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ABSTRACT

This work focuses on statistically modelling specific biological processes from a

Bayesian standpoint and it can divided into four components. The first component, is

concerned with ecological models that describe the fitness of insects (mainly in the Phy-

lum of arthropods), as described by deterministic and stochastic demographic models

in order to understand population performance of invasive species, which can lead to

management decisions, especially under the pressure of climatic change. The second

component involves the investigation of non-linear statistical models based on popular

ecological functions that describe the developmental process of arthropods as it is af-

fected by temperature. Statistical modelling may provide insights into the population

evolution of arthropod pests as well as biological control agents, which is important for

ecology. Moreover, we investigate various computation techniques in order to not only

derive robust estimates of the parameters of interest, but also to compare different mod-

els and computation methods. The third component entails modelling predator-prey

systems to account for changes in prey population consumption over time as well as

inter-individual interactions within the same species. Understanding how to describe

and predict population performance, as well as how to manage invasive species, re-

quires a thorough understanding of predator-prey population interactions. Hence we

study statistical models that generate data using the Binomial distribution while prey

density change in real time is described via ordinary differential equations (ode) eco-

logical models. To address the possibility of noise, we propose that the probability of

being consumed be linked to a stochastic process that is centered and reduced to (in

the absence of diffusion) the instantaneous ratio of consumed prey density (which is

the default link). The fourth section differs from the previous sections in that it focuses

on modeling and detection of the spread of Vector-borne diseases (VBDs), as well as

the development of a semi-automatic early warning system for the prevention of these

diseases in the context of epidemiology. In particular, risk measures for the spread of

malaria through mosquito bites are described, and proposals are presented for mapping

R-tools illustrating the intensity of risk measures, based on actual data, allowing better

decision making and prevention of dispersal through early warning. A generic obser-

vation running throughout this work is that detailed and robust modelling may assist

greatly in more accurate and cautious conclusions drawn when interpreting the data.
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PERILHYH

H ergas—a aut  epikentr‚netai sth statistik  montelopo—hsh sugkekrimŁnwn

biologik‚n diergasi‚n apì th Mpeuzian  skopi� kai mpore— na qwriste— se tŁssera

mŁrh. To pr‚to mŁroc afor� oikologik� montŁla pou perigr�foun th dunamik  twn

plhjusm‚n twn entìmwn (kur—wc twn arjropìdwn), ìpwc perigr�fetai apì nteter-

ministik� kai stoqastik� dhmografik� montŁla, prokeimŁnou na katano soume thn

plhjusmiak  apìdosh twn qwrokatakthtik‚n eid‚n, h opo—a mpore— na odhg sei se

apof�seic diaqe—rishc, eidik� upì thn p—esh thc klimatik c allag c. To deÔtero

mŁroc afor� th diereÔnhsh twn mh grammik‚n statistik‚n montŁlwn pou bas—zontai

se dhmofile—c oikologikŁc sunart seic pou perigr�foun thn an�ptuxh twn arjro-

pìdwn kaj‚c ephre�zetai apì th jermokras—a. H statistik  montelopo—hsh mpore—

na parŁqei plhrofor—ec sqetik� me thn exŁlixh tou plhjusmoÔ twn arjrìpodwn,

kaj‚c kai twn paragìntwn biologik c antimet‚pishc, gegonìc shmantikì gia thn

oikolog—a. EpiplŁon, diereunoÔme di�forec teqnikŁc upologismoÔ prokeimŁnou ìqi

mìno na ex�goume axiìpistec ektim seic twn paramŁtrwn pou mac endiafŁroun, al-

l� kai na sugkr—noume diaforetik� montŁla kai mejìdouc upologismoÔ. To tr—to

mŁroc perilamb�nei thn montelopo—hsh susthm�twn jhreut‚n-jhram�twn ‚ste na

lamb�nontai upìyh oi allagŁc sthn katan�lwsh tou plhjusmoÔ twn jhram�twn

me thn p�rodo tou qrìnou kaj‚c kai oi allhlepidr�seic metaxÔ atìmwn entìc tou

—diou e—douc. H katanìhsh tou trìpou perigraf c kai prìbleyhc twn epidìsewn tou

plhjusmoÔ, kaj‚c kai tou trìpou diaqe—rishc twn qwrokatakthtik‚n eid‚n, apai-

te— pl rh katanìhsh twn allhlepidr�sewn tou plhjusmoÔ jhreut‚n-jhram�twn.

Wc ek toÔtou, melet�me statistik� montŁla pou par�goun dedomŁna qrhsimopoi-

‚ntac th diwnumik  katanom , en‚ h metabol  thc puknìthtac twn jhram�twn se

pragmatikì qrìno perigr�fetai mŁsw oikologik‚n montŁlwn me sun jeic diafori-

kŁc exis‚seic. Gia thn antimet‚pish pijanoÔ jorÔbou, prote—noume h pijanìthta

katan�lwshc na sundeje— me mia stoqastik  diadikas—a pou e—nai kentrarismŁnh kai

—sh (sthn per—ptwsh apous—ac thc di�qushc) me th stigmia—a analog—a thc puknìth-

tac tou jhr�matoc pou katanal‚netai (pou e—nai o proepilegmŁnoc sÔndesmoc). To

tŁtarto mŁroc e—nai diakritì apì ta prohgoÔmena kai afor� th montelopo—hsh kai

an—qneush thc ex�plwshc twn asjenei‚n pou metad—dontai apì forŁa, kaj‚c kai

me thn an�ptuxh enìc hmiautìmatou sust matoc Łgkurhc proeidopo—hshc gia thn

ii



prìlhyh twn asjenei‚n aut‚n sto pla—sio thc epidhmiolog—ac. Eidikìtera, peri-

gr�fontai ta mŁtra kindÔnou gia th di�dosh thc elonos—ac mŁsw tsimphm�twn apì

ta kounoÔpia, kai parousi�zontai prot�seic gia th qartogr�fhsh me ergale—a sthn

R pou apeikon—zoun thn Łntash twn mŁtrwn kindÔnou, me b�sh pragmatik� dedomŁna,

epitrŁpontac kalÔterh l yh apof�sewn kai prìlhyh thc diaspor�c mŁsw Łgkairhc

proeidopo—hshc. Mia genik  parat rhsh pou diŁpei aut  th doulei� e—nai ìti h le-

ptomer c kai eÔrwsth montelopo—hsh mpore— na bohj sei polÔ se pio akrib  kai

prosektik� sumper�smata pou sun�gontai kat� thn ermhne—a twn dedomŁnwn.
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Chapter 1

Introduction

I con�rm that the work presented in this thesis is my own. Where information has

been derived from other sources this has been clearly indicated throughout this thesis.

Chapter 2 presents the statistical part of work that was published as (Papanikolaou et al.

2019). Chapter 3 presents the research that was submitted to the journal of Environ-

mental and Ecological Statistics in August 2021 (Kondakis et al. 2021a). Chapter 4

describes the R-package created on GitHub at (Kondakis et al. 2021b) and will be sub-

mitted for publication in autumn 2021. Chapter 5 presents the statistical part of a paper

that will be submitted for publication in autumn 2021. Chapter 6 provides the R-based

spatial map tools that was the novelty in (Pergantas et al. 2021).

1.1 Demographic statistics

The study of demographic statistical methods and models, both deterministic and stochas-

tic, provides useful insights into the �tness of economically important arthropods, such

as theTrogoderma granarium(T. granarium) beetle, in order to describe the reproduc-

tion process, population increase, mortality, fecundity rates, survival time and other crit-

ical measures that assess population performance. Because demography is a primary

domain of statistics, it provides a number of fundamental tools, including life tables,

offspring modelling, and survival analysis parametric and non-parametric models. As

a result, understanding population dynamics of invasive species, is important in ecol-

ogy and can lead to management decisions, especially under the pressure of climatic

change.

1.2 Developmental rates

The developmental rate of insects is another important feature in ecology. Insects, and

thus arthropods, go through immature stages (called instars) in which their rigid ex-

oskeleton cannot expand much and must be shed and replaced with a larger one (process

called molting) as the insect grows. To that end, most insects' development includes

their early-life transformation, from egg to adult. Insect species do not develop at the
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same rate, and temperature is a major factor in�uencing their development. Hence, in-

vestigation of non-linear statistical models based on popular ecological functions that

describe the developmental process of arthropods as it is affected by temperature �uc-

tuations. Statistical modelling can provide insights into the population evolution of

arthropod pests as well as biological control agents, which is critical for surveillance

and containment of invasive species whose spread is accelerated by climate change,

increased human population density, and international trade. When modelling devel-

opmental rates, several challenges arise. Some of them are that the non-linear mean

structure in some ecological functions is truncated by parameters of interest, several

model parameters have limited sampling space, and the presence of a speci�c data

structure consisting of either positive reciprocals or zeros (indicating no development

of the arthropod). Furthermore, comparing non-linear, non-nested models with vary-

ing parameter counts is not trivial. To address these problems, the Bayesian paradigm

and, in particular, contemporary computation methods like HMC sampling that pro-

vides robust estimates even under these model and data structure conditions, as well

as the Variational Bayes inference (VBI) methods for fast approximations to posterior

distributions can be engaged. Similarly, Bayesian model averaging (BMA) techniques

are useful so as to generate robust estimates for the parameters of interest by combining

the predictive power of all models involved.

1.3 Predator-prey systems

The study of predator-prey population interactions is important in ecology for under-

standing how to describe and predict population performance, as well as how to man-

age invasive species. Modelling predator-prey systems is a critical tool in order to

account for changes in prey population consumption over time while accounting for

inter-individual interactions not only between species but also within the same species.

To that end, it is natural to use the Binomial data generated scheme to model the number

of prey consumed, as well as speci�c ode ecological models that describe the abundance

of the prey density in real time. In addition, the presence of noise due to the nature of

such ecological data, as well as the potential failure of models to detect any kind of

systematic source of variation in such data, adds to the modelling challenges. As a re-

sult, involving stochasticity to the probability of prey being consumed by the predator

is a way to deal with this kind of noise and derive better predictions. Information cri-

teria are also useful to compare models not only between different ode methods, but

also between deterministic and stochastic models. Posterior predictive plots alongside

observed data points can depict how well the suggested models �t the data. The com-

putation methods provided by the STAN software, can handle ode solution approxima-

tions within HMC sampling iterations, as well as within the automatic differentiation
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variational inference (ADVI) methods.

1.4 Vector born diseases

Dengue fever, West Nile Virus, Lyme disease, and malaria are examples of VBDs

caused by an infection spread to humans and other animals by blood-feeding arthro-

pods like mosquitoes. As a result, statistical modelling of VBDs plays an important

role in providing an explicit framework for understanding parasite disease transmission

within and between hosts. The model class used in VBDs contains several directly cal-

culated or no measures of the infected population that are derived each time by selecting

clinical and biological information in a simpli�ed form that appears to be important to

the scienti�c question under investigation. Risk measures, among other things, provide

insights into disease transmission dynamics and can be used as early detection tools for

public awareness. The components for calculating risk measures, as well as the steps

for using R-tools to create various types of spatial maps, can be combined to create a

mapping tool that not only depicts potential infection points on a real-world map, but

also the intensity of appropriate risk indicators. In terms of public health, the study's

goal is to use the model class, as well as the associated geographical mapping of the

statistical model's generated risk estimates on real data, as an early-warning system,

allowing for better decision making and (VBD) prevention.

1.5 Overview of the Thesis

The effort in statistical modelling speci�c biological processes in this work can be di-

vided into four components, the �rst three of which focus on modelling of ecological

processes that describe the reproducing rate, mortality rate, developmental rate and

consuming rate of insects (in the Phylum of arthropods), while the fourth component

focuses on epidemiological methods for calculating risk measures of disease transmis-

sion from vectors (such as mosquitoes) and depicting them spatially on maps for warn-

ing purposes. The structure of this work, matching the aforementioned components

with the following Chapters is: The �rst component which is concerned with reproduc-

ing and mortality dynamics is addressed in Chapter 2, the second with developmental

dynamics is addressed in Chapters 3 and 4, the third with predator-prey dynamics in

Chapter 5, and the fourth with VBDs transmission dynamics in Chapter 6.
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Chapter 2

Demographic analysis of ecological data

2.1 Introduction

In this chapter, we use deterministic and stochastic demographic tools to elucidate the

�tness components of invasive species such asT. granarium, providing critical infor-

mation for their management. This work was published in the journal PLOS One in

2019 as (Papanikolaou et al. 2019). The viability of the populations of living organisms

is strongly dependent on their �tness, referring to their ability to survive and reproduce

in a speci�c environment (Orr 2009). Survival and reproduction are critical aspects

of population dynamics, regulating their growth rate and allowing for several temporal

�uctuations (Huey and Berrigan 2001a, Engen et al. 2009, Compagnoni et al. 2016).

To this end, ecologists are often interested in understanding the patterns of these bio-

logical features in order to describe and predict populations' performance (Hunter et al.

2010, Jonzén et al. 2010, Stark and Banks 2016). Insects such as ectotherm organ-

isms are characterised by the fact that their body temperature converges to the one of

the environment they are exposed to (Norris and Kunz 2012). This affects the rate of

metabolism, the biochemical reactions which facilitate production and energy release,

as well as the synthesis of necessary molecules that serve as structural or functional

components (Neven 2000, van der Have 2008). In particular, temperature affects the

functionality of enzymes, which in turn act as catalysts for these biochemical reactions

(van der Have 2008). Consequently, within a range of temperatures in which insects

develop and reproduce, various biological features are affected, such as mortality, re-

production, life span, and growth rate (Huey and Berrigan 2001a, Berven 1990, Nedv�ed

2009, Papanikolaou et al. 2013, 2014). Thus, the performance of the insects is subject

to several temporal �uctuations in terms of population size through time. Understand-

ing populations' performance is of particular importance, as their assessment can lead

to decisions on their management (Hare et al. 2011), particularly under the pressure

of climatic change (Bradshaw et al. 2016). Hence, elucidating into �tness components

can lead to a clearer understanding of an organism's contribution to future generations

and therefore its potential population development (Huey and Berrigan 2001a, Jonzén

et al. 2010, Polanco et al. 2011). Demography represents the standard tool used for elu-
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cidating the �tness components of living organisms, as it allows for an integrated and

comparative description of several biological processes, as well as an investigation on

the organisms' mortality and reproduction patterns (Carey 2001). Assuming a closed

population (i.e., no migration) with stable age distribution, applied demography allows

for the calculation of several population parameters, tabulating the birth and death rates

of the organisms of interest in a cohort life table (Carey 1993). Among these, the two

most commonly used measures of �tness are the intrinsic rate of increase(rm ), which

represents the implicit rate of population increase independent of initial age structure,

and the net reproductive rate(Ro), which is typically interpreted as the average number

of female offspring that a female gives birth to over her lifetime (Huey and Berrigan

2001a). The invasive dermestid khapra beetle,Trogoderma granarium, is an econom-

ically important stored-product species that is subject to strict phytosanitary measures

(Banks 1977, Lowe et al. 2000, Hill 2002, EPPO 2013). Native to India (Rahman et al.

1945), its host range now includes Africa, Asia and Europe (Aitken 1975, Peacock

et al. 1993, Athanassiou et al. 2015).T. granariumis categorized as an A2 quarantine

organism (EPPO 1981, 2013, 2018), as it is under quarantine regulation in numerous

countries (EPPO 2018). The rapid increase in interceptions at US ports is a cause of

concern (Hagstrum et al. 2012). This trend is also evident in Europe considering the

interceptions that have been recorded in numerous countries, mostly in central Europe,

including Austria, Bulgaria, Croatia, Czech Republic, Italy, Poland, Portugal and Slo-

vakia (EPPO 2018). Despite the economic importance ofT. granarium, there are no

data on the demography of this species at different temperatures, which could provide

valuable knowledge on its outbreaks and expansion and thus timely and effective man-

agement. In deterministic demographic models, the output of the model is fully deter-

mined by the parameter values and the initial conditions. On the other hand stochastic

demographic models naturally quantify the randomness that stems from the inherent

variability of the population and also allow for model assessment and exploration of

the appropriate probability distribution for each element of interest. The latter serves

towards our broader aim of embedding the current study within the stochastic approach

to demography. This viewpoint has turned our attention to the stochastic modelling

of the survival time (time until an event of interest occurs such as the lifespan) ofT.

granariumand testing for statistically signi�cant differences with respect to tempera-

ture treatments. We also extensively investigated the distribution of the time to the �rst

birth, an event of primary interest. Our data contained a number ofT. granariumbee-

tles which gave no birth during their lifetime. Therefore, in contrast to the observations

concerned with time-to-death, the time to the �rst birth data contained censored obser-

vations, necessitating a survival type of analysis. In addition, measuring the number of

offspring of T. granariumbeetles on a daily basis results in the observation of an ex-

cessive number of zeros. The zero-in�ated-Poisson model was �tted using a Bayesian
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approach, leading to accurate point and interval estimates, even in the presence of a

large percentage of zeros in the sample (Ghosh et al. 2006). The output of determin-

istic and stochastic demography is combined in chapter 2 to investigate the survival or

extinction ofT. granarium, as well as the patterns of mortality and reproduction, and

to provide a comparative calculation of its demographic parameters in different tem-

perature ranges. In order to calculate con�dence limits and perform hypothesis testing

across temperature ranges, we speci�cally introduce uncertainty into deterministic de-

mographic cohort measures described by formulae (2.8-2.20). Additionally stochastic

models described in formulae (2.24), (2.25), (2.26), (2.27) and (2.28) are used in con-

junction with survival analysis techniques de�ned in formula (2.22) to investigate both

the time until death and the time until the �rst egg is produced. Furthermore, the number

of offspring is modeled using the Bayesian paradigm and probability density in (2.30),

with excess zeros taken into account. Finally, we search at how the �tness components

of T. granariumused in all of the preceding approaches change with temperature. To

that end, stochastic models, while underutilized in demographic studies, could provide

important information onT. granariumfunctionality.

2.2 Deterministic demographic approaches

Demography is derived from the Greek root demos (people) and literally means `de-

scription of the people'. In 1855, Achille Guillard de�ned demography as `the natural

and social history of the human species or the mathematical knowledge of populations,

their general changes, and their physical, civil, intellectual, and moral condition'. The

methodology of demographic studies includes data collection, demographic analysis,

and data interpretation. Individuals, populations, cohorts, and demographic rates are

some of the key concepts and tools addressed by demographic analysis. Individuals

are de�ned as "single organisms that are carriers of demographic attributes" by Frans

Willekens in 1986, and some basic characteristics of individuals are the developmental

rate, the age-speci�c level of reproduction, and the time until death. The population

is broadly as "a group of individuals coexisting at a given moment" (Pressat 1985).

The cohort is de�ned as "a group who experience the same signi�cant event in dur-

ing a speci�c time period, and who can thus be identi�ed as a group for subsequent

analysis" (Pressat 1985). Cohort attributes are commonly explored using demographic

parameters that form a life table in the form of age schedule events. Cohorts determine

population traits in this way. A complete cohort life table includes the mortality expe-

rience of a speci�c cohort from the moment of birth until no individuals remain in the

original cohort. The demographic rates are classi�ed into �ve groups based on the type

of population counted in the denominator or the type of events counted in the numera-

tor. The crude rates, in particular, are applied to all individuals rather than dividing them

6



by age or sex groupings, the age-speci�c rates, which are the same as crude rates but

with age restrictions, the restricted rates, which are applied to any special sub-group,

the rates by topic, which apply to each specialized topic in demography such as the total

fertility rate, the gross reproductive rate, or the net reproductive rate and the intrinsic

rates which prevail in a stable population and are invariant to any accidental or transient

short-term feature of the age distribution.

There are two fundamental approaches to describe the population rate of change

that take birth and death rates into account. First, the crude rate model is introduced,

which assumes that i) the population is not structured by age (homogeneity assump-

tion), ii) birth and death rates remain constant, and iii) the population is closed (i.e., no

migration). Second, assuming the last two assumptions are true, the stable population

model (Lotka's equation) is developed, along with a common age structure, which adds

a more realistic and interesting dimension while not changing the geometric manner of

growth introduced by the crude rate model.

Despite the fact that it considers change at a constant rate forever, the crude rate

model is fundamental to demography because it de�nes population change as a com-

pounding process, it establishes a foundation for examining population growth patterns

over short time periods, and it provides the initial framework from which to build more

complicated models (Carey 1993). It is based on the following balancing equation

which connects the total population at timet (counted in years, months, weeks, days

and so on) to the total population at timet � 1:

N t = N t � 1 + births t � deathst + immigrants t � emigrants t ; (2.1)

wherebirths t , deathst , immigrants t , emigrants t are the births, the deaths, the num-

ber of immigrants and emigrants respectively at period fromt � 1 until t. For simplicity

migration in (2.1) is typically neglected in demographic analysis and the number of

births and deaths are substituted by the products:

births t = b� N t � 1;

deathst = d � N t � 1;

whereb andd are the per ca-pita birth and death rates respectively. DenotingN0

the initial population at the beginning of the study at time 0, the population at timet is

given by

N t = N0 � (1 + b� d)t ;

N t = N0 � (� )t :
(2.2)

When� > 1, the population grows, whereas when� < 1, the population shrinks.
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The population can now be calculated using the natural logarithm in equation 2.2 and a

new parameterr = ln(� ):

N t = N0 � er �t ; (2.3)

where r is the intrinsic rate of increase, which was introduced by Dublin and Lotka

in 1925 as a measure of the rate of natural increase and is interpreted as the constant

exponential growth rate per individual per time unit.

Alfred Lotka developed the stable population model in 1907 by expanding the crude

rate model and adding a structure to the population's age. The latter, in particular, iden-

ti�es the two most important population parameters (the age distribution and the growth

rate), their interdependence, and their relationship with the birth and death cohort pa-

rameters. It is capable of producing actual numbers that explain the patterns of the rate

of growth, the number of people in each age group, and the population size at a given

time (Carey 1993). In the simplest two-class age structure of the population, the num-

ber of people at agex0 and agex0 + 1 at timet + 1 is given by the following system of

equations:

Nx0 ;t+1 = mx0 � Nx0 ;t + mx0+1 � Nx0+1 ;t ;

Nx0+1 ;t+1 = px0 � Nx0 ;t ;
(2.4)

wheremx0 andpx0 are the age-speci�c birth rate and the probability of survival from

birth agex0 to agex0 + 1, respectively. Commonly, birth agex0 is taken as zero. The

rate of increase� is constant between age classes given by:

� =
Nx0+1 ;t+1

Nx0+1 ;t
=

Nx0 ;t+1

Nx0 ;t
(2.5)

Combining the formulae in 2.4 and 2.5 and dividing by� 2 yields equation (2.6), which

can be generalized in Lotka's equation (2.7).

0 = Nx0 ;t �
�
� 1 + mx0 � � � 1 + mx0+1 � px0 � � � 2

�
(2.6)

1 =
!X

k=0

�
� � (k+1) � lk � mx0+ k

	
; (2.7)

where agek ranges from 0 to a positive number! andlk represents cohort survival to

agex0 + k. The parameters of interest used in the current study are presented in the

following paragraph 2.2.1.
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2.2.1 Demographic parameters of interest

Following (Carey 1993, Kontodimas et al. 2008, Papanikolaou et al. 2014, Zeki et al.

2015), the demographic parameters of interest used to describe the insects' population

dynamics are the following.

• The cohort survival to age x:

(lx ); (2.8)

which is equal to the proportion of individuals that have survived from birth to

agex. The number of individuals survived is usually associated to an arbitrary

constant known as the life table radix (Carey 1993). In population biology the

radix is set to unity so that the rate measures used are expressed as a fraction to

the original number of individuals. The initial time is usually taken as zero and

l0 = 1.

• The age speci�c mortality:

qx = 1 �
lx+1

lx
; (2.9)

which represents the probability of dying over period (x,x+1].

• The age speci�c fecundity:

(mx ); (2.10)

which represents the averaged number of offspring produced by an individual at

agex (reproductive age schedule) and is calculated by multiplying the mean num-

ber of eggs per female at agex by the female-to-total-population ratio (observed

by sorting 100 offspring).

• The net reproductive rate:

R0 =
!X

x=0

(lx � mx ); (2.11)

which represents the per capita rate of offspring production over a time equal to

cohort study period fromx = 0 to x = ! .

• the �nite rate of increase:

(� ); (2.12)

which represents the per capita rate of population growth in each time step ac-

cording to (2.5).

• The intrinsic rate of increase:

(rm = ln (� )) ; (2.13)
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which represents the per capita exponential rate of increase in a closed population

(that has been subjected to constant age-speci�c schedules of fertility and mor-

tality for a long period) in each time step. Using formulae (2.13) and (2.7), the

intrinsic rate is calculated as the solution of the equation:

1 =
!X

x=0

�
e� r m �(x+1) � lx � mx

	
; (2.14)

which is the discrete time Lotka's equation. If the age variable is continuous, the

equation (2.14) is as follows:

1 =
!X

x=0

�
e� r m �x � lx � mx

	
: (2.15)

• The mean generation time:

~T =
P !

x=0 (x � lx � mx )
P !

x=0 (lx � mx )
; (2.16)

T =
lnR 0

rm
; (2.17)

where ~T in (2.16) represents the cohort mean age of reproduction, which charac-

terizes the mean interval between births of one generation and those of the next

(Pressat 1985). T in (2.17) also represents the mean generation time, which is

de�ned as the time required for the population to increase by a factor equal to the

net reproductive rate. Formula (2.17) is derived by substituting the mean gener-

ation timeT in formula (2.13). In the discrete age case, the difference between

formulae (2.14) and (2.17) gives that~T = T + 1.

• The doubling time:

DT =
ln2
rm

; (2.18)

which represents the time required for the population to double. It is derived if

� t = 2 in the formula (2.3).

• The reproductive value of the females:

Vx =

P
y� x (e� r m �y � ly � my)

e� r m �x � lx
; (2.19)

which represents the contribution of an individual of a given agex to the future

population growth.

10



• The expected remaining life time at agex:

Ex =

P
t � x

l t + l t +1

2

lx
; (2.20)

which represents the expected remaining life time of an individual at age x.

The aforementioned parameters were estimated at 30, 35 and40� C, 65% relative

humidity and continuous darkness for the real-life data example in Section 2.4. Sig-

ni�cant differences between life table parameters at each of the examined temperature

were tested via a Wald test, essentially the superposition of 95% con�dence intervals

(CIs). This is a general method for hypothesis testing and avoids the recent contro-

versy with the use of p-values in the statistical literature (Halsey 2019). The CIs were

obtained by bootstrapping (Efron 1992) in R (Team 2021), sampling with replacement

1000 datasets in each temperature group and re-estimating the parameters for each set.

This technique avoids unnecessary asymptotic normality assumptions and estimates the

CIs using the empirical 2.5% and 97.5% percentiles, yielding general and robust proce-

dures for statistical estimation and hypothesis testing.

2.2.2 Modelling temperature-dependent intrinsic rate of increase

The relationship between temperature and the intrinsic rate of increase was described

by the Briere model (Briere et al. 1999), which is of the form:

r (T) = � � T � (T � Tmin ) � (Tmax � T)
1
2 ; (2.21)

whereT denotes the ambient temperature,� is an estimated parameter,Tmin is the

lower andTmax the higher temperature in which the intrinsic rate of increase is equal

to zero. We proceeded by assuming that at the temperature of 17.20°C the intrinsic rate

of increase is equal to zero since no development has been detected (Burges 2008) in

this temperature. The limited capacity of deterministic models in predictions concerned

with alternative environmental conditions or the sensitivity of the beetles' biochemical

reactions to other environmental conditions (Burg 2014) like pressure and substances

of air breathing, suggest that the randomness of the mechanism based on which theT.

granariumfemale beetles incubate can be appropriately modeled by a stochastic process

as opposed to a deterministic model and this is described in the following subsection.
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2.3 Stochastic demographic approaches

2.3.1 Kaplan-Meier method

Survival analysis techniques were utilized in order to examine (in a life cycle gener-

ation) both (i) the time (in days) until the event of “death” and (ii) the time (in days)

until the event ofT. granariumbecome active. In both events of interest, the time

until the event occurs can be considered as a non-negatively-distributed random vari-

able (Cox and Oakes 1984). In order to compare the survival times ofT. granarium,

kept at different incubators the predictor variable was the temperature level at 30, 35

and40� C respectively. The survival probabilities ofT. granariumfor each tempera-

ture group were estimated using the Kaplan-Meier product-limit estimator (Kaplan and

Meier 1958). The Kaplan–Meier is a nonparametric maximum likelihood estimator of

the survival function “S(t)” and is given by the product:

Ŝ (t) =
Y

i :t i � t

�
1 �

di

ni

�
; (2.22)

where the observed survival timest i are sorted in ascending ordert1 < t 2 < : : : , the

parameterdi represent the number of events at timet i while, parameterni is the number

of the individuals known to survive at timet i . The Kaplan–Meier estimator is one of

the most frequently used methods of survival analysis and can be used to examine the

effectiveness of treatment or the in�uence of a factor in the survival times of the insects

under study (Kaplan and Meier 1958).

2.3.2 Parametric Survival function models

In addition, some commonly used distributions in survival analysis were considered

to �t a parametric survival regression model to theT. granariumdata. Speci�cally,

the distributions used were: (i) the Exponential (2.25), (ii) the Weibull (2.26), (iii) the

Lognormal (2.27) and (iv) the Log-logistic (2.28). The parametric survival regression

used to �t theT. granariumdata is the accelerated failure time (ACT) model (Wei 1992,

Kalb�eisch and Prentice 2011) which is a parametric model of the form

S(tj� ) = S0(eX 0� t); (2.23)

whereS0 is a function for the baseline survival rate (which is related to the mean sur-

vival time). The ACT model uses covariates in termex0� to place individuals on different

time scales. The termeX 0� is called the acceleration factor as it scales (accelerates) the

survival time for each covariate . The ACT model can be rewritten in a log-linear form:
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logT = � + X 0� + � � W; (2.24)

where the logarithm of survival time(logT) is linearly related to its mean� , to the

acceleration factorX 0� , and to an error termW scaled by a parameter� .The variable

W describes the error distribution and is chosen so thatT is one of four well-known

distributions, the probability density functions of which are given below:

the Exponential with rate parameter�

p(t) = � e � �t ; (2.25)

the Weibull with shape parameter a and scale parameter b

p(t) =
a
b

�
t
b

� a� 1

e� (t=b)a
; (2.26)

the Lognormal with mean� and std. deviation� of the log(T)

p(t) =
1

�t
p

2�
e

� ( logt � � ) 2

2� 2 ; (2.27)

the Log-logistic with shape parameter a and scale parameter b

p(t) =
a
b

�
t
b

� a� 1

�
1 +

�
t
b

� a� 2 (2.28)

The explanatory variable used in all the parametric models was the temperature. In

order to �t the ACT model to theT. granariumdata, the "survreg()" function from the

survival package in R (Team 2021) is used.

Selection of the most suitable model was based on the Akaike Information Criterion

(Sakamoto et al. 1986). The AIC given in (2.29) is a composite measure accounting for

the goodness of �t of each model to the observations via the deviance, penalised for the

model's complexity by adding twice the number of estimated parameters k. The AIC

is an estimator of the relative quality of statistical models for a given set of data. It is

de�ned as:

AIC = � 2 log(L̂ ) + k; (2.29)

Wherelog(L̂ ) is the logarithm of the likelihood of the data given the current model and

k is the number of estimated parameters. Its value is derived for each model by either

calculating thelog(L̂ ) and k manually using the results of the "survreg()" function or

by using directly the "extractAIC()" or the "AIC()" function in the survival package in

R (Team 2021).
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2.3.3 Modelling egg-counts with an excessive number of zeros

The statistical analysis of the number of eggs ofT. granariumbeetles was based upon

the zero-in�ated class of models. Herein, the underlying distribution considered for egg

counts was the Poisson distribution leading to the zero in�ated Poisson (ZIP) model

(Ghosh et al. 2006). We used Bayesian methods for estimating the model parameters

through the WinBUGS package (Lunn et al. 2000), a general purpose software designed

to run Markov chain Monte Carlo (MCMC) simulations for a wide range of Bayesian

models. The output of the ZIP model was obtained by running the WinBUGS soft-

ware for 7000 samples within each temperature group, having 4000 iterations as burn-

in. Speci�cally, burn-in refers to the initial, potentially non-stationary, portion of the

Markov Chain measured in number of iterations. It pertains to the practice of discarding

a number of samples at the start of the MCMC algorithm in order to allow the Markov

Chain to reach its equilibrium (stationary) density which corresponds to the posterior

distribution of interest.

The ZIP model in (2.30) used is a mixture model for each of the datasets corre-

sponding to the three different temperature levels of 30, 35 and40� C respectively. Let

us denote withyij the response variable, the number of eggs laid by thei th T. granarium

beetle in thej th day, so that j corresponds to the lifetime of thei th beetle from its entry

in the study until its death. Then, the statistical model we used posits thatyij is either

zero, with probability p, in which case no eggs are laid fromi th beetle inj th day, or fol-

lows a Poisson distribution with parameter� whence thei th beetle generates an average

of � eggs inj th day.

P(yij jp; � ) =

(
p + (1 � p) � e� � if yij = 0

(1 � p) � � y ij �e� �

yij ! if yi 6= 0
(2.30)

The model is completed with vague priors, namely a Uniform density on the (0, 1)

interval for p and a Gaussian with mean zero and large variance onlog(� ).

2.4 Trogoderma granariumbeetle example

2.4.1 The invasiveTrogoderma granarium

The invasive dermestid khapra beetle,T. granarium, is an economically important stored-

product species that is subject to strict phytosanitary measures (Banks 1977, Lowe et al.

2000, Hill 2002, Hagstrum et al. 2012, EPPO 2013). Native to India (Rahman et al.

1945), its host range now includes Africa, Asia and Europe (Aitken 1975, Peacock

et al. 1993, Athanassiou et al. 2015).T. granariumis categorized as an A2 quarantine

organism (EPPO 2013, 2018, 1981), as it is under quarantine regulation in numerous

countries (EPPO 2018). The rapid increase in interceptions at US ports is a cause of
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Figure 2.1Plot of the cohort survival (A) and the age-speci�c fecundity (B) ofT. gra-
nariumat constant temperatures.
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