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ABSTRACT

This work focuses on statistically modelling specific biological processes from a

Bayesian standpoint and it can divided into four components. The first component, is

concerned with ecological models that describe the fitness of insects (mainly in the Phy-

lum of arthropods), as described by deterministic and stochastic demographic models

in order to understand population performance of invasive species, which can lead to

management decisions, especially under the pressure of climatic change. The second

component involves the investigation of non-linear statistical models based on popular

ecological functions that describe the developmental process of arthropods as it is af-

fected by temperature. Statistical modelling may provide insights into the population

evolution of arthropod pests as well as biological control agents, which is important for

ecology. Moreover, we investigate various computation techniques in order to not only

derive robust estimates of the parameters of interest, but also to compare different mod-

els and computation methods. The third component entails modelling predator-prey

systems to account for changes in prey population consumption over time as well as

inter-individual interactions within the same species. Understanding how to describe

and predict population performance, as well as how to manage invasive species, re-

quires a thorough understanding of predator-prey population interactions. Hence we

study statistical models that generate data using the Binomial distribution while prey

density change in real time is described via ordinary differential equations (ode) eco-

logical models. To address the possibility of noise, we propose that the probability of

being consumed be linked to a stochastic process that is centered and reduced to (in

the absence of diffusion) the instantaneous ratio of consumed prey density (which is

the default link). The fourth section differs from the previous sections in that it focuses

on modeling and detection of the spread of Vector-borne diseases (VBDs), as well as

the development of a semi-automatic early warning system for the prevention of these

diseases in the context of epidemiology. In particular, risk measures for the spread of

malaria through mosquito bites are described, and proposals are presented for mapping

R-tools illustrating the intensity of risk measures, based on actual data, allowing better

decision making and prevention of dispersal through early warning. A generic obser-

vation running throughout this work is that detailed and robust modelling may assist

greatly in more accurate and cautious conclusions drawn when interpreting the data.
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ΠΕΡΙΛΗΨΗ

Η εργασία αυτή επικεντρώνεται στη στατιστική μοντελοποίηση συγκεκριμένων

βιολογικών διεργασιών από τη Μπευζιανή σκοπιά και μπορεί να χωριστεί σε τέσσερα

μέρη. Το πρώτο μέρος αφορά οικολογικά μοντέλα που περιγράφουν τη δυναμική των

πληθυσμών των εντόμων (κυρίως των αρθροπόδων), όπως περιγράφεται από ντετερ-

μινιστικά και στοχαστικά δημογραφικά μοντέλα, προκειμένου να κατανοήσουμε την

πληθυσμιακή απόδοση των χωροκατακτητικών ειδών, η οποία μπορεί να οδηγήσει σε

αποφάσεις διαχείρισης, ειδικά υπό την πίεση της κλιματικής αλλαγής. Το δεύτερο

μέρος αφορά τη διερεύνηση των μη γραμμικών στατιστικών μοντέλων που βασίζονται

σε δημοφιλείς οικολογικές συναρτήσεις που περιγράφουν την ανάπτυξη των αρθρο-

πόδων καθώς επηρεάζεται από τη θερμοκρασία. Η στατιστική μοντελοποίηση μπορεί

να παρέχει πληροφορίες σχετικά με την εξέλιξη του πληθυσμού των αρθρόποδων,

καθώς και των παραγόντων βιολογικής αντιμετώπισης, γεγονός σημαντικό για την

οικολογία. Επιπλέον, διερευνούμε διάφορες τεχνικές υπολογισμού προκειμένου όχι

μόνο να εξάγουμε αξιόπιστες εκτιμήσεις των παραμέτρων που μας ενδιαφέρουν, αλ-

λά και να συγκρίνουμε διαφορετικά μοντέλα και μεθόδους υπολογισμού. Το τρίτο

μέρος περιλαμβάνει την μοντελοποίηση συστημάτων θηρευτών-θηραμάτων ώστε να

λαμβάνονται υπόψη οι αλλαγές στην κατανάλωση του πληθυσμού των θηραμάτων

με την πάροδο του χρόνου καθώς και οι αλληλεπιδράσεις μεταξύ ατόμων εντός του

ίδιου είδους. Η κατανόηση του τρόπου περιγραφής και πρόβλεψης των επιδόσεων του

πληθυσμού, καθώς και του τρόπου διαχείρισης των χωροκατακτητικών ειδών, απαι-

τεί πλήρη κατανόηση των αλληλεπιδράσεων του πληθυσμού θηρευτών-θηραμάτων.

Ως εκ τούτου, μελετάμε στατιστικά μοντέλα που παράγουν δεδομένα χρησιμοποι-

ώντας τη διωνυμική κατανομή, ενώ η μεταβολή της πυκνότητας των θηραμάτων σε

πραγματικό χρόνο περιγράφεται μέσω οικολογικών μοντέλων με συνήθεις διαφορι-

κές εξισώσεις. Για την αντιμετώπιση πιθανού θορύβου, προτείνουμε η πιθανότητα

κατανάλωσης να συνδεθεί με μια στοχαστική διαδικασία που είναι κεντραρισμένη και

ίση (στην περίπτωση απουσίας της διάχυσης) με τη στιγμιαία αναλογία της πυκνότη-

τας του θηράματος που καταναλώνεται (που είναι ο προεπιλεγμένος σύνδεσμος). Το

τέταρτο μέρος είναι διακριτό από τα προηγούμενα και αφορά τη μοντελοποίηση και

ανίχνευση της εξάπλωσης των ασθενειών που μεταδίδονται από φορέα, καθώς και

με την ανάπτυξη ενός ημιαυτόματου συστήματος έγκυρης προειδοποίησης για την
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πρόληψη των ασθενειών αυτών στο πλαίσιο της επιδημιολογίας. Ειδικότερα, περι-

γράφονται τα μέτρα κινδύνου για τη διάδοση της ελονοσίας μέσω τσιμπημάτων από

τα κουνούπια, και παρουσιάζονται προτάσεις για τη χαρτογράφηση με εργαλεία στην

R που απεικονίζουν την ένταση των μέτρων κινδύνου, με βάση πραγματικά δεδομένα,

επιτρέποντας καλύτερη λήψη αποφάσεων και πρόληψη της διασποράς μέσω έγκαιρης

προειδοποίησης. Μια γενική παρατήρηση που διέπει αυτή τη δουλειά είναι ότι η λε-

πτομερής και εύρωστη μοντελοποίηση μπορεί να βοηθήσει πολύ σε πιο ακριβή και

προσεκτικά συμπεράσματα που συνάγονται κατά την ερμηνεία των δεδομένων.
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Chapter 1

Introduction

I confirm that the work presented in this thesis is my own. Where information has
been derived from other sources this has been clearly indicated throughout this thesis.
Chapter 2 presents the statistical part of work that was published as (Papanikolaou et al.
2019). Chapter 3 presents the research that was submitted to the journal of Environ-
mental and Ecological Statistics in August 2021 (Kondakis et al. 2021a). Chapter 4
describes the R-package created on GitHub at (Kondakis et al. 2021b) and will be sub-
mitted for publication in autumn 2021. Chapter 5 presents the statistical part of a paper
that will be submitted for publication in autumn 2021. Chapter 6 provides the R-based
spatial map tools that was the novelty in (Pergantas et al. 2021).

1.1 Demographic statistics

The study of demographic statistical methods and models, both deterministic and stochas-
tic, provides useful insights into the fitness of economically important arthropods, such
as the Trogoderma granarium (T. granarium) beetle, in order to describe the reproduc-
tion process, population increase, mortality, fecundity rates, survival time and other crit-
ical measures that assess population performance. Because demography is a primary
domain of statistics, it provides a number of fundamental tools, including life tables,
offspring modelling, and survival analysis parametric and non-parametric models. As
a result, understanding population dynamics of invasive species, is important in ecol-
ogy and can lead to management decisions, especially under the pressure of climatic
change.

1.2 Developmental rates

The developmental rate of insects is another important feature in ecology. Insects, and
thus arthropods, go through immature stages (called instars) in which their rigid ex-
oskeleton cannot expand much and must be shed and replaced with a larger one (process
called molting) as the insect grows. To that end, most insects’ development includes
their early-life transformation, from egg to adult. Insect species do not develop at the
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same rate, and temperature is a major factor influencing their development. Hence, in-
vestigation of non-linear statistical models based on popular ecological functions that
describe the developmental process of arthropods as it is affected by temperature fluc-
tuations. Statistical modelling can provide insights into the population evolution of
arthropod pests as well as biological control agents, which is critical for surveillance
and containment of invasive species whose spread is accelerated by climate change,
increased human population density, and international trade. When modelling devel-
opmental rates, several challenges arise. Some of them are that the non-linear mean
structure in some ecological functions is truncated by parameters of interest, several
model parameters have limited sampling space, and the presence of a specific data
structure consisting of either positive reciprocals or zeros (indicating no development
of the arthropod). Furthermore, comparing non-linear, non-nested models with vary-
ing parameter counts is not trivial. To address these problems, the Bayesian paradigm
and, in particular, contemporary computation methods like HMC sampling that pro-
vides robust estimates even under these model and data structure conditions, as well
as the Variational Bayes inference (VBI) methods for fast approximations to posterior
distributions can be engaged. Similarly, Bayesian model averaging (BMA) techniques
are useful so as to generate robust estimates for the parameters of interest by combining
the predictive power of all models involved.

1.3 Predator-prey systems

The study of predator-prey population interactions is important in ecology for under-
standing how to describe and predict population performance, as well as how to man-
age invasive species. Modelling predator-prey systems is a critical tool in order to
account for changes in prey population consumption over time while accounting for
inter-individual interactions not only between species but also within the same species.
To that end, it is natural to use the Binomial data generated scheme to model the number
of prey consumed, as well as specific ode ecological models that describe the abundance
of the prey density in real time. In addition, the presence of noise due to the nature of
such ecological data, as well as the potential failure of models to detect any kind of
systematic source of variation in such data, adds to the modelling challenges. As a re-
sult, involving stochasticity to the probability of prey being consumed by the predator
is a way to deal with this kind of noise and derive better predictions. Information cri-
teria are also useful to compare models not only between different ode methods, but
also between deterministic and stochastic models. Posterior predictive plots alongside
observed data points can depict how well the suggested models fit the data. The com-
putation methods provided by the STAN software, can handle ode solution approxima-
tions within HMC sampling iterations, as well as within the automatic differentiation
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variational inference (ADVI) methods.

1.4 Vector born diseases

Dengue fever, West Nile Virus, Lyme disease, and malaria are examples of VBDs
caused by an infection spread to humans and other animals by blood-feeding arthro-
pods like mosquitoes. As a result, statistical modelling of VBDs plays an important
role in providing an explicit framework for understanding parasite disease transmission
within and between hosts. The model class used in VBDs contains several directly cal-
culated or no measures of the infected population that are derived each time by selecting
clinical and biological information in a simplified form that appears to be important to
the scientific question under investigation. Risk measures, among other things, provide
insights into disease transmission dynamics and can be used as early detection tools for
public awareness. The components for calculating risk measures, as well as the steps
for using R-tools to create various types of spatial maps, can be combined to create a
mapping tool that not only depicts potential infection points on a real-world map, but
also the intensity of appropriate risk indicators. In terms of public health, the study’s
goal is to use the model class, as well as the associated geographical mapping of the
statistical model’s generated risk estimates on real data, as an early-warning system,
allowing for better decision making and (VBD) prevention.

1.5 Overview of the Thesis

The effort in statistical modelling specific biological processes in this work can be di-
vided into four components, the first three of which focus on modelling of ecological
processes that describe the reproducing rate, mortality rate, developmental rate and
consuming rate of insects (in the Phylum of arthropods), while the fourth component
focuses on epidemiological methods for calculating risk measures of disease transmis-
sion from vectors (such as mosquitoes) and depicting them spatially on maps for warn-
ing purposes. The structure of this work, matching the aforementioned components
with the following Chapters is: The first component which is concerned with reproduc-
ing and mortality dynamics is addressed in Chapter 2, the second with developmental
dynamics is addressed in Chapters 3 and 4, the third with predator-prey dynamics in
Chapter 5, and the fourth with VBDs transmission dynamics in Chapter 6.

3



Chapter 2

Demographic analysis of ecological data

2.1 Introduction

In this chapter, we use deterministic and stochastic demographic tools to elucidate the
fitness components of invasive species such as T. granarium, providing critical infor-
mation for their management. This work was published in the journal PLOS One in
2019 as (Papanikolaou et al. 2019). The viability of the populations of living organisms
is strongly dependent on their fitness, referring to their ability to survive and reproduce
in a specific environment (Orr 2009). Survival and reproduction are critical aspects
of population dynamics, regulating their growth rate and allowing for several temporal
fluctuations (Huey and Berrigan 2001a, Engen et al. 2009, Compagnoni et al. 2016).
To this end, ecologists are often interested in understanding the patterns of these bio-
logical features in order to describe and predict populations’ performance (Hunter et al.
2010, Jonzén et al. 2010, Stark and Banks 2016). Insects such as ectotherm organ-
isms are characterised by the fact that their body temperature converges to the one of
the environment they are exposed to (Norris and Kunz 2012). This affects the rate of
metabolism, the biochemical reactions which facilitate production and energy release,
as well as the synthesis of necessary molecules that serve as structural or functional
components (Neven 2000, van der Have 2008). In particular, temperature affects the
functionality of enzymes, which in turn act as catalysts for these biochemical reactions
(van der Have 2008). Consequently, within a range of temperatures in which insects
develop and reproduce, various biological features are affected, such as mortality, re-
production, life span, and growth rate (Huey and Berrigan 2001a, Berven 1990, Nedvěd
2009, Papanikolaou et al. 2013, 2014). Thus, the performance of the insects is subject
to several temporal fluctuations in terms of population size through time. Understand-
ing populations’ performance is of particular importance, as their assessment can lead
to decisions on their management (Hare et al. 2011), particularly under the pressure
of climatic change (Bradshaw et al. 2016). Hence, elucidating into fitness components
can lead to a clearer understanding of an organism’s contribution to future generations
and therefore its potential population development (Huey and Berrigan 2001a, Jonzén
et al. 2010, Polanco et al. 2011). Demography represents the standard tool used for elu-
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cidating the fitness components of living organisms, as it allows for an integrated and
comparative description of several biological processes, as well as an investigation on
the organisms’ mortality and reproduction patterns (Carey 2001). Assuming a closed
population (i.e., no migration) with stable age distribution, applied demography allows
for the calculation of several population parameters, tabulating the birth and death rates
of the organisms of interest in a cohort life table (Carey 1993). Among these, the two
most commonly used measures of fitness are the intrinsic rate of increase (rm), which
represents the implicit rate of population increase independent of initial age structure,
and the net reproductive rate (Ro), which is typically interpreted as the average number
of female offspring that a female gives birth to over her lifetime (Huey and Berrigan
2001a). The invasive dermestid khapra beetle, Trogoderma granarium, is an econom-
ically important stored-product species that is subject to strict phytosanitary measures
(Banks 1977, Lowe et al. 2000, Hill 2002, EPPO 2013). Native to India (Rahman et al.
1945), its host range now includes Africa, Asia and Europe (Aitken 1975, Peacock
et al. 1993, Athanassiou et al. 2015). T. granarium is categorized as an A2 quarantine
organism (EPPO 1981, 2013, 2018), as it is under quarantine regulation in numerous
countries (EPPO 2018). The rapid increase in interceptions at US ports is a cause of
concern (Hagstrum et al. 2012). This trend is also evident in Europe considering the
interceptions that have been recorded in numerous countries, mostly in central Europe,
including Austria, Bulgaria, Croatia, Czech Republic, Italy, Poland, Portugal and Slo-
vakia (EPPO 2018). Despite the economic importance of T. granarium, there are no
data on the demography of this species at different temperatures, which could provide
valuable knowledge on its outbreaks and expansion and thus timely and effective man-
agement. In deterministic demographic models, the output of the model is fully deter-
mined by the parameter values and the initial conditions. On the other hand stochastic
demographic models naturally quantify the randomness that stems from the inherent
variability of the population and also allow for model assessment and exploration of
the appropriate probability distribution for each element of interest. The latter serves
towards our broader aim of embedding the current study within the stochastic approach
to demography. This viewpoint has turned our attention to the stochastic modelling
of the survival time (time until an event of interest occurs such as the lifespan) of T.

granarium and testing for statistically significant differences with respect to tempera-
ture treatments. We also extensively investigated the distribution of the time to the first
birth, an event of primary interest. Our data contained a number of T. granarium bee-
tles which gave no birth during their lifetime. Therefore, in contrast to the observations
concerned with time-to-death, the time to the first birth data contained censored obser-
vations, necessitating a survival type of analysis. In addition, measuring the number of
offspring of T. granarium beetles on a daily basis results in the observation of an ex-
cessive number of zeros. The zero-inflated-Poisson model was fitted using a Bayesian
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approach, leading to accurate point and interval estimates, even in the presence of a
large percentage of zeros in the sample (Ghosh et al. 2006). The output of determin-
istic and stochastic demography is combined in chapter 2 to investigate the survival or
extinction of T. granarium, as well as the patterns of mortality and reproduction, and
to provide a comparative calculation of its demographic parameters in different tem-
perature ranges. In order to calculate confidence limits and perform hypothesis testing
across temperature ranges, we specifically introduce uncertainty into deterministic de-
mographic cohort measures described by formulae (2.8-2.20). Additionally stochastic
models described in formulae (2.24), (2.25), (2.26), (2.27) and (2.28) are used in con-
junction with survival analysis techniques defined in formula (2.22) to investigate both
the time until death and the time until the first egg is produced. Furthermore, the number
of offspring is modeled using the Bayesian paradigm and probability density in (2.30),
with excess zeros taken into account. Finally, we search at how the fitness components
of T. granarium used in all of the preceding approaches change with temperature. To
that end, stochastic models, while underutilized in demographic studies, could provide
important information on T. granarium functionality.

2.2 Deterministic demographic approaches

Demography is derived from the Greek root demos (people) and literally means ‘de-
scription of the people’. In 1855, Achille Guillard defined demography as ‘the natural
and social history of the human species or the mathematical knowledge of populations,
their general changes, and their physical, civil, intellectual, and moral condition’. The
methodology of demographic studies includes data collection, demographic analysis,
and data interpretation. Individuals, populations, cohorts, and demographic rates are
some of the key concepts and tools addressed by demographic analysis. Individuals
are defined as "single organisms that are carriers of demographic attributes" by Frans
Willekens in 1986, and some basic characteristics of individuals are the developmental
rate, the age-specific level of reproduction, and the time until death. The population
is broadly as "a group of individuals coexisting at a given moment" (Pressat 1985).
The cohort is defined as "a group who experience the same significant event in dur-
ing a specific time period, and who can thus be identified as a group for subsequent
analysis" (Pressat 1985). Cohort attributes are commonly explored using demographic
parameters that form a life table in the form of age schedule events. Cohorts determine
population traits in this way. A complete cohort life table includes the mortality expe-
rience of a specific cohort from the moment of birth until no individuals remain in the
original cohort. The demographic rates are classified into five groups based on the type
of population counted in the denominator or the type of events counted in the numera-
tor. The crude rates, in particular, are applied to all individuals rather than dividing them
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by age or sex groupings, the age-specific rates, which are the same as crude rates but
with age restrictions, the restricted rates, which are applied to any special sub-group,
the rates by topic, which apply to each specialized topic in demography such as the total
fertility rate, the gross reproductive rate, or the net reproductive rate and the intrinsic
rates which prevail in a stable population and are invariant to any accidental or transient
short-term feature of the age distribution.

There are two fundamental approaches to describe the population rate of change
that take birth and death rates into account. First, the crude rate model is introduced,
which assumes that i) the population is not structured by age (homogeneity assump-
tion), ii) birth and death rates remain constant, and iii) the population is closed (i.e., no
migration). Second, assuming the last two assumptions are true, the stable population
model (Lotka’s equation) is developed, along with a common age structure, which adds
a more realistic and interesting dimension while not changing the geometric manner of
growth introduced by the crude rate model.

Despite the fact that it considers change at a constant rate forever, the crude rate
model is fundamental to demography because it defines population change as a com-
pounding process, it establishes a foundation for examining population growth patterns
over short time periods, and it provides the initial framework from which to build more
complicated models (Carey 1993). It is based on the following balancing equation
which connects the total population at time t (counted in years, months, weeks, days
and so on) to the total population at time t− 1:

Nt = Nt−1 + birthst − deathst + immigrantst − emigrantst, (2.1)

where birthst, deathst, immigrantst, emigrantst are the births, the deaths, the num-
ber of immigrants and emigrants respectively at period from t−1 until t. For simplicity
migration in (2.1) is typically neglected in demographic analysis and the number of
births and deaths are substituted by the products:

birthst = b ·Nt−1,

deathst = d ·Nt−1,

where b and d are the per ca-pita birth and death rates respectively. Denoting N0

the initial population at the beginning of the study at time 0, the population at time t is
given by

Nt = N0 · (1 + b− d)t ,

Nt = N0 · (λ)t .
(2.2)

When λ > 1, the population grows, whereas when λ < 1, the population shrinks.
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The population can now be calculated using the natural logarithm in equation 2.2 and a
new parameter r = ln(λ):

Nt = N0 · er·t, (2.3)

where r is the intrinsic rate of increase, which was introduced by Dublin and Lotka
in 1925 as a measure of the rate of natural increase and is interpreted as the constant
exponential growth rate per individual per time unit.

Alfred Lotka developed the stable population model in 1907 by expanding the crude
rate model and adding a structure to the population’s age. The latter, in particular, iden-
tifies the two most important population parameters (the age distribution and the growth
rate), their interdependence, and their relationship with the birth and death cohort pa-
rameters. It is capable of producing actual numbers that explain the patterns of the rate
of growth, the number of people in each age group, and the population size at a given
time (Carey 1993). In the simplest two-class age structure of the population, the num-
ber of people at age x0 and age x0 + 1 at time t+ 1 is given by the following system of
equations:

Nx0,t+1 = mx0 ·Nx0,t +mx0+1 ·Nx0+1,t,

Nx0+1,t+1 = px0 ·Nx0,t,
(2.4)

where mx0 and px0 are the age-specific birth rate and the probability of survival from
birth age x0 to age x0 + 1, respectively. Commonly, birth age x0 is taken as zero. The
rate of increase λ is constant between age classes given by:

λ =
Nx0+1,t+1

Nx0+1,t

=
Nx0,t+1

Nx0,t

(2.5)

Combining the formulae in 2.4 and 2.5 and dividing by λ2 yields equation (2.6), which
can be generalized in Lotka’s equation (2.7).

0 = Nx0,t ·
(
−1 +mx0 · λ−1 +mx0+1 · px0 · λ−2

)
(2.6)

1 =
ω∑
k=0

{
λ−(k+1) · lk ·mx0+k

}
, (2.7)

where age k ranges from 0 to a positive number ω and lk represents cohort survival to
age x0 + k. The parameters of interest used in the current study are presented in the
following paragraph 2.2.1.
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2.2.1 Demographic parameters of interest

Following (Carey 1993, Kontodimas et al. 2008, Papanikolaou et al. 2014, Zeki et al.
2015), the demographic parameters of interest used to describe the insects’ population
dynamics are the following.

• The cohort survival to age x:
(lx), (2.8)

which is equal to the proportion of individuals that have survived from birth to
age x. The number of individuals survived is usually associated to an arbitrary
constant known as the life table radix (Carey 1993). In population biology the
radix is set to unity so that the rate measures used are expressed as a fraction to
the original number of individuals. The initial time is usually taken as zero and
l0 = 1.

• The age specific mortality:

qx = 1− lx+1

lx
, (2.9)

which represents the probability of dying over period (x,x+1].

• The age specific fecundity:
(mx), (2.10)

which represents the averaged number of offspring produced by an individual at
age x (reproductive age schedule) and is calculated by multiplying the mean num-
ber of eggs per female at age x by the female-to-total-population ratio (observed
by sorting 100 offspring).

• The net reproductive rate:

R0 =
ω∑
x=0

(lx ·mx), (2.11)

which represents the per capita rate of offspring production over a time equal to
cohort study period from x = 0 to x = ω.

• the finite rate of increase:
(λ), (2.12)

which represents the per capita rate of population growth in each time step ac-
cording to (2.5).

• The intrinsic rate of increase:

(rm = ln (λ)), (2.13)
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which represents the per capita exponential rate of increase in a closed population
(that has been subjected to constant age-specific schedules of fertility and mor-
tality for a long period) in each time step. Using formulae (2.13) and (2.7), the
intrinsic rate is calculated as the solution of the equation:

1 =
ω∑
x=0

{
e−rm·(x+1) · lx ·mx

}
, (2.14)

which is the discrete time Lotka’s equation. If the age variable is continuous, the
equation (2.14) is as follows:

1 =
ω∑
x=0

{
e−rm·x · lx ·mx

}
. (2.15)

• The mean generation time:

T̃ =

∑ω
x=0 (x · lx ·mx)∑ω
x=0 (lx ·mx)

, (2.16)

T =
lnR0

rm
, (2.17)

where T̃ in (2.16) represents the cohort mean age of reproduction, which charac-
terizes the mean interval between births of one generation and those of the next
(Pressat 1985). T in (2.17) also represents the mean generation time, which is
defined as the time required for the population to increase by a factor equal to the
net reproductive rate. Formula (2.17) is derived by substituting the mean gener-
ation time T in formula (2.13). In the discrete age case, the difference between
formulae (2.14) and (2.17) gives that T̃ = T + 1.

• The doubling time:

DT =
ln2

rm
, (2.18)

which represents the time required for the population to double. It is derived if
λt = 2 in the formula (2.3).

• The reproductive value of the females:

Vx =

∑
y≥x (e−rm·y · ly ·my)

e−rm·x · lx
, (2.19)

which represents the contribution of an individual of a given age x to the future
population growth.
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• The expected remaining life time at age x:

Ex =

∑
t≥x

lt+lt+1

2

lx
, (2.20)

which represents the expected remaining life time of an individual at age x.

The aforementioned parameters were estimated at 30, 35 and 40◦C, 65% relative
humidity and continuous darkness for the real-life data example in Section 2.4. Sig-
nificant differences between life table parameters at each of the examined temperature
were tested via a Wald test, essentially the superposition of 95% confidence intervals
(CIs). This is a general method for hypothesis testing and avoids the recent contro-
versy with the use of p-values in the statistical literature (Halsey 2019). The CIs were
obtained by bootstrapping (Efron 1992) in R (Team 2021), sampling with replacement
1000 datasets in each temperature group and re-estimating the parameters for each set.
This technique avoids unnecessary asymptotic normality assumptions and estimates the
CIs using the empirical 2.5% and 97.5% percentiles, yielding general and robust proce-
dures for statistical estimation and hypothesis testing.

2.2.2 Modelling temperature-dependent intrinsic rate of increase

The relationship between temperature and the intrinsic rate of increase was described
by the Briere model (Briere et al. 1999), which is of the form:

r(T ) = α · T · (T − Tmin) · (Tmax − T )
1
2 , (2.21)

where T denotes the ambient temperature, α is an estimated parameter, Tmin is the
lower and Tmax the higher temperature in which the intrinsic rate of increase is equal
to zero. We proceeded by assuming that at the temperature of 17.20°C the intrinsic rate
of increase is equal to zero since no development has been detected (Burges 2008) in
this temperature. The limited capacity of deterministic models in predictions concerned
with alternative environmental conditions or the sensitivity of the beetles’ biochemical
reactions to other environmental conditions (Burg 2014) like pressure and substances
of air breathing, suggest that the randomness of the mechanism based on which the T.

granarium female beetles incubate can be appropriately modeled by a stochastic process
as opposed to a deterministic model and this is described in the following subsection.
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2.3 Stochastic demographic approaches

2.3.1 Kaplan-Meier method

Survival analysis techniques were utilized in order to examine (in a life cycle gener-
ation) both (i) the time (in days) until the event of “death” and (ii) the time (in days)
until the event of T. granarium become active. In both events of interest, the time
until the event occurs can be considered as a non-negatively-distributed random vari-
able (Cox and Oakes 1984). In order to compare the survival times of T. granarium,
kept at different incubators the predictor variable was the temperature level at 30, 35
and 40◦C respectively. The survival probabilities of T. granarium for each tempera-
ture group were estimated using the Kaplan-Meier product-limit estimator (Kaplan and
Meier 1958). The Kaplan–Meier is a nonparametric maximum likelihood estimator of
the survival function “S(t)” and is given by the product:

Ŝ (t) =
∏
i:ti≤t

(
1− di

ni

)
, (2.22)

where the observed survival times ti are sorted in ascending order t1 < t2 < . . . , the
parameter di represent the number of events at time ti while, parameter ni is the number
of the individuals known to survive at time ti. The Kaplan–Meier estimator is one of
the most frequently used methods of survival analysis and can be used to examine the
effectiveness of treatment or the influence of a factor in the survival times of the insects
under study (Kaplan and Meier 1958).

2.3.2 Parametric Survival function models

In addition, some commonly used distributions in survival analysis were considered
to fit a parametric survival regression model to the T. granarium data. Specifically,
the distributions used were: (i) the Exponential (2.25), (ii) the Weibull (2.26), (iii) the
Lognormal (2.27) and (iv) the Log-logistic (2.28). The parametric survival regression
used to fit the T. granarium data is the accelerated failure time (ACT) model (Wei 1992,
Kalbfleisch and Prentice 2011) which is a parametric model of the form

S(t|θ) = S0(eX
′θt), (2.23)

where S0 is a function for the baseline survival rate (which is related to the mean sur-
vival time). The ACT model uses covariates in term ex

′θ to place individuals on different
time scales. The term eX

′θ is called the acceleration factor as it scales (accelerates) the
survival time for each covariate . The ACT model can be rewritten in a log-linear form:
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logT = µ+X ′θ + σ ·W, (2.24)

where the logarithm of survival time (logT ) is linearly related to its mean µ, to the
acceleration factor X ′θ, and to an error term W scaled by a parameter σ.The variable
W describes the error distribution and is chosen so that T is one of four well-known
distributions, the probability density functions of which are given below:
the Exponential with rate parameter λ

p(t) = λ e−λt, (2.25)

the Weibull with shape parameter a and scale parameter b

p(t) =
a

b

(
t

b

)a−1

e−(t/b)a , (2.26)

the Lognormal with mean µ and std. deviation σ of the log(T)

p(t) =
1

σt
√

2π
e
−(logt−µ)2

2σ2 , (2.27)

the Log-logistic with shape parameter a and scale parameter b

p(t) =
a
b

(
t
b

)a−1(
1 +

(
t
b

)a)2 (2.28)

The explanatory variable used in all the parametric models was the temperature. In
order to fit the ACT model to the T. granarium data, the "survreg()" function from the
survival package in R (Team 2021) is used.

Selection of the most suitable model was based on the Akaike Information Criterion
(Sakamoto et al. 1986). The AIC given in (2.29) is a composite measure accounting for
the goodness of fit of each model to the observations via the deviance, penalised for the
model’s complexity by adding twice the number of estimated parameters k. The AIC
is an estimator of the relative quality of statistical models for a given set of data. It is
defined as:

AIC = −2 log(L̂) + k, (2.29)

Where log(L̂) is the logarithm of the likelihood of the data given the current model and
k is the number of estimated parameters. Its value is derived for each model by either
calculating the log(L̂) and k manually using the results of the "survreg()" function or
by using directly the "extractAIC()" or the "AIC()" function in the survival package in
R (Team 2021).
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2.3.3 Modelling egg-counts with an excessive number of zeros

The statistical analysis of the number of eggs of T. granarium beetles was based upon
the zero-inflated class of models. Herein, the underlying distribution considered for egg
counts was the Poisson distribution leading to the zero inflated Poisson (ZIP) model
(Ghosh et al. 2006). We used Bayesian methods for estimating the model parameters
through the WinBUGS package (Lunn et al. 2000), a general purpose software designed
to run Markov chain Monte Carlo (MCMC) simulations for a wide range of Bayesian
models. The output of the ZIP model was obtained by running the WinBUGS soft-
ware for 7000 samples within each temperature group, having 4000 iterations as burn-
in. Specifically, burn-in refers to the initial, potentially non-stationary, portion of the
Markov Chain measured in number of iterations. It pertains to the practice of discarding
a number of samples at the start of the MCMC algorithm in order to allow the Markov
Chain to reach its equilibrium (stationary) density which corresponds to the posterior
distribution of interest.

The ZIP model in (2.30) used is a mixture model for each of the datasets corre-
sponding to the three different temperature levels of 30, 35 and 40◦C respectively. Let
us denote with yij the response variable, the number of eggs laid by the ith T. granarium

beetle in the jth day, so that j corresponds to the lifetime of the ith beetle from its entry
in the study until its death. Then, the statistical model we used posits that yij is either
zero, with probability p, in which case no eggs are laid from ith beetle in jth day, or fol-
lows a Poisson distribution with parameter λ whence the ith beetle generates an average
of λ eggs in jth day.

P (yij|p, λ) =

{
p+ (1− p) · e−λ if yij = 0

(1− p) · λ
yij ·e−λ
yij !

if yi 6= 0
(2.30)

The model is completed with vague priors, namely a Uniform density on the (0, 1)
interval for p and a Gaussian with mean zero and large variance on log(λ).

2.4 Trogoderma granarium beetle example

2.4.1 The invasive Trogoderma granarium

The invasive dermestid khapra beetle, T. granarium, is an economically important stored-
product species that is subject to strict phytosanitary measures (Banks 1977, Lowe et al.
2000, Hill 2002, Hagstrum et al. 2012, EPPO 2013). Native to India (Rahman et al.
1945), its host range now includes Africa, Asia and Europe (Aitken 1975, Peacock
et al. 1993, Athanassiou et al. 2015). T. granarium is categorized as an A2 quarantine
organism (EPPO 2013, 2018, 1981), as it is under quarantine regulation in numerous
countries (EPPO 2018). The rapid increase in interceptions at US ports is a cause of
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Figure 2.1 Plot of the cohort survival (A) and the age-specific fecundity (B) of T. gra-
narium at constant temperatures.
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Figure 2.2 Plot of the reproductive value (A) and the expected remaining life time (B)
of T. granarium females at constant temperatures.

concern (Hagstrum et al. 2012). This trend is also evident in Europe considering the
interceptions that have been recorded in numerous countries, mostly in central Europe,
including Austria, Bulgaria, Croatia, Czech Republic, Italy, Poland, Portugal and Slo-
vakia (EPPO 2018).

2.4.2 Experimental design

The real-data used are gathered from a clinical trial made in lab. T. granarium were
reared on wheat at 30◦C, 65% relative humidity at continuous darkness. The insect
colony was established in 2014 from insects collected in Greek storage facilities in cen-
tral Thessaly and southern Attica and since then it has been kept at the Laboratory of
Agricultural Zoology and Entomology of the Agricultural University of Athens. In all
experiments we used pesticide-free wheat (Triticum durum, var. Claudio) in order to
maintain insect colonies. The moisture content of wheat was 12.1%, as determined by
a calibrated moisture meter (mini GAC plus, Dickey-John Europe S.A.S., Colombes,
France) at the beginning of the tests. Samples of 1 g of cracked wheat were separately
put inside each Petri dish (8 cm diameter, 1.5 cm height). Wheat was cracked in a hand-
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mill. Two testing sieves were used to make particles of cracked wheat approximately
consistent. First, the cracked wheat was sieved with a No 30 (2.36 mm openings) US
standard testing sieve (Advantech Manufacturing, Inc., New Berlin, WI). Subsequently,
the sifted material was sieved again with a No 10 (2.00 mm openings) US standard test-
ing sieve (Retsch GmbH, Haan, Germany). Then, the content of the latter was used for
experimentation. The quantities of 1 g were weighed with a Precisa XB3200D compact
balance (Alpha Analytical Instruments, Gerakas, Greece). The closures of the dishes
bore a 1.50 cm diameter circular opening in the middle that was covered by muslin
gauze to allow the sufficient aeration inside the dish. The upper inner walls of the
dishes were covered by polytetrafluoroethylen (60 wt % dispersion in water) (Sigma-
Aldrich Chemie GmbH, Taufkirchen, Germany) to prevent the escape of larvae and
adults. To obtain eggs of T. granarium, 50 unsexed adult individuals, approximately 7 d
old, were transferred from the culture to a 250 ml glass jar that contained 125 ml white
soft wheat flour for 1 day. Then, the adults and eggs were separated from the flour with
a No 20 and a No 60 U.S. standard testing sieves (Advantech Manufacturing, Inc., New
Berlin, WI). The eggs that were remained on the mesh openings of the sieve were put
in a Petri dish and inspected daily at 57 times total magnification of an Olympus stere-
omicroscope (SZX9, Bacacos S.A., Athens, Greece). Totally, 40, 48 and 433 eggs were
used to obtain egg to adult development and mortality at 30, 35 and 40◦C, respectively.
We used higher number of eggs at 40◦C due to detrimental impact of this temperature
to T. granarium survival. Newly hatched T. granarium larvae were very carefully sep-
arately placed inside each dish, with a fine brush (Cotman 111 No 000, Winsor and
Newton, London, UK), that contained the cracked wheat. The dishes were placed in
incubators set at the respective temperature and 65% relative humidity during the entire
experimental period. The duration and survival of egg, larval, and pupal stages were
recorded every 24 hours. In addition, female longevity and fecundity were examined
daily. Formed pairs were kept separately in Petri dishes. We used 25, 26 and 36 pairs at
30, 35 and 40◦C, respectively. The insects’ thermal window, i.e. the range in temper-
ature between the minimum and maximum rate of development for individual species,
is about 20 °C (Dixon et al. 2009). Considering also that below 30◦C larvae of T. gra-

narium fall to diapause prolonging their life up to 8 years (Aitken 1975, Peacock et al.
1993), and that T. granariun prefers environments with elevated temperatures (Banks
1977, Howe 1965), we selected 30, 35 and 40◦C as the most suitable temperature range
for our study. It should be noted that during the summer, air temperature in Greece may
reach or potentially exceed 40◦C.
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Table 2.1 Values of net reproductive rate (R0), intrinsic rate of increase (rm), finite rate
of increase (λ), mean generation time (T ) and doubling time (DT ) of T. granarium
reared on wheat (mean, 95% Confidence Intervals) at constant temperatures.

Temperature 30◦C 35◦C 40◦C
Net reproductive rate

R0

(females/female)

9.73
(4.09, 16.28)

6.55
(2.36, 11.31)

0.17
(0.07, 0.30)

Intrinsic rate of increase
rm

(females/female/d)

0.03
(0.02, 0.04)

0.04
(0.02, 0.06)

-0.03
(-0.05, -0.02)

Finite rate of increase
λ

1.03
(1.02, 1.04)

1.04
(1.02 ,1.06)

0.97
(0.96, 0.98)

Mean generation time (d)
T

69.04
(66.02, 71.65)

42.96
(41.22, 44.65)

58.12
(55.86, 61.48)

Doubling time (d)
DT

22.2
(17.09, 34.37)

17.73
(12.26, 33.89)

-23.08
(-33.05, -15.42)

2.4.3 Demographic parameters results

The estimated demographic parameters showed considerable variation across the differ-
ent temperature regimes used in this study. This was evident based upon the inspection
of the 95% confidence intervals (Table 2.1) which were also used for hypothesis testing.
Thus, we test for statistical significance using a 5% significance level.

The net reproductive rate did not differ significantly at 30 and 35◦C, but was sub-
stantially lower at 40◦C. The same trend was also established for the values of the
intrinsic and the finite rate of increase as temperature increased from 30 and 35◦C. In
contrast, the corresponding values at 40◦C where close to zero. The doubling time also
did not differ significantly at 30 and 35◦C while a significantly lower doubling time was
estimated at 40◦C. The mean generation time differed in all three temperatures, being
significantly longer at 30◦C, shorter at 35◦C and an intermediate estimate at 40◦C. The
cohort survival decreased through time as presented in Fig. 2.1, while the age-specific
fecundity increased until a particular age-dependent temperature, where a subsequent
decrease follows (Fig. 2.1). In addition, females of approximately 63, 42 and 21 day-
old reach their maximum reproductive potential at 30, 35 and 40◦C, respectively (Fig.
2.2). The expected remaining life time of T. granarium females at 30, 35 and 40◦C is
depicted in Fig. 2.2, reflecting that the initial decrease in this parameter is followed by
an increase (although marginally at 30◦C) and an ultimately decrease. The p-values for
testing the hypotheses that the demographic parameters are zero were smaller than 0.01.
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Figure 2.3 Estimated parameters and fitting of the Briere model to the intrinsic rate of
increase data of T. granarium. Pointwise 95% C.I. are also depicted for each mean at
30◦C, 35◦C and 40◦C respectively.

2.4.4 Intrinsic rate results

The Briere model fitted reasonably well (R2 is equal to 0.69 and standard error of the
regression equal to 0.03, Fig. 2.3) to the intrinsic rate of increase data of T. granarium.
The estimated minimum and maximum temperatures where the intrinsic rate of increase
is expected to reach zero are 18.44 and 40.00°C respectively, obtaining its maximum
value at 34.52°C.

Table 2.2 Estimated parameters of the Briere model fitted to T. granarium intrinsic rate
of increase data.

Parameter
α 3.04e− 5 ± 3.06e− 5
T0 18.44 ± 11.55
TL 40.00 ± 1.26e− 3
R2 0.69

2.4.5 Stochastic models results

2.4.5.1 Non parametric models

We modeled the times (in days) to two distinct types of event, the time until death,
in which case there is no censoring due to the experimental design and the time until
laying the first egg. The latter is subject to right censoring since some beetles die before
they ever lay any egg. Hence, the median and other functionals of the survival times
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Figure 2.4 Kaplan-Meier survival curve estimator (Y-axis) vs. survival times (X-axis)
of T. granarium until death along with their 95% confidence bands at 30◦C, 35◦C and
40◦C respectively. No censored observations exist due to the experimental design. In
the legend we report the median and its 95% C.I.

are affected due to censoring which is substantial for the beetles studied at 40◦C. The
survival times and their 95% confidence intervals are derived using the Kaplan-Meier
estimators for the different temperature levels at 30, 35 and 40◦C. The results are
depicted on Figs 2.4 and 2.5 respectively. The means of the survival time until death of
T. granarium are 62.9, 34.2 and 15.6 days while their medians diminish rapidly (Fig.
2.4 and Table 2.3). Furthermore, the means of the time until first egg release are 71.7,
46.9 and 81.3 days while the medians decrease when the temperature rises from 30 to
35◦C (Fig. 2.5 and Table 2.4). At 40◦C it is apparent (Fig. 2.5) that the probability of
T. granarium laying the first egg does not cross the 0.5 line and therefore the median
time to first birth cannot be estimated.

Table 2.3 Survival times (mean, std. error, median and 95% CI) until death of T. gra-
narium at constant temperatures.

Survival estimates until death
Temperature Mean ± se Median and 95%CI

30◦C 62.9 ± 3.4 71.5 (58, 78)
35◦C 34.2 ± 2.7 41 (38, 46)
40◦C 15.6 ± 0.8 9 (9, 10)
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Figure 2.5 Kaplan-Meier survival curve estimator (Y-axis) vs. survival times (X-axis)
of T. granarium until lay the first egg along with their 95% confidence bands at 30◦C,
35◦C and 40◦C respectively. Censored observations appear when T. granarium die
before lay any egg and are symbolized by the “+” symbol. In the legend we report the
median and its 95% C.I.

Table 2.4 Survival times (mean, std. error, median and 95% CI) until T. granarium lay
the first egg within temperature levels.

Survival estimates until laying first egg
Temperature Mean ± se Median and 95%CI

30◦C 71.7 ± 1.8 73 (58, 76)
35◦C 46.9 ± 1.7 45 (38, 49)
40◦C 81.3 ± 3.4 - (68, -)

2.4.5.2 Parametric models

In order to assess a parametric fit to the T. granarium survival times, the Exponential,
Weibull, Lognormal and Loglogistic distributions were considered.

The posterior means (95% Cr.I. s) for the Bernoulli parameter p are: 0.42 (0.28,
0.58), 0.50 (0.35, 0.64) and 0.96 (0.94, 0.98) at 30◦C, 35◦C and 40◦C respectively.

The AIC was estimated at 4096.40, 4040.70, 3772.10 and 3691.50 for the Expo-
nential, Weibull, Lognormal and Loglogistic distributions respectively when time until
death is consideredand 708.90, 20926.90, 570.10, 574.40 respectively in the case that
time until first egg is studied (Table 2.5). It is evident that the smallest values are
achieved by the Loglogistic model when the event is concerned with a T. granarium

death, while the Lognormal model has the best fit when examining the time until a T.

granarium lays the first egg (Fig. 2.6). The minimum percentage of zeros in the number
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Table 2.5 Parametric survival times until death and until lay first egg ( Dev, AIC and
d.f.) for the Exponential, Weibull, Lognormal and Loglogistic models.

Model Dev AIC d.f.

Survival times
until death

Exponential -2046.2 4096.4 2
Weibull -2017.3 4040.7 3

Lognormal -1883.1 3772.1 3
Loglogistic -1842.8 3691.5 3

Survival times
until lay first egg

Exponential -352.4 708.9 2
Weibull -10460.4 20926.9 3

Lognormal -282.0 570.1 3
Loglogistic -282.4 574.4 3

Figure 2.6 Logistic Mo1del and Lognormal Model probability (Y-axis) vs. survival
times of T. granarium(X-axis) until death (left) and until laying the first egg (right)
along with the Kaplan-Meier survival time estimates at 30◦C, 35◦C and 40◦C respec-
tively.
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Figure 2.7 Plot of the posterior densities (Y-axis) for the probability of failing to lay
eggs vs. the percentage of zeros (X-axis), at 30◦C, 35◦C and 40◦C respectively.

Table 2.6 Estimated results using the formula (2.30) of 1. probability of failing to lay
eggs p(no egg)= p+ (1− p) · e−λ, 2. probability p of excess zeros and 3. Poisson rate
λ and their 95% Cr.I. in T. granarium data for each of the three temperature levels.

Temp p(no egg) 95% Cr.I. p 95% Cr.I. λ 95% Cr.I.
30◦C 0.805 (0.740, 0.863) 0.425 (0.281, 0.576) 0.431 (0.404, 0.459)
35◦C 0.786 (0.716, 0.851) 0.498 (0.353, 0.638) 0.572 (0.533, 0.612)
40◦C 0.996 (0.991, 0.998) 0.963 (0.941, 0.980) 0.143 (0.114, 0.161)

of T. granarium offspring for all temperature groups is over 0.40. Using the Bayesian
paradigm to model the number of eggs, we can visualize the posterior densities of vari-
ous ecological process components, such as the probability that the T. granarium beetle
does not lay eggs, as depicted on Fig. 2.7. In addition as shown in (Table 2.6), the
aforementioned probability is 0.81 (with a 95% Cr.I. of (0.74, 0.86)) at 30◦C, 0.79
(95% Cr.I.: (0.72, 0.85)) at 35◦C and substantially higher at 0.996 (95% Cr.I.: (0.991,
0.998)) at 40◦C. The rate that T. granarium lay eggs in daily basis when they are ac-
tive to reproduce is expressed by the lambda parameter of the Poisson distribution. Its
posterior mean and 95% Cr.I. is 0.43 and (0.40, 0.46) at 30◦C, 0.57 and (0.53, 0.61)
at 35◦C, 0.14 and (0.11, 0.16) at 40◦C respectively. After performing the Wald test in
the lambda parameters across the three temperature groups, we get “Bayesian p-values”
which are less than 0.01, suggesting that there are significant differences in the number
of eggs produced when comparing the three temperature groups, with the best perfor-
mance observed at 35◦C and the worst at 40◦C respectively. Inspecting the standardised
residuals suggests that no apparent pattern is emerging and no influential individual val-
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ues stand out, indicating that the ZIP Model has good fit and explains reasonably well
the randomness that stems from the inherent variability of T. granarium data.

2.5 Chapter summary

Our study revealed a number of findings on the biology of T. granarium and a compre-
hensive description of the survival and reproductive schedules of this invasive species
in three distinct temperatures. We obtain further evidence on its growth rate, allowing
for potential application in pest management. It was found that temperature seriously
affects its population increase. The knowledge of the insect’s potential growth rate also
facilitates for estimation of its population through time, and therefore its potential out-
break. Adding uncertainty to the demographic cohort measures via bootstrap allows
for hypothesis testing for different temperature levels. Specifically, at 40◦C the value
of the intrinsic rate of increase is negative, indicating that at this temperature the pop-
ulation tends to extinction, although T. granariun is considered a highly heat-tolerant
species (Lindgren et al. 1955, Lindgren and Vincent 1959). At 30 and 35◦C the pos-
itive values of the intrinsic rate of increase indicates that in this temperature range T.

granariun is able to increase its population size, as well as its potential to spread, be-
coming more harmful in stored-products. The fact that there is a significant difference
in the mean generation time between 30 and 35◦C but not in the other demographic
parameters may appear somewhat unexpected. The mean generation time represents
the average time for a population to increase by a factor equal to the net reproductive
rate. This result is biologically interpretable, since the net reproductive rate depends
on cohort survival, which is lower for T. granarium at 35◦C. However, as the values
of the intrinsic rate of increase and the doubling time did not differ significantly, we
expect that the same applies for the insect’s growth rate between these temperatures.
According to the fit of the Briere model, the minimum and maximum temperatures for
T. granarium population increase are roughly 18.44 and 40.00°C respectively. In this
range of temperatures T. granarium is able to increase its population. This is important
for the management of this species, considering its economic importance and further
spreading in the world, as well as its mass-rearing, allowing efficient breeding in the
insectary (Carey and Vargas 1985). The T. granarium intrinsic rate of increase shows
an increasing trend until 34.52°C, where it reaches its maximum value. The subsequent
decrease at higher temperatures is probably due to the determinental effect of these
temperatures on its survival and reproductive capacity. According to the model’s pre-
dictions, temperatures around 34°C are optimal for population growth of T. granarium,
whereas temperatures in the area of 40◦C lead to population decrease. These results
clearly indicate that the population development of T. granarium is strongly affected by
temperature. It should be noted that elevated temperature levels, which favor the popu-
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lation increase of T. granarium, are responsible for potential outbreaks of this species,
an issue that leads to considerable losses of the infested commodities (Kavallieratos
et al. 2017b). Even when the initial population of T. granarium consists of a small
number of larvae, it can increase fast under favorable temperature conditions and com-
modities (Kavallieratos et al. 2017b). Temperatures from 30◦C to 35◦C support the
development of high numbers of T. granarium larvae, that is the most difficult life stage
of this species to be controlled on stored commodities, especially on wheat (Kavallier-
atos et al. 2017b,a). Given that the efficacy of several insecticidal active ingredients
against stored-product insect pest species varies among different levels of temperature
(Kavallieratos et al. 2011, Athanassiou and Kavallieratos 2014, Boukouvala et al. 2017),
potential optimization of chemical control measures should seriously take into account
the combination of toxicants and temperature when applied against T. granarium. It is
recommended to control this species when its numbers are still low as a way to mod-
erate its population growth (Kavallieratos et al. 2017b). Also, based on our findings,
since the population of T. granarium decreases at 40◦C, we could suggest a further
rapid decline when insecticidal applications are targeted at the above temperature level
on stored wheat. This is a realistic scenario, given that T. granarium is established in
hot and dry environments (Banks 1977, Hill 2002, Lindgren et al. 1955). Our results
clearly indicate that the population of T. granarium increases with temperature up until
34.52◦C. This is an important finding suggesting that global warming favors the in-
crease of the population of this species. International trade in conjunction with global
climatic change favors the dispersal of invasive species, like T. granarium (Kavallier-
atos et al. 2017b). Therefore, locations that are free of T. granarium but exhibit variable
climatic conditions, compatible with those where T. granarium is already present, es-
tablished or even intercepted should be on alert for the potential arrival of T. granarium.
For example, the USA Government pays particular attention on phytosanitary measures
and application of insecticides which aim to control T. granarium at the entry points of
the country that are related to international trade (Hagstrum et al. 2012, Ghimire et al.
2017, Arthur et al. 2018). The fact that about 84% of T. granarium intercepted at the US
ports between 1985 and 2010 were T. granarium, while after 2010 T. granarium inter-
ceptions have been dramatically increased in the USA and several countries of Northern
and Southern Europe, reveals the potential risk of further and rapid expansion of this
species worldwide (Hagstrum et al. 2012, Kavallieratos and Boukouvala 2018). The
reproductive value of females, that is the contribution an individual of a particular age
will make to future generations (Carey 1993), increases until a specific age. This is due
to the early mortality of the pre-reproductive age classes of T. granarium and the sub-
sequent increase of the age-specific fecundity. Thereafter, a decrease to the age-specific
fecundity has a negative effect on the reproductive value which declines to zero for the
older ages. Individuals of roughly 63, 42 and 21 days-old at 30, 35 and 40◦C respec-
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tively reach their maximum reproductive potential. The expected remaining lifetime
decreases until a specific age at 35 and 40◦C due to early mortality, thereafter increases
due to decreasing mortality, followed by an ultimate decrease. On the other hand, the
expected remaining lifetime at 30ºC is characterized by a continuous decrease due to no
remarkable early mortality. The process of T. granarium laying eggs was modeled by a
Zero Inflated Poisson model (Diane 1992). Statistical learning for models of this kind
represents a non-standard problem due to irregularities in the likelihood function and
adopting a sampling-based approach to inference such as MCMC (Ghosh et al. 2006,
Gelman et al. 2014) offers a substantial advantage, including the ability to estimate the
complete posterior distribution of the Poisson rate and the probability of excess zeros.
The separation of this probability at 40◦C compared to the other two temperatures is
immediately apparent by simple visual inspection and this is represents a desirable fea-
ture of the proposed statistical analysis. The stochastic approach to demography offers
a number of additional advantages. Here we present an effort towards the parametric
characterisation of the different durations (Kalbfleisch and Prentice 2011) which repre-
sent the distinct components of the underlying biological process and in future research
we shall endeavour to study the universality of these distributions by examining the
parametric forms of these durations for related species. In addition, exploring the dis-
tribution of the time to the first birth naturally gives rise to an independent censoring
mechanism necessitating a survival type of analysis for this component of our data. In-
vestigating for influential individuals is of paramount importance for robust statistical
results. Such considerations are relatively straightforward when adopting a stochastic
approach to demography and this aspect was examined in the present study by leverag-
ing upon the posterior density (Gelman et al. 2014), suggesting that the model appears
to accommodate all the individual data reasonably well since no major departure from
the bulk of the observations was observed. In summary, the use of a deterministic
approach of T. granarium growth provides estimates of its reproductive potential, an
issue that should be taken in account in the study of its biology and be considered as
an important component in the design of pest’s management strategies. Furthermore,
our approach could be considered as an additional tool in a broader sense, combined
with models related to international trade and climatic change, since these models alert
specialists towards early detection strategies against invasive species and consequently
their successful control (Kavallieratos et al. 2017b, Colunga-Garcia et al. 2013, Douma
et al. 2016, Kriticos et al. 2013, Yemshanov et al. 2014). In addition, stochastic mod-
elling of the variables (characteristics) of interest for T. granarium like their survival
time, their time until first egg emerges or the number of eggs lying, provides an as-
sessment of the variability for such variables, thus offering plausible ranges for use in
alternative conditions (e.g. temperature, relative humidity, commodity), for comparison
with different but related species. Also, the stochastic models of this study allowed for
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checking model fit and the characterization of the most suitable distribution for each
component of the system, allowing respectively for robust results and casting the dura-
tions involved in this particular species within a wider taxa.
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Chapter 3

Inference for developmental rate in Ecology

3.1 Introduction

In this chapter, we suggest statistical models that are using distinct non-linear ecolog-
ical models and data-sets with zeros to explain the developmental rates of arthropods.
Furthermore, different computational methods such as HMC and ADVI are compared.
The information criteria and marginal likelihood estimates are used to compare models.
Furthermore, BMA is used to generate robust estimates for the parameters of interest.
The current chapter’s work was submitted for review to the journal of Environmental
and Ecological Statistics in Summer 2021.

Studying the population evolution of arthropod pests, as well as of biological con-
trol agents, is of great importance for the crop primary production, agricultural infras-
tructures, spreading diseases and consequently the economy (Bradshaw et al. 2016).
Temperature and body size are two major determinants that influence the metabolic,
survival, growth and reproduction rates which control the ecological processes at all
levels of arthropods’ life (Brown et al. 2004). Biological control is facilitated when the
climate responses of biocontrol agents are understood, especially to temperature. The
thermal thresholds for insect development can be estimated using several functional
forms (Kontodimas et al. 2004).

In all but the simplest cases, mathematical modelling is an indispensable tool for
understanding the resulting developmental scheme (Kontodimas et al. 2004). However,
fitting ecological models for developmental rates is not straightforward, typically be-
cause the mathematical forms are not linear (Papanikolaou et al. 2019) and the actual
biochemical reactions of insects or environmental factors responsible for their growth
may remain unobservable. Therefore, we adopt the Bayesian paradigm to population
dynamics’ modelling and inference since it naturally accounts for latent parameters and
their uncertainties. Nonetheless, there are significant challenges in designing statistical
methods that work efficiently in a wide range of ecological applications. STAN (Car-
penter et al. 2017) provides a BUGS-like interface to model building and the ability to
run it via different languages and operating systems.
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3.1.1 Motivation for modelling developmental rate

Insects and mites, as ectotherms, regulate their body temperature according to the envi-
ronment they live in (Norris and Kunz 2012). This affects the rate of metabolism, i.e.,
the biochemical reactions that allow the processes of production and release of energy,
as well as the synthesis of necessary molecules that serve as structural or functional
components (Neven 2000). In fact, temperature affects the functionality of enzymes,
which act as catalysts for these biochemical reactions (van der Have 2008). Conse-
quently, within a range of temperatures in which insects and mites develop and re-
produce, various biological features are affected (Broufas and Koveos 2001, Huey and
Berrigan 2001a, Broufas et al. 2007, Nedvěd 2009, Papanikolaou et al. 2013, 2014).
Thus, their performance is indebted to several temporal fluctuations in terms of popu-
lation size through time. The empirical finding of the initial increase in the growth rate
of insects and mites in relation to temperature, followed by its sharp decline, formed
the basis for the development of various mathematical models of its description (Kon-
todimas et al. 2004). These models allow the estimation of the lower and upper thermal
limits, i.e. the lowest and highest temperature, respectively, at which the growth rate is
zero, as well as the temperature at which it receives its maximum value. Understanding
populations’ growth rate is of importance, as their assessment can lead to decisions on
their management (Hare et al. 2011), particularly under the pressure of climatic change
(Bradshaw et al. 2016).

3.1.2 Historical overview with models and techniques used in literature

This thesis investigates some popular non-linear ecological models that describe the
rate of insects’ and mites’ development within a Bayesian context. We explore the
computational and statistical efficiency of HMC (Betancourt 2017, Neal 2010) and VBI
(Blei et al. 2017), a challenging task in the present setting due to distinct features of the
entertained models, including truncation. Both the widely used Gaussian distributional
assumption and a newly-developed Inverse Gamma-based version are explored in or-
der to model the developmental rate distribution of insects and mites. We compare the
models using information criteria, marginal likelihood estimates and graphical tools. In
addition, model averaging techniques are used to provide robust estimates of the pa-
rameters of interest. A distinct feature of these models is that zero count data make one
parameter of interest indeterminable and model fit potentially misleading. We propose
ways to overcome this indeterminacy by applying the Zero Inflated Inverse Gamma
distribution while carefully connecting the probability of non-zero development to the
predictor.

The remainder of this work is structured as follows. The next section contains the
ecological models we develop. Section 3.3 the computation methods used are presented.
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Section 3.5 investigates two separate real-life examples without and with zero-rates, and
Section 3.6 reports our findings, while the chapter concludes with discussion.

3.2 Non-linear ecological models

A variety of different linear and non-linear equations have been used to describe the
rate of development of insects and mites and to estimate their thermal limits. Such lin-
ear approximations enable the calculation of lower developmental threshold and ther-
mal constant within a small temperature range, usually 15-30oC (Campbell et al. 1974,
Wagner et al. 1991, Jarošík et al. 2002, Kontodimas et al. 2004). However, the rela-
tionship between development and temperature becomes non-linear outside that range.
Thus, in order to accurately predict developmental rates across the spectrum, the use of
non-linear ecological models is required (Wagner et al. 1991, Kontodimas et al. 2004,
Damos and Savopoulou-Soultani 2012).

In the present work, four commonly used non-linear ecological models are consid-
ered. Specifically, the Bieri (Bieri et al. 1983), the Briere (Briere and Pracros 1998,
Briere et al. 1998, 1999), the Analytis (Analytis 1981) and the Lactin (Lactin et al.
1995) models are implemented. Developmental time is the duration between life stages
of the insects or mites (Wagner et al. 1991). The response variable y(T ; θ) describes the
developmental rate and it is defined as the reciprocal of the days until the completeness
of a particular developmental event. Herein, T denotes the predictor variable, the abso-
lute temperature measured in Celsius degrees, while θ denotes the parameter vector of
the model. Typically, the expected developmental rate, r(T ; θ) is modelled and the four
aforementioned models are presented below.

3.2.1 Bieri Model

In the Bieri model, the developmental rate is defined as

r(T ; θ) = α · (T − Tm1)− β(T−Tm2 ) (3.1)

where α, β, Tm1 and Tm2 are the model parameters. In particular, the values of Tm1 and
Tm2 lie close to the real lower and upper thermal thresholds Tmin and Tmax, at which the
development starts or ceases respectively. The exact values of the thermal thresholds
are derived implicitly as the lower and upper roots respectively of the response function.
The parameter α corresponds approximately to the rate of increase in the linear model
at vital temperatures (Bieri et al. 1983). The response variable in (3.1) is a concave
function of the temperature. Parameter α is defined in the interval (0, 1) while β deter-
mines the decrease of the developmental rate at higher temperatures (Bieri et al. 1983)
when β exceeds unity. According to (3.1), we observe that:
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r(Tm1) = −β(Tm1−Tm2 ) and r(Tm2) = α(Tm2 − Tm1)− 1,
which suggests that r(Tm1), r(Tm2) ∈ (−1, 0) and leads to the following inequality

r(Tm1) < r(Tmin) < r(Tmax) < r(Tm2).

The temperature at which the maximum developmental rate occurs is called optimum
and it is denoted by Topt. In the Bieri model, it is given by

Topt = Tmax +
logα− log (log β)

log β
.

In Fig. 3.1 some curves are generated by the Bieri model in (3.1) when Tm1 = 5◦C and

Tm2 = 35◦C while the other parameters vary.
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Figure 3.1 Bieri developmental rates.

3.2.2 Briere Model

The Briere model we already seen in section (2.2.2) is the most popular and parsimo-
nious model. The developmental rate is defined as

r(T ; θ) =

α · T · (T − Tmin) ·
√

(Tmax − T ) for Tmin < T < Tmax

0 otherwise
(3.2)

where α, Tmin and Tmax are model parameters. Particularly, Tmin and Tmax are exactly
the lower and upper thermal thresholds at which the development starts or ceases re-
spectively while parameter α is an empirical constant (Briere et al. 1998). The response
variable in (3.2) is again a concave function of the temperature. Parameter α is defined

31



in (0, 1) whereas the existence of the square root in (3.2) ensures that the developmen-
tal rate declines sharply at higher temperatures. The optimum temperature in the Briere
model is given by

Topt =
1

10

{
4 · Tmax + 3 · Tmin +

√
(4 · Tmax + 3 · Tmin)2 − 40 · Tmin · Tmax

}
.

In Fig. 3.2 some curves are created by the Briere model in (3.2) when Tmin = 5◦C and
Tmax = 35◦C while the parameter α varies.
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Figure 3.2 Briere developmental rates.

3.2.3 Analytis Model

The developmental rate in Analytis model is defined by

r(T ; θ) =

α · (T − Tmin)n · (Tmax − T )m for Tmin < T < Tmax

0 otherwise
(3.3)

where α, Tmin, Tmax, n and m are parameters of this model. The exponents n and m
in (3.3) are empirical constants that determine the rate of growth and decrease of the
developmental rate respectively (Analytis 1981). Both these parameter take values in
(0,+∞) but in order to reduce the computational burden we may restrict them in a
subset of the form (0, c), for some constant c > 0. Finally, α takes values in (0, 1)

interval. The optimum temperature in this model is given by

Topt =
n · Tmax +m · Tmin

n+m
.
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The Analytis model has a multiplicative polynomial structure in which the expo-
nents change as parameters to be estimated. Such a structure needs some empirical
driven tuning when defining its thermal parameters space. Especially, in the case of
one dataset, we assumed that Tmin is greater than 4◦C. Some curves generated by the
Analytis model in (3.3) are depicted in Fig. 3.3 when Tmin = 5◦C and Tmax = 35◦C,
while parameters n and m vary.
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Figure 3.3 Analytis developmental rates.

3.2.4 Lactin Model

The Lactin model includes four parameters and the developmental rate is defined as

r(T ; θ) = λ+ eρ·T − eρ·Tm−
(Tm−T )

∆ (3.4)

where Tm is associated with the upper thermal threshold Tmax since it tends to this
value when λ tends to be zero. Parameter λ represents an asymptotic level of the de-
velopmental rate value in (3.4) that is approximated when predictor T tends either to
−∞ (extremely low temperatures) or to the threshold parameter Tm. Thus, in the event
that the λ is non-negative, the Lactin ecological function does not have a lower thermal
threshold (Tmin) and at the same time Tm ≤ Tmax as the developmental rate value in
(3.4) is limited above zero level, at which the maximum thermal thresholds undergoes.
In the case that λ is negative, Tm > Tmax and Tmin sample space is in the (−∞, Tmax)
interval. Parameter ∆ is positive and it determines the descent steepness of the de-
velopmental rate. It expresses the temperature range between the value at which the
response function begins to descend and the value of the Tm parameter. When ∆ is less
than one, the rate of descent is very high, although in the other case the rate of descent
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is lower and similar to the other ecological models. This feature triggers discontinu-
ity and lack of fit problems. Hence, in this work we define ∆ in (1,+∞) interval in
order to avoid such problems. Parameter ρ describes the acceleration of the function
from low temperatures to the optimal temperature (Lactin et al. 1995). The response
function in (3.4) has one inflection point, a maximum point at the optimum temperature
and asymmetry about this point (left skewed). Also the function has a sharp drop after
the optimum temperature, which is achieved by setting ρ in (0, ∆−1). The actual upper
thermal threshold Tmax is evaluated as the higher root of response function in (3.4). The
optimum temperature in the Lactin model is given by

Topt = Tm −
∆ · log (ρ ·∆)

ρ ·∆− 1
. (3.5)

In addition, the temperature at the inflection point of the Lactin curve is given by

Tinf = Topt −
∆ · log (ρ ·∆)

ρ ·∆− 1
. (3.6)

In Fig. 3.4 some curves are created by the Lactin model in (3.4) when Tm = 35◦C and
the parameters ∆, ρ and λ vary.
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Figure 3.4 Lactin developmental rates.

3.2.5 Ecological features of the models

There are some basic common features in all of the above-mentioned ecological models.
There is no growth below the lower temperature threshold Tmin or above the upper

temperature threshold Tmax. Specifically, in the case of the Briere and Analytis models,
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the developmental rate is positive and is defined only between the two parameters of
the thermal thresholds. Also, the developmental rate in the Bieri and Lactin models can
take negative values that cannot be interpreted. To accommodate these characteristics,
we use initial values of the parameters that allow the ecological function to receive
positive values.

The developmental rate is an asymmetric curve left skewed of its maximum point.
It increases and reaches a maximum at optimal temperature while it declines rapidly
down to zero at the higher temperature threshold Tmax that is considered as lethal tem-
perature. It includes an inflection point, with the exception of the Bieri model which is
a concave function of the temperature. The structure of the Lactin model makes it sus-
ceptible to a type of exponential pattern in data-values (Fig. 3.4). The Briere model, on
the contrary, has a specific structure, which has the first derivative of classO (T 2.5) and
can hardly trace exponential changes in data values (Fig. 3.2). Also, the model of An-
alytis has polyonimic structure as the model of Briere but it does contain more degrees
of freedom because the exponents it includes are unknown parameters (Fig. 3.3). The
Bieri model also adopts an exponential reduction after the thermal optimum threshold
but can only follow the developmental increase of the dataset linearly (Fig. 3.1). All
four ecological models have been used in the literature to provide reasonable estimates
of the thermal thresholds of several anthropods’ developmental rates at various stages
(Bieri et al. 1983, Kontodimas et al. 2004, Aghdam et al. 2011). However, the Bieri
model is underutilized in the literature, so we include it in this study to gain a better
understanding of ecological models that describe temperature-dependent development.
Additionally, in (Kontodimas et al. 2004, Aghdam et al. 2011) the ecological mod-
els were compared based on the accuracy of the real data thermal threshold estimates,
the adjusted coefficients of regression (R2), and the residual sum of squares values. In
summary, the Briere and Analytis models, appear to overestimate and underestimate the
upper and lower thermal thresholds, respectively, whereas the Bieri and Lactin models
appear to meet the majority of the criteria used in the comparison. Despite these mi-
nor differences, all of the above models appear to provide higher R2 values than other
models in real-data applications in the literature and we include all four in the current
work.

3.3 Measurement error

Probabilistic random error due to chance and systematic error due to data with excessive
zeros is added in order to include uncertainty in the ecological models already listed. In
section 3.3.1, we present the notation adopted and the probability schemes implemented
in this analysis.
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3.3.1 The likelihood of the data

Let yi represent the observed developmental rates of the ith individual observed at Ti
temperature, where i = 1, . . . , N . We consider yi to be independent response variables
counted as the reciprocal of the number of days until the development of the ith individ-
ual takes place and the range of its value lies in the (0, 1) interval. Furthermore, let y, T
and θ be the vectors of the response, the predictor and the parameters respectively then
the conditional expectation E(y|T, θ) is considered to vary according to the ecological
function r(T ; θ) presented in (3.1), (3.2), (3.3) and (3.4) respectively.
The data distribution is denoted by

p(y|T, θ) =
N∏
i=1

p(yi|Ti, θ).

In this study we consider the Gaussian and the Inverse-Gamma distributions as the dis-
tribution of the response data yi. Specifically, the Gaussian distribution is used broadly
in the literature as a good approximation to most unimodal distributions with finite vari-
ance due to the general form of the Central Limit Theorem. Thus, it can be used as to
approximate a more complicated model likelihood of the data. The non-linear model of
the independent response rates has the Gaussian distribution given by

yi ∼ N(r(Ti; θ), σ
2) (3.7)

where the mean of the Gaussian likelihood is driven by the respective ecological model,
whereas its standard deviation σ is considered as an unknown parameter. We consider a
weakly informative prior distribution for σ like: the Inverse-Gamma InvΓ

(
10−3, 10−3

)
.

The non-linear model used in (3.7) is a constant variance model among different tem-
peratures. In addition, it allows for zero observed rate values, which occur when the
stage of the insect does not change in perpetuity. Such modelling, however, has the
disadvantage of lack of interpretability in the case of estimated negative rate values.

On the other hand, the Inverse-Gamma distribution is a plausible alternative for
modelling positive observed rates, as it handles positive values that describe ratios such
as developmental rates whose inverse are positive counts (such as days passed until the
expected development occurs) that can be described by the Gamma distribution. The
non-linear model of the independent response rates has the Inverse-Gamma distribution
given by

yi ∼ InvΓ(ζ, (ζ − 1) · r(Ti; θ)) (3.8)

where ζ is the shape parameter of the Inverse-Gamma distribution. The mean of the
distribution equals r(Ti; θ), whereas the variance equals r(Ti;θ)

2

(ζ−2)
. The Inverse-Gamma

likelihood in (3.8) is a natural alternative to model observed positive rates. Herein, its
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mean is driven by the respective ecological function, whereas its variance depends both
on the shape parameter ζ and the ecological function r(Ti; θ) as well, which allows the
variance to be temperature dependent. For the prior distribution of the shape parameter
ζ we have chosen a weakly informative Γ

(
10−1, 10−2

)
.

3.3.2 Zero-rates case

There are situations in which any insect development does not occur throughout the
cohort study. This is indicated by zero values in the response variable, which can theo-
retically be interpreted as the number of days required for the insect to move to its next
stage never ending, implying that the developmental rate is the reciprocal of infinity.
In such cases, the MCMC sampling procedure can be extended either to include prior
information about the case of no development by adjusting the prior knowledge of the
parameters concerned or to include a zero-inflation scheme. For this work, we suggest
the use of a Zero Inflated Inverse Gamma distribution, which gives zero value with
probability pi for the ith insect observed at Ti temperature. Particularly, the probability
density function of the observation yi is:

P (yi|Ti, θ) =

{
pi if yi = 0

PInvΓ {ζ, (ζ − 1) · r(Ti; θ)} · (1− pi) if yi 6= 0

logit (1− pi) = [c · {r(Ti; θ)− k}]⇒ pi =
1

e{c·(r(Ti;θ)−k)} + 1

(3.9)

where c is a constant positive parameter that has the opposite order of magnitude
of the sample mean y, while k is the inflation point of logit link function where the
probability of zero pi is equal to 1

2
. The constant k is associated with the constant c

and can be chosen so that the zero rate of development matches the probability pi at a
predetermined level like 0.9. According to the real data example presented below in the
results section, the proposed values that satisfy the above criteria for constants c and k
are 102 and 5 · 10−3, respectively.

As the developmental rate of r(Ti) increases to its maximum, the probability pi in
(3.9) decreases towards zero. On the other hand, when r(Ti) tends to be a very small
number, the probability pi in (3.9) tends to be one.

3.3.3 Priors

In the Bieri model (3.1) the prior distribution of the parameters α, β, Tm1 and Tm2 are
shown in Table 3.1 respectively.

In the Briere model (3.2), the transformation ã = − log(α) is considered instead of
the original parameter α. Weakly informative priors are considered for ã, Tmin and Tmax
as shown in Table 3.1 respectively. In the Analytis model (3.3) the transformation ã =
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Table 3.1 Priors of the parameters of the four ecological models.

Models Parameters Priors

Bieri

α U(0,1)
β Γ

(
2 · 10−1, 10−1

)
Tm1 Γ

(
10−1, 10−2

)
Tm2 Γ

(
10−1, 10−2

)
Lactin

†l = −λ Γ
(
10−1, 10−1

)
†del = 1

∆
U(0,1)

†a = e(ρ−del)·Tm Γ
(
10−2, 10−3

)
ρ U(0,1)

Briere

†ã = − log(α) Γ
(
10−1, 10−2

)
Tmin Γ

(
10−2, 10−2

)
Tmax Γ

(
10−2, 10−3

)
Analytis

†ã = − log(α) Γ
(
10−1, 10−2

)
m Γ

(
10−1, 10−1

)
m Γ

(
10−1, 10−1

)
Tmin Γ

(
10−2, 10−2

)
Tmax Γ

(
10−2, 10−3

)
† transformed parameter used.

− log(α) is considered instead of α with the weakly prior distribution Γ
(
10−1, 10−2

)
.

Additionally, the prior distributions utilized for parameters m, n, Tmin and Tmax are
given in Table 3.1 respectively.

In the Lactin model (3.4) a new parametrization is used. Hence, the new transformed
parameters are:

l = −λ , del =
1

∆
, a = e(ρ−del)·Tm

which are considered instead of the original parameters λ, ∆ and Tm, respectively. By
their definition, the new parameters are taking values in λ ∈ R, 0 < del < 1 and
a ∈ (0, ρ ·∆). The latter is derived by the definition of the optimum temperature in
the Lactin model (3.5) and the fact that Topt > 0. In addition, should the temperature
at the inflection point Tinf be a positive number, then from (3.6) we can get that a ∈
(0, ρ2 ·∆2). The prior distributions considered are shown in Table 3.1 respectively for
each ecological model.

3.4 Bayesian inference

In the current section, we provide details of statistical model specifications in the Bayesian
framework. Specifically, we provide a brief description of the most important features
of Stan’s implementation of HMC and VBI so the reader can get familiar with the tools
that Stan is based on. We then provide model selection and model averaging techniques
in order to compare the different ecological models and to explore and interpret the
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parameters of interest combining predictions from all the four of them.

3.4.1 HMC and VBI techniques

The HMC method is a Monte Carlo technique that uses Hamiltonian dynamics in order
not only to explore efficiently the target distribution but also to propose distant samples
in the parameter space that do not exclusively depend on the current state of the Markov
chain like considered in previous MCMC methodology (Neal 2010). In this way, many
performance challenges are tackled like either the slow convergence due to the fact that
the parameter space with high posterior support is not reached or the poor exploration of
the target distribution due to its multi-modality or its shape irregularities. The existence
of Hamiltonian dynamics in the system of the joint density mass function allows the
preservation of volume and hence adequate trajectories can be used to define complex
mappings of the parameter state space without the need to account for cumbersome
Jacobian calculations (Barber et al. 2003). Thus, by carefully designing automated
trajectory realizations in the Hamiltonian dynamics system, the Stan team managed to
create an augmented software called STAN (Carpenter et al. 2017), which materializes
HMC sampling for the parameters of interest.

Moreover, independently, Automatic Differentiation Variational Inference (ADVI)
technique is referred to the machine learning field (Blei et al. 2017). The latter is a
VBI method and posterior target distributions are approximated by choosing the closest
distribution to a parametric family of tractable distributions like the exponential family
via optimization. In order to achieve this point-wise estimations of the parameters of the
family distribution are estimated so that the Kullback–Leibler ‘KL’ divergence function
is minimized. Specifically, since the KL divergence is intractable the Evidence Lower
Bound is maximized instead (Blei et al. 2017).

3.4.2 Model selection and model averaging

In case there are m models (M1, . . . ,Mm) under consideration, the posterior proba-
bility of the suitability of the ith model given the data y, is given by

p(Mi|y) =
p(y|Mi)p(Mi)∑m
k=1 p(y|Mk)p(Mk)

(3.10)

where p(Mi) expresses the prior belief for the ith model, while the p(y|Mi) is the
model evidence also called ‘marginal likelihood’ and it can be interpreted as the likeli-
hood over the space of models, marginalizing out the parameters of the ith model. The
ratio of the marginal likelihoods between two models p(y|Mi)

p(y|Mj)
is called Bayes factor and

is the posterior odds of the null hypothesis that the ith model fits better the data than
the jth model does when the prior probability of the null is one-half (Kass and Raftery
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1995). The Bayes factor is used in order to give evidence for the most probable model
given the data, when comparing two alternative models (Kass and Raftery 1995).

In the case of Bayesian model averaging, the model selection uncertainty is taking
into account in statistical inference. The joint posterior p(Mi, θi|y) of the ith model
with vector of parameters θi, using the Baye’s rule, is proportional to the product of the
likelihood of the ith model times the prior distribution of the parameters p(θ) times the
prior distribution p(Mi) (that expresses our uncertainty of the ith model)

p(Mi, θi|y) ∝ p(y|θi,Mi) · p(θ) · p(Mi). (3.11)

The uncertainty of the ith model given the data can then be re-expressed via the poste-
rior probability p(Mi|y) defined by the ratio in (3.10), in case of existence of multiple
models. The posteriors of the models can be thought as weights that are critical to
the Bayesian model averaging as they can be used to extract useful weighted statistics
from the data distribution while at the same time taking into account model uncertain-
ties. Estimation of model parameters and model uncertainties can be achieved either by
directly sampling from the joint posterior (3.11) or by approximating the marginal like-
lihood of each model independently and, accordingly, by controlling the outcomes with
a view to formulating proper weights and proceeding with the calculation of the aver-
aged statistics. For the former case, techniques like the reversible jump MCMC (Green
1995, George and McCulloch 1997) and variable selection samples (Carlin and Chib
1995, Kuo and Mallick 1998, Dellaportas et al. 2000) are used. On the other hand, for
the later case, techniques of marginal likelihood approximations via thermodynamic in-
tegration (Friel and Pettitt 2008), bridge sampling (Meng and Wong 1996), importance
sampling (Perrakis et al. 2014) or via information- criteria perspective like in (Kass and
Raftery 1995) are used.

3.4.2.1 Information criteria

The criteria used in the current work are the Akaike information criterion ‘AIC’, the
Bayesian information criterion ‘BIC’, the Deviance information criterion ‘DIC’, the
Watanabe–Akaike information criterion ‘WAIC’ and the Leave-one-out cross-validation
criterion ‘Loocv’. Briefly, these criteria provide an approximation of the expected log
predictive density for new-coming data while correcting bias from data usage. In par-
ticular AIC (Akaike 1974) is defined as the difference

AIC(Mi) = −2 log(y|θ̂i) + 2ki
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where θ̂i is the Maximum Likelihood estimate ‘MLE’ of the ki parameters of the ith

model. Similarly, BIC (Schwarz et al. 1978) is defined as the difference

BIC(Mi) = −2 log(y|θ̂i) + ki · log(n)

where n is the sample size. In addition, DIC (Spiegelhalter et al. 2002) is defined as the
following difference:

DIC(Mi) = −2 log p(y|θ̂i) + 2pDIC

where θ̂i is the posterior mean of the parameters of the ith model, whereas pDIC is the
effective number of parameters and it is evaluated following (Spiegelhalter et al. 2002,
Gelman et al. 2014) by either

pDIC1 = Eθ|y{−2 log p (y|θ)}+ 2 log
{
p
(
y|θ̂i
)}

,

or
pDIC2 =

V arθ|y {log p(y|θ)}
2

,

where Eθ|y {log p(y|θ)} is an expectation over the posterior density of θ, whereas
V arθ|y

{
log p(y|θ̂)

}
is the variance of the log posterior density of the observed data y,

over the posterior density of θ. Furthermore, WAIC (Watanabe 2010) is defined as the
following difference:

WAIC(Mi) = −2
N∑
j=1

logEθi {p(yj|θi)}+ 2pWAIC

where Eθi {p(yj|θi)} is the expectation of the probability at yj data point over the pos-
terior distribution of the parameters of the ith model, whereas pWAIC is the effective
number of parameters and it is evaluated following (Gelman et al. 2014) by either

pWAIC1 = 2
N∑
j=1

[
logEp(θ|y) {p(yj|θ)} − Ep(θ|y) {log p(yj|θ)}

]
or

pWAIC2 =
N∑
j=1

varp(θ|y) {log p(yj|θ)}

where Ep(θ|y) {log p(yj|θ)} is the expectation over the logarithm of the posterior density
of θ at yj data point, whereas varp(θ|y) {log p(yj|θ)} is the variance of the log posterior
density of the observed data yj , over the posterior density of θ.
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Furthermore, LooCV (Gelman et al. 2014) is defined as the following difference:

LooCV (Mi) = −2
N∑
j=1

logEθ−ji

{
p(yj|θ−ji )

}
− 2βLooCV

where Eθ−ji
{
p(yj|θ−ji )

}
is the expectation of the probability at yj data point over the

posterior distribution of the parameters of the ith model. The posterior distribution
p(θ−ji |y−j) is sampled considering a partition of the data, leaving one data value (yj)
out of the original sample. The βLooCV is a bias correction of the measure and it is
evaluated following (Gelman et al. 2014) by

βLoocv =
N∑
j=1

logEθi {p(yj|θi)} −
1

N

N∑
κ=1

N∑
j=1

logEθ−κi

{
p(yj|θ−κi )

}
where Eθ−κi

{
p(yj|θ−κi )

}
is the expectation of the probability at yj data point over the

posterior distribution of the parameters of the ith model leaving out the κth observation.

3.4.2.2 Marginal likelihood estimation techniques

The marginal likelihood can be viewed as a normalizing constant zi = p(y|Mi) of the
density q(θi|y) = p(y|θi)·p(θi) within the ith ecological model that includes parameters
θi. In the general scheme of comparing the two densities q0 and q1 of interest, as in the
case of the Bayes factor of two models or in the case model’s prior and posterior, a
general path from q0 to q1 can be created according to (Gelman and Meng 1998) using
a class of densities p(θi|y, t) on the same space indexed by the continuous auxiliary
variable say t ∈ [0, 1]. A key formula that links the corresponding normalizing constant
z(t) and the unormalized density q(θi|y, t) that correspond to the sampling distribution
p(θi|y, t) is given by:

d

dt
log z(t) =

∫
1

z(t)

d

dt
q(θi|y, t)p(θi|t)dθi = Et

{
d

dt
log q(θi|y, t)

}
, (3.12)

where the expectation is with respect to the sampling distribution p(θi|y, t).
In addition, another key formula of estimating a ratio of normalizing constants has

been of great interest such as in computing likelihood ratios in hypothesis testing or
in computational physics in estimating free energy differences, or in computing the
Bayes factor in Bayesian framework (Meng and Wong 1996). The general formula is
as follows:

z1

z0

=
p(y|θ, t = 1)

p(y|θ, t = 0)
=
E0 {h(θ) · q(θ|y, t = 1)}
E1 {h(θ) · q(θ|y, t = 0)}

(3.13)

whereE0 andE1 expectations are with respect to posterior distribution densities p(θ|y, t =

0) and p(θ|y, t = 1) respectively, whereas the bridge function h(θ) is defined and over-
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lapped by the common support of the former densities.
Using general formulas (3.12) and (3.13), several marginal probability evaluation

schemes of the ith model are derived (Gelman and Meng 1998). The power posterior
sampling (Friel and Pettitt 2008), the importance sampling (Perrakis et al. 2014) and
the bridge sampling (Meng and Wong 1996, Overstall and Forster 2010) techniques are
used for the current work.

In the power posterior case, formula (3.12) is integrated with respect to variable t
and q(θi|y, t) is substituted with density p(θi|y)tp(θi). The marginal likelihood zi =

p(y|Mi) is derived from logarithmic scale by the equation:

log {p(y|Mi)} =

∫ 1

0

Eθi|y,t {log p(y|θi)} dt (3.14)

where expectation Eθi|y,t is taken with respect to the density p(θi|y)tp(θi) which is de-
fined as the power posterior at temperature t (Friel and Pettitt 2008).

Additionally, the standard error sei for the ith model estimator (3.14), as shown in
section B.1 of the appendix B is approximated by:

ŝei =

√√√√(t2 − t1)2

2
s2

1 +
n−1∑
k=2

(tk − tk−1)2

2
s2
k +

(tn − tn−1)2

2
s2
n,

where tk is the time after discretization 0 = t0 < t1 < tk < tn = 1 and sk is the
standard error of the corresponding estimation log {p(y|Mi)} given in (3.14).

In the case of importance sampling, the marginal likelihood is assessed by introduc-
ing the proper density function g. After sampling from the proposed density function g,
the marginal likelihood is calculated as with respect to g as:

p(y|Mi) = Eg

{
q(θi|y)

g(θi)

}
Following (Perrakis et al. 2014), we use the density q(θi|y) equal to p(y|θi, φi) ·

p(θi, φi) and the auxiliary importance function g used is as follows:

g(θi) = g(θi, φi) = p(θi|y)p(φi|y), (3.15)

where (θi, φi) are the parameters of the ith model divided into two blocks θi and φi

which may or may not be independent. The right hand side of (3.15) is the product of
the marginal posterior distributions of the block. Thus, the marginal probability which
gives the target value is given as follows:

p(y|Mi) =

∫∫
p(y, θi, φi)

g(θi, φi)
g(θi, φi)d(θi, φi) = Eg

{
p(y, θi, φi)

g(θi, φi)

}
(3.16)
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The standard error sei of (3.16) as shown in section B.2 of the appendix B is:

ŝei =

√√√√ 1

K

K∑
j=1

{
p(y|θj, φj) · p(θj, φj)

g (θj)
− ẑi

}2

,

where ẑi is the estimation of the corresponding marginal probability (in the same form
of (3.16)), while (θj, φj) are draws j = 1, 2, . . . , K from the importance function in
(3.15).

Additionally, using an alternative version of (3.13) in (Meng and Wong 1996, Frühwirth-
Schnatter 2004, Overstall and Forster 2010) the marginal likelihood of a single model
is evaluated using bridge sampling by the formula:

zi = p(y|Mi) =
Eg {h(θi) · q(θi|y)}
Ep {h(θi) · g(θi)}

, (3.17)

where Eg and Ep are the expectations with respect to g(θi) a so-called proposal distri-
bution and to p(θi|y) the ith model posterior distribution respectively.

The bridge function h(θi) is selected to minimize the relative mean-squared error of
(3.13). Following (Meng and Wong 1996) the bridge function is specified by:

h(θi) = C · 1

s1 · q(θi|y) + s2 · p(y) · g(θi)
, (3.18)

where s1 = N1

N1+N2
, s2 = N2

N1+N2
and C is a constant. N1 is the sample size from the

posterior and N2 is the sample size from g(θi).
The optimal bridge function in (3.18) includes the marginal likelihood under-assessment

so that it cannot be evaluated directly. For this purpose the iterative method suggested
by (Meng and Wong 1996) and applied in (Gronau et al. 2020) in R software (Team
2021) is used. The alternatives used in place of distribution g is either a multivariate
normal distribution with mean vector and covariance matrix that match the respective
posterior samples quantities or a standard multivariate normal distribution in combina-
tion with a warped posterior distribution of which the first three moments correspond to
(Gronau et al. 2020).

Moreover, following (Frühwirth-Schnatter 2004) the relative mean square errorRE2
i =

E{ẑi−zi}2
z2i

of (3.17) is evaluated by the formula:

R̂E
2

i =
1

N2

Vg {f1(θi)}
E2
g {f1(θi)}

+
ρf2(0)

N1

Vp {f2(θi)}
E2
p {f2(θi)}

, (3.19)

where f1(θi) = q(θi|y)
s1·q(θi|y)+s2·g(θi) , f2(θi) = g(θi)

s1·q(θi|y)+s2·g(θi) ,
Vg(f1(θi)) =

∫
{f1(θi)− E(f1(θi))}2 g(θi)dθ is the variance of f1(θi) with respect to
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g(θi). The term ρf2(0) in (3.19) corresponds to the normalized spectral density of the
auto-correlated process f2(θi) at the frequency 0.

Following (Gronau et al. 2020) the square root of RE2 can be interpreted as coeffi-
cient of variation provided that the bridge sampling estimator ẑi is unbiased. Then the
stantard error sei of the bridge estimator is evaluated by the product ŝei = R̂E · E(ẑi)

3.4.2.3 BMA weights

We can derive a weighted prediction ỹ over the m different modelsM1,M2, . . .Mm

predictions ŷ1, ŷ2, . . . ŷm by imposing appropriate weights w1, w2, . . . wm.

ỹ =
m∑
i=1

ŷi · wi and
m∑
i=1

wi = 1.

In the Bayesian framework, model weights definition is straightforward. The model
weights used are the posterior model weights wi = p(Mi|y) given in (3.10) that rep-
resent the relative probability of each model given the data. So a major challenge is to
estimate these Bayesian weights. Except for using the marginal likelihood estimations
mentioned in previous section, we also investigate approximations of the weights by
using the BIC for each model. In particular, model weights can be estimated through
the following equations (Kass and Raftery 1995, Buckland et al. 1997):

wi =
e−0.5·(BIC(Mi))∑m
j=1 e

−0.5·(BIC(Mj))
.

(3.20)

Instead of BIC, the AIC, DIC, WAIC and LooCV are also used in (3.20). We investigate
both approaches in insect observed rates and compare the results taking into account
model complexity, data scarcity and Biological interpretation.

3.5 Real-life applications

The reciprocals of the days counted express the observed rates of the insects and mites
from egg to adult stage. The range of the observed rates are at [0, 1] interval. The zero
value indicates that no development is observed. This situation implies the existence of
a truncation point which gives explicitly an upper bound for the upper thermal threshold.

Two datasets are used in this analysis. They concern the study of the two-spotted
mite, Tetranychus urticae (Barber et al. 2003) and the fourteen-spotted ladybird beetle,
Propylea quatuordecimpunctata (Papanikolaou et al. 2013). The Tetranychus urticae

data developmental rates have minimum 0.019 at 15oC and maximum 0.182 at 32.5oC.
The Propylea quatuordecimpunctata dataset consist of 105 beetles and their develop-
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Table 3.2 Model selection criteria for the eight models applied to the Tetranychus ur-
ticae data.

AIC DIC LooCV WAIC BIC

Gaussian
models

Bieri -1663.2 -1667.7 -1672.0 -1672.1 -1638.6
Briere -1592.2 -1595.8 -1595.8 -1595.9 -1574.7

Analytis -1738.3 -1736.9 -1744.0 -1744.0 -1717.3
Lactin -1673.9 -1675.6 -1689.1 -1689.1 -1638.8

Inverse
Gamma
models

Bieri -1715.6 -1716.0 -1717.2 -1717.2 -1698.1
Briere -1749.4 -1749.4 -1746.3 -1746.3 -1735.4

Analytis -1889.0 -1887.3 -1889.0 -1889.1 -1867.6
Lactin -1911.4 -1911.0 -1910.5 -1910.6 -1893.9

log (PyIS)† (se) log (PyPP )‡ (se) log (PyBS)§ (se)

Gaussian
models

Bieri 796.1 (28.6) 777.2 (19.0) 792.6 (7.1)
Briere 759.6 (39.0) 728.2 (12.4) 758.0 (6.9)

Analytis 815.9 (40.5) 830.2 (11.0) 821.6 (12.3)
Lactin 797.8 (40.0) 821.8 (23.2) 793.8 (56.4)

Inverse
Gamma
models

Bieri 837.4 (42.6) 839.7 (9.0) 832.1 (10.0)
Briere 846.7 (46.1) 874.0 (12.8) 848.0 (3.5)

Analytis 904.2 (42.6) 928.2 (16.3) 903.9 (26.2)
Lactin 920.9 (30.3) 956.4 (17.0) 922.0 (6.5)

† log (PyIS) denotes the logarithm of estimated marginal likelihood via Impor-
tance sampling,
‡ log (PyPP ) denotes the logarithm of estimated marginal likelihood via Power
posterior,
§ log (PyBS) denotes the logarithm of estimated marginal likelihood via Bridge
sampling.

mental rate have minimum 0 at 35oC and maximum 0.111 at 32.5oC.

3.5.1 Tetranychus urticae example

3.5.1.1 Experimental design

There are 247 mites that have reached adult stage until the study ended. The four
ecological models are used both assuming the Gaussian and the Inverse Gamma distri-
butions for the data. The information criteria along with the estimates of the marginal
likelihood for each model are provided in Table

3.5.1.2 Estimation of the parameters

3.5.1.3 Model comparison

Both Information criteria and marginal likelihood results clearly suggest that the Inverse
Gamma distribution has better fit than the Gaussian distribution at Tetranychus urticae

dataset across all the ecological models. Furthermore the Lactin model with the Inverse
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Gamma distribution stands out against all the other cases. In the Gaussian case, the
Analytis model excels.The use of the Inverse Gamma distribution, on the other hand,
not only increases the Analytis model’s efficiency but also adds flexibility to the Lactin
model. The Briere model has the poorest criteria values (Table 3.2).
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Figure 3.5 Posterior predictive distributions versus Tetranychus urticae data using
Gaussian distribution.

Although the information criteria have fairly indicated the Briere model as the most
suitable for the data, when we concentrate on the upper thermal threshold Tmax estimate,
its performance is poor compared to the other ecological models shown in Fig. 3.6.
Nevertheless, even though there is a clear picture concerning information criteria values
between the ecological models, there is some variation between marginal likelihood
estimates within ecological models in Table 3.2.

Posterior means, 95% credible limits and the effective sample size (neff) of the ther-
mal thresholds and the deviance of the four ecological models are summarised in Tables
3.7 and 3.3 using the Inverse Gamma and the the Gaussian distribution, respectively. In
addition, the HMC, ADVI meanfield and ADVI fullrank methods appear alternately in
each column for each parameter of interest.

The Tmin credible limits estimates between the four ecological models do not over-
lap in Tables 3.7 and 3.3. Bieri model has greater limits and Lactin model gives negative
value estimates in the Inverse Gamma case Table 3.7. The credible limits for Topt over-
lap between Bieri and Analytis whereas the estimates are lower for Lactin model and
greater for Briere model. The Tmax credible limits overlap for Bieri and Lactin in Table
3.3, has higher values for Briere and lower for Analytis model.

3.5.1.4 Computational methods comparison

The credible limits using ADVI meanfield and fullrank methods overlap with the HMC
credible limits in most cases in Tables 3.7 and 3.3. Also the ADVI fullrank method
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Table 3.3 Posterior summaries for the four models using the Gaussian distribution for
the Tetranychus urticae data. In each column we report the HMC, the ADVI-Mean field
and ADVI-Full rank estimates respectively.

HMC
ADVI

meanfield
ADVI

fullrank neff‡

B
ie

ri

Tmin
10.5

(10.2, 10.8)
9.8

(9.5, 10.2)
9.8

(9.2, 10.3) 15089

Topt
33.0

(32.7, 33.4)
158.6

(144.4, 165.4)
183.8

(76.4, 368.5) 8164

Tmax
36.3

(35.9, 36.8)
164.9

(161, 169)
190.6

(80, 376.1) 7561

dev †
-1677.1

(-1683.2, -1666.6)
-1461.0

(-1467.7, -1443.6)
-1461.7

(-1467.7, -1456.3) 10087

B
ri

er
e

Tmin
9.3

(8.6, 9.9)
9.3

(9.1, 9.5)
9.3

(8.6, 9.9) 8690

Topt
33.1

(32.5, 33.7)
33.0

(32.8, 33.2)
33.1

(32.4, 33.7) 8028

Tmax
40.0

(39.3, 40.9)
39.9

(39.6, 40.1)
40.0

(39.1, 40.9) 7562

dev †
-1602.2

(-1606.8, -1593.4)
-1593.2

(-1605.7, -1569.1)
-1598.5

(-1606.3, -1583.6) 9618

A
na

ly
tis

Tmin
4.4

(4.0, 5.3)
4.3

(4.2, 4.4)
5.3

(4.8, 6.1) 8757

Topt
32.9

(32.7, 33.3)
33.0

(32.9, 33.1)
33.2

(32.6, 33.7) 41

Tmax
35.3

(35.1, 35.5)
35.2

(35.2, 35.3)
35.2

(35.1, 35.4) 8246

dev †
-1750.3

(-1758.0, -1738.3)
-1744.7

(-1755.6, -1724)
-1709.1

(-1741.9, -1606.9) 10954

L
ac

tin

Tmin
10.4

(10.1, 10.7)
-3.9

(-5.8, -1.9)
-0.7

(-4.0, 3.0) 11526

Topt
32.6

(32.4, 32.8)
32.2

(32.0, 32.3)
32.0

(31.8, 32.2) 9884

Tmax
36.9

(36.6, 37.3)
38.3

(38.1, 38.5)
38.2

(37.9, 38.5) 7797

dev †
-1693.9

(-1703, -1679.6)
-1764.0

(-1780.3, -1738.1)
-1776.2

(-1784.9, -1762) 8227

† deviance of the model given the data,
‡ effective sample size.
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Table 3.4 BMA weights for the Tetranychus urticae data.

Bieri Briere Analytis Lactin

Gaussian
distribution

aic_w 4.9E-17 1.9E-32 0.9 1.0E-14
dic_w 9.4E-16 2.3E-31 0.9 4.9E-14

loocv_w 2.3E-16 6.6E-33 0.9 1.2E-12
waic_w 2.4E-16 6.9E-33 0.9 1.2E-12
bic_w 8.1E-18 1.1E-31 0.9 9.0E-18
elbo_f 3.1E-53 2.9E-27 0.001 0.999
elbo_r 7.3E-45 1.5E-18 0.9 3.5E-39

Inverse
Gamma

distribution

aic_w 3.0E-43 6.6E-36 1.4E-5 0.9
dic_w 4.5E-43 8.1E-36 7.1E-6 0.9

loocv_w 1.1E-42 2.2E-36 2.1E-5 0.9
waic_w 1.0E-42 2.1E-36 2.1E-5 0.9
bic_w 3.0E-43 3.8E-35 1.9E-6 0.9
elbo_f 1.6E-20 8.9E-19 0.9 1.0E-36
elbo_r 1.0E-200 1.0E-171 0.9 2.7E-58

seems to be closer to the HMC estimates as in Briere and Lactin models in Table 3.7.
However in general it has worst fit than the corresponding fitted model using HMC and
also gives wider 95% Cr.I..

3.5.1.5 BMA performance

Bayesian model averaging provides alternative estimates for the parameters of interest,
combining the predictive efficiency of all four ecological models. The derived weights
are shown in Table 3.4 whereas the BMA estimates and their 95% Cr.I. are given on
Table 3.5 and are divided into the data case of the Gaussian distribution and the data
case of the Inverse Gamma distribution. The predictive bias of the Analytis and Lactin
models appear to affect the model averaging estimates of Tmin, Tmax and the deviance
in the Gaussian and the Inverse Gamma case respectively.

Also different weights based on (3.20) give almost identical 95% credible limits.
However using ELBO based BMA weights do not give robust estimates of the param-
eters of interest which is not unexpected since the ELBO is a lower bound estimate of
the marginal likelihood. Furthermore, the time elapsed until the completion of the al-
gorithm for ADVI methods is up to 52 seconds, while for the HMC method is at least
476 seconds for Tetranychus dataset as shown in Table 3.6.
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Table 3.5 The mean and 95% Cr.I. limits of the BMA estimates of parameters of interest
calculated with the use of information criteria score weights assuming the Gauussian
and Inverse Gamma distributions respectively for Tetranychus urticae data.

Tmin Topt Tmax dev†

Mean
95% Cr.I.

Mean
95% Cr.I.

Mean
95% Cr.I.

Mean
95% Cr.I.

G
au

ss
ia

n
M

od
el

aic_w
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

dic_w
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

loocv_w
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

waic_w
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

bic_w
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

elbo_mf
4.4

(4.0, 5.3)
32.6

(32.4, 32.8)
36.9

(36.5, 37.3)
-1693.9

(-1703.1, -1679.7)

elbo_fr
4.4

(4.0, 5.3)
32.9

(32.7, 33.3)
35.3

(35.1, 35.5)
-1750.3

(-1758.0, -1738.3)

In
ve

rs
e

G
am

m
a

M
od

el aic_w
4.2

(4.0, 4.6)
32.0

(31.8, 32.2)
38.4

(38.1, 38.9)
-1916.3

(-1920.6, -1908.3)

dic_w
4.2

(4.0, 4.6)
32.0

(31.8, 32.2)
38.4

(38.1, 38.9)
-1916.3

(-1920.6, -1908.3)

loocv_w
4.2

(4.0, 4.6)
32.0

(31.8, 32.2)
38.4

(38.1, 38.9)
-1916.3

(-1920.6, -1908.3)

waic_w
4.2

(4.0, 4.6)
32.0

(31.8, 32.2)
38.4

(38.1, 38.9)
-1916.3

(-1920.6, -1908.3)

bic_w
4.2

(4.0, 4.6)
32.0

(31.8, 32.2)
38.4

(38.1, 38.9)
-1916.3

(-1920.6, -1908.3)

elbo_mf
4.2

(4.0, 4.6)
33.6

(33.3, 33.9)
35.0

(35.0, 35.1)
-1894.0

(-1899.2, 1885.2)

elbo_fr
4.2

(4.0, 4.6)
33.6

(33.3, 33.9)
35.0

(35.0, 35.1)
-1894.0

(-1899.2, 1885.2)

† deviance of the model given the data.
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Table 3.6 Algorithmic working time in seconds, for two datasets.

Tetranychus urticae

Gaussian

Bieri Briere Analytis Lactin

HMC 2011 476 9852 5672
ADVI-meanfield 8 1 52 1
ADVI-fullrank 45 6 38 44

Inverse Gamma

HMC 1375 761 3231 4917
ADVI-meanfield 2 4 15 27
ADVI-fullrank 2 34 14 44

Propylea quatuordecimpunctata

Gaussian

Bieri Briere Analytis Lactin

HMC 4335 20218 4913 1426
ADVI-meanfield 13 7 3 16
ADVI-fullrank 48 11 12 16

Zero Inflated Inverse Gamma

HMC 1078 321 15291 3073
ADVI-meanfield 41 5 9 10
ADVI-fullrank 52 5 39 18

The average difference between the working times of HMC and each ADVI method
is around 3500 seconds (58 minutes) whereas between the meanfiled and fullrank is
around 18 seconds. These findings illuminate the VBI fullrank method’s time-efficacy.

In Fig. 3.6 the posterior predictive distributions versus Tetranychus urticae data
using Inverse Gamma distribution are shown for the ecological models.

The adaptivity in data across predictor values is clear in all the ecological models,
where the 95% credible limits are adjusted to data variance in each temperature level.
On the other hand, in the Gaussian case (Fig. 3.5) the variance of the posterior remains
constant across predictor values.

51



Table 3.7 Posterior summaries for the four models using the Inverse Gamma distribu-
tion for the Tetranychus urticae data. In each column we report the HMC, the ADVI-
meanfield and ADVI-fullrank estimates respectively.

HMC
ADVI

meanfield
ADVI

fullrank neff‡

B
ie

ri

Tmin
9.4

(9.3, 9.6)
9.3

(9.1, 9.4)
9.3

(9.0, 9.5) 19741

Topt
33.7

(33.2, 34.1)
145.5

(134.8, 149.8)
203.2

(114.5, 326.6) 8888

Tmax
35.8

(35.4, 36.5)
150.8

(149.2, 152.5)
209.0

(114.5, 326.6) 7738

dev †
-1720.9

(-1724.9, -1713)
-1652.9

(-1658.6, -1637.6)
-1652.4

(-1658.5, -16) 10228

B
ri

er
e

Tmin
6.6

(6, 7)
6.6

(6.4, 6.7)
6.5

(6.1, 7) 7933

Topt
36.7

(35.2, 38.5) 36.6(36.1, 37)
36.6

(35, 38.3) 6978

Tmax
45.0

(43.1, 47.3)
44.8

(44.2, 45.4)
44.9

(42.8, 47) 6935

dev †
-1753.3(

-1757, -1745.9)
-1752.9

(-1757.1, -1741.4)
-1751.9

(-1756.7, -1740.4) 8638

A
na

ly
tis

Tmin
4.2

(4, 4.6)
7.6

(7.5, 7.8)
6.0

(4.4, 9.4) 9977

Topt
33.6

(33.3, 34)
99.9

(96.6, 103)
79.9

(16.8, 239.3) 7876

Tmax
35.0

(35, 35.1)
99.9(

96.6, 103.1)
80.9

(17.5, 240.6) 9038

dev †
-1894.0

(-1899.2, -1885)
-1670.9

(-1691.8, -1641.4)
-1495.1

(-1687.4, -149.5) 12370

L
ac

tin

Tmin
-18.7

(-18.7, -18.7)
7.8

(7.6, 8.1)
-18.7

(-18.8, -18.7) 18393

Topt
32.0

(31.8, 32.2)
32.1

(31.8, 32.3)
33.9

(33.8, 34.1) 12228

Tmax
38.4

(38.1, 38.9)
42.6

(42.4, 42.8)
38.6

(38.2, 39) 8284

dev †
-1916.3

(-1920.6, -1908.3)
-1705.8

(-1747.8, -1650.5)
-1890.0

(-1918.5, -1791.8) 9938

† deviance of the model given the data.
‡ effective sample size.
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Figure 3.6 Posterior predictive distributions versus Tetranychus urticae data using In-
verse Gamma distribution.
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Figure 3.7 Posterior predictive distributions versus Propylea Coccinellidae data using
Gaussian distribution.

3.5.2 Propylea quatuordecimpunctata example

3.5.2.1 Experimental design

There are 17 out of 105 insects that have not altered their egg status until the study
ended. These cases are observed at 35◦C and are indicated by zeros in the response
variable y. The Inverse Gamma distribution is not defined for zero response values. On
the other hand, the Bieri and Lactin models can also generate negative values. Hence,
in order to account for the presence of zeros, we use a Zero Inflated Inverse Gamma
model and choose parameter initial values so as the scale of the Inverse Gamma to
remain positive. Both the Gaussian and the Zero Inflated Inverse Gamma distributions
are used for the data along with the four ecological models. The various model selection
tools are summarised in Table 3.8.
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Table 3.8 Model selection criteria for the eight models applied to the Propylea Coc-
cinellidae data.

AIC DIC LooCV WAIC BIC

Gaussian
models

Bieri -804.7 -783.6 -816.1 -816.1 -786.1
Briere -650.5 -649.5 -658.3 -658.3 -637.3

Analytis -662.1 -637.1 -671.4 -671.4 -646.1
Lactin -789.8 -776.8 -806.7 -806.7 -763.3

Inverse
Gamma
model

Bieri -716.1 -719.3 -719.3 -719.3 -702.8
Briere -560.8 -561.4 -561.4 -561.4 -550.2

Analytis -734.7 -732.4 -732.4 -732.4 -718.8
Lactin -698.9 -699.1 -699.1 -699.1 -685.6

log (PyIS)† (se) log (PyPP )‡ (se) log (PyBS)§ (se)

Gaussian
models

Bieri 419.9 (19.6) 433.4 (18.0) 462.4 (9.2)
Briere 299.2 (24.6) 235.4 (6.7) 231.4 (1.2)

Analytis 283.7 (24.0) 312.2 (10.0) 274.2 (33.7)
Lactin 390.1 (33.5) 328.1 (23.0) 334.7 (1.7)

Inverse
Gamma
models

Bieri 334.5 (25.9) 342.9 (31.5) 333.2 (5.0)
Briere 268.2 (23.2) 265.7 (4.6) 251.7 (1.9)

Analytis 340.8 (26.7) 371.3 (14.5) 335 (31.2)
Lactin 329.2 (19.5) 329.3 (11.8) 313.7 (18.8)

† log (PyIS) denotes the logarithm of estimated marginal likelihood via Impor-
tance sampling,
‡ log (PyPP ) denotes the logarithm of estimated marginal likelihood via Power
posterior,
§ log (PyBS)§denotes the logarithm of estimated marginal likelihood via Bridge
sampling.
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Figure 3.8 Posterior predictive distributions versus Propylea Coccinellidae data using
Zero Inflated Inverse Gamma distribution.

Both Information criteria and marginal likelihood results clearly suggest that the
Zero Inflated Inverse Gamma distribution has better fit than the Gaussian distribution
at Propylea quatordicempuncata only at the Analytis model. Furthermore Bieri and
Analytis models stand out in the Gaussian and the Inverse Gamma case respectively,
whilst the Briere model has the poorest criteria values (Table 3.8). Nevertheless, even
though there is a clear picture of the goodness of fit between the ecological models,
there is some variation between marginal likelihood estimates within ecological models
in Table 3.8.

3.5.2.2 Model comparison

In the Gaussian model, the Bieri and Lactin models stand out according to the informa-
tion criteria and marginal likelihood estimates, the Analytis model follows, whilst the
Briere model has the lower criteria values. On the contrary, in the Zero Inflated Inverse
Gaussian model, the Analytis model is a better choice according to the marginal likeli-
hood and the information criteria values, while Bieri, Lactin and Briere models follow
respectively. Lactin and Bieri can be interpreted by their ability to track an exponen-
tial data-value decrease. Additionally, the Bieri model manages to capture the linear
increase in the Propylea quatuordecimpunctata dataset. The Briere model, on the other
hand, lacks performance due to its unique structure, which requires that the decline of
the response variable as the temperature rises be of the form

√
Tmax − T . The Analytis

model has similar multiplicative structure to the Briere model, but it is more complex
model since the exponents of its model are unknown variables that make it adaptive and
liable to data change especially in the Inverse Gamma case.
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Table 3.9 Posterior summaries for the four models using the Gaussian distribution for
the Propylea Coccinellidae data. In each column we report the HMC, the ADVI-Mean
field and ADVI-Full rank estimates respectively.

HMC
ADVI

meanfield
ADVI

fullrank neff‡

B
ie

ri

Tmin
10.6

(9.7, 11.4)
10.7

(10.6, 10.8)
10.7

(10, 11.4) 7906

Topt
32.6

(32, 33.5)
32.2

(32, 32.5)
32.2

(31.8, 32.5) 7620

Tmax
35.0

(34.98, 35.02)
33.8

(33.6, 33.9)
33.7

(33.5, 33.9) 7194

dev † -818.7(-833.1, -800.6)
-672.7

(-685.1, -657.4)
-672.5

(-686.2, -657.1) 11673

B
ri

er
e

Tmin
13.1

(12.4, 13.8)
13.3

(12.9, 13.8)
8.2

(1.8, 15.6) 4

Tmin
29.7

(29.6, 29.8)
29.7

(29.5, 29.8)
27.3

(11.7, 30.1) 4

Tmin
35.0

(35.0, 35.01)
35.0

(34.8, 35)
32.9

(14.3, 35) 113

dev †
-660.5

(-667.0, -649.7)
-535.8

(-543.2, -520.5)
-429.7

(-535.0, -402.1) 14478

A
na

ly
tis

Tmin
6.3

(4.1, 10.6)
21.5

(7.7, 55.2)
6.9

(5.4, 9.3) 3742

Tmin
33.2

(32.1, 34.8)
39.2

(18.1, 89.1)
33.2

(31.7, 37.7) 4435

Tmin
33.6

(32.5, 34.9)
42.5

(32.7, 94.5)
36.1

(4.6, 133.2) 9370

dev †
-674.1

(-690.2, -666.3)
-160.0

(-261.3, -98.2)
-491.9

(-595.9, -293.6) 5164

L
ac

tin

Tmin
-154.4

(-234.7, -119.3)
-146.2

(-154.3, -138.1)
-159.2

(-243.1, -119.0) 7560

Tmin
31.2

(30.9, 31.3)
31.1

(31.1, 31.2)
31.1

(30.9, 31.3) 8024

Tmin
35.0

(35, 35.04)
35.0

(35.0, 35.1)
35.0

(35.0, 35.1) 21622

dev †
-809.8

(-823.7, -792.2)
-804.7

(-820.5, -784.8)
-778.5

(-807.5, -702.6) 12147

† deviance of the model given the data,
‡ effective sample size.
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3.5.2.3 Estimation of the parameters

Nevertheless, the Analytis model needs some tuning when defining its thermal param-
eters space. This is necessary to avoid allowing Tmin values close to zero, which would
result in parameter underestimation and poor fit in the Analytis model. Especially, in the
case of the Propylea dataset, we a-prior assumed that Tmin is greater than 4◦C. Posterior
means, 95% credible limits and the effective sample size of the thermal thresholds and
the deviance of the four ecological models are summarised in Tables 3.10 and 3.9 using
the Zero inflated Inverse Gamma and the Gaussian distribution respectively. Specifi-
cally, the HMC, ADVI meanfield and ADVI fullrank methods appear alternatively in
each column of Tables (3.10 and 3.9) for each parameter of interest. Briere model has
greater 95% credible limits for Tmin while Lactin model gives negative value estimates.
The results for Topt overlap for Bieri and Analytis in the Zero Inflated Inverse Gamma
case whereas the estimates are lower for Lactin model. The Tmax credible limits overlap
between Bieri and the other ecological models both in the Gaussian and the Zero In-
flated Inverse Gamma case. The zero-rate values can be naturally modelled in the case
of the Gaussian distribution. Though only the Bieri and Analytis models give wider
95% Cr.I.. For the rest of the models, the credible limits difference is lower than three
degrees 3◦C. In addition, in Zero Inflated Inverse Gamma case, the Analytis model has
higher information criteria values, while the Bieri and Lactin models follow as shown in
Table 3.8, respectively. All four ecological models incorporate terms into their structure
in the form of products which directly affect the scale of the Inverse Gamma distribu-
tion. Thus, not only the mean but also the variance of the statistical model change along
and adapt the flunctuations for each temperature level as shown in Fig. 3.8. This adap-
tivity is evident across all the four ecological models in use. Even though no specific
mechanism is used to account for excess zeros and the variance of the posterior predic-
tive remains constant across predictor values in the Gaussian case, the fit to Propylea

Coccinellidae data is good, as shown in Figure 3.7.
The Tmin outcomes for 95% credible limits do not overlap, while Briere model

has larger values. The Lactin model is not suitable to provide reasonable estimates as it
allows for negative values (Table 3.10). The results for Topt are sorted in ascending order
from Bieri, Lactin, Analytis, and Briere. We observe that the credible limits for the Tmax
overlap between models and do not exceed the maximum observed temperature 35oC.
Concerning the Zero Inflated Inverse Gamma case, the posterior predictive probabilities
of non-zero entries, which are the probabilities of anthropods’ development, are shown
in Figure 3.9. We observe that the probabilities tend to unity near Topt estimates whereas
become negligible out of the thermal threshold limits except for the Lactin model case
which does not give robust estimates for Tmin.
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Figure 3.9 Boxplots of the posterior probability of non-zero development in Propylea
Coccinellidae data using the Zero Inflated Inverse Gamma model.

3.5.2.4 Computational methods comparison

In addition, the 95% credible limits estimates using ADVI meanfield and fullrank meth-
ods overlap with the HMC estimates with exceptions at the Lactin model in which the
fullarank method seems to be closer to the HMC estimates (Tables 3.9 and 3.10). In
many cases, the ADVI fullrank method agrees with HMC. It seems to give more robust
estimates for Tmax mean in Gaussian case and Bieri model. However it has worst fit
than HMC and also gives wider 95% Cr.I..

Furthermore, the time elapsed until the completion of the algorithm for ADVI meth-
ods is up to 48 seconds, while for the HMC method it is at least 321 seconds for Propy-
lea dataset as shown in Table 3.6. The average difference between the working times of
HMS and each ADVI method is around 6300 seconds (105 minutes) whereas between
the meanfield and fullrank is around 12 seconds. These findings illuminate both the
VBI fullrank method’s computational time-efficacy.

3.5.2.5 BMA performance

Bayesian model averaging results are shown in Tables 3.11, 3.12. This time the pre-
dictive bias that affect the model averaging estimates are from the Bieri and Analytis
models for the Gaussian and the Zero Inflated Inverse Gamma distribution respectively.

3.6 Chapter summary

There are several issues that we deal with in terms of arthropod developmental rates,
and there are some concerns for future research. To begin with, comparing non-linear
non-nested models with varying numbers of parameters and truncated mean structures,
as well as excessive-zeros in data, is not a trivial task.
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Table 3.10 Posterior summaries for the four models using the Zero Inflated Inverse
Gamma distribution for the Propylea Coccinellidae data. In each column we report the
HMC, the ADVI-Mean field and ADVI-Full rank estimates respectively.

HMC
ADVI

meanfield
ADVI

fullrank neff‡

B
ie

ri

Tmin
9.9

(9.4, 10.3)
9.4

(9.3, 9.6)
9.2

(8.7, 9.7) 9138

Topt
32.7

(32.2, 33.8)
73.0

(32.6, 146.6
109.4

(28.7, 320.1) 16552

Tmax
34.4

(33.7, 34.9)
18.1

(9.3, 52.6)
16.0

(8.8, 52.5) 12972

dev †
-722.3

(-725.7, -714.8)
-318.5

(-360.4, -318.8)
-323.8

(-572.1, -309.3) 9962

B
ri

er
e

Tmin
11.1

(10.3, 11.9)
11.2

(10.8, 11.5)
11.2

(10.4, 12.0) 14192

Topt
29.3

(29.2, 29.5)
29.3

(29.2, 29.4)
29.3

(29.2, 29.5) 17300

Tmax
35.0

(34.8, 35.0)
34.9

(34.8, 35.0)
34.8

(34.8, 35.0) 23972

dev †
-563.8

(-568.0, -555.9)
-563.1

(-567.7, -552.0)
-561.9

(-567.4, -549.7) 14077

A
na

ly
tis

Tmin
5.0

(4.0, 7.0)
5.1

(4.1, 8.7)
4.4

(4.2, 4.9) 352

Topt
33.5

(32.3, 34.9)
33.0

(29.71, 37.0)
32.2

(30.5, 33.9) 1240

Tmax
33.6

(32.5, 34.9)
33.6

(30.3, 37.6)
32.5

(30.7, 34.4) 1409

dev †
-736.2

(-742.1, -729.1)
-411.6

(-482.3, -216.9)
-684.5

(-742.5, -618.8) 1117

L
ac

tin

Tmin
-133.51

(-157.5, -116.8)
11.6

(1.2, 59.2)
-12.5

(-409.8, 8.5) 11511

Topt
30.9

(30.8, 31.1)
39.7

(1.1, 211.2)
25.9

(5.5, 77.7) 9847

Tmax
34.9

(34.7, 35.0)
25.3

(1.1, 76.3)
-45.1

(-935.4, 52.5) 16361

dev †
-703.6

(-708.1, -695.0)
247.8

(0.0, 294.8)
247.8

(0.0, 294.8) 9179

† deviance of the model given the data,
‡ effective sample size.

59



Table 3.11 BMA weights for the Propylea quatuordecimpunctata data.

Bieri Briere Analytis Lactin

G
au

ss
ia

n
di

st
ri

bu
tio

n

aic_w 0.9 3.3E-34 1.1E-31 5.9E-04
dic_w 0.968 7.3E-30 1.5E-32 0.032

loocv_w 0.991 5.5E-35 3.8E-32 0.009
waic_w 0.991 5.5E-35 3.8E-32 0.009
bic_w 0.9 4.8E-33 4.0E-31 1.1E-05

elbo_mf 0.9 5E-203 9.0E-269 5.0E-159
elbo_fr 0.9 3E-218 1.0E-210 3.0E-162

Z
er

o
In

fla
te

d
In

v.
G

am
m

a
di

st
ri

bu
tio

n

aic_w 9.3E-5 1.7E-38 0.9 1.7E-8
dic_w 0.001 3.9E-38 0.9 2.1E-8

loocv_w 0.001 7.3E-38 0.9 5.8E-8
waic_w 0.001 7.2E-38 0.9 5.8E-8
bic_w 3.5E-4 2.4E-37 0.9 6.4E-8

elbo_mf 5.1E-53 0.9 3.3E-35 3.0E-114
elbo_fr 3.4E-72 1.1E-23 0.9 2.0E-140

3.6.1 Computational methods overview

We use the Bayesian paradigm, as well as some contemporary computational approaches
such as the HMC, ADVI-meanfield, and ADVI-fullrank, to address not only irregular
and truncated mean structures, but also the uncertainty of zero generation in the data.
Although ADVI techniques are gaining popularity in the scientific community due to
their fast and computationally inexpensive approximations to the posterior distributions,
they do not provide robust estimates of all the parameters of the models we study. The
HMC method, on the other hand, gives robust estimates even under these specific model
and data structure conditions.

3.6.2 Distribution of the data

Furthermore, for the data generation scheme, we suggest the Gaussian and the Inverse
Gamma distributions. The Gaussian option provides sensible estimates that can be used
even though the data has a lot of zeros. Inverse Gamma, on the other hand, not only
naturally models developmental rates, which are characterized as the reciprocal of pos-
itive real values, but also provides variance adaptivity across temperature fluctuations.
Also for each ecological model we define the Zero Inflated Inverse Gamma density so
as to model data with an excessive number of zeros. When comparing models involv-
ing Gaussian and Inverse Gamma or Zero Inflated gamma distributions, we find that the
second performs better in non-zero data cases, while the first performs better in all but
the Analytis model.
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Table 3.12 The mean and 95% Cr.I. limits of the BMA estimates of parameters of inter-
est calculated with the use of information criteria score weights assuming the Gaussian
and Inverse Gamma distributions respectively for the Propylea quatuordecimpunctata
data.

Tmin Topt Tmax dev†

Mean
95% Cr.I.

Mean
95% Cr.I.

Mean
95% Cr.I.

Mean
95% Cr.I.

G
au

ss
ia

n
di

st
ri

bu
tio

n aic_w
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.8

(-833.1, -800.8)

dic_w
10.6

(9.7, 11.4)
32.5

(21.9, 33.4)
35.0

(34.98, 35.0)
-818.5

(-832.4, -801.1)

loocv_w
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.7

(-832.9, -800.9)

waic_w
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.7

(-832.9, -800.9)

bic_w
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.8

(-833.1, -800.8)

elbo_mf
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.8

(-833.1, -800.8)

elbo_fr
10.6

(9.7, 11.4)
32.6

(32.0, 33.5)
35.0

(34.98, 35.0)
-818.8

(-833.1, -800.8)

Z
er

o
In

fla
te

d
In

v.
G

am
m

a
di

st
ri

bu
tio

n aic_w
5.0

(4.0, 7.0)
33.5

(32.3, 34.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

dic_w
5.0

(4.0, 7.0)
33.5

(32.3, 34.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

loocv_w
5.0

(4.0, 7.0)
33.5

(32.3, 34.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

waic_w
5.0

(4.0, 7.0)
33.5

(32.3, 34.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

bic_w
5.0

(4.0, 7.0)
33.5

(32.3, 34.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

elbo_mf
11.1

(10.3, 11.9)
29.3

(29.2, 29.5)
35.0

(34.8, 35.0)
-563.8

(-568.0, -555.9)

elbo_fr
5.0

(4.0, 7.0)
33.5

(32.3, 24.9)
33.6

(32.5, 34.9)
-736.2

(-742.1, -729.1)

† deviance of the model given the data.
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3.6.3 Model comparison

In addition, we address the model comparison challenge by employing the Information
criteria not only to assess model goodness of fit to data while accounting for model
complexity, but also to assess ability of models to make predictions on new data using
the leave one out cross validation technique. Additionally, we use marginal likelihood
approximations of the various models to determine which one is best supported by the
data. Finally, we plot the posterior predictive distributions alongside the observed data
points to visualize the prediction ability of the suggested models.

3.6.4 BMA performance

The predictive bias of the weighted models, as well as the uncertainty about the weights,
affect BMA results using Information criteria as weights according to (3.20) weights as
outlined in section 3.4.2.3 in the appendix. As a result, the BMA approach does not
provide estimates that differ from the best-performing models.

3.6.5 Future research

Among things for future research is to select consistently the most robust candidate
between models given sufficiently many data samples, in a sensitivity analysis perspec-
tive. Moreover, the ADVI methods, can be extended so as to capture more sophisticated
mean structures, like the ones we present in the current work. In addition, probability
density that generates zeros in the Zero Inflated Inverse Gamma distribution can be
modeled in more complex ways, such as using hyperparameters and hierarchical effects
across temperature levels. Finally, R-packages that include the suggested models and
perform the analysis presented in this Chapter are to be created.
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Chapter 4

DRIN: R package for developmental rate inference

4.1 Introduction

Following Chapter 3, mathematical modelling is an indispensable tool for comprehend-
ing the ensuing developmental process in all but the simplest cases (Kontodimas et al.
2004). Fitting ecologicalal models for developmental rates, on the other hand, is not
straightforward, often because the mathematical forms are not linear (Papanikolaou
et al. 2019) and the actual biochemical reactions of insects or environmental factors
responsible for their growth may remain unobservable. As a consequence, we use the
Bayesian paradigm in conjunction with specific data generation models, as described
in Chapter 3. The latter models include not only various data distributions such as the
widely used Gaussian, Inverse Gamma, and zero inflated Inverse Gamma, which can
also generate excess zeros, but also four popular ecological non-linear functions that
describe developmental rate dynamics. Nonetheless, there are significant challenges to
overcome, such as the function structure dependence on thermal parameters, parame-
ter ranges, and initial value selection when applying these ecological functions. The
various models studied in Chapter 3, as well as various choices for initial values, prior
distributions and predictions,are integrated into a generic package in the R platform.
The introduced package is called Developmental Ratio Inference (DRIN), and it en-
ables the simple and user-friendly estimation of thermal threshold parameters, which
determine the development prospects of various species in ecology. The calculation
is based on HMC using STAN functionality. The package is available in GitHub at
(Kondakis et al. 2021b) and would be submitted for publication in the Autumn of 2021.

The following sections describe the structure of the ‘DRIN’ package, including code
function notation and arguments used, output format, instructions for embedding data
and selecting prior distribution and initial values, and finally the presentation of some
examples and chapter discussion.
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4.2 Package (DRIN) structure

The package’s generic function is denoted drin_hmc and it produces the desired out-
come. To invoke the drin_hmc function, the user must supply several arguments listed
below.

• The current data (C_data) argument: is a list containing the data used in the ex-
periment.

• The sampling parameters (sparam) argument: is a vector containing several sam-
pling parameter options.

• The likelihood (lik) argument: specifies the likelihood distribution to be used
between the models studied in Chapter 3.

• The ecological model type (mtype) argument: specifies which of the four ecolog-
ical models studied in Chapter 3 should be used.

• The prior distributions (prior) argument: specifies a set of prior distributions for
the parameters of the previously defined ecological model by (mtype).

• The initial values (init_list) argument: specifies a list of options for the initial
values of the imposed ecological model defined by (mtype).

4.2.1 Input of data and likelihood function

The (C_data) is a list with multiple elements. The user must supply the observation
vectors of the response variable y and the predictor x. If no value is specified, the
length of the vector x is used to calculate the number of observations N . Additionally,
in elements NP and xpred, the user can optionally insert a number or a realization
vector of x as predictions to be made by the model imposed. In the absence of the
former, the NP is initialized by the number of xpred values, whereas in the absence
of the latter, the NP is initialized by a sequence of NP values within the range of x
observations. In the event that both are absent the NP is set to the double of the range
of predictor observations x.

The (lik) argument accepts the likelihood choice of "gauss" (which is the default
choice) and "igamma," which specify the Gaussian and Inverse Gamma distributions,
respectively.

64



4.2.2 Input of parameters and other specifications

The (sparam) is an optional element that specifies the number of chains, iterations,
burn-in size, and thinning size to pass information to the R interface of STAN (rstan)
function. The sparam element’s default values are 4, 11000, 10000, and 1 respectively.

For the Bieri, Briere, Analytis, and Lactin ecological models described in section
3.2, the (mtype) argument accepts the options "bieri" (which is the default), "briere",
"analytis", and "lactin" respectively.

4.2.3 Choice of priors

The (prior) element optionally provides the prior distributions of the parameters in-
volved in the ecological model declared by the (mtype) argument to the drin_hmc func-
tion. The prior distribution declaration can be expressed as a list of parameter names
and their corresponding prior distributions, as defined in the STAN manual (Stan De-
velopment Team 2021a).For example, in the Lactin ecological model option, the prior
distribution of the del = 1

∆
parameter declaration could be changed from the default

value to prior = list(del = ”exponential(100)”. The default options for prior distri-
butions are shown in Table 3.1.

4.2.4 Plug in initial values and other arguments

The (init_list) element optionally provides the drin_hmc function with the initial values
of the ecological model parameters defined by the (mtype) argument for the shake of the
HMC algorithm. As described in Section 3.2, It should be defined as a list or a function
of a list containing all model parameters. The initial values declaration can take the
form of a list containing the exact parameter names and initial values, or it can take
the form of a function of a list containing a random sample from a specific distribution
for each parameter. For the Bieri ecological model and the Inverse Gamma likelihood
option, for example, the initial value declarations could be either a fixed numeric list

i n i t _ l i s t = l i s t ( a = 0 . 1 , tmin =1 , b = 1 . 1 , tmax =30 , shape =500)

or a list of functions of randomly generated numbers based on specific distributions for
each parameter, taking into account any domain constraints. As an example of the Bieri
model, consider the following:

i n i t t m i n =rgamma ( 1 , shape =10 , r a t e =1)
i n i t _ l i s t = f u n c t i o n ( num_ i d =1)
{ l i s t ( a =(1 e −1) * rbeta ( 1 , 1 , 1 ) , +
tmin = i n i t t m i n * rbeta ( 1 , 1 , 1 ) , +
b =(1 e −5) * rbeta ( 1 , 1 , 1 ) , +
tmax= i n i t t m i n +rgamma ( 1 , shape =10 , r a t e =1) ,+
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shape = r u n i f ( 1 , 3 0 0 , 5 0 0 ) ) }

In the absence of a (init_list) element, the default initial values used in the applica-
tion of the Tetranichys urticae data in Section 3.5.1 are used. In addition in case only a
number of the parameters are included in the (init_list) element then the other parame-
ters are initialized according to the ‘rstan’ library initialization rules (Stan Development
Team 2021a).

Optionally user can also apply other argument choices as defined and supported by
the stan function in the ‘rstan’ library in R platform.

4.2.5 Output

The drin_hmc function returns a list containing three distinct objects. To begin, the
estimation element (est) is a Stanfit object of type s4 that retains all of its properties
(Stan Development Team 2021b). The ‘est’ object also includes the (dev) parameter,
which represents the current model’s deviance, as well as the (ypred) variable, which
contains the current model’s posterior predictive values based on the xpred imposed
values. Second, the Stanfit summary statistics of the fundamental model parameters
are denoted as (summary) argument. Third, includes Stanfit’s overall diagnostics re-
port (diagnostics) argument, which includes the results of the check_hmc_diagnostics

function of the ‘rstan’ package (Stan Development Team 2021b), which contains sev-
eral diagnostic tools with percentages of iterations. 1. that resulted in a divergence, 2.
that exhausted the maximum treedepth, and 3. the energy Bayesian fraction of missing
data (E-BFMI) (Betancourt 2017). Additionally, the (C_data), the (mtype) and the (lik)
elements are attached in the final output so that the user can recall them at his leisure.
Finally, based on the predictor xpred values, a 95% credible intervals posterior predic-
tive plot is created alongside the original data points using the drin_popp function. This
plot can be used to test the model’s applicability to the current data set (when xpred
values are chosen close to the working data) or to predict the developmental rates at
different temperatures given the imposed model.

4.3 Examples

In this section, examples for using the ‘DRIN’ package are provided so that the user
not only becomes familiar with the call of the basic function, but also understands the
structure and content of the output without further testing, allowing him to make better
use of it.
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4.3.1 Neoseiulus californicus example

The dataset 1 consists of 212 cases of mite Neoseiulus californicus that have reached
adult stage until the study ended. Developmental rates derived by calculating the re-
ciprocal of the observed days passed until the mite’s state change and have minimum
0.028 at 12.5oC and maximum 0.333 at 32.5oC.

4.3.1.1 Experimental design

The four ecological models are used both assuming the Gaussian and the Inverse gamma
distributions for the data.

Before arriving at calling the generic function, the following steps must be com-
pleted.

• Install and load the ‘DRIN’ package: The package is deposit in GitHub repository
which requires to install and load the ‘devtools’ package first.

• Build the data list and select the arguments to use: In the initial step the current
data list should contain the responses under the name "y" and the corresponding
temperatures under the name "x". Optionally, one can add the other arguments
mentioned on sections 4.2.1, 4.2.2, 4.2.3 and 4.2.4.

• Call the drin_hmc function Call drin_hmc function using the selected arguments
and save the output list in a desired name.

• Call the drin_popp function Call drin_popp function to produce a posterior pre-
dictive plot along with the working data. The arguments needed are the data to
plot (data), the Rstan object that contains the predicted values (est), the model
type (mtype) and the likelihood distribution of the model (lik). The output of
drin_hmc function contains all the required arguments to call the drin_popp func-
tion.

mainDir = " c : \ Main d i r e c t o r y on l o c a l d r i v e "
su bD i r = " C u r r e n t d i r e c t o r y a d d r e s s h e r e "
setwd ( f i l e . path ( mainDir , su bD i r ) )
# I f n o t pre − i n s t a l l e d f i r s t i n s t a l l d e v t o o l s l i b r a r y

l i b r a r y ( d e v t o o l s ) #Load d e v t o o l s t o a c c e s s GitHub .

i n s t a l l _ g i t h u b ( " mkondakis / DRIN" ) # I n s t a l l DRIN l i b r a r y

l i b r a r y (DRIN)
# C re a t e da ta l i s t w i t h t h e minimum e l e m e n t s :

data = l i s t ( y = y , x=temp )
data # p r i n t da ta l i s t
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# C a l l t h e d r i n _hmc f u n c t i o n t o sample u s i n g HMC v i a STAN

m o d b i e r i = d r i n _hmc ( data , mtype=" b i e r i " ,+
l i k =" g a u s s " , p r i o r = l i s t ( a=" e x p o n e n t i a l ( 0 . 0 0 1 ) " ) )
d r i n _ popp ( data= m o d b i e r i $ data , e s t = m o d b i e r i $ e s t , +
mtype= m o d b i e r i $mtype , l i k = m o d b i e r i $ l i k )

Listing 4.1: R output of code at line 10

$y
[ 1 ] 0 .029 0 .034 0 .032 0 .037 0 . 034 0 .048 0 . 034 0 .037 0 .037 0 .032 0 .028 0 .038 0 .030 0 . 038

[ 1 5 ] 0 .040 0 .034 0 . 034 0 .034 0 .083 0 . 062 0 .062 0 . 067 0 .059 0 .062 0 .062 0 .062 0 .071 0 .06 7
[ 2 9 ] 0 .083 0 .077 0 . 059 0 .062 0 .071 0 . 062 0 .059 0 . 077 0 .062 0 .100 0 .091 0 .091 0 .091 0 .10 0
[ 4 3 ] 0 .083 0 .083 0 . 091 0 .083 0 .100 0 . 091 0 .083 0 . 100 0 .083 0 .100 0 .091 0 .091 0 .083 0 .09 1
[ 5 7 ] 0 .083 0 .083 0 . 083 0 .091 0 .083 0 . 083 0 .100 0 . 100 0 .100 0 .167 0 .143 0 .125 0 .143 0 .12 5
[ 7 1 ] 0 .111 0 .143 0 . 167 0 .143 0 .182 0 . 125 0 .125 0 . 125 0 .143 0 .143 0 .125 0 .167 0 .143 0 .14 3
[ 8 5 ] 0 .143 0 .125 0 . 200 0 .125 0 .167 0 . 167 0 .167 0 . 167 0 .167 0 .200 0 .167 0 .167 0 .167 0 .16 7
[ 9 9 ] 0 .200 0 .143 0 . 167 0 .200 0 .167 0 . 167 0 .200 0 . 167 0 .200 0 .167 0 .167 0 .222 0 .222 0 .22 2

[ 1 1 3 ] 0 .222 0 .250 0 . 222 0 .250 0 .222 0 . 200 0 .250 0 . 222 0 .200 0 .222 0 .200 0 .200 0 .222 0 .2 22
[ 1 2 7 ] 0 .200 0 .200 0 . 200 0 .200 0 .222 0 . 200 0 .200 0 . 222 0 .200 0 .250 0 .286 0 .222 0 .250 0 .2 50
[ 1 4 1 ] 0 .250 0 .222 0 . 222 0 .222 0 .250 0 . 250 0 .250 0 . 222 0 .222 0 .250 0 .286 0 .286 0 .286 0 .2 86
[ 1 5 5 ] 0 .250 0 .250 0 . 250 0 .250 0 .250 0 . 286 0 .286 0 . 250 0 .250 0 .250 0 .250 0 .250 0 .250 0 .2 50
[ 1 6 9 ] 0 .250 0 .250 0 . 250 0 .250 0 .286 0 . 286 0 .250 0 . 286 0 .286 0 .286 0 .286 0 .286 0 .286 0 .3 33
[ 1 8 3 ] 0 .286 0 .333 0 . 286 0 .286 0 .333 0 . 333 0 .333 0 . 286 0 .250 0 .286 0 .286 0 .333 0 .286 0 .2 22
[ 1 9 7 ] 0 .250 0 .250 0 . 250 0 .250 0 .222 0 . 250 0 .286 0 . 200 0 .286 0 .250 0 .222 0 .286 0 .250 0 .2 86
[ 2 1 1 ] 0 .250 0 .250

$x
[ 1 ] 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5

[ 1 8 ] 1 2 . 5 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0
[ 3 5 ] 1 5 . 0 1 5 . 0 1 5 . 0 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5
[ 5 2 ] 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 2 0 . 0 2 0 . 0 2 0 . 0
[ 6 9 ] 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0
[ 8 6 ] 2 0 . 0 2 0 . 0 2 0 . 0 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5

[ 1 0 3 ] 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0
[ 1 2 0 ] 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 7 . 5
[ 1 3 7 ] 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 3 0 . 0 3 0 . 0 3 0 . 0
[ 1 5 4 ] 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0
[ 1 7 1 ] 3 0 . 0 3 0 . 0 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5
[ 1 8 8 ] 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0
[ 2 0 5 ] 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0

4.3.1.2 Estimation of the parameters

The output of the code line 10 is a list containing several parts shown in the listings
below.
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Listing 4.2: R output

$ e s t
I n f e r e n c e f o r S t an model : 4877488 a7f849423429f139bb5d5baa5 .
3 c h a i n s , each wi th i t e r =11000; warmup =10000; t h i n =1;
pos t −warmup draws p e r c h a i n =1000 , t o t a l pos t −warmup draws =3000.

mean se_mean sd 2.5% 25%
50% 75% 97.5% n _ e f f Rhat
a 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 1 0 . 0 1
0 . 0 1 0 . 0 1 814 1 . 0 0
b 2 . 1 9 0 . 1 2 2 . 2 2 1 . 5 2 1 . 7 1 1 . 8 5
2 . 1 2 4 . 5 9 363 1 . 0 0
tmin 10 .20 0 . 0 1 0 . 2 7 9 . 6 3 10 .02 10 .21
10 .38 10 .71 882 1 . 0 0
tmax 38 .77 0 . 0 4 0 . 9 3 36 . 59 38 .18 38 .82
39 .36 40 .46 692 1 . 0 0
s igmasq 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0 0 . 0 0
0 . 0 0 0 . 0 0 1676 1 . 0 0
sigma 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 2
0 . 0 2 0 . 0 2 1681 1 . 0 0

Samples were drawn u s i n g NUTS( d i a g _ e ) a t Tue Aug 24 2 1 : 1 9 : 4 1 2021 .
For each p a r a m e t e r , n _ e f f i s a c r u d e measure o f e f f e c t i v e sample s i z e ,
and Rhat i s t h e p o t e n t i a l s c a l e r e d u c t i o n f a c t o r on s p l i t c h a i n s ( a t
convergence , Rhat = 1 ) .

$summary
mean se_mean sd 2.50% 25% 50%

a 0 . 0 1 0 . 0 0 0 . 0 0 0 . 0 1 0 . 0 1 0 . 0 1
b 2 . 1 9 0 . 1 2 2 . 2 2 1 . 5 2 1 . 7 1 1 . 8 5
tmin 10 .20 0 . 0 1 0 . 2 7 9 . 6 3 10 .02 10 .21
tmax 38 .77 0 . 0 4 0 . 9 3 36 .59 38 .18 38 .82
sigma 0 . 0 2 0 . 0 0 0 . 0 0 0 . 0 2 0 . 0 2 0 . 0 2
dev −1092 .780 .14 3 . 6 0 −1097.39 −1095.41 −1093.59
tdmax 32 .74 0 . 0 1 0 . 2 8 32 . 34 32 .56 32 .70
xmin [ 1 ] 10 . 20 0 . 0 1 0 . 2 7 9 . 6 3 10 .02 10 .21
xmax [ 1 ] 37 .22 0 . 0 2 0 . 5 8 35 .91 36 .85 37 .24
lp__ 733 .00 0 . 0 7 1 . 7 3 728 .58 732 .16 733 .39

75% 97.50% n _ e f f Rhat
a 0 . 0 1 0 . 0 1 814 .17 1 . 0 0
b 2 . 1 2 4 . 5 9 362 .81 1 . 0 0
tmin 10 .38 10 .71 882 .28 1 . 0 0
tmax 39 .36 40 .46 692 .23 1 . 0 0
sigma 0 . 0 2 0 . 0 2 1680 .81 1 . 0 0
dev −1091.07 −1083.61 670 .59 1 . 0 0
tdmax 32 .87 33 . 52 485 .13 1 . 0 1
xmin [ 1 ] 10 . 38 10 .71 882 .54 1 . 0 0
xmax [ 1 ] 37 .58 38 .31 721 .03 1 . 0 0
lp__ 734 .34 735 .32 648 .09 1 . 0 0

The first listing, 4.3.1.2, contains the (est) part, which is the Stanfit s4’ object that
retains all of its properties and can be used in the same way as an ‘rstan’ output. Sec-
ond, a summary statistics (summary) of the parameters of interest is provided, which
includes not only the mean, MCMC error, standard deviation, and quartiles, but also the
effective sample size and the Gelman-Rubin convergence diagnostic R.
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Listing 4.3: R output

$ d i a g n o s t i c s
[ 1 ] "0 o f 3000 i t e r a t i o n s ended wi th a d i v e r g e n c e . "
[ 2 ] "0 o f 3000 i t e r a t i o n s s a t u r a t e d t h e maximum t r e e d e p t h o f 1 1 . "
[ 3 ] "E−BFMI i n d i c a t e d no p a t h o l o g i c a l b e h a v i o r . "

$ d a t a
$ d a t a $ y

[ 1 ] 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 5 0 . 0 3
[ 8 ] 0 . 0 4 0 . 0 4 0 . 0 3 0 . 0 3 0 . 0 4 0 . 0 3 0 . 0 4
[ 1 5 ] 0 . 0 4 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 8 0 . 0 6 0 . 0 6
[ 2 2 ] 0 . 0 7 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 6 0 . 0 7 0 . 0 7
[ 2 9 ] 0 . 0 8 0 . 0 8 0 . 0 6 0 . 0 6 0 . 0 7 0 . 0 6 0 . 0 6
[ 3 6 ] 0 . 0 8 0 . 0 6 0 . 1 0 0 . 0 9 0 . 0 9 0 . 0 9 0 . 1 0
[ 4 3 ] 0 . 0 8 0 . 0 8 0 . 0 9 0 . 0 8 0 . 1 0 0 . 0 9 0 . 0 8
[ 5 0 ] 0 . 1 0 0 . 0 8 0 . 1 0 0 . 0 9 0 . 0 9 0 . 0 8 0 . 0 9
[ 5 7 ] 0 . 0 8 0 . 0 8 0 . 0 8 0 . 0 9 0 . 0 8 0 . 0 8 0 . 1 0
[ 6 4 ] 0 . 1 0 0 . 1 0 0 . 1 7 0 . 1 4 0 . 1 3 0 . 1 4 0 . 1 3
[ 7 1 ] 0 . 1 1 0 . 1 4 0 . 1 7 0 . 1 4 0 . 1 8 0 . 1 3 0 . 1 3
[ 7 8 ] 0 . 1 3 0 . 1 4 0 . 1 4 0 . 1 3 0 . 1 7 0 . 1 4 0 . 1 4
[ 8 5 ] 0 . 1 4 0 . 1 3 0 . 2 0 0 . 1 3 0 . 1 7 0 . 1 7 0 . 1 7
[ 9 2 ] 0 . 1 7 0 . 1 7 0 . 2 0 0 . 1 7 0 . 1 7 0 . 1 7 0 . 1 7
[ 9 9 ] 0 . 2 0 0 . 1 4 0 . 1 7 0 . 2 0 0 . 1 7 0 . 1 7 0 . 2 0
[ 1 0 6 ] 0 . 1 7 0 . 2 0 0 . 1 7 0 . 1 7 0 . 2 2 0 . 2 2 0 . 2 2
[ 1 1 3 ] 0 . 2 2 0 . 2 5 0 . 2 2 0 . 2 5 0 . 2 2 0 . 2 0 0 . 2 5
[ 1 2 0 ] 0 . 2 2 0 . 2 0 0 . 2 2 0 . 2 0 0 . 2 0 0 . 2 2 0 . 2 2
[ 1 2 7 ] 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 0 0 . 2 2 0 . 2 0 0 . 2 0
[ 1 3 4 ] 0 . 2 2 0 . 2 0 0 . 2 5 0 . 2 9 0 . 2 2 0 . 2 5 0 . 2 5
[ 1 4 1 ] 0 . 2 5 0 . 2 2 0 . 2 2 0 . 2 2 0 . 2 5 0 . 2 5 0 . 2 5
[ 1 4 8 ] 0 . 2 2 0 . 2 2 0 . 2 5 0 . 2 9 0 . 2 9 0 . 2 9 0 . 2 9
[ 1 5 5 ] 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 9 0 . 2 9
[ 1 6 2 ] 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5
[ 1 6 9 ] 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 9 0 . 2 9 0 . 2 5
[ 1 7 6 ] 0 . 2 9 0 . 2 9 0 . 2 9 0 . 2 9 0 . 2 9 0 . 2 9 0 . 3 3
[ 1 8 3 ] 0 . 2 9 0 . 3 3 0 . 2 9 0 . 2 9 0 . 3 3 0 . 3 3 0 . 3 3
[ 1 9 0 ] 0 . 2 9 0 . 2 5 0 . 2 9 0 . 2 9 0 . 3 3 0 . 2 9 0 . 2 2
[ 1 9 7 ] 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 2 0 . 2 5 0 . 2 9
[ 2 0 4 ] 0 . 2 0 0 . 2 9 0 . 2 5 0 . 2 2 0 . 2 9 0 . 2 5 0 . 2 9
[ 2 1 1 ] 0 .250 0 .250

Moreover the second listing 4.3.1.2 contains the diagnostics report (diagnostics) ar-
gument, which includes 1. that resulted in a divergence, 2. that exhausted the maximum
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treedepth, and 3. the energy Bayesian fraction of missing data (E-BFMI) (Betancourt
2017). Additionally the working data (x: predictor values, y: response values) are in-
cluded so that the user can recall and reuse them in supporting functions such as the
drin_popp’function.

Listing 4.4: R output

$ d a t a $ x
[ 1 ] 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5 1 2 . 5

[ 1 8 ] 1 2 . 5 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0 1 5 . 0
[ 3 5 ] 1 5 . 0 1 5 . 0 1 5 . 0 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5
[ 5 2 ] 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 1 7 . 5 2 0 . 0 2 0 . 0 2 0 . 0
[ 6 9 ] 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0 2 0 . 0
[ 8 6 ] 2 0 . 0 2 0 . 0 2 0 . 0 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5

[ 1 0 3 ] 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 2 . 5 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0
[ 1 2 0 ] 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 5 . 0 2 7 . 5
[ 1 3 7 ] 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 2 7 . 5 3 0 . 0 3 0 . 0 3 0 . 0
[ 1 5 4 ] 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0 3 0 . 0
[ 1 7 1 ] 3 0 . 0 3 0 . 0 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5
[ 1 8 8 ] 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 2 . 5 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0
[ 2 0 5 ] 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0 3 5 . 0

$data$N
[ 1 ] 212

$ d a t a $ s t a t u s
[ 1 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[ 4 4 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[ 8 7 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[ 1 3 0 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
[ 1 7 3 ] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

$ d a t a $ t
[ 1 ] 10

$data$NP
[ 1 ] 45

$ d a t a $ x p r e d
[ 1 ] 12 .50 13 .01 13 . 52 14 .03 14 . 55 15 .06 15 .57 16 .08 16 .59

[ 1 0 ] 17 .10 17 . 61 18 .13 18 .64 19 .15 19 .66 20 .17 20 .68 21 .19
[ 1 9 ] 21 .70 22 . 22 22 .73 23 .24 23 .75 24 .26 24 .77 25 .28 25 .80
[ 2 8 ] 26 .31 26 . 82 27 .33 27 .84 28 .35 28 .86 29 .38 29 .89 30 .40
[ 3 7 ] 30 .91 31 . 42 31 .93 32 .44 32 .95 33 .47 33 .98 34 .49 35 .00

$mtype
[ 1 ] " b i e r i "

$ l i k
[ 1 ] " g a u s s "

Furthermore, the third listing /refc4_lstin4 contains the data size (N), predictor val-
ues (xpred), prediction size (NP), model type (mtype), and distribution of the data con-
sidered (lik), all of which are available to the user for further use.
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4.3.1.3 Graphical representations
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Figure 4.1 Posterior predictive plots for (a) Gaussian and Bieri and (b) Inv. Gamma and Analytis
models for Neoseiulus californicus mites data calling the drin_popp function.

The drin_popp function is used in the code line 15. The input arguments used are
the (data), (est), (mtype) and (lik) output elements of the ‘modbieri’ object created by
the drin_hmc function called in line 13 in the aforementioned code listing. Figure 4.1(a)
is the output of the code line 15. We find that the model based on Bieri and the Gaussian
model fits the working data well, while the model results based on Analytis and Inverse
Gamma is variance adaptive as shown in 4.1(b). Parameter estimations can be used
by ecologists to infer the developmental dynamics of Neoseiulus californicus under
relative conditions, while specialists can combine those figures with other biological
features and proceed with mite management actions where necessary.

4.4 Chapter summary

In this Chapter, we present a modern R-package that combines the various nonlinear
ecological functions and data distributions described in Chapter 3 into a single user-
friendly function for estimating model parameters of interest and inference for arthro-
pod developmental rates. Furthermore, the proposed procedure not only provides de-
fault reliable options for the parameters prior distributions and initial values, but also
allows the user to change them at his or her discretion. Besides that, the model code
used, which makes use of STAN software capabilities, can address not only the diffi-
culties of the restricted domains of some parameters and ecological functions, but also
the excesses zeros in the observed data. Finally, it provides posterior predictive and
posterior deviance estimates, which can be used to check and compare models. More
options for ecological functions and data distributions can be added in future work.
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Chapter 5

Modelling Predator-prey systems

5.1 Introduction

The study of predator-prey population interactions is critical in ecology for understand-
ing how to describe and predict population performance, as well as how to manage
invasive species. Devastating species can seriously damage edible commodities (Paini
et al. 2016) or interfere with other species by preying on native species or out-competing
native species for food or other resources (Marras et al. 2015). They can also cause or
carry vector-borne diseases (Medlock and Leach 2015), harm the food chain (Engeman
et al. 2010) and the ecosystem in a variety of ways (Pejchar and Mooney 2009).

The dynamics of predator-prey interactions can indicate complex behavior in many
situations. The type of competition relating to feeding rate can be used to classify
these interactions. The exploitation competition, which is the amount of remaining
resource that has already been exploited by others and is thus inaccessible, the inter-
ference competition, which occurs when foraging individuals interact directly, and the
mutual interference, which involves individuals of the same species.

Defused by analysis in (Papanikolaou et al. 2016b), in which the model schemes
account for predator-predator interactions, and in order to improve model predictability,
we incorporate a stochastic process into estimating the probability of prey consumption.
When the volatility of this stochastic approach becomes negligible, it is reduced to
the deterministic approach, in which the probability of prey consumption is explicitly
linked to the rate of prey consumption. Furthermore, we employ and compare both
HMC and VBI techniques to obtain posterior samples of target parameter distributions.
Real datasets from the predation of the Propylea quatuordecimpunctata beetle over
fabae scopoli aphids (Papanikolaou et al. 2016b) are analyzed to evaluate and compare
the performance of the deterministic approach to the stochastic one. The findings of
Chapter 5 would be submitted for review in the Autumn of 2021.

The rest of this chapter is structured as follows. Section 5.2 describes the elements
that compose the model class that we incorporate in both the deterministic and stochas-
tic approaches. Section 5.3 investigates four separate real-life examples without and
with predator interference, and Section 5.3.3 reports our findings, and the chapter con-
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Figure 5.1 Graphical representation of the structure of the suggested stochastic model.

cludes with discussion.

5.2 Modelling class approach

The modelling class used in this work is divided into four components, as shown in
Fig. (5.1). The sampling distribution of the data y is the observational component
that generates the counts of prey consumed at specific time intervals. The Binomial
distribution is chosen, with p denoting the probability of being consumed in a given
time interval. The probability p is related to the abundance of the prey densityN , which
can be described by ode ecological models in real time. This connection can be made
explicitly via the ratio of prey consumed in a given time interval, which will be referred
to as the deterministic approach from now on, or implicitly through a stochastic process.
which will be referred to as the stochastic approach from now on. The stochastic process
is the OU process, the value of which is linked to the probability p, the mean of which is
linked to the ratio of prey consumed, and the volatility of which is linked to the diffusion
term σ. When σ is zero, the stochastic approach is reduced to the deterministic one.

5.2.1 Binomial model

To begin, we consider a suitable distribution for producing the data denoted by yti . Data,
yti represent the number of prey consumed at time instant ti. In addition, yti are consid-
ered independent and identically distributed response variables, where i = 1, . . . , n are
the n repeated measures. Because of their simplicity and nice properties, the Normal
and Log-normal are commonly used in this context. Nonetheless, the data observed
are discrete counts, and it is not appropriate to generate them using continuous distri-
butions Fernández and Steel (1998). As a result, we employ the Binomial distribution
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with parameters N0 and pti as follows:

yti ∼ Binom(N0, pti), (5.1)

where N0 represents the total number of prey at the start of the study and pti denotes
the probability that the prey subject has been consumed by time ti.

The probability pti varies over time and is linked to the ratio of prey consumed to
prey abundance (instantaneous ratio of consumed prey) during the study period. To this
end, pti can be derived from the current prey density either directly in a deterministic
way or indirectly through stochasticity. The latter is use full so as to compensate for
noise not only in the data collected, a predominant situation in ecology, but also due to
possible model mis-specification, its common practise to introduce complexity in the
classical Binomial model 5.1 using stochastic processes. (Malesios et al. 2017, Zhu
et al. 2017).

The pti in this case is generated by the ratio of the prey consumed at time ti (instan-
taneous ratio of consumed prey density) as shown in the following formula:

pti =
N0 −Nti

N0

, (5.2)

where Nti represents the instantaneous prey population density at time ti. The prey
density Nti evolves over time and its value variation can be explained by ecological
models that involves differential equations.

5.2.1.1 Ecological models

Differential equations have been used to describe predator-prey dynamics in a vari-
ety of settings (Arditi and Ginzburg 2012, Berryman 1992). An early example is the
conventional Lotka and Volttera couple of differential equations (Lotka 1925, Volterra
1926), where predator and prey population rate change is exclusively connected with
the number of individuals in the system and the predator-prey interaction. In the preda-
tor absence the prey reproduces exponentially in this dynamic system depending on its
intrinsic growth rate r, assuming an unlimited supply of food. In the presence of pre-
dation on the prey, the rate of prey density decreases or the rate the predator density
increases is proportional to the rate at which the predators and prey meet.

The formulation Lotka-Volttera method is fundamental in ecology, but it fails to
explain saturation not only in terms of prey consumption rate when prey populations
burst, but also in terms of resources depletion when predators are absent from the system
and prey have reached their maximum capacity. In order to improve on the former
weakness, Holling (Holling 1959a,b) introduced the concept of functional response
f(N), which denotes the change in the number of prey captured by the predator per
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unit of time. Specifically, the functional response f(N) in Lotka-Volttera method is
equal to f(N) = r · N which is a linear increasing function of prey abundance only
and does not involve predator behavioral characteristics. Several functional response
forms have been proposed, but Holling’s work (Holling 1959a,b), which imports certain
predator behavior types, is a cornerstone and is broadly used in the literature. type I
assumes a continuous linear response as the prey population grows to a certain size,
whereas other types assume that the consumption rate pattern does not always increase
but begins to stabilize once a certain level of prey density is reached. types II and III,
in particular, exert a decelerating and sigmoid response, respectively. Rosenzweig and
MacArthur (Rosenzweig and MacArthur 1963, Rosenzweig 1969, 1977) studied similar
models combined Holling functional response with a logistic growth in the absence of
a predator.

We focus on prey population change due to predation in this study and assume that
prey and predator density change is negligible as a result of reproduction or migration.
This situation arises, for instance, when studying system dynamics in closed patches
under controlled laboratory conditions and predator or prey reproduction begins after
the study is completed. In this manner, we investigate prey consumption rate when
predator density is held constant at certain concentrations. Our reference model is based
on the commonly used Holling type II functional response.

5.2.1.1.1 Holling type II. The type II functional response Holling (1959b) assumes
a slowing consumption rate as a result of the predator’s limited food processing ca-
pacity, which leads to saturation. A type II functional response of a hyperbolic shape
characterizes the Holling disc equation, which is described by the formula:

dN

dt
= − aNP

1 + aThN
(5.3)

where N = Nt and P = Pt denote the changing prey and predator densities over
time and dN

dt
represents the rate of change of prey density. Moreover, a represents the

predator’s attack rate or rate of seeking efficiency, which describes the prey mortality
per predator at spatially homogeneous low prey densities, and P represents the predator
density. Finally, Th denotes a predator’s handling time in hours, which represents the
time spent pursuing, subduing, eating, and digesting its prey.

Functional responses can take the form of either pure prey dependence g(N), which
is a function of the absolute population of preys N, or ratio dependence g(N/P ), which
is a function of the prey ration of each of P predators. The former is more appropriate in
cases characterized by slow predator growth and low densities of prey that are spatially
distributed in a uniform manner throughout the study area. The latter case, which is
outside the scope of our study, is more suitable in situations of higher predator densities
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or/and mixed predator communities, while using a longer demographic time scale for
population dynamics (Arditi and Ginzburg 2012).

Additionally, theoretical and empirical studies (Skalski and Gilliam 2001, Kratina
et al. 2009, Arditi and Ginzburg 2012) emerge the importance of incorporating be-
havioral interactions amongst foraging predators. Specific modelling schemes that ac-
count for interference competition have been developed, using either phenomenolog-
ical approaches that describe the empirical relationship between functional response
and predator density or mechanistic approaches that incorporate variables with clear
interpretation approaches (Hassell and Varley 1969, Beddington 1975, DeAngelis et al.
1975, Crowley and Martin 1989, Arditi and Ginzburg 2012). To account for interference
effects in the predation process, the functional response in this context is both prey and
predator dependent f(N,P ). To compensate for interactions betweeen predators, the
Beddington-DeAngelis, Crowely-Martin, and Hassell-Varley odes have been used for
comparing purposes as in (Papanikolaou et al. 2016b). Moreover, We use the Bayesian
paradigm and the HMC method, as well as the ADVI-meanfield and ADVI-fullrank
alternative computational methods. The STAN software platform (Stan Development
Team 2021b) is used not only to perform statistical inference for the parameters of inter-
est, but also to compare the various computational methods in such models. Aside from
that, the STAN software (Stan Development Team 2021b) provides built-in mechanisms
called "rk45" and "bdf" to approximate the solution of the corresponding ode using a
fourth and fifth order Runge-Kutta method for non-stiff systems (Dormand and Prince
1980) and backward-differentiation formula implementation for stiff systems (Cohen
et al. 1996), respectively.

In order to account for predator interference, we employ the following ode methods:

5.2.1.1.2 Beddington-DeAngelis ode. The common Beddington-DeAngelis ecolog-
ical mechanistic method developed separately by Beddington (Beddington 1975) and
(DeAngelis et al. 1975) extent the purely-dependent Holling type II method to incorpo-
rate predators density. It is described by the formula:

dN

dt
= − aNP

1 + aThN + βtw(P − 1)
(5.4)

where β denotes the rate that a single predator encounters to the other predators which
occur with period tw. Because the product βtw which describes the interference mag-
nitude contains two unknown parameters that are treated as random variables in the
Bayesian context, we use only one parameter in our analysis, c = βtw.

5.2.1.1.3 Crowely-Martin ode. Crowely-Martin (Crowley and Martin 1989) devel-
oped another mechanistically method based on the Beddington DeAngelis method in
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5.4 and is described by the formula:

dN

dt
= − aNP

1 + aThN + βtw(P − 1) + αThβtwN(P − 1)
(5.5)

In our analysis, we use the parameter c = βtw, as in the Beddington DeAngelis ode
case (5.4).

5.2.1.1.4 Hassell-Varley ode. Hassell and Varley (Hassell and Varley 1969) devel-
oped a phenomenological ode method, which Sutherland modified in (Sutherland 1983)
and is described by the formula:

dN

dt
= − aNP−m

1 + aThNP−m
(5.6)

where m denotes the magnitude of predator-prey interference competition. In case
m = 0, the equation (5.6) becomes the Holling type II ode.

In case P = 1, the previous three models in (5.4, 5.5, 5.6) are equal to the Holling
type II model in (5.3).

5.2.2 Stochastic models

In this context, we suggest involving a stochastic process in deriving the probability of
the Binomial distribution in (5.1) not only to absorb potential model mis-specification,
but also to account for noise from the nature of the ecological data, allowing for more
accurate parameter estimations. The Ornstein–Uhlenbeck OU process κs can be thought
of as the time-continuous AR(1) analog and is used to connect the probability pti in (5.1)
to the piece-wise mean of the process as follows:

κt = log

(
pt

1− pt

)
(5.7)

dκs = φ (µt − κs) ds+ σdBs (5.8)

µt = logit

(
N0 −Nt

N0

)
, (5.9)

where Bs is standard Brownian motion, σ is the diffusion term, φ is the speed of rever-
sion to the mean and µt a piece-wise constant function determined by the logarithm of
the odds of the ratio of the consumed prey up to time t. The instantaneous process κt
is the OU process that evolves around mean µt, while its transition density from time
point t to t+1 is given explicitly by:

kt+1|t ∼ N (µt+1 + (dκt − µt+1) exp(−φ), ψ) (5.10)
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Table 5.1 Priors of the parameters of the four ecological ode model.

Models Parameters Priors
Holling

disc
α Exp(10−1)
Th Exp(10−1)

Crowely
Martin

α Exp(10−1)
Th Exp(10−1)
c Exp(10−1)

Beddington
DeAngelis

α Exp(10−1)
Th Exp(10−1)
c Exp(10−1)

Hassel
Varley

α Exp(10−1)
Th Exp(10−1)
m Uniform(−1, 1)

(O-U) process parameters
Reversion

speed φ Γ (10−1, 10−1)

Diffusion
term σ2 Γ (10−1, 10−1)

where ψ = σ2

2φ
(1− exp(−2φ)) is the variance of the Gaussian density in (5.10). In

the absence of a diffusion term, the stochastic process converges to its mean µt which
now equals the instantaneous ratio of consumed prey density as equations (5.7 and 5.9)
become equal, resulting in the deterministic case in (5.2). The variance of the transition
distribution ψ becomes zero in this case.

5.2.3 Priors

In the ode ecological models under study (5.3, 5.4, 5.5, 5.6) we use the exponential
distribution with parameter 10−1 as the prior distribution for the parameters of interest
as shown in Table 5.1. The priors used for the same ode are identical, whereas the
stochastic models includes two extra parameters σ and φ.

5.3 Real-life application

Predaceous coccinellidae are insect pest predators over aphids and coccids Dixon et al.
(2009). Aphidophagous species, such as Propylea quatuordecimpunctata, are effec-
tive at suppressing aphid populations and exhibit aggregation to their prey (Hodek and
Honêk 2013, Schellhorn and Andow 2005), making them popular in biological control,
especially in the short term Obrycki et al. (2009). Furthermore, these data only include
larvae, which typically live their entire lives within a patch, as opposed to adults, who
are distinguished by their ability to fly (Kindlmann and Dixon 2001, Dostalkova et al.
2002). As larvae socialize, frequent encounters between individuals may affect their
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foraging success.

5.3.1 Data specifications

The data used provided in (Papanikolaou et al. 2016b) comprises of two species involv-
ing as predator and prey respectively. To begin the fourteen-spotted ladybird predator
beetle Propylea quatuordecimpunctata L. (Coleoptera: Coccinellidae) (Day et al. 1994,
Hodek and Honêk 2013) is found throughout Europe. On the other hand the black bean
aphids (Aphis fabae Scopoli) can influence the growth rates of important plants for food
production (HUREJ and WERF 1993, Basedow et al. 2006). Propylea quatuordecim-

punctata is an aphid-suppressing predator that forms aggregations with its prey (Hodek
and Honêk 2013, Schellhorn and Andow 2005) . The dataset used include predator lar-
vae aged 0.5 to 1.5 days, which are established aphidophagous arthropods (Papaniko-
laou et al. 2016a). Also included as prey are immature (1st, 2nd, 3nd and 4th instars
and adults) black bean aphids (Aphis fabae Scopoli)) aged 3 to 3.5 days. In the presence
of one, two, three, and four predators, four prey groups were tested. The prey densities
evaluated were 5, 10, 15, 20, and 25 aphid nymphs for individual predators, 10, 20,
30, 40, and 50 nymphs for two predators, 15, 30, 45, 60, and 75 nymphs when preda-
tor density was three larvae, and 20, 40, 60, 80, and 100 nymphs when predator density
was four larvae. The exposure time was 6 hours. Higher predator concentrations are not
explored since this might result in larvae crowding and/or cannibalism, which is typical
in laboratory-reared coccinellids, particularly at low prey densities (Papanikolaou et al.
2016a,b).

5.3.2 Estimation of the parameters

The computational methods used are the HMC method performed using 3 chains, each
of 30000 iterations with 20000 warmup samples, while for ADVI ADVI methods we
used 10000 iterations and a tolerance level of 0.01. Posterior estimates of the mean and
the 95% Cr.I. for the deterministic and stochastic models studied in section 5.2 approach
are shown together in Table 5.2 so that the results can be compared not only between
the two approaches but also among the different predator density and ecological ode
methods.
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Table 5.2 Posterior means and 95% Cr.I. for deterministic and stochastic models. The
HMC computation method is used.

Deterministic
models

Stochastic
models

ODE α Th c m α Th c m

P=
1 H2†

0.460 0.215 0.726 0.295
0.345-
0.603

0.148-
0.276

0.511-
0.965

0.214-
0.383

P=
2

H2†
0.286 0.294 0.37 0.313
0.23-
0.351

0.252-
0.334

0.268-
0.515

0.236-
0.393

BD‡
0.304 0.282 0.151 0.306 0.227 0.163

0.255 -
0.361

0.242-
0.319

0.006-
0.446

0.252-
0.367

0.133-
0.308

0.005-
0.531

CM§
0.302 0.250 0.142 0.306 0.203 0.147
0.254-
0.358

0.179-
0.306

0.005-
0.423

0.252-
0.366

0.106-
0.293

0.005-
0.49

HV§§
0.302 0.141 0.815 0.305 0.114 0.809
0.254-
0.359

0.121-
0.159

0.494-
0.992

0.252-
0.365

0.067-
0.155

0.422-
0.994

P=
3

H2†
0.332 0.339 0.393 0.298
0.278-
0.394

0.315-
0.362

0.274-
0.642

0.214-
0.378

BD‡
0.349 0.333 0.060 0.346 0.242 0.089
0.303-
0.403

0.31-
0.354

0.002-
0.174

0.292-
0.404

0.162-
0.316

0.003-
0.279

CM§
0.348 0.301 0.056 0.345 0.212 0.081
0.302-

0.4
0.24-
0.345

0.002-
0.165

0.292-
0.403

0.129-
0.296

0.003-
0.257

HV§§
0.348 0.111 0.905 0.345 0.081 0.870
0.302-
0.401

0.104-
0.118

0.738-
0.996

0.292-
0.404

0.055-
0.105

0.622-
0.995

P=
4

H2†
0.186 0.345 0.249 0.339
0.157-
0.218

0.317-
0.371

0.178-
0.349

0.251-
0.425

BD‡
0.194 0.337 0.038 0.196 0.260 0.043
0.17-
0.223

0.311-
0.361

0.002-
0.109

0.168-
0.226

0.171-
0.34

0.001-
0.147

CM§
0.194 0.307 0.035 0.195 0.237 0.039
0.169-
0.222

0.246-
0.351

0.001-
0.104

0.167-
0.226

0.14-
0.326

0.001-
0.136

HV§§
0.194 0.084 0.928 0.195 0.066 0.922
0.17-
0.222

0.078-
0.09

0.803-
0.997

0.167-
0.225

0.043-
0.085

0.754-
0.998

† Holling type II.
‡ Beddington de Angelis.
§ Crowely Martin.
§§ Hassell Varley.

81



Table 5.3 Model selection criteria for the four models applied in the deterministic ap-
proach.

DETERMINISTIC CASE
2 Predators

Holling II Beddington Crowely Hassell
AIC 359.98 362.04 361.94 361.96
BIC 365.72 369.68 369.59 369.61
DIC 356.04 356.17 355.89 355.94

LooIC 362.56 361.38 361.09 361.18
WAIC 362.44 361.34 361.04 361.14

3 Predators
Holling II Beddington Crowely Hassell

AIC 535.78 537.81 537.74 537.76
BIC 541.52 545.46 545.39 545.4
DIC 531.75 531.88 531.7 531.7

LooIC 545.19 543.36 543.1 543.24
WAIC 545.08 543.32 543.06 543.22

4 Predators
Holling II Beddington Crowely Hassell

AIC 662.01 664.03 663.96 663.97
BIC 667.75 671.67 671.61 671.62
DIC 658.1 658.09 657.89 657.92

LooIC 673.11 671.78 671.62 671.64
WAIC 673.07 671.68 671.55 671.59

5.3.2.1 Predator interaction effect

In the case of a single predator (P=1), all models are equivalent to the Holling type II

model, and the predator’s mean handling time falls within the 95% Cr.I. intervals (0.15h,

0.28h) and (0.21h, 0.38h) for the deterministic and the stochastic case respectively. The

estimated handling times of Hassell Varley decreased as predator density increased in

comparison to the other models, but there is no statistically significant deviation in any

of the four ecological models tested. This finding suggests that predators’ per capita

feeding rate and predator density are roughly independent. When the number of preda-

tors is less than four, there are no significant differences in attack rates, as shown in

Table 5.2. However, the presence of four predators results in a statistically significant

decrease in attack rates in all models, both deterministic and stochastic. The 95% Cr.I.

of magnitude of interference represented by variables c and m excludes the value zero,

implying that interference between predators is not negligible. Furthermore, estimates

of variables c and m showed no significant differences as the number of predators in-

creased, indicating that the magnitude of interference has no effect on the fluctuation of

predator density.
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5.3.2.2 Model comparison

In all ode methods studied, both model approaches -deterministic and stochastic- pro-

vide meaningful parameter of interest estimates.

In addition figures 5.2 and 5.3 reveal that the 95% posterior predictive curves ex-

ceeds almost all of the bulk data values. The posterior predictive probabilities demon-

strate that the investigated models fit the data properly. Furthermore, stochastic models

outperform deterministic models in terms of prediction efficiency. This discovery leads

to the conclusion that the OU process can successfully handle noise in data that can

arise from a variety of sources, such as model misspecification or measurement error,

among others. The comparison of the presented models using the Information criteria

shown in Tables 5.3 and 5.4 revealed that different criteria may select different models,

but the differences are immaterial. Specifically, the Holling type II model outperforms

the Crowley Martin model in terms of AIC and Bayesian information criterion (BIC),

whereas the Crowley Martin model outperforms in terms of Deviance information crite-

rion (DIC), Watanabe information criterion (WAIC) and leave one out cross validation

information criterion (LooIC). The information criteria values, on the other hand, do

not deviate significantly between the deterministic and stochastic approaches. The in-

formation criteria of the stochastic models, on the other hand, have over 100 units lower

values than those of the deterministic models, as shown in Tables 5.3 and 5.4. This

finding reflects the fact that stochasticity absorbs noise and allows for more accurate

parameter estimation.

5.3.2.3 Computational method comparison

The computation methods used in this work are based on different principles but they

appear to provide robust estimates in this type of data Tables 5.5, 5.6, 5.7 and 5.8. On

the one hand, there is the HMC method, which allows for the targeted exploration of the

sample space by using the system’s Hamiltonian to provide samples from the posterior

distributions of the parameters of interest. The ADVI meanfield and fullrank methods,

on the other hand, provide samples from the parameter posteriors after minimizing the

Kullback–Leibler divergence between the target distribution and a family of candidates

parametric distributions. The HMC method is more time consuming, but it provides

robust estimates based on its convergence properties, whereas the ADVI meanfield and

fullrank methods provide close results while being time efficient. As depicted in Fig.

5.2 and 5.3 VBI, both methods provide efficient posterior predictive curves that suc-

ceeded in adapting the variation of the data, particularly in the stochastic models case.
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Table 5.4 Model selection criteria for the four models applied in the stochastic ap-
proach.

Stochastic case
2 Predators

Holling II Beddington Crowely Hassell
AIC 210.12 213.22 212.91 213.13
BIC 219.68 224.69 224.39 224.6
DIC 232.71 232.87 232.31 232.64

LooIC 258.90 259.89 257.71 258.49
WAIC 234.48 234.31 233.62 234.11

3 Predators
Holling II Beddington Crowely Hassell

AIC 196.04 198.98 198.73 198.74
BIC 205.60 210.45 210.2 210.21
DIC 219.23 219.45 219.16 219.16

LooIC 246.07 245.89 243.69 247.04
WAIC 217.63 217.56 216.94 217.09

4 Predators
Holling II Beddington Crowely Hassell

AIC 227.79 230.39 230.19 230.29
BIC 237.35 241.87 241.66 241.76
DIC 254.82 254.51 254.21 254.36

LooIC 282.13 285.71 279.1 282.59
WAIC 250.06 250.74 249.82 250.31
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Figure 5.2 95% Cr.I. of the posterior predictive values of a. Stochastic Binomial model
that contains OU process (blue colored) b. Deterministic Binomial Model (yellowish
colored) vs the observed number of consumed prey (points). The figures are based upon
the outcome of the HMC sampler which has better convergence properties.

Table 5.5 Posterior summaries for the Holling II ode model using the stochastic ap-
proach. In each row we report the HMC, the ADVI-meanfield and ADVI-fullrank esti-
mates respectively.

Stochastic model for Holling type II: 1 predator

HMC

a T dev† φ σ2 ψ
mean 0.67 0.16 159.76 2.49 5.26 1.01

sd 0.16 0.06 10.03 2.27 4.66 0.19
2.5% 0.39 0.04 141.8 0.46 1.22 0.68

97.5% 0.98 0.29 181.27 8.79 18.24 1.43
n_eff‡ 3740 3208 10606 4457 4460 3085
Rhat 1 1 1 1 1 1

ADVI meanfield
ELBO: -134.77

-134.77 a T dev† φ σ2 ψ
mean 0.57 0.2 158.15 2.71 5.72 1.06

sd 0.04 0.02 9.3 0.18 0.38 0.1
2.50% 0.49 0.17 142.14 2.37 5.02 0.88
97.50% 0.65 0.25 177.46 3.07 6.54 1.26

ADVI fullrank
ELBO: -134.02

-134,02 a T dev† φ σ2 ψ
mean 0,42 0,11 159,87 4,98 11,01 1,11

sd 0,06 0,05 10,32 2,57 5,52 0,1
2,50% 0,3 0,05 141,91 1,79 3,97 0,94
97,50% 0,54 0,23 181,87 11,3 25,58 1,31

† deviance of the model given the data.
‡ effective sample size.
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Figure 5.3 95% Cr.I. of the posterior predictive values of a. Stochastic Binomial model
that contains OU process (blue colored) b. Deterministic Binomial model (yellowish
colored) vs the observed number of consumed prey (points). The figures are based
upon the outcome of the ADVI fullrank method which is both fast and gives reliable
results.

Table 5.6 Posterior summaries for the Beddington DeAngelis ode model using the
stochastic approach. In each row we report the HMC, the ADVI-meanfield and ADVI-
fullrank estimates respectively.

Stochastic Beddington-DeAngelis model: 2 predators

HMC

a T c dev† φ σ2 ψ
mean 0.31 0.23 0.16 201.22 4.5 7.94 0.88

sd 0.03 0.04 0.14 10.8 2.83 5.03 0.15
2.5% 0.25 0.13 0.01 181.83 1.45 2.49 0.63

97.5% 0.37 0.31 0.53 223.93 11.94 21.27 1.21
n_eff‡ 41114 17406 28785 13828 17190 15545 4651
Rhat 1 1 1 1 1 1 1

ADVI meanfield
ELBO: -163.152

a T c dev† φ σ2 ψ
mean 0.3 0.23 0.11 198.67 3.27 5.98 0.92

sd 0.02 0.02 0.08 9.65 0.19 0.39 0.08
2.50% 0.27 0.2 0.03 181.29 2.91 5.26 0.77
97.50% 0.34 0.27 0.31 218.9 3.64 6.75 1.09

ADVI fullrank
ELBO: -162.07

a T c dev† φ σ2 ψ
mean 0.31 0.19 0.27 205.95 2.53 4.28 0.84

sd 0.03 0.04 0.16 11.4 0.81 1.32 0.07
2.50% 0.26 0.12 0.05 186.19 1.33 2.33 0.71
97.50% 0.37 0.29 0.66 230.74 4.4 7.45 0.97

† deviance of the model given the data.
‡ effective sample size.
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Table 5.7 Posterior summaries for the Crowely Martin ode model using the stochastic
approach. In each row we report the HMC, the ADVI-meanfield and ADVI-fullrank
estimates respectively.

Stochastic Crowely-Martin model: 3 predators

HMC

a T c dev† φ ψ
mean 0.34 0.21 0.08 186.73 3.54 1.23

sd 0.03 0.04 0.07 9.87 2.27 0.18
2.5% 0.29 0.13 0 169.39 1.16 0.91

97.5% 0.4 0.3 0.26 207.82 9.64 1.62
n_eff‡ 40791 21121 22739 14686 16950 5215
Rhat 1 1 1 1 1 1

ADVI meanfield
ELBO: -168.926

a T c dev† φ ψ
mean 0.33 0.23 0.05 185.37 2.64 1.23

sd 0.02 0.02 0.02 9.88 0.15 0.11
2.50% 0.29 0.2 0.02 168.66 2.35 1.01
97.50% 0.36 0.27 0.11 206.41 2.95 1.45

ADVI fullrank
ELBO: -168.53

a T c dev† φ ψ
mean 0.35 0.17 0.16 196.89 2.22 1.04

sd 0.03 0.04 0.08 11.69 0.7 0.08
2.50% 0.29 0.1 0.04 176.41 1.14 0.89
97.50% 0.4 0.25 0.35 221.09 3.94 1.2

† deviance of the model given the data.
‡ effective sample size.

Table 5.8 Posterior summaries for the Hassell Varley ode model using the stochastic
approach. In each row we report the HMC, the ADVI-meanfield and ADVI-fullrank
estimates respectively.

Stochastic Hassell-Varley model: 4 predators

HMC

a T m dev† φ σ2 ψ
mean 0.2 0.07 0.92 218.29 4.25 9.69 1.14

sd 0.01 0.01 0.07 10.03 2.49 5.66 0.15
2.5% 0.17 0.04 0.75 200.58 1.46 3.3 0.87
97.5% 0.23 0.09 1 239.71 10.81 24.55 1.48
n_eff‡ 55277 18793 36423 14076 18540 17297 7407
Rhat 1 1 1 1 1 1 1

ADVI meanfield
ELBO: -193.147

-193.147 a T m dev† φ σ2 ψ
mean 0.19 0.07 0.94 217.75 3.19 7.08 1.11

sd 0.01 0.01 0.05 10.25 0.19 0.46 0.1
2.50% 0.17 0.06 0.83 200.4 2.84 6.25 0.95

97.50% 0.21 0.08 0.99 239.23 3.56 8.01 1.32

ADVI fullrank
ELBO: -192.88

-192.88 a T m dev† φ σ2 ψ
mean 0.2 0.06 0.86 223.53 2.95 6.7 1.13

sd 0.01 0.01 0.08 11.97 1.03 2.28 0.09
2.50% 0.17 0.04 0.65 203.16 1.47 3.39 0.97

97.50% 0.22 0.08 0.96 250.01 5.55 11.88 1.31

† deviance of the model given the data.
‡ effective sample size.

87



5.3.3 Chapter summary

In terms of predator-prey systems, we have several issues to deal with, as well as some

concerns for future research. To begin, modelling the consuming rate of prey in such

systems aids in understanding and describing the rate of change in the prey population

while accounting for inter-individual interferences not only between species but also

within the same species. The presence of noise due to the nature of ecological data,

as well as the potential failure of models to detect any kind of systematic source of

variation in such data, is an additional challenge in modelling.

5.3.4 Computational methods overview

To apply the modelling class we suggested in the predator prey dynamic system fea-

tures, we use the Bayesian paradigm as well as some contemporary computational

approaches such as the HMC, ADVI-meanfield, and ADVI-fullrank. In such data

schemes, ADVI techniques provide robust estimates of all the parameters of the mod-

els we study that are close to the HMC method, gaining in time efficiency. Because

of its convergence properties, the HMC method produces robust estimates in all model

cases. The STAN software platform allows for a parallel approach to finding solutions

to the ordinary differential equations required during iterative sampling procedures in

all methods.

5.3.5 Distribution of the data

Furthermore, we recommend the Binomial distribution for data generation because it is

appropriate for observed counts of prey consumed during the study time intervals. The

Binomial distribution probability is linked to and derived from the instantaneous prey

abundance. The most common link is the instantaneous ratio of consumed prey density,

which leads to the case of deterministic models.In this study, we proposed a link to a

OU process that is centered and reduced to (in the absence of diffusion) the instanta-

neous ratio of consumed prey density. Thus, stochastic models are a generalization of

deterministic models in this context, accounting for data variation due to noise sources.

5.3.6 Model comparison

Furthermore, we use the Information criteria to compare models not only between dif-

ferent ode methods, but also between deterministic and stochastic models. Using the

leave one out cross validation technique, we can assess both the models’ goodness of

fit to data and their ability to make predictions on new data. Finally, we plot the predic-

tive posteriors alongside the observed data points to see how well the suggested models

predict.
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5.4 Future research

Future research should focus on creating full predictive model selection using proper

scoring rules. Another area of interest is investigating and approximating optimal

control techniques for solving predator-prey system constraints using the Bayesian

paradigm.
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Chapter 6

Estimating and mapping transmision risk for vector-bone diseases

6.1 Introduction

VBDs are human illnesses caused by parasites, viruses, and bacteria spread by vectors

(W.H.O. 2021). Mosquitoes, ticks, sandflies, triatomine bugs, tsetse flies, fleas, black

flies, aquatic snails, and lice have all been identified as disease vectors (Müller et al.

2019). The emergence and spread of VBDs in Europe are a result of disease-causing

biotic, abiotic, and socioeconomic factors (Semenza 2015). In addition, globalization

and environmental change, socioeconomic and demographic factors, and health sys-

tem capacity are all major contributors to VBDs, which can also operate as epidemic

progenitors. Thus, tracking changes in these factors can aid in anticipating, or even

forecasting, an outbreak of infectious diseases (Semenza 2015). Mosquitoes (Diptera:

Culicidae) are the most important hematophagous arthropod vectors of numerous hu-

man illnesses. Malaria, West Nile virus, yellow fever, chikungunya, Zika virus, and

Japanese encephalitis are examples of mosquito-borne illnesses (MBDs) (Schaffner

et al. 2013, Calzolari 2016). Given the invasive success of numerous mosquito species

as a result of global human mobility and trade (Kerkow et al. 2020), the development

of early warning and control strategies appears critical (Pergantas et al. 2017).

Malaria is a parasitic infectious disease (VBD) spread by the bite of infected anophele-

line mosquitos. It is responsible for an estimated 219 million illnesses and over 400,000

deaths globally each year. The vast majority of deaths occur among children under the

age of five (W.H.O. 2021). Public health decision-making generally needs early warn-

ing output from systems which are based on uncertain data (Degallier et al. 2010, Kuhn

et al. 2005). Considering the importance of VBDs in human health, it is imperative to

work towards creating a suitable framework for an EWS which would improve our un-

derstanding of the connectivity between existing and potential vector-borne risk areas.

Given the importance of VBDs in human health, we proposed in (Pergantas et al.

2021) an early-warning system for VBDs. The current study aims to highlight tools for

depicting the degree of risk of transmission of VBDs like malaria on a map of a larger

understudy region like Central Greece. This visualization, together with the feedback

of transmission risk measures from the epidemiological model proposed in (Pergantas
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et al. 2017), contributes to the development of an integrated process that can serve as

a predictive tool for public health preparedness and response. The latter is achieved

by providing insights into the relationship between actual and potential risk areas as

transmitted by operators.

This chapter describes the structure of the early warning system while staying within

the mapping tools, as well as its application to real-world data from Central Greece.

To that end, we first present the proposed model class components before describing

how to generate spatial graphs depicting the derived estimates in heat map formula-

tion using the R platform (Team 2021). The model class is a customized version of

the well-known Ross-Macdonald mathematical model defined in equations (6.1) and

(6.2), which estimates the average number of VBD infections in the study area using

entomological, social, environmental, and geographical data. The model is made up

of three components-measures that account for different but complementary severity

scales. The first component is the expected number of infections caused by one in-

fected human-host (basic reproduction rate), which accounts for the disease potential in

the study area (mosquito-driven). The second component is the probability of infection,

which accounts for the disease potential in the host population, which includes immi-

grants from malaria-endemic areas. The expected number of infected cases in the study

area is the third component. Following that, we describe the R-tools that were used to

generate several spatial maps that not only contain potential infection points but also de-

pict the intensity of the aforementioned estimates of suitable risk indicators. In terms of

public health, the objective of this study would be to employ the model class, as well as

the associated geographical mapping of the generated estimates from this model, as an

early warning system with meteorological inputs, allowing for better decision making

and (VBD) prevention.

6.2 Epidemic model class for VBD

In this section, we present the previously studied host-vector model in (Pergantas et al.

2017), which integrates entomological, sociological, environmental, and geographical

variables to produce estimates of three complementary risk measures of malaria resur-

gence within the study region of Central Greece. The basic reproduction rate of the dis-

ease (R0), the probability of (human) infection (τ ), and the number of expected (human)

infections in a region (E (infections)) are among the risk measures. The standard ento-

mological parameters, which are accounted for in the measure R0, are estimated using

the well-established Ross-Macdonald mathematical model (Macdonald 1952). Further-

more, the model considers the possible host population in the study region throughout

the estimation of the probability τ , which is associated with immigrants from malaria-

endemic locations (Smith et al. 2004).
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6.2.1 Parameters of the model

The disease’s basic reproduction rate,R0 , and the probability of an individual becoming

infected, τ = Pr (infection), are two of the basic model’s risk measures. The R0 in

the framework of VBDs is the number of secondary disease infections caused by a

single infected individual in a population that is otherwise unaffected. It is a natural

threshold parameter that is ideal for disease control because an epidemic can occur

only when R0 is greater than one. This demonstrates the potential for disease spread

if a single infective individual starts an outbreak. Furthermore, the probability τ is

influenced by two factors. The first is concerned with potential population infection as

a result of mosquito abundance, whereas the second is concerned with (human) host

infections. To quantify these contributors, the reproduction rate R0 is used for the

former, while the proportion of initially infected (human) hosts, denoted by µ0, is used

for the latter (Pergantas et al. 2017). The corresponding model-based point (typically

median) estimates of these measures are denoted by R̂0 and τ̂ .

Furthermore, the expected number of infections in a region, say E (infections), is

used as a third risk measure, taking into account the probability of infection weighted

with the abundance of susceptible population in the study area. The probability τ and

the expectation of infections E (infections) are two risk measures that are only mean-

ingful in the event of introducing infected individuals into the area, as is R0 > 1. The

estimators’ definitions of the aforementioned risk measures are presented below.

6.2.1.1 Reproduction rate of the disease R0

According to (Pergantas et al. 2017) the formula (6.1) is used to calculate local R0i

estimates for the ith sample-collection station:

R̂0i =
V eci · bi · c

ri
(6.1)

where V eci is the vectorial capacity in station i, or the expected number of infective

mosquito bites that would result from all mosquitoes biting a single fully infectious

person on a single day (Smith et al. 2004), and is given by:

V eci =
mi · α2

i · exp (−gi · vi)
gi

(6.2)

In (6.1) and (6.2), mi denotes the numbers of mosquitoes in each station i; αi the biting

rate, i.e. the percentage of mosquitoes that feed on humans each day; bi the probability

a bite produces infection to a human; ri the average daily recovery rate per day; vi
the mosquito latent period, i.e. the number of days from infection to infectiousness;

gi the mosquito mortality rate per day. Finally, with c we denote the probability a bite
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turns a susceptible mosquito to infected, which for our analysis is set to the constant

value of 0.5. The parameters αi, bi, ri and vi were sampled from suitable distributions

according to the relevant literature (Smith and McKenzie 2004), whereas gi changes

with the temperature levels (Smith et al. 2004), which are currently represented by

monthly means of temperature.

6.2.1.2 Host infections due to migration

In addition to the entomological part of the proposed model, estimation of the external

host component due to the migration is embedded into the risk parameter calculations,

by utilizing an exponential kernel function, Wik, of the form:

Wik = α0 · exp(−α0 · dik) (6.3)

Wik is used to model the spatial part of the potential inflected hosts. In (6.3) dik
denotes the distances from larvae areas, measured during the three periods of potential

hosts’ monitoring (k=1,2,3). Subsequently, the estimation of the external host compo-

nent due to the migration is approximated by: µ̂0i =
∑3

k=1 µ0ik ·Wik. This estimated

proportion of initially infected hosts, µ̂0i, is then multiplied by a predetermined inci-

dence rate derived from a sensitivity analysis (Pergantas et al. 2017).

6.2.1.3 Probability of getting infected

Finally, according to (Pergantas et al. 2017), estimating probability of becoming in-

fected τ̂ , in the event of a local outbreak is achieved by solving the non-linear equation:

1 + µ̂0i − τ̂i − exp
(
−τ̂i · R̂0i

)
= 0 (6.4)

which only applies for R̂0i ≥ 1. For completeness shake, we set τ̂i = 0 when R̂0i < 1.

6.2.1.4 Number of expected infections

The number of expected infections over unit of time is given by:

E (infections) = Pr (infection)× (# of susceptibles) (6.5)

Our collaborative work on developing an augmented semi-automatic early warning sys-

tem tool has been published in (Pergantas et al. 2021). The estimating and mapping

graphs were created in stages using the free and open-source R software environment

(Team 2021). These steps are described in detail in the section 6.3.
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6.3 Methodology for creating risk measurement maps

To perform the calculations and draw the figures, a variety of R library packages are

used. The ‘dplyr’ package is used specifically to facilitate data frame manipulation,

and ggmap (Kahle and Wickham 2013) provides the main methods for generating the

data graphs in this work. The latter package, when combined with the ability to retrieve

a large collection of static maps from various online sources (e.g., Google Maps and

Stamen Maps) via package embedded procedures, produces an effective visualization

of the parameters of interest. We principally used the Stamen maps option in this work.

Initially, the get_stamenmap function is used to create a bounding box (bbox) object

whose boundary is determined by the geographical coordinates of the study region in

order to visualize any map graph. The dimensions of the output map are determined

by a vector that consists of the minimum and maximum latitude changed (subtracted

and added) by 10% of its total range for the bottom and top boundries, and the min-

imum and maximum longitude changed (subtracted and added) by 10% of its total

range for the left and right boundaries, respectively. The zoom level on the region and

the ‘maptype’ between terrain, terrain-background, terrain-labels, terrain-lines, toner,

toner-2010, toner-2011, toner-background, toner-hybrid, toner-labels, toner-lines, toner-

lite, or watercolor are also options for the bbox object. The terrain option is the default

and is used extensively in this work. Another option is toner-background, which con-

verts the terrain background to white and the sea area to black. The map graphs pre-

sented in this work include risk measurement estimates and can be divided into two

main categories based on graph form, as described in the following two paragraphs.

6.3.1 Measurement based point maps

The qmplot function, which creates a quick overview of maps and data points, is one

of the tools used in this first category. The data points in this section are spatial points

that reflect measurements on terrain based maps in (Figs. 6.1-6.3). The longitude and

latitude values of the spatial points of interest, the data frame containing the data, the

zoom on the map, the map type as described in the previous paragraph, and geometry of

the output "geom" which is by default set to "point" option are some essential arguments

of the qmplot function. Furthermore, the ggmap function can be used in conjunction

with the geom_point function to add points to a region map. The former function is

required to create the previously mentioned "bbox" on map-type determined manually

by the user. To insert points at specific geographical coordinates, the latter function

is necessary. The arguments used in geom_point are the "data" which define the data

frame containing coordinates and measures data and the "mapping" which defines the

aesthetics of the points that comprise of the "x, y" axis values, the "col" and "size" which
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define which are the parameters to change the color and size of the points based on their

value intensity. In our example, toner-background based map type are used in (Figs.

6.5-6.7), and the size and color vary depending on the values of (R0), (τ ), and (E).

Other useful ‘ggmap’ library commands worth mentioning are "scale_color_gradient"

and "scale_color_distiller," which provide a color gradient defined either by the color

names or by a palette and its direction, associated with the range of parameter estimates

we use each time.

6.3.2 Kernel density based maps

The second category contains the stat_density2d function, which estimates kernel den-

sity in two dimensions using an axis-aligned bivariate normal kernel function (Figs.

6.8-6.10). By quantifying the contribution of each data point on a map region, this den-

sity function generates a continuous surface. This contribution is smoothed out from a

single point into the space around the point. On a grid, the kernel density estimate is

given by:

f̂ (x, y) =

∑
i φ
(
x−xi
σx

)
· φ
(
y−yi
σy

)
n · σx · σy

, (6.6)

where density φ denotes the standard normal distribution and diag (σx
2, σy

2) denotes

the bandwidth diagonal matrix, which controls the amount and direction of smoothing

induced. The bandwidth serves as the covariance matrix of the bivariate normal kernel

(Venables and Ripley 2013).

By accumulating the intersections of the various regions, the output surface indi-

cates where point characteristics are concentrated. The method of density computation

is determined by the bandwidth, which has a default search radius. Furthermore, the

"bins" option is a control parameter that sets the number of contour levels. We used 100

"bins" for the construction of Figs. 6.8-6.10.

The ggmap function which plots the raster object created by the aforementioned

get_stamenmap function is required for the stat_density2d function to run. The later

function requires the data frame ("data" option) containing the characteristic values,

the aesthetics ("aes" option), which should include the (x, y) geographical coordinates,

and the fill parameter, which specifies the range of the color gradient (here "nlevel"

is determined by "n" the number of data) and the "bins" argument. In addition, the

geometrical option "geom" which here is suitable for polygon shapes to form contour

lines. The Supplement C contains code for implementing all of the methods described

in the paper.

95



Figure 6.1 Map depicting the risk of malaria transmission in the form of R0.

6.4 Malaria transmission in Greece: a real-life application

The research was conducted in eight municipalities of the Prefecture of Central Greece

(Pergantas et al. 2017). The research area was approximately 406.000 hectares (ha).

For mosquito data collection, CO2 traps were used at each surveillance site.

Furthermore, female adult mosquitoes, which are malaria transmission vectors, were

included in the study. The traps were placed in ten regions, totaling 393 sample-

collection points on the fringes of cities and villages in the Prefecture of Central Greece.

Canals, rice paddocks, and tanks were among the breeding places, with the major-

ity of them previously verified for the presence of mosquitoes using drones. Between

6/3/2018 and 29/8/2018, the traps were set and checked every 10 to 15 days.

The morphological evaluation of mosquito samples was used to identify the genus

(Pergantas et al. 2017). The species found in the study region, in particular, account

for roughly 90% of all Anopheles species. As a result, all positive Anopheles mosquito

larvae samples are thought to be malaria vector larvae. Temperature data were collected

from the National Observatory of Athens (NOA) in 10 meteorological stations.

The NOA operated ten meteorological stations in the study area that recorded tem-

perature data. The average temperature values are used in the EWS model with a 30-day

interval, beginning on the first Saturday of each month between March and August of

2018. The inverse distance weighting (IDW) interpolation method (Lukaszyk 2004)

was additionally used to estimate the average temperatures at the locations where no
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Figure 6.2 Map of risk of malaria transmission, computed by the EWS model (τ esti-
mates).

Figure 6.3 Map of risk of malaria transmission, computed by the EWS model (E esti-
mates).
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Figure 6.4 Uncertainty in R0, in the form of the standard deviation of R0 (based on
1000 samples).

measurements were available.

6.4.1 Estimation of the risk measures

Figures 6.1-6.3 provide risk maps for the three risk parameters of interest. The intensity

of each risk measure varies with color on these maps, which are based on the geograph-

ical coordinates of the data points.

In Fig. 6.1 the risk of malaria transmission expressed by the median basic reproduc-

tion rate, R̂0, for each area is depicted on study-region’s map. Besides, Fig.6.2 depicts

the estimated probability of infection, τ . The number of predicted infections E, as

calculated by the geographical prediction model, is shown in Fig. 6.3.

These visualization maps were made with the qmplot function from the ‘ggmap’

library package. The ggmap package also includes alternative presentations based on

other functions, such as the ggmap along with the geom_point or the stat_density2d

functions respectively. Figs. 6.5 to 6.10 includes alternative visualizations of our re-

sults, including maps of point estimates using alternative terrain representations or heat-

maps respectively and different options may suit different users based upon their needs.

Values of the R0 above (Fig. 6.1), indicate where the greatest potential for risk
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Figure 6.5 Point estimate map of risk of malaria transmission (R0 estimates).
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Figure 6.6 Point estimate map of risk of malaria transmission (τ estimates).

is located. The highest risk is primarily located in the area of Lamia, with R0 reach-

ing values as high as 4. The probability of getting infected from low to high (zero to

0.75) was depicted in the map of Fig. 6.2 and the Lamia region was found to have the

highest risk. However, the map also suggests non-negligible probability of infection (τ

estimates between 0.25 and 0.5) in the largely dispersed rural areas of the Prefecture.

As these rural areas have low populations, the expected number of infections are

relatively low as shown Fig. 6.3, revealing the complementary characteristics of the

different risk measures. The highest number of potential infections is concentrated in

the wider region of Lamia.

In addition to risk maps based on estimated parameters such as the basic reproduc-

tion rate R0, our approach allows for the presentation of the associated uncertainty of

the estimated parameters (or functions thereof) by depicting the associated variability,

such as the variance or standard deviation. For example, the risk map of malaria trans-

mission based on R0 (Fig. 6.1) can be naturally integrated with a parameter variability

map (see Fig. 6.4) to give a more robust tool for monitoring VBDs transmission. This

type of combined reporting can be potentially applied to the other measures of risk as-

sessment. Perhaps more importantly, it reveals knowledge gaps since high uncertainty

suggests that further sampling is required in those areas in order to reduce this vari-

ability. In order to examine the potential for malaria resurgence in the study areas, our
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Figure 6.7 Point estimate map of risk of malaria transmission (E estimates).

Figure 6.8 Heat-map of risk of malaria transmission (R0 estimates).
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Figure 6.9 Heat-map of risk of malaria transmission (τ estimates).

Figure 6.10 Heat-map of risk of malaria transmission (E estimates).
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study suggests appropriate tools in the R platform for generating appropriate maps that

can adequately describe their spatial distribution of risk. This distribution is derived

using appropriate mathematical modelling in a EWS model-based framework. The cor-

responding EWS model, combined with the visualization of risk estimates in R-created

maps, results in a semi-automatic open source tool for early warning of mosquito-borne

diseases such as malaria and west Nile virus, among others.

The results in our example imply that by inspecting the generated graphs, five to six

separate geographical areas with the potential for malaria resurgence can be recognized.

The areas most at risk include those near Lamia, as expected due to the local rice fields,

and, to a lesser extent, the lowlands of Levadeia and Thivai, where an outdated irrigation

system is responsible for a huge number of Anopheles mosquito breeding sites. In

general, the coexistence of people from malaria-endemic countries and those engaged

in agricultural activity in places with Anopheles mosquito breeding habitats, such as

paddies (e.g., the city of Lamia) and irrigation canals, reduces the probability of malaria

resurgence. These places have the potential to be hot-spots for the recurrence of malaria.

Besides, refugee communities have recently been hosted across Europe, including

Greece (Eurostat 2020), significantly raising the danger of vector-borne disease trans-

mission. Furthermore, (Fotakis et al. 2020) discovered various disease vectors in Greek

refugee camps, indicating a possible risk factor for disease transmission. To that end

using the early warning system and inspect the outcome maps for vector-borne diseases,

such as the one described in this research, may be useful in preventing disease spread.

Our approach could also be utilized as a tool for efficient mosquito species control,

showing time control periods, restricting mosquito expansion, and hence the possibility

for disease transmission. Understanding mosquito spatial distribution is critical for

public health and serves as a foundation for studies aimed at understanding their spread

(e.g. (Minakawa et al. 1999, Kerkow et al. 2020, Yamasita et al. 2018)). Studies dealing

with species distribution models may overlook essential aspects that drive these models,

such as training data quality and critical abiotic factors (Kerkow et al. 2020). Our

mosquito sampling approach included CO2 traps. As a result, our data included only

female Anopheles individuals, which serve as malaria vectors, excluding the possibility

of sex-biased data from larvae sampling.

In turn, EWS model suggested accommodates for temperature changes, which are

very essential in insect performance ((Huey and Berrigan 2001b, Huffaker et al. 1971)).

Temperature is the most important abiotic factor influencing insect dispersal, influenc-

ing crucial components of their life cycle such as development, survival, reproduction,

and life span (e.g. (Kontodimas et al. 2004, Jalali et al. 2010, Papanikolaou et al. 2013)).

This has an additional impact on insect fitness, influencing population dynamics (e.g.,

(Kontodimas et al. 2007, Papanikolaou et al. 2014, 2019)). As a result, by accounting
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for temperature variations, our model is geared toward accurate assessment of mosquito

population growth.

Our method has some limitations. It is based on many types of comprehensive evi-

dence. This type of data may or may not be easily available, and some form of estimate

is frequently used. However, such issues are reflected in the uncertainty of the risk mea-

surements, and the corresponding maps are a natural result of the suggested technique.

In reality, these maps provide an opportunity because they indicate where extra sam-

pling should take place to reduce uncertainty. Furthermore, the majority of such data

are observational and do not constitute part of a randomized controlled experiment.

This study is a typical example, and appropriate counterfactual scenarios, such as what

would have happened if no vector control mechanism had been used, are prevalent in

the field. These scenarios are based on established theory though and including the cor-

responding uncertainty facilitates scientifically honest reporting and leads to additional

data collection as described above.

6.5 Chapter summary

The mapping tools provided by the ‘ggmap’ library and presented here are suitable for

visualizing critical complementary risk measures on the map as well as monitoring the

evolution and resurgence potential of the VBDs.

To that end, we anticipate that these mapping tools will propel the semi-automatic

EWS developed in (Pergantas et al. 2021) to potentially aid in the monitoring and con-

trol of VBDs in a variety of settings.

In addition, the augmented EWS model described here can be used for optimizing

the cost-effectiveness of distinct control measures and the integration of open geospatial

and climatological data.

Last but not least this kind of EWS model can enhance our ability to predict the risk

of disease outbreaks while climatic conditions change. The developed methods can be

adapted for usage in countries with similar vector-borne disease potential. The R code

producing and depicting the risk indicators is provided in the supplement C.
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Chapter 7

Discussion

In the order shown in the previous chapters of this thesis, this Chapter summarizes the

most important findings and conclusions of this work. It also includes suggestions for

future research and the expansion of current work.

7.1 Summary of most important findings and conclusions

7.1.1 Statistics in Demography

7.1.1.1 Deterministic demography

The addition of uncertainty to the demographic cohort measures via bootstrap allows

for hypothesis testing. To that end, studying demographic statistics in real data shows

that temperature has a significant impact on T. granarium population growth. Specif-

ically, at 40◦C the value of the intrinsic rate of increase is negative, indicating that at

this temperature the population tends to extinction, although T. granarium is considered

a highly heat-tolerant species (Lindgren et al. 1955, Lindgren and Vincent 1959). At

30 and 35◦C the positive values of the intrinsic rate of increase indicates that in this

temperature range T. granarium is able to increase its population size, as well as its

potential to spread, becoming more harmful in stored-products. Furthermore, while the

mean generation time at 30◦C is significantly lower than that at 35◦C, but not in the

other demographic factors, this is biologically meaningful because the net reproduc-

tion rate is determined by cohort survival, which is lower for T. granarium at 35◦C.

However, because the values of the intrinsic rate of increase and the doubling time did

not change much, we expect that the insect’s growth rate will be similar between these

temperatures. The minimum and maximum temperatures for T. granarium population

increase, according to the Briere model fit, are around 18.44◦C and 40.00◦C, respec-

tively. T. granarium can multiply in this temperature range, but the subsequent decrease

at higher than optimal (at 34.52◦C) temperatures is most likely due to the temperature’s

determinant effect on its survival and reproductive capacity. This is critical for the man-

agement of this species, given its economic importance and its global spread, as well as

its mass-rearing, which allows for efficient breeding in the insectary (Carey and Vargas
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1985). Furthermore, female reproductive value, or the contribution an individual of a

certain age will provide to future generations, grows until a certain age. This is due to

the early mortality of T. granarium’s pre-reproductive age classes and the subsequent

increase in age-specific fecundity. Following that, a fall in age-specific fecundity has

a negative influence on reproductive value, which decreases to zero as one gets older.

Individuals of around 63, 42, and 21 days of age attain their optimum reproductive po-

tential at 30, 35, and 40◦C, respectively. The expected remaining lifetime decreases

until a specific age of 35 and 40◦C due to early mortality, then increases due to decreas-

ing mortality, and finally decreases. The expected remaining lifetime at 30◦C, on the

other hand, is characterized by a continuous decrease due to no notable early mortality.

7.1.1.2 Stochastic demography

In the stochastic approach initially, we model the process of T. granarium laying eggs

by a Zero Inflated Poisson distribution. Statistical learning for models of this kind

represents a non-standard problem due to irregularities in the likelihood function and

adopting a sampling-based approach to inference such as MCMC offers a substantial

advantage, including the ability to estimate the complete posterior distribution of the

Poisson rate and the probability of excess zeros. The separation of this probability at

40◦C from the other two temperatures is readily evident by basic eye inspection, and

this is a desired aspect of the suggested statistical study. Investigating influential indi-

viduals to this stochastic approach using the posterior density, indicating that the model

appears to accommodate all of the individual data reasonably well because no signifi-

cant deviation from the majority of the observations was observed. Secondly, survival

analysis techniques were utilized in order to examine the duration (in a life cycle gener-

ation) both (i) until the event of “death” and (ii) until the event of T. granarium females

become active and lay their first egg which gives rise to an independent censoring mech-

anism. Using the Kaplan-Meier estimators the means of the survival time until death of

T. granarium are 62.88, 34.25 and 15.61 days while their medians diminish rapidly, fact

that reflects the high mortality rate at temperatures 35 and 40. Furthermore, the means

of the time until first egg release are 71.70, 46.90 and 81.30 days while the medians

decrease when the temperature rises from 30 to 35◦C. The probability of T. granarium

laying the first egg does not cross the 0.5 line at 40◦C, so the median time to first birth

cannot be estimated. The final results are most likely influenced by the fact that survival

time decreases significantly as temperatures rise from 35 to 40◦C. Thirdly, after sev-

eral popular models comparison, the parametric approach yielded specific parametric

distributions (Loglogistic and Lognormal, respectively) for the underlying biological

process. These results can be used to investigate the universality of these distributions

in future research by examining the parametric forms of these types of duration for
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related species.

7.1.2 Modelling developmental rates

Constructing and comparing non-linear non-nested models with varying numbers of

parameters and truncated mean structures, as well as excessive-zeros in data, is not an

easy task when it comes to insect developmental rates.

7.1.2.1 Computational methods overview

We employ the Bayesian paradigm, as well as some recent computational approaches

such as the HMC, ADVI-meanfield, and ADVI-fullrank, to address not only irregular

and truncated mean structures, but also the uncertainty of zero generation in the data.

Although ADVI techniques are gaining popularity in the scientific community due to

their fast and computationally inexpensive approximations to the posterior distributions,

they do not provide robust estimates of all the parameters of the models we study. The

HMC method, on the other hand, gives robust estimates even under these specific model

and data structure conditions.

7.1.2.2 Distribution of the data

Furthermore, for the data generation scheme, we suggest the Gaussian and the Inverse

Gamma distributions. The Gaussian option provides sensible estimates that can be used

even though the data has a lot of zeros. Inverse Gamma, on the other hand, not only

naturally models developmental rates, which are characterized as the reciprocal of pos-

itive real values, but also provides variance adaptivity across temperature fluctuations.

Also for each ecological model we define the Zero Inflated Inverse Gamma density so

as to model data with an excessive number of zeros. When comparing models involv-

ing Gaussian and Inverse Gamma or Zero Inflated gamma distributions, we find that the

second performs better in non-zero data cases, while the first performs better in all but

the Analytis model case.

7.1.2.3 Model comparison

Furthermore, we address the model comparison difficulty by utilizing the Information

criteria not only to assess model goodness of fit to data while accounting for model

complexity, but also to assess models’ capacity to generate predictions on new data

using the leave one out cross validation technique. Furthermore, we use marginal like-

lihood estimates of the several models to assess which one is best supported by the data.

Finally, we plot the projected posteriors alongside the observed data points to see how

well the suggested models predict.
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7.1.2.4 BMA performance

The predictive bias of the weighted models, as well as the uncertainty about the weights,

affect BMA results using Information criteria as weights. As a result, the BMA ap-

proach does not provide estimates that differ from the best-performing models.

7.1.2.5 R-package for modelling developmental rate

We suggest ‘DRIN’, a modern R package that combines the various nonlinear ecologi-

cal functions and data distributions used in previous sections into a single user-friendly

function for estimating model parameters of interest and inferring for insects develop-

mental rates. The model code utilized, which makes use of STAN software capabilities,

can address not only the issues of limited parameter sampling space and reduced eco-

logical functions used, but also the observed data excesses zeros. Finally, it provides

posterior predictive and deviance estimates, which may be used to check fit and com-

pare models.

7.1.3 Modelling predator prey systems with predator interactions

The study of predator-prey dynamics is critical in ecology for understanding how to de-

scribe and predict population performance, as well as how to manage invasive species.

7.1.3.1 Distribution of the data

We used the Binomial distribution for data generation because it is appropriate for ob-

served counts of prey consumed during the study time intervals. The Binomial distri-

bution probability is linked to and derived from the instantaneous prey density which

is described by popular ecological models based on ode. The most common link is the

instantaneous ratio of consumed prey density, which leads to the case of deterministic

models. In this study, we proposed a link to a OU process that is centered and reduced

to (in the absence of diffusion) the instantaneous ratio of consumed prey density. Thus,

stochastic models are a generalization of deterministic models in this context, account-

ing for data variation due to noise sources. Furthermore, the widely used Holling type

II model is used as the null ecological model, as opposed to more recent ode models

that account for predator-predator interactions.

7.1.3.2 Model comparison

Moreover, we use the Information criteria to compare models not only between different

ode methods, but also between deterministic and stochastic models. Using the leave

one out cross validation technique, we can assess both the models’ goodness of fit to

data and their ability to make predictions on new data. Finally, we plot the predicted
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posteriors alongside the observed data points to see how well the suggested models

predict.

7.1.3.3 Computational methods overview

Furtermore, to apply the modelling class we suggested in the predator prey dynamic

system features, we use the Bayesian paradigm as well as some contemporary compu-

tational approaches such as the HMC, ADVI-meanfield, and ADVI-fullrank. In such

data schemes, ADVI techniques provide robust estimates of all the parameters of the

models we study that are close to the HMC method, gaining in time efficiency. Be-

cause of its convergence properties, the HMC method produces robust estimates in all

model cases. The STAN software platform allows for a parallel approach to approxi-

mate solutions to the ordinary differential equations required during iterative sampling

procedures in all methods.

7.1.3.4 Real data results

In the case of a single predator (P=1), all models are equivalent to the Holling type

II model, and the predator’s mean handling time falls within the 95% Cr.I. intervals

(0.15h, 0.28h) and (0.21h, 0.38h) for the deterministic and the stochastic case respec-

tively. Moreover, there is no statistically significant deviation in any of the four eco-

logical models tested. This finding suggests that predators’ per capita feeding rate and

predator density are roughly independent. Concerning attack rates there are no signifi-

cant differences when the number of predators is less than four, but the presence of four

predators results in a statistically significant decrease in attack rates in all models, both

deterministic and stochastic. Estimates of variables c and m exclude zero and show no

significant differences as the number of predators increased, implying that the magni-

tude of interference is not negligible but has no effect on predator density fluctuation.

The 95% posterior predicted curves exceeds almost all of the bulk data values which

demonstrate that the investigated models fit the data properly. Furthermore, stochastic

models outperform deterministic models in terms of prediction efficiency. This discov-

ery leads to the conclusion that the OU process can successfully handle noise in data

that can arise from a variety of sources, such as model misspecification or measurement

error, among others. The comparison of the presented models using the Information

criteria revealed that differences are immaterial with the Holling type II model and

Crowley Martin model to outperform using different criteria. The information criteria

of the stochastic models, on the other hand, have over 100 units lower values than those

of the deterministic models, which reflects the fact that stochasticity absorbs noise and

allows for more accurate parameter estimation.
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7.1.4 Vector born diseases

The mapping tools provided by the ‘ggmap’ library and presented here are suitable for

visualizing critical risk measures on the map and monitoring the evolution of the VBDs.

These mapping tools may propel the semi-automatic EWS developed in (Pergantas et al.

2021) to potentially aid in the monitoring and control of VBDs in a variety of settings.

This kind of EWS model can enhance our ability to predict the risk of disease outbreaks

while climatic conditions change. The developed methods can be adapted for usage in

countries with similar vector-borne disease potential.

7.2 Future research

7.2.1 Demographic statistics in ecology

In terms of our approach to studying the reproductive potential of economically impor-

tant species, it could be viewed as a broader tool when combined with models related

to international trade and climatic change, because these models alert specialists to

early detection strategies against invasive species and, as a result, their successful con-

trol. In addition, stochastic modelling of the variables (characteristics) of interest for T.

granarium provides an assessment of the variability for such variables, thus providing

plausible ranges for use in alternative conditions (e.g., temperature, relative humid-

ity, commodity) for comparison with different but related species. Furthermore, the

stochastic models used in this study allowed for model checking and characterization

of the most suitable distribution for each component of the system, allowing for robust

results and casting the two kinds of duration involved in this specific species within a

larger taxon.

7.2.2 Modelling developmental rates

Regarding the study of developmental rates, among things for future research is to select

consistently the most robust candidate between models given sufficiently many data

samples, in a sensitivity analysis perspective. Moreover, the ADVI methods, can be

extended so as to capture more sophisticated mean structures, like the ones we present

in the current work. In addition, probability density that generates zeros in the Zero

Inflated Inverse Gamma distribution can be modeled in more complex ways, such as

using hyperparameters and hierarchical effects across temperature levels. Finally, R-

packages that include the suggested models and perform the analysis presented in this

Chapter are to be created.
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7.2.3 Modelling predator-prey systems

In terms of predator-prey systems, future research may concentrate on developing fully

predictive models with appropriate scoring rules. Another area of interest could be

the use of optimal control techniques to solve predator-prey system constraints such as

deterioration of potentially infected prey populations from disease or minimizing costs

induced by biological control implementation.

7.2.4 Modelling VBDs

Concerning the augmented EWS model described to monitor VBDs can be used for

optimizing the cost-effectiveness of distinct control measures and the integration of

open geospatial and climatological data.

111



References

Aghdam, H. R., Fathipour, Y. and Kontodimas, D. (2011), ‘Evaluation of non-linear

models to describe development and fertility of codling moth at constant tempera-

tures’, Entomologia Hellenica 20(1), 3–16.

Aitken, A. (1975), ‘Insect travelers. i: Coleoptera. techn’, Bull 31, 191.

Akaike, H. (1974), ‘A new look at the statistical model identification’, IEEE Transac-

tions on Automatic Control 19(6), 716–723.

Analytis, S. (1981), ‘Relationship between temperature and development times in phy-

topathogenic fungus and in plant pests: a mathematical model’, Agric. Res. Athens

5, 133–159.

Arditi, R. and Ginzburg, L. R. (2012), How species interact: altering the standard view

on trophic ecology, Oxford University Press.

Arthur, F., Ghimire, M., Myers, S. and Phillips, T. (2018), ‘Evaluation of pyrethroid

insecticides and insect growth regulators applied to different surfaces for control of

trogoderma granarium (coleoptera: Dermestidae) the khapra beetle’, Journal of eco-

nomic entomology 111(2), 612–619.

Athanassiou, C. G. and Kavallieratos, N. G. (2014), ‘Evaluation of spinetoram and

spinosad for control of prostephanus truncatus, rhyzopertha dominica, sitophilus

oryzae, and tribolium confusum on stored grains under laboratory tests’, Journal

of Pest Science 87(3), 469–483.

Athanassiou, C. G., Kavallieratos, N. G., Boukouvala, M. C., Mavroforos, M. E.

and Kontodimas, D. C. (2015), ‘Efficacy of alpha-cypermethrin and thiamethoxam

against trogoderma granarium everts (coleoptera: Dermestidae) and tenebrio moli-

tor l.(coleoptera: Tenebrionidae) on concrete’, Journal of Stored Products Research

62, 101–107.

Banks, H. (1977), ‘Distribution and establishment of trogoderma granarium everts

(coleoptera: Dermestidae): climatic and other influences’, Journal of Stored Prod-

ucts Research 13(4), 183–202.

112



Barber, A., Campbell, C., Crane, H., Lilley, R. and Tregidga, E. (2003), ‘Biocontrol of

two-spotted spider mite tetranychus urticae on dwarf hops by the phytoseiid mites

phytoseiulus persimilis and neoseiulus californicus’, Biocontrol Science and Tech-

nology 13(3), 275–284.

Basedow, T., Hua, L. and Aggarwal, N. (2006), ‘The infestation of vicia faba

l.(fabaceae) by aphis fabae (scop.)(homoptera: Aphididae) under the influence of

lamiaceae (ocimum basilicum l. and satureja hortensis l.)’, Journal of pest science

79(3), 149–154.

Beddington, J. R. (1975), ‘Mutual interference between parasites or predators and its

effect on searching efficiency’, The Journal of Animal Ecology pp. 331–340.

Berryman, A. A. (1992), ‘The orgins and evolution of predator-prey theory’, Ecology

73(5), 1530–1535.

Berven, K. A. (1990), ‘Factors affecting population fluctuations in larval and adult

stages of the wood frog (rana sylvatica)’, Ecology 71(4), 1599–1608.

Betancourt, M. (2017), ‘A conceptual introduction to hamiltonian monte carlo’, arXiv

preprint arXiv:1701.02434 .

Bieri, M., Baumgartner, J., Bianchi, G., Delucchi, V., Arx, R. v. et al. (1983), ‘Develop-

ment and fecundity of pea aphid (acyrthosiphon pisum harris) as affected by constant

temperatures and by pea varieties.’, Mitteilungen der Schweizerischen Entomologis-

chen Gesellschaft 56(1/2), 163–171.

Blei, D. M., Kucukelbir, A. and McAuliffe, J. D. (2017), ‘Variational infer-

ence: A review for statisticians’, Journal of the American Statistical Association

112(518), 859–877.

Boukouvala, M. C., Kavallieratos, N. G., Athanassiou, C. G., Losic, D., Hadjiara-

poglou, L. P. and Elemes, Y. (2017), ‘Laboratory evaluation of five novel pyrrole

derivatives as grain protectants against tribolium confusum and ephestia kuehniella

larvae’, Journal of Pest Science 90(2), 569–585.

Bradshaw, C. J., Leroy, B., Bellard, C., Roiz, D., Albert, C., Fournier, A., Barbet-

Massin, M., Salles, J.-M., Simard, F. and Courchamp, F. (2016), ‘Massive yet grossly

underestimated global costs of invasive insects’, Nature communications 7(1), 1–8.

Briere, J.-F. and Pracros, P. (1998), ‘Comparison of temperature-dependent growth

models with the development of lobesia botrana (lepidoptera: Tortricidae)’, Envi-

ronmental Entomology 27(1), 94–101.

113



Briere, J.-F., Pracros, P., Le Roux, A.-Y. and Pierre, J.-s. (1999), ‘A novel rate model

of temperature-dependent development for arthropods’, Environmental Entomology

28(1), 22–29.

Briere, J., Pracros, P. and Stoeckel, J. (1998), ‘Modeling development rate for predicting

lobesia botrana (den. and schiff.) population dynamics’, IOBC WPRS Bulletin 21, 51–

52.

Broufas, G. D. and Koveos, D. S. (2001), ‘Development, survival and reproduction of

euseius finlandicus (acari: Phytoseiidae) at different constant temperatures’, Experi-

mental and applied acarology 25(6), 441–460.

Broufas, G., Pappas, M. and Koveos, D. (2007), ‘Development, survival, and reproduc-

tion of the predatory mite kampimodromus aberrans (acari: Phytoseiidae) at different

constant temperatures’, Environmental entomology 36(4), 657–665.

Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. and West, G. B. (2004), ‘Toward

a metabolic theory of ecology’, Ecology 85(7), 1771–1789.

Buckland, S. T., Burnham, K. P. and Augustin, N. H. (1997), ‘Model selection: an

integral part of inference’, Biometrics pp. 603–618.

Burg, S. (2014), Hypobaric storage in food industry: advances in application and the-

ory, Elsevier.

Burges, H. (2008), ‘Development of the khapra beetle, trogoderma granarium, in the

lower part of its temperature range’, Journal of stored products research 44(1), 32–

35.

Calzolari, M. (2016), ‘Mosquito-borne diseases in europe: an emerging public health

threat’, Reports in Parasitology 5, 1–12.

URL: https://doi.org/10.2147/RIP.S56780

Campbell, A., Frazer, B., Gilbert, N., Gutierrez, A. and Mackauer, M. (1974), ‘Temper-

ature requirements of some aphids and their parasites’, Journal of Applied Ecology

11, 431–438.

Carey, J. R. (1993), Applied demography for biologists: with special emphasis on in-

sects, Oxford University Press.

Carey, J. R. (2001), ‘Insect biodemography’, Annual review of entomology 46(1), 79–

110.

Carey, J. R. and Vargas, R. I. (1985), ‘Demographic analysis of insect mass rearing: a

case study of three tephritids’, Journal of Economic Entomology 78(3), 523–527.

114



Carlin, B. P. and Chib, S. (1995), ‘Bayesian model choice via markov chain monte

carlo methods’, Journal of the Royal Statistical Society: Series B (Methodological)

57(3), 473–484.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,

Brubaker, M., Guo, J., Li, P. and Riddell, A. (2017), ‘Stan: A probabilistic program-

ming language’, Journal of statistical software 76(1), 1–32.

Cohen, S. D., Hindmarsh, A. C. and Dubois, P. F. (1996), ‘Cvode, a stiff/nonstiff ode

solver in c’, Computers in physics 10(2), 138–143.

Colunga-Garcia, M., Haack, R., Magarey, R. and Borchert, D. (2013), ‘Understanding

trade pathways to target biosecurity surveillance’, NeoBiota 18, 103.

Compagnoni, A., Bibian, A. J., Ochocki, B. M., Rogers, H. S., Schultz, E. L., Sneck,

M. E., Elderd, B. D., Iler, A. M., Inouye, D. W., Jacquemyn, H. et al. (2016), ‘The

effect of demographic correlations on the stochastic population dynamics of perennial

plants’, Ecological Monographs 86(4), 480–494.

Cox, D. R. and Oakes, D. (1984), Analysis of survival data, Vol. 21, CRC press.

Crowley, P. H. and Martin, E. K. (1989), ‘Functional responses and interference within

and between year classes of a dragonfly population’, Journal of the North American

Benthological Society 8(3), 211–221.

Damos, P. and Savopoulou-Soultani, M. (2012), ‘Temperature-driven models for in-

sect development and vital thermal requirements’, Psyche: A Journal of Entomology

2012, 13.

Day, W., Prokrym, D., Ellis, D., Chianese, R. et al. (1994), ‘The known distribution of

the predator propylea quatuordecimpunctata (coleoptera: Coccinellidae) in the united

states, and thoughts on the origin of this species and five other exotic lady beetles in

eastern north america.’, Entomological News 105(4), 244–256.

DeAngelis, D. L., Goldstein, R. and O’Neill, R. V. (1975), ‘A model for tropic interac-

tion’, Ecology 56(4), 881–892.

Degallier, N., Favier, C., Menkes, C., Lengaigne, M., Ramalho, W., Souza, R. and

Boulanger, J.-P. (2010), ‘Toward an early warning system for dengue prevention:

modeling climate impact on dengue transmission’, Climatic Change 98, 581–592.

URL: https://doi.org/10.1007/s10584-009-9747-3

Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2000), ‘Bayesian variable selection using

the gibbs sampler’, Biostatistics-Basel 5, 273–286.

115



Diane, L. (1992), ‘Zero-inflated poisson regression, with an application to defects in

manufacturing’, Technometrics 34(1), 1–14.

URL: https://www.tandfonline.com/doi/abs/10.1080/00401706.1992.10485228
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Appendix A

Power posterior for Gaussian and Inverse Gamma distribution

A.1 Power posterior for Gaussian and Inverse Gamma distribution

Following (Friel and Pettitt 2008) the power posterior in (3.14) includes the likelihood

raised to the power of t p(θi|y)t.

In the the Gaussian case, the likelihood involved becomes:

p(y|θ)t = pt
(
y|µ, σ2

)
=
e−

1
2(
√
t· y−µ

σ )
2

√
2πσ2

= p

(
y|µ, σ

2

t

)
·
√
t

t
.

Inserting the current ecological model r (T ; θ), the log of the power posterior is given

by:

log
(
p(y|θ)t

)
= −1

2
log
(
2πσ2

)
− 1

2

(√
t · y − r (T ; θ)

σ

)2

.

In the Inverse Gamma case, the likelihood involved becomes:

p(y|θ)t = p(y|α, β)t =
βα·t

Γt (α)
y−α·t−texp

(
−β · t

y

)
=

(β · t)α·t

Γ (α · t)
Γ (α · t)

Γt (α) · (t)α·t
y−α·t−1y1−texp

(
−β · t

y

)
=

InG (α · t, β · t) · Γ (α · t)
Γt (α) · (t)α·t

· y1−t.

Inserting the current ecological model r (T ; θ), the log of the power posterior is given

by:
log
(
p(y|θ)t

)
= α · t · (log (α− 1) + log (r (T ; θ)))−

t · log (Γ (α))− t · (α + 1) · log (y)− (α− 1) · (r (T ; θ)) · t
y

.
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Appendix B

Variance approximations of the marginal likelihood approximations
via Power posterior and via Importance sampling method

B.1 Estimation of Variance of Power posterior method

σ̂y
2 = V ar {logP (y|θ)} = V ar

{∫ 1

0

E {logP (y|θ)} dt
}
'

n−1∑
i=1

1

4
V ar

{
Eθ|y,ti {logP (y|θ)}+ Eθ|y,ti+1 {logP (y|θ)}

}
(ti+1 − ti)2 '

n−1∑
i=1

[
sd2

θ|y,ti

2

]
· (ti+1 − ti)2

where sdθ|y,ti is the std error estimated at the ti temperature

B.2 Estimation of Variance of Importance sampling method

The marginal likelihood estimate for the ith model is given by m = p (y|Mi) =

Eg

{
q(θi|y)
g(θi)

}
=
∫ q(θi|y)

g(θi)
g (θi) dθi provided g (θ − i) > 0 whenever q (θi|y) 6= 0 where

the density q (θi| y) is equal to p (y|θi, φi) · p (θi, φi) and the auxiliary importance func-

tion g used is the following: g (θi) = g (θi, φi) = p (θi| y) p (φi| y)

Removing the ith model index we can evaluate the marginal likelihood via MC integra-

tion which gives the formula below:

ẑy = p̂ (y) =
1

M

M∑
J=1

q (θj|y)

g (θj)

where θj, j = 1, 2, 3, . . . ,M are obtained from density: g (θi).

Eg (ẑy) =
1

M

M∑
j=1

Eg

{
q (θj|y)

g (θj)

}
= p (y) = m.

Assuming that Cov
{
q(θj |y)
g(θj)

,
q(θi|y)
g(θi)

}
= 0, for i 6= j
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Also, using properties of expectation and the fact that g (θ) is proper

Vg (ẑy) = 1
M

∫
G

{
q(θ|y)−m·g(θ)

g(θ)

}2

g (θ) dθ =
σ2
y

M
The latest can be used to estimate the std

error of the estimator ẑy via the formula:

σ̂y =

√√√√ 1

K

K∑
j=1

{
q (θj|y)

g (θj)
− ẑy

}2

where θj, j = 1, 2, 3, . . . , K are obtained from density g (θi).
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Appendix C

R code to produce maps with risk measures distribution

C.1 R code to produce maps

# Load library ggmap

library(ggmap)

# Define geographical coordinates of Greece

greece<- c(left = 20.1500159034, bottom = 34.9199876979, right = 26.6041955909,

top = 41.8269046087)

# Define map "bbox" for different map types

height<- max(locs$lat) - min(locs$lat)

width<- max(locs$lon) - min(locs$lon)

sac_borders<- c(bottom = min(locs$lat) - 0.1 * height, top = max(locs$lat) + 0.1 *

height, left = min(locs$lon) - 0.1 * width, right = max(locs$lon) + 0.1 * width)

map<- get_stamenmap(sac_borders, zoom = 9, maptype = "toner-background")

map_terrain<- get_stamenmap(sac_borders, zoom = 9, maptype = "terrain")

# (Alternative map types: "toner-lite", “terrain-background”, “terrain-labels”, “terrain-

lines”, “toner”, “toner-2010”, “toner-2011”, “toner-background”, “toner-hybrid”, “toner-

labels”, “toner-lines”, “toner-lite”, “watercolor”)

# Read data and create data frame with parameters required data<- read.table("data.txt",

header = TRUE)

locs<- subset(data, select = c("lat","lon","Ro","tau", "E"))

# Create R_0 map with qmplot focused on the coordinates of the data points

qmplot(x = lon, y = lat, col= Ro, size= Ro, data = locs, maptype = "terrain", geom =

"point") +

scale_color_gradient(low = "blue", high = "red") +

ggtitle(label="Risk (R0) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+
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theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

# Create τ map with qmplot focused on the coordinates of the data points

qmplot(x = lon, y = lat, col= tau, size= tau, data = locs, maptype = "terrain", geom =

"point") +

scale_color_gradient(low = "blue", high = "red") +

ggtitle(label="Risk (tau) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

qmplot(x = lon, y = lat, col= E, size= E, data = locs, maptype = "terrain", geom =

"point") +

scale_color_gradient(low = "blue", high = "red") +

ggtitle(label="Risk (E) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

# Create R0 map with predefined size

ggmap(map) + geom_point(data = locs, mapping = aes(x = lon, y = lat, col= Ro, size=

Ro)) +

scale_color_distiller(palette = "YlOrRd", direction = 1)+

ggtitle(label="Risk (R0) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

# Create τ map with predefined size

ggmap(map) +

geom_point(data = locs, mapping = aes(x = lon, y = lat, col= Ro, size= Ro)) +

scale_color_distiller(palette = "YlOrRd", direction = 1)+

ggtitle(label="Risk (τ ) in malaria resurgence in central Greece", subtitle = "year=2018")

+
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xlab("lon") +

ylab("lat")+

theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

# Create E map with predefined size

ggmap(map) +

geom_point(data = locs, mapping = aes(x = lon, y = lat, col= E, size= E)) +

scale_color_distiller(palette = "YlOrRd", direction = 1)+

ggtitle(label="Risk (E) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme(plot.title = element_text( size = 18, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))

# Create R0 heat map with points

ggmap(map_terrain)+

stat_density2d(data = locs, aes(x = lon, y = lat ,fill = stat(nlevel)), geom = "poly-

gon",bins=100) +

geom_point(data = locs, mapping =aes(x = lon, y = lat, col= Ro)) +

scale_color_gradient(low = "blue", high = "red")+

scale_fill_gradient(low = "yellow", high = "orange")+

ggtitle(label="Risk (R0) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme_grey(base_size = 10)+

theme(plot.title = element_text( size = 16, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))+

guides( size=FALSE, alpha=FALSE)+

labs(color="Ro",fill="density") # Create τ heat map with points

ggmap(map_terrain)+

stat_density2d(data = locs, aes(x = lon, y = lat ,fill = stat(nlevel)), geom = "poly-

gon",bins=100) +

geom_point(data = locs, mapping =aes(x = lon, y = lat, col= tau)) +

scale_color_gradient(low = "blue", high = "red")+

scale_fill_gradient(low = "yellow", high = "orange")+

ggtitle(label="Risk (τ ) in malaria resurgence in central Greece", subtitle = "year=2018")
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+

xlab("lon") +

ylab("lat")+

theme_grey(base_size = 10)+

theme(plot.title = element_text( size = 16, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))+

guides( size=FALSE, alpha=FALSE)+

labs(color="tau",fill="density")

# Create E heat map with points

ggmap(map_terrain)+

stat_density2d(data = locs, aes(x = lon, y = lat ,fill = stat(nlevel)), geom = "poly-

gon",bins=100) +

geom_point(data = locs, mapping =aes(x = lon, y = lat, col=E )) +

scale_color_gradient(low = "blue", high = "red")+

scale_fill_gradient(low = "yellow", high = "orange")+

ggtitle(label="Risk (E) in malaria resurgence in central Greece", subtitle = "year=2018")

+

xlab("lon") +

ylab("lat")+

theme_grey(base_size = 10)+

theme(plot.title = element_text( size = 16, face = "bold",hjust = 0.5 ), plot.subtitle =

element_text(hjust = 0.5, face = "italic"))+

guides( size=FALSE, alpha=FALSE)+

labs(color="E",fill="density")
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