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ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Περίληψη

Σχολή Επιστημών & Τεχνολογίας της Πληροφορίας

Τμήμα Στατιστικής

Κωνσταντίνα ΚΟΚΗ

Στην εποχή της πληροφορίας και του μεγάλου όγκου δεδομένων, η ανάπτυξη

τεχνικών εκμάθησης (Machine Learning) με τη βοήθεια των ηλεκτρονικών υπο-

λογιστών, μας έδωσε τη δυνατότητά να μελετήσουμε πολύπλοκα προβλήματα.

Η μη εύρεση αναλυτικών λύσεων για εκτίμηση των παραμέτρων διάφορων υπο-

δειγμάτων έχει οδηγήσει στην άνθιση της Μπεϋζιανής συμπερασματολογίας. Σε

αυτή την κατεύθυνση στρέφεται και η παρούσα Διδακτορική διατριβή. Με ερ-

γαλεία τις τεχνικές εκμάθησης, ασχολούμαστε με τη μοντελοποίηση πολύπλοκων

πολυμεταβλητών Μπεϋζιανών μοντέλων.

Η διατριβή αυτή χωρίζεται σε δύο βασικά ερευνητικά πεδία. Το πρώτο πε-

δίο αφορά την ανάπτυξη Κρυμμένων Μαρκοβιανών μοντέλων (Hidden Markov

models) με πεπερασμένα στάδια (states/regimes) και εξωγενείς επεξηγηματικές

μεταβλητές. Ιδιαίτερα, επεκτείνουμε προηγούμενα Κρυμμένα Μαρκοβιανά μο-

ντέλα, προτείνοντας συγκεκριμένη μεθοδολογία, βασιζόμενη στην Pólya-Gamma

τεχνική αύξησης δεδομένων (data augmentation) για την εκτίμηση των παρα-

μέτρων, ενώ ταυτόχρονα επιλέγουμε στοχαστικά τις επεξηγηματικές μεταβλητές

που επηρεάζουν την ανεξαρτητη μεταβλητή. Αξιοποιώντας μεθόδους βασι-

σμένες σε Μαρκοβιανές Αλυσίδες Μοντε Καρλο (Markov Chain Monte Carlo),

προτείνουμε ένα σχήμα προσομοίωσης για πιο ακριβή συμπερασματολογία και

εν τέλει βελτιωμένες προβλέψεις, σε σχέση με προηγούμενες εργασίες. Αποδει-

κνύουμε εμπειρικά, ότι η μεθοδολογία αυτή υπερέχει — τόσο στις προβλέψεις

όσο και στην επιλογή των επεξηγηματικών μεταβλητών —, έναντι άλλων προ-

τεινόμενων μοντέλων, σε προσομοιωμένα δεδομένα. Στη συνέχεια εφαρμόζουμε

το προαναφερθέν μοντέλο σε realized volatility δεδομένα.

Επιπλέον, μελετάμε χρονολογικές σειρές κρυπτονομισμάτωνχρησιμοποιώντας

τα Κρυμμένα Μαρκοβιανά μοντέλα, με απώτερο στόχο να κατανοήσουμε τα χα-

ρακτηριστικά αυτών των καινούργιων επενδυτικών αγαθών (financial assets) και

τη σχέση τους με τα υπάρχοντα συμβατικά οικονομικά αγαθά (traditional financial

covariates). Τέλος, εφαρμόζοντας διάφορα Κρυμμένα Μαρκοβιανά μοντέλα σε



x

σειρές αποδόσεων κρυπτονομισμάτων, δείχνουμε ότι το προτεινόμενο μοντέλο με

τέσσερα στάδια έχει μεγαλύτερη προβλεπτική ισχύ από όλα υπόλοιπα μοντέλα

της μελέτης μας.

Το δεύτερο ερευνητικό πεδίο αφορά μία εφαρμογή των Μπεϋζιανών διαδι-

κασιών Poisson για τη μοντελοποίηση της X-ray πιθανοφάνειας των Ενεργών

Γαλαξιακών Νουκλεοτιδίων (Active Galactic Nuclei). Σε συνεργασία με μία ε-

ρευνητική ομάδα αποτελούμενη από φυσικούς και αστροφυσικούς, μέσω της

Μπεϋζιανής προσέγγισης, λαμβάνουμε υπόψη τα Poisson σφάλματα που προ-

κύπτουν από τις διακυμάνσεις των X-rays καθώς επίσης και την αβεβαιότητα

στην εκτίμηση των φωτομετρικών ερυθρομετατοπίσεων. 'Ετσι, συμβάλουμε στην

καλύτερη κατανόηση της δημιουργίας των υπερμαζικών μελανών οπών (super-

massive black holes) στο σύμπαν.
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Chapter 1

Introduction

The present dissertation is divided into two main areas. The first research area is pre-

sented in Chapters 2 to 4. In a nutshell, we consider a Bayesian modeling methodol-

ogy for explaining and predicting financial time series. Particularly, we proposed and

developed a new class of Non-Homogeneous Hidden Markov models with a variable

selection scheme and applied it in realized volatility and cryptocurrency time series

data. The second research area concerns a Bayesian Poisson process approach to ac-

count for the determination and estimation errors in astrophysics data, cf. Chapter 5.

The structure of this dissertation is as follows.

In the second chapter of this thesis, we consider finite-state space Non- Homoge-

neous Hidden Markov Models for modeling and forecasting univariate time series.

Given a set of predictors, the time series are modeled via predictive regressions with

state dependent coefficients and time-varying transition probabilities that depend on

the predictors via a logistic/multinomial function. In a hidden Markov setting, in-

ference for logistic regression coefficients becomes complicated and in some cases

impossible due to convergence issues. In this work, we aim to address this prob-

lem utilizing the recently proposed Pólya-Gamma latent variable scheme. Also, we

allow for model uncertainty regarding the predictors that affect the series both lin-

early – in the mean – and non-linearly – in the transition matrix. Predictor selection

and inference on the model parameters are based on an automatic MCMC scheme

with reversible jump steps. Hence, the proposed methodology can be used as a black

box for predicting time series. Using simulation experiments, we illustrate the per-

formance of our algorithm in various setups, in terms of mixing properties, model

selection and predictive ability. An empirical study on realized volatility data shows

that our methodology gives improved forecasts compared to benchmark models.

Next, Chapter 3 reports an additional application of the aforementioned Non-

Homogeneous Pólya-Gamma Hidden Markov Model (NHPG) on cryptocurrencies

returns series. Due to the cryptocurrencies dual nature, conventional financial models
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fail to explain the economic and monetary properties. Their usage as financial assets

on the one side and their tight connection to the underlying blockchain structure on

the other. In an effort to examine both components via a unified approach, we apply

the NHPG model model with an extended set of financial and blockchain specific co-

variates on the Bitcoin (BTC) and Ether (ETH) price data. Based on the observable

series, the NHPG model offers a novel perspective on the underlying microstruc-

ture of the cryptocurrency market and provides insight on unobservable parameters

such as the behavior of investors, traders and miners. The algorithm identifies two

alternating periods (hidden states) of inherently different activity – fundamental ver-

sus uninformed or noise traders – in the Bitcoin ecosystem and unveils differences in

both the short/long run dynamics and in the financial characteristics of the two states,

such as significant explanatory variables, extreme events and varying series autocor-

relation. In a somewhat unexpected result, the Bitcoin and Ether markets are found

to be influenced by markedly distinct indicators despite their perceived correlation.

The current approach backs earlier findings that cryptocurrencies are unlike any con-

ventional financial asset and makes a first step towards understanding cryptocurrency

markets via a more comprehensive lens.

Extending the work presented in Chapter 3, we leverage the Bayesian Hidden

Markov models – including the aforementioned m-states Non-Homogeneous Hid-

den Markov Pólya-Gamma – in predicting cryptocurrencies in Chapter 4. In partic-

ular, we consider a variety of multi-state Hidden Markov models for predicting and

explaining the Bitcoin, Ether and Ripple returns in the presence of state (regime)

dynamics. In addition, we examine the effects of several financial, economic and

cryptocurrency specific predictors on the cryptocurrency return series. Our prelimi-

nary results indicate that the 4-states Non-Homogeneous Hidden Markov model has

the best one-step-ahead forecasting performance among all the competing models

for all three series. The superiority of the predictive densities, over the single regime

random walk model, relies on the fact that the states capture alternating periods with

distinct returns’ characteristics. In particular, we identify bull, bear and calm regimes

for the Bitcoin series, and periods with different profit and risk magnitudes for the

Ether and Ripple series. Finally, we observe that conditionally on the hidden states,

the predictors have different linear and non-linear effects.

Lastly, the fifth chapter presents the research output of the collaboration with

the National Observatory of Athens and the Max Plank Institüt for Physics in Mu-

nich. Our contribution to this research lies in the Bayesian modeling and implemen-

tation of the Active Galactic Nucley (AGN) X-ray luminosity function. In detail,
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we combine deep X-ray survey data from the Chandra observatory and the wide-

area/shallow XMM-XXL field to estimate the AGN X-ray luminosity function in the

redshift range z = 3 − 5. The sample consists of nearly 340 sources with either pho-

tometric (212) or spectroscopic (128) redshift in the above range. The combination

of deep and shallow survey fields also provides a luminosity baseline of three orders

of magnitude, LX(2 − 10 keV) ≈ 1043 − 1046 erg s−1 at z > 3. We follow a Bayesian

approach to determine the binned AGN space density and explore their evolution in

a model-independent way. Our methodology properly accounts for Poisson errors in

the determination of X-ray fluxes and uncertainties in photometric redshift estimates.

We demonstrate that the latter is essential for unbiased measurement of space densi-

ties. We find that the AGN X-ray luminosity function evolves strongly between the

redshift intervals z = 3 − 4 and z = 4 − 5. There is also suggestive evidence that the

amplitude of this evolution is luminosity dependent. The space density of AGN with

LX(2 − 10 keV) < 1045 erg s−1 drops by a factor of 5 between the redshift intervals

above, while the evolution of brighter AGN appears to be milder. Comparison of our

X-ray luminosity function with that of UV/optical selected QSOs at similar redshifts

shows broad agreement at bright luminosities, LX(2 − 10 keV) > 1045 erg s−1. At

fainter luminosities X-ray surveys measure higher AGN space densities. The faint-

end slope of UV/optical luminosity functions however, is steeper than for X-ray se-

lected AGN. This implies that the type-I AGN fraction increases with decreasing

luminosity at z > 3, opposite to trends established at lower redshift. We also assess

the significance of AGN in keeping the hydrogen ionised at high redshift. Our X-ray

luminosity function yields ionising photon rate densities that are insufficient to keep

the Universe ionised at redshift z > 4. A source of uncertainty in this calculation is

the escape fraction of UV photons for X-ray selected AGN.





5

Chapter 2

Forecasting under model uncertainty:
Non-homogeneous hidden Markov
models with Pólya-Gamma data
augmentation

2.1 Introduction

Discrete-time finite state-space Homogeneous Hidden Markov Models (HHMMs)

have been extensively studied and used to model stochastic processes that consist of

an observed process and a latent (hidden) sequence of states which is assumed to af-

fect the observation sequence, see for example Cappé, Moulines, and Ryden (2005)

and Billio, Monfort, and Robert (1999). Bayesian inference, using Markov Chain

Monte Carlo (MCMC) techniques, has enhanced the applicability of HHMMs and

has led to the construction of more complex model specifications including Non-

Homogeneous Hidden Markov Models (NHHMMs). Initially, Diebold, Lee, and

Weinbach (1994) studied the 2-state Gaussian NHHMMs where the time varying

transition probabilities were modeled via logistic functions. Their approach was

based on the Expectation-Maximization algorithm (EM). Filardo and Gordon (1998)

adopted a Bayesian perspective to overcome technical and calculation issues of clas-

sical approaches. Since then, various Bayesian methods have been proposed in the

literature. For example, Spezia (2006) modeled the time-varying transition probabil-

ities via a logistic function depending on exogenous variables and performed model

selection based on the Bayes factor. In the same spirit, Meligkotsidou and Dellapor-

tas (2011) considered an m-state (m ≥ 2) NHHMM and assumed that the elements of
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the transition matrix are linked through exogenous variables with a multinomial lo-

gistic link, whereas the observed process conditional on the unobserved process fol-

lows an autoregressive model of order p. They accommodated and exploited model

uncertainty within their Bayesian model – by allowing covariate selection only on

the transition matrix – to improve the predictive ability of NHHMMs on economic

data series.

Based on experimental evidence, the algorithm of Meligkotsidou and Dellaportas

(2011) (M&D) faces convergence issues when there exists model uncertainty, due to

the data augmentation scheme of Holmes and Held (2006). Polson, Scott, and Windle

(2013) confirm the efficiency issues in the Holmes and Held (2006) scheme and pro-

pose a Pólya-Gamma data augmentation strategy that significantly improves over var-

ious benchmarks, (O’Brien and Dunson, 2004; Frühwirth-Schnatter and Frühwirth,

2010; Fussl, Frühwirth-Schnatter, and Frühwirth, 2013). Furthermore, the recent

work of Holsclaw et al. (2017) confirms that using Pólya-Gamma data augmentation

to parametrize the transition probabilities of NHHMMs results in an algorithm that

mixes well and provides adequate estimates of the model parameters.

Motivated by this, we revisit the work of Meligkotsidou and Dellaportas (2011)

by employing the recent methodological advances on the Pólya-Gamma data aug-

mentation scheme of Polson, Scott, and Windle (2013). We consider NHHMMs

in which the time series are modeled via different predictive regression models for

each state, whereas the transition probabilities are modeled via logistic regressions.

Given an available set of predictors, we allow for model uncertainty regarding the

predictors that affect the series both linearly – directly in the mean regressions – and

non-linearly – in the transition probability matrix.

The resulting model is a Non-Homogeneous Pólya-Gamma Hidden Markov Model,

which we will denote by NHPG. Bayesian inference is performed via a MCMC

scheme which overcomes difficulties and convergence issues inherent in existing

MCMC algorithms. To this end, we exploit the missing data representation of hid-

den Markov models and construct an MCMC algorithm based on data augmentation,

consisting of several steps. First, we sample the latent sequence of states via the

Scaled Forward-Backward algorithm of Scott (2002), which is a modification of the

Forward-Backward algorithm of Baum et al. (1970) who used it to implement the

classical EM algorithm. Then, we use a logistic regression representation of the tran-

sition probabilities and simulate the parameters of the mean predictive regression

model for each state, via Gibbs sampling steps. Finally, we incorporate variable se-

lection within our MCMC scheme by using the Reversible Jump (RJ) algorithm of
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Green (1995) and Hastie and Green (2011).

Different approaches have been used in the literature to cope with the model

selection problem. The use of information criteria, such as Akaike’s Information

Criterion (AIC), (Akaike, Petrov, and Csaki, 1973), the Bayesian Information Cri-

terion (BIC) of Schwarz, 1978, the Deviance Information Criterion (DIC), (Spiegel-

halter et al., 2002) or the Widely applicable Bayesian Information Criterion (WBIC),

(Watanabe, 2013), is another approach to variable selection. A study for comparing

variable selection methods is well presented in O’Hara and Sillanpää (2009) whilst

Dellaportas, Forster, and Ntzoufras (2002) study the variable selection methods in

the context of model choice. Holsclaw et al. (2017) consider a NHHMM similar to

ours for modeling multivariate meteorological time series data. In that paper, the

transition probabilities are modeled via multinomial logistic regressions affected by

a specific set of exogenous variables. The authors use the BIC criterion for choos-

ing the best model among a pre-specified class of models. We extend this work by

considering the problems of statistical inference and variable selection jointly, in a

purely Bayesian setting. The proposed model is flexible, since we do not decide a

priori which covariates affect the observed or the unobserved process. Instead, we

have a common pool of covariates {X} and within the MCMC algorithm, we gauge

which covariates are included in subset
{
X(1)

}
affecting the mean predictive equation

of the observed process, and which covariates are included in subset
{
X(2)

}
affecting

the time-varying transition probabilities.

Our probabilistic approach is based on the calculation of the posterior distribution

of different NHPGs. Posterior probabilities can be used either for selecting the most

probable model (i.e., making inference using the model with the highest posterior

probability), or for Bayesian model averaging (i.e., producing inferences averaged

over different NHPGs). Barbieri and Berger (2004) argue that the optimal predictive

model is not necessarily the model with the highest posterior probability. Specifi-

cally, they show that the optimal predictive model for linear regression models is the

median probability model, i.e. the model that is consisted of those covariates which

have overall posterior inclusion probabilities greater or equal to 0.5. We calculate

both the posterior probabilities of the models and the probabilities of inclusion.

We use our model for predicting realized volatility. Accurate forecasting of fu-

ture volatility is important for asset allocation, portfolio construction and risk man-

agement, (Gospodinov, Gavala, and Jiang, 2006). A review on the realized volatility

literature can be found in McAleer and Medeiros (2008). The relationship between

the volatility and macroeconomic and/or financial variables is investigated in Paye
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(2012) and Christiansen, Schmeling, and Schrimpf (2012) and Meligkotsidou et al.

(2019) among others. The proposed NHPG captures not only the linear relationship

between the logarithm of realized volatility and a set of predictors, as in the model

of Christiansen, Schmeling, and Schrimpf (2012) (CSS), but also the nonlinear re-

lationship, as well as other special characteristics of the analyzed series, such as

heteroscedasticity and autocorrelation. NHPG outperforms the M&D, CSS models

and the HHMM, in terms of forecasting ability.

The MCMC output of the predictive density of the NHPG is multimodal and

thus, scoring rules that are not sensitive to distance should be avoided (Gneiting and

Raftery, 2007). For instance the logarithmic scoring rule gives harsh penalty for

low probability events (Boero, Smith, and Wallis, 2011; Gneiting and Raftery, 2007)

and prefers the forecast density that is less informative (Machete, 2013). In this

case, a better alternative not only for validating the model performance but also for

assessing the quality of forecasts is the Continuous Rank Probability Score (CRPS).

This proper scoring rule has gained a lot of interest in the meteorological community,

see Grimit et al. (2006), and proves to be the most appropriate rule also for the NHPG

model.

In summary, the main contributions of this study are the following

1. We propose a flexible model (NHPG) that can detect the linear and a non-linear

relationship between the predictors and the studied time series. This results in

a stable algorithm which does not need tuning and can be used as a black box

for predicting time series.

2. We present experimental evidence in support of the claim that the NHPG model

has improved performance in terms of variable selection and forecasting ability

when compared with M&D. This is at no cost of computational complexity and

running time.

3. We provide evidence that the proposed algorithm performs well also with real

datasets by obtaining improved forecasts on the realized volatility data set of

Christiansen, Schmeling, and Schrimpf (2012).

The paper proceeds as follows: In Section 2.2, we outline the proposed model

and in Section 2.3, we describe our Bayesian computational strategy both with and

without model uncertainty. Section 2.4, presents our forecasting criteria. Section 2.5

contains numerical experiments and Section 2.6 proceeds with the main application

on the realized volatility data set. Finally, Section 2.7 concludes the paper. The

extension of the 2-state to the general m-state, m ≥ 2, NHPG model along with
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some technical details and a case study without model uncertainty are deferred to the

Appendix.

2.2 The Non-Homogeneous Pólya-Gamma Hidden

Markov Model

The proposed 2-state NHPG for univariate time series is described as follows. Con-

sider an observed random process {Yt} and a hidden underlying process {Zt} which

is a 2-state non-homogeneous discrete-time Markov chain that determines the states

of the observed process. Let yt and zt be the realizations of the random processes

{Yt} and {Zt}, respectively. We assume that at time t, t = 1, . . . ,T , yt depends on the

current state zt and not on the previous states. Consider also a set of r − 1 available

predictors {Xt} with realization xt = (1, x1t, . . . , xr−1t) at time t. A subset of the pre-

dictors X(1)
t ⊆ {Xt} of length r1 − 1 is used in the regression model for the observed

process and a subset X(2)
t ⊆ {Xt} of length r2 − 1 is used to describe the dynamics of

the time-varying transition probabilities. Thus, we allow the covariates to affect the

observed process {Yt} non-linearly.

The observed random process {Yt} can be written in the form

Yt = g (Zt) + εt,

where g(Zt) = X(1)
t−1BZt is a linear function, BZt =

(
b0Zt , b1Zt , . . . , br1−1Zt

)′ are the re-

gression coefficients and εt ∼ N
(
0, σ2

Zt

)
. We use N

(
µ, σ2

)
to denote the normal

distribution with mean µ and variance σ2. In a less formal way, if s represents the

hidden states, the observed series given the unobserved process has the form

Yt | Zt = s ∼ N
(
X(1)

t−1Bs, σ
2
s

)
, s = 1, 2.

The dynamics of the unobserved process {Zt} can be described by the time-varying

transition probabilities, which depend on the predictors X(2)
t and are given by the

following relationship

P(Zt+1 = j | Zt = i) = p(t)
i j =

exp
(
x(2)

t βi j

)
∑2

j=1 exp
(
x(2)

t βi j

) , i, j = 1, 2,

where βi j = (β0,i j, β1,i j, . . . , βr2−1,i j)′ is the vector of the logistic regression coefficients

to be estimated. Note that for identifiability reasons, we adopt the convention of
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setting, for each row of the transition matrix, one of the βi j to be a vector of zeros.

Without loss of generality, we set βi j = β ji = 0 for i, j = 1, 2, i , j. Hence, for

βi = βii, i = 1, 2 probabilities can be written in a simpler form

p(t)
ii =

exp
(
x(2)

t βi

)
1 + exp

(
x(2)

t βi

) and p(t)
i j = 1 − p(t)

ii , i, j = 1, 2, i , j.

To model the probabilities of staying at the same state for two consecutive time pe-

riods, i.e. pt
ss, we define, for t = 1 . . . ,T − 1, the quantity Z̃ s

t+1 = I [Zt+1 = Zt = s].

Therefore, the sum
∑

t Z̃ s
t+1, is the number of times that the chain was at state s for

two consecutive time periods. Then,

p
(
Z̃ s

t+1 = 1 | x(2)
t

)
= pt

ss =
exp

(
x(2)

t βs

)
1 + exp

(
x(2)

t βs

) ⇔ logit
(
p(t)

ss

)
= x(2)

t βs, s = 1, 2.

Summing up, the unknown quantities of the NHPG are
{
θs =

(
Bs, σ

2
s

)
, βs, s = 1, 2

}
,

i.e., the parameters in the mean predictive regression equation and the parameters in

the logistic regression equation for the transition probabilities of the unobserved pro-

cess {Zt}, t = 1, ...,T . We use conditional congugate analysis to make inference on θ.

Specifically, we assume that σ2
s ∼ IG (p, q) and Bs | σ

2
s ∼ N

(
L0, σ

2
sV0

)
, s = 1, 2,

where IG denotes the Inverted-Gamma distribution. To make inference about the

logistic regression coefficients, we use the auxiliary variables (data augmentation)

method of Polson, Scott, and Windle, 2013 as described in Subsection 2.3.2.1. In

brief, given the Pólya-Gamma auxiliary variables, a conjugate prior for the logistic

regression coefficients βs, s = 1, 2 is multivariate Normal distribution N
(
mβs ,Vβs

)
2.2.1 Label Switching

The m-states HMMs often suffer from the so called label switching problem, see

for example Spezia (2009) and Jasra, Holmes, and Stephens (2005) and Marin,

Mengersen, and Robert (2005). In a nutshell, the m! models that arise from the

m! ways to label the hidden states can be interchangeable, if no information on the

parameters is available. Using uninformative priors as in Section 2.2, can lead to

unidentifiable – possibly multimodal – posterior distributions.

In this study we focus in the predictive densities and in defining the predictors

that affect the series, which are invariant to label switching (Dellaportas and Pa-

pageorgiou, 2006; Frühwirth-Schnatter, 2001). Nevertheless, we propose a hybrid
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methodology to tackle the label switching problem if estimation of the unknown pa-

rameters – based either on the most probable model or on the median model – is

desired. In short, we propose a two-layer procedure, i.e. the use of the random

permutation sampler of Frühwirth-Schnatter (2001) and a modification of the online

reordering algorithm of Marin, Mengersen, and Robert (2005).

2.2.2 Tackling the label switching problem

Estimation of the unknown parameters, based either on the median probability model

or on the most probable model, can be challenging if label switching occurs. Us-

ing the MCMC output for inference can lead to inaccurate estimates (Frühwirth-

Schnatter, 2001). Even though there have been proposed many different strategies to

tackle this problem – see for example Rodrı́guez and Walker (2014) and references

therein – in high-dimensional models (as the NHPG) finding a “fix” for the label

switching problem is difficult, (Dellaportas and Papageorgiou, 2006). Our approach

to this problem is a hybird mix of two existing methodologies. In the following lines,

we present in brief these methodologies. More details can be found in the referred

articles.

Specifically, we propose to use the permutation sampler of Frühwirth-Schnatter

(2001), which introduces online identifiability constrains via a data-driven procedure.

The permutation sampler is a two-step procedure. First, we run an unconstrained

sampler, followed by a randomly selected permutation at the current labeling, to ex-

plore the whole label-subspaces, e.g. if m = 2, change 1s to 2s with probability 0.5

and let 1s remain the same with probability 0.5. Then, we perform a graphical analy-

sis of the unconstrained MCMC output, i.e. using the bivariate scatterplots, among all

possible combinations of the mean equation parameters’ components. Based on the

plots, if there are groups that correspond to different states and these groups imply a

special ordering on the labels, then we define the “suitable” identification constraint.

In the second step, we perform a permutation sampling under the identification con-

straint, as derived by the visual inspection of the unconstrained MCMC output. At

each iteration of the MCMC algorithm, we permute the parameters and the hidden

states until the identification constraint is fulfilled. More details on the permutation

sampler for NHHMMs can be found in Spezia (2006) and Paroli and Spezia (2008),

among others.

However, if no information on the constraints is available from the permutation

sampler or label switching still occurs even after the constrained sampling, then we

propose to use an online reordering algorithm. This algorithm is described in a
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NHHMM setting in Spezia (2009) and Pinto and Spezia (2016) and it is based on

the lines of Marin, Mengersen, and Robert (2005) for mixture models. Specifically,

we propose to run the MCMC sampling scheme for L + M + N iterations. After the

L-sized burn-in period, we estimate iteratively the parameters’ mode θ∗, based on an

M-sized sample. Then, we store the N-sized reordered simulated parameter values

and the permutated estimated hidden process. The reordering is based on the permu-

tation η∗ of the parameters that is closest to the Euclidean distance of the mode. In

particular, for every iteration i, i = 1, . . . ,N, if H is the class of m! permutations, it is

based on the permutation η∗ defined by

η∗ = arg minη j∈H‖η j

(
θ(i)

)
− θ∗‖.

Then, the permutation η∗ is applied to the unknown parameters θ(i) = η∗(θ(i)), β(i) =

η∗
(
β(i)

)
, i = 1, . . . ,N, and the estimated hidden process Z(i).

To sum up, the hybrid algorithm for inference on the parameters while dealing

with the label switching problem, is consisted of five steps.

1. Run the MCMC algorithm for the NHPG with RJ-step, as in Section 2.3.1

excluding step (7).

2. Find the most probable or the median probability model. → Define the fixed

model.

3. Run the Unconstrained random permutation sampler of Frühwirth-Schnatter

(2001).

4. (a) If there exists a suitable constraint

→ Apply the Permutation sampler under an identifiability constraint of

Frühwirth-Schnatter, 2001.

(b) Else

→Run the Online post-processing reordering algorithm of Marin, Mengersen,

and Robert (2005).

5. Use the MCMC output to make inference on the parameters of the NHPG

model.

2.3 Bayesian Inference and Computational Strategy

The key steps in our proposed framework are the following. First, for a given NHPG,

we construct a Markov chain which has as stationary distribution the posterior dis-

tribution of the model parameters. Simulation of this Markov chain provides, after
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some burn in period and adequately many iterations, samples from the posterior dis-

tribution of interest; see, for details, Besag et al. (1995). Second, for a given set of

competing models, each including a different set of predictors in the mean regression

and/or in the transition probabilities equation, we base our inference about the mod-

els on their posterior probabilities. This improves over the approach which considers

the models separately and chooses the best model via significance tests or via model

selection criteria.

2.3.1 The MCMC Sampling Scheme

The main steps of the proposed MCMC algorithm for joint inference on model spec-

ification and model parameters are the following.

1. Generate the initial values of β, θ =
(
B, σ2

)
from their corresponding prior

distribution.

2. Calculate the probabilities of the time-varying transition matrix, using the ini-

tial values.

3. Given the model’s parameters, simulate the hidden states using the Scaled

Forward-Backward algorithm of Scott (2002).

4. Simulate the mean regression parameters via Gibbs sampling.

5. Simulate the coefficients β using the Pólya-Gamma representation of Polson,

Scott, and Windle (2013).

6. Use a couple of reversible jump steps to update: (i) the set of covariates that

affect the transition matrix (i.e. the hidden process) and (ii) that affect the mean

regression model (i.e. the observed process).

7. Make one-step-ahead predictions conditional on the simulated unknown quan-

tities.

8. Repeat steps 3-6 until convergence and then repeat steps 3-7.

In the next subsections, we present each step in detail.

2.3.2 Inference for fixed sets of predictors

For a given NHPG, i.e., for fixed sets of predictors used in the mean equation and

the transition probabilities X(1) and X(2), respectively, we update in turn (i) the latent

variables zT given the current values of the model parameters by using the scaled

Forward-Backward algorithm (Scott, 2002) (ii) the logistic regression coefficients by

adopting the auxiliary variables method of Polson, Scott, and Windle (2013) given
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the sequence of states zT , and (iii) the mean regression coefficients conditional on zT

by using the Gibbs sampling algorithm.

Let yT = (y1, . . . , yT ) be the history of the observed process, zT = (z1, . . . , zT ) the

sequence of states up to time T , and let fs(·) denote the normal probability density

function of Yt | Zt = s, s = 1, 2 and π1(z1) the initial distribution of Z1. The joint

likelihood function of the data, yT , and the sequence of states, zT , is given by

L (θ, β) = π
(
yT , zT | X, θ

)
= π

(
yT | zT , X, θ

)
π
(
zT | X, β

)
= π1(z1) fz1(y1)

T∏
t=1

p(t)
ztzt+1

fzt(yt)

=

2∏
i=1

2∏
j=1

 ∏
t:zt+1= j

p(t)
i j


 1
2πσ2

j

N j/2

exp

− 1
2σ2

j

(
Y j − X(1)′

j B j

)′ (
Y j − X(1)′

j B j

) .
We use the notation Ns, s = 1, 2 for the number of times the chain was in

state s, that is Ns =
∑T

t=1 I(Zt = s), with I denoting the indicator function. If a

prior distribution π (θ, β) is specified for the model parameters, then inference on

all the unknown quantities in the model is based on their joint posterior distribution

π
(
θ, β, zT | yT

)
∝ π (θ, β) π

(
yT , zT | θ, β

)
.

After some straightforward algebra and using the priors described in Section 2.2,

we derive the marginal posterior distribution for the state specific parameters σs and

conditional posterior distribution for Bs,

σ2
s | y

T , zT ∼ IG

(
p +

ns

2
, q +

1
2

(
L′0sV

−1
0s L0s + Y ′sYs − L′sV

−1
s Ls

))
,

Bs | σ
2
s , z

T , yT ∼ N
(
Ls, σ

2
sVs

)
,

with Vs =
(
V−1

0s + X(1)′
s X(1)

s

)−1
and Ls = Vs

(
V−1

0s L0s + X(1)′
s Ys

)
. Finally, the conditional

posterior distribution of βs, s = 1, 2, is a multivariate normal distribution, see Sec-

tion 2.3.2.1.

2.3.2.1 Simulation of the logistic regression coefficients

As we described in Section 2.2, we model the two diagonal elements of the transi-

tion probability matrix by linking them to the set of covariates using a logistic link

function. We use the data augmentation scheme of Polson, Scott, and Windle (2013)

since, as shown in their work, the estimation of logistic regression coefficients using

this scheme is superior, in terms of efficiency and simplicity.
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The authors introduce a new latent variable scheme, based on the Pólya-Gamma

distributions. They proved that binomial likelihoods – or Bernoulli likelihoods as

in our simpler case – parametrized by log odds can be represented as mixtures of

Gaussian distributions with respect to the Pólya-Gamma distribution. Their main

result is that letting p(ω) be the density of a Pólya-Gamma latent variable ω, with

ω ∼ PG(b, 0), for b > 0, the following identity holds for all a ∈ R,

exp (ψ)a(
1 + exp (ψ)

)b = 2−b exp (kψ)
∫ ∞

0
exp

(
−ωψ2/2

)
p (ω) dω,

with k = a − b/2. Furthermore, the conditional distribution of ω | ψ is also Pólya-

Gamma, PG(b, ψ).

When ψ = x(2)β, the previous identity gives rise to a conditionally conjugate

augmentation scheme for binomial likelihoods of logistic parameters. In particular,

let z̃s
t+1 be the realization of Z̃ s

t+1 = I [Zt+1 = Zt = s]. The likelihood for each state s is

given by

L (βs) =

Ns∏
t=1

 exp
(
x(2)

t βs

)
1 + exp

(
x(2)

t βs

)


z̃s
t
 1

1 + exp
(
x(2)

t βs

)


1−z̃s
t

=

Ns∏
t=1

exp
(
x(2)

t βs

)z̃s
t

1 + exp
(
x(2)

t βs

) .
Using the result of Polson, Scott, and Windle (2013) with ks

t = z̃s
t − 1/2 and set-

ting Ωs = diag{ω1,s, . . . , ωNs,s}, the augmented likelihood for each state s = 1, 2 is

proportional to

L (βs, ωs) ∝
Ns∏
t=1

1
2

exp
(
ks

t x(2)
t βs

) ∫ ∞

0
exp

{
−ωt,s

(
x(2)

t βs

)2
/2

}
p(ωt,s)dωt,s.

Conditioning on Ωs, one can derive the expression for the logistic coefficients,

π
(
β | zt, ω

)
∝

Ns∏
t=1

exp
{
ktx

(2)
t βs −

ωt

2

(
x(2)

t βs

)2
}
π (βs)

∝ π (β)
Ns∏
t=1

exp
−ωt

2

(x(2)
t βs

)2
−

2ktx
(2)
t βs

ωt


∝ π (β)

Ns∏
t=1

exp
−ωt

2

(x(2)
t βs

)2
−

2ktx
(2)
t βs

ωt
+

k2
t

ω2
t

 .
Assuming as prior distributions ω ∼ PG(1, 0) and β ∼ N

(
mβ0 ,Vβ0

)
, the posterior

distributions can be derived after some matrix algebra. Simulation from the posterior
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distributions can be done iteratively in two steps:

ωt,s | z̃s
t ∼ PG

(
1, x(2)

t βs

)
, t = 1 : Ns, s = 1, 2,

βs | Z̃,Ωs ∼ N
(
mβs ,Vβs

)
,

Vβs =
(
X(2)′ΩsX(2) + V−1

β0

)−1
and mβs = Vβs

(
X(2)′ks + V−1

β0
mβ0

)
,

where ks =
(
z̃s

1 − 1/2, . . . , z̃s
Ns
− 1/2

)
.

We refer to Polson, Scott, and Windle (2013) for more details on the Pólya-

Gamma distribution and the corresponding sampler. Additional information and a

more transparent development of this data augmentation algorithm can be found in

Choi and Hobert (2013).

2.3.3 Inference under model uncertainty

Here, we consider the full model comparison problem. The uncertainty about which

predictors should be included in the mean regression model and in the transition

probability equation is treated using a double RJMCM algorithm. In this setting, the

RJMCMC does not need tuning and hence it can be used as a black box.

Suppose that a prior π (k) is specified over k models (M1,M2, . . . ,Mk) in a count-

able setK and for each k we are given a prior distribution π (θk | k) along with a like-

lihood L (y | θk, k) for data y. The joint prior for θk and k is π(k, θk) = π(θk | k)π (k).

When a move of type m from x̃ = (k, θk) to x̃∗ =
(
k∗, θ∗k∗

)
is proposed from the pro-

posal distribution g and if jm(x̃) denotes the probability that move m is attempted at

state x̃ and jm∗(x̃∗) the probability of the reverse move, we accept the proposed move

with probability αm (x̃, x̃∗) = min {1, Am(x̃, x̃∗)}, where

Am(x̃, x̃∗) =
L

(
yT | x̃∗

)
π
(
θ∗k∗ | k

∗
)
π (k∗) jm∗(x̃∗)g′m (u | x̃, k)

L (yT | x̃) π (θk | k) π (k) jm (x̃) gm (u∗ | x̃∗, k∗)

∣∣∣∣∣∣∣∣
∂
(
θ∗k∗ , u

∗
)

∂ (θk, u)

∣∣∣∣∣∣∣∣ ,
and

∣∣∣∣∣∂(θ∗k∗ ,u∗)∂(θk ,u)

∣∣∣∣∣ is the Jacobian of the transformation.

In each step, we choose to add or remove one covariate with probability 0.5.

Then, we randomly choose which covariate will be added or removed from the cor-

responding set of the non-included or included covariates. We propose a new value

for the mean equation coefficients B∗ or for the regression equation coefficients β∗

from the respective full conditional posterior density, conditionally on the other co-

efficients. Thus, the Jacobian of the transformation is equal to unity. To be more



2.3. Bayesian Inference and Computational Strategy 17

specific, if we want to update the covariates in the mean equation, the proposal dis-

tribution g′ is just the product of the two conditional posterior distributions. With

some straightforward matrix algebra, the acceptance probability for the mean equa-

tion is αB = min {1, AB} and the acceptance probability for the transition matrix is

αβ = min
{
1, Aβ

}
where

AB =
jm∗ (k∗)
jm (k)

2∏
s=1

∣∣∣V∗s ∣∣∣1/2 |V0s|
1/2

|Vs|
1/2

∣∣∣V∗0s

∣∣∣1/2
× exp

{
−

1
2σ2

s

(
L∗
′

0sV
∗−1
0s L∗0s − L∗

′

s V∗−1
s L∗s − L′0sV

−1
0s L0s + L′sV

−1
s Ls

)}
and

Aβ =
jm∗ (k∗)
jm (k)

2∏
s=1

∣∣∣V∗ωs

∣∣∣1/2 ∣∣∣Vβ0 s

∣∣∣1/2
|Vωs|

1/2
∣∣∣∣V∗β0 s

∣∣∣∣1/2
× exp

{
−

1
2σ2

s

(
L∗
′

β0 sV
∗−1
β0 s L∗β0 s − L∗

′

ωV∗−1
ωs L∗ωs − L′β0 sV

−1
β0 sLβ0 s + L′ωsV

−1
ωs Lωs

)}
.

2.3.4 The m−state NHPG

Our model and the methods described in the previous subsections can be extended

into an m-state NHPG, where the rows of the transition matrix are modeled by multi-

nomial logistic regressions. In details, let {Yt} be the observed process, {Zt} be the

hidden process of an m-state NHPG and {Xt} be the set of available predictors. In cor-

respondence with the 2-state NHPG, conditional on the hidden process, the observed

process is normally distributed using predictors X(1)
t ⊆ {Xt}, i.e.

Yt | Zt = s ∼ N(X(1)
t−1Bs, σ

2
s), s = 1, . . . ,m,

with Bs =
(
b0s, b1s, . . . , br1 s

)
. The probabilities of the transition probability matrices

P(t) are modeled using a multinomial (polychotomus) link with predictors X(2)
t ⊆ {Xt},

i.e.

P (Zt+1 = j | Zt = i) = p(t)
i j =

exp
(
x(2)

t βi j

)
∑m

l=1 exp
(
x(2)

t βil

) , i, j = 1, . . . ,m,

where βi j = (β0,i j, β1,i j, . . . , βr2−1,i j)′. For identifiability reasons, we set βim = 0 for

i = 1, . . . ,m. The joint likelihood is defined as

L (θ, β) =

m∏
i=1

m∏
j=1

 ∏
t:zt+1= j

p(t)
i j


 1

2πσ2
j

N j/2

exp

− 1
2σ2

j

(
Y j − X(1)′

j B j

)′ (
Y j − X(1)′

j B j

) .
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The marginal and conditional posterior distributions of the mean equation param-

eters (Bs, σ
2
s , s = 1, . . . ,m) are the same as in Section 2.3.2. Also, each row of the

transition probability matrix corresponds to a specific multinomial (polychotomus)

logistic regression. To make inference on the multinomial coefficients, we define

the binary variables Z̃i j
t+1 = I

[
Zt+1 = j,Zt = i

]
, j = 1, . . . ,m. Following Holmes and

Held, 2006; Polson, Scott, and Windle, 2013, for i = 1, . . . ,m and j = 1, . . . ,m − 1,

the conditional likelihood for βi j is

L
(
βi j | βi(− j)

)
=

Ni∏
t=1

{
p(t)

i j

}z̃i j
t

=

Ni∏
t=1

 exp
(
x(2)

t βi j

)
∑m

l=1 exp
(
x(2)

t βil

)


z̃i j
t

∝

Ni∏
t=1

{
exp

(
x(2)

t βi j − log
∑

l, j exp
(
x(2)

t βil

))}z̃i j
t

1 + exp
(
x(2)

t βi j − log
∑

l, j exp
(
x(2)

t βil

)) ,
where βi(− j) =

(
βi1, . . . , βi j−1, βi j+1, . . . , βim

)
. Setting ki j

t = z̃i j
t −1/2, ci j

t = log
∑

l, j exp
(
x(2)

t βil

)
and augmenting the likelihood with Pólya-Gamma random variables we derive the

likelihood expression,

L
(
βi j | βi(− j), ωi j

)
∝

Ni∏
t=1

exp
{
ki j

t

(
x(2)

t βi j − ci j
t

)} ∫
exp

{
−ω

i j
t

(
x(2)

t βi j − ci j
t

)2
/2

}
p
(
ω

i j
t

)
dωi j

t .

Utilizing the conditionally conjugate priors on βi j ∼ N
(
m0β j ,V0β j

)
andωt

i j ∼ PG(1, 0),

simulation of the i-th multinomial regression coefficients for the probabilities p(t)
i j ,

j = 1, . . . ,m − 1, is done in m − 1 dual steps. Particularly, let Ωi j = diag
{
ωt

i j

}
and

Ki j = diag
{
ki j

t

}
, t = 1, . . . ,Ni. Conditionally on Ωi j and βi(− j), j = 1, . . . ,m − 1, we

use a Gibbs sampler to update the values of βi j, i.e.

βi j | Ωi j, βi(− j) ∼ N
(
mi j,Vi j

)
,

with Vi j =
(
X(2)′Ωi jX(2) + V0β j

)(−1)
and mi j = Vi j

(
X(2)′

(
Ki j + Ωi jX(2)

)
+ V−1

0β j
m0β j

)
.

Then, given the updated βi j, we sample the auxiliary variables from

ωt
i j ∼ PG

(
1, x(2)

t βi j − ci j
t

)
, t = 1, . . . ,Ni.

Regarding the variable selection, in each iteration we perform a couple of re-

versible jump steps, as described in Section 2.3.3. The reversible jump step for up-

dating the covariate set that affects the mean equation parameters is analogous to the

2-state NHPG. We accept to add/remove a covariate affecting the mean equation with



2.4. Bayesian Forecasting and Scoring rules 19

probability αB = min {1, AB} where

AB =
jm∗ (k∗)
jm (k)

m∏
s=1

∣∣∣V∗s ∣∣∣1/2 |V0s|
1/2

|Vs|
1/2

∣∣∣V∗0s

∣∣∣1/2
× exp

{
−

1
2σ2

s

(
L∗
′

0sV
∗−1
0s L∗0s − L∗

′

s V∗−1
s L∗s − L′0sV

−1
0s L0s + L′sV

−1
s Ls

)}
.

However, the reversible jump for the covariate set that affects the multinomial re-

gressions is a bit more challenging. The acceptance probability can not be found in

close form. Hence, in each iteration we calculate the acceptance probability numeri-

cally. Conditionally on Ωs, s = 1, . . . ,m we simulate the candidate values β∗. Then,

we compute the acceptance probability using the proposed values β and candidate

values β∗. Specifically, the acceptance probability for the multinomial regression

reversible jump, is αβ = min
{
1, Aβ

}
where,

Aβ =
L

(
yT | β∗

)
π
(
β∗k∗ | k

∗
)
π (k∗) jm∗(β∗)p (β | z, k)

L (yT | β) π (βk | k) π (k) jm (β) p (β∗ | z, k∗)
.

We calculate the likelihood numerically using the relation

L
(
yT | β

)
=

m∏
i=1

Li

(
βi j | βi(− j)

)
=

Ni∏
t=1

{
p(t)

i j

}z̃i j
t

. Finally, as in Section 2.3.3 we denote with π and p the aforementioned Normal

prior distributions and Normal posterior distributions, respectively.

Having described the inference and model selection for our model, we can now

proceed to the description of the forecasting methodology.

2.4 Bayesian Forecasting and Scoring rules

The posterior predictive density cannot be found in closed form, but can be evaluated

numerically. Given model M, the predictive distribution of yT+1 is

fp

(
yT+1 | yT

)
=

∫
f
(
yT+1 | yT , zT ,M, βM, θM

)
π
(
βM, θM | yT

)
dβMdθM,

where f
(
yT+1 | yT , zT , βM, θM

)
=

∑2
s=1 P (ZT+1 = s | ZT = zT ) fs (yT+1) . In practice,

we follow an iterative procedure within our MCMC algorithm to draw a sample

from the posterior predictive distribution. At the r-th iteration of our algorithm,

the algorithm chooses model Mr. Furthermore, the hidden states and the unknown
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parameters βMr , θMr are simulated as described in Subsection 2.3.2. To make an

one-step-ahead prediction (i.e., simulate yT+1), we first simulate the hidden state

for time T + 1 from the discrete distribution based on the transition probabilities

P
(
Z(r)

T+1 = s | ZT = z(r)
T

)
, s = 1, 2, and then, conditional on the hidden state, we draw

a value yr
T+1 from N

(
X(1)

T Bs,Mr , σ
2
s,Mr

)
, s = 1, 2. Given yT+l, ZT+l and the covari-

ates XT+l−1, for l=1,. . . , L, we may also update the transition matrix PT+l, simulate

ZT+l+1 and finally simulate the prediction yT+l+1 from its respective predictive distri-

bution. In this way, at each iteration we obtain sequentially a sample of L one-step-

subsequent predictions.

2.4.1 Forecasting criteria

In our model, the predictive distributions are multimodal. Hence, to evaluate the

quality of the obtained forecasts or to compare with benchmark models, the selection

of the right scoring rule is integral, (Gelman, Hwang, and Vehtari, 2014a). In the

same manner, Geweke and Whiteman (2006) observe that the predictive accuracy is

valued not only for its own sake, but it can be used as a metric to evaluate the model’s

performance.

Advances in numerical integration via MCMC algorithms made probabilistic

forecasts possible. Besides, having the posterior predictive distribution, one can ob-

tain point forecasts using suitable scoring functions (Gneiting, 2011). Scoring rules

provide summary measures for the evaluation of probabilistic forecasts by assigning

a numerical score based on the forecast and on the event or value that it material-

izes. We refer to Gneiting and Raftery (2007) and Machete (2013) for reviews on the

theory and properties of scoring rules. A widely used, extensively studied and quite

powerful criterion is the Logarithmic Score (LS), see Gelman, Hwang, and Vehtari

(2014a) and Gschlößl and Czado (2007) and references therein. It is based on the log-

arithm of the posterior predictive density evaluated at the observed value. However,

LS lacks robustness as it involves harsh penalty for low probability events and thus is

sensitive to extreme cases (Boero, Smith, and Wallis, 2011). Besides, comparing the

entropies of the forecasts, Machete (2013) showed that LS prefers the forecast den-

sity that is less informative. In the same spirit Gneiting and Raftery (2007) noticed

that measures which are not sensitive to distance give no credit for assigning high

probabilities to values near but not identical to the one materializing. Sensitivity to

distance seems desirable when predictive distributions tend to be multimodal, which

is the case in our setting. To deal with this issue, one could calculate the Continu-

ous Ranked Probability Score (CRPS) which is based on the cumulative predictive
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distribution, see Appendix 2.8.4 for the definition. Boero, Smith, and Wallis (2011)

argued that when density forecasts are collected in histogram format, then the ranked

probability score has advantages over the other studied scoring rules.

To compute the CRPS for the forecast yl, l = T + 1, . . . ,T + L we use the identity

of Székely and Rizzo (2005a),

CRPS (Fp, yl) =
1
2

EF |Y − Y ′| − EF |Y − yl| ,

where Y,Y ′ are independent copies of a random variable with the posterior predictive

distribution function Fp (see also Gschlößl and Czado, 2007).

Finally, along with the CRPS, we also use two standard point forecasting criteria:

the Mean Squared Forecast Error, MS FEi = 1
L

∑T+L
l=T+1 (yl − ŷl)2 and the Mean Ab-

solute Forecast Error, MAFEi = 1
L

∑T+L
l=T+1 |yl − ŷl|, where ŷl is the estimation of the

forecast yl at the i-th MCMC iteration. The values for CRPS, MSFE and MAFE are

computed in every iteration of the MCMC algorithm. In the end, we compute and

report the average CRPS, MSFE and MAFE over all MCMC iterations.

2.5 Simulation Study

We have conducted a series of simulation experiments to assess the performance of

the proposed approach in terms of inference, model selection and predictive abil-

ity. We have scrutinized our algorithms, using different sample sizes and assigning

various values to the parameters. Our experiments have been carried out using MAT-

LAB 2018b on a Windows 10 system with 32GB of RAM and Intel Core i7 8-core

processor.

To assess its inferential ability we benchmarked our model with the M&D model

(without model uncertainty) and with a Homogeneous Hidden Markov Model (HHMM),

see Appendix 2.8.3. The NHPG is at least as good as the M&D model – in forecasting

ability, and sample quality – but is faster and more efficient (as reported in Table 2.6,

Effective Sample Rate). In Table 2.6, we present a summary of the case study of the

fixed model.

Our model shines when there is model uncertainty, Section 2.5.1. We compare

NHPG with existing variable selection schemes, i.e., the M&D, a HHMM with RJ

step and a model using the spike and slab prior for variable selection as studied in

Narisetty and He (2014) and referred to as BAeyesian Shrinking And Diffusing priors

(BASAD), see Appendix 2.8.2..
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The data were generated either from a HHMM or from a NHHMM with co-

variates simulated from independent normal distributions. We found that the mean

equation coefficients converged rapidly, whereas the logistic regression coefficients

converged only after a short burn in period. The hidden chain ZT was well estimated.

For each iteration, we kept a replication of the hidden chain and compared it with the

real simulated hidden chain, using a 1-0 loss function (see Figure 2.2). For instance,

in the presented simulation study of Section 2.5.1, the NHPG model failed to cor-

rectly identify only approximately 2 states out of the 1104 hidden states per MCMC

iteration and in the simulation study of Appendix 2.8.3 the NHPG model failed to

correctly identify < 1 states per MCMC iteration.

Furthermore, to test the predictive ability of our model, we used L out-of-sample

observations. We calculated, for all the competing models, the CRPS, the MSFE and

the MAFE. However, we note that due to the large out-of-sample period, we only

report the averages (for all the draws) of the aforementioned forecasting criteria. In

all the experiments, we found that our model outperforms all competing models in

forecasting the observed process.

2.5.1 Case study: The NHPG with model uncertainty

The main applications in which our algorithm considerably improves over the bench-

mark models – M&D, BASAD – is when there exists model uncertainty. We simu-

lated data from a NHHMM of size T = 1200. From a common pool of independently

normally distributed covariates X = {1, X1, X2, X3, X4, X5, X6, X7, X8, X9} with means

µx = [4, 3,−2,−5, 2.5,−4,−6, 7, 1] and variances σ2
x = [1, 1, 0.5, 1, 1, 1, 0.5, 2, 1.5],

we used three covariates X(1) = {1, X1, X2, X3} affecting the mean equation and an-

other three covariates X(2) = {1, X1, X2, X4} the transition matrix. The mean equa-

tion parameters were B1 = [2,−0.3, 2, 2]′, σ2
1 = 1.5 and B2 = [1, 3, 4, 3]′, σ2

2 =

0.8 whereas the logistic regression coefficients where β1 = [1.5, 1, 2, 3]′ and β2 =

[3,−2.5, 4, 1]′, for the two states respectively.

Our results are based on a sample of 15000 predictions after discarding an initial

burn in period of 10000 iterations. We kept L = 96 out-of-sample observations and

we computed a sequence of one-step-ahead forecasts of the real observed process.

In this forecasting analysis, we also included the HHMM with variable selection,

in the mean equation. We used non-informative priors for the unknown parameters

σ2
s , Bs, βs, s = 1, 2, that is σ2

s ∼ IG(0.1, 0.1), Bs | σ
2
s ∼ N

(
0, 100σ2

s × I
)

and

finally βs ∼ N (0, 100 × I). Also, as suggested by Narisetty and He (2014) and

Narisetty, Shen, and He (2018), we used as hyperparameter values τ2
0B,n = σ̂2

10T , τ
2
1B,n =
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σ̂2max
(

r2.1
1

100T , log (T )
)

and τ2
0β,n = 1

T , τ
2
1β,n = max

(
r2.1

2
100T , 1

)
, where σ̂2 is the estimated

variance of the data Y .

Our approach was able to identify – as the most probable or the median probabil-

ity model – the correct data generating process. This was in contrast to the competing

methodologies, as can be seen in Table 2.1. Results from further simulation studies

(not reported here), imply that the performance of our method to identify the true

data generating process remains robust in the choice of parameters. In terms of com-

parison, the competing algorithms could perform at most equally well.

M
¯

edian probability model

True Model NHPG M&D BASAD

M
¯

E X1, X2, X3 X1, X2, X3 X1, X2, X3 X2, X4, X9

T
¯
M X1, X2, X4 X1, X2, X4 X1, X2, . . . , X7, X9 X1, X2, X4

Table 2.1: Median probability models using the proposed methodology (NHPG), the method-
ology proposed by Meligkotsidou and Dellaportas (2011) (M&D) and the model of Narisetty
and He (2014) (BASAD), respectively. The first row (ME) shows the covariates used in
the Mean Equation and the second row (TM) the covariates of the Transition Matrix. The
proposed methodology is the only one able to identify the true data generating process.

In Table 2.2, we report the forecasting criteria scores. The NHPG had the best

performance according to all forecasting criteria. Supplementary to Table 2.2 are the

plots in Figure 2.1. This figure shows the approximation of the empirical posterior

predictive distributions (based on a normal kernel) of the four competing models,

for three randomly selected out-of-sample periods and the actual observed values in

the same graph. Figure 2.2 gives a graphical indication of the improved forecasting

performance of NHPG.
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F
¯
orecasting Criteria

NHPG M&D HHMM BASAD

CRPS -1.9526 -3.6829 -2.6597 -2.4952

MAFE 3.9271 4.3911 5.4101 5.0611

MSFE 32.8856 39.4958 53.8280 49.1432

Table 2.2: Forecasting performance of the competing models. In addition to M&D and the
BASAD, we include also the HHMM. The best performance (bold values) for each criterion
is achieved by the proposed NHPG model.

Finally, for each MCMC iteration we kept a replicated chain of the hidden process

and we compared it with the true simulated chain. Using the 0-1 Loss function,

we computed the average number of misestimated states in each chain. All three

approaches had similar performance according to this criterion. Specifically, from the

chain with 1104 hidden states, NHPG failed to recognize 2 states per iteration, M&D

3 states per iteration and BASAD methodology 1 state per iteration. Concerning the

misclassifications, we observed that the algorithms classified as state 1 the state 2, i.e.

the state with the larger variance, in all instances. A virtualization of the estimation

of the hidden process against the true hidden process is shown in Figure 2.2. This

figure presents the thinned version (1:2 observations) of the simulated time series

along with the true hidden process and an estimate of the hidden process using the

proposed methodology.

N
¯

HPG M
¯

&D B
¯
ASAD

Mean runtimes per

1000 iterations (seconds)
310 693 160

Table 2.3: Summary of runtimes (in seconds per 1000 iterations).

In Table 2.3, we report the runtimes for every methodology. The trade-off for

the better forecasts of NHPG is 150 seconds per 1000 iterations in comparison to the

BASAD. However, the NHPG is more than two times faster than the M&D.
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Figure 2.1: Plots of the empirical posterior predictive distributions based on a normal kernel
function for three randomly selected out-of-sample forecasts, L = 15, 75, 85, using the NHPG
(black continuous line), M&D (gray dashed line), the HHMM (gray dotted line) and the
BASAD (gray squared line). Actual out-of-sample values are marked with asterisks. These
plots visualize the advantage of NHPG: global maximums of the multimodal distributions is
achieved close to the actual values.

Figure 2.2: Observed process (black dotted line) and hidden process: the true hidden states
are marked with blue x and the simulated states are marked with black dots. The true hidden
process is well estimated.

2.6 Empirical Application: Realized volatility data

We use the NHPG to assess the predictive ability of 13 financial variables in forecast-

ing future volatility. Financial volatility has been extensively studied in the literature

due to its crucial role in various financial fields, such as asset pricing, risk manage-

ment, investment and asset allocation among others, see Gospodinov, Gavala, and

Jiang (2006). Several studies have considered predicting realized stock volatility
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using various financial and/or economic predictors (see for example, Mittnik, Robin-

zonov, and Spindler (2015), Meligkotsidou et al. (2019), Christiansen, Schmeling,

and Schrimpf (2012), and Paye (2012)).

2.6.1 The data

We used the realized stock market volatility data and more precisely the “long” sam-

ple of the U.S. equity market, S&P500, as described in Christiansen, Schmeling, and

Schrimpf (2012). The realized volatility is the squared root of the realized variance

for asset class i in month t expressed as the sum of squared intra-period (daily) returns

RVi,t =

√√
ut∑
τ=1

r2
i,t,τ, t = 1 . . . ,T,

where ri,t,τ is the r-th daily continuously compounded return of month t for asset i

with ut the trading days. Thus
∑ut
τ=1 r2

i,t,τ is the realized variance for asset class i in

month t. The distribution of the realized daily variances are highly non-normal and

skewed to the right, but the logarithms of the realized variances are approximately

normal and thus, they have better behavior (Andersen et al., 2003). Hence, in the

following analysis, we study the natural logarithm of the realized volatility series,

ln(RVi,t) t = 1 . . . ,T.

The data are observed in a monthly basis, from December 1926 to December

2015. We used a five-years extended dataset compared to the dataset of Chris-

tiansen, Schmeling, and Schrimpf, 2012. The out-of-sample forecast evaluation pe-

riod was set to eight years, i.e., 96 observations from December 2007 until December

2015. We kept 40000 iterations as a burn-in period and we generated an output of

40000 MCMC draws. We used non-informative priors for the unknown parameters

σ2
s , Bs, βs, s = 1, . . . ,m, that is σ2

s ∼ IG(0.15, 0.15), Bs | σ
2
s ∼ N(0, 100σ2

s × I) and

finally βs ∼ N (0, 100 × I). At first, we modeled this dataset as an m-state NHPG

model with m = 2, 3, 4, to explore the cardinality of the state-space of the hidden

Markov chain. Examining the output of the hidden process, we observed that there

were only a few or none time periods corresponding to the third or the fourth state.

Based on these results we conclude that the m-state, m = 3, 4, NHPG models, are

not consistent with this dataset. Hence, from this point forward, we only report the

results of the 2-state NHPG model.

Following Christiansen, Schmeling, and Schrimpf (2012) and Meligkotsidou et
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al. (2019), we took into account 13 macroeconomic and financial standardized pre-

dictive covariates. Particularly, from a list of equity market variables and risk factors,

we considered the dividend price ratio (DP) and the earnings price ratio (EP) (Welch

and Goyal, 2008). To capture the leverage effect, i.e. the asymmetric response of

volatility to positive and negative returns (Nelson, 1991) we included the lagged eq-

uity market returns (MKT). We also used the risk factors of Fama and French (1993),

that is, the size factor (SMB), value factor (HML) and a short-term reversal factor

(STR). From the set of interest rates, spreads and bond market factors, we included

the treasure bill rate (TBL), i.e., the interest rate on a three-month Treasure bill, the

long-term return (LTR) on long-term government bonds, the term spread (TMS), i.e.,

the difference between the log-term yield and treasure bill rate, the relative T-bill rate

(RTB) as the difference between T-bill rate and its 12-month moving average and the

relative bond rate (RBR), as the difference between LTR and its 12 month moving

average (Welch and Goyal, 2008). To proxy for weighted credit risk, we also used

the default spread (DEF) defined as the yield spread between BAA and AAA rated

bonds. Lastly, we considered the macroeconomic variable inflation rate (INF), which

is the monthly growth rate of CPI.

The strong contemporaneous relation between the volatility and the business con-

ditions implies that lagged volatility plays an important role in forecasting (see Paye

(2012), Baillie et al. (2019), and Andersen et al. (2003)). Besides, quoting Chris-

tiansen, Schmeling, and Schrimpf (2012), we include at least one autoregressive

term, “since volatility is fairly persistent, it is important to include autoregressive

terms in the predictive regression to investigate whether there is additional predictive

content of the macroeconomic and financial variables that goes beyond the informa-

tion contained in lagged volatility”. We ran a series of experiments for this data.

Specifically, we performed our analysis using the predictors described and then we

repeated the analysis adding to the common –for the mean equation and the logistic

regression equations – predictor set, the autoregressive terms (AR) of lag 1, 2 and 3.

2.6.2 Results

Based on the posterior probabilities of inclusion, we see that if we do not include any

Auto-Regressive (AR) terms in the predictors’ pool, then the median NHPG0 model

has three predictors affecting only the mean equation of the series (Table 2.4). Thus,

based on the median probability model, the realized volatility series is considered

to be a HHMM. The probabilities of staying at the same state are in this case high,

concluding that the states are highly persistent. When we add the AR(1) term, the
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Figure 2.3: Time series (blue line) of the monthly realized volatility of the Standard & Poor
(S&P) 500 index (in logarithmic scale, left axis) for the period 1926-2007, using the NHPG1.
Gray-shaded bars show a realization of the times with hidden state 1. The NHPG1 exploits
the heteroscedasticity of the series. Red dots are the posterior mean probabilities (right axis)
of staying at the same state and indicate a persistent unobserved process.

included predictors in the median probability model (NHPG1) are also three but they

affect the series both linearly and not linearly. We observe that an autoregressive

term explains a big fraction of the variance of the realized volatility, even though

the AR(1) term (based on the median probability model) is affecting the series only

linearly, i.e. in the mean equation. Adding more AR terms (of lag 2 and lag 3),

the median probability model remained almost the same as in the case of the model

with one AR term and hence, we only report the NHPG1 model. Furthermore, in

our out-of-sample analysis, we did not encounter any significant improvement in the

forecasting ability of the models with AR(2) and AR(3) terms. We note that this

result confirms the findings of the model of Christiansen, Schmeling, and Schrimpf

(2012), hereafter CSS, who also used only an AR(1) term in their analysis.

Even though – based on the CRPS – the model with the best performance was the

one with the autoregressive term (NHPG1), we present the results of both the model

with no AR terms (NHPG0) and the NHPG1 model, for the sake of completeness.

Also, we compare our results with those of the CSS model – which is a linear model

with one autoregressive term and a Markov Chain Monte Carlo model compositions

algorithm (MC3) with a Bayesian Model Averaging (BMA) approach. For the CSS

model, we allowed for a much longer burn in period, as suggested by the authors, of

500000 draws. Moreover, we included in our comparative analysis the M&D model

and HHMM with one AR term.

Figure 2.3 shows a plot of the realized volatility data (blue line) together with
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the probabilities of staying at the same state (e.g. if at time t we are at state 1 then

the red dot at time t shows the probability of staying at state 1 at time t + 1, that

is the transition probability pt
11). The high probabilities of staying at the same state

indicate that the unobserved process is persistent. The shaded bars represent the time

period that the chain was in state 1, based on one realization of the hidden process.

Additionally, by visual inspection of this plot, we observe that the realized volatility

series is fragmented into two subchains according to the hidden states: hidden state

1 defines periods with high variability of the studied series and hidden state 2 defines

periods with low variability. Furthermore, in Figure 2.4 we present a thinned (1:5)

in-sample realization of the observed process inferred by our algorithm, i.e., using

the in-sample estimations of the parameters and the states to reproduce the realized

volatility series, along with the real data. The in-sample evaluation of the observed

process gives an indication of the good performance of the estimation procedure.

Figure 2.4: Thinned (1:5 observations) realized volatility time series (blue line) versus the
observed process as calculated by the proposed NHPG1 (gray solid line).

2.6.2.1 Model Selection

Our model selection algorithm did not assign high probability to any specific model

indicating that there exists model uncertainty. In Table 2.4, we summarize the poste-

rior probabilities of inclusion for each predictor, both for the mean equation and for

the transition matrix for the NHPG0, NHPG1, M&D and only for the mean equation

for CSS and HHMM. Our methodology – when the autoregressive term of lag 1 was

included – was not only able to identify which covariates affect the realized volatility

series but also to decide how the covariates affect the series, i.e., linearly or non-

linearly. The number of the predictors defining the median probability NHPG1 has

diminished to three (instead of thirteen). Specifically, we found that the MKT affects

the series linearly, the SMB affects the series non-linearly and the DEF both lin-

early and non linearly. The predictors that were included in NHPG1 are in common
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with the predictors included in the HHMM. The CSS model identifies four predictors

with probability at least 0.5, three of them being the same with NHPG1 and HHMM,

that is the MKT, the DEF and the EP plus the predictor STR. However, the M&D

algorithm includes all the predictors in the mean equation model, while it includes

the predictors DP, MKT, TBL and DEF in the logistic regression for the transition

probabilities.

P
¯
osterior probabilities of inclusion

NHPG0 NHPG1 M&D HHMM CSS

C
¯
ovariates ME TM ME TM ME TM ME ME

DP 0.01 0.04 0.08 0 1 0.77 0.3 0.38

EP 0.98 0.12 0.06 0.89 1 0.37 0.78 0.50
MKT 1 0.04 0.98 0.03 0.93 1 1 0.97
SMB 0 0.02 0 0.04 0.90 0.28 0 0.05

HML 0.01 0.03 0 0.02 0.92 0.09 0 0.06

STR 0 0.05 0 0.06 0.92 0.09 0 0.53
TBL 0 0.02 0 0.10 0.99 0.71 0.03 0.10

RTB 0 0.02 0 0.09 0.99 0.02 0 0.04

LTR 0.01 0.03 0 0.03 1 0.01 0 0.05

RBR 0 0.03 0 0.03 1 0.01 0 0.05

TMS 0.01 0.06 0.17 0.26 0.89 0.23 0 0.05

DEF 1 0.02 1 0.79 1 1 1 1
INF 0 0.02 0.11 0.03 0.92 0.47 0 0.04

Table 2.4: Posterior probabilities of inclusion for the competing models. Predictors with
inclusion probability above 0.5 (median probability model) are marked with bold values.
NHPG0 and NHPG1 denote the proposed methodology without autoregressive terms and with
one autoregressive term respectively, M&D the methodology proposed by Meligkotsidou and
Dellaportas (2011), HHMM the Homogeneous model with variable selection using a RJ-step
and CSS the model of Christiansen, Schmeling, and Schrimpf (2012). ME stands for Mean
Equation (linear relationship) and TM for Transition Matrix (non linear relationship). The
HHM and CSS models included covariates only in the ME.

2.6.2.2 Forecasting

The values of the forecasting criteria that we used for all competing models are re-

ported in Table 2.5. We conclude that NHPG1 performs better than all the other

models, since it has the best scores in all forecasting criteria: the mean Continuous

Ranked Probability Score (CPRS), MAFE and MSFE.
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F
¯
orecasting Criteria

NHPG1 NHPG0 M&D HHMM CSS

CRPS -0.1971 -0.2175 -0.2191 -0.2118 -0.2238

MAFE 0.3821 0.4643 0.4172 0.4534 0.4787

MSFE 0.2467 0.3426 0.2678 0.3449 0.3813

Table 2.5: Summary of forecasting results of the five competing models, obtained from
the log-realized volatility dataset. The best performance (bold values) for each criterion is
achieved by the NHPG1 model (with one autoregressive term).

2.7 Conclusions and Discussion

In this paper, we considered inference on predictive Non - Homogeneous Hidden

Markov Models with Pólya-Gamma data augmentation. Given a common pool of

predictors, we allowed for different sets of covariates to affect the mean equation and

the time-varying transition probabilities. To determine which covariates affect the

series linearly and/or non-linearly, we performed stochastic variable selection using

a couple of reversible jump steps. Additionally, we modeled the probabilities of

the transition probability matrix via a logistic/multinomial link function. Bayesian

inference for the logistic regression model has been recognized as a hard problem –

many of the proposed methodologies face efficiency and convergence issues – due

to the analytically inconvenient form of the model’s likelihood function. To account

for these issues, which are amplified in the more complex setting of NHHMMs,

we developed an accurate MCMC algorithm based on the recently proposed Pólya-

Gamma data augmentation scheme of Polson, Scott, and Windle (2013).

In each MCMC iteration, we simulated the hidden states using the scaled Forward-

Backward algorithm of Scott (2002), the mean equation parameters using a Gibbs

step, and the logistic regression coefficients using the Pólya-Gamma augmentation

scheme. Finally, we performed a couple of reversible jump steps to choose the co-

variates that affect the mean equation and the transition probabilities. Using the most

probable model, the median probability model or Bayesian Model Averaging, we

make one-step-ahead predictions, within the Bayesian framework.

To assess the performance of the proposed algorithm and the predictive ability

of our model, we conducted an extensive number of simulation experiments. The

results showed that our algorithm mixes and converges well and provides accurate
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estimates of the model’s parameters. Moreover, they exhibited that our model out-

performs benchmark models, such as the approach of Meligkotsidou and Dellapor-

tas (2011), the BASAD model of Narisetty and He (2014) and the Homogeneous

hidden Markov model, in terms of both variable selection and forecasting ability ac-

cording to the continuous ranked probability score, the mean absolute forecasting

error and the mean squared forecasting error. The currently proposed methodology

was applied to a realized volatility dataset – detailed in Christiansen, Schmeling,

and Schrimpf (2012) – for predicting future observations and for predictor selection.

The median probability model identified three predictors, one affecting the analyzed

series linearly, one non-linearly and one both linearly and non-linearly. Using the

proposed methodology we obtained improved forecasts, compared to Christiansen,

Schmeling, and Schrimpf (2012).

The findings of the present study indicate that complex NHHMMs are promising

for predicting univariate financial and economic time series. More accurate forecasts

can be derived without the need of tuning (black box functionality) and at a low

trade-off in terms of computational complexity.

The efficiency of the proposed model can be further improved by refining the

model selection process via a more elaborated or simpler variable selection schemes

or by simultaneously selecting the predictors affecting the mean equation and the

transition probabilities equation in a block-based algorithm. Furthermore, more in-

formative priors, such as g-priors, various spike and slab or horseshoe priors, can be

exploited. It is still an open question of whether the aforementioned priors can more

effectively address the issue of collinearity. Moreover, using standard methods, it can

be extended to the prediction of multivariate time series that arise in many economic

and non-economic applications. In this way, the proposed methodology may be of

interest not only to the econometric but also to the broader forecasting community.

2.8 Appendix

2.8.1 The Pólya-Gamma distribution

The definition and more details on the properties of the new family of Pólya-Gamma

distribution can be found in Polson, Scott, and Windle (2013). In this section we

only give the definition of the aforementioned family of distributions.
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A random variable X has a Pólya-Gamma distribution with parameters b > 0 and

c ∈ R , X ∼ PG(b, c) if

X D
=

1
2π2

∞∑
k=1

gk

(k − 1/2)2 + c2/
(
4π2)

where the gk ∼ Ga(b, 1) are independent gamma random variables and D
= indicates

equality in distribution.

2.8.2 Benchmark models

We give the definitions of the M&D model, BASAD model, (Narisetty and He,

2014), and the standard HHMM that we use in Section 2.5.1.

The model M&D of Meligkotsidou and Dellaportas (2011) is essentially a NHHMM

with the auxiliary variable representation for the transition probabilities of Holmes

and Held (2006).

P(Z̃ s
t = 1) = P(ut > 0),

ut = xtβss + et

et ∼ N (0, λt) ,

λt = (2ψt)2 ,

ψt ∼ KS,

where KS denotes the Kolmogorov-Smirnov distribution. The variable selection

scheme is close to the variable selection scheme of this work and it is based on the

joint updates of βss and covariate set. A detailed description of this scheme can be

found in the lines of Meligkotsidou and Dellaportas (2011) and Holmes and Held

(2006)

In the BASAD model (Narisetty and He, 2014), the authors introduce shrinking

and diffusing priors as a spike and slab priors model, with prior parameters depending

on the sample size to achieve appropriate shrinkage. They work with orthogonal

design matrices and use binary latent variables Ui to indicate if a covariate is active

or not. In our setting, the BASAD model for the mean equation is defined as:

Yt |
(
Xt−1Bs, σ

2
s

)
∼ N

(
Xt−1Bs, σ

2
s

)
, s = 1, 2, t = 1, . . . ,T,

Bk,s |
(
σ2

s ,Uk,s = 0
)
∼ N

(
0, σ2

sτ
2
0B,n

)
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Bk,s |
(
σ2

s ,Uk,s = 1
)
∼ N

(
0, σ2

sτ
2
1B,n

)
, k = 1, . . . , r,

P
(
Uk,s = 1

)
= 1 − P

(
Uk,s = 0

)
= qn, k = 1, . . . , r,

and

σ2
s ∼ IG (α1, α2) .

The transition probabilities are parametrized as:

Z̃ s
t+1 ∼ Bin

(
1,

exp (xtβs)
1 + exp (xtβs)

)
,

βs
k |

(
Uk,s = 0

)
∼ N

(
0, σ2

sτ
2
0β,n

)
βs

i |
(
Uk,s = 1

)
∼ N

(
0, σ2

sτ
2
1β,n

)
, k = 1, . . . , r,

ωs ∼ PG (bω, 0)

and

P
(
Uk,s = 1

)
= 1 − P

(
Uk,s = 0

)
= qn, k = 1, . . . , r.

In contrast, in the HHMM, covariates affect only the mean equation and the transition

probability matrix is constant,

Yt | Zt = s ∼ N
(
X(1)

t−1Bs, σ
2
s

)
, s = 1, 2, t = 1, . . . ,T,

P (zt = j | zt−1 = i) = pi j, i, j = 1, 2 ∀ t = 1, . . .T.

2.8.3 Case study for the 2-state fixed model

We present the results of a case study without model uncertainty. This study shows

empirically that our algorithm converges, mixes well and is effective. In this case,

the results are marginally better than the M&D model and the HHMM. However,

together with the results of the case with model uncertainty, they demonstrate that

the proposed algorithm provides an overall improvement over M&D.

We simulated data from a NHHMM of size T = 1500. We used three covari-

ates X(1) = {1, X1, X2, X3} affecting the mean equation and three covariates X(2) =

{1, X1, X2, X4} affecting the transition matrix, with X being a set of independently

normally distributed covariates with means µx = [4, 3,−2,−5] and variances σ2
x =

[1, 1, 0.5, 1]. The mean equation parameters were B1 = [2,−0.3, 2, 2]′ , σ2
1 = 1.5

and B2 = [1, 3, 4, 3]′ , σ2
2 = 0.8 whereas the logistic regression coefficients where
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β1 = [1.5, 1, 2, 3]′ and β2 = [3,−2.5, 4, 1]′ for the two states, respectively. We

kept L = 100 out-of-sample observations and we computed a sequence of one-

step-ahead forecasts of the real observed process. We used non-informative pri-

ors for the unknown parameters σs, Bs, βs, s = 1, 2, that is σ2
s ∼ IG(0.1, 0.1),

Bs | σ
2
s ∼ N

(
0, 100σ2

s × I
)

and finally βs ∼ N (0, 100 × I).

N
¯

HPG M
¯

&D H
¯

HMM

Forecasting criteria CRPS -2.0794 -2.1920 -4.4323

MAFE 4.2661 4.3907 8.6745

MSFE 60.9978 63.1617 143.1512

Sample Quality ESS 11936 11934 12153

MESS 24391 24343 24578

Efficiency mESR 3.2130 0.0120 110

Convergence & Mixing PSRF 1 1 1.0005

mCM 18(18) 18(18) 8(10)

Table 2.6: Summary of results: CRPS is the mean continuous rank probability score, MAFE
is the mean absolute forecast error and MSFE is the mean squared forecast error. ESS is
the minimum effective size of among the ESS for all parameters and MESS the multivari-
ate effective size, for an MCMC run of 25000 iterations. mESR is the minimum effective
sample rate. PSRF is the maximum potential scale reduction factor and mCM is the multi-
variate convergence and mixing diagnostic. In the mCM line we report the number of the
components of the parameters out of the total components – in parenthesis – that fall into
the 95% confidence interval of the test. NHPG is the proposed model, M&D is the model
of Meligkotsidou and Dellaportas (2011), HHMM is the homogeneous model. Bold values
denote the best values for the corresponding criterion among all the competing models.

Inferences are based on an MCMC sample of 25000 iterations after a burn-in pe-

riod of 10000 iterations. A summary of the results of this experiment is reported in

Table 2.6. We used several metrics for assessing the efficiency of our algorithm (see

Appendix 2.8.5). The quality of the sample is measured with the Effective Sample

Size (ESS), Multivariate Effective Sample Size (MESS). We also use the minimum

Effective Sample Rate (mESR) as a measure of the efficiency of the algorithm. To

assess the convergence and mixing of the algorithm we use the Potential Scale Re-

duction factor (PSRF) of Brooks and Gelman (1998) and Gelman et al. (2013) and

the multivariate mixing diagnostic of Paye (2012). Specifically, we show that our

algorithm converges to the stationary distribution and has good mixing properties,
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using the aforementioned diagnostic criteria. Also, the univariate and multivariate

effective sample sizes for all the methodologies/models are large, implying an effi-

cient algorithm. The Effective Sample Rate of NHPG is 3.213 whilst M&D’s ESR is

significantly lower with a score of 0.012. In addition, the NHPG has best forecasting

performance, since it has the best score among the benchmarks’ scores in all fore-

casting criteria. In Figure 2.5 we visualize the empirical continuous approximation

of the posterior predictive densities of NHPG, M&D, HHMM, for the three randomly

selected out-of-sample periods, L = 15, 85, 100. These plots provide additional evi-

dence that the NHPG gives at least good predictions as the M&D model.

Figure 2.5: Conjointly plotted empirical continuous approximations (based on a normal
kernel function) of the posterior predictive distribution for out-of-sample periods L =

15, 85, 100, using the NHPG (black continuous line), M&D (gray dashed line) and the
HHMM (gray dotted line). Actual out-of-sample values are marked with asterisks.

2.8.4 The Continuous Rank Probability Score

Let yl be the real observed values of the forecasts, yL = (y1, . . . , yL) the history of

the predictive quantity and ŷl the estimated forecasts. Using the notation f for the

distribution of the true model, fp(ŷl) for the posterior predictive density of the new

data, and Fp(x) =
∫ x

−∞
fp

(
ŷ | yL

)
dŷ for the posterior predictive cumulative density

function. The CRPS for yi is defined as,

CRPS (Fp,l, yl) = −

∫ ∞

−∞

(
Fp,l (ŷl) − I (ŷl ≥ yl)

)2
dŷl = −

∫ ∞

−∞

(
Fp,l (ŷl) − Fyi (ŷl)

)2
dŷl,

where I (x ≥ y) denotes a step function along the real line that attains the value 1 if

x ≥ y and the value 0 otherwise, Fyl = H(ŷl − yl) is the cumulative distribution of the

real value yl and H is the Heaviside function (Hersbach, 2000), H(x) = 0, if x ≤ 0

and 1 otherwise.
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2.8.5 Metrics of Comparison

We briefly present the convergence diagnostics, mixing criteria and metrics of effec-

tiveness that we used to measure the performance of our algorithm.

As a primary metric of comparison, following Holmes and Held (2006) and Pol-

son, Scott, and Windle (2013), we calculated the effective sample size (ESS). For

each dimension of the parameter vector, ESSi is the number of independent samples

needed to obtain a parameter estimate with the same standard error as the MCMC

estimate based on M dependent samples (Neal, 1993; Kass et al., 1998). If θ is

the p−dimensional parameter of interest, and θn = 1/n
∑n

t=1 g(xt) is an estimate of θ

based on a Markov chain {Xt}, with θn −→ θ the Monte Carlo error, θn−θ is described

asymptotically by the Central Limit Theorem (CLT),
√

n (θn − θ)
d
−−−→
n→∞

N
(
0,Σp

)
.

The idea of the EES lies on the univariate CLT for each component of θ and it is

defined, for i = 1, . . . , p, as

ESSi =
M

1 + 2
∑k

j=1 ρ ( j)
= M

λi

σi
,

where ρ (k) is the sample autocorrelation of lag k of the parameter θi, λi the diagonal

element of the sample covariance matrix Λ, σi the diagonal element of Σp and M

the number of post-burn in samples. We also report the minimum Effective Sample

Rate (mESR) to compare a slow sampler with a fast sampler, as in Polson, Scott, and

Windle (2013) and Frühwirth-Schnatter and Frühwirth (2010). The mESR is defined

as the minimum ESS per second of running time, i.e., mESR = (min(ESS)) /tcpu. It

quantifies how rapidly a Markov-chain sampler can produce independent draws from

the posterior distribution.

Vats, Flegal, and Jones (2019) argue that a univariate approach ignores cross-

correlation across components, leading to an inaccurate picture of the quality of the

sample. Thus, they define a multivariate version of the ESS. Specifically,

MESS = M
(
|Λ|

|Σp|

)1/p

.

When there is no correlation, then Σ = Λ and MESS = M.

To assess the convergence and mixing of our algorithm we use the Potential Scale

Reduction factor (PSRF) of Brooks and Gelman (1998) and Gelman et al. (2013) and

the multivariate convergence and mixing diagnostic proposed by Paul, MacEachern,

and Berliner (2012). In brief, implementation of PSRF requires sample runs from
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multiple chains (alternatively a very long chain can be divided into two or more sub-

chains). The key quantity is the ratio of the resulting between- and within-chain vari-

ances. If the within-chain variance dominates the between-chain variance, the ratio

approaches 1, which suggests that the chains have approximately reached stationar-

ity. Desirable values for PSRF are the values below 1.1 for every component of the

parameters. In short, Paul, MacEachern, and Berliner (2012) obtain MCMC-based

estimators of posterior expectations by combining different subgroup (subchain) es-

timators using stratification and post-stratification methods. They develop variance

estimates of the limiting distributions of these estimators. Based on these variance

estimates, they propose a statistic test to aid in the assessment of convergence and

mixing of chains.
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Chapter 3

A Peek into the Unobservable:
Hidden States and Bayesian Inference
for the Bitcoin and Ether Price Series

3.1 Introduction

3.1.1 Motivation, Methodology and Main Results

The present study is motivated by the still limited understanding of the economic and

financial properties of cryptocurrencies. Sheding light on such properties constitutes

a necessary step for their wider public adoption and is fundamental for blockchain

stakeholders, investors, interested authorities and regulators (Crypto.com 2019; Pa-

per, 2019). More importantly, it may provide hints about market manipulation and

fraud detection.

Unfortunately, existing financial models that are used to study fiat currency ex-

change rates fail to capture the convoluted nature of cryptocurrencies (Catania, Grassi,

and Ravazzolo (2019)). The additional challenge that they face is the tight connec-

tion between cryptocurrency prices and the underlying blockchain technology which

drives the dynamics of the observable market. To some extent, this is expressed via

the particular market microstructure of cryptocurrencies: the market depth which

depends on the exchange and the market maker, the functionality of exchanges as

custodians (unique property among financial assets) and the absence of stocks, equi-

ties or other financial investment instruments (with the exception of Bitcoin futures,

(Kapar and Olmo, 2019)) which render acquiring and/or trading the cryptocurrency

the main way of investing in this new technology, (Koutmos, 2018). The miners

and/or stakers emerge as the main actors who drive the creation and distribution of

the currency whereas the cheap and immediate transactions essentially obviate the
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need for conventional brokers. All these features (among many others), starkly dis-

tinguish cryptocurrencies from conventional financial assets or fiat money. However,

a precise understanding of their defining financial and economic properties is still

elusive, (Brauneis and Mestel, 2018; Corbet et al., 2018; Urquhart, 2018). With

this in mind, the concrete research questions that we set out to understand are the

following:

• How do cryptocurrencies compare – in terms of their economic and financial prop-

erties – to well understood financial assets like commodities, precious metals, eq-

uities and fiat currencies (Bouri et al., 2020; Baur, Dimpfl, and Kuck, 2018; Kang,

McIver, and Hernandez, 2019)? How do they relate to traditional financial markets

and global macroeconomic indicators?

• What are the defining microstructure characteristics of the cryptocurrency market

and which are the distinguishing features (if any) between different coins (Aste,

2019; Katsiampa, 2019a)?

To address these questions, we use a recently developed instance of Non-Homoge-

neous Hidden Markov (NHHM) modeling, namely the Non-Homogeneous Pólya

Gamma Hidden Markov model (NHPG) of Koki, Leonardos, and Piliouras (2019),

which has been shown to outperform similar models in conventional financial data

(Meligkotsidou and Dellaportas, 2011). Using financial and blockchain specific

covariates on the Bitcoin (Nakamoto, 2008) and Ether (Buterin, 2014; Buterin et

al., 2020) log-return series (henceforth BTC and ETH, respectively), the NHHM

methodology aims not only to capture dynamic patterns and statistical properties of

the observable data but more importantly, to shed some light on the unobservable

financial characteristics of the series, such as the activity of investors, traders and

miners.

The present model falls into the Markov-switching or regime-switching litera-

ture with two possible states that is the benchmark for predicting exchange rates

(Engel, 1994a; Lee and Chen, 2006a; Frömmel, MacDonald, and Menkhoff, 2005;

Beckmann and Schüssler, 2016; Groen, Paap, and Ravazzolo, 2013; Wright, 2009).

This linear model was first introduced by Hamilton (1989) as an alternative approach

to model non-linear and non-stationary data. It involves switches between multi-

ple structures (equations) that can characterize the time series behavior in different

regimes (states). The switching mechanism is governed by an unobservable state
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variable that follows a first-order Markov chain1. Therefore, the NHMM is suitable

for describing correlated and heteroskedastic data with distinct dynamic patterns dur-

ing different time periods, as are precisely cryptocurrency prices (Aggarwal, 2019;

Bouri et al., 2019a; Katsiampa, 2019a).

Although standard in financial applications (Mamon and Elliott, 2014), Hidden

Markov models have only been applied in the cryptocurrency context by Poyser

(2019) as state space models, by Koutmos and Payne (2020) in an asset pricing

model for BTC prices under heterogenous trading patterns, by Koutmos (2019) to

study the relation of BTC with traditional market risk indices, by Koutmos (2018)

to capture the liquitity uncertainty and Phillips and Gorse (2017) in the context of

price bubbles. Yet, their more extensive use is supported by the specific character-

istics of cryptocurrency data that have been identified by earlier research. Balcilar

et al. (2017) and Katsiampa (2017a) and Demir et al. (2018) demonstrate the non-

stationarity of BTC prices and volume and underline the importance of modeling

non-linearities in Bitcoin prediction models. This is further elaborated by Beckmann

and Schüssler (2016), Pichl and Kaizoji (2017), and Phillip, Chan, and Peiris (2018a)

and Yu (2019) who suggest that model selection and the use of averaging criteria are

necessary to avoid poor forecasting results in view of the cryptocurrencies’ extreme

and non-constant volatility. Along these lines, Ciaian, Rajcaniova, and Kancs (2016)

show that the Bitcoin price series exhibits structural breaks and suggest that signifi-

cant price predictors may vary over time. Additional motivation for the analysis of

cryptocurrency data with regime-switching models as the one employed here, is pro-

vided by Katsiampa (2017a) who demonstrate the heteroskedasticity of BTC prices

and Baur and Dimpfl (2018) who identify periods of different trading activity. Our

main findings can be summarized as follows

• The NHPG algorithm identifies two hidden states with frequent alternations for

the BTC log-return series, cf. Figure 3.2. State 1 corresponds to periods with

higher volatility and returns and accounts for roughly one third of the sample pe-

riod (2014-2019). By contrast, state 2 marks periods with lower volatility, series

autocorrelation (long memory), trend stationarity and random walk properties, cf.

Table 3.2. At the more variable state 1, the BTC data series is influenced by min-

ers’ activity and more volatile covariates (stock indices) in comparison to more

stable indicators (exchange rates) in state 2, cf. Table 3.3.

1For example, in the seminal paper of Hamilton (1989), the author used the underlying hidden
process to define the business cycles (recession periods). More recent examples and a comprehensive
theory about NHHM in finance can be found in Mamon and Elliott (2014).
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• The results for the hidden process are the same for both the long run (2014-2019)

and the short run (2017-2019) BTC data, cf. Figures 3.2 and 3.3a. However, dif-

ferences in the significant predictors indicate more speculative activity in the short

run compared to more fundamental investor behavior in the long run, cf. Table 3.3.

In sum, speculative activity (noise traders) is identified in the less frequent state 1

and in the short run whereas increased activity of fundamental investors is seen in

state 2 and in the long run.

• The algorithm does not mark a well defined hidden process with clear transitions

for the ETH series, cf. Figure 3.3b. This is further supported by the low number

and the small values of significant predictors from the current set, cf. Table 3.4.

These results imply that ETH prices are still driven by variables beyond the cur-

renlty selected set of predictors, showing characteristics of an emerging market

that is more isolated than BTC from global financial and macroeconomic indica-

tors.

More details are presented in Section 3.3. Overall, the outcome of the NHPG model

can be useful for investors and blockchain stakeholders by providing hints on peri-

ods of differentiating activities and effects in the cryptocurrency markets. From a

theoretical perspective, it backs earlier findings that cryptocurrencies are unlike any

other financial asset and suggests that their understanding requires not only the inte-

gration of existing financial tools but also a more refined framework to account for

their bundled technological and financial features (Shorish, 2018).

3.1.2 Related Literature

The literature on the financial properties of cryptocurrencies is expanding at an ex-

ponential rate and an exhaustive review is not possible (see Corbet et al. (2019)

and references therein for a more comprehensive reference list). More relevant to

the current context is the scarcity (to the best of our knowledge) of papers that ad-

dress the bundled nature of cryptocurrencies as both blockchain applications and

financial assets. Existing studies focus either on the underlying blockchain technol-

ogy/consensus mechanism or on the observable financial market but not on both.

By contrast, the current NHPG model parses the observable financial information to

recover the underlying structure of cryptocurrency markets and hence makes a first

step towards a unified approach to fill this gap. Its limitations are discussed in Sec-

tion 3.4. In the remaining part of this section, we provide a (non-exhaustive) list of

studies that focus on the financial part.
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Early research, mainly focusing on BTC has provided mixed insights on the prop-

erties of cryptocurrencies. Klein, Thu, and Walther (2018) claim that BTC is funda-

mentally different from valuable metals like gold due to its shortage in stable hedg-

ing capabilities. Along with Cheah and Fry (2015), Ciaian, Rajcaniova, and Kancs

(2016) also argue that standard economic theories cannot explain BTC price forma-

tion and using data up to 2015, they provide evidence that BTC lacks the necessary

qualities to be qualified as money. However, Dyhrberg (2016) demonstrate that BTC

has similarities to both gold and the US dollar (USD) and somewhat surprisingly,

that it may be ideal for risk-averse investors. Bouri et al. (2020) and Bouri, Azzi,

and Dyhrberg (2017) and Bouri et al. (2017) also explore BTC’s characteristics as

a financial asset and find that while BTC is useful to diversify financial portfolios –

due to its negative correlation to the US implied volatility index (VIX) – it otherwise

has limited safe haven properties. Using data from a longer period (between 2010

and 2017), Demir et al. (2018) conclude the opposite, namely that BTC may indeed

serve as a hedging tool, due to its relationship to the Economic Policy Uncertainty

Index (EUI). In comparative studies, Fry (2018) and Corbet, Lucey, and Yarovaya

(2018) provide empirical evidence of bubbles in both BTC and ETH and Gkillas and

Katsiampa (2018) suggest that BTC is less risky than ETH, i.e., that it exhibits less

fat tailed behavior. Phillip, Chan, and Peiris (2018b) confirm that Bitcoin exhibits

long memory and heteroskedasticity and argue that cryptocurrencies display mild

leverage effects, predictable patterns with mostly oscillating persistence, varied kur-

tosis and volatility clustering. Comparing BTC with ETH, they argue that kurtosis

is lower for ETH being easier to transact than BTC. Along this line, the findings

of Mensi, Al-Yahyaee, and Kang (2019) and Katsiampa (2019a) further motivate the

use of non-homogeneous and regime-switching modeling for both the BTC and ETH

log-returns series.

The differences between cryptocurrencies and conventional financial markets are

further elaborated by Katsiampa (2017a), Hayes (2017), and Phillip, Chan, and Peiris

(2018a). High volatility, speculative forces and large dependence on social sentiment

at least during its earlier stages are shown by some as the main determinants of

BTC prices (Garay, Kiayias, and Leonardos, 2015; Georgoula et al., 2015; Colianni,

Rosales, and Signorotti, 2015; Yi, Xu, and Wang, 2018). Yet, a large amount of

price variability remains unaccounted for (Hotz-Behofsits, Huber, and Zörner, 2018;

McNally, Roche, and Caton, 2018). Moreover, the proliferation of cryptocurrencies

on different blockchain technologies suggests that their current correlation may be

discontinued in the near future and calls for comparative studies as the one conducted
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here (Borri, 2019).

3.1.3 Outline

The rest of the chapter is structured as follows. In Section 3.2, we describe the

NHPG model and simulation scheme and present the set of variables that have been

used (some preliminary descriptive statistics and tests about this data are relegated to

Section 3.5). Section 3.3 contains the main results and their analysis. In the first part

(Sections 3.3.1 to 3.3.3), we present the outcome of the algorithm and discuss the

statistical findings for the hidden states and the generated subseries. In the second

part, Section 3.3.4, we focus on the significant explanatory variables for the BTC

data series in both the short and long run and the ETH data series. We conclude

the paper with a discussion of the limitations of the present model and directions for

future work in Section 3.4.

3.2 Methodology & Data

Given a time horizon T ≥ 0 and discrete observation times t = 1, 2, . . . ,T , we con-

sider an observed random process {Yt}t≤T and a hidden underlying process {Zt}t≤T .

The hidden process {Zt} is assumed to be a two-state non-homogeneous discrete-time

Markov chain that determines the states (s) of the observed process. In our setting,

the observed process is either the BTC or the ETH log-return series. Importantly, the

description of the hidden states is not pre-determined and is subject to the outcome

of the algorithm and interpretation of the results.

Let yt and zt be the realizations of the random processes {Yt} and {Zt}, respectively.

We assume that at time t, t = 1, . . . ,T , yt depends on the current state zt and not on the

previous states. Consider also a set of r − 1 available predictors {Xt} with realization

xt = (1, x1t, . . . , xr−1t) at time t. The explanatory variables (covariates) {Xt} that are

used in the present analysis are described in Table 3.1. The effect of the covariates

on the cryptocurrency price series {Yt} is twofold: first, linear, on the mean equation

and second non-linear, on the dynamics of the time-varying transition probabilities,

i.e., the probabilities of moving from hidden state s = 1 to the hidden state s = 2 and

vice versa. Given the above, the cryptocurrency price series {Yt} can be modeled as

Yt | Zt = s ∼ N(xt−1Bs, σ
2
s), s = 1, 2,
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where Bs = (b0s, b1s, . . . , br−1s)′ are the regression coefficients and N(µ, σ2) denotes

the normal distribution with mean µ and variance σ2. The dynamics of the unob-

served process {Zt} can be described by the time-varying (non-homogeneous) tran-

sition probabilities, which depend on the predictors and are given by the following

relationship

P(Zt+1 = j | Zt = i) = p(t)
i j =

exp(xtβi j)∑2
j=1 exp(xtβi j)

, i, j = 1, 2,

where βi j = (β0,i j, β1,i j, . . . , βr−1,i j)′ is the vector of the logistic regression coefficients

to be estimated. Note that for identifiability reasons, we adopt the convention of

setting, for each row of the transition matrix, one of the βi j to be a vector of zeros.

Without loss of generality, we set βi j = β ji = 0 for i, j = 1, 2, i , j. Hence, for

βi := βii, i = 1, 2, the probabilities can be written in a simpler form

p(t)
ii =

exp(xtβi)
1 + exp(xtβi)

and p(t)
i j = 1 − p(t)

ii , i, j = 1, 2, i , j.

To make inference on the hidden process, we use the smoothed marginal probabilities

P(Zt = i | Y1:T , zt+1, θ) which are the probabilities of the hidden state conditional on

the full observed process,(Hamilton, 1989) as derived from the Forward-Backward

algorithm. Details on the estimation of the hidden process via the Scaled Forward-

Backward which is explained in detail in Section 3.2.1. In the rest of the paper,

we use the notation P (Zt = i) for i = 1, 2 to denote the smoothed probabilities for

convenience.

3.2.1 The Scaled Forward-Backward algorithm

We leverage the scaled stochastic version of the Forward-Backward algorithm of

Scott (2002) for estimating the hidden Markov process. This algorithm is consisted of

a set of filtering recursions for calculating the likelihood and simulating realizations

of the hidden process. Firstly, the forward variable is defined as

αt (Zt) = P
(
yt,Zt = s | θ

)
= P (Zt = s) P

(
yt | Zt = s, θ

)
,

where yt is the vector with all the observations up to time t, i.e., yt = (y1, . . . , yt)

The forward variable is basically the joint likelihood contribution of the data y up to

time t and the event Zt = s, averaging over the events up to time t − 1. Similarly,

α∗t =
∑2

s=1 αt (s) is the likelihood contribution from yt. Traditionally, the forward
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variables are computed recursively as,

αt(s) =

2∑
j=1

P
(
yt, yt−1,Zt−1 = j,Zt = s | θ

)
=

∑
j

αt−1 ( j) p(t−1)
js

 fs (yt) .

However, using likelihood instead of logarithmic likelihood, is unstable and can

cause overflow problems during the computer calculations. Scott (2002) proposed

the following remedy. Define the scaled forward probabilities,

πt (s | θ) =
αt (s)
α∗t

= P(Zt = s | yt, θ),

and the quantity

Mt = max
s

log


∑

j

αt−1 ( j) p(t−1)
js

 fs(yt)

 .
Then with some straight forward algebra, we derive the recursive relationship

log
(
α∗t

)
= log

(
α∗t−1

)
+Mt+log

∑
j

exp

log ( fs (yt | θ)) + log

∑
j

p jsπt−1 ( j | θ)

 − Mt


 .

Hence, the more stable scaled forward probability can be calculated recursively using

the following,

log (πt (s | θ)) = log (αt (s)) − log
(
α∗t

)
= Qt (s) − Mt − log

∑
j

exp [Qt (s) − Mt]

 ,
where Qt (s) = log ( fs (yt | θ)) + log

(∑
j p(t−1)

js πt−1 ( j | θ)
)
. Under the assumption that

the dependent variable follows a Normal distribution with regime-switching mean

and standard deviation, fs(yt) is just the probability density function of the Normal

distribution with parameters the simulated values of θ in regime s.

The hidden states can be simulated from the conditional or marginal distribution

via the the backward variable. However, we use a stochastic version of the Forward-

Backward algorithm that mixes rapidly and is less computational demanding. First,

we begin by drawing ZT from,

P
(
ZT = s | yT

)
=

P
(
yT ,ZT = s

)
P (yT )

=
αT (s)∑
j αT ( j)

= πT ( j) .
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Then, due to the Markov property and the assumed dependencies of the HHMs, ap-

plying the Bayes rule will lead to the following relationship,

P
(
Zt = i | yT ,Zt+1

)
=

P
(
Zt = i, yT ,Zt+1

)
P (yT ,Zt+1)

∝ P (Zt = i, y1, . . . , yt) P (Zt+1 | Zt) P (yt+1, . . . , yT | Zt+1)

∝ piZt+1αt(i).

Thus, the given the realization of the hidden state Zt+1, Zt is drawn from

P
(
Zt = i | yT ,Zt+1

)
=

p(t)
iZt+1

πt (i)∑
j p jZt+1πt ( j)

.

Having described the statistical methodology we are now ready to describe our sim-

ulation scheme.

3.2.2 Simulation Scheme

The unknown quantities of the NHPG are
{
θs =

(
Bs, σ

2
s

)
, βs, s = 1, 2

}
, i.e., the param-

eters in the mean predictive regression equation and the parameters in the logistic

regression equation for the transition probabilities. We follow the methodology of

Koki, Meligkotsidou, and Vrontos (2020). In brief, the authors propose the follow-

ing MCMC sampling scheme for joint inference on model specification and model

parameters.

1. Given the model’s parameters, the hidden states are simulated using the Scaled

Forward-Backward of algorithm of Scott (2002).

2. The posterior mean regression parameters are simulated using the standard

conjugate analysis, via a Gibbs sampler method.

3. The logistic regression coefficients are simulated using the Pólya-Gamma data

augmentation scheme Polson, Scott, and Windle (2013), as a better and more

accurate sampling methodology compared to the existing schemes.

The steps 1-3 of the MCMC algorithm are detailed in Algorithm 1.

3.2.3 Data

We assess the ability of 11 financial–macroeconomic and 3 cryptocurrency specific

variables, outlined in Table 3.1, in explaining and forecasting the prices of BTC and
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Algorithm 1 MCMC Sampling Scheme for Inference on Model Specification and
Parameters

1: % After each procedure the parameters and model space are updated condition-
ally on the previous quantities

2: procedure Scaled Forward Backward((z1:T ))
3: %Simulation of a realization of the hidden states zt

4: for t = 1, . . . ,T and i = 1, 2 do
5: πt (i | θ)←

αt(s)∑2
j=1 αt ( j)

= P
(
zt = i | θ, yt)

6: (.) Simulation of the scaled forward variables
7: end for
8: for t = T,T − 1, . . . , 1 do
9: zt ← P

(
zt | yT , zt+1

)
=

pizt+1πt (i | θ)∑m
j=1 p jzt+1πt ( j | θ)

10: (.) Backwards simulation of zt using the smoothed probabilities
11: end for
12: end procedure
13: procedure Mean Regres Param(Bs, σ

2
s , s = 1, 2)

14: %Simulation of the mean regression parameters
15: for s = 1, 2 do (.) Conjugate analysis with Gibbs sampler
16: B | σ2 ∼ fB, σ

2 ∼ IG (.) fB ≡ Normal and IG ≡ Inverse-Gamma
17: end for
18: end procedure
19: procedure Log Regres Coef((βs, ωs))
20: %Simulation of the logistic regression coefficients
21: for s = 1, 2 do (.) Pólya-Gamma data augmentation scheme
22: → augment the model space with ωs

23: (.) Conjugate analysis on the augmented space
24: → sample from βs ∼ fβs |ω and ωs | βs ∼ PG

25: → posteriors fβs |ω ≡ Normal and PG ≡ Pólya-Gamma

26: end for
27: end procedure

ETH via the NHPG model. In the related cryptocurrency literature these indices are

commonly studied under various settings (Van Wijk, 2013; Yermack, 2015; Bouri

et al., 2017; Estrada, 2017; Pichl and Kaizoji, 2017; Hotz-Behofsits, Huber, and

Zörner, 2018). The findings of the descriptive statistics and preliminary stationarity

tests, cf. Section 3.5, indicate that the logarithmic return (log-return), i.e., the change

in log price, rt = log (yt) − log (yt−1), series of BTC and ETH exhibit trend non-

stationarity, non-linearities, rich (i.e., non-random) underlying information structure

and non-normalities. Based on these properties, the NHPG model seems appropriate

for the study of the log-return data series. Accordingly, we apply the NHPG algo-

rithm on daily log-returns of BTC and ETH, with normalized explanatory variables.
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We perform two experiments over two different time frames: in the first, we study the

BTC series between 1/2014 and 8/2019 and in the second, we study both the BTC and

ETH series between 1/2017 and 8/2019. The second time frame has been selected

to allow reasonable comparisons between the BTC and ETH prices after eliminating

an initial period following the launch of the ETH currency. It is further motivated by

the outcome of a test-run of the NHPG model on BTC prices, cf. Figure 3.1, which

indicates a transition point to a different period for the BTC price series in January

2017.

Figure 3.1: Application of the NHPG model on the BTC price series. The algorithm essen-
tially identifies two periods, the first from 2014 (start of the dataset) to 2017 and the second
from 2017 to date. This motivates separate analysis of the BTC for the latter period and
comparison with the ETH price series over the same period.

3.3 Results & Analysis

In this section, we discuss the findings from the NHPG model on the BTC and ETH

log-return series. We first present the graphics with the output of the algorithm for the

whole 2014-2019 period on BTC log-returns (Section 3.3.1) and the shorter 2017-

2019 period on both BTC and ETH log-returns (Section 3.3.2). Then, we interpret the

results and compare the statistical properties and the significant covariates between

the two hidden states of both the BTC and ETH series and between the short and

long run BTC series (Sections 3.3.3 and 3.3.4).

3.3.1 Hidden States: Bitcoin 2014–2019

Figure 3.2 displays the BTC log-return series (blue line) along with the smoothed

marginal probabilities (gray bars) of the hidden process being at state 1. Using as

a threshold the probability P (Zt = 1) > 0.5, we estimate the hidden states for each
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Explanatory Variables

Description Symbol Retrieved from

US dollars to Euros exchange rate USD/EUR investing.com

US dollars to GBP exchange rate USD/GBP investing.com

US dollars to Japanese Yen exchange rate USD/JPY investing.com

US dollars to Chinese Yuan exchange rate USD/CNY investing.com

Standard & Poor’s 500 index SP500 finance.yahoo.com

NASDAQ Composite index NASDAQ finance.yahoo.com

Silver Futures price Silver investing.com

Gold Futures price Gold investing.com

Crude Oil Futures price Oil investing.com

CBOE Volatility index VIX finance.yahoo.com

Equity market related Economic Uncertainty index EUI fred.stlouisfed.org

Daily Block counts Blocks coinmetrics.io

Hash Rate Hash quandl.com, etherscan.io

Transfers of native units Tx-Units coinmetrics.io

Table 3.1: List of variables and online resources. The Hash Rate (Hash) has been retrieved
from quandl.com for Bitcoin (BTC) and from etherscan.io for Ether (ETH).

time period. The NHPG model identifies a subseries of 667 observations in state 1

and a subseries of 1388 observations in state 2. The description of the hidden states

is not predetermined by the model and is done a posteriori, by comparison of the

statistical properties of the two subseries that have been generated. As it is obvious

from Figure 3.2, state 1 corresponds to periods of larger log-returns and increased

volatility in comparison to state 2. The frequent changes are in line with previous

studies on the heteroskedasticity and on the regime switches (structural breaks) of

the Bitcoin time series (Phillips and Gorse (2017) and Katsiampa (2017a) and Thies

and Molnár (2018), Koutmos (2018), Ardia, Bluteau, and Rüede (2019), and Bouri

et al. (2019b), respectively). Yet, the refined outcome of the NHPG model, which

determines the time periods that the series spends in each state, allows for a more

granular approach. Specifically, it adds information about the significant covariates

that affect both the observable and the unobservable process and on the financial

properties of each state. This is done in Section 3.3.4 below.

https://www.investing.com/
https://www.investing.com/
https://www.investing.com/
https://www.investing.com/
https://finance.yahoo.com/
https://finance.yahoo.com/
https://www.investing.com/
https://www.investing.com/
https://www.investing.com/
https://finance.yahoo.com/
https://fred.stlouisfed.org
https://www.coinmetrics.io
https://www.quandl.com/
https://etherscan.io
https://www.coinmetrics.io/
https://www.quandl.com/
https://etherscan.io
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Figure 3.2: BTC logarithmic-return series (blue line – right axis) for the period 1/2014-
8/2019 with the mean smoothed marginal probabilities of state 1, i.e., Pr (Zt = 1) (gray bars
– left axis).

3.3.2 Hidden States: Bitcoin and Ether 2017–2019

Figure 3.3 shows the results of the NHPG model for both the BTC (left panel) and

ETH (right panel) log-return series over the shorter 1/2017-8/2019 period. The

algorithm has again identified two states in the BTC series, Figure 3.3a, as indi-

cated by the clear distinction between high-low marginal probabilities of state 1, i.e.,

P (Zt = 1), that are given by the gray bars. Moreover, a comparison with the same

period in Figure 3.2 demonstrates that the NHPG has produced the same result (zoom

in) – in terms of statistical quality – even over this smaller period, i.e., the algorithm

has converged and returns essentially the same probabilities for the underlying pro-

cess. However, as we will see below, cf. Section 3.3.4, the statistical analysis unveils

differences in the significant predictors and financial properties between the short and

long run.

The picture is different for the ETH series, cf. Figure 3.3b. Here, the hidden

process is not well defined since the probabilities of state 1 at each time period are

(a) BTC: 1/2017-8/2019 (b) ETH: 1/2017-8/2019

Figure 3.3: BTC (left panel) and ETH (right panel) logarithmic-returns series (blue lines –
right axis) for the period 1/2017-8/2019 with the mean smoothed marginal probabilities of
state 1, i.e., Pr (Zt = 1), (gray bars – left axis).
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mostly close to 0.5. This indicates high degree of randomness in the transitions

of the algorithm and along with the low number of significant covariates that have

been identified for ETH (cf. Table 3.4 below), it suggests that ETH prices are still

influenced by forces which are beyond the current set of financial and blockchain

indicators (Katsiampa, 2019b; Phillip, Chan, and Peiris, 2018a; Phillip, Chan, and

Peiris, 2018b). This implies that ETH – when viewed as a financial asset – shows

characteristics of an evolving, non-static and still emerging market. However, the

relative isolation of ETH from other financial assets agrees with earlier findings in

the literature (Phillip, Chan, and Peiris, 2018a; Corbet et al., 2018).

Our next task is to provide additional insight on the structural financial and eco-

nomic attributes that differentiate these two states for all experiments. Based on the

similarities between the short and long run BTC time frames and the poor conver-

gence of the algorithm for the ETH series, we focus on the long-run BTC series.

3.3.3 Hidden States: Financial Properties (BTC 2014-2019)

The results of both the descriptive statistics and the relevant statistical tests are sum-

marized in Table 3.2. Each entry – BTC price, log-price and log-return series –

consists of two rows that correspond to the subseries of state 1 (upper row) and state

2 (lower row), respectively. The first two columns of Table 3.2 verify that the es-

timated hidden process segments the series into two subseries with high/low mean

and variance values for all the examined data series. Log-returns exhibit increased

kurtosis in comparison to the initial estimates, cf. Table 3.5, for both subseries (in

particular for state 2). Similarly, the skewness of both subseries has increased and has

turned positive with the skewness of the second subseries being again much higher

than that of the first. These distributional properties lead to rejection of normality for

either subseries and suggest the presence of heavy-tailed data (phenomena in which

exreme events are likely, 2.

The identification of two subchains with different kurtosis and skewness can be

a useful tool to investors (Jondeau and Rockinger, 2003; Konno, Shirakawa, and

Yamazaki, 1993; Dittmar, 2002). As risk measures, kurtosis and skewness cause ma-

jor changes to the construction of the optimal portofolio (Chunhachinda et al., 1997;

Conrad, Dittmar, and Ghysels, 2013), especially in emerging and highly volatile mar-

kets (Canela and Collazo, 2007). The asymmetry on the distributions and the differ-

ence of volatility between the two subchains can be related to the activity of informed

2Inclusion of a third hidden state could potentially lead to smoothing of these measurements, cf.
Section 3.4.
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D
¯

escriptive statistics T
¯
ests

Mean Variance Kurtosis Skewness DF LBQ KPSS VR JB

B
¯
TC Price 4920 2.1 × 107 2.79 0.81 0.58 0 0.01 0.86 0.00

2133 7.8 × 106 3.99 1.48 0.79 0.00 0.01 0.14 0.00

Log-Price 7.83 1.84 1.71 -0.41 0.95 0 0.01 0.86 0.00

6.87 1.49 1.98 0.68 0.97 0.00 0.01 0.45 0.00

Log-Return 0.0039 0.0050 7.85 0.76 0.00 0.77 0.02 0 0.00

0.0018 0.0023 45.48 2.68 0.00 0.00 0.10 0.08 0.00

Table 3.2: Descriptive statistics (left panels) and p-values for the time series statistical tests
(right panels) for the two (2) BTC price, log-price and log-return subseries – first and second
line of each entry – which correspond to the two hidden states that were identified by the
NHPG model for the whole 1/2014-8/2019 time period.
or fundamental vs uninformed, noise or non-fundamental investors (or traders). Intu-

itively, the activity of uninformed investors leads to periods with higher volatility (cf.

Baur and Dimpfl, 2018 and references therein). This is true for state 1 and refines the

findings of Zargar and Kumar (2019a) and Baur and Dimpfl (2018) who attribute the

informational inefficiency of BTC not only to its endogenous factors of an emerging,

non-mature market but also to the non-existence of fundamental traders.

The differences between the two states are further explained by the statistical

tests. While the p-values of the Dickey-Fuller (DF) and Jarque-Bera (JB) remain the

same as for the combined data series, cf. Table 3.5, the results for the Ljung-Box-Q

(LBQ), KPSS and Variance Ratio (VR) tests unveil different characteristics of the two

subseries. In state 2 of the log-return series, the zero hypothesis is rejected for the

LBQ test but not for the KPSS and VR tests. This suggests that the subseries defined

by state 2 is a random walk with trend stationarity and long memory. These findings

are related to (and to some extent refine) the results of Jiang, Nie, and Ruan (2018),

Khuntia and Pattanayak (2020), Mensi, Al-Yahyaee, and Kang (2019), and Zargar

and Kumar (2019b) by determining periods with (state 2) and without (state 1) per-

manent effects (long memory). The subchain of state 1 stills exhibits richer structure

which can be potentially attributed to the combined activity and herding behavior of

the non-fundamental traders (Bouri, Gupta, and Roubaud, 2019; Stavroyiannis and

Babalos, 2019).

3.3.4 Significant Explanatory Variables: Bitcoin and Ether

The second functionality of the NHPG model is to identify the significant explana-

tory variables from the set of available predictors that affect the underlying series

both linearly, i.e., in the mean equation (observable process), and non-linearly, i.e.,
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in the non-stationary transition probabilities (unobservable process). The algorithm

also distinguishes between the variables that are significant in each state. The cor-

responding results for the BTC log-return series over both the 2014-2019 and 2017-

2019 time periods are given in Table 3.3 and the results for the ETH log-return series

over the 2017-2019 time period are given in Table 3.4. We use Bi to denote the

posterior mean equation coefficients and βi the posterior mean logistic regression co-

efficients for states i = 1, 2, as described in Section 3.2. The predictors that have

E
¯
stimations BTC

2
¯
014-2019 2

¯
017-2019

V
¯

ariables B1 B2 β1 β2 B1 B2 β1 β2

USD/EUR 0.00 0.00 0.19 1.82∗ -0.01 0.00 0.48 3.97∗

USD/GBP 0.02∗ ≈ 0 -1.35∗ -1.68∗ -0.01 0.00 -1.82 4.34∗

USD/JPY 0.00 0.00 0.52 -0.77 0.00 -0.00 -0.53 -0.77

USD/CNY -0.01 0.00 0.90 0.57 ≈ 0 0.00 1.98 1.65

SP500 0.04∗ -0.01 3.90 -1.87 0.04 0.01 8.62∗ 1.23

NASDAQ -0.04 0.00 -1.65 -2.24 -0.00 -0.02 -8.26∗ -2.04

Silver 0.00 ≈ 0 0.22 0.57 0.01 -0.00 -0.42 1.15

Gold 0.00 ≈ 0 1.40∗ -0.18 0.00 0.00 1.19∗ -0.35

Oil ≈ 0 ≈ 0 -0.14 0.00 0.00 0.00 1.27∗ 1.98∗

VIX ≈ 0 ≈ 0 0.47 -0.18 ≈ 0 ≈ 0 0.53 0.18

EUI ≈ 0 ≈ 0 0.00 -0.00 ≈ 0 ≈ 0 0.00 0.00

Blocks 0.00 ≈ 0 -0.26 -0.07 -0.01 -0.00 -0.40 0.06

Hash 0.01∗ 0.00 -1.84∗ -0.03 0.01∗ 0.01 -2.48∗ 1.60

Tx-Units ≈ 0 0.00 0.51 -0.13 ≈ 0 0.00 0.53 -0.50

Table 3.3: Posterior mean estimations for the BTC log-return series in the 2014-2019 (left)
and 2017-2019 (right) time periods. B1, B2 are the mean equation coefficients and β1, β2 are
the logistic regression coefficients for states 1,2. Statistically significant coefficients (at the
0.05 level) are marked with ∗.

been found significant at the 0.05 level are marked with bold font and ∗. The main

findings are the following:

BTC: state 1 vs state 2. The significant predictors (covariates) that dominate both

the observable and the unobservable processes in the more volatile state 1 (cf.

Section 3.3.3), correspond to more volatile financial instruments such as stock

markets (S&P500 and NASDAQ). By contrast, state 2 is mostly influenced

by the more stable exchange rates, cf. Figure 3.4. These findings suggest
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increased speculative activity in state 1 in comparison to fundamental investors

in state 2.

BTC: short vs long run. While the algorithm has identified essentially the same

hidden process for both the short and long run windows, cf. Figures 3.2

and 3.3a, the significant predictors that affect both the observable and unob-

servable processes are remarkably different: more volatile for the short run

versus more fundamental (monetary) for the long run. In line with de la Horra,

de la Fuente, and Perote (2019), these findings provide evidence for increased

speculative behavior in the short run. They also extend BTC’s financial and

safen haven properties to more recent windows (Poyser, 2019; Balcilar et al.,

2017; Bouri, Azzi, and Dyhrberg, 2017). Additionally, they refine the results

of Corbet and Katsiampa (2018) and Chaim and Laurini (2019) who argue

about the differences in the short and long run BTC markets and the hedg-

ing properties of BTC against volatile stock indices in time varying periods,

respectively.

ETH vs BTC: short run. The lower number of significant predictors in the ETH

log-return series reflects the inability of the NHPG model to parse the underly-

ing process, cf. Figure 3.3b. This differentiates the ETH from the BTC market

and provides evidence that ETH is still at its infancy, evolving independently

from established economic indicators and fundamentals. Yet, the main – and

somewhat unexpected – conclusion is that, despite the evident correlation be-

tween the prices of BTC and ETH (Pearsons serial correlation 0.62), the two

cryptocurrencies are affected by different fundamental financial and macroe-

conomic indicators over the same time period.

Finally, an observation that applies to all series is that the current set of predictors

cannot fully explain the data volatility. Excluding the miners’ activity (as expressed

by the Hash Rate) which appears significant in state 1 for all series (both for the

observable and the unobservable processes), this observation follows from the small

values of the predictors in the mean equation of state 1 (cf. columns B1 in Table 3.3)

and the absence of predictors in the mean equation (observable process) of state 2

(cf. columns B2 in Table 3.3).
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Figure 3.4: Comparison of the USD/EUR exchange rate (blue line), S&P500 (green line) and
Crude Oil Future Prices (gray line) as a percentage of price changes from the initial period.
The USD/EUR exchange rate is less volatile than the other predictors.

E
¯
stimations ETH 2017-2019

V
¯

ariables B1 B2 β1 β2 V
¯

ariables B1 B2 β1 β2

USD/EUR -0.01 -0.00 -0.36 -0.38 USD/GBP 0.01 -0.06 0.21 0.59

USD/JPY -0.01 -0.00 -0.69 0.68 USD/CNY -0.02 0.01 -0.14 -0.01

SP500 0.06∗ -0.00 2.70 0.13 VIX 0.01 0.00 -0.19 0.26

NASDAQ -0.06∗ 0.00 -4.11∗ 0.40 EUI ≈ 0 ≈ 0 -0.00 -0.71∗

Silver -0.01 0.01 -0.60 0.07 Blocks -0.01 ≈ 0 0.36 2.20

Gold 0.00 -0.01 -0.28 0.21 Hash 0.04∗ 0.00 -0.46∗ -1.41

Oil -0.01 -0.01 -0.64 -1.92 Tx-Units 0.00 0.00 1.03 1.16

Table 3.4: Posterior mean estimations for the ETH log-return series in the 2017-2019 time
period. Statistically significant coefficients (at the 0.05 level) are marked with ∗.

3.4 Discussion: Limitations and Future Work

The application of NHHM modeling in cryptocurrency markets comes with its own

limitations. From a methodogical perspective, the main concerns stem from the de-

cision rule for each state which is probabilistic and the exogenously given number of

hidden states. In the present study, we used the threshold of 0.5 to decide transitions

from state 1 to state 2 and vice versa. However, in the related financial literature,

there are many different approaches even with lower thresholds. Moreover, while

two hidden states are generally considered the norm in most financial applications,

the current results suggest that it may be worth exploring the possibility of a third

hidden state. Alternatively, one may define a gray zone for time periods in which
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the algorithm returns probabilities around 0.5 for both states. This will allow for

the identification of periods with high uncertainty about the underlying process and

hence, will lead to more scarce, yet more uniform (in terms of distributional proper-

ties) subseries.

From a contextual perspective, the present approach does not account for qualita-

tive attributes of the predictive variables. For instance, it does not measure centraliza-

tion of the transactions or alleged fake volumes among different exchanges (Gandal

et al., 2018; Bouri et al., 2019a). Coupling the present approach with transaction

graph analysis, Dixon et al. (2019), and user metrics to capture potential market ma-

nipulation and the purpose of usage such as speculative trading or exchange of goods

and services (Cheah and Fry, 2015; Blau, 2017; Baur and Dimpfl, 2018) will lead

to improved results. Lastly, as more blockchains transition to alternative consensus

mechanisms such as Proof of Stake, further iterations of the current model should

also include the underlying technology (e.g., staking versus mining) as a determin-

ing factor. At the current stage, such a comparative study is not possible from a

statistical perspective, since the market capitalization and trading volume of conven-

tional Proof of Work cryptocurrencies is still not comparable to that of coins with

alternative consensus mechanisms. The long-anticipated transition of the Ethereum

blockchain to Proof of Stake consensus may define such an opportunity in the near

future.

Along these lines, extensions of the current model may enrich the set of covari-

ates (explanatory variables) to capture technological features and/or advancements of

various cyrptocurrencies, refine the NHPG model with potentially three hidden states

and finally, couple the statistical/economic findings with transaction graph analysis.

The expected outcome is a more detailed understanding of the financial properties of

cryptocurrencies and the assembly of a model with improved explanatory and pre-

dictive ability for cryptocurrency markets.

3.5 Appendix:

3.5.1 Descriptive statistics

In Table 3.5, we summarize the descriptive statistics for the BTC and ETH data

series, log-prices and the p-values of the necessary preliminary statistical tests that

assess the properties of the given data series prior to the application of the NHPG

model. In detail:
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Mean & variance: We report the mean and variance of prices, log-prices and log-

returns of BTC and ETH. As expected, all series exhibit very high (to extreme)

volatility.

Kurtosis: Based on the kurtosis values, the distributions of all series – except the

log-price BTC series – are leptokurtic, i.e., they exhibit tail data exceeding the tails

of the normal distribution (values above 3), indicating the large number of outliers

(extreme values).

Skewness: Additionally, we report the skewness values, as measure of the asymme-

try of the data around the sample mean. If skewness is negative, the data are spread

out more to the left of the mean and the opposite if skewness is positive. We observe

that the price series are highly right skewed, whereas the skewness of the log-returns

for both coins are close to 0, indicating an approximately symmetrical, around the

mean, series.

D
¯

escriptive statistics T
¯
ests

Mean Variance Kurtosis Skewness DF LBQ KPSS VR JB

B
¯
TC Price 3057 1.37 × 107 4.35 1.40 0.54 0 0.01 0.80 0.00

Log-Price 7.18 1.82 1.56 0.32 0.96 0 0.01 0.54 0.00

Log-Return 0.0012 0.0016 7.78 -0.27 0 0.31 0.03 0 0.00

E
¯
TH Price 311 6.41 × 104 4.95 1.43 0.31 0 0.01 0.43 0.00

Log-Price 5.34 1.14 4.42 -1.17 0.91 0 0.01 0.90 0.00

Log-Return 0.0032 0.0037 6.14 0.24 0 0.88 0.01 0 0.00

Table 3.5: Descriptive statistics (left panels) and p-values of the time series statistical tests
(right panels) for the BTC and ETH price, log-price and log-return series. DF denotes the
Dickey-Fuller test, KPSS the Kwiatkowski-Phillips-Schmidt-Shin test, LBQ is the Ljung-
Box Q test, VR the variance ratio test and JB the Jarque-Bera test.

3.5.2 Statistical tests

Stationarity captures the intuitive idea that certain properties of a (data generating)

process are unchanging. This means that if the process does not change at all over

time, it does not matter which sample portion of observations we use to estimate the

parameters of the process, cf. Sections 3.3.1 and 3.3.2.
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DF-ADF: First, we report the p-values of the Dickey-Fuller (DF) unit root test3.

This test assesses the null hypothesis of a unit root using the model yt = φyt−1 + εt.

The null hypothesis is H0 : φ = 1 under the alternative H1 : φ < 1. The H0 was

rejected only in the log-return series. The existence of the unit root is one of the

common causes of non-stationarity. Intuitively, if a series is unit root nonstationary

then the impact of the previous shock εt−1 on the series has a permanent effect on the

series.

LBQ: To test for serial autocorrelation on the long-run, i.e., to detect if the obser-

vations are random and independent over time, we used the Ljung-Box-Q (LBQ)

test which assesses the presence of autocorrelations (ρ) at lags p in one hypothesis,

jointly. The null hypothesis of the LBQ test is H0 : ρ1 = · · · = ρp = 0, under ev-

ery possible alternative. The null hypothesis was not rejected only for the log-return

series and for lags up to pBTC = 10 and pET H = 6, for BTC and ETH respectively.

However, when pBTC > 10 and pET H > 6 the null hypothesis was rejected, indicating

long-memory (persistent) log-return series.

KPSS: The next column presents the p-values of the Kwiatkowsi, Phillips Schimdt,

Shin (KPSS) test. The KPSS test assesses the null hypothesis that a univariate time

series is trend stationary against the alternative that it is a non stationary unit root

process. The test uses the structural model: yt = ct + δt + u1t, ct = ct−1 + u2t where δt

is the trend coefficient at time t, u1t is a stationary process and u2t is an independent

and identically distributed process with mean 0 and variance σ2. The null hypothesis

is that σ2 = 0, which implies that the random walk term (ct) is constant and acts as

the model intercept. The alternative hypothesis is that σ2 > 0, which introduces the

unit root in the random walk. Based on the p-values, we reject all the hypothesis of

trend stationarity of the series.

VR: Additionally, we report the p-values of the Variance Ratio (VR) test which

assesses the hypothesis of a random walk. The random walk hypothesis provides a

mean to test the weak-form efficiency – and hence, non-predictability – of financial

markets, and to measure the long run effects of shocks on the path of real output in

macroeconomics, see Charles and Darné (2009) and references therein. The model

under the H0 is yt = c + yt−1 + εt, where c is a drift constant and εt are uncorrelated
3We also performed the Augmented Dickey-Fuller test with drift c, which assesses the null hypoth-

esis of a unit root using the model yt = c + φyt−1 + β1∆yt−1 + · · · + βp∆yt−p + εt where ∆yt = yt − yt−1
and lagged operator p = 7. The results were similar as the DF test. The null hypothesis was rejected
only in the log-returns series for both cryptocurrencies.
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innovations with zero mean. The random walk hypothesis is rejected only in the log-

return series for both coins. Essentially, the rejection of the random walk hypothesis

shows that there exists information that can be used in explaining the movement of

the returns.

JB: Lastly, we report the Jarque-Bera (JB) test, as a normality test. Based on these

results, all the series are not normally distributed.
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Chapter 4

Exploring the Predictability of
Cryptocurrencies via
Bayesian Hidden Markov Models

4.1 Introduction

The growth of cryptocurrency markets made a splash in the world. At present, there

are more than one thousand cryptocoins that constitute a multi-billion market (Hu,

Parlour, and Rajan, 2019). Due to their increasing popularity and intriguing finan-

cial and econometric properties (Dyhrberg, Foley, and Svec, 2018), they have at-

tracted the interest of investors, regulatory authorities, policymakers, tech-savvy en-

trepreneurs and academics (Corbet et al., 2019). Their documented safe haven and

hedge properties, most relevant in periods with volatile stock markets and inflationary

pressures in fiat currencies, render cryptocurrencies increasingly important in port-

folio optimization and risk diversification (Urquhart and Zhang, 2019; Bouri et al.,

2020; Platanakis and Urquhart, 2020). In turn, informed decisions concerning opti-

mal portfolio allocation and asset management require models with good predicting

ability (Chen, Li, and Sun, 2020).

Similar to forecasting studies about conventional financial assets and exchange

rates (McMillan, 2020; Panopoulou and Souropanis, 2019), this has prompted a

growing literature on the predictability of cryptocurrency returns, Existing results

range from the identification of significant explanatory variables ((Aalborg, Molnár,

and Vries, 2019; Bleher and Dimpfl, 2019; Kurka, 2019) and (Corbet et al., 2019;

Katsiampa, 2019a) for comprehensive surveys of earlier models) to price predic-

tion with elaborate machine and deep learning models (Chen, Li, and Sun, 2020;

Chen et al., 2020). Under the Bayesian framework, main efforts involve continuous
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state space models (Hotz-Behofsits, Huber, and Zörner, 2018) univariate and mul-

tivariate dynamic linear models, model averaging and time-varying vector autore-

gression models (Catania, Grassi, and Ravazzolo, 2019). These articles show that

time-varying models give significantly improved point and density forecasts when

compared to various benchmarks such as the random walk model.

The improved performance of the state space and time varying models is not a

surprise, since these models accommodate various characteristics of the cryptocur-

rency series, such as time varying volatility and time varying mean returns. Accu-

mulating evidence points to the existence of structural breaks (Meligkotsidou et al.,

2019; Bouri et al., 2019b; Katsiampa, 2019a; Thies and Molnár, 2018) return and

volatility jumps (Shen, Urquhart, and Wang, n.d.; Chaim and Laurini, 2018) and

regime/state switches (Ardia, Bluteau, and Rüede, 2019; Koutmos, 2019; Koutmos,

2018) in cryptocurrency returns. However, while regime switching models have been

shown to deliver improved forecasting results in exchange rates series and stock mar-

ket returns (see e.g., Panopoulou and Pantelidis, 2015; Dias, Vermunt, and Ramos,

2015; Yuan, 2011 among others), their application in the cryptocurrency context is

still limited (cf. Section 4.1.1).

Stimulated by the above and aiming to contribute to the growing literature on

the predictability of cryptocurrencies, we perform a systematic analysis of various

multi-state (regime-switching) Hidden Markov (HM) models on the return series of

the three largest (in terms of market capitalization) cryptocurrencies, Bitcoin (BTC),

Ether (ETH) and Ripple (XRP). Our goal is to examine the impact of regime switches

in predicting the return series and the state-dependent (time-varying) effects of sev-

eral financial, economic and cryptocurrency specific exogenous predictors. In total,

we consider eight discrete state space HM models with exogenous predictors, cf.

Table 4.2. The models include between 2 and 5 hidden states,1 and either Homoge-

neous (HHM) or Non-Homogeneous (NHHM) transition probabilities. We also con-

sider the standard 2-state Markov Switching Random Walk (MS-RW) model with-

out exogenous predictors. We benchmark the aforementioned HM models against

three single regime models: the Random Walk (RW) model that is commonly used

(as a benchmark) in predicting exchange rates (Panopoulou and Pantelidis, 2015;

Frömmel, MacDonald, and Menkhoff, 2005; Yuan, 2011; Cheung and Erlandsson,

2005), the linear random walk model with all the predictors, often referred to as

1To determine the number of states we undertook an extensive specification test. Experiments
with more than 5 states (not presented here) exhibit worst performance. Even though adding more
states may improve the in-sample fit, the decreased parsimony leads to worse predictions (Guidolin
and Timmermann, 2006).
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the Kitchen Sink (KS) model, (Catania, Grassi, and Ravazzolo, 2019), and the lin-

ear Auto-Regressive (AR(5)) model with lagged values up to lag 5. All models are

estimated using Bayesian MCMC methods.

The predictor set includes exchange rates of various fiat currencies, stock and

volatility indices, commodities, and cryptocurrency specific variables. Following

the tradition in the literature (Gelman, Hwang, and Vehtari, 2014b; Geweke and

Amisano, 2010; Bergman and Hansson, 2005), we use the out-of-sample forecasting

performance of the aforementioned models to discriminate between the different em-

pirical models. The statistical evaluation of the models is based on the Continuous

Rank Probability Score (CRPS) and Mean Squared Forecast Error (MSFE). Finally,

to examine if there is an underlying non-linear correlation between the predictors

and the return series through the transition probabilities, we add a stochastic search

reversible jump step in the NHHM model with the best forecasting performance. We

report the posterior probabilities of inclusion in the hidden states transition equations

for each predictor.

Our results demonstrate that the 4-states NHHM model has the best forecasting

performance for all three series with significant improvements over the single regime

models. Even though the optimal model (in terms of predicting accuracy) is common

for all three series, we find that the predictors affecting the observed and unobserved

processes are significantly different. From the complete set of twelve predictors, the

Bitcoin series is affected linearly and non-linearly by five predictors, whereas the

Ether and Ripple series are affected by seven predictors. In addition, only the US

Treasury Yield and the CBOE stock market volatility index, VIX, have predictive

power on all three series. Turning to the in-sample analysis of the 4-state NHHM

model, we observe that the returns of each state present distinct characteristics. Un-

like conventional exchange rates, see for example Yuan (2011), we observe that the

hidden states for all cryptocurrencies are not persistent, but they present frequent al-

ternations. In particular, concerning the Bitcoin return series, we find that state 1, the

most frequently occurring state, corresponds to a bear regime (i.e., negative returns

and high volatility), states 2 and 3 correspond to a bull regime (positive returns and

low volatility) but with different kurtosis and state 4 corresponds to a calm regime

(returns close to 0 and low volatility). The relation of the BTC returns and volatility

within the hidden states is consistent with the asymmetric volatility theory. Regard-

ing the ETH return series, we observe frequent alternations between state 1, the high

volatility state, and the low volatility state 2, while states 3 and 4 serve as auxil-

iary states with low occupancies. Lastly, state 1 of the Ripple series corresponds to
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periods with extremely high average returns but, as a trade-off, also with high risk.

States 2 and 3 are the states with the highest occupancies, while state 4 serves as an

auxiliary state.

The remainder of this section is structured as follows. Section 4.2 provides an

overview of the data and methodology. Specifically, Section 4.2.1 describes the data

along with their transformations and descriptive statistics and Section 4.2.2 presents

the Hidden Markov models and forecasting evaluation criteria. Section 4.3 presents

the empirical findings of the forecasting exercise, i.e., the out-of-sample results and

the in-sample analysis of the model with the best performance. Finally, Section 4.4

summarizes and discusses our results.

4.1.1 Other Related Literature

Our model relates to two strands of literature. From a methodological perspective,

our model draws from the econometric literature of HM models. Since the seminal

work of Hamilton (1989), HM models have been fruitfully applied in diverse ar-

eas such as communications engineering and bioinformatics (Cappé, Moulines, and

Rydén, 2006). In finance, they have been extensively used in predicting and ex-

plaining exchange rates (Panopoulou and Pantelidis, 2015; Lee and Chen, 2006b;

Frömmel, MacDonald, and Menkhoff, 2005; Bollen, Gray, and Whaley, 2000), stock

market returns Dias, Vermunt, and Ramos, 2015; Angelidis and Tessaromatis, 2009;

Guidolin and Timmermann, 2006, business cycles (Tian and Shen, 2019; Chauvet

and Hamilton, 2006), realized volatility (Koki, Meligkotsidou, and Vrontos, 2020;

Liu and Maheu, 2018), the behavior of commodities (Pereira, Ramos, and Dias,

2017) and in portfolio allocation (Platanakis, Sakkas, and Sutcliffe, 2019). The rea-

son for their increased popularity is that they present various attractive features. In

particular, the time-varying parameters which are driven by the state variable of the

presumed underlying Markov process, lead to models that can accommodate both

non-linearities and mean reversions (Wu and Zeng, 2014; Guidolin and Timmer-

mann, 2008). In addition, HM models can act as filtering processes that account for

outliers and abrupt changes in financial market behavior (Persio] and Frigo, 2016;

Ang and Timmermann, 2012) and flexibly approximate general classes of density

functions (Timmermann, 2000).

In the cryptocurrency context, HM models have been applied by Hotz-Behofsits,

Huber, and Zörner (2018) and Catania, Grassi, and Ravazzolo (2019) as a state space

model, by Phillips and Gorse (2017) in the understanding of price bubbles and by
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Koutmos (2018) and Koutmos (2019) in examining the relation of BTC with con-

ventional financial assets. Bouri et al., 2019b; Caporale and Zekokh, 2019; Ardia,

Bluteau, and Rüede, 2019 use the HM setting to study volatility of cryptocurrencies

with GARCH models. The motivation of these studies lies in the observed features

of the cryptocurrencies return and volatlity series. In particular, cryptocurrencies

series are non-stationary and present non-normalities , heteroskedasticity, volatility

clustering, heavy tails and excess kurtosis (Katsiampa, 2017b; Katsiampa, 2019a).

Chaim and Laurini (2018) and Thies and Molnár (2018) (among others) document

the existence of abrupt price changes and outliers, while Corbet and Katsiampa, 2018

show that BTC returns are characterized by an asymmetric mean reverting property.

With the aforementioned attractive features of HM models and the characteristics of

the cryptocurrency series, it is only natural to ask: do HM models offer improved

predictive performance of cryptocurrency returns?

4.2 Data and Methodology

4.2.1 The Data

We use the percentage logarithmic end-of-the-day returns, defined as yt = 100 ×(
log (pt) − log (pt−1)

)
, with pt be the prices of BTC, ETH and XRP. For each coin,

we excluded an initial adjustment market period. In particular, we study the BTC

time series for the period ranging from 1/2014 until 11/2019, the ETH series for the

period ranging from 9/2015 until 11/2019 and the XRP data series from 1/2015 until

11/2019. Figure 4.1 displays the series under study. The covariate set is consisted

of normalized fiat currencies, i.e., Euros to US Dollars (EUR/USD), Great Britain

Pounds to US Dollars (GBP/USD), Chinese Yuan to US Dollars (CNY/USD) and

Japanese Yen to US Dollars (JPY/USD), commodities, i.e., Gold and crude Oil nor-

malized future prices, stock indices, i.e. Standard and Poor’s 500 logarithmic returns

(SP500), CBOE volatility logarithmic index (VIX), interest rates, i.e., US 10-year

Treasury Yield (TY) logarithmic returns and cryptocurrency specific variables, i.e.,

the blockchain block size (SIZE) as percentage of difference between two consec-

utive days and the percentage of difference between two consecutive days of Hash

Rate (HR)2. We report some illustrative descriptive statistics of our covariate set in

Table 4.1. Finally, we also include the the lagged 1 autoregressive term of the studied

2The Hash rate is used in BTC and ETH series only
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Figure 4.1: Daily price series plots for the three cryptocurrencies considered in this study:
Bitcoin (upper plot), Ether (middle plot) and Ripple (lower plot). We study the Bitcoin time
series for the period ranging from 1/2014 until 11/2019, the Ether series for the period ranging
from 9/2015 until 11/2019 and the Ripple data series from 1/2015 until 11/2019.

series as a predictive variables.3 4. In our extensive experimental study, we added

up to 5 lagged autoregressive terms as predictive variables. We did not observed any

improvement in the performance and hence we omit the results of these experiments.

4.2.2 The Econometric framework

In this study, we focus on a widely used class of econometric models, the HM models.

In a HM setting, the probability distribution of the studied series Yt depends on the

state of an unobserved (hidden) discrete Markov process, Zt. Let (Yt, Xt) be pair of a

the random process of the assumed cryptocurrency return series Yt, with realization yt

and the set of explanatory variables (predictors) Xt with realization xt = (x1t, . . . , xkt).

Then, given the state zt the observed process is modeled as yt = g(zt), with g a

predetermined function. The hidden process Zt follows a first order finite Markov

process with m < ∞ states and transition probabilities P (Zt+1 = j | Zt = i) = pi j,

i, j = 1, . . . ,m. If m = 1, then the model is the standard linear regression model.

3The importance of including autoregressive terms is highlighted in Timmermann (2000) who
proves that including autoregressive parameters gives rise to cross-product terms that enhance the set
of third- and fourth-order moments and the patterns in serial correlation and volatility dynamics that
these models can generate and hence provide the basis for very flexible econometric models.

4The cryptocurrency price series and blockchain size were downloaded from coinmetrics.io, the
exchange rates and commodities prices were downloaded from investing.com, the S&P 500 index,
VIX and Treasury Yield from Yahoo Finance and lastly the Hash Rate from quandl.com for BTC and
from etherscan.io for ETH.

https://www.coinmetrics.io/
https://www.investing.com/
https://finance.yahoo.com/
https://www.quandl.com/
https://etherscan.io
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Variables Transf Mean Std. Min. q05 p50 q95 Max. Kurt Skew

Bitcoin % log returns 0.11 3.95 -24.37 -6.47 0.17 6.13 22.47 7.84 -0.27
Ether % log returns 0.33 6.54 -31.67 -9.76 -0.01 11.61 30.06 6.64 0.07
Ripple % log returns 0.14 7.02 -63.65 -8.46 -0.31 10.25 100.85 38.99 2.55

EUR/USD normalized 0 1 -1.42 -1.20 -2.24 2.05 6.30 6.16 1.50
GBP/USD normalized 0 1 -5.57 -1.65 0.03 1.64 7.23 8.02 0.15
CNY/USD normalized 0 1 -16.60 -1.52 0.02 1.57 6.27 41.26 -2.00
JPY/USD normalized 0 1 -9.70 -1.52 0.04 1.44 6.42 15.13 -0.59
Gold normalized 0 1 -5.32 -1.60 0 1.61 9.32 9.80 0.29
Oil normalized 0 1 -7.93 -1.22 0 1.29 10.79 23.92 1.04
SP500 log returns 0 0.01 -0.05 -0.01 0 0.01 0.05 9.47 -0.56
VIX log prices 2.68 0.25 2.21 2.31 2.63 3.15 3.71 3.37 0.70
TY log returns 0 0.01 -0.10 -0.03 0 0.03 0.11 7.18 0.13

BTC Hash % of change -1.12 14.77 -138.86 -25.42 -0.72 20.81 66.80 10.58 -0.88
ETH Hash % of change 0.42 4.02 -25.50 -4.21 0.37 4.82 99.90 248.92 9.50
BTC size % of change -0.82 13.61 -81.26 -23.04 -0.27 20.84 45.08 5.10 -0.46
ETH size % of change -0.52 14.63 -359.96 -16.87 -0.15 15.81 55.28 243.51 -10.24
XRP size % of change -0.83 13.76 -90.94 -24.63 -0.06 20.43 51.02 6.61 -0.73

Table 4.1: Summary Statistics of the percentage logarithmic return cryptocurrency series and
transformed predictors. The first column reports the transformation of each variable. The
second column displays the mean. The third column reports the standard deviation. Third to
seventh columns display the minimum values, the 5%,50%, 95% quantiles and the maximum
values respectively. Last two columns display the kurtosis and skewness coefficients.

We consider the Normal HM models, i.e., conditional on the hidden process

marginal distribution of Yt is Normal,

yt = Bzt Xt + εZt ,

with Bzt =
(
b0zt , b1zt , . . . , bkzt

)
be the regression coefficients when the latent process

at time t is at state zt = s, s = 2, . . . ,m, and εzt be the normally distributed ran-

dom shocks, εzt ∼ N
(
0, σ2

zt

)
. The hidden process is determined by the transition

probability matrix

P(t) =


p(t)

11 p(t)
12 · · · p(t)

1m

p(t)
21 p(t)

2,2 · · · p(t)
2m

...
...

. . .
...

p(t)
m1 p(t)

m2 · · · p(t)
mm


where p(t)

i j = P (Zt+1 = j | Zt = i) is the probability that at time t the hidden state is

j given that at time t − 1 the hidden state was i. If the transition probabilities are

time-constant, then the resulting model is a Homogeneous Hidden Markov (HHM)

model. However, relaxing the hypothesis of constant probabilities, then the resulting

model is the more flexible Non-Homogeneous Hidden Markov (NHHM) model. A

graphical representation of the NHHM is shown in Figure 4.2.

Among the various NHHM models, we use recently proposed NHHM of Koki,
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Hidden Z1 Z2 Z3 Zt−1 Zt

Observed
Y1 Y2 Y3 Yt−1 Yt

. . .

P1 P2

. . .

Pt−1

. . .

X1 X2 Xt−1

X0 X1 X2 Xt−2 Xt−1

Figure 4.2: Graphical representation of the Non-Homogeneous Hidden Markov model.

Meligkotsidou, and Vrontos (2020), namely the Non-Homogeneous Pólya-Gamma

HM model. In this model, the transition probabilities are modeled using the multino-

mial link with predictors Xt and multinomial regression coefficients βi j =
(
β0,i j, β1,i j, . . . , βk,i j

)′
,

i.e.

p(t)
i j =

exp
(
xtβi j

)
m∑

l=1

exp (xtβil)

, i, j = 1, . . . ,m.

In the proposed model, the authors use a further latent variable scheme to make infer-

ence on the multinomial regression coefficients, which is based on a Pólya-Gamma

data augmentation scheme (Polson, Scott, and Windle, 2013), leading to more accu-

rate and robust inferences.

To make inference on the models’ parameters we use a Bayesian Markov Chain

Monte Carlo (MCMC) algorithm, which is consisted of the following steps: (a) A

FB algorithm for simulating the hidden states, (b) a Gibbs sampling step for esti-

mating the linear regression coefficients using conditional conjugate analysis, (c) a

Gibbs sampling step with a Pólya-Gamma data augmentation scheme for estimating

the multinomial regression coefficients and (d) simulation of L one-step-look-ahead

forecasts. To study the effects of the predictors on the non-homogeneous transition

probabilities, we intercalate between the fourth (c) and fifth (d) steps a stochastic

variable search (via reversible jump) step. We refer to Koki, Meligkotsidou, and

Vrontos (2020) for a detailed description of these steps.

In addition, we include in our analysis the 2-state Markov-Switching Random

Walk (MS-RW) model with drift (Engel, 1994b; Nikolsko-Rzhevskyy and Prodan,

2012) and Normal errors, as a simpler and parsimonious regime switching model.

By leveraging this model we allow for both the drift term µ and variance σ2 to take
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two distinct values, i.e.,

yt ∼ N
(
µzt , σ

2
zt

)
, zt = 1, 2,

where the variable Zt is governed by the constant transition probabilities

P(Zt = 1 | Zt−1 = 1) = p11 and P (Zt = 2 | Zt−1 = 2) = p22.

Summing up, our methodology is the following. First, we study the performance

of various HM settings with fixed covariate set, in explaining and predicting the cryp-

tocurrency log-return series. In particular, we consider 9 HM models, i.e., NHHM

models with m = 2, . . . , 5 states, HHMs with m = 2, . . . , 5 state and the 2-state MS-

RW. Following the standard practice, we also implement the Random Walk model

(RW) (i.e., a linear model with no covariates), the linear regression model with all

the covariates and the autoregressive term, often referred as Kitchen Sink (KS) model

and a autoregressive model lagged endogenous variables up to lag 5, AR(5), as single

regimes models, leading to 12 total models for each coin, cf.Table 4.2.

Model Abbreviation Predictors Probabilities States
Mean equation Transition Probabilities

Non-Homogeneous Hidden Markov (NHHM) X, AR X, AR multinomial 2-5

Homogeneous Hidden Markov (HHM) X, AR — constant 2-5

Markov Switching Random Walk (MS-RW) — — constant 2

Kitchen Sink (KS) X, AR — — 1

Linear Regression (AR(5)) AR — — 1

Random Walk (RW) — — — 1

Table 4.2: Summary of the models of this study. The first two columns show the model
and its abbreviation, the third and fourth columns show the assumed relation of the studied
time series and the predictors. The fifth column shows the assumed parametrization of the
transition probabilities of each model. The last column shows the various number of states
we considered for each model.

Then, we choose the model with the out-of-sample (predicting) performance

based on the CRPS and MSE. Finally, we focus on the possibly missed hidden ef-

fects on the transition probabilities. To this end, we apply a reversible jump stochastic

search algorithm on the multinomial regression predictors of the NHHM model with

the best predicting performance.

4.2.3 Performance Evaluation

We assess the performance of the studied models based on their predicting ability.

Reflecting the logical positivism of the Bayesian approach stating that a model is as
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good as its predictions Geweke and Amisano (2010) and Guidolin (2011), the pre-

dictive accuracy is valued not only for its own sake but rather for comparing different

models within the Bayesian framework. Focusing on the accuracy of the predictive

density, we rely on two distance-based metrics: the Continuous Rank Probability

Score (CRPS) and the Mean Square Error (MSE).

Let yp be the actual forecasting values with distribution Fp. Utilizing the MCMC

output, we obtain a sample of the L one-step-look ahead predictions, Ŷl, l = 1, . . . , L

, from the empirical posterior predictive distribution. For every out-of-sample obser-

vation, the CRPS is defined as,

CRPS(Fl,p, yl,p) =

∫ ∞

−∞

(
F

(
ŷp

)
− I{ŷl≥yl,p}

)2
dŷl, l = 1, . . . , L.

We compute the CRPS numerically, using the identity of Székely and Rizzo (2005b)

CRPS
(
Fl,p, yl,p

)
= −

1
2
E

∣∣∣Ŷl − Ŷ ′l,p
∣∣∣ − E ∣∣∣Ŷl − yl,p

∣∣∣ ,
were Ŷl, Ŷ ′l are independent replicates from the estimated (empirical) posterior pre-

dictive distribution. The MSE for the l-th,, l = 1, . . . , L, out-of-sample observation is

defined as

MSEl =
1
N

N∑
i=1

(
yp,l − ŷl,i

)2
,

where N is the MCMC sample size. We report the the CRPS and MSE for every

prediction over all MCMC iterations and the average CRPS and MSE over all obser-

vations. The best model among its counterparts, is the one with the lowest CRPS and

MSE.

4.3 Empirical Analysis

4.3.1 Out-of-Sample analysis

We asses the forecasting performance of the models under scrutiny, i.e., the m-states,

m = 2, . . . , 5 NHHMs and HHMs, 2-states MS-RW and the benchmarks RW, KS and

AR(5). The out-of-sample accuracy is assessed using a sequence of L = 30 one-step-

ahead predictive densities. In Table 4.3, we report the CRPS and MSE in parenthesis

for 5 randomly chosen out-of-sample points, i.e., L = 1, 2, 7, 15, 30. The last column

reports the average scores over all the out-of-sample points. Through this exercise,

parameter estimates are held fixed.
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Bitcoin
Horizon 1 2 7 15 30 Average

NHHM2 0.91 (8.79) 0.45 (8.20) 0.65 (13.30) 0.82 (17.07) 0.64 (14.80) 1.86 (28.80)
NHHM3 1.00 (8.47) 0.40 (8.82) 0.68 (14.13) 0.88 (19.42) 0.61 (16.04) 1.85 (29.26)
NHHM4 0.71 (7.89) 0.32 (6.37) 0.58 (13.58) 0.78 (15.62) 0.60 (15.54) 1.78 (28.00)
NHHM5 0.96 (15.33) 0.60 (14.27) 0.91 (25.92) 0.90 (18.97) 0.62 (15.72) 1.85 (30.41)

HHM2 0.91 (9.67) 0.52 (9.33) 0.66 (14.61) 0.86 (17.19) 0.67 (16.00) 1.87 (29.36)
HHM3 0.93 (15.60) 0.57 (15.67) 0.78 (16.85) 0.83 (17.73) 0.56 (15.72) 1.87 (30.02)
HHM4 0.97 (14.61) 0.62 (13.86) 0.85 (23.06) 0.81 (16.73) 0.53 (14.85) 1.87 (29.43)
HHM5 0.91 (14.26) 0.49 (12.92) 0.75 (20.28) 0.86 (15.13) 0.50 (12.73) 1.83 (29.20)

MS-RW 0.95 (9.80) 0.53 (8.93) 0.60 (14.00) 0.81 (16.05) 0.62 (15.50) 1.85 (29.50)
KS 1.10 (17.05) 0.95 (15.67) 0.90 (15.52) 1.09 (19.19) 0.92 (17.90) 1.92 (29.72)
AR(5) 1.12 (17.50) 0.92 (15.35) 0.95 (15.69) 0.99 (16.20) 0.97 (18.12) 1.95 (30.09)
RW 1.20 (19.50) 1.00 (15.85) 1.05 (14.89) 1.00 (16.15) 0.96 (18.85) 1.98 (31.12)

Ether

NHHM2 1.60 (27.82) 1.21 (27.83) 1.11 (29.22) 0.89 (27.71) 0.87 (27.09) 1.62 (31.51)
NHHM3 1.59 (27.13) 1.15 (25.40) 1.15 (26.82) 0.85 (25.80) 0.93 (24.74) 1.60 (25.09)
NHHM4 1.45 (20.45) 1.04 (18.66) 1.05 (19.21) 0.69 (15.55) 0.70 (15.95) 1.56 (24.87)
NHHM5 1.68 (31.57) 1.42 (30.12) 1.26 (31.59) 1.24 (28.08) 1.16 (27.43) 1.83 (37.12)

HHM2 1.60 (30.30) 1.29 (33.10) 1.15 (40.16) 1.10 (41.60) 1.07 (43.28) 1.75 (49.25)
HHM3 1.67 (44.88) 1.48 (45.83) 1.24 (45.29) 1.06 (41.83) 1.14 (41.41) 1.80 (51.47)
HHM4 1.71 (39.94) 1.35 (35.37) 1.22 (34.48) 1.21 (34.20) 1.14 (29.25) 1.81 (40.55)
HHM5 1.97 (50.69) 1.74 (46.94) 1.57 (43.16) 1.58 (43.17) 1.56 (44.20) 1.80 (43.42)

MS-RW 1.36 (28.40) 1.20 (28.38) 1.11 (35.90) 1.07 (42.36) 1.22 (43.40) 1.73 (48.86)
KS 1.97 (50.69) 1.74 (46.94) 1.57 (43.16) 1.58 (43.17) 1.56 (44.20) 2.03 (52.00)
AR(5) 1.95 (50.45) 1.82 (47.89) 1.61 (42.79) 1.49 (42.32) 1.62 (43.92) 2.04 (51.92)
RW 2.00 (51.65) 1.86 (48.03) 1.66 (43.87) 1.48 (42.25) 1.66 (45.12) 2.15 (53.03)

Ripple

NHHM2 0.98 (27.38) 1.24 (25.71) 0.81 (22.00) 0.87 (23.57) 0.75 (19.67) 1.54 (29.69)
NHHM3 0.90 (26.45) 1.05 (23.91) 0.80 (23.86) 0.69 (22.34) 0.63 (16.92) 1.46 (28.67)
NHHM4 0.82 (24.50) 0.99 (22.14) 0.77 (21.70) 0.60 (21.19) 0.62 (18.69) 1.39 (27.38)
NHHM5 1.00 (31.50) 1.15 (27.87) 0.95 (25.34 0.71 (22.38) 0.73 (22.39) 1.60 (30.32)

HHM2 0.99 (28.00) 1.22 (24.40) 0.82 (21.88) 0.94 (22.80) 0.81 (23.37) 1.54 (29.16)
HHM3 1.22 (37.94) 1.24 (33.45) 0.99 (30.69) 0.89 (29.15) 0.73 (28.56) 1.54 (36.40)
HHM4 1.06 (36.42) 1.27 (26.97) 0.86 (27.55) 0.92 (26.35) 0.74 (24.18) 1.52 (32.96)
HHM5 1.28 (33.41) 1.10 (29.07) 1.19 (38.27) 0.77 (27.34) 0.85 (27.16) 1.52 (33.68)

MS-RW 1.25 (40.57) 1.09 (34.78) 1.38 (41.25) 0.97 (39.33) 1.01 (39.05) 1.55 (44.93)
KS 2.08 (56.26) 2.00 (54.89) 1.64 (50.50) 1.85 (52.36) 1.66 (48.83) 2.09 (57.64)
AR(5) 1.96 (51.97) 2.05 (56.14) 1.74 (49.13) 1.72 (50.37) 1.67 (47.97) 2.10 (56.75)
RW 1.97 (52.02) 2.06 (56.08) 1.73 (48.45) 1.76 (52.01) 1.72 (50.11) 2.21 (58.73)

Table 4.3: Continuous Rank Probability Score and Mean Squared Error in parenthesis for
all the competing models for the Bitcoin, Ether and Ripple series. The last column reports
the average CRPS (MSE) over the whole sequence of 30 one-step ahead predictions. Bold
values indicate the lowest CRPS values for each out-of-sample points.

As a preliminary point, we observe that all the HM models significantly surpass

the single regime RW, KS, AR(5) models, while all the single regime models have
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similar forecasting performance. Even the KS model, which includes all the predic-

tors besides the autoregressive terms, does not improve the forecasting performance

over the AR or RW models. These results suggest that the HM models can identify

time-varying parametrizations leading to improved forecasting performance, rela-

tively to the forecasting performance of the single regime benchmarks. This finding

is in line with previous studies arguing on the necessity of incorporating the structural

breaks and regime switches in modeling the BTC return series, see for example Thies

and Molnár (2018). In addition, we also confirm the argument on the existence of

time-varying effects on BTC cryptocurrencies series, see for example Meligkotsidou

et al. (2019) and expand it to the ETH and XRP series.

As far as the predicting accuracy among the various HM models, we observe

that – based on the average CRPS and MSE scores (last column of Table 4.3) – the

model with the best forecasting performance is the 4-state NHHM for all coins. More

specifically, we observe that the 4-state NHHM model delivers the best predicting

performance, since it has the lowest CRPS for all the randomly chosen out-of-sample

points, with the exception of the 30-th point in the BTC forecasting exercise and the

1-st point of the ETH forecasting exercise where the 5-state HHM and the MS-RW

models have better forecasting accuracy for the two coins respectively. However, by

collating the resulting MSEs for each point individually with the CRPS, we observe

that in some forecasting horizons different models are found to outperform the best

models derived by the CRPS. Even though this might seem contradictory, these dif-

ferences are expected since the CRPS is more robust to outliers and more reliable

when assessing the density forecasts, see also Koki, Meligkotsidou, and Vrontos,

2020 and references therein. Over all coins, the lowest CRPS and the lowest average

MSE (best predicting accuracy) are achieved when predicting the BTC return series

and the highest CRPS and the highest average MSE (worst predictive accuracy) are

achieved when predicting the ETH series.

This forecasting exercise provides empirical evidence that relaxing the hypothesis

of constant transition probabilities by allowing the predictors to affect the series non-

linearly — through the latent process — improves the forecasting accuracy of the

HM models. This is an indication that, besides the conditional time-varying linear

correlations between the cryptocurrency return series and predictor set, there exist

more complex correlations, such as the underlying non-linear multinomial logistic

relationship which can lead to better forecasts.
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4.3.2 In-sample analysis of the models with the best predicting
performance

Based on the forecasting accuracy, we treat the 4-state NHHMs as our final model

for further analysis for the BTC, ETH and XRP return series. Within our MCMC

algorithm and at each iteration, we estimate an in-sample realization of the observed

data, i.e., we use the in-sample estimations of the parameters and the states to repro-

duce the cryptocurrency percentage log return series, often referred to as replicated

data or within-sample predictions (Gelman, 2003).

The derived realized distributions along with the observed series for each coin are

shown in Figure 4.3. The left column shows the in-sample replicated distributions

Figure 4.3: Percentage return series (gray lines) and quantiles of the posterior sample (repli-
cated) empirical distributions for the Bitcoin series (first row), Ether series (second row) and
Ripple series (third row). Yellow lines show the 0.5% and 99.5% quantiles of the estimated
in-sample distributions and define the 1% credibility region, whereas red lines show the es-
timated posterior median. Plots on the left are based on the estimated distributions via the
4-state Non-Homogeneous Hidden Markov (HM) model while plots on the right show the
estimated distributions as derived from the Random Walk (RW) benchmark model.

derive using the aforementioned 4-state NHHM and the right column shows the repli-

cated distributions derived using the RW benchmark for all coins. Gray lines show

the observed percentage log-return series, yellow lines show the fitted 0.5%-th and

99.5%-th quantiles of the estimated in-sample distribution and the red line shows the

50%-th quantile (median). By visual inspection, we observe that, by identifying the

various volatility clusters, the 4-state NHHM models offer substantially improved in-

sample performance compared to the in-sample performance of the RW model. The

graphical proof of the good in-sample performance of the 4-state NHHM compared
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to the RW model is substantiated by Table 4.4 which shows the overall empirical

coverage of the estimated quantiles curves. The first and second rows report the pro-

portion of the observed percentage log-returns that fall out of the empirical quantiles

curves for the 4-state NHHM, and the in-sample MSE, respectively, for the 4-state

NHHM, while the third and fourth rows report the proportion and in-sample MSE

for the RW model.

Bitcoin Ether Ripple

NHHM4 Proportion 0.05 (121/2114) 0.06 (95/1506) 0.04 (79/1748)

MSE 15.18 37.13 43.22

RW Proportion 0.75 (1601/2114) 0.74 (1114/1506) 0.72 (1255/1748)

MSE 17.03 42.28 50.01

Table 4.4: Empirical coverage of the empirical in-sample distributions using the 4-state
NHHM and the RW benchmark for the Bitcoin, Ether and Ripple percentage return series.

Table 4.5 provides a gauge of what drives the documented predictability by show-

ing the posterior mean estimates for the linear regression predictors for each state for

BTC, ETH and XRP respectively. Predictors that fall into the 10% credibility inter-

vals are marked with asterisk. In addition to the linear regression estimates, the last

column of Table 4.5 shows the posterior probabilities of inclusion for the predictors

affecting the transition probabilities, as derived from the stochastic search algorithm

on the multinomial regression coefficients. Posterior probabilities of inclusion ex-

ceeding 0.4 are marked with bold fonts.

We observe that the majority of the predictors are not statistical significant in

the linear regression parametrization, especially for the BTC return series. At this

point, it is important to stress that even when the coefficient of an explanatory vari-

able is not statistically different from zero, this does not necessarily mean that the

variable has no predictive power for return series, see also Panopoulou and Pante-

lidis (2015). It is often the case that a variable that is insignificant in-sample has

predictive out-of-sample power and vice versa. This argument is strengthened by our

extensive experimental study — results not reported here — which shows that if we

remove the insignificant predictors, the forecasting accuracy deteriorates. Further-

more, we observe that depending on the hidden state the mean posterior estimates

can be markedly different, even change their sign. Regarding the predictors affecting

the transition probabilities, we observe that there exist predictors that affect the tran-

sition probabilities with high posterior probabilities of inclusion, with the volatility
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BTC
Predictors State 1 State 2 State 3 State 4 Probabilities

Intercept 11.47 6.65 −0.80 0.02 0.00
EUR/USD 1.02 0.43 −0.15 −1.59 0.00
GBP/USD 0.06 0.17 −0.04∗ −1.26 0.00
CNY/USD −0.14 −0.12 −0.15 −1.30 0.00
JPY/USD −0.37∗ 0.08 −0.16 −0.78 0.00
Gold −0.09 −0.12 0.07 0.01 0.00
Oil 0.02 0.14 0.01 0.52 0.00
SP500 −6.73 −0.85 0.32 0.08 0.00
VIX −4.37 −2.34 0.30 0.03 1.00
TY −2.07 −2.21 1.49 0.15 0.90
Size −0.01 −0.01 0.01 0.13 0.00
Hash −0.01 −0.01 0.00 0.26 0.00
AR(1) −0.04 0.00 0.03 0.94∗ 0.00

ETH
Intercept 7.68 1.93 0.85 0.80 1.00
EUR/USD −0.14 0.10 0.64 0.81 1.00
GBP/USD 1.78 0.51∗ 2.35 2.14 0.00
CNY/USD −0.40 −0.24 −0.18 0.31 0.00
JPY/USD −0.14 0.31 1.49 1.54 0.00
Gold −0.12 0.32∗ 1.17 1.26 0.82
Oil −2.02∗ 0.26∗ 0.24 0.42 1.00
SP500 −9.14 −3.52 1.62 1.91 0.11
VIX −2.54∗ −0.78∗ −1.01 −0.78 1.00
TY −13.45 3.75 1.45 0.31 0.84
Size 0.07 0.21 0.10 0.03 0.00
Hash 0.03 0.00 0.17 0.12 0.00
AR(1) −0.06 −0.17∗ 0.74 0.82 0.00

XRP
Intercept 9.30 0.25 0.87 0.96 1.00
EUR/USD −1.88∗ −0.19 0.25∗ 0.07 1.00
GBP/USD −4.03 −0.04 −0.25 −0.85 0.01
CNY/USD 3.31 0.26 0.13 0.48 0.02
JPY/USD 1.36 1.13 0.02 2.12 0.70
Gold −1.44 −0.10 −0.01 −0.62 0.10
Oil 0.44 −0.07 −0.09 0.17∗ 0.06
SP500 2.00 −7.06 −0.87 0.13 0.40
VIX −1.88 −0.19 0.25 −0.85 1.00
TY −22.46 1.29 3.68 −0.08 0.52
Size 0.07 0.21 0.10 0.03 0.00
AR(1) 0.44 −0.08 −0.10∗ 0.18 0.00

Table 4.5: Posterior means estimates of the 4-state Non-Homogeneous Hidden Markov
model for the Bitcoin, Ether Ripple percentage return series. The first column specifies the
predictors. The second, third, fourth and fifth columns report the posterior mean estimates for
each predictor at the first, second and third states respectively. The last row reports the mean
estimated residual variance for each state. The last column reports the posterior probabilities
of inclusion for the predictors affecting the transition probabilities’ multinomial regression
model. These probabilities are calculated by applying a stochastic search reversible jump al-
gorithm within the MCMC scheme. Statistical significance at the 10% level is denoted with
∗ and posterior probabilities exceeding 0.4 are marked with bold fonts.
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index VIX and Treasury Yield (TY) affecting the transition probabilities for all the

cryptocurrency return series.

4.3.3 Hidden States classification and interpretation

Table 4.6 provides information on the hidden states for each coin; that is, the states’

occupancies as the average time spent at each state i, i = 1, . . . , 4, the average returns

and the corresponding standard deviation. At a first glance, the hidden process iden-

tifies periods with different underlying volatilities for every coin, i.e., periods with

high and low volatilities. In more detail, for the BTC series, it identifies periods with

negative average returns and high volatilities (state 1), periods with positive returns

and low volatility (states 2 and 3) and calm periods with average returns close to

zero and very low volatility. This segmentation in the return series resembles the

bear/turbulent (state 1) and bull (states 2 and 3) markets, while state 4 corresponds

to a stable/calm regime. Furthermore, we observe that the states 2 and 3 have similar

(almost equal) average returns. The similar average returns and different volatility

indicate that the hidden process segments the return series into two subseries with

the same skewness but very different kurtosis, see Timmermann (2000).

Concerning the ETH series, we observe that the highest mean returns occur in

the state with the highest volatility. The hidden process alternates between a high

volatility and a low volatility regime with almost zero average returns — states 1 and

2 respectively — for the 95% of the overall time, while states 3 and 4 serve as aux-

iliary states with almost equal average returns but different volatilities. Finally, the

hidden process in the XRP series spends most of the time (80%) in the high volatility

regime 2 and the low volatility regime 3. We also observe that state 1 has extremely

high average returns compared to the returns of states 2 and 3 but is associated with

very high risk (high volatility) as a trade-off. Lastly, hidden state 4 serves as an

auxiliary state with low occupancy, capturing the extreme values (outliers) of the re-

turns series. The information in Table 4.6 can be visualized in Figures 4.4 and 4.5

which depict the state-switching dynamics of the three cryptocurrencies according to

their hidden state classification. Figure 4.4 illustrates the Bitcoin (upper plot), Ether

(middle plot) and Ripple (lower plot) returns conditionally on the a realization of the

hidden process using the 4-state NHHM model. Gray lines correspond to the per-

centage log returns, while red, yellow, purple and green dots correspond to the times

that the hidden state was in states 1,2,3 and 4, respectively. These graphical repre-

sentations serve as an easy way to visualize the evolution of the hidden process in
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Coin State Occupancies Average Std

BTC 1 0.35 -0.46 5.91
2 0.30 0.49 2.49
3 0.24 0.47 1.69
4 0.11 0.02 0.53

ETH 1 0.41 0.88 8.90
2 0.54 -0.06 2.61
3 0.02 0.16 1.13
4 0.02 0.18 0.76

XRP 1 0.17 3.59 14.98
2 0.35 0.76 4.46
3 0.45 0.41 1.77
4 0.03 6.82 0.86

Table 4.6: Information on the states as derived form the experiments on the BTC, ETH, XRP
return series. First column reports the cryptocurrencies and the second column the different
regimes. The third column reports the states’ occupancies, i.e., the average time spend at
each regime. The fourth column reports the average returns at each state and finally, the fifth
column reports the state’s estimated standard deviation.

Figure 4.4: Bitcoin (upper plot), Ether (middle plot) and Ripple (lower plot) percentage
return series conditionally on a realization of the hidden process. The hidden process is es-
timated using the 4-state NHHM on the aforementioned cryptocurrencies’ percentage return
series. Red, yellow, purple and green dots indicate the time periods that the hidden process
is at states 1, 2,3 and 4 respectively.

reference with the returns for each coin. While frequent alternations between the hid-

den states are prevalent in all three time-series, the transitional patterns are markedly

different. For instance, in the BTC return series, there exist frequent alternations be-

tween states 1 and 3 and between 2 and 4, while in the ETH and XRP series they are

between states 1 and 2 and between 2 and 3, respectively.
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Figure 4.5 shows the estimated ex ante smoothed probabilities of each state for

each time period, i.e., P (Zt = m | y1, . . . , yT ), m = 1, . . . , 4 , over all coins. We ob-

Figure 4.5: Smoothed probabilities of being in state m, i.e., P (Zt = m | y1, . . . , yT ), m =

1, . . . , 4 using the 4-state Non-Homogeneous Hidden Markov model. Columns 1 to 4 corre-
spond to states 1 to 4 while rows 1 to 3 correspond to Bitcoin, Ether and Ripple, respectively.

serve that hidden state 1 for the BTC series, hidden states 1 and 2 for the ETH series

and hidden states 1,2 and 3 for the Ripple series occur with high probability. The

identification of these particular hidden states is sound with low probabilities of mis-

classification. However, we get mixed insights on the occurrence of the other states

which are neither high nor low. A measure of the persistence of the underlying state

densities are the so-called persistent probabilities, i.e., the probabilities of remaining

at the same state pii = P (Zt = i | Zt−1 = i) , i = 1, . . . , 4, see for example Timmer-

mann (2000) and Yuan (2011). Figure 4.6 shows the persistent probabilities for BTC

(upper plot), ETH (middle plot) and XRP (lower plot). Columns 1 to 4 correspond

to states 1 to 4. The higher the probabilities are the longer the process is expected to

remain at state i and hence transitions to different states are less frequent.

4.4 Discussion

In this work, we modeled the return series of the three largest (in terms of market

capitalization) cryptocurrencies, Bitcoin, Ether and Ripple using a Hidden Markov

framework. We employed a multi-state Bayesian Hidden Markov methodology with

a predefined set of financial and cryptocurrency specific predictors to capture the

time-varying characteristics and heteroskedasticity of the cryptocurrencies’ return
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Figure 4.6: Persistence probabilities for each regime, based on the mean posterior transition
probabilities pii = P (Zt = i | Zt−1 = i) , i = 1, . . . , 4. The rows 1 to 3 corresponds to the
Bitcoin, Ether and XRP return series respectively and columns 1 to 4 correspond to the states
1 to 4 respectively.

series. The employed methodology is motivated by the existing evidence of struc-

tural breaks and regime/states switches in the cryptocurrency series. In line with

the literature, we chose the best model among 9 different Hidden Markov models

— the standard Markov-Switching Random Walk (MS-RW) model, the Homoge-

neous Hidden Markov (HHM) and the Non-Homogeneous Hidden Markov (NHHM)

models with up to five hidden states — and 3 single regime models — the Random

Walk (RW) model, the linear AutoRegressive (AR) model and the Kitchen Sink (KS)

model — based on their out-of-sample predictive ability.

The out-of-sample forecasting exercise indicated that the 4-states NHHM model

has the best forecasting performance for all three series with significant improve-

ments over the single regime models. In addition, the regime switches reveal time-

varying connections of traditional financial, economic and cryptocurrency specific

predictors with cryptocurrency returns. In particular, we identified predictors af-

fecting the series linearly, i.e., through the observed process, and non-linearly, i.e.,

through the unobserved process. From the complete set of twelve predictors, Bitcoin

series is affected linearly and non-linearly by five predictors, while the Ether and Rip-

ple series are affected by seven predictors. In general, only the US Treasury Yield

and the CBOE stock market volatility index, VIX, have predictive power on all three

series. Turning to the in-sample analysis, the 4-states NHHM model segments the

return series into four subseries with distinct state-switching dynamics and economic

interpretation. For Bitcoin, we find that the most frequently occurring state (state 1)
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corresponds to a bear regime (i.e., negative returns and high volatility), states 2 and 3

correspond to bull regimes (positive returns and low volatility) but with different kur-

tosis and state 4 corresponds to a calm regime (returns close to 0 and low volatility).

Regarding the Ether return series, we observe frequent alternations between the high

and low volatility states (states 1 and 2), while states 3 and 4 serve as auxiliary states

with low occupancies. Finally, state 1 of the Ripple series corresponds to periods

with extremely high average returns but, as a trade off, also with high risk. States 2

and 3 are the states with the highest occupancies, while state 4 serves as an auxiliary

state.

Our empirical findings demonstrate that multi-state Non-Homogeneous Hidden

Markov models offer improved forecasts on all considered cryptocurrency return se-

ries. In addition, they provide evidence to support the existence of predictors with

state-dependent, time-varying predicting power on the cryptocurrency series. These

insights are particularly useful to investors, portfolio-managers and policy-makers.

Importantly, they refine our understanding of the dynamic relationship between tradi-

tional financial markets and cryptocurrency returns, which is characterized by regime

switches and frequent alternations. Thus, when taken into account, these dynam-

ics can be leveraged to optimize investors’ decisions regarding portfolio allocation

and risk-diversification between conventional and cryptocurrency assets. Moreover,

along with the absence of predictors that systematically predict cryptocurrency re-

turns in all possible states, the frequent alternations suggest that interested parties

ought to be cautious when using forecasts to inform their decisions. Finally, the study

of regimes with markedly different economic characteristics and transition dynamics

is important for regulatory authorities and cryptocurrency entrepreneurs. Specifi-

cally, this information should be used to improve the implementation of policies that

seek to mitigate risks associated with cryptocurrency exchange rates and promote

their wider public adoption.
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Chapter 5

The X-ray luminosity function of
Active Galactic Nuclei
in the redshift interval z = 3 – 5

5.1 Introduction

In recent years observations have established that supermassive black holes (SMBHs)

are nearly ubiquitous in local spheroids Magorrian et al. (1998) and Kormendy and

Ho (2013). These relic black holes are believed to have grown their masses at earlier

times mostly via accretion of material from larger scales (e.g. Soltan, 1982; Mar-

coni et al., 2004). Questions that remain open are when during the lifetime of the

Universe these events occurred and under what physical conditions black holes grow

their masses. Moreover, observations show that in the local Universe correlations

exist between the mass of SMBHs and the properties of the stellar component of

the bulges in which they reside, such as velocity dispersion (Ferrarese and Merritt,

2000; Gebhardt et al., 2000; Gültekin et al., 2009; Graham et al., 2011), luminosity

(McLure and Dunlop, 2002; Marconi and Hunt, 2003; Gültekin et al., 2009), dynam-

ical mass (Magorrian et al., 1998; Marconi and Hunt, 2003; Häring and Rix, 2004;

Graham, 2012) and central light concentration (Graham et al., 2001; Savorgnan et

al., 2013). Such correlations suggest a link between the growth of black holes and

the formation of their host galaxies, although the exact nature of such an interplay

is still not well understood. Processes that can establish such correlations include

a common gas reservoir that both feeds the central black hole and forms stars on

larger scales, outflows related to the energy output from the AGN itself that affect

the Inter-Stellar Medium and regulate the formation of stars (Silk and Rees, 1998;

Fabian, 1999; King, 2003; King, 2005; Di Matteo, Springel, and Hernquist, 2007;

Croton et al., 2006), or the merging history of galaxies and heir SMBHs (e.g. Jahnke
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and Macciò, 2011).

One approach for improving our understanding of the formation of SMBHs as a

function of cosmic time and their relation to their host galaxies is population stud-

ies of Active Galactic Nuclei (AGN), which signpost accretion events onto SMBHs.

This requires a census of the AGN population across redshift to constrain for exam-

ple, the accretion history of the Universe or study the incidence of active black holes

among galaxies. In that respect, the AGN luminosity function, i.e. their comoving

space density as a function of redshift and accretion luminosity, is one of the fun-

damental quantities that characterise the demographics of active black holes. The

cosmic evolution of AGN leaves imprints on the shape and overall normalisation of

the luminosity function. The total mass density locked into black holes at different

epochs can be inferred by direct integration of the AGN luminosity function, under

assumptions about the radiative efficiency of the accretion process and after apply-

ing appropriate bolometric luminosity corrections (Marconi et al., 2004; Aird et al.,

2010; Ueda et al., 2014). The space density of AGN split by host galaxy properties,

such as stellar mass, morphology or level of star-formation, provides clues on the in-

terplay between black hole accretion and galaxy evolution (Georgakakis et al., 2009;

Georgakakis et al., 2011; Aird et al., 2012; Bongiorno et al., 2012; Georgakakis et

al., 2014).

Selection at ultraviolet (UV)/optical wavelengths (e.g. Richards et al., 2008; Ross

et al., 2012) currently provides the largest spectroscopic AGN samples for luminos-

ity function calculations (e.g. Ross et al., 2013). The downside is that the UV/optical

continuum of AGN is sensitive to dust extinction along the line–of–sight and dilution

by the host galaxy at faint accretion luminosities. Observations at X-ray wavelengths

can mitigate these issues (e.g Brandt and Alexander, 2015). X-ray photons, particu-

larly at rest-frame energies > 2 keV , can penetrate nearly unaffected large columns of

intervening gas and dust clouds (NH & 1022 cm−2), thereby providing samples least

affected by obscuration biases. Moreover,the X-ray emission associated with stellar

processes is typically 2 orders of magnitude fainter than the AGN radiative output

and therefore contamination or dilution effects by the host galaxy are negligible at

X-rays over a wide baseline of accretion luminosities. X-ray surveys also benefit

from a well defined selection function that is relatively easy to quantify and account

for in the analysis. The disadvantage of X-ray selection is that the detected AGN

are often optically faint and therefore spectroscopic follow-up observations are of-

ten expensive. Nevertheless, intensive multiwavelength campaigns in recent years
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substantially increased the number of X-ray survey fields with sufficient quality an-

cillary data for reliable X-ray source identification and redshift measurements using

either spectroscopy or photometric methods. Early results by Cowie et al. (2003) on

the redshift evolution of the X-ray AGN space density and Ueda et al. (2003) on the

hard band (2-10 keV) X-ray luminosity function and obscuration distribution of AGN

have been expanded recently both in terms of data and analysis methodology (Yen-

cho et al., 2009; Ebrero, J. et al., 2009; Aird et al., 2010; Burlon et al., 2011; Ueda

et al., 2014; Buchner et al., 2015; Aird et al., 2015; Miyaji et al., 2015). Although

important details on the shape of the X-ray luminosity function and the obscuration

distribution of AGN are still debated (Ueda et al., 2014; Buchner et al., 2015; Aird

et al., 2015; Miyaji et al., 2015), the overall evolution of the X-ray luminosity func-

tion is reasonably well constrained at least to z ≈ 3. The initial increase of the AGN

X-ray luminosity density from z = 0 to z ≈ 1.5 is followed by a broad plateau up to

z ≈ 2.5−3 and a decline at higher redshift. However, the amplitude of the X-ray AGN

evolution at z & 3 is still not well constrained. Early studies suggested a moderate

decline of the AGN space density at z > 3 (Yencho et al., 2009; Ebrero, J. et al., 2009;

Aird et al., 2010), contrary to claims for a rapid drop (Brusa, M. et al., 2009; Civano

et al., 2011; Vito et al., 2013; Kalfountzou et al., 2014) that can be parametrised

by an exponential law in redshift (Gilli, R., Comastri, A., and Hasinger, G., 2007)

similar to the optical QSO space density evolution (Schmidt, Schneider, and Gunn,

1995; Richards et al., 2006). Central to this debate is the typically small X-ray AGN

sample sizes at z > 3. For example, there are 209 and 141 X-ray AGN with spec-

troscopic or photometric redshifts above z = 3 in the most recent compilations of

Kalfountzou et al. (2014) and Vito et al. (2014) respectively. These numbers should

be compared with sample sizes of few thousands AGN at z < 3 for the most recent

X-ray luminosity function studies (e.g Ueda et al., 2014; Buchner et al., 2015; Aird

et al., 2015; Miyaji et al., 2015). Better constraints on the form and amplitude of

the evolution of X-ray AGN at z > 3 will have implications for the contribution of

this population to the UV photon field density that is needed to keep the Universe

ionised at high redshift. Haardt and Madau (2012) used the Ueda et al. (2003) X-

ray luminosity function to predict a moderate contribution of AGN to the hydrogen

ionising radiation field at z > 3, in broad agreement with constraints derived from

UV/optical selected QSO luminosity functions (e.g. Fontanot, F. et al., 2007; Mas-

ters et al., 2012; McGreer et al., 2013) and other X-ray AGN studies (Barger et al.,

2003b; Grissom, R. L., Ballantyne, D. R., and Wise, J. H., 2014). There are also

claims however, that AGN provide an important contribution to the photoionisation
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rate at high redshift (Fiore, F. et al., 2012; Glikman et al., 2011; Giallongo, E. et al.,

2015). This discrepancy emphasises the need for further work to improve measure-

ments of the AGN space density at high redshift and to better understand their role

in the re-ionisation of the Universe.

In this chapter, we combine deep Chandra and wide-area/shallow XMM-Newton

survey fields to compile one of the largest samples of X-ray selected AGN at z = 3−5

to date. A Bayesian methodology is developed to correctly account for photometric

redshift uncertainties and to determine in a non-parametric way the AGN comoving

space density in the redshift intervals z = 3−4 and z = 4−5 and over 3 decades in X-

ray luminosity [log LX(2−10 keV) ≈ 43−46 in erg s−1]. Although parametric models

are also fit to the data, we emphasise the importance of non-parametric estimates to

determine in a model-independent way the shape and overall evolution of the X-

ray luminosity function. Throughout this paper we adopt H0 = 70 km s−1 Mpc−1,

ΩM = 0.3 and ΩΛ = 0.7.

5.2 Data

For the determination of the X-ray luminosity function in the redshift interval z =

3 − 5 we combine Chandra and XMM-Newton X-ray surveys with different char-

acteristics in terms of area coverage and X-ray depth.These are the 4 Ms Chandra

Deep Field South (CDFS; Xue et al., 2011; Rangel et al., 2013), the 2 Ms Chandra

Deep Field North (CDFN; Alexander et al., 2003; Rangel et al., 2013), the Extended

Groth Strip International Survey field (AEGIS, Davis et al., 2007; Laird et al., 2009;

Nandra et al., 2015), the Extended Chandra Deep Field- South (ECDFS; Lehmer

et al., 2005), the Chandra Cosmological Evolution Survey (C-COSMOS) field (C-

COSMOS, Elvis et al., 2009) and the equatorial field of the XMM-XXL survey.

5.2.1 Chandra survey fields

The Chandra observations of the CDFS, CDFN, AEGIS, ECDFS and C-COSMOS

were analysed in a homogeneous way by applying the reduction and source detection

methodology described by Laird et al. (2009). Specific details on the analysis of the

4 Ms CDFS and the 2 Ms CDFN fields are presented by Rangel et al. (2013). The

Chandra survey of the AEGIS field has two tiles. The wide and shallow one (AEGIS-

W) consists of 8 Chandra pointings of 200 ks each. These data are described by Laird

et al. (2009). The deep survey of the AEGIS field (AEGIS-XD) increased to a total of

800 ks the exposure time of the central regions of the AEGIS-W. The additional data
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Figure 5.1: X-ray Sensitivity curves for the combined Chandra surveys used in the analysis
(left panel) and the XMM-XXL survey (right panel).

overlap with the central 3 of the original 8 Chandra pointings observed as part of the

AEGIS-W. The AEGIS-XD survey data reduction and source catalogue generation

are described by Nandra et al. (2015).

The X-ray sources used in this paper are detected in the 0.5-7 keV (full) spectral

band with Poisson false detection threshold < 4 × 10−6. The count rates in the 0.5-

7 keV band are converted to fluxes in the 0.5-10 keV band assuming a power-law

spectral index with Γ = 1.9. This is steeper than the Γ = 1.4 adopted for the X-ray

flux estimation in the published catalogues of the CDFS, CDFN and AEGIS fields

(Laird et al., 2009; Rangel et al., 2013; Nandra et al., 2015). The choice of the

Γ = 1.9 is motivated by the fact that at high redshift, z & 3, the observer-frame

0.5-7 keV band corresponds to harder rest-frame energies, which are least affected

by obscuration. A diagnostic of the spectral shape of X-ray sources is their hardness

ratio defined as HR=(H-S)/(H+S), where S, H are the observed count rates in the

0.5-2 and 2-7 keV spectral bands, respectively. For sources in the range z = 3− 5 we

find a median hardness ratio HR ≈ −0.2. This is consistent with a power-law X-ray

spectrum with Γ ≈ 1.8, i.e. similar to the mean spectral index of the intrinsic AGN

spectra (Γ ≈ 1.9, Nandra and Pounds, 1994). We therefore choose to fix Γ = 1.9 for

the determination of fluxes. We note however, that the choice of Γ (1.4 vs 1.9) has a

small impact on the results presented in this paper.

Sensitivity curves, which measure the total survey area that is sensitive to sources

of a particular flux are calculated following methods described in Georgakakis et al.

(2008). The overlap between the ECDFS and the 4 Ms CDFS or the AEGIS-W and

the AEGIS-XD is accounted for by defining independent spatial regions for each
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survey. Spatial masks that describe both the boundaries of the optical/infrared imag-

ing of each field and regions of poor photometry because of bright stars (Aird et al.,

2015) are also taken into account in the X-ray sensitivity calculations. The sensi-

tivity curves in the 0.5-10 keV band are presented in Figure 5.1. Table 5.1 presents

the number of X-ray sources in each field. The same spatial masks used for the

construction of sensitivity maps are used to filter the X-ray source catalogue.

The optical identification of the X-ray sources in the CDFN, AEGIS-XD. AEGIS-

W, ECDFS and C-COSMOS fields are based on the Likelihood Ratio method (Suther-

land and Saunders, 1992) as implemented in Aird et al. (2015). The multiwavelength

associations of the 4 Ms CDFS X-ray sources are presented by Hsu et al. (2014).

They apply a Bayesian methodology, based on the work of Budavári and Szalay

(2008), to different catalogues available in that field including the CANDELS/H-

band selected photometry presented by Guo et al. (2013), the Taiwan ECDFS Near-

Infrared Survey (TENIS; Hsieh et al., 2012) and the MUSYC/BVR-selected catalog

of Cardamone et al. (2010). The number of X-ray sources with secure optical or

infrared counterparts in each field are presented in Table 5.1.

Extensive spectroscopic campaigns have been carried out in the fields of choice.

For the CDFN, ECDFS and AEGIS-W we use the compilation of spectroscopic red-

shifts presented by Aird et al. (2015). In the 4 Ms CDFS we use the spectroscopic

redshifts compiled by Hsu et al. (2014). In the case of AEGIS-XD we use the spec-

troscopic redshift catalogue presented by Nandra et al. (2015). Redshifts in the C-

COSMOS are from the public releases of the VIMOS/zCOSMOS bright project Lilly

et al. (2009) and the Magellan/IMACS observation campaigns (Trump et al., 2009),

as well as the compilation of redshifts for X-ray sources presented by Civano et al.

(2012). The spectroscopic redshifts used in this paper have quality flags in the pub-

lished catalogues from which they were retrieved that indicate a probability better

than ≈ 95% of being correct.

For X-ray sources without spectroscopy, photometric redshifts are estimated us-

ing the multiwavelength photometric catalogues available for each survey field. The

photometric redshifts of the X-ray sources in the 4 Ms CDFS, the AEGIS-XD and

the COSMOS fields are determined following the methodology described by Salvato

et al. (2009) and Salvato et al. (2011). Specific details can be found in Hsu et al.

(2014); 4 Ms CDFS, Nandra et al. (2015); AEGIS-XD and Salvato et al. (2011);

COSMOS field. The estimated rms scatter of the X-ray AGN photometric red-

shifts is σ∆z/(1+z) = 0.016, 0.014 and 0.04 for the C-COSMOS, 4 Ms CDFS and

AEGIS-XD samples, respectively. The corresponding outlier fraction, defined as
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∆z/(1 + z) > 0.15, is about 5-6% in all three fields. In the case of ECDFS, AEGIS-W

and CDFN we use the photometric redshifts estimated by Aird et al. (2015). For

these fields σ∆z/(1+z) = 0.06 and the outlier fraction is about 15%. The latter value is

larger than in the C-COSMOS, 4 Ms CDFS and AEGIS-XD fields. This is related to

differences in the methodology of estimating photometric redshifts and ultimately to

the choice of template SEDs used in the calculation. Nevertheless, the photometric

redshifts estimated by Aird et al. (2015) are assigned appropriately larger uncertain-

ties, approximated by the corresponding Probability Distribution Functions (PDZ),

that reflect the higher outlier fraction.

Figure 5.2: Spectrocopic vs photometric redshift measurements for the sample of X-ray
selected sources used in this paper. The data points correspond to the median value of the
PDZ. The errorbars correspond to the 90% confidence interval around the median.

Figure 5.2 plots spectroscopic vs photometric redshifts for the sample used in

this paper and illustrates the overall quality of the photometric redshifts estimates.

In the X-ray luminosity function calculations we use the full photometric redshift

PDZ.These are typically unimodal but at increasing redshift they broaden and sec-

ondary peaks may also appear. Also the Aird et al. (2015) PDZs are typically broader

than those in the C-COSMOS, 4 Ms CDFS and AEGIS-XD fields. Examples of

PDZs used in this paper are shown in Figure 5.3. Table 5.1 presents the number of

photometric and spectroscopic redshifts in each field, both total and in the intervals

z = 3 − 4 and 4 − 5. Source without optical identifications and hence, without red-

shift estimates, are a minority in the Chandra surveys sample, 107 in total. These

sources can be either moderate redshift (z ≈ 1 − 3) AGN with red SEDs because of
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e.g. obscuration and/or old stellar populations (Koekemoer et al., 2004; Schaerer, D.

et al., 2007; Rodighiero, G. et al., 2007; Del Moro, A. et al., 2009), or high redshift

systems (z & 3). Since the redshift distribution of these sources is not known they

are assigned a flat PDZ in the redshift interval z = 1 − 6 and zero at other redshifts.

Fixing the lower limit of the redshift range above to a value between z = 0 and z = 2

does not change the results and conclusions.

Figure 5.3: Examples of photometric redshift Probability Distribution Functions for X-ray
selected AGN in the AEGIS field. The different colours correspond to different sources.
There is a variety of PDZ shapes in the sample, including uni-modal and relatively narrow
(blue solid), unimodal but broad (red dashed) and multi-modal (black dot-dashed).

Additionally we have tested that the differences in the accuracy and outlier frac-

tion of the photometric redshifts in the different fields used in this work do not affect

the final results. For the COSMOS, AEGIS-XD and 4 Ms CDFS we can substitute

the photometric redshift PDZs adopted in this paper (based on the methods of Sal-

vato et al. 2009, 2011) with those estimated following the methodology of Aird et al.

(2015). For these fields we can therefore estimate the X-ray luminosity function at

z = 3−5 (see next sections) using two different sets of photometric redshifts, those of

Aird et al. (2015) and those determined following Salvato et al. (2009) and Salvato et

al. (2011). We find no systematic differences between the X-ray luminosity functions

at z = 3 − 5 estimated using the two independent photometric redshift catalogues.
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5.2.2 XMM-XXL survey data

The Chandra survey fields are complemented by the wide-area and shallow XMM-

XXL survey (PI: Pierre). The XMM-Newton observations of this programme cover

a total of about 50 deg2 of sky split into two nearly equal area fields. In this paper we

use the equatorial region of the XMM-XXL, which overlaps with the Canada-France-

Hawaii Legacy Survey (CFHTLS) W1 field and covers an area of about 25 deg2. The

approximate centre of this field lies at right ascension α = 10 : 22 : 42.20 and

declinationδ = −04 : 52 : 51.03.

The reduction of athe XMM data, the construction of the X-ray catalogue and the

association of the X-ray sources with optical counterparts are described by Liu et al.

(2016) based on the methods presented in Georgakakis and Nandra (2011). In brief,

the X-ray data reduction is carried out using the XMM Science Analysis System

(SAS) version 12. We analyse XMM-Newton observations related to the XMM-XXL

programme that were made public prior to 23 January 2012. XMM-XXL data ob-

served after that date are not included in the analysis. As a result our final catalogue

of the equatorial XMM-XXL field misses about 5 deg2 worth of X-ray coverage. The

epchain and emchain tasks of sas are employed to produce event files for the EPIC

(European Photon Imaging Camera; Strüder, L. et al., 2001; Turner, M. J. L. et al.,

2001) PN and MOS detectors respectively. Flaring periods resulting in elevated EPIC

background are identified and excluded using a methodology similar to that described

by Nandra et al. (2007). We use X-ray sources detected in the 0.5 − 8 keV spectral

band with Poisson false detection probability of < 4×10−6. The final sample consists

of 7493 unique sources detected in 0.5-8 keV spectral band. The fluxes listed in the

final source catalogue are in the 0.5-10 keV band assuming a power-law spectral en-

ergy distribution with Γ = 1.4. These X-ray sources are matched to the SDSS-DR8

hotometric catalogue (Aihara et al., 2011) using the Maximum-Likelihood method

(Sutherland & Saunders 1992). We assign counterparts to 3798 sources with Like-

lihood Ratio LR > 1.5. At that cut the spurious identification rate is about 6% and

the total number of 0.5-8 keV detected sources with optical counterparts is 3798 (see

Table 5.1).

Redshifts for the XMM-XXL X-ray sources are from several follow-up spectro-

scopic campaigns. The XMM-XXL field overlaps with the SDSS-III Baryon Oscil-

lation Spectroscopic Survey (BOSS; Dawson et al., 2013) programme, which pro-

vides spectroscopy for UV/optically selected broad-line QSOs and luminous red

galaxies. Stalin et al. (2010) presented spectroscopy for X-ray sources selected
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in the original XMM-LSS survey (Clerc et al., 2014), which is part of the equa-

torial XMM-XXL survey field. Most of the redshifts however, are from a total

of five special SDSS plates dedicated to follow-up spectroscopy of X-ray sources

as part of the Ancillary Programs of SDSS-III. The overlap between those plates

and the XMM-XXL survey region is 17.98 deg−2. Targets were selected to have

fX(0.5 − 10 keV,Γ = 1.4) > s10−14 erg s−1 cm−2 and 15 < r < 22.5, where r is either

the SDSS PSF magnitude in the case of optically unresolved sources (SDSS type=6)

or the SDSS model magnitude for resolved sources. Specific details on these spectro-

scopic observations, including spectral classification, visual inspection and redshift

quality assessment are presented by Menzel et al. (2016). The total number of XMM-

XXL sources with secure spectroscopic measurements are presented in Table 5.1.

Also shown in this table are the number of sources with spectroscopic redshifts in

the interval z = 3 − 5.

Although when constructing the X-ray source catalogue of the XMM-XXL field

fluxes are estimated for a power-law X-ray spectrum with spectral index Γ = 1.4, in

the rest of the analysis we adopt Γ = 1.9 for the calculation of fluxes, luminosities

and sensitivity maps. This is because at the depth of the XMM-XXL survey AGN

at z > 3 are powerful QSOs with LX(2 − 10 keV) & 1044 erg s−1. The fraction of

obscured AGN among such luminous sources is a decreasing function of luminosity

(Ueda et al., 2003; Akylas, A. et al., 2006; Merloni et al., 2014; Ueda et al., 2014;

Buchner et al., 2015) and therefore a spectral index of Γ = 1.9, which represents the

intrinsic unobscured power-law X-ray spectrum of both local Seyferts e.g Nandra and

Pounds, 1994 and luminous high-redshift QSOs (e.g. Vignali et al., 2005; Shemmer

et al., 2005; Just et al., 2007) is appropriate for this population. The 0.5-10 keV

fluxes estimated for Γ = 1.9 are about 35% fainter than those for Γ = 1.4. The

XMM-XXL sensitivity curve in the 0.5-10 keV band is shown in Figure 5.1 and is

estimated following methods described in Georgakakis and Nandra (2011). In the

calculation of the sensitivity curve we only consider the overlapping area between the

SDSS-III Ancillary Programs spectroscopic plates used to target X-ray sources and

the XMM-XXL survey region. We also take into account the flux limit for follow-

up spectroscopy fX(0.5 − 10 keV,Γ = 1.4) > 10−14 erg s−1 cm−2. This limit appears

as a smooth drop in area rather than a sharp cut in Figure 5.1 because the Poisson

probability of measuring a flux above this limit is used to determine the sensitivity

curve.
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Figure 5.4: Monochromatic 2 keV X-ray luminosity, Lν(2 keV), plotted as a function of
monochromatic 2500 Å UV luminosity, Lν(2500 Å). The data points (cross or dots) are
XMM-XXL X-ray selected broad line QSOs with secure spectroscopic redshifts in the inter-
val z = 1 − 5. Sources at z > 3 are highlighted with different symbols (crosses). The red
dashed line is the bisector best-fit Lν(2 keV) − Lν(2500 Å) relation determined by Lusso, E.
et al. (2010); log L2 keV = 0.760 log Lν(2500 Å) + 3.508. For the XMM-XXL QSOs the X-
ray luminosity density at 2 keV is estimated from the 0.5-2 keV flux assuming a power-law
X-ray spectrum with index Γ = 1.9. The 2500 Å monochromatic luminosity is determined
from the SDSS photometry. For the k-corrections we adopt the simulated QSO templates
of McGreer et al. (2013). For a QSO with redshift z the SDSS photometric bands with ef-
fective wavelengths that bracket the wavelength 2500 × (1 + z) Å are identified. The mean
model QSO SED at that redshift is then scaled to the observed SDSS optical magnitudes in
those two bands. The monochromatic luminosity at 2500 Å is then estimated from the scaled
model SED. At redshifts z & 2.7 the rest-frame 2500 Å lies beyond the effective wavelength
of the SDSS z-band (9134 Å). For these sources the flux density at 2500 × (1 + z) Å is an ex-
trapolation using the model SED. The results do not change if we simply linearly interpolate
between the observed flux densities of the SDSS bands that bracket the rest-frame 2500 Å.
This model-independent approach however, does not allow extrapolation beyond z & 2.7.

5.3 Methodology

5.3.1 Statistical background

We intend to estimate the number density per comoving volume (Mpc3,dV
dz ) of AGNs,

as a function of various properties, specifically X-ray luminosity, redshift, and ob-

scuring column density. This extended likelihood function will describe the evolution

of the X-ray population and all sub-populations (e.g., Compton-thick AGNs). The

difficulty is that each of these properties influences our ability to detect objects with

such properties. Therefore, our aim is to estimate the parameters of the luminosity

function of AGN as a function not only of luminosity (Lx) and redshift (z), but also

as a function of the absorption (NH), i.e., a fraction of the observed AGNs to the total
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Figure 5.5: Histogram of the difference ∆ log Lν(2500 Å) between the monochromatic
2500 Å luminosity of broad-line QSOs in the XMM-XXL (blue points of Figure 5.4) and
the mean < log Lν(2500 Å) > value predicted by the bisector best-fit relation of Lusso et al.
(2010; red dashed line of Figure 5.4) for a given log Lν(2 keV). The red dashed line shows
the best-fit Gaussian distribution. The mean value of that distribution is consistent with zero
and the standard deviation is σ = 0.4.

Figure 5.6: Fraction of XMM-XXL X-ray sources with successful redshift measurement as
a function of the r-band magnitude of the optical counterpart. The fraction is defined as the
ratio between the number of potential targets [ fX(0.5−10 keV,Γ = 1.4) > 10−14 erg s−1 cm−2

and secure optical counterparts with r < 22.5 mag] and X-ray sources with successful redshift
measurements and fluxes/magnitudes within the above cuts.

AGNs.1

The basic idea is to generate a source population, with each member having a set

1To account for the absorption, we use the CR-HR (Count Rate-Hardness Ratio) method which
is based on the work of Clerc et al. (2014). Using conversion factor tables, we convert the Lx, z,Γ to
count rates for 3 energy bands. The indicator of absorption will be the hardness ratio.
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Figure 5.7: Impact of different levels of obscuration on the 0.5-10 keV flux of a source as a
function of redshift. The vertical axis is the ratio of the flux of an AGN obscured by column
density NH relative to the flux of the same source in the case of zero obscuratrion. The red
curves correspond to different levels of obscuration in the range log NH = 22.5 − 24.5 (cm−2

units). The vertical dashed lines mark the redshift interval of interest, z = 3 − 5. For fixed
obscuration and intrinsic luminosity the flux of higher redshift AGN is less affected. The
differential flux suppression between z = 3 and z = 5 is small, . 10%. For the calculation
of X-ray k-corrections we adopt the model X-ray spectral of Brightman and Nandra (2011b).
These are based on Monte Carlo simulations of an illuminating source at the centre of a
sphere with constant density and a conical region (apex at the centre of the sphere) cut-
off to approximate a toroidal geometry. These simulations take into account both Compton
scattering and photoelectric absorption of the X-ray photons by the obscuring medium. We
adopt Γ = 1.9 for the intrinsic AGN spectrum, an opening angle of the conical region of
60 deg and a viewing angle of 45 deg, i.e. a line-of-sight intersecting the obscuring material.

of Lx, z,NH,Γ parameters. The luminosity function which relates luminosities and

redshifts, is found in Aird et al. (2010) and the function for the NH that we use, can

be found in Ueda et al. (2003). Using the appropriate conversion factors, we take the

CR,HR for each set of Lx, z,NH,Γ at the energy bands we have chosen to work with.

Considering that the sources can be described by a non-homogeneous Poisson

process, we build a model for the Lx, z,NH,Γ. Given a set of parameters, we ob-

tain the likelihood of the two-dimensional variable CR − HR which is again a non-

homogeneous Poisson model. Assuming priors for the parameters we want to es-

timate, we calculate the posterior distribution of the parameters. Due to the high

dimensionality of the parameter space, the problem requires multidimensional inte-

grals which can not be done analytically. Hence the maximum likelihood estimation

method can not be applied directly.

An interesting approach to the problem is the Bayesian methodology. Using
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Markov Chain Monte Carlo (MCMC) methods, we can derive the posterior distribu-

tions of the parameters. Therefore, the inference for the parameters is possible even

for very difficult problems. So, let us look at the problem and the methodology from

its basis.

Let Lx, z,NH be the luminosity, redshift and absorption column, respectively. Let

us assume we can describe the probability to detect a source having a particular

value of luminosity Lx, redshift z and absorbion NH. After we analyzing each object

in detail, we can bin our sample in such small bins that only one item, denoted with

di hereinafter, at most can be in each bin with these values. Even though in a real

survey the data are divided into two parts, i.e., the data form the detected sources

di and the data from the sources that exist in the universe but are not detectable, we

assume that the space can be divided in small boxes that have one or zero sources.

Note that, finding zero sources does not mean that there were zero sources in the box

but rather that we could not detect them. Hence the likelihood of the observed data

is given by the product of the probability of finding no source when we expected λ

items times the product of the probabilities of the observed sources. Since observing

one set of (Lxi , zi,NHi) is independent from observing another vector (Lx j , z j,NH j), we

can assume that the sources in the universe are non-homogeneous Poisson process

with parameter λ(Lxi , zi,NHi). The expected number of sources is given by λ which

is defined as

λ =

∫ ∫ ∫
A(Lx, z,NH)φ(Lx, z|θ) f (Lx, z,NHθ)

dV
dz

dz
(
log (Lx)

)
d log NH

where,

• A(Lx, z,NH) is the area of the survey sensitive to a source of a particular lu-

minosity Lx, redshift z and absorption NH. Then A(Lx, z,NH) describes the

probability of a source being detected.

• φ(Lx, z|θ) is the luminosity function and it is the differential number density of

sources per unit co-moving volume as a function of Lx and z, given an assumed

model described by the set of parameters θ.

• f (Lx, z,NH |θ) the NH function for different luminosities and redshifts.

Let also

• {di} be the set of the observed discrete data from all sources (i = 1, . . . ,M) with

specific properties, as indicated with the values of (Lx, z,NH) .
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• p (di|Lx, z,NH) be the probability of the observed data from an individual de-

tected source i given their magnitudes.

In the ideal case that we can detect all the sources in the space, the likelihood is the

product of the probabilities of observing exactly one source in dzdLxdNH at each

(Lxi , zi,NHi) for the M sources in the sample times the probabilities of observing zero

sources in the accessible regions.

L (Lx, z,NH |θ) =
∏

i∈Aobs

(
λ(zi, Lxi ,NHi)dzdLdNH

)1

1!
e−λ(ziLxi ,NHi )dzdLxdNH

∏
j∈Amis

e−λ(z j,Lx j NH j )dzdLxdNH
(λ(z j, Lx j NH j)dzdLxdNH)0

0!
.

Substituting,

L (Lx, z,NH |θ) =e−
∑

i∈Amis λi

M∏
i=1

eλi

∫ ∫ ∫
φ(Lx, z,NH |θ)A(Lx, z,NH) f (Lx, z,NH |θ)

dV
dz

dzd(log(Lx))dNH.

The luminosity function that we consider is

φ(Lx, z) =
dΦ(Lx, z)

dlog(Lx, z)
= Knorm

[(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

with

logL∗(z) = logL0 − log
[(

1 + zc

1 + z

)p1

+

(
1 + zc

1 + z

)p2
]
.

A simple form of the NH function as a function of Lx, z is

f (Lx, z,NH) =


2 − 5+2ε

1+ε
ψ(Lx, z), 20.0 ≤ logNH < 20.5,

1
1+ε
ψ(Lx, z), 20.5 ≤ logNH < 23.0,

ε
1+ε
ψ(Lx, z), 23.0 ≤ logNH < 24.0.

where

ψ(Lx, z) = min
[
ψmax,max

[
ψ44 − β(logLx − 44), 0

]]
,

and

ψmax =
1 + ε

3 + ε
.
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The next step is to convert (Lx, z,NH) to (CR,HR):

CR =
Lx

4πD2
L

× conversion. f actor.

We chose to work in 3 energy bands. Therefore 3 count rates are calculated, CR1,CR2,CR3

at bands [0.5 − 2] [2 − 7] [0.5 − 7] keV and a hardness ratio which is defined by

HR =
CR2 −CR1

CR2 + CR1

The likelihood function as a function of count rates and hardness ratio is now different

and can not be written in closed form since it requires calculating the inverse of a

3-dimensional integral. To overcome this difficulty we use Poisson statistics and

proceed as follows.

Given that we can not observe all the sources in the universe, we assume that the

probability of the observed data from an individual source given the assumed model

is given by marginalizing the p (di|Lx, z) over the model distribution of Lx and z. The

likelihood is

L ({di} |θ) = e−λ
M∏

i=1

∫ ∫ ∫
p (di|Lx, z) φ(Lx, z|θ)

dV
dz

dzd(log(Lx)).

Let N be the counts (number of photons) at the detector. Assuming a simple model,

where the luminosity function is independent from z the probability p (di|Lx, z) is

given by:

p (di|Lx, z) =
(s + b)N

N!
e−(s+b).

This is a Poisson distribution with parameter (s + b) where b is a constant that cor-

responds to the number of photons that come from the background (not from the

sources) and s = f lux ∗ exposure.time/conversion. f actor which corresponds to the

number of photons that come from the AGN. Flux can is given from the relation

f lux = Lx
4πD2 , D2 is the luminosity distance. Assuming that A(Lx, z) = 1 and therefore

λ ∝ 1, the likelihood of the observed data is given by:

L ({di} |θ) = e−λ
M∏

i=1

∫
(s + b)Ni

Ni!
e−(s+b)Knorm

[(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

d(log(Lx)).

We assume non-informative prior distributions for the parameters (γ1, γ2, L∗). Specif-

ically we assume that the parameters are uniformly distributed in some bounded in-

tervals. Based on the previous, the joint posterior distribution of the parameters is
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given by Bayes theorem:

p(L∗, γ1, γ2) ∝
N∏

i=1

∫
(s + b)Ni

Ni!
e−(s+b)Knorm

[(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

d(log(Lx))×

I
[
α1 < γ1 < b1

]
I
[
α2 < γ2 < b2

]
I [α3 < L∗ < b3] ,

where Knorm is a normalizing constant such as

∫
φ(Lx)d(log(Lx)) = N.

Note that N is the number of observed sources. Therefore,

Knorm = N

∫ [(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

d(log(Lx)

−1

.

The marginal posterior distribution of the parameters, since it is not easy to find it

in an analytical form, we use an MCMC algorithm (Metropolis-Hastings Random

Walk). In particular, we propose values for

γcandidate
1 ∼ N(γcurrent

1 , v1),

γcandidate
2 ∼ N(γcurrent

2 , v2),

log
(
Lcandidate
∗

)
∼ N(log(Lcurrent

∗ ), v3).

We choose variances (v1, v2, v3) for each case such that the acceptance probability of

the proposed values will be 30% − 50%. The acceptance probabilities will be:

For γ1:

p1 = max
{
1, f (γcandidate

1 |·)
f (γcurrent

1 |·) ·
q(γcurrent

1 )
q(γcandidate

1 )

}
= max {1, l1} . where f (|·) is the full conditional
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probability distribution and q the proposal distribution

l1 =

∏N
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γcan

1 , γ2, L∗)
[(

Lx
L∗

)γcan
1

+
(

Lx
L∗

)γ2
]−1

d(log(Lx))∏N
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γ1, γ2, L∗)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α1 < γ

can
1 < b1

]
I
[
α1 < γ1 < b1

]
=

KN
norm(γcan

1 , γ2, L∗)
KN

norm(γ1, γ2, L∗)

N∏
i=1

∫
(s+b)Ni

Ni!
e−(s+b)

[(
Lx
L∗

)γcan
1

+
(

Lx
L∗

)γ2
]−1

d(log(Lx))∫ (s+b)N
i

Ni!
e−(s+b)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α1 < γ

can
1 < b1

]
I
[
α1 < γ1 < b1

] .
For computational reasons when we run the algorithm at the M-H step if the can-

didate value for the parameter satisfies the I
[
α1 < γ1 < b1

]
then we generate a ran-

dom number u1 from the uniform distributionU [0, 1] and compare the log(u1) with

log(p1) and then accept or not the candidate value. For γ1, the log(p1) will be given

by,

log(p1) =Nlog(Knorm(γcan
1 , γ2, L∗)) − Nlog(Knorm(γ1, γ2, L∗))

+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

(Lx

L∗

)γcan
1

+

(
Lx

L∗

)γ2
−1

d(log(Lx))


+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

[(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

d(log(Lx))

 .
For γ2: p2 = max

{
1, f (γcandidate

2 )
f (γcurrent

2 |·) ·
q(γcurrent

2 |·)
q(γcandidate

2 )

}
= max {1, l2} .

l2 =

∏N
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γ1, γ

can
2 , L∗)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γcan
2

]−1
d(log(Lx))∏N

i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α2 < γ

can
2 < b2

]
I
[
α2 < γ2 < b2

]
=

KN
norm(γ1, γ

can
2 , L∗)

KM
norm(γ1, γ2, L∗)

N∏
i=1

∫
(s+b)Ni

Ni!
e−(s+b)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γcan
2

]−1
d(log(Lx))∫

(s+b)Ni

Ni!
e−(s+b)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α2 < γ

can
2 < b2

]
I
[
α2 < γ2 < b2

] .
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The logarithm of the probability is:

log(p2) =Mlog(Knorm(γ1, γ
can
2 , L∗)) − Mlog(Knorm(γ1, γ2, L∗))

+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

(Lx

L∗

)γ1

+

(
Lx

L∗

)γcan
2

−1

d(log(Lx))


+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

(Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
−1

d(log(Lx))

 ,
under the I

[
α2 < γ2 < b2

]
For L∗: p3 =

{
1, f (Lcandidate

∗ |·)
f (Lcurrent
∗ |·) ·

q(Lcurrent
∗ )

q(Lcandidate
∗ )

}
= max {1, l3}.

l3 =

∏N
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γ1, γ2, Lcan

∗ )
[(

Lx
Lcan
∗

)γ1
+

(
Lx

Lcan
∗

)γ2
]−1

d(log(Lx))∏N
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γ1, γ2, L∗)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α3 < Lcan

∗ < b3
]

I [α3 < L∗ < b3]

=
KN

norm(γ1, γ2, Lcan
∗ )

KN
norm(γ1, γ2, L∗)

N∏
i=1

∫
(s+b)Ni

Ni!
e−(s+b)

[(
Lx

Lcan
∗

)γ1
+

(
Lx

Lcan
∗

)γ2
]−1

d(log(Lx))∫
(s+b)N

N! e−(s+b)
[(

Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
α3 < Lcan

∗ < b3
]

I [α3 < L∗ < b3]
.

The logarithm of the probability is:

log(p3) =Nlog(Knorm(γ1, γ2, Lcan
∗ )) − Nlog(Knorm(γ1, γ2, L∗))

+

M∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

[(
Lx

Lcan
∗

)γ1

+

(
Lx

Lcan
∗

)γ2
]−1

d(log(Lx))


+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

(Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
−1

d(log(Lx))

 .
under the I [α3 < L∗ < b3].

The MCMC algorithm converges to the posterior probability distribution. There-

fore, after a burn-in period the algorithm generates values from the posterior (in this

case form the marginal posterior) distribution of the parameters. Considering each

time a given loss function, the mode, the mean or another point of each distribution

can be used ass a point estimator of each parameter. In multi-parameter problems
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we usually make the assumption of independent parameters and as we have already

seen, the proposed values for the Metropolis Hastings MCMC algorithm are taken

from the univariate Normal distribution for each parameter. After the simulation,

a wise thing to do is to check if the parameters are correlated. Thus, we calculate

the covariance matrix (Σ) of the parameters. Following the previously described ap-

proach, we saw that the parameters are correlated and hence, we performed another

MCMC algorithm under the assumption of correlated paramteters.

The proposed values were taken from the 3-dimensional Normal distribution:

(
γcan

1 , γcan
2 , Lcan

∗

)
∼ MN

(
(γcurrent

1 , γcurrent
2 , Lcurrent

∗ ), cΣ
)
,

where Σ the 3 × 3 covariance matrix from the previous algorithm and c is a tuning

constant, such as the acceptance probability of the proposed values will be between

30 − 50%. The acceptance probabilities for the 3-dimensional vector will be:

p =

∏M
i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γcan

1 , γcan
2 , Lcan

∗ )
[(

Lx
Lcan
∗

)γcan
1

+
(

Lx
Lcan
∗

)γcan
2

]−1
d(log(Lx))∏M

i=1

∫
(s+b)Ni

Ni!
e−(s+b)Knorm(γ1, γ2, L∗)

[(
Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
(α1, α2, α3) < (γcan

1 , γcan
2 , Lcan

∗ ) < (b1, b1, b3)
]

I
[
(α1, α2, α3) < (γ1, γ2, L∗) < (b1, b2, b3)

]
=

KM
norm(γcan

1 , γcan
2 , Lcan

∗ )
KM

norm(γ1, γ2, L∗)

M∏
i=1

∫
(s+b)Ni

Ni!
e−(s+b)

[(
Lx

Lcan
∗

)γcan
1

+
(

Lx
Lcan
∗

)γcan
2

]−1
d(log(Lx))∫

(s+b)N

N! e−(s+b)
[(

Lx
L∗

)γ1
+

(
Lx
L∗

)γ2
]−1

d(log(Lx))

×
I
[
(α1, α2, α3) < (γcan

1 , γcan
2 , Lcan

∗ ) < (b1, b1, b3)
]

I
[
(α1, α2, α3) < (γ1, γ2, L∗) < (b1, b2, b3)

] .

The logarithm of the probability is:

log(p) =Mlog(Knorm(γcan
1 , γcan

2 , Lcan
∗ )) − Mlog(Knorm(γ1, γ2, L∗))

+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

( Lx

Lcan
∗

)γcan
1

+

(
Lx

Lcan
∗

)γcan
2

−1

d(log(Lx))


+

N∑
i=1

log

∫ (s + b)Ni

Ni!
e−(s+b)

(Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
−1

d(log(Lx))

 .
The algorithm with the assumption that the parameters are correlated has better mix-

ing properties.
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Finally, the integral for calculating Knorm as well as the integral

∫
(s + b)Ni

Ni!
e−(s+b)

[(
Lx

L∗

)γ1

+

(
Lx

L∗

)γ2
]−1

d(log(Lx)),

can be calculated:

• via Monte Carlo integration by utilizing a special case called importance sam-

pling. Let us say that we want to calculate the integral-mean value:

θ = E f [h(X)] =

∫
h(x) f (x)dx

If it is difficult to simulate from f (x), then we simulate from a function g(x)

called envelope function and then:

θ =

∫
h(X) f (X)

g(X)
g(x)dx = Eg

[
h(X) f (X)

g(X)

]
In our problem, the envelope function is the truncated exponential distribution

g(Lx) =

λ
e−λ(Lx−α)

1−e−λ(β−α) α ≤ Lx ≤ β,

0, elsewhere.

• numerically by using the composite trapezoidal rule∫ b

a
f (x)dx ≈

[
b−a

2

] (
f (a)
2 +

∑n−1
k=1

(
f (a + k b−a

n )
)

+
f (b)
2

)
.

The following sections will describe the X-ray Luminosity function estimation

methodology for the various survey fields. The reader who is not familiar with the

various astrophysical survey fields or is only interested in the mathematical/statistical

interpretation should omit the remaining parts of this section.

5.3.2 X-ray Luminosity function estimation: Chandra survey fields

A Bayesian approach is adopted for the determination of the X-ray luminosity func-

tion. The X-ray sources detected in a survey are essentially Poisson realisations of

a parent sample and therefore the likelihood can be written as the product of the

Poisson probabilities of individual sources. Following the works of Marshall et al.

(1983), Polpo et al. (2002), Aird et al. (2010) and Buchner et al. (2015) the likelihood

can be written as
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L (di | θ) = e−λ×
N∏

i=1

∫
d log LX

dV
dz

dz p (di| LX, z) φ(LX, z | θ),
(5.1)

where dV/dz is the comoving volume per solid angle at redshift z, di signifies the

dataset and θ represents the parameters of the luminosity function model, φ(LX, z | θ),

that are to be estimated. The multiplication is over all sources, N, and the integra-

tion is over redshift and X-ray luminosity. The quantity p(di| LX, z) is the probabil-

ity of a particular source having redshift z and X-ray luminosity LX. This captures

uncertainties in the determination of both redshifts (e.g. photometric redshifts mea-

surements) and X-ray fluxes because of Poisson statistics and the Eddington bias. In

equation 5.1, λ is the expected number of detected sources in a survey for a particular

set of model parameters θ

λ =

∫
d log LX

dV
dz

dz A (LX, z) φ(LX, z | θ). (5.2)

where, A(LX, z) is the sensitivity curve that quantifies the survey area over which a

source with X-ray luminosity LX and redshift z (and hence flux fX) can be detected.

Note that the selection function term, A(LX, z), is not included within the integral of

equation 1. The reader is referred to an extensive discussion in Loredo (2004) on that

point.

The goal of this paper is the estimation of the X-ray luminosity function in the

redshift interval z = 3 − 5. However, defining a sample of X-ray AGN in a relatively

narrow redshift range is not straightforward. This is because the redshifts of many

sources are determined by photometric methods and therefore have uncertainties,

which are not negligible compared to the size of the redshift interval. It may happen

for example, that the errors of the photometric redshift of a particular source straddle

one (or both) boundaries of the redshift range of interest (see Fig. 5.3).

We deal with this difficulty by simply using all sources in the X-ray sample and

splitting the luminosity function model into two terms

φ (LX, z | θ) = φ1 (LX, z ∈ [z1, z2] | θ1) + φ2 (LX, z < [z1, z2] | θ2) . (5.3)

The first term φ1 refers to the luminosity function within the redshift interval of in-

terest, z = z1 − z2, and has its own set of parameters, θ1. The second term, φ2,

corresponds to the X-ray AGN space density outside that redshift range and has a
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different set of parameters, θ2, which are treated as nuisance parameters. The ad-

vantage of this approach is that it allows an estimate of the AGN space density at

z = 3 − 5 nearly independent of the shape and form of the evolution of the X-ray

luminosity function at lower redshift. In any X-ray selected sample the bulk of the

AGN population lies at low redshift z < 3. This may introduce systematics in the

determination of the AGN space density at z & 3, if the same evolutionary law is fit

to the data across all redshifts. In this case it is possible that the determination of

the model parameters is dominated by the regions of the redshift/luminosity param-

eter space with the most data. Our approach minimises the impact of this potential

source of bias. In our analysis the φ2 term is modelled as a step function, i.e. the

sum of constants that correspond to the AGN space densities at different luminos-

ity and redshift bins. The values of these constants are determined by the data via

equation 5.1. For the calculation of equation 5.1 assumptions need to be made on

the redshift errors. For sources with photometric redshift determinations we adopt

the corresponding redshift Probability Distribution Function (PDZ) as a measure of

the uncertainty. Spectroscopic redshifts in the sample have reliabilities & 95% and

therefore their corresponding PDZs are assumed to be delta functions at the spectro-

scopic redshift of the source. Sources without optical counterparts are assigned a flat

PDZ in the redshift range z = 1 − 6 (see Section 5.2.1).

Poisson statistics are used to determine the flux distribution that is consistent

with the extracted source and background counts. A power-law X-ray spectrum with

Γ = 1.9 is adopted in this calculation. The flux distribution in the 0.5-10 keV band is

then convolved with the PDZ to estimate the luminosity distribution of each source

at rest-frame energies 2-10 keV. The relevant k-corrections also assume a power-law

X-ray spectrum with Γ = 1.9. The two-dimensional probability distribution in LX

and z is the term p(di| LX, z) of equation 5.1. In practice we use importance sampling

(Press et al., 1992) to evaluate the integral of equation 5.1. For each source we draw

LX and z samples based on the PDZ and Poisson X-ray counts distribution of that

source. The luminosity function is then evaluated for each sample point, LX, z. The

integral of equation 5.1 is simply the average luminosity function of the sample.

5.3.3 X-ray Luminosity function estimation: XMM-XXL field

In the case of the XMM-XXL field, only spectroscopically confirmed sources in

the redshift interval z = 3 − 5 are used. For that sample there is no need to ap-

ply equation 5.3 to determine the corresponding AGN space density. The limitation

of that sample however, is that it is both X-ray and optical flux limited because of
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the magnitude limit of the spectroscopic follow-up observations. Both cuts need to

be accounted for to infer the X-ray luminosity function via equation 5.1. We do

that by exploiting the fact that the z > 3 XMM-XXL sample consists of powerful

[LX(2 − 10 keV) & 1044erg s−1] broad-line QSOs. We use the well-established corre-

lation between monochromatic X-ray [Lν(2 keV)] and UV [Lν(2500Å)] luminosities

of broad-line QSOs (e.g. Steffen et al., 2006; Just et al., 2007; Lusso, E. et al., 2010)

to link the observed optical magnitudes and X-ray fluxes of the sample and account

for the selection effects. Figure 5.4 demonstrates the correlation between Lν(2 keV)

vs Lν(2500Å) using X-ray selected broad-line QSOs from the XMM-XXL field in

the redshift interval z = 1 − 5. The low redshift cut is to avoid X-ray AGN with rel-

atively low luminosities, for which the UV/optical continuum shows non-negligible

contribution from the host galaxy. We adopt the Lusso, E. et al. (2010) bisector best-

fit log Lν(2 keV) = 0.760 log Lν(2500 Å) + 3.508. At a given monochromatic optical

luminosity we assume that the data points scatter around the above relation follow-

ing a Gaussian distribution with standard deviation σ. Figure 5.5 shows that this is

a reasonable assumption. From that figure we estimate σ = 0.4. Broad Absorption

Line (BAL) QSOs represent up to about 26% of optically selected samples (Hewett

and Foltz, 2003; Reichard et al., 2003; Gibson et al., 2009), and are known to be

X-ray faint either because of absorption or intrinsic X-ray weakness (e.g. Gallagher

et al., 2006; Luo et al., 2014). Such sources do not appear to skew the distributions

plotted in Figures 5.4 and 5.5. This is likely related to the bright X-ray flux limit

of the XMM-XXL survey, which selects against X-ray faint Under assumptions on

the optical Spectral Energy Distribution of QSOs, Figure 5.5 can be used to estimate

the SDSS r-band optical magnitude distribution of X-ray sources of given LX and z

and then determine the fraction of this distribution that is brighter than the spectro-

scopic magnitude limit of the survey, rcut = 22.5. In this case the expected number

of detected sources with the surveyed area, λ, in equation 5.1 can be rewritten

λ =

∫
dlogLX

dV
dz

dz A (LX, z) B(LX, z, | r)

× φ (LX, z | θ) η(r),
(5.4)

where B (LX, z | r) is the SDSS r-band magnitude distribution of a source with LX

and z. The efficiency factor η(r) is the success rate of measuring secure redshifts

for X-ray sources as a function of the SDSS r-band magnitude. It accounts for the

fact that not all X-ray sources with secure counterparts have successful spectroscopic
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redshift measurements. Collisions between SDSS fibers or the finite number of sci-

ence fibers on the SDSS spectroscopic plates mean that not all candidate sources for

follow-up spectroscopy can be assigned a fiber. Moreover, for the sources that are

observed the rate of secure redshift measurement depends on their optical brightness.

At fainter magnitudes the signal-to-noise ratio of the optical spectra decreases and

therefore the ability to estimate redshifts is affected. The probability of a source be-

ing assigned a fiber is random, while the redshift success rate depends, at least to the

first approximation, on optical magnitude. The factor η(r) is the number of spectro-

scopically confirmed X-ray sources in the magnitude interval r ± ∆r divided by the

total number of X-ray sources that are potential targets for follow-up spectroscopy in

the same magnitude range. The parent X-ray sample of potential targets is selected

to have fX(0.5 − 10 keV,Γ = 1.4) > 10−14 erg s−1 cm−2 and 15 < r < 22.5 mag (see

Section 5.2.2). The r-band magnitude dependence of η(r) is shown in Figure 5.6.

For magnitudes in the range r = 17.0 − 21.5 mag the efficiency factor η(r) is nearly

constant and larger than 80%. This fraction drops to about 50% at r = 22.5, the

limiting magnitude for follow-up spectroscopy with the Sloantelescope, and is zero

for r > 22.5 mag.

In equation 5.4 for the calculation of the optical k-corrections we use the sim-

ulated QSO SEDs of McGreer et al. (2013).They are generated assuming a double

power-law continuum in the rest-frame UV/optical part of the SED with a break-point

at 1100 Å. The short- and long-wavelength slopes are drawn from normal distribu-

tions with means of −1.7 and −0.5, respectively. For both slopes the scatter is fixed

to 0.3. Emission lines with luminosity dependent equivalent widths as well as Lya

forest absorption are also added to the simulated SEDs as described in McGreer et al.

(2013). A total of 60 000 model SEDs are generated in the redshift interval z = 3− 5

and for AGN luminosities log Lν(2500 Å) ≈ 29− 32 erg s−1. These are used to calcu-

late the expected distribution of the observed r-band optical magnitudes for a given

redshift and AGN luminosity, and determine the term B(LX, z, | r) in equation equa-

tion 5.4. For the calculation of X-ray k-corrections we assume a power-law X-ray

spectrum with Γ = 1.9.

5.3.4 X-ray luminosity function models

The Bayesian framework outlined above explicitly requires a model with a set of

free parameters that are constrained by the observations. We consider both non-

parametric and parametric models for the X-ray luminosity function in the redshift

range z = 3 − 5. The non-parametric model simply assumes that the space density
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Figure 5.8: AGN space density as a function of 2-10 keV X-ray luminosity in the redshift
intervals z = 3 − 4 and z = 4 − 5. In both panels the datapoints are the non-parametric
binned X-ray luminosity function. The errors correspond to the 68th percentiles of the Prob-
ability Distribution Function. The black filled circles are the estimates for the combined
XMM-XXL and Chandra deep field surveys. In the z = 3 − 4 panel (left) we also plot the
constraints obtained separately from the XMM-XXL (red squares) and the Chandra deep
survey fields (blue triangles). This is to demonstrate that in overlapping luminosity bins the
XMM-XXL and Chandra data yield consistent results. The shaded regions are the 68% con-
fidence intervals of the LDDE and PDE parametric models described in Section 5.3.4. The
gray hatched region is for the LDDE and the pink region is for the PDE. The parametric
models are estimated at the middle redshift of the redshift intervals, i.e. z = 3.5 and z = 4.5.

of AGN is constant within a given luminosity and redshift interval. In this case the

free model parameters to be estimated are the AGN space densities in each luminos-

ity and redshift bin. This is equivalent to the widely used 1/Vmax
2approach for the

determination of binned luminosity functions. The advantage of the non-parametric

approach is that it allows investigation of the form and amplitude of the X-ray lumi-

nosity function evolution in a model-independent way.

We also consider four parametric models for the X-ray luminosity function and its

redshift evolution, which have been extensively used in the literature. These are the

Pure Luminosity Evolution (PLE), Pure Density Evolution (PDE), Luminosity De-

pendent Density Evolution (LDDE) and Luminosity And Density Evolution (LADE)

models. The parametrisation of each model follows Vito et al. (2014). The X-ray

luminosity function in the redshift range z = 3 − 5 is defined as the space density of

AGN per logarithmic luminosity bin and is described by a double power-law of the

form

φ(LX, z) =
K(

LX
L?

)γ1
+

(
LX
L?

)γ2
, (5.5)

2In the case of a step function (i.e. non-parametric) model for φ(LX , z) and vanishing uncertainties
for the redshifts and luminosities of individual sources, it is straightforward to show that the maximum
likelihood value of φ(LX , z) in equation 1 reduces to the Page and Carrera (2000) binned luminosity
function estimator.
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where K is the normalization, γ1 and γ2 are the faint and bright-end power-law slopes,

respectively, and L? is the break luminosity. The PLE model assumes that L? is a

function of redshift and evolves according to the relation

L?(z) = L?(z0) ×
( 1 + z
1 + z0

)p
, (5.6)

where we fix z0 = 3 and the exponent p parametrises how fast the break luminosity

evolves with redshift. In the case of PDE it is assumed that only the normalisation of

the luminosity function evolves with the redshift according to the relation

K(z) = K(z0) ×
( 1 + z
1 + z0

)q
, (5.7)

where z0 = 3 and the exponent q parametrises the speed of the normalisation factor

evolution. The LADE model adopted here is similar to the Independent Luminosity

and Density Evolution (ILDE) model described by Yencho et al. (2009). We use

equation 5.6 to parametrise the redshift evolution of L? and also add a normalisation

evolution term of the form

K(z) = K(z0) × 10q (z−z0). (5.8)

Finally we consider the LDDE parametrisation of Hasinger, G., Miyaji, T., and

Schmidt, M. (2005), where the normalisation factor of equation 5.5 changes with

redshift as

K(z) = K(z0) ×
( 1 + z
1 + z0

)q+β (log LX−44)
, (5.9)

where as previously z0 = 3 and the rate of the density evolution also depends on the

X-ray luminosity via the parameter β.

Recall that in addition to the model parameters that describe the X-ray luminosity

function in the redshift range z = 3 − 5 the likelihood function in equation 5.1 also

includes terms that correspond to the total AGN space density outside the redshift

range of interest, z < 3 or z > 5 (see equation 5.3). A non-parametric model is

adopted to describe that term. This to minimise the impact of parametric model

assumptions to the results and conclusions. We use 3 redshift bins in the range z =

0− 3 with size ∆z = 1. Each redshift bin is split into 5 logarithmic luminosity bins in

the range log LX(2−10 keV) = 41−46 (units of erg s−1) with width ∆ log LX = 1 dex.

One additional term is used to model the luminosity function in the range z = 5 − 6.

A constant AGN space density is assumed within the above luminosity and redshift
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intervals. We therefore use a total of 16 nuisance parameters to model the AGN

X-ray luminosity function at z < 3 or z > 5.

The MultiNest multimodal nested sampling algorithm (Feroz and Hobson, 2008;

Feroz, Hobson, and Bridges, 2009) is used for both Bayesian parameter estimation

and the calculation of the Bayesian evidence, Z, of each model, i.e. the integral of

the model likelihood over the parameter space allowed by the priors. The Bayesian

evidence is used for model comparison, i.e. to select among different models the one

that better describes the data.

5.3.5 Potential obscuration effects

The analysis presented in this paper uses the full-band selected sample to determine

the X-ray luminosity function of AGN at z > 3. This is because of the higher sensi-

tivity of the 0.5-10 keV band compared to e.g. the 2-10 keV band, which translates to

a larger number of sources. A potential issue however, is that the analysis described

above ignores the impact of obscuration on the observed AGN flux. Figure 5.7 shows

that for AGN at z > 3 moderate line-of-sight columns, log NH = 23 (cm−2), suppress

the observed 0.5-10 keV flux of AGN by less than about 25%. Higher column den-

sities however, have a larger impact on the 0.5-10 keV flux and therefore result in

incompleteness in the sample that is not accounted for in our analysis. Nevertheless,

we are primarily interested in the differential evolution of AGN in the redshift inter-

vals z = 3− 4 and z = 4− 5. Figure 5.7 shows that for fixed obscuration and intrinsic

AGN luminosity there is little difference in the level of flux suppression between red-

shifts z = 3 and z = 5. Incompleteness related to obscuration is therefore expected

to be similar across the redshift range z = 3 − 5. This allows direct comparison of

the inferred AGN space densities in the redshift bins z = 3 − 4 and z = 4 − 5, under

the assumption that the distribution of AGN in obscuration does not change dramati-

cally between these redshift intervals. Recent studies on the obscuration distribution

of AGN (Ueda et al., 2014; Buchner et al., 2015; Aird et al., 2015) show that the

obscured AGN fraction increases with redshift, at least to z ≈ 3. In Buchner et al.,

2015 for example, the obscured fraction in Compton thin AGN is about 50% at z < 1

and increases to 70% at z ≈ 3. At higher redshifts however, current constraints on the

evolution of the obscured AGN fraction are still limited by small number statistics.

Nevertheless, there are suggestions that the obscured AGN fraction remains roughly

constant with redshift at z & 3 (Buchner et al., 2015).

Obscuration related effects potentially have a larger impact on the analysis of

the XMM-XXL data. For these sources it is explicitly assumed that their optical/UV
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Figure 5.9: X-ray luminosity dependence of the ratio of the AGN space densities in the
redshift intervals z = 3 − 4 and z = 4 − 5. The data points are for the non-parametric binned
X-ray luminosity function. A double power-law is also fit independently to the data in the
redshift intervals z = 3 − 4 and z = 4 − 5. The ratio of these parametric fits is shown by the
light/dark grey shaded regions. The widths of the dark-grey and light-grey shaded regions at
a given luminosity corresponds to the 68% and 95% confidence intervals. The predictions
of the Gilli et al. (2007) LDDE parametrisation of the luminosity function with (dashed
line) and without (dot-dashed line) an exponential cutoff at high redshift is also plotted for
comparison.

continua are not obscured or reddened. This assumption allows us to place them

on the Lν(2 keV) − Lν(2500 Å) correlation for type-I AGN and correct for the spec-

troscopic magnitude cut as explained above. This poses a problem when compar-

ing the Chandra with the XMM-XXL constraints on the X-ray luminosity function.

Nevertheless, the shallow XMM-XXL survey is only sensitive to powerful QSOs

[LX(2 − 10 keV) & 1044 erg s−1] at z > 3. At lower redshift at least, it is well estab-

lished that the obscured AGN fraction is rapidly decreasing with increasing accretion

luminosity (e.g. Ueda et al., 2003; Akylas, A. et al., 2006; Ueda et al., 2014; Buch-

ner, J. et al., 2014; Merloni et al., 2014). Obscuration incompleteness corrections are

therefore likely to be small for luminosities LX(2 − 10 keV) & 1044 erg s−1. We ex-

plore this assumption further in the next section by directly comparing the Chandra

and XMM-XXL constraints in overlapping luminosity bins.
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Table 5.3: Power-law fits to the data in the redshift intervals z = 3 − 4 and z = 4 − 5

redshift log K log L? γ1 γ2

interval (Mpc−3) (erg/s)
(1) (2) (3) (4) (5)

z = 3 − 4 −5.15+0.12
−0.17 44.41+0.13

−0.12 0.19+0.15
−0.13 2.25+0.29

−0.24
z = 4 − 5 −6.62+0.74

−0.82 45.00+0.57
−0.58 0.68+0.24

−0.38 2.16+0.98
−0.47

Listed are the best-fit parameters for the simple power-law fits to the data in the
redshift intervals z = 3 − 4, z = 4 − 5. The listed values are the median of the
probability distribution function of each parameter. The errors correspond to
the 16th and 84th percentiles around the median. The columns are: (1) redshift
interval (2) X-ray luminosity function normalisation (see equation 5.5), (3)
break luminosity of the X-ray luminosity function (see equation 5.5), (4) faint-
end slope, (5) bright-end slope.

5.4 Results

5.4.1 The non-parametric X-ray luminosity function determina-
tion

Figure 5.8 plots the non-parametric estimate of the X-ray luminosity function in

two redshift intervals, z = 3 − 4 and z = 4 − 5. For the low redshift sub-sample,

z = 3 − 4, we also plot separately the AGN space density determined indepen-

dently from the Chandra deep fields and the XMM-XXL survey. As expected these

datasets probe different luminosity ranges. The Chandra fields provide constraints

to log LX(2 − 10 keV) = 42.5 (erg s−1, but do not probe sufficient volume to detect

luminous and rare sources with luminosities & 1045 erg s−1. The XMM-XXL survey

can constrain the bright-end of the luminosity function but is not sensitive enough

to detect AGN below LX(2 − 10 keV) . 1044 erg s−1. Nevertheless, in the interval

log LX(2 − 10 keV) = 44 − 45 (erg s−1) both the Chandra and XMM data provide

meaningful constraints to the AGN space density. These independent non-parametric

estimates are in good agreement within the 68% errors plotted in Figure 5.8. This

suggests that obscuration effects do not have a strong impact on the AGN space den-

sities estimated from the XMM-XXL data. In Figure 5.8 the z = 4− 5 panel does not

plot separately the space density estimates from the Chandra and then XMM-XXL

survey fields. This is because at this redshift interval there is virtually no overlap

in the luminosities probed by the two datasets. The XMM-XXL constrains only the

brightest luminosity bin, log LX(2 − 10 keV) = 45 − 46 (units erg s−1). The Chandra

fields include only sources that are fainter than LX(2 − 10 keV) = 1045 erg s−1 .
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A striking result illustrated in Figure 5.8 is the strong evolution of the AGN pop-

ulation between redshifts z = 3 and z = 5. This is further demonstrated in Fig-

ure 5.9, which plots as a function of luminosity the ratio of the non-parametric AGN

space densities in the redshift intervals z = 3 − 4 and z = 4 − 5. At luminosities

LX(2 − 10 keV) . 1045 erg s−1 there is a factor of 5 decrease in the AGN space den-

sity from z = 3 − 4 to z = 4 − 5. There is also evidence for luminosity dependent

evolution. AGN with LX(2 − 10 keV) . 1045 erg s−1 in Figure 5.9 appear to evolve

faster than intrinsically brighter sources. We quantify the statistical significance of

the evidence for luminosity dependent evolution using the quantity

R = log
φ(LX = 1045 − 1046, z = 4 − 5)
φ(LX = 1045 − 1046, z = 3 − 4)

−

log
φ(LX = 1043 − 1045, z = 4 − 5)
φ(LX = 1043 − 1045, z = 3 − 4)

,

(5.10)

where φ(LX, z) is the binned (non-parametric) luminosity function. R is the log-

arithmic difference between the high luminosity (LX > 1045 erg s−1) data point of

Figure 5.9 and the sum of the two moderate luminosity data points (LX = 1043 −

1045 erg s−1) of the same plot. We bin together moderate luminosity AGN to simplify

the problem and also improve the statistical reliability of the results. We use the full

probability density distribution of R and find that at the 90% probability R > 0, i.e.

there is differential evolution between moderate (LX = 1043−1045 erg s−1) and power-

ful (LX > 1045 erg s−1) X-ray AGN from z = 3−4 to z = 4−5. We further investigate

this using a simple parametric approach. A double power-law function (equation 5.5)

is fit independently to the data in the redshift bins z = 3 − 4 and z = 4 − 5. In this

exercise evolutionary effects within each of the two redshift intervals are ignored.

The best-fit parameters are presented in Table 5.3. The ratio between the two double

power-laws in the redshift bins z = 3 − 4 and z = 4 − 5 is plotted with the shaded

region in Figure 5.9. The apparent increase of this ratio toward faint luminosities

is because the faint-end slope of the z = 4 − 5 sample is poorly constrained and on

the average steeper than that of the z = 3 − 4 sample. Nevertheless, in the interval

LX(2 − 10 keV) = 1043 − 1046 erg s−1, where constraints on the AGN space density

are available for both the z = 3 − 4 and the z = 4 − 5 sub-samples, the ratio between

the two power-laws is consistent with luminosity-dependent evolution. Larger sam-

ples are needed however, particularly in the redshift interval z = 4 − 5, to reduce the

uncertainties in Figure 5.9 and further explore the evidence for luminosity dependent

evolution.
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The amplitude of the AGN X-ray luminosity function evolution between the red-

shift intervals z = 3 − 4 and z = 4 − 5 in Figure 5.9 is further compared with the

predictions of luminosity function parametrisations that include an exponential de-

cline at z & 3 (e.g. Gilli, R., Comastri, A., and Hasinger, G., 2007). Such models

are motivated by the rapid evolution of optical QSO space density at high redshift

(e.g. Schmidt, Schneider, and Gunn, 1995; Richards et al., 2006). We use the Gilli,

R., Comastri, A., and Hasinger, G. (2007)3 LDDE parametrisation of the X-ray lu-

minosity function with and without an additional exponential cutoff to predict the

space density of AGN at z = 3.5 and z = 4.5. The ratio between these predictions

is plotted in Figure 5.9. The amplitude of the AGN evolution inferred in this pa-

per for luminosities LX(2 − 10 keV) . 1045 erg s−1 is consistent with the Gilli et al.

(2007) LDDE parametrisation that includes an exponential cutoff. AGN with lumi-

nosities in the range LX(2−10 keV) = 1045−1046 erg s−1 lie in between the Gilli et al.

(2007) model predictions with and without an exponential cutoff. This is suggestive

of milder evolution, albeit at the ≈ 90% confidence level.

5.4.2 Parametric X-ray luminosity function determination

Next we use Bayesian model comparison to assess which of the evolutionary mod-

els outlined in Section 5.3.4 provides a better description of the observations in the

redshift interval z = 3 − 5. The PLE, PDE, LADE and LDDE parametric models

of Section 5.3.4 are fit to the combined Chandra and XMM-XXL dataset. Table 5.4

presents the best-fit parameters for each parametric model. The Bayes factor (ratio

between evidences) of each model relative to the model with the highest evidence

(PDE) is also shown in that table.

The model with the highest evidence in Table 5.4 is the PDE, with the second best

being the LDDE. The Bayes factor of the two models is ∆ log10 Z = 0.25. Based on

the Jeffreys interpretation of the Bayes factor (Jeffreys, 1961) this difference suggests

that both models describe equally well the evolution in the redshift interval z = 3− 5

of the X-ray selected AGN sample presented in this paper. The bulk of the AGN in

the present sample have X-ray luminosities LX(2−10 keV) < 1045 erg s−1. Figure 5.9

shows that such sources experience similar reduction in their space density between

z = 3 − 4 and z = 4 − 5, i.e. consistent with pure density evolution. More luminous

AGN [LX(2 − 10 keV) > 1045 erg s−1], which appear to experience milder evolution

in Figure 5.9, represent only a small fraction of the present sample. This combined

3http://www.bo.astro.it/∼gilli/counts.html

http://www.bo.astro.it/~gilli/counts.html
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with the fact that the PDE is a simpler model compared to the LDDE (5 vs 6 free

parameters) results in similar Bayesian evidences for these two parametric models.

Table 5.4 also shows that the LADE parametrisation adopted in this work per-

forms worse than the LDDE. The Bayes factor of the two models is ∆ log10 Z = 1.08.

This difference is strong evidence in favor of the LDDE (Jeffreys, 1961). par The one

model that performs significantly worse than the rest is the PLE. The Bayes factor of

that model relative to the one with the highest evidence (PDE) is ∆ log10 Z = 4.02.

Based on the Jeffreys (1961) interpretation of the Bayes factor this is decisive evi-

dence against the PLE model.

Although the PDE model is favoured by our analysis for the evolution of AGN

in the redshift interval z = 3 − 5 in the next sections we use the LDDE model to

compare with previous studies and to determine the contribution of X-ray AGN to

the ionisation of the Universe. This is because of the small difference in the evidences

of the PDE vs the LDDE and the long literature on the LDDE evolutionary model.

Nevertheless, the results and conclusions are not sensitive to the particular choice of

AGN evolutionary model.

5.4.3 Comparison with previous studies

A number of studies on the X-ray luminosity function of AGN have appeared in the

literature recently. These include works focusing on the space density of X-ray AGN

at high redshifts z ≥ 3 (Civano et al., 2010; Kalfountzou et al., 2014; Vito et al.,

2014) and results on the global X-ray luminosity function evolution across redshift

(Ueda et al., 2014; Buchner et al., 2015; Aird et al., 2015; Miyaji et al., 2015). In this

section we compare our X-ray luminosity function with previous studies using X-ray

samples selected in the 0.5-2 or 0.5-10 keV bands, i.e. similar to the one presented

in this paper. Vito et al. (2014) compiled one of the largest samples to date in the

redshift interval z = 3−5. They select sources in the 0.5-2 keV band and also present

non-parametric (1/Vmax) estimates of the X-ray luminosity function. These aspects

of the Vito et al. (2014) analysis methodology are similar to ours. We also use recent

results of Aird et al. (2015) as a representation of parametric approaches to fit the

X-ray luminosity function of AGN to the full redshift interval accessible to current

X-ray selected samples, z ≈ 0 − 5.

Vito et al. (2014) use a sample similar to ours in size to determine the X-ray lumi-

nosity function in the range 3 < z . 5. They use both photometric and spectroscopic

redshifts (total of 141) and apply corrections to account for sources without photo-

metric redshift determinations (total of 65). We compare our best-fit LDDE model
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with their results in Figure 5.10. The redshift intervals of each panel are the same

as in Figure 7 of Vito et al. (2014). We plot their non-parametric 1/Vmax estimates

that include their redshift incompleteness corrections. Our LDDE parametric models

in Figure 5.10 is estimated at the middle of each redshift interval. We find that our

X-ray luminosity function determination is systematically lower than the Vito et al.

(2014) data points. This discrepancy (> 3σ significance in e.g. the redshift interval

z = 3.47 − 3.90 of Figure 5.10) may be related to the fact that Vito et al. (2014)

account for X-ray obscuration in the determination of X-ray luminosities and the

calculation of the Vmax of individual sources. A total of 36 of their 141 sources have

column densities NH & 1023 cm−2, which translates to suppression of their fluxes

compared to the unobscured (NH = 0 cm−2) case by & 20% (see Figure 5.7). Such

corrections are ignored in the analysis presented here. Alternatively the discrepancy

may be related to how sources with photometric redshifts or sources without any

redshift information are treated. Vito et al. (2014) use only the best-fit photometric

redshift solution without taking into account the corresponding uncertainties. It is

further assumed that the 65 sources in their sample without photometric redshifts all

lie in the redshift interval z = 3 − 5 and that they follow the redshift distribution of

the X-ray sources with redshift determinations (photometric or spectroscopic) in the

range z = 3 − 5. The amplitude of this correction is ≈ +0.5 and +0.25 dex increase

at luminosities LX(2 − 10 keV) ≈ 1043 and 1045 erg s−1 respectively. In that respect

Vito et al. (2014) determine maximal X-ray luminosity functions. It is likely that

some of the X-ray sources without redshift information lie outside the redshift range

z = 3 − 5. Heavily obscured AGN or AGN hosted by early type hosts at moderate

redshifts, z ≈ 1−3, may also have red SEDs, similar to those of high redshift sources

(Koekemoer et al., 2004; Schaerer, D. et al., 2007; Rodighiero, G. et al., 2007; Del

Moro, A. et al., 2009).

We further investigate this issue by adopting a methodology similar to that of

Vito et al. (2014) to determine the X-ray luminosity function. We use the best-fit

photometric redshifts only, i.e. ignoring the photometric redshift probability distri-

bution functions. Sources without optical identifications in the sample are assigned

random redshifts in the range z = 3 − 5 based on the redshift distribution of sources

with spectroscopic or photometric redshift measurements. The results are presented

in Figure 5.11. It shows that an approach that ignores photometric redshift errors

results in an overestimation of the AGN space density. This is not only because

of sources without optical identifications and therefore without photometric redshift

(total of 107 in our sample) estimates being forced to lie in the range z = 3 − 5. The
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overestimation is mainly the result of ignoring photometric redshift uncertainties. In

the likelihood equation 5.1 the probability of a source having redshift z and lumi-

nosity LX is weighted by the luminosity function. Sources with broad (see Fig. 5.3)

redshift probability distribution functions are more likely to lie at low redshift and

moderate luminosities simply because the space density of AGN is higher there. Ig-

noring this weighting in equation 5.1 by e.g. fixing photometric redshifts to a single

(best-fit) value overestimates the luminosity function at high redshifts.

Also plotted in Figure 5.10 are the flexible double power-law parametric model

of Aird et al. (2015) for their 0.5-2 selected sample before applying corrections for

obscuration (i.e. directly comparable to our analysis). The binned X-ray luminos-

ity function estimates of Aird et al. (2015) are also shown. These data points are

estimated using the Nobs/Nmdl method developed by Miyaji, T., Hasinger, G., and

Schmidt, M. (2001) and are therefore not independent of the underlying paramet-

ric model plotted in Figure 5.10. Nevertheless, these binned estimates provide a

measure of the associated uncertainties and can be used to identify redshift and lu-

minosity intervals where the parametric model provides a poorer fit to the data. The

Aird et al. (2015) X-ray luminosity function estimated from their 0.5-2 keV selected

sample is in fair agreement with our results. This may be not surprising given the

overlap between the two datasets and the similar approaches. Figure 5.12 plots the

X-ray luminosity density evolution of AGN using our LDDE model and the Aird

et al. (2015) total X-ray luminosity function that includes both obscured (Compton

thin and thick) and unobscured sources. The X-ray luminosity function estimated in

this work accounts for about 40% of the total X-ray luminosity density determined

by Aird et al. (2015).

Finally, we also compare in Figure 5.10 the X-ray luminosity function with high

redshift determinations of the optical QSO luminosity function. The conversion from

UV/optical to X-rays ultimately depends on the scatter in the relations between bolo-

metric and X-ray or UV luminosities. There are suggestions that the bolometric–to–

X-ray luminosity ratio has a larger scatter than the bolometric–to–UV luminosity ra-

tio (Hopkins, Richards, and Hernquist, 2007). We therefore convert from UV/optical

to X-rays by convolving the best-fit parametric model of UV/optical QSOs from the

relevant publications with the Lν(2 keV) − Lν(2500 Å) relation of Lusso, E. et al.

(2010) assuming a scatter of 0.4 dex (e.g. Figure 5.5). This calculation also requires

assumptions on the shape of the UV SED of QSOs at wavelengths λ & 1450 Å. We

assume a power-law of the form L(ν) ∝ ν−0.5 (Berk et al., 2001; Telfer et al., 2002).

A steeper slope, L(ν) ∝ ν−0.61 (Lusso et al., 2015), translates to an X-ray luminosity
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function that is offset by δ log LX ≈ −0.03 dex compared to L(ν) ∝ ν−0.5. At the

z = 3.1 and z = 4.1 panels of Figure 5.10 we overplot the Masters et al., 2012 best-fit

double power-law models at z = 3.2 and z = 4. At the z = 3.35 panel of Figure 5.10

we show the Ross et al. (2013) LEDE (Luminosity Evolution and Density Evolution)

model fit to the BOSS Stripe82 QSO data (Palanque-Delabrouille, N. et al., 2011).

We choose not to extrapolate this model past redshift z = 3.5, the limiting redshift

of the BOSS Stripe82 QSO sample. At the redshift interval 4.3 < z < 5.1 (mean

redshift z = 4.7) we transform to X-rays the optical QSO luminosity function de-

termined by McGreer et al. (2013). The optical luminosity functions are plotted by

shaded regions in Figure 5.10. The shape and normalisation of the UV/optical QSO

luminosity functions in Figure 5.10 at luminosities & 1045 erg s−1 are sensitive to the

scatter of the Lν(2 keV) − Lν(2500 Å) relation used in the convolution.

A striking result from Figure 5.10 is the steep faint-end slope of the Masters et al.

(2012) best-fit double power-law models at z = 3.2 and z = 4 compared to the faint-

end slope of the X-ray luminosity function. The ratio between the UV/optical and the

X-ray luminosity functions is a proxy of the type-I fraction among AGN, Ftype−I, and

can be used to explore the luminosity dependence of this quantity at high redshift. In

this section we define type-I AGN as sources with blue UV/optical continua, typical

of broad-line QSOs. We use the Masters et al. (2012) luminosity function and the

LDDE parametrisation for the X-ray luminosity function to determine Ftype−I and

plot the results in the case of z = 3.2 in Figure 5.13. The luminosity dependence

of the Ftype−I at z = 4 is very similar and is not shown. We find evidence that the

type-I AGN fraction at z > 3 is a non-monotonic function of luminosity. There is

a minimum at LX(2 − 10 keV) ≈ 1044 erg s−1, followed by a steep increase toward

fainter luminosities.

The behaviour of Ftype−I in Figure 5.13 is opposite to studies that find a drop

in the type-I or X-ray unobscured (NH < 1022 cm−2) AGN fraction with decreasing

luminosity or equivalently that type-II or obscured (NH > 1022 cm−2) AGN domi-

nate at faint luminosities (Ueda et al., 2003; Akylas, A. et al., 2006; Ueda et al.,

2014; Merloni et al., 2014; Aird et al., 2015). Studies on the obscuration distribution

of AGN in the local Universe support a picture where the obscured AGN fraction

increases with decreasing luminosity. Nevertheless, they also find evidence for a

turnover (drop) of the obscured AGN fraction at very faint X-ray luminosities, below

about 1042 erg s−1 (e.g Burlon et al., 2011; Brightman and Nandra, 2011a). Recently,

Buchner et al. (2015) extended these results to higher redshift and found evidence

that the obscured AGN fraction peaks at a redshift-dependent luminosity and then
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drops at both brighter and fainter luminosities. Figure 5.13 overplots the obscured

AGN fraction derived by Buchner et al. (2015) in the redshift interval z = 2.7−4. For

this comparison we assume that Ftype−I = 1 − Fobscured. This is a simplistic assump-

tion because the definition of Type-I QSOs in the case of UV/optical samples and

unobscured/obscured AGN in X-ray samples like in Buchner et al. (2015) is differ-

ent. Nevertheless, to the first order the quantity 1−Fobscured should be at least loosely

related to Ftype−I. In Figure 5.13 there is qualitative agreement between the Buchner

et al. (2015) 1 − Fobscured parameter and our definition of Ftype−I.

At bright luminosities the quantity Ftype−I in Figure 5.13 increases with increas-

ing LX. This in agreement with previous studies based on X-ray (Ueda et al., 2014,

e.g.), optical (e.g. Simpson, 2005) or infrared (e.g. Assef et al., 2013) data. At

the brightest luminosities probed by our data, LX = 1045 − 1046 erg s−1, the type-I

fraction is about 75 ± 25%. This number is relevant to the population of powerful

QSOs (bolometric Lbol ≈ 1047 erg s−1) with reddened UV/optical continua [extinc-

tion E(B−V) ≈ 5] identified in recent wide-area infrared surveys (Stern et al., 2014).

These reddened/obscured sources correspond to X-ray luminosities LX(2−10 keV) ≈

5×1045 erg s−1 (Marconi et al., 2004) and are suggested to represent up to 50% of the

QSO population at these luminosities (Assef et al., 2015). We caution however, that

there are uncertainties on the inferred bolometric luminosities of these sources and

hence, the obscured AGN fraction, depending on the assumed geometry, physical

scale and covering fraction of the obscuring material (Assef et al., 2015). Addition-

ally, the X-ray properties of these infrared selected AGN are poorly known. There

are suggestions that they represent heavily obscured, even possibly Compton thick,

systems (Stern et al., 2014), in which case they are expected to be underrepresented

in our sample.

5.4.4 Contribution of AGN to ionisation of the Universe

The X-ray luminosity function can be used to set limits on the contribution of the

AGN to the radiation field that keeps the Universe ionised at redshift z > 3. The

advantage of X-ray selection is that it provides a better handle on the faint-end of the

AGN luminosity function compared to UV/optically selected samples. The downside

is that assumptions on the escape fraction of UV photons have to be made to convert

AGN space densities to ionising photon densities. At the very least however, X-rays

surveys can set strict upper limits on the contribution of AGN to the ionising photon

field, under the assumption that all photons emitted by the central source escape to
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Figure 5.10: Comparison of our best-fit LDDE model (pink shaded region) with previous
estimates of the X-ray luminosity function in the range z = 3 − 5. The panels correspond
to the redshift intervals of Vito et al. (2014) to allow direct comparison with their results.
The black filled circles are the 1/Vmax binned luminosity function estimates of Vito et al.
(2014). The thin blue curves are the flexible double power-law parametric model of Aird et
al. (2015) for their 0.5-2 keV band selected sample without corrections for obscuration. For
the Aird et al. (2015) 0.5-2 keV sample the binned X-ray luminosity function estimates are
also shown by the red crosses. The UV/optical QSO luminosity functions of Masters et al.
(2012), McGreer et al. (2013), and Ross et al. (2013) are also plotted by the thick black lines
at the relevant redshift intervals.
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Figure 5.11: Impact of ignoring photometric redshift uncertainties on the inferred AGN space
density. The red open circles correspond to the non-parametric binned X-ray luminosity
function estimated by using the best-fit photometric redshift solution only and ignoring pho-
tometric redshift uncertainties (see text for details). The black data points correspond to the
AGN space density estimated by using the full photometric redshift Probability Distribution
Function to account for photometric redshift errors. For both set of data-points only the
Chandra survey fields are used.
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Figure 5.12: X-ray luminosity density as a function of redshift. The black dashed curve cor-
responds to the total X-ray luminosity density for both obscured (Compton thin and Compton
thick) and unobscured AGN deterined by Aird et al. (2015). The shaded blue region is the
X-ray luminosity density estimated using our LDDE parametrisation for the evolution of the
AGN population at z > 3. The inset plot shows the ratio between the blue (solid) and black
(dashed) curves as a function of redshift. It represents the fraction of the luminosity den-
sity accounted by our LDDE model relative to the total luminosity density (corrected for
obscuration effects) estimated by the Aird et al. (2015).
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the Inter-Galactic Medium. The rate of hydrogen ionising photons is estimated by

integrating theAGN Spectral Energy Distribution in the energy range 1-4 ryd

ṅ =

∫ 4ryd

1ryd

L(ν)
hν

dν, (5.11)

where L(ν) is the AGN monochromatic luminosity at frequency ν. The Lusso, E.

et al. (2010) Lν(2keV) − Lν(2500 Å) relation is used to convert the 2-10 keV X-ray

luminosity to UV monochromatic luminosity at 2500 Å. We then extrapolate to the

wavelength range 227Å (4 ryd) and 910Å (1 ryd) assuming a double power law for

the AGN SED of the form

L(ν) ∝

 ν−0.5 (1100 Å< λ < 2500 Å)

ν−1.7 λ < 1100 Å
(5.12)

The spectral slopes in the above relation are from Berk et al. (2001) and Telfer et al.

(2002). At any given redshift the comoving density of the hydrogen ionising rate is

then estimated by integrating the X-ray luminosity function

N =

∫
φ(LX, z) fesc(LX, z) ṅ dlogLX. (5.13)

The LDDE parametrisation of the X-ray AGN luminosity function is adopted. The

integration limits are set to LX(2 − 10 keV) = 1042 and 1046 erg s−1. The photon es-

caping factor, fesc(LX, z), accounts for the fraction of obscured AGN, which likely

depends on both redshift and accretion luminosity. In these sources the ionising pho-

tons are absorbed locally and therefore do not contribute to the cosmic ionisation ra-

diation field. Our analysis does not constrain the distribution of AGN in obscuration.

Additionally at redshift z > 3 there are still discrepancies among different studies

on the obscured AGN fraction and its dependence on luminosity (e.g. Ueda et al.,

2014; Buchner et al., 2015; Aird et al., 2015). For example, in Figure 5.13 we find

evidence that the type-I AGN fraction and by proxy the obscured AGN fraction, have

a different dependence on luminosity compared to relations established at lower red-

shift. We choose to present our baseline results for the luminosity dependent type-I

AGN fraction determined by Merloni et al. (2014). In that study type-I refers to AGN

with either blue UV/optical continua and/or broad emission lines. This definition is

more releavant to the determination of the hydrogen ionising photon rates of AGN,

compared to e.g. the standrard X-ray unobscured AGN definition, NH < 1022 cm−2.

Adopting the Merloni et al. (2014) relation for fesc(LX, z) also allows direct compar-

ison with previous X-ray studies that also used monotonically increasing obscured
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AGN fraction with decreasing X-ray luminosity to approximate the escape fraction

of UV photons in high redshift AGN. Figure 5.14 plots N as a function of redshift

for our baseline model for the photon escaping fraction. In that figure we also place

an upper limit in N by setting fesc = 1, i.e. the extreme case that all photons escape

and contribute to the hydrogen ionising radiation. This translates to a net increase of

N by a factor of about 1.4 compared to the Merloni et al. (2014) type-I AGN relation

for fesc. We further explore how the results in Figure 5.14 change if fesc is approxi-

mated by X-ray definitions of the unobscured (NH < 1022 cm−2) AGN fraction. We

adopt the luminosity dependence of the unobscured X-ray AGN fraction derived by

Buchner et al., 2015 in the redshift interval z = 2.7 − 4 (see Fig. 5.13). This assump-

tion yields photon rate densities that are a factor of about 1.7 smaller compared to

the baseline results that use the Merloni et al. (2014) type-I AGN fraction as proxy

of fesc. For clarity these results are not plotted in Figure 5.14.

The constraints above should be compared to the minimum photon rate density

required to keep the Universe ionised at a given redshift.This is estimated from equa-

tion (26) of Madau, Haardt, and Rees (1999) after scaling it to our cosmology. We

also assume that the ionised hydrogen clumping factor in that relation, which is a

measure of the inhomogeneity of the medium, evolves with redshift as

C = 1 + 43 × z−1.71. (5.14)

This relation is based on cosmological simulations (Pawlik, Schaye, and Van Scher-

penzeel, 2009) and is adopted by Haardt and Madau (2012) to synthesise the evolv-

ing spectrum of the diffuse UV/X-ray radiation field. Figure 5.14 plots the redshift

dependence of the photon rate density required to keep the Universe ionised. This

figure shows that for the baseline model Merloni et al. (i.e. 2014, as proxy of fesc)

the AGN contribution to the photon rate density required to keep the Univese ionised

decreases from 70% at z = 4 to about 20% at z = 5. Assuming fesc = 1 the fractions

above translate to upper limits < 100% at z = 4 and < 30% at z = 5. These numbers

are in broad agreement with some previous studies on the role of X-ray AGN in the

ionisation of the Universe (Barger et al., 2003b; Haardt and Madau, 2012; Grissom,

R. L., Ballantyne, D. R., and Wise, J. H., 2014). The decreasing ionising photon

rate density fractions with increasing redshift is a direct consequence of the strong

evolution of the X-ray AGN luminosity function between redshifts z = 3 and z = 5.

Finally in Figure 5.14 the model constraints on the ionising photon rate density

at z = 3 − 5 from our X-ray sample are compared to previous works based on either

UV/optical QSO surveys (Glikman et al., 2011; Masters et al., 2012; McGreer et al.,
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Figure 5.13: Type-I AGN fraction as a function of X-ray luminosity. The red shaded region
is the ratio between the z = 3.2 luminosity functions of UV/optical QSOs from Masters
et al. (2012) and our LDDE parametrisation for X-ray AGN. The black shaded region is
1 − Fobscured, where Fobscured is the obscured AGN fraction of Buchner et al. (2015) for the
redshift interval z = 2.7 − 4.

2013) or UV/X-ray selected samples (Giallongo, E. et al., 2015). For the calcula-

tion of the ionising photon rate densities the luminosity functions estimated in these

works are integrated between absolute magnitudes M(1450Å) = −18 and −28 mag

by adopting the UV spectrum of Equation 5.12. Our baseline model assuming the

Merloni et al. (2014) escaping fraction is consistent with the lower-normalisation

UV/optical data points in Figure 5.14.

5.5 Discussion

In this paper we explore the evolution of the AGN X-ray luminosity function in the

redshift interval z = 3 − 5 by combining deep Chandra surveys with the wide-area

and shallow XMM-XXL sample. This dataset provides sufficient depth and volume

to determine the space density of AGN over 3 dex in luminosity, log LX(2−10 keV) ≈

43 − 46, in the redshift intervals z = 3 − 4 and 4 − 5. The analysis methodology

we develop takes into account Poisson errors in the determination of X-ray fluxes

and luminosities as well as uncertainties in photometric redshift measurements. We

demonstrate that the latter is critical for unbiased measurements of the AGN space

density at high redshift. Ignoring photometric redshift errors overestimates the X-

ray luminosity function. We also choose to follow a non-parametric approach and

determine the space density of AGN in luminosity and redshift bins. This allows us
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Figure 5.14: Hydrogen Ionising photon rate density as a function of redshift. The shaded
regions are the constraints from our analysis using the LDDE parametrisation for the X-ray
luminosity function and under different assumptions on the escape fraction of AGN photons.
The grey-shaded region assumes an escaping fraction of unity, i.e. ignoring obscuration
effects close to the supermassive black hole. The pink-shaded region assumes the luminosity-
dependent Type-1 AGN fraction of Merloni et al. (2014). We caution that beyond z = 5 the
shaded curves are extrapolations. The data points correspond to results in literature. The thick
black line in the plot shows the photon rate density required to keep the Universe ionised at
any given redshift. The ratio between the shaded regions and the black line are presented in
the inset plot.

Figure 5.15: Number of high redshift AGN as a function of 2-10 keV X-ray luminosity that
the eROSITA 4-year All Sky Survey is expected to detect. The LDDE parametrisation of
the X-ray luminosity function is used for the predictions. Results for 3 redshift intervals are
plotted, z = 3 − 4 (blue solid), z = 4 − 5 (red dashed) and z = 5 − 6 (black dot-dashed). The
predictions for the latter redshift bin are extrapolations of the LDDE model. The numbers
are for 0.5 dex wide luminosity bins.
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to explore the evolution of the AGN population independent of model assumptions.

Additionally when a model parametrisation is applied to AGN at all redshifts the fit

may be driven by the redshift and luminosity intervals that contain most data. This

can introduce biases at high redshift, z & 3, where AGN samples are typically small

as a result of the rapid evolution of the AGN population as well as survey sensitivity

and volume limitations. We account for this potential issue by splitting the luminosity

function into independent redshift components, i.e. z < 3, z = 3 − 5.

We confirm previous studies for a strong evolution of the AGN population in the

redshift interval z = 3 − 5 (Brusa, M. et al., 2009; Vito et al., 2013; Civano et al.,

2012; Kalfountzou et al., 2014). We also find suggestive evidence for luminosity

dependent evolution of the X-ray luminosity function. The space density of AGN

in the luminosity interval log LX(2 − 10 keV) ≈ 43 − 45 erg s−1 decreases faster than

more luminous sources between redshifts z = 3.5 and z = 4.5, albeit at the 90% sig-

nificance level. A similar evolution pattern is also observed in the optical luminosity

function of QSOs between redshifts z = 3 and z = 4 (Masters et al., 2012). Our

finding can be interpreted as evidence that the formation epoch of the most powerful

QSOs [LX(2 − 10 keV) & 1045 erg s−1] precedes that of lower luminosity systems.

This is similar to AGN downsizing trends established at lower redshifts (Ueda et al.,

2003; Hasinger, G., 2008; Aird et al., 2010; Miyaji et al., 2015). A strong evolution

of the faint-end of the AGN luminosity function with increasing redshift is consistent

with the absence of X-ray selected AGN at z & 5 in the CANDELS (Grogin et al.,

2011; Koekemoer et al., 2011) subregion of the Chandra Deep Field South (Weigel

et al., 2015). Extrapolating the LDDE model of Table 5.4 we predict < 1 AGN at

redshift z > 5 in that field.

Our analysis also places limits on the contribution of AGN to the UV photon

field needed to keep the hydrogen ionised at high redshift. Using empirical relations

for the type-1 AGN fraction as a function of luminosity Merloni et al. (2014), we

show that AGN dominate or at least contribute a sizable fraction of the required UV

photons to redshift z ≈ 4. At higher redshift the evolution of the X-ray luminosity

function translates to a decreasing contribution of X-ray AGN to the UV photon

field required to keep the hydrogen ionised. The extreme assumption of a photon

escaping fraction of unity for all AGN sets an upper limit of 30% to the contribution

of AGN to the UV photon rate density required to keep the hydrogen ionised at z = 5.

Barger et al. (2003b) use multicolour optical data in the 2 Ms Chandra Deep Field

North (Barger et al., 2003a) and conclude that the X-ray selected AGN candidates

at z = 5 − 6.5 are too few to ionise the intergalactic medium at those redshifts.



5.5. Discussion 127

Haardt and Madau (2012) estimated the contribution of AGN to hydrogen ionisation

rate using the Ueda et al. (2003) X-ray luminosity function and AGN obscuration

distribution. They found that AGN do not play an important role as a source of

ionising photons above redshifts ≈ 4. Grissom, R. L., Ballantyne, D. R., and Wise,

J. H. (2014) determine the contribution of AGN to the ionisation of the hydrogen in

the Universe by taking into account secondary collisional ionisations from the X-ray

radiation. They extrapolate to high redshift (z & 6) the Hiroi et al. (2012) hard X-ray

luminosity function and conclude that AGN only contribute a small fraction of the

photon rate densities required to ionise the Universe at these redshifts. Our results

are in agreement with the above studies and do not support claims for a dominant role

of AGN to the ionisation of the hydrogen in the Universe at redshift z & 4 (Glikman

et al., 2011; Giallongo, E. et al., 2015). This discrepancy is likely related to the way

different groups select their samples and subsequently account for this selection in

the analysis. It also highlights the need for further research to better constrain the

impact of AGN radiation to the ionisation of the Universe. Glikman et al. (2011)

estimate type-I QSO space densities at z ≈ 4 that are a factor of 3-4 higher than those

determined by Masters et al. (2012) or Ikeda et al. (2011) at similar redshifts and

luminosities. Giallongo, E. et al. (2015) combined X-ray and HST optical/near-IR

data in the CANDELS GOODS-S region to identify optical sources with photometric

or spectroscopic redshifts z > 4 and then study their X-ray properties following

methods described by Fiore, F. et al. (2012). Their approach allows them to identify

faint AGN with X-ray luminosities as a low as LX ≈ 1043 erg s−1 in the redshift

interval z = 4 − 6.5. Strictly speaking the Giallongo, E. et al. (2015) photon-rate

densities in Figure 5.14 are upper limits. The UV photon escape fraction is set to

one, part of the observed UV radiation of individual sources may be associated with

the AGN host galaxy, the photometric redshift uncertainties of at least some sources

in the sample are large. The increase of the X-ray depth in the CANDELS GOODS-S

from 4 to 7 Ms (PI Brandt) region will help better constrain the faint-end of the AGN

luminosity function at high redshift and their role in the ionisation of the Universe.

Finally the parametric X-ray luminosity functions derived in this chapter are used

to make predictions on the number of z > 3 AGN that eROSITA (Merloni et al., 2012)

surveys will detect. Our LDDE parametrisation is convolved with the expected X-ray

sensitivity of the 4-year eROSITA All Sky Survey. The number of AGN in logarith-

mic luminosity bins of size ∆ log LX = 0.5 is plotted as a function of 2-10 keV lumi-

nosity in Figure 5.15. Predictions are presented for 3 redshift intervals, z = 3−4, 4−5

and 5 − 6. This shows that surveys by eROSITA will provide tight constraints on the



128
Chapter 5. The X-ray luminosity function of Active Galactic Nuclei

in the redshift interval z= 3 – 5

evolution of bright AGN and will allow us to explore with high statistical significance

the evidence for luminosity dependence of the AGN population at high redshift. This

however, would also require a dedicate follow-up program to identify high redshift

AGN among the eROSITA population. High multiplex spectroscopic facilities that

are able to simultaneously observe large number of targets over a wide field of view

are essential for eROSITA X-ray source follow-ups. The SDSS/BOSS spectrographs

(Smee et al., 2013) at the Apache Point SDSS telescope (Gunn et al., 2006) and in

the future the ESO/4MOST facility (4-metre Multi-Object Spectroscopi Telescope,

Jong et al., 2014) are well suited for follow-up observations of the eROSITA sky.

5.6 Conclusions

X-ray data from Chandra deep surveys and the shallow/wide XMM-XXL sample are

combined to explore the evolution of the X-ray luminosity function at high redshift,

z = 3 − 5. Our analysis accounts for Poisson errors in the calculation of fluxes and

luminosities as well as photometric redshift uncertainties. We also show that the

latter point is crucial for unbiased AGN space density measurements. The sample

used in the paper consists of nearly 340 sources with either photometric (212) or

spectroscopic (128) redshift in the redshift range z = 3 − 5. The luminosity baseline

of the sample is LX (2 − 10 keV) ≈ 1043−1046 erg s−1 at z > 3. Our main findings are

as follows.

(i) The AGN population evolves strongly between the redshift intervals z = 3 − 4

and z = 4 − 5

(ii) There is evidence, significant at the 90% level, that the amplitude of the AGN

evolution depends on X-ray luminosity. Sources with luminosities LX(2 −

10 keV) < 1045 erg s−1 appear to evolve faster than brighter ones.

(iii) The faint-end slope of UV/optical QSO luminosity functions is steeper than

that of the X-ray selected AGN samples. This implies an increasing fraction of

type-I AGN with decreasing X-ray luminosity at z > 3.

(iv) X-ray AGN may dominate or at least contribute substantially to the UV photon

rate density required to keep the Universe ionised to z = 4. At higher redshift

the contribution of AGN to UV hydrogen ionising field decreases.
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MCMC for Binary and Multinomial Logit Models. Physica-Verlag HD, pp. 111–

132. doi: 10.1007/978-3-7908-2413-1 7.

Fry, J. (2018). “Booms, busts and heavy-tails: The story of Bitcoin and cryptocur-

rency markets?” In: Economics Letters 171, pp. 225–229. doi: 10.1016/j.econlet.

2018.08.008.
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