
by financial institutions for credit rating reporting and compliance purposes under
IFRS 9. Subsequently, we consider continuous-time stochastic models and study
how these can be used for probability of default estimation and provisioning calcu-
lations. Specifically, we use a general family of models to incorporate various latent
variables on which the credit exposure may depend, and use approaches relying on
Integral and Partial Integro-differential Equations to describe and prove important
mathematical properties of the resulting probability of default process.

To show how these mathematical tools can be implemented by practitioners, we
develop and study numerical methods that can be used for the estimation of default
probabilities. We use the well-known Finite Difference methods, which we apply to
the equations that arise under various types of stochastic models, to illustrate the
variety of uses these approaches can find. Lastly, we draw from recent research to
also consider how the modern field of machine learning models, and particularly the
family of Deep Neural Networks, can be used to estimate the default probabilities,
and discuss important theoretical and practical considerations that should be taken
into account when comparing these to the Finite Difference methods.
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Chapter 1

Introduction

1.1 Credit risk management and recent developments under
IFRS 9

One of the main issues currently concerning financial institutions is the implemen-
tation of the new International Financial Reporting Standards (IFRS) 9. Due to the fi-
nancial crisis, the purpose of the updated standards is to introduce a framework un-
der which institutions forecast credit losses (for loan provisioning purposes). Specif-
ically, “under the impairment approach in IFRS 9 it is no longer necessary for a credit
event to have occurred before credit losses are recognised. Instead, an entity always
accounts for expected credit losses, and changes in those expected credit losses. The
amount of expected credit losses is updated at each reporting date to reflect changes
in credit risk since initial recognition and, consequently, more timely information
is provided about expected credit losses”. Furthermore, "the objective of the im-
pairment requirements is to recognise lifetime expected credit losses for all financial
instruments for which there have been significant increases in credit risk since initial
recognition — whether assessed on an individual or collective basis — considering
all reasonable and supportable information" (IFRS 9 Red Book). Hence, loan provi-
sioning regulations under IFRS 9, require financial institutions to consider expected
losses based on the current credit state of each loan and depending on its change in
credit risk. Therefore, all loans which have displayed an increase in credit risk must
be aggregated by the institution when considering their provisions, which must also
account for future expected losses.

These impositions create important and challenging credit modelling tasks. Es-
timating future losses for provisioning purposes requires forecasting key credit risk
parameters such as the Probability of Default of a credit exposure. Furthermore,
under IFRS 9 all internal models must now be compatible with the predetermined
classifications imposed by the new regulations. This is true regardless of the institu-
tion’s internal rating model. Based on these requirements, it is of great importance
to address various modelling tasks that arise using mathematically rigorous and ro-
bust approaches. Since loan exposures dynamics evolve over time, using stochastic
processes in credit risk modelling has now become standard in the financial mathe-
matics field, as well as in practice. We will consider various such settings, ranging
from discrete to continuous stochastic processes and their applications to important
modelling problems that arise as a consequence of the IFRS 9 implementation.

We first present some standard stochastic processes and related results that will
form the basis of the models examined throughout.
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1.2 Mathematical Preliminaries

1.2.1 Markov chains

We begin by recalling some fundamental concepts related to the framework of Markov
chain modelling.

1.2.1.1 Discrete time Markov Chains

Definition 1.2.1 (Discrete state Markov Chain). A discrete state Markov Chain M,
defined on a state space S, of cardinality |S| = n < ∞, is a stochastic process {Xt :
t ∈N}, such that

P(Xt = st|Xt−1 = st−1, · · · , X1 = s1) = P(Xt = st|Xt−1 = st−1) (1.1)

for any states si ∈ S.

For a general Markov Chain, we will use the notation M = (S, P), with S defined
as above and P = (Pi,j)i,j=1,...n is the row-stochastic transition matrix of the Markov
Chain, whose entries Pi,j reflect the conditional probability of transition from one
state of the chain to another, i.e Pi,j = P(Xt = j|Xt−1 = i), for a fixed n ∈N.

For the Markov chain M = (S, P), we say that a state i is transient if, given that
the chain starts at i, it is possible, but not certain, that the chain will return to i.
Equivalently, there exists a non-zero probability that the chain will never return to i.
We may define the random variable Ti, as Ti = inf{t ≥ 1 : Xt = i} and say that state
i of the Markov chain is transient if P(Ti < ∞|X0 = i) = ∑∞

t=1 P(Ti = t|X0 = i) < 1.
On the other hand, a state i is defined as absorbing if Pi,i = 1 i.e., the probability of
transitioning from i to any other state is zero. Hence, the state space of a Markov
chain can be written as S = A ∪ T , where A and T denote the set of absorbing
and transient states, respectively. We assume that |A| = r and hence, naturally,
|T | = n− r.

Definition 1.2.2 (Canonical form). It is often convenient to use the canonical form of
the transition matrix, which is constructed by relabelling the states so as to bring P
into the following block form:

P =

(
Q R

0r×(n−r) Ir×r

)
,

where Q ∈ R(n−r)×(n−r) , contains the transition probabilities between transient
states, R ∈ R(n−r)×r contains the transition probabilities from the transient to the
absorbing states of the chain, 0r×(n−r) is the r × (n − r) zero matrix and Ir×r is the
(n− m)× (n− m) identity matrix. The 0 block corresponds to the probabilities of
transitioning from an absorbing to a transient state, which, by definition, have to be
0.

An important quantity in the study of Markov chains, with applications that will
be explored in subsequent sections, is the fundamental matrix, defined below.

Definition 1.2.3 (Fundamental matrix). The fundamental matrix N of a Markov
Chain M = (S, P), is defined as

N = I + Q + Q2 + Q3 + · · · = (I −Q)−1,
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where Ni,j gives the expected time spent in transient state j, conditional on starting
from transient state i.

1.2.1.2 Continuous Time Markov Chains

We continue by outlining the background and important results pertaining to Con-
tinuous Time Markov Chains (CTMC), which are used when considering continuous
stochastic models in Chapter 3.

Definition 1.2.4. A continuous time Markov chain is a continuous stochastic process
Xt, t ≥ 0, with a discrete state spaceR, of cardinality |R| < ∞, satisfying the Markov
property, and such that:

P(Xt+δ = j|Xt = i) =

{
qijδ + o(δ), i ̸= j
1 + qiiδ + o(δ),

(1.2)

as δ ↓ 0. In the above qij are known as the transition rates, for which we have
∑i∈S qij = 0, qij ≥ 0 for i ̸= j.

The matrix Q with entries (Q)ij = qij, for i, j ∈ R is known as the generator
matrix of the Markov process (also referred to as the transition rate matrix). Similar
to the discrete time Markov chains, we can define the transition matrix for a CTMS,
P(t), t ≥ 0, with entries:

pij(t) = P(Xt = j|X0 = i), (1.3)

for i, j ∈ R. The following result holds for the transition matrix, from which we are
also able to obtain a connection between the transition and generator matrices.

Theorem 1.2.5. The transition matrix P(t) satisfies the Kolmogorov forward equation:

P′(t) = P(t)Q,

and hence:

P(t) = etQ, (1.4)

for t ∈ [0, ∞], (naturally, P(0) is equal to the corresponding identity matrix).

1.2.2 Additional matrix operations

1.2.2.1 The Moore-Penrose inverse

Now recall the notion of the Moore-Penrose inverse. Let A ∈ Rn×m with full rank; it
can be shown that there exists a unique matrix, the Moore-Penrose inverse which is
denoted by A† ∈ Rm×n, satisfying the following four Penrose equations:

AA† A = A, A† AA† = A†, AA† = (AA†)T, A† A = (A† A)T (1.5)

One can easily verify that AA† is the orthogonal projection of Rn onto the range
R(A), denoted by ΠA, and that A† A is the orthogonal projection of Rm ontoR(AT)
denoted by ΠAT , where by AT we denote the transpose of A. It is also well known
thatR(A†) = R(AT).
Let us also recall the standard minimization property of the Moore-Penrose inverse:
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Proposition 1.2.6. Let A ∈ Rn×m and b ∈ Rr with b ∈ R(A) and the equation Ax = b.
Then, if A† is the Moore-Penrose inverse of A, we have that A†b = u, where u is the minimal
ℓ2 norm solution of the equation.

For more details on the Moore-Penrose inverse and pseudoinverses in general,
standard reference books are e.g. Ben-Israel and Greville, 2003; Campbell and Meyer,
2009; Groetsch, 1977.

1.3 Matrix operations and vectorization

Definition 1.3.1. The Kronecker product of two matrices A = (Ai,j)
j=1,...,m
i=1,...,n ∈ Rn×m

and B = (Bi,j)
j=1,...,q
i=1,...,p ∈ Rp×q, denoted A⊗ B, is the np×mq dimensional matrix

A⊗ B :=


A1,1B · · · A1,mB
A2,1B · · · A2,mB

... · · ·
...

An,1B · · · An,mB

 ,

where Ai,j is the ith row, jth column entry of the matrix A.

A result which will prove to be of particular use in subsequent sections, is that
the matrix equation AXB = C, can be re-written as a system of linear equations,
using the Kronecker product. Let X ∈ Rn×m, then we use x = vec(X) to denote the
vectorizations of X, by stacking the rows of the matrix into column vectors. Then,

AXB = C ⇒ (A⊗ BT)x = c.

Hereinafter, we will use the convention that upper-case letters denote matrices and
lower-case denote their vectorized forms.

Even though the vectorization of a matrix is a well known procedure and func-
tions that perform this operation are readily available in many programming pack-
ages, we include the following functions that perform this operation, for complete-
ness. Moreover, it may be useful for practitioners to have their explicit forms, which
can be applied regardless of the platform. To do this for an arbitrary n-dimensional
square matrix P (resulting in a column vector p ∈ Rn2

), define the function ψ :
{1, 2, . . . , n} × {1, 2, . . . , n} → {1, 2, . . . , n2} , by ψ(i, j) = (i − 1)n + j. Therefore,
if we represent the entries of the square matrix P and the vector p = vec(P) by
Pi,j and pi, respectively, it holds that pψ(i,j) = Pi,j. For example, the first entry
of a three-dimensional square matrix, P1,1 will be mapped to p1 since ψ(1, 1) =
(1 − 1) × 3 + 1 = 1 and the last entry of the matrix P3,3 will be mapped to p9 in
the vector, as required, since ψ(3, 3) = (3− 1)× 3 + 3 = 9.

Given that the solutions of the problems we will be examining should be in ma-
trix form, we must also define (with a slight abuse of notation) the inverse ψ−1 :
{1, 2, . . . , n2} → {1, 2, . . . , n}× {1, 2, . . . , n}, which will relabel the solution back into
matrix form. To define the inverse function we first extrapolate the column value j.
From the definition of ψ we see that j = ψ(i, j) mod n, for j ∈ {1, 2, . . . , n − 1}.
When ψ(i, j) mod n = 0, this means that j = n. Hence, for j ∈ {1, 2, . . . , n}, j =
ψ(i, j) mod n + n1{ψ(i,j) mod n=0}. Using the definition, ψ(i, j) = (i− 1)n + j we can
substitute in the expression for j and solve to obtain the row values i. For clarity, the
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full output of this inverse function is given. For k ∈ {1, 2, . . . , n2}:

ψ−1(k) =
( k− k mod n− n1{k mod n=0}

n
+ 1, k mod n + n1{k mod n=0}).

One can easily check that by calculating Pψ−1(k) = pk, for k ∈ {1, 2, . . . , n2}we obtain
original form of the square matrix.

1.3.1 Lévy processes

We move on to a general class of continuous stochastic processes, known as Lévy
processes. Throughout this work, we have abopted the notation used in Øksendal
and Sulem, 2007.

Definition 1.3.2 (Lévy process). A Lévy process {Lt}t≥0 is a stochastic process for
which the following conditions hold:

• L0 = 0.

• L has independent and stationary increments, i.e., if t > s then Lt − Ls is inde-

pendent from Ls and Lt − Ls
D
= Lt−s.

• L is stochastically continuous, i.e for all ϵ > 0 and all s > 0 we have

lim
t→s

P(|X(t)− X(s)| > ϵ) = 0.

A consequence of the above definition is the celebrated Itô - Lévy decomposition.
First, we define the following required quantities:

Definition 1.3.3. Let Lt be a Lévy process, whose jump is defined as ∆Lt = Lt −
Lt− . Furthermore, let B0 be the family of Borel sets U ⊂ R, whose closure does not
contain 0. Then, for U ∈ B0, define the Poisson random measure of the Lévy process
Lt by:

N(t, U) = ∑
0<s≤t

1(∆Ls).

The Poisson random measure represents the number of jumps of size ∆Ls ∈ U,
which occur up to time t. We can therefore define the intensity of the jumps as
follows:

Definition 1.3.4. The intensity of a Lévy jump process Lt, known as the Lévy mea-
sure of Lt is defined as:

ν(U) = E[N(1, U)],

where, as above, U ∈ B0.

A useful consequence of the above definitions is that if ν is the Lévy measure of
a simple Compound Poisson Process with rate λ and jump size density f (z), then
we have that

ν(U) = λ f (U).

To this end, we will employ the following result in the subsequent sections, due to
Kyprianou, 2006:
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Theorem 1.3.5. Consider the Poisson random measure N(t, U), with U ∈ B0, and corre-
sponding Lévy measure ν(U). Then the process:

Xt =
∫ t

0

∫
B

zN(ds, dz),

where B ∈ B(R), is a Compound Poisson Process with rate ν(B) and jump distribution
ν(dx)|B

ν(B) .

Throughout Chapter 3, we will consider jump terms in the form above. We can
now present the following celebrated theorem:

Theorem 1.3.6 (Itô - Lévy decomposition). Let {Lt}t≥0 be a Lévy process. Then, we have

Lt = bt + σBt +
∫
|z|<1

zÑ(t, dz) +
∫
|z|≥1

zN(t, dz), (1.6)

for t ≥ 0, where b, σ ∈ R, Bt is a Brownian motion and Ñ(t, dz) := N(t, dz)− ν(dz)t is
the compensated Poisson measure.

More generally, we can define the stochastic process Xt, as:

dXt = a(t)dt + σ(t)dB(t) +
∫
|z|<1

H(t, z)Ñ(dt, dz) +
∫
|z|≥1

H(t, z)N(dt, dz), (1.7)

known as Lévy - Itô processes. Moreover, by combining the compensator with the
drift term the above can be written as:

dXt = a(t)dt + σ(t)dB(t) +
∫

R
H(t, z)N(dt, dz). (1.8)

We will adopt this formulation throughout the remainder of this work. For such
processes, we have the following results, which are extension of the standard, non-
jump Itô-formula and generator operators.

Theorem 1.3.7 (Itô formula). Let Xt ∈ R be an Itô- Lévy process and consider a function
f (x, t), with f ∈ C2(R× [0, T]). Then, the dynamics of the process f (Xt, t) are given by
the following version of the Itô formula:

d f (Xt, t) =
∂ f
∂t

(Xt, t)dt +
∂ f
∂x

(Xt, t)
(
a(t)dt + σ(t)dBt

)
+

1
2

∂2 f
∂x2 (Xt, t)σ2(t)dt

+
∫

R

(
f
(
Xt− + H(t, z), t

)
− f (Xt−, t)

)
N(dt, dz)

Definition 1.3.8 (Generator). For a Lévy-Itô process, given by (1.8), and function
f : R× [0, T]→ R we define the generator L by:

L f (x, t) = lim
t↓0

E[ f (Xt, t)|X0 = x]− f (x, t)
t

. (1.9)

It particular, it can be shown that the generator admits the following form:

L f (x, t) =
∂ f
∂t

+ a(t)
∂ f
∂x

+
1
2

σ2(t)
∂2 f
∂x2 +

∫
R

(
f (x + z, t)− f (x, t)

)
ν(dz), (1.10)
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1.3.1.1 The non-jump Ornstein-Uhlenbeck process

A specific Lévy process we will be studying in detail is the Ornstein-Uhlenbeck (OU)
process, widely used in financial mathematics. In Chapter 3, we will use a Ornstein-
Uhlenbeck process with a jump component, so we emphasize that the following is
the non-jump, continuous version. In its simplest form, the OU process Xt is defined
as the stochastic process satisfying the SDE:

dXt = k(θ − Xt)dt + σdBt, Xs = x, (1.11)

for some known x, where, as above, Bt represents the standard Brownian motion
and k, θ and σ are positive real constants. The OU process is a mean-reverting, Gaus-
sian and Markov process, which is also temporally homogeneous. We can therefore
equivalently write (1.11) as:

dXu = k(θ − Xu)du + σdBu, X0 = x, (1.12)

where u = t− s. For simplicity, we write Xx
t to indicate the OU process with X0 = x.

We adopt this convention for all stochastic processes in the remainder of this work.
Employing Itô’s formula we can obtain the solution to the above SDE:

Xt = xe−kt + θ(1− e−kt) + σ
∫ t

0
e−k(t−u)dBu,

from which is it easy to see that Xt ∼ N(θ + (x − θ)e−kt, σ2(1− e−2kt)/2k). These
properties are what make this particular family of processes widely used in many
applications. We will also need the following regarding the transition density and
hitting time for the OU process.

Theorem 1.3.9. The transition density of the OU process, with initial condition X0 = x, is
given by:

p(y, x, t) ≡ P
(
Xt = y|X0 = x

)
=

√
k

πσ2(1− e−2kt)
exp

(
− k(y− θ − (x− θ)e−kt)2

σ2(1− e−2kt)

)
,

(1.13)

for x, y ≥ 0.

Furthermore, for the OU process as defined in (1.12), we define the correspond-

ing survival probability distribution, given by Q(x, t) := P
(

infr≤t Gx
r > 0

)
. The

distribution can be obtained via appropriate Volterra equations, for which we refer
the reader to Lipton and Kaushansky, 2018.

Remark 1.3.10. An important result is the fact that the transition density (1.3.9) is
uniformly continuous as a function of the initial position x. This result follows
from the uniform continuity of the transition semigroup Pt f (x) = E[ f (Xx

t )] for
f ∈ L∞(R) (i.e., essentially bounded and measurable functions), as established in
Remark 2.2 of Priola and Zabczyk, 2009, and choosing f (x) = 1{x=y}, for some fixed
y ≥ 0.
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1.3.1.2 The Lévy-driven (jump) Ornstein-Uhlenbeck process

The Lévy-driven OU is given by:

dGu = k(θ − Gu)du + σdBu +
∫

R
zN(du, dz), G0 = x. (1.14)

The process has two sources of randomness: the continuous Brownian motion Bt and
the discontinuous Lévy jump term Lt, determined by the Poisson random measure
N(·, ·), defined by N(t, U) = ∑0<s≤t χ(∆Ls) for every Borel set U ⊂ R, where ∆Ls =
Ls − Ls− , that represents the number of jumps of size ∆Ls ∈ U, which occur up to
time t. It then follows (see Theorem 1.3.5 of the Introduction) that the jump term
is a Compound Poisson process with arrival rate λ = ν(R) and jump distribution
f (dz) = λ−1ν(dz). Furthermore, this process is temporally homogeneous, as the the
sum of two homogeneous processes (the continuous OU and Compound Poisson
processes). For an in depth analysis of integrals with respect to Poisson measures
and their properties see e.g., Kyprianou, 2006.

1.3.1.3 Infinitesimal generators and PDEs for the non-jump Ornstein - Uhlen-
beck process

Finally, we recall the generator for the continuous OU process given by (1.12). This

operator is related to the corresponding survival probability Q(x, t) := P
(

infr≤t Xx
r >

0
)

, as well as the corresponding transition density p(·, x, t) via the equation:

∂ f
∂t

(x, t) = L f (x, t), (1.15)

where L represents the operator:

L f (x, t) = k(θ − x)
∂ f
∂t

(x, t) +
1
2

σ2 ∂ f 2

∂x2 (x, t). (1.16)

This is known as the Kolmogorov backward equation. In Chapter 3 we will be con-
sidering more complex models, such as regime switching and stochastic volatility
OU processes. Under such models, analogous equations to (1.15) are produced,
which are included in Appendix B.1. We will refer to these equations after present-
ing the models in Chapter 3.
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Chapter 2

Markov chain lumpability and
applications in credit risk

2.1 Background

As discussed, the implementation of IFRS 9 has lead to significant modelling chal-
lenges, which financial institutions now must address. One of the main considera-
tions is loan classification. Specifically, under IFRS 9, it is now mandatory for finan-
cial institutions to classify loans into three distinct categories, known as the IFRS
9 Stages; Stage 1 loans are considered performing, Stage 2 contains loans which
have displayed a significant increase in credit risk and Stage 3 contains all Non-
Performing loans (NPLs), considered to have defaulted. Furthermore, under IFRS 9
all institutions must report credit exposures ratings in accordance to the Staging de-
fined by the regulations. This create significant compatibility and reporting issues,
since most institutions still have different loan classification and reporting standards,
used for modelling.

It is standard in the industry to model the risk of a credit exposure as a discrete
stochastic process, in the sense that, as time evolves, loans may migrate from one
category to another. We will also abide by this standard, and also adopt the well-
established assumption that the time-wise evolution of the state of a loan can be
modelled by a Markov process. Hence, institutions now face the problem of finding
an efficient way of aggregating existing classifications, corresponding to different
state spaces of the internal Markov chains, into an IFRS 9 compliant state space,
namely one comprised of the three IFRS 9 performances: Stage 1, Stage 2 and Stage
3, whilst preserving the defining Markov property. We therefore face three important
challenges in the implementation of the new standards that will be addressed in this
Chapter:

• Streamlining all detailed internal models into a format compatible with the
IFRS 9 stage classification, while maitaining the Markov property.

• Estimating the total time a loan is considered to be Stage 2. This is due to the
fact that financial institutions need to increase provisions for the loans catego-
rized in Stage 2, by considering the expected total losses that will be incurred
throughout the remaining lifetime of the loan, referred to as the Expected Life-
time Provisions (ECL).

• Modelling the expected lifetime for revolving credit facilities, for example credit
cards. Such loans do not have a set maturity date and hence, if they was con-
sidered Stage 2, the institution needs to estimate the remaining lifetime, over
which it must calculate the total provisions.
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These last two quantities can be estimated using the fundamental matrix of the
Markov chain on the fundamental state space consisting of the 3 states provisioned
by IFRS 9, which in turn can calculated as an analytic function of the transition ma-
trix. Therefore, we can see that the characterization of the loan classification through
a Markov process is of paramount importance. However, the internal models used
by companies contain different classifications, often using multiple categories for
performing or non-performing loans, which are characterized by auxiliary quantities
such as days past due, forborne flags etc. The loan classification and risk reporting,
as well as data collection and evaluation procedures adopted by each institution are
based on Markov models using these highly granular categories, producing a fine
graining of the fundamental state space required by IFRS 9. For compliance reasons
under IFRS 9, it is mandatory that these internal models are made compatible with
the state space which consists of the three aforementioned Stages. This results in
the need for a coarse graining procedure, which collapses the detailed state space
of internal models to the fundamental state space of IFRS 9. However, for the rea-
sons stated in the beginning of this paragraph, this coarse graining must be made
while retaining the Markov property for the reduced process. We therefore need to
find a method of reducing the state space of the corresponding Markov chains to
the particular state space indicated by the IFRS 9, whilst preserving its important
quantitative properties and, in particular, the Markov property. We address these
problems using the so-called lumping of the Markov chain, which was first intro-
duced in Kemeny and Snell, 1976, and whose properties and applications have been
examined in Barr and Thomas, 1977; Buchholz, 1994; Gurvits and Ledoux, 2005;
Thomas and Barr, 1977; Tian and Kannan, 2006. This method suggests a partition
of the original state space into distinct subsets on which one can define a reduced
Markov process, compatible with the original one. The conditions under which a
Markov chain is lumpable, as well as the resulting lumped Markov matrix, are de-
termined by a pair of row-stochastic matrices U, V, characterizing the partition of
the original state space, through which we obtain a closed form representation of
the lumpability condition.

A Markov process, whose transition matrix satisfies these conditions will be
called an exactly lumpable Markov chain and the reduced process on the corre-
sponding partition will remain a Markov process. As expected, exact lumpability
is a very delicate property and often, Markov chains do not satisfy it for given par-
titions of the state space, provided by U and V. On the other hand, the need arises
for obtaining approximations of Markov chains projected on a particular partition
(whose transition matrices are probably incompatible with the full lumping condi-
tion for the given partition). In order to compromise these two competing goals, one
can consider the problem of approximate lumpability, i.e., modifying the original
Markov chain in such a way as not to disrupt important observable quantities of
the chain, while at the same time choosing a pertubation so that a lumped approxi-
mation is feasible. This will be called the problem of approximate lumpability. The
idea of allowing a pertubation of the original Markov process is acceptable if one
considers that, in actual applications, the true transition matrix, which is unknown,
is inferred by statistical techniques and therefore, is subject to uncertainty, which
generates pertubations. As a result, the estimator of an exactly lumpable Markov
chain may not enjoy the same property. Naive grouping of the states will result in
the loss of the Markov property, which, for all reasons described above, is crucial in
the analysis. We examine the problem of lumping Markov chains, as well as an ap-
propriate approximate version under the framework of the Moore-Penrose inverse,
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which provides equivalent characterizations of lumpability, as well as an algorith-
mic approach to approximate lumpability.

A way to solve the problem of approximate lumpability is to find the exactly
lumpable matrix, which is closest to the original Markov chain transition matrix,
with respect to a notion of an appropriate norm. For a wide range of ℓ2-related
norms, we consider this task as an ℓ2 minimization problem, under constraints re-
lated to the stochasticity and lumpability of the resulting matrix. As the Moore-
Penrose inverse provides a least norm solution to the equation Ax = b, we are
able to employ this, in combination with an appropriate iterative scheme, to ob-
tain a minimizer in the setting defined above, or in other words the closest lumpable
approximation to a non-lumpable transition matrix. Moreover, by combining this
methodology with results pertaining to exact lumpability, we are able to pose and
solve certain variations of the concept of approximate lumpability, while considering
analytic functions of the original transition matrix, which appear to be meaningful
in several applications and in the description of various observable quantities of the
process. We will employ such methods to address the modelling tasks under IFRS 9,
posed above (for more work on IFRS 9 modelling, we refer the interested reader to
Beerbaum and Ahmad, 2015; Berglund, 2016; Gornjak et al., 2017).

It is worth emphasizing that the need for lumping in the present situation does
not arise from the need of reducing the dimensionality of Markov chains, but rather
from the need of compatibility of the given Markov chain (representing the internal
model of the firm) with a mandatory pre-prescribed Markov chain model required
by the supervising authority (as in the case of the IFRS 9 classifications) or, more
generally, the need for comparisons of credit (or other) ratings across different insti-
tutions or possibly even different countries, as seen in Hill, Brooks, and Faff, 2009.
We explore such examples in this Chapter. Despite the fact that we do not focus
on high-dimensional Markov chains in this work, it is worth noting that Markov
chain lumpability can potentially have important applications in problems leading
to higher-dimensional processes, such as in Takada and Sumita, 2011. The proposed
methods could therefore still be applied for dimensionality reduction, but this is
not the focus of the present paper. Problems where dimensionality reduction whilst
preserving the fundamental properties of the processes might be of interest may be
related to scorecard development, where internal ratings must be mapped to corre-
sponding credit scores, and machine learning techniques (e.g., Li et al., 2020). The
application of lumpable Markov chains in such cases may increase the robustness of
the model, whilst also decreasing the risk of overfitting. Finally, even though moti-
vated by credit risk modelling, the results presented are applicable to more general
problems related to Markov chain modelling.

2.2 Lumpability of a Markov Chain

The notion of lumpability, introduced for the first time in Kemeny and Snell, 1976 is a
generic method of reducing the dimension of a continuous or discrete-time Markov
chain, whilst maintaining Markov property of the original chain. Restricting our-
selves only to the discrete state spaces, we consider a Markov Chain M = (S, P). As-
sume now that we wish to reduce the dimension of S by aggregating several states
into new compound states, thus creating a partition of the original state space S′.
One could try to calculate the total probability of reaching the new compound states,
however in general, there is no guarantee that by doing so the resulting reduced
stochastic process retains the Markov property in the new state space. Whether this
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fundamental property is preserved or not depends on the original Markov process
and the chosen partition. Under this consideration, we recall the definition of a
lumpable Markov chain.

Definition 2.2.1 (Lumpable Markov chain). Let {Xt : t ∈ N} and M = (S, P) be
a Markov chain and S′ = {A1, A2, . . . , Am}, where m < n, be a partition of S =
{1, 2, . . . , n}. The chain M is called lumpable with respect to S′ if, for any initial
distribution, it holds that:

P(Xt ∈ Aj|Xt−1 ∈ Ai1 , · · · , Xt−k ∈ Aik) = P(Xt ∈ Aj|Xt−1 ∈ Ai1) (2.1)

for any t, k, j and any Ai1 , · · · , Aik ∈ S′, whenever these conditional probabilities are
well-defined, i.e. these conditions occur with positive probability.

The above definition can equivalently be written as follows: Let S′ = {A1, ..., Am}
be the partition of the original state space S. Then, the Markov Chain M = (S, P) is
lumpable if:

∑
k∈Aη

Pi,k = ∑
k∈Aη

Pj,k, for all i, j ∈ Aξ and for all (Aη , Aξ). (2.2)

These definitions imply that any Markov chain is lumpable if the lumped process
maintains the Markov property, a fundamental qualitative property (see Kemeny
and Snell, 1976 for counterexamples) and therefore, in the cases where the lumpa-
bility condition is met, we can consider the reduced Markov chain, with a lower
dimensional state space S′.

Let us consider a Markov chain M = (S, P) on a finite n-dimensional state space
S, with corresponding transition matrix P ∈ Rn×n. We assume we want to study the
lumpability of the chain M with respect to a known m-dimensional partition of the
state space, S′ where m < n. Therefore, S′ = {A1, A2, . . . , Am} ≃ {s′1, s′2, . . . , s′m},
where by this notation we imply that we consider each element of the partitioned
state space Ai ⊂ S′ as a new compound state of the aggregate Markov chain, de-
fined on the state space S′. Therefore, it makes sense to define the function ϕ :
{1, 2, . . . , n} → {1, 2, . . . , m}, which maps any element of S to the element of S′ it
will lumped to, according to the fixed partition. We can write, with an abuse of no-
tation, that S = {A1, A2, . . . , Am} ≃ {s′1, s′2, . . . , s′m} ≃ {1, 2, . . . m} and we have that
ϕ(i) = s′j when j is such that i ∈ Aj. We can now also define the cardinality of the
aggregate state s′j ∈ S′, as |s′j| = |{i ∈ S : ϕ(i) = s′j}|.

In order to study the lumpability of M with respect to S′, we need an efficient
way of defining the aggregate states of the new Markov chain. Consider the two
matrices U ∈ Rm×n and V ∈ Rn×m, as follows:

(V)i,j =

{
1, if ϕ(i) = s′j
0, otherwise

(U)i,j =

{
1/|s′i|, if ϕ(j) = s′i
0, otherwise

Therefore, an entry of V is 1 if the state indicated by its row is lumped to the ag-
gregate state indicated by its column and 0 otherwise. For an entry U, if the state
indicated by its column is lumped to the aggregate state indicated by its row (say s′i)
the entry is 1/|s′i|, and 0 otherwise.
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Example 2.2.2. For example, let S = {1, 2, 3, 4, 5, 6} and S′ = {{1}, {2, 3}, {4, 5, 6}} ≃
{s′1, s′2, s′3} so that the matrices U ∈ R3×6, V ∈ R6×3 we obtain are:

V =



1 0 0
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

 , U =

 1 0 0 0 0 0
0 1

2
1
2 0 0 0

0 0 0 1
3

1
3

1
3

 .

◁

These matrices can be used to define a partition S′ of S. Before proceeding to the
alternative definition of lumpability using matrices U and V, it is useful to examine
the general structure of these matrices. We can write V and U as a collection of row
and column vectors, respectively, as below:

V =


← r1 →
← r2 →

...
← rn →

 , U =

 ↑ ↑ ↑
c1 c2 · · · cn
↓ ↓ ↓

 , (2.3)

where ri ∈ R1×m and ci ∈ Rm×1. From the description above we can write the rows
of V as ri = eS′

ϕ(i), where and eS′
k is an element of the standard basis with dimension

m (the cardinality of S′), i.e., the m-dimensional row vector with 1 in the kth column
and 0’s in all others. Similarly, we can write the columns of U as ci =

1
|ϕ(i)|

(
eS′

ϕ(i)

)T,
for i = 1, 2, . . . , n.

There seems to be a close connection between lumpability and the Moore-Penrose
inverse. The following result provides an interesting characterization of the matrices
V, U, which, to the best of our knowledge, has not been reported elsewhere.

Lemma 2.2.3. For the matrices U, V presented above, it holds that U† = V.

Proof. It is enough to show that the matrix V satisfies the four Penrose conditions.
We can see that the matrix V satisfies the first three conditions of the Moore-Penrose
inverse for U:

UVU = U, VUV = V, UV = (UV)T = Im×m

Moreover, it is easy to see that the matrix VU is a projection matrix:

(VU)2 = VUVU = VIm×mU = VU.

It remains to show that (VU)T = VU. To do this, we will use the general form of
the matrices U and V, in terms of their rows and columns, respectively, as defined
above. The resulting matrix VU is of the form:

VU =


r1 · c1 r1 · c2 · · · r1 · cn
r2 · c1 r2 · c2 · · · r2 · cn

...
...

. . .
...

rn · c1 rn · c2 · · · rn · cn

 . (2.4)
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We will now prove that this matrix is symmetric. Consider any two arbitrary states
i, j. To analyse their contribution to the matrix VU we distinguish the following
cases:

(i) i ̸= j and states i and j will not be lumped together, i.e. ϕ(i) ̸= ϕ(j). Hence,
ri · cj = eS′

ϕ(i)
1
|ϕ(j)|

(
eS′

ϕ(j)

)T
= 0 = rj · ci.

(ii) i ̸= j and states i and j will be lumped into the same aggregate state, i.e. ϕ(i) =
ϕ(j). Then, ri · cj = eS′

ϕ(i)
1
|ϕ(j)|

(
e(S

′)
ϕ(j)

)T
= 1
|ϕ(j)| = eS′

ϕ(j)
1
|ϕ(i)|

(
e(S

′)
ϕ(i)

)T
= rj · ci.

(iii) i = j and trivially, ri · ci = eS′
ϕ(i)

1
|ϕ(i)|

(
eS′

ϕ(i)

)T
= 1
|ϕ(i)| =

1
|ϕ(j)| = rj · cj. Of course,

if state i is not lumped into an aggregate state of S′ then |ϕ(i)| = 1 so we will
observe 1’s in the diagonal for such states.

We have thus shown that (VU)ij = (VU)ji, for all i, j and we conclude that VU is a
symmetric matrix, proving the last Penrose equation. Therefore, V† = U and vice
versa. Our calculations provide a clear view of the general form of the matrix VU:

VU =



1 0 0 · · · 0 0
0 1 0 · · · 0 0
... 0 S1 0 0 0
...

... 0 Sk 0 0
...

...
... 0

. . . 0
0 0 0 · · · 0 1


, (2.5)

where Si are the symmetric matrices that are created from the multiplication of the
rows and columns in U and V, corresponding to the lumped states.

We can return to reformulating the definition of lumpability, using the matrices
U, V.

Definition 2.2.4. We say that the transition matrix P is U −V-lumpable if

VUPV = PV. (2.6)

In the case where (2.6) holds, the reduced stochastic process on S′ retains the Markov
property and the matrix P∗ := UPV, which is stochastic, is called the transition
matrix of the lumped system.

Condition (2.6) guarantees that if we define a new stochastic process on an m-
dimensional state space S′ rather than the original n-dimensional state space S, with
the state space S′ consisting of a partition of S, created by lumping together the states
indicated by the 1’s in the matrix V, the new process is a Markov process.

Moreover, since the matrix VU is a projection matrix, we have that VU = VV† =
ΠV and so, condition (2.6) implies that R(PV) is invariant under the orthogonal
projection VU, giving us the following relation between the ranges:

R(PV) ⊆ R(VU) = R(V) (2.7)

Below we provide an example of a lumpable Markov chain and the matrices U and
V corresponding to a possible partition.
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Example 2.2.5. As an example of a lumpable system, consider the Markov chain
{Xt : t ∈ N} on the four-dimensional state space S = {1, 2, 3, 4} with transition
matrix

P =


0.225 0.325 0.175 0.275
0.175 0.375 0.125 0.325
0.420 0.000 0.240 0.340
0.060 0.360 0.340 0.240

 . (2.8)

Consider the reduced state space S′ = {{1, 2}, {3, 4}} ≃ {s′1, s′2}, which is 2 dimen-
sional, and aggregates states 1, 2 and 3, 4 of the original system as two compound
states. Matrices U and V corresponding to this partition are given by:

U =

( 1
2

1
2 0 0

0 0 1
2

1
2

)
, V =


1 0
1 0
0 1
0 1

 . (2.9)

One can easily check that condition (2.6) is satisfied for this choice of P, U and V,
which implies that one can consider the original Markov chain as restricted on the
new state space S′, with the resulting transition matrix P∗ := UPV:

P∗ =
(

0.55 0.45
0.42 0.58

)
.

To illustrate the frailty of the lumpability condition, note that if we perturb P to
the matrix:

Pϵ =


0.215 0.335 0.175 0.275
0.175 0.375 0.125 0.325
0.420 0.000 0.240 0.340
0.060 0.360 0.340 0.240

 ,

the Markov process is no longer lumpable, as VUPϵV ̸= PϵV.
◁

Furthermore, it is known that the k−th step transition matrix of a lumpable chain
is also lumpable. The following lemma is due to Tian and Kannan, 2006.

Lemma 2.2.6. If P is a stochastic matrix that is U − V lumpable, then Pk, is also U − V
lumpable, for k ∈ Z.

This result shows that the k-step transition matrices of the Markov Chain are also
lumpable. Moreover, the lumped k-step transition matrix is simply the kth power of
the original lumped matrix P. Indeed, one can easily check that (P∗)2 = (UPV)2 =
(UP)(VUPV) = UP(PV) = UP2V = (P2)∗.

2.3 Approximate lumpability

Exact lumpability, in the sense previously defined, may not hold for a given Markov
chain and moreover, is a rather delicate propery, as illustrated in Example 2.2.5. In
the need to aggregate the original state space to a required form (e.g. aggregating
an institution’s internal rating to an IFRS 9-compliant model), one can consider a
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perturbation of the original Markov chain in such a way so that the resulting process
is lumpable (hence leading to a Markov process for the reduced system), while still
being a reasonable approximation, in terms of observables, for the original process.
We will formulate this problem in terms of an appropriate constrained optimization
problem. However, we first introduce the following notation, which will be used
throughout the section:

Notation 2.3.1. We denote by 1n the n−dimensional column vector, whose entries
are all 1 and by the 0n the n−dimensional column vector, whose entries are all 0.

Consider a Markov chain with a transition matrix P ∈ Rn×n, which is not exactly
lumpable with respect to a fixed given partition S′, with dimension m < n, defined
by the corresponding matrices V, U. Our goal, is to find a new Markov chain, which
has the same dimension as the original one, with a transition matrix PL ∈ Rn×n as
close as possible to the original chain under some norm related to a given observ-
able, so that the new chain PL is exactly lumpable with respect to S′. Under this
assumption, we may apply the exact lumpability techniques and approximate the
quantitative properties of the original transition matrix P, with the lumpable chain
with transition matrix PL. Since there is no free lunch, this procedure has an approx-
imation error, which can be minimized under an appropriate norm of the difference
PL − P.

Based on these facts, the problem can be formulated as the following minimiza-
tion under constraints:

min
PL∈Rn×n

∥PL − P∥2

subject to VUPLV = PLV, PL1n = 1n, (P)i,j ≥ 0, (2.10)

where ∥·∥2 denotes the ℓ2 norm (note that the choice of the ℓ2 norm is indicative, as
one may consider different weighted ℓ2 norms). The second and third conditions of
(2.10) correspond to the requirement that PL is a row stochastic matrix, a necessary
condition for PL to be interpreted as a transition matrix.

An interesting observation comes from the fact that due to the Cauchy-Schwarz
inequality and since the minimization described in Problem (2.10) stands with re-
spect to ℓ2 norm, we can obtain estimates of solution using ℓ1 norm. In addition,
(2.10) is a classical quadratic optimization problem, a family of well studied prob-
lems.

We reformulate the problem in vectorized form, using the Kronecker product.
In the lumpability condition, the left hand side becomes (VU ⊗VT)pL and the right
hand side (In×n⊗VT)pL. Using the Kronecker product properties, the condition can
be expressed as: (

(VU − In×n)⊗VT
)

pL = 0mn,

where pL = vec(PL). Similarly, noting that 1 is already a column vector, the unit
row-sum condition can be written as:

(In×n ⊗ 1T
n )pL = 1n.

These calculations motivate the following definition.

Definition 2.3.2 (Lumpability condition matrix). Consider the problem of approx-
imate lumpability (2.10). We define the lumpability condition matrix associated to
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this problem as the matrix A ∈ R(mn+n)×n2
, given by the following block form:

A =

(
(VU − In)⊗VT

In×n ⊗ 1T
n

)
.

Using the condition matrix we can now reformulate Problem (2.10) as:

min
PL∈Rn×n

∥pL − p∥2

subject to ApL = b, (P)i,j ≥ 0, (2.11)

where the column vector b is given by b = [0mn 1n]T.
When using this form of A, we obtain duplicate, as well as 0 rows in the con-

dition matrix, which, ideally, should be eliminated. However, this is only one way
of calculating A. In Section 2.4 we propose a more tailor made algorithm that can
be used to obtain an equivalent lumpability condition matrix, where the unecessary
rows have been removed. This algorithm will be of particular use in the applications
related to credit risk, where we make use of the fact that only consucutive ratings
(i.e. states) will be lumped together. This is, of course, the case under the classifica-
tion required by the IFRS 9, as well. Stage 2 contains all loans which have exhibited a
significant increase in credit risk. When using the transition matrix representation of
the migration between credit ratings, it is standard practice to write all riskier assets
consecutively. For example, BBB, BBB-, CCC+, CCC would be consecutive states in
the transition matrix and we would want to aggregate these four ratings to Stage 2,
when applying the lumping for IFRS 9 compliance.

The reformulation of the problem as a simple vector equation will allow us to
solve part of Problem (2.11) without the non-negativity contraint, using the Moore-
Penrose inverse. However, in general, the Moore-Penrose solution will not satisfy
the this additional contraint, which is essential in order for PL to be interpreted as a
transition matrix. Hence, in order to take into account both constraints, we consider
the two conditions we have separately; ApL = b captures the lumpability and unit
row-sum condition for PL and Pi,j ≥ 0 captures the non-negative condition that must
be satisfied for PL to be an acceptable transition matrix. It makes sense now to define
the following:

(a) The set of all U −V lumpable, n−dimensional square matrices with unit row-
sums, denoted by L(U, V) (in subsequent results, we omit the explicit depen-
dence on U and V to simplify notation)

(b) The set of all non-negative n−dimensional square matrices, denoted byM+
n .

Therefore, the solution to our problem will be the orthogonal projection of P
onto the intersection L∩M+

n . To calculate this, we employ an alternating projection
technique (see e.g. Escalante and Raydan, 2011) and in particular, Dykstra’s algo-
rithm (presented in full in the following Theorem). The splitting of the projections is
particularly convenient, as, seperately, they can be calculated very easily.

Theorem 2.3.3. For a non exactly lumpable transition matrix P /∈ L ∩M+
n , the solution

to Problem (2.11) is given by P̂L = limk→∞ Pk, where Pk is the k-th iteration of Dykstra’s
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iterative scheme (i.e. relabelling pk = vec(Pk) back into matrix form):

yk = ΠS (xk + pk)

xk+1 = pk + xk − yk

pk+1 = ΠL(yk + qk) = A†
(

b− A(yk + qk)
)
+ (yk + qk)

qk+1 = yk + qk − pk+1, (2.12)

with x0 = q0 = 0 and p0 = p. If, at any iteration, Pk ∈ L ∩M+
n , the procedure stops and

we obtain P̂L = Pk.

Proof. Firstly, we recognize that both L andM+
n are closed and convex sets, under

the standard topology of Rn2
and therefore, the algorithm converges. To apply Dyk-

stra’s algorithm to reach a solution, we need to know how to project onto each of
the sets L andM+

n . To project onto the set of non-negative matrices, we set all nega-
tive values that occur from the projection onto the lumpable matrices equal to zero.
It remains to find the orthogonal projection onto the set of lumpable matrices with
unit row-sums. We recognize that this is equivalent to finding the solution to the
simplified approximate lumpability problem:

min
PL∈Rn×n

∥pL − p∥2

subject to ApL = b. (2.13)

Since the only constraint is a vector equation, this minimization problem can be
solved using the Moore-Penrose inverse. We aim to minimize the norm of the quan-
tity eL := pL − p. Knowing that the Moore-Penrose inverse gives a minimal norm
solution, we rearrange the problem to get:

ApL = b⇒ A(eL + p) = b⇒ AeL = b− Ap⇒ eL = A†(b− Ap).

By definition, the solution will be that of minimal norm of ∥eL∥ = ∥pL − p∥, as
required and we can solve for pL to obtain pL = A†(b− Ap) + p. But, as the solution
to the minimization problem, PL is the orthogonal projection of P onto L, hence
ΠL(p) = A†(b− Ap) + p. We can recover the matrix form of PL from pL, trivially.
Hence, we now also have a closed form expression for the orthogonal projection
onto set L. We substitute this into the third step of Dykstra’s algorithm and obtain
(2.12).

Further details on Dykstra’ algorithm and convergence can be found in Bauschke
and Borwein, 1994; Bauschke et al., 2011.

Remark 2.3.4. We should note that Dykstra’s algorithm is only necessary when the
first iteration pL = A†(b− Ap) + p returns one or more negative entries. We apply
the algorithm to converge to the correct solution in these cases. If the first pL, how-
ever, satisfies all the conditions there is no need for alternating projection schemes.

Theorem 2.3.3 provides the solution to the approximate lumpability problem
where we consider the error as the difference between the lumpable and non-lumpable
versions of the transition matrix. This provides the best possible Markovian approx-
imation and the quantity ∥PL− P∥, is the least error we have to undertake if we need
to conform to the reduced model. Whether this error is acceptable depends on the
application and the expert opinion of the practitioner.

In many cases, it may be meaningful to consider the error of observable quanti-
ties that arises due to the use of the exactly lumpable approximation PL. Therefore,
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we wish to examine a larger family of minimization problems, where the error can
be considered as the difference between observable processes, when replacing the
original Markov chain with the the lumpable approximation. These observables
correspond to functions of the transition matrix. To build these ideas we will need
the following results, which are applicable when P is invertible. In such cases, we
may consider the lumpability of functions depending on the inverse of the transition
matrix, as for example, the fundamental matrix, which will be used for the IFRS 9
modelling (and must therefore be in terms of the three IFRS 9 Stages). Of course,
as we have already seen, invertibility of P is not a necessary condition for any of
the results up to this point. However, when applicable, this condition allows us to
solve an extended family of minimization problems, which is much wider than the
quadratic minimization problems considered above.

The extension of Theorem 2.3.3 to the approximation of observables of the cor-
responding Markov chains requires some auxiliary observations, that we prepare as
seperate Lemmata below.

Lemma 2.3.5 (CB lemma). Assume that P is an invertible stochastic transition matrix
which is U −V lumpable (in the sense of Definition 2.2.4). Then,

VUP−1V = P−1V.

Proof. The proof consists of 5 steps.
1. We note that if P is U−V lumpable then (UP−1V)(UPV) = Im×m, i.e. UP−1V

is a right inverse of the lumped transition matrix P∗ = UPV.
Indeed, by multiplying (2.6) by U from the right and by P−1 from the left we

obtain that P−1VUPVU = VU, and multiplying by U from the left, and V from the
right leads to

(UP−1)V)(UPV)(UV) = (UV)(UV)

which upon recalling that UV = Im×m yields the required result.
2. We have from (2.7) thatR(PV) ⊂ R(V).
3. Since P is invertible, R(PV) = PR(V) ⊂ R(V) (from step 2) which leads to

R(V) ⊂ P−1R(V).
4. We claim thatR(V) ⊂ R(PV).
To prove the claim it is enough to prove that for every x ∈ Rn there exists x′ ∈ Rn

such that, VxPVx′. We must identify such an x′. This requires solving the equation
Vx = PVx′ in terms of x′. Multiplying from the left by U, and recalling that UV =
Im×m this reduces to x = UPVx′, and multiplying from the left by UP−1V, and using
the result of step 1, we have that x′ = UP−1Vx. Hence the claim is proved.

5. From steps 3 and 4, R(V) = R(PV) and by the invertibility of P this yields
that P−1R(V) = R(V), which is the required condition for P−1.

Note that, even though P−1 is not necessarily a transition matrix, one can still
say, abusing notation, that P−1 is U − V lumpable. The resulting lumped matrix
(P−1)∗ = UP−1V cannot necessarily be interpreted as a lower-dimensional version
of the process, as it is no longer a stochastic matrix. However, its role is very impor-
tant in the calculation of analytic functions of P.

Moreover, we obtain a relation between the lumped inverse and the inverse of
the lumped matrix, in the same fashion as the k-th step transition matrices above, as
the following lemma indicates:

Lemma 2.3.6. Assume P is U −V lumpable with lumped and invertible transition matrix
P∗. Then, it holds that (P∗)−1 = (P−1)∗
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Proof. From Step 1 in Lemma 2.3.5, we have already shown that (UP−1V)(UPV) =
Im×m. We must also show that (UPV)(UP−1V) = Im×m. Starting now with the
lumpability condition for P−1 multiplying by U from the right and by P from the
left we obtain PVUP−1PVU = VU, and multiplying by U from the left, and V from
the right leads to

(UPV)(UP−1V)(UV) = (UV)(UV) =⇒ (UPV)(UP−1V) = Im×m. (2.14)

By definition, P∗ = UPV and (P−1)∗ = UP−1V, which completes the proof.

Due to linearity of matrix addition, we can easily deduce that the sum of lumpable
matrices is also a lumpable matrix. In view of the previous lemmata, we can then
conclude that analytic function of a lumpable transition matrix P, of the form f (P) =
∑∞

k=0 akPk, ak ∈ R, is also lumpable. As a result, we may consider problems where
we wish to minimize the ℓ2 distance between matrices depending on P. As stated
above, these functions of P can be interpreted as observables, based on the dynamics
of the Markov chain. Hence, we wish to examine how we can solve the problem of
approximate lumpability, whilst minimizing the error in these important quantities.
This method will prove useful in subsequent applications under the IFRS 9 frame-
work, where we will need to calculate the fundamental matrix, under the dynamics
of the lumped process. The following proposition outlines the methodology to solve
such minimization problems.

Proposition 2.3.7.
Consider the partition, defined by U, V, fixed and an invertible transition matrix P /∈

L. For any analytic and invertible function f (·) : Rn×n → Rn×n, of the form f (P) =

∑∞
k=0 akPk, ak ∈ R, the approximate lumpability problem

min
PL∈Rn×n

∥ f (PL)− f (P)∥2

subject to VUPLV = PLV, PL1n = 1n, (P)i,j ≥ 0 (2.15)

admits the solution P̂L = f−1(limk→∞ Pk), where Pk is the k−th iteration of Dykstra’s
algorithm (i.e. relabelling pk = vec(Pk) back into matrix form):

yk = ΠS (xk + pk)

xk+1 = pk + xk − yk

pk+1 = ΠL(yk + qk) = f−1
(

A′†
(
b− A′ f (yk + qk)

)
+ f (yk + qk)

)
qk+1 = yk + qk − pk+1, (2.16)

with x0 = q0 = 0 and p0 = p and for appropriate lumpability condition matrix A′ and
vector b′. If, at any iteration, Pk ∈ L ∩M+

n , the procedure stops and we obtain P̂L = Pk.

Proof. Given the properties proven for a lumpable matrix P, we can deduce that
f (P) will also be lumpable. Therefore, VU f (P)V = f (P)V. Moreover, the unit row-
sum condition PL1n = 1n can be transformed into an equation corresponding to the
row-sums of the resulting matrix f (PL), i.e., we can rewrite the condition in the form
f (PL)X = Y for some appropriate n-dimensional column vectors X, Y. Hence, we
can write the problem in terms of f (PL) as:

min
PL∈Rn×n

∥ f (PL)− f (P)∥2

subject to VU f (PL)V = f (PL)V, f (PL)X = Y, (PL)i,j ≥ 0. (2.17)
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Using the Kronecker product we can again write the two first conditions as a vector
equation. With the new row-sum condition, the second part of the condition matrix
will become:

f (PL)X = Y ⇒ (In×n ⊗ XT) f (pL) = Y,

where we need not write y for the vectorized form of Y, as it is already a column
vector. We can now define the lumpability condition matrix, A′ associated to this
minimization problem by:

A′ =
(
(VU − In×n)⊗VT

In×n ⊗ XT

)
,

as well as the vector b′ = [0mn Y]T.
This allows us to write a simplified version of the problem (as in (2.11), omitting

the non-negative condition):

min
PL∈Rn×n

∥ f (pL)− f (p)∥2

subject to A′ f (pL) = b′, (2.18)

where by f (pL) we mean the vectorized form of the entries of the matrix f (PL). As
in Theorem 2.3.3 we can define eL := f (pL)− f (p), to obtain:

A′ f (pL) = b′ ⇒ A′(eL + f (p)) = b′ ⇒ eL = A′†(b′ − A′ f (p)).

Hence, f (pL) = A′†
(
b′ − A′ f (p)

)
+ f (p) and pL = f−1

(
A′†

(
b′ − A′ f (p)

)
+ f (p)

)
is the transition matrix that satisfies (2.18). This expression is used to find projection
of P onto the set L, such that ∥ f (PL) − f (P)∥2 is minimized. Hence, we use this
expression for the third step of Dykstra’s algorithm, obtaining (2.16), which will
converge to the solution belonging to L ∩M+

n ,

Remark 2.3.8.

(a) Results (2.12) and (2.16) can also be written as pL = A†b + PN (A)p and pL =

f−1((A′)†b′ + PN (A′) f (p)
)
. Therefore, the solutions can also be understood in

terms of the minimal norm solution A†b plus a component which arises from
the projection of the original transition matrix onto the null space of A.

(b) The case of minimizing under weighted norms is captured by Proposition
2.3.7. We have also assumed that f is an invertible function, which is a log-
ical assumption when considering applications in IFRS 9, as well as in other
fields. This condition is necessary when we want to also retrieve the lumpable
transition matrix PL, when solving Problem (2.15). In other cases, where we
only be interested in the lumpable version of f (P), the invertibility condition
may be relaxed.

(c) The error induced by replacing the exact transition matrix with the closest
lumpable version for more general observables, e.g. of the form f (P) = EPk, k ∈
N, where E is a matrix of appropriate dimension (found e.g., in pricing appli-
cations), can be estimated by standard inequalities pertaining to matrix norms
or triangle inequalities.

Moreover, when studying applications of Markov chains, transition matrices are
often produced through statistical methods, which incur an error. The following
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proposition establishes how this error is carried through when solving the problem
of approximate lumpability, a result which can be used for statistical analysis of
observables. For more work on the analysis of transition probability errors we refer
the interested reader to e.g., Kim and So, 2008.

Proposition 2.3.9. Let p and p̃ be the vector forms of the true transition matrix and the
approximate matrix, respectively, such that p = p̃ + ϵ, where ϵ is a n2-dimensional ran-
dom variable, with mutlivaritate normal distribution, ϵ ∼ Nn2(0, Σ), where 0 is the n2-
dimensional 0 vector and Σ is an n2 × n2 covariance matrix. Then, it holds that

pL − p̃L ∼ Nn2

(
0, (In2×n2 − A† A)TΣ(In2×n2 − A† A)

)
Proof. By Theorem 2.3.3 we know that pL = A†(b− Ap) + p, where we have written
the matrices in vector form, as above. Then by replacing we have

pL = A†(b− A( p̃ + ϵ)
)
+ p̃ + ϵ

= A†(b− Ap̃
)
− A† Aϵ + p̃ + ϵ

= A†(b− Ap̃
)
+ p̃ + ϵ

(
In2×n2 − A† A

)
= p̃L + ϵ

(
In2×n2 − A† A

)
,

where the last equality arises from the lumped version of P. Hence, we conclude
that

pL − p̃L ∼ Nn2

(
0, (In2×n2 − A† A)TΣ(In2×n2 − A† A)

)
,

which completes the proof.

2.4 Construction of the lumpability condition matrix A

In this section we outline an alternative algorithm to construct the lumpability con-
dition matrix A (hereinafter simply referred to as the condition matrix), for an arbi-
trary approximate lumpability problem. One can use the form of A given in Defi-
nition 2.3.2, however, this returns duplicate and zero rows in the condition matrix.
The proposed algorithm eliminates these rows, and we therefore obtain a lower di-
mensional matrix, making the problem well-posed.

We now proceed to the construction of A. Initially, we need to calculate the
dimensions of A. We know that, due to the relabelling of the problem, A will have
n2 columns (recall that n is the size of the original state space of the Markov chain).
The row dimension will depend on the number of equations that are necessary to
ensure lumpability.

Lemma 2.4.1. Consider lumping the Markov chain M = (S, P), where |S| = n onto a
partition S′, where |S′| = m. The number of equations needed to ensure lumpability from S
to S′ is m(n−m).

Proof. Consider an arbitrary state in the partition S′, Aξ = {i1, i2, . . . , i|Aξ |}, with car-
dinality |Aξ |. Then, according to Definition (2.2) of lumpability we obtain the equa-
tions

∑
k∈Aη

Pi1,k = ∑
k∈Aη

Pi2,k = · · · = ∑
k∈Aη

Pi|Aξ |,k
, for all Aη .

For this relation to hold we need |Aξ | − 1 equations. However, we obtain such a
system of equations for all pairs (Aη , Aξ). Therefore, in total, for lumpability to
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hold, the number of equations required is:

m

∑
i=1

m

∑
j=1

(
|Aj| − 1

)
=

m

∑
i=1

( m

∑
j=1
|Aj| −m

)
= m(|S| −m) = m(n−m).

Hence, from the result above, along with the n equations for the row-sums of the
lumpable matrix, we deduce that A will be a

(
m(n−m) + n

)
× n2 matrix (compared

to the (mn + n) × n2 dimensional version obtained using the Kronecker product
formulation).

For the proposed method that follows, we consider a partition in which lumped
states contain only consecutive states of the original chain, for example S′ =
{{1, 2, 3}, {4, 5}, {6}, {7, 8, 9, 10}} ≃ {s′1, s′2, s′3, s′4}. Without loss of generality, all
partitions can be written in such a form, by simply multiplying the original Markov
transition matrix with a sequence of permutation matrices. Moreover, as mentioned,
this is a fair assumption since, when applying Markov models to credit risk, the rat-
ings (i.e., states) are ordered from best to worst. Hence, when lumping these states
to create aggregate ratings, it will only be meaningful to aggregate the consecutive
ratings.

Definition 2.2 of lumpability can be written as ∑k∈Aη
Pi,k − Pj,k = 0, for all i, j ∈

Aξ . From this form we see that, for a fixed column k, the coefficients of the probabil-
ities Pi,k will be either 1 or−1, for all i. Given that the lumping occurs in consecutive
order, we can begin by considering the first and second rows, for all columns k ∈ Aη .
This motivates the following definition.

Definition 2.4.2 (Partition matrix). Consider a partition S′, with cardinality |S′| = m
of an original state space S, with |S| = n, in consecutive order, meaning that all states
to be lumped together, into a single aggregate state, are of the form i, i + 1, . . . , i + k,
for appropriate i and k. Then, for all Aη ∈ S′ define the partition matrix Lη = (Lη)i,j ∈
Rn×n by:

(Lη)i,j =


1 if i = 1, j ∈ Aη

−1 if i = 2, j ∈ Aη

0 otherwise

thus obtaining m total partition matrices L1, L2, . . . , Lm, characterizing the partition.

In order to proceed with each partition matrix Li, i = 1, 2, . . . , m, we define a
family of n − 1 related matrices L(k)

i , k = 1, 2, . . . , n − 1, where L(1)
i is the original

matrix Li. Then, L(k)
i is the matrix where the block of the first two lines has shifted

k− 1 positions downward with the empty positions filled by the 0 row. Therefore,
we will obtain:

(L(k)
η )i,j =


1 if i = k, j ∈ Aη

−1 if i = k + 1, j ∈ Aη

0 otherwise,

for k = 1, 2, . . . , n− 1. This procedure repeats until the block reaches the final row.
Writing the definition of lumpability in the form ∑k∈Aη

Pi,k− Pj,k = 0, for all i, j ∈
Aξ , we can see that these equations can be written as l(k)η · p = 0, where l(k)η =

vec(L(k)
η ) and p = vec(P). This holds since, for a fixed Aη , with corresponding par-

tition matrix Lη , we obtain the equation for all pairs i, j ∈ Aξ . Hence, each time
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we shift and obtain L(k)
η , we account for a new pair of states in Aξ (since only con-

sequtive states are lumped together). Of course, for each L(k)
η , we must check that

the rows k and k + 1 belong to the same aggregate state Aξ (if they do not, then we
would not obtain this equation for lumpability). We do this until we have shifted
down all the permutation matrices n− 1 times. This algorithm will result in the first
m(n−m) rows of A.

We still have to consider the final n rows, which correspond to the necessary row
sum conditions of a lumpable matrix. Using a similar approach to the above, we
define the family of row condition matrices C(k) = (C(k))i,j ∈ Rn×n by:

(C(k))i,j =

{
1 if i = k, and for all j,
0 otherwise.

We easily see that each C(k) is simply C(k−1), where the row of 1’s have been
shifted down once, and the remaining rows are all 0’s (in the same manner as we
shift the matrices L(k)

η ). After relabelling the row condition matrices into their cor-

responding vector forms, c(k) = vec(C(k)) ∈ Rn2
, with c(k)

ψ(i,j) = C(k)
i,j , for i, j, k =

1, 2, . . . , n, we can see that c(k) · p = ∑n
j=1 Pk,j = 1, for k = 1, 2, . . . , n, resulting in

the unit row-sum condition for a lumpable matrix. With the row condition matrices,
we can complete the construction of A by filling in the remaining n rows with the
vectors c(k), with k ∈ {1, 2, . . . , n}.

Finally, we also need to construct the column vector b ∈ Rm(n−m)+n. From the
definition of lumpability used for the construction of A, we can easily see that the
first m(n−m) entries of b will be 0’s and the remaining n entries will be 1’s (similarly
defined in Theorem 2.3.3).

It is important to note that the above form of C(k) corresponds to the standard
case of the approximate lumpability Problem (2.10). In the cases where we con-
sider analytic functions of the lumpable transition matrix, as presented in Proposi-
tion 2.3.7, we define the row condition matrix by:

(C(k))i,j =

{
Xj if i = k and for all j,
0 otherwise,

where Xj is the i-th entry of the vector X is as defined in Proposition 2.3.7. More-
over, the resulting rows-sums c(k) · f (p), will differ from 1. Specifically, we will have
c(k) · f (p) = Yk, where Yk is the k-th entry of the vector Y also as defined in 2.3.7.
Therefore, in this problem, the first m(n − m) entries of b will remain 0’s and the
remaining n entries will be those of Y.

We outline the complete algorithm for solving the problem of approximate
lumpability, using the methodology described:

Example 2.4.3. To illustrate the algorithm, consider the partition S′ = {{1, 2}, {3}}
of the state space S = {1, 2, 3}. We have the two elements A1 = {1, 2} and A2 = {3}
of S′, whose partition matrices are given by:

L1 =

 1 1 0
−1 −1 0
0 0 0

 , L2 =

 0 0 1
0 0 −1
0 0 0

 .
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Algorithm 1 Construction of the condition matrix
Given an initial and aggregate state space S and S′, respectively, with |S| = n and
|S′| = m, with mapping ϕ : S→ S′ and the partition matrices Li, for i ∈ S′ as defined
above:
1. Construct the condition matrix A as follows:

(a) For i = 1, 2, . . . , m and j = 1, 2, . . . , n− 1, construct all matrices L(j)
i .

(b) For each L(j)
i , if ϕ(j) = ϕ(j + 1) calculate lψ(i,j), and consequtively fill in the

rows of A with vectors lψ(i,j).

(c) Starting with C(1), construct row condition vectors C(k) and obtain vectors c(k).
Fill in the final n rows of A with c(k), for k = 1, 2, . . . , n.

2. Construct the reparameterized transition matrix p.
3. Construct vector b.
4. Use iterative scheme (2.12) (or (2.16) depending on the problem at hand) along
with an appropriate stopping criterion, to find the entries of the lumpable matrix in
vector form pL.
5. Use relabelling (PL)i,j = (pL)ψ−1(i,j) to obtain the solution in matrix form.

We perform the iterations for A1 first. We check that the condition ϕ(1) = ϕ(2) =
s′1 is satisfied and we therefore accept the version of the partition matrix l(1)1 , which
will be the first row of A. The next iteration will be:

L(2)
1 =

 0 0 0
1 1 0
−1 −1 0

 .

For this iteration, ϕ(2) = s′1 ̸= ϕ(3) = s′2, and therefore, this iteration will not be
accepted as part of A.

We now turn to A2. The condition has been checked and so we accept l(2)2 as the
second row of A. The second iteration of this partition matrix will be:

L(2)
2 =

0 0 0
0 0 1
0 0 −1

 ,

which is not accepted. Finally, we need to include the conditions related to the row-
sums of PL. As explained above, this is done by using the vector forms c(1), k =
1, 2, 3, of the row condition matrices:

C(1) =

 1 1 1
0 0 0
0 0 0

 , C(2) =

 0 0 0
1 1 1
0 0 0

 , C(3) =

 0 0 0
0 0 0
1 1 1

 . (2.19)

We have now collected all the rows necessary to construct A, which consists of
l(1)1 , l(2)2 , c(1), c(2), c(3). Notice that the row dimension of A is indeed 2(3− 2) + 3 = 5,
as expected.The column vector b will consist of 0’s corresponding to the lumpabil-
ity condition, and 1’s corresponding to the stochasticity condition. We complete the
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example with the full form of A and b displayed below.

A =


1 1 0 −1 −1 0 0 0 0
0 0 1 0 0 −1 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

 , b =


0
0
1
1
1

 . (2.20)

Employing the method described in (2.12) and relabelling the solution into a 3× 3
matrix solves the problem of approximate lumpability. ◁

It is also important to compare the results obtained from solving the problem of
approximate lumpability to those that would occur from standard statistical meth-
ods, such as a Monte Carlo simulation applied to calculate the transition matrix of
the aggregated Markov chain. To this end, we present a typical example, where we
will compare the bootstrap estimate of the aggregated Markov chain transition prob-
abilities with those obtained by solving the problem of approximate lumpability.

Example 2.4.4. Let M = (S, P) be a Markov chain with S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
and:

P =



0.11 0.08 0.07 0.02 0.18 0.07 0.10 0.15 0.09 0.13
0.17 0.04 0.02 0.15 0.21 0.07 0.01 0.08 0.12 0.13
0.13 0.09 0.07 0.02 0.15 0.13 0.07 0.25 0.01 0.08
0.04 0.08 0.16 0.06 0.05 0.13 0.15 0.08 0.15 0.1
0.14 0.00 0.00 0.24 0.19 0.02 0.03 0.05 0.16 0.17
0.19 0.11 0.03 0.13 0.16 0.02 0.05 0.03 0.19 0.09
0.11 0.13 0.11 0.13 0.10 0.10 0.16 0.04 0.06 0.06
0.08 0.01 0.13 0.05 0.13 0.18 0.06 0.19 0.01 0.16
0.06 0.20 0.03 0.08 0.05 0.13 0.12 0.08 0.02 0.23
0.10 0.06 0.05 0.10 0.07 0.13 0.05 0.09 0.15 0.20


.

We want to lump M on the partition S′ = {{1, 2, 3}, {4, 5}, {6, 7, 8}, {9, 10}}. Using
the algorithm to find the condition matrix A, we have ApL = b (A will be a 34× 10
matrix) and obtain the lumpable approximation to P (given the large dimensions of
the condition matrix, for brevity we only present the resulting transition matrix; the
intermediate matrices and results are available upon request).:

PL =



0.11000 0.08000 0.07000 0.04167 0.20167 0.06667 0.09667 0.14667 0.07333 0.11333
0.18000 0.05000 0.03000 0.09167 0.15167 0.12000 0.06000 0.13000 0.08833 0.09833
0.12000 0.08000 0.06000 0.05667 0.18667 0.08333 0.02333 0.20333 0.05833 0.12833
0.01667 0.05667 0.13667 0.14000 0.13000 0.07833 0.10833 0.03833 0.16750 0.12750
0.16333 0.02333 0.02333 0.16000 0.11000 0.06167 0.07167 0.09167 0.14250 0.15250
0.18000 0.10000 0.02000 0.10167 0.13167 0.07889 0.10889 0.08889 0.14500 0.04500
0.09333 0.11333 0.09333 0.13167 0.10167 0.09222 0.15222 0.03222 0.09500 0.09500
0.10667 0.03667 0.15667 0.07667 0.15667 0.12889 0.00889 0.13889 0.02000 0.17000
0.04667 0.18667 0.01667 0.09000 0.06000 0.12000 0.11000 0.07000 0.04500 0.25500
0.11333 0.07333 0.06333 0.09000 0.06000 0.14000 0.06000 0.10000 0.12500 0.17500


.

We can now find the transition matrix of the lumped process P∗L :

P∗L =


0.2600 0.2433 0.3100 0.1867
0.2085 0.2690 0.2285 0.2940
0.3000 0.2333 0.2767 0.1900
0.2500 0.1500 0.3000 0.3000

 .
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We now wish to compare the above, which is based on the theory developed in pre-
vious Sections, with the aggregated transition matrix calculated from standard statistical
estimators, based on observables. To this end we simulate 10,000 observations of the orig-
inal 10-state Markov chain. We then map each state in the trajectory to its corresponding
lumped state defined by the partition S′. In order to obtain the dynamics of the aggregated
chain we apply a bootsrap maximum likelihood estimation with 100 paths to calculated the
transition probabilities using the standard maximum likelihood estimator

p̂i,j =
ni,j

Ni
,

where ni,j is the number of transitions from state i to j and Ni is the total number of times
the chain was in state i. The resulting transition matrix is given below:

P∗MLE =


0.2590 0.2402 0.3156 0.1852
0.2118 0.2731 0.2163 0.2988
0.2848 0.2480 0.2661 0.2011
0.2397 0.1576 0.3077 0.2950

 .

We observe that P∗MLE is an accurate approximation to the lumped version P∗L calculated
above, with an error of merely ∥P∗MLE − P∗L∥2 = 0.0012.

◁

2.5 Markov chain lumpability in credit risk

For the application of the techniques developed in the previous sections, we focus
mainly on the problem of internal rating comparability and compatibility, which is
prevalent as institutions develop their own internal rating system. In particular, we
now have seen that institutions have to find a way to report such results in terms of
the Stage 1, 2 and 3 classifications, introduced by IFRS 9. Therefore, we will need
to solve approximate lumpability problems in order to aggregate original ratings
(i.e., states of the original state space). It is fair to assume that, in practice, the states
that must be lumped will be known. For example, institutions will be aware of
the ratings in the pre-existing classifications which indicate a significant increase
in credit risk. These ratings will be aggregated into Stage 2, according to the IFRS
9. Moreover, the methods of approximate lumpability can be used to assess which
states to lump together, by selecting different partitions, which will naturally result
in different PL matrices, and comparing the errors ∥PL− P∥2. However, the theory of
lumpability can be applied to other problems pertaining to credit risk, as examined
the first subsection below.

2.5.1 Applications in IFRS 9 modelling

2.5.1.1 Compatibility of internal models with the required IFRS 9 classification

We are now in the position to consider the application of Markov chain lumpabil-
ity under the IFRS 9 framework. We first consider the following example, where
we solve the problem of approximate lumpability in order to calculated the IFRS 9
- compliant transition matrix between Stages. As previously mentioned, this aggre-
gate Markov chain is necessary for regulatory purposes, as well as for provisioning
and pricing calculations.

For illustrative purposes, we start with a simple example, which allows us to
further demonstrate in detail the construction of the partition and condition matrices
that arise in the problem of approximate lumpability.
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Example 2.5.1. Consider a Markov chain used to model loan performance, with a
five-dimensional state space S = {s1, s2, s3, s4, s5} above and the transition matrix is
given by:

P =



Rating s1 s2 s3 s4 s5

s1 0.60 0.20 0.10 0.05 0.05
s2 0.20 0.40 0.20 0.10 0.10
s3 0.15 0.10 0.30 0.30 0.15
s4 0.00 0.00 0.00 1.00 0.00
s5 0.00 0.00 0.00 0.00 1.00

 .

Under IFRS 9, the aggregate state space we consider is defined by the partition
S′ = {s1, {s2, s3}, {s4, s5}} ≃ {Stage 1, Stage 2, Stage 3}. We can check that P is not
lumpable on this partition and hence we apply the approximate lumpability method
with partition matrices:

L1 =


1 0 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L2 =


0 1 1 0 0
0 −1 −1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L3 =


0 0 0 1 1
0 0 0 −1 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and condition matrices:

C(1) =


1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , C(2) =


0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , C(3) =


0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0
0 0 0 0 0



C(4) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1
0 0 0 0 0

 , C(5) =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 1 1 1 1

 .

Then, applying Algorithm 1, we solve the problem of approximate lumpability to
obtain:

PL =



Rating s1 s2 s3 s4 s5

s1 0.6000 0.2000 0.1000 0.0500 0.0500
s2 0.1850 0.3600 0.1600 0.1475 0.1475
s3 0.1850 0.1600 0.43600 0.2725 0.0225
s4 0.0000 0.0000 0.0000 1.0000 0.0000
s5 0.0000 0.0000 0.0000 0.0000 1.0000

 .

We can now calculate the transition matrix of the lumped Markov chain, which
describes the model under IFRS 9:

P∗ = UPLV =


IFRS 9 Staging Stage 1 Stage 2 Stage 3

Stage 1 0.600 0.300 0.100
Stage 2 0.185 0.520 0.295
Stage 3 0.000 0.000 1.000

 .
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◁

We now present a more realistic example, based on data provided by Nickell and
Perraudin, 2000.

Example 2.5.2. Consider the estimated rating transition matrix (see for example
Nickell and Perraudin, 2000), given by (in percentages):

P =



Rating Aaa Aa A Baa Ba B Caa C/Ca D
Aaa 89.6 10 0.4 0 0 0 0 0 0
Aa 0.9 88.3 10.7 0.1 0 0 0 0 0
A 0.2 2.7 91.1 5.6 0.4 0 0 0 0

Baa 0 0.3 6.6 86.8 5.6 0.4 0.2 0 0.1
Ba 0 0.1 0.5 5.9 83.1 8.4 0.3 0 1.7
B 0 0.2 0.2 0.8 6.6 79.6 2.2 1.0 9.4

Caa 0 0 0 0.8 1.9 9.3 63.0 1.9 23.1
C/Ca 0 0 0 0 0 5.9 5.9 64.7 23.5

D 0 0 0 0 0 0 0 0 100


.

We consider the partition S′ = {{Aaa, Aa, A}, {Baa, Ba, B, Caa, C/Ca}, {D}} ≃
{Stage 1, Stage 2, Stage 3}, which will produce the IFRS 9 compliant transition ma-
trix. It has been shown (see Loizides and Yannacopoulos, 2012) that the matrix is not
lumpable with respect to this partition. Hence, we apply the approximate lumpabil-
ity projection to find PL, which produces the lumpable, yet non-stochastic matrix (in
percentages):

Rating Aaa Aa A Baa Ba B Caa C/Ca D
Aaa 88.91 9.32 −0.28 0.41 0.41 0.41 0.41 0.41 0.00
Aa 0.25 87.65 10.05 0.49 0.39 0.39 0.39 0.39 0.00
A 1.52 4.02 92.41 4.81 −0.39 −0.79 −0.79 −0.79 0.00

Baa −1.77 −1.47 4.37 85.57 4.37 −0.83 1.03 1.23 11.56
Ba 0.33 0.43 0.83 3.73 80.93 6.23 −1.87 −2.17 11.56
B 0.39 0.59 0.59 0.13 5.94 78.94 1.53 0.33 11.56

Caa 0.53 0.53 0.53 2.79 3.89 11.29 64.99 3.89 11.56
C/Ca 0.53 0.53 0.53 2.07 2.07 7.97 7.97 66.77 11.56

D 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.0


.

Therefore, to obtain the required lumpable and stochastic matrix, we must apply
Dykstra’s algorithm. After only 60 iterations, we can see that the negative values
have been eliminated (to within an error of 10−11) and the resulting matrix is (as in
Example 2.4.4, we omit the partition and condition matrices for brevity):

PL =



Rating Aaa Aa A Baa Ba B Caa C/Ca D
Aaa 88.2780 8.6780 0.0000 0.6088 0.6088 0.6088 0.6088 0.6088 0.0000
Aa 0.0000 87.2780 9.6780 0.6888 0.5888 0.5888 0.5888 0.5888 0.0000
A 1.1854 3.6854 92.0851 3.0439 0.0000 0.0000 0.0000 0.0000 0.0000

Baa 0.0000 0.0000 1.8708 84.1414 2.9414 0.0000 0.0000 0.0000 11.0464
Ba 0.4236 0.5236 0.9236 2.4609 79.6610 4.9609 0.0000 0.0000 11.0464
B 0.4903 0.6902 0.6903 0.1766 5.9766 78.9764 1.5766 0.3766 11.0464

Caa 0.6236 0.6236 0.6236 2.8366 3.9365 11.3365 65.0366 3.9366 11.0464
C/Ca 0.6236 0.6236 0.6236 2.1165 2.1165 8.0166 8.0166 66.8166 11.0464

D 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 100.00


.
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We can finally calculate the dynamics of the lumped, obtaining the IFRS 9-compliant transi-
tion matrix:

P∗ = UPLV =


IFRS 9 Rating Stage 1 Stage 2 Stage 3

Stage 1 96.956 3.044 0.000
Stage 2 1.871 87.083 11.046
Stage 3 0.000 0.000 100.0

 ,

with matrices U, V, corresponding to the partition, given by:

U =

 1
3

1
3

1
3 0 0 0 0 0 0

0 0 0 1
5

1
5

1
5

1
5

1
5 0

0 0 0 0 0 0 0 0 1

 , V =



1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1


.

◁

2.5.1.2 Calculation of expected time in Stage 2 and expected lifetime

As mentioned, under the IFRS 9 framework, we are interested in the calculation of
the expected time a loan will remain in Stage 2 (as the institution will be required
to consider lifetime provisions for this time period), as well as the expected lifetime
for revolving loans. To motivate the theory necessary for addressing the modelling
tasks related to IFRS 9, we first consider a simplified case, in which an institution
has five possible loan classifications (in reality most banks have considerably more)
and hence, the state space of the original Markov Chain is S ={performing loans, 5
% increase in Probability of Default, 30 or more days past due, 90 or more days past
due, NPL}. We will use the notation S = {s1, s2, s3, s4, s5}. Under this model, s1, s2
and s3 are transient states of the chain, while s4 and s5 are absorbing states (since
we consider that the loan is has and therefore cannot return to any other state). The
canonical form of this generic transition matrix would be:

P =


Q1,1 Q1,2 Q1,3 R1,1 R1,2
Q2,1 Q2,2 Q2,3 R2,1 R2,2
Q3,1 Q3,2 Q3,3 R3,1 R3,2

0 0 0 1 0
0 0 0 0 1

 ,

with:

Q =

 Q1,1 Q1,2 Q1,3
Q2,1 Q2,2 Q2,3
Q3,1 Q3,2 Q3,3

 , R =

 R1,1 R1,2
R2,1 R2,2
R3,1 R3,2

 . (2.21)

We need a way to perform our analysis under the state space
{Stage 1, Stage 2, Stage 3}, in order to comply with the IFRS 9 framework. We
can achieve this by lumping the original transition matrix. The resulting lumped
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matrix will be of the form:

P∗ =

 Q∗1,1 Q∗1,2 R∗1,3
Q∗2,1 Q∗2,2 R∗2,3

0 0 1

 .

The form of the last row is due to the fact that Stage 3 is an absorbing state of the
Markov chain (we consider that the loan does not return to another Stage once it has
defaulted). Consider lumping the original transition matrix above, where we have a
five-state Markov Chain. In this case, {s1}would correspond to Stage 1 (performing
loans), {s2, s3}would be lumped to Stage 2 (loans which have displayed a significant
increase in credit risk) and {s4, s5}would be lumped to Stage 3 (defaulted loans). To
check the lumpability condition, we would need to use U, V:

U =

 1 0 0 0 0
0 1

2
1
2 0 0

0 0 0 1
2

1
2

 , V =


1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , (2.22)

Generally, we expect that the original matrices will not be lumpable, since they
are usually based on historical transitional data. Hence, we will have to return to
the notion of approximate lumpability, as described in (2.10). We can now find the
entries of PL. This is relatively straightforward using the methods described in the
previous sections. For illustrative purposes we present the example below.

For the two quantities of interest, namely, the estimation of total time spent in
Stage 2 and of the lifetime for revolving loan, of great importance is the fundamental
matrix, N ∈ Rm×m, of the Markov chain. In this setting, if Ti is the random variable
representing the absorption time of the chain, given that the chain started from state
i, then E[Ti] = (N1m)i. This quantity can be used to address both modelling tasks
mentioned.

These calculations can be done by using the lumped transition matrix, corre-
sponding to the simple approximate lumpability problem, as done is the example
above. However, we propose another method, using the fundamental matrix. Due
to the importance of the fundamental matrix under the IFRS 9 framework, it makes
sense to approximate the matrix in a way that minimizes the quantity ∥NL − N∥2.
Recall that the fundamental matrix gives the absorption time of the process, which is
equivalent to the time taken for a loan to enter any default state. Therefore, since the
fundamental matrix only depends on the block Q of the canonical form of P ∈ Rn×n,
the approximation Pl will be of the form:

Pl =

(
QL R

0r×(n−r) Ir×r

)
,

where we recall that QL is an (n− r)× (n− r) matrix containing all transition prob-
abilities between transient states and R is an (n− r)× r matrix containing the tran-
sition probabilities from transient states to the absorbing state (defaulted state). Of
course, the lumpability of QL does not imply lumpability of P (hence the notation Pl ,
to avoid confusion with the lumpable PL); however, in this application we are only
concerned with Q, so it suffices to only consider the lumpable QL. Depending on
the application and minimization problem, one would have to examine which part
of the canonical form is to be lumped, as well as the effect on P.
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Remark 2.5.3. It is important to note that, since we are only interested in the lumping
of Q, we do not need to consider the lumpability of the whole matrix P and we write
the problem in terms of Q directly. To see this, consider a 4× 4 transition matrix,
in canonical form (for simplicity, we consider only one absorbing state, but we can
easily see that the calculations below work for any dimensions of R):

P =


Q1,1 Q1,2 Q1,3 R1
Q2,1 Q2,2 Q2,3 R2
Q3,1 Q3,2 Q3,3 R3

0 0 0 1

 .

We consider the lumping of states {2, 3}. Then:

U =

 1 0 0 0
0 1

2
1
2 0

0 0 0 1

 , V =


1 0 0
0 1 0
0 1 0
0 0 1

 . (2.23)

After elementary matrix operations, the lumpability condition VUPV = PV results
in the system of equations:

Q2,1 = Q3,1

Q2,2 + Q2,3 = Q3,2 + Q3,3

We arrive at the same conditions if we were to simply consider the lumping of Q
and the simpler versions of the above V and U corresponding only to the states of
Q, i.e,

U =

(
1 0 0
0 1

2
1
2

)
, V =

 1 0
0 1
0 1

 . (2.24)

This implication follows directly from the form of the matrices V, U, which charac-
terize the lumping. When performing the matrix multiplication, the entries of R will
not contribute to the condition arising for the entries of Q (and vice versa). There-
fore, in what follows we can focus our attention on the lumpability of Q. ◁

Now, we wish to lump QL into a two-state transition matrix with states
{Stage 1, Stage 2}. Hence, VUQLV = QLV, with U, V as in (2.24). In addition, if
Qi,j and Ri,j represent the entries of QL and R respectively, then

n−r

∑
j=1

Qi,j = 1−
r

∑
j=1

Ri,j, for i = 1, 2, . . . , n− r

Equivalently, in matrix form, the constraints can be written as:

VUQLV = QLV
QL1(n−r) = 1(n−r) − R1r. (2.25)
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Therefore, the full approximate lumpability problem is:

min
QL∈R(n−r)×(n−r)

∥(I(n−r)×(n−r) −QL)
−1 − (I(n−r)×(n−r) −Q)−1∥2

subject to VUQLV = QLV, QL1(n−r) = 1(n−r) − R1r, (QL)i,j ≥ 0. (2.26)

This problem is in the form addressed in Proposition 2.3.7. For clarity, we outline
the steps in detail, following the same structure as the proof of the Proposition. In
what follows, we suppress the dimensions of the identity matrix I(n−r)×(n−r), when
possible, for notational ease.

By assumption, we have that VUI(n−r)×(n−r)V = I(n−r)×(n−r)V and VUQLV =
QLV. By linearity of matrix multiplication we get VU(I − QL)V = (I − QL)V, and
by directly applying Lemma 2.3.5, we obtain VU(I − QL)

−1V = (I − QL)
−1V. We

can also change the form of the second condition, to obtain the condition for the
row-sums of the fundamental matrix:

QL1(n−r) = 1(n−r) − R1r =⇒ (I(n−r)×(n−r) −QL)
−1R1r = 1(n−r).

Using Proposition 2.3.7, we obtain the condition matrix for this problem:

A′ =
(
(VU − I(n−r)×(n−r))⊗VT

I(n−r)×(n−r) ⊗ (R1r)T

)
,

as well as the vector b′ = [0 1(n−r)]
T.

Hence, the first two conditions can be written as A′nL = b′, where nL is the
relabelling of the entries of (I − QL)

−1 as a vector. The minimization problem can
now be written as:

min
QL∈Rm×m

∥NL − N∥2

subject to A′nL = b′, (QL)i,j ≥ 0. (2.27)

This now is of the same form as the general minimization problem considered in
Proposition (2.3.7), which we can solve using a combination of Dyksta’s algorithm
and the orthogonal projection calculated by the Moore-Penrose inverse. Sepecifi-
cally, let n be the relabelling of the entries of N = (I−Q)−1 as a vector. By following
the same steps, we obtain:

nL = (A′)†(b′ − A′n) + n.

Relabelling the entries of nL back into matrix form NL, we can solve to find the
lumpable matrix QL. Therefore,

QL = I(n−r)×(n−r) − (NL)
−1 = I(n−r)×(n−r) − ((A′)†(b′ − A′n) + n)−1, (2.28)

where the inverse has been taken on the relabelled matrix form of nL. Therefore, in
this case, we use (2.28) to project onto the set L′, where L′ is the set of all matrices QL
satisfying A′nL = b′ (L′ is a different set than L in this case, since we are considering
row-sum conditions which differ from the standard case), followed by iterations of
Dykstra’s algorithm (if necessary) to converge to solution on L ∩M+

n , as required.
We now have a solution to the approximate lumpability problem. Using this so-

lution we can easily calculate any quantities of interest, such as the absorption time
under the IFRS 9 framework. As explained, institutions can use these quantities in
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order to address the problem of expected lifetime and also estimate the total time a
loan remains in State 2, during which the bank has to increase its provisions. There-
fore, this has an impact not only on the reporting, but also on the actual calculation
of the provisions.

Example 2.5.4 (Calculation of expected time in Stage 2 and expected lifetime). Con-
sider a loan portfolio, where loans are modelled as a discrete Markov chain, with
state space S ={Performing, 5% increase in PD, 30-89 days past due, NPL}, and note
that the same methodology can be applied for larger state spaces. Using historical
transition data, the canonical form of the transition matrix is given by:

P =


Internal Rating Performing 5% PD increase 30-89 DPD NPL

Performing 0.75 0.10 0.10 0.05
5% PD increase 0.35 0.50 0.05 0.10

30-89 DPD 0.10 0.30 0.50 0.10
Default 0.00 0.00 0.00 1.00

 .

From P, we see that:

Q =

 0.75 0.10 0.10
0.35 0.50 0.05
0.10 0.30 0.50

 , R =

 0.05
0.10
0.10

 . (2.29)

In line with the theory previously described, we wish to lump Q in such a way
that it describes the transition of the transient states under IFRS 9. To this end, we
want to lump states s2 (5% increase in PD) and s3 (30-89 days past due) together, as
they constitute criteria for classification of a loan as Stage 2. The new state space is
therefore S′ = {{s1}, {s1, s2}, {s3}}, with:

U =

(
1 0 0
0 1

2
1
2

)
, V =

 1 0
0 1
0 1

 .

A direct computation shows the that condition VUQV = QV does not hold, and
therefore, Q is not lumpable, as expected. We, therefore, resort to the problem of
approximate lumpability. Moreover, we may want to solve this problem by mini-
mizing the error in the fundamental matrix, thus returning to problem (2.26). We
obtain the following conditions for the entries of the lumpable fundamental matrix
N = (I3×3 −QL)

−1.

n4 − n7 = 0
n5 + n6 − n8 − n9 = 0

0.05n1 + 0.1n2 + 0.1n3 = 1
0.05n4 + 0.1n5 + 0.1n6 = 1
0.05n7 + 0.1n8 + 0.1n9 = 1.

We write these equations in matrix form to match (2.27). If we were to apply algo-
rithm 1 to construct A, the partition matrices and condition matrix are given by:

L1 =

 1 0 0
−1 0 0
0 0 0

 , L2 =

 0 1 1
0 −1 −1
0 0 0

 , C(1) =

 0.05 0.1 0.1
0 0 0
0 0 0

 .
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Therefore, A′nL = b′, where:

A′ =


0 0 0 1 0 0 −1 0 0
0 0 0 0 1 1 0 −1 −1

0.05 0.1 0.1 0 0 0 0 0 0
0 0 0 0.05 0.1 0.1 0 0 0
0 0 0 0 0 0 0.05 0.1 0.1

 , nL =



n1
n2
n3
n4
n5
n6
n7
n8
n9


, b′ =


0
0
1
1
1

 .

By Lemma 5.2, the best approximation to the fundamental matrix is nL = (A′)†(b′ −
A′n) + n, which gives:

nL =



9.31
3.17
2.18
6.63
4.68
2.00
6.63
3.24
3.44


, NL =

 9.31 3.17 2.18
6.63 4.68 2.00
6.63 3.24 3.44

 ,

and hence, solving for the lumpable version of Q, we get QL = I3×3 − (NL)
−1 and

QL =

 0.75 0.10 0.10
0.25 0.54 0.11
0.25 0.24 0.41

 .

We have obtained QL which satisfies the non-negativity condition, which means
there is no need to apply Dysktra’s algorithm. This choice of QL solves the mini-
mization problem and one can easily check that it indeed satisfies the necessary con-
ditions posed in the problem. We can now lump QL and NL to obtain the dynamics
of the new Markov chain:

Q∗L = UQLV =

 IFRS 9 Rating Stage 1 Stage 2
Stage 1 0.75 0.20
Stage 2 0.25 0.65

 , N∗L = UNLV =

(
9.31 5.34
6.63 6.68

)
.

A straightforward computation shows that N∗L is in fact the fundamental matrix pro-
duced from Q∗L, as expected. One could now use N∗L to deduce that if a loan starts
in Stage 1, it is expected to be classified as Stage 2 for 5.34 years (if we assume the
analysis for the transition matrix has been done on a annual basis) and the total time
to absorption is the first entry of N∗L12, which would be 14.65 years. These results
provide the estimates for the quantities we need, under IFRS 9. ◁

2.5.2 Further applications in credit risk

In this final section, we consider various problems in credit risk where the lumpabil-
ity of the underlying Markov chains can play an important role. We highlight that
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the common requirement across these, as in the previous cases regarding the IFRS 9
framework, is that of comparability and consistency, which can now be directly ad-
dressed using the techniques of lumpable Markov chains that have been developed
in the previous chapters.

2.5.2.1 Comparability of credit ratings for the same issuer provided by different
rating agencies

Example 2.5.5 (Compatibility of sovereign ratings using lumpability). In this ex-
ample, we consider a case based on Hill, Brooks, and Faff, 2009, where differences
in ratings from the three main credit agancies and their effects are examined at a
sovereign level (of course, other work has been done on a corporate level as well, as
in e.g., Moon and Stotsky, 1993 and Cantor and Packer, 1997 and the methods that
follow could be applied in the same way to these cases). We will consider the credit
ratings applied by the agencies Standar and Poor’s (S&P), Moody’s and Fitch and
their respective transition matrices. Despite having the same cardinality, the explicit
ratings differ between agencies. For this reason a consolidated broad rating is often
considered for comparison purposes. However, it now becomes necessary to cal-
culate the dynamics of the transition matrix under the new aggregated state space
defined by the consolidated ratings, whilst preserving the Markov property. To do
this, we can apply the method of approximate lumpability and lump the resulting
matrices to the new state space, defined by an appropriate partition of the original
ratings (see Appendix A.1 for detailed transition matrices and the mapping table
between individual and consolidated ratings which defines the required partition).
For illustration purposes, we perform these operations for the transition matrices as
given in Hill, Brooks, and Faff, 2009, however, an identical process can be followed
for any ratings transition matrices, over any aggregate state space. The resulting
transition matrices on the aggregated state space for each of the three credit rating
agencies are given below (note that, in the resulting matrices, default is not consid-
ered an absorbing state, as sovereigns may recover from defaults):

Moody’s∗ =



Broad
Rating 8 7 6 5 4 3 2 1 Default

8 0.9282 0.0718 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0850 0.8837 0.0313 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0634 0.9002 0.0364 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.0951 0.8636 0.0315 0.0000 0.0000 0.0000 0.0098
4 0.0000 0.0000 0.0003 0.0810 0.8095 0.1087 0.0005 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0537 0.8196 0.1043 0.0034 0.0190
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.1352 0.7439 0.1209 0.0000
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0012 0.1965 0.8023 0.0000

Default 0.0000 0.0009 0.0688 0.0077 0.0632 0.0603 0.0091 0.0003 0.7897


.

Fitch∗ =



Broad
Rating 8 7 6 5 4 3 2 1 Default

8 0.9924 0.0076 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0505 0.9283 0.0212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0695 0.9129 0.0176 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.1759 0.7882 0.0359 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0790 0.8471 0.0716 0.0000 0.0000 0.0023
3 0.0000 0.0000 0.0000 0.0000 0.1404 0.8005 0.0579 0.0000 0.0012
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.1957 0.7215 0.0295 0.0533
1 0.0000 0.0000 0.0000 0.0000 0.0009 0.2685 0.0136 0.0901 0.6269

Default 0.0000 0.0000 0.0000 0.0004 0.0072 0.3476 0.0333 0.0013 0.6102


.
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S&P∗ =



Broad
Rating 8 7 6 5 4 3 2 1 Default

8 0.9789 0.0211 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
7 0.0267 0.9524 0.0209 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
6 0.0000 0.0581 0.9274 0.0145 0.0000 0.0000 0.0000 0.0000 0.0000
5 0.0000 0.0000 0.1556 0.8269 0.0175 0.0000 0.0000 0.0000 0.0000
4 0.0000 0.0000 0.0000 0.0798 0.8394 0.0808 0.0000 0.0000 0.0000
3 0.0000 0.0000 0.0000 0.0000 0.0917 0.8215 0.0577 0.0037 0.0254
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.2662 0.3795 0.0664 0.2879
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.1659 0.0108 0.6369 0.1864

Default 0.0000 0.0000 0.0000 0.0000 0.0014 0.5202 0.1324 0.0075 0.3385


.

◁

Differences in internal ratings systems and inconsistency in risk classification is
of great importance in the financial industry and can affect many aspects of financial
modelling, such as the pricing and optimization of diversified credit portfolios. A
detailed analysis of such implications is given in e.g., Jacobson, Lindé, and Roszbach,
2006, where the "results reveal, for a portfolio with identical counterparts, substan-
tial differences in the implied riskiness between banks. Such differences could trans-
late into different amounts of required economic capital and create (new) incentives
to securitize part of their loan portfolios or increase the riskiness of loans in certain
rating classes". Therefore, modelling tasks may require a consistent rating scheme
for credit instruments originating from different institutions (or even different coun-
tries), from which the necessity of defining robust risk classification criteria and find-
ing the subsequent quantitative dynamics of these classifications, is evident. These
issues can be efficiently tackled using the IFRS 9 framework for Staging and the
theory of Markov chain lumpability, respectively. To give an example of a pricing
model where the differences in internal rating would play an important role, we
refer the interested reader to e.g., Acharya, Das, and Sundaram, 2019, where a pric-
ing mechanism based on spreads across rating classes is developed. When applying
such methods, consistency and comparability in ratings across all instruments is im-
perative for the pricing calculations, and therefore methods such as those applied in
the example above can be directly employed to overcome discrepancies when pric-
ing and creating a portfolio of assets whose original institutional ratings differ. We
consider such a case in the example that follows.

2.5.2.2 Applications in credit portfolio construction and securitization

Example 2.5.6 (Optimal porfolio selection using lumpability). Suppose a securitiza-
tion agency creates a portfolio consisting of loans (or credit derivatives) originating
from three different institutions. The dynamics of the instruments will be different
depending on the institution and we suppose they are described by the transition
matrices Pi, i = 1, 2, 3. The agency aims to select the investment allocated to each of
the types of instuments. In order to perform the optimization, the transisition matri-
ces must be defined on the same state space. We therefore need to solve the problem
of approximate lumpability to obtain the lumped versions P∗i , i = 1, 2, 3, which are
now all defined on the same state space and hence directly comparable.

With the common state space the agency then poses the following portfolio op-
timization problem: suppose wi, i = 1, 2, 3 and ri, i = 1, 2, 3 represent the weight of
total investment allocated to each institution’s set of loans and their average return,
respectively (in principal, the rate of returns might depend on the characteristics of
the transition matrices). Consider, furthermore, that the required rate of return is
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set to be R. Let Yi(t), i = 1, 2, 3 be the stochastic processes representing the state of
an instrument originating from institution i at time t. The total loss function for the
agency is then given by L(t) = ∑3

1 aiwi1{Yi(t)=3}, where ai, i = 1, 2, 3 is the average
loss rate of the instruments from each institution. In order to rebalance the portfolio
at each period, the securitization agency is then interested in solving a portfolio
optimization problem (we present a very simple such problem, which can be solved
analytically to illustrate the use of the method). The optimization we consider is the
following:

minimize E[U(L(t))], subject to

w1r1 + w2r2 + w3r3 = R,
w1 + w2 + w3 = 1,

for an appropriate loss function U. While the following analysis can be extended
to any convex loss function, for the sake of simplicity we illustrate the calculation
selecting the quadratic loss function U(L) = bL2 − L (in the sense of a negative
utility function). The expected loss is then:

3

∑
i=1

U(aiwi)pi
3,

where pi
3 = pi

1,3 + pi
2,3 is the total probability that instruments from institution i

(originally in either Stage 1 or Stage 2) will default. The problem thus becomes:

minimize f (w1, w2, w3) := ∑3
i=1 b(aiwi)

2 − aiwi, subject to

w1r1 + w2r2 + w3r3 = R,
w1 + w2 + w3 = 1,

This simple quadratic optimization problem can now be solved either analytically
or numerically. One can easily obtain the expression for one of the weights, e.g. we
find that w∗3 is given by:

w∗3 =
p1

3(2ba2
1δϵ− ϵ) + p2

3(γ− 2ba2
2βγ)− p3

3

2(p1
3ba2

1ϵ2 + p2
3ba2

2γ2 + p3
3ba2

3)
,

where β = R−r1
r2−r1

, γ = r3−r1
r2−r1

, δ = r2−R
r2−r1

and ϵ = r3−r2
r2−r1

. A straightforward substitu-
tion using the two conditions will result in the corresponding values w∗1 and w∗2 .

To illustrate the results of such an optimization, we consider the above setting
with average returns from each institutions instruments r = (r1, r2, r3)T, loss rates
a = (a1, a2, a3)T and probability of of default p3 = (p1

3, p2
3, p3

3)
T, given by:

r =

 0.1
0.4
0.1

 , a =

 0.7
0.7
0.7

 , p3 =

 0.15
0.40
0.15

 .

Fixing the expected total return to be R = 0.15, the resulting optimal weights w∗ =
(w∗1 , w∗2 , w∗3)

T are:
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w∗ =

 0.42
0.16
0.42

 .

◁

Further portfolio optimization problems can be found in Markov and semi-
Markov portfolio literature, e.g., Pasricha et al., 2020b, where the authors consider
a portfolio of risky bonds originating from the Industry and Service sector, by ex-
plicitly stating that it is assumed these sectors share the same ratings, which might
not be the case in practice. By mapping the corresponding sector ratings we can
aggregate the two transition matrices and proceed with the portfolio optimization
schemes, under the aggregate state space.

2.6 Conclusion

The extensive tools available in Markov chain modelling, in combination with the
vast range of fields in which these methods find applications, indicate that the no-
tion of lumpability can be particularly useful in many problems. Compartemental
models in biology (e.g., Gibson and Renshaw, 1998), applications in finance (e.g.,
Meko and Lyn, 2011), as well as in decision theory and data science (e.g., Fourneau,
Lecoz, and Quessette, 2004) are only a few examples of fields in which it would be
meaningful to consider the theory of lumpability.

In this Chapter we have focused on the use of Markov chain lumpability for
comparison and compatiblity purposes, an issue of importance in credit risk. This
is directly related to the new IFRS 9 regulations, which aim to introduce a universal
framework for defining risky credit assets. In many such applications, such as loan
staging under IFRS 9, one would expect the true transition matrix P̃ to be lumpable,
with respect to an appropriate partition, since the theory dictates that the individ-
ual states have common characteristics and should be aggregated (for example, an
increase in default probability and a forborne flag indication are both considered
a significant increase in credit risk event, and the loans that exhibit such behavior
should belong to the same state when considering the IFRS 9 framework i.e., the ag-
gregated Stage 2). In this setting, one may even consider that the lumpable verion PL
of the historical transition matrix P, is closer (in the sense of an appropriate norm),
to the true transition matrix, P̃. Hence, these techniques could also be used to assess
the existing models and determine further statistical estimators.

Lastly, we have seen in section 2.5.2 that there exist many problems that can be
addressed or simplified by applying the techniques of approximate lumpability. As
shown in Proposition 2.3.7, there exists a large family of approximate lumpability
problems that can be posed and solved, depending on the application. These pro-
vide many options, as it is possible to consider different approximate lumpability
problems, depending on the observable in question (i.e. the function f (P)). When
applying these methods in cases where f is invertible, we can obtain a complete
Markov chain framework, by retrieving the lumpable transition matrix PL. Finally,
the numerical estimates and their error bounds in such applications can addressed
using Proposition 2.3.9 and related results.
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Chapter 3

Probability of Default estimation
under stochastic models

3.1 Background

Perhaps one of the most influential changes due to the IFRS 9 is the requirement
for financial institutions to consider Expected Lifetime Provisions (ECL), whereby
future losses must be forecast using mathematically robust and rigorous methods,
for all Stage 2 credit exposures, which are considered to have displayed a significant
increase in risk. This estimation requires knowledge of the lifetime Probability of
Default (PD) for all loan exposures, as well as additional risk parameters such as the
Loss Given Default (LGD) and the Exposure at Default (EAD), and finally being able
to update these quantities dynamically under changing market conditions. There
exist recent papers detailing and studying the ECL calculation, such as Beerbaum,
2015 and Xu, 2016. We extend this modelling framework by employing the theory
of stochastic processes and their dynamics for the estimation of lifetime PDs and
future losses (i.e., forward looking provisions). In this Chapter, we aim to develop
a stochastic modelling framework under which the PD process can be considered
mathematically and practically. Using this approach we can address in a robust and
efficient manner the challenging provisioning, forecasting and pricing tasks under
IFRS 9.

In general, calculating default probabilities both analytically and numerically is
of paramount importance in risk management and a broad range of financial appli-
cations. However, particularly under IFRS 9, credit loss forecasting has introduced
the need for robust structural models, that can be used for pricing and provision-
ing purposes. To this end, we will consider stochastic models for the evolution
the underlying asset value process, whose default will be studied as an appropri-
ate firs-time-hitting problem. Therefore, it can be assumed that we are working
mainly within portfolios of corporate and small business loans, where it is common
practice to consider the company’s assets to be governed by stochastic process (see
e.g., Barndorff-Nielsen and Shephard, 2001b and Barndorff-Nielsen and Shephard,
2001a). Under this assumption, the PD associated with each loan depends on the
underlying asset process and we can define the PD as the probability that the asset
process falls below a fixed threshold. More specifically, we will assume that the asset
process is governed by an Ornstein - Uhlenbeck (OU) process with a jump compo-
nent, a member of the family of jump-diffusion processes. We note that practitioners
may consider the evolution of asset-dependent processes instead, e.g., returns; such
processes can still be described by similar stochastic models, rendering the methods
proposed in this Chapter applicable in these cases, as well. For brevity, hereinafter
we will refer to this underlying process as the asset process, with the understanding
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that is can be replaced with any related dynamics considered appropriate by practi-
tioners. Important theoretical background of such processes and their properties are
given in Applebaum, 2009 and Øksendal and Sulem, 2007. The jump process will ac-
count for abrupt changes in the asset processes, which are very common in practice
and are closely related to loan defaults. Obtaining the evolution of the PD values,
based on the stochastic asset model, will allow us to then tackle various modelling
tasks which are currently open problems for financial institutions under the IFRS 9
framework.

It is common in the literature to consider two separate cases for default probabil-
ities:

• A variable starting time and constant time horizon, defined by the process.

• A variable time horizon and constant starting time.

Our results in this Chapter constitute a generalization that combines these two cases
(as analyzed in Mishura and Ragulina, 2016 and Møller, 1995). Specifically, we
consider a generalized "Probability of Default function" and prove that, under cer-
tain homogeneity assumptions, we can obtain Integral Equations (IEs) and Partial
Integro-Differential Equations (PIDEs) for both aforementioned PD cases. Finally,
using the IE formulation we will prove the existence of the PD values and the solv-
ability of the PIDEs in the viscosity sense, in order to obtain estimates that can be
used for the aforementioned modelling tasks, without having to always assume
and/or prove strict regularity conditions, and further consider the conditions un-
der which these solutions can be considered strong, with the required smoothness.

The above methodology will be used to consider real-life examples of loan provi-
sioning calculations, scenario analysis and pricing, exemplifying the wide range of
credit risk modelling tasks the proposed methodology can address. Finally, we note
that, even though motivated by credit risk, the approaches detailed in this Chap-
ter can find applications in other areas of financial mathematics, such as derivatives
pricing, where the use of stochastic modelling remains prevalent, e.g., in the pricing
of barrier options.

3.2 Aims and modelling framework

We start by discussing the PD process which, in its most general form, can be written
as a function of both the starting time and maturity, as well as of the initial position
of the corresponding asset value process. Furthermore, to accurately model real-life
dynamics, it is necessary to account for the dependence on latent variables which af-
fect the PD. Incorporating such processes, which in practice are e.g., macroeconomic
variables or different market regimes, is of paramount importance as it largely af-
fects PD estimation and subsequent modelling results. Rigorously accounting for
these exogenous variables is therefore necessary, and will allow us to consider a
large family of stochastic processes that can be used in practice. To begin, consider
compact and bounded sets D,Di ⊂ R, for i = 1, . . . , d. Then, define the PD function:

Definition 3.2.1. Consider x ∈ D and the vector of (discrete or continuous) stochas-
tic processes (Xi

t)t≥0 with corresponding state spaces Di, for i = 1, . . . , d. Further-
more, consider the stochastic asset value process (Gt)t≥s, with initial value Gs = x
and which depends on (Xi

t)t≥0, for i = 1, . . . , d. Then, we define the Probability
of Default function Ψ : D ×D1 × · · · × Dd × [0, T]× [0, T] → [0, 1], for some fixed
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T > 0, by:

Ψ(x, x1
s , x2

s , . . . , xd
s , s, t) = P

(
inf

s≤r≤t
Gr ≤ 0|Gs = x, X1

s = x1
s , X2

s = x2
s , . . . , Xd

s = xd
s

)
,

(3.1)

and the corresponding survival probability Φ : D×D1× · · · ×Dd× [0, T]× [0, T]→
[0, 1] by:

Φ(x, x1
s , x2

s , . . . , xd
s , s, t) = 1−Ψ(x, x1

s , x2
s , . . . , xd

s , s, t). (3.2)

To motivate this definition and its usefulness, notice that by fixing s we obtain
the standard finite-horizon ruin probability (see e.g., Mishura and Ragulina, 2016),
whereas by fixing t we obtain the ruin probability with variable starting time, as
defined in Møller, 1995, which can be used to define a martingale. Finally, allowing
t→ ∞ we obtain the infinite-horizon ruin probability.

Modelling the evolution of PD functions has become even more important under
IFRS 9, due to the increased complexity of provision calculations and Staging crite-
ria. In general, all aforementioned PD functions, corresponding to variable maturity
or starting times find many applications and have been considered in the field of
credit risk, such as in Ballotta and Fusai, 2015, Schoutens and Cariboni, 2010 and
Zhou, 1997. For example, the case of a variable maturity is often referred to as the
Lifetime Probability of Default and is used extensively for provisioning and pricing
purposes. Particularly in the context of IFRS 9 modelling, the Lifetime Probability
of Default is used to assess credit risk at origination, as well as for Expected Life-
time Provisions for Stage 2 loans. We give detailed examples of such calculations in
Section 4.5.

As mentioned, it is standard in the field of financial mathematics to consider
the evolution of a debtor’s assets to be governed by a stochastic process. A well-
documented process that is used in various such applications is the Ornstein-
Uhlenbeck (OU) process. In Section 1.3.1.1 of the Introduction we outline important
properties of the OU process, a generalized version of which we will consider in this
paper. OU models have been considered in past research and many applications.
For example, a well-known special case is the Vasicek model Vasicek, 1977. Further
work has explored the Merton model for default with underlying dynamics given
by the continuous OU process, and has been extended to cases incorporating jumps.
These find important applications particularly in credit risk modelling and pricing;
see e.g., Hull, Nelken, and White, 2004 and Barndorff-Nielsen and Shephard, 2001b,
respectively.

By including a jump process to the continuous OU asset process, we obtain the
Lévy-driven Ornstein-Uhlenbeck process, defined in (1.14). This is a natural gener-
alization, as significant changes in credit events are often abrupt and unpredictable
(particularly a deterioration in creditworthiness), corresponding to a discontinuous
component in the driving stochastic process. Indeed, the goal of credit risk require-
ments under IFRS 9 is to ensure that financial institutions and their customers are
protected against such rare and unexpected events and the subsequent losses. It
is therefore important to capture the effect of such events mathematically, which is
why this model will form the basis of our analysis and will be used to construct more
sophisticated models in the next section. We will employ the fact that the jump OU
process is time homogeneous so that, rather than considering a starting time s and
initial position Gs, we can define the time until maturity by u := t− s and consider
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(Gu)u≥0, as above, equivalently. This is an important property that we will take
advantage of to simplify the PD estimation.

To conclude, we note that the use of Lévy processes for financial modeling is
well-documented and established. Schoutens and Cariboni, 2010 gives an exten-
sive analysis of Lévy processes and their use for asset process modelling, credit
derivatives pricing and more. In Luciano and Schoutens, 2006 and Onalan, 2009
the authors consider a Lévy-driven OU process, and Lévy multivariate models for
assets processes. The former fits the model parameters to the General Motors stock
price, while the latter considers many different indices, obtaining suprisingly accu-
rate results. We also refer the interested reader to Ballotta and Bonfiglioli, 2016 for
a detailed analysis of the properties of the multivariate model. Seminal work has
also been done in the study of Lévy-driven OU processes in Barndorff-Nielsen and
Shephard, 2001b. Finally, well-documented numerical methods exist for the calibra-
tion of stochastic models with jumps, such as the Yuima framework for stochastic
differential equations in R statistical language Brouste et al., 2014.

3.3 The generalized asset value model and PD function

In this section we develop a stochastic model that incorporates the exogenous vari-
ables required when considering asset value processes. To incorporate such effects,
we build upon the family of regime switching and stochastic volatility models, as
described below. We combine these to produce a generalized model, which we will
use to construct a framework that encapsulates a large family of stochastic processes
that can be used for asset value modelling and subsequent credit risk calculations.
In addition to the mathematical results presented in this Chapter, we highlight that
the framework developed using the generalized model addresses the strict require-
ments under IFRS 9, whereby credit risk modelling is required to incorporate multi-
ple appropriate latent variables, whilst adhering to mathematical rigor.

3.3.1 Regime switching and stochastic volatility models

First recall that loan exposures under the IFRS 9 framework are now classified into
three Stages. Each of these Stages correspond to a given level of risk, with the most
noteworthy change being the introduction of Stage 2 loans, i.e., credit exposures
which have exhibited a significant increase in credit risk (SICR event, which can be
defined by the institution, e.g., as a statistically significant increase in PD, a delin-
quency warning flag etc.). By definition, changes in the risk profile of an exposure
will correspond to changes in the dynamics of the underlying asset process. For ex-
ample, a debtor may request restructuring, or may be 30 days delinquent. This will
trigger a SICR event, which can then affect the underlying asset value process. To
capture this dependency we consider a regime switching model for the asset process,
whereby the parameters of the stochastic process vary according to the underlying
rating (Stage) of the exposure. We can do this by considering the Continuous Time
Markov Chain (CTMC) (Rt)t≥0 describing the rating at time t, where the set of all
loan ratings is denoted by R, with cardinality |R| = R. Therefore, we obtain the
following jump diffusion with Markov switching model:

dGu = k(Ru)
(
θ(Ru)− Gu

)
dt + σ(Ru)dBu +

∫
R

zN(du, dz), G0 = x, R0 = ρ, (3.3)
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with ρ ∈ R. Note that in subsequent sections we adopt the notation kρ, θρ, σρ, for
brevity. For a reminder of CTMC processes and their properties see Section 1.2.1.2
of the Introduction.

In the sequel, to develop a realistic model we want to capture the effects of
macroeconomic variables, which naturally affect the evolution of the asset process;
this is necessary for the modelling tasks we will consider under IFRS 9, as previously
discussed. Typically, such latent variables are incorporated by considering stochas-
tic volatility models, whereby the diffusion term of the asset process also evolves
according to a stochastic process, as described by the coupled process:{

dGt = µx(Gt, Yt)dt + σx(Gt, Yt)dBt +
∫

R
zN(dt, dz), Gs = x,

dYt = µy(Yt)dt + σy(Yt)dWt, Ys = y,
(3.4)

for y ∈ V and where Bt and Wt are independent Brownian motions. Standard cases
are the Bates’ model, introduced in Bates, 1996, as well as the Heston model (see Ben-
hamou, Gobet, and Miri, 2010), a version of which we consider below. In particular,
letting µx(Yt) = k(θ−Yt) and σx(Yt) =

√
Yt, we obtain the asset process driven by a

stochastic volatility process, which follows the well-established Cox–Ingersoll–Ross
(CIR) model, developed in Cox, Ingersoll Jr, and Ross, 2005 (note that both processes
are time-homogeneous):{

dGu = k(θ − Gu)dt +
√

YtdBt +
∫

R
zN(dt, dz), G0 = x,

dYu = κ(µ−Yu)dt + ξ
√

YudWt, Y0 = y.
(3.5)

The above models are widely used in mathematical finance and stochastic mod-
elling. Regime switching is a well-documented approach in financial modelling (see
Hamilton, 2010), with applications ranging from macroeconomics (e.g., Aristidou,
2018) to option pricing (e.g., Duan, Popova, and Ritchken, 2002, Hainaut and Le
Courtois, 2014) and interest rate modelling (Goutte and Ngoupeyou, 2011). In the
case of credit risk, the underlying Markov chain is considered as an indication of the
market conditions, which significantly impacts credit exposures and ratings. In sub-
sequent sections we add to the multitude of applications by using the PD function
that arises from the regime switching model to estimate Lifetime provisions and sce-
nario analysis under IFRS 9. When considering regime switching in asset processes
it is important to note that financial institutions may currently have various credit
rating systems, which are not compatible with the IFRS 9 staging (which requires
three district Stages for exposure ratings). However, recent work has shown that
this is not restrictive and IFRS 9 - compatible transition matrices can be obtained
from the existing internal ratings (see Georgiou et al., 2021). Finally, we refer the
reader to Zhu, Yin, and Baran, 2015 for a detailed analysis of more general regime
switching jump diffusion processes, where the authors also consider the dynamics
of the underlying Markov process to be a function of the initial position of the jump
diffusion.

The stochastic volatility model is a natural extension, as it can be seen as the
limit process of the regime switching model, as R = R+. Such models, in the case
of both continuous and jump processes, have also been considered for numerous
applications in mathematical finance, particularly in pricing and hedging, such as in
Toivanen, 2010 and Goutte, 2013.
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3.3.2 The generalized model

Both the aforementioned models have important applications in credit risk mod-
elling under the IFRS 9 framework. Combining the two, we obtain a generalized
model that captures all the observable or latent variables required to estimate the
PD evolution and subsequently tackle the IFRS 9 modelling tasks. This generalized
model is of the form:{

dGu = k(Yu, Ru)
(
θ(Yu, Ru)− Gu

)
dt + σ(Yu, Ru)dBu +

∫
R

zN(du, dz), G0 = x,
dYu = κ(µ−Yu)dt + ξ

√
YudWt.

(3.6)

Specifically, we will be considering a combination of (3.3) and (3.5), which gives rise
to the following.

Definition 3.3.1. Under the generalized model, the asset value process is defined by
the triple (Gt, Rt, Yt)t≥0, capturing both the switching and volatility processes, and
is given by:{

dGu = k(Ru)
(
θ(Ru)− Gu

)
dt + σ(Ru)

√
YtdBu +

∫
R

zN(du, dz), G0 = x,
dYu = κ(µ−Yu)dt + ξ

√
YudWt,

(3.7)

with G0 = x, R0 = ρ and Y0 = y.

Before moving on to define the appropriate Probability of Default functions, it
will be useful to define some notation.

Remark 3.3.2. An important note is that the transition probability of the generalized
OU process is also uniformly continuous. This follows from the fact that its transi-
tion probability, for given (R0, Y0) = (ρ, y), p(x′, x, t; ρ, y), is simply the coupling of
the transition densities of the corresponding stochastic volatility models, which are
continuous functions (see e.g., Ackerer, Filipović, and Pulido, 2018), and is therefore
uniformly continuous on all closed and bounded intervals D we will consider.

Notation 3.3.3.

1. Throughout the remainder of this Chapter, we employ the notation Zx
u to rep-

resent the stochastic process (Zu)u≥0, with Z0 = x, where appropriate. We also
generalize this notation to incorporate cases with additional underlying vari-
ables X1

t , X2
t , . . . , Xn

t , by writing Z(x1,x2,...,xn)
u to represent (Zu)u≥0 with Xi

0 = xi
for i = 1, 2, . . . , n, (the superscripts are to be understood as indices, i.e., the
i−th underlying variable is (Xi

t)t≥0).

2. In the following sections, when referring to the transition densities of the
regime switching, stochastic volatility and generalized OU models, we will
omit the dependence on the latent variables for brevity, as it will be obvious
from the context.

3.3.3 The Probability of Default function

Following the definition of the PD function, as given in (3.1), under the general-
ized model (3.7) we will condition on the initial state of the regime switching and
stochastic volatility processes, i.e., ρ and y, to obtain:

Ψ(x, ρ, y, s, t) := P
(

inf
s≤r≤t

Gr ≤ 0|Gs = x, Rs = ρ, Ys = y
)

. (3.8)
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Under this assumption, we can utilize the time homogeneity property to write the
PD function more succinctly, whilst still being able to obtain the evolution of the PD,
both in the case of a variable maturity and variable starting time. We describe this
in the lemma below.

Lemma 3.3.4. Under the generalized model (3.7), the PD function with variable maturity
Ψ̃(x, ρ, y, s; t) and variable starting time Ψ̃(x, ρ, y, s; t), can be retrieved from the generalized
function Ψ(x, ρ, y, u), where u = t− s represents the remaining time until maturity.

Proof. As mentioned, this observation follows immediately from the time homo-
geneity of the asset process, since:

Ψ(x, s, t) = P
(

inf
s≤r≤t

Gr ≤ 0|Gs = x, Rs = ρ, Ys = s
)

= P
(

inf
0≤r≤t−s

Gr ≤ 0|G0 = x, R0 = ρ, Y0 = y
)
= Ψ(x, ρ, y, 0, t− s). (3.9)

We can now write Φ(x, ρ, y, u) with u := t− s representing the remaining time until
maturity.

The above shows that, by fixing the appropriate time and with a simple change
of variables, we can obtain the evolution of both PD processes. It easily follows that
this approach can be generalized to any time homogeneous stochastic processes.
Throughout the remainder of this paper, we will therefore use the following formu-
lation of the PD and corresponding survival process:

Ψ(x, ρ, y, u) := P
(

inf
r≤u

Gr ≤ 0|G0 = x, R0 = ρ, Y0 = y
)
≡ P

(
inf
r≤u

G(x,ρ,y)
r ≤ 0

)
, (3.10)

Φ(x, ρ, y, u) := 1−Ψ(x, ρ, y, u) = P
(

inf
r≤u

G(x,ρ,y)
r > 0

)
.(3.11)

Remark 3.3.5. It is worth emphasizing that we use the general term "time until matu-
rity" purposefully, as it captures both PD cases, under the homogeneity assumption.
We will continue to use this term throughout this and subsequent Chapters, to instill
the importance of this generalization. Furthermore, the homogeneity assumption is
strong, yet fair. Particularly in the case of corporate and/or small business loans, it
is natural to consider such asset processes, since credit risk modelling is often done
across complete financial/business cycles (e.g., years or quarters), over which the
evolution of the asset process (or related return processes) will have similar dynam-
ics, regardless of the exact point in time. However, even without this assumption,
the approaches developed in this paper can be used by fixing the either the starting
or maturity time in order to obtain whichever case of the PD process the modeller
requires. Hence, this framework is useful for PD modelling under any asset value
process.

Using the generalized model and the corresponding PD (or survival) process
(3.10) (or (3.11)), we can prove certain mathematical properties that are required
to ensure the existence of appropriate solutions for the Partial Integro-differential
Equations (PIDEs) we will obtain for the PD functions. This creates a complete and
robust mathematical framework which can be applied even without assuming or
proving regularity, and is therefore applicable to a wide range of asset value models.
At the same time, it is important to discuss the practical implications and applicabil-
ity of the approaches described in this and subsequent sections. When considering
real-life credit risk modelling tasks the state of the regime (e.g., the IFRS 9 Stage),
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and/or the value of any underlying macroeconomic factors may be observable and
can therefore be inserted explicitly into the generalized model (3.7), thereby obtain-
ing the regime switching or stochastic volatility model, with PD functions given by:

Ψ(x, ρ, u) = P
(

inf
r≤u

G(x,ρ)
r > 0

)
, (3.12)

Ψ(x, y, u) = P
(

inf
r≤u

G(x,y)
r > 0

)
, (3.13)

respectively, and corresponding PD (or survival) functions Ψ(x, ρ, u) and Ψ(x, y, u)
(or Φ(x, ρ, u) and Φ(x, y, u)). These models can then be used for the tasks we con-
sider under IFRS 9, and credit risk more generally. For this reason, in Chapter 4 we
develop numerical schemes for such simplified versions of the generalized model,
starting with the one-dimensional Lévy-driven OU asset and its corresponding PD

function Ψ(x, u) = P
(

infr≤u Gx
r ≤ 0

)
(and survival Φ(x, u)), and continuing with

the regime switching and stochastic volatility models, which will be used for related
applications.

Remark 3.3.6. We refer the reader to section 1.3.1.3 of the Introduction for a brief
overview of useful PDEs that the survival processes and transition densities of the
non-jump versions of the above models satisfy (i.e., the versions which do not con-
tain the Lévy jump process). These, known as Kolmogorov backward equations, can
be written in terms of the infinitesimal generators of the stochastic processes, and
will be referred to in the subsequent sections, where we will obtain similar equa-
tions for the Lévy-driven models. We also note that we adopt the notation for the
generator operators used in these equations for the remainder of the Chapter, for
convenience.

3.4 Integral characterization and properties of the PD func-
tion

As previously mentioned, our approach ultimately relies on deriving and solving
(PIDEs) for the PD functions. To obtain these equations, we will first consider an
integral equation (IE) characterization of the PD under the generalized model, from
which we can obtain similar representations for the simplified models. We develop
these IEs in this section, which will allow us to prove that the PD functions enjoy
the properties required so as to be considered appropriate (either weak or strong)
solutions to the PIDEs.

3.4.1 Required notation for the Integral Equations

To ease the calculations presented in this section, we first introduce some notation,
which will be used for the integral equations.

Definition 3.4.1. Consider x ∈ D and the vector of stochastic processes (Xi
t)t≥0, with

corresponding state spaceDi, for i = 0, 1, . . . , d. For a fixed time u ∈ [0, T], we define
the family of operators

(
Ts, s ∈ [0, u]

)
, acting on a function ϕ : Rd+1× [0, T]→ [0, 1],

by:

Tsϕ(x, x1
0,x2

0, . . . , xd
0, u)

=E[ϕ(x, X1
s , X2

s , . . . , Xd
s , u− s)|X1

0 = x1
0, X2

0 = x2
0, . . . , Xd

0 = xd
0]. (3.14)
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In our setting, x corresponds to the initial position of the asset value process, i.e.,
G0 = x, and each Xi

t represents a latent variable, such as the CTMC in the regime
switching model or the volatility in the stochastic volatility model. To give analytic
forms that will be used in these two models, respectively, we specify the following
cases:

(i) Let (Xi
t)t≥0, for i = 1, 2, . . . , d be discrete space and independent stochastic

processes, with state space X i, such that |X i| < ∞, and with transition proba-
bilities πi(k, xi

0, t) := P(Xi
t = k|Xi

0 = xi
0) for k ∈ X i. Then:

Tsϕ(x,x1
0, x2

0, . . . , xd
0, u)

= ∑
x1

s∈X 1

· · · ∑
xd

s∈X d

ϕ(x, x1
s , x2

s , . . . , xd
s , u− s)π1(x1

s , x1
0, s) · · ·πn(xd

s , xd
0, s).

(3.15)

(ii) Let (Xi
t)t≥0, for i = 1, 2, . . . , d, be continuous and independent random vari-

ables, with supports Di and transition densities qi(k, xi
0, t) := P(Xi

t = k|Xi
0 =

xi
0) for k ∈ Di. Then:

Tsϕ(x, x1
0, x2

0, . . . , xd
0, u)

=
∫

x1
s∈D1
· · ·

∫
xd

s∈Dd
ϕ(x, x1

s , x2
s , . . . , xd

s , u− s)q1(x1
s , x1

0, s) · · · qn(xd
s , xd

0, s)dx1
s · · · dxd

s .

(3.16)

It is easy to see that in the case where (Xi
t)t≥0 contains both discrete and continuous

stochastic processes the analytical expression will contains both summation and in-
tegral terms. Hereinafter, we will refer to Ts, for a fixed s ∈ [0, u] as the s−operator.
In the calculations that follow we prefer to express the relevant integral equations in
terms of the s−operator notation for convenience and simplicity.

3.4.2 Integral Equation formulations of the PD functions

The first step in our methodology entails deriving the IEs for the PD functions. As is
convention in most of the literature, we perform our calculations with the survival
probability and it is easy to see that the same steps can be used for the correspond-
ing PDs. These equations prove to be very useful, as they will allow us to prove
continuity and existence results for the PD function. We prove the result under the
generalized model, from which analogous results for regime switching and stochas-
tic volatility cases are easily obtained.

Proposition 3.4.2. Consider the asset value process under the generalized model (3.7) with
jump rate λ = ν(R) and jump size distribution F(z). Furthermore, let Q(x, ρ, y, u) and
p(x′, x, s) be the survival probability and transition density, respectively, of the non-jump
generalized OU process. Then, the survival probability Φ(x, ρ, y, u) satisfies the integral
equation:

Φ(x, ρ,y, u)

=
∫ u

0
λe−λs

∫ ∞

0

∫
R
TsΦ(x′ + z, ρ, y, u)p(x′, x, s)dF(z)dx′ds + e−λuQ(x, ρ, y, u).

(3.17)
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Proof. Consider the natural filtration Ft generated by the by the tri-variate process
(Gt, Rt, Yt). Recall that we use the notation G(x,ρ,y)

t to represent the asset value pro-
cess depending on the regime CTMC and volatility process Yt, with G0 = x, R0 = ρ

and Y0 = y. By definition, Φ(x, ρ, y, u) = P
(

infr≤u G(x,ρ,y)
r > 0

)
and it will therefore

be useful to define the martingale:

Ms = E[1
(

inf
r≤u

G(x,ρ,y)
r > 0

)
|Fs], (3.18)

for s < u. Furthermore, let τ be the time of the first jump and we will also define the
stopping time:

τ∗ = inf{t < u : {∆G(x,ρ,y)
t ̸= 0} ∩ {G(x,ρ,y)

s > 0, ∀s ∈ [0, t]}}, (3.19)

i.e., the time the process first jumps, having not yet defaulted. It is easy to check that
τ∗ is indeed an Ft-stopping time.

On the event {τ > u} no jumps occur within the examined time horizon and
therefore Φ(x, ρ, y, u) = Q(x, ρ, y, u), where recall that Q(x, ρ, y, u) is the survival
probability of the non-jump generalized OU process. On {τ ≤ u}, we have:

Φ(x, ρ, y, u) = E[1
(

inf
r≤u

G(x,ρ,y)
r > 0

)
|F0] = M0 = E[Mτ∗ ], (3.20)

where the last step follows from the Optional Stopping Theorem. Notice that P(τ∗ =
∞) > 0 and therefore the above is to be understood in an almost sure sense. Now, by
the strong Markov property and the time homogeneity of the OU process, it follows
that:

Φ(x, ρ, y, u) =E[Φ(G(x,ρ,y)
τ∗ , Rτ∗ , Yτ∗ , u− τ∗)]

=E[Φ(Gτ∗ , Rτ∗ , Yτ∗ , u− τ∗)|G0 = x, R0 = ρ, Y0 = y]. (3.21)

Concerning the two cases for the time of the first jump, we can write:

Φ(x, ρ, y, u) =E[1
(

inf
r≤u

G(x,ρ,y)
r > 0

)
1(τ ≤ u)] +E[1

(
inf
r≤u

G(x,ρ,y)
r > 0

)
1(τ > u)]

=E[1
(

inf
r≤u

G(x,ρ,y)
r > 0

)
|τ ≤ u]P(τ ≤ u) + e−λuQ(x, ρ, y, u). (3.22)

Then, using (3.21), the law of total probability and the definition of the s−operator
the first term can be written as:∫ u

0
λe−λsE[Φ(Gs, Rs, Ys, u− s)|G0 = x, R0 = ρ, Y0 = y]ds

=
∫ u

0
λe−λs

∫ ∞

0

∫
R

E[Φ(x′ + z, Rs, Ys, u− s)|R0 = ρ, Y0 = y]p(x′, x, s)dF(z)dx′ds

=
∫ u

0
λe−λs

∫ ∞

0

∫
R
TsΦ(x′ + z, ρ, y, u)p(x′, x, s)dF(z)dx′ds, (3.23)

where we have conditioned on the pre-jump asset value and the subsequent jump
size. Substituting back into (3.22), we get the required result.

It is now straightforward to obtain the analogous integral equations for the PD
functions under the regime switching and stochastic volatility models. We present
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both these results below, omitting the proofs for brevity, as they follow the proof of
Proposition 3.4.2, almost identically.

Corollary 3.4.3.

(i) Consider the asset value process under the regime switching model (3.3) with jump rate
and jump size distribution as in Proposition 3.4.2. Let Q(x, ρ, u) and p(x′, x, s) be
the survival probability and transition density, respectively, of the continuous regime
switching OU process. Then, the survival probability Φ(x, ρ, u) satisfies the integral
equation:

Φ(x, ρ, u)

=
∫ u

0
λe−λs

∫ ∞

0

∫
R
TsΦ(x′ + z, ρ, u)p(x′, x, s)dF(z)dx′ds + e−λuQ(x, ρ, u).

(3.24)

(ii) Consider the asset value process under the stochastic volatility model (3.5) with jump
rate and jump size distribution as in Proposition 3.4.2. Let Q(x, y, u) and p(x′, x, s)
be the survival probability and transition density, respectively, of the continuous
stochastic volatility OU process. Then, the survival probability Φ(x, y, u) satisfies
the integral equation:

Φ(x, y, u)

=
∫ u

0
λe−λs

∫ ∞

0

∫
R
TsΦ(x′ + z, y, u)p(x′, x, s)dF(z)dx′ds + e−λuQ(x, y, u).

(3.25)

Remark 3.4.4. The proof above is based on the approach considered in Mishura and
Ragulina, 2016 and constitutes an extension for processes where the diffusion term
in non-zero. This results in having to consider appropriate stopping times, as well as
the transition density of the OU process in the representation above. Furthermore,
it is worth mentioning the simple case of the non-jump OU process, the survival
probability Φ(x, u) satisfies the integral equation:

Φ(x, u)

=
∫ u

0
λe−λs

∫ ∞

0

∫
R

Φ(x′ + z, u− s)p(x′, x, s)dF(z)dx′ds + e−λuQ(x, u), (3.26)

which can be easily derived from the regime switching model by considering a single
regime. This can be directly compared to the corresponding integral equation in
Mishura and Ragulina, 2016, where similar integral equations are used to study the
ruin probability function for an analogous asset value process. On the other hand,
in this work, the integral equations can lead to the existence and continuity results
that suffice to obtain approximations of the PD functions, as we will see below.

Remark 3.4.5. In the following sections we will often interchange between using the
s−operator formulation and more analytical expressions in terms of an appropri-
ate expected value. In particular, applying the law of total probability, the integral
equation for the stochastic volatility model can be written in more detail as:

Φ(x, y, u) =
∫ u

0
λe−λs

∫ ∞

0

∫ ∞

0

∫
R

Φ(x′ + z, ν, u− s)q(ν, y, s)p(x′, x, s)dF(z)dx′dνds

+ e−λuQ(x, y, u), (3.27)
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where q(ν, y, s) is the transition probability of the CIR volatility process and we have
used that, by definition:

TsΦ(x′ + z, y, u) =
∫ ∞

0
Φ(x′ + z, ν, u− s)q(ν, y, s)dν.

Similarly, for the generalized model, we can write:

Φ(x, ρ,y, u)

=
∫ u

0
λe−λs

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
s , ν, u− s)]q(ν, y, s)p(x′, x, s)dF(z)dx′dνds

+ e−λuQ(x, ρ, y, u). (3.28)

These analytical versions will be useful when using the integral equations to de-
rive PIDEs for the PD processes, whereas the more concise form will be used when
proving the required continuity results that follow.

Remark 3.4.6. Finally, it is also worth noting that, in obtaining the integral equa-
tions in this section, we have included the initial values of the regime and volatility
processes as additional variables on which the PD function depends. An alternative
approach is writing these as a system of integral equations. For example, consid-
ering the regime switching model with states in accordance to the IFRS 9 frame-
work (i.e., Stage 1, 2 and 3) we can rewrite Φi(x, u) := Φ(x, ρi, u) (and similarly
Qi(x, u) := Q(x, ρi, u)), which results in the system of equations:

Φi(x,u)

=
∫ u

0
λe−λs

∫ ∞

0

∫
R

3

∑
j=1

Φj(x, u− s)π(Rj, ρi, s)p(x′, x, s)dF(z)dx′ds + e−λuQ1(x, u),

(3.29)

for i = 1, 2, 3, and where we have used that, in this case, TsΦ(x, ρ, u − s) =

∑3
j=1 Φ(x, Rj, u− s)π(Rj, ρ, s), by definition. In our approach, we prefer to account

for these externals parameters explicitly, and generalize this representation in the
cases of the additional variables.

3.4.3 Properties and existence of solutions

Using the IEs derived above, we can now prove that the PD functions enjoy certain
mathematical properties required to obtain the viscosity solutions to the correspond-
ing PIDEs.

To consider such solutions, we require Ψ (equivalently Φ) to be a continuous
function of (x, u). To this end, we first note that Ψ (Φ) is a monotonically decreasing
(increasing) function with respect to x and a monotonically increasing (decreasing)
function with respect to maturity u. Moreover, as it is bounded, we can conclude that
it is an integrable function. We can take advantage of the integral equation forms to
prove that solutions for the survival probabilities do exist, and moreover, that they
are continuous with respect to x and u. We prove this result for the generalized
model, from which the other cases follow easily.

Remark 3.4.7. As mentioned, in what follows we will focus on the survival proba-
bility as a function of (x, u), as the additional complexity we are interested in arises
from the jump component of the OU process. It is straightforward to reproduce
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the proofs for the stochastic volatility variable, as well. Finally, the existence of the
regime switching process simply creates a coupling that does not affect the results
in this section.

Lemma 3.4.8. The probability of survival function under the generalized model
Φ(x, ρ, y, u), as defined in (3.11) is uniformly continuous as a function of x and u.

Proof. To prove this result we will use the integral formulation (3.17). Consider a
fixed ϵ > 0 and ||(x, u)− (x0, u0)|| < δ, for some δ > 0 that will be specified. Then:

|Φ(x, ρ, y, u)−Φ(x0, ρ, y, u0)|
≤ |Φ(x, ρ, y, u)−Φ(x0, ρ, y, u)|+ |Φ(x0, ρ, y, u)−Φ(x0, ρ, y, u0)|

We will handle each of the terms above separately. We have:

x : Let |x − x0| < δ1. Since the transition density of the non-jump OU process
is uniformly continuous, we can select δ1 such that |p(x′, x, s)− p (x′, x0, s)| <
ϵ/2. Then:

|Φ(x, ρ, y, u)−Φ(x0, ρ, y, u)|

≤
∫ u

0
λe−λs

∫
R

∫
R
TsΦ(x′ + z, ρ, y, u)|p(x′, x, s)− p(x′, x0, s)|dF(z)dx′ds

+ e−λu|Q(x, u)−Q(x0, u)|

≤
∫ u

0
λe−λs

∫
R

∫
R
TsΦ(x′ + z, ρ, y, u)

ϵ

2
dF(z)dx′ds + e−λu ϵ

2

≤
∫ u

0
λe−λs ϵ

2
ds + e−λu ϵ

2
=

ϵ

2
.

u : Similarly, let |u− u0| < δ2. Then:

|Φ(x0, ρ, y, u)−Φ (x0, ρ, y, u0)| ≤

≤
∫ u

u0

λe−λs
∫

R

∫
R

∣∣TsΦ
(

x′ + z, ρ, y, u
)
− TsΦ

(
x′ + z, ρ, y, u0

)∣∣ p(x′, x, s)dF(z)dx′ds.

By definition, we have ∥Ts∥ ≤ 1 and therefore: |Φ(x, ρ, y, u)−Φ (x, ρ, y, u0)| ≤∫ u
u0

λe−λsds ≤ (u− u0)maxs∈[0,u] λe−λs = λ (u− u0) < λδ2.

By selecting δ2 = ϵ
2λ and δ = δ1 ∧ δ2 we therefore obtain:

|Φ(x, ρ, y, u)−Φ(x0, ρ, y, u0)| < ϵ,

as required.

We can now consider an appropriate fixed point result which will allow us to
prove the existence of a solution to the IE for the survival probability. For this result
we will refer to the Arzela-Ascoli and Schauder’s fixed point theorems, as stated in
B.3.1 and B.3.2 of the Appendix, respectively.

Proposition 3.4.9. The integral equation (3.17) admits a continuous solution.

Proof. Consider the metric space of all continuous functions Φ(·, ρ, y, ·) onD× [0, T],
denoted by X := C(D × [0, T]). Furthermore, define the functional operator A :
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X → X by:

AΦ(x, ρ, y, u) =
∫

R

∫
R
TsΦ(x′ + z, ρ, y, u)p(x′, x, s)dF(z)dx′. (3.30)

We begin by proving that the operator A is: (i) uniformly bounded, (ii) equi-
continuous and (iii) compact. We separate these in the steps below:

(i) Uniform boundedness follows easily from the definition of Φ and the operator
Ts. Specifically:

|AΦ(x, ρ, y, u)| ≤ 1.

(ii) For equi-continuity we must show that, given ϵ > 0, there exists δ > 0 such
that if ||(x, u)− (x0, u0)|| < δ then |AΦ(x, ρ, y, u)−AΦ(x0, ρ, y, u0)| < ϵ, for
all Φ ∈ X. The proof follows very closely Lemma 3.4.8, but we include the
steps for completeness.

To this end, we calculate:

|AΦ(x, ρ, y, u)−AΦ(x0, ρ, y, u0)|

≤
∫

R

∫
R
|TsΦ(x′ + z, ρ, y, u)p(x′, x, s)− TsΦ(x′ + z, ρ, y, u0)p(x′, x0, s)|dF(z)dx′.

Consider the integrand. We can write:

TsΦ(x′ + z, ρ, y, u)
(

p(x′, x, s)− p(x′, x0, s)
)

+ p(x′, x, s)
(
TsΦ(x′ + z, ρ, y, u)− TsΦ(x′ + z, ρ, y, u0)

)
,

and therefore:

|AΦ(x, ρ, y, u)−AΦ(x0, ρ, y, u0)| ≤
∫

R

∫
R
TsΦ(x′ + z, ρ, y, u)|p(x′, x, s)− p(x′, x0, s)|

+ p(x′, x0, s)|TsΦ(x′ + z, ρ, y, u)− TsΦ(x′ + z, ρ, y, u0)|F(z)dx′.

We know that p(x′, x, s) is uniformly continuous in x and Φ is uniformly con-
tinuous in u. Therefore, given ϵ > 0 we can select δ1 such that

|p(x′, x, s)− p(x′, x0, s)| < ϵ/2,

for all x, x0 such that |x− x0| < δ1. Furthermore, from Lemma 3.4.8 recall that,
for u, u0 such that |u− u0| < δ2 we have:

|Φ(x′ + z, ρ, y, u)−Φ(x′ + z, ρ, y, u0)| < λδ2,

for all Φ ∈ X. Select δ2 = ϵ
2λ and let δ = δ1 ∧ δ2. Hence:

|AΦ(x, ρ, y, u)−AΦ(x0, ρ, y, u0)|

≤
∫

R

∫
R
TsΦ(x′ + z, ρ, y, u)

ϵ

2
+ p(x′, x0, s)λδdF(z)dx′ ≤ ϵ. (3.31)

Notice that the choice of δ does not depend on Φ, only on the given ϵ. Hence,
|AΦ(x, ρ, y, u) − AΦ(x0, ρ, y, u0)| < ϵ, for all Φ ∈ X whenever ||(x, u) −
(x0, u0)|| < δ, i.e., A is equi-continuous.
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(iii) We have that AΦ is uniformly bounded and equi-continuous and therefore
compact by the Arzela-Ascoli theorem.

With the above, we now turn to the main result. Consider now the Banach space
C = {ϕ ∈ X, ||ϕ|| ≤ 1}, where we have used the standard norm

||ϕ|| := sup
x,u
|ϕ|.

With the operator A defined as above, we have:

Φ(x, ρ, y, u) =
∫ u

0
λe−λsAΦ(x, ρ, y, u)ds + g(x, u),

with g(x, u) := e−λuQ(x, ρ, y, u) and it is natural to define the operator PΦ, such
that:

PΦ(x, ρ, y, u) =
∫ u

0
λe−λsAΦ(x, ρ, y, u)ds + g(x, u). (3.32)

Recall that AΦ is bounded by 1 and, furthermore, by the definition of the operator,
we also have that:

||AΦ|| ≤ ||Φ||.

Hence:

||PΦ|| ≤ ||
∫ u

0
λe−λsAΦ(x, ρ, y, u)ds||+ ||g|| ≤ sup

x,u

∫ u

0
λe−λs|AΦ(x, ρ, y, u)|ds + ||g||

≤ sup
x,u

(1− e−λu)|Φ|+ sup
x,u

e−λu|Q(x, ρ, y, u)| ≤ max(||Φ||, ||g||) ≤ 1, (3.33)

concluding that P maps function Φ ∈ X to X. Notice that we can write P = JA,
with J ϕ =

∫ u
0 λe−λsϕ(s)ds. It is straightforward to see that the linear operator J

is compact, as is A, as shown in Lemma 3.4.8. Therefore, we can apply Schauder’s
fixed point theorem to conclude that P has a fixed point in X, which solves the
integral equation (3.17).

3.5 Partial Integro-Differential Equations for the PD func-
tion

Generally, when considering various credit modelling tasks, such as forecasting
probability of default and expected losses, it is common throughout the literature
to use path simulation techniques, particularly for practical purposes. Specific ex-
amples and applications can be seen in e.g., Sak and Hörmann, 2012 and Virolainen,
2004. On the other hand, we will see in this section that the integral equation repre-
sentations (3.24), (3.25) and (3.28) lead to PIDEs for the PD functions, which belong
to families of well-studied equations. Hence, our approach relies solely on the equa-
tions derived in this and the previous section, which can be solved to retrieve the
corresponding values, thereby eliminating the need for simulations and the larger
errors which accompany such methods.

Natural questions arise related to the regularity conditions that the survival func-
tion (and hence the corresponding PD function) must satisfy; for example, in the one
dimensional Lévy-driven OU case, classical solutions of PIDEs would require that
Φ(x, u) ∈ C2,1(D × [0, T]

)
, where D := [0, ∞), i.e., the survival probability function
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would have to be twice and once continuously differentiable in x and u, respec-
tively, on the corresponding domains. In many cases, the required differentiability
conditions are often assumed. However, we can avoid making such assumptions by
considering viscosity solutions of the PIDEs, a notion introduced in Crandall and
Lions, 1983. Viscosity solutions and their applications in finance have been studied
in e.g., Cont and Voltchkova, 2005b and Cont and Voltchkova, 2005a. We begin by
showing that the generalized PD function is a viscosity solution of a PIDE that will
be derived. Then, we continue by showing that this and the PIDEs that result from
the regime switching and stochastic volatility models can be derived directly from
the corresponding integral equations, if the required regularity conditions hold. In
our setting, it is understood that the survival functions are in fact viscosity solutions
to these PIDEs, yet these calculations are important for two reasons: firstly, they
establish the connection between the integral equations and the corresponding PI-
DEs, and secondly they constitute an efficient method of obtaining the form of the
PIDEs, for which we can then show that the survival functions are indeed viscosity
solutions.

Finally, it is worth emphasizing the utility of the PIDEs obtained in this section.
Specifically, the solutions to these equations are PD values across both initial posi-
tions, time and latent variables. Hence, we will see that, by considering numerical
schemes for the PIDES, we obtain the complete evolution of the PD process that is re-
quired for applications in credit risk modelling. This is clearly preferable to common
methods such as Monte Carlo estimations of the PD, where one must perform simu-
lations of the underlying asset process for many different initial positions and time
horizons, separately. This process is extremely computationally costly, especially
when taking into account the order of convergence of many stochastic simulation
schemes. For example, the Euler scheme for the simulation of the asset process we
consider has a strong convergence of order 0.5, which is required since the PD value
depends on the whole path of the asset process.

3.5.1 Viscosity solutions

Viscosity solutions for non-local PDEs have also been studied in e.g., Barles and
Imbert, 2008, Cont and Voltchkova, 2005b and Hamadène and Morlais, 2016 and
references therein. We reiterate the importance of this approach: requiring only con-
tinuity of the underlying function, which has been proven for the survival function
under the proposed models, we can define solutions of the equations in a weak sense
and subsequently approximate them using numerical schemes. We begin by show-
ing that the generalized survival probability is a viscosity solution of an appropriate
PIDE (provided in equation (3.34) below). For completeness, we include the defi-
nition of a viscosity solution below (altered to reflect the arguments of the survival
function we are studying).

Definition 3.5.1. Consider an integro-differential operator for the function with
arguments as above, L f (x, ρ, y, u) and a corresponding PIDE L f (x, ρ, y, u) = 0.
Then, a function ϕ(x, ρ, y, u) is called a viscosity supersolution (subsolution) of the
PIDE if, for any ρ ∈ R, for every (x, y, u) ∈ D × V × [0, T], and every function
f (·, ρ, ·, ·) ∈ C2,1(D̃ × [0, T]

)
, where D̃ := D×V , such that ϕ(x, ρ, y, u) = f (x, ρ, y, u)

and ϕ ≥ f (ϕ ≤ f ), the inequality L f (x, ρ, y, u) ≤ 0 (L f (x, ρ, y, u) ≥ 0) holds. A
function ϕ(x, ρ, y, u) is a viscosity solution of the PIDE if ϕ is simultaneously a vis-
cosity supersolution and subsolution.
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In what follows we will show that the survival function is a viscosity solution
of an appropriate PIDE given below. We must first show that viscosity solutions do
exist for the PIDEs in question. The proof that follows is based on the corresponding
result in Belkina and Kabanov, 2016, extended to match the models studied in this
work.

Proposition 3.5.2. The survival probability function Φ(x, ρ, y, u) is a viscosity solution of
the PIDE L f (x, ρ, y, u) = 0, where:

L f (x,ρ, y, u) := −∂ f
∂u

(x, ρ, y, u) + kρ(θρ − x)
∂ f
∂x

(x, ρ, y, u) + κ(µ− y)
∂ f
∂y

(x, ρ, y, u)

+
1
2

σ2
ρ y

∂2 f
∂x2 (x, ρ, y, u) +

1
2

ξ2y
∂2 f
∂y2 (x, ρ, y, u) + ∑

j ̸=ρ

qρj

(
f (x, j, y, u)− f (x, ρ, y, u)

)
+

∫
R

(
f (x + z, ρ, y, u)− f (x, ρ, y, u)

)
ν(dz). (3.34)

Proof. We must show that Φ(x, ρ, y, u) is simultaneously a viscosity supersolution
and subsolution of the PIDE.

We begin with the supersolution case. For any ρ ∈ R, consider fixed (x, y, u) ∈
D × V × [0, T], with Φ(x, ρ, y, u) = 0 when x ≤ 0, by definition. Furthermore, con-
sider a function f (·, ρ, ·, ·) ∈ C2,1(D̃× [0, T]

)
such that Φ(x, ρ, y, u) = f (x, ρ, y, u) and

Φ((·, ρ, ·, ·)) ≤ f (·, ρ, ·, ·) on D × V × [0, T]. Now, let h > 0 and let ϵx, ϵy be small

enough to ensure that f ∈ C2,1
(

d̃ϵ × [0, T]
)

, where d̃ϵ := Bϵx(x) × Bϵy(y), i.e., we

are considering a neighborhood of the fixed (x, u) where the functions will "touch".
Finally, define the stopping time τh := inf{t ≥ 0 : (Gx

t , Yx
t ) /∈ (Bϵx(x)× Bϵy(y))} ∧ h,

noting that we choose h < u to ensure that τh < u. Then, by the Itô formula, and
with the operator L is in (3.34), we have:

f (Gx
τh

, Rρ
τh , Yy

τh , u− τh)− f (Gx
0 , Rρ

0, Yy
0 , u) = f (Gx

τh
, Rρ

τh , Yy
τh , u− τh)− f (x, ρ, y, u)

=
∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt +
∫ τh

0
σ

∂ f
∂x

(Gx
t , Rρ

t , Yy
t , u− t)dBt

+
∫ τh

0

∫
R

(
f (Gx

t + z, Rρ
t , Yy

t , u− t)− f (Gx
t , Rρ

t , Yy
t , u− t)

)
Ñ(dt, dz)

+ ∑
j ̸=ρ

pρj(th)
(

f (Gx
τh

, j, Yy
τh , u− τh)− f (Gx

τh
, ρ, Yy

τh , u− τh)
)

=
∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt + mt, (3.35)

where

mt :=
∫ τh

0
σ

∂ f
∂x

(Gx
t , Rρ

t , Yy
t , u− t)dBt

+
∫ τh

0

∫
R

(
f (Gx

t + z, Rρ
t , Yy

t , u− t)− f (Gx
t , Rρ

t , Yy
t , u− t)

)
Ñ(dt, dz) (3.36)

is a martingale and therefore so is the stopped process mt∧τh .
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We have that f (x, ρ, y, u) = Φ(x, ρ, y, u) and recall that Φ(x, ρ, y, u) =
E[Φ(Gx

τh
, Rρ

τh , Yy
τh , u− τh)] almost surely, from Proposition 3.4.2. Therefore:

Φ(Gx
τh

, Rρ
τh , Yy

τh , u− τh) ≥

f (Gx
τh

, Rρ
τh , Yy

τh , u− τh) = f (x, ρ, y, u) +
∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt + mt, (3.37)

and so:

E[Φ(Gx
τh

,Rρ
τh , Yy

τh , u− τh)] ≥ E[Φ(x, ρ, y, u)] + E
[ ∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt
]
+ E[mt]

⇒ Φ(x, ρ, y, , u) ≥ Φ(x, ρ, y, u) + E
[ ∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt
]
, (3.38)

and hence E
[ ∫ τh

0 A f (Gx
t , Rρ

t , Yy
t , u − t)dt

]
≤ 0. The final step is as in Belkina and

Kabanov, 2016; when h is sufficiently small we have τh = h and therefore, by the
Lebesgue dominated convergence theorem we have:

A f (x, ρ, y, u) = lim
h↓0

1
h

E
[ ∫ τh

0
A f (Gx

t , Rρ
t , Yy

t , u− t)dt
]
≤ 0, (3.39)

showing that Φ is indeed a viscosity supersolution. It follows directly, by switching
the inequalities in the steps above, that Φ is a viscosity subsolution and therefore the
result is proven.

Remark 3.5.3. Viscosity theory is not the only prism under which we can consider
weak solutions. We can also study solutions in appropriate Sobolev spaces, for
which we will need to define a notion of weak differentiability, and we can then
use standard martingale approaches to obtain the corresponding PIDEs. We include
details of this approach in Appendix B.2.

Remark 3.5.4. We furthermore note that if additional conditions hold, then the
strong solutions that occur are equal to the viscosity solutions, as expected. The
formulations via viscosity solutions are useful to obtain the form of the PIDEs the
PD functions satisfy, and we will see that we can then consider additional conditions
that lead to regular solutions through these equations.

3.5.2 The survival probability as a classical solution of PIDEs derived
from the IE formulations

To build a consistent framework we must ensure that that the PIDEs obtained above
(which are satisfied by the PD functions in the viscosity sense) are derivable from the
integral equations formulation in section 3.4. In this section, we show that the inte-
gral equations indeed lead to the corresponding PIDEs. We will begin with the cal-
culations under the regime switching and stochastic volatility models, upon which
the corresponding result under the generalized model will be built. In all the results
below, we consider a fixed time horizon T > 0.

Lemma 3.5.5.



3.5. Partial Integro-Differential Equations for the PD function 59

(i) Under the regime-switching model (3.3), the survival probability Φ(x, ρ, u) satisfies
the PIDE:

∂Φ
∂u

(x, ρ, u) = kρ(θρ − x)
∂Φ
∂x

(x, ρ, u) +
1
2

σ2
ρ

∂2Φ
∂x2 (x, ρ, u) + ∑

j ̸=ρ

qρj

(
Φ(x, j, u)−Φ(x, ρ, u)

)
+

∫
R

(
Φ(x + z, ρ, u)−Φ(x, ρ, u)

)
ν(dz), (x, ρ, u) ∈ D ×R× [0, T], (3.40)

with initial and boundary conditions:

Φ(x, ρ, 0) = 1{x>0}, (x, ρ) ∈ D ×R,

Φ(0, ρ, u) = 0, (ρ, u) ∈ R× [0, T],
Φ(x, ρ, u)→ 1 as x → ∞, (ρ, u) ∈ R× [0, T],

where qij are the elements of the generator Q of the switching pocess Rt, as defined in
(1.2).

(ii) Under the stochastic volatility model (3.5), the survival probability Φ(x, y, u) satisfies
the PIDE:

∂Φ
∂u

(x, y, u)

= k(θ − x)
∂Φ
∂x

(x, y, u) + κ(µ− y)
∂Φ
∂y

(x, y, u) +
1
2

y
∂2Φ
∂x2 (x, y, u) +

1
2

ξ2y
∂2Φ
∂y2 (x, y, u)

+
∫

R

(
Φ(x + z, y, u)−Φ(x, y, u)

)
ν(dz), (x, y, u) ∈ D × V × [0, T], (3.41)

subject to the initial and boundary conditions:

Φ(x, y, 0) = 1{x>0}, (x, y) ∈ D × V ,

Φ(0, y, u) = 0, (y, u) ∈ V × [0, T],
Φ(x, y, u)→ 1 as x→ ∞, (y, u) ∈ V × [0, T],
∂Φ
∂y

(x, y, u) = 0 as y→ ∞ (x, u) ∈ D × [0, T]. (3.42)

Proof. (i) Our approach relies on taking advantage of the known fact that the tran-
sition densities satisfy the Kolmogorov equation. Specifically, we know that for
p(·, x, u) we have:

∂p
∂u

(·, x, u) = kρ(θρ − x)
∂p
∂x

(·, x, u) +
1
2

σ2
ρ

∂2 p
∂x2 (·, x, u). (3.43)

Recall that the same holds for the survival distribution of the continuous OU,
Q(x, ρ, u):

∂Q
∂u

(x, ρ, u) = L1Q(x, ρ, u), (3.44)
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with the generator operator under the regime switching model L1 given by:

L1Q(x,ρ, t) :=

kρ(θρ − x)
∂ f
∂x

(x, ρ, t) +
1
2

σ2
ρ

∂2 f
∂x2 (x, ρ, t) + ∑

j ̸=ρ

qρj

(
Q(x, j, t)− f (x, ρ, t)

)
(3.45)

Furthermore, for the function g(ρ, u) := E[Φ(·, Ru, ·)|R0 = ρ], we have that:

∂g
∂u

(ρ, u) = ∑
j ̸=ρ

qρj
(

g(j, u)− g(ρ, u)
)
. (3.46)

We now begin the calculations for the PIDE by making the change of variables
t := u− s:

Φ(x, ρ, u) =
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R
Tu−tΦ(x′ + z, ρ, u)p(x′, x, u− t)dF(z)dx′dt

+ e−λuQ(x, ρ, u), (3.47)

By the Leibniz rule, and substituting in the definition of the operator Ts, we
then have:

∂Φ
∂u

(x, ρ, u) = λ
∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
0, u)]p(x′, x, 0)dF(z)dx′

+
∫ u

0
−λ2e−λ(u−t)

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, t)]p(x′, x, u− t)dF(z)dx′dt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, t)]

∂p
∂u

(x′, x, u− t)dF(z)dx′dt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

∂

∂u
E[Φ(x′ + z, Rρ

u−t, t)]p(x′, x, u− t)dF(z)dx′dt

−λe−λuQ(x, ρ, u) + e−λu ∂Q
∂u

(x, ρ, u). (3.48)

The first term in the expression above can be written as:

λ
∫ ∞

0

∫
R

E[Φ(x′ + z, ρ, u)]δx(x′)dF(z)dx′ = λ
∫

R
Φ(x + z, ρ, u)dF(z).

On the other hand, using the integral equation for Φ(x, ρ, u), the second term
can be written as:

−λΦ(x, ρ, u) + λe−λuQ(x, ρ, u).

Combining, we obtain:

∂Φ
∂u

(x, ρ, u) =
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, t)]

∂p
∂u

(x′, x, u− t)dF(z)dx′dt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

∂

∂u
E[Φ(x′ + z, Rρ

u−t, t)]p(x′, x, u− t)dF(z)dx′dt

+ λ
∫

R
Φ(x + z, ρ, u)dF(z)− λΦ(x, ρ, u) + e−λu ∂Q

∂u
(x, ρ, u). (3.49)

We now consider the generator of Φ(x, ρ, u). It is straightforward to separate
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the components of L1Φ(x, ρ, u) since only the transition density p(x′, x, u− t)
depends on x and only E[Φ(x′ + z, Rρ

u−t, t)] depends on the regime. We then
have:

L1Φ(x, ρ, u) ≡ kρ(θρ − x)
∂Φ
∂x

(x, ρ, u) +
1
2

σ2
ρ

∂2Φ
∂x2 (x, ρ, u) + ∑

j ̸=ρ

qρj

(
Φ(x, j, u)−Φ(x, ρ, u)

)
= e−λuL1Q(x, ρ, u) +

∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, t)]Lp(x′, x, u− t)dF(z)dx′dt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

∑
j ̸=ρ

qρj

(
E[Φ(x′ + z, Rj

u−t, t)]

−E[Φ(x′ + z, Rρ
u−t, t)]

)
p(x′, x, u− t)dF(z)dx′dt

= e−λu ∂Q
∂u

(x, ρ, u) +
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, t)]

∂p
∂u

(x′, x, u− t)dF(z)dx′dt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫
R

∂

∂u
E[Φ(x′ + z, Rρ

u−t, t)]p(x′, x, u− t)dF(z)dx′dt,

(3.50)

where we have used the fact that Q(x, ρ, u) and p(x′, x, u) satisfy (3.43) and
(3.44), respectively. Using (3.49), we obtain:

L1Φ(x, ρ, u) =
∂Φ
∂u

(x, ρ, u)− λ
( ∫

R
Φ(x + z, ρ, u)dF(z)−Φ(x, ρ, u)

)
,

which, upon rearranging, can be written as:

∂Φ
∂u

(x, ρ, u) = kρ(θρ − x)
∂Φ
∂x

(x, ρ, u) +
1
2

σ2
ρ

∂2Φ
∂x2 (x, ρ, u)

+ ∑
j ̸=ρ

qρj

(
Φ(x, j, u)−Φ(x, ρ, u)

)
+

∫
R

(
Φ(x + z, ρ, u)−Φ(x, ρ, u)

)
ν(dz).

(3.51)

(ii) The proof follows as above. Under model (3.5), for p(·, x, u) we now have:

∂p
∂t

(·, x, u) = k(θ − x)
∂p
∂x

(·, x, u) +
1
2

y
∂2 p
∂x2 (·, x, u). (3.52)

In this case, we also have to account for the transition density of the underlying
volatility process, q(·, y, u), which satisfies:

∂q
∂u

(·, y, u) = κ(µ− y)
∂q
∂y

(·, y, u) +
1
2

ξ2y
∂2q
∂y2 (·, y, u), (3.53)

and recall that for Q(x, y, u) we have:

∂Q
∂u

(x, y, u) = L2Q(x, y, u), (3.54)
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with the generator under the stochastic volatility model L2 given by:

L2 f (x, y, t) :=

k(θ − x)
∂ f
∂x

(x, y, t) + κ(µ− y)
∂ f
∂y

(x, y, t) +
1
2

y
∂2 f
∂x2 (x, y, t) +

1
2

ξ2y
∂2Q
∂y2 (x, y, t)

(3.55)

Differentiating (3.27) with respect to x and u, and comparing L2Φ(x, y, u) with
∂Φ
∂u (x, y, u) we obtain the required PIDE, using the same steps as in (i).

We can now present the main result for the generalized model. Even though
the steps are similar as the cases above, the dependence on both the regime and
volatility processes creates additional terms and it is therefore worth outlining the
proof in detail.

Theorem 3.5.6. Under the generalized asset process model (3.7) the survival probability
Φ(x, ρ, y, u) satisfies the PIDE:

∂Φ
∂u

(x, ρ, y, u)

= kρ(θρ − x)
∂Φ
∂x

(x, ρ, y, u) + κ(µ− y)
∂Φ
∂y

(x, ρ, y, u) +
1
2

σ2
ρ y

∂2Φ
∂x2 (x, ρ, y, u) +

1
2

ξ2y
∂2Φ
∂y2 (x, ρ, y, u)

+ ∑
j ̸=ρ

qρj

(
Φ(x, j, y, u)−Φ(x, ρ, y, u)

)
+

∫
R

(
Φ(x + z, ρ, y, u)−Φ(x, ρ, y, u)

)
ν(dz),

(3.56)

for (x, ρ, y, u) ∈ D ×R×V × [0, T], with initial and boundary conditions:

Φ(x, ρ, y, 0) = 1{x>0}, (x, ρ, y) ∈ D ×R×V ,

Φ(0, ρ, y, u) = 0, (ρ, y, u) ∈ R× V × [0, T],
Φ(x, ρ, y, u)→ 1, as x→ ∞, (ρ, y, u) ∈ R× V × [0, T],

∂Φ
∂y

(x, y, u) = 0, as y→ ∞ (x, ρ, u) ∈ D ×R× [0, T]. (3.57)

Proof. For the transition density p(·, x, u) we have:

∂p
∂t

(·, x, u) = kρ(θ − x)
∂p
∂x

(·, x, u) +
1
2

σ2
ρ y

∂2 p
∂x2 (·, x, u), (3.58)

and for q(·, y, u) and g(ρ, u) := E[Φ(·, Rρ
u, ·, ·)] we know that (3.53) and (3.46) hold,

respectively. In this case, for Q(x, ρ, y, u) we have:

∂Q
∂u

(x, ρ, y, u) = L3Q(x, ρ, y, u), (3.59)
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with the generator under the generalized model, L3, given by:

L3 f (x, ρ, y, u) := kρ(θρ − x)
∂ f
∂x

(x, ρ, y, t) + κ(µ− y)
∂ f
∂y

(x, ρ, y, t)

+
1
2

σ2
ρ y

∂2 f
∂x2 (x, ρ, y, t) +

1
2

ξ2y
∂2 f
∂y2 (x, ρ, y, t) + ∑

j ̸=ρ

qρj

(
f (x, j, y, t)− f (x, ρ, y, t)

)
,

(3.60)

As in the results above it will be useful to work with the definition of Ts, i.e.,
version (3.25) of the integral equation. With the change of variables t = u− s and
applying the Leibniz rule we now get:

∂Φ
∂u

(x, ρ, u) = λ
∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
0, ν, u)]q(ν, y, 0)p(x′, x, 0)dF(z)dx′dν

+
∫ u

0
−λ2e−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, ν, t)]q(ν, y, u− t)p(x′, x, u− t)dF(z)dx′dνdt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

∂

∂u
E[Φ(x′ + z, Rρ

u−t, ν, t)]q(ν, y, u− t)p(x′, x, u− t)dF(z)dx′dνdt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, ν, t)]

∂q
∂u

(ν, y, u− t)p(x′, x, u− t)dF(z)dx′dνdt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Rρ
u−t, ν, t)]q(ν, y, u− t)

∂p
∂u

(x′, x, u− t)dF(z)dx′dνdt

− λe−λuQ(x, ρ, y, u) + e−λu ∂Q
∂u

(x, ρ, y, u). (3.61)

From the first term we have:

λ
∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, ρ, ν, u)]δy(ν)δx(x′)dF(z)dx′dν = λ
∫

R
Φ(x + z, ρ, y, u)dF(z),

whereas, from (3.28), the second term can be written as −λΦ(x, ρ, y, u) +
λe−λuQ(x, ρ, y, u), and hence, we have:

∂Φ
∂u

(x, ρ, y, u) = λ
∫

R
Φ(x + z, ρ, y, u)dF(z)− λΦ(x, ρ, y, u) + e−λu ∂Q

∂u
(x, ρ, y, u)

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Ru−t, ν, t)]
∂q
∂u

(ν, y, u− t)p(x′, x, u− t)dF(z)dx′dνdt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

E[Φ(x′ + z, Ru−t, ν, t)]q(ν, y, u− t)
∂p
∂u

(x′, x, u− t)dF(z)dx′dνdt

+
∫ u

0
λe−λ(u−t)

∫ ∞

0

∫ ∞

0

∫
R

∂

∂u
E[Φ(x′ + z, Ru−t, ν, t)]q(ν, y, u− t)p(x′, x, u− t)dF(z)dx′dνdt.

(3.62)

Taking the derivatives of Φ(x, ρ, y, u) with respect to x and y is straightforward.
Therefore, using (3.62) with (3.58), (3.53) and (3.46), we obtain:

L3Φ(x, ρ, y, u) =
∂Φ
∂u

(x, ρ, y, u)− λ
( ∫

R
Φ(x + z, ρ, y, u)dF(z)−Φ(x, ρ, y, u)

)
,

and the expected PIDE follows.

It is easy to see that the same steps can be used to obtain an equivalent PIDE
for the simple PD function (corresponding to a regime switching model with one
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regime), whose integral equation representation is given by (3.26). The PIDE is
shown below; we omit the proof for brevity, as it follows directly as a special case of
the results above.

Corollary 3.5.7. Under model (1.14) the survival probability Φ(x, u) satisfies the PIDE:

∂Φ
∂u

= k(θ − x)
∂Φ
∂x

+
1
2

σ2 ∂2Φ
∂x2 +

∫
R

(
Φ(x + z, u)−Φ(x, u)

)
ν(dz) = 0, (x, u) ∈ D × [0, T],

(3.63)

with initial and boundary conditions:

Φ(x, 0) = 1{x>0}, x ∈ D,

Φ(0, u) = 0, u ∈ [0, T],
Φ(x, u)→ 1 as x → ∞, u ∈ [0, T]. (3.64)

Remark 3.5.8. It is worth noting that the approach we have developed results in
PIDEs consistent with the ruin probability examined in Mishura and Ragulina, 2016,
where the asset process is given by:

Xt(x) = x +
∫ t

0
r(Xs(x) + c)ds +

Nt

∑
i=1

(−Yi),

with jump distribution f (y) on R+ and jump intensity λ. It is shown that the sur-

vival probability ϕ(x, t) = P
(

infr≤t Xr(x) > 0
)

satisfies the PIDE:

∂ϕ

∂t
− (rx + c)

∂ϕ

∂x
+ λ

(
ϕ(x, t)−

∫ x

0
ϕ(x− y, t)dF(y)

)
= 0.

Noting that ϕ(x, t) = 0 for x < 0, this can be rewritten as:

∂ϕ

∂t
− (rx + c)

∂ϕ

∂x
− λ

( ∫
R

(
ϕ
(
x + (−y), t

)
− ϕ(x, t)

)
dF(y)

)
= 0,

and therefore, from the definition of the Lévy measure ν(·), we obtain:

∂ϕ

∂t
= (rx + c)

∂ϕ

∂x
+

∫
R

(
ϕ
(
x + (−y), t

)
− ϕ(x, t)

)
ν(dy) = 0,

We can see that this PIDE is equivalent to that in (3.63), given that the diffusion
term is zero and therefore the second derivative to x is zero. This confirms that our
results are consistent with existing definitions and models that have been studied in
the literature, with the important difference that we take advantage of the integral
equations and corresponding continuity results, which allow us to consider more
complex models and to obtain appropriate solutions in all cases.

3.5.3 Regularity of the one-dimensional PD function

Finally, we study the case of the one dimensional model to show that the resulting
survival and PD function enjoys the properties required to consider equation (3.63)
in the strict sense. Specifically, this requires that Φ(x, u) is (at least) twice and once
differentiable with respect to the spatial and temporal variables, respectively. These
results are based on the corresponding calculations for the general family of second
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order parabolic PIDEs, as studied in Garroni, Menaldi, et al., 1992. A reminder of
the main results that we will use are given in Appendix B.4.

We first rewrite (3.63) in a concise form for the calculations that follow. Note
that we adopt the notation of the appropriate spaces used in Garroni, Menaldi, et
al., 1992, which is also used in Appendix B.4. It will be useful to set D := (0, ∞).
This will allow us to consider a smooth initial condition, rather than the Heaviside
function as in formulation of the PIDE in Corollary 3.5.7, since Φ(x, u) = 0, for x ≤ 0,
by definition. Then, for a fixed time until maturity T > 0, we write:

LΦ(x, u) = IΦ(x, u) for (x, u) ∈ QT := D × [0, T]
Φ(x, 0) = 1 for x ∈ D
Φ(x, t) = 1x>0 for x ∈ ΣT := ∂D × [0, T],

(3.65)

where we define the operator L by LΦ(x, u) := ∂Φ
∂u − LΦ(x, u) and the integral op-

erator I by IΦ(x, u) :=
∫

R

(
Φ(x + z, u) − Φ(x, u)

)
ν(dz), and ∂D is the standard

notation for the boundary of domain D. Our aim is to show that the above PIDE has
a solution satisfying appropriate regularity conditions. To this end, we first define
some relevant function spaces that will be required for the subsequent regularity
results.

Definition 3.5.9. Consider Ω ⊂ Rn an open set, with closure Ω̄. Furthermore, con-
sider a fixed time horizon T > 0 and define QT = Ω× [0, T], with closure Q̄T. We
then define the following spaces, for 0 < α < 1:

• C0(Ω̄) is the Banach space of bounded continuous functions in Ω̄, with the
natural supremum norm:

∥ · ∥C0(Ω̄) ≡ ∥ · ∥0,Ω̄ = sup
Ω
| · |

• C2,1 (Q̄T) is the Banach space of functions φ(x, t) belonging to C0 (Q̄T) together
their derivatives ∂ f

∂x , ∂2 f
∂x2 , ∂ f

∂t in Q̄T with natural norm.

• Cα, α
2 (Q̄T) is the Banach space of function φ in C0 (Q̄T) which are Hölder con-

tinuous in Q̄T with exponent α in x and α
2 in t i.e. having a finite value for the

seminorm
⟨ f ⟩(α)Q̄T

≡ ⟨ f ⟩(α)x,Q̄T
+ ⟨ f ⟩(

α
2 )

t,Q̄T

where

⟨ f ⟩(α)x,Q̄T
= inf

{
C ≥ 0 :

∣∣ f (x, t)− f
(
x′, t

)∣∣ ≤ C
∣∣x− x′

∣∣α , ∀x, x′, t
}

⟨ f ⟩(
α
2 )

t,Q̄T
= inf

{
C ≥ 0 :

∣∣ f (x, t)− f
(
x, t′

)∣∣ ≤ C
∣∣t− t′

∣∣ α
2 , ∀x, t, t′

}
The quantity

∥ f ∥
Cα, α

2 (Q̄T)
≡ ∥ f ∥α,Q̄T

= ∥ f ∥0,Q̄T
+ ⟨ f ⟩(α)Q̄T

defines a norm.
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• C2+α, 2+α
2 (Q̄T) is the Banach space of functions f (x, t) in C2,1 (Q̄T) having a fi-

nite value for the seminorm:

⟨ f ⟩(2+α)

Q̄T
= ⟨∂t f ⟩(α)Q̄T

+
d

∑
i,j=1

〈
∂ij f

〉(α)
Q̄T

+
d

∑
i=1
⟨∂i f ⟩

1+α
2

t,Q̄T
.

Then, the quantity

∥ f ∥
C2+α, 2+α

2 (Q̄T)
≡ ∥ f ∥2+α,Q̄T

= ∑
2r+s≤2

∥∂r
t∂

s
x f ∥0,Q̄T

+ ⟨ f ⟩(2+α)

Q̄T

defines a norm.

Proposition 3.5.10. Consider a fixed time horizon T > 0 and the space QT := D ×
[0, T], with closure Q̄T. Then, PDE (3.65) has a solution Φ(x, u), such that Φ(x, u) ∈
C2+α, 2+α

2 (Q̄T).

Proof. The proof relies on an appropriate fixed point argument. To this end, we
first define the mapping T v = Φ, such that v is a solution of LΦ(x, u) = Iv. Note
that from Theorem B.9, there exists a unique Φ ∈ C2+α, 2+α

2 (Q̄T) solving the local
counterpart of (3.65), where the right hand side of the PDE is zero.

Consider now a function v ∈ C2+α, 2+α
2 (Q̄T). It follows that Iv ∈ Cα, α

2 (Q̄T) and
we also have that:

∥Iv∥
Cα, α

2 (Q̄T)
≤ ε∥∇v∥

Cα, α
2 (Q̄T)

+ C(ε)∥v∥
Cα, α

2 (Q̄T)
,

from Theorem B.4.2. Furthermore, by definition of the mapping T we have that
if v ∈ C2+α, 2+α

2 (Q̄T) then Φ = T v ∈ C2+α, 2+α
2 (Q̄T). Hence, T is a map from

C2+α, 2+α
2 (Q̄T) onto itself and is also single-valued, by the uniqueness of the solution

of the PDE.
We will now show that T is also a contraction in order to then apply Banach’s

fixed point argument. To this end, consider v, v′ ∈ C2+α, 2+α
2 (Q̄T), with the corre-

sponding mappings Tv, Tv′ ∈ C2+α, 2+α
2 (Q̄T). By the definition of the mapping T

have that: {
LΦ(x, u) = Iv for (x, u) ∈ QT := D × [0, T]
LΦ′(x, u) = Iv′ for (x, u) ∈ QT := D × [0, T],

(3.66)

and therefore LΦ̂(x, u) = Iv̂, with Φ̂ := Φ−Φ′ and v̂ is defined analogously. Hence:

∥Φ̂∥
Cα, α

2 (Q̄T)
=∥T v− T v′∥

Cα, α
2 (Q̄T)

≤ C∥Iv̂∥
Cα, α

2 (Q̄T)

≤ε∥∇v̂∥
Cα, α

2 (Q̄T)
+ C(ε)∥v̂∥

Cα, α
2 (Q̄T)

, (3.67)

where the last inequality follows from Theorem B.4.2. To show that T is indeed a
contraction, we first note that all terms in the final expression above are bounded by
∥v̂∥

Cα, α
2 (Q̄T)

. We need ∥Φ̂∥
Cα, α

2 (Q̄T)
≤ k∥v̂∥

Cα, α
2 (Q̄T)

, with k < 1. For this, notice that
the first term in the final expression above can be made arbitrarily small, however
the second depends on the C value, which in turn depends on the time horizon T.
We can therefore make C(ϵ) < 1 if we consider a small enough horizon, i.e., T = δ,
creating a solution Φ(x, u) ∈ C2+α, 2+α

2 (Q̄δ). We can apply this approach to find
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an appropriate solution in Ω × [δ, 2δ], continuing until the entire interval [0, T] is
covered.

Remark 3.5.11. Based on the results given by Garroni, Menaldi, et al., 1992, the re-
sult above can be extended for higher dimensions with x ∈ Rd and an analogous
parabolic operator L. Therefore, Proposition 3.5.10 holds for the stochastic volatility
model, as well. Furthermore, in the case of the regime switching model we ob-
tain a simple coupling of parabolic PIDEs (identical to that for the one dimensional
model), and it is therefore expected that the regularity result holds for the PD func-
tion Φ(x, ·, u).

With this result we have shown that we can go beyond the notion of viscosity
solutions in the case of the PD functions and obtain solutions that satisfy all required
regularity properties. In the next Chapter we will consider numerical solutions to the
PIDEs, some of which we can now interpret as strong solutions, under the conditions
mentioned above.

3.6 Conclusion

In this Chapter we have focused on a generalized approach of estimating PD values,
considering both the cases of variable starting times and maturities. We show that
under certain conditions imposed on the models representing the asset processes,
these two cases can be dealt with equivalently and lead to important novel repre-
sentations of the PD function. Specifically, with the integral equation approach, we
can construct a robust mathematical framework that allows us to develop both the-
oretical and numerical tools for the calculation of the PD values. This methodology
has important advantages over standard Monte Carlo methods, as well as over ex-
isting approaches using PIDEs, as we are able to consider sophisticated models that
incorporate multiple latent variables, without sacrificing mathematical rigor for re-
quired regularity assumptions.

In terms of practicality and applications, the proposed framework covers many
of the difficulties financial institutions face due to the new regulatory requirements
for provision calculations, as well as continuous credit risk monitoring for SICR
events. We hypothesize that such this approach could be useful for practitioners,
given that it constitutes a complete and efficient modelling framework, with which
one can calculate Point-in-Time and Lifetime PD values, each of which are used ex-
tensively in credit risk management. Specifically, this framework is motivated by the
needs created by the IFRS 9 regulations, under which forecasting credit losses accu-
rately and efficiently is of paramount importance. We show how the PD estimations
can be used to calculate Stage 2 provisions, as well as more advanced, scenario-based
provisions, and of extensive further applications in credit risk modelling.

Finally, we note that this approach most likely is best fit for corporate and small
business loans, where the estimation of asset processes has been documented in
well-established work. Of course, it is possible that with new developments in pay-
ment services and Open-Banking solutions (in accordance to the Payment Services
Directive 2), such methods could be applied to individual consumers, given suffi-
cient historical data. An example of recent work done in this direction is Tobback
and Martens, 2019. To conclude, it is important to mention that the LGD parameter
is also of great importance for provision calculations; in this work we considered a
constant LGD, however, in practice, LGD values require separate model develop-
ment, often related to current macroeconomic variables, as shown in Bellotti and
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Crook, 2012. Future research could focus on considering appropriate models for the
evolution of the LGD, in combination with the PD function.
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Chapter 4

Numerical Schemes for the PD
functions and credit risk modelling

4.1 Background

In this Chapter, we will develop numerical schemes to solve the PIDEs obtained in
Chapter 3 and use the resulting PD values in specific examples of the aforemen-
tioned IFRS 9 modelling tasks. We choose to focus on the numerical solutions of
the PIDEs, rather than the corresponding integral equations, as we will be able to
employ standard finite difference schemes to estimate the solutions, as detailed be-
low. For clarity and illustrative purposes, we will first consider the one dimen-
sional OU model given by (1.14) (recall that we have shown that the PD function
Φ(x, u) ∈ C2+α, 2+α

2 (Q̄T) is a strong solution to the corresponding PIDE). From the
resulting finite difference scheme we will then be able to build the solutions for the
regime switching and stochastic volatility models. We will focus on these models for
our numerical solutions, as they cover the applications in credit risk that we consider
in this Chapter, noting the case of the generalized model (3.7) can be developed by
combining the methods that follow. However, due to the additional terms, the corre-
sponding numerical scheme suffers from the well-known "curse of dimensionality"
problem. We further discuss this issue and how we can employ modern numerical
techniques to overcome it in Chapter 5.

Our approach in this section follows the methodology developed in Cont and
Voltchkova, 2005a and d’Halluin, Forsyth, and Vetzal, 2005. We extend the numeri-
cal schemes by considering variable coefficients and further develop the correspond-
ing methods for the regime switching and stochastic volatility models. Due to the
additional variables, we will see that these require careful handling of the derivative
discretizations to ensure the required stability and monotonicity properties hold. As
mentioned, we will start with the one dimensional model, which produces the PIDE
given in (3.63), the finite difference scheme for which is similar to that developed
in Cont and Voltchkova, 2005a. However, this first step will allow us to explicitly
account for the variable drift term and detail its effect on the finite difference scheme
and is therefore worth presenting the analytical calculations.

4.2 One dimensional model

Before implementing the numerical methods, it is important to discuss the spatial
and temporal domains over which the schemes will be solved. We consider a spatial
domain x ∈ D ⊂ R. Therefore, for the construction of the numerical scheme one
can consider the interval x ∈ [0, S] with non-trivial solutions Φ(x, u) ∈ (0, 1) (in
practice, the value of S depends on the parameters of the underlying processes and
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its approximation may require Monte Carlo simulations). However, given that the
PIDEs contain the non-local integral terms, and the OU process is defined on R, we
will define D = [−B, B], for some constant B > S and extend the boundary condi-
tions Φ(x, ·) = 0 for x ∈ [−B, 0) and Φ(x, ·) = 1 for x ∈ (S, B]. This way, we will
be able to calculate the integral term, as detailed below. For the temporal domain,
we simply consider t ∈ [0, 1] (we rewrite u as t as there is not risk of confusion in
what follows). Given the added complexity from the non-local term, we give a de-
tailed explanations of each of the three aforementioned schemes in this section, along
with examples of specific asset value processes and, subsequently, examples of the
modelling tasks pertaining to credit risk under the IFRS 9 framework we previously
discussed.

We write (3.63) as follows:

∂Φ
∂t

= k(θ − x)
∂Φ
∂x

+
1
2

σ2 ∂2Φ
∂x2 +

∫
R

Φ(x + z, t)ν(dz)−Φ(x, t)
∫

R
ν(dz). (4.1)

Note that in the discretized version of this PIDE we will also have to approximate the
integral with respect to the Lévy measure. We employ an implicit scheme leading
to a backward time centered space (BTCS) method, and handle the non-local term
explicitly, as in Cont and Voltchkova, 2005a. Consider space and time grids, with
step sizes ∆x and ∆t, and with N and T total points, respectively. Therefore, we have
that Φq

p represents the survival probability at the grid point t = t0 + q∆t, x = x0 +

p∆x, i.e. Φq
p = Φ(x0 + p∆x, t0 + q∆t). Furthermore, let L, D and U be number of grid

points in the intervals [−B, 0), [0, S] and (S, B], respectively, so that N = L + D + U.
For the integral terms, we first must approximate the jump density by consider-

ing a ball around the x-value of the grid:

f̄i =
1

∆x

∫ xi+
∆x
2

xi− ∆x
2

f (x)dx. (4.2)

Then, noting that ν(dz) = λF(dz), we can approximate the first and second integral
terms in (4.1) using:

IΦq
p :=

J/2

∑
i=−J/2

Φq
p+i f̄i∆z, (4.3)

Î =
J/2

∑
i=−J/2

f̄i∆z, (4.4)

for some J ∈ Z+ large enough to ensure that Î is sufficiently close to 1. In the above,
we have defined the operator I : C → C, where C is the Banach space as defined
in Proposition 3.4.9. We will refer to this as the integral operator. For simplicity, we
will be taking ∆x = ∆z in the calculations and numerical results below.

The resulting implicit scheme for PIDE (4.1) is given by:

Φq+1
p −Φq

p

∆t
= k(θ − xp)

Φq+1
p+1 −Φq+1

p−1

2∆x
+

1
2

σ2
Φq+1

p+1 − 2Φq+1
p + Φq+1

p−1

∆x2 + λIΦq
p − λ ÎΦq

p,

(4.5)

which, upon rearranging, can be written as:

−Φq+1
p−1cp∆t + Φq+1

p
(
1 + ap∆t

)
−Φq+1

p−1bp∆t = (1− λ∆tÎ)Φq
p + λ∆tIΦq

p, (4.6)
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for q = 1, 2, . . . T− 1 and with coefficients ap, bp and cp, for p = 0, 1, . . . , N− 1, given
by:

cp =
σ2

2∆x2 −
k(θ − xp)

2∆x

ap =
σ2

∆x2

bp =
σ2

2∆x2 +
k(θ − xp)

2∆x
(4.7)

Hence, system (4.5) can be written in the matrix form below:

MΦq+1 = ΛΦq + b, for q = 0, 1, . . . , T − 1,

where Φq, b ∈ RN and M ∈ RN×N are given by:

Φq =


Φq

0
Φq

1
...

Φq
N−1

 , b =


0
...
0

bU

 , M =

 IL 0D 0U
0L M 0U
0L 0D IU

 , (4.8)

with bU = (1, · · · , 1)T ∈ RU , In, 0n being the n × n-dimensional identity and zero
matrices, respectively,M ∈ RD×D given by:

M =



1 0 0 0 · · · 0 0 0
−c1∆t 1 + a1∆t −b1∆t 0 · · · 0 0

0 −c2∆t 1 + a2∆t −b2∆t · · · 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 · · · −cN−1∆t 1 + aN−1∆t −bN−1∆t
0 0 0 0 · · · 0 0 1


,

(4.9)

and Λ ∈ RN×N :

Λ =


λ∆t f̄−1 λ∆t f̄0 + F̂ λ∆t f̄1 · · · λ∆t f̄ J/2 0 · · · 0
λ∆t f̄−2 λ∆t f̄−1 λ∆t f̄0 + F̂ · · · λ∆t f̄ J/2−1 λ∆t f̄ J/2 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · λ∆t f̄−J/2+1 λ∆t f̄−J/2 · · · λ∆t f̄ J/2

 ,

(4.10)

where F̂ := 1− λ∆tÎ. At each time step we can then calculate Φq+1 = M−1(ΛΦq +
b), to obtain the solution at time t = q + 1.

For the implementation of the numerical scheme we must analyze the necessary
properties pertaining to its stability and monotonicity, for which we use the same
definitions and approach as in Cont and Voltchkova, 2005a. Specifically, we define
these conditions as follows.

Definition 4.2.1.

(i) Scheme (4.5) is stable if and only if, for a bounded initial condition, there exist
∆x and ∆t such that the solution exists and is bounded, i.e. |Φq

p| ≤ C, for all
p, q and some C > 0.
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(ii) Scheme (4.5) is monotone, i.e. for two initial conditions Φ0 and Φ̃0:

Φ0 > Φ̃0 ⇒ Φq > Φ̃q,

for all q. Note that the comparison of the two vectors is to be understood in the
element-by-element sense. This condition is often referred to as the discrete
comparison principle.

These conditions must hold in order to avoid spurious oscillations in the nu-
merical solutions and nonsensical values. We will show that the numerical scheme
for the PIDE we have obtained is conditionally stable and monotone. As we will see
from the result below, the condition is not restrictive and can easily be satisfied when
selecting the parameters of the scheme, without significant computational cost.

Proposition 4.2.2. Scheme (4.5) is stable and monotone if

∆x ≤ σ2

kθ
and ∆t ≤ 1

λ Î
. (4.11)

Proof. We prove the two results separately, starting with stability. Let Φ0 be a
bounded initial condition, i.e. ||Φ0||∞ < ∞. Following Cont and Voltchkova, 2005a,
we will proceed by induction and contradiction. Let ||Φq||∞ ≤ ||Φ0||∞ and sup-
pose ||Φq+1||∞ > ||Φ0||∞. Therefore, there exists p0 ∈ {1, . . . , N − 1} such that
|Φq+1

p0 | = ||Φq+1||∞ and |Φq+1
p0 | ≥ |Φ

q+1
p |, for all p ∈ {1, . . . , N − 1}. We will prove

that this leads to a contradiction. Observing that ap = bp + cp, we can write:

||Φq+1||∞ = |Φq+1
p0 | =

[
− cp0 ∆t + (1 + ap0 ∆t)− bp0 ∆t

]
|Φq+1

p0 |. (4.12)

To proceed, we will need coefficients ap, bp, cp be non-negative. This is true for ap,
for all p. From the remaining coefficients, we obtain the condition:

σ2

2∆x2 ≥
|k(θ − xp)|

2∆x
,

and hence by requiring: σ2 ≥ k||θ − x||∞∆x, we can ensure that the condition is
satisfied at all points on the x-grid. Given that Φ is identically zero for x < 0, this
can be succinctly written as:

∆x ≤ σ2

kθ
. (4.13)

Continuing from (4.12), and noting that all coefficients are non-negative, we now
have:

||Φq+1||∞ ≤ −cp0 ∆t|Φq+1
p0−1|+ (1 + ap0 ∆t)|Φq+1

p0 | − bp0 ∆t|Φq+1
p0+1|

≤ | − cp0 ∆tΦq+1
p0−1 + (1 + ap0 ∆t)Φq+1

p0 − bp0 ∆tΦq+1
p0+1|, (4.14)

and from (4.6), in combination with the induction hypothesis, it follows that:

||Φq+1||∞ ≤ |(1− λ∆t Î)Φq
p0 + λ∆tIΦq

p0 | ≤ ||Φ0||∞, (4.15)

where the last steps hold if 1− λ∆t Î ≥ 0, leading to the second condition. Then,
since Φq

p0 ≤ ||Φq||∞, and IΦq
p0 ≤ Î||Φq||∞, the above contradicts the assumption

that ||Φq+1||∞ > ||Φ0||∞. Hence, the scheme is stable, provided (4.13) is satisfied.



4.3. Regime switching 73

Monotonicity is proven in a similar way. Specifically, let Φq, Φ̃q be two solutions
corresponding to initial conditions Φ0, Φ̃0, respectively, with Φ0 ≥ Φ̃0 and define
dq := Φq − Φ̃q. We will proceed by induction and contradiction, as above. We have
that d0 ≥ 0 and also assume dq ≥ 0. We suppose that dp+1 < 0, i.e., there exists p0

such that infp dq+1
p = dq+1

p0 < 0. Then:

inf
p

dq+1
p = dq+1

p0 = −cp0 ∆tdq+1
p0 + (1 + ap0 ∆t)dq+1

p0 − bp0 ∆tdq+1
p0

≥ −cp0 ∆tdq+1
p0−1 + (1 + ap0 ∆t)dq+1

p0 − bp0 ∆tdq+1
p0+1 = (1− λ∆t Î)dq

p0 + λ∆tIdq
p0 ≥ 0,

(4.16)

where the last step follows from the induction hypothesis and we have supposed
that condition (4.13) is satisfied. By contradiction, we therefore conclude that dp+1 >
0, as required.

4.3 Regime switching

We now turn to the regime switching model, with regimes r ∈ R and a total of
R regimes. In the BTCS discretized version of (3.40) we let Φq

p,r represent the sur-
vival probability at the grid point tq = t0 + q∆t, xp = x0 + p∆x, when the un-
derlying Markov process is originally in state r ∈ R, i.e., Φq

p,r = Φ(xp, r, tq), with
p = 0, 1, . . . N − 1, q = 0, 1, . . . T, r ∈ R. The discretized PIDE can be written as:

−Φq+1
p−1,rcp,r∆t + Φq+1

p,r
(
1 + ap,r∆t

)
−Φq+1

p−1,rbp,r∆t−∑
j ̸=r

qrjΦ
q+1
p,j ∆t

= (1− λ∆t Î)Φq
p,r + λ∆tIΦq

p,r (4.17)

where IΦq
p,r and Î are as in (4.3) and (4.4), respectively. The coefficients of this

scheme are then given by:

cp,r =
σ2

r
2∆x2 −

kr(θr − xp)

2∆x

ap,r =
σ2

r
∆x2 + ∑

j ̸=r
qρj

bp,r =
σ2

r
2∆x2 +

kr(θr − xp)

2∆x
. (4.18)

In matrix notation, the regime switching PIDE can be written as:

MRSΦq+1 = ΛRSΦq + bRS, (4.19)

where the block-form matrices Φ, MRS, ΛRS ∈ RNR×NR and bRS ∈ RNR are given by:

Φq =


Φq
·,1

Φq
·,2
...

Φq
·,R

 , bRS =


b
b
...
b

 , ΛRS =


Λ 0N · · · 0N
0N Λ · · · 0N
...

...
...

...
0N 0N · · · Λ

 ,
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MRS =


Mr1 −∆tqr1r2 IN · · · −∆tqr1rR IN

−∆tqr22r1 IN Mr2 · · · −∆tqr2rR IN
...

...
...

...
−∆tqrRr1 IN −∆tqrRr2 IN · · · MrR

 , (4.20)

with Φq
·,r = (Φq

0,r, . . . Φq
N−1,r)

T, b, Λ, as in (4.8) and (4.10) and the regime-specific
matrices Mri ∈ RN×N for ri ∈ R, i = 1, . . . , R, are as in (4.8) by replacing ap, bp, cp
with ap,r, bp,r, cp,r. As in the discretization of the PIDE for the one dimensional OU
model, we will have to prove the appropriate stability and monotonicity results for
the regime switching model.

Lemma 4.3.1. Scheme (4.17) is stable and monotone if

∆x ≤ σ2
r

krθr
and ∆t ≤ 1

λ Î
(4.21)

for all r ∈ R.

Proof. Let Φ0 be a bounded initial condition for the survival probability. Note that
this initial condition accounts for all regimes. As above, we will proceed by induc-
tion and contradiction. Let ||Φq||∞ ≤ ||Φ0||∞ and suppose ||Φq+1||∞ > ||Φ0||∞.
In this case, this means that there exists (p0, r0) ∈ {0, 1, . . . , N − 1} × R such that
|Φq+1

p0,r0 | = ||Φq+1||∞, with |Φq+1
p0,r0 | ≥ |Φ

q+1
p,r |, for all (p, r) ∈ {0, 1, . . . , N − 1} × R.

Hence:

||Φq+1||∞ = |Φq+1
p0,r0 | =

[
− cp0,r0 ∆t + (1 + ap0,r0 ∆t)− bp0,r0 ∆t− ∑

j ̸=r0

qr0 j∆t
]
|Φq+1

p0,r0 |

≤ −cp0,r0 |Φ
q+1
p0−1,r0

|∆t + (1 + ap0,r0 ∆t)|Φq+1
p0,r0 | − bp0,r0 |Φ

q+1
p0+1,r0

|∆t− ∑
j ̸=r0

qr0 j|Φ
q+1
p0,j |∆t

≤ | − cp0,r0 Φq+1
p0−1,r0

∆t + (1 + ap0,r0 ∆t)Φq+1
p0,r0 − bp0,r0 Φq+1

p0+1,r0
∆t−∑

j ̸=r
qr0 jΦ

q+1
p0,j ∆t|

≤ |(1− λ∆t Î)Φq
p0,r0 + λ∆tIΦq

p0,r0 | ≤ ||Φ0||∞,

where the last inequality follows from the same calculations as in Proposition 4.2.2.
In the above, we must have ap,r, bp,r, cp,r > 0 for each regime r ∈ R, leading to the
first condition in (4.21).

For monotonicity, again let Φq, Φ̃q be two solutions corresponding to Φ0, Φ̃0, re-
spectively, with Φ0 ≥ Φ̃0. Assume dq := Φq − Φ̃q > 0 and suppose dq+1 ≤ 0. Hence,
there exists p0, r0 such that infp,r dq+1

p,r = dq+1
p0,r0 < 0. Proceeding as in Proposition 4.2.2:

inf
p,r

dq+1
p,r = dq+1

p0,r0 =
[
− cp0,r0 ∆t + (1 + ap0,r0 ∆t)− ∑

j ̸=r0

qr0 j∆t− bp0,r0 ∆t
]
dq+1

p0,r0

≥ −cp0,r0 dq+1
p0−1,r0

∆t + (1 + ap0,r0)d
q+1
p0,r0 ∆t− ∑

j ̸=r0

qr0 jd
q+1
p0,j ∆t− bp0,r0 dq+1

p0+1,r0
∆t

= (1− λ∆tÎ)dq
p0,r0 + λ∆tIdq

p0,r0 ≥ 0.

Stability and monotonicity for scheme (4.17) thus follow by contradiction.
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4.4 Stochastic volatility model

Finally, we present the numerical scheme for model (3.41). For this case, we must
consider a discretization of the volatility process y ∈ V of size V. For the numerical
implementation we use y ∈ [0, Ymax] for some appropriate value Ymax. As above, we
adopt the notation Φq

p,j for the survival probability at the grid point tq = t0 + q∆t,
xp = x0 + p∆x, and yj = y0 + j∆y, i.e. Φq

p,j = Φ(xp, yj, tq), with p = 0, 1, . . . N −
1, q = 0, 1, . . . T and j = 0, 1, . . . , V − 1.

In this case the discretization scheme requires an alternative approach. Specifi-
cally, when the coefficient of the diffusion term becomes 0 or y → 0, the analogous
to the previous stability and monotonicity conditions fails. The solution to this is to
consider an Alternating Direction Implicit (ADI) approximation to the first deriva-
tive terms corresponding to both the asset and CIR volatility processes, as shown
below:

∂Φ
∂x
≈


Φq+1

p+1,j−Φq+1
p,j

∆x , if k(θ − xp) ≥ 0
Φq+1

p,j −Φq+1
p−1,j

∆x , if k(θ − xp) < 0
(4.22)

∂Φ
∂y
≈


Φq+1

p,j+1−Φq+1
p,j

∆y , if κ(µ− yj) ≥ 0
Φq+1

p,j −Φq+1
p,j−1

∆y , if κ(µ− yj) < 0
(4.23)

Furthermore recall that at the boundary y = Ymax we have:

Φq+1
p,V −Φq+1

p,V−2

2∆y
≈ ∂Φ

∂y
(x, Ymax, u) = 0, (4.24)

and therefore Φp,V ≈ Φp,V−2. This allows us to approximate the second derivative
at the boundary by:

Φq+1
p,V − 2Φq+1

p,V−1 + Φq+1
p,V−1

∆y2 =
2
(
Φq+1

p,V−2 − 2Φq+1
p,V−1

)
∆y2 (4.25)

We can now write the implicit scheme for the PIDE corresponding to the stochastic
volatility model:

−Φq+1
p−1,jcp,j∆t + Φq+1

p,j

(
1 + ap,j∆t

)
−Φq+1

p−1,jbp,j∆t−Φq+1
p,j−1ep,j∆t−Φq+1

p,j+1 fp,j∆t

= (1− λ∆tÎ)Φq
p,j + λ∆tIΦq

p,j, (4.26)



76 Chapter 4. Numerical Schemes for the PD functions and credit risk modelling

where the coefficients are given by:

cp,j =
yj

2∆x2 −
k(θ − xp)

∆x
1{k(θ−xp)<0},

ap,j =
yj

∆x2 +
ξ2yj

∆y2 +

∣∣∣∣ k(θ − xp)

∆x

∣∣∣∣+ ∣∣∣∣κ(µ− xp)

∆y

∣∣∣∣,
bp,j =

yj

2∆x2 +
k(θ − xp)

∆x
1{k(θ−xp)>0},

ep,j =
ξ2yj

2∆y21{y ̸=Ymax} +
ξ2yj

∆y2 1{y=Ymax} −
κ(µ− xp)

∆y
1{κ(µ−yj)<0 ∩ y ̸=0 ∩ y ̸=Ymax},

fp,j =
ξ2yj

2∆y21{y ̸=Ymax} +
κ(µ− xp)

∆y
1{κ(µ−yj)>0 ∩ y ̸=Ymax}. (4.27)

The solution of the resulting scheme:

MSVΦq+1 = ΛSVΦq + bSV

will result in estimations of the survival probability at each state of the underlying
stochastic volatility process. Therefore, as in the regime switching model, we obtain
the vectors Φq = [Φq

·,0 Φq
·,1 · · ·Φ

q
·,V−1]

T ∈ RNV×NV , bSV = [b b · · · b]T ∈ RNV and
matrix MSV ∈ RNV×NV as given below, in block form:

MSV =


M0 −∆t fp,0 IN 0N · · · 0N

−∆tep,1 IN M1 −∆t fp,1 IN · · · 0N
...

...
...

...
0N · · · −∆tep,V−2 IN MV−2 −∆t fp,V−2 IN
0N · · · 0N −∆tep,V−1 IN MV−1

 ,

where Mj ∈ RN×N for j = 0, 1, . . . , V − 1 is given by (4.8) by replacing ap, bp, cp with
ap,j, bp,j, cp,j and ΛSV ∈ RNV×NV is in the same form as ΛRS in (4.20). We now prove
the required stability and monotonicity results for the stochastic volatility case.

Lemma 4.4.1. Scheme (4.26) is unconditionally stable and monotone.

Proof. The proof follows almost identically to the regime switching case. Again, let
Φ0 be a bounded initial condition for the survival probability, ||Φq||∞ ≤ ||Φ0||∞
and suppose ||Φq+1||∞ > ||Φ0||∞. Hence, there exists (p0, j0) ∈ {0, 1, . . . , N − 1} ×
{0, 1, . . . , V − 1} such that |Φq+1

p0,j0
| = ||Φq+1||∞, with |Φq+1

p0,j0
| ≥ |Φq+1

p,j |, for all p ∈
{0, 1, . . . , N − 1} × {0, 1, · · · , V − 1}. Hence, noting that no conditions on ∆x, ∆t
need be imposed since all the coefficients are positive by construction, we have:

||Φq+1||∞ = |Φq+1
p0,j0
| =

[
− cp0,j0 ∆t + (1 + ap0,j0 ∆t)− bp0,j0 ∆t− ep0,j0 ∆t− fp0,j0 ∆t

]
|Φq+1

p0,j0
|

≤ −cp0,j0 |Φ
q+1
p0−1,j0

|∆t +
(
1 + ap0,j0 ∆t

)
|Φq+1

p0,j0
| − bp0,j0 |Φ

q+1
p0+1,j0

|∆t

− ep0,j0 |Φ
q+1
p0,j0−1|∆t− fp0,j0 |Φ

q+1
p0,j0+1|∆t ≤ |(1− λ∆t Î)Φq

p0,j0
+ λ∆tIΦq

p0,j0
| ≤ ||Φ0||∞,

To conclude, we prove the scheme is monotone. Consider initial conditions
Φ0, Φ̃0, respectively, with Φ0 ≥ Φ̃0. With dq := Φq − Φ̃q > 0, we also suppose
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dq+1 < 0, i.e., there exists a pair (p0, j0) such that infp,j dq+1
p,j = dq+1

p0,j0
< 0, and calcu-

late:

inf
p,j

dq+1
p,j = dq+1

p0,j0
=

[
− cp0,j0 ∆t + (1 + ap0,j0 ∆t)− bp0,j0 ∆t− ep0,j0 ∆t− fp0,j0 ∆t

]
dq+1

p0,j0

≥ −cp0,j0 dq+1
p0−1,r0

∆t + (1 + ap0,j0 ∆t)dq+1
p0,j0
− bp0,j0 dq+1

p0+1,j0
∆t

− ep0,j0 dq+1
p0,j0−1∆t− fp0,j0 dq+1

p0,j0+1∆t = (1− λ∆t Î)dq
p0,j0

+ λ∆tIdq
p0,j0
≥ 0.

Remark 4.4.2. It is worth noting that the resulting system for the PD function is
dense due to the jump integral term, adding to the computational complexity of
the scheme. Hence, additional methods such as implicit handling of the jump term
and/or Crank-Nicolson schemes can be useful. We omit these methods from the
present work, as they are not the main focus, however we refer the interested reader
to relevant research, such as d’Halluin, Forsyth, and Vetzal, 2005, Jwo, 2020 and Carr
and Mayo, 2007.

Remark 4.4.3. As previously mentioned, for the credit risk modelling tasks we will
consider, using either the regime switching or the stochastic volatility model suf-
fices. We will see multiple such examples in the following sections 4.5 and 4.5.2.
Similar calculations as those considered above can be applied to PIDE (3.56), for the
estimation of the survival probability under the generalized model. Stability and
monotonicity follow from combining Lemmata 4.3.1 and 4.4.1. However, a men-
tioned, the combination of the regime switching and stochastic volatility variables
lead to an intractable numerical scheme, plagued with the "curse of dimensionality".

4.5 Applications in credit risk

4.5.1 IFRS 9 provision calculations

As discussed, the IFRS 9 framework requires practitioners to take into considera-
tion multiple risk factors and their evolution for provision calculations and other
modelling tasks. Naturally, the evolution of the PD is of paramount importance in
these credit risk problems. Specifically for provisioning, using the PD function we
can now estimate provisions for Stage 1 and Stage 2 exposures. Recall that financial
institutions must account for additional provisions for exposures which display a
significant increase in credit risk. These forward-looking lifetime provisions must
be calculated per exposure, with some minor differences depending on the type of
portfolio (e.g., for corporate loan portfolios many consider contamination effects). In
this section, we display how the framework outlined above can be used to calculate
the provisions under IFRS 9. The main contribution is the calculation of Expected
Lifetime provisions for Stage 2 exposures which, as previously stated, is a novel
requirement introduced by the these regulatory standards. We provide specific ex-
amples of provision calculations for each case below.

These calculations depend on multiple risk parameters corresponding to the
credit exposure; the PD and Loss Given Default (LGD), as well as the amortiza-
tion schedule, which affects the Exposure at Default (EAD), i.e., the remaining value
of the loan which is not repaid in the case of default. Naturally, these risk parame-
ters may vary according to each application and case. For example, many consider
the LGD to evolve according to some stochastic process with a correlation to the
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PD (see e.g., Miu and Ozdemir, 2006, Witzany, 2011). As our main focus is the PD
function, we will consider a constant LGD and typical amortization schedule under
the assumption of a zero interest rate in the examples that follow. The methodol-
ogy, however, can be generalized to also consider a an appropriate LGD function (or
stochastic process ) and any type of amortization.

4.5.1.1 Stage 1 provisions

For Stage 1 loans standard regulations apply and we need only consider provisions
as the Expected Losses (EL) that can be incurred on the current exposure. This cal-
culation is given by the simple formula:

EL := E[Lt] = EADtLGDtPDt. (4.28)

Using the implicit numerical schemes we can calculate the PD value representing the
probability the loan defaults within some fixed time t, represented straightforwardly
by

PDt = Ψ(x, t).

For example, the probability of a default event occurring within the current unit of
time (typically year) is PD1 = Ψ(x, 1). An example of the provision calculation for
varying initial positions is given below.

Example 4.5.1. Consider a Stage 1 loan, with asset process given by:

dGt = k(θ − Gt)dt + σdBt +
∫

R
zN(dt, dz), G0 = x, (4.29)

where (k, θ, σ) = (0.5, 3.5, 2.0), the Compound Poisson Process has normally dis-
tributed jumps, with size Z ∼ N(0.0, 0.2) and rate λ = 1.0. We select D = [−10, 10],
with S = 8.0, as estimated by Monte Carlo experiments, N = 1001 and T = 101. The
resulting survival probability is graphed in Fig. 4.1. Then, depending on the initial
position of the asset at the time of loan origination, the provisions are calculated as
EL = 100 · PD · 75%. In Table 4.1 we present the results for some initial positions
x ∈ [0, 1].

Initial Position PD1(%) LGD(%) Provisions (%)

0.0 100.00 75 75.00
0.1 83.24 75 62.43
0.2 68.22 75 51.17
0.3 55.01 75 41.26
0.4 43.64 75 32.73
0.5 34.06 75 25.55
0.6 26.16 75 19.62
0.7 19.78 75 14.84
0.8 14.73 75 11.05
0.9 10.82 75 8.11
1.0 7.83 75 5.87

TABLE 4.1: Provision calculations for Stage 1 loan, given initial posi-
tion of the asset process.

Hence, if, at the time of calculation, the asset process is estimated to start at x = 0.6,
the provisions are 19.62% of the current exposure. ◁
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FIGURE 4.1: Survival probability for asset process with (k, θ, σ) =
(0.5, 3.5, 2.0), using the BTCS scheme with J = 150.

As expected, the provisions are a decreasing function of the initial position. A
similar table can be produced at any point during the lifetime of the loan, by esti-
mating the corresponding PD values.

4.5.1.2 Stage 2 Provisions

We now turn to loan provision calculations for Stage 2 loans. Under IFRS 9, if and
when loans transition to Stage 2, the lender is obligated to consider all future losses
for provisioning purposes. Hence, at any time t, and assuming discrete amortization
payments, the following formula for the expected losses occuring at some time i > t
applies:

E[Li] = E
[ 1
(1 + ri)i−t LGDiPDPiT

i EADi|Ft

]
. (4.30)

The corresponding formula for the Lifetime Expected Credit Losses (ECL - also re-
ferred to as Expected Lifetime Provisions) at time t is given by:

ECLt = E
[ T

∑
i=t+1

1
(1 + ri)i−t LGDiPDPiT

i EADi|Ft

]
, (4.31)
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where ri is the interest rate at time i and T the maturity. In the above, PDPiT
i repre-

sents the conditional Point-in-Time PD, which is the probability of default occurring
at a given future time period. Specifically, we define:

PDPiT
u = P

(
inf
r≤u

Gx
r ≤ 0, inf

r≤u−1
Gx

r > 0
)

. (4.32)

In order to calculate the PDPiT in terms of the PD function resulting from the solution
of the PIDE, we note that:

P
(

inf
r≤u

Gx
r ≤ 0

)
= P

(
inf

r≤u−1
Gx

r ≤ 0
)
+ P

(
inf
r≤u

Gx
r ≤ 0, inf

r≤u−1
Gx

r > 0
)

,

and hence:

PDPiT
u = Ψ(x, u)−Ψ(x, u− 1) = Φ(x, u− 1)−Φ(x, u).

Therefore, (4.31) can now be written as:

ECLt =
T

∑
i=1

(
Φ(x, i− 1)−Φ(x, i)

)
E
[LGDiEADi

(1 + ri)i−t |Ft

]
. (4.33)

Example 4.5.2. Consider a credit exposure with asset process as in Example 4.5.1.
However, we now suppose the exposure has been transferred to Stage 2, with
remaining maturity T = 10 years. We also consider that the asset process of the
borrower is currently estimated at x = 1.80. To estimate the Stage 2 provisions
we require the PD function and use (4.33) (as mentioned, we consider r = 0 for
simplicity):

Time until
maturity (u) EADu PDu(%) PDPiT

u (%) LGD(%) ELt

10.0 100 21.69 1.59 75 1.19
9.0 90 20.10 1.76 75 1.19
8.0 80 18.34 1.97 75 1.18
7.0 70 16.37 2.20 75 1.16
6.0 60 14.17 2.49 75 1.12
5.0 50 11.68 2.81 75 1.05
4.0 40 8.87 3.10 75 0.93
3.0 30 5.77 3.14 75 0.71
2.0 20 2.63 2.24 75 0.34
1.0 10 0.39 0.39 75 0.03

ECL 8.89

TABLE 4.2: Provision calculations for Stage 2 loan, given an asset pro-
cess with initial position x = 1.80.

The exposure and expected losses are in percentages of the remaining exposure.
As shown, the current Lifetime provisions are given by the sum of the final column:
ECL = 8.89%. ◁

In practice, we expect that when an exposure is classified as Stage 2, the parame-
ters of the underlying asset process may differ, compared to the Stage 1 counterpart.
In the example above, we purposely consider the same asset process so as to high-
light the differences in the final provision estimations.
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4.5.1.3 Provisions under the regime switching model

As discussed, the new regulatory framework aims to ensure that all financial institu-
tions have accounted for future losses and abrupt changes in credit risk parameters,
which can create severe losses and subsequent liquidity and solvency issues, both
for institutions and their customers. As risk classification is widely considered a
Markov process both in theory and by practitioners, considering transiton probabil-
ities for loans can allow us to forececast PD values and estimate worst-case scenario
provisions for loan exposures. We note that, in practice, estimating the parameters
of the asset prices under each regime may be difficult. However, many financial in-
stitutions consider such models and its mathematical framework is well established,
see e.g., Chatterjee, 2015 and Bruche, 2005. Another approach is to use historical
parameters from Stage 1 and Stage 2 loans to estimate the changes that occur when
a loan transitions between Stages. For this example, we will be estimating the provi-
sions under the regime switching model developed above. To this end, we consider
an IFRS 9 compliant transition matrix:

P =


IFRS 9 Rating Stage 1 Stage 2 Stage 3

Stage 1 p11 p12 p12
Stage 2 p12 p22 p13
Stage 3 0 0 1

 .

For a loan originating in Stage 1, we can now forecast credit losses by taking into
account the probability of a SICR (significant increase in credit risk) event. Under the
regime switching model, in the case of a transition to another Stage, we will need to
estimate the PD values for the asset process governed by the new parameters. Using
the straightforward notation Φi or PDi to emphasize the Stage (regime) under which
the specific PD value is estimated, we can then define the "Stage-weighted provisions",
given by:

WPt := p11EADtLGDtPD1 + p12

T

∑
i=t

(
Φ2(x, i− 1)−Φ2(x, i)

)
E
[LGDiEADi

(1 + ri)i−t |Ft

]
+ p13EADtLGDt, (4.34)

where the third term occurs in the case of default (i.e. transition to Stege 3), we have
that PD = 100%. This calculation holds for the case where we consider that the tran-
sition to Stage 2 occurs one period (e.g., year) after. However, we can also consider
the cases where the deterioration occurs at any point k > t. For this calculation we
require the k-step transition matrix of the underlying rating process, which is known
to be Pk, whose elements will be symbolized as below:

Pk =


IFRS 9 Rating Stage 1 Stage 2 Stage 3

Stage 1 pk
11 pk

12 pk
12

Stage 2 pk
12 pk

22 pk
13

Stage 3 0 0 1

 .
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with the understanding that pk
ij represents the k-th step transition probability. We

then have:

E[WPk|Ft] = pk
11EADkLGDkPD1

k + pk
12

T

∑
i=k

(
Φ2(x, i− 1)−Φ2(x, i)

)
E
[LGDiEADi

(1 + ri)i−t |Ft

]
+ pk

13EADtLGDt. (4.35)

At any point, with the dynamics of the underlying Markov process, we can obtain
the corresponding WPt values and calculate the above Expected Stage-weighted provi-
sions. This calculation takes the future evolution of the loan, as well as the regime
into consideration to provide an estimation that incorporates all scenarios. For illus-
trative purposes, we consider the example below.

Example 4.5.3. Consider an asset process governed by the regime-switching model
below:

dGt =


k1(θ1 − Gt)dt + σ1dBt +

∫
R

zN(dt, dz), G0 = x, if Rt =Stage 1,
k2(θ2 − Gt)dt + σ2dBt +

∫
R

zN(dt, dz), G0 = x, if Rt =Stage 2,
k3(θ3 − Gt)dt + σ3dBt +

∫
R

zN(dt, dz), G0 = x, if Rt =Stage 3,

(4.36)

with regime-specific parameters given in Fig. 4.2 and D = [−6.0, 6.0], with S =
4.0 (we can also consider a different limit value S for each regime. However, in
this example the Monte Carlo estimates indicate that the same value suffices). We
consider normally distributed jumps with Z ∼ N(0.0, 0.5), rate λ = 1.0. We have
set N = 1001, T = 1001 for the space and time grids, respectively. Furthermore, the
generator matrix of the underlying Markov process given by:

Q =

 −0.5 0.3 0.2
0.3 −0.6 0.3
0.0 0.0 0.0

 .

The graphs in Fig. 4.2 display the estimated survival probability in each regime
(Stage), resulting from solving scheme (4.19).

We consider an initial position of x = 0.3 and maturity T = 10. The transition
matrix of the underlying Markov process is obtained by calculating P = exp(Q):

P =


IFRS 9 Rating Stage 1 Stage 2 Stage 3

Stage 1 0.63 0.18 0.19
Stage 2 0.18 0.57 0.25
Stage 3 0.00 0.00 1.00

 . (4.37)

We will perform the provisioning scenario analysis by forecasting the Stage-
weighted provisions, given by (4.35) for the next four years. We first calculate the
k−step transition matrices:

P2 =

 0.43 0.21 0.36
0.21 0.36 0.43
0.00 0.00 1.00

 , P3 =

 0.31 0.20 0.50
0.20 0.24 0.56
0.00 0.00 1.00

 , P4 =

 0.23 0.17 0.60
0.17 0.18 0.66
0.00 0.00 1.00

 .

At time t = 0 we consider the forward looking scenarios and can calculate the Stage
1 and Stage 2 provisions. Recall that Stage 1 provisions are given by (4.28). Stage 2
(expected lifetime) provisions are given in column ECLt in Table 4.3 below, which
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FIGURE 4.2: Survival probability for (4.36) with (k1, k2, k3) =
(0.3, 0.2, 0.0), (θ1, θ2, θ3) = (0.8, 0.5, 0.0), (σ1, σ2, σ3) = (0.3, 0.5, 0.0),
with R0 = Stage 1 (top left), R0 = Stage 2 (top right). The average
survival probability across all regimes is also shown (bottom), which
also account for the survival probability when R0 = Stage 3, for which

we have Φ(x, u) ≡ 0.

also contains the Point-in-Time Stage 1 and Stage 2 PD required to calculate the
provisions.

Time until
maturity (u) EADu Ψ1(x, u)(%) Ψ2(x, u)(%)

Stage 1
PDPiT

u (%)
Stage 2

PDPiT
u (%)

LGD(%) ELu

10.0 100 4.76 10.55 0.52 1.53 75% 1.147
9.0 90 4.24 9.02 0.50 1.50 75% 1.012
8.0 80 3.74 7.52 0.48 1.44 75% 0.864
7.0 70 3.26 6.08 0.48 1.33 75% 0.698
6.0 60 2.78 4.75 0.47 1.17 75% 0.527
5.0 50 2.31 3.58 0.47 0.99 75% 0.371
4.0 40 1.84 2.59 0.46 0.80 75% 0.240
3.0 30 1.38 1.79 0.46 0.65 75% 0.146
2.0 20 0.92 1.14 0.47 0.58 75% 0.087
1.0 10 0.45 0.56 0.45 0.56 75% 0.042

TABLE 4.3: Stage 1 and 2 PDs and expected losses.
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As shown in Example 4.5.2, the Lifetime Provisions can be calculated by the sum
of the expected losses column, ELu,. We can now calculate the Stage 1 and Stage 2
provisions at each subsequent time period, which we will use to calculate the Stage-
weighted provisions for the next four years, calculated by (4.35). The results are
shown in Table 4.4, where the final column below contains the Stage-weighted pro-
visions.

Time until
maturity (u) EADu Stage 1 Provisions ECL Stage 3 Provisions WPu

10.0 100 0.390 5.13 75.00 15.42
9.0 90 0.338 3.99 67.50 25.28
8.0 80 0.288 2.98 60.00 30.69
7.0 70 0.247 2.11 52.50 31.92

TABLE 4.4: Stage-weighted provision calculations for the next 4 years.

The large difference observed even between the Lifetime and Stage-weighted pro-
visions is evidence of the importance of such scenario analysis in provision calcu-
lations. Particularly in cases similar to that examined in this example, where the
probability of transitioning to a default state is quite high the results can have an ex-
tremely large effect, which risk managers must account for in risk and provisioning
policies. ◁

4.5.2 Further Applications in credit risk modelling

4.5.2.1 Pricing of Credit Default Swaps

Another financial field in which the PD function plays a paramount role is credit
derivatives pricing. In particular, we consider the fair price of Credit Default Swap
(CDS). A default swap is a contract that protects the holder of an underlying swap
from the losses caused by the default to the obligation’s issuer. Therefore, the evo-
lution of the PD values can be used for the pricing, hedging and managing of such
options. Extensive work has been done on modeling and pricing CDSs, such as in
Cariboni and Schoutens, 2007 and Houweling and Vorst, 2005. Specifically, it can be
shown that the price of the CDS is given by:

CDS = (1− R)
(
−

∫ T

0
e−rsdΦ(x, s)

)
− c

∫ T

0
e−rsΦ(x, s)ds,

and the corresponding par spread:

c∗ =
(1− R)

(
−
∫ T

0 e−rsdΦ(x, s)
)

∫ T
0 e−rsΦ(x, s)ds

,

where R is the specific recovery rate and r is the risk-free rate. The above expression
can be discetized as follows:

c∗ =
(1− R)∑n

i=1 e−rti(Φ(x, ti−1)−Φ(x, ti))
1
2 ∑n

i=1 e−rti(Φ(x, ti−1) + Φ(x, ti))∆ti
, (4.38)

where the Trapezoidal rule has been used for the discretization of the denominator.
Estimating the price and par rate of CDS therefore requires the term structure of
the underlying risk-free and survival probability processes. We present a simplified
example, whereby the interest rate is again considered to be zero.
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Example 4.5.4. Consider a CDS with maturity T = 10 years and recovery rate R =
0.5, where the asset process evolves according to the following stochastic volatility
model: {

dGt = k(θ − Gt)dt + σ(Yt)dBt +
∫

R
zN(dt, dz), G0 = x

dYt = κ(µ−Yt)dt + ξ
√

YtdWt, Y0 = y.

The parameters of the stochastic model are given in Fig. 4.3, we let D = [−5.0, 75.0]
and consider a spatial and temporal discretization with 200 and 1000 steps re-
spectively. Jumps are again normally distributed, with size Z ∼ N(0.3, 0.5), rate
λ = 1.0 and J = 90. Furthermore, we set a grid with 200 steps for the volatility
V = [0.0, 200.0]. The parameters and resulting graph of the PD function can be seen
in Figure 4.3.

FIGURE 4.3: (Left) Evolution of the PD under the stochastic volatility
model with (k, θ, κ, µ, ξ) = (2.0, 2.0, 0.05, 0.1, 0.07), for various values
of the starting volatility Y0. (Right) The average survival probability

across all volatility values.

We assume an initial position of x = 3.0 and plot the evolution of the average
survival probability in Fig. 4.4. The resulting par spread is calculated using (4.38) to
obtain c∗ = 0.33.

◁
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FIGURE 4.4: Evolution of the average survival probability under the
stochastic volatility model described in Example 4.5.4, with starting

point x = 0.3.

4.5.2.2 Credit Portfolio Optimization

For many financial institutions, one of the most important tasks is securitization of
credit exposures. Ultimately, this can be formulated as an optimization problem. The
PD function affects the risk of each exposure and, by extension, the corresponding
return as well. To this end, we present a simple example to show how such an
optimization problem can be solved under the stochastic volatility PD model.

Example 4.5.5. Suppose a securitization agency creates a portfolio consisting of
loans (or credit derivatives), each with different underlying asset process. The re-
sulting PD functions will differ depending on the loan’s (or derivative’s) character-
istics and asset value processes. Slightly abusing notation, we suppose that, for a
portfolio of three loans, the corresponding PD functions are given by PDi, i = 1, 2, 3,
estimated using the methodology developed above.

The agency aims to select the investment allocated to each of the credit expo-
sures. Specifically, it poses the following portfolio optimization problem: suppose
wi, i = 1, 2, 3 and ri, i = 1, 2, 3 represent the weight of total investment allocated
to each institution’s set of loans and their average return, respectively. Consider,
furthermore, that the required portfolio rate of return is set to be R∗. For the credit
exposure i, at time t, the expected loss is given by ELi

t = EADi
tLGDi

tPDi
t, and

we can then define the total loss function for the agency by L(t) = ∑3
1 wiELi

t. In
order to rebalance the portfolio at each period, the securitization agency is then
interested in solving a portfolio optimization problem (we present a very simple
such problem, which can be solved analytically to illustrate the use of the method).
The optimization we consider is the following:

min
w

E[U(L(t))], subject to

w1r1 + w2r2 + w3r3 = R,
w1 + w2 + w3 = 1,

for an appropriate loss function U. While the following analysis can be extended
to any convex loss function, for the sake of simplicity, we illustrate the calculation
selecting the quadratic loss function U(L) = bL2 − L (in the sense of a negative
utility function). To standardize the optimization problem, we consider that EADi
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is given as a percentage of the original loan value and for simplicity we consider a
constant LGDi

t = 1 for i = 1, 2, 3 and all t. At any point in time t, the expected loss
utility is then:

3

∑
i=1

U(wiEADi)PDPiT
i ,

where PDPiT
i is the current Point-in-Time default probability corresponding to expo-

sure i. The agency must optimize the portfolio by solving:

minimize f (w1, w2, w3) :=
3

∑
i=1

b(wiEADi)
2 − wiEADi, subject to

w1r1 + w2r2 + w3r3 = R,
w1 + w2 + w3 = 1,

This simple quadratic optimization problem can now be solved either analytically
or numerically. As in Example 2.5.6, we can calculate:

w∗3 =
PDPiT

1 (2bEAD2
1δϵ− ϵ) + PDPiT

2 (γ− 2baEAD2
2βγ)− PDPiT

3

2(bPDPiT
1 EAD2

1ϵ2 + bPDPiT
2 EAD2

2γ2 + bPDPiT
3 EAD2

3)
,

where β = R−r1
r2−r1

, γ = r3−r1
r2−r1

, δ = r2−R
r2−r1

and ϵ = r3−r2
r2−r1

. A straightforward substitution
using the two conditions will result in the corresponding values w∗1 and w∗2 . We
consider the above setting with average returns from each institution’s instruments
r = (r1, r2, r3)T and current exposures EAD = (EAD1, EAD2, EAD3)T given by:

r = (0.1 0.3 0.1)T, EAD = (0.9 0.8 0.7)T.

In order to obtain the vector containing the PD values, we consider the three asset
classes described by the processes below:

dG1
t = k1(θ1 − G1

t )dt + σ1dBt +
∫

R
zN(dt, dz), x0 = 1.00

dG2
t = k2(θ2 − G2

t )dt + σ2dBt +
∫

R
zN(dt, dz), x0 = 0.20

dG3
t = k3(θ3 − G3

t )dt + σ3dBt +
∫

R
zN(dt, dz), x0 = 0.50,

with (k1, k2, k3) = (0.5, 0.8, 0.5), (θ1, θ2, θ3) = (3.5, 3.0, 2.5), (σ1, σ2, σ3) =
(2.0, 1.5, 2.5), J = 150, λ = 1.0 and jump distributions Z ∼ N(0.0, 0.2) for all three.
Solving PIDE (3.63), we obtain the PDPiT values:

PDPiT = (0.0783 0.1447 0.0447)T,

and fixing the expected total return to be R = 25.00%, the resulting optimal weights
w∗ = (w∗1 w∗2 w∗3)

T are:
w∗ = (0.163 0.750 0.087)T.

◁

For extensive work on portfolio optimization problems with defaultable assets,
we refer the interested reader to e.g., Asanga et al., 2014. Furthermore, empirical
studies of the applicability of standard ruin probabilities in practice can be found in
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Braun, Schmeiser, and Schreiber, 2015. In the example above, we focus on a case
where an agency must assess and optimize a portfolio of loan exposures with vary-
ing characteristics. Such cases could be loans originating in different sectors; e.g.,
in Pasricha et al., 2020a, the authors consider a portfolio of risky bonds originating
from the Industry and Service sector.

4.6 Conclusion

In this Chapter we developed and studied Finite Difference techniques for solving
the PIDEs and obtain the corresponding PD functions. As shown, the FD approach
can be used efficiently to estimate the PD values, but careful handling is needed to
ensure that the required properties (stability and monotonicity) are satisfied. Fur-
thermore, we have seen that by using the ADI scheme more complex PIDEs can be
solved (e.g., (3.41), under the stochastic volatility model), which opens the door to a
large family of asset value models that can be used in various applications. As men-
tioned, the FD schemes also have important advantages over Monte Carlo methods,
as we obtain the PD as a function of both the initial position and time until maturity,
as well as of any latent (regime or volatility) variables. On the other hand, the cor-
responding Monte Carlo estimate requires simulating sufficient paths of the asset
value process, for a given combination of the variables. This is obviously a com-
putationally expensive process, and is one of the reasons why FD methods are in
preferred in recent literature.

We posit that the schemes developed in this Chapter can be useful to practition-
ers, since, as we have shown, the provisioning problems that arise due to IFRS 9
can be efficiently tackled using the resulting PD evolution. Additionally, taking ad-
vantage of the efficiency of these numerical methods, we have seen that additional
calculations can be performed related to IFRS 9, such as Stage-weighted provision-
ing, as well as other problems in credit risk modelling. Overall, the FD schemes
presented in this Chapter are tools that can provide a robust framework for PD esti-
mation and be implemented in provisioning and credit risk policies.

Finally, despite the aforementioned advantages, we have also seen that the FD
schemes have important limitations. Specifically, the approach suffers from the
"curse of dimensionality", making it intractable in cases of higher dimensional as-
set value models. This may pose a significant issue, since the handling of models
of increased complexity has become necessary in the context of modern credit risk
modelling under IFRS 9. In addition, the goal of the numerical methods is to, ide-
ally, estimate the PD for any value of the input variables. However, even though the
FD scheme provides PD values as a function of the inputs, as mentioned, this holds
only at the exact points on the grid, and hence assumptions must be taken in order
to estimate the PD at other points. Both these limitations will be addressed using
the field of Machine Learning models, which have gained significant popularity in
recent years. In the next Chapter, we will develop Neural Network models to esti-
mate the PD functions, and see how these compare to the FD schemes, both from a
theoretical and practical point of view.
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Chapter 5

A practical Deep learning
framework for Probability of
Default modelling

5.1 Background

In recent years many important advancements have been made in the application
of Machine Learning (ML) techniques to Ordinary and Partial Differential Equa-
tions (ODE & PDE). In particular, seminal work has considered Artificial Neural
Networks (ANN) with multiple hidden layers to solve such equations with impres-
sive success and accuracy. This has given rise to a new field of Deep Learning for
ODEs and PDEs. Various approaches have been considered but the most widely
adopted currently are the Physics Informed Neural Networks (PINN), developed
in Raissi, Perdikaris, and Karniadakis, 2019 and further studied and applied in Cai
et al., 2021; Pang, Lu, and Karniadakis, 2019 and Cuomo et al., 2022. Furthermore,
in recent work (see Frey and Köck, 2022), new methods have been proposed regard-
ing the architecture and training process, relying on the celebrated Feynman-Kac
formula to construct the loss function.

Given the growing interest in such Deep Learning techniques, we will be consid-
ering these approaches in the context of the default probability estimations for asset
value processes driven by appropriate stochastic processes as defined in Chapter 3.
In particular, we continue to consider the assets of a debtor to follow a jump dif-
fusion process, and define the Probability of Default (PD), for an appropriate time
until maturity and threshold. As we have seen, this problem is of great importance in
modern credit risk modelling under IFRS 9. As the framework set by IFRS 9 requires
financial institutions to forecast future credit losses that could be incurred, and con-
sider scenario analyses based on mathematically-sound models, it is of paramount
importance that practitioners consider various modelling techniques. To this end,
we will use recent developments in the application of Deep Neural Networks to
PDEs and apply such methods to the PIDEs obtained for the PD processes in Chap-
ter 3. This can be done for all the models previously considered, as we will detail in
this Chapter.

In addition to providing an alternative to the FD schemes constructed in Chapter
4, Deep Neural Networks (DNNs) have the important advantage that they do not
suffer from the "curse of dimensionality". This allows us to consider asset models of
higher dimensions, such as the generalized model (recall that the generalized model
combines the regime switching and stochastic volatility models). Therefore, DNNs
and similar models can become useful tools for credit risk modelling, especially in
cases with larger complexity. To showcase the importance of this capability, we will
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use the DNN framework to tackle two modelling problems which are intractable
using the previous FD schemes:

• PD calculation using the generalized asset value process given by (3.7).

• Developing an approach to estimate PD values given a family of stochastic
processes the asset value may follow. This is particularly applicable under
IFRS 9, since it is reasonable to consider that the underlying parameters of the
asset value process change themselves as time evolves. Such changes might be
caused by macroeconomic or industry factors, for example. We will see how
a DNN model can be trained to estimate the evolution of the PD under this
setting and use the model for provisioning scenario analyses.

We rely on the aforementioned recent work for the architecture of the Neural Net-
work models and consider extensions to the regime switching, stochastic volatility
and generalized models, and their applications to credit risk modelling under IFRS
9. Furthermore, we discuss model architecture, training parameters/algorithms and
computational requirements for the practical implementation of Deep learning mod-
els versus the Finite Difference counterparts, as well as interesting findings from
the DNN models that warrant further research. These are important considera-
tions since practitioners must consider a range of factors when deciding which ap-
proaches to implement, from latent variables affecting the portfolio to computational
power and recalibration periods.

5.1.1 Neural Network architecture and training

Neural Networks models, commonly referred to as simply Neural Networks, have
risen to prominence in the Machine Learning and Artificial Intelligence fields in re-
cent years, having been used in a vast amount of fields, spanning both theoretical
and practical problems. Accounts of their vast applications can be found in e.g.,
Fadlalla and Lin, 2001; Papik et al., 1998 and Kumar and Thakur, 2012. In turn,
the study of such models has lead to many different architectures such as Convolu-
tional (CNN), which have been widely used in image recognition and classification
(see e.g., Guo et al., 2017 and Hijazi, Kumar, Rowen, et al., 2015), or Recurrent (RNN)
(Medsker and Jain, 2001), which can handle multiple other forms of data, such as text
(Sutskever, Martens, and Hinton, 2011). In general, the structure of any NN model
relies on the Multi-Layer Perceptron (MLP) architecture, described in the following
definition.

Definition 5.1.1. Consider a multi-dimensional input vector x ∈ Rn, with dependent
variable y ∈ R. Then, a MLP feed-forward Neural Network, commonly referred to
as a Deep Neural Network (DNN), with L hidden layers and activation function
g : Rn → Rn consists of iterations of the following equations:

x(0) = x

x(i) = g
(

W(i−1)x(i−1) + b(i−1)
)

, for all 1 ≤ i ≤ L

y = W(L)x(L) + b(L),

(5.1)

where the i-th hidden layer x(i) is a vector of length ni for 1 ≤ i ≤ L, ni is the size of
the i-th hidden layer and the activation function is applied to each coordinate of its
input, i.e.,

g(x) = (g (x1) , g (x2) , . . . , g (xn)) .



5.2. DNN models for solving PDE 91

An illustration of the DNN architecture is given in Fig. 5.1. Of great importance
is the selection of appropriate activation functions. It can be shown that non-linear
activation functions are required in order to train DNNs to solve non-trivial prob-
lems, and, depending on the setting and framework, there exist many such functions
that can be used. Some of the most commonly used sigmoid, hyperbolic tangent,
Rectified Linear Unit (ReLU) and Gaussian. In depth studies on the selection of ac-
tivation function can be found in e.g., Pratiwi et al., 2020 and Hayou, Doucet, and
Rousseau, 2018. Finally, we remark that the other hyperparameters, such as the
number of hidden layers and the nodes per layer have also been shown to affect
model performance. Empirical and statistical studies can be found in e.g., Liao et
al., 2022 and Eggensperger et al., 2013. Despite their obvious importance, selecting
activation functions and model hyperparameters still largely remains an "art", rely-
ing heavily on the experience of the modeler, rather than a science in itself, given
that robust techniques have not yet been established. We will discuss this further in
subsequent sections in the context of credit risk modeling.
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FIGURE 5.1: Fully connected Neural Network with an n-dimensional
input layer, k dense layers.

The architecture and mathematical foundation of Neural Networks as machine
learning models has been established since the first half of the 20th century. How-
ever, the lack of an efficient training algorithm, i.e., mathematical framework for
the estimation of the trainable parameters W(i) and b(i), for these complex models
meant that they could not be used for the wide range of problems for which they are
theoretically applicable. The backpropagation algorithm (Hecht-Nielsen, 1992) was
developed and able to efficiently solve the problem of training such a model. Sim-
ply put, backpropagation is used to train the model by calculating the errors in its
predictions and updating the parameters in order to minimize the error. This result,
coupled with the exponential increase in computational power in recent years have
lead to significant breakthroughs in DNNs, their applications and research.

Backpropagation itself utilizes a gradient descent algorithm, which depends on
the learning rate parameter, which affects the amount by which the parameters
are altered during the training process. For most applications, decaying, step-wise
learning rates are used, which is the approach we adopt in the following sections.

5.2 DNN models for solving PDE

In this section we consider two methods that can be used to train DNNs to calculate
solutions of PDEs. In Blechschmidt and Ernst, 2021 a seminal overview of these
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approaches is given and applied to various PDEs. Following the notation in this
paper, we briefly introduce these methods below.

5.2.1 Physics Informed Neural Networks (PINNs)

Physics Informed Neural Networks, as its name suggests, takes into consideration
the "physics" of the problem, meaning the fundamental properties of the process,
as dictated by the analytic PDE (or PIDE) the process satisfies. This approach was
introduced in Raissi, Perdikaris, and Karniadakis, 2019, and has since been used in a
wide variety of applications. For example, in Mao, Jagtap, and Karniadakis, 2020 the
authors consider using PINNs to model aerodynamic flows, and in Sahli Costabal
et al., 2020 the authors employ PINN to assist in the diagnosis of atrial fibrillation.

To briefly describe the mathematical framework, consider a PDE of the form:

∂tu(x, t) + Lu(x, t) = 0, (x, t) ∈ D × (0, T],
u(x, 0) = u0(x), x ∈ D,

(5.2)

where L is a (possibly nonlinear) differential operator. We consider bounded D ⊂
Rd and initial values given by u0 : D → R. Boundary conditions can take on various
forms with a standard choice being the Dirichlet case:

u(x, t) = ub(x, t), (x, t) ∈ D × (0, T]. (5.3)

The goal is to train a DNN with a two-dimensional input (x, t) to "learn" the solution
u(t, x). To do this, we consider a loss function that relies on the fact that the dynamics
of the function are governed by (5.2), thereby considering the "physics" of u(x, t). To
this end, we define the residual function corresponding to the PDE (or PIDE):

rθ(x, t) = ∂tu(x, t) + Lu(x, t), (5.4)

where θ represents the set of trainable parameters in the Neural Network model.
Then, using the notation from Blechschmidt and Ernst, 2021, we will consider the
collocation points in the interior of the domain Xr := {(xr

i , tr
i )}

Nr
i=1 ∈ D × (0, T], on

the boundary Xb := {(xb
i , tb

i )}
Nb
i=1 and for the initial condition X0 := {(x0

i , t0
i )}

N0
i=1,

which will be used for training, and the resulting Neural Network approximation of
the solution is represented by uθ(x, t). The total loss is then given by:

Lθ(X) := Lr
θ(Xr) + L0

θ(X0) + Lb
θ(Xb), (5.5)

with the components encompassing the three important terms dictating the dynam-
ics of the solution, i.e., the interior of the domain, along with the boundary and initial
conditions:

• Lθ(Xr) = 1
Nr

∑Nr
i=1 |rθ(xr

i , ti)|2,

• Lθ(Xb) = 1
Nb

∑Nb
i=1 |uθ(xb

i , tb)− u(xb
i , tb)|2,

• Lθ(X0) = 1
N0

∑N0
i=1 |uθ(t0, x0

i )− u(0, x0
i )|2.

Hence, minimizing the loss function (5.5) is equivalent to calculating uθ(x, t) that
best approximates u(x, t) satisfying (5.2) with the corresponding initial and bound-
ary conditions.
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It is obvious that this approach is extremely useful, as well as convenient; one
only needs to know the form of the PDE in order to train the DNN. It is worth not-
ing, however, that difficulties may arise due to the need to explicitly estimate each
derivative term in the PDE, in order to construct the loss function. Even though
modern Machine Learning packages in Python such as Tensorflow (Abadi, 2016) and
PyTorch (Paszke et al., 2019) provide methods for calculating derivatives, the ap-
proximation of integral terms in the case of PIDEs is more difficult. Hence, for the
PIDEs in the case of the Lévy-driven processes as obtained and studied in Chapter
3, we will consider a method that relies on simulations of the underlying asset value
process, detailed in what follows.

5.2.2 DNNs for PDEs using stochastic simulation

A different approach to training Neural Networks to solve PDEs has been studied
in Beck et al., 2021 and further in the case of PIDEs in Frey and Köck, 2022. As men-
tioned in the overview provided by Blechschmidt and Ernst, 2021, this method is
applicable to the well-known class of PDEs that arise as solutions to the Kolmogorov
backward or forward equations of Itô processes satisfying the SDE:

dGt = µ(Gt, t)dt + σ(Gt, t)dWt, G0 = x. (5.6)

The corresponding backward equation is then given by:

∂u
∂t

+ µ(x, t)
∂u
∂x

+
1
2

σ2(x, t)
∂2u
∂x2 = 0, t ∈ [0, T], x ∈ D, (5.7)

u(x, T) = g(x, T). (5.8)

Recall that to obtain the forward problem we simply use the change of variables
u := T − t to define the time until maturity, as seen in Chapter 3. This approach
requires applying the Feynman-Kac formula in order to establish the relationship
between the solution of the PDE and the underlying SDE, using the terminal condi-
tion. The Feynman-Kac representation can then be used to construct an appropriate
loss function. To this end, consider the random variable Y = g(Gx

T, T). Following
Frey and Köck, 2022, the solution of (5.7), u(x, t) can be written as:

u(x, t) = E
[
g(GT, T)|Ft

]
= E

[
g(GT, T)|Xt = x

]
, (5.9)

where the equality is a result of the Markov property, and therefore we can write:

u(x, t) = E[Y|Ft]. (5.10)

It then follows that, for a fixed time t, u(x, t) is the solution of the minimization
problem:

min
u

E[|Y− u(x)|]. (5.11)

Hence, to train a DNN model we can use the estimator of the expectation above as
the loss function:

Lθ(x) =
1
M

M

∑
i=1

(
Yi − uθ(x, t)

)2, (5.12)



94
Chapter 5. A practical Deep learning framework for Probability of Default

modelling

where uθ(x, t) is the Neural Network approximation of the solution and Yi is the ran-
dom variable representing the payoff function, as described above, corresponding
to the i− th simulated asset process path. Training therefore consists of simulating
M paths of the asset value process and calculating the payoff in order to construct
the loss function and estimate the trainable model parameters. Notice how this con-
struction only takes into account different values of the initial position x we therefore
estimate the solution to the PDE only as a function of x, i.e., u(x; t). We will extend
this in order to produce the PDs as functions of time, as well, in the following sec-
tions.

One can easily observe important differences between the two approaches pre-
sented for training DNN models for the solutions of PDEs. Notably, in this approach
we rely on stochastic simulation of the underlying process to generate training data.
This means that explicit estimations of the derivatives and integral terms that arise in
(5.7) are not required. This approach is also quite practical, as it only requires simu-
lating paths of the underlying stochastic processes. Therefore, the simulation-based
DNN can be easily developed for all the asset value models we have examined (with
appropriate changes in the neural network architecture).

5.3 Simulation-based DNN models for PD processes

In this section we describe the development of the simulation-based Neural Net-
work models for the estimation of the PD values. First, we apply the method to the
one dimensional, regime switching and stochastic volatility models, highlighting
again that this approach requires the imposition of an appropriate terminal condi-
tion at the time of maturity t = T, via the payoff function h. Hence, we will consider
the backward formulation of the PIDEs obtained in Chapter 3, obtaining PDs as
a function of the starting time t (considering fixed maturity T) rather than the re-
maining time until maturity u, was previously considered. For clarity, we recall this
version of the definition of the PD process below.

Definition 5.3.1. Consider the Lévy-driven OU stochastic asset process (Gt)t≥0, de-
pending on variables X1, X2, . . . , XN (which could be discrete or continuous). The
corresponding survival probability function is then:

Φ(x, x1
0, . . . , xN

0 , t) = P
(

inf
t≤r≤T

Gr > 0|Gt = x, X1
t = x1, . . . , XN

t = xN
)

, (5.13)

with corresponding Probability Default process:

Ψ(x, x1
0, . . . , xN

0 , t) = 1−Φ(x, x1
0, . . . , xN

0 , t). (5.14)

Training the Neural Network now consists of simulating paths of the asset pro-
cess Gt, t ∈ [0, T], for various values of the initial position x ∈ D in order to calculate
the payoff function, which is given by Y := g(T, Gx

T) = 1{inft≤r≤T Gx
r≤0}. Hence, we

obtain the set of random variables Y, from many initial positions x ∈ D, which will
be used to train the Neural Network using the loss function given in (5.12).

Notice that, in the training process described above, fixed starting and maturity
times t and T are considered and, hence, the resulting model will be able to esti-
mate the PD only as a function of the initial position; this is similar to the process
that one must apply when performing a Monte Carlo estimation, and is therefore
sub-optimal, as we want to estimate PD values with variable time until maturity,
creating a framework comparable to that of the Finite Difference schemes detailed
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in Chapter 4. We can therefore improve this method by simulating paths for vari-
ous values of the time until maturity u = T − t (by changing either the starting or
maturity time) when creating the training dataset and considering the DNN with a
two-dimensional input layer (initial position and maturity time). In what follows,
we start by considering a fixed maturity time to train a model with only one in-
put, which we will use to gauge the best choice of model hyperparameters, and will
subsequently extend the Neural Networks to account for the additional variables.

5.3.1 One dimensional input layer (initial position)

We begin by considering a fixed t = 0 and T = 1.0, and training a DNN model
as a function of only the initial position. This requires a Neural Network model
with a one-dimensional input and output layer (the initial position and probability
of default, respectively), as shown in Fig. 5.2.
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FIGURE 5.2: Fully connected Neural Network with a one-
dimensional input layer and a one-dimensional output layer.

We do this for the one dimensional, as well as for the regime switching and
stochastic volatility models (considering a fixed value of the initial regime and
volatility value, respectively). Finding the best choice of hidden layers for this
model, will allow us to make an educated estimate for the optimal selection of hid-
den layers when training the extended DNN that estimates the PD as a function of
both initial position and maturity. Recall that in its simplest, one dimensional, form
we consider a jump-diffusion asset value process:

dGt = k(θ − x)dGt + σdWt +
∫

R
zN(dt, dz), G0 = x,

with the corresponding regime switching and stochastic volatility models given by
(3.3) and (3.5), respectively. We consider these models with parameters as given in
Examples 4.5.1, 4.5.3 and 4.5.4, respectively. We train the DNN models with 20,000
initial position values and corresponding payoff values. Fig. 5.3 shows the PD func-
tions resulting from DNN models trained with hidden layers ranging from 1 to 5.
For all three models, we can easily see that a single hidden layer is insufficient,
yielding solutions that do not adequately follow the desired properties that char-
acterize the PD process, such as monotonicity and boundedness. However, adding
only one more hidden layer vastly improves the results from all models, and when
using L ≥ 3 hidden layers we obtain nearly indistinguishable solutions.
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FIGURE 5.3: Graphs of the PD as a function of the initial position
for (top left) the DNN model with Ψ(x, 0), (top right) the DNN
model with Ψ(x, ρ, 0) and ρ = 2, and (bottom) the DNN model with

Ψ(x, y, 0) and y = 0.2.

5.3.2 Two dimensional input layer (initial position and maturity)

We now extend the DNN models by creating models with both spatial and temporal
inputs, as shown in Fig. 5.4. Using the estimations above, we will consider 5 hid-
den layers and 30,000 training points. Note that each training point now consists of
an initial position, maturity time (equivalently, time until maturity u, since we keep
t = 0; we proceed with this terminology hereinafter) and payoff value, allowing the
networks to "learn" how the maturity time affects the PD values. Fig. 5.5 displays
the resulting survival, as functions of the initial position and time until maturity, es-
timated by the DNN models (we display the survival function to ease comparisons
with the solution obtained using the Finite Difference scheme). Despite the addi-
tional computational power required for the training of DNN model with 2 inputs
(due to the increased number training data and model parameters), their advantages
over the corresponding DNNs with a single input are obvious; with a single model
we obtain the full term structure of the PD function that can be used for the many
applications described in the previous Chapters. The extra computational cost is
inconsequential relative what would be required for training multiple models for
different maturity times.

5.3.3 Extending the input dimension (latent variables)

We have seen that the model can be trained on paths with variable initial position
as well as maturity time, thereby resulting in a Neural Network with two inputs.
However, in the case of the regime switching and stochastic volatility models it is
important to also account for the the latent variables. We can do this by considering
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FIGURE 5.4: Fully connected Neural Network with a two dimen-
sional input layer, k hidden layers and a one dimensional output

layer.

another model input representing the initial regime or volatility, respectively. In-
deed, a Neural Network with such an input is more appropriate for comparisons
with the Finite Difference approach, where we obtain solutions across the regimes
and volatility grid.

The approach is similar to that described above. We generate paths of the (regime
switching or stochastic volatility) model by drawing random initial values of the la-
tent variables, in combination with the initial position and maturity time. Training
is then done in the same fashion, using the appropriate payoff function. This exten-
sion requires only a simple addition to the input layer of the Neural Network, which
now becomes three-dimensional.

It is worth noting that various architectures for the Neural Network may need to
be considered before arriving at an appropriate and satisfactory model. In particular,
when considering 5 hidden layers, each with 10 neurons, as above, the resulting PD
functions do not satisfy standard properties such as monotonicity or stability. It is
possible that such occurrences are a case of overfitting, which Neural Networks are
often prone to, due to the large number of trainable parameters. For the estimation
of the PD functions, we concluded on 3 hidden layers each with 10 neurons for
the regime switching model and 3 hidden layers with 7 neurons for the stochastic
volatility model. For these higher dimensional models, 50,000 path samples were
used for training. Fig. 5.6 displays the resulting PD functions for the given choices
of latent variables (which are now an input for the Neural Network model, rather
that fixed parameters as in the models previously developed). Hence, the resulting
PD functions are now directly comparable to those obtained from the FD scheme,
which we will discuss in the sequel.

5.3.4 DNN model for the Generalized Probability of Default

We are now in the position to utilize the DNN framework to address one of the
modelling problems presented in the beginning of the Chapter: calculating the PD
function under the generalized asset value model. As seen in Chapter 4, one of
the most prolific issues when considering more complex models for PD value esti-
mations is the "curse of dimensionality", as faced when considering the Finite Dif-
ference method for the PIDE arising from the generalized asset process, given by
(3.56). Using the DNN framework we can overcome this issue for such complex
models. Indeed, Neural Networks are considered superior in precisely such cases,
i.e., in the existence of large, high dimensional data. and will take advantage of this
to estimate the PD function under the generalized model Ψ(x, ρ, y, u).
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FIGURE 5.5: (Top left) DNN model for Φ(x, u) (Top right) DNN
model for Ψ(x, ρ, u) with ρ = 2 (Bottom) DNN model for Ψ(x, y, u)

with y = 2.0.

The extension is relatively straightforward, as the only structural change that is
required is adding another dimension to the input layer, with the resulting architec-
ture shown in Fig. 5.7. Naturally, additional complexity arises due to the simulation
process, as both latent variables must now be simulated in order to generate the
required training data. A detailed example with the corresponding parameters is
given below, as this model has not been explicitly dealt with in the previous numer-
ical methods.

Example 5.3.2. Consider the generalized model (3.7), with parameters of the asset
value process (now depending on the underlying regime) given by:

(kρ, θρ, σρ) =


(0.3, 0.8, 0.3) if ρ = 0,
(0.2, 0.5, 0.5) if ρ = 1,
(0.1, 0.6, 0.4) if ρ = 2,

parameters of the volatility process (κ, µ, ξ) = (0.05, 0.1, 0.07), and jumps are again
normally distributed, with size Z ∼ N(0.3, 0.5) with rate λ = 1.0. We train a Neural
Network with 3 hidden layers and 7 neurons per layer (further discussion on hy-
perparameter selection is given in Section 5.5.1). For the training, 60,000 paths of
the generalized asset process are simulated. The resulting PD function for a selected
pair of initial regime and volatility values is given in Fig. 5.8.

This application displays the utility of using DNNs to estimate the PD functions.
The additional variables do not create undue effort when constructing the model,
as the only additional effort comes from simulating the corresponding asset value
process. On the other hand, a Finite Difference scheme to solve PIDE (3.56) and ob-
tain PD function under the generalized model would be extremely complicated due
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FIGURE 5.6: (Left) DNN model for Φ(x, ρ, u) with ρ = 2. (Right)
DNN model for Ψ(x, y, u) with y = 2.0.
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FIGURE 5.7: Fully connected Neural Network with a four-
dimensional input layer, k hidden layers and a one-dimensional out-

put layer.

to the number of terms, the structure of the scheme required to ensure monotonic-
ity and stability properties hold (i.e., utilizing the ADI scheme as detailed for the
stochastic volatility model), the combination of terminal conditions and, finally, the
dimension of the resulting matrices constructed during the iterations of the numer-
ical scheme. In practice, such a scheme would require significantly more computa-
tional power than the training of the corresponding DNN.

5.4 DNN models for scenario analysis in credit risk

As shown above, DNNs can be largely beneficial when considering problems in
high dimensional spaces. This stems from the remarkable property that such models
enjoy regarding their ability to "learn" complicated functions via the architecture and
activation functions used. From a theoretical standpoint the this ability is described
by the Universal Approximation Theorem (see e.g., Chen and Chen, 1995; Lu et
al., 2021 for details). DNN architectures rely on this mathematical framework, and
fascinating results surrounding this field have been studied in depth in the context
of Hilbert’s famous 13th Problem and celebrated results by Kolmogorov and Arnold
(Brattka, 2007). In this section we will consider how DNNs can be used for more
general credit risk modeling tasks, namely scenario analysis. We will see that this
problem can be tackled by considering a DNN model with a high dimensional input
corresponding to the asset process parameters. We begin by discussing the use and
applicability of scenario analysis in credit risk.



100
Chapter 5. A practical Deep learning framework for Probability of Default

modelling

FIGURE 5.8: DNN model for Ψ(x, ρ, y, u) with ρ = 1 and y = 2.0.

5.4.1 Scenario analysis in credit risk modeling

Understanding the construction of the DNN allows us to also understand its benefits
and how these can be maximized by practitioners. Specifically in the field of credit
risk, we are often interested in various (optimistic, pessimistic) scenarios which can
largely affect individual and portfolio provisions. One way of capturing such cases
is to incorporate a regime switching model, as we have already seen. However, it
is also important to consider the cases in which credit managers want to account
for the effect of non-observable factors that cause changes in the underlying model.
In such cases, it is more appropriate to consider a family of stochastic process to
which the asset value process belongs. This can be done by considering a model for
the asset value process with parameter vector Θ = (θ1, . . . , θn), which follows an
appropriate multidimensional distribution function, Θ ∼ F, i.e., θi ∼ Fi for all i and
Fi is defined on an appropriate support Si ⊂ R. Naturally, significant differences
can then occur in credit risk modeling tasks, such as provisioning. To incorporate
such dynamics into a single model we can use a DNN where the input now consists
of the parameter vector Θ.

Considering such a model in the framework of credit risk has important impli-
cations. Given that the parameters of the model themselves now vary, in order to
reach deterministic results for provisions one would have to be able to accurately
estimate the point-in-time value of the parameters θ1, . . . , θn or, alternatively, aver-
age across the support of their distributions in order to obtain the expected value of
the required results. By introducing some simple notation, these cases can easily be
represented mathematically. To this end, consider, as above, the asset value process
Gt, with G0 = x and a risk function R : D × S → R, such that R(x, Θ) represents the
result of the credit risk modelling task. Hence, if Θ is observable then it is obvious
that the risk function is also calculable. On the other hand, if the parameters of the
asset value process can not be directly observed (as is the case in most real-life appli-
cations) we can use the distribution of the parameter vector to calculate the expected
value of the risk function. This gives:

R(x) := E[R(x, Θ)] =
∫

Rn
R(x, Θ(z))dF(z). (5.15)

For example, the above estimation can be used for all risk modelling problems
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considered in the previous Chapter under the model uncertainty framework. In
particular, provisioning tasks under IFRS 9 now depend directly on the models used
for forecasting future losses and therefore, incorporating the more general family of
stochastic processes is a way to account for infinitely many scenarios which affect the
evolution of individual exposures and, by extension, the credit portfolio. The Deep
Learning framework used to estimate PD processes can be used to address these
problems; as mentioned, this will require appropriate changes in the input layer of
the network (see Fig. 5.9) as well as the subsequent training process.
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FIGURE 5.9: Fully connected Neural Network with a 4-dimensional
input layer and k hidden layers.

5.4.2 DNN model for PDs under a family of stochastic asset processes

In the setting described above, we consider a DNN with 4 inputs: the initial posi-
tion and the elements of the parameter vector of the asset process (for illustrative
purposes we do not consider the temporal input, but this can be easily added, as
seen above). Hence, in order to create the training data we simulate from the family
of OU processes by randomly generating values of the parameter vector and then
simulating the evolution of the process with the given combination of parameters.
Naturally, adequate training of the DNN may require a significant increase in the
volume of training data, as well as in the time required to train the model; this how-
ever is counteracted by the advantage of obtaining a model capable of producing
the PD process for an entire family of asset value processes, without the need to
re-train the DNN when considering different asset value models. Even though the
application of such a model is straightforward given the general DNN architecture,
for completeness, we give an example below.

Example 5.4.1. Consider the one dimensional asset value model (5.1) where the
stochastic coefficients Θ = (k, θ, σ) are each randomly sampled from the same distri-
bution Uni f (0.0, 5.0), the Lévy jumps are normally distributed with N(0.0, 0.5) and
the jump rate is λ = 1.0. For simplicity, we also consider a fixed maturity, T = 1.0.
To illustrate the usefulness of this approach, we tested various number of simula-
tions and model architectures, from which we found that satisfactory models can
be developed with as low as 30,000 simulations of the the asset value process and a
Neural Network with 3 hidden layers and 7 neurons per layer. The resulting model
has a four-dimensional input layer (x, k, θ, σ), and, by fixing the parameter set we
can obtain the PD as a function of the initial position, as required for the various
IFRS 9 modelling tasks previously addressed. Fig. 5.10 displays the resulting PD
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functions predicted by the DNN for four parameter sets:

(k, θ, σ) =


(0.5, 0.5, 0.5),
(2.0, 2.0, 2.0),
(3.0, 3.0, 3.0),
(4.0, 4.0, 4.0).

FIGURE 5.10: PD functions for various choices of asset value process
parameters.

Naturally, if any of the parameters are observable these can be considered con-
stant and the remaining can be used for the risk function calculation. We believe
that this approach can be useful to practitioners as it also provides the necessary
tools to calculate the probabilities of various scenarios occurring, by simply using
the distribution of the parameter set.

Remark 5.4.2. It is important to remark on the selection of hyperparameters for
training the Neural Networks. For the models developed above, many different
combinations of layers and neurons per layer were tested, with many choices lead-
ing to nonsensical PD functions. Multiple tests showed that, in such cases, choosing
different hyperparameters in combination with increasing the number of sample
paths for training proved to be most effective. For all experiments a softplus acti-
vation function and Glorot uniform kernel initializer are used (changing these did
not improve the resulting models). Furthermore, following Frey and Köck, 2022,
the models were trained over 10,000 epochs with an Adam optimizer and a piece-
wise decaying learning rate of 0.1, 0.01, 0.001 and 0.0001 up until 2000, 4000, 6000
and 10,000 epochs, respectively. Finally, Table 5.1 shows the choices of training path
simulations, layers and neurons per layer for these DNN models.

Asset value model Simulated paths Layers Neurons per layer

One dimensional 30,000 5 10
Regime switching 50,000 3 10

Stochastic volatility 50,000 3 7
Generalized 60,000 3 7

TABLE 5.1: Neural Network architectures for the three asset value
models.
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An interesting observation is that, for the more complex asset value processes,
the best models were those with less trainable parameters than the model for the PD
in the one dimensional case, i.e., less layers and/or neurons per layer. Simultane-
ously, more asset value paths simulations were used for training as the complexity
of the asset value process increases. Therefore, one possible explanation is that the
combination of these two changes assists in avoiding overfitting, which Neural Net-
works are known to be prone to.

5.5 Comparisons with Finite Difference methods

In this section we will quantify and further discuss the main differences between
the PD functions obtained from the Neural Network models and the Finite Differ-
ence methods examined in Chapter 4. We will first focus on comparisons of the PD
values obtained under the three models for which we are able to examine the solu-
tions using both methods. Furthermore, we give details pertaining to the computa-
tional time required for both approaches, which is also directly related to the Neural
Network’s ability to overcome the issues pertaining to the computational cost of
increased dimensionality, thereby shedding light on the considerations that practi-
tioners must take into account when deciding on a methodology for their credit risk
modelling framework.

5.5.1 Errors in the PD functions

To compare the solutions we will follow Frey and Köck, 2022 and consider the rela-
tive error, using the Finite Difference survival probability Φ(x, t) value as a bench-
mark (we will work with the survival probability as in Chapter 4, for consistency).
Hence, for every (x, t) we measure the quantity:

ϵ(x, t) =
|ΦNN(x, t)−ΦFD(x, t)|

ΦFD(x, t)
.

For the vast majority of credit modelling tasks have discussed we are mainly in-
terested in the error within a domain sufficiently far away from the boundary. It
is within this space that possible errors would have the largest effect when using
the PD function in practice and it is therefore of great importance to ensure that the
two methods deliver PD values as close as possible. Fig. 5.11 displays the relative
difference function for the three main models we have considered, from which we
obtain maximum errors of approximately 1.6%, 6.0% and 15.8% for the one dimen-
sional, regime switching and stochastic volatility models respectively, when exam-
ined within selected domains illustrated in the corresponding graphs. The increase
in relative error as we consider more complicated models is expected, given the com-
plexity of the underlying PIDE, which creates the need for significantly more asset
value path simulations upon which the Neural Network will be trained.

However, to fully compare the DNN model to the FD scheme, we must also
consider points near and on the boundaries. To the best of our knowledge the effects
of the initial and boundary conditions have not been carefully examined. In Frey
and Köck, 2022, the DNN model is compared to Monte Carlo methods only on the
interior of the domain, as previously described. Fig. 5.12 displays the absolute error
functions, |ΦNN(x, t)−ΦFD(x, t)|, in the whole domain, from which we can see that
significant differences arise. Specifically, near the boundary and initial positions we
now see that very large errors arise, which dissipate the further we move from x = 0



104
Chapter 5. A practical Deep learning framework for Probability of Default

modelling

FIGURE 5.11: Relative error of the survival probability from the
NN models under the (top left) one-dimensional, (top right) regime

switching and (bottom) stochastic volatility asset value model.

or t = 0. We posit that this could be explained by the fundamental difference in
handling the boundary and initial conditions in the two methods; in the FD schemes
recall that we manually impose the boundary and initial conditions by appropriately
constructing the coefficient matrices, but on the other hand, no such conditions are
directly imposed when training the DNN model. This means that the model must
"learn" these solutions using the paths and corresponding payoff values. Hence, it
is expected that the differences are largest near this set of points, and the effect of
these errors decreases further within the spatial and temporal domain, leading to
the insignificant differences observed in Fig. 5.11. Additional tests were conducted
in attempt to improve these errors. Specifically, we a) increased the number of total
simulated asset value paths used for training, and b) increased the points generated
from the initial and boundary conditions, however no significant improvements in
the errors were observed.

It is worth emphasizing the importance of these large errors for practitioners.
Even though they might not greatly affect the results of many modelling problems
we have considered, their existence is a disadvantage of the Neural Network frame-
work for PD estimation, particularly given the fact that these models are still "black-
boxes", making it difficult to understand the reason the large errors arise. Further-
more, estimating the magnitude of the errors may also be difficult as it requires hav-
ing a benchmark, such as the FD solution, which will often suffer from the "curse of
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FIGURE 5.12: Absolute error of the survival probability from the NN
models under the one-dimensional (top left), regime switching (top

right) and stochastic volatility (bottom) asset value model.

dimensionality", thereby inducing a large risk by the DNN for more complex asset
value models, since the errors cannot be estimated. Despite this risk, as we have now
validated that the solutions in the interior the domains (i.e., sufficiently far from the
boundaries) are nearly identical for a large family of stochastic models, the Neural
Networks models can be powerful tools to efficiently deal with increasingly complex
asset value models and predict the corresponding PD functions.

5.5.2 Applicability of the PD functions and computational requirements

In addition to the numerical, it is important for practitioners to discuss the structural
differences between the two approaches examined. In both methods we have been
able to obtain the PD estimates under the regime switching and stochastic volatil-
ity models as a functions of the spatial, temporal and latent variables (regime or
volatility, respectively), i.e., Ψ(x, ρ, t) and Ψ(x, y, t). However, there exists a signifi-
cant difference in the resulting PD functions: the FD method provides PD estimates
covering values of the variables only at the specific grid points created by the dis-
cretization (xi, tj) for (i, j) ∈ {0, 1, . . . , N} × {0, 1, . . . , M}, whereas the Neural Net-
work leads to a solution for every (x, t) ∈ D× [0, T]. This is an important advantage
of the DNN models since it means that we are able to obtain the entire term struc-
ture of the PD function without requiring interpolation or similar approximation
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techniques, which would be necessary when using the FD scheme. Naturally, this
advantage is accompanied with an increase in computational cost, as we will see
below. Depending on the application, business needs and setting, practitioners may
prefer one of these methods based on this trade-off. For example, if the application
requires estimating the PD at any possible values of the initial position and maturity
it would be preferable to use the DNN model and take advantage of the ability to
predict the PD value for any given (x, t). On the other hand, if we are interested in
estimations with a predetermined initial value and maturity input, such as in e.g.,
derivatives pricing, the FD is useful due to its computational accessibility.

To further illustrate these points, we will compare the time required to estimate
the PD function with the FD and DNN methods. Table 5.2 displays these results for
each of the three asset value models. For the Finite Difference methods, we use the
grids as described in Examples 4.5.1, 4.5.3 and 4.5.4 in Chapter 4. For completeness,
we recall that for the one dimensional model a grid of total size N× T = 1001× 101
is used, whereas for the regime switching and stochastic volatility models we have
grid sizes of N×T×R = 1001× 1001× 3 and N×T×V = 201× 1001× 201, respec-
tively. On the other hand, as outlined in Table 5.1, 30,000 paths were used to train the
DNN under the one-dimensional model and 50,000 under the regime switching and
stochastic volatility models. All experiments were conducted in Python 3.8.8, run
on a Windows 10 Pro with Intel(R) Core(TM) i5-1035G1 CPU Processor; the Finite
Difference methods were implemented using Pandas, NumPy, SciPy and the Neural
Network were trained using TensorFlow.

Model FD approximation
time (seconds)

DNN training time
(seconds)

One dimensional 209 66,243
Regime switching 1,141 96,699

Stochastic volatility 154,542 190,734
Generalized Intractable 194,208

TABLE 5.2: Comparison of computational time required for FD and
NN methods.

Note that the DNN training times given in Table 5.2 also account for the time re-
quired to simulate the asset value paths. These results provide a quantification of
various points previously addressed; firstly, we can see that indeed the FD schemes
are easier to implement in terms of computational cost. Particularly, the PD estima-
tions under the one dimensional and regime switching can be obtained very easily.
However, the effects of the "curse of dimensionality" are evident, as the time re-
quired to obtain the PD estimations under the stochastic volatility model drastically
increases. It is easy to see the increase in computational power required to develop
the DNN models, compared to the FD solution, for the one dimensional and regime
switching asset processes is significant. Interestingly, the same does not apply in
the case of the stochastic volatility model, where the computational time for the two
methods are very similar, attesting to the Neural Network’s ability for efficient gen-
eralization. This is further validated when observing that the DNN for the PD under
the generalized model requires approximately 194,208 seconds, a rather insignificant
difference compared to the stochastic volatility case, whereas the corresponding FD
scheme is practically intractable.
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5.6 Conclusion

We have seen in this Chapter that the problem of estimating PDs under various
stochastic asset value models can be efficiently tackled using Machine Learning ap-
proaches and particularly Neural Networks. We can train DNN models to produce
the PD functions not only under all the models analyzed in Chapter 4, but also
under more sophisticated dynamics, such as the generalized model (3.7). Further-
more, we can harness the DNN’s capabilities for generalization and handling high-
dimensional data to train models where the parameters of the stochastic processes
are handled as inputs, thereby creating a framework that can estimate PD functions
under a family of asset value model, as described in section 5.10.

The DNN framework for PD estimation can therefore be extremely useful for
practitioners for a wide range of tasks, including provisioning and scenario analysis,
which become more demanding under IFRS 9. Their applicability lies not only in the
aforementioned capabilities for generalization, but also in the advantages compared
to FD difference methods, such as the fact that they can produce PD values for every
(x, t), not only at points on a pre-defined grid. Therefore, it is expected that such
novel approaches will be not only applicable but necessary as the complexity of
credit risk modelling, and the corresponding regulations it must adhere to, increase
in the years to come.

Despite their usefulness, many questions relating the development of DNNs re-
main open. One of the most imminent issues is the selection of model architecture,
since, as seen, the best choices may be counter-intuitive, in the sense that more train-
able parameters do not always result in better models. It is probable that this ob-
servation is closely related to the overfitting problem exhibited by Neural Networks
in various settings (see e.g., Caruana, Lawrence, and Giles, 2000; Bilbao and Bilbao,
2017). Note that new approaches have been suggested to rectify this problem; for
example, in Srivastava et al., 2014, the authors develop the "Dropout" method for
training NNs which is applied to supervised learning problems. Future research
could consider such overfitting-prevention techniques in the context of the unsuper-
vised learning problem of solving PDEs and PIDEs. Furthermore, comparisons of
the DNN models with the standard FD approaches indicate that relying solely on
DNN models for credit risk modelling purposes might still be premature. Results
show that large discrepancies between the two approaches can arise near the bound-
aries of the spatial and temporal domains, which are still difficult to analyze due to
the lack of rigorous explainability techniques for complex ML models with a large
number of trainable parameters. To this end, given the importance of the tasks en-
trusted to these models, future research should focus on bridging the numerical, as
well as conceptual gaps between the novel ML and established FD methods, in order
to safely deploy such models to solve a multitude of credit risk modelling tasks.
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Appendix A

Discrete time Markov Chain
Models

A.1 Lumpability of Rating Agency transition matrices

Below we display the key tables required for the credit agency ratings presented in
Example 2.5.5. These consist of the transition matrices for sovereigns from the three
agencies (Moody’s, Fitch and S&P, respectively) and the table mapping the internal
ratings with the aggregated ratings (for brevity we omit the row ratings, with the
understanding that they are in the same order as those in the columns).
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112 Appendix A. Discrete time Markov Chain Models

The following table displays the mapping between each agency’s ratings and the
consolidated (broad) ratings, as shown in Hill, Brooks, and Faff, 2009:

Moodys Fitch Standard and Poor’s Broad Rating
Aaa AAA AAA 8
Aa1 AA+ AA+ 7
Aa2 AA AA 7
Aa3 AA- AA- 7
A1 A+ A+ 6
A2 A A 6
A3 A- A- 6

Baa1 BBB+ BBB+ 5
Baa2 BBB BBB 5
Baa3 BBB- BBB- 5
Ba1 BB+ BB+ 4
Ba2 BB BB 4
Ba3 BB- B- 4
B1 B+ B+ 3
B2 B B 3
B3 B- B- 3

Caa1 CCC+ CCC+ 2
Caa2 CCC CCC 2
Caa3 CCC- CCC- 2

Ca CC CC 1
C C C 1

WR DDD/DD/D DDD/DD/D Default
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Appendix B

Probability of Default modelling
under stochastic processes

B.1 Kolmogorov equations for regime switching and
stochastic volatility models

Below we recall the Kolmogorov backward equations under the continuous regime
switching, stochastic volatility and generalized models, respectively. These depend
on the generators of the processes, which now include terms to capture the evolution
of the regime and/or volatility processes.

∂ f
∂t

(x, ρ, t) = L1Q(x, ρ, t) :=

kρ(θρ − x)
∂ f
∂x

(x, ρ, t) +
1
2

σ2
ρ

∂2 f
∂x2 (x, ρ, t) + ∑

j ̸=ρ

qρj

(
Q(x, j, t)− f (x, ρ, t)

)
(B.1)

∂ f
∂t

(x, y, t) = L2 f (x, y, t) :=

k(θ−x)
∂ f
∂x

(x, y, t) + κ(µ− y)
∂ f
∂y

(x, y, t) +
1
2

y
∂2 f
∂x2 (x, y, t) +

1
2

ξ2y
∂2Q
∂y2 (x, y, t)

(B.2)
∂ f
∂t

(x, ρ, y, t) = L3 f (x, ρ, y, u) := kρ(θρ − x)
∂ f
∂x

(x, ρ, y, t) + κ(µ− y)
∂ f
∂y

(x, ρ, y, t)

+
1
2

σ2
ρ y

∂2 f
∂x2 (x, ρ, y, t) +

1
2

ξ2y
∂2 f
∂y2 (x, ρ, y, t) + ∑

j ̸=ρ

qρj

(
f (x, j, y, t)− f (x, ρ, y, t)

)
,

(B.3)

where we define separately the generator operators L1,L2 and L3, for notational
convenience. For more details on the generators of regime switching and stochastic
volatility models see e.g., Hainaut, 2011; Zhu, Yin, and Baran, 2015.

B.2 PIDEs for the PD functions in Sobolev spaces

For completeness, we first recall some basic definitions pertaining to the theory of
weak derivatives in Sobolev spaces.

Definition B.2.1. (Weak derivative) Consider an open subset Ω ⊂ Rn and the
space of continuous functions which are k times continuously differentiable, for
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k = 1, 2, . . . , denoted by Ck(Ω) and L1
loc(Ω) the space of locally integrable func-

tions. Furthermore, let α = (α1, . . . , αn) be a multi-index, with order |α| := ∑i αi, and
denote Dau by:

Dαu =
∂|α|u

∂xα1
1 . . . ∂xαn

n
=

∂α1

∂xα1
1

. . .
∂αn

∂xαn
n

u.

Then, for f ∈ L1
loc(Ω) we define u ∈ L1

loc(Ω) to be the αth weak derivative of f ,
Dα f = u, if: ∫

Ω
f Dα φdx = (−1)|α|

∫
Ω

uφdx,

for every smooth test functon with compact support, φ.

With Q := D×V × [0, T], we are interested in functions which are twice weakly
differentiable with respect to the initial condition and once with respect to the time
until maturity. Hence, we can therefore work in the Sobolev space containing all
such functions W2,1(Q) =

{
f ∈ Lp(Q) : Dα f ∈ L1(Q), |α| ⩽ 2

}
.

To work in this space, we also need an appropriate weak version of the Itô for-
mula, pertaining to cases where the underlying function may not enjoy the required
regularity properties; these results are given by Theorems B.2.2 and B.2.3, due to
Krylov, 2008 and Okhrati and Schmock, 2015, respectively. We include the results
below, for completeness:

Theorem B.2.2. Consider the stochastic process

dXt = a(x, t)dt + σ(x, t)dBt

and a regionQ, where Bt is a standard Brownian motion, with function f such that function
f ∈ W2,1(Q). Moreover, let τ be some Markov time such that τ < τQ, where tQ is the
exit time of the process from the region Q. Then, if there exists some constant K such that
|σ(x, t)|+ |a(x, t)| ≤ K, for some fixed time s we have that:

f (Xτ, s + τ)− f (Xt, s + t) =
∫ τ

t

∂ f
∂u

(Xu, s + u)du

+
∫ τ

t

∂ f
∂x

(Xu, s + u)σ(Xu, u)dB(t) +
1
2

∫ τ

t

∂2 f (Xu, s + u)
∂x2 σ2(Xu, u)du,

(B.4)

almost surely.

Theorem B.2.3. Consider the stochastic process with representation

Xt = γt +
∫ t

0

∫
R

zN(dz, du),

where γ ∈ R. Assume f : Q → R is a continuous function on UQ such that f ∈ L1
loc(Q),

i.e., f is locally integrable. Furthermore, assume the existence of locally bounded weak first
order derivatives, as defined in B.2.1. Then:

f (Xt, t) = f (X0, 0) +
∫ t

0

∂ f
∂s

(Xu, u)du + γ
∫ t

0

∂ f
∂x

(Xu, u)du +

+
∫ t

0

∫
R

f (Xu− + z, u)− f (Xu−, u)N(du, dz), (B.5)

where all derivatives are understood in the weak sense.
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In the Sobolev setting, we can now derive a PIDE using the common approach of
appropriate martingale arguments (similar analysis has been given in e.g., Møller,
1995).

Lemma B.2.4. The survival probability with a variable starting time and fixed maturity T,
Φ(x, ρ, y, s; T) satisfies the partial integro-differential equation, almost surely:

∂Φ
∂s

(x, ρ, y, s; T) + L3Φ(x, ρ, y, s; T) +
∫

R

(
Φ(x + z, ρ, y, s; T)−Φ(x, ρ, y, s; T)

)
ν(dz) = 0,

(B.6)

for (x, ρ, y, s) ∈ D ×R×V × [0, T], with initial and boundary conditions:

Φ(x, ρ, y, T; T) = 1{x>0}, (x, ρ, y) ∈ D ×R×V ,

Φ(0, ρ, y, s; T) = 0, (ρ, y, s) ∈ R× V × [0, T],
Φ(x, ρ, y, s; T)→ 1, as x → ∞, (ρ, y, s) ∈ R× V × [0, T],
∂Φ
∂y

(x, ρ, y, s; T) = 0, as y→ ∞ (x, ρ, s) ∈ D ×R× [0, T], (B.7)

with the generator operator L3 as given in (B.3).

Proof. We begin by considering the dynamics of the survival probability. As Φ is
differentiable in W2,1(Q), we will employ Theorems B.2.2 and B.2.3 above. We then
obtain:

Φ(Gw, Rw,Yw, w)−Φ(Gs, ρ, y, s) =
∫ w

s

(∂Φ
∂r

(Gr, Rr, Yr, r) + L3Φ(x, ρ, y, s)
)

dr

+
∫ w

s
σ(Rr)

√
Yr

∂Φ
∂x

(Gr, Rr, Yr, r)dBr +
∫ w

s
ξ
√

Yr
∂Φ
∂x

(Gr, Rr, Yr, r)dWr

+
∫ w

s

∫
R

(
Φ(Gr + z, Rr, Yr, r)−Φ(Gr, Rr, Yr, r)

)
N(dr, dz), (B.8)

where the derivatives are understood in the weak sense in accordance to definition
B.2.1. Also note that we omit the dependence on the t parameter, for brevity. We are
now able to formulate the following result regarding the survival probability. We
write the dynamics above in terms of the compensated Poisson measure Ñ(dt, dz) =
N(dt, dz)− ν(dz)dt. The last term then becomes:∫ w

s

∫
R

(
Φ(Gr + z, Rr, Yr, r)−Φ(Gr, Rr, Yr, r)

)
(Ñ(dr, dz) + ν(dz)dr).

Combining with the dynamics of Φ above and using the fact that the sum of the non-
martingale quantities must be identically zero, we obtain PIDE (B.6), as required.
The boundary conditions follow by definition of the survival probability.

B.3 Existence and continuity of the PD function

Theorem B.3.1. Arzelà-Ascoli. Let (X, d) be a compact metric space and C(X) the space
of continuous functions on X. Then, if a sequence of continuous functions { f }∞

n=1 in C(X)
is bounded and equicontinuous it has a uniformly convergent subsequence.

Theorem B.3.2. Schauder Fixed Point Let (X, ∥ · ∥) be a Banach space and S ⊂ X is
compact, convex, and nonempty. Any continuous operator A : S → S has at least one fixed
point.
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B.4 Regularity of solutions to parabolic PDEs

We will require the following results pertaining to the regularity of solutions of the
second order parabolic PDE (1.15). The following are due to Garroni, Menaldi, et al.,
1992.

Theorem B.4.1. Consider a bounded domain Ω, the operator L := ∂ f
∂t (x, t) − L f (x, t),

where L is the generator operator, and the PDE:
L f = g(x, t) for (x, t) ∈ QT

f (x, 0) = φ(x) for x ∈ Ω
f (x, t) = ψ(x, t) for x ∈ ΣT := ∂Ω× [0, T].

(B.9)

Then, for any g ∈ Cα, α
2 (Q̄T) , φ ∈ C2+α(Ω̄), ψ ∈ C2+α, 2+α

2 (ΣT), with 0 < a < 1, (B.9)
has a unique solution from the class C2+α, 2+α

2 (Q̄T) and satisfies the inequality:

∥ f ∥2+α,Q̄T
≤ C

(
∥g∥α,Q̄T

+ ∥φ∥2+α,Ω̄ + ∥ψ∥2+α,ΣT

)
,

with the constant C independent of f , φ and ψ.

When extending to Lévy models and the corresponding integro-differential
equations, we will need the following result.

Lemma B.4.2. Consider f ∈ Cα+2, 2+α
2 (Q̄T) and the differential operator:

I f (x, t) =
∫

Ω
[ f (x + z, t)− f (x, t)]ν(dz).

Then, for 0 < a < 1, we have that:

∥I f ∥
Cα, α

2 (Q̄T)
≤ ε∥∇ f ∥

Cα, α
2 (Q̄T)

+ C(ε)∥ f ∥
Cα, α

2 (Q̄T)
.

Note that Lemma B.4.2 is a simplified version of the corresponding results in Gar-
roni, Menaldi, et al., 1992, where the authors consider additional integral operators
of higher orders.
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