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Abstract 
 
 Mixture models is a rapidly developing area of statistics with applications to a 

variety of fields. This thesis is devoted to Poisson mixtures which naturally arise as 

alternative models when the simple Poisson model fails to describe the data. For 

example, it is known that the Poisson distribution is characterised by its property of 

having a variance equal to its  mean. This property is not usually satisfied by the data. 

This case is usually referred to as overdispersion. Poisson mixtures can provide 

flexible alternative models that can represent the inhomogeneity of the population. 

The idea is that the persons comprising the entire population do not have the same 

Poisson parameter. Instead, their parameter varies according to a  distribution, termed 

as the mixing distribution. By the law of total probability, Poisson mixtures arise. The 

properties of Poisson mixtures are examined in depth.. Due to their complexity, only a 

few have been examined in the literature. Several members of this family are 

presented in this thesis, emphasising their interrelations.  

 Among these models finite Poisson mixtures  are very popular since they 

admit a simple and natural interpretation, as models describing a population 

consisting of a finite number of subpopulations. Moreover, even if the true mixing 

distribution is continuous, one is restricted to estimate it via  a finite distribution. 

Estimation methods for finite Poisson mixtures are explored. Two distinct cases 

appear in practice. The first assumes that the number of components is fixed and tries 

to estimate the parameters maximising a criterion over the space of all mixing 

distributions with the given number of support points. The second, termed as the 

semiparametric case, treats the number of components as an unknown  parameter 

which has to be estimated from the data. For the first case, the EM algorithm for 

maximum likelihood estimation is an inexpensive and easy method with numerous 

applications. In this thesis the algorithm is critically reviewed. Initial values that can 

help the algorithm to converge quicker are examined via a simulation experiment. An 

improvement of the EM algorithm for mixtures based on a property of  mixtures from 

the exponential family is proposed. For the semiparametric case,  the algorithms 

proposed for obtaining maximum likelihood estimates are examined. These 



  

algorithms do not seem to be adequate for the case of Poisson mixtures since the 

number of support points is usually small, and the algorithms do not work properly.  

 The problem of determining the number of components is also examined.  A 

new method is proposed. The method is based on sequentially  applying the likelihood 

ratio test using bootstrap methods to determine  the distribution of the test statistic. 

The properties of this new method are also examined.  

 Several other methods of estimation are also reviewed. For the moment 

method, the existence of the estimates is explored. The results show that the moment 

estimates do not exist very often. Moreover, the small sample comparison of the 

moment estimators to the maximum likelihood estimators discourage their use. An 

alternative method which uses the zero frequency instead of the third moment is 

developed. This method is useful when the zero proportion is large. 

 A new method, which is efficient and robust at the same time is introduced. 

The method is based on minimising the Hellinger distance.  The obtained estimators 

are examined and shown to be robust relative to the maximum likelihood estimators. 

This robustness property is used for proposing inferential procedures for Poisson 

mixtures. It is proposed to use the Minimum Hellinger Estimators for semiparametric 

estimation. Moreover, diagnostic graphs can be used for detecting if the Poisson 

distribution is appropriate. These graphs are not influenced by a few observations and 

can, thus, detect if a Poisson distribution is appropriate.  In addition, an alternative to 

the likelihood ratio test is proposed. This is termed as the Hellinger Deviance Test and 

is based on the difference of the Hellinger distance between two hypotheses. This test 

statistic is powerful and robust to outlier contamination. An algorithm for the 

estimation of the parameters is provided which facilitates the application of minimum 

Hellinger methodologies 

 



  

ΠΕΡΙΛΗΨΗ 
 
 Η  σημασία  των μοντέλων  μειγμάτων κατανομών στη Στατιστική είναι μεγάλη και 

το πεδίο εφαρμογών τους συνεχώς αυξάνεται. Η διατριβή αυτή ασχολείται με 

μείγματα της κατανομής Poisson τα οποία χρησιμοποιούνται ως  εναλλακτικά 

μοντέλα στις περιπτώσεις που η απλή κατανομή Poisson αποτυγχάνει να περιγράψει 

τα δεδομένα.. Για παράδειγμα, είναι γνωστό ότι η κατανομή Poisson έχει τη 

χαρακτηριστική ιδιότητα ότι η διακύμανση της είναι ίση με την αναμενόμενη τιμή 

της. Αυτό πολλές φορές δεν συμβαίνει στην πράξη. Τα μείγματα της κατανομής 

Poisson αποτελούν ευέλικτα εναλλακτικά μοντέλα που μπορούν να περιγράψουν την 

ανομοιογένεια του πληθυσμού. Η  λογική τους στηρίζεται στο γεγονός ότι εξαιτίας 

της ανομοιογένειας του πληθυσμού, τα άτομα που συνιστούν τον πληθυσμό δεν έχουν 

την ίδια συχνότητα εμφάνισης του υπο εξέταση γεγονότος. Η συχνότητα αυτή 

περιγράφεται από την παράμετρο της κατανομής Poisson, και συνεπώς ο καθένας 

μπορεί να έχει μια διαφορετική τιμή για τη συχνότητα αυτή. Επομένως η συχνότητα 

εμφάνισης του γεγονότος που περιγράφεται από την παράμετρο της κατανομής 

Poisson είναι μια τυχαία μεταβλητή που ακολουθεί κάποια κατανομή, η οποία  

αποκαλείται κατανομή μίξης. Τότε από το θεώρημα ολικής πιθανότητας τα μείγματα 

της κατανομής Poisson προκύπτουν. Οι ιδιότητες τους εξετάζονται σε αυτή τη 

διατριβή. Λόγω της πολυπλοκότητας τους, μόνο λίγες τέτοιες κατανομές έχουν 

ερευνηθεί. Σε αυτή τη διατριβή ένας μεγάλος αριθμός μελών της οικογένειας αυτής 

παρουσιάζεται και δίνεται έμφαση στις μεταξύ τους σχέσεις. 

 Μεταξύ των μειγμάτων της κατανομής Poisson  τα πεπερασμένα μείγματα 

αποτελούν μια ενδιαφέρουσα κατηγορία. Είναι ιδιαίτερα διαδεδομένα κυρίως λόγω 

της απλής φυσικής ερμηνείας τους ως μοντέλα που περιγράφουν έναν πληθυσμό με 

πεπερασμένο αριθμό υποπληθυσμών. Επιπλέον, ακόμα και στις περιπτώσεις στις 

οποίες η κατανομή μίξης είναι συνεχής,  η εκτίμησή της συνίσταται στην εκτίμηση 

μιας κατανομής με πεπερασμένο αριθμό σημείων με μη αρνητική πιθανότητα. Στη 

διατριβή αυτή εξετάζονται μέθοδοι εκτίμησης για πεπερασμένα μείγματα της 

κατανομής Poisson. Στην πράξη εμφανίζονται δυο  διαφορετικές περιπτώσεις. Στην 

πρώτη ο αριθμός των μελών του μείγματος είναι δεδομένος οπότε απαιτείται η 

βελτιστοποίηση ενός κατάλληλου κριτηρίου για όλες τις κατανομές  μίξης με το 

δεδομένο αριθμό σημείων με μη αρνητική πιθανότητα. Στη δεύτερη περίπτωση, ο 



  

αριθμός των μελών του μείγματος είναι άγνωστος και πρέπει επομένως να εκτιμηθεί 

από τα δεδομένα. Η περίπτωση αυτή είναι γνωστή ως ημιπαραμετρική περίπτωση. 

Για την πρώτη περίπτωση, ο αλγόριθμος ΕΜ προσφέρεται για εκτίμηση με τη μέθοδο 

μεγίστης πιθανοφάνειας και έχει χρησιμοποιηθεί ευρέως σε πολλές εφαρμογές. Στη 

διατριβή αυτή γίνεται μια κριτική επισκόπηση των χρήσεων του αλγορίθμου. Το 

πρόβλημα της επιλογής αρχικών τιμών που μπορούν να βελτιώσουν την ταχύτητα του 

αλγορίθμου εξετάζεται επίσης μέσω  προσομοίωσης. Επιπλέον  χρησιμοποιώντας 

ιδιότητες των μειγμάτων κατανομών της εκθετικής οικογένειας κατανομών 

προτείνεται μια νέα μέθοδος που βελτιώνει την ταχύτητα του αλγορίθμου. Στην 

ημιπαραμετρική περίπτωση παρουσιάζονται οι αλγόριθμοι που υπάρχουν στη 

βιβλιογραφία. Οι αλγόριθμοι αυτοί δεν είναι κατάλληλοι για την περίπτωση των 

μειγμάτων Poisson γιατί στα μείγματα αυτά ο αριθμός των μελών του μείγματος είναι 

συνήθως μικρός με αποτέλεσμα να αποτυγχάνουν οι αλγόριθμοι. 

 Το πρόβλημα της εκτίμησης του αριθμού των μελών του μείγματος  

εξετάζεται επίσης. Μια νέα μέθοδος προτείνεται η οποία βασίζεται στην διαδοχική 

χρήση του ελέγχου λόγου πιθανοφανειών με μεθόδους bootstrap. Η χρήση των 

μεθόδων bootstrap είναι απαραίτητη γιατί η κατανομή της ελεγχοσυνάρτησης είναι 

άγνωστη. Οι ιδιότητες της μεθόδου ερευνώνται και προσδιορίζονται συνθήκες που 

διευκολύνουν τη χρήση του ελέγχου.  

 Εναλλακτικές μέθοδοι εκτίμησης ερευνώνται επίσης. Για τη μέθοδο των 

ροπών αποδεικνύεται ότι πολύ συχνά οι εκτιμήτριες δεν υπάρχουν επειδή το σύστημα 

των εξισώσεων δεν έχει λύση. Με βάση τις συγκρίσεις  με τη μέθοδο της μεγίστης 

πιθανοφάνειας για μικρά δείγματα και αποδεικνύεται ότι η μέθοδος των ροπών έχει 

χαμηλότερη απόδοση. Μια εναλλακτική μέθοδος που εξετάζεται  χρησιμοποιεί την 

παρατηρούμενη συχνότητα της τιμής 0 αντί της τρίτης ροπής για τις περιπτώσεις 

όπου η παρατηρούμενη σχετική συχνότητα  της τιμής 0 είναι σχετικά μεγάλη. 

 Μια νέα μέθοδος, η οποία είναι ταυτόχρονα αποτελεσματική και εύρωστη 

μελετήθηκε.  Η μέθοδος βασίζεται στην ελαχιστοποίηση της απόσταση Hellinger. Οι 

εκτιμήτριες που λαμβάνονται εξετάζονται και αποδεικνύεται ότι είναι εύρωστες σε 

σχέση με τις εκτιμήτριες μεγίστης πιθανοφάνειας. Η ιδιότητα αυτή μπορεί να 

χρησιμοποιηθεί για την ανάπτυξη μεθοδολογιών στατιστικής συμπερασματολογίας 

βασισμένων στην απόσταση Hellinger, όπως ημιπαραμετρική εκτίμηση, διαγνωστικά 

γραφήματα τα οποία έχουν σκοπό να διαγνώσουν αν η απλή κατανομή Poisson είναι 



  

κατάλληλη και ελέγχους υποθέσεων εναλλακτικούς των έλεγχοι υποθέσεων 

βασισμένων στο λόγο  πιθανοφανειων. Τέτοιοι έλεγχοι έχουν μεγάλη ισχύ και είναι 

ανθεκτικοί στην παρουσία ακραίων τιμών 
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Chapter 1 
General Introduction 
 

 

1.1 An Introduction to Mixture Models 
 Mixture models are widely used  in statistical modelling since they can model 

situations which a simple model cannot describe. For example, assuming a specific 

distribution F( | )⋅θ  for a data set means that the mean to variance relation is given for 

this distribution. In practical situations this may not be true. A simple example is the 

Poisson distribution. It is well known (see, e.g.  Johnson et al., 1992) that for the 

Poisson distribution the variance is equal to the mean and this property characterises 

the Poisson distribution among all the discrete distributions. Hence assuming a 

Poisson distribution is equivalent to assuming a distribution with the mean equal to its 

variance. With real data sets this may not be true. Often the sample mean is noticeably 

exceeded by the sample variance. This situation is known as overdispersion. 

Evidently, a Poisson distribution will not be a suitable model. The need of a more 

general family of distributions is obvious in these cases. Such a flexible family may 

arise if we consider the parameter (or the parameters) θ  of the original distribution  as 

varying according to a distribution with probability density function say g( )θ .  

 

Definition 1.1  A distribution function F( )⋅ is called a mixture of the distribution 

function F( | )⋅θ  with mixing distribution G( )θ  if it can be written in the form  

F x F x dGx x( ) ( | ) ( )|= ∫ θ θθ θ
Θ
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where Θ  is the space in which è takes values. The above definition can be also 

expressed in terms of probability density functions (or the probability functions in the 

discrete case), thus 

f x f x g dx x( ) ( ) ( )|= ∫ θ θ θ θ
Θ

     (1.1) 

We will denote the mixture in (1.1) as f x g( | ) ( )θ θ
θ
Λ . The density gθ θ( ) is referred to 

as the mixing density. 

 Note that the mixing distribution is not necessarily continuous. It may be  

discrete or even a distribution with positive probability at finite points, i.e. a finite step 

distribution. In  the sequel  a mixture with a finite step mixing distribution will be 

termed a k-finite step mixture of F( | )⋅ θ , where k is a non-negative integer referring to 

the number of  points with positive probabilities in the mixing distribution. 

 

 A physical interpretation of mixture models is that the i-th individual of the 

population has a distribution defined by a probability density function f x i( | )θ . All 

the members of the population follow the same parametric form of distribution but the 

parameter èi varies from individual to individual according to a distribution  G( )θ . 

Depending on the choice of the mixing distribution G( )θ , an extremely broad family 

of distributions is obtained, which may be adequate for cases where the simple model 

fails. So, a mixture model describes an inhomogeneous population while the mixing 

distribution describes the inhomogeneity of the population. If the population was 

homogeneous, then all the members would have the same parameter θ , and the 

simple model would adequately describe the situation. 

 Mixture models cover  several distinct fields of the statistical science.  Their 

broad acceptance as adequate models to describe diverse situations, is evident from 

the plethora of their applications in the statistical literature. Titterington et al. (1985) 

gave a long list of papers with applications of mixture models up to 1985. In recent 

years the number of applications increased mainly because of the availability of high 

speed computer resources which removed any obstacles to apply such methods. Thus, 

mixture models have found applications in as diverse fields as: 

• Data modelling. With a data set in hand, usually, we need to fit a distribution, 

which can provide information concerning  the underlying mechanism. As mixture 
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models are widely used to describe the inhomogeneity of a population they have 

became a very popular choice in practice. As already mentioned, mixture models 

are often called  overdispersion models, because of their suitability to describe 

overdispersed data. The derivation of the negative binomial distribution, as a 

mixture of the Poisson distribution with a gamma distribution as the mixing 

distribution, originally given in Greenwood and Yule (1920) constitutes a typical 

example. Generally speaking mixture models can serve as an unrestricted  platform 

for describing datasets for which simpler models fail to account. 

• Discriminant analysis. In discriminant analysis, the need of  a method which can 

discriminate the population from which a new observation comes is obvious. 

Assuming a finite  mixture model we may obtain the parameters of  the 

subpopulations from a training set, and then classify the new observations via 

simple probabilistic arguments (see, e.g.  McLachlan, 1992). 

• Cluster analysis. Cluster analysis is another interesting field where mixture models 

find applications. In McLachlan and Basford (1988) the reader can find a full 

description of the use of mixture models in cluster analysis. The idea is to describe 

the entire population as a mixture model consisting of several subpopulations 

(clusters). Then, by  fitting a mixture model we may obtain the posterior 

probability for each observation to belong to any of the subpopulations (clusters). 

• Outlier-robustness studies. Outliers in data sets have been modelled with  mixture 

models (see, e.g. Aitkin and Wilson, 1980). It is assumed that outliers comprise a 

component in a mixture model. Hence, by fitting a mixture model we may 

investigate the existence of outliers. In robustness studies, the contamination of the 

data can also be regarded as an additional component of a mixture model. 

• ANOVA. The well known technique of the analysis of variance is a particular 

application of mixture models. The model assumes that the mean of the normal 

distribution of the entire population, varies from subpopulation to subpopulation. 

Then, it is assumed that  the mean is itself a normal variate and the decomposition 

of the total variance is with respect to randomness and mixing. In general, all the 

mixed effect models are mixture models. 

• Kernel density estimation. In kernel density estimation the aim is to estimate the 

density of a sample by imposing n kernels K x( )  on the observations. Usually, 
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K x( )  is itself a symmetric probability density function and each kernel is given a 

weight equal to 1/n (see, e.g.  Silverman, 1986). Thus,  in  kernel density 

estimation a mixture model is considered for the kernel with equal mixing 

probabilities. More specifically, the density estimate at point x is calculated as 

   f x
nh

K x x
hn

i

i

n

( ) = −



=

∑1
1

     (1.2)  

where h is a switching parameter which handles  the smoothing procedure. The above 

form clearly represents a n-finite mixture of the kernel K x( ) . 

• Latent structure models. In latent structure models it is assumed that beyond the 

observable random variables there are other unobservable or even unmeasurable 

variables, which influence the situation under investigation. This has a common 

element with the method of  factor analysis for continuous variables. The main 

assumption in the case of latent structure models is that of conditional 

independence, i.e. the assumption that for a given value of the unobservable 

variable the remaining variables are independent. Since inference is based on the 

unconditional distribution, we obtain, by the law of total probability, a mixture 

model where the mixing distribution represents the distribution of the unobservable 

quantity which thus is of special interest in many situations (see, e.g. Everitt, 

1984a). It is very interesting that many methods proposed for mixture models are 

applicable  to latent variable models  (see, e.g. Aitkin et al., 1981). 

• Empirical Bayes Estimation. In Bayesian estimation the parameters of any 

distribution are considered to be random variates having their own distribution, 

known as the prior distribution. The prior distribution corresponds to the mixing 

distribution in (1.1). Specifically, the empirical Bayesian  methods aim at 

estimating the prior distribution from the data. This obvious relation between these 

two distinct areas of statistics have resulted in a vast number of papers in both 

areas, with many common elements. 

• Bayesian statistics. Mixtures have been proposed to be used as priors, the main 

reason being their flexibility  (see, e.g. Dalal and Hall, 1983). Beyond that, such 

priors are also robust and have been  proposed for examining Bayesian robustness 

(Bose, 1994). 
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• Random variate generation. The mixture representation of some distributions is a 

powerful tool for efficient random number generation from these distributions. 

Several distributions (discrete or continuous) may arise as mixture models from 

certain distributions, which are easier to  generate. Hence generating variables from 

such representation can be less expensive. For more details, the reader is referred to 

Devroye (1992). 

• Approximation of the distribution of some statistic. In many statistical methods, 

the derived statistics do not have a standard distributional form and an  

approximation have to be used for their distribution. Mixture models allow for 

flexible approximation in such cases. Such an example is the approximation of the 

distribution of the correlation coefficient used in Gupta and Huang (1981). 

 

 

 Interesting reviews for the mixture models are given in the books by Everitt 

and Hand (1981), Titterington et al. (1985), McLachlan and Basford (1988), Lindsay 

(1995) as well as in the review papers of  Gupta and Huang (1981), Redner and 

Walker (1984) and Titterington (1990).  

 

 

1.2 Some Properties of  Mixture Models 
 Mixture models have interesting properties. In this section some of their 

properties that will be used in the sequel are briefly discussed. Some definitions, 

notation and terminology are also provided. 

  

Associative Property 

 It can easily be shown that 

f x g h( | ) ( | ) ( )θ
θ

θ µ
µ

µΛ Λ








   is equivalent to f x g h( | ) ( | ) ( )θ θ µ µ

θ µ
Λ Λ





 

The proof is based on the definition of such mixtures and the possibility of changing 

the order of integration or summation. In order that the above formula  be valid we 

need to assume that there are no dependencies between the parameters of the 
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distributions considered. For example, h( )µ  does not depend on θ . Then, the 

associative property holds and the order of mixing can be changed. 

 

Moments of Mixture Distributions 

 Regardless of the form of f x( | )θ  the expected value of the function w x( )  of 

the mixed distribution is obtained as: 

[ ] [ ]E w X E w X g dx( ) ( ) ( )|= ∫ θ θ θ
Θ

    (1.3) 

with the subscript in the expectation denotes that the expectation is taken with respect the 

conditional distribution of X. The integration must be replaced  by summation in the case 

of discrete mixing distribution. It follows that 

[ ] ( )[ ]E X E E Xx= |θ  

[ ] [ ] ( )[ ]V X V E X E V Xx x= +| |( )θ θ     (1.4) 

i.e. the variance of the mixed variate is the sum of the variance of the conditional mean 

plus the mean of the conditional variance. Relationship (1.4) shows that the mixture 

model has always a larger variance than the simple model and this explains the use of the 

term overdispersion models used for mixture models. 

 

Mixture Models and Products of Random Variates 

 Another interesting property has been given by Sibuya (1979). 

 

Proposition 1.1 (Sibuya, 1979). Mixing with respect to a scale parameter is equivalent 

to obtaining the distribution of the product of two random variables; the distribution 

function of the first variable is the same distribution as the conditional but with unit 

scale parameter, while the distribution of the second variable is the mixing 

distribution. 

 The above proposition justifies the derivation of certain distributions using 

both approaches; as mixtures and as the product of two random variables. 

 Some definitions of certain concepts used in the sequel are now provided. 

 

Definition 1.2 The random variable X follows a Gamma distribution with parameters 

á, b (Gamma(á,b)) if its probability density function is given by  
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f x a
b

x ax
b

b( )
( )

exp( )= −−

Γ
1 ,  x a b> >0 0, , ,   (1.5) 

where Ã(á)  is the Gamma function defined by 

   Γ ( ) exp( )a x x dxa= −−
∞

∫ 1

0

     

 (1.6) 

The parameter á of the Gamma distribution is the scale parameter. It is known that the 

random variable Y cX=  also follows a gamma distribution, with parameters á/c and 

b. 

 

Definition 1.3 A continuous random variable X follows a Beta Type I distribution 

with parameters á,b (ÂetaÉ(á,b) ) if its probability density function is given by  

f x x x
B a b

a b

( ) ( )
( , )

= −− −1 11 ,  x a b> >0 0, , ,   (1.7) 

where Â(á,b) is the Beta function defined by 

B a b x x dxa b( , ) ( )= −− −∫ 1 1

0

1

1      (1.8) 

 

Definition 1.4 A continuous random variable X follows a Beta type II distribution 

with parameters á,b (ÂetaIÉ(á,b))  if its   probability density function is given by  

f x x
B a b x

a

a b( )
( , )( )

=
+

−

+ −

1

11
,  x a b> >0 0, , ,   (1.9) 

 

It can be verified that the Beta II (á,b) distribution arises as a Gamma mixture of the 

form 

 

Gamma p b Gamma a
p

( , ) ( , )Λ 1  

Equivalently, if X1  and  X2 follow Gamma distributions with parameters (1,a) and 

(1,b) respectively  the random variable Y X
X

= 1

2

 follows a beta II distribution with 

parameters a and b. This provides an example for Proposition 1.1.  
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Mixture Models and Compound or Generalised Distributions 

 

Definition  1.5 Consider the random variable S which can be represented as 

S X X X N= + + +1 2 ...       (1.10) 

where N is a discrete random variable and Xi’s are i.i.d. random variables each having 

a density function f. Let the distribution of N be defined by a probability function p. 

Then S is said  to follow a compound p distribution. The density of the resulting 

distribution of S is denoted by p f∨ . The distribution defined by the density f is 

called the summand distribution, as it is the distribution of the summands  Xi . Some 

authors use the term generalised  p distribution.  

 

Definition 1.6 A compound (or generalised) distribution is called as a compound 

Poisson distribution if the distribution of  N is the Poisson distribution.  

 

 An alternative terminology that has been used to refer to  these models, is 

generalised Poisson models. This term has also been used to describe  situations other 

than that in (1.10) and some confusion, as noted by Chatfield and Theobald (1972), 

may arise. To avoid any confusion in the sequel, we adopt the term compound models 

to refer to models of the form (1.10). 

 Another useful connection of  mixture models and compound distributions is 

given in Gurland (1957). 

 

Proposition 1.2 (Gurland, 1957)  If a density function g has probability generating 

function of the form [ ]φ( , )t a n  where n is a parameter and φ( , )t a  is a function 

independent from n, then it holds that 

 f g∨    is equivalent to   g x n f n
n

( | ) ( )Λ  

 

For example, if we consider a compound Poisson distribution of the 

form Poisson Binomial∨  we may obtain the same distribution as a binomial mixture. 
 
Proposition 1.3 (Gurland, 1957). It holds that  
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[ ]f x g h( | ) ( )λ λ
λ
Λ ∨  is equivalent to [ ]f h g∨ Λ

λ
λ( )  

 

 

Definition 1.7  We say that a distribution with  probability function p is the 

convolution of the distributions with probability functions  f and g and we denote this 

by ( )f g∗  if  

p x f x n g n
n

x

( ) ( ) ( )= −
=
∑

0

 

The convolution is the distribution of the sum Y X Z= + , where X follows a 

distribution with probability function f and Z follows a distribution with probability 

function g respectively. In the case of continuous random variables X or Z we replace 

the sum with an integral. 

  

Proposition 1.4  Assuming that the probability density function g y( | )µ does not 

depend on λ , it holds that 

[ ]f x g y h( | ) * ( | ) ( )λ µ λ
λ
Λ   is equivalent to [ ]f x h g y( | ) ( ) * ( | )λ λ µ

λ
Λ  

 
A simple proof of Proposition 1.4 can be obtained by  interchanging the order of the 

integrations involved in the mixture and the convolution. 

 

 The above results  are simply few of the properties of general mixture models. 

In the sequel, we will use them for deriving related results. De Vylder (1989) provided 

some other relations between  mixtures and compound distributions. 
 

 1.3 The Poisson Distribution 
 The Poisson distribution can naturally describe phenomena which occur 

randomly in time or space. It is also known as the law of rare events, since it can be 

derived from the binomial distribution when the probability of success is small. The 

range of such events which the Poisson can describe extends over several aspects of 

our life. Such aspects include 
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• the number of accidents incurred by an individual in a given time period 

• the number of accidents in a given patch of road 

• the number of goals scored by a team during a football game 

• the number of particles emissioned in an experiment 

• the number of  plants in a given field 

• the number of buys of a product in a given time period,  etc. 

  

 In fact, such examples are numerous and we just mentioned few of them, 

trying to include such diverse fields as accident theory, sports, physics, ecology and 

market research. The common element which allows the Poisson distribution to 

describe such different situations is the assumed randomness in the occurrence of all 

the above events. 

 The term randomness has been misunderstood by many people. In the sequel 

we will try to formulate the meaning of this word on a mathematical basis. 

 

Definition 1.8  A discrete random variable X is said to follow the Poisson distribution 

with parameter ë denoted by  Po( )λ  if its probability function is given by 

P X x P x e
x

x

( | ) ( | )
!

= = =
−

λ λ λλ

,  x=0 ,1 , ...,  ë>0    (1.11) 

 

 The Poisson distribution arises from the Poisson process. The Poisson process 

is a very common stochastic process and standard textbooks for stochastic processes 

contain sufficient  material for it (e.g. Feller,1968). We will briefly describe the 

Poisson process. 

 Let N(t) be a random variable denoting the number of events occurred by time 

t. Also let ( ) ( )P t dt P N t dt n N t mmn + = + = =( ) | ( )   denote the probability that n 

events have occurred by  time t+dt given that at time t m events had occurred. The 

interest lies in the transition probabilities Pmn(t+dt), because they  characterise the 

process. These  probabilities are defined as: 

P t t dt
k t dt n m

k t dt n m
o dt n m

mn

m

m( , )
( ) ,

( ) ,
( ),

+ =
− =

= +
> +







1
1

1
    (1.12) 
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where o(dt) represents a negligible quantity. The Poisson process is based on the 

assumption that the infinitesimal risk k tm ( ) is constant. This implies that the 

probability of an event occurring in a very small interval  is the same for all intervals, 

independent of the number of  previous events and the position of the interval. For the 

Poisson process: 

k tm ( ) = λ      (1.13) 

 Then, from (1.12) and (1.13), the number of events in the entire interval (0,T)  

follows a Poisson distribution with parameter ëT;  ë is called the intensity of the 

process and it reflects  how often an event occurs. 

 It is interesting that the occurrence of  an event in an interval does not affect 

the occurrence of events in any other interval. This implies that, for example, in the 

case of accidents, the individual will not learn from any event and the probability of 

incurring a further accident is constant over the entire period. This characterises the 

notion of randomness. The events occur by pure chance and the times of the 

occurrence of these events do  not play any role in the occurrence of events in 

subsequent intervals. 

 The Poisson distribution has been studied in depth by numerous researchers in 

the last century. A broad review for the Poisson distribution can be found in Johnson 

et al. (1992). 

 

1.4 Related Models 

1.4.1 Proneness Model 
 When we study a population using the Poisson distribution, we assume that all 

the individuals comprising the entire population have the same intensity parameter. 

Then we talk about a homogeneous population. How natural is such an assumption in 

practice? The Poisson distribution assumes homogeneity of the population and this 

can be a very strict assumption. In practice, it would be more realistic to assume that 

the population is inhomogeneous.  To represent this inhomogeneity we assume that 

the intensity parameter ë is itself a random variate that varies from individual to 

individual according to a distribution. Then, by the law of total probability, the 

distribution of the entire population is a mixed Poisson distribution. 
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Definition 1.9  A random variable X follows a  mixed Poisson distribution with 

mixing distribution having probability density function g  if  its probability function is 

given by 

P X x P x e
x

g d
x

( ) ( )
!

( )= = =
−∞

∫
λ λ λ λ

0

 , x=0, 1, ...    (1.14) 

We will denote the mixed Poisson distribution with mixing distribution the 

distribution with density function g as the MP(g) distribution. In the sequel we will 

use the notation P x( ) for the probability function of the mixed Poisson distribution. 

 

 The above model is often called the proneness model (see, e.g.  Cane, 1975). 

The parameter ë reflects the proneness of any individual to incur an event. Each 

individual has its own value for ë and ë has a probability density function g( )λ . Note 

that ë is not necessarily a continuous random variable. It can be discrete or it can take 

a finite number of values. The latter gives rise to finite Poisson mixtures which will be 

described in the sequel. 

 

 The concept of proneness can be extended to all the examples described above, 

and the term is used in the wider sense. For example, the concept of proneness in 

market research can be associated with the inherent characteristics of the product 

which make the product appealing to the consumer. Also proneness in the context of  

a football game can refer to the inherent characteristics of the team that determine its 

performance like its composition, technique and style of play etc. 

 The plausibility of the assumption of inhomogeneity has made the examination 

of  mixture models very useful in practice, since they can describe phenomena for 

which the simple Poisson model is inadequate. For example, a data set whose variance 

exceeds the mean can be described better by a proneness model, rather than by a 

simple Poisson model. 

 A good review for the proneness model can be found in Arbous and Kerrich 

(1951, 1954). Chapter 2 is devoted to examining the mixed Poisson distributions 

defined in (1.11). A variety of mixed Poisson distributions are  reviewed and the 

properties of these distributions are examined in depth. 
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1.4.2 Contagion Model 
 The Poisson process was based on the assumption of constant infinitesimal 

risk in (1.13) over the whole period of observation and  of independence between any 

two events. This assumption is not always realistic. In a variety of cases we may 

assume that each individual learns from each event in such a way that  he  (or she ) is 

less probable to incur another event. Arbous and Kerrich (1951) described the least 

contagious model by assuming that after the first event the infinitesimal risk is 

reduced and then it remains constant for the remaining period of observation. They 

called this model as the ‘burnt finger’ model because it resembles the simple situation 

where a child touches the fire and learns not to touch it again  in his entire life. They 

derived the observed distribution of events of such a process.  

 Roughly speaking, the contagion model assumes that each event results in a 

change on the infinitesimal risk. More formally k tm ( )  depends on both m and t. In the 

sequel, we use the term contagion model to refer to a process in which k tm ( )  depends 

on both m and t, irrespectively of  the fact that k tm ( )  can be an increasing or a 

decreasing function of m. 

 A well known example of such a process is the so-called Polya process for 

which 

k t a m
b tm ( ) = +

+
      (1.15) 

The resulting distribution is the negative binomial distribution. McFadden (1965) 

described a more general process the so called mixed Poisson process (see also 

Willmot and Sundt,1989 and Grandell, 1997). Every mixed Poisson MP(g) 

distribution can arise from a contagion model if we define as infinitesimal risk the 

quantity 

k t
e g d

e g d
m

m t

m t

( )
( )

( )
=

+ −
∞

−
∞

∫

∫

λ λ λ

λ λ λ

λ

λ

1

0

0

     (1.16) 

For t=1, relation (1.16)  simplifies to 

  k m P m
P mm ( ) ( ) ( )

( )
1 1 1= + +      (1.17)  
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where P(m) is the probability function of the MP(g) distribution as given in (1.14).

  

 This has the unfortunate consequence that observing a data set which can be 

described adequately by a mixed Poisson distribution  does not allow us to know from  

which model they came. At least two models can result in the same mixed Poisson 

distribution. 

 Cane (1977) demonstrated the existence of this problem for the negative 

binomial distribution, the most common mixed Poisson distribution. The negative 

binomial distribution can also be derived as a compound Poisson distribution. Hence 

three quite different models can be considered as having led to the same negative 

binomial namely: 

• the proneness model 

• the contagion model 

• the compound Poisson model 

Clearly, with the count data in hand only we are not able to distinguish between these 

three models. Cane (1977) tried to distinguish between the three models  using 

additional information concerning the exact times of the occurrence of events. 

Unfortunately, such information did not offer any help in distinguishing between the 

proneness and the contagion models since both  possess the same joint distribution for 

the time of occurrence of the events. In the same paper  Cane (1977) showed that the 

situation is similar with other mixed Poisson distributions. 

 A few years later,  Xekalaki (1983a) examined the same non-identifiability 

problem under another mixed Poisson distribution, the  generalised Waring 

distribution. In this case, the joint distribution of the times of the occurrence of 

accidents did not provide any information for distinguishing between the proneness 

and the contagion model. Xekalaki (1983a) showed that constructing confidence 

intervals for the proneness parameters is not helpful either since the intervals are very 

wide and cannot support any of the assumptions explicitly. However, a third model 

that assumed spells of accidents for individuals exposed to variable external risk led to 

a distribution for the times of accidents which differed in form from that of the other 

two models. Then, the spells model can be identifiable on the basis of such 

information. 
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 Bates and Neyman (1952a,b) examined the same problem for the first time. 

They concluded that in the bivariate case the examination of the times of occurrence 

can provide slight information, which favours one of the two models. Intuitively, we 

expect that for the proneness model the expected time for the occurrence of a new 

event remains constant for every individual. On the contrary the expected time for the 

occurrence of a new event  becomes smaller for the contagion model. The problem is 

how this can be deduced from the data. Wasserman (1983) proposed the use of a 

likelihood ratio test to test the proneness hypothesis against the contagion hypothesis 

based on the time of occurrence of the events.  No power results are known for this 

test. Xekalaki (1984a) demonstrated that using the generalised Waring distribution 

identifiability is possible in the two-dimensional case.  

 Finding methods for distinguishing between proneness and contagion models 

still remains an open problem. 

  

1.4.3 Models Based on Both the Contagion and the Proneness Hypotheses 
 One may consider a synthesis of the two models by constructing a model 

where proneness and contagion are both present. Such an example is the model 

constructed by Panaretos (1989). He assumed a contagion model for the diffusion of 

the surnames, in the sense that the more the surnames in a time period the more there 

will be in the next time period (contagion). However, every name can have its own 

parameter of contagion. In other words, every name has a different rate of contagion. 

The resulting distribution was the Yule distribution which is a special case of the 

generalised Waring distribution. 

 

1.5 Discussion 
 In this introductory chapter a brief introduction for mixture models was made. 

Naturally, mixture models arise as proneness models, i.e. models which take into 

account  the inhomogeneity of the population. Moreover mixture models can also be 

derived via certain other processes, e.g. contagion process. Even though the problem 

of determining the process behind the mixture model is an interesting problem 

connected with the mechanism that generates the data,  it will not be pursued any 

further in this thesis. 
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 The applicability of mixture models in real problems, has led to a vast number 

of research papers in the statistical literature. The next chapters are devoted to the 

study of structural properties of mixtures pertaining their use in practice. Chapter 2 

contains an extended review on mixed Poisson distributions. According to the choice 

of the mixing distribution a large number of mixed Poisson distributions can be 

obtained. Unfortunately, very few of them have been utilised in practice and a small 

minority of them have been studied in depth. A large number of properties concerning 

mixed Poisson distributions is reported. Some common elements in their derivation is 

exploited and new  properties are derived. 

 Chapters 3-5 treat the case of finite Poisson mixtures. Finite Poisson mixtures 

are useful models with a variety of applications. Their practical value stems from two 

facts. The first is  that they can describe a population consisting of a finite number of 

subpopulations. The second is that, by assuming a mixed Poisson model, one is able 

to estimate only a finite mixing distribution, i.e. even if the true mixing distribution is 

continuous one can only estimate it via a finite step distribution (see, e.g., Laird, 

1978).  

 Chapter 3 concentrates on the estimation of the mixing distribution using the 

maximum likelihood (hereafter ML) method. An extended  review of all the proposed 

methods is given as well as some interesting new results. For example, the EM 

algorithm for mixtures is the most promising method for extracting the ML estimates. 

An improvement of the EM algorithm is proposed based on some intrinsic properties 

which hold for all the members of the one exponential parameter family. A 

comparison of several methods for selecting the initial values of the EM algorithm is 

also made. This chapter focuses also on the ML method applied to mixture models 

when some additional information is available for some observations. Furthermore, 

alternative methods for calculating the ML  estimates are examined revealing some 

problems in their application to real datasets. 

 Moment estimation methods and related variants are treated  in Chapter 4. This 

chapter contains a new approach to the moment method. The efficiency of the method 

for both large sample sizes based on asymptotic results and small sample sizes based 

on a simulation experiment is studied. The most important feature of this chapter is 

the examination of another neglected issue: the existence of the moment estimates. 

The system of equations for deriving the moment estimates may be intractable. We 
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report a simulation experiment which reveals that even for large sample sizes the 

moment estimates do not exist. 

 A variant of the method with efficient results is also given. This method 

utilises the zero frequency instead of the third moment. This approach can increase the 

efficiency when the proportion of zeros is not small. 

 Chapter 5 contains new material. We propose a robust alternative to the ML 

method based on the minimum Hellinger distance method of estimation. We  derive 

minimum Hellinger distance estimates of the mixing distribution. These estimates are 

very efficient for correctly specified models, but at the same time, they are very robust 

when the assumed model is incorrect. This property makes them competitive 

alternatives to the standard ML estimates. Inferential methods based on the minimum 

Hellinger distance method are also derived. 

 Chapter 6 treats another problem: the one of testing the Poisson assumption 

against a Poisson mixture alternative. We derive the Hellinger Deviance Test as an 

alternative to the Likelihood Ratio Test. The Hellinger Deviance Test is powerful and 

robust at the same time.  

 Chapter 7 deals with the problem of determining the number of components in 

a mixture. This is  a very interesting and at the same time involved problem. We 

propose a procedure which uses the Likelihood Ratio Test sequentially, in order to 

determine the number of components.  

 Finally,  chapter 8 contains a collection of problems which remain open. 

 In all the chapters we cite results pertaining to their topic not restricting 

ourselves to Poisson mixtures. Clearly, many of the methods proposed for Poisson 

mixtures can be extended to cover the case of mixtures of other families, too. All the 

chapters contain broad reviews so as to help the reader reconstruct the information 

concerning the work in these areas. 
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Chapter 2 
Mixed Poisson Distributions 
 

 

2.1 Introduction 
 The probability  function of a mixed Poisson distribution with mixing density g is 

given in (1.11). Depending on the choice of the mixing distribution g a huge number of 

different mixed Poisson distributions can be constructed. 
 As already mentioned in the previous chapter, mixed Poisson distributions are 

adequate to describe overdispersed data sets, for which the simple Poisson model fails. 

Historically, the derivation of mixed Poisson distributions was originated by Greenwood and 

Yule (1920) when they considered the negative binomial distribution as a mixture of a 

Poisson distribution with a Gamma distribution as the mixing distribution. Since then, a large 

number of mixed Poisson distributions has appeared in the literature. However, very few of 

them have attracted the interest of applied researchers. The main reason is that often their 

form is  complicated  thus discouraging the researcher to use them. 

 This chapter is devoted to mixed Poisson distributions. In the first part a large number 

of properties of mixed Poisson distributions is provided, while mixed Poisson distributions 

are presented in the second part. Certain common elements between these distributions are 

pointed out.  

 

2.2 Properties of Mixed Poisson Distributions 
 We start by examining the properties of the mixed Poisson distribution by giving some 

simple formulas. Let X be a random variable whose distribution is a mixed Poisson 

distribution. Then the following two results hold: 
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1. P X x e
x

G d
x

( )
!

( )≤ =
−∞

∫
λ λ λ λ

0

 and 

2. [ ]P X x e
x

G d
x

( )
!

( )> = −
−∞

∫
λ λ λ λ1

0

 

where G( )λ  is the distribution function  of the random variable ë having probability density 

function g( )λ . 

 Denoting the probability function of the Poisson distribution as P X x( | )= λ  and with 

the convention P X( | )= − =1 0λ  we can see that 

P X x P n P X n g d P X n G d
n

x

n

x

n

x

( ) ( ) ( | ) ( ) ( | ) ' ( )≤ = = = = =
=

∞

=

∞

=
∑ ∫∑ ∫∑

0 00 00

λ λ λ λ λ λ  

where P n( )  has been defined in (1.14). Integrating by parts we obtain 

] [ ]P X x P X n G P X n P X n G d
n n

x

( ) ( | ) ( ) ( | ) ( | ) ( )≤ = = − = − − =∞

=

∞ ∞

=
∑ ∫∑λ λ λ λ λ λ0

0 00

1  

The first term of the right hand side vanishes (see also Holgate, 1970) while the second term 

interchanging the order of summation and integration leads to 

 

[ ]P X x P X n P X n G d
n

x

( ) ( | ) ( | ) ( )≤ = − = − − = =
=

∞

∑∫ 1
00

λ λ λ λ P X x G d( | ) ( )=
∞

∫ λ λ λ
0

 

which completes the proof of 1. 

 To prove  2  we need only to observe that 

[ ]P X x G d( | ) ( )= −
∞

∫ λ λ λ1
0

= P X x d P X x G d( | ) ( | ) ( )= − =
∞ ∞

∫ ∫λ λ λ λ λ
0 0

 

The first integral equals 1 since  

  P X x d
x

e d
x

xx( | )
! ( )

( )= = =
+

+ =
∞

−
∞

∫ ∫λ λ λ λλ

0 0

1 1
1

1 1
Γ

Γ  

Hence the right hand side of the last expression reduces to 1 − ≤P X x( )  which proves 2. 

 Unfortunately, very often the cumulative distribution function of a continuous variable 

is more complicated than the probability density function, and hence the above results are of 

limited practical use. However,  they are interesting since they relate directly the cumulative 
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density function  of a mixed Poisson distribution with the cumulative density function  of the 

mixing distribution. 

 

 

2.2.1 Comparison with the Simple Poisson Distribution 
 Suppose that P x( )  is the probability function of a mixed Poisson distribution given in 

(1.14) and P x m( | )  is the probability  function of a simple Poisson distribution given in (1.11) 

with the same mean, say m. Then it holds that: 

1)  P P m( ) ( | )0 0≥ , i.e. the  probability of observing a zero value is always higher under 

the simple Poisson distribution and  

2) P
P

P m
P m

m( )
( )

( | )
( | )

1
0

1
0

≤ = , i.e. than the ratio of the first probability to the zero probability is 

less than the mean for every mixed Poisson distribution.  

 Shaked (1980) showed that the function P x P x m( ) ( | )−  has exactly two sign changes 

of the form + - +, namely that the mixed Poisson distribution gives more probability at 0, and 

has a longer right tail. This result can be used to test if a mixed Poisson distribution is 

adequate for describing a dataset. The same holds for other mixtures too.  

 Shaked (1980) also showed that for every convex function c x( )  it holds that 

 c x P x c x P x m( ) ( ) ( ) ( | )∑ ∑≥  

(For mixtures of continuous densities summation is replaced by integration). 

 For example, if ( )c x x m( ) = − 2  the property that the variance of the mixed Poisson is greater 

than the variance of the simple Poisson is obtained. For ( )c x x m( ) = − 4  we can see that the 

4th central moment of the mixed Poisson distribution is greater than the 4th central  moment 

of the simple Poisson distribution. Multivariate extensions of this result are given in Schweder 

(1982). Another generalisation can be found in Lynch (1988). 

  

 

2.2.2 The Moments of a Mixed Poisson Distribution 
 We saw in (1.3) that the moments of any mixed distribution can be obtained by 

weighting with respect to the mixing distribution. Returning to the mixed Poisson case, we 

obtain that the probability generating function Q(t) of a MP(g) distribution is given by 
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[ ] ( )[ ]Q t E t t g dx( ) exp ( )= = −
∞

∫ λ λ λ1
0

    (2.1) 

 We can see that (2.1) is the moment generating function of the mixing distribution 

evaluated at the point (t-1). Successive differentiation of the probability generating function 

and evaluation of the resulting expression at t=1 gives us the factorial moments of the mixed 

Poisson distribution. However, this procedure is equivalent to differentiating the moment 

generating function of the mixing distribution and evaluating it at t=0  which leads to the 

moments about the origin of the mixing distribution. Thus we have shown the following 

Lemma: 

 

Lemma 2.1  The factorial moments of the mixed Poisson distribution are the same as the 

moments about the origin of the mixing distribution.  

 

 Thus we may equate the moments about the origin E X r( ) of the mixed Poisson 

distribution to those of the mixing distribution. The first five moments about the origin are 

given with respect to the first moments about the origin E r( )λ of the mixing distribution as: 

E X E
E X E E
E X E E E
E X E E E E
E X E E E E E

( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

=

= +

= + +

= + + +

= + + + +

λ
λ λ
λ λ λ
λ λ λ λ
λ λ λ λ λ

2 2

3 3 2

4 4 3 2

5 5 4 3 2

3
6 7
10 25 15

    (2.2) 

 

 In particular, we have  for the variance of the mixed Poisson distribution that 

 

[ ] [ ]Var X E X E X E E E E Var( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − = + − = +2 2 2 2λ λ λ λ λ   (2.3) 

 

 From the above result it becomes obvious that the variance of a mixed Poisson variate 

is always greater than the variance of a simple Poisson variate with the same mean. Molenaar 

and Van Zwet (1966) gave sufficient and necessary conditions for distributions which also 

have the same property. See also the relevant works of Schweder (1982), Cox (1983) and 

Gelfand and Dalal (1990). 
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 From the above equation we can see that the variance of the mixed Poisson 

distribution can be decomposed into two components: the first component can be attributed to 

randomness and is the variance of a Poisson variate with mean equal to E(ë) and the second 

component is the  variance imposed by the mixing distribution.  It is interesting to note that 

this scheme is similar to the  one used in the well known analysis of variance methods 

(ANOVA) for normal models. In the ANOVA we decompose the total variance into two 

components. The first is the component that corresponds to the case of equal means and the 

second represents the variation imposed by the different means of the subpopulations. 

 The variance to mean ratio for a mixed Poisson distribution is always greater than 1, 

which is the value which characterises the Poisson distribution. This property has been used to 

test the null hypothesis that the data come from a Poisson distribution versus the alternative 

hypothesis that the data come from a mixed Poisson distribution.  

 The relationship between the moments of the mixed Poisson distribution and the 

mixing distribution is useful in estimating the mixing distribution from an observed data set. 

This is discussed in chapter 4. 

 

2.2.3 The Convolution of Two Mixed Poisson Random Variates 
 The convolution of a mixed Poisson distribution with mixing density f, MP(f), with a 

mixed Poisson distribution with mixing density g, MP(g), is a mixed Poisson distribution with 

mixing density the convolution of the densities g and f. To show this we observe that the 

probability function of the convolution of MP(f) and MP(g) is given by 
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e
x n
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n x n

n

x
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 . 

By changing the order of summation and integration and by using the binomial expansion  

( )a b
x
n

a bn n x n

x

n

+ =






 −

=
∑

0

 we obtain  

P x e
x

f g d d
x

( ) ( )
!

( ) ( )
( )

= +− +∞∞

∫∫
λ θ λ θ λ θ θ λ

00

  

On substituting y=ë+è the above formula reduces to 
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P x e y
x

f y g d dy e y
x

t y dy
y x y y x

( )
!

( ) ( )
!

( )= −








 =

−∞ −∞

∫ ∫ ∫
0 0 0

θ θ θ   

where t(y) is the density of a distribution which is the convolution of  f and g. 

 For an alternative proof see Feller (1943).  

 

Definition 2.1  A distribution with probability density function f is said to be reproductive if 

the sum of two random variables X1 and X2 , each having probability density function f,  

follows itself the distribution with probability density function f. 

 

Some well known examples of reproductive distributions are the normal distribution, 

the exponential distribution and the Poisson distribution, among others. 

 

We now  give the following Lemma: 

 

Lemma 2.2  The sum of two mixed Poisson variates MP(f) has a MP(f) distribution if the 

distribution f is itself reproductive. 

 

 To prove Lemma 2.2, we observe  that since the convolution of two mixed Poisson 

distributions is itself a mixed Poisson distribution with mixing density the convolution of the 

two mixing densities.  Since the distribution defined by f is reproductive the convolution of 

the mixing densities is also defined by f. Therefore, the mixed Poisson distribution is an MP(f) 

distribution. 

 

 Another useful result is the following. Consider the convolution of a MP(f) and a 

Poisson distribution. Since the Poisson distribution can be regarded as an  MP(Äë) distribution 

where Äë is the density of the degenerate distribution at the point ë, the above convolution  is 

a mixed Poisson distribution. The mixing density is the convolution of  the density f with the 

density Äë . This is a shifted version of f. (In particular, it is the distribution of the random 

variable Y X= + λ , where the density of X is f ). Thus we saw that the convolution of a 

MP(f) with a Poisson distribution is an MP(shifted f). The Dellaporte distribution (see, e.g.  

Ruohonen, 1988) is the distribution of the convolution of a Poisson distribution with a 

negative binomial distribution. Willmot and Sundt (1989) showed that the Dellaporte 

distribution is a mixed Poisson distribution with a shifted Gamma as mixing distribution. 
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2.2.4 Identifiability 
 The term identifiability of mixtures refers to the ability of identifying the mixing 

distribution of a given mixed distribution. The identifiability of a mixture is important since 

identifiability ensures that the mixing distribution characterises the mixed distribution. More 

formally we say that: 

 

Definition 2.2  Mixtures of the probability function f x( | )θ  are identifiable if and only if 

f x h d f x h d( | ) ( ) ( | ) ( )θ θ θ θ θ θ1 2∫ ∫=  implies that h h1 2( ) ( )θ θ=  for all the values of è.  In the 

case of discrete mixtures integration is replaced by summation.   

 

 In our case, f x( | )θ   is the probability function of a Poisson distribution.  Mixtures of 

the Poisson distribution (finite or not) are identifiable. This means that every mixed 

distribution corresponds to one and only one mixing distribution. The identifiability of 

Poisson mixtures (finite or not) was first proved  by Feller  (1943) who pointed out that the 

probability generating function of a mixed Poisson distribution is the Laplace transform of the 

mixing distribution. It is known that the Laplace transform of any function is unique. Hence 

the probability generating function of any mixed Poisson distribution is unique. Since the 

probability generating function uniquely determines the distribution it follows that Poisson 

mixtures are identifiable.  Later,  Teicher (1961) showed that  mixtures on n of distributions 

with probability generating function of the form (h(t))n are identifiable. The Poisson 

distribution belongs to this family, which  also contains the normal, the gamma and the 

binomial distributions among others.  The identifiability of Poisson mixtures has also been 

examined in Xekalaki and Panaretos (1983), Xekalaki (1985) and Lindsay and Roeder (1993). 

The property of identifiability is interesting since only in this case it is sensible to estimate the 

mixing distribution. Related material can be found in Barndorff-Nielsen (1965), Tallis (1969) 

and Yakowitz and Spragins (1969). Identifiability of finite mixtures has also been discussed 

by Teicher (1963) and Al-Hussaini and El-Dab (1981). 

 Chen (1995) established the notion of strong identifiability, which is satisfied by the 

Poisson mixtures. He uses this notion to prove the rate of convergence of any estimator of the 

mixing distribution to the true mixing distribution. 
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2.2.5 Modality 
 Holgate (1970) showed  that a MP(g) distribution is unimodal if g is unimodal. Note 

that he used the term unimodal to refer to distributions with one mode or with several modes 

at successive points. So the unimodality of a mixed Poisson distribution depends on the 

unimodality of its mixing distribution. This result holds only if g is absolutely continuous. A 

counterexample for the case of discrete mixing distributions is the Neyman distribution which 

is a mixed Poisson distribution with a Poisson distribution as the mixing distribution. The 

Neyman distribution is known to be multimodal (see Douglas, 1980) even though the Poisson 

distribution is unimodal. 

 Bertin and Theodoreskou (1995) extended the results of Holgate to the case of not 

absolutely continuous mixing distributions. In general, modality for mixture models is 

considered in Kemperman (1991). 

 

2.2.6 Infinite Divisibility 
 A random variable X is said to be infinitely divisible if its characteristic function ö(t) is 

such that [ ]φ( ) /t n1  is itself a characteristic function. In other words, a distribution is infinitely 

divisible if  it can be written as the distribution of the sum of n independently and identically 

distributed random variables. The simple Poisson distribution is an example, since the sum of 

n independent Poisson variates is itself a Poisson variate (with different parameter of course).  

A result concerning the mixed Poisson distribution was given by Douglas (1980): 

 

Proposition 2.1 (Douglas, 1980). If the mixing distribution is infinitely divisible then the 

mixed Poisson distribution is infinitely divisible, too. 

 

 Feller (1968) showed another interesting result concerning infinitely divisible discrete 

distributions. 

 

Lemma 2.3 (Feller, 1968). A discrete  infinitely divisible distribution can be obtained also as a  

compound Poisson distribution. 
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 Hence, a mixed Poisson distribution which is infinitely divisible can also be 

represented as a compound Poisson distribution. This implies that its probability generating 

function can be written either as 

e f dsλ λ λ( ) ( )−
∞

∫ 1

0

 

with f ( )λ  the probability density function of the mixing distribution or as 

 e Q sλ ( ( ) )−1  

with Q s( )  the probability generating function of a well defined distribution (the summand 

distribution). 

 Well known examples are the negative binomial distribution (which will be described 

in the sequel), the Poisson- inverse Gaussian distribution, and the generalised Waring 

distribution. Note that for the two first cases the form of the summand distribution is known 

while for the latter case the form of the summand distribution has not been derived in a closed 

form. 

 

2.2.7 Mixed Poisson and Compound Poisson Distributions 
 The infinite divisibility of some mixed Poisson distributions implies their 

representation as compound Poisson distributions. A proof of this result can be found in 

Ospina and Gerber (1987). 

 As noted above,  a compound Poisson distribution has probability generating function 

G z( ) of the form 

( )[ ]G z Q z( ) exp ( )= −λ 1      (2.4) 

where Q z( )  is the probability generating function of the summand distribution. Our aim is to 

identify  the summand distribution which allows the compound Poisson representation of a 

mixed Poisson distribution.  If we solve the above equation we find that the probability 

generating function of the summand is 

Q z G z( ) ln ( )= +
λ

1      (2.5) 

Therefore the probability function of the summand can be obtained by successive 

differentiation of (2.5). In practice, this does not always lead to a closed form for the 

probability function of the summand distribution. Of course, in all cases we are able to 

calculate numerically the probability  function, using the following result due to Panjer (1981) 
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who showed that compound Poisson distributions can be calculated via recursive schemes. In 

the case where the summand distribution is discrete with probability function, say  f x( ) , the 

probability function of corresponding compound Poisson  distribution, say g x( ) , can be 

obtained recursively via the following: 

g x y
x

f y g x y
y

x

( ) ( ) ( )= −
=

∑ λ
1

     (2.6) 

with  

   [ ]g f( ) exp ( )0 0= − +λ λ  .    (2.7) 

From (2.6) we are able to derive  the probability  function of a compound Poisson distribution 

from the form of  the summand distribution. For the converse result  relations (2.6) and (2.7)  

have to be solved for f x( ) . We thus obtain, 

 f g( ) ln ( )0 0= + λ
λ

 ,  f g
g

( ) ( )
( )

1 1
0

=
λ

     

and  f x g x
g xg

yf y g x y
y

x

( ) ( )
( ) ( )

( ) ( )= − −
=

−

∑λ 0
1

0 1

1

  for x=2, 3, ...   (2.8) 

Willmot (1986) proposed choosing the value of ë by imposing the condition Q(0)=0. 

However, we can verify that the successive ratios of the form f x
f x
( )

( )
+ 1  do not depend on ë, 

apart form the ratio f
f

( )
( )
1
0

 . It should be noted that the above scheme applies only to the case 

of  discrete summand distributions and that it cannot be used for estimation purposes. If we try 

to use the empirical relative frequencies as an estimate of g x( )   then we may obtain 

unacceptable values for the probability  function of the summand, i.e. negative values or 

values greater than 1. Then, the whole scheme fails. 

  

 

2.2.8 Posterior Moments of ë 
We will give the following Proposition concerning the posterior expectation of the random 

variable ë: 

 

Proposition 2.2  Suppose that X follows a MP(g) distribution. Then the posterior 

expectation E X xr( | )λ = is given by: 



Mixed Poisson Distributions 

 28 

( )E X x P x r
P x

x x rrλ | ( )
( )

( )...( )= = + + +1  

where P(x) is the probability  function of a MP(g) distribution. 

 

Proof. 

     The posterior expectation ( )E X xrλ | =  is expressed as 

( )E X x
x

e g d

x
e g d

x r
x

e
x r

g d

P x
P x r

P x
x x rr

x r

x

x r

λ
λ λ λ

λ λ λ

λ λ λλ

λ

λ

|
!

( )

!
( )

( )!
! ( )!

( )

( )
( )

( )
( )...( )= = =

+
+

= + + +

− +
∞

−
∞

− +∞

∫

∫

∫1

1
10

0

0  

 

 Note that the above results may be extended to the case of negative r whenever 

( )x r+ > 0 . This enables one to find, for example, posterior expectations of the form 

E X x
1
λ

=



 . 

 Johnson (1957) showed that the posterior first moment of ë is linear if and only if the 

mixing distribution is the Gamma distribution. Johnson (1967) generalised this result to show 

that the form of the posterior moment of ë determines the mixing distribution. Nichols and 

Tsokos (1972) derived more general formulas for a variety of distributions. The results of 

Cressie (1982) are also pertinent. More recently Sapatinas (1995) gave the special forms of 

this posterior expectation for several mixed Poisson distributions as well as for other power 

series mixtures.  

 It is interesting to note that since the posterior expectation is expressed through the 

ratio P x P x( ) / ( )+ 1  characterises the mixed Poisson distribution among all the mixed 

Poisson distributions (see also Papageorgiou and Wesolovski, 1997) . Ord (1967) showed that 

for some basic discrete distributions the ratio ( ) ( )
( )

x P X x
P X x

+ = +
=

1 1  can provide useful 

information concerning the distributional form of the population from which the data come. 

Unfortunately, the practicality of this result is limited since many mixed Poisson distributions 

can have very similar graphs for the quantity x x P X x
P X x

, ( ) ( )
( )

+ = +
=







1 1  making the 

identification very difficult. 
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 Bhattacharya (1967) showed the following result in the context of accident theory:  if 

the mixing distribution is a Gamma distribution then the selection in the second time period of 

individuals with no accidents in the first period will reduce the expected number of accidents 

in the second period. In particular, he showed that if X and Y are the numbers of accidents in 

the first and the second period respectively, then E Y
E Y X

( )
( | )=

≥
0

1. He also showed that this 

result is valid for the Poisson-confluent hypergeometric series distribution (Bhattacharya, 

1966). 

 Haight (1965) derived the distribution of the number of accidents in a second period 

given  the removal of  persons  with more than n accidents in the first period for the case of a 

negative binomial accident distribution. 

 

 

2.2.9 Numerical Approximation for the Probability Function of a Mixed Poisson 
Distribution 
 For many mixed Poisson distributions the direct calculation of probabilities is involved 

and some numerical methods need to be used. Even the use of powerful recursive schemes 

require direct calculation of  initial values. In the sequel, we present some numerical methods 

for the efficient calculation of the probabilities. 

 

 a) Taylor expansions 

 The first method can be found in Ong  (1995) and it is based on a Taylor expansion of 

a special function of a gamma variate: 

 

Lemma 2.4 (Ong, 1995). Let g( )λ  be the probability density function of the mixing  

distribution  of  a mixed Poisson distribution. If g( )λ  has a finite  n-th  derivative  at  the 

point k,  the  probability function P(k)  of the mixed  Poisson  distribution has  the  formal 

expansion: 

P X k g k
k

h k
y

y
y

y

n

( ) ( )
( )

!

( )

= = +
=
∑1

2

µ
, 
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where h k kg k( ) ( )= , h ki( ) ( )  denotes the i-th derivative of h(k) with respect to k and  µ y  is 

the y-th moment about the mean of a gamma  random variable  with scale parameter equal to 

1 and shape parameters equal to k. 

 The above approximation has some disadvantages. The first  is  that we cannot obtain 

P(0). On the  other  hand,  we  need  to  evaluate  the derivatives of the mixing distribution, 

which, even if they exist,   is  a very tedious task. 

 We now give another easier approximation  based  on  the  Taylor expansion of the 

probability  function of a mixed Poisson distribution. 

 From the probability  function of a MP(g)  we have that   

[ ]P X x
x

g d
x

E ex
g

x( )
!

exp( ) ( )
!

= = − =
∞

−∫
1 1

0

λ λ λ λ λλ    (2.9) 

Relationship (2.9) shows that the probability  function of a mixed  Poisson  distribution  is  the  

expectation  of a certain function of ë  with respect to the mixing distribution. Using the 

standard Taylor expansion for  a  function of  a  random  variable  we  can  obtain  the  

probability  function  of  the  mixed   Poisson distribution. This method requires only the 

moments  of the mixing distribution and not its probability density function. Hence, the 

probability  function of the mixed Poisson distribution can be approximated by: 

P X x
x

t
t
r

r
r

r

( )
!

( )
( )

!

( )

= = +








=

∞

∑1
1

µ
µ µ

,   (2.10) 

where ìr is the r-th central moment of the mixing distribution, ì=ì1 i.e. the mean, 

t x( ) exp( )µ µ µ= −  and t r( ) ( )µ  is the r-th derivative of t evaluated at ì.  The  derivatives of  

t(ì) can be easily obtained from the  above  iterative scheme, thus: 

 

t

t
n
i

t h

x

n i n i

i

n

( )

( ) ( ) ( )

( ) exp( ) ,

( ) ( ) ( ) .

0

1

0

θ θ θ

θ θ θ

= −

=






+ −

=
∑        (2.11) 

Here, the function h(è) has derivatives given by 

h x h x h n hn
n

( ) ( ) ( )
( )

( ) , ( ) , ( ) ( ) ( )0 1
2

11 1θ
θ

θ
θ

θ θ
θ

= −





= − = − ++  . (2.12) 

 Hence, using (2.11) and (2.12) we can calculate (2.10). This Taylor expansion 

provides very ‘accurate’ values for the probabilities. The limitation of the above formula is 

that it requires  the existence of the moments  about  the  mean  of  the  mixing  distribution. 
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However, for some mixed Poisson distributions for which  the calculation  of  the probability  

function is tedious but their  moments are known to exist (e.g.,  lognormal)  this is useful. 

 

 b) The Probability Function of the Mixed Poisson Distribution as an Infinite 

Series Involving the Moments of the Mixing Distribution 

 Another useful formula which relates the probability  function of a mixed  Poisson  

distribution with the moments of the mixing distribution can be used. In particular, we have 

that the  probability  function  can  be written as an infinite series expansion using the 

moments about the origin  of the mixing distribution. 

 

Lemma 2.5 The probability  function of a mixed Poisson distribution can be written in  the  

following  form given that the moments of è exist: 

P X x
x r

r

x r
r

( )
!

( )
!

( )= = −
+

=

∞

∑1 1
0

µ θ  

where ìr (è) is the r-th moment about the origin of è. 

 

Proof 

We have for the probability function of the mixed Poisson distribution that 

P X x
x

g d
r x

g dx
r

r

x

( )
!

exp( ) ( ) ( )
! !

( )= = − = −







∞

=

∞∞
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Interchanging the order of summation and integration we obtain 

P X x
x r

g d
x r

g d
x r r

r

r

r

x r( ) ( )
! !

( ) ( )
! !

( )= = − = −+∞

=

∞

=

∞
+

∞
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θ θ θ θ θ θ1 1

00 0 0

. 

Hence the result.  

 

 The above result can alternatively be seen as follows: 

 It is obvious by their definition that the probability generating function G(t) of a mixed 

Poisson distribution and the moment generating function M(t) of the mixing distribution (if it 

exists) are related, thus 

G t e f d E e M tt t( ) ( ) ( ) ( )( ) ( )= = = −−
∞

−∫ λ λλ λ1

0

1 1      

It is also known that the probability function of a discrete distribution with probability 

generating function G(t) is written as  
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P X x
x

G x( )
!

( )( )= = 1 0 ,     (2.13) 

where G tx( ) ( )  is the x-th derivative of G(t) evaluated at the point t. Furthermore, for a mixed 

Poisson distribution the following relation holds:  

G t M tx x( ) ( )( ) ( )= −1 ,      (2.14) 

while by definition the moment generating function  of a random variable can be written as 

M t
r

tr r

r

( )
!

=
=

∞

∑ µ
0

     (2.15) 

From (2.15) we have that 

M t
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( )1 1
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µ
    (2.16) 

Using (2.14) and (2.16), equation (2.13)  can be written as 

P X x
x

M x( )
!

( )( )= = − =1 1 1 1
0x r

r x r

r! !
( )µ +

=

∞

−∑  which is the desired result. 

 

 Katti (1966) derived a similar result for compound distributions. 

 

 c) Gauss-Laguerre Polynomials 

 This approximation is based on the adjusted  Laguerre  polynomials or simply Gauss-

Laguerre polynomials.  Following  Press  et  al (1992) certain integrals can be approximated 

using certain weight  functions  of  the  integrand evaluated at certain points, thus 

e x f x dx w f xx a
j

j

n

j
−

∞

=
∫ ∑=
0 1

( ) ( )      (2.17) 

 In this formula wj  and xj , j=1, . . . , n, are the Gauss-Laguerre weights and abscissas 

calculated using the methods described in Press et al. (1992)  and  n  is  the number of points 

used for the approximation. The authors also gave routines for calculating them. Clearly, the 

probability function of every mixed Poisson  distribution  can  be approximated using the 

above formula. It is interesting that using (2.17) the probability function of a mixed Poisson 

distribution is calculated as a finite mixture of the mixing distribution. 
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 d)  Recursive Relations for Mixed Poisson Distributions 

 Approximating all the probabilities of a probability  function is not a good strategy, 

mainly because of the computational effort required. Willmot (1993) showed that, for several 

mixed Poisson distributions a recursive formula can be obtained. More specifically, for  a 

mixing density g( )θ  which satisfies the relationship 

d g
d

s

w

i
i

i

k

i
i

i

k
ln ( )θ

θ

θ

θ
= =

=

∑

∑
0

0

 , 

a recursive formula can be found. If the support of è is (0,+∞) this  recursive formula is 

{ }ϕ n n
n

n

k

mw m n P m n+ + + =+
=−
∑ 1

1

0( ) ( )( )  ,  (2.18) 

where a a a a bb( ) ( )... ( )= + + +1 1  and  φn n n ns n w w= + + ++( )1 1  with φ− =1 0 . Appropriate 

modifications are available in Willmot (1993) for different supports of è.  For this iterative 

scheme we need only to calculate the first k probabilities. Ong (1995) proposed that the above 

iterative scheme can be used without exact evaluation of any probability. The idea is to start 

from a point n at the tail of the distribution putting arbitrarily  P n( ) = 1 and P n( )+ =1 0 . 

Then by using the above recurrence we may obtain the values P n( )−1  up to P( )0 . Rescaling 

so that the obtained series sums to 1 leads to the probability function.  It is useful to start with 

a value of n, such that the true P n( )  is negligible. We have to note that the recursion 

described is unstable and should therefore be used with caution. 

The above defined recursive scheme led to the increase of the applicability of several 

mixed Poisson distributions.  Earlier, the difficulties in evaluating the probabilities prevented 

the researchers to use many of the mixed Poisson distributions. Wang  and Panjer (1993) 

criticised the relations with respect to their stability. According to Wang and Panjer (1993) the 

recurrence relations might be quite unstable, mainly because  of the negative   coefficients of 

some probabilities. Then, they proposed to use as starting points for the relations those points 

where the instability occurs. These points are the points with a negative coefficient in the 

recurrence representation. They  also included  several examples.   
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2.2.10 Simulation Based Reconstruction 
 An approximate way to construct the probability  function for all the mixed Poisson 

distributions is via simulation. The simulation from a mixed Poisson distribution is  easy via 

the following scheme: 

 

 Step 1.   Generate ë from the mixing distribution. 

 Step 2.  Generate X from the  Po(ë) distribution. 

 

 Hence, if we simulate a very large number of values an approximation of the 

probability  function can be obtained. Note that the speed of the simulation depends on the 

speed of generating a random variate from the mixing distribution. As the number of 

replications increases, the approximate probability  function tends to the true probability  

function. We can simulate from a mixed Poisson distribution even when we do not know its 

probability function.  

 

 

2.2.11 Weighting a Mixed Poisson Distribution 
 When an investigator records an observation, by nature, according to a certain 

stochastic model, the recorded observation may not have the original distribution unless every 

observation is given an equal chance of being recorded. In all other cases where there is a 

probability w(x) of observing an observation with the value x, the observed distribution 

differs from the assumed.  Patil and Rao (1978) used the term weighted distributions for the 

distributions arising under such a model, when the weight function w x( )  is the probability of 

observing the value x. Such weighted distributions stem from several different schemes and 

choices of the weight function, which may not represent a probability. For example when 

w x( ) is proportional to the value x, we assume that the higher the count the more probable to 

observe it. The value x = 0  is never observed. Patil and Rao (1978) used the term visibility 

bias to describe such models in the context of ecological applications. These models are also 

called size biased models, and the resulting distributions are called size biased distributions.  

In general, if the weighted function is w x( )  then the  probability density function of the 

weighted distribution obtained  from the original density f x( )  is given by 
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[ ]f x w x f x
E w xw ( ) ( ) ( )

( )
=         

The size biased distribution corresponds to the case where  w x x( ) = , and its probability 

density function is given by 

f x xf x
E xw ( ) ( )

( )
=      (2.19) 

 Patil and Rao (1978) also discussed the effect of w(x) in several widely used 

distributions, while Patil et al. (1986), gave some result for discrete distributions as well as the 

form of the resulting weighted distribution for some discrete distributions.  It is interesting to 

mention the following result concerning mixed Poisson distributions: 

 

Lemma 2.6  A size biased MP(g) distribution arises also as a mixture of a size biased 

Poisson distribution with mixing distribution the size biased version of the original mixing 

density g. 

 

Proof 

 

The size biased version of the mixing distribution, say g*(λ) has probability density function   

g g
E

*( ) ( )
( )

λ λ λ
λ

=      (2.20) 

while the size biased Poisson distribution has probability  function of the form 

f x x e
x

e
x

x x
* ( | )

! ( )!
λ

λ
λ λλ λ

= =
−

− − −1

1
    (2.21) 

and then, using (2.20) and (2.21), the mixed size biased Poisson distribution with mixing 

distribution g* has probability  function 

f x f x g d x e
x E

g d
x

( ) ( ) ( )
! ( )

( )* *= = =
∞ −∞

∫ ∫λ λ
λ

λ λ
λ

λ λ
λ

0 0

 

= =xP x
E

xP x
E x

( )
( )

( )
( )λ

 

which is (from (2.19)) the size biased version of a MP(g) distribution. 
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 For example the size biased negative binomial distribution  (the mixing distribution is 

the Gamma distribution) can be obtained as a mixed size biased Poisson distribution with the 

size biased Gamma distribution as the  mixing distribution. 

 Seshadri (1991) has shown that mixtures of the length biased Poisson distribution are 

in fact mixtures with components the simple Poisson distribution and the length biased 

Poisson distribution. 

 

2.2.12 Shape 
 The probability  function of a MP(g) distribution resembles the probability density 

function of the mixing distribution with adequate adjusted parameters. This fact has been used 

for approximating the probability  function of some mixed Poisson distributions. For example, 

Best and Gipps (1974) proposed the use of  the cumulative distribution function of a Gamma 

distribution as an approximation to the cumulative distribution function of the negative 

binomial distribution. The resemblance is much greater for larger values of the mean. If the 

mean is small, there is a high probability of observing a 0 value, i.e. P( )0 is large. This is not 

true for many continuous densities, and thus the approximation is poor. Cassie (1964) 

discussed the use of the lognormal distribution instead of the Poisson-Lognormal distribution. 

Willmot  (1989) examined the asymptotic tail behaviour of some mixed Poisson distributions. 

He showed that the tails of some mixed Poisson distributions  look like the tails of their 

mixing distributions, and he proposed the approximation at the tails by the more tractable 

continuous mixing distributions. A similar result is given in Perline (1998). 

We can also verify that  

 

Lemma 2.7 Grandell (1997).  For two mixed Poisson distributions, say MP(g1) and MP(g2), 

we have that MP(g1) →MP(g2)  if and only if g1 →g2  where → denotes convergence in 

distribution. 

 

To  verify this result we only need to recall the fact that the probability generating function of 

a MP(g) is the moment generating function of the mixing distribution g. Since the probability 

generating function and the moment generating function of any distribution characterises the 

distribution the result follows. 
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 For example, we know that the Beta distribution tends to the Gamma distribution 

under certain conditions for the parameters are satisfied. Hence, the negative binomial 

distribution is a limiting case of the  Poisson-Beta distribution. 

 Chen (1995) established the best possible rate of convergence for estimating the 

mixing distribution in finite mixture models, including the Poisson mixtures. This rate is only 

n-1/4 when the number of support points is not known a priori and only some minimum 

distance estimators can achieve it.  

 Adell and de la Cal (1993) , obtained, under fairly general assumptions, the exact order 

of convergence, in the L1 distance, of a mixed Poisson distribution to its mixing distribution.  

Hall (1979) and Pfeifer (1987) discussed the distance between the mixing and the mixed 

distributions. Lynch (1988) showed that the form of the mixing distribution carries over to 

the mixed distribution. 

 

 

2.2.13 Compound Mixed Poisson Distributions 
 In actuarial applications the distribution of the number of claims can be modelled by a 

mixed Poisson distribution because it is very common that the population under investigation 

is not homogeneous. Depending on the distribution of the claim size, the total amount paid  by 

the insurance company follows a compound mixed Poisson distribution. The probability 

density function of the total amount is usually hard to derive and to compute. So recursive 

relations are very useful. The most known mixed Poisson distribution, the negative binomial 

distribution, has been treated in the fundamental paper of Panjer (1981) as it is the only 

member of the  family of mixed Poison distributions with linear first order recurrence 

relations. Compound mixed Poisson distributions are discussed in detail in a series of papers, 

by Hesselager (1994a,1996) and Wang and Sobrero (1994). The idea is to construct recurrence 

schemes based on the recurrence relation for the probabilities of the mixed Poisson 

distribution. In these papers several examples are included for many members of the family of 

mixed Poisson distributions. 
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2.2.14 Mixed Poisson Distributions Arising from the Mixed Poisson Process 
 As seen before, all the mixed Poisson distributions can be obtained via a mixed 

Poisson process defined from the infinitesimal risk given in (1.16). A mixed Poisson 

distribution arising from the mixed Poisson process with infinitesimal risk as in (1.16) is of 

the form 

 Poisson t g( ) ( )λ λ
λ
Λ      (Model 1) 

where t is the period of observation. In general such models lead to mixed Poisson 

distributions that differ from those obtained from the model 

Poisson g( ) ( )λ λ
λ
Λ       (Model 2) 

 The resulting distributions coincide for t=1. Our main interest lies on the second model. 

However, in some circumstances it is of interest to consider the first model, especially when t 

represents some time period.  If we assume that the observed time period is the unit time 

period, then t=1 and the two models are the same. On the other hand, it is often interesting to 

consider the Model 1 and how we can relate directly this more general model to Model 2 

which is the  commonly used model in practice. Note also that several mixed Poisson 

regression models use Model 1. In these models the Poisson parameter λ is treated as a 

regressor depending on a series of covariates, while t is a random variable having its own 

probability  function, which is called the overdispersion parameter. For more details on mixed 

Poisson regression models, one can refer to Lawless (1987), Dean et al. (1989), Xue and 

Deddens (1992), McNeney and Petkau (1994),  Wang et al. (1996) and Chen and Ahn (1996). 

Moreover it is worth mentioning that mixed Poisson regression models allow for different 

variance to the mean relationships offering a wide range of different model for real 

applications (see, e.g. , Hinde and  Demetrio, 1998). 

 

 Using definition 2.1 for reproductive distributions we can see that if the mixing 

distribution is reproductive a rescaling of the random variable does not affect the 

distributional form of the resulting  mixed Poisson distribution but does affect  the parameters. 

In this case the probabilities of the mixed Poisson distribution are easily obtainable. The 

gamma and the inverse Gaussian distributions are some well known examples of reproductive 

distributions commonly used as mixing distributions. A problem arises when the mixing 

distribution is not reproductive. 

 We will distinguish between the cases  t<1 and t>1. 
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 a) The case when t < 1 

When t<1, the Poisson distribution with parameter tλ can be represented as a compound 

Poisson distribution with a Bernoulli distribution as the summand distribution.  It is known 

(e.g. Douglas, 1980) that for compound distributions the probability generating function of the 

compound distribution is the probability generating function of the simple distribution 

evaluated at the probability generating function of the summand distribution. More formally if 

G(z), S(z) and Q(z) are the probability generating functions of the compound, the simple and 

the summand distributions respectively we have that 

( )G z S Q z( ) ( )=  

which for the compound Poisson case reduces to (2.4) 

Assume that Q z q pz( ) = + , q=1-p, i.e. the probability generating function of the Bernoulli 

distribution, where p represents the probability of success. Then, the resulting compound 

Poisson distribution has probability generating function given by 

( )[ ]G z p z( ) exp= −λ 1  

i.e. a Poisson distribution with parameter pë. According to the notation introduced above we 

may write the model as: 

Poisson Bernoulli p( ) ( )λ ∨  

Using this result we can rewrite the model Poisson p g( ) ( )λ λ
λ
Λ   as  

[ ]Poisson Bernoulli p g( ) ( ) ( )λ λ
λ

∨ Λ  

and hence (from Proposition 1.3) as 

[ ]Poisson g Bernoulli p( ) ( ) ( )λ λ
λ
Λ ∨ , 

This shows that the model can be represented as a compound  mixed Poisson distribution. 

Standard techniques for recursive evaluation of the probabilities for compound mixed Poisson 

distributions are known (see, e.g.,  Hesselager, 1994a,1996). So the calculation of the 

probabilities is easy (though tedious in some circumstances). 

 

b) The case when t > 1 

 If t > 1 the compound Poisson representation of the simple Poisson distribution fails 

and no results are available for facilitating the evaluation of the probabilities. For this very 

interesting case there are not  known  results which can help in calculating the probabilities. 
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Deriving helpful  relations for calculating the probabilities in this case remains an open 

problem. 

 

  

2.3 Mixed Poisson Distributions 
 The aim of this section is to present and bring together a large number of mixed 

Poisson distributions which have appeared in the literature. We will consider only 

distributions with a continuous mixing distribution. Discrete mixing distributions have also 

been considered in the literature, but they will not be treated in detail.  As will be seen  a large 

number of mixed Poisson distributions exist. However, their use is limited and only a few of 

them have been studied in depth and have well understood properties. Further research for 

classifying and comparing all these distributions is necessary. We will restrict ourselves to 

presenting the distributions. Numerical techniques are in some cases necessary for the 

calculation of the probability  function, combined with  a recursive scheme. The moment 

estimates of all these distributions are usually straightforward, because of the property of the 

mixed Poisson distribution which relates the moments of the mixing distribution with those of 

the mixed distribution. 

 

2.3.1 The Negative Binomial Distribution 
 The negative binomial distribution is the best  known mixed Poisson distribution, and 

a widely used discrete distribution. Its original derivation as a mixed Poisson distribution was 

obtained by Greenwood and Yule (1920) by letting the parameter è of a Poisson distribution to 

follow a Gamma distribution.  

 If we assume that è follows a Gamma distribution with parameters á and b, given in 

(1.5), then X follows a negative binomial distribution with parameters á and b with probability  

function given by 

P x x b
x b a

a
a

x b

( ) ( )
! ( )

= +
+





 +







Γ
Γ

1
1 1

     x=0, 1, ....,  á , b >0 . (2.22) 

 A simple recursive relation for calculating the probabilities is: 

P x x b
x a

P x( ) ( )+ = +
+ +







1
1

1
1

  for x=0,1,.... 
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starting with    P a
a

b

( )0
1

=
+







. 

 The negative binomial is the only mixed Poisson distribution for which the ratio 

( ) ( )
( )

x P x
P x

+ +1 1  is linear with respect to x. This may be used as a quick check of whether the 

assumption of a negative binomial distribution is plausible. 

 We note that (2.22) is only one out of several different parameterisations of the 

negative binomial distribution which flourish in the literature. It can be easily shown that 

E X
b
a

( ) =  and Var X b
a

b
a

( ) = + 2 . The negative binomial distribution has been used as an 

alternative to the Poisson distribution when some overdispersion is present in the dataset. The 

tractability of its probability  function before the massive use of computer was the main reason 

for the use of this distribution to describe overdispersed data in many applications and in a 

variety of scientific fields.  Moment estimates are easily derived as in all the mixed Poisson 

distributions. However they are not efficient (Sichel, 1951) or they may not exist. ML 

estimation has been described in  Ross and Preece (1985)  and Piegorsch (1990) among 

others. 

 As will be seen in the sequel,  the negative binomial distribution also arises as a 

special case of some other mixed Poisson distributions. Its fundamental role in the theory of 

Poisson mixtures led many authors to introduce various generalisations of it. 

 A lot of research has been carried out for the negative binomial distribution. In 

Johnson et al. (1992) the reader can find a long review for the negative binomial distribution.  

 If b=1, then the mixing distribution is a Gamma (á,1) distribution which is the 

exponential distribution with probability density function 

g ae a( )θ θ= −     , á,è>0    (2.23) 

Then,  the  resulting  mixed Poisson distribution is the geometric distribution with probability  

function given by 

P x a
a a

x

( ) =
+





 +




1

1
1

,  x=0,  1, . . . ,  á>0.   (2.24) 

 The geometric distribution is also a well examined discrete distribution. It is always J-

shaped with mode at 0.  
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 The negative binomial is an infinitely divisible distribution and hence it can be written 

as a compound  Poisson distribution. Quenouille (1949) showed  that if the summand 

distribution is the logarithmic distribution with probability  function given by 

P x

a
x

a

x

( )

( )
ln( )=

−
− −










1
1

θ
θ

  

, , ,...

,

x

x

=

=

1 2

0      

  

where 0 1≤ <θ,a , the resulting compound Poisson distribution is the negative binomial 

distribution.  Note that the logarithmic distribution described in Johnson et al. (1992) has 

support to the positive integers, i.e.  á=0. The negative binomial can also be derived via the 

so-called Polya process. This is a mixed Poisson process with infinitesimal risk given in 

(1.15). 

  

2.3.2 The Poisson-Lindlay Distribution 
     Sankaran (1970)  proposed  the  Poisson-Lindlay  distribution  for  the analysis of count 

data. The distribution arises  from  the  simple  Poisson distribution if the parameter è follows 

the Lindlay distribution having probability density function 

g p
p

e p( ) ( )θ θ θ=
+

+ −
2

1
1  ,  è,p>0. 

 The resulting Poisson-Lindlay distribution has probability function given by 

P x p p x
p x( ) ( )

( )
= + +

+ +

2

3

2
1

,  x=0,  1,  ....,  p>0 

 The mean and the variance of the Poisson-Lindlay distribution are given by   

E X p
p p

( ) ( )
( )

= +
+
2
1

  and  Var X p p p
p p

( )
( )

= + + +
+

3 2

2 2

4 6 2
1

 . 

 A simple recursive formula for calculating the probabilities is the following  

P x P x p x
p p x

( ) ( ) ( )
( )( )

+ = + +
+ + +

1 3
1 2

  with P p p
p

( ) ( )
( )

0 2
1

2

3= +
+

 . 

 Despite its simplicity, this distribution has not been used in applications. Sankaran 

(1970) did not provide an ML estimate for the parameter p  because of the computational 

difficulty to do so. However, the moment estimate is given by 
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( )
!

( )
p

x x x
x

=
− − + − +1 1 8

2

2

 

where, as usual, x denotes the sample mean.  

 It is interesting to note that the Lindlay distribution can be represented as a mixture of  

a Gamma and an exponential distributions, thus: 

π π    Gamma p Exponential p( , ) ( ) ( )2 1+ −  

where π =
+
p

p 1
. This implies  that the Poisson-Lindlay distribution can be considered to be a 

specific mixture of a negative binomial distribution with a geometric distribution. 

 The Poisson-Lindlay distribution is an one-parameter mixed Poisson distribution 

which can take a lot of shapes. For specific choices of p, the distribution can have a very long 

right tail. 

 

 

2.3.3 The Poisson - Linear Exponential Family Distribution 
 Sankaran (1969) discussed the linear exponential family of continuous distributions as 

the mixing distribution of a mixed Poisson distribution. The linear exponential family 

contains distributions  with probability density function 

g p p h( ) ( ) exp( ) ( )θ β θ θ= −  

with h( )θ ≥ 0  and  depending only on è and with p ranging over an interval on the real line, so 

that â(p) is finite and differentiable as many times as required, where 

1
β

θ θ θ
( )

exp( ) ( )
p

p h d= ∫  . 

Then, the resulting mixed Poisson distribution has probability  function given by 

P x p
x p

px( ) ( )
! ( )

( )=
+

+β
β

µ
1

1 , 

where ìx(p) denotes the x-th moment about the origin of the linear exponential family with 

parameter p. This representation requires the existence of the moments of all orders (which is 

equivalent to the differentiability of â(p)). Sankaran (1969) showed that for this family of 

distributions the moment estimates are close to the ML estimates and thus they can be used 

since they are easily obtainable. 
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 The Poisson-Lindlay distribution is a member of this family and so is the geometric 

distribution. Another member of this one parameter family is the distribution considered by 

Kling and Goovaerts (1993). They used the name Linear exponential distribution, for the 

distribution with probability density function given by 

[ ]g
p p

p
e p( )

( )
θ

θ θ=
+ +
+

−1 1
2

 . 

The resulting mixed Poisson distribution has probability  function given by 

 P x p x
p p p

x

( ) ( )
( )( )

= +
+ + +









2 2
1 2

1
1

 . 

A simple recursive form for the probabilities is 

 

P x x
p x

P x( ) ( )
( )( )

( )+ = +
+ +

1 3
1 2

   with  P p
p p

( )
( )( )

0 2
1 2

2

=
+ +

. 

This distribution can also be written as a specific mixture of a negative binomial and a 

geometric distribution since the linear exponential distribution is of the form 

π π    Gamma p Exponential p( , ) ( ) ( )2 1+ −  

with π = +
+

p
p

1
2

. Comparing this distribution to the Lindlay distribution one may observe that  

they both are mixtures of the same distribution but with different mixing proportions. 

 The generalisation to a 2- parameter family of distributions is obvious, by considering 

that the mixing distribution is of the form 

g p a p h( ) ( , ) exp( ) ( )θ β θ θ= − . 

 This family of distributions contains the gamma distribution as well as many other 

distributions. 

 

 

2.3.4 The Poisson-Lognormal Distribution 
 The lognormal distribution can also serve as a mixing distribution. The lognormal has 

more skewness than the Gamma distribution and thus it is more adequate for skew 

populations. Note that there are not many skewed distributions which can serve as mixing 

distributions and thus the lognormal distribution can fill this gap.  So, if we assume that 
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( )g
m

( ) exp
ln

θ
θσ π

θ
σ

= −
−









1
2 2

2

2 , 

the mixed Poisson-lognormal distribution has probability  function given by 

( )P x
x

m
dx( )

!
exp

ln
= −

−
−











−
∞

∫
1

2 2
1

2

2
0σ π
θ

θ
σ

θ θ  .  (2.25) 

Unfortunately, the above probability  function cannot be written in a closed form and this is 

the main reason for the limited use of this distribution. The numerical calculation for the 

probabilities and the inaccuracy of such approximation prohibits the wide use of the Poisson-

lognormal distribution. Bulmer (1974) gave the following approximation for values of x≥10 

( ) ( )P x
x

x m
x

x m
x m( ) exp

ln ln
ln≅ −

−







 +

−
+ − −

























1
2 2

1 1
2

1
2

2 2

2

2σ π σ σ σ
 . 

This was based on a  Taylor expansion of second order of an expectation of a Gamma variate. 

Such approximations work satisfactorily for species abundance models where the Poisson-

lognormal has found interesting applications (see, e.g., Cassie, 1964, Kempton and Taylor, 

1974, among others). For count data, likely to be met in practise, the approximations are not 

sufficient and this makes the use of this distribution problematic. 

 Brown and Holgate (1971) presented tables of the Poisson-lognormal distribution for 

selected values of the parameters. 

 Cassie (1964)  gave an interesting model for the Poisson-lognormal distribution. He 

supposed that some factors or covariates affect the values of the parameter of the simple 

Poisson distribution. So, if the parameter è can be modelled as 

θ = + + +exp( ... )a X a X a Xk k1 1 2 2  where X i , i=1, 2,. . . , k follows a normal distribution, è 

follows a lognormal distribution giving rise to the Poisson-lognormal distribution.  Cassie 

tried to describe the distribution of the number of  insects in an area via a mixed Poisson 

distribution. He assumed that the Poisson parameter can be modelled using the exponential 

model described with covariates the temperature and the existence or not of some substances 

and other. 

 The application of the Poisson-lognormal distribution can be based on the moment 

estimates of the parameters. Even though the probability  function of the Poisson-lognormal 

distribution is not available its moments can be easily obtained from the moments of the 

lognormal distribution. 
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2.3.5 Poisson-Confluent Hypergeometric Series Distribution 
 Bhatacharya (1966)  proposed a family of distributions where the probability density 

function is expressed through the confluent hypergeometric function. A hypergeometric series 

is defined in general as 

q p q p

r r
q

r

r r
p

r

r

r

F a a a b b b z
a a a
b b b

z
r

( , ,..., ; , ,..., ; )
...
... !

( ) ( ) ( )

( ) ( ) ( )1 2 1 2
1 2

1 20

=
=

∞

∑  , (2.26) 

where a a a a r a r
a

r( ) ( )... ( ) ( )
( )

= + + − = +1 1 Γ
Γ

. 

 Depending on the values of p and q we may define several hypergeometric series. If 

we suppose that the mixing distribution is given by  

[ ]g b b
p

a M a b
a p

p( ) ( )
( )

exp ( ) ( , , )θ θ θ θ= + − +
−

−1 1
1

1

Γ
 , a b, ,θ > 0  , 

 

where the  M a b c F a b c( , , ) ( , , )=1 1  is called as the confluent hypergeometric function of the 

first kind, then the resulting mixed Poisson distribution has probability  function given by 

 

P x b b
p x

x p
a

F a p x p b
a p

p x( ) ( )
( ) !

( )
( )

( , , , / ( ))= + +
+

+ +
−

+

1
2

1 2
1

2 1Γ
Γ . 

 

 For á=p the negative binomial is obtained. Because of the complicated form of such 

distributions the applicability is limited.  

 Recently, Ong (1996) derived a member of this family of distributions which is also 

the convolution of a negative binomial and a compound generalised hypergeometric factorial 

moment distribution. 

 

  

 2.3.6 The Poisson-Generalised Inverse Gaussian Distribution 
 Another mixed Poisson distribution which has been used in a variety of applications is 

the Poisson-generalised inverse Gaussian distribution. This distribution arises if the mixing 

distribution is the generalised inverse Gaussian distribution with parameters á, b and ã, 

denoted as GIGD (á, b, ã ). The generalised inverse Gaussian distribution has probability 

density function given by 
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( )
( )g

a b
K ab

b a( )
/

exp //

θ
θ θ θγ γ

γ

= − +





−2 1

2 2
  ,   

where K ax ( )  is the modified Bessel function of order x. The domain of the parameters is 

more complicated.  In general, γ ∈ℜ , and á,b >0. However  for positive ã, b may be 0, and 

for negative ã , á is allowed to be 0. Then, the resulting Poisson-generalised inverse Gaussian 

distribution has probability  function given by 

( )
( )P x a

a
b

a

K a b

x K ab

x
x( )

( )

!

/ /

=
+





 +







++

2 2

22 2γ
γ

γ

  . (2.27) 

 This distribution was first considered by Good (1953). Sichel (1974,1975,1982) gave a more 

detailed description of this distribution, and Atkinson and Yeh (1982) and Stein et al. (1987) 

described its properties as well as multivariate analogues and ML estimates for the 

parameters. 

 The existence of the modified Bessel function in the probability  function makes the 

direct evaluation of probabilities difficult. However using the following recursive form the 

probabilities are easily obtainable: 

bP x x x a P x x x P x( ) ( )( ) ( ) ( ) ( )− = + + + − +1 1 2 1 2 γ  for  x≥1 

This recursion is unstable and it has to be used with caution. P(0) and P(1) have to be 

calculated numerically. 

 The generalised inverse Gaussian distribution is a conjugate distribution for the 

Poisson parameter. So, if the prior distribution is a GIGD (a,b,ã) distribution the posterior 

distribution of è|x is a GIGD (a+2,b,ã+x) distribution.  

 This distribution contains as a special case the negative binomial distribution for b=0. 

Another very interesting special form is the inverse Gaussian distribution which is obtained 

when ã=-1/2. In this case the resulting Poisson-inverse Gaussian distribution is much 

simplified and it will be discussed in the sequel. Bivariate extensions are described in 

Kocherlakota and Kocherlakota (1992). Another limiting case of the generalised inverse 

Gaussian distribution  distribution is the inverse Gamma distribution which stems from the 

generalised inverse Gaussian distribution  when ã<0 and á=0. The use of Poisson- generalised 

inverse Gaussian distribution distribution is limited mainly because of its complicated form. 

The Poisson-inverse Gaussian, however, is a widely used member of the family of mixed 

Poisson distributions. 
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2.3.7 The Poisson-Inverse Gaussian Distribution 
     If we assume that the distribution of è is  the  inverse  Gaussian distribution, i.e. its 

probability density function is given by: 

  g( ) exp
( )θ σ

πθ
σ θ µ

µ θ
= − −








2 23

2

2    ì, ó, è > 0, 

 then  X  follows  the  Poisson-inverse Gaussian  distribution. Its  probability  function  is 

given by (2.27) for ã=-1/2. This form is very complicated, but, fortunately, simple  recurrence   

relations exist for the calculation of the probabilities. So we  can  calculate  the  probabilities 

using the following iterative scheme: 

( )P( ) exp0 1 1 2= − +










µ
β

β  ,   P P( ) ( )1
1 2

0=
+
µ

β
   and  

P x
x

P x
x x

P x( ) ( )
( )( )

( )=
+

−





− +
− +

−
2

1 2
1 3

2
1

1 1 2
2

2β
β

µ
β

 for x=2, 3, ... 

 

where the parameter  â relates to the parameters of the mixing  distribution through  the 

formula â=ì2 /ó. The mean and the variance are E X( ) = µ  and Var X( ) ( )= +µ β1 . This 

distribution is infinitely divisible and hence it can also be obtained as a compound Poisson 

distribution, when the distribution of the Xi’s is the extended negative binomial (see, Engen, 

1974) with probability  function given by 

 P x
x b

b

x
b

n

( )
( . )

! ( . )
=

−
+







−
+







Γ

Γ

0 5 2
1 2

2 0 5 1 1
1 2

  , x=1,2, ... 

 Sichel (1975)  showed that the sum of i.i.d. Poisson-inverse Gaussian random variates 

is again a Poisson-inverse Gaussian random variate, due to the reproductive property of the 

inverse Gaussian distribution. (See Folks and Chikara, 1978). Ord and Whitmore (1986) and 

Willmot (1987) introduced this distribution in the context of species abundance models and 

actuarial applications respectively. Dean et al. (1989) described a Poisson-inverse Gaussian 

regression model.  

 Kaas and Hesselager (1995) tried to compare three mixed Poisson distributions, 

namely the negative binomial , the Poisson-lognormal and the Poisson-inverse Gaussian 
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distribution. The comparison is made on the mixing distribution since as already seen the 

behaviour of the mixing density g is strongly related to the behaviour of the MP(g). They 

showed that the Poisson-lognormal has heavier and longer tails, as well as more skewness and 

kurtosis for the case of the same mean and variance. Unfortunately, more formal comparisons 

of a larger number of  mixed Poisson distributions are not known and it remains an open 

problem to try to compare their behaviour.  

 

2.3.8 The Poisson- Inverse Gamma distribution 
 If we assume that the mixing distribution is a inverse Gamma distribution with 

probability density function given by 

g b e
a

a b

a( )
( )

/

θ
θ

θ

=
−

+Γ 1  ,    (2.28) 

the resulting Poisson-Inverse Gamma distribution has probability  function given by 

( )
P x

K b

x a
bx a x a( )

! ( )
( )/= − +

2
2 2

Γ
 

(Willmot, 1993). The recursive formula for evaluating the probabilities is given by: 

 

( )( ) ( ) ( )( ) ( ) ( )x x P x x x a P x bP x+ + + = + + − + +1 2 2 1 1 1 . 

 

The numerical calculation of the first two probabilities is needed in order to obtain the 

probability  function of this distribution. Applications of this distribution are not known. Note 

that the Poisson-inverse Gamma is a special case of the Poisson-generalised inverse Gaussian 

described in the previous section. 

 

 2.3.9 The Poisson - Truncated Normal Distribution 
 The normal distribution itself is not a plausible choice as the mixing distribution 

because of its support in the negative axis. The truncated normal distribution, however, can be 

considered as a  mixing distribution. In this case the probability density function of è is given 

by 

g( )
( / )

exp ( )θ
µ σ σ π

θ µ
σ

= − −







1
2 2

2

2Φ
  è≥0,  ì,ó >0, 
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where Φ( )x  is the cumulative distribution function at x of the standard normal distribution. 

Note  that ì and ó are the mean and the standard deviation of the untruncated normal. The 

probability  function of the resulting Poisson-truncated normal distribution cannot be written 

in a closed form. However, applying the method discussed in Willmot (1993) a recursive 

relation can be found. So, we can calculate it by: 

P( ) exp( / )0 2

2

2
2=

−















− +
Φ

Φ

µ σ
σ
µ
σ

µ σ ,  P P( ) ( ) ( ) exp( / )
( / )

1 0 2
2

2 2
2 2

= − + −
−

µ σ σ µ σ
σ π µ σΦ

 

 

( )P m
P m P m P m

m
( )

( ) ( ) ( )
( )

+ =
− − +

+
1

1
1

2σ µ
  for m=2,3,. . . 

 

The distribution was defined in Patil (1964.  The shape of  this distribution resembles well the 

bell-shape of the normal distribution. 

  The Hermite  distribution,  examined  in  Kemp  and  Kemp (1965)   can   be regarded 

as a compound Poisson distribution,  with a  binomial distribution with n=2 as the summand 

distribution.  Formally,  the  distribution  can  also  be regarded as a mixed Poisson, with 

mixing distribution the normal distribution. This result lacks physical  interpretation  since  

the  parameter  of  the  Poisson distribution has to be positive. However, we may assume that 

if the parameters of the normal distribution give very small probability at the negative axis, 

the normal distribution and the normal distribution truncated at 0 will be almost identical and 

hence the Hermite distribution in this case is very similar to the Poisson-truncated normal. 

The Hermite distribution has probability  function given by 

 ( ) ( )
[ ]

P x a a
a a
x j j

x j j

j

x

( ) exp ( )
! !

/

= − +
−

−

=
∑1 2

1
2

2

0

2

2
 ,  x=0, 1, ....,  á1  , á2  >0 , 

where,  á1= 2ì- ó2  and  á2 = (ó2 -ì )/2, and [a] is the integer  part  of  a. The probabilities can 

be easily calculated via the following iterative scheme: 

P(0)= exp {-( á1 + á2)} ,  P(1)= P(0) á1  and  

 

P x a P x a P x
x

( ) ( ) ( )+ = + −
+

1 2 1
1

1 2  ,  for x>1 . 
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 Multivariate extensions of the Hermite distribution can be found in Kocherlakota and 

Kocherlakota (1992). 

   

2.3.10 The Generalised Waring Distribution 
 Another interesting member of the family of mixed Poisson distributions is the 

generalised Waring distribution (GWD) proposed by Irwin (1968)  to describe the frequency 

distribution of the number of accidents. It can describe  data sets with a long right tail, and it 

has a larger tail than the negative binomial from which can be obtained via mixing. The 

probability  function of the generalised Waring distribution is 

P x a c b c a x b x
a b c a b c x x

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) !

= + + + +
+ + +

Γ Γ Γ Γ
Γ Γ Γ Γ

, x=0,1,..., á,b,c>0  . (2.29) 

  

A simple recursive scheme is available for efficient calculation of the probabilities. This 

scheme is 

P x a x b x
x a b c x

P x( ) ( )( )
( )( )

( )+ = + +
+ + + +

1
1

  , x=0,1,... 

Only  P(0) is needed to be evaluated numerically. To do so we need to evaluate the Gamma 

functions. 

 Irwin (1968) derived the generalised Waring distribution in the context of accident 

theory by starting from a Poisson distribution. The parameter ë of the Poisson distribution 

follows itself a Gamma distribution with parameters p and b representing thus the difference 

in proneness of different individuals. This results in a negative binomial distribution with 

parameters b and p, given in (2.22).  He allowed  the parameter p of the negative binomial to 

follow a Beta type II distribution with parameters á and c, given in (1.7), representing in this 

way the difference in the liability of different individuals. Then  he obtained the generalised 

Waring distribution. This derivation can be represented as 

Poisson Gamma p k BetaII a c
p

( ) ( , ) ( , )λ
λ
Λ Λ  

Since for a random variable X following the BetaI(á,b) distribution the random variable 

X/(1+X)  follows the BetaII(á,b) distribution the generalised Waring distribution can be 

represented as 

Poisson Gamma p k BetaI a c
p p

( ) ( , ) ( , )
/( )

λ
λ
Λ Λ

1−
 

The generalised Waring distribution is also a mixed negative binomial distribution of the form 
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NegativeBinomial b p BetaII a c
p

( , ) ( , )Λ    

or equivalently 

NegativeBinomial b p BetaI a c
p p

( , ) ( , )
/(1 )
Λ

−
 

This stems from the associative property of mixtures given in section 1.2. It is worth noting 

that for the negative binomial distribution defined in (2.22)  the Beta type II distribution is 

conjugate for the parameter á. In other words  if the prior is a BetaII (á,c) then the posterior is 

BetaII(a+b,c+x). 

 The assumptions of Irwin separated the notion of accident proneness in two 

components. The first refers to the person’s  predisposition to accidents and it is called 

proneness and the second refers to  external factors which make an individual be more 

probable to incur an accident and it is called liability. Such representation  enables one to 

separate the total variance of the data in three factors: randomness, proneness and liability. 

Unfortunately, the symmetry of the generalised Waring distribution about the parameters á 

and b, makes our assumptions for the model of limited practical use. Thus we can separate the 

total variance in three components but we cannot assign the proportion of variance to 

proneness or to the liability (see, e.g.  Xekalaki, 1983a).  

 Xekalaki (1984a,b), in order to overcome this difficulty, defined a bivariate 

generalised Waring distribution and  used data from two successive periods. Under such a 

model it is possible to distinguish between proneness and liability, based on the initial 

assumptions for the model.  

 Irwin (1975) examined in depth some of the properties of the generalised Waring 

distribution. The infinite divisibility of the generalised Waring distribution was shown in 

Xekalaki (1983b).  Estimation techniques are discussed in Xekalaki (1987). Thus the 

generalised Waring distribution can be represented as a compound Poisson distribution. The 

discrete distribution giving rise to the generalised Waring distribution as a compound Poisson 

is not known in closed form. Its probabilities can be obtained via the recursive scheme given 

in (2.8). 

 

 A more formal derivation of the generalised Waring distribution as a mixed Poisson 

distribution requires the mixing distribution to be of the form: 
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g b c
a b c

e t
t

dta t
a c

b c( ) ( )
( ) ( ) ( ) ( )

θ θ θ= +
+

=− −
+ −

+

∞

∫
Γ

Γ Γ Γ
1

1

0 1
 

= + + + − −−Γ Γ
Γ Γ Γ

Ψ( ) ( )
( ) ( ) ( )

( , , )b c a c
a b c

a c b aaθ θ1 1  , 

where Ø(a,c,x) is the confluent hypergeometric series of the second kind. This distribution is 

known as  gamma product ratio distribution (Sibuya, 1979) and  can be obtained by mixing a 

Gamma distribution with a Beta type II distribution. More formally as 

Gamma p k BetaII a c
p

( , ) ( , )Λ . 

Its name is based on the fact that if Xi follows a Gamma mi( , )1  distribution, i=1,2,3, and 

m a1 = ,  m b2 =  and m c3 = ,  then the distribution of the random variable Y X X
X

= 1 2

3

follows 

the Gamma product ratio distribution.  Devroye (1993) used this representation for simulating 

random variates from the generalised Waring distribution. 

 The r-th factorial moment is given by 

[ ]E X X X r a b c r
a r b r c

( )...( ) ( ) ( ) ( )
( ) ( ) ( )

− − + = + + −
− + − +

1 1 1 1
1 1

Γ Γ Γ
Γ Γ Γ

  ,  c>r. 

 

 Some special forms of the generalised Waring distribution are the simple Waring 

distribution, discussed in an ecological application by Pielou (1962) and in a biometrical 

application by Weinberg and Gladen (1986). The simple Waring distribution results from the 

generalised Waring distribution when b=1 and has probability  function of the form 

P x c a c a x
a a c x

( ) ( ) ( )
( ) ( )

= + +
+ + +

Γ Γ
Γ Γ 1

 . 

 Pielou (1962) and Weinberg and Gladen (1986)  derived the Waring distribution by 

mixing the Geometric distribution given in (2.24) with a Beta type II distribution. 

 Another special form of the generalised Waring distribution (and the Waring 

distribution) is the Yule distribution obtained from the generalised Waring distribution when 

b=á=1. Its probability  function is given by 

P x c c x
c x

( ) ( ) !
( )

= +
+ +

Γ
Γ

1
2

 . 

The Yule distribution is a one-parameter distribution with very long right tail and it has been 

used for describing the income distribution (see Simon, 1955, Xekalaki, 1984c, Panaretos, 

1989). 
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2.3.11 The Poisson -Beta Distribution 
 The Beta distribution (in a variety of forms) can also be regarded as a mixing 

distribution.  Kempton (1975), in a species abundance model, considered a generalised Beta 

distribution as the mixing distribution. The distribution used  in Kempton (1975) under the 

name full Beta distribution is the so-called generalised Pareto distribution (Willmot, 1993) 

with probability density function given by 

( )
g a b

a b

a b

a b( ) ( )
( ) ( )

θ µ θ
µ θ

= +
+

−

+

Γ
Γ Γ

1

 ,θ µ, , ,a b > 0   . (2.30) 

 

then the resulting Poisson-generalised Pareto distribution has probability  function given by 

P x a b x b
b a x

b x x a
x

( ) ( ) ( )
( ) ( ) !

( , , )= + + + + −µ µΓ Γ
Γ Γ

Ψ 1  . 

Note that for µ=1 in (2.30)  the Beta Type II distribution is obtained. For b=1 the simple 

Pareto distribution is obtained. We will present the Poisson-Pareto distribution in the sequel. 

The generalised Pareto distribution can be obtained as a Gamma mixture of the form  

Gamma p b Gamma a
p

( , ) ( , )Λ µ  

The recurrence relations for evaluating the probabilities are (see Willmot, 1993): 

( )( ) ( ) ( )( ) ( ) ( ) ( )x x P x x x a P x x b P x+ + + = + + − − + + +2 1 2 1 1 1µ µ . (2.31) 

The direct evaluation of the first two probabilities is necessary. Ong and Muthaloo (1995) 

used a slightly different  parameterisation. 

 The r-th factorial moment  ì(r)   of this distribution is: 

µ µ( )
( ) ( )

( ) ( )r
rb r a r

b a
= + −Γ Γ

Γ Γ
  ,   α≥r . 

  

Using the associative property of mixtures the Poisson-generalised Pareto distribution is also a  

mixed negative binomial distribution of the form 

 

NegativeBinomial p a Gamma b q
a

( , ) ( , )Λ . 

 Kempton (1975) showed that for some values of the parameters this distribution tends 

to the negative binomial distribution. The distribution differs from the generalised Waring 

distribution in that a Gamma distribution is considered for the parameter of the negative 
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binomial rather than a Beta distribution.  Since the Beta distribution has a longer right tail than 

the Gamma distribution  this distribution has shorter tails than the generalised Waring 

distribution. 

 A special case of the full Beta model is the Beta type II distribution which results from 

the full Beta distribution by setting µ=1. Holla and Bhattacharya (1965) described this 

Poisson-Beta type II distribution as well as multivariate analogues. 

 For the Poisson-BetaII distribution, the recursive scheme given in (2.31) may be used 

with µ=1.  Numerical evaluation of the first probabilities is needed. Kempton (1975) also 

discussed the case when p=0 in the full beta distribution. This always  results in a J-shaped 

distribution which tends to the logarithmic series distribution. Willmot (1986) discussed a 

mixed Poisson distribution with a mixing distribution of the form  

g b
B a b

a b

a b( ) ( )
( , )

θ θ µ θ
µ

= −− −

+ −

1 1

1  , 0 < è <ì 

for ì=1 we obtain the Beta Type I distribution. Such a mixing distribution restricts the range of 

the parameter of the Poisson distribution. Gurland (1958) first  described the Poisson-Beta 

type I distribution. (See also Holla and Bhattacharya, 1965). The resulting mixed Poisson 

distribution has probability  function given by 

( )P x B a x b
B p q x

M a x a x b
x

( ) ( , )
( , ) !

, ,= + + + + −µ µ  ,  (2.32) 

where M(a,b,c) is the confluent hypergeometric series of the first kind. The recursive formula 

for the calculation for the probabilities is 

( ) ( )x x P x x x a b P x x a P x( ) ( ) ( ) ( )+ + = − + + + − + − −1 1 1 1 1µ µ  

which is unstable. Gurland (1958) suggested the calculation of the probabilities from their 

probability  function, using the infinite series representation of the hypergeometric function, 

evaluated with a large number of summands. 

 Beall and Rescia (1953) proposed the above distribution with á=1, which is a much 

simpler form. (See also Willmot, 1986). 

 

2.3.12 The Poisson-Uniform Distribution 
 Another mixed Poisson  distribution is the Poisson-uniform distribution, which can be 

obtained from (2.32) for á=b=1. This has as mixing distribution a uniform distribution in the 
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interval [0,ì]. A more general uniform mixing distribution was considered by Bhattacharya 

(1967). He used the uniform distribution in the interval [á,b] i.e. 

g
b a

( )θ =
−
1   , 0<á <è <b . 

The resulting distribution has probability  function of  given by 

P x
x b a

e dx

a

b

( )
!( )

=
−

−∫
1 θ θθ  

The integral may be represented using the incomplete gamma function. However, a simple 

recursive formula is available which reduces the effort for calculating the probabilities. Thus, 

we obtain 

P x P x e a e b
x

a x b x

( ) ( )
( )!

+ = + −
+

− + − +

1
1

1 1

  with ( )P
b a

e ea b( )0 1=
−

−− −  

It is interesting that in the above recursive formula the difference between two Poisson 

distribution with parameters á and b is added at each step. In spite of its simplicity this 

distribution has not been used in applications, mainly because the uniform assumption does 

not seem plausible. Bhattacharya (1967) showed that if the mixing distribution is a uniform 

distribution in the interval [a,b], the resulting posterior distribution is a Gamma distribution 

truncated at the points a and b from the left and from the right respectively.  This implication 

advises the use of the Gamma distribution as the mixing distribution by assuming that in the 

start of their lives individuals possess a uniform distribution but as time passes the distribution 

describing the inhomogeneity of the population is a gamma distribution. (Recall that the 

Gamma distribution is  conjugate for the Poisson distribution) .  

 Assuming as a mixing distribution the right-truncated Gamma at point b, with 

probability density function: 

g
a a b

a a

( ) exp( )
( ){ ( , )}

θ µ θ θµ
µ

= −
−

−1

1Γ Γ
 , è>b , 

we obtain the Poisson-truncated Gamma distribution with probability  function given by 

( )
{ }P x x a

a
a x b

a

a x( ) ( )
( )

( , ( )= +
+

− + ++

µ
µ

µΓ
Γ

Γ
1

1 1 . 

Willmot (1993) gave the following recursive formula for the probabilities 

( )( ) ( ) ( ) ( ) ( )
( )!

µ + + + = + +
+

+ −

1 1 1
1

1

x P x x a P x b b e
x

x b

Γ   . 
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2.3.13 The Poisson-Modified Bessel Function of the Third Kind Distribution 
  Ong and Muthaloo (1995) described another mixed Poisson distribution whose 

probability  function is expressed through  the confluent hypergeometric function. In this 

distribution the mixing distribution is the mixture of a Gamma (a,p) distribution when a 

follows an inverse gamma distribution with probability density function defined in (2.28). 

This mixing distribution  is known  as the modified Bessel function of the third kind because 

of the presence of the relevant modified Bessel function in its probability density function. 

This distribution can be formally written as 

Gamma p a InverseGamma b c
p

( , ) ( , )Λ  

and its form as a mixed Poisson distribution is  

Poisson Gamma p a InverseGamma b c
p

( ) ( , ) ( , )λ
λ
Λ Λ  . 

This distribution is also a mixed negative binomial distribution, with the inverse Gamma 

distribution as mixing distribution, i.e. it can be represented as 

 

NegativeBinomial p a InverseGamma b c
a

( , ) ( , )Λ . 

Then the resulting mixed Poisson distribution has probability  function of the form 

 

 P x c a x
xB x b a

a x a b
x

( ) ( )
( , ) ( )

( , , )= + + + −Γ
Γ

Ψ 1 1 ,   (2.33) 

The useful recurrence relation for the probabilities of this distribution is: 

( ) ( )( )x x P x x x a b c P x b x x a P x( ) ( ) / ( ) ( )+ + = − + + + − + − + − −1 1 2 1 1 1 1 1 . 

The r-th factorial moment  ì(r)   of this distribution is 

 

µ ( )
( )

( )
( )

( )r
ra

a r
b

b r
c= +

+ −
+

+ −
Γ

Γ
Γ

Γ
1

1
1

1
 . 

Ong and Muthaloo (1995)  showed that this distribution is very flexible for describing long 

tailed data. 

 We would like to point out the interesting resemblance between three members of the 

family of the mixed Poisson distributions, namely between the generalised Waring 

distribution given in (2.29), the Poisson-generalised Pareto given in (2.30) , and the Poisson-

modified Bessel function of the third kind distribution given in (2.33). The connection is that 

all these distributions arise from mixing distributions which are mixed Gamma distributions 
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with a Beta, a Gamma and an inverse Gamma mixing distributions, respectively. This 

similarity can help us treat all these three distributions in a unified manner. For example, the 

property of decomposition of variance, known for the generalised Waring distribution  can be 

also achieved for the other two distributions. These distributions are also mixed negative 

binomial distributions. 

  

2.3.14 Dellaporte Distribution 
 The Dellaporte distribution  is the distribution of the convolution of a Poisson 

distribution with a negative binomial distribution. Ruohonen (1988) showed that it is a mixed 

Poisson distribution with mixing distribution a three parameter gamma distribution, namely a 

shifted Gamma distribution with probability density function given by 

 

( ) ( )[ ]g a
b

c a c
b

b( )
( )

expθ θ θ= − − −−

Γ
1 , è>c. 

Note that for c=0 we obtain the Gamma distribution. The probability  function of the resulting 

Dellaporte distribution is given by: 

P x c e
x n

n b
n b a

a
a

x n c n b

n

x

( )
( )!

( )
! ( )

=
−

+
+





 +







− −

=
∑ Γ

Γ
1

1 10

 .  (2.34) 

 

 It is recognisable that this is the convolution of  Poisson distribution with parameter c 

distribution with a negative binomial distribution with parameters b and a. This representation 

is useful for obtaining the moments of the distribution. However, the calculation of the 

probabilities directly from the probability  function is computationally intensive and thus a 

recursive scheme proposed by Willmot (1993) is more useful.  Under this scheme the 

probabilities may be calculated using the relation 

 

[ ]( )( ) ( ) ( ) ( ) ( )a x P x b c a x P x cP x+ + + = + + + − −1 1 1 1 1  for x≥1. 

The first two probabilities P(0) and P(1) can be calculated as: 

P e a
a

c
b

( )0
1

=
+







−  and  P P c b
a

( ) ( )1 0
1

= +
+







. 
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Willmot and Sundt (1989) proposed the use of the Dellaporte distribution in an actuarial 

context giving useful formulas  based on the convolution representation. Ruohonen (1988) 

derived estimates for the parameters using both the moment method and the ML method as 

well as another method which uses the zero frequency. He also applied the Dellaporte 

distribution to actuarial data, and he derived some interesting properties of the distribution. 

 

2.3.15 The Family of Poisson - Pareto Distributions 
A special case of the Poisson-generalised Pareto distribution given in (2.30) is the Poisson- 

Pareto distribution, arising form the Poisson-generalised Pareto if b=1. The recurrence 

relations for evaluating the probabilities are (see Willmot, 1993): 

 

( )( ) ( ) ( )( ) ( ) ( ) ( )x x P x x x a P x x b P x+ + + = + + − − + + +2 1 2 1 1 1µ µ  . 

The direct evaluation of the first two probabilities is necessary. However for the case of the 

Poisson-Pareto distribution we have also the formula: 

P a a P( ) ( ) ( )1 0= − +µ  

which requires the numerical evaluation of P(0) only. 

 Another Pareto distribution is the shifted Pareto with probability density function 

 

g a a

( )θ
µ

µ
θ

= 





+1

 , è >ì . 

Since this distribution is a shifted at ì version of the simple Pareto distribution, the resulting 

mixed Poisson-shifted Pareto distribution is the convolution of a Poisson distribution and a 

Poisson-Pareto distribution. The probability  function is given by 

 

{ }P x a a
x

x a( ) ( )
!

( , )= − − −µ µ µΓ Γ1 , 

where Ã(á,x)  is the incomplete Gamma function. The probabilities can be obtained either 

directly from the probability  function, evaluating numerically the incomplete Gamma 

function or via the following recursive scheme: 

( ) ( ) ( ) ( )
!

x P x x a P x a e
x

x

+ + = − +
−

1 1 µ µ

. 
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2.3.16 Other Mixed Poisson Distributions 
  Apart from the variety of mixed Poisson distributions described above there are 

several other members of this family which have not been studied at all. From the above 

mentioned distributions very few have been studied in depth, and for the rest only a few 

references are known. The applicability of these distributions depends on the tractability of 

their probability  function. However, the recursive relations which are available via the 

fundamental method of Willmot (1993) facilitate the calculation of the probability  function. 

We will mention some other distributions which have appeared in the literature, mainly as 

references and not as complete examples.  

 In this category belong the two mixed Poisson distributions used by Burrel and Cane 

(1982) in the analysis of library data. These two distributions were derived from a well 

specified model in library data analysis.  Rai (1971) proposed the use of the power function 

distribution with probability density function  

g k
k

k( )λ
θ

λ= −1  , 0 < <λ θ  

 

as the mixing distribution. For k=1 the Poisson-uniform distribution is obtained while for k=2 

a Poisson-triangular distribution is obtained. Willmot (1993) discussed power transformations 

of standard distributions like the Gamma distribution and the Beta distribution, namely the 

distribution of X c  where X  is Gamma or Beta distributed. Some known distributions belong 

to this category such as the Weibull, the Burr distribution etc. Willmot (1986) showed that the 

noncentral chi-square distribution is the convolution of a Gamma distribution with a 

Poisson m Gamma
m

( / ) ( , )2 1 2∧  distribution. Hence the mixed Poisson-noncentral chi-square 

distribution can be defined as the convolution of a negative binomial with the 

[ ]Poisson Poisson m Gamma
m

( ) ( / ) ( , )λ
λ
∧ ∧2 1 2  distribution. Note that this is a convolution of 

two negative binomial distributions with varying parameter p. It is known that the convolution 

of two negative binomial distributions with the same parameter p is again a negative binomial 

distribution. 

 Willmot (1986) proposed the use of the reciprocal inverse Gaussian distribution which 

is the convolution of a Gamma
m

1
2

2,





distribution with an inverse Gaussian distribution with 
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parameters ì and 1/m. Thus the resulting Poisson-reciprocal inverse Gaussian distribution is 

the convolution of a negative binomial and a Poisson- inverse Gaussian distribution. 

 Willmot (1993) also discussed the use of the exponential-inverse Gaussian distribution 

as the mixing distribution. Formally the distribution arises as 

Exponential InverseGaussian( ) ( , )θ µ σ
λ
Λ . 

This distribution is also a mixed geometric distribution. 

 Philipson (1960) and Albrecht (1982) discussed in general the use of the members of 

the Pearson’s family of continuous distributions as mixing distributions. Some special 

members of this family have been treated in detail such as the Gamma distribution, the Beta 

distribution etc. The importance in this presentation is that Albrecht (1982) proposed the use 

of moment estimates in order to choose between the members of this family, since the first 

four moments determine uniquely the members of the Pearson’s family. 

 Few years later, Albrecht (1984) described several mixed Poisson distributions based 

on the Mellin and Laplace transforms of their mixing distributions. Interesting members of the 

distributions described by Albrecht are the F-distribution, the Maxwell, the Rayleigh 

distribution, the Weibull distribution, the chi-distribution and some members of the Pearson 

family. All these distributions have probability  function which involve special functions. This 

results in reducing their applicability. For example, the Gamma function is regarded as much 

simpler than the parabolic cylinder function  (see Abramowitz and Stegum, 1965) appearing 

in the probability  function of  the Poisson-Maxwell distribution. 

 Gaver and O’Muircheartaigh (1987) used the log-Student distribution in the context of 

empirical Bayes estimation of the parameter of the Poisson distribution. This is the 

distribution of a random variableY e X=  where X  follows the Student distribution. For such a 

mixing distribution the mixed distribution is very complicated and numerical methods are 

necessary for the calculation of the probabilities.   

 All the mixed Poisson distributions  discussed above have support on the nonnegative 

axis. In fact some discrete distributions have restricted support on the positive integers, 

namely x =1,2, . . . . The logarithmic series is the best known such example. The support of 

the Poisson distribution contains  the value x=0.  We may transform the Poisson distribution 

to the nonzero integers by considering either shifted, or truncated versions of the Poisson 

distribution. Shifted versions will lead to mixed shifted Poisson distributions.  A  Poisson 

distribution shifted at r has probability  function of the form 
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P x e
x r

x r

( )
( )!

( )

=
−

− −λ λ  x=r, r+1, .... 

If we mix this shifted Poisson, with a mixing density g the result will clearly be an MP(g) 

distribution shifted at r. 

 This is not true for the truncated Poisson distribution. A truncated at 0 Poisson 

distribution has  probability  function given by 

 

( )P x e
e x

x

( )
!

=
−

− −

−

λ

λ

λ
1

, x=1, 2,...., 

and hence the mixtures of this distribution cannot be related directly to the mixed Poisson 

distributions. 

 Some zero-truncated mixtures are also known in the literature. The logarithmic series 

distribution is a mixed-zero truncated Poisson distribution (see Sibuya, 1979) with mixing 

distribution having probability density function given by 

( )
g

e e
p

p

( )
log( )

/

θ
θ

θ θ

=
−

+

− −1
1

,  θ, p > 0  . 

 

The digamma and trigamma distributions discussed by Sibuya (1979) are also mixed-zero 

truncated Poisson distributions due to their derivation as mixed logarithmic series 

distributions. 

 In concluding, we provide Table 2.1 which summarises  the main mixed Poisson 

distributions described in this chapter. 
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Table 2.1 

Some mixed Poisson distributions  
 mixed Poisson distribution mixing distribution a key reference 

   
Negative Binomial Gamma Greenwood and Yule (1920) 
Geometric Exponential Johnson et al. (1992) 
Poisson- Linear Exponential 
Family 

Linear Exponential Family Sankaran (1969) 

Poisson-Lindlay Lindlay Sankaran (1970) 
Poisson-Linear Exponential Linear Exponential Kling and Goovaerts (1993) 
Poisson-Lognormal Lognormal Bulmer (1974) 
Poisson-Confluent 
Hypergeometric Series 

Confluent Hypergeometric 
Series 

Bhattacharya (1966) 

Poisson-generalised inverse 
Gaussian 

Generalised Inverse Gaussian Sichel (1974) 

Sichel Inverse Gaussian Sichel (1975) 
Poisson-Inverse Gamma Inverse Gamma Willmot (1993) 
Poisson-Truncated Normal Truncated normal Patil (1965) 
Generalised Waring Gamma Product Ratio Irwin (1975) 
Simple Waring  Pielou (1962) 
Yule  Simon (1955) 
Poisson-Generalised Pareto Generalised Pareto Kempton (1975) 
Poisson-Beta I Beta Type I Holla Bhattacharya (1965) 
Poisson-Beta II Beta Type II Gurland (1957) 
Poisson-Truncated BetaII Truncated Beta type  II Willmot (1986) 
Poisson -Uniform Uniform  Bhattacharya (1966) 
Poisson-Truncated Gamma Truncated Gamma Willmot (1993) 
Dellaporte Shifted Gamma Ruohonen (1988) 
Poisson-Modified Bessel of 
the 3rd kind 

Modified Bessel of the 3rd 
kind 

Ong and Muthaloo (1995) 

Poisson-Pareto Pareto Willmot (1993) 
Poisson-Shifted Pareto Shifted Pareto Willmot (1993) 
Poisson-Pearson Family Pearson’s family of 

distributions 
Albrecht (1982) 

Poisson-Log-Student Log-Student Gaver and O’Muircheartaigh 
(1987) 

Poisson-Power function Power Function distribution Rai (1971) 
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2.4 Discussion 
 A wide variety of mixed Poisson distributions was presented in this chapter with the 

aim of  extending  the use and the relations among the members of this large family of discrete 

distributions. The need for methods of estimation for many of them is obvious in order to 

increase their applicability. A complete examination of several members of this family has not 

been made, even though it would be also of interest. 

 We would also like to note another point, which reveals some interesting properties of 

mixed Poisson distributions as well as  models leading to these mixed Poisson  distributions. 

Consider the case when each individual follows a Po(ë) distribution. The parameter ë may be 

regarded as a random variable too. However, we may consider that two different factors affect 

the value of ë. To describe this relation we may assume either  

• an additive model of the form ë=ì+í or 

• a multiplicative model of the form  ë=ìí 

 The factors ì and í can be regarded as random variables having probability density 

functions g1 and g2 respectively. A well known example from accident theory is the distinction 

of the factors contributing to an accident into proneness and liability, (see Xekalaki, 1983a). 

The notion can be extended to other fields, too. 

 As far as the first model is concerned, it is known that the resulting mixed Poisson 

distribution will have  as a mixing density the convolution of g1 and  g2. Hence mixing 

distributions with the reproductive property can be regarded as resulting from such a scheme. 

The Dellaporte distribution may arise from this additive model. Other interesting examples of 

this kind are given in Barndorrf-Nielsen et al. (1992) where the convolution of a Gamma with 

a generalised inverse Gaussian distribution leads to another generalised inverse Gaussian 

distribution. The model is rather conceptual as the parameters are confounded and not easily 

estimated if no additional information is available. 

 Let us now turn to the multiplicative model. If we use Proposition 1.1, we obtain that ë 

is a random variable which stems from a mixture model. Interesting  examples of this type are 

the mixtures of the Gamma distribution regarded as mixing distributions giving rise to the 

generalised Waring distribution, the Poisson-generalised Pareto distribution and to the 

Poisson-Modified Bessel distribution. These distributions can be regarded as resulting from 

such a multiplicative model. Unfortunately, the parameters are not identifiable, i.e. one does 

not know which distribution corresponds to  ì and which to í. This problem was also 
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mentioned when examining the generalised Waring distribution. However the model is very 

interesting itself.   

 Multiplicative Poisson models have been used in  latent trait models (e.g. Jansen and 

Van Duijn ,1992). Such models assume that the test score depends on both the ability of the 

subject and the difficulty of the test  which are both random variables. Assuming that they are 

related multiplicatively, the multiplicative Poisson model is used to describe such models.  It 

is of interest and open for further research that models where both factors are themselves 

random variables do not appear to have been considered in the literature. 

 An interesting special case is when the distribution of ì is a degenerate distribution. 

This corresponds to the case where ì is no longer a random variable but it has a known value. 

This is the case where we have a Po(ìë) distribution and ë is a random variable. In general this 

distribution is different from the one obtained in the simple case ì=1. However, for mixing 

distributions with a scale parameter the resulting mixed Poisson distribution is of the same 

form. Such examples are the Gamma distribution and the inverse Gaussian distribution. A 

counterexample is the Beta distribution (of any type). 

 Finally Carriere (1993) described nonparametric tests applicable to a wide range of 

mixed Poisson distributions 
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Chapter 3 
Maximum Likelihood Estimation For Finite 
Mixtures 

 
 

3.1 Introduction  
In the previous chapter we saw the derivation and the properties of several mixed 

Poisson distributions. We saw that, according to the choice of the mixing distribution, several 

mixed Poisson distributions can be derived. The estimation of the parameters of these mixed 

Poisson distributions is of special interest to researchers since such methods will allow the 

researcher to apply the described mixed distributions to real data. 

In general the parameters of mixture models can be estimated in two distinct ways: 

•The first one requires the parametric specification of the mixing distribution. Then 

the problem is just to estimate  the parameters of the derived distribution. This approach is not 

always straightforward. The main reason is the intractability occurring due to the complicated 

nature of the mixed distribution. Consider a simple example: assuming a mixed Poisson 

model with  a Gamma distribution as the mixing distribution we have to estimate the 

parameters of the resulting negative binomial distribution given in (2.22). This is relatively 

simple. But the case of the Poisson modified Bessel distribution given in (2.33)  is clearly not 

so easy. 

•The second is the nonparametric approach when we do not assume that the mixing 

distribution is of any specific form and we try to estimate the parameters of the mixture 

nonparametrically. Some authors (e.g.  Lindsay and Roeder, 1995) use the term 

semiparametrically for these cases in order to show that in fact some kind of knowledge is 

incorporated in the estimation procedure. We adopt this terminology and we will call such 

models semiparametric models. This chapter is mainly devoted to such methods. 
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Finite mixtures play a very important role in mixture modelling. Assume that we know 

that the population consists of k subpopulations each one having a probability density function  

of some parametric form with different parameters say f x j( | )θ , j=1,...,k. Then the random 

variable  X has probability density function  (or probability function  if X is a discrete random 

variable ) of the form  

 f x f x p f xP j
j

k

j( ) ( ) ( | )= =
=

∑
1

θ      (3.1) 

where 0 1≤ ≤p j ,  j=1,...,k with pj
j

k

=
∑ =

1

1  and  θ  can be either a scalar (e.g. the Poisson 

distribution case) or a vector of parameters (e.g. the normal distribution case). The p j ’s  are 

called mixing proportions and they can be regarded as the probability that a randomly selected 

observation belongs to the j-th subpopulation. With P  we denote the mixing distribution, 

which is the distribution that gives positive probability mass p j  at the points θ j ,  j=1, . . . ,k 

and zero elsewhere. Assuming that f x( | )θ  is the Poisson distribution, the vector of 

parameters θ  reduces to the simple parameter ë of the Poisson distribution. We call the 

probability function given by  

f x p
xP j

j

k
j j

x

( )
exp( )

!
=

−

=
∑

1

λ λ
      (3.2) 

with x= 0, 1, .. . ., and λ j > 0 , j= 1, . . ., k , as a k-finite mixed Poisson distribution with P  

as the mixing distribution. Note that finite Poisson mixtures are mixed Poisson distributions 

with a finite mixing distribution, and hence all the properties of the previous chapter apply. In 

order that finite Poisson mixtures are identifiable we need to impose the restriction 

0 1 2< < < <λ λ λ... k  (Teicher, 1963). The reason is that otherwise interchanging the  

components would lead to the same mixture. 

The importance of finite mixtures is dual. On the one hand a k-finite mixture is an 

appropriate model for describing populations which consist of  k subpopulations. On the other 

hand, when we try to estimate the true probability function  P  with some probability function  

!P , we are confined to determine only a finite step distribution !P  as an estimate of P   (Laird, 

1978). Of course in this case we do not know a priori the number of support points of this 

distribution function.  In both cases, we are restricted to estimate only a finite-step 

distribution. The number k of components of this finite mixture is either known a priori or it 

must be estimated from the dataset.  
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Both cases will be treated. Special care will be given to distinguishing between these 

two approaches, so as to avoid confusion. However, the two approaches  (for known k and for 

unknown k) share some common elements which will be postulated. Note that the method for 

the case of unknown k contains several successive steps of the method for the case of known 

k. 

Before describing the methods which will be used, it is interesting to mention three 

different sample types encountered in the analysis of mixture data. These sample types involve 

the presence or not of additional information for the subpopulation from which each 

observation comes. 

At first we have to define the nature of our sample. According to Hosmer (1973a), it is 

possible to encounter three types of data. Following his presentation and notation we will refer 

to them as:  

•M0 type : when we have observations only from the mixed distribution without any 

supplementary  information. This is the most common case and the most difficult to handle. 

The majority of methods which we will describe assume such type of samples. Consider, for 

example, data referring to the number of accidents for the clients of an insurance company. If 

our sample simply contains the number of accidents with no other information, this sample is 

of type M0. 

 The next two sample types of samples contain observations from both the mixed 

distribution and from the component distributions. So, for some observations we have some 

knowledge about the subpopulation to which they belong (we refer to these data as known 

data). We can distinguish between the two types according to the information they contain 

about the mixing proportions. These types are :  

•M1 type : when the sample contains both mixed and known data and when the known 

data contain no information about the mixing proportion. This is the case where we arbitrarily 

choose some members from each subpopulation without taking into account the mixing 

proportions. Such an example is the case where, from a file containing the number of 

accidents of persons from an insurance company we choose, say, n men and n women and a 

further number of other  persons without sex identification. The arbitrary choice of n men and 

n women contains no information about the mixing proportion. 

•M2 type :  when the sample contains both mixed and known data and information 

about the mixing proportions is contained in the relative number of observations from the two 

components in the known data. For example, consider the case when we take randomly a  
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sample from the entire population and then we can recognise, for some observations, the 

subpopulations to which they belong. In this case we choose from the file of the insurance 

company a random sample of n persons and then we identify that m1 of them are men and m2  

are women (m1+m2=n), and we also have other m cases without knowledge about the sex of 

the individuals. The ratio m n1 /  contains some information about the mixing proportion for 

the men. 

 In the sequel, we describe estimation procedures for the M0 sample. For the other two 

types the literature is very sparse. Hosmer (1973a) described the ML method for normal  

mixtures for a M2 sample while Murray and Titterington (1978) discussed minimum distance  

estimation from a M2 sample.  

 Intuitively, the analysis of samples of types M1 and M2 is easier since some 

additional information is available. For example, the widely used EM algorithm for mixtures 

needs to start from "good" initial values. Obviously very good initial values can be elicited 

from the known data. 

This chapter is organised as follows. A detailed description of the ML method for 

finite mixtures is given. Although special emphasis is placed on finite Poisson mixtures, we 

try to describe the ML method for general mixtures. Some results for the ML method for 

mixtures are presented, which can lead to interesting improvements to the numerical  methods 

used for deriving the estimates. They can also provide an insight into the method itself. We 

develop the ML estimation for Poisson mixtures arising from M2 type of samples, showing 

that the gain from the observations contain additional information can improve substantially 

the estimation procedure. The EM algorithm for mixtures is reviewed in depth in the sequel. 

This section contains a simulation experiment for selecting starting values which leads to clear 

and interesting results about the adequacy and the importance of the choice of initial values. 

We also propose an improvement of the algorithm which applies to all mixtures of the 

exponential family.  The next part of this chapter is devoted to semiparametric ML estimation 

in mixture models. We review the proposed methods in a critical way and we try to 

demonstrate the advantages and disadvantages of such methods. Unfortunately our results 

discourage the use of such methods for Poisson mixtures for reasons which we try to explain 

from both the theoretical and the practical point of view. 
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3.2 The Maximum Likelihood Method  for Finite Mixtures 
 The ML method is so far the most widely used method of estimation. For mixture 

models the ML method is again a very attractive approach. Actually, the associated efficiency 

and the well understood properties of the ML estimators are the reasons for the acceptance of 

the ML method as the most reliable method. For mixture models, the impact of computer 

intensive methods resulted in a very large number of applications based on  ML estimation,  

especially since the later 60's. Previously, the computational difficulties in deriving the ML 

estimates had led the researchers to use different estimation methods.  

 In this section we provide a critical review of the ML method for mixture models. 

Special emphasis is given to finite mixtures of the Poisson distribution. We discuss the 

uniqueness of the ML estimators, algorithms for their calculation as well as their properties.  

 Interesting reviews of the ML method in mixture models can be found in Gupta and 

Huang (1980), Everitt and Hand (1981), Redner and Walker (1984), Titterington et al. (1985) 

and Bohning (1995).  

 

3.2.1 The Likelihood Equations for Finite Mixtures 
Suppose that we observe a random sample X X Xn1 2, ,...,  (n is the sample size) where 

each X i  has probability function  given by (3.1). Then   the likelihood L  of this sample is 

given by  

 L P f x p f xP i j i j
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Note that in (3.3) we express the loglikelihood as a function of the mixing distribution 

P, since in fact we want to maximise the likelihood over all the possible mixing distributions, 

i.e. over all the finite distributions with k-support points.   

As usual, in order to find the ML estimators we need to equate all the partial 

derivatives of "  with 0,  namely 
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0   for j=1, . . .,k  , (3.4) 
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∂
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p
f x f x
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i j i k

P ii

n
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∑

( | ) ( | )
( )1

0    for j=1, . . . ,k-1   (3.5) 

(3.4) and (3.5) must be solved together to obtain the ML estimates. Clearly, this a very 

difficult task. Equations (3.4) and (3.5) are the likelihood equations for finite mixture of a 

general probability density function  (or probability function ) f x( | )θ . For specific choices of  

f x( | )θ  the likelihood equations may be simplified. For simplicity we treat  θ  as a scalar. 

 Finding a simple analytical solution for these equations is hopeless and the difficulty 

in solving all of these equations was the main reason why the ML method was not used in 

mixture models till the end of the 60's. The need of numerical methods is obvious. A first 

choice is the well known algorithms for solving a non-linear system of equations such as the 

Newton Raphson or methods designed to minimise certain functions such as the one based on 

the Fletcher-Reeves algorithm. However, the larger the number of parameters to be estimated 

the more difficult the applicability of these methods. The main problems with some of them 

are the failure to converge and that they can be very slow because at each iteration a large 

matrix has to be calculated and inverted. Everitt (1984b) and Atwood et al. (1992) compared 

some of them in a normal mixture problem.  See also the papers of Dick and Bowden (1973), 

Hosmer (1973b) and Peters and Walker (1978), among others. 

Razzaghi and Rayens (1987) developed a modified ML method for estimating the 

mixing proportions of a  mixture with known components. This estimator is given in closed 

form. Kazakos (1977) gave an iterative algorithm for deriving the ML estimates for the 

mixing proportions. 

Apart from the known numerical methods for solving a system of non-linear equations 

an iterative scheme is also available for finding the ML estimates in the mixture case. Such a 

method was proposed by Hasselblad (1966) for grouped data from normal mixtures and by 

Hasselblad (1969) for mixtures of members of the exponential family. Independently, 

Behboodian (1970) described the same algorithm for normal mixtures. This iterative 

algorithm was in fact an EM algorithm, formally discussed in Dempster et al. (1977). It is 

interesting to note that the original derivation of the algorithm by Hasselblad (1969) and 

Behboodian (1970) was based on the likelihood equations and not on the notion of ‘missing 

data’ which is the key ingredient of the EM algorithm. We will describe the EM algorithm for 

mixtures in a subsequent section.  

 Some problems may occur in applying the ML method in finite mixtures. These are 

the following: 
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•The likelihood in mixture models may be unbounded from above and hence it is not 

possible to obtain the ML estimator. This occurs  in the case of normal mixtures when the 

variance of each component is unknown. Then, when the method tries to fit a component with 

only one observation the variance of this component cannot be calculated (Hathaway, 1985).  

In this case a constrained likelihood ought to be used, imposing constraints which do not 

allow the variances to be less than a small value (Hathaway 1986a). 

•Basford and McLachlan  (1985) demonstrated some cases of normal mixtures where 

the ML estimates must be handled with care, because of the existence of several local maxima 

in several different neighbourhoods of the parameter space. Hawkins (1972) treated the case 

of multiple maxima in normal mixtures. The multiplicity of  maxima results from the 

inappropriateness of the model. As seen in the sequel, in real applications it is common that 

the likelihood can not increase any further by adding a new component. So, if we try to add a 

redundant component, the estimation will result in multiple maxima, which correspond to 

components with a zero mixing proportion (or with a proportion very close to zero due to 

numerical perturbations) or components which are close together. 

•EM algorithm can be very slow in cases of  multivariate finite mixtures. To improve 

its performance some alternations have been proposed (see, e.g.,  Pilla and Lindsay, 1996 and 

Oskrochi and Davies, 1997). 

For Poisson mixtures the likelihood function is bounded and the maximum exists. 

Lindsay (1983a) gave  conditions which have to be satisfied from the ML estimates. In 

order  to describe these conditions we need to introduce some notation. 

 Let D G P( , )  be the directional derivative of the loglikelihood from the mixing 

distribution P  at the direction of another mixing distribution G .  
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This quantity measures the infinitesimal change of the loglikelihood when a new 

distribution G  is added to the mixing distribution P . Of special interest is the case when the 

new mixing distribution G  is a degenerate distribution at the point è. Then we can define the 

gradient function  
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 D P( , )θ  plays an important role in the case of semiparametric ML method for 

mixtures. Using the gradient function we can state the following theorem of Lindsay (1983a) 

which provides sufficient conditions for an estimator !P  to be the ML estimator of the mixing 

distribution P in the case of a known number of support points. 

 

Theorem 3.1 (Lindsay, 1983a). !P  is the restricted ML estimator iff, for each support 

point θ*  of !P , the following relations hold:  

a)  D P( , !)*θ = 0  

b) 
∂ θ
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θ θ
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given that f x( | )θ  is twice differentiable.  

 

The proof of the above theorem is based on the likelihood equations. 

The importance of this theorem is revealed in section 3.7 when  a similar theorem for 

the semiparametric case will be given. 

 

3.2.2 A Result for the Maximum Likelihood Estimation for Finite Mixtures from the 
Exponential Family 

In this section we provide a proof of an interesting result for general finite mixtures 

from the exponential family. An alternative proof was given earlier by Lindsay (1981) (which 

seems to have passed unnoticed. The derivation is given in a general form to include all the 

members of this family, continuous or discrete. 

 In order to obtain the ML estimators for the k-finite mixture model, we have to solve 

the system of  (3.4) and (3.5). We show that if f x( | )θ  belongs to the one-parameter 

exponential family the ML estimators satisfy the first moment equation. Some of the best 

known distributions belong to this family and hence the results can be applied to many cases 

where finite normal mixtures, finite exponential mixtures and finite Poisson mixtures among 

other models are appropriate. 
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Let us suppose that the density f x( | )θ  comes from the one-parameter exponential 

family, namely that f x( | )θ  can be written in the form: 

[ ]f x xc h x k( | ) exp ( ) ( )θ θ θ= + −  ,   (3.7) 

where c is some constant and the functions h x( )  and k( )θ  depend only on x  and θ , 

respectively. It can easily be shown that E X k c( ) ( ) ( )= = ′µ θ θ  and that 

Var X k c( ) ( ) ( )= = ′′σ θ θ2 2 . Furthermore, the first derivative with respect to è is of the form: 

( ) ( )′ = − ′ = −f x f x cx k cf x x( | ) ( | ) ( ) ( | ) ( )θ θ θ θ µ θ   . (3.8) 

 We now prove the following theorem. 

 

Theorem 3.2  For finite mixtures from the one parameter exponential family defined in (3.7), 

one of the ML equations is the same as the first moment equation, and hence the ML estimates 

ought to satisfy the first moment equation. 

 

Proof:  

 The estimating equations for the general finite mixture model are given in (3.4) and 

(3.5). Multiplying the i-th equation in (3.4) by pj , j=1, 2, . . ., k,   and adding the resulting 

equations we obtain  
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On the other hand, it follows from (3.5) that 
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    From (3.9) and (3.10) it may be concluded that the ML estimates satisfy the relation 
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 ,  j=1, . . ., k  . (3.11) 

 Note that equation (3.11) is equivalent to condition (b) of Theorem 3.1, while 

condition (a) of Theorem 3.1  is equivalent to equation (3.4).  

 Substituting in (3.5) for ′f xi j( | )θ  as given by (3.8) we obtain 
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Then by setting 

w
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equation (3.12) can be written as 
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If we consider mean value reparametrization for the density f(x|è) and solve for the 

mean value parameters  we obtain from (3.14) that 
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 This, using (3.10) is equivalent to 
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  The latter implies that the ML estimates of the mean value parameters can be written 

as weighted sample means.  

    Suppose now that the ML estimators for   the   parameters µ θ( )j  , j=1, . . .,k  have been 

calculated from (3.15). It is well known that the mean of a mixture is the weighted mean of 

the means of all components weighted by the mixing proportions. Then, from (3.1) we 

estimate the mean E X( ) of the finite mixture  as 
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where x  is, as usual, the sample mean. 

           

 Hence, the ML estimates of the mean value parameter of a k-finite mixture from the 

one-parameter exponential family coincide with the first moment equation. So, we have 

another family of distributions which satisfy the first moment equation. This is also true for 
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members of the power series family of distributions (see, e.g.,  Johnson et al., 1992). Sprott 

(1983) showed that this result holds for the convolution of two power series distributions as 

well as for  compound (or generalised) distributions of  members of the power series family. 

A generalisation of the power series family shares the same property, as Kemp (1986) showed. 

It is interesting that some of the most well known distributions belong to the one-parameter 

exponential family, like the Poisson, the normal, the exponential, the Gamma and other 

distributions. For many of them the parameter è represents the mean of the distribution. 

Behboodian (1970) has shown a similar result for finite normal mixtures. 

 Note that equation (3.14) was the basis for the iterative algorithm of Hasselblad (1969) 

and Behboodian (1970). 

 The above result can find interesting applications for improving the EM algorithm for 

finite mixtures as it will be illustrated in the sequel.  

 

3.2.3 The Variance Covariance Matrix for the Case of 2-Finite Mixtures 
It is well known that the variance-covariance matrix for the ML estimates is the 

inverse of the information matrix, I whose ij-th element is given by: 

( )I nE f nE Hij
P

i j
ij= −









 = −∂

∂θ ∂θ

2 ln( )  

where  

H f
ij

P

i j

= ∂
∂θ ∂θ

2 ln( ) . 

We now give the elements of the matrix  H for the case of k-finite Poisson mixtures 

defined by (3.2).  

Matrix H  is a  (2k-1)×(2k-1) matrix which can be rewritten  as  

H
S R

R T
= − − − −

















|
|
|T

 

where RT denotes the transpose of R. The submatrices S, R and T are calculated as follows. 

Matrix S is a ( ) ( )k k− × −1 1  matrix  with elements 

S
f x

p pij
P

i j
=

∂
∂ ∂

2 ln( ( ))
,  

 i.e. S is the matrix  whose elements are the covariance terms from the mixing proportions. 
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Matrix T is a k k×  matrix  with elements 

T
f x

ij
P

i j
=

∂
∂θ∂θ

2 ln( ( ))
 , 

 i.e. T is the matrix whose elements are the covariance terms from the parameters of the 

component distribution. Finally, matrix R is a ( )k k− ×1  matrix  with elements 

R
f x

pij
P

i j
=

∂
∂ ∂θ

2 ln( ( ))
. 

The elements of each matrix are given for the case of a k-finite Poisson distribution of 

(3.2) by the following formulas: 

[ ][ ]
( )T

p p f x f x f x f x

f x
ij

i j j j i i

p

=
− − − − −( ) ( ) ( ) ( )

( )

1 1
2  for i, j = 1, . . . , k and  i j≠  

[ ] [ ]
( )T

p f x f x f x p f x f x

f xjj
j j j j j j j

P

=
− − − + − − −( ) ( ) ( ) ( ) ( )

( )

2 2 1 12 2

2   

for the diagonal elements 

( )( )
( )S

f x f x f x f x

f x
ij

j k i k

P

= −
− −( ) ( ) ( ) ( )

( )
2   for i, j = 1, . . . , k-1 

and  

( )( )
R

p f x f x f x f x
fij

j j j i k

P

= −
− − −( ) ( ) ( ) ( )1

2  for i =1, . . . , k-1,  j =1, . . ., k and  i j≠  

and  elements 

( ) ( )( )
( )R

f x f x g x p f x f x f x f x

f xjj
j j j j j j k

P

=
− − − − − −( ) ( ) ( ) ( ) ( ) ( ) ( )

( )

1 1
2 ,   

for   j=1 , . . . ,k-1 

where f x f x xi i i i
x( ) ( | ) exp( ) / != = −θ θ θ  , i=1, . . , k. 

The elements of the information matrix are calculated as  

I n H f xij ij P
i

n

= −
=
∑ ( )

1

 

The inverse of the matrix I  is the variance-covariance matrix for the ML estimates. 

The ML estimates for finite mixtures suffer from large variances especially when the 

components are not well separated (see, e.g.,  Hasselblad , 1969).  Basford et al. (1997) 
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compared the asymptotic results with bootstrap standard errors for a normal mixture model, 

showing that bootstrap standard errors are more accurate. 

 

3.3 The EM Algorithm for Finite Mixtures  

3.3.1 The EM Algorithm 
The EM algorithm is a powerful tool for ML estimation. Its widespread use is 

phenomenal. Since its first appearance in Dempster et al. (1977) it has been used in a variety 

of contexts and applications. EM stand for the Expectation and Maximisation steps, which are 

the two basic steps of iterative algorithms.  

Roughly speaking, the key ingredient of the EM algorithm is the ‘missing data’ 

principle. To put it another way, we treat our dataset as having ‘missing values’ even in the 

case when there are not really missing values. If these ‘missing values’ had been observed, the  

estimation would be simple. So, the EM proceeds by estimating these ‘missing values’ by 

their expectation conditionally on the current estimates (the E-step) and then it uses these 

expectations to maximise the complete likelihood (M-step). 

More formally, suppose that our full data representation Y contains an observed part 

and a missing part (or a part which can be considered as missing), i.e. ( )Y X Zi i i= , , where Xi 

is the observable part of our data and the Zi  is the missing part. Then the EM algorithm 

iterates between the following two steps: 

E-step: Calculate the expected values for the Zi given the data and the current 

estimates of the parameters of interest and  

M-step: Maximise the complete likelihood using the expected values of the missing 

data calculated at the E-step and the data, to find the new estimates. 

The convergence of the EM algorithm has been treated by Wu (1983) and Meilijson 

(1989). Unfortunately, convergence at the global maximum cannot be ensured, and often local 

maxima as well as saddle points can be found.  

Despite these problems the EM algorithm is a very useful algorithm for calculating the 

ML estimates in a wide variety of applications, including missing data problems or problems 

which can be considered as missing data. More details for the EM algorithm can be found in 

the original paper of Dempster et al. (1977). Recent improvements of the EM algorithm are 

presented in Meng and Van Dyk (1997) and the discussion therein. We focus our attention on 

the EM algorithm for finite mixture models. 
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3.3.2 The EM Algorithm for Finite Mixtures 
Standard numerical techniques were needed for calculating the ML estimates, till the 

introduction of the EM algorithm which facilitates the required calculations. Hasselblad 

(1969) suggested a method for obtaining ML estimates for the case of k-finite mixtures of 

distributions which belong to the exponential family. This family includes many of the most 

popular distributions. Independently, Behboodian (1970) came to the same result for only the 

case of the normal distribution. Later, these algorithms were identified as EM type algorithms. 

The missing data representation is suitable for mixture models since we may consider 

that the complete data specification Yi  is represented as  ( )Y X Zi i i= ,  where Zi is a 1 x k 

vector of elements  

Zij =




1,  if the observation Xi belongs to the j- th subpopulation
0,  otherwise

     . 

If we knew the real values of these vectors the maximisation would be simple. With such a 

representation  the complete loglikelihood is of the form: 

( )"c ij j i j
j

k

i

n

Z p f x=
==

∑∑ ln( ) ln ( | )θ
11

. 

Thus, following the general EM formulation, at the E-step we have to estimate the 

‘missing data’ Z ij  and at the M-step we have to maximise the complete loglikelihood " c  

which is rather simple as it will be seen. 

 We now concentrate on the Poisson case.  

The method starts with initial values and calculates at every step new estimates for 

both pi and, ëi , i =1,2, . . ., k.  

 At each step, the estimates can be calculated from the following simple scheme:  

 

Step 1 (E-step)  Given the current  values for λ j
old  , j = 1, . . ., k  and pj

old , j=1, . . ., k 

calculate the probability wij  that the observation Xi belongs to the j subpopulation after 

observing it, i.e. the posterior probability of Xi belonging in the j subpopulation.  

w
p f x

f xij
j
old

i j
old

P i

=
( | )
( )

λ
     (3.16) 

Step 2 (M-step)   Calculate the new estimates as  
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 λ j
new

ij i
i

n

ij
i

n

w x

w
= =

=

∑

∑
1

1

   for j=1, 2, . . . , k   (3.17) 

and  

p
w

nj
new

ij
i

n

= =
∑

1     for j =1, 2, , . . . ,k . (3.18) 

Step 3 Check if some condition is satisfied in order to terminate the iterations, 

otherwise go back to step 1, putting the currently estimated values for p's and ë's as the initial 

values.  

The above scheme is used for the case of finite Poisson mixtures. The general scheme 

for mixtures from the exponential family covering the normal, the Gamma, the Poisson and 

the binomial distributions  can be found in Hasselblad (1969), while a more general scheme 

can be found in McLachlan and Basford  (1988). 

We caution that the above described scheme is not the only one which has appeared in 

the literature. The original derivation of Hasselblad (1969) is slightly different, mainly with 

respect to the representation of the two steps. For example we can use (3.13) to define the 

weights. Equation (3.16) differs from (3.13) only with respect to the term pj  appearing in the 

nominator of (3.16).  This quantity vanishes in (3.17) and (3.18) as appearing in both the 

numerator and the denominator. We preferred this description mainly because it relates to the 

general EM formulation. Note also that for some applications, like cluster analysis, the 

weights  wij  (i.e. the posterior probabilities that the i-th observation belongs to the j-th 

subpopulation)  themselves are of interest (see, e.g.,  Symons et al., 1983).  

Behind the missing data derivation of the EM algorithm, the algorithm can be 

described as follows: 

At step 1 we just obtain the weights for each observation using the current 

observations.  These weights  are used to separate the entire sample in k subsamples in the 

sense that each observation Xi belongs to the j-th subsample as Y X wij i ij= . At step 2 we 

estimate the parameters of the distribution (Poisson in our case) for each sample 

( )Yj j j njY Y Y= 1 2, ,..., . For distributions with ML estimators which can be written in closed 

form,  step 2 is easy to be carried out.  Otherwise step 2 can be carried out numerically. 
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 If we use matrix notation we can define at step 2 the n k×  matrix W with its ij-th 

element equal to wij  . Suppose also that our observations can be represented by the vector  Xt 

= (X1 ,X2 ,...,Xn ). If 1n denotes the vector with all of its n elements equal to 1, then the vectors 

θθθθ ( )= λ λ λ1 2, , ... , k and p ( )= p p pk1 2, , ...,  of the parameters can be obtained as 

θθθθ= Xt WA-1       (3.19) 

where A is the diagonal matrix with diagonal elements the elements of the vector 1tW, and  

 p=n-1A      (3.20). 

The usefulness of this representation is that it can be easily extended to both the bivariate case 

and to the case of M2 sample type, as described in the sequel. 

 If k=1 the solution is the known result that the mean of the sample is the ML 

estimator for the parameter ë of the Poisson distribution. The estimates for pi's in each step are 

simply the means of the posterior probabilities.  

Hathaway (1986b)  showed that the EM algorithm for mixtures can be interpreted as a 

method of co-ordinate descent on a particular objective function. 

 The general description of the algorithm as an EM algorithm provides evidence about 

the convergence of the algorithm. 

 The use of the EM algorithm for ML estimation in finite mixtures has some 

disadvantages:  

•Different initial values lead to different estimates and we cannot be sure as to whether 

we obtained the global maximum or a local maximum. So, we have to check it and try with a 

variety of initial values. The conditions which must be satisfied by the global maximum are 

given in Theorem 3.1. According to Wolfe (1971) the existence of multiple maxima may be 

attributed to the fact that several k-component separations can be obtained. For example a 

population can be divided into subpopulations by sex, by age, by social status etc. So, the 

solution we obtain depends on how close to each of these ways of dividing the population the 

initial values are.  

•The method is very slow, requiring a large number of iterations to achieve some kind 

of convergence.  

•The variances of the ML estimators may be very large if the different parameters for 

the distinct components are too close. In other words the algorithm has a difficulty in 

recognising the different components when they are not much separated.  



Maximum Likelihood Estimation in Finite Mixtures 

 82 

•Another drawback is when we need a good "stopping rule" in order to stop the 

iterations. The method is very sensitive in the sense that different "stopping rules" can lead to 

quite different estimates. This is caused by the fact that at every iteration the loglikelihood 

increases by a very small amount and at the same time the estimate changes drastically. 

 A lot of attempts to cope with such problems have been made and in the sequel we 

discuss these issues. However, we have to adhere to this method its simplicity and its 

efficiency if handled with care. Another advantage of the method is that the ML estimate lies 

in the admissible range whenever the initial guess is in the same range and this is not the case 

with other methods, including numerical methods for solving the likelihood equations. The 

algorithm is easily programmable on any computer, using commonly used statistical packages. 

 The asymptotic variances of the estimators can be calculated in the usual way by 

constructing and inverting the information matrix. Louis (1982) extracted the observed  

information using the EM algorithm for a normal mixture. 

 Another interesting point for the EM algorithm is that it may be used in conjunction 

with some other methods. For example, the slow convergence of the EM algorithm is a 

problem. The Newton iterative scheme is much  quicker in convergence but it needs very 

precise initial values. So, a plausible solution might be : Make some iterations with the EM 

algorithm to nearer the maximum and then locate it using the Newton method (or any other 

method). The idea is also described in Aitkin and Aitkin (1996).  

In the sequel we consider an application of the EM algorithm to real data. 

 

Example 3.1 The data in Table 3.1 represent the number of crimes committed in a one 

month period in Greece from January 1982 until January 1994 (145 observations). The  

dataset shows a large amount of overdispersion ( x  = 2.2413, s2 = 3.3833). It is therefore 

reasonable to assume that they come from a mixed Poisson distribution. The least 

inhomogeneity can be incorporated in the model by assuming a 2-finite mixture model. The 

ML estimates for the parameters were estimated via the EM algorithm.  

 

Table 3.1 
 The number of crimes committed in one month in Greece for the period January 

1982 to January 1994  
 

 

x 0 1 2 3 4 5 6 7 8 9 
observed 
frequency 

21 41 32 16 19 9 8 1 2 1 
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Source: The Greek newspaper ‘TA NEA’ 15/2/1994 
 

 The estimated parameters with their standard errors in parentheses, were p1=0.672 

(0.047), ë1=1.488 (0.143), ë2=3.788 (0.312). The standard errors were calculated via 

jacknifing. The reason is to enable comparisons with other methods which will be applied in 

the sequel. More details about jacknife estimates of standard errors can be found in the 

Appendix . 

 

3.3.3  The Choice of Initial Values for the EM Algorithm 

3.3.3.1 A review  
 The initial values are of great interest in the implementation of the EM algorithm (and 

not only for the EM). Laird (1978) proposed grid search for setting the initial values. In 

practice it  is useful only for large numbers of support points. Otherwise, the time required for 

the grid search can be spent for starting the EM algorithm from several different sets of initial 

values. Leroux (1992) suggested to use supplementary information in order to form clusters 

and then to use the mean of each cluster as initial values. For example, if the data refer to 

accidents and supplementary information is available for each individual , e.g., age or sex, we 

can form clusters of individuals with the same characteristics from which to obtain the initial 

estimates.  

 Finch et al. (1989) proposed that for a 2-finite normal mixture only the mixture 

proportion ought to be given an initial value and thus the rest of the parameters to be 

calculated automatically by this value. The idea is that, given the mixing proportion p, we 

separate the sample so that the first [np] observations belong to the first component and hence, 

we take the mean of these observations as the initial value for the mean of the first component 

while the remaining observation are considered to belong to the second component taking 

their mean as the initial value for the mean of the second component ([a] stands for the integer 

part of a). 

 Woodward et al. (1984) proposed a clustering method for obtaining initial values. 

Given the mixing proportion and separating the sample in successive subsamples the initial 

values are taken by minimising the within clusters sum of squares.  

 Bohning et al. (1994) proposed to start with well separated values because their 

experience showed that with such initial values the algorithm can converge easier.  
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 Another natural choice is to begin with estimates from other much simpler methods, 

like the moment method. Lindsay and Basak (1993) advocated such starting values for 

multivariate normal mixtures, ignoring however that it is highly possible that moment 

estimates do not exist in the sense that the moment equations lead to estimates outside the 

admissible range (e.g. negative Poisson parameters) This issue is examined in depth in chapter 

4. Furman and Lindsay (1994a, 1994b) suggested the use of moment estimates as initial 

values, carrying out  a small simulation experiment showing that the moment estimates are 

usually near the maximum and thus they are reliable either as initial values or as close 

approximations of the ML estimates.  Our results of section 3.2.2 explain this issue. 

Fowlkes (1979) proposed some graphical and ad-hoc methods for choosing initial 

values in the case of normal mixtures. For a more thorough treatment of graphical methods 

one can refer to the book of Titterington et al. (1985).  

 McLachlan (1988) presented a method for selecting initial values for the case of 

multivariate mixtures. The idea is to use principal components analysis in order to obtain a 

naive clustering of the data and then choose the initial values on the basis of the clusters 

considered.  

 

3.3.3.2 A Simulation Comparison 
In the sequel, a small simulation comparison of some methods for setting initial values 

is given for the case of 2-finite Poisson mixtures. For k>2 the choice of initial values is more 

difficult and will not be treated. Note that many of our methods will not work properly for 

k>2, or at least they will be difficult to handle. However, the results from 2-finite mixtures can 

give useful insight for these cases too.  In this simulation experiment we used the following 

methods for choosing initial values: 

a) the ‘true’ values (TR) of the parameters. Of course in practice we are not able to 

know these values but since for several simulation studies the true values are known we 

include these initial values to this comparison. Note that if we want simply to analyse a data 

set, the impact of computer resources would be enhanced by using several initial values with 

very little effort and usually with little computing time. The problem is crucial in simulation 

studies where a large number of repetitions is needed. Consider, for example, the bootstrap 

approach of the Likelihood Ratio Test (McLachlan, 1987) which is examined in depth in 

chapter 6. A great number of samples ought to be taken for constructing the distribution of the 
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test statistic for a specific k-finite Poisson mixture. In this case the true values are known. 

This leads to considering the true values as candidates in choosing the initial values. It is 

admitted  that the results derived are optimistic about the actual operating characteristics. 

Moreover there are several theoretical concerns about what ‘true’ really means. We include 

these starting values in our simulation in order to compare their computational characteristics  

with the rest methods 

b) moment estimates (MOM). A complete description of the calculation of these 

moment estimates can be found in the section for the moment estimation method, given in 

chapter 4. 

c) The method is slightly different from the method proposed by Finch et al. (1989).  

Instead of setting  arbitrarily the mixing proportion we calculate it from the dataset. By this 

method we find the mean of our data, and then we consider the initial value of the parameter 

p1 to be the proportion of observations lower than the mean. The mean of all these 

observations is the initial value for ë1  while the mean of the rest of the observations is the 

initial value for ë2. If the initial value for ë1  is 0 we set ë1=0.1. This method is referred to as 

(F). 

d) This method  finds the initial value for p1 as in the previous method. Then the initial 

values for ë1  and  ë2 are calculated as follows: 

( )
λ 1

2
1

1

1
= −

− −
x

s x p
p
( )

  and  ( )
λ2

2
1

11
= +

−

−
x

s x p

p( )
 

where x  is the sample mean and s2 is the sample variance. The motivation for this algorithm 

is the fact that we match with the initial values the  mean and the variance of the sample, i.e. 

the initial estimates satisfy the first two moment equations. If  ë1 ≤ 0 we set ë1=0.1. This 

method is referred to as  (MF). 

5) We set p1=0.5 and λ 1 = −x s , λ 2 = +x s . This initial guess is symmetric, and also 

satisfies the first two moment equations of the observed dataset. The choice of the value 0.5 as 

an initial value for the mixing proportion is expected to work reasonably only when the 

mixing proportion is near 0.5. This method however can be easily extended to more than two 

components. The method is referred to as (HY). 

Other methods were also included in the simulations, but since they were inferior to 

those discussed above we will not report their results. Such methods were: 
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•A method which separates the interval [ ]0, d  in three subsets of equal size, where 

d Xi= max( ) ,  and then chooses as initial values λ 1 3
= d ,  λ 1

2
3

= d and p1 0 5= . . This 

method is discussed in Bohning et al. (1994). 

•The grid search of Laird (1978) and others. 

In order to  examine the performance of the above defined methods for setting initial 

values, we need some criteria. We used the following criteria: 

1. At first, we need to know if the initial values assumed exist.  For example, the 

moment estimates do not exist very often. In fact, we want a method which is able to provide 

us with initial estimates in as many cases as possible.  From the above methods only the TR 

and F methods always give initial estimates. The remaining methods can fail to provide us 

with initial estimates.  

2. Another criterion is the speed of convergence which is measured by the number of 

iterations until convergence is attained. The cost for building up the initial guess is usually 

negligible. Usually it requires less than the computing time for one iteration of the EM 

algorithm and hence it  will not be taken into account. The mean number of iterations until 

convergence will be reported using the same convergence criterion for all the methods.  

3. Another necessary ingredient for a good initial guess is the ability of this guess to 

lead to the global maximum. The likelihood surface for mixture models is known to have 

many local maxima which are not global.  A general strategy to avoid obtaining a local 

maximum is to start from several initial values. We examined whether the initial values 

considered were able to locate the global maximum.  To check if the global maximum has 

been obtained we used the following method: From all the methods applied to the given 

sample, we obtained the different values of the maximised loglikelihoods. Then we obtained 

the maximum value of all the methods, say the value Lmax . If the value of the maximised 

loglikelihood for method i was 0.1% far from Lmax , then we reported this case as failure to 

obtain the global maximum. Such an approach admits that the global maximum has been 

obtained by at least one of the methods. The effect of this is that the probability that the global 

maximum has been obtained is overestimated. However, this is negligible, and it does not 

cause serious problems in this comparative study. 

From the above discussion we can deduce that an excellent method for obtaining the 

initial values can be described as a method which never fails to give initial values and always 
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converges to the global maximum after very few iterations.  Such a method does not exist in 

general. 

These three criteria were used for assessing the performance of the methods. Tables 

3.2-3.10  contain the results from the simulation experiment. In this experiment we simulated 

1000 samples from several distributions, and all the methods available (TR, MOM, F, MF, 

HY)  were used to obtain initial estimates. The mean number of iterations until convergence, 

the proportions of times the method failed to provide initial values and the proportions of 

times the method converged to the maximum are reported.  

The distributions used were 2-finite Poisson  mixtures, negative binomial and 3-finite 

Poisson mixtures.  For the first case the true values were used as initial estimates while for the 

other two this was not possible.  

Looking at Tables 3.2-3.4 we can see that the MOM method is usually the method 

which requires less iterations. Only the TR method can compete on this issue in the case 

where we sampled from the 2-finite Poisson mixture. Unfortunately, the MOM method has a 

high probability of failing to provide initial estimates, especially with small sample sizes and 

not well separated distributions as seen in Tables 3.5-3.7.  The TR method works very 

satisfactorily when the components are well separated. As far as the rest of the methods are 

concerned the F  method seems to be preferable because it never fails to provide  initial 

estimates and requires fewer iterations in comparison with the MF and HY methods. The HY 

method is reasonable only when the true mixing proportion is near 0.5. 

A very interesting finding is that the TR method never failed in locating the global 

maximum when the  data were generated from a 2-finite Poisson mixture. This provides a 

good strategy for simulation studies : To use these values only. Clearly we are almost certain 

that the global maximum will be obtained and thus no other initial values are needed. In fact 

the probability of failure will be negligible as our simulations reveal. 

Let us now examine the case where the data do not come from a 2-finite Poisson 

mixture but we try to estimate the parameters of a 2-finite Poisson mixture. In this case the 

MOM method is again very attractive because of the smaller number of iterations usually 

needed. However the F method is an interesting competitor in this case. For  distributions with 

high overdispersion it requires a few iterations and it possesses the appealing property that 

exists in all cases.  However due to the high proportion of times that all the methods failed to 

obtain the global maximum, a combination of them would be appropriate in order to increase 

the probability of obtaining  the global maximum. 
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The HY and MF methods were inferior to the MOM and F methods in all the cases, 

and they also have a great chance to fail in providing us with initial values. As far as the MF 

method is concerned this failure was not expected. This method is a modified version of the F 

method, starting from points satisfying the two first moments of the dataset, while the F 

method is a heuristic one.  The HY method has only one advantage: it is easily extended to 

cases with more components, and hence its performance is interesting. All the other  methods 

cannot be easily extended to cases with more components, with the exception of the MOM 

method. However, the MOM method is not trustworthy for more components because it  

usually fails to give initial values (see section 4.3). 

In concluding we may say that if the true values are known (e.g.  in simulation studies) 

then it is better to  use them as initial values.  

In practical situations when the true values are not known, the MOM method is 

preferable, especially if the data show substantial overdispersion and the sample size is not 

small. Otherwise the F method is suggested. It is interesting that all the methods show an 

ability of obtaining the global maximum. The large proportion of the failure to obtain the 

global maximum for the case of sampling from a 2-finite Poisson mixture first results from 

the underdispersion of the data (which is probable when sampling from a distribution with 

very small overdispersion). As will be seen in Chapter 6, when the sample variance is smaller 

than the sample mean, the simple Poisson distribution is the appropriate distribution and, thus, 

there are multiple global maxima when trying to find the ML estimates for a 2-finite Poisson 

mixture. 
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Table 3.2  

The mean number of iterations for all the methods when sampling from a 2-finite 
Poisson mixture 

 p1=0.5,  λ1=1, λ2=2  p1=0.5,  λ1=1, λ2=8 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
TR 114.90 157.54 188.55 180.95  7.65 7.02 6.45 5.91 

MOM 84.86 116.41 139.11 125.24  8.37 7.74 7.17 6.64 
MF 133.34 164.20 181.59 176.60  8.51 8.42 8.59 8.47 
HY 141.94 171.96 186.80 178.26  8.76 8.04 7.42 6.85 
F 105.90 150.53 179.03 174.04  8.20 8.16 8.33 8.24 
 p1=0.8,  λ1=1, λ2=5  p1=0.1,  λ1=1, λ2=8 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

TR 25.03 19.32 15.11 13.52  14.53 10.73 9.19 8.25 
MOM 29.73 26.75 24.49 23.88  23.48 17.53 12.39 11.30 

MF 31.35 29.07 28.22 28.15  44.35 36.37 30.40 29.49 
HY 41.28 37.50 34.33 33.21  44.50 36.44 30.42 29.31 
F 31.09 29.46 28.22 28.08  41.62 34.28 28.95 28.26 

 
 
 

Table 3.3  
The mean number of iterations for all the methods when sampling from a negative 

binomial distribution 
 n=1, p=0.5  n=2, p=0.25 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM 46.64 47.03 43.54 43.71  20.80 21.98 23.91 25.97 

MF 72.80 69.76 65.24 64.17  21.22 20.51 20.26 20.42 
HY 94.41 89.40 88.68 90.53  24.57 25.17 26.18 27.07 
F 68.65 62.90 54.26 51.61  20.85 20.10 19.37 19.21 
 n=2,  p=0.75  n=5, p=0.5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM 78.32 92.73 95.23 78.08  37.38 38.65 37.22 38.74 
MF 150.09 182.81 199.61 181.24  50.65 49.77 45.11 42.73 
HY 160.04 190.60 214.52 206.26  54.51 52.98 49.89 50.75 
F 132.52 176.79 190.64 164.41  50.51 48.82 45.49 43.41 

 
 
 
 
 
 
 
 



Maximum Likelihood Estimation in Finite Mixtures 

 90 

Table 3.4  
The mean number of iterations for all the methods when sampling from a 3-finite 

Poisson mixture  
 p1=0.4, p2=0.3, λ1=1, λ2=5, λ3=7  p1=0.7, p2=0.2, λ1=1, λ2=5, λ3=10 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM 16.35 14.72 13.52 13.08  11.58 10.98 11.29 11.72 

MF 18.49 17.44 17.61 17.50  13.82 13.14 13.43 13.68 
HY 17.57 16.00 15.76 15.87  21.66 20.35 20.27 20.46 
F 17.86 16.84 17.06 16.99  13.49 12.82 13.10 13.34 
 p1=0.3, p2=0.4, λ1=1, λ2=2, λ3=3  p1=0.4, p2=0.4, λ1=1, λ2=1.2, λ3=5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM 78.56 81.64 83.91 67.89  25.64 19.91 16.60 14.34 
MF 125.31 144.81 164.70 152.28  36.19 32.33 32.01 32.63 
HY 130.49 143.97 155.33 139.17  44.63 39.70 37.57 36.94 
F 112.21 141.70 159.26 151.46  35.91 32.59 32.17 32.68 

 
 
 
 

Table 3.5  
The proportion  of times for which the initial estimates did not exist (based on 1000 

replications), when sampling from a 2-finite Poisson mixture 
 p1=0.5,  λ1=1, λ2=2  p1=0.5,  λ1=1, λ2=8 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
TR  0  0  0  0    0  0  0  0  

MOM  0.419  0.352  0.250  0.158    0.023  0.002  0  0  
MF  0.282  0.162  0.048  0.008    0  0  0  0  
HY  0.282  0.162  0.048  0.008   0.017  0  0  0  
F  0  0  0  0    0  0  0  0  
 p1=0.8,  λ1=1, λ2=5  p1=0.1,  λ1=1, λ2=8 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

TR  0  0  0  0    0  0  0  0  
MOM  0.016  0  0  0    0.444  0.380  0.251  0.131  

MF  0.001  0  0  0    0.036  0.004  0  0  
HY  0.174  0.117  0.046  0.020    0.036  0.004  0  0  
F  0  0  0  0    0  0  0  0  
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Table 3.6  
The proportion of times for which the initial estimates did not exist (based on 1000 

replications), when sampling from a negative binomial distribution 
 n=1, p=0.5  n=2, p=0.25 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM 0.230  0.082  0.004  0    0.035  0.092  0.178  0.092  

MF 0.007  0  0  0    0  0  0  0  
HY  0.372  0.404  0.413  0.427    0.002  0.001  0  0  
F  0  0  0  0    0  0  0  0  
 n=2,  p=0.75  n=5, p=0.5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM  0.575  0.401  0.194  0.075    0.028  0.001  0  0  
MF  0.172  0.060  0.003  0    0.003  0  0  0  
HY  0.259  0.114  0.016  0    0.003  0  0  0  
F  0  0  0  0    0  0  0  0  

 
 
 
 

Table 3.7  
The proportion of times for which the initial estimates did not exist (based on 1000 

replications), when sampling from a 3-finite Poisson mixture 
 p1=0.4, p2=0.3, λ1=1, λ2=5, λ3=7  p1=0.7, p2=0.2, λ1=1, λ2=5, λ3=10 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM  0.049  0.010  0  0    0  0  0  0  

MF  0  0  0  0    0  0  0  0  
HY  0  0  0  0    0.601  0.712  0.850  0.946  
F  0  0  0  0    0  0  0  0  
 p1=0.3, p2=0.4, λ1=1, λ2=2, λ3=3  p1=0.4, p2=0.4, λ1=1, λ2=1.2, λ3=5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM  0.437  0.276  0.118  0.037    0.012  0.002  0  0  
MF  0.133  0.047  0.003  0    0.001  0  0  0  
HY  0.133  0.047  0.003  0    0.073  0.043  0.008  0  
F  0  0  0  0    0  0  0  0  

 



Maximum Likelihood Estimation in Finite Mixtures 

 92 

 
 

Table 3.8 
The proportion of times the method converged to the global maximum when sampling 

from a 2-finite Poisson mixture 
 p1=0.5,  λ1=1, λ2=2  p1=0.5,  λ1=1, λ2=8 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
TR 0.70 0.66 0.64 0.58  1.00 1.00 1.00 1.00 

MOM 0.79 0.76 0.76 0.72  1.00 1.00 1.00 1.00 
MF 0.82 0.74 0.67 0.62  1.00 1.00 1.00 1.00 
HY 0.83 0.72 0.65 0.58  1.00 1.00 1.00 1.00 
F 0.72 0.68 0.63 0.54  1.00 1.00 1.00 1.00 
 p1=0.8,  λ1=1, λ2=5  p1=0.1,  λ1=1, λ2=8 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

TR 0.98 0.99 1.00 1.00  0.94 0.96 0.99 1.00 
MOM 0.98 0.99 1.00 1.00  0.91 0.95 0.99 1.00 

MF 0.98 0.99 1.00 1.00  0.92 0.96 0.99 1.00 
HY 0.97 0.99 1.00 1.00  0.91 0.96 0.99 1.00 
F 0.98 0.99 1.00 1.00  0.90 0.96 0.99 1.00 

 
 
 

 Table 3.9  
The proportion of times the method converged to the global maximum when sampling 

from a negative binomial distribution 
 n=1, p=0.5  n=2, p=0.25 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM 0.95 0.96 0.97 0.98  0.95 0.95 0.96 0.98 

MF 0.96 0.95 0.94 0.95  0.97 0.97 0.99 0.99 
HY 0.93 0.90 0.88 0.91  0.96 0.96 0.98 0.99 
F 0.97 0.96 0.95 0.96  0.97 0.97 0.99 0.99 
 n=2,  p=0.75  n=5, p=0.5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM 0.91 0.87 0.83 0.78  0.87 0.82 0.71 0.57 
MF 0.88 0.84 0.72 0.64  0.90 0.85 0.76 0.73 
HY 0.87 0.83 0.73 0.64  0.89 0.84 0.74 0.65 
F 0.90 0.85 0.73 0.67  0.91 0.85 0.77 0.74 
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Table 3.10  
The proportion of times the method converged to the global maximum when sampling 

from a 3-finite Poisson mixture 
 p1=0.4, p2=0.3, λ1=1, λ2=5, λ3=7  p1=0.7, p2=0.2, λ1=1, λ2=5, λ3=10 
  sample size    sample size  

method 50 100 250 500  50 100 250 500 
MOM 0.99 1.00 1.00 1.00  1.00 1.00 1.00 1.00 

MF 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
HY 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
F 1.00 1.00 1.00 1.00  1.00 1.00 1.00 1.00 
 p1=0.3, p2=0.4, λ1=1, λ2=2, λ3=3  p1=0.4, p2=0.4, λ1=1, λ2=1.2, λ3=5 
  sample size    sample size  
 50 100 250 500  50 100 250 500 

MOM 0.80 0.77 0.73 0.70  0.99 0.99 1.00 1.00 
MF 0.83 0.70 0.55 0.44  0.98 0.99 1.00 1.00 
HY 0.81 0.69 0.55 0.47  0.97 1.00 1.00 1.00 
F 0.85 0.74 0.58 0.49  0.98 1.00 1.00 1.00 

 
 

 Another interesting point is that when the components are well separated the algorithm 

converges very fast for all the sets of initial values. On the contrary, for mixtures with 

components close together the convergence is rather slow. 

 

3.3.4 The Convergence of the EM Algorithm  
 The convergence of the general EM algorithm has been proved by Wu (1983) and 

Meilijson (1989). However it can be slow and one has to examine carefully if the global 

maximum has been reached. A problem encountered with real data is the choice of a criterion 

(stopping rule) for terminating the iterations.  

 A natural choice would be to stop the iterations when the increment in the 

loglikelihood between two successive iterations is smaller than some value, namely to stop if 

" "( ) ( )i i tol+ − <1 , where " ( )i is the loglikelihood after i iterations and tol is some very small value 

used to show convergence. However, for such a criterion we have to take into account that the 

value of the loglikelihood depends on the sample size and hence, for small sample sizes, a 

small increase in absolute value may be important.  
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 Another choice would be to stop iterating if "

"

( )

( )

i

i tol+ >1 , where tol is a number very 

close to 1, e.g. 0.99999. This stopping rule takes into account the relative improvement 

between 2 iterations. Agha and Ibrahim (1984) used this criterion.  

 Note that these criteria serve rather as lack of progress criteria than useful stopping 

criteria.  

 Everitt (1984b) proposed, in a normal mixture problem, to stop iterating when the 

Euclidean distance between the vectors of estimates between two iterations is less than 

0.0001.  This stopping criterion can have a substantial gain in computing time because at each 

iteration the time required for the computation of the loglikelihood is very long. This criterion 

can save time without great loss in accuracy. 

 A very interesting contribution to this problem is given by Finch et al. (1989). The 

authors estimated the probability that an iterative algorithm starting from different initial 

values fails to locate the global maximum. The lower the probability the more likely that the 

maximum is obtained. The idea is connected with the problem of estimating the unobserved 

species in ecology when we randomly sample from a population. The method proposed is very 

interesting since it provides us with an estimate of the probability that we have really found 

the maximum. All the other methods just examine whether the maximum is obtained, and thus 

any problem connected with the accuracy of the computer may destroy our confidence.  

 The results from Theorem 3.1 are useful at this point. We can search whether the 

obtained estimates satisfy the conditions to be ML estimates, given in Theorem 3.1.  We have 

seen that the estimating equations satisfy  conditions (a) and (b) of Theorem 3.1. Condition (c) 

verifies that the maximum has been obtained. However, this may be time consuming, since 

the examination as to whether the maximum has been obtained using condition (c ) might 

need more computing time  than that of an iteration itself. Thus, making more iteration might 

be more computationally efficient. In this case it would be useful to check for the convergence 

after a certain number of iteration and not after each iteration. 

 Another possible criterion would combine the improvement of the likelihood itself 

with some goodness of fit value. The underlying idea is that even though the likelihood is 

improving, the goodness of fit may be deteriorating after some iterations. Thus, if the 

likelihood has started to slow down we can stop iterating when the goodness of fit starts 

decreasing. The main problem is that we may stop too early in the sense that we will not find 
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the ML estimate, but a very close approximation. Note that, in fact, this is the case for every 

criterion proposed.  

 Another criterion is the Aitken acceleration applied to mixture models by Bohning et 

al. (1994) and McLachlan (1995). The EM algorithm converges only linearly and in practice 

the rate is often slow. This means that a large number of iterations is necessary to achieve 

parameter estimates of reasonable accuracy. Let "max  be the maximum of the loglikelihood. If 

the sequence "( )i  converges linearly to "max  then  

" " " "( ) max ( ) max( )i ic+ − ≅ −1  for all i and some c , 0 < c <1 

where ≅  means that the equality holds for i → ∞ . 

 From this it is clear that if c is very close to 1, then a small increment in the 

loglikelihood need not mean that we are close to the maximum.  

 The improvement, known as Aitken acceleration, estimates the value of c at each 

iteration in order to predict the value at the limit and hence, to see if we are close to the value 

of the true maximum. So, we compute  

ci

i i

i i=
−

−

+

−

" "

" "

( ) ( )

( ) ( )

1

1  and calculate the value  

 ( )" " " "∞
− −= +

−
−( ) ( ) ( ) ( )i i

i

i i

c
1 11

1
. Iterations stop when tolii <− −

∞∞
)()( 1

""  , where tol 

has some fixed value. Note that the value of "∞
( )i   can be used as a prediction of the true 

maximum loglikelihood value. This can be useful in some cases, e.g. when we want to 

perform a likelihood ratio test.  

Jones and McLachlan (1992) used a similar device for an EM algorithm for finite 

mixtures for grouped data.  

The EÌ converges linearly to the maximum, while other numerical methods converge 

quadratically. These include the Newton-Raphson method.  On the contrary, such numerical 

methods require good initial values near the maximum in order to converge. So, a good 

strategy might be to start with EM iterations to get nearer the maximum and then continue 

with Newton-Raphson iterations to locate it (see Aitkin and Aitkin, 1996). 

 

Example 3.1 (continued) In order to show how important the convergence criterion is, 

we run the EM algorithm for the data of Example 3.1, starting from the same point, but using 

two different stopping rules. The two rules were to stop iterating when "

"

( )

( )

i

i tol+ >1  , with 
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tol = × −9 9 10 5. for the first criterion and tol = × −9 9 10 15. for the second. Table 3.11 contain the 

results. The starting values were p1=0.5, ë1 =1 and  ë2 =2. 

 
Table 3.11 

The estimates derived via the EM algorithm for the data in Table 3.1, using two 
different stopping rules 

criterion p1 ë1 ë2 number of 
iterations 

loglikelihood 

tol = × −9 9 10 5.  0.7197 1.5652 3.9768 39 -274.1617 
tol = × −9 9 10 15.  0.6727 1.4888 3.7885 334 -274.1226 

      
 
Table 3.11 reveals a very important problem. Using the second stopping rule we 

achieved an increase of the loglikelihood by only 0.0002%. But the change in the parameter 

values is very large. In fact the mixing proportion changed almost 7%, while each of the 

component parameters changed almost 5%. This example illustrates that a negligible change 

in the loglikelihood can lead to a significant change of the estimates.  The standard errors for 

parameters p1 , ë1, ë2  were found to be equal to  0.178, 0.304 and 0.715 respectively. Using 

Aitken acceleration we verified that the maximum has been obtained. One can see that the 

changes on the parameters are smaller relative to their standard errors. Lindsay (1995, page 

131) discussed a stopping rule based on both likelihood issues and the standard errors of the 

parameters. 

 

3.3.5 Applications  
 The EM algorithm is widely accepted as a method which can be used easily in 

mixture models. This is the reason why it is very popular among researchers and for the 

majority of cases of ML estimation in mixture models the EM algorithm is used. For a wealth 

of applications in mixture models one can refer to the book of Titterington et al. (1985).  

 Leroux and Puterman (1992) extended the method to Markov dependent Poisson 

process. In this case instead of a simple parameter for each component we have to estimate the 

stochastic matrix as well.  

 Some other applications involve random coefficient regression models, Mallet (1986), 

outlier identification Aitkin and Wilson (1980), grouped or truncated data, Mclaren et al. 

(1986), McLachlan and Jones (1988), longitudinal data, Dietz and Bohning (1994) latent class 

models Aitkin et al. (1981). De Vaux (1989) treated the case of mixtures of linear regression, 

known also as switching regressions, applying the EM algorithm. Poisson mixtures are treated 
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in Symons et al. (1983) for a cluster application and in Gibbons et al. (1990). A number of 

recent applications can be found in Lindsay and Roeder (1995).  

Another interesting application of the EM algorithm for mixtures can be found in 

Jorgensen (1990). He discussed influence-based diagnostics for finite mixture models and he 

described the idea of measuring the influence of an observation by calculating the difference 

of the loglikelihood if this observation is removed. Since this is time consuming for mixture 

models, because of the difficulty in obtaining the ML estimates, he proposed to use the so-

called one step influence by substituting the loglikelihood of the new sample by the 

loglikelihood obtained after one EM iteration, starting from the ML estimate of the full data 

set. 

 

3.4   Variants of the EM Algorithm and Related Algorithms  

3.4.1 Variants of the EM 
 The EM algorithm can serve as a powerful tool for ML estimation for all cases when 

the model can be written as a mixture model. The general iterative scheme can be used in all 

the circumstances when some of the parameters involved are known. As a general example 

one can refer to the case of normal mixtures. The more general case involves the estimation of 

both ìi's and ói’s, while in some situations we may consider the variances known and thus only 

the estimation of ìi 's is necessary. In this case the general iterative scheme applies keeping the 

rest of the known parameters fixed (i.e. we do not need to update our estimates at each 

iteration for these parameters). As far as the Poisson case is concerned we may use variants of 

the EM in order to estimate the parameters of some related distributions. Three cases are 

given.  

 

Case 1: Distributions with Added Zeroes 

Example 3.2 Guillen and Artis (1992) presented the data set of Table 3.12. The random 

variable  X represents the number of  defaulted instalments, i.e.  the number of times the client 

did not pay the money as it was agreed when credit was granted. The examination of such data 

sets is crucial since any financial institution would want to know how many of its clients will 

not pay their instalments, especially when new contracts are signed. 

Table 3.12  
The number of defaulted instalments 
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 The financial institution is interested in classifying the clients as ‘good’ and ‘bad’,  i.e. 

those who pay their instalments and those whose instalments are defaulted. For the ‘good’ 

clients, X=0, i.e. there are no defaulted instalments.  Thus, the entire population consists of at 

least two groups, the first group is the group of ‘good’ clients which has certainly the value 

x=0, while for every other group the random variable  X follows a Po(ë) distribution with 

some group specific value of the parameter ë.  We suppose that there are two groups of ‘bad’ 

clients. This model give rise to a 2-finite Poisson mixture with added zeros. 

Johnson et al. (1992) described the case of Poisson with added zeros or inflated 

Poisson distribution. This is the distribution where some observations with value equal to zero 

have been added to the simple Poisson distribution. This distribution can be considered as a 

mixed Poisson with the first component having a Poisson distribution with parameter equal to 

0 (this is a distribution degenerate at 0). 

A 2-finite Poisson mixture with added zeroes can be regarded as a 3-finite Poisson 

mixture whose first component has a parameter equal to 0. So, the standard EM algorithm is 

applicable, but at each step we do not need to update the value of the parameter ë1.  

We applied the EM algorithm for the data in Table 3.12. Table 3.13 contains the 

values of the parameters of the fitted distribution. 

 

Table 3.13 
 The fitted 3-finite Poisson mixture for the data in Table 3.12 

 

x frequency x frequency x frequency x frequency 
0 3002 9 53 18 8 27 0 
1 502 10 41 19 6 28 1 
2 187 11 28 20 3 29 1 
3 138 12 34 21 0 30 1 
4 233 13 10 22 1 31 1 
5 160 14 13 23 0 32 0 
6 107 15 11 24 1 33 0 
7 80 16 4 25 0 34 1 
8 59 17 5 26 0   
        

 mixing proportion component parameter 
1st 0.605 (0.0116) 0 
2nd 0.276 (0.0132) 2.078 (0.262) 
3rd 0.119 8.506 (0.698) 

   
 loglikelihood=-7211.51  
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According to the specified model the proportion of ‘good’ clients is 0.605. The 

standard errors of the parameters are shown in the parentheses. 

Fong and Yip (1993) described the EM algorithm for several discrete distributions 

with added zeroes. Their algorithm is the standard EM algorithm for mixtures described 

above.  

This scheme can be generalised by fixing the value of one (or more) component 

parameters. Our example treated the case when the parameter was fixed to have a 0 value. The 

general EM algorithm applies, but at each iteration we do not update the values of the 

parameters. Hence, the EM algorithm can be used in cases when only the mixing proportions 

have to be estimated.  

 

 

Case 2: Discrete Mixing Distribution. 

Let us now restrict our attention to the case where the mixing distribution is finite but 

the parameters ëi take integer values 1,2,. . ., k . We may allow ëi to take the value 0 too.  In 

this case the estimation can be made via the EM ignoring the step for the estimation of ëi, 

i=1,2, . . ., k and using the fixed values at each iteration. This corresponds to the case of a 

discrete mixing distribution. Note that we may use this estimated mixing distribution for 

goodness of fit purposes. For example, the Neyman distribution is known to be a mixed 

Poisson distribution with the Poisson itself as the mixing distribution (see, e.g.,  Douglas, 

1980). Thus for estimating a discrete mixing distribution we may check if this distribution is 

the Poisson distribution or not. The identifiability of Poisson mixtures guarantees the 

equivalence of the two tests. Tests for the Poisson distribution are more common and well 

examined than tests for the goodness of fit of the Neyman distribution. Finding a mechanism 

which reduces a hypothesis testing procedure for the mixed Poisson distribution to a 

hypothesis testing procedure for the form of the mixing distribution remains an open problem. 

 

Example 3.1 (continued) Consider the data of Example 3.1 and assume that the 

mixing distribution is discrete. Under this assumption, we applied the EM algorithm, allowing 

the value 0 for the mixing distribution, and  we estimated  the discrete mixing distribution 

(recall that the Poisson distribution with mean 0 is the degenerate distribution at 0). Note that 

we assume that the mixing distribution takes values 0,1,..,9. As the results in Table 3.14 show, 
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this restriction does not play any role in the procedure and simply facilitates the estimation 

procedure. Table 3.14 contains the estimated discrete mixing distribution.  

 

Table 3.14 
The estimated discrete mixing distribution 

x 0 1 2 3 4 5 6 
Probability 0 0.2549 0.4461 0.1517 0.0994 0.0463 0.0013 

 
Figure 3.1 depicts the estimated discrete mixing distribution along with the estimated 

Poisson distribution with parameter equal to 2.241 (i.e. equal to the sample mean). Clearly the 

estimated distribution differs from the Poisson distribution and thus one may conclude that the 

Neyman distribution, which is the mixed Poisson distribution obtained using a Poisson 

distribution as the mixing distribution, is not appropriate to describe this data set.  
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Figure 3.1 The estimated discrete mixing distribution for the data of Example 3.1 and the Poisson distribution 
with ë=2.241. 

 
 

Case 3: Finite Mixtures with Different Components 

We can generalise the EM algorithm, to cover cases where the components of the 

mixture follow different distributions. Only slight modifications are needed in the M-step, 

where the ML estimate of each component distribution must be obtained. We will present a 

simple example. 

 

Example 3.1 (continued) Instead of assuming a 2-finite Poisson mixture we assume 

that our data come from a mixture of a Poisson distribution with a geometric distribution  as 

defined by (2.24). Then we assume that the random variable  X follows a discrete distribution 

with probability function  given by 
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,   (3.21) 

 
where x=0, 1, 2, . . . , á, ë>0, and  0 1≤ ≤p . If p=1 we obtain the simple Poisson distribution 

while if p=0 we obtain the simple Geometric distribution. 

The EM algorithm can be described as : 

 

Step 1 (E-step) : Given the current  values for λold olda,  and pold  we calculate the 

probability wij  that the observation X belongs to the j subpopulation (j=1,2) after observing it 

(namely the posterior probability of belonging in the j subpopulation). Note that the first 

subpopulation follows a Poisson distribution while the second follows a geometric 

distribution. These posterior probabilities are calculated as: 
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where P(x) is calculated by (3.21), and f x1 ( | )λ and f x a2 ( | )  are the probability functions  of 

the Poisson and the Geometric distributions respectively. 

Step 2 (M-step) : Calculate the new estimates as  
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Step 3 : Check if some condition is satisfied in order to terminate the iterations, 

otherwise go back to step 1, using the currently estimated values. 

Applying this scheme to the data of Example 3.1 we derived the following estimates 

(with their jacknife standard errors in parentheses):  p=0.707 (0.121), ë=2.269 (0.283) and 

á=0.459 (0.113). The maximised loglikelihood is -276.1402, which shows that the 2-finite 

Poisson mixture model is more plausible.  

Note also that mixtures of the form given in (3.21) can be used for testing the 

assumption that data come from the Poisson distribution against the alternative that data come 

from the geometric distribution. So the hypothesis testing reduces to testing if p=1. Durairajan  

and Kale (1979, 1982) described hypothesis testing for the mixing proportion. A similar idea 

for goodness of fit tests is described in Rudas et al. (1994). 
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Rachev and  SenGupta (1994) describe a finite mixture of Laplace-Weibull 

distributions for modelling the price changes in the stock market. Scallan (1992)  described a 

finite Normal-Laplace distribution for modelling the wind shear.  Al-Hussaini and Abd-El-

Hakim (1990) proposed an inverse Gaussian-Weibull mixture for reliability applications.. 

Clearly the EM algorithm is a useful tool for describing mixtures with different components. 

Moreover such models can be used for model selection purposes. 

 
 

3.4.2 Related Algorithms 
a) The ECM  Algorithm 

Another class of algorithms, for Poisson mixtures, very similar to the EM is the 

expectation-conditional maximisation (ECM) algorithm. Meng and Rubin (1993) discussed 

this class of EM algorithms. The idea is that in many cases complete data ML estimation is 

relatively simple conditional on some function of the parameters being estimated. In other 

words, when we cannot maximise the likelihood directly because of its complexity we can 

maximise it with respect to one parameter keeping the other parameters fixed (i.e. we 

maximise the likelihood with respect to another parameter conditionally on the other 

parameters and so on). Meng and Rubin (1993) showed that the ECM algorithm has the same 

properties as the EM algorithm and they discussed further the ECM algorithm when the 

maximisation step of the EM algorithm is replaced by several ECM steps.  

 In each step we estimate the values of pi ´s for the given values of ëé ´s and then we try 

to find the ëi ´s which maximise the likelihood with the given pi ´s . The concavity of the 

functions needed to be maximised can be verified easily. Because of the fact that the method 

is a special case of the EM algorithm its convergence is ensured. Of course, it is not known 

whether the algorithm converges to the global maximum (and not to a local maximum). So, 

we have to try several initial values or we have to test if the global maximum is obtained. 

However, the ECM algorithm shows no clear improvement over the EM algorithm. 

 

b)  The SEM Algorithm 

 Celeux and Diebolt (1985,1992) discussed a stochastic version of the EM algorithm 

named SEM (Stochastic EM). The idea is to replace the closed form expression for the E-step 

with a stochastic step, by simulating the expected values from a multinomial distribution with 

parameter n (the sample size) and probabilities equal to the posterior probabilities for given 
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values of the parameters calculated as in (3.16). These posterior probabilities are those 

calculated at the E-step of the EM algorithm. The dual idea for this step is primarily to avoid 

small sample size difficulties and secondly to use the fact that the variability from the 

stochastic step accounts for the variability of the data. This method works well for moderate 

or large sample sizes, and overcomes most of the limitations of the pure EM algorithm. For 

example, the simple EM algorithm proceeds towards the nearest local maxima. The 

stochasticity of the SEM algorithm can help in locating maxima other than the nearest local 

ones. On the other hand, it converges only in distribution and usually it takes more 

computational time. It must be pointed out that, since the SEM provide only  convergence in 

distribution, it does not lead to point estimates, as the EM algorithm does. However, a point 

estimate can be obtained by averaging a sufficient number of successive estimates after the 

procedure has reached stationarity. See also Diebolt and Celeux (1993) for asymptotic 

properties of the SEM algorithm for mixtures and Chauveau (1995) for applying the SEM 

algorithm in finite mixtures with censored data. Diebolt and Ip (1996) provide a review on the 

SEM algorithm. 
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Example 3.1 (continued) 

We applied the SEM algorithm to the dataset concerning the number of crimes in 

Greece, given in Table 3.1. After 100 iterations to reach the maximum 1000 values were 

considered for representing the distribution of each parameter. The means of these 

distributions representing the point estimates of the parameters were p1=0.6784 (0.134), 

ë1=1.5022 (0.234) and   ë2=3.926 (0.566). 

Figure 3.2 depicts the estimated distributions of the parameters via the SEM algorithm 

(smoothed via kernel density methods). 

 
  Figure 3.2a     Figure 3.2b 
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Figure 3.2  The distributions of the 3 parameters p1, ë1 and  ë2  (figures a, b and c respectively) derived via the 
SEM algorithm. 
 

 
c) The SAEM algorithm  

 The SAEM algorithm (Stochastic Approximation EM algorithm), is a compromise 

between the EM algorithm and the SEM algorithm. This algorithm also uses the S-step but the 

probabilities used in the M-step are a weighted average of the probabilities of the E-step and 

those of the S-step. The weight in the i-th iteration has a value  γi , where γ0 =1 and {γn } is a 

sequence of positive real numbers in (0,1) decreasing to zero at a sufficiently slow rate. 

Symbolically, SAEM = (1-γn ) EM+ γn SEM. Hence the SAEM algorithm starts of a pure 
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SEM algorithm and evolves to a pure EM algorithm eventually. The convergence is almost 

sure. SAEM works better for small sample sizes.  

Celeux et al. (1995) described all of the above mentioned stochastic versions of the 

EM algorithm. 

 

d) Other algorithms  

A variant of the EM algorithm, named the Monte Carlo EM algorithm, has also been 

proposed (see Wei and Tanner (1990)). The idea is to calculate the E-step via simulation of a 

large number of replications the quantity for which we want to calculate its expectation, and 

then to estimate its expectation with the mean of these replications. This algorithm is very 

useful when the E-step cannot be performed in closed form.  

Aitkin and Rubin (1985) described another variant of the standard EM algorithm. They 

proposed to use a prior distribution for the mixing proportions. Therefore at each E-step one 

should integrate out the mixing proportions under this prior. The aim of the authors was to 

ensure that the estimates always lie in the interior of the parameter space not approaching 0 or 

1. This assumption is useful  when one wants to apply the standard likelihood ratio test.  

Nychka (1990) proposed the addition of a smoothing step after the maximisation step. 

This idea can be transferred to the finite mixture case by trying to smooth the estimates from 

the i-th iteration for the mixing parameters. This may be interesting if we are trying to 

estimate a great number of parameters (large k). Nychka (1990) showed that his proposal is 

similar with a penalised ML estimation method and the smoothing step is the application of 

the penalty. 

Another algorithm which uses the EM algorithm was proposed by Leonard et al. 

(1994). They proposed to start from an equal weighted mixture, namely assuming that each 

component has the same mixing proportion. Then, using the iterative scheme of the EM they 

estimate the parameters of interest only, and if these parameters are very close together they 

replace them with their mean and the new mixing proportion is the number of components 

clustered divided by the initial number. This enables one to estimate the number of 

components too. A similar idea can be found in Bohning et al. (1992). In this case the mixing 

proportions were estimated, and then components close together or components with very 

small mixing proportion were clustered. Leonard et al. (1994) proposed not to estimate the 

mixing proportions via the EM but with a perturbing search among the established clusters. 

The only disadvantage is the complexity of this search, because the search needs to subtract a 
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value of each component and to add it to another one, looking for whether the likelihood is 

increased.  

 The increased complexity in this last step is compensated by the economy in the first 

step when the mixing proportions were not estimated. The number of initial components must 

be large enough. The authors proposed to start the search from a number equal to the sample 

size.  

 De Vaux and Krieger (1990) described a method to robustify the EM algorithm for 

normal mixtures. In fact, their approach does not lead to ML estimates but, as the authors 

showed, their proposal reduces the risk of inconsistent estimates due to the presence of some 

outliers. The idea for robustification is to replace the used measures either at the E-step or at 

the M-step or at both steps with robust counterparts. For example, in normal mixtures the 

authors proposed to use at the M-step, the median instead of the mean and the mean absolute 

deviation instead of the variance. For the E-step they proposed to use more heavily tailed 

distributions like the Student or the double exponential. From the simulation results reported 

such an approach may preserve the estimates from the influence of outliers. Clearly, the 

estimators are not ML estimators but some kind of distance estimators.  

 
 

3.5 Improving the EM Algorithm for Mixtures: A New Method 
 In section 3.2.2 we saw that the ML estimates for finite mixtures of the one-parameter 

exponential family satisfy the first moment equation. This result can be used to simplify the 

ML estimation for finite mixtures and more specifically to improve the EM algorithm. 

 The EM algorithm, despite its disadvantages, is the commonly used method for ML 

estimation for finite mixtures. Improvements of the EM algorithm for finite mixtures have 

been proposed in three different directions.  

• Bohning et al. (1994) proposed methods that can easier detect the convergence of the 

algorithm and thus saving iterations.  

• Fruman and Lindsay (1994)  recommended the use of efficient initial values, namely the 

use of the moment estimates as initial values for the EM algorithm.  

• Aitkin and Aitkin (1996) proposed that we can speed up the convergence by alternating the 

EM iterations with Gauss-Newton iterations (see also Lange, 1995, Jamshidian and 

Jennrich, 1997) 
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 Our results of section 3.2.2 can serve as a basis for improving the EM algorithm for 

finite mixtures. At each step we do not have to calculate all the 2k-1 parameters. It suffices to 

calculate 2k-2 of them while the rest can be easily calculated from the moment equation at a 

low cost. This can save much of the computational time needed for each iteration because the 

updated  estimate is a sum with a large number of summands as it can be seen from (3.17)-

(3.18). Note that our  approach can be combined with the above mentioned methods in order 

to maximise the gain in computing time. 

 This improvement applies to all  members of the exponential family defined in (3.7) 

for which the results of section 3.2.2 hold. The gain in computing time is considerable as 

shown in Tables 3.15-3.17 for small values of k and for finite mixtures from the Poisson and 

the Normal distributions. If we look at the iterative scheme described in (3.16)-(3.18), we can 

see that we can avoid calculating ì(èk) (i.e. the parameter of the k-th component) and this is 

equivalent to reducing the calculations involved for obtaining the new parameters  by almost 

the 1/(2k-1). In fact, the gain is less because of the cost for some additional calculations at 

each iteration. It is also interesting that the gain is expected to be larger in the case of discrete 

distributions, like the Poisson or the binomial distributions. This is so because, for discrete 

distributions, we can avoid exhausting summations by multiplying with the observed 

frequencies. 

 We give two examples to show the gain in time using our method. 

Example 3.3  Finite Poisson mixtures 

 Consider the case of finite Poisson mixtures. In order to examine the gain we carried 

out a small simulation comparison. For k=2 we simulated 100 samples of given sample size n 

(n=50, 100, 250, 500) for each distribution with parameter vectors (p1= p , ë1 = 1, ë2 ). We 

calculated the necessary time for ML estimation via the EM  algorithm using both  the general 

EM algorithm and the improved EM algorithm discussed above. Each entry in Table 3.15 

represents the time that the improved EM algorithm takes relative to that taken by the standard 

EM algorithm, i.e. the time of the improved EM, divided by the time of the standard EM 

algorithm. From both the numerator and the denominator we have subtracted the time spent 

for simulating the samples.  We tried to minimise the computing time for some auxiliary 

procedures like the terminating conditions. For each sample we stopped running the algorithm 

after 50 iterations. All the calculations were carried out in a PC with Pentium microprocessor 

(120 Hz). The results of Table 3.15 clearly show that we can save almost 20% of the 

computing time for k=2.  
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Table 3.15 
Times for the improved EM relative to the standard EM for 2-finite Poisson mixtures 

(k=2)  
 p1 =0.25 p1 =0.50 p1 =0.75 

ë2 2 5 10 2 5 10 2 5 10 
n          
50 0.822 0.803 0.797 0.821 0.800 0.799 0.831 0.815 0.806 
100 0.823 0.800 0.792 0.812 0.799 0.797 0.789 0.808 0.800 
250 0.809 0.795 0.792 0.813 0.796 0.795 0.819 0.803 0.794 
500 0.813 0.793 0.791 0.812 0.752 0.794 0.809 0.820 0.793 

 
Table 3.16 contains the results for k=3 (3-finite Poisson mixture). The vectors of parameters 

were (p1 , p2 = 0.3, ë1=1, ë2=2, ë3 ). For each distribution 100 samples of given sample size n 

(n=50,100,250,500) were simulated and the times required for both methods were recorded. 

The entries are again the time for the improved EM, divided by the time for the standard EM. 

We can also see an improvement on the required computational time near 15%.  

 
 

Table 3.16 
Times for the improved EM relative to the standard EM for 3-finite Poisson  mixtures 

(k=3) 
 p1 =0.25 p1 =0.50 p1 =0.75 

ë3 3 5 10 3 5 10 3 5 10 
n          
50 0.869  0.859 0.853 0.868 0.863 0.857 0.875 0.870 0.866 
100 0.866 0.860 0.853 0.866 0.861 0.854 0.871 0.862 0.858 
250 0.863 0.857 0.851 0.862 0.857 0.851 0.863 0.859 0.854 
500 0.862 0.856 0.850 0.859 0.855 0.850 0.863 0.858 0.851 

 
 

Example 3.4: Finite Normal mixtures 

 Behboodian (1970) showed that for the case of normal mixtures with different 

variances, the second moment equation is also satisfied, i.e. the variance from the ML 

estimates  is the same as the sample variance. So, in the case of normal mixtures, at each EM 

iteration we can simplify the estimation of 2 parameters. The total number of parameters to be 

estimated is 3k-1. We have only to calculate the 3k-3 parameters, while the remaining 2 
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parameters can easily be obtained from equating the first two moments. Thus we reduce the 

effort almost by a factor of 2/(3k-1). In practice the gain is less than this factor because of the 

cost of some additional calculations in each iteration, but it is still helpful. For k=2, we 

simulated 100 samples from several 2-finite normal mixtures. The gain is near 30% (we 

estimate 3 instead of 5 parameters) as we can see in Table 3.17, for selected parameter vectors 

è = (p1, ì1, ì2,  ó1
2, ó2

2) and varying sample sizes. The entries of Table 3.17 are again the ratios 

of computing times required by the improved EM divided by the corresponding computing 

times required by the standard EM algorithm for the same samples. Again, we tried to 

minimise any auxiliary calculations, and the comments from the Poisson case apply too. 

 
Table 3.17 

Times for the improved EM relative to the standard EM for 2-finite Normal mixtures 
(k=2) 

vector of parameters  sample size  
(p1, ì1, ì2,  ó1

2, ó2
2)      

 n=50 n=100 n=250 n=500 
(0.25, 0, -1, 1, 2)  0.707  0.731  0.720  0.724 
(0.25,  0,  1, 1, 2)  0.731  0.706  0.747  0.693 
(0.5, 0, -1, 1, 2)  0.722  0.725  0.729  0.730 
(0.5, 0, 1, 1, 2)  0.719  0.728  0.725  0.722 
(0.75, 0, -1, 1, 2)  0.711  0.717  0.723  0.708 
(0.75, 0, 1, 1, 2)  0.729  0.732  0.735  0.727 
(0.25, 0, -1, 1, 5)  0.728  0.730  0.718  0.726 
(0.25, 0, 1, 1, 5)  0.726  0.731  0.736  0.731 
(0.5, 0, -1, 1, 5)  0.729  0.733  0.729  0.734 
(0.5, 0, 1, 1, 5)  0.731  0.728  0.727  0.730 
(0.75, 0, -1, 1, 5)  0.724  0.729  0.731  0.710 
(0.75, 0, 1, 1, 5)  0.720  0.724  0.717  0.721 

 
 These two examples reveal that a substantial improvement in computing time can be 

achieved by using this simple relation. It is important to note that  similar improvements can 

be made for any other  iterative algorithm. 

 

3.6  M2 Type Samples: Maximum Likelihood Estimation 

3.6.1 An EM Algorithm for Maximum Likelihood Estimation for M2 Type Samples 
from Finite Poisson Mixtures 

Let us now examine the case when some additional information is available. This is 

the case when we have an M1 or an M2 type of sample. We will treat the case of M2 type 
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samples since this is more common in practice. This is the case where, for a certain proportion 

of our observations, we know the subpopulations to which they belong.  

Suppose for example that we are examining accident data from an insurance company. 

Because of the fact that some of the records of the company are incomplete the age of the 

driver has not been recorded for all records. Fortunately, for a proportion, say á, of them the 

age is recorded. This sample is an M2 type sample since for some observations we have 

additional information. 

 Hosmer (1973a) examined the ML estimation method for normal mixtures under the 

three types of samples described in the previous section, using the EM algorithm. He 

concluded that a very small proportion of known data over the whole sample can lead to 

considerable gain in efficiency of the estimators. 

 Let us describe the case in Poisson mixtures when there are some cases for which we 

know the subpopulation to which they belong. Suppose that we have n observations from the 

mixture and m more observations of which mj come from the j-th subpopulation, with 

m mj
j

k

=
=
∑

1

. Then we have a total sample size of N=n+m observations and for only m of them 

we know their true subpopulation. For simplicity suppose that we have rearranged our sample 

so that the first n observations are those without additional information followed by the 

observations with additional information. We introduce the notation M mj i
i

j

=
=
∑

1

 , i.e. M j  

represents the number of observations of known origin which belong to the j-th component 

j=1, . . ., k. With this notation, our M2 type sample is:  

( ,..., , ,..., , ,..., ,..., ,..., )X X X X X X X Xn n n M n M n M n M n mk1 1 1 11 1 2 1+ + + + + + + +−
  

 Now the likelihood of the sample is given by 
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(3.24) 

We have factorised the likelihood in three factors. 

•The first factor is the contribution of the observations of unknown origin. 

•The second factor is the probability of taking such a partition of the known 

observations, i.e. the probability of choosing m persons. We obtain mj ,j=1, . . ., k from the j-

th subpopulation. This is a multinomial probability. 
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•The third factor is the contribution of the observations of known origin.  

The loglikelihood "  is written as 
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 (3.25) 

 Taking the partial derivatives of the loglikelihood given in (3.25) and equating them 

to 0, one can theoretically find the ML estimates. However analytic solution of the above 

problem is not straightforward and numerical techniques are necessary. We can use the EM 

algorithm to derive the ML estimates. We will demonstrate now that this approach is very 

similar to the one described for the simple case via the EM algorithm.  

 The iterative EM algorithm is almost the same as the one given in (3.16)-(3.18) for 

the simple sample type. The only difference is that now we do not have to estimate the 

posterior probabilities of belonging to the j-th class, given in (3.16) for the observations with 

known origin. The reason is that these values are known, i.e. we do not need to consider them 

as ‘missing’, so as to try to estimate them at the E-step.  

 Then (3.16) can be rewritten for the case of the EM algorithm for M2 type of sample 

as: 

 w
p f x

f xij
j i j

P i
=

( | )
( )

λ
  for i=1, 2, . . . , n and j=1, . . . , k and 

wij = 1 if the i-th observation belongs to the j subpopulation and 0 otherwise, for 

i n n m= + +1,... , . 

 

Then at step 2 (the M-step) we calculate  again the new parameters as  

Step 2 (M-step)  Calculate λ j

ij i
i

N

ij
i

N

w x

w
= =

=

∑

∑
1

1

 and p
w

Nj

ij
i

N

= =
∑

1   for j=1, 2, . . . , k 

 Step 2 is the same as the maximisation step of the EM algorithm for simple samples 

given in (3.16)-(3.17). The only difference is that now we do not try to estimate the posterior 

probabilities wij  for the cases with known origin. Instead, we use the supplementary 

information setting this probability equal to 1 if the i-th observation belongs to the j-th 

population and 0 otherwise. This constitutes the first instance of an illustration for  the case of 

Poisson mixtures from M2 type of sample in the literature.  
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 We follow the matrix representation of the EM algorithm , given in (3.19) and (3.20) 

with the only difference in the construction of the W matrix. It is an N x k matrix of the form  

 

W =
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where 1n is a vector with all its n elements equal to 1 and 0 n is the vector with all its elements 

equal to 0. Equations (3.19) and (3.20) still hold for obtaining the estimates of the parameters. 

 

3.6.2 A Simulation Comparison 
Intuitively,  we expect that an M2 type sample is preferable to the typical sample with 

no additional information because of the complementary information contained in it. We 

carried out a simulation experiment to examine the gain from this additional information. 

From some 2-finite Poisson distributions we simulated 10000 samples of given sample 

size n (n=50,100,500). For simulating from the 2-finite Poisson distributions, we used an 

algorithm which firstly chooses the component from which it will simulate a Poisson variate 

and then it simulates this value. This enables us to record the true value of the subpopulation 

of the observation. For a proportion á of the observations (á = 0.1, 0.2, 0.3)  this true 

subpopulation value was recorded, and the estimated parameters using the EM algorithm for 

both the sample with no additional information and for the sample with additional information 

were calculated.  

Then the standard errors of the parameters as well as the mean squared errors were 

calculated from the 10000 values for the parameters, for each sample type. In Tables 3.18-3.19 

we can see the relative efficiencies and the relative mean squared errors for the parameters. 

The relative efficiency was calculated as the ratio of the standard error of the parameter if no 

additional information is available, divided by the standard error of the parameter using the 

additional information. So, entries larger than 1 favour the case with additional information. 

Similarly the relative mean squared error was calculated as the ratio of the mean squared error  

of the parameter if no additional information is available, divided by the mean squared error 
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of the parameter using the additional information. Again, entries larger than 1 favour the case 

with additional information. 
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Table 3.18 

Relative Efficiencies. The entries are the ratios of the standard deviations of the 
parameter estimates when no supplementary information is available to those when the 

true subpopulation is known for  a fraction á of the data 
 

     α    
Parameter 

Vector 
  0.1   0.2   0.3  

 n p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
 50 1.19 1.37 1.56 1.31 1.33 1.85 1.30 1.36 1.85 

(0.2,1,2) 100 1.54 1.80 1.89 1.94 1.87 2.30 1.71 1.87 1.93 
 500 4.43 3.78 2.94 4.44 3.66 3.23 3.51 3.40 2.68 
           
 50 1.20 2.02 1.60 1.31 2.08 1.63 1.32 2.03 1.79 

(0.5,1,2) 100 2.08 2.61 2.07 1.99 2.68 1.85 1.99 2.73 1.92 
 500 5.59 5.06 3.58 5.31 4.91 3.57 5.39 4.68 3.43 
           
 50 2.19 2.34 1.21 2.39 2.30 1.34 2.10 2.21 1.25 

(0.8,1,2) 100 3.42 2.96 1.83 3.64 2.97 1.86 3.81 3.09 1.67 
 500 9.71 5.70 3.06 9.10 5.43 3.06 8.79 5.44 3.09 
           
 50 1.91 2.09 2.03 1.99 2.16 2.16 1.91 1.91 2.07 

(0.2,1,3) 100 2.93 2.92 2.41 2.57 2.65 2.22 3.07 2.88 2.57 
 500 5.94 4.16 3.43 6.08 4.26 3.28 6.01 4.55 3.07 
           
 50 2.07 2.61 2.08 2.01 2.51 2.26 2.02 2.53 2.09 

(0.5,1,3) 100 3.02 3.20 2.71 3.08 3.11 2.68 2.97 3.02 2.64 
 500 5.05 4.05 3.23 5.02 3.86 3.16 4.99 4.00 3.17 
           
 50 2.91 2.65 1.81 2.86 2.71 1.91 2.94 2.66 1.81 

(0.8,1,3) 100 4.55 3.27 2.43 4.53 3.23 2.31 4.51 3.21 2.51 
 500 7.52 4.09 3.46 7.86 4.34 3.55 7.42 4.02 3.59 
           
 50 2.02 2.25 1.78 2.02 2.40 1.85 2.08 2.36 2.10 

(0.2,1,5) 100 2.37 2.44 2.01 2.50 2.71 2.14 2.40 2.46 1.92 
 500 2.53 2.62 1.85 2.46 2.68 1.79 2.45 2.42 2.02 
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Table 3.18 (continued) 
 

     α    
Parameter 

Vector 
  0.1   0.2   0.3  

 n p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
 50 2.09 2.09 1.90 2.00 2.14 2.03 2.02 2.12 1.97 

(0.5,1,5) 100 2.18 2.22 1.96 2.10 2.17 2.04 2.13 2.29 1.98 
 500 2.15 2.24 2.01 2.21 2.17 1.95 2.11 2.18 2.05 
           
 50 2.82 2.30 2.27 2.83 2.25 2.37 3.01 2.32 2.40 

(0.8,1,5) 100 2.97 2.39 2.37 2.90 2.26 2.48 2.88 2.29 2.59 
 500 2.38 2.01 2.22 2.23 2.05 2.11 2.46 2.02 2.17 
           
 50 1.57 1.87 1.43 1.57 2.34 1.46 1.45 1.78 1.46 

(0.2,1,8) 100 1.50 1.71 1.51 1.47 1.70 1.45 1.41 1.78 1.40 
 500 1.48 1.59 1.41 1.50 1.63 1.41 1.42 1.65 1.44 
           
 50 1.59 1.72 1.59 1.52 1.74 1.58 1.53 1.67 1.60 

(0.5,1,8) 100 1.54 1.68 1.66 1.59 1.73 1.58 1.51 1.66 1.68 
 500 1.57 1.73 1.67 1.56 1.64 1.57 1.58 1.73 1.56 
           
 50 2.43 2.22 2.76 2.39 2.19 2.80 2.15 2.14 2.42 

(0.8,1,8) 100 1.99 2.14 2.50 2.03 2.05 2.40 2.02 2.20 2.38 
 500 2.09 2.25 2.31 2.09 2.09 2.38 2.05 2.08 2.28 
           
 50 1.38 2.25 1.38 1.37 1.54 1.37 1.37 2.18 1.43 

(0.2,1,10) 100 1.34 1.56 1.29 1.38 1.59 1.37 1.33 1.65 1.30 
 500 1.36 1.47 1.39 1.38 1.50 1.41 1.36 1.52 1.36 
           
 50 1.43 1.57 1.64 1.49 1.63 1.46 1.42 2.65 1.53 

(0.5,1,10) 100 1.50 1.58 1.53 1.50 1.55 1.53 1.56 1.54 2.62 
 500 1.51 1.49 1.52 1.44 1.58 1.52 1.52 1.55 1.51 
           
 50 2.10 2.17 2.83 2.14 2.21 2.91 2.11 2.10 2.54 

(0.8,1,10) 100 2.13 2.12 2.53 2.09 2.10 2.66 2.10 2.11 2.43 
 500 2.00 2.22 2.21 1.99 2.08 2.09 2.06 2.07 2.22 
           

 



Maximum Likelihood Estimation in Finite Mixtures 

 116 

 
Table 3.19 

Relative Mean Squared Errors. The entries are ratios of the mean squared errors of the 
parameter estimates when no supplementary information is available to those when the 

true subpopulation is known for  a fraction á of the data 
 

     α    
Parameter 

Vector 
  0.1   0.2   0.3  

 n p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
 50 1.44 1.94 2.45 1.73 1.88 3.41 1.71 1.98 3.41 

(0.2,1,2) 100 2.37 3.38 3.53 3.82 3.63 5.29 2.92 3.69 3.73 
 500 19.66 14.39 8.66 19.71 3.54 10.43 12.29 11.66 7.18 
           
 50 1.51 4.11 2.67 1.83 4.35 2.78 1.83 4.15 3.31 

(0.5,1,2) 100 4.47 6.84 4.49 4.23 7.18 3.59 4.20 7.45 3.94 
 500 33.84 26.84 3.00 30.41 4.73 12.99 30.93 22.38 11.98 
           
 50 5.40 5.59 1.70 6.44 5.37 2.02 4.75 4.90 1.83 

(0.8,1,2) 100 13.03 8.96 3.92 15.00 9.08 3.77 16.55 9.83 3.35 
 500 107.95 34.32 0.56 93.10 0.73 10.48 86.70 31.11 10.39 
           
 50 3.67 4.75 4.11 3.97 4.93 4.66 3.65 3.94 4.28 

(0.2,1,3) 100 8.62 8.70 5.85 6.59 7.05 4.91 9.47 8.47 6.60 
 500 35.62 17.53 11.89 37.52 18.49 10.95 36.57 20.84 9.53 
           
 50 4.52 6.85 4.40 4.30 6.36 5.18 4.38 6.41 4.40 

(0.5,1,3) 100 9.82 10.62 7.42 10.02 10.09 7.20 9.35 9.46 6.96 
 500 26.32 17.38 10.45 25.81 15.91 10.00 25.62 16.61 10.05 
           
 50 9.87 7.24 3.77 9.65 7.52 4.15 10.22 7.39 3.71 

(0.8,1,3) 100 24.87 11.33 6.49 24.70 11.18 6.06 23.83 11.09 6.64 
 500 63.81 18.41 12.13 72.87 21.40 12.90 64.43 18.21 13.04 
           
 50 4.06 5.09 3.20 4.15 5.89 3.49 4.39 5.61 4.50 

(0.2,1,5) 100 5.62 5.94 4.05 6.26 7.34 4.57 5.80 6.05 3.72 
 500 6.46 6.85 3.44 6.07 7.18 3.21 5.98 7.43 4.06 
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Table  3.19 (continued) 
 

     α    
Parameter 

Vector 
  0.1   0.2   0.3  

 n p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
           
 50 4.46 4.43 3.61 4.03 4.66 4.10 4.12 4.50 3.87 

(0.5,1,5) 100 4.77 4.95 3.84 4.46 4.80 4.15 4.55 5.32 3.90 
 500 4.61 5.04 4.06 4.88 4.74 3.81 4.46 4.75 4.19 
           
 50 8.98 5.59 5.35 9.06 5.45 5.80 10.34 5.79 6.01 

(0.8,1,5) 100 9.59 6.04 5.65 9.12 5.40 6.18 8.96 5.61 6.75 
 500 5.85 4.12 4.90 5.14 4.28 4.48 6.19 4.15 4.71 
           
 50 2.51 3.51 2.05 2.48 5.51 2.15 2.13 3.19 2.13 

(0.2,1,8) 100 2.25 2.91 2.28 2.17 2.90 2.10 1.99 3.20 1.98 
 500 2.19 2.53 1.99 2.25 2.66 1.97 2.02 2.73 2.06 
           
 50 2.54 2.96 2.53 2.31 3.04 2.48 2.33 2.79 2.57 

(0.5,1,8) 100 2.38 2.84 2.76 2.52 2.99 2.49 2.28 2.77 2.83 
 500 2.45 2.98 2.79 2.45 2.72 2.45 2.50 3.01 2.43 
           
 50 6.14 4.98 7.87 5.93 4.97 8.11 4.77 4.68 6.00 

(0.8,1,8) 100 3.97 4.57 6.24 4.19 4.26 5.78 4.15 4.90 5.72 
 500 4.37 5.07 5.33 4.38 4.38 5.64 4.20 4.33 5.20 
           
 50 1.92 5.11 1.92 1.89 2.37 1.88 1.87 4.80 2.05 

(0.2,1,10) 100 1.80 2.45 1.66 1.90 2.57 1.88 1.77 2.72 1.70 
 500 1.87 2.16 1.94 1.91 2.24 2.00 1.84 2.32 1.85 
           
 50 2.03 2.47 2.69 2.23 2.67 2.13 2.02 2.73 2.33 

(0.5,1,10) 100 2.24 2.48 2.35 2.26 2.41 2.35 2.42 2.37 2.61 
 500 2.27 2.23 2.30 2.07 2.50 2.31 2.31 2.40 2.28 
           
 50 4.48 4.71 8.20 4.63 4.89 8.92 4.55 4.44 6.56 

(0.8,1,10) 100 4.55 4.50 6.41 4.36 4.40 7.12 4.41 4.45 5.90 
 500 4.01 4.94 4.90 3.97 4.34 4.36 4.24 4.30 4.95 
           

 
 
The results of Tables 3.18-3.19 reveal the large gain achieved when some observations 

have  known origin. When the proportion of known values is as small as 0.1, (which implies 5 

observations in a sample of size n=50) the gain is large. In general, the gain in both efficiency 

and accuracy increases as the sample size and the proportion of known values increase. 
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However, we can see that this increase is not linear. Note also that the gain in accuracy is very 

large when the first component has a small mixing proportion. 

Another interesting point is that the gain is greater for the estimation of the mixing 

proportion and the first component, especially when the components are not well separated. 

In concluding this section we may note that the obtained results reveal an important 

fact. If additional information is available for a small proportion of the data, the improvement 

in the accuracy of the obtained estimates is very large. So, for example an insurance company 

can achieve larger gains if it obtains additional information for its clients however expensive 

this might be. 

 

3.6.3  Example 

Example 3.1 (continued) We will use some supplementary information concerning 

the dataset of Example 3.1 , describing the number of crimes in one month periods in Greece 

for every month from January 1982 to January 1994. Table 3.20 contains the original data, 

month by month. 

 

Table  3.20 
Number of crimes in one month periods in Greece (January 1982- January 1994) 

 
     Year 

 
      

Month 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 
              
January 0 2 0 0 0 2 4 1 1 1 2 5 8 
February 0 2 1 2 2 1 2 3 3 3 2 4  
March 3 1 1 4 1 1 1 3 4 5 2 4  
April 0 1 1 2 1 0 1 2 0 7 3 4  
May 0 0 0 1 1 2 4 3 0 4 5 5  
June 0 1 2 1 1 3 1 1 2 5 4 1  
July 1 2 2 1 1 0 3 1 2 6 2 5  
August 0 1 1 3 1 4 2 1 3 6 4 1  
September 1 0 2 2 0 2 0 1 4 1 9 2  
October 2 1 2 0 3 0 1 4 4 4 5 2  
November 2 2 4 2 1 2 3 0 4 6 5 3  
December 1 1 2 1 1 4 2 3 3 8 6 4  
              

Source: The Greek newspaper ‘TA NEA’ 15/2/1994 
 
In section 3.3 a  2-finite mixture Poisson mixture was fitted to this data set. Trying to 

identify the two components, we can see that in the period 1989-1993  the numbers of crimes 
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are larger than the numbers of crimes in the period 1982-1988. In fact the cut-off point 

between  these two periods is not clear, but it is reasonable to assume that the first year (Jan 

1982-Dec 1982, 12 observations) belongs to the first component, while the last year (Jan 

1993-Jan. 1994, 13 observations) belong to the second component. We suppose (for 

illustrative purposes) that these 25 values contain information about the mixing proportion 

(which is not surely true), i.e. suppose that we identified these observations and we found that 

12 of them belong to the first component and the remaining 13 to the second component. We 

used this supplementary information to form an M2 type sample. From the total of 145 

observations, 25 (almost 17%) belong to known subpopulations. Applying the EM algorithm 

described above we obtained the estimates  #p1  =0.5119 (0.084), 
#
λ 1 =1.2026 (0.135), 

#
λ 2 =3.3309 (0.328), where the numbers in the parentheses represent the jacknife standard 

errors of the parameters.  We can see that these estimates differ from the estimates when no 

additional information was available. 

We will not pursue further this example, mainly because it is artificial. However an 

interesting problem related to this data set is to examine if there is a point which partitions the 

whole period into two subperiods. 

 

3.7  Semiparametric Maximum Likelihood Method for Mixtures 

3.7.1 Introduction 
So far, we have been concerned with the case of k-finite mixtures where the number of 

components is known a priori. In practice the case of semiparametric ML method is of special 

interest. As semiparametric we call the case where the number of support points is not known 

a priori and it must be estimated from the data as well. In this case we maximise the 

likelihood over all the mixing distributions with finite support. 

The importance of such methods is vital because: 

•As Laird (1978) has shown, if the true mixing distribution is continuous we are 

restricted to estimate the mixing distribution by a finite-step distribution, i.e. by reducing the 

mixture model to a finite mixture model with unknown number of support points. 

•The number of support points itself is of special interest in many applications as it 

determines the number of subpopulations comprising the entire population. 
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Clearly, this case is far  more complicated than the case of known k and special 

algorithms and numerical methods are needed. We will give a fundamental theorem proved by 

Lindsay (1983a) as well as related results which can give us information about the number of 

support points and the conditions which ought to be satisfied from the semiparametric ML 

estimates of the mixing distribution. Several algorithms proposed for obtaining the ML 

estimates will be discussed critically. The case of Poisson mixtures will be treated in depth, 

since the available algorithms are known to have some impediments in practical situations. 

 

3.7.2 Conditions for the Existence of the Maximum Likelihood Estimate 
Lindsay (1983a,b)  described the case of semiparametric ML (hereafter SML) 

estimation for finite mixtures. He gave the general theorem for ML estimation which is the 

basis for many of the methods which we will describe in the sequel. 

Again, the gradient function defined  in (3.6), plays an important role.  The 

applicability of the theorem lies in the fact that it gives sufficient conditions for examining if 

the global maximum has been obtained. Such conditions will be extracted in more 

comprehensive forms, later in chapter 6. 

Lindsay ’s (1983a) theorem is as follows:  

 

Theorem 3.3 (Lindsay, 1983a). 
#

G  is the SML estimate of the mixing distribution G  iff the 

following relations hold:  

a) D G( , ! )θ = 0 for each è which is a support point of !G  

b) D G( , ! )θ ≤ 0 for all other values of è, not in the support of !G .  

 

This theorem extends the results of Whittle (1973) for D-optimal designs to the case of 

mixture models. The proof of the theorem has been given in Whittle (1973) for a more general 

case. The importance of Theorem 3.3 for mixtures lies on the fact that it provides us with 

sufficient conditions for an estimate to be an SML estimate. Note that Theorem 3.3 applies 

also when the vector of parameters è is multidimensional, as for example in the case of finite 

normal mixtures with unequal variances. 

From this we can see that all the points in the support of the SML estimate are the 

local maxima of the gradient function. Comparing Theorem 3.1 with Theorem 3.3 we can see 

that the difference is that in the case of restricted support size the support points can also be 
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minima or saddle points of the gradient function while for the case of SML estimation they 

ought to be maxima. 

Theorem 3.3 provides useful tools for calculating the SML estimate. A natural 

approach is to apply the EM algorithm for  successive values of k. For each value of  k we 

check if the conditions are satisfied, otherwise we proceed with the next value of k. It is 

interesting that the likelihood can be maximised with few support points and the addition of a 

further support point will not increase the likelihood. This is the case when the likelihood 

function for fixed k, has multiple maxima, making the ML estimate inconsistent. Pfanzagl  

(1988) discussed the consistency of the ML estimates for mixture models. Before examining 

more thoroughly the conditions we discuss another important issue: the uniqueness of the 

SML estimator. 

The uniqueness of the SML estimator has been showed by Simar (1976) for the case of 

Poisson mixtures. Lindsay (1983a,b) and Lindsay and Roeder (1992,1993) showed that the 

SML estimator is unique for members of the continuous exponential family. They also 

showed that the SML estimator is unique for discrete mixtures if and only if the probability 

distribution evaluated using this SML estimator of the mixing distribution does not coincide 

with the observed relative frequency distribution. Obviously for discrete distributions with 

support in the positive axis,  like the Poisson distribution, the probability function evaluated 

using the SML estimate of the mixing distribution will give positive probability to values 

greater than the maximum observed value.  Hence this estimated probability distribution will 

not coincide with the observed relative frequency distribution. 

Let us return to the conditions of Theorem 3. Bohning et al. (1994) proposed to check 

for the conditions of Theorem 3 by choosing a large number of values in a reasonable interval 

and checking if the maximum of the gradient function is a value very close to 0 that occurs on 

the support points of the SML estimate. This because  small perturbations due to the computer 

accuracy may not allow the researcher to calculate a value which is exactly 0. It is clear that 

such an approach, for checking if the SML estimate  has been found,  is time demanding and 

simpler conditions are needed. If the maximum has been obtained adding one new support 

point will not increase the likelihood and hence the likelihood ratio test statistic will take a 

zero value.  

The  results of Theorems 3.1 and 3.3 provide useful guides for checking if the global 

maximum is obtained. If we plot the gradient function, this ought to have 0 values at all points 

on the support of the solution, and if the global maximum is attained, it ought to be restricted 
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down the 0 line. Hence, by plotting the gradient function we can check if the solution is the 

SML solution. Otherwise, if there exist points outside the support of the solution, for which 

the gradient is 0, or points with a positive gradient, we have to add points because  the global 

maximum has not been attained. 

 

3.7.3 The Number of Support Points 
 From the above discussion it is evident that the ML estimate for a k-finite mixture is 

not necessarily the SML estimate. It is just the best possible solution with the given number of 

support points. The natural question at this point is whether we know something about the 

number of support points.  

 The answer is in the affirmative. Simar (1976) was the only one who concentrated on 

the particular case of ML estimation for Poisson mixtures. He provided the following  

theorem concerning the number k of support points.  

 

Theorem 3.4 (Simar, 1976) . If  k   denotes the number of support points of the SML estimate 

of the mixing distribution, and N represents the largest observed value then: 

a) If λ 1 0=  then k N≤ +





2
2

, while     if λ 1 0>  then k N≤ +





1
2

.  

b) In every case k q≤  

 where [a] is the integer part of a, and q is the number of distinct values in the sample .  

 

Laird (1978) conjectured that the number of support points in mixtures from 

continuous densities cannot be larger than the sample size. She also gave an interesting guide 

to this search. For a mixed distribution the problem of counting the number of support points 

is equivalent to counting the number of modes of a mixture of n conjugate densities. For 

example, for the case of the Poisson probability function, the Gamma density is the conjugate. 

So if we have assumed a mixed Poisson probability function, then we take a mixture of n 

Gamma distributions, with parameters  xi +1 and 1 respectively, i=1, . . ., n,  and we count the 

number of modes. This approach gives us an upper bound for the number of support points.  

 Lindsay (1983a) proved the conjecture of Laird (1978), namely that the number of 

components cannot be larger than the sample size. Lindsay and Roeder(1993) gave a result 

similar to Simar's for general discrete distributions.  
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 Intuitively, when we try to estimate a distribution with k support points the number of 

estimated parameters is 2k-1. If we have observed only N classes (different values), then with 

N parameters we can theoretically fully reconstruct the observations (because we simply solve 

a non-linear system of N equations with N unknowns). So we need to restrict the number of 

support points. Adding one more component implies that the unknown values to be estimated 

are more than the estimating equations and this leads to intractabilities. Note that since we 

want to maximise the likelihood and not to solve the system of equations explicitly, the 

problem lies in that the constraints for the maximisation are too many.  

The above results on the number of support points are a useful guide when searching 

for the SML estimate. On the other hand, when the mixture is discrete, this restriction 

prevents us from estimating the continuous mixing distribution with a finite approximation 

with many support points and hence closer to a continuous one.  A simple example is the case 

of  a Gamma mixing distribution for  a mixture of the Poisson distribution. This leads to the 

negative binomial distribution. If the mean is not large, the estimation will provide us with an 

estimate with a few support points which will not resemble the true Gamma mixing 

distribution. 

We will now describe algorithms designed for finding the SML estimate of the mixing 

distribution.   
  

 3.7.4  Algorithms for Semiparametric Maximum Likelihood  Estimation for Mixtures 
Special algorithms are needed for obtaining the SML estimate of the mixing 

distribution. The number of support points is unknown and this complicates the procedure.  A 

simple answer to this problem is to derive the ML estimate for successive values of k. This 

can be easily carried out via the EM algorithm of the previous section. Conditions of Theorem 

3.3, can be used as a stopping criterion to this approach. This simple algorithm is very useful 

in practice but it may require a lot of computational effort since, as we saw, the EM 

algorithms require a lot of computational work at each step (for each value of k). Jewell 

(1982) proposed this method with continuous use of the EM algorithm for mixtures of the 

exponential distribution. The case of  mixtures of the Poisson distribution can be handled in a 

similar way. Theorem 3.4 provides an upper limit for the number of components. 

More sophisticated algorithms have been proposed in the literature, using special 

methods of numerical analysis. The main idea for them is to start with an initial solution with 
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a few support points, usually one or two, and then add one or more new points at each step, 

sometimes replacing old but "bad" points till some criteria are fulfilled.  

In the sequel, we describe the algorithms for the mixed Poisson case. 

 

 

3.7.4.1 The Vertex Direction Method (VDM)  
 The idea is to start with some initial value, say P i  which, in general, represents the 

estimate of the mixing distribution after i-steps, and then add as a new point the value of è 

which maximises the gradient function given in (3.6). The probability associated with this 

new support point must be calculated in such a way so that for the new estimate P i+1   the 

loglikelihood is better, namely " "( ) ( )P Pi i+ ≥1 .  Generally P a P aPi i+ = − +1 1( ) θ  where Pθ  

is a distribution which puts all its mass at the point è, i.e. a degenerate distribution. Clearly, á 

is the probability assigned at the new support point.  

 So the VDM algorithm consists of the following steps.  

 

Step 1 : Find θ max  to maximise D P i( , )θ  

  At this point we want to find a new  "good" point of support. The quantity D P i( , )θ  

is the directional derivative. So, by maximising D P i( , )θ  we find the best point to the 

direction towards the new estimate Pi+1  ; θ max  is the new support point.  

 

Step 2 : Find á to ensure that ( )" "( ) ( )
max

1− + ≥a P aP Pi i
θ . At this step we construct 

the new estimate, adjusting the probabilities of the "old" support points so that the new 

probability estimates add up to 1.  

Step 3 : Examine if a global maximum is attained using the conditions of Theorem 

3.3, otherwise go back to step 1.  

 

 Obviously this method requires a lot of numerical work at both steps 1 and 2. At step 

1, maximisation can be achieved by initially searching a grid of distinct points in some 

interval. A good choice for such an interval is between 0 and the maximum observed value in 

the sample. Then one may start from the point where the gradient function has its maximum to 

locate the maximum by some iterative scheme like the Newton-Raphson. The strategy is that 
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the grid search reaches  the maximum which is then located easily via a standard 

maximisation algorithm. The process is carried out by searching for the point where the 

derivative is 0. However, the algorithm may lead to the minimum near the point instead of the 

maximum itself. So, we have to check if the obtained point is a maximum and not a 

minimum. 

 The main problem associated with this step, is that the maximum may lie outside the 

admissible range. It may be negative or the gradient function may increase to the infinity. In 

both circumstances the maximum cannot be found and the algorithm stops. 

In step 2 we need to find the value of á. Bohning (1989, 1995) describes algorithms for 

finding a value for á. He calls these algorithms as monotone step algorithms. He shows that 

the problem of finding the value of á, can be reduced to a problem of estimating a closed area. 

So algorithms used for estimating an area are useful for finding a value for á.  

 Apart from the monotone step algorithms another choice would be to find an á which 

maximises "( )Pi+1  with respect to á. Bohning (1995) shows that "( )Pi+1  is concave with 

respect to á and thus a maximum value exists which is very easy to locate by a numerical 

algorithm. Note that the formulas which stem from the monotone step-length algorithms are in 

fact the first step for iterative numerical methods for solving an equation with initial value 

equal to 0. For example if φ( ) ( )a Pi= +" 1  then the Newton-Raphson proposal for a monotone 

step length algorithm is to choose a = − ′ ′′φ φ( ) ( )0 0   where ′φ ( )0  and ′′φ ( )0  are the first and 

second derivatives of φ( )a . Since the maximisation of φ( )a  is equivalent to solving for 

′ =φ ( )0 0 the above formula is the first iteration for a Newton-Raphson method with initial 

value a = 0.  

 Problems may occur if the value á which maximises φ( )a  lies outside the interval 

[0,1]. Bohning (1995) suggested the use of different monotone step-length algorithms for 

cases when this failure occurs.  

 In case we have a restriction for the number of support points we must add this 

condition at step 3. This is true for the Poisson case.  

 Note that Lindsay (1983a) gave bounds for the improvement of the likelihood 

between successive distributions with k and k+1 points. He also proposed the use of these 

bounds as terminating conditions for the iterations.  

 Simar's algorithm is a modification of the VME. Lesperance and Kaldbfeish (1992) 

call this algorithm Modified Vertex Direction method (MVME). The difference is that at step 
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2, instead of adjusting the probabilities for the old points and estimating the probability for the 

new support point, he proposed estimating the probabilities for all the points maximising the 

likelihood. The EM algorithm is plausible to provide the estimates. Simar proposed some 

ways to help the search for the maximum. In case where the addition of a new support point 

leads to a non admissible number of support points, he proposed to find an admissible 

solution by solving a moment problem with a number of support points in the admissible 

range and then continue the iterations. Simar did not prove the convergence of his algorithm. 

Bohning (1982) showed that under mild conditions the method really converges to the global 

maximum, and he suggested some modifications of the algorithm to improve the convergence.  

 The algorithm itself has some serious disadvantages.  

 The first is that it is very slow. It converges to the maximum with a very big effort. 

Bohning (1995) proposed some improvements for the VDM. These improvements however, 

had a marginal effect because of some inherent disadvantages.  

As can be seen for this algorithm, the initial value (or values) are of great importance. 

"Bad" initial values can destroy the algorithm. This is due to the fact that at step 1 we are not 

able to find a maximum because the quantity D P i( , )θ  is monotonic or the maximum is 

outside the admissible range. On the other hand, the initial point remains at the estimated 

mixing distribution forever, because we just add points. This may cause the destruction of the 

algorithm. For the Poisson case where the number of support points is usually small, the 

algorithm is not satisfactory since we have to estimate very few support points. (see, for 

example, Brannas and Rosenqvist,  1994). For other cases, i.e. mixtures of normal or other 

continuous distributions, where there is no such a strict limitation for the number of support 

points, the initial value almost disappears because we add a large number of new points and 

the effect of the initial point is negligible.  

 

Let us now describe another problem stemming from the results of section (3.2). It is 

evident from Theorem 3.3 that the mean of the estimated mixing distribution ought to satisfy 

the first moment equation, i.e. the mean of the estimated mixing distribution should be equal 

to the one estimated from the sample. This is due to the fact that the gradient function and its 

derivative evaluated at the support points ought to be 0, as Theorem 3.1 shows. This 

complicates the steps of the VDM. To see this we will treat the general case of mixtures from 

the exponential family. Recall that ì(è) represents the  mean value reparameterization. 

Suppose that at this moment we have k points, say ì(èj) with associated probabilities pj , for 
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j=1, . . ., k. Then, ( )p xj j
j

k

µ θ =
=
∑

1

 where x is the sample mean. Thus the new support point, 

say ì(èk+1), will be assigned  a probability á whose value is such that the increase in 

loglikelihood between the two models with k and k+1 points is maximised. If the new point is 

ì(èk+1), the condition ( ) ( )( )1 1
1

− + =+
=

∑a p a xj j k
j

k

µ θ µ θ  ought to be satisfied, as this equation is 

one of the estimating equations for the ML estimation with k+1 support points. In any other 

case the increase in the loglikelihood will not have been maximised. Solving with respect to á  

we obtain á=0, which implies that we reject the new support point. Any other choice of á 

would lead to a solution which is not an ML solution with k+1 support points.  

 This reveals the following problem: the new point will always de dropped if the 

solution satisfies the mean equation. On the other hand, if we avoid such solutions, i.e. if our 

solutions do not satisfy the mean equation, then the resulting estimate is not a ML estimate. 

 

 Example 3.1 (continued). Suppose that we start with the one support point at ë. 

Figures 3.3  depict the gradient function for two different choices of ë. Note that if  

λ < =x 2 24. , the gradient function tends to infinity, while if λ ≥ =x 2 24. , the gradient 

function has maximum at 0. The shape for other values of ë is quite similar if ë<2.24, i.e. if ë 

is smaller than the sample mean, the gradient function tends to infinity, otherwise it has a 

maximum at 0. The results discourage the use of the VDM method since the maximum does 

not exist or it is equal to 0, and thus we cannot select a second point. In fact, in the second 

case the maximum occurs in the negative axis, which is not acceptable because the parameter 

of the Poisson distribution must be positive. This demonstrates the problematic behavior of 

the gradient function when starting with one support point. 
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Figure 3.3 The gradient function when starting with one support point at a) ë=1 and b) ë=3 respectively. 
 
  

Suppose now, that we start from a 2 point solution in order to overcome this difficulty. Figure 

(3.4) shows that the behavior of the gradient function is now much better. We used 7 different 

cases and the maximum exist for all the cases. These 7 cases are presented in Table 3.21 with 

the new support point. For the case (g), which is the ML estimate for this dataset, no  other 

point can be added because we have already obtained the SML estimate. The support points 

are the two local maxima of the gradient function and for no other point is the gradient 

function equal to 0.  

 From Table 3.21 we can see how different are the new estimates when a new point is 

added.  

 

 

Table 3.21 
The values of the support points used for calculating the gradient functions of figure 3.4, 

with the new support point, i.e. the maximum of the gradient function 
 

 initial estimate 
 

 support points after 
the 1st iteration 

case p1 ë1 ë2 new point    
a 0.25 1 4 0.72 0.72 1 4 
b 0.5 1 4 1.74 1 1.74 4 
c 0.8 1 7 3.64 1 3.64 7 
d 0.672 1.8 6.7 0.06 0.06 1.8 6.7 
e 0.5 1 3 7.42 1  3 7.42 
f 0.9 2 3 8.16 2 3 8.16 

g  (MLE) 0.672 1.488 3.788 -    
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Figure 3.4 Plots of the gradient function when we try to add a third point. The 7 2-finite Poisson mixtures used 
had parameter vectors:  a) (0.25,1,4), b) (0.5,1,4), c) (0.8,1,7), d) (0.67,1.8,6.7), e) (0.5,1,3), f) (0.9,2, 3) and g) 
(0.672, 1.488, 3.788) which is the ML estimate.  
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 However some difficulties are again present.  We run the VDM algorithm for the data 

of Example 3.1, starting from a 2-point solution with parameters p1=0.5, ë1=1.12 and  ë2=3.38.  

The results, after 48 iterations, gave the 50-point solution presented in Table 3.22. The 

loglikelihood for the solution with 50 support points, (ignoring the restriction on the support 

points) was -274.242 which is not the maximised loglikelihood. Figure 3.5 provides the 

histogram of this estimated mixing distribution. The majority of the components are close 

together. The results clearly discourage the use of the standard VDM algorithm for Poisson 

mixtures. For continuous mixtures, we hope that adding support points to the estimate of the 

mixing distribution will lead to a smooth estimate of the mixing distribution. Moreover, in 

this case we can add many support points without any problem. 

Table 3.22 
The estimated mixing distribution of the data of example 3.1 with 50 support points 
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Figure 3.5 The estimated mixing distribution via the VDM algorithm  for the data of example 3.1. 

 
 

        
ë p ë p ë p ë p 

1.128 0.21329 1.660 0.01135 3.880 0.00388 4.280 0.00355 
1.510 0.00834 1.680 0.07222 3.890 0.00391 4.390 0.00345 
1.520 0.03437 1.690 0.01203 3.900 0.00389 4.530 0.00340 
1.530 0.02646 1.740 0.01335 3.920 0.00388 4.580 0.00105 
1.540 0.01806 1.750 0.04298 3.940 0.00388 4.720 0.00347 
1.550 0.00921 1.770 0.02323 3.950 0.00387 4.820 0.00336 
1.560 0.01893 1.830 0.01810 3.970 0.00388 5.070 0.00336 
1.570 0.03002 2.200 0.07504 4.000 0.00385 5.380 0.00334 
1.580 0.00980 3.385 0.21329 4.040 0.00378 5.460 0.00157 
1.590 0.00999 3.840 0.00780 4.080 0.00378 5.650 0.00309 
1.610 0.01043 3.850 0.00778 4.130 0.00516 6.080 0.00337 
1.620 0.01055 3.860 0.00393 4.200 0.00363 6.540 0.00418 
1.640 0.01097 3.870 0.00390     
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A way of avoiding such difficulties may be the use of the VDM in connection with the 

EM. The algorithm can be described as  

Step 1 : Find the new P i+1  with the VDM  

Step 2 : Make some iterations with the EM algorithm, using P i+1  as initial  

 values. Go back to step 1.  

 With this combination the problem with the initial values is hoped to disappear. The 

convergence is again guaranteed, because of the monotone nature of the EM algorithm. The 

contradiction is that since the EM algorithm is used, no substantial gain is achieved compared 

to the simple method of successive EM methods. Recall the difficulties in assigning a 

probability to a new support point if the solution is ML and hence the moment equation is 

satisfied.  

Concluding we can say that the applicability of the VDM algorithm is problematic, 

since it cannot get rid of the initial points and when the number of support points is restricted, 

it adds redundant points. 

 

3.7.4.2 The Vertex Exchange Method (VEM)  
 The Vertex Exchange Method (VEM) tries to overcome some of the disadvantages of 

the VDM. At each step it adds a new support point but it detects if there is a "bad" point 

which is extracted.  So step 1 is followed by a step where we find the "worst" support point 

from the "old" support points and examine if the new point θ max  can replace at all the "bad" 

point θ min . In this case the "bad" point is eliminated. Lesperance and Kaldbfeish (1992) 

described the algorithm in detail. The algorithm consists of the following steps. 

Step 1 : Find θ max  to maximise D P i( , )θ  over all possible values of è. This step leads 

to the new support point. Grid search with a complementary numerical search is a useful tool 

for finding it.  

Step 2 : For all the points in the support of Pi calculate the gradient function D P i( , )θ . 

Find the point θ min  which has the minimum value over all the support points. 

Step 3 : Set ( )P P p P Pi i+ = + −1 α θ θ
*

max min
, where p* is  the probability of the "bad" 

support point. The meaning of this expression is that we take some proportion á of the 

probability of the "bad" support point and we assign it to the new support point. If á=1 ,  we 

reject the bad support point. If á=0 we do not change our estimate at all. The problem is again 
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to find the value of á  to ensure that " "( ) ( )P Pi i+ ≥1 .  Again, a monotone step-length algorithm 

or direct maximisation are possible methods.  

Step 4 : Examine if the maximum is obtained.  

 With the VEM method it is not necessary to add a point at every iteration. However, if 

the new point is "bad" then the algorithm will fail. This method is more dynamic than the 

VDM and it converges quicker than the VDM. Lesperance and Kalbfleisch gave examples to 

show the superiority of the VEM algorithm. Bohning (1995) suggested some slight 

improvements of the algorithm.  

 A problem which may occur with the VEM method relates to the choice of initial 

values. "Bad" initial values may lead to "bad" choices of new points and since the algorithm 

exchanges one point with another at each iteration, it  may delay very much to get rid of the 

bad points. For the Poisson case, where the number of admissible support points is small, the 

VEM algorithm does not give satisfactory results. 

 

Example 3.1 (continued) We run the VEM algorithm for the data of Example 1. A 

solution with 2 support points was used again as an initial estimate. Specifically, the initial 

values were set to p1=0.5, ë1=1.12 and  ë2=3.38 (the same with the initial values used for 

illustrating the VEM algorithm). 

Table 3.23 contains the estimated mixing distribution with 64 support points, derived 

after 100 iterations. Figure 3.6 depicts the estimated mixing distribution. Again the 

loglikelihood is -274.241 which is inferior to the ML solution with 2 support points (which is 

the SML). 
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Table 3.23 

The estimated mixing distribution with 62 support points derived using the VEM 
algorithm for the data of the example 3.1 
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Figure 3.6. The estimated mixing distribution via the VEM algorithm for the data of example 3.1. 

 
 
 Another natural way of improving the results would be to use the algorithm in 

combination with the EM algorithm. After each VEM iteration some iteration of the EM 

algorithm may help the search. The comments of the previous section apply here as well. With 

such an approach the new components are usually dropped due to the results of section 

(3.2.2). 

 

  

3.7.4.3 The Intra Simplex Direction Method (ISDM)  
The VDM and VEM algorithms and their modifications have the computational 

disadvantage that one must keep track of and perform computations over the complete 

ë p ë p ë p ë p ë p 
1.128 0.26645 1.585 0.00169 1.720 0.01166 2.030 0.05401 5.025 0.00202 
1.395 0.01034 1.590 0.00253 1.725 0.00068 3.385 0.31957 5.060 0.00146 
1.425 0.01522 1.595 0.00407 1.735 0.00127 4.865 0.00108 5.080 0.00116 
1.455 0.02160 1.600 0.00185 1.750 0.02821 4.915 0.00110 5.110 0.00116 
1.515 0.00344 1.610 0.00068 1.785 0.00095 4.920 0.00108 5.135 0.00479 
1.545 0.00355 1.620 0.00112 1.810 0.01628 4.925 0.00085 5.235 0.00166 
1.550 0.02999 1.625 0.00120 1.815 0.03357 4.935 0.00161 5.255 0.00132 
1.555 0.00197 1.645 0.00795 1.825 0.00161 4.940 0.00112 5.280 0.00131 
1.560 0.00435 1.655 0.00265 1.860 0.00181 4.955 0.00114 5.300 0.00359 
1.565 0.00151 1.665 0.00159 1.880 0.00063 4.970 0.00303 5.315 0.00207 
1.570 0.00673 1.670 0.00818 1.890 0.04233 4.975 0.00082 5.345 0.00134 
1.575 0.00088 1.675 0.03619 1.910 0.00212 4.990 0.00195 5.355 0.00023 
1.580 0.00502 1.695 0.00133 1.965 0.00211 5.005 0.00386   
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accumulated set of support points at each iteration. All of them add at the most one new 

support point.  

 Lesperance and Kaldbfeish (1992) proposed another method. By their method at each 

step we find several new points instead of one.  At step 1, instead of finding the global 

maximum, we find several local maxima points θ θ θ1 2
* * *, , ... , r . Then we must find the 

probability assigned to each point θ θ θ1 2
* * *, , ... , r  maximising the corresponding likelihood as 

in step 2 of the VDM and VEM algorithms. This method requires a lot of computational work. 

For example, we have seen in Figure (3.4) that the gradient function can have more than one 

local maxima. In general, it is difficult to obtain all the local maxima and we need a very 

careful search to do so. In fact, the added labour is in step 2, because from the grid search for 

the maximum of step 1 we have already calculated the gradient function for several values of 

è. The EM algorithm is an adequate choice for finding the probabilities of step 2. As 

Lesperance and Kaldbfeish (1992) point out the complicated computations at each iteration 

are compensated by the smaller number of iterations until the global maximum is attained. 

Again, this approach is not appropriate for the Poisson case since, as we have seen, the 

number of iterations is usually small. This method is known as the Intra-Simplex Direction 

Method (ISDM).  

 

3.7.4.4 Related algorithms  
 Dersimonian (1986,1990) proposed an algorithm similar to Simar's that uses the 

conditions given by Lindsay (1983a) for examining if the maximum is obtained. Her  

algorithm treated the case of mixtures of normal, exponential, binomial and Poisson 

distributions, starting from a uniform estimate. Shee assigned equal probabilities to equally 

spaced points. It uses the EM algorithm until some kind of convergence is achieved and then, 

by maximising the gradient function, it finds a new support point. Then the EM algorithm is 

applied so as to maximise the likelihood for the new set of support points. The algorithm stops 

when we cannot add a new support point or the conditions of Lindsay (1983a) are satisfied.  

 An interesting connection with algorithms used in the field of D-optimal designs is 

discussed by Bohning (1989,1995). He showed that searching for the ML estimate of a mixing 

distribution is equivalent to searching for a D-optimal design. So results from this field are 

applicable. This is the reason why, in some cases, the algorithms appear with different names. 

The author cited a large number of references. In the same paper he described in detail the 
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monotone step-length algorithms. Lindsay (1983a,b) also described the similarity with D-

optimal designs.  

 Mallet (1986) used a very similar approach to estimate the distribution of the random 

coefficient of a regression model, inducing his problem to a problem of estimating the mixing 

distribution. He also gave an interesting application. Some monotone step-length algorithms 

are also provided.  

 Heckman and Singer  (1984) used the SML estimate for estimating the mixing 

distribution in duration models. They showed how much sensitive is the estimation based on a 

specified mixing distribution and they proposed the SML estimate as a method to avoid 

biasing the results by choosing an arbitrary mixing distribution.  

 Bohning (1989) described the geometry of the likelihood of mixtures. Similar is the 

work of Lindsay (1983a,b). They both showed pictorially, in a few dimensions, how we 

proceed to maximise the likelihood, giving an excellent insight to the whole procedure. Also 

this approach gives some knowledge about how we can improve our search. Bohning (1989) 

proposed some methods to do so, but we will not examine them in detail. Lindsay (1983a,b) 

connects the problem of ML estimation to some geometrical concepts and using known results 

from geometry he proves many useful properties. Much of related material can be found in 

Lindsay (1995). Certain properties of the ML estimator  were shown to be geometric 

properties of the likelihood set. In the paper the author also gave some bounds for the possible 

improvement of the loglikelihood in each step of the VDM algorithm.  

 Constrained maximisation is described by Lesperance and Kalbfleisch (1992), 

Bohning (1995) and Susko et al. (1997). Lesperance and Kalbfleisch (1992) proposed a semi-

infinite programming routine for the maximisation which seems to work well.   

 

 3.8 Properties of the Semiparametric Maximum Likelihood  Estimate of the 
Mixing Distribution  

In the case of fixed k, asymptotic variances and covariances can be computed using 

standard asymptotic theory.  Unfortunately, the computation of the variances in the case of the 

SML estimation is not straightforward. The efficient scores needed for calculating asymptotic 

variances, though easily calculated in the case of the simple ML estimation, cannot be 

obtained easily for the SML estimator. Since now the number of parameters is not known, the 

exact calculation is not possible (Lindsay and Roeder, 1995). However, there is a case in 

latent models where this is possible, based on the connection of the resulting mixture model to 



Maximum Likelihood Estimation in Finite Mixtures 

 136 

the conditional ML in the homogeneity model (see Lindsay et al., 1991). A reasonable 

approach proposed by Lambert and Tierney (1984) is to estimate the standard errors from the 

formulas of the ML estimator when the number of support points is fixed, keeping in mind 

that the bias is asymptotically negligible. 

The SML estimator possesses some interesting properties.  

 Simar (1976) showed the consistency of the SML estimator. Tierney and Lambert 

(1984) showed that functionals of the mixed distribution can be estimated consistently by 

functionals of the ML estimator of the mixed distribution, and these functionals are 

asymptotically normally distributed. The authors showed that the commonly used functionals 

of the empirical density are more efficient than the functionals based on the SML estimator. 

However, the difference is very small, so the authors advocate the use of functionals based on 

the SML estimator because issues other than the asymptotic efficiency are more interesting in 

some cases. In the second part of their article they examine the behaviour of the SML 

estimator in the case of a mixed Poisson distribution. Later, Pfanzagl (1988) treated in greater 

detail the consistency of the SML estimators for the mixture model case, while recently Van 

de Geer (1995) and Van Der Vaart (1996) discussed the asymptotic normality of the ML 

estimators for mixture models and for functionals related to it. 

 Lambert and Tierney (1984) showed the following properties:  

 Let qi be the estimated frequencies for the observed data using the SML estimate and 

pi the observed frequencies. The following results hold:  

1. qi is closer than pi to the true values of the population  

2. pi and qi have equal asymptotic variances in the nonboundary cases  

3. qi is smoother than pi (something very important when we are interested in the 

tail of the distribution as for example, in actuarial applications).  

4. The quantity ( )n q fi i
1 2/ −  is asymptotically normally distributed, where n is the 

sample size and f i is the true value of the population.  

 The authors judged that, despite the smaller standard error of the empirical 

frequencies, the ML estimate possesses some other appealing properties and thus its use is 

recommended. 

 A very useful result is that the standard error of qi can be computed asymptotically as 

( )q q ni i1− /  . This simple formula enables us to find confidence intervals for our estimates, or 

better confidence regions for the estimated mixed distribution.  
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 Note however, that all the results of Lambert and Tierney are based on the assumption 

that the number of support points is unknown prior to the estimation and that the number of 

support points is large enough. In this case, when the estimated mixing distribution is 

supported by a few points, the asymptotic standard errors can be computed assuming that the 

number of support points is fixed. This approach should underestimate the standard errors. As 

the above authors showed, the bias is very little.  

 Harris (1991) showed that the estimated frequency of zero is always greater than the 

observed frequency and thus it is biased. This result can be used to check if the ML estimate 

has been obtained. 

The results of section 3.2.2 reveal that the mean of the estimated SML estimate of the 

mixing distribution is the same as the sample mean. To see this, recall that  we showed that 

the mean of the estimated mixing distribution, when k is fixed, is necessarily equal to the 

sample mean. This proof was based on the likelihood equations, which are equivalent to the 

conditions that the gradient function is 0 at the support points and has zero derivatives at these 

points.  These conditions hold for the SML estimate, too. Hence, the mean of the estimated 

SML estimate equals the sample mean. 

 

3.9 Conclusions 
 A natural question that arises after the description of all the algorithms is the 

appropriateness of each algorithm as well as a comparative judgement of the algorithms. It is 

clear that there is not a simple answer to this problem.  

For fixed support size, the EM algorithm, with some modifications to improve its 

performance, is the best solution. Contemporary computer devices can facilitate the use of the 

EM algorithm. Despite its slow convergence, the time required is almost negligible. But what 

can we say about the case of flexible number of support points?  

The question can be formulated in a different way. Do we want to restrict our attention 

to the admissible case, namely that k must be almost half of the distinct values in our sample? 

If the answer to this question is yes we have a lot of problems. We have to try a lot of different 

initial values, or even algorithms, to find the maximum  and a careful examination is needed 

in order to be sure that the SML estimate has been obtained. 

 Another relevant problem arises when we have assumed a continuous mixing 

distribution: Is it relevant to try to estimate it by a finite step mixing distribution with so few 
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support points? Several authors conclude that the number of support points is evidence about 

the number of components. This is true for finite mixtures, but if the mixing is continuous the 

conclusion is misleading. 

 Suppose that we generate data from the negative binomial distribution. Then we 

estimate the mixing distribution, which in fact is a Gamma distribution, by a finite step 

distribution. One may conclude that there are, say, k components in the model, but obviously 

this is irrational. If the true mixing distribution is very skew we expect that the support points 

will be separated, some near the positive axis but surely some points will be at the right tail. 

Can we draw conclusions about the number of components? 

 Investigation of this issue is still under research. The main difficulty in examining this 

problem is simply that there does not exist an algorithm which can easily give the SML 

estimate with a few support points.  

 However, if we relax the conditions for the number of support points then things are 

more clear. The algorithms will converge, and a mixing distribution can be obtained. But this 

idea suffers from the fact that the likelihood cannot increase when redundant points are added, 

and, hence, the derived estimate of the mixing distribution is inconsistent.  

However, when the number of support points is large, a more smoothed estimate of the 

mixing distribution is obtained for further use. For example, we can use it for empirical Bayes 

purposes, (see Laird (1982)). Another idea is to use further methods to smooth it like a kernel 

density estimation method. 

 Moreover, this smooth estimate of the mixing distribution can be used for testing 

hypotheses. The idea stems from the fact that for discrete data goodness of fit tests are usually 

asymptotic and thus they lack power. For continuous cases the tests for goodness of fit are 

more powerful and thus they are more trustworthy.   

Many problems remain open and a lot of research must be carried out before these 

problems can ultimately be answered. Note however, that Chen (1995) and McKay (1996) 

showed that any estimator of the mixing distribution converges very slowly to the true mixing 

distribution and the loss of information is great. These results reveal that we need a large 

sample size in order to approximate satisfactorily the true mixing distribution.  
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Chapter 4 
Other Estimation Methods For Finite Mixtures  

 

 

4.1 Introduction 
In the previous chapter, we described the ML method of estimation for finite mixtures. 

The easily programmable EM algorithm has led to the wide acceptance of the ML method as a 

method of estimation for finite mixture models in a vast number of applications. Several other 

methods have been proposed for estimation purposes, but they failed to be widely used, 

mainly because of problems in applying them and secondly because of the fact that  their 

properties are not well understood.  

The method of moments (hereafter MM) is a well known counterpart to the ML 

method. Historically, the first attempt for estimation in normal mixtures was made using the 

moment method (Pearson, 1894). In this chapter, the MM for finite Poisson mixtures is 

presented, along with a general review of the method for general mixtures. The efficiency of 

the method relative to the ML method is examined. Another important (but rather overlooked) 

issue that is examined concerns the existence of the moment estimates. By the term 

‘existence’ we refer to the cases where the moment equations lead to  estimates that are in the 

admissible range. 

In the sequel, a variant of the method of moments is proposed. This method utilises the 

zero sample frequency instead of the third sample moment and so, for data sets with a high 

zero frequency, it can be a more appropriate method of estimation. Recall, that the third 

moment has a great variability which can significantly affect the stability of the derived 

estimators. 

The last section of this chapter is devoted to the Bayesian approach of estimation in 

finite mixtures. Here, again,  a lot of  computational problems in deriving posterior 
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distributions has resulted in a low applicability of the method. Recent developments, however, 

that have been considered in the Bayesian approach of estimation problems, via the well 

known Gibbs sampler and its variants, facilitate the use of Bayesian estimation techniques. 

 

4.2 The method of moments 
 When applying the MM to finite mixtures, one has to distinguish between two 

different approaches: 

•The first applies to a k-finite mixture (with a known number of components) and 

equates the first m moments of the hypothesised distribution to the sample moments, as it is 

the case with the usual  MM. The number m depends on the number k of components. For 

example, for a k-finite Poisson mixture one needs m k= −2 1equations. 

•The second refers to the case where the number k of support points is unknown prior 

to data investigation and is known as  a semiparametric case. This case reduces to the 

successive application of the MM  for each fixed value of k. 

A brief review of both of these approaches is provided in the next sections. 

 

 

4.2.1 Moment Estimation with Known k 
 The ÌÌ was the first method employed for estimation in finite mixture problems. 

Pearson (1894) tried to estimate a 2-finite normal mixture by equating the population 

moments to the sample moments. He obtained a nonic (9th degree) equation. Solving this 

system of equations he obtained estimates for the parameters under consideration which, 

however,  were not unique. So, he chose the solution whose sixth moment was closer to the 

observed one.  

 Clearly, such an approach is laborious. In the years that followed the interest was 

concentrated on relaxing the complexity of such a solution and many authors tried to propose 

strategies for reducing the effort  (see, e.g.,  Cohen, 1967). A comprehensive account of such 

attempts up to 1980 was given by Gupta and Huang (1981).  In recent years the impact of 

high-speed computers, which can solve non-linear systems of equations rapidly, has limited 

the interest to special numerical methods needed for applying the MM. 

Except for the case of normal mixtures described above, Rider  (1961, 1962) treated 

several other mixtures, including the binomial, the Poisson and the exponential cases. Rider 
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(1961) obtained the solution for 2-finite mixture of Poisson distributions and he showed that 

the moment estimators are consistent. Blischke  (1964, 1965) treated the case of binomial 

mixtures. John  (1970) derived moment estimators and their asymptotic distributions for 2-

finite mixtures of binomial, Poisson, negative binomial and hypergeometric distributions. 

Tan and Chang (1972) compared the MM to the ML for a 2-finite mixture of normal 

distributions. Their findings suggested that the ML is superior almost always, especially when 

the components are well determined. For components close together, the gain in efficiency of 

the ML method is very low, while the computational effort required is much increased.  

The MM is known to have some disadvantages. For example, moments of high order 

have large variances and hence they are not very suitable for estimating purposes. In order to 

overcome these disadvantages some modifications of the method can be proposed. These 

pertain to replacing  moments of high order with other functionals that have lower variances. 

Kabir  (1968) proposed another estimation method for the case of finite mixtures from 

the exponential family which is a generalisation of the method of moments. He used 

functionals of the observed probabilities. This procedure estimates separately the mixing 

proportions from the remaining parameters, so that the method has two distinct steps. Because 

of its complexity, this method has not attracted  a lot of attention. Kabir showed the 

asymptotic normality of the derived estimators. The performance of the method, however, has 

not been investigated. Redner and Walker (1984) described this method as a generalised 

method of moments.  

 Tallis and Light  (1968) proposed the use of fractional moments. They showed that, 

for exponential mixtures, the efficiency of the estimators can be increased considerably by 

choosing appropriate fractional moments. Unfortunately, the applicability of the use of 

fractional moments is limited by their complexity. For example, finding the fractional 

moments of the exponential distribution is quite simple but is a tedious task in the case of the 

Poisson distribution. 

The MM has also been utilised in the case of multivariate mixtures, mainly 

multivariate normal mixtures. Day (1969) discussed the MM for a 2-finite multivariate normal 

mixture. The large number of equations that need to be solved simultaneously, makes the 

method almost inapplicable. However, Lindsay and Basak   (1993) considered another system 

of equations which facilitates the estimation by choosing  moments that reduce the complexity 

of the derived system of equations. 
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In the present chapter, the efficiency of the MM relative to the ML method is 

examined for 2-finite Poisson mixtures. This study contains both a comparison of  the 

asymptotic efficiency of the two methods, based on their asymptotic variance-covariance 

matrices, and a small sample comparison via simulation. The latter approach is of greater 

practical interest, since the asymptotic results hold only for quite large sample sizes. This 

simulation study covers another important, but rather undertreated, aspect of the MM. For 

small sample sizes, the moment estimates may not exist, since the system of estimating 

equation may not have a solution. This aspect cannot be examined through a study of  the 

asymptotic efficiency of the method. For example, it is known that the ML method leads to 

estimates with  large variances if the components are close together (Hasselblad, 1969).  This 

problem might have led to the use of moment estimates for such cases in order to avoid these 

large variances. Our simulation study reveals that in such cases the ML estimates suffer from 

large variances, but the moment estimates do not even exist.  

In the later part of this chapter, a new method is proposed. This method considers 

replacing the third moment by the  zero frequency leading to equating the observed frequency 

of the value 0 to its  expected frequency under a 2-finite Poisson mixture. The method is 

shown to have an increased efficiency when the zero frequency is high. 

 

4.2.2 The Method of Moments when k is Unknown : The Semiparametric Case 
Recall that the term semiparametric refers to the case where the number of support 

points is not known a priori and the value of k must be estimated from the data. 

Tucker  (1963) initiated the use of  this approach by considering a certain procedure to 

estimate the mixing distribution G of a mixed Poisson distribution via the method of 

moments. Recall that for the case of mixed Poisson distributions we are able to consistently 

estimate the moments of the mixing distribution from the sample moments (see section 2.2.2). 

This reduces the problem of estimating the mixing distribution to a problem of determining a 

distribution with given moments. This is the well known  moment problem (see, e.g.,  Shohat 

and Tamarkin, 1943). Tucker  (1963) proposed to estimate the moments of the mixing 

distribution from the data and then to solve a moment problem, so as to obtain the estimated 

distribution for the mixing distribution. Tucker  (1963) proposed starting with k=1 and keep 

adding support points until the moment problem becomes intractable. 
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Problems connected with the existence of such a solution inhibit the use of the 

method. Rolph  (1968), following Tucker's method proposed a method of moment estimation 

for a mixing distribution in (0,1) which is applicable to the binomial case. Brockett  (1977) 

generalised Tucker's method and showed the consistency of the method considered. 

 A further generalisation of the methods was given by Lindsay  (1989). He showed 

that, for several distributions belonging to the quadratic variance natural exponential family of 

Morris  (1982), a consistent estimator of some functionals of the distribution can be obtained 

in the case of mixtures from this family. So, for these distributions, the moments of the 

mixing distribution can be found. He also proposed a method for determining the number of 

support points . 

 Heckman and Walker  (1990) and Heckman et al.  (1990) examined the case of 

exponential mixtures. Heckman  (1990) treated the geometric mixture case, too. The main 

problem of such approaches remains the restricted number of components which can be 

estimated. For example, Heckman et al..  (1990), working with the exponential distribution, 

reported that it is very common that the moment problem has no solution for more than two 

moments and, hence, this restricts the applicability of the approach. Withers (1991, 1996) 

examined the case of moments estimators for some families of mixture distributions. 

 The method of moments is also popular for estimating the mixing distribution in the 

context of the empirical Bayesian approach. This is taken up later in section 4.7. 

A different approach was proposed by Rutherford and Krutchkoff  (1967). They proposed the 

use of the first four sample moments for choosing the member of the Pearson’ s family which 

possesses these first four moments.  The advantage of such an approach is that we estimate the 

mixing distribution from a broad family of continuous distributions (the Pearson’s family) and 

hence we always obtain a smooth mixing distribution. Unfortunately, the practical use of the 

method is doubtful for two main reasons. The first is that we need four moments and the 

moment problem may be intractable. The second is that the estimated member of the Pearson 

family can be defined over the entire real line which clearly contradicts the case of Poisson 

mixtures whose parameters ought to be positive. However, they showed that such an estimator 

is consistent and converges almost surely to the true mixing distribution. 
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4.2.3 Critique of the Method of Moments 
 The MM has certain disadvantages. Theoretically, if the data truly come from a 

mixture, the moment problem is expected to be solvable, especially when the sample size is 

not small. Failure to solve the moment problem with real data, might be considered as an 

indication of departure from the assumed model. However, this is an erroneous conclusion, 

because, as shown later in 4.3, even in cases where the model is correctly specified and the 

sample size is moderately large, the moment problem may be intractable.  For example, 

consider the case where we sample from a 2-finite Poisson mixture. It is known that for such a  

model the variance must be larger than the mean, but there exists a high probability for this  

not to happen due to random variability, especially when the two components are close 

together. 

 On the other hand, it would not be appropriate  to use a large number of estimated 

moments because of the high variability of high order sample moments. We need 2k-1 

moments in order to estimate a distribution with k support points. So, using  the first three 

moments one can estimate only a 2-finite step distribution (since there will be  three equations 

with three unknowns) and the estimated distribution will be very sparse. Using more moments 

results in estimators that are not efficient due to the high variability of the higher order sample 

moments .  

 In order to overcome these difficulties one can arbitrarily assume that the mixing 

distribution is a k-finite step distribution with equal probabilities at k distinct points (see, e.g., 

Maritz and Lwin, 1989), and then solve the relevant equations. In doing so, one can use the 

first k moments to obtain  k distinct points with non zero probability masses or  do the 

opposite i.e.  choose k equally distanced points and solve for the corresponding probabilities.  

It must be emphasised that the efficiency and the plausibility of such estimation 

procedures, with some relaxation in favour of simplicity, depend on what one  really wishes to 

do. For example, for the purpose of empirical Bayesian problems  a  rough estimation of the 

distribution may be sufficient as Maritz (1989) pointed out.  

 Maritz (1969), in a paper for empirical Bayes estimation for the Poisson distribution, 

proposed a method where the two first moments are equated to their observed counterparts 

while the absolute distance between the observed and the theoretical  third moments is 

minimised.  

 Note that the method proposed by Quandt and Ramsey  (1978) using the moment 

generating function is a variant of the MM. They did not equate theoretical to observed  
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moments but they required them to be  as close as possible, using weights that were based on 

the order of moments, so as higher order moments were given less weight. So,  higher order 

moments are less reliable for the estimation. 

The next two sections treat the questions raised earlier concerning  the non-existence 

and small efficiency aspects. As far as the non-existence is concerned we   have not  

considered any remedies when the moment equations fail to lead to valid estimates. Our 

findings focus on the classical moment method that equates the  theoretical moments to their 

sample counterparts.  It remains an open problem  to examine thoroughly variants of the 

moment method that overcome the ‘existence’ problems examined in this thesis. 

 

 4.3 Existence of the Moment Estimates 
As mentioned earlier, the existence of the moment estimates is not certain for small or 

moderate sample sizes even when the model is correctly specified. This fact reduces the 

practicability of the MM  because, in practice, sample sizes rarely are sufficiently large. 

Shohat and Tamarkin  (1943) treated the moment problem in depth. They provided  

necessary conditions for  finding a distribution with a given finite series of moments 

( , , ... , )µ µ µ1 2 s . For a distribution with support in (0,+∞), the conditions are 
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In order to examine  how many support points one is able to estimate, a simulation 

experiment was carried out. From some mixed Poisson distribution, samples of varying size 

were generated, for a variety of parameters values. Applying the conditions given in (4.1) the 

number of support points which are estimable by the MM was subsequently derived. The 
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distributions used were  2-finite Poisson mixtures, 3-finite Poisson mixtures and the negative 

binomial distribution as given in (2.22) with parameters a p p b= −( ) ,1  for various choices 

of b and p. 

The relationships between the moments of the mixed Poisson distribution to those of 

the mixing distribution are given in section 2.2.2. Solving the system of estimating equations 

we find that the moments of the mixing distribution are related to the moments of the mixed 

Poisson distribution by the following formulae 

E E X
E E X E X
E E X E X E X
E E X E X E X E X
E E X E X E X E X E X
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In practical situations the moments of X are replaced by the corresponding sample 

moments as defined by 

 µ r
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For the  simulation experiment, the moments of the mixing distribution were estimated 

from the sample using (4.2) and substituting the theoretical moments E(Xr) with their sample 

counterparts given in (4.3). Then the validity of the conditions given in (4.1) was checked. 

The number of support points which were estimable was calculated for each sample. Tables 

4.1-4.3 summarise the results of this simulation experiment. Their  entries represent the 

proportion of times the MM failed in estimating a solution with k support points (k=2,3) in 

10000 replications. 

It is evident from the results that the obtained estimates have a few support points. For 

example, looking at Table 4.2, one can see that for small to moderate sample sizes the MM 

fails to give 2 support points, even though we sampled from a 2-finite distribution. The same 

is true in Table 4.3 for 3- finite Poisson mixtures. Even for large sample sizes the method fails 

to reconstruct the true mixing distribution with 3 support points. For the negative binomial 

distribution, it can be seen from Table 4.1, that as the overdispersion decreases the method of 

moments fails. It is interesting that when the mixing distribution is a continuous distributions, 

(as  in the case of the negative binomial distribution) it is possible to estimate only a few 
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support points using the MM. This is true even when the sample size is relatively large. Note 

also that the moment estimates of the parameters of the negative binomial distribution very 

often do not exist (see Johnson et al., 1992). Recall that in  chapter 3, when examining the 

choice of initial values for the EM algorithm, it was shown  that the moment estimates did not 

exist with high probability. 
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Table 4.1 
Proportion of times the moment method failed to give estimates with k support points in 
10000 replications. Data were generated from a negative binomial distribution with 

parameters a p p b= −( ) ,1 . 
 

sample size  50  100  250  500 
number of 

support points 
2 3 2 3 2 3 2 3 

b p         
  0.05  0.00  0.03    0.00  0.00    0.00  0.00    0.00  0.00 
  0.10  0.01  0.33    0.00  0.07    0.00  0.00    0.00  0.00 
  0.15 0.01  0.69    0.00  0.31    0.00  0.05    0.00  0.00 
  0.20  0.00  0.92   0.01  0.59    0.00  0.19    0.00  0.04 
  0.25  0.03  0.98    0.01  0.82    0.00  0.41    0.00  0.16 
  0.30  0.08  1.00    0.01  0.94    0.00  0.61    0.00  0.34 
  0.35  0.15  1.00    0.03  0.99    0.00  0.79    0.00  0.54 
  0.40  0.23  1.00    0.08  1.00    0.00  0.91    0.00  0.72 
  0.45  0.33  1.00    0.14  1.00    0.02  0.98    0.01  0.87 

0.50  0.50  0.43  1.00    0.22  1.00    0.04  0.99    0.00  0.96 
  0.55  0.53  1.00    0.33  1.00    0.12  1.00    0.03  0.99 
  0.60  0.61  1.00    0.42  1.00    0.19  1.00    0.06  1.00 
  0.65  0.70  1.00    0.52  1.00    0.29  1.00    0.14  1.00 
  0.70  0.78  1.00    0.63  1.00    0.39  1.00    0.23  1.00 
  0.75  0.86  1.00    0.73  1.00    0.50  1.00    0.35  1.00 
  0.80  0.94  1.00    0.85  1.00    0.66  1.00    0.54  1.00 
  0.85  0.95  0.98    0.92  1.00    0.79  1.00    0.66  1.00 
  0.90  0.93  0.93    1.00  1.00    1.00  1.00    1.00  1.00 
  0.95  0.73  0.73    0.92  0.92    1.00  1.00    1.00  1.00 
          
  0.05  0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00 
  0.10  0.00  0.07    0.00  0.00    0.00  0.00    0.00  0.00 
  0.15  0.00  0.31    0.00  0.07    0.00  0.00    0.00  0.00 
  0.20  0.00  0.57    0.00  0.25    0.00  0.04    0.00  0.00 
  0.25  0.00  0.78   0.01  0.47    0.00  0.14    0.00  0.03 
  0.30  0.00  0.92    0.00  0.67    0.00  0.31    0.00  0.11 
  0.35  0.04  0.98    0.00  0.83    0.00  0.49   0.01  0.25 
  0.40  0.08  1.00    0.01  0.93    0.00  0.68    0.00  0.44 
  0.45  0.16  1.00    0.04  0.98    0.00  0.81    0.00  0.61 

 1.00  0.50  0.24  1.00    0.09  1.00    0.01  0.92   0.01  0.79 
  0.55  0.33  1.00    0.15  1.00    0.02  0.96    0.00  0.88 
  0.60  0.42  1.00    0.24  1.00    0.07  0.99    0.01  0.94 
  0.65  0.52  1.00    0.34  1.00    0.14  1.00    0.04  0.98 
  0.70  0.63  1.00    0.44  1.00    0.23  1.00    0.10  1.00 
  0.75  0.70  1.00    0.55  1.00    0.35  1.00    0.20  1.00 
  0.80  0.80  1.00    0.66  1.00    0.48  1.00    0.33  1.00 
  0.85  0.90  1.00    0.80  1.00    0.59  1.00    0.46  1.00 
  0.90  0.96  0.99    0.92  1.00    0.81  1.00    0.67  1.00 
  0.95  0.92  0.92    0.99  0.99    1.00  1.00    1.00  1.00 
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Table  4.1 (continued) 
 

sample size  50  100  250  500 
number of 

support points 
2 3 2 3 2 3 2 3 

b p         
  0.05  0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00 
  0.10  0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00 
  0.15  0.00  0.03    0.00  0.00    0.00  0.00    0.00  0.00 
  0.20 0.01  0.14    0.00  0.02    0.00  0.00    0.00  0.00 
  0.25  0.00  0.31    0.00  0.10    0.00  0.00    0.00  0.00 
  0.30  0.00  0.49    0.00  0.23    0.00  0.04    0.00  0.00 
  0.35 0.01  0.65   0.01  0.40   0.01  0.12    0.00  0.02 
  0.40  0.01  0.79    0.01  0.56   0.01  0.25    0.00  0.09 
  0.45  0.02  0.89    0.00  0.69    0.00  0.40    0.01  0.21 

 3.00  0.50  0.05  0.95    0.00  0.81   0.01  0.55    0.00  0.35 
  0.55  0.10  0.98    0.02  0.90    0.01  0.68    0.00  0.50 
  0.60  0.18  1.00    0.06  0.96    0.00  0.80    0.01  0.65 
  0.65  0.27  1.00    0.11  0.98    0.01  0.90    0.00  0.81 
  0.70  0.38  1.00    0.22  1.00    0.05  0.95    0.00  0.88 
  0.75  0.49  1.00    0.32  1.00    0.13  0.99    0.03  0.96 
  0.80  0.59  1.00    0.45  1.00    0.25  1.00    0.13  0.99 
  0.85  0.71  1.00    0.58  1.00    0.41  1.00    0.27  1.00 
  0.90  0.80  1.00    0.70  1.00    0.58  1.00    0.46  1.00 
  0.95  0.96  1.00    0.91  1.00    0.79  1.00    0.67  1.00 
          
  0.05  0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00 
  0.10  0.00  0.00    0.00  0.00    0.00  0.00    0.00  0.00 
  0.15  0.00  0.01    0.00  0.00    0.00  0.00    0.00  0.00 
  0.20  0.00  0.06    0.00  0.00    0.00  0.00    0.00  0.00 
  0.25 0.01  0.17    0.01  0.04    0.00  0.00    0.00  0.00 
  0.30  0.00  0.34   0.01  0.11    0.00  0.01    0.00  0.00 
  0.35  0.00  0.48    0.00  0.24    0.00  0.04    0.00  0.01 
  0.40  0.00  0.64    0.00  0.40   0.01  0.13    0.00  0.03 
  0.45  0.01  0.76    0.00  0.53    0.00  0.26    0.00  0.10 

 5.00  0.50  0.02  0.86    0.00  0.67   0.01  0.39    0.00  0.20 
  0.55  0.05  0.93    0.00  0.78   0.01  0.54    0.00  0.35 
  0.60  0.11  0.97    0.03  0.87    0.00  0.66    0.00  0.50 
  0.65  0.19  0.99    0.06  0.93    0.01  0.79    0.01  0.65 
  0.70  0.29  1.00    0.12  0.97    0.02  0.88    0.00  0.78 
  0.75  0.39  1.00    0.23  0.99    0.08  0.95    0.01  0.91 
  0.80  0.51  1.00    0.37  1.00    0.16  0.98    0.06  0.94 
  0.85  0.63  1.00    0.50  1.00    0.32  1.00    0.18  0.99 
  0.90  0.75  1.00    0.66  1.00    0.50  1.00    0.38  1.00 
  0.95  0.89  1.00    0.81  1.00    0.74  1.00    0.72  1.00 
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Table 4.2 
Proportion of times the moment method failed to give estimates with k support points in 

10000 replications. Data were generated from a 2-finite Poisson mixture with 
parameters p1, ë1 and  ë2 

sample size 50 100 250 500 
   number of support points 

p1 ë1 ë2 2 3 2 3 2 3 2 3 
0.10 1  2   0.71  1.00    0.64  1.00    0.56  0.99    0.52  0.98 

 1  3   0.62  1.00    0.55  0.99    0.43  0.96    0.35  0.92 
 1  4   0.55  0.99    0.48  0.97    0.36  0.91    0.28  0.85 
 1  5   0.51  0.97    0.44  0.94    0.32  0.85    0.23  0.78 
 2  3   0.69  1.00    0.63  0.99    0.57  0.98    0.53  0.98 
 2  4   0.59  0.99    0.51  0.98    0.41  0.95    0.32  0.91 
 2  5   0.52  0.98    0.44  0.96    0.31  0.89    0.20  0.83 
 3  4   0.68  1.00    0.64  0.99    0.59  0.98    0.54  0.97 
 3  5   0.59  0.99    0.53  0.98    0.43  0.95    0.35  0.92 
 4  5   0.66  0.99    0.64  0.99    0.58  0.97    0.54  0.97 

0.30 1  2   0.63  1.00    0.54  1.00    0.39  0.98    0.30  0.96 
 1  3   0.45  1.00    0.31  0.97    0.15  0.90    0.07  0.83 
 1  4   0.32  0.97    0.20  0.91    0.07  0.82    0.01  0.76 
 1  5   0.26  0.94    0.15  0.86    0.03  0.77    0.01  0.73 
 2  3   0.63  1.00    0.55  0.99    0.44  0.98    0.32  0.95 
 2  4   0.43  0.99    0.29  0.96    0.14  0.90    0.04  0.83 
 2  5   0.27  0.97    0.14  0.90    0.03  0.82    0.00  0.76 
 3  4   0.63  0.99    0.56  0.99    0.46  0.97    0.38  0.95 
 3  5   0.45  0.99    0.32  0.96    0.16  0.90    0.06  0.85 
 4  5   0.62  0.99    0.57  0.98    0.48  0.96    0.40  0.94 

0.50 1  2   0.58  1.00    0.47  1.00    0.28  0.98    0.16  0.95 
 1  3   0.31  1.00    0.16  0.97    0.04  0.89    0.00  0.82 
 1  4   0.16  0.98    0.04  0.91    0.00  0.82    0.01  0.78 
 1  5   0.08  0.94    0.01  0.85    0.00  0.77    0.00  0.74 
 2  3   0.60  1.00    0.51  0.99    0.36  0.98    0.22  0.94 
 2  4   0.31  0.99    0.16  0.96    0.05  0.90    0.00  0.85 
 2  5   0.12  0.97    0.03  0.91    0.00  0.82    0.00  0.76 
 3  4   0.61  1.00    0.54  0.99    0.41  0.97    0.30  0.95 
 3  5   0.36  0.99    0.21  0.96    0.05  0.89    0.01  0.85 
 4  5   0.60  0.99    0.54  0.98    0.44  0.96    0.34  0.94 

0.70 1  2   0.58  1.00    0.45  1.00    0.27  0.99    0.13  0.96 
 1  3   0.23  1.00    0.08  0.98    0.00  0.92    0.00  0.87 
 1  4   0.05  0.99    0.00  0.94   0.01  0.85    0.00  0.79 
 1  5   0.01  0.97    0.00  0.89    0.00  0.81    0.00  0.76 
 2  3   0.61  1.00    0.51  0.99    0.37  0.98    0.24  0.96 
 2  4   0.30  1.00    0.13  0.97    0.02  0.92    0.01  0.87 
 2  5   0.08  0.98    0.01  0.93    0.00  0.85    0.00  0.80 
 3  4   0.61  1.00    0.54  0.99    0.42  0.97    0.32  0.95 
 3  5   0.35  0.99    0.21  0.97    0.05  0.91    0.01  0.87 
 4  5   0.61  0.99    0.56  0.98    0.45  0.97    0.38  0.95 

0.90 1  2   0.67  1.00    0.59  1.00    0.44  1.00    0.29  0.99 
 1  3   0.39  1.00    0.22  1.00    0.05  0.99    0.00  0.96 
 1  4   0.18  1.00    0.05  1.00    0.00  0.95   0.01  0.90 
 1  5   0.06  1.00    0.01  0.98    0.00  0.91   0.01  0.84 
 2  3   0.68  1.00    0.61  1.00    0.51  0.99    0.43  0.98 
 2  4   0.49  1.00    0.34  0.99    0.14  0.97    0.04  0.94 
 2  5   0.27  1.00    0.11  0.99    0.01  0.94    0.01  0.90 
 3  4   0.68  1.00    0.62  0.99    0.56  0.98    0.49  0.97 
 3  5   0.52  1.00    0.42  0.99    0.23  0.96    0.11  0.93 
 4  5   0.68  1.00    0.63  0.99    0.57  0.98    0.52  0.97 
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Table 4.3 
Proportion of times the moment method failed to give estimates with k support points in 

10000 replications. Data were generated from a 3-finite Poisson mixture with 
parameters p1,p2, ë1 ,ë2 and  ë3 

 
sample size 50 100 250 500 

     number of support points 
p1 p2 ë1 ë2 ë3  

     2 3 2 3 2 3 2 3 
0.25 0.2 1  2  6   0.07  0.90    0.02  0.82    0.00  0.73   0.01  0.69 

   4  6   0.17  0.90    0.08  0.82    0.00  0.70    0.00  0.63 
  2  2  6   0.05  0.91    0.01  0.85    0.00  0.77    0.00  0.72 
   4  6   0.16  0.94    0.06  0.86    0.00  0.75   0.01  0.69 
  3  2  6   0.10  0.93    0.02  0.87    0.00  0.77    0.00  0.72 
   4  6   0.25  0.97    0.11  0.91    0.01  0.82   0.01  0.76 
 0.4 1  2  4   0.18  0.99    0.07  0.95    0.01  0.85    0.00  0.78 
   6  4   0.15  0.92    0.05  0.82    0.01  0.69    0.00  0.59 
  2  2  4   0.28  0.99    0.14  0.97    0.03  0.91    0.00  0.86 
   6  4   0.14  0.95    0.04  0.87    0.00  0.76    0.00  0.67 
  3  2  4   0.39  0.99    0.23  0.97    0.08  0.92    0.01  0.85 
   6  4   0.23  0.97    0.11  0.93    0.02  0.85    0.01  0.79 

0.50 0.2 1  4  2   0.14  1.00    0.04  0.97    0.00  0.87    0.01  0.79 
   6  2   0.00  0.97    0.00  0.89    0.00  0.78    0.00  0.71 
   4  2   0.35  1.00    0.20  0.99    0.04  0.94    0.00  0.89 
   6  2   0.02  0.98    0.00  0.93    0.00  0.85   0.01  0.80 
   4  2   0.50  1.00    0.35  0.98    0.18  0.94    0.08  0.89 
   6  2   0.08  0.98    0.02  0.93   0.01  0.83    0.00  0.75 
 0.4 1  2  6   0.04  1.00    0.00  0.95    0.01  0.84    0.00  0.75 
   4  6   0.06  0.94    0.00  0.83    0.00  0.68    0.00  0.56 
  2  2  6   0.13  1.00    0.03  0.98    0.00  0.92    0.00  0.87 
   4  6   0.13  0.98    0.03  0.92    0.00  0.79    0.00  0.69 
  3  2  6   0.19  0.99    0.07  0.96    0.00  0.87    0.00  0.79 
   4  6   0.38  0.99    0.24  0.97    0.06  0.91    0.01  0.85 

 
 

Similar results were reported in Heckman and Walker  (1990) for the exponential 

distribution. They showed that using the semiparametric method for estimating the mixing 

distribution in the case of mixtures of the exponential distribution, the number of estimable 

support points is very small.  

From the above experiment it is evident that the MM fails to provide  estimates very 

often. This can cause a lot of problems in practice. In the next section the efficiency of the 

method will be examined in connection with the results of this section concerning the non-

existence of the moment estimates. 

 

4.4 The Efficiency of the Moment Method  for 2-Finite Poisson Mixtures 
The aim of this section is to study the efficiency of the MM for 2-finite Poisson 

mixtures. The results will be based on both asymptotic arguments and  small sample size 
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comparisons using simulation. The latter approach can reveal interesting evidence about the 

method since, as shown in the previous section, for small samples, it is possible to fail to 

obtain moment estimates. Thus, a comparison based merely on asymptotic arguments, when 

such problems are ignored, cannot reflect the properties of the estimators in practical 

situations. 

For the case of a 2-finite Poisson mixture, the three parameters can be estimated using 

the first three moments of the data. The system of  equations is the following 

 

p p
p p

p p

1 1 2 2 1

1 1
2

1 2 2
2

2 2

1 1
3

1
2

1 2 2
3 2

2 2 33 3

λ λ µ
λ λ λ λ µ

λ λ λ λ λ λ µ

+ =
+ + + =

+ + + + + =






( ) ( )

( ) ( )
   (4.4) 

 

where ìk , k=1, 2, 3,  are the sample moments. Solving this system of equations we obtain 

! , !λ λ1 2 2
= − ±b D

a
,    

 

where b = − + − +( )µ µ µ µ µ µ3 2 1 1 2 1
23 2 ,   a = − +( )µ µ µ1

2
2 1   and   

( )D b a= − − + −2
2

2
1

2
1 2 1 34 µ µ µ µ µ µ  . 

Since it must hold that ! !λ λ1 2<  the estimate for ë1 is the smaller root. Then we obtain 

!
!

! !
p1

1 1

2 1

= −
−

µ λ
λ λ

 . 

 

The asymptotic variance-covariance matrix of the estimates can be calculated as 

follows. Using first order Taylor expansion (see, e.g., Titterington et al., 1985) we obtain that 

the asymptotic variance covariance matrix V is calculated as  V= G-1MG-1 where 

 

( ) ( ) ( )
( ) ( ) ( )

G =
−

+ − + + +
+ + − + + + + + +
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and M is the 3 3×  matrix  with its ij-th element representing the covariance between the i-th 

and j-th sample moments. Following Stuart and Ord (1994) the elements Mij of M are 
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( )M
n

E X E X E Xij
i j i j= −+1 ( ) ( ) ( ) .  

For a 2-finite Poisson mixture the first six simple moments are given by the following 

formulas 
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Respectively the variance-covariance matrix of the ML estimates was given in section 

3.2.3. 

 

Example 3.1 (continued) Consider the data of Example 3.1 given in Table 3.1. 

Assuming a 2-finite Poisson model the obtained moment estimates of the parameters were 

p1=0.697 (0.204), ë1=1.537 (0.324) and  ë2=3.863 (0.816). We can see that they differ only 

slightly from the ML estimates and that the jacknife standard errors calculated are much larger 

for the moment estimates.  

 

The asymptotic efficiencies of the MM are reported in Tables 4.4a-4.4c for several 

combinations of parameter values. The entries of  tables are the values of the ratio V VML MM  , 

where V  denotes the generalised variance, and the subscripts indicate the method used. Entries 

lower than 1 favour the ML method. Ét  can be seen  that, for well separated components, the 

efficiency is low due to the low variances of the ML methods. For components close together, 

the efficiency is higher, especially for mixing proportions near 0.5.   

 

Figure 4.1 depicts the asymptotic efficiency of the moment method for ë1=1 and 

various choices of the mixing proportion and the second parameter. Clearly, the efficiency 
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decreases rapidly as the second component gets further and further away from the first 

component. 
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Figure 4.1  Asymptotic efficiency of the method of moments  for  2-finite Poisson mixtures with ë1=1 
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Table 4.4a  

Asymptotic efficiency of the Moment method, relative to the Maximum Likelihood 
method, for ë1=1 

    ë2      
p1 2 3 4 5 6 7 8 9 10 
0.1 0.645 0.322 0.175 0.112 0.082 0.065 0.055 0.049  0.045 
0.2 0.687 0.384 0.239 0.170 0.133 0.112 0.099 0.090  0.085 
0.3 0.729 0.443 0.297 0.223 0.181 0.157 0.142 0.132  0.126 
0.4 0.771 0.499 0.353 0.274 0.229 0.202 0.185 0.175  0.169 
0.5 0.814 0.556 0.408 0.325 0.278 0.249 0.231 0.221  0.216 
0.6 0.856 0.614 0.465 0.379 0.329 0.299 0.281 0.271  0.266 
0.7 0.898 0.674 0.526 0.437 0.384 0.352 0.334 0.324  0.320 
0.8 0.933 0.738 0.593 0.502 0.446 0.412 0.394 0.384  0.381 
0.9 0.937 0.796 0.668 0.579 0.521 0.485 0.464 0.454  0.451 

 
 

Table 4.4b  
Asymptotic efficiency of the Moment method, relative to the Maximum Likelihood 

method, for ë1=2 
    ë2      

p1 3 4 5 6 7 8 9 10 11 
0.1 0.766 0.466 0.291 0.202 0.152 0.123 0.104 0.091  0.083 
0.2 0.813 0.550 0.385 0.289 0.232 0.195 0.172 0.156  0.145 
0.3 0.855 0.620 0.460 0.360 0.298 0.258 0.231 0.214  0.202 
0.4 0.892 0.682 0.525 0.423 0.358 0.315 0.287 0.268  0.256 
0.5 0.925 0.737 0.585 0.482 0.414 0.369 0.339 0.320  0.308 
0.6 0.952 0.788 0.641 0.537 0.467 0.421 0.390 0.371  0.359 
0.7 0.970 0.832 0.694 0.591 0.520 0.472 0.441 0.420  0.409 
0.8 0.971 0.864 0.740 0.643 0.572 0.524 0.491 0.471  0.459 
0.9 0.924 0.855 0.760 0.680 0.618 0.573 0.542 0.521  0.509 

 
Table 4.4c  

Asymptotic efficiency of the Moment method, relative to the Maximum Likelihood 
method, for ë1=3 

    ë2      
p1 4 5 6 7 8 9 10 11 12 
0.1 0.827 0.561 0.379 0.274 0.212 0.172 0.146 0.128  0.116 
0.2 0.870 0.648 0.484 0.377 0.308 0.261 0.229 0.207  0.192 
0.3 0.906 0.718 0.564 0.456 0.383 0.332 0.298 0.273  0.257 
0.4 0.937 0.776 0.630 0.522 0.446 0.394 0.357 0.332  0.315 
0.5 0.961 0.825 0.687 0.580 0.503 0.449 0.411 0.385  0.367 
0.6 0.978 0.866 0.737 0.632 0.555 0.499 0.460 0.433  0.415 
0.7 0.985 0.895 0.778 0.678 0.602 0.546 0.506 0.479  0.460 
0.8 0.972 0.906 0.805 0.715 0.643 0.588 0.549 0.522  0.503 
0.9 0.919 0.864 0.789 0.717 0.659 0.614 0.580 0.556  0.539 
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  Asymptotic results are based on the assumption that the sample size is large. In order to 

examine the small sample behaviour of the two methods a  simulation experiment was conducted. 

For several 2-finite Poisson mixtures and sample sizes, 10000 samples were drawn. For each 

sample, the ML estimates and the moment estimates (whenever obtainable)  were derived. 

Samples for which the moment estimates did not exist were ignored. The reason is that we 

wanted to compare the two methods in practical situations, i.e. when the researcher has a dataset 

in hand and  tries to estimate the parameters. If the moment estimates are not obtainable, the 

moment method is not appropriate. Note that as shown later, in chapter 6, for all the cases where 

the ML estimate reduces to a degenerate mixing distribution, the moment method fails to lead to 

admissible estimates.  The generalised variances for both methods  were calculated. The results 

are reported in Table 4.5. The entries are the values of the ratio V VML MM  , where V  denotes 

the generalised variance, and the subscripts indicate the method used. Entries smaller  than 1 

favour the ML method. 

Table 4.5 
Efficiency of the moment method based on 1000 simulations 

  sample  size   
p1 25 50 100 250 500 
  ë1=1  ë2=2  

0.2 0.0011 0.0062 0.0176 0.0001 0.0072 
0.5 0.0007 0.0110 0.0189 0.0143 0.1131 
0.8 0.0092 0.0112 0.0044 0.0003 0.0063 

      
  ë1=1  ë2=3  

0.2 0.0679 0.0801 0.0143 0.5317 0.4301 
0.5 0.0017 0.1144 0.3608 0.4726 0.4413 
0.8 0.0295 0.0249 0.1274 0.5111 0.4735 

      
  ë1=1  ë2=5  

0.2 0.4976 0.5549 0.4923 0.2435 0.1599 
0.5 0.8325 0.5242 0.3882 0.3709 0.3553 
0.8 0.0957 0.6545 0.5430 0.5520 0.5348 

      
  ë1=1  ë2=8  

0.2 0.4685 0.2208 0.1612 0.1299 0.1067 
0.5 0.4125 0.2829 0.2871 0.2402 0.2330 
0.8 0.5718 0.5572 0.4399 0.4456 0.3974 

      
  ë1=1  ë2=10  

0.2 0.3300 0.1828 0.1225 0.1088 0.0887 
0.5 0.3464 0.2689 0.2234 0.2206 0.2104 
0.8 0.5180 0.4635 0.4043 0.3824 0.3983 
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The results are much different from those concerning asymptotic efficiencies. The 

reason is that, for small sample sizes, there is a high probability that the moment estimates do 

not exist, as shown in the previous section. Samples with very small overdispersion usually 

fail to give moment estimates. However, applying the ML method to these samples, yields 

estimates with high variances (see, e.g.,  Hasselblad, 1969). So,  samples for which moment 

estimates of the parameters can be derived lead also to ML estimates of the parameters with 

low variances, making the ML method preferable.  

Moreover,  for many samples, especially samples of small sizes, the moment estimates 

were in the admissible range although they were on the boundary of admissible values, i.e. p1 

near 0 or 1 and usually a value for ë2  quite large. This resulted in high variances of the 

moment estimates. For example, for the case ë1=1, ë2=2, p1=0.5, the estimated variance of ë2 

was near 85 for the moment method and 1.9 for the ML method, because of few samples with 

estimated value for ë2 near 100. This indicates an unstable behaviour of the moment estimates.  

Finally, the ML estimates showed less bias in all  cases.  

 

4.5 The Zero Frequency Method 

4.5.1 The method 
Because of the high sampling variance of the third moment, one may look for some 

other function to replace it. A usual choice for discrete distributions is the zero relative 

frequency of the data set which is equated to the probability of zero under the assumed 

distribution (see, e.g.,  Kemp and Kemp, 1988). So the resulting system of equations is 

p p
p p
p p P

1 1 2 2 1

1 1
2

1 2 2
2

2 2

1 1 2 2 0

λ λ µ
λ λ λ λ µ

λ λ

+ =
+ + + =
− + − =






( ) ( )
exp( ) exp( )

   ,  (4.5) 

 

where P0  is the observed proportion of zero values in the sample. For distributions with high 

probability at 0 this method is expected to work satisfactorily. Moreover, due to  the lower 

variance of the proportion of zeroes relative to the third sample moment the method is 

expected to have a higher efficiency. System (4.5) differs from system (4.4) only in the third 

equation. 



Moment Estimation in Finite Poisson Mixtures 

 158 

One can solve this system by replacing p1 and ë2 in the third equation expressed only 

in terms of  ë1 and then solving the 3rd equation with respect to ë1. 

The resulting equation is given by 

 

a a b Pexp( ) ( ) exp( )− + − − =λ 1 01     (4.6) 

 

where b = − −
−

µ µ µ λ
µ λ

2 1 1 1

1 1

 and  a
b

= −
−

µ λ
λ

1 1

1

. 

 

 Equation (4.6) is non-linear and a numerical technique is required for solving it. A 

simple iterative scheme such as the Newton-Raphson method can be utilised. A ‘good’ initial 

choice for the value ë1 would be to use λ 1
0

0
( ) ln= P , i.e. the value if a simple Poisson model 

had been assumed and then  update the estimate using: 
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where   f a a b P( ) exp( ) ( ) exp( )λ λ1 1 01= − + − − −  and 

 

( ) [ ]′ = − − + −
−

− − − +f a b
b

b( ) exp( ) exp( ) exp( )λ λ µ
λ

λ1 1
1

2 1 1   . 

 

Equation (4.7) is the familiar Newton-Raphson iteration. 

Having obtained !λ 1 , the remaining  parameters  are estimated by 

!
!

!
λ µ µ µ λ

µ λ2
2 1 1 1

1 1

= − −
−

  and  !
!

! !
p1

1 1

2 1

= −
−

µ λ
λ λ

  . 

 

The asymptotic variance covariance matrix using a  first order Taylor approximation is 

calculated as V= G-1MG-1 where  
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G = ( ) ( ) ( )
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and M is the matrix with  elements Mij  given by ( )M
n

E X E X E Xij
i j i j= −+1 ( ) ( ) ( ) .  For 

i,j=1, 2  these are the covariances of the sample moments (see Stuart and Ord, 1994). Also,  

 

M
n

g g33
1 0 1 0= −( )( ( )) ,  

[ ]M M
n

g p p13 31 1 1 1 2
1 0 1= = − + −( ) ( )λ λ  

[ ]M M
n

g p p23 32 1 1
2

1 1 2
2

2
1 0 1= = − + + − +( ) ( ) ( )( )λ λ λ λ  

 

where g p p( ) exp( ) ( ) exp( )0 11 1 1 2= − + − −λ λ  , i.e. the probability of 0 for a 2-finite Poisson 

mixture. The above formulas can be derived using the appropriate  formulas for the 

covariances of sample proportions given in Stuart and Ord  (1994). 

 

 

Example 3.2 (continued) Consider the data of Example 3.2, presented in Table 3.12. 

The large proportion of zeroes gives an indication that  the method of zero frequency may be 

preferred as an  estimating method. So, this methods was applied to these data along with the 

ML and the  moment methods. The results are reported in Table 4.6. 

 

From Table 4.6 one  can see the estimates obtained by the three methods. The zero 

frequency estimates  have standard errors which are very close  to the standard errors of the 

ML estimates. The moment estimates have standard errors larger than those of both of the 

other methods. An explanation for this is the large right tail of the data which influences the 

moment estimation. From the practical point of view the interest for this data set lies mainly in 

the proportion of zero values which  provides information about the proportion of ‘good’ 

clients. So, the method of zero frequency would be a natural choice for this data set, as it 

makes ‘better’ use of  the information at the origin. 
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Table 4.6 
The estimates of the parameters of a 2-finite Poisson mixture for the data of 

Table 3.12 
 

  estimated parameters  
Method p1 ë1 ë2 

Maximum Likelihood 0.768 
(0.0075) 

0.232 
(0.0109) 

6.156 
(0.2889) 

Moment  0.871 
(0.0308) 

0.469 
(0.1561) 

9.108 
(1.1395) 

Zero Frequency 0.826 
(0.0075) 

0.255 
(0.0110) 

7.893 
(0.3109) 

 

 

4.5.2 Comparison with Other Methods 
Tables 4.7a-4.7c contain the asymptotic efficiency of the method of zero frequency 

relative to the ML method. It can be seen that for distributions with a high probability at 0 the 

efficiency is large. Comparing this method to  the ordinary MM one can see that it is more 

efficient for distributions with a low mean. This makes this method an interesting alternative 

to the ML method when there are many counts at 0. Note also that the method succeeds in 

providing estimates which give an excellent fit for the 0 frequency. Note  that as Harris  

(1991) pointed out, the estimated frequency at zero from the ML estimates is always greater 

than the observed frequency. 

Figure 4.2 depicts the asymptotic efficiency of the zero frequency method for ë1=1 and 

various choices of the mixing proportion and the second parameter. The efficiency is high for 

components close to the positive axis, since such 2-finite Poisson distributions have a large 

proportion of zeroes. For cases with a low zero frequency, the method is not satisfactory. 
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Figure 4.2 Asymptotic efficiency of the method of zero frequency for  2-finite Poisson mixtures with ë1=1 
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Figure 4.3  Relative efficiencies of the two methods. The efficiency was calculated as the ratio of the generalised  
variance of the moment method divided by that of the zero frequency method.  Values smaller than 1 support the 
moment method. 
 
 

Figure 4.3 compares the MM to the method of zero frequency by depicting the 

efficiency of the method of moments relative to that of the zero frequency method. Values 

lower than 1 favour the MM.  When the mixing proportion is large, i.e. when the zero 

frequency is high, the zero frequency method is superior to the moment method. Perhaps, 

these two methods can be used complementary to fully exploit their behavioural features. 

Note that the ML method is preferable in all cases, apart from the situation where special 

attention is paid to the estimation of the zero frequency. 
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Table 4.7a 

Asymptotic efficiency of the method of zero frequency relative to the ML method, for 
ë1=1 

     ë2     
p1 2 3 4 5 6 7 8 9 10 
0.1  0.949  0.879  0.762  0.661  0.585  0.528  0.486  0.458  0.439 
0.2  0.935  0.878  0.778  0.687  0.611  0.553  0.511  0.481  0.460 
0.3  0.917  0.868  0.773  0.682  0.606  0.549  0.508  0.479  0.460 
0.4  0.893  0.850  0.757  0.666  0.592  0.537  0.498  0.471  0.454 
0.5  0.861  0.821  0.730  0.642  0.572  0.520  0.484  0.460  0.445 
0.6  0.819  0.782  0.695  0.612  0.547  0.500  0.467  0.446  0.433 
0.7  0.761  0.727  0.647  0.572  0.514  0.472  0.445  0.427  0.416 
0.8  0.677  0.645  0.576  0.513  0.465  0.432  0.410  0.396  0.389 
0.9  0.537  0.505  0.451  0.405  0.372  0.350  0.337  0.330  0.328 

 
Table 4.7b 

Asymptotic efficiency of the method of zero frequency relative to the ML method, for 
ë1=2 

     ë2     
p1 3 4 5 6 7 8 9 10 11 
0.1  0.753  0.764  0.680  0.571  0.474  0.400  0.346  0.308  0.281 
0.2  0.712  0.708  0.621  0.520  0.435  0.372  0.326  0.294  0.271 
0.3  0.669  0.653  0.567  0.474  0.399  0.344  0.305  0.278  0.258 
0.4  0.624  0.598  0.516  0.432  0.367  0.319  0.285  0.262  0.246 
0.5  0.575  0.542  0.466  0.392  0.335  0.294  0.265  0.245  0.232 
0.6  0.521  0.483  0.414  0.350  0.302  0.267  0.243  0.227  0.216 
0.7  0.461  0.418  0.357  0.304  0.264  0.236  0.217  0.205  0.196 
0.8  0.389  0.342  0.290  0.248  0.217  0.196  0.182  0.173  0.168 
0.9  0.295  0.240  0.201  0.171  0.150  0.136  0.127  0.122  0.120 

 
Table 4.7c 

Asymptotic efficiency of the method of zero frequency relative to the ML method, for 
ë1=3 

     ë2     
p1 4 5 6 7 8 9 10 11 12 
0.1  0.525  0.546  0.482  0.391  0.311  0.252  0.210  0.181  0.160 
0.2  0.484  0.479  0.410  0.330  0.266  0.219  0.187  0.164  0.148 
0.3  0.444  0.424  0.356  0.287  0.234  0.195  0.168  0.150  0.136 
0.4  0.405  0.374  0.312  0.252  0.207  0.175  0.153  0.137  0.126 
0.5  0.366  0.329  0.272  0.221  0.183  0.156  0.138  0.125  0.116 
0.6  0.326  0.284  0.233  0.191  0.159  0.137  0.122  0.112  0.105 
0.7  0.284  0.238  0.194  0.159  0.134  0.117  0.105  0.097  0.091 
0.8  0.238  0.188  0.152  0.124  0.105  0.092  0.083  0.077  0.074 
0.9  0.183  0.127  0.100  0.081  0.068  0.060  0.054  0.050  0.048 
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4.6  Bayesian Methods of Estimation for Finite Mixtures  
Till now, we have only presented classical estimation methods. Bayesian 

methods have also been proposed for estimation of the parameters of  finite mixture 

models. 

Bayesian statistics treats the parameters to be estimated as random variables 

having their own distribution, known as the prior distribution. The estimation is based 

on the posterior distribution of these parameters given the data, calculated via the 

Bayes Theorem. This fact can cause a lot of difficulties, since the derivation of the 

posterior is not always straightforward, especially in the case of finite mixtures. The 

calculation of the posterior distribution is quite tedious in mixture models. This has 

always impeded the application of Bayesian methods until recently, when 

sophisticated sampling based approaches disentangled the problem. Much research 

has been made in the area of Bayesian estimation methods for mixture models using 

the fashionable Markov Chain Monte Carlo methods and a lot of interesting results 

have been obtained. 

 A first attempt for Bayesian estimation can be found in Rolph  (1968). In 

order to construct a prior distribution for a parameter belonging to the interval (0,1) he 

makes use of  the relationship between the moments of the mixed distribution to those 

of the mixing distribution. A similar idea is given in Meeden (1972). 

To proceed in a fully Bayesian context one needs to specify the prior 

distributions of the parameters to be estimated and then to calculate the posterior 

distributions. According to Diebolt and Robert (1994), given a proper prior, a 

Bayesian approach to the problem always provides estimators which can be written 

explicitly for conjugate priors. However, standard Bayesian approaches, must be 

regarded as of purely academic interest and not of practical use. The reason is that the 

volume of computations involved is prohibitively large even for small sample sizes 

and increases exponentially with the sample size. A detailed evaluation of the 

posterior distribution requires too much computing time to be regarded as a plausible 

solution.  

 For obtaining the posterior distribution,  all the possible partitions of the 

sample into components must be constructed. For example, for a 2-component model 

and a sample of size n, one can partition the entire sample in 2 components by 
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, different ways. Improper priors cannot be used since they will lead to 

inconsistent results. 

 In order to overcome this difficulty with a pure Bayesian approach, Smith and 

Makov (1978) discussed a quasi-Bayesian approach. Since their main interest was to 

identify the component from which the observation came, they only tried to estimate 

the mixing proportions; thus their procedure cannot be applied to the more general 

case where the parameters of the subpopulation distribution must be estimated too. 

The method requires the computation of the posterior density for each observation 

separately, in a successive manner.  A disadvantage of this quasi-sequential method is 

that the results obtained depend on the order in which the observations are considered 

and thus its applicability can be limited to cases where there is a natural ordering  of 

the observations.  

Redner et al.  (1987) described modal estimators for the parameters using 

conjugate priors for the component distributions. The equations for all the estimators 

can be written explicitly. However, solving these equations requires special numerical 

methods. Redner et al.  (1987) proposed an  iterative algorithm for solving them.  

An advantage of this procedure is that the imposition of a prior leads to 

avoiding problems connected with the unbounded likelihood function. Moreover, the 

researcher  can incorporate easily his own belief by choosing an appropriate prior. 

Problems arise if the posterior  distribution is multimodal whence multiple modes 

exist. Recent research has demonstrated that this is the usual case for mixture models. 

The posterior distributions are usually multimodal due to the ambiguity about the 

number of components. Special effort on choosing the priors is needed to avoid  

multimodality. 

Bernardo and Giron (1988) discussed in detail all the problems occurring when 

applying fully Bayesian methodologies identifying possible directions for progress. 

Another approach to overcome the difficulty for the complete evaluation of all 

partitions is the use of contiguous partitioning described in Aitkin et al.  (1996). They 

proposed a test for detecting the presence of a mixture based on posterior Bayes 

factors. To apply their method one needs to classify each observation. Contrary to the 

fact that complete enumeration of all possible partitions is impossible, even for 

moderate sample sizes,  contiguous partitioning requires the mere determination of the 
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cut points which partition the entire  sample to subsamples. By this, only n-1 different 

partitions are considered, making the calculations feasible. 

 Rajagobalan and Loganathan (1991) proposed another quasi-Bayesian method 

for estimating the mixing proportion. Since full  Bayesian estimation is not 

computationally feasible for practical purposes they gave a compromise solution. For 

a given prior, taken by the authors to be a Dirichlet distribution, they calculated the 

posterior probabilities of each  observation to belong to the i-th subpopulation and 

they subsequently used averages of these probabilities as estimates of the mixing 

proportions. 

Crawford (1994) proposed the use of approximate methods for Bayesian 

estimation of finite mixtures using the Laplace method. The Laplace method was 

introduced in Bayesian statistics by Tierney and Kadane  (1986) and  Tierney et al.  

(1989).  The Laplace method itself is a method for calculating the ratio of two 

integrals of a specific form. Usually, the posterior moments of a random variable are 

expressed as the ratios of two integrals and thus, the method is applicable. This 

method often leads to very good approximations of several posterior measures of 

interest avoiding the exact calculation which requires the evaluation of all possible 

partitions of our sample. The method works well when the posterior is similar to a 

Normal distribution. 

Markov Chain Monte Carlo (MCMC) methods led to a phenomenal increase 

in the application of Bayesian methodology. The main gain is that the volume of 

required calculations is avoided by merely sampling from the target posterior 

distribution. This is  feasible with a little effort. 

The Data Augmentation algorithm (Tanner and Wong, 1987 , Wei and Tanner, 

1990) is such a method. The Data Augmentation uses the missing data representation 

of finite mixture models and can be considered as a next step after the SEM algorithm 

described earlier. 

Suppose that our full data representation Y contains an observed part and a 

missing part (or a part which can be considered as missing), i.e. ( )Y X zi i i= ,  where Xi 

is the observable part of our data and the zi  is the missing part. The vector zi has 

elements zij=1 if the i-th observation belongs to the j-th subpopulation and 0 

otherwise. Thus, the ‘missing data’ are the subpopulation members of the observations 
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(see also the missing data representation used for constructing the EM algorithm in 

section 3.3.2). The algorithm proceeds with two steps: 

At the first step the vectors zi are simulated from a multinomial distribution, 

with n=1 and probabilities equal to the posterior probabilities  

w
p f x

f xij
j i j

P i
=

( | )
( )

λ
  

i.e., the posterior probabilities that the i-th observation belongs to j-th group. This step 

is the same as the first step of the SEM algorithm. 

The second step, instead of maximising the likelihood conditional on the 

memberships of the first step, simulates the parameters from the joint posterior 

distribution of the parameters given the data and the vectors zi . The new parameter 

values are then the means of these posterior distributions. In other words, the M-step 

of the SEM algorithm is replaced by a step which proceeds in the usual Bayesian 

approach by estimating the parameters with the means of the  posterior distributions. 

The missing data presentation is very similar to the one used in section 3.3. 

The main problem of the Data Augmentation algorithm is the specification of 

the joint posterior distribution, which usually is not simple.  

Recent methods in Bayesian analysis, overcome the problem of expressing the 

posterior distribution in a closed form (or even in an analytical form) by simply 

sampling from this distribution. The "Gibbs Sampler" is such a scheme, which can be 

applied to mixture problems as well. The only task is to determine all the marginal 

distributions wanted and then sample from them. Lavine and West (1992) 

demonstrated this idea in a problem of clustering which is very similar in nature to 

mixture problems.  

 Diebolt and Robert (1994) used the same idea in mixture problems. They 

showed the hierarchical nature of the problem and they applied such a procedure to a 

normal mixture. This technique seems to simplify the problems with a fully Bayesian 

approach. The conditional distributions involved can easily be determined since the 

Dirichlet distribution is the conjugate for the mixing proportions and we can use the 

appropriate conjugate for the parameters, too. For example the use of a Gamma 

distribution for the parameters of the Poisson distribution is plausible. A known 

application of such an estimation procedure can be found in Dellaportas et al. (1995) 

for finite mixtures of normal distributions.  
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 Escobar and West  (1995) proposed basing priors in Dirichlet processes. This 

approach enables us to simultaneously check for several models with different number 

of parameters. 

The main difference between the Data Augmentation algorithm and the Gibbs 

sampler is that the former simulates form the joint posterior distribution while the 

latter simulates successively from the conditional distributions. 

It is worth noting that all four methods (classical or Bayesian), namely the EM 

algorithm, the SEM algorithm, the Data Augmentation method and the Gibbs 

Sampler, make use of the ‘missing data’ representation of finite mixtures. They are 

based on two steps which lead either to closed form solutions or to the derivation of 

the solution via simulation. Table 4.8, summarises all the methods. A comparative 

description of the methods can be found in Tanner (1991). 

 
 

Table 4.8  
Algorithms for the estimation of the parameters of finite mixture models 

 
algorithm E-step M-step 

EM closed form closed form 

SEM simulated closed form 

Data Augmentation simulated simulated from the joint posterior 

Gibbs Sampler simulated simulated from the conditionals 

Note: The M-step for the Data Augmentation and the Gibbs Sampler algorithm is not a 
maximisation step, but a step which extracts the posterior density of the parameters. 

 
 Recently, Richardson and Green (1997) proposed a reversible jump Markov 

Chain Monte Carlo method for finite mixtures with an unknown number of 

components. They treated the number of components as an unknown parameter which 

has to be estimated from the data. This idea of treating the number k as an unknown 

parameter, has also been demonstrated in the Bayesian context by Binder  (1978) in an 

application of Bayesian cluster analysis. The reversible jump MCMC is a flexible 

method which allows for jumping between models with different numbers of 

parameters. 
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Leonard et al. (1994) also proposed Bayesian estimation using an alternative 

Gibbs sampler known as Permutable Bayesian Marginalisation. In this paper, the 

mixing proportion was set equal to 1/k for k-finite mixtures. 

Mengersen and Robert  (1996) reparametrized the normal mixture model in 

such a way so that the prior distribution can be easier handled. Using Gibbs sampling 

they derived the posterior distributions and used them for testing the existence of a 

mixture. 

Robert (1996) provides a thorough description of Bayesian methodologies for 

mixture models 
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4.7  Empirical Bayes  
 In Bayesian estimation, the parameter is not a constant number but a  random 

variable with some distribution. Usually, this distribution is assigned to the parameter, 

either subjectively by the researcher on the basis of the researcher’s  prior knowledge 

and personal beliefs, or in a specified form which contributes to numerical simplicity 

and to the tractability of the problem. The non-informative prior distribution is a 

common choice representing the ignorance of the researcher concerning the behaviour 

of the parameter. 

 This specific aspect of the Bayesian approach has been criticised strongly. The 

choice of the prior is subjective and, hence, different researchers with the same data 

can give different answers  simply because of different prior beliefs.  

A mild and compromising approach  is provided by the so-called empirical 

Bayes methods. According to them  the prior  distribution of the parameter is 

estimated from the data.  

 The connection with our problem is obvious: The purpose of the empirical 

Bayes methods is to estimate the mixing distribution, though the aim is different. In 

the empirical Bayes context, the mixing distribution is termed as the prior distribution 

and the mixed distribution is usually termed as the predictive distribution. One 

difficulty that may arise relates to the fact that the aim of  empirical Bayes methods is 

not to determine the mixing distribution itself but rather to use  it. As a result, using 

empirical Bayes methods may not lead to an explicit solution for the form of the 

mixing distribution as their estimation step is confounded with other steps (e.g. 

Maritz, 1969).  

 The duality of all the methods has to be stretched. Every method of estimating 

the mixing distribution can be used for empirical Bayes purposes (see, e.g.,  the books 

of Maritz and Lwin, 1989, Carlin and Lewis, 1996). On the other hand, several 

empirical Bayes methods lead to an estimate of the mixing distribution. For example, 

Laird  (1982) proposed the use of the ML estimate of the mixing distribution as the 

prior distribution in an empirical Bayes application. Similarly, we may use another 

method of estimation as, for example, the MM used by Maritz and Lwin  (1989). This 

approach utilises the estimation methods for mixture models in empirical Bayes 
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applications. This is also the case with mixture models which lend their methods to 

empirical Bayes problems. The opposite is also possible. For many empirical Bayes 

applications, each observation is related to its parameter. We may consider these 

estimates of the parameter to construct the mixing distribution. (see, e.g. , Efron and 

Morris, 1975, Lemon and Krutchkoff, 1969 and Robbins, 1964, 1983, among others). 

 Several empirical Bayes methods have been proposed for the Poisson 

distribution in a variety of articles (see, for example, Clevenson and Zidek, 1975, 

Gaver and O’Muircheartaigh, 1987, Maritz and Lwin, 1989, Walter and Hamedani, 

1991,  among others). No details will be given for these particular methods, since this 

is beyond the scope of this short review. 

 

4.8  Miscellaneous Methods 
We conclude our brief review of methods of estimation for finite mixtures by 

describing some miscellaneous methods, the applicability of which has not yet been 

demonstrated. 

 Zhang (1990) proposed the use of Fourier methods for estimating the mixing 

distribution. He used the well known inversion theorem for the characteristic function. 

For certain continuous and location families, e.g. the normal family , the Cauchy 

family etc., it can be shown that the characteristic function of the mixing distribution 

can be determined from the characteristic function of the mixed random variate. 

Hence, using the empirical characteristic function, one can apply the Fourier inversion 

theorem. The problem now is to choose a suitable kernel for reconstructing the mixing 

density. The author described a selection procedure as well as rates of convergence 

and lower bounds for the optimal rate of convergence. However he did not provide 

any examples to demonstrate the practical value of the method. 

 More recently, Zhang (1995) presented similar results for discrete exponential 

families, including the Poisson case. His approach is based on the well known 

property that the moments of the mixing distribution are related to the moments of the 

mixed distribution. Since the characteristic function can be related to the moments of 

a distribution,  he introduced kernels in order to reconstruct the probability function by 

a Fourier inversion formula. For the Poisson case, he proposed to estimate the mixing 

distribution by:  
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Here,  n is the sample size, Xi , i=1,..,n are the observations and K x an ( , )  is a 

suitable function defined by  
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 where k* (t) is a function such as k* (-t)=k* (t) , [ ]∀ ∈t 0 1, t, and k* (t)=0, for  |t|>1, 

and cn is a constant whose nature is similar to that of  the bandwidth in kernel density 

estimation. For the choice of k*(t) one may proceed in a manner similar to that 

employed in kernel density estimation.  

 The author also studied the rate of convergence of his estimator. Obviously, 

this estimator is not easy to apply because of the complexity of the involved integral in 

its expression. Variants of the above estimator can be found in Loh and Zhang (1996, 

1997). Goutis (1997) developed another kernel based estimator  which is relatively 

simpler than those described above. 

Other miscellaneous methods include those  proposed by Preston (1971) who 

used  piece-wise polynomial arcs to construct an estimate of the mixing distribution, 

by Walter  (1985)  who used orthogonal polynomials for estimating the mixing 

distribution of Poisson mixtures and by Hengartner (1997) who used an estimator 

based on kernel estimates via orthonormal polynomials . 
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Chapter 5 
Minimum Hellinger Distance Based Inference 
for Finite Poisson Mixtures 

 
 

5.1 Minimum Distance Estimation 

5.1.1 General Introduction  
It is known, for mixture models that samples of small size and components 

close together do not provide good estimates either through the method of moments or 

through  the ML method. In order to overcome this, a lot of research has been carried 

out for alternative estimation methods, particularly for minimum-distance methods. In 

fact, one can use some kind of distance between the observed data and the expected 

data and then try to solve the problem by minimising this distance. As will be seen 

later, both the moment method and the ML method can be regarded as minimum 

distance methods. In this sense, the estimation problem can be reduced to one of 

choosing the distance function with some optimality criteria.  

 Minimum distance estimation is used in parametric inference when the model 

is suspected to be inexact and the existence of some observations far from the main 

body of data may cause a lot of trouble in the estimation. Unfortunately,  not much 

work has been done for examining  robustness in mixture model analysis. Such 

examples are the works of Gray (1994) and Gustafson (1996). The former examined 

the bias when the component distributions do not belong to the assumed family of 

distributions, while the latter treated the case where the mixing distribution assumed is 

incorrect. Methods which are robust with respect to such departures from the model 

are very useful.  Depending on the distance function considered, we can cope with 

these outliers when the classical ML method fails to do so.  
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 A distance δ( , )f g  is defined between the functions f and g , which 

measures, in some sense, how far the function f from the function g  is. Usually, 

f and g  are probability functions or probability density functions, but for some 

methods distribution functions or moment generating functions can be used as well. 

Very often, weighted versions of the distances are used, weighting with respect to 

some function, say w x( ) . In this manner the interest in some points of the real line is 

increased by putting more weight to certain neighbourhoods of x. 

 According to Parr and Schuccany (1982), one can distinguish between two 

main categories of distance functions:  

•  those of an integral type, namely those which measure over the real line the 

discrepancy between the two functions, or some weighted versions of the functions 

and 

•  those based upon "sup-type" discrepancies, namely those which determine 

the maximum discrepancy over the real line.  

 For example, the well known chi-square distance is of the former type, while 

the Kolmogorov distance is of the latter. 

The first category possesses some useful properties like asymptotic normality 

under suitable conditions, while for the second category, such useful properties are 

usually hard to be proven and usually the obtained estimators are not even 

asymptotically normally distributed.  

 Several distance measures have been proposed. A small collection can be 

found in Titterington et al. (1985, pp 116). In fact, one can use a lot of different 

functional forms for both the distance function and the weight function. Moreover, 

one can either use the distribution functions or the probability functions depending on 

the nature of the data under investigation. For example, for count data the use of the 

empirical relative frequencies as an estimate of the probability function is 

straightforward. For continuous data, however, this is not so since one needs to place 

observations in classes with arbitrarily chosen bounds or to estimate the density using 

some method like the kernel density estimation method.  

 From the above, it is obvious  that the number of different choices of distance 

functions is very large. This complicates the estimation problem particularly since 

comparative results for all these functions are not known and one is not able to 
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comparatively judge their performance. Lindsay (1994) tried to compare some of them 

on the basis of their relative efficiency.  

In the sequel, a variety of distances will be reviewed. It is useful to note that 

both the MM and the ML method can be considered to be minimum distance methods. 

Kemp (1986) showed that many of the known procedures for estimation can be 

regarded as methods of weighted discrepancies between the observed and the expected 

data. According to Kemp (1986) the methods can be separated in three main 

categories: those with constant weights (not depending on parameters or observed 

frequencies) like the moment method, those with weights depending on the 

parameters, like the ML method, and those whose weights depend on both the 

parameters and the observed frequencies like the minimum chi-square method.  

 The ML method uses the so called Kullback-Leibler distance. The Kullback-

Leibler distance is defined by 

δ KL
x

x x

f g g x g x
f x

g x g x g x f x

( , ) ( ) ln ( )
( )

( ) ln( ( )) ( ) ln( ( ))

= =

= −

∑

∑ ∑
  . (5.1) 

If g x( )  denotes the observed relative frequency of the value x, the 

minimisation of this distance is equivalent to the maximisation of the  second term in 

(5.1) which is proportional to the well known loglikelihood  of a sample. Therefore, 

the  minimum distance estimates using the Kullback-Leibler distance are the same as 

the ML estimates. 

As far as the method of moments is concerned we can define the distance 
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 where f x( )  and g x( )  are density functions and w x t( , )  is a weight function. It is 

easy to show that if g  is the empirical density and f  some density, the minimisation 

of the distance is equivalent to equating the expected values of the functions w x t( , ) . 
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Taking w x t x t( , ) = , for t=1,2,...,k , leads to the moment method using the first k 

moments.  

 Hall (1981) showed the above result. Generally speaking, the choice of the 

weight function is crucial in estimation with distance measures. This function must 

not give important weight far from the main body of data. A weight function of the 

form w x t x t( , ) =  clearly gives weights that increase with x and this is the reason for 

the inadequacy of the method of moments, especially when a large number of 

moments is used. 

 From the above discussion it becomes obvious that all the known estimation 

methods can be regarded as  minimum-distance methods. Among them are, the ML 

method and the method of moments which have played an important role in statistical 

estimation and have been already  presented in chapters 3 and 4 respectively. 

 

5.1.2 Minimum Distance Methods Applied to Finite Mixture Estimation 
Recall that a general point about the estimation of the mixing distribution is 

the restriction to estimate it by a step-function even though the true mixing 

distribution is continuous (Laird, 1978).  All the methods of this section require the 

number of support points to be known. In the case where the number of support points 

is not known, the methods can be applied for several values of the support size and 

then the one satisfying some optimality criteria can be chosen (see, e.g.,  Chen and 

Kaldbfleisch, 1996). Semiparametric minimum Hellinger estimation for finite Poisson 

mixtures is  discussed later in this chapter. 

The interest of  most of the cited papers is focused in estimating the mixing 

proportions assuming that the component distributions are known. This approach 

eases much of the computational difficulty. However, the methods can be extended to 

include the estimation of the parameters of the components. In this case, however, the 

computational effort involved is much greater. 

In the sequel, F(x) denotes the  assumed distribution function, while G(x) 

denotes the empirical distribution function calculated from the data. The probability 

function and the empirical relative frequency are denoted by f and g respectively. 

 Boes (1966, 1967) tried to estimate the mixing proportion è for the case of a 

2-finite mixture with known components, namely a mixture of the form  
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θ θF x F x1 21( ) ( ) ( )+ − , where F1 and F2 are known distribution functions. The only 

parameter to be estimated is è. He proposed the obvious estimator  

 

! ( ) ( )
( ) ( )

θ x
G x F x
F x F x

=
−
−

2

1 2

   .   (5.3) 

 Obviously, from (5.3) one can find an estimator for è for every value of x. 

Boes proposed to use an averaged estimator of the form ! ( )θ x
x

w x dx∫ , where w x( )  is 

some weight function. He discussed and proposed a specific form for w x( ) . Some 

asymptotic properties of the estimator were derived and its behaviour for small 

samples was examined. It was found that the estimator satisfies some optimality 

criteria such as the Cramer-Rao bound for its variance. Ahmad et al. (1983) proposed 

another related estimator based on the derivation of  (5.3) for selected quantiles. The 

proposed   estimator was an average of  these quantile-based estimators. Later, Van 

Houwelingen and De Vries (1987) developed a shrinkage estimator based on (5.3) 

which is minimax. 

 Choi and Bulgren (1968) and Choi (1969), considered  minimising the 

averaged L2-norm. Note that averaged L2 -norm distance W(F,G) between two 

distribution functions F and G is defined as  

       ( )W F G F x G x dF x( , ) ( ) ( ) ( )= −∫ . 

By some authors, this distance is termed as the Wolfovitz distance while Titterington 

et al. (1985) use this term for another type of distance. 

 For estimation purposes, one needs to use the discrete analogue of this 

distance, namely the function  

S P
n

F x i
nn P i

i

n

( ) ( )( )= −



=

∑1 2

1

  ,  (5.4) 

 where x i( ) is the i-th order statistic from the sample. The subscript P refers to the 

mixing distribution that leads to the mixed distribution FP . In the case where only the 

mixing proportions are estimated it is assumed that the support points of the mixing 

distribution are known. 

 Estimating the mixing distribution P  is equivalent to determining a function 

!P  such that the quantity S Pn ( ) is minimised. Unfortunately, minimising (5.4)  
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requires solving a linear optimisation problem. The bigger the number of parameters 

the more difficult to solve the problem. Choi and Bulgren (1968) estimated the mixing 

proportions only and they provided a few simulations concerning the behaviour of 

their estimators. They concluded that their estimator seemed to work reasonably well 

for moderate sample sizes. They also investigated the asymptotic properties of these 

estimators and showed that, under some conditions, it  is consistent. Later, Henna 

(1983) showed that the conditions considered by Choi and Bulgren (1968) can be 

relaxed without affecting the consistency of the estimator. Henna (1985) proposed a 

sequential minimisation of this distance in order to determine the number of 

components in the mixture. Note that for both proofs FP  is required to be continuous. 

The consistency of the estimator for discrete FP  is not known. The same distance was 

used by Robbins (1964) for an empirical Bayes problem. 

 Bartlett and McDonald (1968) proposed a "least square" distance of the form 

 ( )δ BM F G dG dF dH( , ) = −∫ 2  , 

where H is an increasing function of x. They showed that with a suitable choice of the 

weighting  function the variance of the estimates  can be decreased, and they proposed 

several such weights.  

 MacDonald (1971) criticised the estimator of Choi and Bulgren which 

minimises (5.4) and proposed another distance which has a smaller bias. He also 

compared the two distances with a few simulations. His idea is based on using the 

Cramer Von-Misses distance CVM F G( , ) , defined as: 

( )CVM F G F x G x dG x( , ) ( ) ( ) ( )= −∫ 2  .   (5.5) 

The sampling counterpart of this distance is 

S G
n

F x i
nn i

i

n

( ) ( ) .
( )= − −



=

∑1
12

0 5 2

1

   .  (5.6) 

 

The similarity to the Wolfovitz distance is obvious. The Cramer-Von Mises 

distance is based on the difference between the cumulative distribution functions 

averaged with respect to G(x). The term 0.5 is used to correct for approximating a 

discrete function by a continuous one. 

This distance was also examined by Woodward et al. (1984) who made a 

simulation comparison of it to the ML estimator in the case of normal mixtures. They 
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found that Minimum Distance estimation based on the Cramer-Von Misses distance 

given in (5.6) leads to better estimators under symmetric departures from normality 

thus concluding that  they  are more robust than the ML estimators.  

Clarke (1989) used this distance for estimating only the mixing proportion. He 

showed that the estimator can be written in a closed, though complicated, form and 

that the method is robust when the actual underlying models are mixtures of heavy 

tailed densities, like the exponential or the student-t distributions. 

 A quite similar method is proposed by Deely and Kruse (1968). They tried to 

minimise the sup norm SN F G F x G xx( , ) max ( ) ( )= −  . It can be shown that the 

problem is a linear programming problem with a great number of constraints. Hence, 

the computational effort is tremendous. Because of the complexity of this approach, it 

has not been used in practice. The authors also showed that the estimated mixing 

distribution tends to the true mixing distribution with probability one when the sample 

size is large. A few years later Chandra (1977) extended their method. Chen (1995) 

showed that these estimators can achieve the best possible rate of convergence to the 

true mixing distribution which is n−1 4/ . 

 A similar approach is given by Phillips (1990). He proposed to use the 

Chebyshev norm instead of the sup norm. He showed that in this case the linear 

programming problem has a smaller number of constraints and therefore it is easier to 

be solved. He also showed that the estimated mixing density tends, with probability 1, 

to the true one. He gave some illustrating examples applying his method.  

Blum and Susarla (1977) proposed a method which involves a system of 

inequalities to be satisfied simultaneously. Their method tries to minimise a distance 

similar to the Kolmogorov distance. The authors pointed out that the problem was a 

linear programming problem. The applicability of their method is limited since the 

computational effort is large even with high-speed computer devices.  

 Fryer and Robertson (1972) proposed the well known minimum chi-squared 

distance for estimating the mixing distribution. Comparing this method with the 

moment method they found that the procedure is similar in efficiency. The problem 

with such a method is that the data must be grouped. With discrete data this is 

straightforward, but with continuous data it may lead to bias depending on the 

different categorisation.  
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 Albrecht (1982), discussed several methods for estimating the parameters of  

finite Poisson mixtures. Among them he proposed a quasi-minimum chi-square 

method. He showed that the numerical complexity of this method is not prohibitive as 

it could be for the full minimum chi-square technique. The method may be called 

quasi-minimum chi-square because it expands the chi-square distance in a Taylor 

series and uses only the first two terms. The inaccuracy of the method is very small 

since terms larger than the second may be regarded as negligible. He also provided us 

with a hint about the numerical solution of this problem.  

Hall and Titterington (1984) suggested to combine different estimators in 

order to improve the efficiency of the estimate. The idea is that in this case the 

variance of the estimator is a continuous function depending on the unknown 

components. So, by  choosing the way of categorising the data one can improve the 

estimate. Note that for count data the method is not appropriate. 

 Edelman (1988) and Clarke and Heathcote (1994) proposed the use of the 

integral L2 distance, namely 

( )L G F G x F x dx2
2( , ) ( ) ( )= −∫   . 

Eddelman (1988) assumed a n-finite mixture with  mixing proportions equal to 

1 n  whose  only the component distribution parameters had to be estimated. Clarke 

and Heathcote (1994) proposed a usual k-finite model. Both papers treated the normal 

case. However, the motivation for this approach was different. Eddelman proposed it 

in an empirical Bayes context, while Clarke and Heathcote for robust estimation of the 

mixing distribution. They showed that the estimating equations satisfy the conditions 

required so as to yield  robust estimates. 

Cutler and Cordero-Brana (1996) proposed the use of the Hellinger distance to 

produce minimum Hellinger distance estimators for finite normal mixtures. They 

showed the asymptotic normality and the robustness of such estimators in case of 

finite normal mixtures and they gave an algorithm to facilitate the estimation. 

 Titterington (1983) pointed out that by using distances of the square type it is 

possible to obtain explicit expressions for the estimates of  the mixing proportions 

when the latter are the only parameters to be estimated. With other methods or when 

the parameters of the component distributions have to be estimated as well,  they 

proposed the classical iterative method of Newton-Raphson or the Scoring Method. 
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These methods are good devices if good initial values are known, otherwise they may 

not converge at all.  

Quandt and Ramsey (1978) used a modified procedure. They proposed to use 

the sum of the squared differences between the empirical moment generating function 

H t( )  and the true moment generating function h t( ; )θ , evaluated at several distinct 

points ti , i=1 , ..., k. The empirical moment generating function H t( )  is given by  

H t
n

tX i
i

n

( ) exp( )=
=
∑1

1

 , 

where n is the sample size and Xi , i=1, ..., n are the n observations. So, the proposed  

method minimises the distance 

 

( )M H t h t
i

k

= −
=
∑ ( ) ( , )θ 2

1

 

with respect to the vector of parameters è. 

As the authors showed, this procedure is similar to a moment method but with 

weights varying for each moment. Moments of higher order are given less weight. The 

main difficulty with this procedure is the computational complexity for minimising 

this function.  

 Applying the procedure to normal mixtures they showed that the behaviour 

for small sample size is satisfactory. Later Kumar et al. (1979) proposed the use of the 

empirical characteristic function. The reason is that the characteristic function is not as 

smooth as the moment generating function, and thus it is more appropriate to find 

departures from the assumed distribution. This idea was further pursued by Bryant and 

Paulson (1983) for the estimation of the mixing proportion only. However,  the use of 

the characteristic function may increase the computational effort required, and its 

sensitivity may cause difficulties in a number of instances as for example, locating 

local minima which are not global etc. An improved version of the method of moment 

generating function can be found in Schmidt (1982). He extended the idea of Quandt 

and Ramsey (1978) by considering the minimisation of a generalised sum of squares 

rather than an ordinary sum of squares. He did so because the terms in the simple sum 

of squares are correlated and the resulting estimators will not be efficient in the same 

manner in which the least-squares estimates are not efficient in  regression models 

with correlated errors. He also examined in detail issues concerning the number of 
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different points where the moment generating function (or the characteristic function) 

must be evaluated. 

 In the case of Poisson (or more generally discrete) mixtures it is plausible to 

use the empirical probability function instead of the moment generating function or 

the characteristic function. The probability generating function has a behaviour similar 

to that of the moment generating function while, for discrete cases, it provides a very 

useful insight. It can be shown that minimising the sum of squared  differences 

between the empirical and the true probability generating functions is equivalent to 

minimising a weighted function between the observed and the theoretical frequencies. 

The problem of obtaining estimators based on minimising a distance between the true 

probability generating function and its sample counterpart for finite Poisson mixture 

models, remains open. 

 For a special family of distributions Lindsay (1986) proposed another method 

in order to obtain an estimate of the mixing distribution. His method requires that 

f(x|è) belongs to the exponential family. He restricted the mixing distribution to 

belong to such a family, so that the mixed distribution be a member of the two-

parameter exponential family. Using this fact he estimated the parameters of the 

mixture using a least square method for a certain function of the resulting distribution. 

This method is semiparametric in the sense that although it is assumed that the 

distribution belongs to a certain family, one avoids giving a specific form for it. By 

this, the estimated distribution can be flexible enough. The methods of estimation of 

such models do not require the full knowledge of the probability function  of the 

resulting distribution. 

It is very interesting that of all the above distances very few have been 

considered for Poisson mixtures, and none has been applied to Poisson mixtures. All 

of them have been considered  for normal mixtures.  

A natural question arises at this point as to what the preferable distance is.  No 

clear answer exists. However some guidelines for selecting a distance can be given. 

An important issue is the type of the data. If the data are continuous, selecting 

distances which use the probability function creates a major difficulty as it is hard to 

estimate the probability density function of the dataset. Hence in this case, distances 

which use the cumulative density function are more appropriate.  Otherwise, 

sophisticated methods are needed to estimate the probability density function. 
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On the contrary, for discrete data,  the use of the observed frequencies, to 

estimate of the probability function, makes the use of distances based on the 

probability function appealing.  The main reasons for that are:  

•The extension to multivariate cases is easier 

•The treatment of the discrete data case is more natural.  

 Note that, for some models, the assumed categories have no ordering. So, the 

distribution function is not well defined, as for example in the case of latent class 

models (Everitt, 1984a).  

 

In concluding this review section, we provide in Table 5.1 a summary of  the 

majority of distances used and described above.  The names of the  distances are those 

used by the authors. 



Minimum Hellinger Distance Method 

 183 

 

 

Table 5.1 

Summary of distance measures considered for estimation of mixture models 

Distance  Name  References 

( )F x G x dF x( ) ( ) ( )−∫ 2  averaged L2-norm Choi and Bulgren (1968) 

Choi (1969) 

Henna (1983, 1985) 

Robbins (1964) 

( )F x G x dG x( ) ( ) ( )−∫ 2  Cramer-Von Mises McDonald (1971) 

Woodward et al. (1984) 

Clarke (1989) 

( )F x G x dx( ) ( )−∫ 2  Squared Distance Edelman (1988) 

Clarke, Heathcote (1994) 

( )f x g x w x dx( ) ( ) ( )−∫ 2  Weighted L2-norm Bartlett, Mac Donald (1968) 

sup ( ) ( )F x G x−  Kolmogorov Deely, Kruse (1968) 

Chandra (1977) 

 Chebyshev Phillips (1990) 

( )g x f x
f xx

( ) ( )
( )

−







∑

2

 
Chi-Squared Fryer, Robertson (1972) 

Albrecht (1982) 

[ ]f x g x dx( ) ( )−∫
2

 Hellinger Cutler, Cordero-Brana (1995) 

Eslinger et al. (1995) 

Karlis and Xekalaki (1998b) 

( )h t H ti i
i

( ) ( )−∑ 2  sum of squares between moment 

generating functions 

Quandt, Ramsey (1978) 

Schmidt (1982) 

( )φ( ) ( )t ti i
i

−∑ Φ
2  sum of squares between 

characteristic functions 

Kumar et al. (1979) 

Bryant, Paulson (1983) 

Note: For all the entries of the table f(x) is the assumed probability density function, g(x) are 
the observed relative frequencies, F(x) is the assumed cumulative function, G(x) are the  observed 
cumulative relative frequencies, w(x)  is any weight function, h(t) and  H(t) are the assumed and the 
empirical moment generating functions respectively and ö(t) and  Ö(t) are the assumed and the 
empirical characteristic functions respectively. 
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5.2 Robustness in finite mixtures 
 Estimation of the parameters of a hypothesised model is a rather difficult task 

in the sense that there is not any globally accepted criterion for selecting the best 

estimation procedure. In general, every estimation method is superior in some aspect, 

but it is possibly inferior in some other. It has been customised in Statistics to prefer 

estimators which are efficient, namely estimators with standard errors as small as 

possible. However in many situations when the hypothesised model may be incorrect 

the notion of robustness  is as crucial as that of the efficiency. So, two rather different 

criteria have to be used in order to describe the performance of the estimators, and 

these two criteria are just some members of a probably long list of criteria. 

 In the previous section we reviewed in details several distance methods 

considered for general finite mixtures. The reason is that  minimum distance 

estimation methods are appealing in parametric inference, especially in cases where 

the model is suspected to be inexact. The robustness of such methods has made them 

viable  alternatives to the widely used  ML method. However, some problems remain 

unsolved.  For example, the wide variety of different possible distances makes 

difficult the choice of the distance to be minimised. Problems arise in selecting both 

the functional form of the distance and the functional from the data which has to be 

used. Moreover, the minimisation for several distances is rather difficult for many 

models, while, at the same time, the ML method is easily available at a low cost and 

with a little effort. Every distance involved in the estimation procedure can measure 

adequately some specific departure among the data counts and  their expected 

frequencies under the  assumed models. So, depending on the distance considered, the 

method is optimal in some aspect and thus the usefulness of every distance depends 

on the aspect which is more important. For example, some distances are sensitive to 

the presence of outliers, others to long tailed distributions. In general, each distance 

has its pros and cons.  

 In trying to strike a balance between efficiency and robustness one seeks a 

method that combines both of these properties. Many robust estimators achieve 

robustness at some cost in first order efficiency. So, a trade off between these two 

issues is necessary.  Minimum Hellinger Distance (hereafter MHD) estimation  
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method is a possible candidate as it combines both of these aspects. Lindsay  (1994) 

shows that ML estimators and MHD estimators  are members of a larger class of 

efficient estimators with various robustness and second order efficiency properties.  

 In the sequel, the MHD method for finite Poisson mixtures  is treated. The 

results  are not  restricted to the simple estimation for finite mixtures, but  MHD based 

inferences will also be proposed. The purpose is to exhibit the interesting properties of 

the MHD method in comparison to the widely used ML method and to propose the 

extensive use of the MHD based inference on several  aspects of finite mixtures, such 

as hypothesis testing and semiparametric estimation.   

  The presentation of  the MHD  method is organised as follows. A simple 

motivating example is given to demonstrate the  imperative need for robust methods. 

Later in this chapter, it is shown that ML based methods can lead to inconsistent 

results when just one extreme observation (outlier) has been added in our sample. 

MHD estimators for finite Poisson mixtures are derived and their properties are 

examined. An extensive simulation comparison of the MHD method to the ML 

method is presented. This comparison covers both the aspects of efficiency and that of 

robustness. An application to real data illustrates how these two methods can provide 

different results for the same dataset. MHD based inferences for finite mixtures are 

also introduced including semiparametric estimation using the MHD method. This 

new method generalises some of the results of the section 3.7. Finally, a method for 

graphically determining the number of components is given. This leads to a very 

interesting graphical device for checking for the Poisson distribution for a dataset. The 

next chapter  is devoted to developing a test statistic based on the MHD and to 

showing that it is both efficient and robust compared to the well known likelihood 

ratio test statistic. 

 

 Example 5.1 Before getting into the details about the MHD method let us 

consider the following artificial example that motivated our research. A sample of size 

25 was drawn from a 2-finite Poisson mixture with true parameters p1=0.5,  ë1=1 and   

ë2=3. Table 5.2 contains the observed frequencies. 
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Table 5.2  
The observed frequencies for a simulated sample of size n=25, from a 2-finite 

Poisson mixture with p1=0.5,  ë1=1 and   ë2=3 

 

 

 
 In order to see how an outlier can destroy the results taken from this sample, 

we contaminated our data by adding a new observation far away from the bulk of the 

data. In particular, we added a 26th observation with value x26=12.  Table 5.3 contains 

the parameter estimates for the uncontaminated (original) and the contaminated model 

by both the ML method and the MHD method of estimation. 

Table 5.3     
 ML estimates and MHD estimates for the uncontaminated (1) and the contaminated 

(2) data.  
 model  p 1 ë1   ë2 

ML method uncontaminated 0.470  0.480  3.425 
  contaminated  0.591  0.768  4.813 

MHD method uncontaminated 0.409  0.354 2.992 
  contaminated  0.399  0.368  3.043 

 

 We can see that the new observation (which may be considered as an outlier) 

influenced the ML estimates very much, while its influence on the MHD estimates is 

almost negligible. In some sense, the MHD method ″ignored″ this observation 

″detecting″ that it was an outlier. This example gives an indication that MHD 

estimates may work better in situations where there are outliers, because they can 

detect if a spurious observation belongs to the hypothesised model (a 2-finite Poisson 

mixture in our case) or it is an outlier due to misrecording or to misspecified model. 

 It is interesting to see that if a 3-component Poisson distribution is considered, 

the ML estimates will be  p1 = 0.4211,  p2  = 0.5363,  p3 = 0.0426,  ë1 = 0.4062,  ë2 = 

3.3031 and   ë3=11.2976. The third component has led to a mixing proportion of 

0.0426 and a parameter estimate of  11.2976. The contamination was effected by one 

of the 26 observations (x=12) representing  almost 4% of our data. In other words, the 

outlier observation is regarded as an additional  component of the model, while the 

other two components are very close to the values obtained before the contamination. 

This fact has lead researchers to the strategy of fitting one more component for the 

x 0 1 2 3 4 5 6 
frequency 8 4 5 1 3 2 2 
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outlier when using mixture methods to detect outliers (e.g.  Aitkin and Wilson 1980).  

An example for the case of count data can be found in Harris and Basu (1994), where 

the contamination is considered as one more component.  From the above results it 

becomes obvious that the MHD method can be a robust alternative to the ML method 

when the presence of outliers may cause problems to the meaningful application of the 

ML method.  

 In this illustrative example the sample size was small. In fact the behaviour is 

similar for larger sample sizes as demonstrated in the sequel. What is surprising is that  

a single  observation which is inconsistent with the model suffices to drive the 

likelihood based estimates far from the true values, while the MHD estimates remain 

relatively stable. This useful robustness property makes the MHD method an 

interesting alternative to the ML method. 

  

5.3 Minimum Hellinger Distance Estimation for Finite Poisson 
Mixtures 
 
 MHD estimation was introduced for the first time by Matusita (1954) but it 

was rather ignored until Beran (1977) examined in depth the case of MHD estimation 

for parametric models. The main reason is that, since it is a distance based on 

probability density functions, it is not easily applicable for continuous models when a 

smooth estimate of the probability density function has to be obtained via kernel 

density estimation. This fact makes the method computationally demanding for 

continuous models. Later, Eslinger and Woodward (1991) examined the application of 

the MHD method for the normal distribution, Tamura and Boss (1986) for a 

multivariate normal case, and, recently, Woodward et al. (1996) and Cutler and 

Cordero-Brana (1996) for finite normal mixtures.  In all these papers a kernel density 

estimate of the probability density function was used. Note that Basu and Lindsay 

(1994) proposed a revised approach for which both the data and the model are 

smoothed with the same kernel.  

 For discrete models, Simpson (1987) described the MHD method and 

Hellinger distance based tests (see also Simpson , 1989).  Lindsay (1994) examined 

minimum distance methods for discrete distributions in general, while Harris and 

Basu (1994) and Park et al. (1995) extended the use of the MHD method by 
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considering it as a penalised ML method (in the first paper) and by using combined 

distances (in the second paper). Robust minimum distance procedures are described in 

Basu et al. (1997). Related material treating general minimum distance estimation can 

be found in Read and Cressie (1988), where the Hellinger distance is a special case, 

and in Basu and Lindsay (1992) where computational issues are covered. 

 Suppose that d x( )   is the observed proportion of the value x from a sample of 

size n and f xθ ( )  is the probability under the assumed model that the random variable 

X takes the value x, where è  denotes the vector of parameters of interest. The MHD 

estimates for discrete data can be derived as the vector èmin  which minimises the 

Hellinger Distance D given by  

 

 ( ) ( )[ ]D d f d x f x
x

( , )θ θ= −
=

∞

∑
0

2

    (5.7a) 

( ) ( )= −
=

∞

∑2 2
0

d x f x
x

θ   .   (5.7b). 

 

If f xθ ( )  is assumed to be a k-finite Poisson mixture, its probability function is given 

by (3.2) and the vector of parameters è is given as è = ( )p p pk k1 2 1 1 2, , ... , , , ... ,− λ λ λ . 

Note that the vector è can be considered as defining a finite step distribution and this 

representation will be used in a next section. For obtaining MHD estimates for the 

parameters of the k-finite Poisson distribution the distance given in (5.7) has to be  

minimised.  The natural way to do so is to equate the partial derivatives with respect 

to the parameters to 0 and to solve the resulting system of  non-linear equations.  

 For each  parameter èi , i=1, 2, . . . , 2k-1 we have an equation of the form 

 

( )d x
f x

f x
x iθ

θ∂
∂θ( )

( )
=

∞

∑ =
0

0  ,  for  i=1, 2, . . . , 2k-1 .  

 So, the system of estimating equations is  

 

 
( ) ( )d x

f x
f x f x

x
j k

θ
λ λ

( )
( , ) ( , )

=

∞

∑ − =
0

0  ,  j=1, 2, . . . , k-1,  (5.8) 

for the partial derivatives with respect to the mixing proportions and 
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( ) ( )d x

f x
p f x f xj

x
j j

θ
λ λ

( )
( , ) ( , )

=

∞

∑ − − =
0

1 0  ,  j=1, 2, . . . , k  

 (5.9) 

 

for the component parameters λ j , where f x xx( , ) exp( ) / !λ λ λ= − , namely the 

probability function of a Poisson distribution with parameter ë. 

 An analytical solution of the system of equations (5.8) and (5.9) is not feasible. 

Numerical methods are required to solve it.  

 

5.4 Properties of the Minimum Hellinger Distance Estimators 
 In the sequel some properties of the estimators are examined. All of these 

properties are consequences of the theorems given by Simpson (1987) for MHD 

estimators of discrete distributions. In order to assure the identifiability of the 

parameters, the ëi ’s  need to be assumed to be in ascending order as Teicher (1963) 

showed. This identifiability assumption is necessary for the application of Simpson's 

theorems. 

 

Theorem 5.1 (Simpson, 1987). Suppose that f xθ ( )  is continuous in è for each x. Then 

for each distribution function F which is not singular,  

a) the MHD estimate T(F) exists, and  

b) if T(F)  is unique then D d f( , )θ → 0 implies that T(F) is consistent. 

 

 In real applications F is the empirical distribution function and the functional 

T(F) is the MHD estimate. Applying the results of Theorem 5.1 , the MHD estimators 

for k-finite Poisson mixtures exist since the k-finite Poisson mixtures are continuous 

in their parameters for each x. Their consistency is also a consequence of Theorem 

5.1. The class of finite mixture distributions is identifiable, and thus the estimates are 

consistent and asymptotically unbiased. Simpson (1987) imposed some smoothness 

conditions on the derivatives of f xθ ( )  to prove  the asymptotic normality of the 

estimators. The probability function of the Poisson distribution satisfies these 
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conditions. The conditions are also satisfied by the k-finite Poisson mixtures since the 

derivatives of the probability function of a k-finite Poisson mixture with respect to the 

parameters are also linear functions of the probability functions of the component 

Poisson distributions. In fact, this holds for mixtures of any distribution for which 

Simpson’s (1987) conditions are satisfied. From the above argument and Simpson’s 

Theorem 2, the asymptotic normality of the estimators can be established. So, the 

MHD estimator  follows asymptotically a  MN(è, V) distribution, i.e.  a multivariate 

normal distribution with mean vector è and variance-covariance matrix V . The 

variance covariance matrix V is calculated as V H I( )H1 1= − −θ  ,  where H is the matrix 

with its ij-th element equal to 

 

Hij = 
( )

( )
∂

∂θ ∂θ

∂
∂θ ∂θ

∂
∂θ

∂
∂θθ

θ
θ

θ θ

θ

2

2

3 2
0

1
4

2
D d f

d x

f x
f x

f x f x

f xi j

j i j i

x

m,
( )

( )
( )

( ) ( )

( ) /= −
−

=
∑  , i, j=1, 2, . . 

., 2k-1 

 

and I(θθθθ) is the Fisher information matrix. Note that the variance-covariance matrix 

tends to the inverse of Fisher information matrix as the sample size increases. To see 

this, it suffices to show that, for large sample size, the matrix H tends to the Fisher 

information matrix. This is so since the quantity under the root in equations (5.8) and 

(5.9) tends to 1 and, hence, the derivatives of these equations are the same as the 

entries of the Fisher information matrix. So, if H I( )→ θ , the matrix V tends to the 

inverse of the Fisher information matrix, i.e. to the variance covariance matrix of the 

ML estimator. 

 A simulation experiment was carried out in order to assess the normality of the 

estimates. 1000 samples of sizes n=50,100,500 were drawn from a well separated 2-

finite Poisson mixture with parameter vector è=(0.5, 1, 10) and a mixture with 

components closer together with è=(0.5, 1, 3).  Figures 5.1 and 5.2  depicts the  

Probability-Probability plots for these cases. A straight line indicates normality of the 

distribution. It can be seen that for samples of size n >100 the normality is evident. 

However, for smaller sample sizes, deviations from normality are present. Note also 

that for well separated components the normality is clearer than  for cases with 
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components close together. This experiment reveals that the estimates tend to be 

normal depending on both the sample size and the distance between the components. 

Components close together tend to produce estimates which approach normality 

slower. 
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Figure 5.1 Normal P-P plots for p1 (a-c), ë1 (d-f) and ë2 (g-i). 1000 samples of size n were drawn from a 2-finite mixture with parameters 0.5,1,3. The sample sizes used were 
n=50, 100, 500. It is evident that as the sample size increases the estimators tend to normality. 
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Figure 5.2  Normal P-P plots for p1 (a-c), ë1 (d-f) and ë2 (g-i). 1000 samples of size n were drawn from a 2-finite mixture with parameters 0.5,1,10. The sample sizes used were 
n=50, 100, 500. It is evident that as the sample size increases the estimators tend to normality. 
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5.5 Measures of robustness and breakdown points   
 In examining the robustness of some procedures certain measures are needed. 

A common such measure is the so-called Influence Function (IF) defined by 

( )( )
IF x T F

T t F t T F
tt

x( , , ) lim
( )

=
− + −

↓ 0

1 ∆
  ,  (5.10) 

whenever this limit exists (see, e.g., Hampel et al., 1986).  Here T(F) is a functional 

based on the distribution function F, which is usually the empirical distribution 

function of the data and ∆x is a degenerate distribution at x. For example, for the MHD 

estimator the functional T(F) is defined as T(F) = ( ){ : ,θ θ∈ Θ D d f  is minimised }, 

where È is the parameter space. The importance of the influence function lies in its 

heuristic interpretation: it describes the effect on the estimate of an infinitesimal 

contamination at the point x standardised by the mass of contamination. 

 

 In many instances the IF is very hard to be calculated and thus some other 

versions are more appropriate. One of them is to use the empirical counterpart of the 

IF, namely the Empirical Influence Function (EIF). According to Hampel et al.  (1986, 

pp. 93), the EIF of the estimator based on any sample, is a plot of the values of the 

estimator  if one more observation (contaminant) is added at the point x. So,  in Figure 

5.3  we can see the EIF of the sample in  example 5.1 for the 2-finite Poisson mixture 

and its estimates for both the ML and the MHD methods of estimation . Each time we 

contaminated our initial sample of size 25 by adding to it a 26th observation at the 

point x, (x=0,1,2...,20) and  calculated both the ML estimates and the MHD estimates 

of the parameters on the resulting  contaminated sample of size 26. Table 5.4 contains 

the estimates for each case.  
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Table 5.4  
Estimates for the parameters of a 2-finite Poisson mixture based on the dataset of 
example 5.1 and on the same sample when a new observation is added with value x 

 MHD ML 
 p1 ë1 ë2 p1 ë1 ë2 

initial sample 
(no contamination) 

0.437 0.347 3.003 0.436 0.402 3.308 

contamination at x=       
0 0.452 0.293 2.981 0.445 0.335 3.269 
1 0.506 0.521 3.112 0.508 0.578 3.469 
2 0.401 0.321 2.875 0.395 0.369 3.130 
3 0.350 0.216 2.832 0.369 0.288 3.126 
4 0.407 0.311 3.013 0.390 0.332 3.259 
5 0.430 0.355 3.124 0.417 0.392 3.418 
6 0.450 0.388 3.186 0.448 0.459 3.598 
7 0.485 0.483 3.588 0.480 0.531 3.800 
8 0.502 0.501 3.562 0.509 0.596 4.008 
9 0.498 0.482 3.440 0.536 0.652 4.219 
10 0.484 0.447 3.296 0.562 0.708 4.447 
11 0.470 0.416 3.185 0.584 0.756 4.673 
12 0.459 0.393 3.112 0.603 0.799 4.897 
13 0.454 0.382 3.073 0.620 0.838 5.121 
14 0.450 0.375 3.052 0.636 0.874 5.343 
15 0.449 0.371 3.040 0.650 0.909 5.571 
16 0.448 0.368 3.034 0.664 0.947 5.808 
17 0.448 0.370 3.034 0.678 0.987 6.057 
18 0.448 0.370 3.033 0.695 1.038 6.342 
19 0.448 0.371 3.034 0.717 1.112 6.711 
20 0.448 0.371 3.034 0.961 2.039 19.98 
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Figure 5.3 The Empirical Influence Function for the parameters of a 2-finite Poisson mixture fitted to 
the data in Table 5.2. Figures a-c  depict the function for ë1  , ë2 and p1 respectively. The MHD method 
seems to be more robust to the presence of an outlier in the data. 
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 From  Figure 5.3 one can see that the MHD estimates are not influenced so 

much by the addition of one more observation, especially at points far from the main 

body of the sample. It is interesting how stable the MHD estimator remains for x>10; 

it seems that it entirely ignores the new observation. In the sequel, we provide an 

explanation of why this happens. Jorgensen (1990) proposed the use of the EIF as a 

diagnostic tool for the influence of an observation in finite mixture models. He also 

reported the influence of observations far from the main body of the data to the ML 

method. His results are quite  similar to those obtained in the present section as far as 

the influence of an outlier to the ML estimates is concerned. 

 An alternative measure of robustness is the so called á-Influence Function, 

(Beran, 1977). This measures the change in the estimators if we add one more 

component in the model and we assign to it a probability equal to á. In particular,  the  

á-Influence Function (á-IF) is defined as: 

( )( )a IF x T F
T a F ag T F

at
z− =

− + −
↓( , , ) lim

( )
0

1
  ,  (5.11) 

where gz is one more component of the same distribution (Poisson in our case), with 

parameter  z. 

 The difference from the simple IF is that the simple IF measures the influence 

of one more observation at the point x, while the á-IF measures the influence of one 

more component with mixing proportion á. To illustrate this, consider the model 0.5 

Po(1) + 0.5 Po(3) (i.e., an equiprobable mixture of a Poisson distribution with 

parameter equal to 1 with a Poisson distribution with parameter equal to 3) and also 

consider a Po(12) distribution (z=12) as the  contaminant gz .  Analytic evaluation of 

the á-IF is not possible. So, we calculate the á-IF numerically for both the MHD 

method and the ML methods of estimation, when we add a new component (a Po(12) 

distribution) with mixing proportion á.  The results are  depicted in Figure 5.4. Table 

5.5 contains the values of the estimates for various values of the probability á assigned 

to the new component. 
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Figure 5.4 The á-Influence function for the model [0.5 Poisson(1) + 0.5 Poisson(3)]  with a Poisson 
(12) distribution as the contaminant. Figures a-c depict the function for ë1  , ë2 and p1 respectively. 
When á  is small, the ML method is influenced very much. Also,  the influence is larger for the 
parameter ë2. The MHD method seems to be more robust to contamination. 
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Table 5.5 
Estimates of the parameters of a 2-finite Poisson mixture with vector of 

parameters (0.5,1,3)  when a new component, a Po(12) distribution, is added with 
probability αααα 

 
 MHD estimates ML estimates 
 p1 ë1 ë2 p1 ë1 ë2 

no contamination 0.5 1 3 0.5 1 3 
addition of Po(12) 
component with 
probability α= 

      

 0.01  0.506  1.005  3.096  0.765  1.421  4.300 
  0.02  0.491  0.980  3.119  0.916  1.758  6.958 
  0.03  0.485  0.972  3.161  0.935  1.846  8.766 
  0.04  0.479  0.964  3.202  0.931  1.865  9.528 
  0.05  0.473  0.956  3.243  0.924  1.872  9.948 
  0.06  0.467  0.948  3.283  0.915  1.874  10.219 
  0.07  0.462  0.941  3.325  0.905  1.874  10.413 
  0.08  0.456  0.934  3.368  0.895  1.873  10.555 
  0.09  0.451  0.928  3.413  0.885  1.872  10.674 
  0.10  0.447  0.923  3.461  0.875  1.870  10.766 
  0.11  0.443  0.918  3.513  0.866  1.869  10.844 
  0.12  0.439  0.915  3.569  0.856  1.867  10.911 
  0.13  0.436  0.912  3.630  0.845  1.865  10.967 
  0.14  0.835  1.854  10.964  0.836  1.864  11.020 
  0.15  0.825  1.852  11.007  0.825  1.862  11.063 
  0.16  0.815  1.850  11.045  0.815  1.860  11.105 
  0.17  0.805  1.849  11.078  0.805  1.858  11.139 
  0.18  0.795  1.847  11.109  0.795  1.856  11.173 
  0.19  0.784  1.845  11.137  0.785  1.855  11.203 
  0.20  0.774  1.843  11.163  0.775  1.853  11.229 
  0.21  0.764  1.841  11.186  0.765  1.851  11.255 
  0.22  0.754  1.839  11.208  0.756  1.849  11.278 
  0.23  0.744  1.838  11.228  0.745  1.847  11.299 
  0.24  0.734  1.836  11.247  0.736  1.845  11.319 
  0.25  0.724  1.834  11.265  0.726  1.844  11.339 
  0.26  0.715  1.832  11.281  0.716  1.842  11.357 
  0.27  0.705  1.830  11.297  0.706  1.840  11.374 
  0.28  0.695  1.828  11.312  0.696  1.838  11.388 
  0.29  0.685  1.827  11.326  0.686  1.837  11.404 
  0.30  0.675  1.825  11.339  0.676  1.835  11.418 
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 Again, it is clear that the MHD estimates are more conservative in accepting 

this new component. So,  their behaviour is more stable than that of the ML estimates. 

It is interesting to note that when á  increases the difference between the two methods 

decreases. An intuitive explanation of this is that the MHD method is "persuaded" that 

the new observation is not an outlier but it comprises one more component. It is also 

interesting to note how the behaviour of the two methods of estimation changes with 

á, a fact that will again be seen in the simulation comparison. For small á (low 

contamination) the MHD estimates are far better, but with á increasing, the two 

methods work in the same manner. Concluding, for small amounts of contamination 

the MHD method of estimation  seems to be preferable. In the sequel, we examine this 

aspect in detail. Note that usually one treats as outliers, a few observations far from 

the main body of the data. In other words, one may have to regard a small fraction á of 

the observations as outliers. If the proportion of spurious observations is high, then 

clearly these cannot be regarded as outliers.  It is interesting to point out the  jump of 

the á-IF of the MHD method at the point á=0.13. This can be considered as the 

breakdown point in the sense of Simpson (1987). 

 

5.6 The  Algorithm  HELMIX for Deriving the Minimum Hellinger 
Estimates 
 In many instances, the applicability of an estimation method is mainly the 

result of the existence of efficient and easily applicable algorithms for calculating the 

estimates rather than the results of  their properties. Hence the MHD method proposed 

above needs to be accompanied by  an algorithm which can be used easily. In the 

sequel, such an algorithm termed as the HELMIX algorithm which is fairly easy to be 

programmed in any computer is provided. It is an iterative algorithm, similar in nature 

to the EM algorithm for ML estimation in finite mixture models. 

 The algorithm is developed using the estimating equations given in  section 

5.3. From (5.8)  one obtains, using the recurrence relation f x f x x( , ) ( , )λ λ λ= −1  

for the Poisson probabilities, that  

( )d x w x
x

xj j( )
=

∞

∑ − =
0

0λ   ,   j=1,  2, . . . , k, 
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where w
f x

f xxj
j=

( , )
( )
λ

θ

 .    

Solving  these  equations  with respect to the parameters ëj,  j = 1, 2, . . . , k  one 

obtains 

λ j

xj
x

xj
x

w x d x

w d x
= =

∞

=

∞

∑

∑

( )

( )

0

0

   ,    j=1,  2, . . . , k  (5.12) 

i.e. , the MHD estimates are weighted versions of the sample mean. Note that a similar 

result was obtained for the ML estimates, but with different weights (see equation 

(3.15) in section 3.2). 

 From (5.7) we obtain  

( ) ( )d x
f x

f x
d x
f x

f x
x

i
x

k
θ θ

λ λ
( )

( , )
( )

( , )
=

∞

=

∞

∑ ∑=
0 0

   .  (5.13) 

 Also, multiplying the i-th equation in (5.7) by pj  and adding the resulting equations 

yields 

( )d x
f x

f x d x f x
x

k
xθ

θλ
( )

( , ) ( ) ( )
=

∞

=

∞

∑ ∑=
0 0

   .  (5.14) 

 The last two equations (5.13) and (5.14) lead to  

d x f x d x w
x x

xj( ) ( ) ( )θ
=

∞

=

∞

∑ ∑=
0 0

  ,    j=1, 2,. . ., k.  (5.15) 

 Following Behboodian (1970), we may multiply them by pj  obtaining  

p
p w d x

d x f x
j

j xj
x

x

= =

∞

=

∞

∑

∑

( )

( ) ( )

0

0
θ

 ,  j=1, 2, . . . , k . (5.16) 

Equations (5.11) and (5.15) are the basis of our iterative scheme. Note that this 

derivation is very similar to that introduced by Behboodian  (1970) for the derivation 

of the ML estimates in the case of  finite normal mixtures.  

 Hence the algorithm can be described with the following steps: 

Step 1: Given the values obtained from the i-th iteration λ j
i( ) , and p j

i( ) , j=1, ..., k,   

calculate the weights wxj , using     
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w
f x

f xxj
j
i

=
( | )

( )

( )λ

θ

    ,   (5.17) 

where f xθ ( ) is calculated using the estimates from the i-th iteration. 

Step 2: Calculate the new parameter estimates using 

step 2a    λ j
i

xj
x

m

xj
x

m

w x d x

w d x

( )
( )

( )

+ =

=

=
∑

∑
1 0

0

 , j=1, 2, . . . ,k 

 (5.18) 

step 2b    p
p w d x

d x f x
j
i

j
i

xj
x

m

x

m
( )

( ) ( )

( ) ( )

+ =

=

=
∑

∑
1 0

0
θ

  , j=1, . . . , k 

 (5.19) 

where m denotes the largest observed value. 

Step 3: Check if some convergence criterion is satisfied, otherwise go back to step 1, 

using the current estimates as initial values to make the next iteration.  

 In the sequel, we refer to this algorithm as the HELMIX algorithm. 

 Clearly, we only need some initial values for the estimates. If the initial values 

are within the acceptable range for the parameters, the estimated values are also within 

the acceptable range of parameters. 

 HELMIX is similar to the well known EM algorithm for ML estimation of 

finite mixture models described in chapter 3. The only difference is the calculation of 

the weights in step 1. If we use w f x f xxj j
i= ( | ) / ( )( )λ θ  as weights, i.e. if instead of 

taking the root of f xθ ( ) , we take f xθ ( ) and the observed frequencies themselves, 

then HELMIX reduces to the EM algorithm for ML estimation for  finite mixture 

models. Table 5.6 contains the details for the two algorithms. 

Table 5.6 
Description of the EM algorithm for ML estimation and the HELMIX algorithm 

for MHD estimation 
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 Lindsay (1994) described an iterative algorithm for minimum distance 

estimation for discrete one parameter exponential families. Our algorithm reduces to 

the one described by Lindsay (1994) if we set k=1 (simple Poisson case). A similar 

reweighted algorithm can be found in Basu and Lindsay (1994) for MHD estimation 

for continuous models. 

 Our algorithm seems to share some common properties with the EM algorithm 

for ML estimation in the case of mixture models. These are the slow convergence and 

the dependence on the choice of the initial values. Again if the true values are known, 

these are very successful initial choices as in the case of the ML method. For all our 

simulations, the algorithm converged to a minimum. As in the case of the EM 

algorithm, the attained  minimum might not be a global one. A good strategy is to start 

from several different initial values so as to ensure that the global minimum is 

obtained. 

 It is worth mentioning that the above described derivation of the algorithm 

might be generalised for a broad family of distances. Thus, depending on the weight 

function, several other distances might be minimised by applying similar  iterative 

algorithms. 

 

5.7 An Application 
 To illustrate the appropriateness of the MHD methods of estimation for data 

sets prone to outliers in the case of k-finite Poisson mixtures, consider the data in 

Table 5.7. They concern the number of environmental complaints per day placed by 

phone in an environmental station for the year 1985 in Nederlands. The data were 
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kindly provided by Prof. Paul Eiler.  The high overdispersion of the data makes the 

use of a mixed Poisson distribution appropriate to model the number of environmental 

complaints. The mean is 22.11 while the variance is 324.08 (almost 15 times higher 

than the mean). A simple Poisson model is quite inappropriate because of this 

overdispersion. Moreover,  the data are highly skewed, with a very long right tail.  The 

ML estimators are expected to be influenced by the data at the tail and thus the 

estimates will not be a reasonable choice if we want to use them for describing the 

situation. So, the MHD method of estimation may be more appropriate as it seems not 

to be affected so much by the observations at the right tail. 

  To these data a 3-finite Poisson mixture was fitted using both the ML method 

and the MHD method of estimation for comparison purposes. Table 5.7 contains the 

expected frequencies using both the methods while Table 5.8 contains the parameter 

estimates. The choice of  a model with 3 components was made mainly for illustrative 

purposes. 

Table  5.7 
Observed and expected frequencies of environmental complaints placed in an 

environmental station in  1985 
 observed expected frequencies    observed expected frequencies 
x frequencies   x frequencies  
  MHDE MLE    MHDE MLE 

0-4 37 22.95 4. 70  45-49 11 7.20 2.19 
5-9 67 96.71 85.71  50-54 3 1.85 0.30 

10-14 69 60.75 114.47  55-59 3 0.30 0.13 
15-19 56 70.20 26.19  60-64 7 0.03 0.49 
20-24 28 37.76 8.68  65-69 2 0.01 1.47 
25-29 23 12.17 25.19  70-79 3 0 7.64 
30-34 21 16.08 37.42  80-89 1 0 9.05 
35-39 13 22.19 26.90  90-99 2 0 3.65 
40-44 13 16.78 10.20  ≥100∗  6 0 0.60 

∗    the actual observations were  (102,108,118,134,158,185)  
  

Table 5.8 
The parameter estimates for both the methods for the data in Table 5.7 
  p1 p2 ë1   ë2 ë3 

MHDE 0.390 0.418 7.136 17.331 37.676 
MLE 0.635  0.302 10.559 32.587 81.423 

 

The method of moments was also applied, but it failed to give us reasonable estimates 

(ë1 <0). Figure 5.5  depicts the observed frequencies and the fitted frequencies for both 

methods.  From Table 5.7 it can be observed that the distribution fitted by the ML 
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method of estimation has a heavier right tail than that of the observed distribution with 

a bump in the range 70-89. The distribution fitted by the MHD method, on the 

contrary, has a smoother right tail and  it provides a relatively better fit to the data. 

What is, however, important to note is not the fit itself but the fact that the ML 

method tries to fit a component at the tail and hence the tail influences the estimation. 

On the other hand,   the MHD method is more conservative in the sense that it treats 

the right tail quite differently. The ML method is influenced by the very large values 

at the tail and thus it tries to fit a component to these observations. Quite to the 

contrary, the MHD method seems to ignore these observations. These high values may 

be outliers, for example, some days with unexpectedly high number  of phonecalls. 

So, it is reasonable to handle these outliers with care. The great difference in the two 

estimates demonstrates precisely, how the choice of an estimation method can affect 

the results. Of course, assessing whether the right tail of a data set  can be attributed to 

the presence of some kind of contamination would enhance the practical value of the 

MHD method. An interesting interpretation of why this phenomenon of markedly 

different estimates occurs is given in the next section. 
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Figure 5.5 Histograms of the observed frequencies (a), the expected frequencies via the ML method (b) 
and the expected frequencies via the MHD method (c) for the data of Table 5.7. 
 
 

 Concluding, we may say that for data with a long right tail that can be 

attributed to ″unexpected″ or even ″unreasonable″ values (due to some mistakes in the 

collection of data) the ML method must be used with caution while the MHD method 

offers itself as a very interesting alternative.  

 

5.8 Comparison of the MHD Method to the ML Method 

5.8.1 General Comments 
 In parametric estimation two fundamental - but potentially competing- aspects 

become of interest: The aspect of efficiency when the model has been appropriately 

specified and the aspect of robustness when it has not. Unfortunately,  satisfying both  

is very difficult and a trade-off between them is thus necessary. Ôhe MHD method  for 

finite Poisson mixtures and the  ML  method are compared  in the sequel with respect 

to both aspects. 

        In general, for the parameter θi , the estimating equation in the case of the ML  

method is given by 

( )d x
f x

f x
x iθ

θ∂
∂θ( )

( )
=

∞

∑ =
0

0    ,   (5.20) 

while,  in the case of the MHD method,  it is given by 

( )d x
f x

f x
x iθ

θ∂
∂θ( )

( )
=

∞

∑ =
0

0  .   (5.20) 

c 



Minimum Hellinger Estimation 

 207 

Equations (5.19) and (5.20) are useful for comparison purposes. Clearly, if the model 

is well specified and the sample size is large ( )n → ∞  the quantity under the square 

root must be close to 1 and, hence, the square root of this quantity is itself close to 1;  

it is expected that the two methods will behave similarly. In the ideal case of exact 

specification of the model, the ratio  d x
f x

( )
( )θ

 equals 1 for every x and  the two methods 

coincide. On the other hand, for values of x for which the ratio d x
f x

( )
( )θ

 is high  (as in 

the case of outliers) the MHD method gives less weight to the observation, the 

estimation being thus not so sensitive to outliers. As a result,  the MHD  method  

works better with datasets prone to outliers. Simpson (1987) showed that for large 

values of x, an improbable count has a smaller  impact on the MHD estimates than on 

the ML estimates. Our results, referring to example 5.1, on how a new observation far 

away from the bulk of data influences the two methods are not at variance with 

Simpson’s findings.  

 It is worth mentioning the similarity of the estimating equations given in (5.20) 

to the so-called weighted maximum likelihood equations (see, e.g., Field and Smith, 

1994, Markatou, 1996, Markatou et al., 1997, Markatou, 1998). In these papers, 

weighted likelihood methods are treated so as to provide robust estimates. The MHD 

estimating equations can be considered as weighted likelihood equations. 

 Another intuitive interpretation for the behaviour of the two methods might be 

traced in the following.  Suppose that we have an outlier observation x. This 

observation contributes via the logarithm of its probability function to the 

loglikelihood function, while in the case of the MHD method it contributes via the 

square root of its probability function. To see this, note that for the ML method the 

function  

( ) ( )( )L d x f x
x

( ) lnθ θ=
=

∞

∑
0

    (5.22) 

must be  maximized, while for the MHD method it can be seen from (5.7b) that the 

function 

( ) ( ) ( )ϕ θ θ=
=

∞

∑ d x f x
x 0

    (5.23). 

must be maximized. 
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 Then, an outlier observation  will contribute via  its logarithm to the likelihood 

in the case of the ML method and via its square root in the case of  the MHD method 

since an outlier will have an observed frequency equal to 1. Figure 5.6 depicts the 

functions h x x1 ( ) ln=  and h x x2 ( ) =   as functions of x in the interval (0,1). For very 

small values of x, close to 0, the behaviour of the logarithm is very rough, tending to 

very small values quite fast. The derivatives of h1 and h2 are  h x
x1
1′ =( )  and 

h x
x2

1
2

′ =( ) , which shows that the function h1 decreases more rapidly near 0.  So, in 

the case of  ML estimation  observations with very  low probability (small values of x 

in Figure 5.6) have a very small contribution to the likelihood (small  values of  ln(x) 

in Figure 5.6). Since the aim is to maximise the sum of these contributions for all the 

observations, the method tries to exploit the contribution of  observations with low 

probability, so as to increase the loglikelihood.  To do so, observations with low 

probability are ‘‘made’’ more important by increasing their mass (of course trying to 

balance with the remaining observations).  This can explain why counts with very low 

probability under the assumed model (the outliers) can influence so much the ML 

estimates. The square root, on the other hand,  is rather flat and this phenomenon does 

not occur, a fact that offers an explanation for the robustness of the MHD method with 

respect to outliers. Note also that for the MHD estimation method the contribution of  

each value x is not proportional to its frequency but it increases more rapidly than in 

the case of  the ML method, as  the frequency increases.  

f(x)=log(x)

f(x)=sqrt(x)

X
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Figure 5.6  The functions ln(x) and x1/2 on the interval (0,1). The logarithmic function can be seen to 
decrease more rapidly near 0.  
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 It is interesting to note that empty cells do not contribute at all in both of the 

methods.  Lindsay (1994) uses the term inliers to describe cells with d x
f x

( )
( )θ

  near 0. 

These may be regarded as corresponding to cases where observations, which were 

probable under the model, were not observed. (Note that outliers at the right tail have 

a large value for d x
f x

( )
( )θ

).  Empty cells are inliers and both methods fail to make use of  

them. This provides an alternative explanation to that given by Lindsay (1994)  on 

why the two methods cannot treat the inliers. Some authors, (e.g. , Harris and Basu, 

1994) have reported that empty cells affect the estimation by the  MHD method. Their 

argument is based on the fact that, by the definition of the Hellinger distance given in 

(5.7),  empty cells (d(x)=0)  have a non-zero  contribution to the distance. Expansion 

however, as in the second representation of the distance given in (5.23), reveals that 

this is not true. 

 The above arguments pertain to a general comparative evaluation of the two 

methods. For a further  discussion the reader is referred to Lindsay (1994).  

 Let us now focus our attention on  the case of mixtures. In robust analysis we 

consider a contaminated model of the form    (1-e) M1 + e M2 , where M1  is the 

underlying model,  M2 is a contaminant which causes the departure from  model M1  

and e is the probability that an observation belongs to the contaminant. Note that the 

quantity e  is itself of practical interest since,  as Simpson  (1989) and Lindsay  (1994) 

pointed out, for every model there is a value of e which gives an upper bound of 

possible contamination.  Above this point there is a breakdown point for the model. 

Tamura and Boss (1986) defined this as the value of e which indicates the fraction of 

the data that can be badly damaged or arbitrarily changed without destroying the 

estimator.  

 Clearly, the above model is a mixture and it is true that contaminated models 

are described as mixture models (e.g.  Titterington et al., 1985). The contaminated 

model can be considered as a mixture model with an additional component. So, for 

example, a contaminated model for a 2-finite Poisson mixture can be considered as a 

3-finite Poisson mixture. The question is what the behaviour of the ML method is in 
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such a situation. The answer is that the ML method usually models the contamination 

with an additional component. In our case the ML method will work well for a 3-

component model, but not for a model with 2-components. Aitkin and Wilson (1980) 

used the EM algorithm for normal mixture models to model the contamination in a 

simple normal model. Harris and Basu (1994) did the same for discrete models, 

comparing the estimates by the MHD method for the Poisson parameter to those by  

the ML method from a 2-finite Poisson mixture model.  

 In general, the MHD method is preferable in such cases since it works better if 

the model is not exact. Simplifying we can say that the MHD methods  require more 

evidence (more observations) to be  ″persuaded ″  that a new component exists.  

 The remaining of this section is devoted to simulation comparisons of the two 

methods. Several sampling schemes will be examined for both robustness and 

efficiency, starting from the simplest case where only the mixing proportion has to be 

estimated and treating the more complicated case where all the parameters have to be 

estimated. 

 

  5.8.2 The Case Where Only the Mixing Proportion Must be Estimated 
 In many situations the parameters of the components are known and then only 

the mixing proportions must be estimated. This is a simplified estimation problem but 

it is a good starting point for comparing the two methods. 

 We will start with such models, assuming that the two components are known 

and hence only the mixing proportion must be estimated. In this case, the 

minimisation of the Hellinger distance is easily carried out using the HELMIX 

algorithm. In such a case we do not update the component parameters and, hence, we 

iterate between (5.17) and (5.19) keeping the remaining parameters fixed. The same is 

possible in using the EM algorithm for ML estimation in finite mixture models.  

 In order to investigate the performance of the MHD method  relative to that of 

the ML method a simulation experiment was carried out. Using several sampling 

schemes we calculated the MHD  estimator and the ML estimator for the mixing 

proportion. Some of the models were  specified as 2-finite Poisson mixtures while 

some others were contaminated versions of them. The comparison was made in terms 

of the relative efficiency of the estimates. Alternatively, the ratio of the standard errors 
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of the estimates  (relative standard error) or the ratio of their  mean squared errors 

(relative mean squared error) was used as a measure of relative efficiency.  

 At first, the efficiency of correctly specified models is examined. Several 2-

finite mixtures were considered, for several sample sizes and combinations of 

population means.  Table 5.9  tabulates  the relative efficiency  (reff ) as calculated by 

the formula: 

 

    reff Var p
Var p

ML

MHD

=
( ! )

( ! )
 .   

 (5.24) 

Here !pML  and !pMHD   are the ML estimator and the MHD estimator for the mixing 

proportion respectively and   ( )Var p p p Ni
i

N

( ! ) ! != −
=
∑ 2

1

 ,  where !pi   is the estimated 

mixing proportion of the i-th sample, !p  is the mean of the estimated proportion over 

all samples and N is the number of replications. Similarly, the mean squared error 

(MSE hereafter) of an estimate is given by   ( )MSE p p p Ni
i

N

( ! ) != −
=
∑ 2

1

   where p is 

the true mixing proportion.  All the configurations were replicated  1000 times 

(N=1000). The sample sizes used were n= 25, 50, 100, 250 and 500 while the mixing 

proportions were 0.1,  0.25, 0.5, 0.75, 0.9. Table 5.9 summarises the results for the 

relative efficiency for 2-finite Poisson mixture models. Entries less than 1  favour the 

ML method while entries with value greater than 1, favour the MHD method. 
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Table 5.9 
Simulation results for estimating the mixing proportion in 2-finite Poisson 
mixtures when the components are known. The entries are the relative 
efficiencies based on 1000 replications as calculated by formula (5.24) 

 

  

 Looking closely at the results of  Table 5.9 one can see that, as was expected, 

the MHD method  tends to the ML method  when the sample size increases. On the 

other hand, for small sample sizes and a large mixing proportion, the MHD estimate is 

far better than the ML estimate. An explanation for this is the resistance of the MHD 

method to the presence of spurious observations. It might seem somewhat odd for this 

to be true for mixing proportions 0.75 and 0.9 only. An explanation might be that that 

the MHD method ignores the outliers in favour of the more probable observations. So, 

when the mixing proportion is small, the second component dominates the mixture. 

Keeping in mind that the estimated mixing proportion was the one with the smallest 

mean , it is obvious that outliers can occur only at the right tail and hence near the 

other component.  So, a large value of the mixing proportion implies that the majority 

p1     n      
 25 50 100 250 500 25 50 100 250 500 

  ë1 =1      ë2=2   ë1 =1      ë2=3  
0.10 0.84 0.88 0.91 0.98 0.99 0.80 0.90 0.95 0.98 0.99 
0.25 0.75 0.88 0.94 0.98 0.98 0.84 0.91 0.96 0.98 0.99 
0.50 0.79 0.87 0.93 0.98 0.99 0.87 0.94 0.94 0.98 0.99 
0.75 1.04 0.90 0.92 0.97 0.98 1.07 0.94 0.94 0.96 0.99 
0.90 1.62 1.30 0.98 0.93 0.97 1.41 1.19 1.04 0.96 0.96 
  ë1 =1      ë2=5   ë1 =1      ë2=8  
0.10 0.81 0.88 0.94 0.98 0.99 0.79 0.87 0.91 0.96 0.98 
0.25 0.79 0.89 0.95 0.98 0.99 0.84 0.88 0.94 0.97 0.99 
0.50 0.84 0.91 0.95 0.97 1.00 0.94 0.93 0.93 0.96 0.99 
0.75 0.99 0.91 0.93 0.97 0.99 1.09 1.05 0.98 0.96 0.98 
0.90 1.51 1.15 0.99 0.95 0.97 1.30 1.22 1.12 1.02 0.97 
  ë1 =2      ë2=3   ë1 =2      ë2=4  
0.10 0.75 0.82 0.87 0.94 0.97 0.77 0.85 0.94 0.98 0.98 
0.25 0.82 0.86 0.91 0.96 0.98 0.79 0.85 0.93 0.97 0.98 
0.50 0.91 0.93 0.92 0.96 0.97 0.84 0.88 0.92 0.97 0.98 
0.75 1.05 1.07 1.01 0.95 0.96 0.99 0.95 0.94 0.92 0.97 
0.90 1.24 1.33 1.18 1.07 1.04 1.41 1.24 1.15 0.97 0.96 
  ë1 =2      ë2=5   ë1 =2      ë2=8  
0.10 0.83 0.89 0.92 0.96 0.98 0.87 0.89 0.89 0.96 0.98 
0.25 0.77 0.85 0.94 0.97 0.98 0.73 0.85 0.91 0.97 0.98 
0.50 0.79 0.87 0.93 0.97 0.99 0.76 0.86 0.93 0.97 0.98 
0.75 0.99 0.92 0.93 0.96 0.98 0.97 0.91 0.94 0.97 0.99 
0.90 1.44 1.24 1.09 0.94 0.95 1.69 1.23 0.99 0.92 0.96 
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of the observations comes from the first component, which is closer to 0, and only a 

few observations come from the second component which may generate observations 

at the right tail of our dataset. 

 So, from the results on  the case of 2-finite Poisson mixture models (exact 

models) the MHD method seems to be efficient for large samples as well as for small 

samples with a  large mixing proportion. 

 Let us now look at contaminated models. We considered three models to 

investigate the performance of the MHD estimate for the mixing proportion. The 

models were: 

MODEL (1)   [ ]( ) ( ) ( ) ( ) ( )1 1 1 3 7− + − +α αpPo p Po Po , 

where p is the mixing proportion to be estimated  and á is  the  amount  of 

contamination, namely the probability assigned to the  third  added component (the 

contaminant)  which was a Poisson variable with parameter equal to 7. The values 

used for á  were 0.005,  0.01 and  0.05 . The values of p used in the simulations were 

0.1, 0.25, 0.5, 0.75 and 0.9. 

MODEL (2)   [ ]( ) ( ) ( ) ( ) ( )1 1 1 3 12− + − +α αpPo p Po Po . 

This is similar to MODEL (1),  only  now the new component is a Po(12) variable. 

MODEL (3)   [ ]( ) ( ) ( ) ( ) ( )1 1 1 5 15− + − +α αpPo p Po Po . 

Here the contamination  amount á was assumed to take values  0.01, 0.05,0.1. The 

relative efficiencies and the relative MSEs are reported in Table 5.10, based on 1000 

replications. 

 

From Table 5.10 it becomes evident that the MHD estimator behaves better for 

incorrectly specified models. Even for a very low contamination it appears to be more 

robust. Further,  for large values of  p  the MHD estimator appears again to be more 

efficient. Another interesting feature is the rapid increase of the relative MSE. An 

explanation for this might be  the tendency that the MHD estimator  exhibits to 

underestimate the mixing proportion for small sample sizes. As the sample size 

increases the bias is reduced and hence the MSE is reduced leading to a great 

improvement in accuracy as compared  to the ML estimator. Again, we may interpret 

the difference in the  behaviour of the MHD and ML estimators for small mixing 
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proportions as the result of the fact that count data are constrained on  the positive axis  

so that outliers may occur only at the right tail. 

 

Table 5.10 
Relative efficiencies (RE) and relative MSEs (RM) for estimating the mixing 

proportion based on 1000 replications 
   αααα=0.005   αααα=0.01   αααα=0.05  
 n 25 50 100 250 500 25 50 100 250 500 25 50 100 250 500 
                 
p1       MODEL 1      
             
0.1 RE 0.80 0.92 0.95 0.98 0.99 0.84 0.90 0.95 0.98 0.99 0.84 0.88 0.94 0.97 0.97 
 RM 0.58 0.81 0.89 0.97 0.99 0.64 0.80 0.90 0.98 1.00 0.64 0.79 0.94 1.09 1.14 
0.25 RE 0.86 0.92 0.95 0.98 0.99 0.83 0.92 0.96 0.98 0.99 0.82 0.91 0.95 0.97 0.98 
 RM 0.67 0.79 0.89 0.95 0.98 0.61 0.85 0.93 0.98 1.02 0.67 0.93 1.07 1.19 1.26 
0.5 RE 0.88 0.91 0.96 0.98 0.99 0.88 0.92 0.95 0.98 0.99 0.83 0.89 0.94 0.98 0.99 
 RM 0.71 0.72 0.90 0.96 0.99 0.62 0.82 0.91 1.01 1.06 0.78 1.05 1.33 1.41 1.44 
0.75 RE 1.04 0.94 0.94 0.97 0.96 1.02 0.94 0.92 0.96 0.98 1.00 0.92 0.92 0.96 0.97 
 RM 0.80 0.76 0.82 0.94 0.98 0.77 0.78 0.83 1.04 1.20 1.18 1.31 1.63 1.74 1.71 
0.9 RE 1.40 1.22 1.06 0.94 0.95 1.47 1.19 1.01 0.95 0.98 1.27 1.04 0.95 0.98 0.99 
 RM 1.36 1.13 0.89 1.02 1.12 1.45 1.22 1.04 1.34 1.46 2.64 2.58 2.44 2.18 1.99 
                 
       MODEL 2      
             
0.1 RE 0.82 0.89 0.95 0.97 0.98 0.79 0.89 0.92 0.97 0.98 0.71 0.83 0.85 0.91 0.93 
 RM 0.60 0.75 0.87 0.93 0.99 0.58 0.75 0.85 0.95 1.02 0.46 0.67 0.91 1.13 1.41 
0.25 RE 0.84 0.92 0.95 0.97 0.98 0.83 0.89 0.94 0.97 0.98 0.82 0.85 0.91 0.93 0.94 
 RM 0.64 0.84 0.89 0.94 0.98 0.64 0.78 0.89 0.95 1.02 0.67 0.79 1.03 1.44 1.94 
0.5 RE 0.88 0.89 0.95 0.96 0.99 0.87 0.89 0.93 0.98 0.98 0.81 0.88 0.92 0.96 0.98 
 RM 0.65 0.74 0.84 0.91 1.02 0.69 0.69 0.84 1.05 1.14 0.67 0.99 1.38 2.15 3.18 
0.75 RE 1.04 0.95 0.92 0.98 0.99 1.02 0.98 0.93 0.96 0.98 1.02 0.93 0.89 0.94 0.96 
 RM 0.88 0.74 0.75 0.97 1.07 0.78 0.71 0.81 1.14 1.30 1.17 1.41 2.01 4.06 5.92 
0.9 RE 1.52 1.28 1.09 0.98 0.96 1.44 1.24 1.05 0.97 0.96 1.60 1.28 1.06 1.05 1.11 
 RM 1.32 1.12 0.87 0.96 1.11 1.62 1.26 1.03 1.49 1.96 3.62 3.68 4.91 8.94 11.12 
                 
       MODEL 3      
             
0.1 RE 0.80 0.89 0.93 0.97 0.99 0.76 0.82 0.92 0.94 0.95 0.72 0.78 0.88 0.91 0.91 
 RM 0.64 0.79 0.87 0.95 0.97 0.59 0.70 0.91 0.99 1.09 0.53 0.65 0.93 1.28 1.52 
0.25 RE 0.78 0.91 0.95 0.98 0.99 0.72 0.88 0.93 0.94 0.97 0.74 0.82 0.87 0.94 0.93 
 RM 0.60 0.80 0.86 0.95 1.00 0.52 0.81 0.95 1.12 1.45 0.61 0.86 1.15 1.80 2.59 
0.5 RE 0.83 0.89 0.94 0.98 0.99 0.79 0.88 0.92 0.96 0.98 0.77 0.84 0.90 0.94 0.94 
 RM 0.55 0.68 0.85 0.92 0.99 0.61 0.77 1.09 1.64 2.31 0.62 1.18 2.01 3.29 4.44 
0.75 RE 1.03 0.92 0.92 0.95 0.97 0.99 0.93 0.95 1.00 0.98 0.95 0.91 0.92 1.01 0.99 
 RM 0.56 0.60 0.70 0.88 0.98 0.95 1.04 1.75 3.19 4.66 1.33 1.80 3.53 7.06 7.52 
0.9 RE 1.54 1.15 0.99 0.94 0.98 1.72 1.24 1.01 1.03 1.04 1.50 1.25 1.08 1.04 1.09 
 RM 0.94 0.75 0.65 0.81 1.07 2.36 2.11 2.90 6.69 9.66 4.23 5.76 8.85 12.65 15.37 
 
  



Minimum Hellinger Estimation 

 215 

 

5.8.3  The Case Where all the Parameters Have to be Estimated 
 In this section simulation results for the case where all the parameters have to 

be estimated are reported. This is the most interesting case for mixture models. The 

HELMIX algorithm  was used for deriving the MHD estimates and the EM algorithm 

for the ML estimates. We used the same stopping rule for both algorithms. Judging 

from the results of section (3.3) we stopped iterating when the maximum difference 

between the parameters of two successive iterations was smaller than 0.0001. Two 

sets of initial values were used  to increase the chance that the obtained  maximum 

(minimum) was not a local extreme. For both methods,  the true parameter values and 

values m ± 0.5, around the sample mean m with equal probability, were considered as 

initial values. Recall that such initial values were judged as good choices in section 

(3.3). Again two issues were of interest. The efficiency and the robustness of both 

methods. We will examine the efficiency using correctly specified models and the 

robustness using contaminated models. 

 

5.8.3.1 Correctly Specified  Models 
 Let us  now   examine  the  case  where  the  model is correctly hypothesised to 

be a  2-finite Poisson mixture. For each combination of parameters, 4 sample sizes 

were examined, namely n=50, 100, 250, 500. Each combination was replicated 1000 

times.  

 The usual method for comparing  two methods in multiparameter model 

estimation utilises the ratio of the generalised variances of the estimators. Recall that 

the generalised variance is the determinant of the variance-covariance matrix. For  our 

case, the generalised variances were computed on the basis of the variance covariance 

matrices calculated from the simulation. Specifically, from the 1000 replications we 

calculated the variances for every estimator and the covariances,  constructing the 

variance-covariance matrix.  Table 5.11,  summarises the results for several 2-finite 

Poisson mixture distributions. The entries are the values V VML MHD  , where V  

denotes the determinant of the  variance-covariance matrix, and the subscripts indicate 

the method used. Entries larger than 1 favour the MHD method. 
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Table 5.11 

The ratio of  generalised variances of the ML estimator  divided by that of the  
MHD estimator (1000 replications) 

n 50 100 250 500 50 100 250 500 
p1  ë1 =1 ë2=2   ë1=1 ë2=3  
0.2 9.293 16.035   6.104   1.952 3.897   5.056   3.390   1.301 
0.5 4.725  4.115   3.261   0.929 1.625   1.182   1.164   0.955 
0.8 4.238   2.772   1.904   1.113 1.359   1.103   0.806   0.680 
  ë1=1 ë2=5   ë1=1 ë2=8  
0.2 1.612   1.271   1.098   1.025 0.702   0.890   0.962   0.994 
0.5 0.908   0.964   0.976   0.973 0.628   0.821   0.965   0.980 
0.8 0.505   0.662   0.866   0.906 0.570   0.645   0.873   0.934 
  ë1=2 ë2=4   ë1=2 ë2=5  
0.2 7.119   6.317   4.102   1.794 2.579   1.679   1.419   1.103 
0.5 2.510   3.062   1.740   0.869 1.140   1.091   0.963   0.937 
0.8 2.707   1.865   0.854   0.714 0.952   0.722   0.687   0.660 
  ë1=2.8 ë2=3.2      
0.2 7.607  28.969  22.886   2.213     
0.5 4.771  14.784   5.547   0.954     
0.8 9.286   9.510   4.449   0.844     
 
 A close inspection of Table 5.11 reveals that the ML method works far better 

for models with well separated components. On the contrary, when the components 

are close together the MHD method is superior. Hasselblad  (1969) has shown that 

ML estimators  have large standard errors when the components are close together. 

This explains the superiority of  the MHD method. In these cases the covariance terms 

are very large for the ML method resulting in the great superiority of the MHD 

method. This can be seen from the entries of Table 5.12, where the efficiency for each 

parameter is not as large as the efficiency based on the generalised variance. 

Generally, the MHD method  performs better for small sample sizes and low mixing 

proportions. The latter was also shown to be true in the case where only the mixing 

proportions had to be estimated. 

 Usually, the ML method works better for well specified models as compared to 

the MHD method (Lindsay  1994). However, our results constitute a case in which the 

MHD method performs better. To further examine this remarkable result we report 

tables with the estimated relative efficiencies for the parameters. The entries are 

values of the relative efficiency of the MHD method as defined by the ratio of the 

standard error of the ML estimator divided by the standard error of the MHD 

estimator. 
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Table 5.12 
Relative efficiencies of the MHD estimators of the parameters of a 2-finite 

Poisson mixture 
 
  p1=0.2   p1=0.5   p1=0.8  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n    ë1 =1 ë2=2    
50 1.78 1.00 2.33 1.29 1.00 2.07 1.06 1.05 1.98 
100 1.60 0.95 2.72 1.19 0.93 1.93 0.96 0.95 1.87 
250 1.32 0.86 2.03 1.00 0.83 1.76 0.82 0.79 1.89 
500 1.05 0.76 1.51 0.87 0.75 1.29 0.76 0.73 1.68 
    ë1 =1 ë2=3    
 50 1.38 0.96 1.81 1.12 0.95 1.53 0.93 0.93 1.41 
100 1.44 0.96 2.09 1.03 0.95 1.30 0.86 0.87 1.41 
250 1.23 1.00 1.58 0.99 0.97 1.16 0.81 0.82 1.19 
500 1.10 0.96 1.13 0.95 0.95 1.03 0.78 0.84 1.06 
    ë1 =1 ë2=5    
 50 1.27 1.07 1.36 0.96 1.04 1.03 0.72 0.88 0.99 
100 1.14 1.10 1.07 0.97 1.02 1.01 0.82 0.95 0.97 
250 1.04 1.03 1.02 0.98 1.01 0.99 0.93 0.99 1.00 
500 1.01 1.00 1.00 0.99 1.00 0.99 0.96 0.99 0.99 
    ë1 =1 ë2=8    
 50 0.92 1.00 0.94 0.88 1.01 0.90 0.87 0.99 0.83 
100 0.96 1.02 0.97 0.95 1.00 0.95 0.90 0.99 0.89 
250 0.99 1.01 0.98 0.98 1.01 0.98 0.97 1.00 0.96 
500 0.99 1.01 0.99 0.99 1.00 0.99 0.98 1.00 0.98 
    ë1 =2 ë2=4    
 50 1.67 0.95 2.17 1.23 0.94 1.89 1.05 1.01 1.77 
100 1.58 0.91 2.34 1.12 0.90 1.72 0.94 0.89 1.70 
250 1.29 0.87 1.69 1.02 0.91 1.51 0.84 0.79 1.51 
500 1.07 0.86 1.32 0.93 0.85 1.13 0.73 0.71 1.17 
    ë1 =2 ë2=5    
 50 1.50 0.87 1.84 1.06 0.92 1.42 0.92 0.92 1.29 
100 1.36 0.93 1.51 1.00 0.94 1.27 0.84 0.84 1.25 
250 1.21 1.01 1.19 0.98 0.97 1.08 0.80 0.85 1.10 
500 1.07 0.96 1.07 0.96 0.96 1.02 0.80 0.89 1.01 
    ë1 =2.8 ë2=3.2    
 50 2.20 1.14 2.64 1.62 1.18 2.63 1.27 1.21 2.21 
100 2.24 1.05 3.29 1.42 1.11 2.88 1.21 1.21 2.30 
250 1.78 1.01 3.00 1.22 0.98 2.17 0.87 0.85 2.70 
500 0.96 0.77 1.91 0.75 0.67 1.74 0.63 0.60 1.93 
 

 It is interesting to observe  that the ML estimate of ë1 is usually better than the 

MHD estimate. The  difference  in the performance of the two estimators is greater 

with respect to ë2. An explanation for this might be  that, for count data, outliers may 

occur only at the right tail. As a result, outliers influence more this parameter. In 
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addition, the covariances of the parameter estimators were, in general, smaller in the 

case of the MHD method, resulting in the superiority of the MHD method, as judged 

by the generalised variance ratios  reported in Table 5.11. 

 

Table 5.13 
Relative MSEs for the ML and MHD methods (correctly specified models) 

  p1=0.2   p1=0.5   p1=0.8  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n    ë1 =1 ë2=2    
50 3.62 0.98 5.58 1.56 1.00 3.54 1.15 1.13 2.17 
100 2.85 0.89 7.57 1.26 0.88 3.33 0.87 0.90 2.13 
250 1.96 0.76 4.44 0.88 0.65 3.04 0.55 0.59 2.87 
500 1.14 0.58 2.34 0.67 0.50 1.69 0.47 0.48 2.35 
    ë1 =1 ë2=3    
 50 2.14 0.94 3.41 1.09 0.85 1.91 0.81 0.83 1.28 
100 2.28 0.92 4.33 0.91 0.81 1.43 0.62 0.67 1.39 
250 1.58 0.92 2.48 0.86 0.80 1.21 0.53 0.58 1.08 
500 1.23 0.85 1.25 0.81 0.81 0.91 0.50 0.61 0.92 
    ë1 =1 ë2=5    
 50 1.70 1.16 1.60 0.91 1.01 0.78 0.52 0.70 0.71 
100 1.33 1.18 0.97 0.93 0.98 0.79 0.66 0.83 0.67 
250 1.09 1.06 0.94 0.96 0.99 0.78 0.85 0.94 0.75 
500 1.02 0.99 0.93 0.96 0.98 0.87 0.89 0.94 0.80 
    ë1 =1 ë2=8    
 50 0.84 1.01 0.74 0.69 0.98 0.60 0.55 0.90 0.59 
100 0.93 1.04 0.81 0.84 0.99 0.70 0.69 0.95 0.57 
250 0.98 1.02 0.85 0.93 1.01 0.77 0.90 0.98 0.67 
500 0.99 1.01 0.88 0.98 1.01 0.86 0.93 0.99 0.77 
    ë1 =2 ë2=4    
 50 3.23 0.89 4.52 1.37 0.88 2.64 1.12 1.06 1.50 
100 2.81 0.84 5.40 1.07 0.77 2.57 0.78 0.76 1.70 
250 1.80 0.76 2.94 0.84 0.69 2.05 0.55 0.55 1.78 
500 1.20 0.69 1.76 0.77 0.63 1.19 0.41 0.42 1.08 
    ë1 =2 ë2=5    
 50 2.49 0.76 3.16 1.02 0.79 1.61 0.83 0.82 1.02 
100 1.97 0.86 2.21 0.85 0.76 1.23 0.59 0.64 1.08 
250 1.53 0.95 1.37 0.86 0.83 0.89 0.54 0.62 0.91 
500 1.16 0.88 1.07 0.86 0.85 0.90 0.53 0.69 0.76 
    ë1 =2.8 ë2=3.2    
 50 5.32 1.37 7.38 2.52 1.44 6.93 1.69 1.50 4.37 
100 5.40 1.16 1.38 1.93 1.30 8.02 1.50 1.51 4.75 
250 3.26 1.09 9.21 1.45 0.99 4.62 0.73 0.73 6.94 
500 0.92 0.63 3.72 0.54 0.45 2.78 0.38 0.37 3.74 
 

 Examining the relative MSEs of the two methods reported in Table 5.13, we 

can see that,  for the parameter ë2  the performance of the ML estimator is inferior. It is 

the presence of outliers that contributes to  this situation. On the other hand, the ML 
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estimator is more accurate for ë1   and in the case of models with well separated 

components. 

 Concluding, we can say that the MHD method  achieves high efficiency for 

correctly specified models and it is superior for models with not well separated 

components.  

 Lindsay (1994), using second order efficiency arguments, showed that the 

MHD method is inferior to the ML method. It would be interesting to examine for 

which sample size  this effect occurs and, since for both methods iterative algorithms 

were used, to examine  whether the small difference between the methods is 

detectable in practice. 

 

5.8.3.2 Contaminated Models 
 In the sequel, the question of the robustness of the method when the model is 

not correctly specified is examined.  For this purpose, it was assumed that the data 

come from contaminated 2-finite Poisson mixtures. In particular, it was assumed that 

an additional component was present  at the right tail of the distribution. The 

probability α associated with this component,  (the level of  contamination), was 

allowed to take three values so as to investigate whether the amount of contamination 

affects the plausibility of the method. Specifically, α was let to take the values 0.01, 

0.05, 0.1.  

 The relative MSE defined as the ratio of the MSE of the ML method to that of 

the MHD method was used as a measure of robustness.  Note that for some of the  

models considered the notion of contamination is not well defined. The reason is that 

the level of contamination is very high, relative to the entire sample, with the result 

that  it is not clear with respect to what parameter the mean squared error should be 

calculated. For example, when the parameter p1 = 0.8 and the contamination level α is 

high, the probability associated with the second component is very close to the 

probability assigned to the contaminant, namely p2 =  0.18 and  α = 0.10.  

 The relative MSEs for several contaminated models are summarised in by 

Tables 5.14a through to 5.14d, where ë3  is the parameter of the Poisson variable  

which is assumed to contaminate the 2-finite Poisson model. 
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Table 5.14a 
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture 

distribution with p1=p, ë1 =1, ë2=3, and contamination á from a Poisson 
distribution with ë3=7 

 
  á=0.01   á=0.05   á=0.1  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n     p=0.2     
 50 2.84 0.98 9.12 2.91 1.26 8.86 2.05 1.39 4.56 
100 2.91 1.09 9.36 2.38 1.55 6.08 1.80 1.61 3.03 
250 2.57 1.34 10.73 2.00 1.72 3.65 1.37 1.36 1.81 
500 1.84 1.25 5.87 1.69 1.58 2.45 1.22 1.21 1.46 
     p=0.5     
 50 1.17 0.89 3.62 1.34 1.08 4.40 1.29 1.36 3.53 
100 1.13 0.95 4.32 1.45 1.29 3.98 1.34 1.46 2.20 
250 1.22 1.07 3.45 1.56 1.56 2.40 1.33 1.42 1.61 
500 1.35 1.17 2.26 1.47 1.50 1.75 1.22 1.27 1.36 
     p=0.8     
 50 0.69 0.74 2.55 0.55 0.70 3.08 0.46 0.87 2.17 
100 0.55 0.65 3.31 0.45 0.80 2.68 0.52 1.12 1.78 
250 0.54 0.71 3.34 0.92 1.29 1.89 0.95 1.29 1.41 
500 0.80 1.03 2.54 1.26 1.40 1.55 1.05 1.23 1.24 
 
 
 

Table 5.14b 
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture 

distribution with p1=p, ë1 =1, ë2=3, and contamination á from a Poisson 
distribution with ë3=12 

 
  á=0.01   á=0.05   á=0.1  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n     p=0.2     
 50 5.58 1.31 44.50 4.96 2.12 16.04 2.76 2.00 5.50 
100 6.71 1.85 74.63 3.06 2.48 7.07 1.70 1.70 2.72 
250 7.04 3.32 51.94 1.84 1.87 3.01 1.06 1.12 1.32 
500 7.98 5.33 48.85 1.29 1.32 1.70 0.99 1.02 1.12 
     p=0.5     
 50 1.59 1.12 19.43 2.32 1.83 13.85 1.64 1.80 4.33 
100 2.03 1.52 43.09 2.25 2.43 6.58 1.35 1.72 2.28 
250 3.56 3.11 42.44 1.88 2.19 3.15 1.03 1.18 1.31 
500 5.69 5.32 48.36 1.34 1.51 1.85 0.97 1.05 1.11 
     p=0.8     
 50 0.65 0.76 11.59 0.32 0.73 6.69 0.22 0.96 2.74 
100 0.49 0.63 14.63 0.39 0.93 3.28 0.32 1.08 1.61 
250 0.67 1.18 18.28 0.86 1.40 1.73 0.70 1.18 1.15 
500 1.62 2.88 16.43 0.93 1.23 1.27 0.82 1.12 1.08 
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Table 5.14c 

Relative MSEs based on 1000 replications from a 2-finite Poisson mixture 
distribution with p1=p, ë1 =1, ë2=5, and contamination á from a Poisson 

distribution with ë3=12 
 

  á=0.01   á=0.05   á=0.1  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n     p=0.2     
 50 2.81 1.56 8.57 4.01 2.70 11.75 3.10 2.78 7.19 
100 2.52 1.74 5.62 4.50 3.24 10.43 3.73 3.36 5.84 
250 1.69 1.40 2.05 5.86 4.24 7.60 3.27 2.89 4.04 
500 1.40 1.34 1.96 6.69 4.78 6.35 3.17 2.82 3.32 
     p=0.5     
 50 1.00 1.22 1.94 1.33 2.20 5.48 1.35 2.49 4.45 
100 1.03 1.20 1.54 1.62 2.35 4.70 1.66 2.50 3.43 
250 1.09 1.19 1.86 1.93 2.58 3.77 1.87 2.45 2.57 
500 1.21 1.26 2.24 2.20 2.64 3.08 1.91 2.26 2.24 
     p=0.8     
 50 0.51 0.88 2.03 0.39 1.02 2.73 0.47 1.48 2.14 
100 0.62 0.95 2.03 0.54 1.50 3.03 0.64 1.60 1.90 
250 0.97 1.24 2.76 0.95 1.96 2.54 0.86 1.50 1.49 
500 1.20 1.47 3.40 1.09 1.83 2.09 1.00 1.35 1.29 
 
 
 

Table 5.14d 
Relative MSEs based on 1000 replications from a 2-finite Poisson mixture 

distribution with p1=p, ë1 =2, ë2=5, and contamination á from a Poisson 
distribution with ë3=10 

 
  á=0.01   á=0.05   á=0.1  
 p1 ë1 ë2 p1 ë1 ë2 p1 ë1 ë2 
n     p=0.2     
 50 2.91 0.82 6.52 2.93 1.10 9.46 2.37 1.27 5.07 
100 2.54 1.01 6.33 2.21 1.46 4.90 1.84 1.54 3.22 
250 2.29 1.27 4.47 2.39 1.89 4.28 1.59 1.49 2.09 
500 1.60 1.12 2.00 1.99 1.75 2.63 1.41 1.35 1.64 
     p=0.5     
 50 1.07 0.84 3.45 1.16 1.00 4.37 1.17 1.24 3.20 
100 1.03 0.91 3.22 1.47 1.34 3.80 1.41 1.54 2.52 
250 1.19 1.04 2.06 1.68 1.66 2.35 1.45 1.52 1.74 
500 1.25 1.19 1.95 1.62 1.62 1.89 1.30 1.35 1.44 
     p=0.8     
 50 0.64 0.67 1.98 0.40 0.55 2.59 0.38 0.83 2.04 
100 0.51 0.56 2.75 0.43 0.76 2.50 0.48 1.12 1.81 
250 0.57 0.79 2.55 0.84 1.32 2.02 0.86 1.30 1.44 
500 0.78 1.08 2.54 1.22 1.41 1.59 1.02 1.24 1.25 
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 Tables 5.14a-5.14d show that the MHD estimator  is more robust when the 

incorrect model is hypothesised, particularly when the sample size is small, the mixing 

proportion is small and the contaminant is far from the other components. We  note 

again the same behaviour with respect to the parameters, namely that, for ë2 , the 

MHD estimator is almost always more robust while, for ë1 , it is less robust depending 

on the mixing proportion. In other words, a sort of  dependence of the robustness of 

the method on the mixing proportion is again manifested. Careful examination of the 

results reveals some points that might give some explanation for this fact.  For some 

samples with large p1 the other components happened to be represented in the sample 

with a few observations  not far from the origin. As a result, the other components 

were confounded with the first component yielding an MHD  estimate of   p1 that was 

close to 1. An indication supporting this observation is the increased relative MSEs 

when the sample sizes were increased. 

 Concluding, we can say that the MHD method for finite Poisson mixtures is 

appealing compared to the ML method with respect to both  efficiency and robustness. 

The results support that the MHD method is almost fully efficient when the model is 

correctly specified, but it possesses the desired robustness property to give robust 

results when the model is incorrectly specified. Its resistance against outlier 

observations prevents the MHD method from yielding inconsistent results due to 

outliers as in the case of  the ML method. 

 

5.9 Inferential Procedures for Finite Poisson Mixtures Based on 
Minimum Hellinger Distance Methods  
 The properties of its estimators makes the MHD method an interesting tool for 

other inferential procedures. Any difficulties arising because of the complexity of 

deriving the MHD estimates has been removed with the HELMIX algorithm. Thus, 

the use of the MHD method can be extended  to cover fields where the domination of 

ML methods is almost complete. 

 Some of these procedures will be presented. However it should be emphasised 

that a lot of the procedures that are based on the ML method (and thus suffering from 

its problems) can also be based on the MHD method  without necessarily increasing 
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the required effort. Three interesting problems are discussed  in this thesis in the 

direction of using the MHD alternative to the ML as the inferential basis: 

• Semiparametric-MHD estimation for finite Poisson mixtures with an unknown 

number of components.   

• Diagnostics based on producing graphs indicative of whether the chosen model is 

correct. 

• Hypothesis testing for finite mixtures using the Hellinger deviance. 

 

The Hellinger deviance test for finite mixtures is presented later in chapter 6. 

 

5.9.1 Semiparametric Minimum Hellinger Distance Estimation 
 A common problem in applying mixture models is the fact that in many 

situations the number of components is unknown, as already mentioned in the 

discussion section of chapter 3. Then, one can proceed either by assuming the number 

of components to be fixed, say k, and thus search over all the mixing distributions 

with k-support points, or by letting k to take any integer value. The latter case is the 

semiparametric case, in which  the researcher aims at  minimizing an appropriate 

function over all the mixing distributions with finite support. Semiparametric ML 

estimation for finite Poisson mixtures was described in chapter 3. In this section the 

problem of semiparametric MHD estimation for finite Poisson mixtures is examined. 

The case with known k has been treated in the previous sections.  

 Assume that d(x) denotes the observed proportion of the value x from a sample 

of size n and f xP ( )  denotes the probability under the assumed model that the random 

variable X takes the value x, where P denotes the mixing distribution. The mixing 

distribution P assigns positive probabilities pi  at the  points ëi , for i=1, . . ,k and has a 

parameter vector denoted by è.  Our aim is to minimize the Hellinger Distance D 

given by  

 ( )[ ]D d f d x f xP P
x

( , ) ( )= − =
=

∞

∑
0

2

    (5.25a) 

( ) ( )= −
=

∞

∑2 2
0

d x f xP
x

 .   (5.25b) 
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 Formulae (5.25) are similar to formulae (5.7). The only difference is that the 

vector of parameters è has been replaced by the mixing distribution P. Formula 

(5.25b) reveals that minimization of the Hellinger distance is equivalent to 

maximization of the function φ( )P  defined  as 

( ) ( ) ( )ϕ P d x f xP
x

=
=

∞

∑
0

   .  (5.26) 

 This  representation reveals in turn some interesting intrinsic properties of the 

MHD estimation procedure and allows for comparing it to the likelihood method, 

where maximization of the function 

( ) ( )( )L P d x f xP
x

( ) ln=
=

∞

∑
0

    (5.27) 

is required. Formula  (5.27) defines the loglikelihood as a function of the mixing 

distribution, instead of a function of the vector è ,  as in (5.23). 

  

 The case of semiparametric ML method for mixture models has been treated 

by several authors  (Simar, 1976, Laird, 1978, Lindsay, 1983a,b,  Lesperance and 

Kaldbfleisch, 1991, Bohning, 1995, among others) and a description of the relative 

procedures has already been given in chapter 3. 
 Lindsay (1983a,b) gave the General Ìixture Maximum Likelihood Theorem 

which provides sufficient and necessary conditions for ML estimation in mixture 

models. This is our Theorem 3.3, in chapter 3. 

 A similar general theorem for MHD estimation is  given in the sequel. 

Whittle (1973) derived a theorem for designs in regression problems. For a 

linear model one wants to know the values of the predictor on which observations 

have to be taken in order to maximize an optimality function. For example, this 

function can be the likelihood of the observations or the negative of the variance of 

the model or several other functions. Finding the best points requires determining the 

probability measure which assigns positive probability to specific support points of 

the predictors. This is analogous to our problem where it is also required to determine 

the points to which the probability measure  (i.e. the mixing distribution) must assign 

positive probabilities. 

 In the case of MHD estimation the function which has to be maximized is 

given in (5.26) where P is the mixing distribution. The only condition imposed by 
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Whittle (1973) is that the function h that is being maximized is concave, in the sense 

of satisfying the sufficient condition  

[ ]d
de

h e P eG
e

2

2
0

1 0( )− +








 ≤

=

 , for all measures P and G. 

 

It is interesting to note that the Hellinger Distance is concave, in Whittle’s sense. To 

show this it suffices to prove that it satisfies the above concavity condition. 

Define Q e P eG= − +( )1  and  thus  ∂
∂
Q
e

G P= − . 

 Then differentiating the function φ( )Q  given in (5.26) yields 

∂φ
∂
( ) ( ) ( ) ( )

( )
Q
e

d x f x f x
f x

G P

Qx
= −

=

∞

∑ 20

, 

whence 

[ ]
[ ]

∂ φ
∂

2

2

2

3 2
0 4

( ) ( )
( ) ( )

( )
/

Q
e

d x
f x f x

f x
G P

Qx
= −

−

=

∞

∑  . 

This is clearly negative for all the values of Q which proves the concavity of the 

Hellinger distance defined in (5.26). 

 

 In the sequel, the results obtained by Whittle (1973) for designs  are extended 

so as to apply to distance functions. Define the directional derivative of ö at P to the 

direction of  an alternative measure G as 
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ee
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For the Hellinger distance this reduces to 

H P G d x f x f x
f x

G P

Px

( , ) ( ) ( ) ( )
( )

= −









=

∞

∑
0

 

 Of special interest is the case where the measure G is a degenerate distribution 

at è. In this case the directional derivative is given by 
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 .   (5.28) 

We will refer to this function as the Hellinger -Gradient function to distinguish it from 

the gradient function defined in (3.6) and used in ML estimation. The Hellinger 

Gradient function can play an important role in MHD estimation. The following 

theorem generalizes the results of Whittle and Lindsay: 

 

Theorem 5.2 The mixing distribution 
#
P  is the semiparametric MHD estimate  of the 

mixing distribution if and only if 

a) H P( , )
#

θ ≤ 0  , for all è not in the support of 
#
P , 

b)  H P( , )
#

θ = 0  , for all è in the support of
#
P , 

c) ′ =H P( , )
#

θ 0   , for all è in the support of 
#
P   and 

d) ′′ ≤H P( , )
#

θ 0  , for all è in the support of 
#
P   

where primes denote differentiation with respect to è. 

 

Proof:   The result of the theorem is an immediate consequence of Whittle’s theorem 

for concave functions and the concavity of the Hellinger distance shown above. 

 

 This theorem gives the required conditions for the mixing distribution 
#
P  to be 

the semiparametric MHD estimator. In this case the support size is not restricted. 

From conditions a) and b) all the support points are maxima of the Hellinger gradient 

function and, hence, conditions c) and d) also hold. 

 In some cases the support size is known a priori. In such cases the 

maximization takes place  over all the mixing distributions with the given support size 

and  the following theorem can be shown: 

 

Theorem 5.3 The mixing distribution !P  is the MHD estimate of the mixing 

distribution with restricted support size if 

a)  H P( !, )θ = 0   for all è in the support of !P   and 

b) ′ =H P( !, )θ 0    for all è in the support of !P  
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Proof:   Consider the estimating equations of a k-finite Poisson mixture. These are 

derived by equating the first derivatives of (5.7) with respect to the parameters to 0 

and their final form is as given in (5.8) and (5.9) . From (5.8) we obtain 

( ) ( )d x
f x

f x
d x
f x

f xj
x

k
xθ θ

λ λ
( )

( , )
( )

( , )
=

∞

=

∞

∑ ∑=
0 0

  .  (5.29) 

Also, multiplying (5.8) by pj and adding over j=1,...,k   yields 

( ) ( )d x
f x

f x
d x
f x

f x
x

k
xθ

θ
θ

λ
( )

( )
( )

( , )
=

∞

=

∞

∑ ∑=
0 0

 .   (5.30) 

 Combining (5.29) and (5.30) it follows that 

( ) ( )d x
f x

f x f x
x

j
θ

θλ
( )

( , ) ( )
=

∞

∑ − =
0

0 , for j=1,. . . ,k.  

The left hand side of  the above equation is the Hellinger Gradient function. Hence, 

the condition a) has been proved. 

 To show condition b) observe that for the probability function of the Poisson 

distribution it holds that ′ = − −f x f x f x( , ) ( , ) ( , )λ λ λ1 . Then equation (5.9) leads to 

the result, i.e. the derivative of the Hellinger gradient function is 0 for all j.   This 

completes the proof of the theorem.     

 

 The key idea is that in the unrestricted support case  the support points are the 

maxima of the Hellinger gradient function. In the restricted support case  the support 

points are not necessarily maxima. They could be minima or saddle points.  

 Using the results of Theorems 5.2 and 5.3 a natural procedure for obtaining the 

semiparametric MHD estimate is the following: 

 

Step 1:  Find the solution with  k support points. 

Step 2:

  

Check, using Theorem 5.2, if the semiparametric MHD estimate has been 

found. If it has not been found set k:=k+1 and go to step 1. 
 
We may start with k=1, i.e. with the simple Poisson distribution. 

 Note that algorithms like the VDM algorithm for semiparametric ML 

estimation (see section 3.7.4) can be used. One, however, should be aware of its 

shortcomings as described in section 3.7.4. 
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 Specific conditions resulting from Theorem 5.2  are derived  in the next 

chapter where the Hellinger Deviance test for mixtures is introduced.  

 Note that Bohning and Hoffman (1982) described distance-type estimation 

methods for probability measures and gave theorems whose results simply require the 

concavity of these distances. Likelihood and Hellinger methods belong to this class. 

 

5.9.2 The Hellinger Gradient Function as a Diagnostic Tool for the Poisson 
Distribution 
 In this section we consider using the plot of the Hellinger Gradient function as 

a diagnostic tool for detecting if a k-finite mixture is appropriate.  Of major concern is 

to detect if the Poisson distribution  (homogeneity model) is an adequate distribution 

for modeling the data versus a mixture alternative. Lindsay and Roeder (1993) 

proposed that the plot of the gradient function, given in (3.6), can reveal if the 

homogeneity model is more appropriate than the inhomogeneity model, i.e. if a simple 

Poisson distribution is more adequate than a finite Poisson mixture and in general if a 

k-finite mixture is more adequate than a (k+1)- finite mixture model.  

 The key criterion is that if the Poisson model is true, the gradient function 

should be a concave function with maximum attained at the value of the sample mean. 

Any deviation from this picture reveals departures from the simple Poisson model, 

keeping in mind that small deviations may   have been caused by mere sampling 

variability. Consider, for example, the plot of the gradient function for the data of 

example 3.1 which is given in figure 3.4g. Because of the fact that  the derived ML 

estimates are also the semiparametric ML estimates the gradient function has zeroes 

only at the support points. 

 A similar approach can be adopted by using the Hellinger gradient function 

instead of the gradient function. The reason is the robustness of the MHD method, 

which is lent to the Hellinger gradient function as well. 

 Of course, the aim of a diagnostic plot is similar to the aim of a detector. It 

cannot show that something is surely true, but it can reveal if something is clearly 

false. Diagnostics can simply guide through different choices. So, using the plot of the 

Hellinger gradient function as a diagnostic tool, the criterion for the validity of the 

simple Poisson model is the concavity of the function. A non-concave picture it is not 

proof of non-poissonity, but is simply an indication for this. 
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 Let us now examine more thoroughly this issue. If the Poisson model is true, it 

follows from Theorem 5.2, that the Hellinger gradient function has a zero only at the 

value of the MHD estimate of the Poisson parameter, and that it is concave. Thus a 

plot of the function  will provide a picture about the consistence of the assumed 

Poisson model.  

 Another important characteristic of the MHD method is its resistance to 

outliers. This resistance enhances the potential of the Hellinger Gradient function as a 

diagnostic tool. To see this the gradient function and the Hellinger Gradient function 

were plotted for a dataset of size 100 in figure 5.7. The vector of observed frequencies 

(d(0),d(1),d(2),d(3)) were (30, 40, 26, 4). Then a 101-th observation was added at 

points 5,10,15,20. The effect of this new observation on the gradient functions is 

depicted in figure 5.7. The new observation influences the gradient function, while the 

Hellinger gradient function is relatively  unchanged and supports the Poisson 

distribution for all the cases. Note also that when the condition of the concavity of the 

gradient function is satisfied, the same is true for the Hellinger gradient function. In 

other words, the Hellinger gradient function remains unaltered while the gradient 

function changes depending on presence of spurious observations.  
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Figure 5.7 The Hellinger gradient function (a) and the gradient function (b) for a dataset generated from 
a Poisson distribution with mean equal to 1. The sample size was n=100.  The vector of observed 
frequencies were (30, 40, 26, 4). Model (1) refers to these frequencies. Models (2), (3), (4), (5) refer to 
the cases where an observation was added at 5, 10, 15 and 20 respectively. We can clearly see that these 
outliers change very much the form of the gradient function,  making the Poisson assumption irrelevant, 
while the Hellinger gradient function is not influenced at all. 
 
 
 
 
 It becomes obvious from figure 5.7 that  the Hellinger gradient plot can be 

used as a diagnostic plot. The departure from the Poisson assumption, caused by a 

simple observation, in the case of the ML method and the robustness of the MHD 

method to such departures makes the MHD method a preferable diagnostic technique.  

 Figure 5.8 depicts all the possible combinations of the two gradient functions. 

The important issue is that the Hellinger gradient verifies the Poisson assumption in 

all the cases where the simple gradient does so too, but also in  cases where the simple 

gradient function fails to do so because of the presence of outliers. 
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Figure 5.8 The gradient function and the Hellinger Gradient function for samples of size n=100 from a 
Poisson distribution with parameter 1. The above figures show all the possible cases. Figure c is the 
case where both the methods support the Poisson distribution, while the likelihood does not support the 
Poisson distribution for the rest of the cases. Figure a is the case where the two methods disagree. 
 
 
 
 The  Hellinger gradient function can be used for models with more than one 

component. In each case, the fact that the Hellinger function does not exceed the zero 
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line, supports the model with k-points of support, while any departure is evidently 

against this model and a further support point must be added. 

 Another important issue is the sampling error of the Hellinger gradient 

function. Lindsay and Roeder (1993) proposed the use of a confidence band, using 

componentwise asymptotic normality for all the points where the simple gradient 

function is evaluated. This constructs a zone which, if the Poisson model is true ought 

to  contain a straight line at 0. However, the asymptotic result is rather poor for small 

sample sizes. A truncated version of the gradient function was also used, because of 

the unlimited range of the Poisson distribution. 

 Similar asymptotic results for the gradient function can be derived but their 

applicability is doubtful because they are hard to derive and a large sample size is 

needed in order to be meaningful. Clearly, the plot of the gradient function is very 

useful for a quick check of the Poisson assumption. The concavity of the plot implies 

that the Poisson model is appropriate, while in any other case we cannot be sure if the 

non-concavity is due to sampling errors or to systematic departures from the Poisson 

assumption.  

 Example 3.1 (continued). Let us go back to example 3.1, which refers to the 

number of crimes committed every month in Greece. We applied the MHD method, 

and plotted the Hellinger gradient plot (figure 5.9) for the simple Poisson distribution 

and the 2-finite Poisson mixed distribution. The MHD estimates derived via the 

HELMIX algorithm were ë=2.157, for the simple Poisson distribution, and p1 = 0.641, 

ë1 = 1.438 and ë2 =3.5673, for the 2-finite Poisson mixture model. In figure 5.9 we can 

see that the simple Poisson model is  inappropriate since the Hellinger gradient 

function does not have a maximum at the MHD estimate, while the 2-finite Poisson 

mixture is appropriate and has local maxima at the support points. 
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Figure 5.9 The plots of the Hellinger gradient function for the simple Poisson distribution (a) and for 

the 2-finite Poisson mixture (b), for the data of example 3.1.   
 
 

5.10 Conclusions 
 The MHD method for finite Poisson mixtures is both efficient and robust. It is 

also computationally feasible at a low effort via the HELMIX algorithm.  The 

combination of two potentially useful characteristics makes it an attractive competitor 

to the ML procedure. It was shown that Hellinger distance based methodologies for 

diagnostic plotting are very efficient and, at the same time, robust. The latter property 

is not true for likelihood based inferences, where an outlier may cause inconsistencies. 

Till now, likelihood based methodologies have attracted almost the entire interest of 

researchers in the area of Poisson mixtures. However, MHD methodologies seem to 

be viable (if not preferable) alternatives which can cope with spurious data sets, which 

makes their use recommendable. Further research would be interesting in order to 

expand their potential use.  

 Consider, for example, the problem of likelihood based cluster analysis of rare 

events given in Symons et al. (1983). In such applications, the presence of an outlier 

can cause problems if the ML estimates  are used for obtaining the membership 

probabilities. Such approaches calculate thresholds which divide the entire line in 
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segments and  then assign observations to these segments. An influenced ML estimate 

can lead to inconsistent results. A minimum Hellinger based approach can be 

trustworthy to cope with outliers in such applications. 

 Extension of the Hellinger based methodology to finite mixtures of other 

distributions (like the normal or the exponential) is possible. However, it would 

constitute a tedious task since the MHD estimation is not so clear for continuous 

models. Cutler and Cordero-Brana (1996) have derived MHD estimators for finite 

normal mixtures, so MHD based procedures for normal mixtures can be obtained. 

 On the contrary, extension of Hellinger distance methodology to other discrete 

distributions is easier. Such an example is the case of finite mixtures of binomial 

distributions. Putting aside identifiability problems, the HELMIX algorithm can be 

easily transformed to cover this case too. The key idea is the similarity with the EM 

algorithm for the ML method. 

 So far in this thesis the case of MHD estimation was discussed extensively. 

The Hellinger distance is simply one of the members of the large family of distances a 

researcher can apply. Inferential reasons make the need for alternative method to the 

commonly used ML method quite interesting. For example, Albrecht  (1980)  showed 

that the familiar chi-square  goodness of fit test fails when the ML estimates are used 

instead of the minimum chi-squared estimates. It is obvious that the derivation of the 

minimum chi-squared estimates is necessary. Hence, there is a need for  an efficient 

algorithm for deriving these estimates and an appropriate extension of the HELMIX 

algorithm may provide the answer .   

 It should be noted that there is scope for considering modifications of the 

MHD method that will improve its performance in terms of efficiency and robustness 

(see, e.g., the discussion in Lindsay, 1994). This work can serve as a basis for further 

investigation on minimum distance methods. 
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Chapter 6 
Robust Testing for Finite Poisson Mixture 
Models via the Hellinger Deviance Test 

 

 

6.1 Introduction   
 The Poisson distribution plays a prominent role in discrete data analysis. It is 

widely accepted that if the data come from a population at random, the Poisson 

distribution can very well describe this population. In general, the good fit of the 

Poisson distribution  can be regarded as verifying the assumption that only chance 

governs the situation under consideration. Good fit of the Poisson distribution is also 

regarded as a strong evidence for the homogeneity assumption concerning the 

population under investigation.  In this direction, it is very important to be able to test 

the Poisson hypothesis, i.e. to test the H0: the data come from a Poisson distribution, 

against various alternative hypotheses. 

 Various test criteria have been developed and applied to test this hypothesis. 

We will focus our attention on the likelihood ratio test (LRT hereafter) as this has 

become a standard technique for testing a Poisson distribution versus a finite Poisson 

mixture. An alternative test statistic based on the Hellinger distance is, also, presented. 

This utilises the robustness properties of the MHD method for testing a hypothesis.  

An extensive comparison of these two procedures is  made.  

  

 6.2 The Likelihood Ratio Test for Mixture Models 
 The LRT is a widely used testing procedure for testing nested hypotheses. The 

test statistic is calculated as 

[ ]LRT L L= −2 1 0  ,   (6.1) 
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where Li , i=0,1, is the maximised loglikelihood  under the model in hypothesis Hi , 

i=0,1. Under some regularity conditions, this statistic follows asymptotically a ÷2 

distribution with degrees of freedom equal to the difference in the numbers of 

parameters between the two models (Wilks, 1938).  

 Suppose that we want to test the hypothesis  

Ho : The data come from a Poisson distribution ,  

against the hypothesis  

H1 : The data come from a 2-finite mixture of Poisson distributions  

 From (3.2),  for k = 2,  we can see that the 2-finite mixture leads to a simple 

Poisson distribution if  p or p1 10 1= =  . (The case λ λ1 2= has been excluded 

since the λ i  are in ascending order, a necessary condition for the identifiability of a 

finite Poisson mixture). So, the set of hypotheses to be tested can be written as: 

 H0 : p or p1 10 1= = ,  against  

 H1: ( )p1 0 1∈ ,  . 

 Titterington et al. (1985, p. 156) showed that the test is equivalent to testing 

for the number of components in the mixture, i.e. equivalent to testing  

 H0 : k=1  against  

 H1 : k=2.  

 Therefore, the problem reduces to one of testing for the number of components 

(or clusters) in the mixture. This is a very interesting problem in cluster analysis, that 

has remained unsolved despite the numerous attempts towards its disentanglement. 

For further information concerning  mixture models in clustering the reader is referred 

to the book of McLachlan and Basford (1988). 

 A natural testing procedure for such hypotheses would employ a LRT statistic. 

However, as already mentioned, carrying out this test for mixture models presents 

some difficulties. The reason for this is that the value of p1  under the null hypothesis 

lies on the boundary of the parameter space and hence the regularity conditions fail 

(see, e.g. , Self and Liang, 1987). 

 It was shown that if the model is incorrect,  the ML estimates are inconsistent. 

Feng and McCullogh (1996) showed that, even in this case, the likelihood is 

consistent and thus the test procedure can be applied. 



Minimum Hellinger Estimation 

 237 

 Many attempts have been made in the literature to determine the asymptotic 

distribution of the test statistic. Titterington et al. (1985) showed that the asymptotic 

distribution of the test statistic is a mixture of a distribution degenerate at 0 and a ÷2 

distribution with one degree of freedom, in equal mixing proportions. The distribution 

of the test statistic is the same as the distribution of the random variable Y defined as: 

[ ]( )Y X= max ,0
2
 where X is a standard normal variate. 

 Self and Liang (1987) verified this result, while Bohning et al. (1994) gave  a 

geometrical representation for the failure of the regularity conditions and verified this 

result for mixtures of certain members of the exponential family. Vouong (1989) 

showed the same asymptotic result for the distribution of the LRT in  the more general 

context of model selection and non-nested hypothesis testing. As Lindsay (1983b) 

showed, the geometrical interpretation of  general mixture models allows for 

constructing a hyperplane where the ML solution is restricted. Adding one more 

support point outside this hyperplane, the likelihood does not increase and hence the 

LRT is 0.   

 In order to avoid the problem of the unknown form of the asymptotic 

distribution, two main avenues have been proposed. The first one utilises bootstrap 

methods for constructing the null distribution of the test statistic, by sampling from 

the distribution in the null hypothesis. This approach has been used by Symons et al. 

(1983), McLachlan (1987), Goffinet and Loisel (1992), Mendell et al. (1991,1993), 

Thode et al. (1988), McLachlan et al. (1982), McLachlan and Jones (1995), Atwood 

et al. (1996), among others. These simulation experiments verified that the null 

distribution departs from a ÷2 distribution. 

 The second strategy tries to transform the test statistic or to use a different 

approximate distribution.  One of the initial attempts on this problem was given by 

Wolfe (1971). He suggested, after a small scale simulation study, that one may use the 

statistic [ ]2 1 0c L L− , where c is the correction factor. This is obtained as 

( )c n p k n= − − −1 22 / , 

where n is the sample size, p is the dimension of the problem (p=1 for the univariate 

Poisson mixture) and k2 is the number of components in the alternative hypothesis 

(2k-1 for a k-finite Poisson mixture). According to Wolfe (1971), this statistics 

follows a chi-square distribution with degrees of freedom twice the difference in the 
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number of parameters in the two hypotheses, not including the mixing proportions. 

Everitt (1981) showed that this approximation works well for small sample sizes in 

the case of testing a normal distribution against a 2- finite normal mixture. The main 

disadvantages of such an approach are: 

• the chi-square, corrected or not, cannot take into account the possibly high 

proportion of 0’s.  

• the transformations are rather empirical without any stable theoretical justification  

• the transformations do not work well, in general.  

 For a detailed description and critique of all of these methods see McLachlan 

and Basford (1988, pp 22). 

 In a series of papers, Feng and McCullogh (1992,1994,1996) discussed another 

approach to overcome this problem. Their proposal was to extend the parameter space 

so that the parameters, which were on the boundary, to be included in the interior of 

the parameter space. Then, the likelihood can be maximised in the extended parameter 

space. One can return to the true parameter space by relating the unrestricted estimator 

with the restricted parameter space. This estimator is consistent and asymptotically 

normally distributed (Feng and McCullogh, 1992). Recently, Feng and McCullogh 

(1996) proposed the use of this method for likelihood testing using estimates for the 

critical values of the test statistic derived via a bootstrap method. 

 Aitkin et al. (1981) have expressed reservations about the adequacy of such an 

approximation for the null distribution of the test statistic and they have outlined a 

solution to the general problem, essentially using a bootstrap approach, in a latent 

model application. Their bootstrap approach was quite elementary since they based 

their results on only 19 simulations without examining the performance of the method. 

However, their approach may be considered as a pioneer approach, adopted by many 

authors in the subsequent years. A more detailed examination for the distribution, 

based on simulations, can be found in Thode et al. (1988) and Mendell et al. (1991).  

 Recently, Berdai and Garel (1996) and Garel (1998) treated theoretically the 

normal mixture case, showing that the LRT can be considered as resulting from a 

Gaussian process. Using this approach, they derived the distribution of the test 

statistic and they proposed tabulation of its values for the case of normal mixtures.  

 Another method proposed is the quasi-Bayesian method of Aitkin and Rubin 

(1985). In order to avoid values for the parameters on the boundary of the parameter 
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space, they proposed the use of a prior distribution for the mixing proportions, which 

leads to estimates in the interior of the parameter space whence the standard 

asymptotic result applies. This result was strongly criticised by Quinn et al. (1987). 

They showed that the gain from such an approach is negligible. Too much 

computational effort is required to attain accurate results, while the asymptotic result 

still does not hold. 

 Two different approaches have been proposed by Chen (1994) and Chen and 

Cheng (1994,1997). Putting aside the traditional LRT, Chen (1994) derived another 

generalised likelihood ratio statistic, by partitioning the entire sample into two 

subsamples and working with them. Chen and Cheng (1994,1997) used a different 

idea, based on the asymptotic result that half of the times the test statistic is equal to 0. 

The disadvantage of this approach is that it is based on the asymptotic behaviour of 

the test statistic. So, with small samples which are common in practice, its 

performance is not known. 

 Much, if not all, of the interest has been focused on testing for one component 

against two components. No attempts seem to have been made for more general cases, 

apart from a paper by Izenman and Sommer (1988) where  a sequential LRT 

procedure is employed. However, the  ÷2  distribution is erroneously used as the 

asymptotic test statistic distribution since, again, the regularity conditions fail to hold. 

So, testing such hypotheses with the LRT lacks soundness. McLachlan (1992) reviews 

the use of the LRT for mixture models in the context of  discriminant  analysis.  

Soromenho  (1994)  compared,  via simulation, some approaches for determining  the  

optimal  number  of components in 2-finite mixtures of normal distributions. For a 

broad review of the problem, from a Bayesian perspective, the reader is referred to 

Richardson and Green (1997). 

 

6.3  Critical Values for the LRT for Testing the Poisson Distribution 
Against a 2-Finite Poisson Distribution 
 As already seen, the null distribution of the LRT statistic is not known and 

simulation methods are needed for its construction. A simulation experiment was 

carried out, in order to derive percentile points of the null distribution of the LRT 

statistic. For several values of the Poisson parameter and for several sample sizes 
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50000 samples of the given sample size and for the given parameter were simulated, 

and the value of the LRT statistic was calculated. Then the a-percentile of the 

distribution was estimated as the [50000a]-th order statistic from the sample of the 

values of the LRT statistic.   

 The proportion of zero values for the LRT statistic was also recorded. Figure 

6.1 depicts the situation. For selected sample sizes, 10000 samples were simulated 

from the Poisson distribution with specified parameter values. The values used for the 

parameter were ë=0.5,..10(0.5),15,20,25,30 and 50. The boxplots of the values of 

P(LRT=0), for all the Poisson distributions used clearly show that as the sample size 

increases the probability tends to  0.5. Note that in all simulations the probability is  

greater than 0.5 while, for small sample sizes, the probability is distinctly greater than 

0.5, especially for small values of the parameter of the Poisson distribution.  

Table 6.1 contains the proportion of zero values for the LRT statistic, for 

several values of the parameter of the Poisson distribution and several sample sizes. 

One can see that as the sample size increases, the proportion of values of the LRT 

statistic tends to 0.5 The same is true when the value of the Poisson parameter 

increases. 
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Figure 6.1 The probability that the LRT=0 when we sample from the Poisson distribution with varying 
parameter value. The boxplots were based on 25 different Poisson means  
ë=0.5,..10(0.5),15,20,25,30,50. It can be seen  that, for all the cases, the probability is greater than 0.5 
and, clearly, the proportion of zeroes decreases as the sample size increases. The same is true for the 
variability of the zero proportion. For small sample sizes, the proportion of zeroes is distinctly larger 
than 0.5. Note also that the outliers are simulated from the Poisson distribution with mean 0.5. 
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The proportion of zero values of the LRT statistic for testing the Poisson distribution 
against a 2-finite Poisson mixture distribution, for several parameters of the Poisson 

distribution and sample sizes 
 

      sample size      
ë 10 25 50 75 100 150 200 250 400 500 700 1000 2000 

0.3 0.77 0.60 0.58 0.57 0.56 0.56 0.55 0.54 0.53 0.53 0.53 0.52 0.51 
0.5 0.70 0.59 0.58 0.57 0.57 0.54 0.55 0.53 0.53 0.53 0.53 0.52 0.51 
0.75 0.68 0.60 0.57 0.56 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.52 0.51 

1 0.68 0.59 0.59 0.55 0.56 0.55 0.54 0.53 0.53 0.52 0.52 0.51 0.51 
1.5 0.67 0.60 0.57 0.56 0.55 0.53 0.54 0.53 0.53 0.52 0.52 0.51 0.51 
2 0.66 0.60 0.57 0.56 0.55 0.54 0.53 0.53 0.52 0.52 0.52 0.51 0.51 

2.5 0.66 0.59 0.56 0.56 0.54 0.54 0.53 0.53 0.52 0.52 0.52 0.51 0.51 
3 0.65 0.59 0.57 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.51 0.51 0.51 
4 0.65 0.59 0.57 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.52 0.51 0.51 
5 0.65 0.59 0.57 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.51 0.51 0.51 
6 0.65 0.59 0.56 0.55 0.54 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.51 
7 0.65 0.59 0.56 0.55 0.54 0.54 0.53 0.53 0.52 0.52 0.52 0.51 0.51 
8 0.65 0.59 0.57 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.52 0.51 0.51 
10 0.65 0.59 0.56 0.55 0.55 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.51 
12 0.65 0.59 0.56 0.55 0.55 0.54 0.53 0.53 0.52 0.52 0.52 0.52 0.51 
15 0.65 0.59 0.56 0.55 0.54 0.53 0.53 0.53 0.52 0.52 0.52 0.52 0.51 

 

Tables 6.2-6.4 contain the estimated 90%, 95% and the 99%  percentiles . 

These values can be used as a first check for rejecting the null hypothesis. 

Unfortunately, as it can be seen in Tables 6.2-6.4, the critical values depend on both 

the sample size and the Poisson parameter and, hence, a complete tabulation is 

impossible. So, the researcher may check if the observed value is far from the critical 

value reported in Tables 6.2-6.4, (using interpolation for values not appearing in the 

Tables) and thus decide if it is necessary  to apply the bootstrap LRT procedure.  

 The entries of Tables 6.2-6.4 reveal that the LRT statistic is not pivotal. 

However as the sample size increases the critical values tend to be independent of the 

parameter of the Poisson distribution. Tables 6.2-6.4 are the first reported tables which 

tabulate the critical points of the distribution of the LRT statistic for the case of finite  

Poisson mixtures. 

 

 

 

Table 6.2  



Minimum Hellinger Estimation 

 242 

The estimated 90% percentiles of the null distribution of the LRT statistic for testing 
the Poisson distribution against a 2-finite Poisson mixture 

 
      sample size      
ë 10 25 50 75 100 150 200 250 400 500 700 1000 2000 

0.3 1.072 1.403 1.645 1.759 1.741 1.886 1.945 2.051 2.033 2.018 1.943 1.854 1.817 
0.5 1.192 1.677 1.819 1.971 1.978 2.121 2.189 2.199 2.169 2.180 2.069 1.935 1.868 
0.75 1.358 1.809 1.966 2.093 2.152 2.217 2.344 2.346 2.322 2.309 2.176 1.978 1.866 

1 1.509 1.877 2.099 2.238 2.249 2.334 2.393 2.412 2.425 2.368 2.224 2.017 1.856 
1.5 1.591 2.086 2.278 2.323 2.410 2.529 2.602 2.532 2.467 2.449 2.256 1.922 1.864 
2 1.879 2.144 2.397 2.474 2.544 2.595 2.617 2.638 2.621 2.428 2.161 1.949 1.873 

2.5 1.928 2.313 2.429 2.577 2.549 2.635 2.689 2.681 2.562 2.481 2.117 1.968 1.853 
3 1.928 2.306 2.491 2.532 2.675 2.707 2.747 2.695 2.598 2.371 2.123 1.969 1.912 
4 2.102 2.309 2.507 2.625 2.648 2.702 2.749 2.716 2.503 2.375 2.109 1.922 1.848 
5 2.006 2.391 2.554 2.670 2.668 2.764 2.721 2.655 2.566 2.301 2.101 1.914 1.856 
6 1.874 2.466 2.643 2.616 2.647 2.754 2.722 2.719 2.573 2.288 2.052 1.915 1.871 
7 1.901 2.234 2.638 2.741 2.755 2.723 2.693 2.654 2.492 2.277 1.998 1.895 1.849 
8 1.843 2.274 2.524 2.642 2.680 2.730 2.742 2.613 2.448 2.326 2.014 1.913 1.840 
10 1.863 2.279 2.507 2.633 2.668 2.695 2.698 2.657 2.482 2.191 2.034 1.889 1.843 
12 1.810 2.284 2.567 2.556 2.662 2.682 2.674 2.613 2.417 2.194 2.001 1.833 1.853 
15 1.821 2.261 2.509 2.624 2.683 2.654 2.709 2.599 2.337 2.161 1.925 1.850 1.779 

 
Table 6.3  

The estimated 95% percentiles of the null distribution of the LRT statistic for testing 
the Poisson distribution against a 2-finite Poisson mixture 

 
      sample size      
ë 10 25 50 75 100 150 200 250 400 500 700 1000 2000 

0.3 1.854 2.526 2.587 2.911 3.012 3.024 3.039 3.104 3.256 3.310 3.304 3.079 2.945 
0.5 1.854 2.832 2.950 3.140 3.228 3.301 3.375 3.378 3.429 3.529 3.472 3.255 3.021 
0.75 2.634 2.965 3.198 3.244 3.408 3.490 3.514 3.544 3.604 3.684 3.624 3.288 3.011 

1 2.785 3.079 3.255 3.476 3.515 3.580 3.643 3.667 3.649 3.666 3.660 3.428 3.046 
1.5 2.862 3.290 3.557 3.535 3.618 3.789 3.872 3.869 3.878 3.897 3.707 3.395 3.040 
2 2.989 3.382 3.598 3.749 3.840 3.887 3.960 3.979 3.988 3.962 3.809 3.366 3.043 

2.5 3.118 3.536 3.744 3.869 3.826 3.954 3.965 4.056 4.008 4.021 3.739 3.402 2.988 
3 3.161 3.544 3.775 3.843 3.978 4.063 4.098 4.084 4.122 3.958 3.749 3.314 3.086 
4 3.250 3.694 3.834 3.945 4.042 4.126 4.121 4.160 3.990 3.967 3.692 3.250 3.002 
5 3.472 3.577 3.956 4.024 4.089 4.200 4.097 4.075 4.100 3.924 3.672 3.186 3.054 
6 3.374 3.897 3.854 4.004 4.101 4.114 4.139 4.235 4.119 3.844 3.539 3.179 3.063 
7 3.243 3.735 4.145 4.035 4.080 4.112 4.080 4.095 3.963 3.898 3.572 3.173 2.994 
8 3.202 3.564 4.028 4.176 4.229 4.211 4.192 4.054 4.032 3.923 3.582 3.211 3.015 
10 3.120 3.638 3.868 3.971 3.988 4.071 4.131 4.151 4.060 3.761 3.541 3.162 2.971 
12 3.044 3.652 3.899 3.919 4.058 4.154 4.024 4.130 3.964 3.796 3.502 3.017 2.982 
15 3.083 3.535 3.874 4.047 4.077 4.063 4.184 4.103 3.864 3.753 3.435 3.008 2.919 
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The estimated 99% percentiles of the null distribution of the LRT statistic for testing 
the Poisson distribution against a 2-finite Poisson mixture 

 
      sample size      
ë 10 25 50 75 100 150 200 250 400 500 700 1000 2000 

0.3 3.720 5.035 5.448 5.855 5.759 5.998 5.974 6.142 6.320 6.180 6.472 6.431 5.725 
0.5 4.086 5.663 6.030 5.871 6.267 6.166 6.436 6.422 6.331 6.529 6.534 6.618 6.014 
0.75 5.353 5.787 6.056 6.134 6.396 6.479 6.497 6.593 6.531 6.714 6.655 6.783 6.093 

1 5.367 5.948 6.136 6.364 6.545 6.524 6.654 6.701 6.725 6.653 6.801 6.630 6.134 
1.5 5.642 6.180 6.790 6.486 6.693 6.779 6.870 7.049 7.034 7.043 7.063 6.855 6.217 
2 5.816 6.277 6.688 6.722 6.874 6.959 7.045 7.099 7.083 7.231 7.073 6.905 6.061 

2.5 6.116 6.495 6.802 6.847 6.831 6.896 7.073 7.287 7.155 7.330 7.018 7.136 6.121 
3 6.119 6.587 6.868 6.960 7.076 7.204 7.330 7.248 7.437 7.349 7.265 7.037 5.970 
4 6.121 6.778 6.704 7.093 7.160 7.305 7.385 7.523 7.344 7.304 7.313 7.125 5.949 
5 6.183 6.979 6.983 7.154 7.193 7.459 7.382 7.437 7.428 7.364 7.346 6.808 5.885 
6 6.539 6.620 7.034 7.164 7.175 7.302 7.293 7.523 7.353 7.385 7.228 6.824 6.041 
7 6.944 6.729 6.946 7.028 7.394 7.401 7.344 7.235 7.435 7.357 7.287 6.697 5.873 
8 6.458 7.266 7.167 7.110 7.309 7.280 7.543 7.206 7.436 7.317 7.080 6.915 5.851 
10 6.267 6.900 7.087 7.596 7.327 7.603 7.506 7.407 7.518 7.266 6.979 6.861 5.887 
12 6.175 6.819 7.147 7.189 7.311 7.425 7.298 7.366 7.442 7.311 7.124 6.632 5.974 
15 6.212 6.749 7.036 7.336 7.249 7.242 7.414 7.334 7.203 7.305 7.065 6.580 5.820 
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6.4 A Test Based on the Hellinger Distance 

6.4.1 The Hellinger Deviance Test (HDT) 
 The aim of this section is to develop a test based on the Hellinger distance, as a 

counterpart of the well known LRT. The robustness of the MHD method in the area of 

estimation motivated the idea of developing a test procedure that may also be robust. 

 The LRT computes the improvement on the loglikelihood when one more 

component is added to the model. It would be helpful to derive a test statistic which 

would measure the improvement of the Hellinger distance if one new component is 

added. Since the influence of an outlier on this distance is much reduced, compared to 

that on the likelihood, we expect that this test to be more robust against outliers. 

 Simpson (1989)  proposed the use of Hellinger distance analogues of the LRT  

for parametric inference. He showed that if the model  is correct, the two tests, the one 

based on the likelihood ratio and that based on the ratio of the Hellinger distances, are 

asymptotically equivalent. However, the test based on the Hellinger distance is more 

robust, because of  the smaller influence of anomalous data points on the Hellinger 

distance than on the likelihood. Another test which extends the idea of using the 

difference in the loglikelihoods between two models to other disparities has been 

proposed by Read and Cressie (1988) via their general family of power divergent 

statistics (which contains as special members both the likelihood and the Hellinger 

distance cases) and the families proposed by Basu and Sarkar (1994) and Lindsay 

(1994). 

 The Hellinger Deviance Test (hereafter HDT) statistic is similar to the LRT 

statistic. The idea in using it is to check if the minimized Hellinger distance for a 

Poisson  mixture is considerably less than the minimized Hellinger distance for a 

simple Poisson distribution. Hence, the test statistic proposed is given by: 

[ ]HDT n H H= −4 0 1  ,  (6.2) 

where Hi , i= 0 ,1 are the minimized Hellinger distances for the distributions under the  

two hypotheses (see Simpson, 1989). Under some regularity conditions the HDT 

statistic follows a ÷2 distribution with degrees of freedom equal to the difference in 

the number of parameters for the two hypotheses (Simpson, 1989). This resembles the 

well known LRT statistic, discussed in the preceding sections.  However, again the 
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regularity conditions are not satisfied, making the asymptotic result irrelevant. This 

does not allow the researcher to use the ÷2 distribution. 

 When the model is correct and the sample size large, the estimates obtained by 

the MHD method and those obtained by the ML method coincide. Simpson (1989) 

showed that the HDT  statistic converges in probability to the LRT statistic. This 

property indicates that the two tests will have asymptotically the same properties. 

Figure 6.2 refers to  scatterplots of the two tests for 3 different sample sizes. Clearly, 

as the sample size increases the two test statistics tend to take the same value.  

However, this convergence is rather slow. 
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Figure 6.2 Scatterplots of the HDT statistic versus the LRT statistic, for data generated from a Poisson 
distribution with parameter ë=1. Cases with a 0 value for the LRT statistic have been excluded. Figures 
a,b,c correspond to different values of n; in particular to the values  50, 250 and 1000, respectively. 
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 Again, the null distribution of the HDT statistic is not known. The ambiguity 

concerning the distribution of the test statistic limits the usefulness of the test. In order 

to overcome this shortcoming, we propose the use of a bootstrap test,  i.e. a test in 

which the null distribution of the test statistic is constructed via parametric bootstrap. 

The test proceeds as follows: 

 

Step 1: Find the MHD estimates of the parameters of the simple Poisson distribution 

and the 2-finite Poisson  mixture, say θ H  and  θ2   respectively, and calculate 

the HDT statistic, say Hobs . The estimates can easily be obtained via the 

HELMIX algorithm. 

Step 2 : Simulate B bootstrap samples of size n, (n is the sample size from the data 

set)  from the Poisson distribution with parameter èH  and, for each bootstrap 

sample, calculate the value of the HDT statistic , say H j  , j=1, . . . , B. 

Step 3 :  Estimate the á-percentile of the distribution of the test statistic by the (100á)-

th order statistic from the bootstrap values H j  , j=1, . . . , B . Let this 

percentile be  Ca . 

 If  H Cobs a>  the null hypothesis that the data come from a Poisson distribution is 

rejected. 

 

 The above scheme can be extended to testing hypothesis of the form: 

 H0 : the data come from a k-finite Poisson mixture ,   

against  

 H1 : the data come from a (k+1)-finite Poisson mixture ,  

by replacing èH by   èk and è2 by   èk+1 . In the sequel, we focus our attention on testing 

the simple Poisson hypothesis. Note that Beran (1988) has shown that bootstrap tests 

are not inferior to tests based on asymptotic results,  recommending the use of 

bootstrap tests in cases where  no exact results are available for the null distribution. 
 
 Again, a large proportion of 0 values is present in the distribution of the test 

statistic. From theorem 5.2 we can see that for certain cases the Hellinger distance 

cannot be minimized any further by adding a new component. This means that the 

HDT statistic equals  0. Identifying these cases can substantially reduce the 
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computational effort required for applying the HDT via the bootstrap procedure, 

proposed.  

 The Hellinger gradient function defined in (5.28), combined with the results of 

theorem 5.2, reveals that we can examine if the semiparametric MHD estimate of the 

mixing distribution has been obtained, by checking if the support points are the local 

maxima of the Hellinger gradient function.  

 From (5.28) the first derivative of the Hellinger Gradient function is given by 

′ = −
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Here, we made use of the fact that, for the Poisson distribution, 
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Therefore if the semiparametric MHD estimate has been found for all the support 

points of this estimate it holds that 
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Particularly, if k=1, i.e. for testing the simple Poisson distribution against a 2-finite 

Poisson mixture, condition (6.4) reduces to 
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0 0
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where èH  is the MHD estimate for the Poisson distribution.  
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 We can simplify (6.5) further, by noting that the MHD estimate for the simple 

Poisson distribution satisfies the relation 

θ
θ

θ
H

H
x

H
x

x d x f x

d x f x
= =
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=
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∑

∑

( ) ( | )

( ) ( | )
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0
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So, (6.5) may be rewritten as: 
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Relation (6.7) looks similar to that given above for the ML case where s x2 < (see 

Lindsay, 1995) The left hand is a weighted second moment around θ H , while for the 

ML case, this moment is the variance. 

 We define the Hellinger ratio HR  to be the quantity 

( )
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This ratio is very similar to the variance-to-mean ratio, which is 1 for the Poisson 

distribution. Figure 6.3 depicts the value of the HDT statistic relative to the Hellinger 

ratio for different sample sizes. Clearly, as the sample size increases the values of the 

HDT  statistic tend to be concentrated on a curve. Note also that for all the sample 

sizes, there is a curve which clearly bounds the value of the test statistic given the 

value of the Hellinger ratio. Figure 6.4 shows the behavior  of the LRT statistic with 

respect to the variance-to-mean ratio. Again, as the sample size increases the values of 

the LRT can be predicted by the variance-to-mean ratio (index of dispersion). The 

interesting feature revealed by comparing the figures is that for the HDT, there is a 

curve which bounds the values of the test statistic. This means that local irregularities 

of the data set cannot influence very much the value of the test statistic. For example, 

the inclusion of an outlier in the entire sample cannot influence very much the HDT 

statistic since its values cannot be lower than these of the bounding curve imposed by 

the Hellinger Ratio. No similar behavior has been exhibited by the LRT. 
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Figure 6.3  Scatterplots of the Hellinger ratio versus the HDT statistic, for data generated from a 
Poisson distribution with parameter ë=1. Cases with a 0 value for the HDT statistic have been 
excluded. Figure a, b, c correspond to different values of n (50, 250 and 1000, respectively). We can 
see that for large sample sizes the value of the HDT statistic is strongly correlated with the Hellinger 
ratio. Clearly, there is a curve, over which the values of the test statistic are concentrated and there 
are no values below this curve. 
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Figure 6.4 Scatterplots of the variance-to-mean ratio versus the LRT statistic, for data generated 
from a Poisson distribution with parameter ë=1. Cases with a 0 value for the LRT statistic have been 
excluded. Figures  a, b, c correspond to different values of n (50, 250 and 1000, respectively). We 
can see that for large sample sizes the value of the tests is strongly correlated with the variance-to-
mean ratio. Similar plots with the HDT do not reveal such a strong correlation. 
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 The proportion of 0 values for the HDT statistic is much higher than the 

proportion of 0 values for the LRT statistic. The proportion of 0 values of the HDT 

statistic was calculated via 50000 simulation for several sample sizes and values of 

the Poisson parameter and it is depicted in Figures 6.5a-d. The sample sizes used were 

n=10 (a ), n=50 (b ), n=100 (c ) and n=500 (d). Clearly, the HDT statistic has a 0 value 

more often than the LRT statistic, for all combinations. It is also clear that the 

proportion of zeroes for the LRT statistic is relatively stable near 0.5 (but always 

greater than 0.5) while it increases as the Poisson mean increases for the HDT 

statistic. An explanation for this is that the Poisson distribution with a large mean 

gives low probability to a large number of points and the sensitivity of the HDT 

statistic to such points leads to this phenomenon. However, as the sample size 

increases the proportion of zeroes decreases. 
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Figure 6.5 The proportion of zeroes calculated via 50000 simulations for each value of the Poisson 
mean and sample size. The sample sizes used were n=10 (a ), n=50 (b ), n=100 (c ) and n=500 (d). 
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 Another interesting point would be to examine how the occurrence of zeroes of 

the LRT statistic relates to the occurrence of zeroes of the HDT statistic. We 

conjecture that there exists a relationship which can be stated as follows. 

 

 Conjecture:   If the LRT statistic is 0 then the HDT statistic is 0, too. The opposite is 

not true. 

 We have not succeeded in proving the above conjecture but we have run more 

than 100 million simulations with varying configurations of sampling distributions 

and sample sizes and there has not been any case with a 0 value for the LRT statistic 

and a nonzero value for the HDT statistic. We hope to be able to report a formal proof 

of the above conjecture soon. 

6.4.2 Critical Values for the HDT Statistic 
 We carried out a simulation experiment  in order to estimate the critical values 

of the HDT statistic, for several combinations of the values of the Poisson parameter 

and  of the sample size. We applied a slightly different method for finding these 

critical values. We used the following procedure: 

 For a given value of the parameter of the Poisson distribution ë and of the 

sample size n, we simulated 10000 samples of size n from a Poisson distribution with 

mean ë. For each sample we calculated the  value of the test statistic, say H j , j=1,. . . , 

10000.  Then, the 10000 values H j  were ordered, with H j( )  denoting the j-th order 

statistic. Then, the a% critical point was estimated as  H d( ) , where d=[a*10000], ([a] 

is the integer part of a).  We repeated this procedure 50 times. The entries of Tables 

6.5-6.7 are the averages of these 50 repetitions. In figure 6.6 we can see the 

appropriate boxplots for the critical values. 

 It is clear from Tables 6.5-6.7 that the critical values are not pivotal and they 

depend on both the sample size and the value of the Poisson parameter. This makes 

the complete tabulation of the distribution of the HDT statistic impossible. These few 

critical values are reported mainly as an initial indication. In practice, the researcher  

should start by calculating the observed value of the test statistic. If this value is much 

greater than the reported values (using the necessary interpolation for values not 

reported in the Tables 6.5-6.7), the researcher   has strong evidence to reject the null 

hypothesis. However, if the observed value is close to the reported values then he/she 
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ought to carry out his/her own bootstrap for the specific value of the parameter value 

ë. 

 The use of a large number of bootstrap samples is strongly recommended. To 

further support this recommendation one can look at figures 6.6 and 6.7. In these 

figures boxplots based on 1000 and 10000 bootstrap samples for estimating the 95-th 

quantile are displayed. Clearly, the range is very wide for accurate inference when 

only  1000 replications were used, strongly supporting the need of a large number of 

bootstrap samples in order to increase accuracy. Note also that since the proportion of 

0 values is near 0.7, if one uses only 1000 bootstrap samples it is expected that about 

700 times a 0 value will be reported and thus the estimation of the right tail is not very 

accurate. It is worth mentioning that we have verified the entries of Tables 6.5-6.7 up 

to one decimal point, by repeating the method with 50000 replications. 

 

Table 6.5 
The estimated 90% percentiles of the null distribution of the HDT statistic for testing 

the Poisson distribution against a 2-finite Poisson mixture 
 

   sample size 
 

  

λ 20 50 100 200 250 500 
0.3 0.69      0.76      0.83      1.04      1.07      1.16 
0.5       0.72      0.88      1.05      1.17      1.19      1.22 
0.75       0.85      0.99      1.14      1.26      1.29      1.29 

1       0.92      1.06      1.19      1.33      1.32      1.28 
1.5       0.94      1.09      1.25      1.36      1.38      1.28 
2       0.89      1.08      1.22      1.34      1.34      1.16 

2.5       0.83      1.00      1.17      1.28      1.26      1.12 
3       0.74      0.94      1.10      1.18      1.19      1.07 
5       0.11      0.35      0.60      0.79      0.80      0.83 
7       0.01      0.07      0.22      0.37      0.42      0.56 

 



Minimum Hellinger Estimation 

 254 

 
 
 

Table 6.6 
The estimated 95% percentiles of the null distribution of the HDT statistic for testing 

the Poisson distribution against a 2-finite Poisson mixture 
 

   sample size 
 

  

λ 20 50 100 200 250 500 
0.3       1.33      1.43      1.65      1.89      1.95      2.09 
0.5       1.36      1.66      1.85      2.06      2.11      2.23 
0.75       1.56      1.85      2.04      2.22      2.25      2.33 

1       1.76      1.93      2.13      2.35      2.32      2.42 
1.5       1.85      2.07      2.26      2.41      2.46      2.58 
2       1.88      2.09      2.28      2.46      2.50      2.48 

2.5       1.83      2.03      2.25      2.46      2.46      2.42 
3       1.75      1.96      2.20      2.36      2.42      2.39 
5       0.94      1.32      1.66      1.93      1.97      1.95 
7       0.49      0.69      0.99      1.26      1.34      1.43 

 
 
 
 

Table 6.7 
The estimated 99% percentiles of the null distribution of the HDT statistic for testing 

the Poisson distribution against a 2-finite Poisson mixture 
 

   sample size 
 

  

λ 20 50 100 200 250 500 
0.3       2.66      3.35      3.67      4.06      4.19      4.52 
0.5       3.31      3.84      4.02      4.39      4.45      4.75 
0.75       3.80      4.08      4.35      4.62      4.71      4.83 

1       4.02      4.29      4.52      4.81      4.81      5.02 
1.5       4.40      4.48      4.77      4.97      5.06      5.31 
2       4.42      4.60      4.86      5.07      5.11      5.38 

2.5       4.39      4.54      4.77      5.10      5.15      5.31 
3       4.33      4.46      4.75      5.01      5.09      5.42 
5       3.42      3.71      4.18      4.55      4.62      4.86 
7       2.54      2.70      3.18      3.75      3.83      4.33 

 



Minimum Hellinger Estimation 

 255 

 
 
 
      a          b  

Poisson mean

7.005.003.002.502.001.501.00.75.50.30

95
-th

 p
er

ce
nt

ile
3.0

2.5

2.0

1.5

1.0

.5

0.0
7.005.003.002.502.001.501.00.75.50.30

95
-th

 p
er

ce
nt

ile
s

3.0

2.5

2.0

1.5

1.0

.5

0.0

Poisson mean  
 
   c              d 

7.005.003.002.502.001.501.00.75.50.30

95
-th

 p
er

ce
nt

ile

3.5

3.0

2.5

2.0

1.5

1.0

.5

Poisson mean

7.005.003.002.502.001.501.00.75.50.30

95
-th

 p
er

ce
nt

ile

3.5

3.0

2.5

2.0

1.5

1.0

.5

Poisson mean  
Figure 6.6 Boxplots for the 95% critical value of the HDT statistic, for  selected sample sizes 
(n=50,100,250, 500) respectively for figures a to d. The number of bootstrap samples was set equal to 
1000 (B=1000). The boxplots were based on 50 replications for each sample size and Poisson 
parameter. Clearly, if we use such a small value for B, the variability of the  estimated percentile is 
great, making conclusions based on such replication size questionable. 
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Figure 6.7 Boxplots for the 95% critical value of the HDT statistic, for  selected sample sizes 
(n=50,100,250, 500) respectively for figures a to d. The number of bootstrap samples was set equal to 
10000 (B=10000). The boxplots were based on 50 replications for each sample size and Poisson 
parameter. Note that with the increased replication size the  variability has been reduced considerably.  
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6.5 Power Comparison for the HDT and LRT 
 In order to examine the performance of the HDT we will examine the power of 

the test. It was shown in the previous section that the null distribution of the test 

statistic is not of a known form and simulation was used to construct it. Unfortunately 

this is also the case for the alternative distribution of the test statistic, which cannot  

be derived in closed form. To overcome this difficulty we adopted again a simulation 

based approach. Before going into details we will give the following definition: 

 

Definition 6.1  The empirical power of a test, is the proportion of times the null 

hypothesis was rejected when the data were generated from the distribution in the 

alternative hypothesis.  

 

 As critical values for the rejection of the null hypothesis, we used the  results 

of the extensive simulation of the previous section.  In order to compare the HDT to 

the LRT we calculated also the power of the LRT. For the LRT statistic the simulated 

critical values were also used. 

 Six different alternative distributions were chosen to represent the alternative 

hypothesis. All these alternatives have the same mean with the mean of the 

distribution at the null hypothesis. The reason is that, due to the results of section 3.2, 

the ML estimates under the H1 satisfy the mean equation and thus in practice the null 

and the alternative distributions would have the same mean. The 6 alternatives were 2-

finite Poisson mixtures with parameter vectors: 

A) 0.5, 0.95 ë, 1.05 ë  B) 0.5 , 0.5ë, 1.5 ë 

C) 0.8, 0.9 ë, 1.4 ë   D) 0.8, 0.5ë,  3ë 

E) 0.2 , 0.9 ë, 1.025 ë  F) 0.2, 0.5ë, 1.125ë  

 The alternatives were chosen to represent specific kinds of departure form the 

null distribution. For example, alternative A departs very little from a Poisson 

distribution. The same is true for alternative F, but now the resulting distribution is 

more skew. From these alternatives 50000 samples were drawn and the empirical 

power was calculated. The results are reported in Table 6.8 for values of the Poisson 

parameter, ë= 1,3,5 and sample sizes n=20, 50, 100, 200, 250, 500.  
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Table 6.8  

The power of the HDT and the LRT 
      ë=1       
n     alternatives      
  A  B  C  D  E  F 
 LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT 
20 0.053 0.051 0.167 0.182 0.063 0.065 0.452 0.616 0.058 0.054 0.075 0.072 
50 0.051 0.047 0.290 0.286 0.066 0.069 0.832 0.902 0.053 0.050 0.088 0.085 
100 0.050 0.045 0.453 0.442 0.076 0.071 0.978 0.990 0.050 0.044 0.114 0.102 
200 0.051 0.038 0.702 0.684 0.102 0.088 1.000 1.000 0.058 0.047 0.155 0.128 
250 0.055 0.040 0.786 0.765 0.109 0.088 1.000 1.000 0.057 0.041 0.180 0.141 
500 0.051 0.041 0.960 0.959 0.131 0.119 1.000 1.000 0.052 0.039 0.242 0.208 
             
      ë=3       
     alternatives      
  A  B  C  D  E  F 
 LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT 
20 0.054 0.058 0.546 0.581 0.087 0.103 0.544 0.962 0.052 0.055 0.151 0.152 
50 0.052 0.050 0.872 0.874 0.110 0.128 0.901 1.000 0.056 0.052 0.239 0.223 
100 0.054 0.045 0.992 0.993 0.157 0.164 0.993 1.000 0.055 0.045 0.375 0.331 
200 0.053 0.040 1.000 1.000 0.229 0.242 1.000 1.000 0.052 0.036 0.576 0.520 
250 0.054 0.039 1.000 1.000 0.273 0.275 1.000 1.000 0.053 0.037 0.662 0.594 
500 0.057 0.056 1.000 1.000 0.473 0.538 1.000 1.000 0.057 0.057 0.894 0.873 
             
      ë=5       
     alternatives      
  A  B  C  D  E  F 
 LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT LRT HDT 
20 0.051 0.049 0.835 0.862 0.111 0.138 0.299 0.985 0.061 0.059 0.247 0.246 
50 0.053 0.054 0.994 0.996 0.175 0.205 0.506 1.000 0.051 0.050 0.451 0.418 
100 0.057 0.041 1.000 1.000 0.268 0.292 0.763 1.000 0.060 0.044 0.681 0.621 
200 0.061 0.040 1.000 1.000 0.454 0.485 0.943 1.000 0.063 0.044 0.917 0.879 
250 0.053 0.043 1.000 1.000 0.510 0.562 0.974 1.000 0.057 0.043 0.951 0.932 
500 0.068 0.070 1.000 1.000 0.820 0.866 0.999 1.000 0.072 0.076 0.999 0.999 
 
 The entries of Table 6.8 reveal the nice performance of the HDT. The HDT 

seldom performs worse than the LRT; for several cases (especially for small sample 

sizes) the difference is substantial. This leads to the conclusion that the HDT is at least 

as efficient as the LRT is, and its use is a safe guide because of its robustness. This 

issue is further discussed in the next section. Note that this Table provides evidence 

for the power of the LRT, too.  
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6.6 Robustness of the HDT 
 Assessing the robustness of a test statistic is not a straightforward task. The 

main problem is that there is not a global definition of the notion of robustness. 

Usually, we consider a procedure to be robust if a departure from the assumptions 

does not destroy the performance of the procedure. It is common to consider the two 

following situations, for robustness studies. 

• Data contamination: when some observations do not belong to the assumed model 

and they are included in our data set destroying the underlying assumptions. Such a 

case is the presence of some outliers at the tails of a distribution and 

• Model deviation: when the assumed model is not correct and the true model is a 

little different form the assumed one. 

 In order to examine the robustness of a test statistic it is useful to discriminate 

between the two above situations. Consider, for example, the widely used t-test for a 

normal mean with unknown variance. To apply the above test we assume that the 

observations are independent and identically distributed following a normal 

distribution with mean ì, the assumed value under the null hypothesis. When a 

proportion, say p of the observations do not come from the assumed normal 

distribution  but  from another Normal distribution with mean , say, ìp , then our data 

set is said to have been contaminated by these observations. In this case we wish that 

these few observations do not lead to different conclusions about the data set used. 

 The notion of model deviation is not much different. If we know that the 

observations do not come from a normal distribution but from a different distribution, 

say for example from a t- distribution, we want the test to behave similarly even when 

the normal assumption is violated. 

 The above two notions however have a common element. The usual way to 

describe data contamination is through mixture models. Specifically, we assume that 

the observations come form a model described as  (1-á) P+ á G, where P is the true 

assumed distribution, G is the contaminant which causes the departure from the 

assumed model and á is the proportion of contaminated values. With this 

representation of data contamination the two models coincide. However, this 

representation can help us to  examine the effect of a few observations, usually at the 
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tails of the assumed distribution, when the model deviation implies more general 

intrinsic departures from the assumed model. 

 For a goodness of fit test, such as the HDT or the LRT, the situation is more 

complicated. The reason is that the model deviation approach is misleading. If the data 

truly come from another distribution, then the test must not select the hypothesized 

distribution under the H0. On the other hand,  a goodness of fit test which can ignore 

some spurious observations is very useful in practice. The reason is that for some 

cases the rejection of a null distribution by a goodness of fit test is caused by quite a 

few observations. In the sequel we  examine only data contamination models. 

 Robustness of tests has been examined for several tests and from several points 

of view. Ylvisaker (1977)  examined the resistance of a test which is defined as the 

smaller proportion of observations which can determine the decision ignoring the 

values of all of the remaining observations. Later, neglecting the acceptance-rejection 

approach of testing statistical hypothesis, Lambert (1981) proposed the use of the 

Influence Function (IF) to examine the behavior of  statistical tests. He proposed that 

the IF of the p-value can reveal the robustness properties of test statistic. Knowledge 

of the form of the null distribution is not always possible. However, this approach can 

work in cases where the test statistic has a clear, closed form expression even if its 

null distribution is not known. Hertier and Ronchetti (1994) have shown that the 

influence curves of both the level and the power of a test are proportional to the 

influence curves of the estimators used. Later He et al. (1990) examined the power 

breakdown points of test statistics.  The power breakdown point is the amount of 

contamination of each alternative distribution that can carry the test statistic to a null 

value. See also Lambert (1982) for a qualitative examination of test robustness. 

 Simpson (1989) and Lindsay (1994) have shown that tests based on the 

Hellinger distance can be more robust than those based on the likelihood carrying the 

robustness of the Hellinger estimators.  

 For our case, the problem that the null distribution is not known and has to be 

estimated via simulation, prevents us from fully adopting the above mentioned 

approaches. However, in order to demonstrate the superiority of the HDT relative to 

LRT, some comparisons are made. The first approach is the use of the IF of the test 

statistic, while the latter is the simple examination of the performance of the tests 

when some contamination is present.   
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 The IF defined in (5.10) is a useful tool for examining the robustness of a 

procedure. From (5.28), one can see that, by definition, both the Hellinger gradient 

function and the gradient function, are IF for the corresponding distances when a new 

component is added. Hence, the examination of the gradient functions themselves 

reveals interesting robustness properties of the two methods, as seen in section 5.10. 

 It would be interesting to examine the  IF for the corresponding distances for 

the two methods defined in (5.26) and (5.27).  It can be seen that the IF for the two 

distances in (5.26) and (5.27) (the Hellinger distance and the loglikelihood 

respectively) are given by: 

IF z L F d x f x f z
x

( , , ) ( ) ln ( ) ln ( )= − +
=

∞

∑
0

 , (6.9) 

for the likelihood and 

IF z F d x f x f z
x

( , , ) ( ) ( ) ( )φ = +









=

∞

∑1
2 0

 , (6.10) 

for the Hellinger distance.  

 We used the De L’Hospital rule for deriving the required limit for the IF. The 

derivation of (6.10) is much complicated but the results stem from the equation 

[ ] ( )φ φ( ) ( ) ( )1 1 1 1− + = − + − −t F t t F t f zz∆ . 

(6.9) and (6.10) represent the influence of a new observation at z, on the likelihood 

and the Hellinger distance and not on the optimized versions of them. Moreover, the 

signs of these functions are irrelevant, since the likelihood is known to be negative, 

while the Hellinger distance is always positive. In both (6.9) and (6.10), the 

probability function f x( )  is calculated using the corresponding estimates.   

 If z is an outlier, we expect f z( )  to be very small, i.e. very close to 0.  Since 

the logarithm near 0  decreases sharper, the IF is also sharper. This indicates that the 

MHD is not influenced so much by an outlier. 

 On the other hand, the test  statistics associated with the two methods will have 

IF  which, ignoring constants, will depend on f z f z1 0( ) ( )− , for the MHD method 

and on { }ln ( ) / ( )f z f z1 0 , for the ML method, where the subscript under the 

probability function refers to  the distribution used as  determined by hypothesis  Hi, 

i=0,1.  
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 To see this result, consider the LRT statistic defined in (6.1). Suppose, that we 

have calculated the LRT when one new observation at z, occurs. Then the IF of the 

LRT statistic at the point z, will be given as: 

IF z L F d x f x d x f x f z f z
x x

( , , ) ( ) ln ( ) ( ) ln ( ) ln ( ) ln ( )= − + −
=

∞

=

∞

∑ ∑0
0

1
0

1 0  . 

The first two terms comprise  the already calculated LRT, without the added 

observation, and hence the influence of the new observation is the remainder, i.e. 

{ }ln ( ) / ( )f z f z1 0 . Using similar arguments, we can conclude that, for the HDT, the 

influence is measured by f z f z1 0( ) ( )− . 

 Two facts support the superiority of the MHD method. The first is that if an 

outlier is present, the MHD estimates do not differ too much between the two models 

(see the robustness of the MHD estimate derived in chapter 5)  and then we expect an 

influence close to 0, while for the ML method the change of the  estimates  causes a 

positive influence. It is known that  a mixed Poisson distribution has thicker tails than 

the simple Poisson distribution with the same mean (Shaked, 1980). For testing 

purposes, the means of the two models are assumed to be equal (see section 2.2)  and 

thus the ratio f z f z1 0( ) ( ) is greater than 1. Hence,  the influence is always positive. 

 Therefore , an outlier has always a positive effect on the LRT statistic, which 

always increases if a new outlier observation is added, while the HDT statistic may be 

stable, or it may increase much less. 

 Some empirical results support further the above mentioned issue. Suppose 

now that the functional T(F) is the corresponding test statistic for the two methods. 

Since this statistic does  not have a closed form, we are not able to compute the exact 

IF. An alternative approach is the use of the Empirical Influence Function (EIF). 

According to Hampel et al.  (1986, pp. 93), the EIF of the estimator based on any 

sample is a plot of the values of the estimator, if one more observation (contaminant) 

is added at the point x.   

 So, the EIF was used to examine the behavior of the two tests. In order to 

avoid calculating the EIF for only one sample, 1000 samples of size 

n=20,100,250,1000 were drawn from a Poisson distribution with parameter ë=1. The 

EIF was calculated if a (n+1)-th observation was added at point x and the averaged 

influences for all the points x=0,1, ..., 20 were computed. With such an approach, 
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results due to sampling errors were eliminated so that one can have clearer  and  more 

reliable picture about the robustness of the two tests to contamination. 
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Figure 6.8The E-IF for the LRT statistic, when one more observation is added at point x. 
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Figure 6.9 The E-IF for the HDT statistic, when one more observation is added at point x 
 
 Figures 6.8 and 6.9 depict the EIF, for the LRT and the HDT respectively, 

when one observation is added at point x. One can clearly see that the LRT can lead to 

incorrect conclusions when just one observation is an outlier. It is also interesting that 

this may happen even if the sample size is as large as 500 and the added observation 

takes a value which is not far from the main body of the data (e.g. x=7). On the 

contrary, the HDT ignores observations far from the rest. Note also that whatever the 

point of contamination, the HDT will not reject the hypothesis that the data come from 

a Poisson distribution, as indicated by the small value of the E-IF.  Note the great 

difference in the scale for the two tests. For the HDT the largest difference is smaller 

than 0.6, when the difference for the LRT is greater than 5 for an added point at x=5. 

If we had used the same scale as for the LRT, the HDT would have resembled a 

straight line! 
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 The interesting point, brought by Figures 6.8 and 6.9 is that a single 

observation can lead  to an incorrect decision based on the LRT. This cannot happen 

with the HDT.  

 The behavior of the test when more outliers are present  is also examined. In 

order to do this samples from a contaminated Poisson with mean 1 were taken. The 

contamination was effected through a degenerate distribution at the point x = 8 and 12 

respectively. The proportions of contamination considered  were α=0.01, 0.02 (i.e. an 

outlier at x is drawn with probability a). A robust test ought to cope with such a case 

of contamination, in the sense that the significance level of the test ought  not to 

increase very much. The significance level was set at 5%. Table 6.9 contains the true 

significance level when we sampled from the 4 models described above, for both tests. 

All the entries of the table were based on 10000 simulation samples. 

 
   Table 6.9  

The calculated significance levels of the HDT and the LRT  for contaminated models. 
The actual level is 5% 

 
 From the entries of Table 6.9, it can be seen again that the HDT is far more 

robust. When the contamination is at x=12, the HDT almost ignores this observation. 

Note that for n=500 and a=2% we have 10 outliers and the HDT ignores them. On the 

contrary, the LRT cannot cope with this type of contamination and as the sample size 

increases it almost surely rejects the null hypothesis.  

 It should be emphasized again that robustness and power are rather conflicting 

issues for tests, especially when one wants to examine goodness of fit tests as it is our 

case. The reason is that we want a sensitive test which can detect departures from the 

model under the null hypothesis. So, if a test is very sensitive, few observations can 

destroy its performance. In this sense, it is preferable to find a test which is not so 

sensitive and it can detect ‘faults’ which are not caused by the alternative hypothesis, 

models used  in the comparison 
 A B C D 

sample size x=8,a=0.01 
 

x=12, a=0.01 
 

x=8, a=0.02 
 

x=12, a=0.02 
 

n HDT LRT HDT LRT HDT LRT HDT LRT 
20 0.054 0.222 0.050 0.224 0.063 0.426 0.050 0.428 
100 0.073 0.620 0.050 0.652 0.114 0.907 0.052 0.925 
250 0.090 0.756 0.049 0.913 0.134 0.986 0.048 0.998 
500 0.094 0.935 0.044 0.986 0.159 1.000 0.050 1.000 
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but  from a contamination mechanism. HDT seems to be such a test, combining high 

power when the data are not contaminated and robustness when the data have been 

contaminated. 

 

6.7 Conclusions 
 In this chapter we derived a test procedure based on the Hellinger distance. It 

was shown  that this test is far more robust than the LRT, which is widely used for 

testing hypotheses in mixture models. Obviously, the HDT can be extended to mixture 

models of other families, such as normal mixtures, mixtures of the binomial 

distribution etc. The results showed that the HDT is much more closely related to the 

Neyman C(α) test (see, Lindsay, 1995). This test is simpler as it does not require 

iterative calculations. However, the nice robustness properties of the HDT makes it a 

reasonable choice. 

 This hypothesis testing procedure, that was introduced, completes the ΜΗD 

based methodologies described in Chapter 5. Inferences based on the Minimum 

Hellinger Distance can replace likelihood based inferences as the former achieve the 

dual goal of high efficiency and high robustness. The algorithm HELMIX provides a 

useful tool for deriving the MHD estimates. No clear advantage of the ML method can 

be found relative to the MHD method. MHD based methodologies are as efficient and 

as easy to apply as the likelihood based methodologies, while at the same time  they 

are more robust. 
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Chapter 7 
Determining the Number of Components in a 
Mixture 
 
 

7.1 Introduction 
 Mixture models are widely used to describe inhomogeneous populations, i.e. 

populations which can be assumed to consist of several subpopulations. In particular, 

k-finite mixture models may be considered as describing a population consisting of k 

subpopulations. An interesting problem is to determine the number of subpopulations 

comprising the entire population, i.e. to determine the number of components in a 

mixture. The physical interpretation of such a result is of particular interest, since it 

may give information about the structure of the whole population. 

 

 This problem has attracted the attention of the statistical community and it has 

induced a lot of effort towards its solution. However, no  unique solution of this 

problem  is known  as yet. In the previous section, testing procedures for testing for a 

mixture with k components versus  a mixture with k+1 components were examined. In 

this chapter, such tests are employed with the aim of developing a procedure for 

determining the number of components. 

 The literature is very sparse of results for testing in a mixture the existence of 

more than two components. The problem of determining the number of components in 

a mixture is similar in nature to that of  determining the number of clusters in cluster 

analysis. Since the mixture approach to cluster analysis is widely used, any 

methodology for determining  the number of components in a mixture will constitute a 
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useful source of techniques for determining  the number of clusters in the area of 

cluster analysis.  

 

 This chapter is devoted to this problem, starting with a review of existing 

methods. A new method for determining the number of components in a mixture is 

presented and applied to finite Poisson mixtures. This new method is based on the 

sequential application of  the LRT for mixture models discussed in the previous 

chapter. A simulation experiment for examining the performance of the new method is 

also given and applications with real data sets are provided. 

 

7.2. A Review of existing methods 
 Many researchers have proposed methods for determining the number of 

components in a mixture model.  Nevertheless, there does not exist  a global 

procedure for answering this  question. Several of the existing methods are reviewed 

in the sequel. 

 It should perhaps be noted at this point that very few methods exist for 

determining the number of components in Poisson mixtures. The majority of the 

methods have been developed for normal mixtures, mainly because of the wide 

applicability of normal mixtures in cluster analysis and related fields of statistical 

methodology, like pattern recognition and discriminant analysis.  

 Leroux and Putterman (1992) proposed penalised ML methods, for a Markov-

dependent Poisson mixture model. This penalised version introduces a penalty term in 

the likelihood so as to discourage the selection of an excessive number of 

components. The authors proposed to use two criteria: 

 

 the AIC (Akaike Information Criterion) which utilises the function  

A m L dm m( ) = −   

 and the BIC (Bayesian Information Criterion) which utilises the function 

B m L n dm m( ) ln( ) /= − 2  , 

where Lm  is the maximised loglikelihood for a model with m components, dm  is the 

number of free parameters in the m-component model, which, for  a m-finite Poisson 

mixture distribution is equal to 2m-1, and n is the sample size. 
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 These criteria select the model with k components, if A k( )  ( B k( ) , 

respectively) is the maximum of the function A m( )  ( B m( ) , respectively). These two 

criteria are widely used in several other model choice problems, such as regression 

problems etc. 

 Both of these criteria have certain serious disadvantages. 

 The AIC is a very conservative criterion. If "  is the value of the LRT statistic 

for choosing between a model with k-1 components and a model with k components, 

then at every step the criterion  selects the model with k components only if 

 

" = ( )2 41L Lk k− >−    . 

This is so, since the model with k components is selected if A k A k( ) ( )− − >1 0. This 

implies that 

A k A k L d L dk k k k( ) ( )− − > ⇔ − − + > ⇔− −1 0 01 1  

L Lk k− >−1 2  

which coincides with the above mentioned condition. 

 This condition is used whatever the value of k is and for any sample size. In 

other words, a new component is added only if the loglikelihood is increased by 2 in 

absolute value. The criterion ignores both the number k and the sample size and this 

may be quite misleading, since the absolute value of the loglikelihood depends clearly 

on the sample size. On the other hand, when a large number of  components have 

already been determined for the model, the relative change of the loglikelihood is 

different when one more component is added.  

 The BIC takes the sample size into account, but it is in fact more conservative 

than the AIC. The condition used for accepting the model with k components in 

favour of a model with k-1 components is 

( )" = − >−2 21L L nk k ln( )  

which clearly depends on the sample size.  

 This is so, since we select the model with k components if B k B k( ) ( )− − >1 0. 

This implies that 
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B k B k L n d L n d
k

k
k

k( ) ( ) ln( ) ln( )
− − > ⇔ − − + > ⇔−

−1 0
2 2

01
1  

L L nk k− >−1 ln( )  

which proves the above mentioned condition. 

 Again, this criterion ignores the value of k and may thus be  misleading.  Both 

criteria favour  models with a few components. Note that even for small sample sizes, 

e.g. n=10, the BIC adds a new component with more difficulty than the AIC as the 

former reduces to "  >4.6 since ln( ) .10 2 3≈ . 

 Leroux (1992) proved that, under mild conditions, the estimator of the mixing 

distribution (finite or not) obtained with the number of components selected using 

AIC or BIC (or certain other criteria) is consistent and has, in the limit, at least as 

many components. However, both criteria have some disadvantages. They ignore the 

number of already involved components. The AIC  also ignores the sample size. In 

practice, both criteria are rather conservative in favour of models with very few 

components.  

 Recently, Chen and Kalbfleisch (1996) proposed penalised minimum distance 

methods for finite mixtures. The innovation of this paper lies in the fact that the 

penalty function  was based on the mixing proportions, so as  to discourage 

components with small mixing proportions. The penalty function for a  model with k 

components was defined to be proportional to ln p j
j

k

=
∑

1

. One can see  that the 

contribution of components with small mixing proportion pj to the value of the penalty 

function is high. Hence the method discourages the choice of components with small 

mixing proportions.  The authors applied their method  to finite Poisson mixtures 

using the Kolmogorov distance.  Henna (1985) proposed another method for selecting 

the number of components using minimum distance methodology. 

 Celeux and Diebolt (1985) described the Stochastic EM (SEM) algorithm for 

mixtures (see section 3.4) . They proposed to use this scheme for estimating both the 

unknown parameters and the number of components by dropping  components with 

very low mixing proportions. Leonard et al. (1994) proposed a similar approach for 

the EM algorithm. In particular, they proposed dropping components with very small 

proportions  and combining components with parameter very close in value. In 
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practice this scheme depends on the choice of good initial values. Note that this 

algorithm often yields the semiparametric ML estimate.  

 As far as moment estimation is concerned, Lindsay (1989) gave  a procedure 

for selecting the number of components. He based his method on adding a new (k+1)-

th support point if the moment problem for a mixing distribution with k support points 

is solvable (see section 4.3). However, it is known that moment methods are not 

efficient and, as seen in chapter 4, they often result in a very small number of 

components. 

 Fruman and Lindsay (1994a) used the property of mixture models that the  

variance can be decomposed into two terms, one due to randomness and one due to 

mixing, as described in section 1.2, for general mixtures, and in section 2.2, for 

Poisson mixtures (see also Lindsay, 1989). They applied this idea to normal mixtures. 

This property is known to hold for Poisson mixtures as well. Since the total variance 

can be decomposed into two parts, the authors suggested adding one component at 

each step until the improvement in the part of the variance explained by the mixing 

distribution ceases to increase. Their idea is identical to that used in multiple 

regression where the coefficient of determination always increases when a new 

explanatory variable is included in the model, but one tests whether  this increase is 

statistically significant. The main difference is that Fruman and Lindsay (1994a) 

proposed using a bootstrap test for deciding whether to add one more component 

based on a  moment estimation. 

 Lindsay and Roeder (1992, 1997)  and Roeder (1994) suggested the use of 

residual diagnostics for determining the number of components in a mixture. The 

authors showed that smoothed residuals, obtained from the fitted mixed model, 

provide information about the number of components. In fact, the gradient function 

used by the authors is the same as the one used to check if the semiparametric ML 

estimate was obtained. 

 Windham and Culter (1992) proposed the use of the ratio of Fisher information 

matrices for selecting the number of components. Their method is termed the 

Minimum Information Ratio Estimation and Validation (MIREV).  The procedure is 

based on the smallest eigenvalue of the matrix F Fc
1− , referred to as the Minimum 

Information Ratio (MIR), where Fc is the information matrix for the classified sample 
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(in this case the memberships of the observations are known)  and F is the information 

matrix for a model with a given number of components. The entries of the matrix Fc 

can be derived by using the derived ML estimates in order to calculate the posterior 

probability for each observation that  belongs to a particular component. Then, each 

observation is classified in the component for which the posterior probability is 

maximum. In this way a new sample is obtained in which all the observations are 

classified. This sample is then used for deriving the information matrix Fc. 

 

 The information ratio would then measure the proportion of information 

available without knowing the subpopulation memberships. The procedure can be 

used sequentially as follows: 

• Choose k1 and k2 with 2≤ k1 ≤ k2. 

• For each k,  k1≤ k ≤ k2, obtain the MIRk assuming a mixture with k components. 

• The value of k for which the MIRk is largest is the estimate of the number of 

components. 

 After selecting the number of components, they proposed a validation 

technique based on bootstrapping, in order to examine the performance of this 

estimate. The validation steps are: 

• For m=1, . . . , M  obtain a bootstrap sample from the original data and compute 

from this data set the estimate km with the procedure described above. 

• Estimate the probability that the maximum MIR occurs at k (the number of 

components selected in the estimation step ) as the proportion of times the 

bootstrap value is equal to the one obtained from the true data set. 

  A modification of the above method is discussed in Polymenis and 

Titterington (1998). 

 Likelihood based methodologies for model selection have also been applied to 

the problem of determining the number of components in a mixture. Wolfe (1971),  

trying to identify the number of components in a mixture of normal distributions, 

proposed the use of sequential tests using the LRT as a test statistic with an 

asymptotic ÷2 distribution with 4 degrees of freedom. Izenman and Sommer (1988) 

used this procedure in a philatelic application, justifying the use of the approximate 

result by the nature of their data set. They judged that, because of the multimodality of 
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their data, the components are well separated and thus the procedure was plausible. 

This was criticised by Basford et al. (1997). Milligan and Cooper (1985) examined the 

performance of several criteria for selecting the number of components in cluster 

analysis. They also examined the method proposed by Wolfe (1971) and suggested 

that this procedure tends to overestimate the number of components for medium sized 

samples. Soromenho (1994)  compared several methods for selecting the number of 

components in the case of univariate normal mixtures with no more than 2 

components and  found that the bootstrap approach of McLachlan and the SEM 

method are more reliable. 

 Furman and Lindsay (1994a) proposed the use of moment estimates instead of 

ML estimates in calculating the LRT. The calculation of the ML estimates is difficult 

and time consuming because the EM algorithm converges slowly. Thus, they proposed 

the use of the moment estimates replacing the ML estimates in calculating the LRT 

statistic. They also showed that since the moment estimators are consistent when the 

sample size is large enough the difference will be negligible, and the gain in speed 

will be large enough. The speed is important in order to be able to obtain the 

distribution of the test statistic via simulation. They applied their method to normal 

mixtures 

 Maine et al. (1991) proposed a test based on the behaviour of the sample order 

statistics near the center of the distribution.  The key idea is that, depending on the 

number of components, the differences between successive order statistics will be 

larger than those predicted by a simple Normal distribution and, hence, the number of 

components can be detected. Such a procedure, however, works only when the 

components are well separated. 

 Bayesian methodologies have been described by Aitkin et al. (1996) using the 

posterior Bayes factors, and by Richardson and Green (1997) using the newly 

developed reversible jump Markov Chain Monte Carlo method. 

 For normal models there is a large number of graphical techniques to 

determine the number of components. Several of them can be found in Titterington et 

al. (1985) and the references therein. 
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7.3 A New Method Based on the Likelihood Ratio Test 
 From the preceding remarks, the need for an alternative approach becomes 

evident. The test procedure proposed in this section aims at fulfilling this need. As 

will be seen, the procedure makes a sequential use of the LRT, but the null 

distribution of the test statistic is constructed via simulation at every stage. This is 

necessary since the null distribution is very sensitive to the hypotheses employed, the 

sample size and  the closeness of the components.  

 The proposed approach has a dual scope: it serves as a testing hypothesis 

procedure for mixtures with more than one component but mainly it serves as a 

method of determining the number of components in a mixture. The utility of this 

possibility is obvious, as it gives us an insight into the structure of the population 

under investigation.  

 Consider the hypothesis 

 H0 : the number of components in a Poisson mixture is k    

 against the hypothesis  

 H1 : the number of components in the mixture is k+1. 

 The proposed procedure tests H0 against H1 sequentially for k = 1, 2, ... using 

the LRT statistic until H0 is accepted for the first time at the chosen significance level. 

The value kmax of k which does not lead to the rejection of H0 represents the optimal 

number of components in the Poisson mixture. 

 Due to the fact that the standard asymptotic result is not applicable, we adopt a 

resampling approach for the construction of the null distribution of the LRT statistic. 

The steps for carrying out the proposed test, for the case of finite Poisson mixtures, 

can be described as: 

 

Set k=1 

Step 1: Find the ML estimates of the parameters of the finite Poisson mixture for k 

and k+1 components, say èk and  èk+1  respectively and calculate the LRT 

statistic, say Lobs. Note that for k=1 the ML estimate is the sample mean. 

Step 2 : Simulate B bootstrap samples of size n, (n is the sample size from the data 

set)  from the k-finite Poisson mixture with parameter vector èk , and for each 

bootstrap sample calculate the value of the LRT , say  Lj , j=1, . . . , B. 
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Step 3 :  Estimate the á-percentile of the distribution of the test statistic by the (100a)-

th order statistic from the bootstrap values Lj , j=1, . . . , B. Let this percentile 

be  Ca. 

Step 4 :  If    Lobs >Ca  then  set k=k+1 and  go to step 1,   

    else  conclude that the optimal number of components is k and stop. 

 

 As mentioned before, the procedure terminates when H0  cannot  be rejected 

for the first time, i.e. when there is no sufficient evidence that adding one more 

component will significantly improve the likelihood. We start our search with k=1,  

because this reduces dramatically the  computational effort.  Note that a similar 

sequential testing procedure has been considered by Aitkin et al. (1981), in the context 

of latent models. However, they only used it for a 2-class model against a 3-class one, 

using very few replications and without any further investigation for the performance 

of this approach. The work of this section is the  first attempt to examine more 

thoroughly the procedure, and it constitutes the first application to finite mixture 

models. 

 This procedure achieves a dual goal: it reveals the number of components in 

the assumed mixture model, while at the same time it provides the appropriate 

goodness-of-fit test. 

 We would like to mention the attractiveness of bootstrap tests in cases where 

the distribution of the test statistic is not known and only asymptotic results exist.  

Beran (1988) has shown that bootstrap tests cannot be inferior to tests based on 

asymptotic results. Also, the abundance of computer resources makes bootstrap tests 

very practicable. 

 Another critical point is the inconsistency of the ML estimates when the model 

contains redundant components. With the proposed method such situations can be 

avoided since one starts with one component and increases the number of components 

by adding one at each step. So, the procedure will never add redundant components. In 

particular, it will never try to determine the ML estimates for  a model with redundant 

components. Conditions (6.6) determine whether a new component can be added and 

prevent the procedure from determining the ML estimates for an inconsistent model. 

On the other hand, the maximised loglikelihood is consistent even when the estimates 
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are not, since even if the ML estimate is not unique, the maximised value of the 

loglikelihood is unique. 

 In the next section the power of  the proposed method is also calculated via 

simulation, revealing interesting properties of the procedure. The results of the 

extensive simulation may be used to verify the weaknesses of the  standard asymptotic 

result which seems inappropriate for such an approach. A point that is worth 

mentioning is that the null distribution of the test statistic appears  to be highly 

dependent on the number of k under H0 , the sample size and the data themselves, 

making the tabulation of such test statistic distributions impossible. 

 Bohning et al. (1994), in the concluding  remarks of their paper, proposed that 

it might be of special interest to use such sequential testing for obtaining the ‘best’ 

number of components. Their method was of a backward search type, in the sense that 

they proposed to start from the model with the largest number of components and use 

backward elimination to find the optimal number. They also proposed to start with  

the semiparametric ML estimate of the mixing distribution for a finite mixture of 

Poisson distributions. Our method is based on a forward elimination technique which 

is preferable to the backward elimination technique proposed by Bohning et al. The 

reason is that the computational effort is decreased for small values of k. So, starting 

from k=1 the total computational effort is expected to be much less.  
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7.4 The Performance of the New  Method 
 In  this section an extensive simulation study of the newly proposed method is 

made. Two issues are of special interest: 

• the first is the  ability of the procedure to determine the correct number of 

components and  

• the second is the power of the sequential tests used for obtaining the optimal 

number of components.  

 In order to use the LRT, we need the ML estimates of the mixing distribution 

under each of the two hypotheses. We applied the improved EM algorithm of section 

3.5, using two different choices of  starting values: the true values, whenever they 

were available, and the method which separates the interval from 0 to the maximum 

observed value in k equiprobable intervals. Thus, for the case with k components we 

set λ j
i ij x

k
( ) max ( )0

1
=

+
 and p

kj
( )0 1

=  for j=1,...,k. The convergence criterion was based 

on the relative  increase of the likelihood between two iterations. This choice was 

made because we were interested in the value of the loglikelihood only. 

 We also employed the conditions given in (6.6) for checking if the LRT 

statistic is equal to 0. These conditions are very useful for applying our method since 

they can considerably save the computational effort needed. 

 In the sequel, some k-finite Poisson mixtures are considered for selected 

values of k (k=2,3, 4) so as to allow representation of models with well separated 

components, models with components close together and models that result in skew 

distributions. For each distribution, three sample sizes were used (n=50, 100, 500). 

500 samples were subsequently generated from each distribution, for each sample 

size.  The sequential method proposed was then applied using 500 bootstrap samples 

(B=500) for constructing the null distribution of each test statistic. Table 7.1 presents 

the relative frequencies of the numbers of components which the new method 

detected. 



 

 

 
Table  7. 1 

The relative frequencies of the estimated number of components among 500 simulated samples from k-finite Poisson mixtures (á=5%) 
 

 
 

sample size n=50 n=100 n=500 
 

      k=2      
 estimated number of components 

parameter vector è2 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
(0.5, 1, 9) - 0.95 0.05 - - - 0.95 0.05 - - - 0.96 0.04 - - 
(0.8, 1, 9) - 0.92 0.08 - - - 0.95 0.05 - - - 0.96 0.04 - - 

(0.5, 1, 1.1) 0.96 0.04 - - - 0.93 0.07 - - - 0.94 0.05 0.01 - - 
(0.95, 1, 10) 0.11 0.83 0.06 - - - 0.93 0.07 - - - 0.95 0.05 - - 

      k=3      
 estimated number of components 

parameter vector è3 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
(0.45,0.45,1,5,10) - 0.62 0.36 0.01 - - 0.39 0.58 0.02 - - - 0.94 0.06 - 
(0.4,0.4,1,3,3.1) 0.42 0.56 0.01 - - 0.14 0.82 0.03 - - - 0.96 0.04 - - 

(0.33,0.33,1,5,10) - 0.54 0.44 0.01 - - 0.30 0.66 0.03 - - - 0.94 0.06 - 
      k=4      
 estimated number of components 

parameter vector è4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 
(0.3,0.4,0.25,1,5,9,15) - 0.31 0.61 0.08 - - 0.09 0.78 0.13 - - - 0.59 0.38 0.03 
(0.3,0.3,0.2,1,1.2,5,9) - 0.78 0.21 0.01 - - 0.68 0.31 0.01 - - 0.17 0.78 0.03 0.02 

(0.25,0.25,0.25,1,5,10,15) - 0.17 0.76 0.07 - - 0.02 0.86 0.12 - - - 0.59 0.40 0.01 
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 Table 7.1 reveals that the method is quite  successful in determining the 

number of components when these are not close and the sample size is large enough. 

How large the sample size must be depends on the value of k.  So, for k=3 a sample 

size of 500 is sufficient for the accurate determination of the number of components. 

For k=4  larger sample sizes are needed. Clearly, when the components are very close, 

the method cannot distinguish between them. On the other hand, components with 

small mixing probabilities are usually ignored, especially in the case of small sample 

sizes. It is interesting that the method seldom overestimates the number of 

components. For small sample sizes it performs better for models with  small numbers 

of components. This may be connected with the high variances of the ML estimates  

for finite Poisson mixtures with not well separated components and  small sample 

size,  first reported by Hasselblad (1969).  For our simulation purposes, only cases 

plausible  in practice and small sample sizes were considered. Selecting cases with 

extraordinarily  large separation between the components would only lead to more 

impressive results  but of little practical interest, as most often count data consist of 

small positive integers. 

 The sequential nature of the tests employed makes the calculation of the power 

of the method (in the usual sense used in hypothesis testing) very difficult. The 

simulation results reported in Tables 7.1a-c, however,  can also be regarded as 

revealing the power of the proposed method. 

 The power of each separate test proposed is also examined. Thode et al. (1988) 

and Mendell et al. (1991, 1993),  have examined the power of the LRT for testing  one 

component versus two components in normal mixtures with equal variances via 

simulation. Recently, Berdai and Garrel (1996) examined the power of the LRT 

deriving  an asymptotic distribution.  All the authors  agree  in  that the power of the 

test is  susceptible to the sample size and to  the closeness of the components . 

 In order to investigate the power of the proposed method, the empirical power 

(see definition 6.1) of the test for k components versus k+1 components was 

examined for k = 1, 2, 3. Exact calculations require knowledge of the distribution of 

the test statistic under the alternative distribution which is not easily obtainable. The 

level of significance was á=5%. The critical value of each test was calculated via 

simulation of 2000 samples of given size from the null distribution.   For each value 
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of k, several distributions were chosen so as to represent various cases. For every 

distribution examined, 4 alternatives were considered. The alternative distributions 

were chosen so as to have the same mean with the distribution under the null 

hypothesis.  The reason is that when applying the test to real data sets the ML 

estimates for k-finite mixtures must satisfy the first moment equation whatever the 

value of k.  This is also true for normal mixtures which makes values of the reported 

power in Mendell et al.  (1991) irrelevant. 

 For the case where k=1, the null distributions used were Poisson distributions 

with parameters ë= 1, 3, 5, 10, respectively.  Ôhen, the vectors of parameters for the 2-

finite mixture alternatives were:  

(1A) (0.5, 0.95ë, 1.05ë),  

(1B) (0.5, 0.5ë, 1.5ë),  

(1C) (0.8, 0.8ë, 1.8ë) and  

(1D) (0.2, 0.8ë, 1.05ë).  

Alternative (1A) is very close to the null distribution while (1C) and (1D) result in 

distributions more skew to the left and to the right, respectively. 

 For k=2, the distributions considered in the null hypothesis  had vectors of 

parameters  of  the  form (p1, ë1 , ë2) :   

(2a) (0.5, 1, 5),   

(2b)  (0.8, 3, 11),   

(2c) (0.5, 2, 2.2),  

(2d) (0.5, 5, 15).  

 The four alternatives for each null hypothesis considered were of the form:  

(2A) (0.5p1, 0.5p1, 0.95ë1, 1.05ë1, ë2),          

(2B)  (0.5p1, 0.5p1, 0.5ë1, 1.5ë1, ë2),  

(2C) (ðp1, ð, 0.95ë1, (ë1+ë2)/2, ë2),  
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(2D) (ðp1, ðp2, 0.95ë1 ,ë2 ,1.5ë2) and  

(2E) (0.33,0.33, 1, 1+a,ë2+1) ,  

where ð is the probability assigned to the third component so that the mean does not 

change and a is chosen so that the alternative distribution can have the same mean as 

the null distribution. Again (2A) differs very little from the null distribution, (2B) 

differs more, while (2C) and (2D) add the new component at the left and the right tail 

respectively. 

 Similarly, for  k=3 the distributions used under the null hypothesis had vectors 

of parameters of the form (p1, p2, ë1, ë2, ë3): 

(3a) (0.33, 0.33, 1, 5, 12) ,  

(3b)  (0.8, 0.1, 1, 5, 12),  

(3c)  (0.1 0.4, 1, 5, 12),  

(3d) (0.5, 0.25, 1, 8, 8.5) and 

 (3e) (0.33,0.33,1,10,20).   

 The alternatives considered for each of them were of the form:   

(3A)  (0.5p1, 0.5 p1, p2, 0.95ë1, 1.05 ë1, ë2, ë3),    

(3Â) (0.5p1, 0.5 p1, p2, 0.5ë1, 1.5 ë1, ë2, ë3),  

(3C) (p1, p2, 0.5p3, ë1, ë2, 0.5ë3, 1.5 ë3),   

(3D) (ðp1, ðp2, ðp3, ë1, ë2, ë3, 1.5 ë3) and 

 (3E)  (0.25,0.25,0.25,1,1+a,1+2a,ë3+1),   

where a and ð are defined as previously. Again, (3A) differs very little from the null 

distribution, (3B) differs more, while (3C) and (3D) add the new component between 

the 2nd and the 3rd component and  at the right tail respectively.   

 Tables 7.2a-c contain the empirical power  for all the cases. 
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Table 7.2a 
The empirical power of the LRT for testing k=1 versus k=2 (á=5%). 

 
   sample size   

Null 
distribution 

alternative n=50 n=100 n=500 n=1000 n=2000 

       
 1A 0.063 0.068 0.064 0.050 0.048 

ë=1 1B 0.340 0.526 0.974 0.999 1.000 
 1C 0.225 0.327 0.753 0.936 0.997 
 1D 0.081 0.089 0.087 0.080 0.095 
       
 1A 0.041 0.048 0.039 0.031 0.035 

ë=3 1B 0.868 0.989 1.000 1.000 1.000 
 1C 0.538 0.793 1.000 1.000 1.000 
 1D 0.061 0.070 0.094 0.100 0.147 
       
 1A 0.033 0.039 0.035 0.027 0.034 

ë=5 1B 0.992 1.000 1.000 1.000 1.000 
 1C 0.802 0.972 1.000 1.000 1.000 
 1D 0.062 0.074 0.132 0.171 0.294 
       
 1A 0.027 0.034 0.042 0.035 0.060 

ë=10 1B 1.000 1.000 1.000 1.000 1.000 
 1C 0.988 1.000 1.000 1.000 1.000 
 1D 0.073 0.107 0.320 0.511 0.813 
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Table 7.2b 

The empirical power of the LRT for testing k=2 versus k=3 (á=5%). 
 

   sample size   
Null 

distribution 
alternative n=50 n=100 n=500 n=1000 n=2000 

       
 2A 0.046 0.059 0.065 0.052 0.044 
 2B 0.052 0.090 0.222 0.314 0.514 

2a 2C 0.027 0.035 0.026 0.006 0.000 
 2D 0.066 0.080 0.078 0.063 0.049 
 2E 0.104 0.197 0.544 0.764 0.949 
       
 2A 0.049 0.067 0.051 0.039 0.040 
 2B 0.393 0.697 0.999 1.000 1.000 

2b 2C 0.060 0.074 0.084 0.080 0.075 
 2D 0.108 0.123 0.166 0.174 0.190 
 2E 0.152 0.192 0.347 0.502 0.755 
       
 2A 0.034 0.038 0.077 0.085 0.077 
 2B 0.097 0.119 0.190 0.287 0.460 

2c 2C 0.002 0.001 0.000 0.000 0.000 
 2D 0.011 0.011 0.003 0.002 0.002 
 2E 0.012 0.020 0.045 0.033 0.018 
       
 2A 0.051 0.065 0.050 0.040 0.037 
 2B 0.422 0.723 1.000 1.000 1.000 

2d 2C 0.048 0.056 0.061 0.044 0.044 
 2D 0.084 0.100 0.104 0.113 0.119 
 2E 0.105 0.130 0.198 0.272 0.447 
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Table 7.2c 

The empirical power of the LRT for testing k=3 versus k=4 (á=5%). 
 

   sample size   
Null 

distribution 
alternative n=50 n=100 n=500 n=1000 n=2000 

       
 3A 0.032 0.068 0.097 0.085 0.047 
 3B 0.025 0.064 0.183 0.232 0.355 

3a 3C 0.015 0.030 0.058 0.053 0.032 
 3D 0.092 0.180 0.551 0.764 0.941 
 3E 0.029 0.068 0.225 0.302 0.462 
       
 3A 0.050 0.067 0.112 0.121 0.109 
 3B 0.063 0.123 0.424 0.632 0.831 

3b 3C 0.013 0.027 0.104 0.126 0.126 
 3D 0.050 0.123 0.528 0.766 0.937 
 3E - - - - - 
       
 3A 0.021 0.050 0.107 0.082 0.036 
 3B 0.017     0.040 0.114 0.138 0.142 

3c 3C 0.016     0.031 0.008 0.001 0.000 
 3D 0.032     0.066 0.092 0.087 0.115 
 3E 0.025 0.043 0.081 0.070 0.063 
       
 3A 0.049      0.060 0.071 0.063 0.074 
 3B 0.080      0.125 0.368 0.575 0.808 

3d 3C 0.001      0.003 0.001 0.000 0.000 
 3D 0.008      0.017 0.064 0.140 0.303 
 3E 0.041 0.058 0.113 0.122 0.129 
       
 3A 0.046      0.057 0.064 0.047 0.041 
 3B 0.082      0.152 0.431 0.644 0.893 

3e 3C 0.036      0.045 0.051 0.036 0.013 
 3D 0.146      0.252 0.297 0.537 0.761 
 3E 0.244 0.471 0.962 0.999 1.000 

 
 

 For testing a one component mixture versus a two component mixture, the 

power of the test increases with the distance of  the components. This result is similar 

to the one obtained for normal mixtures by Mendell et al. (1991) and it was not 

unexpected. For testing  k=2 versus k=3, the power is increased only when the sample 

size is large and the components are well separated. Adding a well separated new 

component, but with a small probability, does not improve the power of the test.  This 
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is the case for k=3 versus k=4, too. Concluding, we  can say that the LRT applied to 

the general case k=m versus k=m+1 has a low power when the components are not 

well separated and when one of the components has a small mixing probability. As 

the value of m increases, the sample size required for obtaining a specific power 

increases very much. This result verifies the behaviour of the method for the 

simulated cases of Tables 7.1a-c. As far as the asymptotic distribution of the test 

statistic  is concerned, the ÷2 form does not seem plausible. On the other hand, the null 

distribution depends highly on the value of k and the sample size used. 

 

 

7.5 Applications 
 In the present section the proposed procedure for determining the number of 

components in the case of a finite Poisson mixture is illustrated by two examples 

referring to real datasets.  

 

Example 7.1 The first example concerns the data considered by Bohning et al. 

(1992), among others. The data refer to the number of death notices for women aged 

80 and over, in the Times newspaper for each day in the 3-year period from 1910 to 

1912. The frequencies can be found in Table 7.3. 

 The mean of this data set is equal to 2.156 while the variance is equal to 2.607. 

So, overdispersion is present, and a finite Poisson mixture model is a plausible 

assumption. 

 Indeed, the simple Poisson case provides a very poor fit to the data as shown in 

Table 7.3. Therefore, fitting the data by a Poisson mixture might be more appropriate. 

The results of Table 7.3 come in support of this assumption.  

 

 We used the new procedure of section 7.3 in order to determine the number of 

components. The method provides evidence for a 2-finite Poisson mixture as the 

underlying distribution, which indeed fits the data very well as judged by the value of 

the ÷2 test statistic and the entries of Table 7.4.  
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Table 7.3 
Observed and fitted frequencies for the number of death notices for women aged 

80 and over in Britain for the period 1910-1912. The  asterisks indicate the 
grouping adopted for calculating the ÷2 values. 

 
x observed Poisson 2-finite Poisson 

mixture 
3-finite Poisson  

mixture 
 

0 162.00 126.79 160.92 161.23  
1 267.00 273.47 271.35 271.41  
2 271.00 294.92 262.30 262.08  
3 185.00 212.04 191.25 191.05  
4 111.00 114.34 114.21 114.16  
5 61.00 49.32 57.52 57.55  
6 27.00 17.73 24.83 24.87  
7 8.00 5.46 9.32 9.35  
8 3.00 * 1.47 * 3.08 * 3.09  
9 1.00 * 0.35 * 0.91 * 0.91  

 
÷2 value  24.96 1.494 1.492  

df  7 5 3  
 
 
 

Table 7.4 
Sequential testing results for the data in Table 7.3 

 
  

 

Column 1 of Table 7.4 contains the values of k, the number of the components in the 

mixture. Column 2 contains the value of the maximised loglikelihood for a model 

with k components, while the values of the test statistic for testing m=k against 

m=k+1 can be seen in the third column. Last column contains the associated p-values 

calculated via simulation. Using the bootstrap approach described previously, we 

constructed the null distribution of the test statistic  for various values of k, using 

10000 bootstrap samples. Based on Table 7.4 we reject the hypothesis that the simple 

Poisson distribution (k=1) fits the data, but we cannot reject the hypothesis that a 2-

finite Poisson distribution fits the data. So, we may regard that k=2, i.e. that the 

number of components is two.  

k LRT statistic p-value 
1 22.904 0 
2 0.038 0.339 
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 Looking at  figure 7.1 it is worth noting that the distribution of the LRT 

depends on the value of k as specified by the null hypothesis. This is in contradiction 

with the standard technique for the LRT which assumes that, asymptotically, the 

distribution of the test statistic is the same at every step. Note also that the distribution 

of the test statistic tends to be concentrated towards smaller values as k increases. 

Finally, it can clearly be seen that the ÷2 approximation is very poor. 

 We may deduce, therefore, that the use of the ÷2 can lead to invalid 

conclusions, and hence should be avoided. Bohning et al. (1994) have come to the 

same conclusion for a variety of models in the case k=1. 

1 vs 2

2 vs 3

X   with 2 df
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Figure  7.1  The cumulative distribution function for the test statistic for testing H0 : k=1 vs H1 : k=2  
and H0 : k=2 vs H1 : k=3 for the data of the first example and that of a  χ2  distribution with 2 degrees of 
freedom. Clearly the form of the distribution depends on the value of k. 
 

 

 Some descriptive statistics from the simulations can be seen in Table 7.5. 

Again it is clear that the ÷2 approximation is invalid. At the bottom of  Table 7.5, we 

can see the conditional descriptive statistics, conditional on non zero values of the test 

statistic. P(0) represents the proportion of zero values. 

 

÷ 2 

2 vs 3 

1 vs 2 

÷ 2 (2) 
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Table 7.5 
Simulation results for the data of Table 7.3 

 k=1 vs k=2 k=2 vs k=3 ÷2(2) 
 80th  percentile 0.7313 0.1054 3.2189 
 90th  percentile 1.8237 0.5883 4.6053 
 95th  percentile 3.0141 1.6851 5.9919 
 97.5th  percentile 4.6726 3.0575 7.3778 
 99th  percentile 7.0746 4.3817 9.2103 
  P(0) 0.561 0.490  
  mean 0.5679 0.2598 2 
  median 0 0.0001  
  standard deviation  1.3765 0.8714 2 
 conditional mean 1.2936 0.4853  
 conditional median 0.6001 0.0419  
 conditional standard deviation 1.8380 1.1443  

 
Example 7.2 Consider now the data given in Table 7.6 on the number of accidents 

incurred by 414 machinists  over a period of three months, taken from the classical 

paper of Greenwood and Yule (1920), and analysed by several authors. Note that this 

data set is more skew than the previous. Again, the fit provided by the simple Poisson 

distribution is very poor as seen in Table 7.6. This data set shows a large 

overdispersion. The mean equals 0.483, while the variance is 1.010, i.e. more than 

twice the mean. A notable improvement is achieved by fitting mixtures of Poisson 

models.  

 

Table 7.6 
Observed and fitted frequencies for the number of accidents over a period of 
three months for 414 machinists.  The asterisks indicate the grouping adopted 
for calculating the ÷2 values. 

x observed Poisson 2-finite Poisson 
mixture 

3-finite Poisson 
mixture 

4-finite Poisson  
mixture 

0 296.00 255.41 294.10 296.10 297.34 
1 74.00 123.36 78.46 74.40 75.10 
2 26.00 29.76 20.36 24.79 24.85 
3 8.00 * 4.80 10.52 8.99 8.24 
4 4.00 * 0.58 5.99 4.40 3.88 
5 4.00 * 0.06 2.86 2.60 2.27 
6 1.00 * 0.00 * 1.15 * 1.47 * 1.27 
7 0.00 * 0.00 * 0.39 * 0.73 * 0.62 
8 1.00 * 0.00 * 0.12 * 0.32 * 0.27 
÷2  57.812 4.7045 3.2062 3.1264 
df  2 3 1 - 
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Again in Table 7.7 we summarise the results of our approach. The 3-

component model is an indisputable choice. Note, however that, had we erroneously 

used the ÷2 approximation, we would have chosen the 2-component model because 

the observed value 3.122 of the LRT statistic would not have led to the rejection of 

the null hypothesis if the critical value of the ÷2 distribution has been used. 

 

Table 7.7 
Sequential testing results for the data in Table 7.6 

 
  
 Table 7.8 contains again some descriptive measures derived from the 

simulations. Again, the inadequacy of the ÷2 approximation is clear. 

 

Table 7.8 
Simulation results for the data in Table 7.6 

 
 k=1 vs k=2 k=2 vs k=3 k=3 vs k=4 ÷2(2) 
 80th  percentile 0.7585 0.5512 0.0513 3.2189 
 90th  percentile 1.9376 1.6029 0.1760 4.6053 
 95th  percentile 3.4370 2.6861 0.4899 5.9919 
 97.5th  percentile 4.5530 3.7990 0.9936 7.3778 
 99th  percentile 6.2881 5.2353 1.8350 9.2103 
 P(0) 0.6540 0.5960 0.5380  
  mean 0.5740 0.4497 0.0945 2 
  median 0 0 0  
  stdev 1.3155 1.0971 0.3748 2 
  conditional  mean 1.3251 1.1132 0.1822  
  conditional  median 0.6492 0.5383 0.0241  
  conditional 
standard deviation 

1.7321 1.4971 0.5048  

  k LRT statistic p-value 
  1 88.068 0 
  2 3.122 0.033 
  3 0.094 0.216 
  4 0.024 0.185 
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Figure  7.2  The cumulative distribution function for the test statistic for testing H0 : k=1 vs H1 : k=2, H0 
: k=2 vs H1 : k=3 and H0 : k=3 vs H1 : k=4 for the data of the second  example and that  of a  χ2  
distribution with 2 degrees of freedom. Again, the form of the distribution clearly depends on the value 
of k. 
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Figure  7.3  The cumulative distribution function  for the test statistic for testing H0 : k=1 vs H1 : k=2 
for the two examples, and those of r a ÷2 with 2 df and a mixture of a degenerate distribution at 0 and a 
÷2 with 1 df. Clearly, the latter is very close to the simulated distribution, especially towards the tail of 
the distribution. 
 
  In Figure 7.2 we can see the distribution of the test statistic for the 

hypotheses tested. Clearly, the distributions differ markedly from the ÷2 distribution 

with 2 degrees of freedom and there is a difference between the distributions 

corresponding to different values of k in the null hypothesis. 

 

 

÷ 2 

 ÷ 2 (2) 

÷ 2 (2) 

0.5+ ÷ 2 (1) 

2 vs 3 

Ex 1 

1 vs 2 

÷  2 (2) 

3 vs 4

Ex  2 

0.5+÷ 2 (1) 
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 Figure 7.3 shows the cumulative distribution function of the test statistic for 

testing H0:  k=1 vs H1 : k=2 for the two datasets. The distributions are very similar, 

verifying the results reported in the previous chapter about the distribution of the 

LRT.  

 In order to assess the performance of the newly proposed method, we 

calculated the empirical power of the test procedures involved. As mentioned before, 

this  is defined as the proportion of  times we rejected the null hypothesis when the 

data actually came from the alternative distribution. So, for both the examples, we  

used as  critical values for given á the corresponding á-percentiles of the null 

distribution constructed via simulation. 10000 samples were generated from the  

distribution in H1, namely the distribution with parameters the ML estimates for a 

model with the number of components specified in H1. For each sample, the LRT 

statistic was calculated so as to construct the distribution of the test statistic under the 

alternative hypothesis. The proportion of times H0 was rejected for a given level of 

significance á are reported in Table 7.9. As can be easily seen, the LRT performs well 

only for the case k=1 vs k=2. In the first example the test lacks power for testing 2 

components versus 3 components since the components are not well separated. This 

holds true for the second example as well. For both examples, the tests have low 

power when testing for points which are redundant.  Generally speaking, it can be 

noted that the test has a lower performance when it is used to detect components that 

are very close. This is usually true for models with a large number of components as 

the new added point is usually very close to the previously estimated points. Note that 

the  null distribution of all the test statistics is highly skewed to the right.  

 

Table 7.9 
Asymptotic Power calculation (á denotes the significance level). 

 

 

 á= 0.10 0.05 0.025 0.01 
 Example 1      
 k=1 vs k=2  1.000 0.999 0.996 0.991 
 k=2 vs k=3  0.117 0.054 0.027 0.015 
 Example 2      
 k=1 vs k=2  1.000 1.000 1.000 1.000 
 k=2 vs k=3  0.560 0.430 0.318 0.207 
 k=3 vs k=4  0.055 0.023 0.008 0.003 
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 Based on the above results on both real and simulated data, the method 

presented in this chapter does not seem to overestimate the number of components in 

the mixture. This is the consequence of the fact that in a model with too many 

components, two or more components are essentially duplicates, and thus the 

improvement of the loglikelihood is negligible. 

  

7.6 Conclusions 
 The performance of the newly proposed method seems to be quite satisfactory, 

as the simulations revealed. This method is of much general interest and it can be used 

for other finite mixtures, like normal or exponential mixtures. The key-idea is to use 

sequentially the LRT, via bootstrap simulations. These extensive simulations are 

computationally intensive, but the impact of powerful computer resources makes 

feasible the applicability of such methods. The conditions derived in chapter 6, can 

save a lot of computational effort. 

 The Hellinger deviance test can also be considered as a counterpart of the 

sequential LRT. Likelihood based methods, usually treat the extreme observations 

(outliers) as coming from a further  component. As seen in chapters 5 and 6,  an 

observation not so far from the main body of the dataset can have a large influence on 

both the ML estimates and the LRT and, hence, this increase may be significant. Till 

now we have not considered the HDT as a method for determining the number of 

components but the intrinsic robustness of Hellinger based methods is a promising 

characteristic. The derivation of a sequential HDT is still an open problem. We hope 

to be able to report results soon. 

 The methodology proposed in this chapter has been applied to finite Poisson 

mixtures. The extension of the reported results to other kind of finite mixtures is 

obvious. We may apply the sequential LRT for finite normal mixtures or latent class 

models, for example. This approach may also be of particular interest in the area of 

cluster analysis, see, e.g.,  McLachlan (1992, pp 22). 

 Finally, it should be emphasised that the method introduced in this chapter, can 

lead to the development of other procedures for testing hypotheses for mixtures with 

more than one component, which are very few in the literature. 
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Chapter 8 
Conclusions and Open Problems 

 

 
 This thesis contains new results concerning Poisson mixtures finite or not. 

Extensive reviews of existing results are given  covering the literature on such models 

up to now. Some important new results are also provided. 

 There are a lot of interesting problems which could not have been addressed in 

this thesis. The wide applicability of mixed Poisson models, makes it interesting to 

mention some of them in order to stimulate the interested reader for further research.  

Several cases are still part of ongoing research. 

 Chapter 1 presented proneness and contagion models. These two distinct 

models, starting from quite different assumptions about the underlying situation, lead 

to the same distributional form. Such an  example is the negative binomial distribution 

which can be derived via both a proneness and a contagion model (and in fact via 

several other models). It remains   an open problem to distinguish between these two 

models. In this case, as in all other cases in which other mixed Poisson distributions 

arise, additional information is needed. Using the exact times of the occurrence of the 

events does not facilitate the solution of the problem (see, e.g.  Cane (1977) and 

Xekalaki (1983)). Looking at the data arranged  in  two consecutive time periods can 

provide additional insight (see Xekalaki (1984)). So, it remains an open problem to 

find a procedure for distinguishing between these two models (and perhaps between 

some other models). 

 Chapter 2 contains material about mixed Poisson distributions. In practice, 

only a few of these results have been used. The reason is the complicated form of their 

probability function, and the difficulty in deriving estimates for their parameters. 

Estimation procedures which can simplify the estimation of the parameters of mixed 
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Poisson distributions are interesting. Consider the negative binomial distribution, a 

prominent member of the class of mixed Poisson distributions. The ML estimators of 

its parameters are hard to be derived, and special numerical methods are needed. The 

same is true for the majority of the mixed Poisson distributions described.   

 It would also be interesting to examine more thoroughly some important (but 

yet rather ignored) members of this family. As seen in this thesis, the mixed Poisson 

distribution resembles the shape of the mixing distribution. So, continuous 

distributions which can describe particular forms of data can be used as mixing 

distributions, for deriving discrete analogues. Such a special distribution is the 

Poisson Lognormal distribution. Its probability function cannot be written in a closed 

form and a recurrence relation is not available. This leads to the limited applicability 

of this distribution which can describe data sets that exhibit high skewness. However, 

in recent years, the increased computational power can help  overcome such  

problems. Further research is needed so as to examine more thoroughly the properties 

of a large number of mixed Poisson distributions and to make a comparative study of 

their performance. 

 Chapter 3 treats the ML estimation method for finite Poisson mixtures and the 

more general form of semiparametric ML estimation. Even when the mixing 

distribution is continuous, we can estimate it only by a finite step distribution. The 

EM algorithm is a promising procedure for ML estimation when the number of 

support points is known. One  method for substantially improving the speed of the 

EM algorithm was proposed. It was also tried to find better initial values, as well as 

better stopping rules for the algorithm. All these aspects can improve the algorithm. 

Further improvements are needed. Several choices of procedures for finding good 

initial values, as well as better stopping rules for the algorithm have also been 

considered. As far as semiparametric ML estimation is concerned, it was shown that 

the proposed methods are not efficient for the case of Poisson mixtures. The results 

about the M2 type of samples, when additional information about the observations is 

available, encourages the search for this additional information, although this can be 

expensive. The gain is very large even with small additional information. This chapter 

contains, also, interesting extensions of the applications of the EM algorithm for finite 

mixtures to problems which can be considered as mixture problems, such as in the 

case of distributions with added zeroes. It would be useful to extend such applications 
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to other models, so as to apply the simple EM algorithm. Such problems are the 

general problem of weighted distributions, mixture models with non identical 

components,  models containing restrictions such as models with added probability in 

some points, outlier detection problems etc. 

 Chapter 4  discourages the use of the moment method of estimation. The 

moment estimates very often do not exist and when they exist they are inferior to the 

ML estimates.  A modification of the classical moment estimation was proposed by 

replacing higher order moments with  other functionals. So, alternative estimation 

methods were considered which are very useful in particular applications. The zero 

frequency method was presented, which is very interesting when special attention 

must be paid to the zero frequency. 

 Chapters 5 and 6  provide robust methodologies alternative to the likelihood 

based methodologies, covering estimation, testing of hypothesis and diagnostic 

matters. These are  based on the Minimum Hellinger Distance. Both these chapters 

contain almost entirely new results. It is very interesting that Minimum Hellinger 

methodologies are preferable since they combine high efficiency with strong 

robustness. These results could be extended  to cover other problems such as mixed 

Poisson regression problems, estimation and hypothesis testing for mixtures from 

other distributions, or  problems in cluster analysis.  

 As Lindsay (1994) showed,  several other distances can be considered for 

minimum distance estimation. The MHD used in this thesis is known to have useful 

robustness properties to outliers, while other distances are more appropriate for other 

kinds of departure form the assumed model, such as the presence of inliers etc. 

Developing such methods would be very interesting. In this thesis only the case of 

data contamination was examined. The case of model deviation has not been dealt 

with despite its practical interest. For example, it would be interesting to examine the 

behaviour of estimation methods when the component distributions deviate from the 

Poisson forms considered in this thesis.  

  

 Chapter 7, treats a problem which does not seem to have a clear answer: how 

many components do exist in  a mixture? This problem, and the similar in nature 

problem on the determination of the number of clusters, is in fact insolvable. A new 

method was developed, which utilises the LRT statistic sequentially, in order to find 
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the number of components for which the addition of another component will not 

improve significantly the likelihood. It is interesting to examine if using the test based 

on the Hellinger deviance would improve our insight. The sequential LRT procedure 

could be  generalised  by allowing for covariates in our model. It should be 

emphasised that we used this new method for Poisson mixtures. Clearly, the method is 

also applicable to other families of mixtures. 

 Only univariate Poisson mixtures were examined in this thesis. It would be 

interesting to examine bivariate mixed Poisson distributions, too. Bivariate extensions 

can provide a better insight into the situation under consideration, which makes them  

promising models for real applications. Unfortunately, since the bivariate Poisson 

distribution has 3 parameters, several distinct mixed bivariate Poisson distributions 

can be constructed.  

 Mixture models have become very fashionable nowadays. The availability of 

computer resources has removed any obstacles to the application of mixture models 

and now a variety of distinct fields of statistical methodology uses mixture models. A 

lot of research on mixture models is expected to be carried out in the next years and 

we hope that the problems covered in this thesis will help in enhancing the existing  

knowledge about mixtures. 
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APPENDIX 
 

The Jacknife Estimator of the Variance 
 

 The jacknife is a useful technique for estimating the bias and the standard 

errors of an estimate. The jacknife focuses on the samples that leave out one 

observation at a time, i.e. we calculate the estimates for all the samples resulting when 

we drop an observation each time. More formally if the full sample is 

X = ( , ,..., )x x xn1 2 , then we represent the i-th jacknife sample as: 

X( ) ( , ,..., , ,..., )i i i nx x x x x= − +1 2 1 1 , i.e. the i-th jacknife sample is the sample which 

results form the full sample if  we leave out the i-th observation.  

 Suppose that we have an estimator ! ( )θ = s X based on  the full sample.  Then 

we can derive the i-th jacknife estimate of θ  as ! ( )( ) ( )θ i is= X , i.e. the estimate derived 

form the i-th jacknife sample. Then the jacknife estimate of standard error is 

calculated as 

( )s n
njack i

i

n

= − −
=
∑1 2

1

! !
( ) (.)θ θ  , 

where !

!

(.)

( )

θ
θ

= =
∑ i
i

n

n
1 . Note that the factor (n-1) is introduced to account for the 

similarity of the jacknife samples. 

 Jacknife estimators are known to have less bias than standard estimators. In 

many cases exact standard errors are not easily derived and thus the jacknife standard 

errors can be derived more  easily. 

 In all the applications in this thesis, the jacknife standard errors were 

calculated. For more details on jacknife the reader is referred to Efron and Tibshirani 

(1993). 
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