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Abstract

Fiori Lamprinakou

An econometric analysis of high-frequency financial data

December, 2021

We present and compare observation driven and parameter driven models for predict-
ing integer price changes of high-frequency financial data. We explore Bayesian inference
via Markov chain Monte Carlo (MCMC) and sequential Monte Carlo (SMC) for the observa-
tion driven model activity-direction-size (ADS), introduced by Rydberg and Shephard [1998a,
2003]. We extend the ADS model by proposing a parameter driven model and use a Bernoulli
generalized linear model (GLM) with a latent process in the mean. We propose a new decom-
position model that uses trade intervals and is applied on data that allow three possible tick
movements: one tick up price change, one tick down price change, or no price change. We
model each component sequentially using a Binomial generalized linear autoregressive moving
average (GLARMA) model, as well as a GLM with a latent process in the mean. We perform a
simulation study to investigate the effectiveness of the proposed parameter driven models using
different algorithms within a Bayesian framework. We illustrate the analysis by modelling the
transaction-by-transaction data of of E-mini Standard and Poor’s (S&P) 500 index futures con-
tract traded on the ChicagoMercantile Exchange’s Globex platform betweenMay 16th 2011 and
May 24th 2011. In order to assess the predictive performance, we compare themean square error
(MSE) and mean absolute error (MAE) criterion, as well as four scalar performance measures,
namely, accuracy, sensitivity, precision and specificity derived from the confusion matrix.
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ΠΕΡΙΛΗΨΗ

Φιόρη Λαμπρινάkου

Οιkονομετριkή ανάλυση οιkονομιkών δεδομένων

υψηλής συχνότητας

Δεkέμβριος, 2021

Παρουσιάζουμε kαι συγkρίνουμε μοντέλα βασισμένα στηνπαρατήρηση (observation
driven) kαι στις παραμέτρους (parameter driven) για να προβλέψουμε τις διαkριτές αλλαγές
των τιμών οιkονομιkών δεδομένων υψηλής συχνότητας. Η ανάλυση γίνεται με Μπεϋζια-
νή προσέγγιση με Μαρkοβιανές αλυσίδες Monte Carlo (MC) kαι αkολουϑιαkές μεϑόδους
MC για το observation driven μοντέλο activity-direction-size (ADS) [Rydberg and Shephard,
1998a, 2003]. Επεkτείνουμε το ADS μοντέλο ορίζοντας ένα γενιkευμένο γραμμιkό μοντέλο
(GLM) των οποίων τα δεδομένα απόkρισης προέρχονται από την Bernoulli kατανομή kαι
διέπονται από μία μη παρατηρήσιμη στοχαστιkή διαδιkασία. Προτείνουμε ένα νέο μοντέλο
αποσύνϑεσης που χρησιμοποιεί διαστήματα εμποριkών συναλλαγών kαι εφαρμόζεται σε
δεδομένα που μεταξύ δύο συναλλαγών η τιμή μπορεί να kινηϑεί: ένα tick (η μιkρότερη
μη μηδενιkή αλλαγή της τιμής) επάνω (ή kάτω) ή kαϑόλου. Μοντελοποιούμε kάϑε πα-
ράγοντα της τιμής διαδοχιkά χρησιμοποιώντας ένα διωνυμιkό μοντέλο GLARMA, kαι ένα
GLM μοντέλο με μία λανϑάνουσα διαδιkασία. Πραγματοποιούμε προσομοίωσεις για να
διερευνήσουμε την αποτελεσματιkότητα των προτεινόμενων parameter driven μοντέλων
χρησιμοποιώντας διάφορους αλγόριϑμους μέσα σε ένα Μπεϋζιανό πλαίσιο. Αναλύουμε
τα δεδομένα ES από την πλατφόρμα Globex του Chicago Mercantile Exchange μεταξύ 16
kαι 24 Μαΐου 2011. Για την προβλεπτιkή ιkανότητα του μοντέλου, συγkρίνουμε το μέσο
τετραγωνιkό kαι απόλυτο σφάλμα (MSE, MAE), kαϑώς kαι τέσσερα μέτρα εkτίμησης:
accuracy, recall, precision kαι specificity του πίναkα σύγχυσης (confusion matrix).
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Chapter 1

Introduction

The unique characteristics of high frequency data (HFD) have introduced new theoretical and

computational challenges. The objective of this thesis is to propose and compare observation

driven and parameter driven models for predicting integer price changes of high-frequency fi-

nancial data in a Bayesian framework. Section 1.1 presents a review of HFD. A description of

the available data set for this study is described in Section 1.2. Finally, Section 1.3 presents an

overview of the ensuing chapters is given.

1.1 Literature review

HFD or ultra-high frequency data [Engle, 2000], are called the financial data in which all single

events are recorded whenever they arrive together with its characteristics (such as time, price,

volume, etc.). These data are also known as trade by trade data or tick data; tick is called the

smallest non-zero price change, whose size depends on the institutional setting. One distin-

guishing feature of trading data is that the price change in consecutive trades occurs in integer

multiples of a tick size. In practice, most price changes take only a small number of values and

a significant proportion of them are identically zero. Another characteristic of such data is that

the time between two consecutive transactions (duration) is not fixed but random. For more

details about HFD see Engle and Russell [2004] and Tsay [2005, Chapter 5].

In econometric applications considered prior to the advent of HFD these unique char-

acteristics was not taking into consideration. For example, the sampling frequency was chosen

to be a fixed interval, e.g. the daily closing price of a share, and not a random variable as well

as the distribution of financial asset returns were assumed to be continuous. For these reasons,
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researchers have developed new statistical models for the analysis of such data. This section

identifies models applied to such data, and how they are interrelated, focused mainly on the

literature that has cited the publication of Rydberg and Shephard [1998a, 2003]. We mention

some related important papers, however our list does not pretend to be complete.

Two main classes of models can be identified in the literature: parameter driven and

observation driven in the classification of Cox et al. [1981]. The main difference between the

two approaches is the way the serial dependence is introduced to the models. In the observation

driven models, the serial dependence relies on lagged observations as well as past and present

exogenous variables. In parameter drivenmodels, the parameters are functions of an unobserved

(latent or hidden) stochastic process, and the observations are independent conditionally on the

latent variable.

Concerning the modelling of time between two consecutive transactions, Engle and Rus-

sell [1998] consider the autoregressive conditional duration (ACD)model in which the durations

are treated as random variables and the conditional mean function is parameterized in terms of

past events. A drawback of the model is that it requires additional restrictions to ensure posi-

tivity of duration. ? propose the logarithmicic version of ACD that prevents the non-negativity

restrictions; details on the properties of the model can be found in Bauwens et al. [2003]. Fur-

ther developments of ACDmodel have been concerned, among others, by Bauwens and Veredas

[1999]; Zhang et al. [2001]; Drost andWerker [2004]; Czado andHaug [2010]. In the first paper,

the conditional duration is modeled with a latent variable.

The ACD model belongs to a family, named multiplicative error models (MEMs) pro-

posed by Engle [2002], who provide an observation driven approach for dynamic non-negative

variables; see Russell and Engle [2010] for a recent survey. The key idea behind the uni-variate

MEMs is that the dynamics of the variable of interest are expressed as the product of the expec-

tation of the process conditionally on the available information which depends on past values

of the process and past expected values of the process, and a second independent and identi-

cally distributed (i.i.d.) process with unit mean. The conditions to ensure stationarityohe model

proposed by Bauwens et al. [2004] who investigate ACDmodels for price, volume and trade du-

ration data, the models proposed by Manganelli [2000], Engle and Gallo [2002] or Brownlees

et al. [2011] who introduce the component MEM for intra-daily volumes.

Concerning the modelling of price process, Russell and Engle [1998, 2005] propose
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an observation driven model called autoregressive conditional multivariate (ACM) for price

changes, in combination with an ACD model for the durations between trades. The distribution

of price changes are viewed as realizations of a multinomial distribution, conditional on past

information and the time interval between the transactions. The vector of log-odds ratios is spec-

ified as amultivariate generalized linear autoregressivemoving average (GLARMA)model with

a logistic link function. The study adopted the maximum likelihood in estimating the parame-

ters using a year of the high frequently traded New York Stock Exchange (NYSE) stock Airgas.

The authors conclude that the transaction price variance increases with the duration and that

long durations are associated with falling prices. GLARMAs, proposed by Shephard [1995], are

an extension of the generalized linear models (GLMs, McCullagh and Nelder [1983]) suitable

for dependent observations. Dunsmuir et al. [2015] provide a glarma R-package for estimating

GLARMA models supporting Poisson, binomial and negative binomial distributions.

Another observation driven model is the autoregressive conditional multinomial dura-

tion (ACMD) model, introduced by Tay et al. [2004], in which price changes and time durations

are modeled simultaneously. The price movements are generated by three competing indepen-

dent Poisson processes representing the three possible tick movements: positive price change,

negative price change, or no price change. Every transaction is recorded as an event of the type

given by the Poisson process with the shortest duration. These processes are related through

their intensity functions and described by ACD structures. The study adopted the maximum

likelihood in estimating the parameters using a year of five shares traded at the NYSE using

some explanatory variables

Alternative discrete price changemodels are based on decomposition techniques inwhich

the price movements is decomposed into components and model each component sequentially

using conditional specifications for the components. Rydberg and Shephard [1998a, 2003] pro-

pose the activity-direction-size (ADS) model in which the price change is defined as the product

of a binary (a binary variable only takes two values) process for a change in price or not, a second

binary process for a positive or negative change when one occurs and a count process for the size

of price change in ticks. The dynamics of price direction are modeled by an autologistic model

(logistic model including past returns in a binary model), while a binary and a negative bino-

mial based GLARMA is used for the activity and size of price movements, respectively. They

estimate the model via maximum likelihood using a year of IBM stock traded at the NYSE. The
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variables considered include current and lagged values of the logarithmic of trade volume and

the logarithmic of time duration between trades, a monthly trend, a long-term trend, and day of

week dummy variables. The authors did not initially model duration. Rydberg and Shephard

[2000] expand on the model by proposing the use of a Cox (doubly stochastic) process for the

durations. An ACD model would be a specific case of a Cox process. Rydberg and Shephard

[1999] extend the ADS model to the multivariate case. They apply it to a bivariate time series

of the trade in the Ford and the GM shares, traded at the NYSE. Both models belong to the class

of observation driven models.

Shahtahmassebi [2011] implement a Bayesian analysis of the ADS model applied to the

financial times stock exchange (FTSE) 100 index futures for two days traded at the London

international financial futures and option exchange (LIFFE), using Markov chain Monte Carlo

(MCMC) methods. The model include one lagged value of the logarithmic trade volume as

significant covariate for the size process, and one lagged value of the logarithmic duration for

the activity and size process as significant covariates. Müller and Czado [2005], following

Rydberg and Shephard [1998a, 2003], split the price process into components and model the

absolute price changes with an autoregressive extension of the ordered probit model applied

to data of the IBM stock traded on one day at the NYSE, using MCMC methods. The current

values of the logarithmic duration and of the logarithmic traded volume are significant. Kent

[2015], in an unpublished article, propose a model for price changes and time durations. The

author extends the ADS model by defining the size of price change process to follow the ACM

model and suggest a maximum likelihood estimator. Besides, the trade arrival process is defined

to be a doubly-stochastic Poisson process (or Cox process) and suggest estimating its random

intensity through kernel density estimation. The author provides details of the dataset used in

this research, however results of the empirical study are not presented .

Following the idea of decomposition, Liesenfeld et al. [2006] propose the observation

driven integer count Hurdle (ICH) model. The price is decomposed into a trinomial process

for the occurrence of a negative change, no change or a positive change and a component for

the size of change. For both components of the price process, the dynamics are modeled using

a GLARMA specification, and the parametric model for the trinomial process is taken from

the class of logistic ACM. To model the absolute size of the price change, the authors develop

an extension of the hurdle model for counts [Mullahy, 1986] to work on negative as well as
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positive integers. The inference is based on maximum likelihood estimators applied to the HAL

and JBX stocks traded over a period of one trading month at the NYSE. Both models include a

daily diurnal trend and current and one lagged values of price change direction, of logarithmic

trade volume, and of the logarithmic duration as significant covariates.

McCulloch and Tsay [2001] propose a model for non-zero price changes and non-zero

time durations. Similar to the ICH model, they decompose the price change into the direction

and the size of price change. They use a hierarchical model that consists of six conditional

generalized linear models, and estimate each of these components via MCMC methods. The

analysis runs with different parameters each day, which are assumed to be i.i.d. following a

normal distribution. The variables considered include only time durations between trades and

price changes and not other explanatory variables, applied to data of the IBM stock taken from

the NYSE for a period of three months. Dionne and Zhou [2016] consider the ADS model

for investigating the impact of trade duration, quote duration and other exogenous variables on

ex-ante liquidity embedded in an open limit order book (LOB). Hautsch et al. [2014] extent

the literature of decomposition models by proposing a MEM a dynamic binary-choice part to

model serially dependent positive-valued variables which realize a non-trivial proportion of

zero outcome.

Models for high-frequency price changes that capture both the discreteness and the het-

eroscedasticity in the data have been developed. Hausman et al. [1992] use an ordered probit

model to analyze conditional distribution of intraday price movements. They investigate the

impact of several explanatory variables in capturing the transaction price changes, such as the

time between trades, bid-ask spread, trade size and market-wide. They estimate the model via

maximum likelihood using transactions data for over 100 randomly chosen U.S. stocks. The

ordered probit model has its origins in bio-statistics; see Aitchison and Silvey [1957]. It is a

generalization of the widely used probit analysis to the case of more than two outcomes of an

ordinal dependent variable; probit analysis is a type of regression used to model dichotomous or

binary outcome variables, in which the inverse standard normal distribution of the probability

is modeled as a linear combination of explanatory variables.

Under the ordered probit framework, Müller and Czado [2009] consider a stochastic

volatility (SV)model (see Shephard [2005]), whileYang and Parwada [2012] andDimitrakopou-

los and Tsionas [2019] adopt a generalized autoregressive conditional heteroskedasticit (GARCH)
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model of Bollerslev [1986]. Müller and Czado [2009] introduce the class of ordinal stochas-

tic volatility (OSV) to account for the discreteness of financial price changes with Gaussian

and Student-t distributed errors. The model allows for exogenous factors both on the mean

and volatility level. A Bayesian approach using MCMC is followed to facilitate estimation in

the model applied to the IBM stock traded at the NYSE. In the paper of Czado et al. [2010]

the applicability of the OSV model to financial stocks with different levels of trading activity is

investigated. They conclude that a higher number of quotes between trades increases the volatil-

ity for less frequently traded stocks, whereas the opposite pattern is observed for stocks which

are more frequently traded, while both volume and time elapsed between trades increase the

volatility, thus making more extreme price changes more likely. Czado et al. [2010] also show

that the OSV model outperforms the standard SV model when they are both applied to discrete

financial price changes. Koopman et al. [2017] assume that the price changes are condition-

ally distributed according to a Skellam distribution with stochastic volatility. The estimation is

based on simulated maximum likelihood and importance sampling methods applied on the as-

sets traded on NYSE. The dynamic specification of the Skellam distribution have been explored

by Koopman et al. [2014]. Barra et al. [2018] introduce a dynamic negative binomial difference

model that measures stochastic volatility of discrete price changes. They provide the properties

of this distribution, and emphasize that the distribution has heavy tails to address occurrences

of jumps in prices changes. The model is applied on six stocks from the NYSE in two differ-

ent periods, using Bayesian estimation procedures. GARCH models belong to the observation

driven class, while SV to the parameter driven class.

Score driven models as introduced by Koopman et al. [2008]; Creal et al. [2011, 2013]

and Harvey [2013] provide an observation driven approach for dynamic variables. The idea of

these models is that time-varying parameter is updated on time via an autoregressive function

that depends on a time-varying parameter by the conditional score, that is the first derivative

of the logarithmic of the conditional probability density function (of the last observation) with

respect to the same time-varying parameter. Known models are special cases of score driven

models, for instance, the ACM and ACD models, the MEM, and many more. A recent review

of these models is provided in Blazsek and Licht [2020]. The unknown coefficients of these

models are estimated via a maximum likelihood. In a more general context, the forecasting

performance of such models is investigated in detail by Koopman et al. [2016].
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An alternative approach for modelling high frequency price changes is based on the Pois-

son difference (PD); Irwin [1937] discusses the difference for equal parameters and Skellam

[1946] for unequal parameters. It is also called Skellam density; further details can be found in

e.g. Karlis and Ntzoufras [2006] and Alzaid and Omair [2010]. In the latter paper, the authors

fitted this density to model a set of high frequency data from the Saudi stock exchange using the

maximum likelihood and the method of moments to estimate the parameters. Shahtahmassebi

[2011] apply the PD density and its zero inflated version (to deal with the excess of zeros in the

data) for modelling the price changes of high-frequency data. The zero version was first intro-

duced by Karlis and Ntzoufras [2006] in order to model dental epidemiology. Shahtahmassebi

and Moyeed [2014] propose a generalized Poisson difference (GPD) distribution, obtained as

the difference of two underling generalized Poisson distributions with different intensity param-

eters. They derive the properties of the suggested density, and provide a zero inflated version

of the distribution. In the last two works, the logarithmic of the expected value is modeled by

a linear combination of the previous index change, the logarithmic of the traded volume and

the logarithmic of the time between consecutive transactions, applied to the FTSE100 index

changes using MCMC methods. All models belong to the observation driven class.

Contrary to the observation driven models, Czado and Kolbe [2004] study absolute price

movements of option using a parameter driven Poisson GLM with an autoregressive model of

order one (AR(1)) latent process in the mean. The model includes the price change of the

underlying asset, the intrinsic value of the option at the time of the trade, the bid-ask spread,

number of new quotes between trades, and the time duration between trades as significant co-

variates. Remaining time to maturity of the option is not significant for predicting option price

changes. They have applied MCMC methods to perform Bayesian analysis with the S-Plus and

WinBUGS software packages applied to the XETRA DAX index based on quote-by-quote data

from the EUREX exchange. Shahtahmassebi [2011] propose a dynamic framework for mod-

elling ultra high-frequency financial data using a zero inflated Poisson difference model to deal

with the excess of zeros in the data. The analysis is carried out using sequential Monte Carlo

(SMC) methods applied on FTSE100 index futures. A recent model in this class is proposed by

Catania et al. [2019] based on the Skellam distribution.

Applications of integer autoregressive (INAR) models to high frequency data have been

reported in, for instance, Alzaid and Omair [2014] and Andersson and Karlis [2014], amongst

7



others, who present extensions to Z of the INAR model with Skellam innovations. Al-Osh

and Alzaid [1987] and Alzaid and Al-Osh [1990] propose INAR model of order one and p,

respectively, to model non-negative integer-valued time series.

The idea to use copulas on high frequency discrete valued time series has been explored.

Copulas are multivariate distribution functions with uniform margins which allow to represent

a joint distribution function as a function of marginal distributions and a copula [Sklar, 1959]. ?

uses a four dimensional Gaussian copula to model price changes, transaction volumes, bid-ask

spreads and intertrade durations jointly. For the price change is used the ICH model, whereas

for the rest components are used ACD-type models. The model is applied to three stocks traded

at the NYSE for one month, and all estimation results are obtained by jointly maximizing the

log-likelihood. Bien et al. [2011] extend the ICH model to the multivariate case whereas the

dependency between the marginals is modeled with a copula function. The authors model the

conditional bivariate density of bid and ask quote changes in a high frequency setup, applied

on the Citicorp stock for four days traded at the NYSE. Koopman et al. [2018] model price

changes and investigate their dependence structures using dynamic copula models and a GAS

specification with Skellam distribution, applied on price changes of stocks traded on the NYSE.

1.2 The data

The dataset used in this study is the E-mini Standard and Poor’s (S&P) 500 index futures contract

(ES) traded on the ChicagoMercantile Exchange’s Globex (Globex) platform betweenMay 16th

2011 and May 24th 2011. Globex is active from Monday to Friday, thus the dataset consists

of seven days in total. The data comprises of trades and limit order activities, and contains

information on the two best quotes on both bid and ask sides. We extract the data from 9:00

a.m. to 5:00 p.m. eastern time and we remove observations with spread (the difference between

ask and bid price) zero or negative. We segment the data by day, and for data of each day, we

again divide the data into morning and afternoon segments. The morning segment commences

at 9:00 a.m, and concludes just before 1:00 p.m, while the afternoons begin at 1:00 p.m. and

close at 5:00 p.m. This partitioning scheme allows us to explore the variations of trade data of

different time segments. The first five days in the study are used for estimating the unknown

parameters, and the rest for predicting price changes.
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Figure 1.1: Time series plot of ES prices. The sample period covers Monday to Friday from
May 16th 2011 to May 24th 2011, 9:00 a.m. to 5:00 p.m. eastern time. The labels along the
x-axis depict the last transaction of the corresponding day. Tick size equals $0.25.

Matching of trade and LOB data is achieved by an algorithm which is described in detail

in Appendix A. Each final observation contains information on each trade including the date,

the time, the transaction price, the number of futures contract traded, the type of market order

(buy or sell), the bid/offer prices and volumes at levels 1, 2 of the LOB. Bid and ask quotes are

the quotes immediately after the trade.

The total number of observations is 524, 746 from which 79, 894 and 444, 852 are re-

ported on the morning and afternoon time period, respectively. The tick size is considered to be

1/4th of a dollar for each segment. In order to determine it we calculate the differences between

adjacent elements of trade price within each day, and divide each element of the new vector

with its minimum value verifying that the updated values are positive integers; the amount by

which the vector is divided is the tick size. The above calculation is applied for each partition.

Table 1.2 provides daily summary statistics for variables within each day. The table con-

sists of four main columns; the first column gives the variables names, while the last three main

columns contain the line headings of the statistics being reported and they are splitted into two

9



15:00:02.404 15:00:02.606 15:00:03.985 15:00:14.225 15:00:40.218 15:00:42.099 15:00:59.984

Time

1329.5

1329.55

1329.6

1329.65

1329.7

1329.75

1329.8

1329.85

1329.9

1329.95

1330
P

ric
e

E-mini S&P 500 Futures contract
May 16, 2011
09:00 to 09:02

Figure 1.2: Time series plot of ES prices on 16 May, 9:00 to 9:02 am. Tick size equals $0.25.

sub-columns with names corresponding to the morning and afternoon time period. To compute

all the statistics shown in the table, first for each variable we calculate the mean and the standard

deviation within each day. Then we calculate the mean and the standard deviation across the

seven days, to obtain daily statistics. According to the table, the daily average number of trades

is substantially smaller in the morning than it is in the afternoon. The daily mean proportion of

intraday active orders (ACT) in the morning is 18.8%, compared to 21.5% in the afternoon. On

a daily average basis the half market orders and the half active market order are buyer-initiated

(BUY/ACTBUY) within each day, and intraday upward (UP) or downward (DOWN) moves oc-

cur with almost equal probability. The table indicates that there is almost no spread at all for

the average of ACT, UP, BUY and ACTBUY variables during the days, and a relatively stable

statistics for these variables within each day. Regarding the traded volume (VOL) and the traded

active volume (ACTVOL), the daily average of its intraday mean has almost multiplied 1.5-fold

from 11.24 in the afternoon to 16.17 in the morning. Furthermore, the average of the traded vol-

ume is relatively constant across the days, while the traded volume changes considerably within

each day. Moreover, the daily mean of the average intraday bid/ask volume on the second level
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Table 1.1: Relative frequencies of price change of ES in multiple of tick size, from May 16th
2011 to May 24th 2011. Trading hours are Monday to Friday 9:00 a.m. to 5:00 p.m. eastern
time. tick =$0.25

Number (tick) ≤ −2 -1 0 1 ≥ 2

Percentage 0.01 10.53 78.94 10.51 0.01

(BIDVOLL2/ASKVOLL2) is almost twice than on the best level (BIDVOLL1/ASKVOLL1),

while their values on each observed quote level on both sides of the market is quite the same.

The table shows a relative wide-spread size of the volume (on both sides of the market) across

different days and a wider-spread size of the volume within each day. Similar holds true for the

active bid/ask volume (ACTBIDVOLL1,ACTBIDVOLL2,ACTASKVOLL1,ACTASKVOLL2).

Additionally, the daily mean of the intraday time duration between trades (DUR) average as well

as the daily mean of the intraday time duration between active trades (ACTDUR) average seem

to be shortest after 1 p.m. than it is before, while the second value is seven times the value of

the first. In the morning, time duration between active trades within each day varies more than

in the afternoon and more than the corresponding values of time duration between trades. For

the spread (SPREAD) and the active spread (ACTSPREAD), the daily average of its intraday

value equals approximately one tick and the table indicates that there is almost no spread at all

for the average of the variable during the days, while the spread is peaked at number one within

each day.

In Figure 1.1, the ES is plotted from May 16 through May 24, 9 a.m. to 5 p.m. The

labels along the x-axis depict the last transaction of the corresponding day. May 16 and 23 cor-

respond to the beginning of two consecutive working weeks starting on Monday. The intervals

do not have the same length because the number of transaction varies daily. Note that there

is a substantial drop in the price of 18.5 units just on the opening of the second week, ie. on

May 23. Furthermore, on May 18 and 24 the price of the first transaction increases significantly

10.25 and 4.25 units, respectively. Figure 1.2 displays the prices for the day of May 16, 2011 at

9:00-9:02 in which it can be noted the price discreteness and the unequal spaced time intervals.

Besides, Table 1.1 shows the percentage of the transaction price changes between 09:00 and

17:00. It seems that most of the transactions (78.94%) are the same as their previous values.

The distribution of transaction price changes is roughly symmetric as down and up one ticks

occurs with 10.53% and 10.51% frequency. Furthermore, both downwards and upwards moves
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greater than two ticks occurs too rarely with frequency 0.01%.

Table 1.2: Daily statistics for the front month E-mini S&P 500 futures contract. The sample
period covers from May 16th 2011 to May 24th 2011, including 7 trading days. The statistics
are reported separately for two sub-periods: morning (9 a.m. to 1 p.m.) and afternoon (1 p.m. to
5 p.m.) with 79,894 and 444,852 observations. The daily average number of trades is 11,420.43
and 63,557.29, respectively. The variable names are listed in the first column in the table. ACT,
UP and BUY denote the percentage of the active trades, upward trades and buy market orders,
respectively. VOL denotes the traded volume. ASKVOLL1 and BIDVOLL1 indicate the ask
and bid volume on the best quote level. ASKVOLL2 and BIDVOLL2 denote the ask and bid
volume on the second level. DUR denotes the duration time between two successive trades in
seconds. SPREAD (in ticks) is the bid-ask spread. ACT‘X’ denotes the variable X restricted
on active trades. The tick size equals $0.25. E(E(X)) and sd(E(X)) return the daily average
and the daily standard deviation of the mean of the variable X within each day, respectively.
E(sd(X)) returns the daily average of the standard deviation of the variable X intraday.

Variable X
E(E(X)) sd(E(X)) E(sd(X))

Morning Afternoon Morning Afternoon Morning Afternoon

ACT 18.8% 21.5% 0.02 0.01 0.39 0.41
UP 49.9% 50.0% 0.00 0.00 1.00 1.00
BUY 48.0% 49.9% 0.02 0.01 0.49 0.50
VOL 11.24 16.17 1.00 0.95 35.60 55.41
ASKVOLL1 254.24 609.86 32.36 56.57 244.11 517.66
BIDVOLL1 234.36 583.02 66.50 57.65 215.45 494.73
ASKVOLL2 531.47 1390.20 106.85 91.21 254.18 531.87
BIDVOLL2 528.75 1351.54 141.85 121.72 232.84 519.47
DUR 1.30 0.23 0.24 0.04 3.10 0.57
SPREAD 1.10 1.04 0.01 0.00 0.31 0.20
ACTBUY 48.0% 49.9 0.00 0.00 0.50 0.50
ACTVOL 17.67 17.86 2.17 1.51 55.55 68.53
ACTASKVOLL1 238.12 615.27 34.42 54.94 220.11 478.97
ACTBIDVOLL1 229.92 601.02 67.81 64.19 189.88 468.38
ACTASKVOLL2 527.60 1396.35 106.39 92.32 245.38 519.37
ACTBIDVOLL2 528.44 1376.29 142.58 125.80 229.38 524.41
ACTDUR 6.98 1.08 1.44 0.18 11.42 1.97
ACTSPREAD 1.06 1.02 0.01 0.01 0.26 0.15
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1.3 Outline of the thesis

In Chapter 2, a review of MCMC and state space models is given. These computational tech-

niques constitute an essential ingredient of Bayesian estimation and will be used throughout the

thesis.

In Chapter 3, both maximum likelihood and Bayesian estimation, via MCMC and SMC

methods, for the observation driven model activity-direction (AD) is conducted applied on ES.

Since only a few transactions result in a price change of more than one tick we convert all price

movements in our data to indicators 1, 0 and –1, corresponding to price increases, no change,

and price decreases respectively. The time gaps between trading days are ignored. The price

movement is specified as a product of a binary variableAi on {0, 1} defining the market activity

(the price moves or not) and a binary variableDi on {−1, 1} defining a negative or positive price

move (if a change occurs). Hence, the transaction price evolves over time by

Pti = Pti + AiDi,

where Pti denotes the transaction price at time ti. We model each component sequentially using

a first order GLARMA model to investigate serial dependence in the data. In MCMC, samples

are drawn from the posterior by the adaptive Metropolis (AM) algorithm, proposed by Haario

et al. 2001. In SMC, we use the iterated batch importance sampling (IBIS) algorithm, proposed

by Chopin [2002], where the algorithm runs three times over the whole data sequence, with

different number of particles and discuss how the estimated parameters are affected. The resam-

pling threshold is set to 80%, and the resampling method is the stratified resampling scheme.

Simulation results are conducted to evaluate the performance of the proposed methods.

In Chapter 4, we extend the AD model by proposing a parameter driven model for each

price component based on the Bernoulli distribution. Specifically, we model the logit of the

probability of success at each time point of each price factor as a linear function of regression

variables, and a latent process; We examine the autoregressive model of order one (AR(1)) and

white noise (WN) process. The estimation is performed using MCMC algorithms where we

want to estimate both the latent state and the model parameter of each component, conditional

on the observed data, in its centered and non-centered parametrization form. We investigate two

methods for estimating the latent process: Firstly, we sample the components of the latent state
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one at time in separate Metropolis–Hastings (MH) steps [Metropolis et al., 1953] conditional

on all others values of the state process and on the parameter vector, and secondly we update

the whole process in one move focused on the method proposed by Titsias [2011]; Titsias and

Papaspiliopoulos [2018]. Besides, the autoregressive coefficient and the conditional precision

are sampled in one move, and in different MH steps. In both samplers, the regression parameters

are drawn jointly from their posterior density. Besides, we apply the interweaving sampler [Yu

and Meng, 2011], which combines both parametrizations by interweaving the two strategies in

order to improve MCMCmixing. We perform a simulation study to investigate the effectiveness

of the binomial parameter driven model using different algorithms by evaluating the effective

sample size per second (ESS/sec).

The observation and parameter driven ADmodels are applied on the ES data. We include

wo separate conditioning information sets; that is, different set of explanatory variables. The

first set includes only past values of the processes. The second set includes these variables

plus several market microstructure variables, including two lags of the logarithmic duration,

the logarithmic traded volume, the spread, the logarithmic bid and ask volume on the two best

observed quote levels. Additionally, we include two lags of a dummy variable indicating that

a trade is a buy market order, and two lags of a dummy variable denoting that a trade moves

up the price. We apply the Brier score [Brier, 1950; Blattenberger and Lad, 1985] for model

comparison of each price component. In order to assess the predictive performance, we compare

the mean square error (MSE) and mean absolute error (MAE) criterion, as well as four scalar

performance measures, namely, accuracy, sensitivity, precision and specificity derived from the

confusion matrix.

In Chapter 5, we propose a new decomposition model that uses trade intervals and is

applied on data that allow three possible tick movements: one tick up price change, one tick

down price change, or no price change. We aggregate observations over a small number of

trade intervals (denoted trade bars), assign each interval the last price included in it, and then

use the price change between the two consecutive intervals for analyzing the process of price

changes. Following the idea of decomposition, we define the price change as the subtraction of

two binomial processes. Specifically, the transaction price evolves over time by

Pti = Pti + 2Di − Ai,
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where Pti denotes the transaction price of the last price included in the ith trade bar which is

recorded at time ti. Ai and Di denote the number of active trades and the number of upward

moves (if at least one change occurs) during the ith trade bar. We assume that the activity

(direction) binary variables that belong to the ith trade bar follow a Bernoulli distribution with

the same probability. Based on this decomposition, we model each component sequentially with

binomial response data. Firstly, a generalized linear autoregressivemoving average (GLARMA)

model is examined, and secondly, it is assumed that the data are governed by a latent process:

an AR(1), a WN and a random walk of order, and use MCMC techniques for estimation. We

describe the binomial AD component model with Student’s t errors. The estimation methods

and the algorithms that are used with the corresponding Bernoulli models are applied here.

Table 1.3: Relative frequencies (in percentage) of price change of ES in multiple of tick size,
from May 16th 2011 to May 24th 2011. Trading hours are Monday to Friday 9:00 a.m. to 5:00
p.m. eastern time. The time gap between trades is ignored. N denotes the size of trade interval.
tick = $0.25.

N

Number (tick)
-2 -1 0 1 2

2 0.05 12.14 75.66 12.10 0.06
5 0.16 14.40 70.95 14.30 0.18

The ES data are compressed into trade bars of size two and five. Table 1.3 shows the

percentage of the transaction price changes between 09:00 and 17:00 after the aggregation. It

seems that most of the transactions are the same as their previous values, while the distribution

of transaction price changes is roughly symmetric as down and up one ticks occur with almost

equal frequency. Furthermore, both downward and upward two tick moves occur too rarely. The

time gaps between trading days are ignored. We adopt a conditioning information set which

includes two lags of the number of active trades and the number upward moves, as well as two

lags of a dummy variable denoting that a trade moves up the price. Additionally, we include

two lags of the logarithmic duration, the logarithmic traded volume, the spread, the logarithmic

bid and ask volume on the two best observed quote levels, the type of market order update

action, as well as a dummy variable indicating that a trade is a buy market order. In order to

assess the predictive performance, we compare the MSE and MAE criterion, as well as four

scalar performance measures, namely, accuracy, sensitivity, precision and specificity derived
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from the confusion matrix. We compare the models with an alternative model that assume the

best prediction for tomorrow’s market price is simply today’s price.

Finally, Chapter 6 summarizes the main conclusions of the thesis and provides future

work suggestions.

All experiments are conducted on a desktop PC with an Intel Core i7-3770 processor,

running at 3.40GHz with 16.0 GB of RAM available for the tools, and estimations are imple-

mented in MATLAB 2013b and C with the Intel®MKL and compiled using Intel C++ 13.0

(with Microsoft Visual C++ 2012 linker).
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Chapter 2

Bayesian inference

2.1 Introduction

The object of this chapter is to present the theory that will be used throughout the thesis. This

chapter is organized as follows. Section 2.2 gives a brief overview of Bayesian inference. Sec-

tion 2.3 summarizes posterior sampling methods for time-invariant parameters, such as MCMC

and SMC. Section 2.4 introduces the main concepts of state space models and gives details of

one important state equation: the autoregressive model of order one. Section 2.5 introduces

Bayesian inference for non-Gaussian state space models using MCMC methods for estimating

the latent path and the model parameter. Besides, it reviews sequential estimation of the filtering

density using the auxiliary particle filter (APF).

2.2 Brief overview of Bayesian inference

Let y ≜ (y1, · · · , yn)⊤ be a (n×1) vector of observations, where the symbol≜means ‘is equal

by definition to’. It is assumed that the data are generated from a probability density, π(y|θ),

where θ is an unknown parameter vector in the parameter space Θ. We want to infer some

properties of the unknown parameter based on the data as well as to predict future data.

There are two methods to estimate these parameters: classical analysis and Bayesian

analysis. In classical analysis, parameters are assumed to be fixed contrary to Bayesian analysis

in which parameters are assumed to be random variables and assigned a suitable prior distri-

bution π(θ). The prior distribution captures our beliefs about the parameters before looking at

the data. The basic idea of Bayesian inference is to combine prior beliefs about the unknown
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parameters and the information about the parameter that is available in the observations to pro-

duce the posterior distribution (or else the target distribution) denoted as π(θ|y). According to

Bayes’ theorem (or Bayes’ rule, Bayes, 1763) it is given by

π(θ|y) = π(y,θ)

π(y)
=
π(θ)π(y|θ)

π(y)
. (2.1)

The quantity π(y|θ) viewed as a function of the parameter vector θ, is called the likeli-

hood function. It quantifies the probability that the observed data would have been observed as

a function of the unknown model parameters. The likelihood is not a probability distribution in

θ (and it does not integrate necessarily to 1), but integrate to 1 over the possible values of y.

The quantity π(y) is called the marginal likelihood and it can be seen as a normalizing

constant to make the integral of posterior density to be one. Integrating both sides of (2.1) with

respect to θ, we have

π(y) ≜
∫
Θ

π(θ)π(y|θ) dθ. (2.2)

The marginal likelihood can be used to compare models by computing Bayes factors [Kass,

1993; Kass and Raftery, 1995]. Since it is independent of unknown parameters, the posterior

density can be written in a more compact form

π(θ|y) ∝ π(y|θ)π(θ), (2.3)

where the symbol ∝ means ‘is proportional to’. Equation (2.3) is fundamental in Bayesian

analysis and states that the posterior distribution of model parameters is proportional to the

likelihood and prior probability distribution.

Forecasting a future value of an observation y′ given the data y is solved by computing

the conditional distribution

π(y′|y) ≜
∫
Θ

π(y′,θ|y) dθ =

∫
Θ

π(y′|y,θ)π(θ|y) dθ, (2.4)

which is called (posterior) predictive distribution. In the common case of independent sampling,

that is when the future observation y′ is independent of y, (2.4) becomes

π(y′|y) =
∫
Θ

π(y′|θ)π(θ|y) dθ.

Often we are not interested in the entire posterior distribution π(θ|y) but, rather, in some
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feature of it, for instance, the posterior expectation of some integrable function f0(·),

I(f0) ≜ Eπ(θ|y)[f0(θ)] =

∫
Θ

f0(θ)π(θ|y) dθ, (2.5)

where Eπ denotes the expectation of a random variable with distribution π. A common ob-

stacle is that such integrals may be analytically intractable (or the computation is highly ex-

pensive). However, given a sample from the posterior distribution, we can use Monte Carlo

(MC, Metropolis and Ulam, 1949; von Neumann, 1963) integration and approximate them. Let

{θ(l)}Nl=1 be an i.i.d. sample generated from π(θ|y). The target density (which may be contin-

uous) is approximated by a discrete probability given by

π̂(θ|y) ≜ 1

N

N∑
l=1

δ(θ − θ(l)), (2.6)

where δ(θ − θ′) denotes a Dirac point-mass located at the point θ′ ∈ Θ. Substitution this

approximation to (2.5) results in

Î(f0) ≜
∫
f0(θ)

1

N

N∑
l=1

δ(θ − θ(l)) dθ =
1

N

N∑
l=1

f0(θ
(l)), (2.7)

which is called the MC estimator. This estimator is unbiased, and the accuracy of it increases

with N . Besides, if the variance of f0(θ) is finite, a central limit theorem (CLT) holds; see

Robert and Casella [2013, Chapter 3]. The key idea behind MC is that an integral which cannot

be computed exactly, is transformed into a tractable finite sum.

Formost inference problems, generating samples from the posterior density is not usually

feasible, because the (high-dimensional) integral in the denominator (2.1) may be not possible

to be solved hence the posterior distribution will only be known up to a normalizing constant;

that makes π(θ|y) analytically intractable.

2.3 Bayesian inference for θ

Suppose that we are interested in sampling the target distributionπ(θ|y) over a parameter vector

θ ∈ Θ, and to estimate functions depending on the desired density. Assume that the posterior

density admits no closed form expression, and it is known up to a normalizing constant. To

address this problem we have to resort to methods, such as (adaptive) MCMC and SMC for
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time-invariant parameters.

2.3.1 Markov chain Monte Carlo

Here we describe the basic idea of MCMC and the widely known Metropolis–Hastings (MH)

algorithm.

2.3.1.1 Basic idea of MCMC

A first order Markov chain is a sequence of random variables {θ(l)}l≥0 with the property that

the next state depends only on the current state and not on the entire past states of the process;

this property is known as the Markov property. We call θ(l) the state of the process and the set

of possible values of the random variables is called the state space. The distribution of θ(0) is

the initial distribution of the chain. The joint distribution of the Markov chain is determined

fully by its initial distribution and its transition kernel. A detailed survey for the Markov chain

theory is provided in Grimmett et al. [2001], Robert and Casella [2013, Chapter 6].

While some Markov chains forget their starting conditions in the long term, others do

not. The key idea in MCMC is to create a Markov chain that will gradually forget its initial state

and converge to the unique stationary (or invariant) distribution π(θ|y), which does not depend

on θ(0). If a chain has a proper invariant distribution π(θ|y), it is irreducible (Markov chain

that eventually reaches every set that has a positive probability, no matter where it starts) and

aperiodic (it should not oscillate between any two point in a periodic manner), then π(θ|y) is

the unique invariant distribution and is also the equilibrium distribution of the chain [Tierney,

1994, Theorem 1].

When {θ(l)}Nl=1 is a simulated path of the constructed chain, the estimator (2.7) holds

and it is called ergodic average. Provided that the Markov chain is ergodic with stationary

distribution π(θ|y), it converges to (2.5) almost surely as N tends to infinity [Tierney, 1994,

Theorem 3]. Besides, under certain assumptions on the transition kernel, a CLT holds; see

Tierney [1994, Theorem 4 and 5], Robert and Casella [2013, Theorem 6.65 and 6.67].

In practice, the chain must be initialized with some initial value and runs for a sufficiently

long time,N . Then, an initial number of iterations,m, is discarded; this number is called burn-

in and denotes the number of iterations towards the beginning when the chain has not converged

yet. The remaining values, {θ(l)}Nl=m+1, will be the dependent sample approximately from the
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Algorithm 1 Draw N samples from π(θ|y) using the MH algorithm [Metropolis et al., 1953;
Hastings, 1970].
1: Start from an initial sample θ(0), drawn from any density π0, with the requirement
π0(θ

(0)|y) > 0.

2: for l = 1, 2, · · · , N do

3: Draw a candidate value θ′ from the proposal distribution q(·|θ(l−1)).

4: Calculate the ratio r =
π(θ′|y)

π(θ(l−1)|y)
q(θ(l−1)|θ′)

q(θ′|θ(l−1))
. ▷ Any constants in the expression

cancel out.
5: Set θ(l) = θ′ with probabilitymin(1, r), otherwise set θ(l) = θ(l−1).
6: end for

7: return θ(1), · · · ,θ(N).

desired density and can be used to estimate the required quantities.

2.3.1.2 The MH algorithm

A method for constructing a Markov chain for obtaining approximate draws from the target

density is the Metropolis algorithm which was first introduced by Metropolis et al. [1953], and

generalized by Hastings [1970]. In a nutshell the MH algorithm works as follows: Let θ(0) be

an initial value within the domain of the desired density. At iteration l, given that the current

value of the chain is θ(l−1), a new state θ′ is drawn from a proposal kernelQ onΘ, with density

q(·|θ(l−1)), which is termed proposal (or a candidate) distribution. The proposal value is ac-

cepted with probability α(θ(l−1),θ′) ≜ min(1, r) where r is called the acceptance ratio given

by

r ≜
π(θ′|y)

π(θ(l−1)|y)
q(θ(l−1)|θ′)

q(θ′|θ(l−1))
, (2.8)

otherwise it stays θ(l−1).

In the original paper of Metropolis et al. [1953] the proposal distribution must be only

symmetric around the current value θ(l−1), such that q(θ′|θ(l−1)) = q(θ(l−1)|θ′). The random

walk Metropolis algorithm arises when the sampler proposes θ′ = θ(l−1)+ϵ, where ϵ is drawn

from a zero mean distribution with variance σ2 (such as a standard normal or t-distribution).

Algorithm 1 presents the general MH method. The samples generated using the MH eventually

converges to the desired distribution; see Gilks et al. [1995]; Robert and Casella [2013].

Gibbs sampler [Geman and Geman, 1984]is a special case of MH algorithm with ac-

ceptance rate equals to one. It can only be used when the full conditional distribution (the
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conditional distribution of one component or block, given all of the other ones) is known in

closed form.

2.3.2 Adaptive MCMC methods

TheMH algorithm can be used to sample from any target distribution, but at the expense of hav-

ing to choose a proposal distribution which plays an important role for the success of the algo-

rithm. Often this problem is donemanually, though this can be difficult especially in high dimen-

sions. An alternative approach is adaptive MCMC, which automatically changes the proposal

distribution. We focus on the adaptive Metropolis (AM) and adaptive random walk Metropolis-

within-Gibbs algorithm. For broader perspectives on this topic see Givens and Hoeting [2012,

Chapter 8] and Damien et al. [2013, Chapter 7].

2.3.2.1 Adaptive Metropolis

The first adaptive MCMC algorithm, which adapts continuously to the target distribution, is

the AM [Haario et al., 2001]. The key idea behind this approach is that the algorithm will be

optimal if the proposal covariance matrix is chosen to be 2.382/d times the covariance matrix

of the target, where d is the dimension of the target [Gelman et al., 1996; Roberts et al., 1997,

2001]. Since the true covariance matrix is rarely known, Haario et al. [2001] estimate it with

the empirical covariance, and the candidate covariance is updated at each iteration using the

past values of the simulations. In a nutshell the algorithm works as follows: It starts from an

initial index l0 and initial covarianceΣ0 which can be chosen as the identity if we have no prior

knowledge about. At the lth iteration, define the candidate covariance matrix

Σ(l) ≜

Σ0 if l ≤ l0

(2.382/d)Σ(l−1) + ϵId otherwise,

for some small ϵ > 0 that prevents the covariance matrix from becoming singular. Then,

propose θ′ from a Gaussian distribution centered at the current value Nd(θ
(l−1),Σ(l)), and

accept or reject the same way as in MH algorithm with acceptance probabilitymin(1, π(θ′|y)/

π(θ(l−1)|y)). The covariance matrix is calculated iteratively to avoid the method becoming

computationally expensive. Haario et al. [2001] prove that the samples come from the target

distribution and the algorithm is ergodic for bounded functions.
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Algorithm 2 Draw N samples from π(θ|y) using the AM algorithm [Haario et al., 2001;
Roberts and Rosenthal, 2009].
1: Start from an initial sample θ(0), drawn from any density π0, with the requirement
π0(θ

(0)|y) > 0. ▷ θ contains real-valued parameters
2: for l = 1, 2, · · · , 2d do
3: Draw a candidate value θ′ from the proposal distributionNd(θ

(l−1),Σ0).

4: Calculate the ratio r = π(θ′|y)/π(θ(l−1)|y).
5: Set θ(l) = θ′ with probabilitymin(1, r), otherwise set θ(l) = θ(l−1).
6: end for

7: Evaluate µ(2d) ≜ [µ2d,1, · · · , µ2d,d]
⊤, where µ2d,j ≜ (1/2d)

∑2d
l=1 θ

(l)
j for j ≤ d; µ2d,j and

θ
(l)
j denote the jth element of vector µ(2d) and θ(l), respectively. ▷ d× 1 vector

8: EvaluateΣ(2d) ≜
∑2d

l=1(θ
(l) − µ(l))(θ

(l) − µ(l))
⊤. ▷ d× d matrix

9: for l = 2d+ 1, 2d+ 2, · · · , N do

10: Draw a candidate value θ′ from (1− β)Nd(θ
(l−1), cΣ(l−1)) + βNd(θ

(l−1),Σ0).
11: Repeat steps 4 and 5.
12: Update the covariance matrix of the proposal density: µ(l) = µ(l−1) + (1/l)(θ(l) −

µ(l−1)) andΣ(l) = Σ(l−1) + (1/l)
(
(θ(l) − µ(l−1))(θ

(l) − µ(l−1))
⊤ −Σ(l−1)

)
.

13: end for

14: return θ(1), · · · ,θ(N).

Roberts and Rosenthal [2009] propose a new version of the above algorithm in which

the lth proposal covariance matrix is a mixture of the form

Σ(l) ≜

Σ0 if l ≤ 2d

(2.382/d)Σ(l−1) + βΣ0 otherwise,

where Σ0 ≜ (0.12/d)Id and β ∈ (0, 1) to avoid the algorithm being stuck with a singular

covariance matrix. Algorithm 2 presents this version of AM algorithm.

An important advantage of the AM algorithm is that it starts using the cumulating in-

formation from the beginning of the run, ensuring that the search becomes more effective at an

early stage [Haario et al., 2001].

2.3.2.2 Adaptive random walk Metropolis-within-Gibbs

The key idea behind the adaptive random walk Metropolis-within-Gibbs [Roberts and Rosen-

thal, 2009, Section 3] is that a unique proposal variance for each component with intractable

full conditional distribution is used, and it is tuned automatically on the fly with the goal of
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obtaining a proposal acceptance rate of about 44%. This rate has been shown to be optimal for

univariate normally distributed target and proposal distributions [Gelman et al., 1996; Roberts

et al., 2001].

Algorithm 3 Draw Nb samples from π(θ|y) using the adaptive random walk Metropolis-
within-Gibbs algorithm [Roberts and Rosenthal, 2009]. π(θj|θ−j,y) is not easy to directly
sample for j ≤ k so it is approximated via MH. All operations involving j and g must be
performed for all j ∈ 1 : k and g ∈ k + 1 : d, respectively.
1: Start from an initial sample θ(0), drawn from any density π0, with the requirement

π0(θ
(0)|y) > 0. Let lsj = 0.

2: for i = 1, 2, · · · , N do

3: for l = 1, 2, · · · , b do ▷ batch loop

4: Draw a candidate value θ′j from fromN (θ
((i−1)b+(l−1))
j , exp(lsj)).

5: Set θ′ = θ((i−1)b+(l−1)) and θ′j = θj .

6: Calculate the ratio rj = π(θ′|y)/π(θ((i−1)b+(l−1))|y).

7: Set θ((i−1)b+l)
j = θ′j with probability min(1, rj) and update ratio rj = rj + 1,

otherwise set θ((i−1)b+l)
j = θ

((i−1)b+(l−1))
j . ▷MH update

8: Draw θ((i−1)b+l)
g from its full conditional posterior distribution, conditioning on the

most recent updates to all other elements of θ. ▷ Gibbs update

9: end for ▷ end of l-loop

10: if rj < 0.44 then lsj = lsj + δ(i) else lsj = lsj − δ(i). ▷ adaptation step

11: end for ▷ end of i-loop

12: return θ(1), · · · ,θ(Nb).

The algorithm (is summarized in )proceeds as follows: For each element j of the vector

θ, θj , with posterior density not available in closed form, the proposal distribution is normal

centered at its current value and variance σj
2 ≜ exp(lsj); the initial value of lsj is zero. Then

the algorithm runs for b times and during this process the variables with unknown posterior

form are updated via MH, while the remaining variables with Gibbs. After each ith batch of b

iterations, the acceptance ratio for each variable is computed. If the acceptance rate of element

j is lower (or higher) than 0.44, then the term lsj is decreased (increased) by δ(i). The term δ(i)

equals min(0.01, i−1/2), and it converges to zero as i tends to infinity. lsj is restricted within

[−M,M ] for a constant M < ∞. Under these choices, Roberts and Rosenthal [2009] prove

that the samples come from the target distribution and the algorithm is ergodic for bounded
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functions.

Contrary to the AM, the correlations between the parameters are ignored, and the adap-

tation step is not performed at each iteration of the algorithm but only at the specific iterations

{b, 2b, · · · }, where b denotes the size of each batch. Algorithm 3 presents the adaptive random

walk Metropolis-within-Gibbs with normal proposal. The parameters are arranged so that the

first k variables are updated with the MH algorithm, as opposed to the rest variables that permit

Gibbs updates.

2.3.2.3 Convergence of adaptive MCMC

The idea of adaptive MCMC algorithms is to adapt the proposal distribution from the sample

history. One problem in adapting is that the chain is not Markovian and standard convergence

results do not apply. One solution is to use adaptation only for a prespecified period, and then

run a conventional non-adaptive algorithm with this scaling. These algorithms are called finite

adaptive algorithms. However, we have to decide when to stop the adaption.

Ergodicity of adaptive MCMC has been studied by Andrieu et al. [2006], and their re-

sults have been extended by Roberts and Rosenthal [2007], Atchadé et al. [2010] among others.

Roberts and Rosenthal [2007] prove that an adaptive MCMC algorithm is ergodic with respect

to the target stationary distribution if it satisfies diminishing adaptation and bounded conver-

gence. The diminishing adaptation condition intuitively means that we adapt less and less as

time increases. The bounded convergence (containment) condition considers the time until near

convergence. Besides, they prove a weak law of large numbers for bounded functions. For more

details see Roberts and Rosenthal [2007], Roberts and Rosenthal [2009] and references therein.

2.3.3 Sequential Monte Carlo for time-invariant parameters

SMCmethods sample sequentially a sequence of target probability densities through importance

sampling and resampling steps [Doucet et al., 2001; Doucet and Johansen, 2009]. Initially,

SMC has applied to the analysis of dynamic systems, and later they have been extended to

time-invariant parameters; see Neal [2001]; Chopin [2002]; Ridgeway and Madigan [2003];

Del Moral et al. [2006]; Fearnhead et al. [2013]; Gunawan et al. [2018].

In contrast to MCMC methods, SMC are useful for online estimation problems, or in

other words, if we want to infer unknown parameters of a statistical model sequentially after
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Algorithm 4 Draw N samples from π(θ|y) using IBIS algorithm [Chopin, 2002]. Note: The
observations y are independent given θ. n0 denotes a small number of the first observations,
γ ∈ (0, 1). All operations involving l must be performed for all l ∈ 1 : N .

1: Start from an initial sample θ(l) from πn0
(θ), set w(l)

0 = 1 and calculate π(y1:n0
|θ(l)).

2: for t = n0 + 1, 2, · · · , n do

3: Calculate the importance weights w(l)
t = w

(l)
t−1π(yt|θ(l)).

4: Set π(y1:t|θ(l)) = π(y1:t−1|θ(l))π(yt|θ(l)).
5: Obtain ESS = (

∑N
l=1w

(l)
t )2/

∑N
l=1(w

(l)
t )2.

6: if ESSt < γN then ▷ resample - move step
7: Evaluate µ̂t =

∑N
l=1w

(l)
t θ(l)/

∑N
l=1w

(l)
t .

8: Evaluate Σ̂t =
∑N

l=1w
(l)
t (θ(l) − µ̂t)(θ

(l) − µ̂t)
⊤/
∑N

l=1w
(l)
t .

9: Resample particles θ(l) with probabilities proportional to w(l)
t , and set w(l)

t = 1.
10: Draw a candidate value θl′ from the proposal distributionN (µ̂t, Σ̂t).
11: Calculate the ratio rl = π(θl′|y1:t)/π(θ(l)|y1:t).
12: Set θ(l) = θl′ with probabilitymin(1, rl).
13: end if

14: end for

15: return θ(1), · · · ,θ(N).

each new observation comes in. Each time a new observation is arrived the already sampled

values (or particles) are reused and the posterior has not need to be recomputed.

2.3.3.1 Iterated batch importance sampling

We focus here on the iterated batch importance sampling (IBIS, Chopin [2002]) algorithm to

estimate recursively in time the posterior distribution πt(θ) ≜ π(θ|y1:t). The method is applied

to data which are either conditionally independent given the parameter θ, i.e. π(y1:t|θ) =∏t
i=1 π(yi|θ) or Markov, i.e. π(y1:t|θ) = π(y1|θ)

∏t
i=2 π(yi|y1:i−1,θ).

IBIS algorithm approximate πt−1(θ) with particles {θ(l)}Nl=1, and associated proba-

bility weights {W (l)
t−1}Nl=1 which sum to one, constituting the discrete probability distribution

π̂t−1(θ) ≜
∑N

l=1W
(l)
t−1δ(θ − θ(l)). The aim of the tth iteration of the algorithm, is to sample

from the target density πt(θ) and construct a (discrete distribution) approximation via impor-

tance sampling and resampling techniques.

Since it is generally impossible to sample directly from πt(θ), IBIS approximates it using

an importance density qt(θ) = q(θ) whose support includes that of the target. The weight
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assigned to the lth sample, θ(l), is given by

w
(l)
t ≜

πt(θ
(l))

q(θ(l))
=

πt(θ
(l))

πt−1(θ(l))
× πt−1(θ

(l))

q(θ(l))
= ut(θ

(l))w
(l)
t−1, (2.9)

whereut(θ
(l)) equals toπ(yt|θ(l))when the observations are independent, and toπ(yt|yt−1,θ

(l))

when the observations are Markov of order one. This is repeated N times to produce the set of

weighted particles at time t, {(θ(l), w
(l)
t )}Nl=1, which gives an importance sampling approxima-

tion to πt(θ).

At each iteration of the algorithm if some degeneracy criterion is fulfilled, a resample-

move step is applied. Firstly, each particle θ(l) is selected with replacement with a probability

proportional to w(l)
t , and the weights are reset to one; this statistical procedure is called re-

sampling. The intuition behind this step is that weak particles with low importance weights

(relative to 1/N ) will be discarded and replace them with stronger particles. Secondly, a sin-

gle MH step is applied to each particle [Gilks and Berzuini, 2001]. It is not required a burn-in

period, because the particles are approximately distributed according to πt(θ) and the Markov

kernel is πt(θ)-invariant. The intuition behind this step is that many of the resampled particles

may have identical values. By applying the move step, the final sample represents a more di-

verse set of parameter values. New particles can be proposed according to a Gaussian random

walkN (θ(l), cΣ̂t), where c is a tuning constant, or an independent MH algorithmwith proposal

distributionN (µ̂t, Σ̂t), where

µ̂t =

∑N
l=1w

(l)
t θ(l)∑N

l=1w
(l)
t

, Σ̂t =

∑N
l=1w

(l)
t (θ(l) − µ̂t)(θ

(l) − µ̂t)
⊤∑N

l=1w
(l)
t

,

and µ̂t ≜ Êπt(θ), Σ̂t ≜ V̂πt(θ) [Chopin, 2002]; V denotes the variance of a random variable.

The decision of whether to apply a resample step is based on the effective sample size

(ESS). It is theoretically defined as the equivalent number of independent samples generated

directly form the target distribution, which yields the same efficiency in the estimation obtained

with the N weighted draws. Kong et al. [1994] shows that it can be approximated as

ESSt ≜
(
∑N

l=1w
(l)
t )2∑N

l=1(w
(l)
t )2

, (2.10)

where ESSt varies between 1 (all but one particle have weight zero) and N (all particles have

equal weight). Thus, a low value indicates that the weights are concentrated only on a few
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particles. During each iteration of the algorithm, if that ESSt < γN , e.g. γ = 2/3 or 1/3, then

resampling is performed. Resampling is therefore performed at random times. For a review of

resampling techniques see Douc and Cappé, 2005.

IBIS algorithm is usually initialized from the prior density. However, if the priors are flat

the particle system may be degenerate in the first iterations. Thus, Chopin [2002] proposes to

initialize the algorithm from the posterior πn0
(θ), where n0 denotes a small number of the first

observations. IBIS with independent observations is presented in Algorithm 4. A consistent

and asymptotically normal estimator of Eπt(θ)[f0(θ)] for an appropriately integrable function

f0(·), is given by
∑N

l=1w
(l)
t f0(θ

(l))/
∑N

l=1w
(l)
t ; see Chopin et al. [2004].

2.4 State space models

State space models (SSMs) are a popular class of time series models that have been widely

used in many different fields as statistics, econometrics and engineering; for more information

see Doucet et al. [2001]; Campagnoli et al. [2009]; Durbin and Koopman [2012]; Zucchini et al.

[2017]. In state space analysis, it is assumed that observations are associated with an underlying

latent process which is not directly observed. The relationship between the two processes is

specified by the state space model.

Let h ≜ (h1, · · · , hn)
⊤ be a (first order) Markov process taking values on some mea-

surable space H; it is a n × 1 vector. This process is called latent (or hidden) since it is not

directly observed, and it is fully specified by its initial and transition density which are given

respectively by

πθ(h1) ≜ π(h1|θ), πθ(ht|ht−1) ≜ π(ht|ht−1,θ), (2.11)

where θ ∈ Θ denotes the (unknown) parameter of the model. Conditional on both the latent

process and the model parameter, the observations yt are independent, with distribution deter-

mined by the current state of the parameter process satisfying

π(yt|y1:t−1, h1:t,θ) = π(yt|ht,θ) ≜ πθ(yt|ht). (2.12)

Models compatible with (2.11)-(2.12) are known as SSMs. When the states are discrete they

are usually referred to as hidden Markov models. Equation (2.11) is called the state equation,

which describes how the system evolves from one time point to the next, while (2.12) is the
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observation equation, which describes how the underlying state is transformed into something

that is measured directly.

A key ingredient for classical and Bayesian inference is the likelihood function of θ,

πθ(y1:t), which satisfies

πθ(y1:t) ≜
∫
H
πθ(y1:t,h) dh, (2.13)

where πθ(y1:t,h) denotes the joint density of (y1:t,h) which is given from equations (2.11)-

(2.12) by

πθ(h, y1:t) = πθ(h1)
n∏

t=2

πθ(ht|ht−1)
n∏

t=1

πθ(yt|ht).

The computation of the likelihood is not an easy task since it requires the evaluation of com-

plex high dimensional integrals. An exception is the linear Gaussian models (the latent state

and the observed variables, have Gaussian distributions with a linear dependency between vari-

ables), for which it can be calculated by using Kalman techniques [Kalman, 1960]. In the case

of nonlinear or non-Gaussian state space models, the Kalman filter cannot be used. Popular

approximation methods are the extended Kalman filter [Jazwinski, 2007] and the unscented

Kalman filter [Julier and Uhlmann, 2004]; see Julier et al. 1995; Van Der Merwe et al. 2001.

However, depending on the degree of non-linearity and non-Gaussianity these alternatives may

perform poorly.

2.4.1 The AR(1) process

A popular case of SSMs is when the latent state is an AR(1) process, that is

ht = ϕ0 + ϕ1(ht−1 − ϕ0) + εt, εt
i.i.d.∼ N (0, σ2), (2.14)

where the symbol ∼ means ‘is distributed according to’. Conditional on ht−1, ht follows a

Gaussian distribution with mean and variance given by

E(ht|ht−1) = ϕ0 + ϕ1(ht−1 − ϕ0), V(ht|ht−1) = σ2.

In general, a process is called weakly stationary if its mean is constant and its lag k

autocovariance depends only on the lag. The AR(1) latent process is weakly stationary when

|ϕ1| < 1 and it can be written as a weighted sum of past error terms (see Tsay 2005, Section

29



2.4.1)

ht = ϕ0 +
∞∑
t=0

ϕi
1εt−i, t ≥ 2.

E(ht) = ϕ0, cov(ht, ht+k) =
σ2

1− ϕ2
1

ϕk
1.

When ϕ1 = 0, the process is called white noise (WN), while when ϕ1 = 1 it is called first-order

random walk (RW(1)).

2.5 Bayesian inference for state space models

The joint probability density function (pdf) of the latent state, πθ(h), is assumed to beNn(m,C)

at h. Besides, π(θ) denotes a suitable prior for the model parameter. Instead of simulating di-

rectly from the target distribution, this can be achieved by constructing a Markov chain which

mimics the two-component Gibbs sampler sampling iteratively from π(h|θ,y) and π(θ|h,y);

see Sections 2.5.1 and 2.5.2, respectively.

2.5.1 Updating the state

In this section we sample from π(h|θ,y) (2.3)∝ πθ(y|h)πθ(h), where πθ(y|h) ≜ π(y|h,θ).

Updating the state with MCMC A detailed review on MCMC in the context of SSMs can

be found in Fearnhead [2011]. Firstly, we sample the components of the latent state one at time

in separate MH steps conditional on all others values of the state process and on the parame-

ter vector by employing the random walk Metropolis algorithm.The full conditional posterior

distribution of the tth element of the vector h is given by

π(ht|h−t,θ, y1:t) ∝ πθ(yt|ht)πθ(ht|h−t),

where

πθ(ht|h−t) ≜


πθ(h1)πθ(h2|h1), t = 1

πθ(ht|ht−1)πθ(ht+1|ht), t = 2, · · · , n− 1

πθ(hn|hn−1), t = n.
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If some target distribution is known in closed form, the sampling may be done with the Gibbs

sampler.

The previous method may lead to slow mixing if there is strong temporal dependence

in the state process, while increasing the number of states, the run time increases too. Titsias

[2011]; Titsias and Papaspiliopoulos [2018] propose the auxiliary sampler based on z (aGrad-

z) algorithm which updates the whole process in one move. It belongs to a new family of

MCMC samplers that combine auxiliary variables and approximate the intractable likelihood

function. Let z ba an auxiliary vector of variables with conditional pdf given h, π(z|h), the

Nn (h+ (δ/2)∇hf(h), (δ/2)In) at z, where f(h) ≜ log πθ(y|h), ∇hf(h) denotes partial

derivative of f(h) with respect to h such as∇hf(h) = h− exp(h)/(1+exp(h)) and δ > 0

is a parameter that has to be tuned. The auxiliary variable z tends to move the chain in the

direction of∇hf(h). The modified target density is given by

π(h, z|θ,y) ∝ πθ(y|h)π(h|θ)π(z|h).

This augmentation is consistent since by marginalizing out z it is recovered the initial target

density. Thus, one can sample to produce one draw (h(l), z(l)) from the modified target distri-

bution, and by construction the sample h(l) is from the desired density.

Algorithm 5 presents the steps to sample h(l) from π(h|θ,y), given that the current

value of the chain is (h(l−1), θ(l−1)). In step 2, the proposal density is the product of the pdf

Nn(m,C) ath′ and the pdfNn(h
′, (δ/2)In) at z. Hence, the proposal distribution is invariant

to the Gaussian prior, and defines a non-independent MH algorithm. The parameter δ is tuned to

achieve an acceptance rate between 50% and 60% which empirically the authors have observed

to maximize sampling efficiency (the efficiency is measured as ESS per unit of computing time).

Titsias and Papaspiliopoulos [2018] compare their proposed algorithms to other methods such

as preconditioned Crank-Nicolson Langevin (pCNL); see Beskos et al. [2008] and Cotter et al.

[2013] and conclude that the new samplers are more efficient.

Updating the state with SMC In this section the parameter θ is assumed known and we

want to recursively calculate the filtering densities πθ(ht|y1:t) by employing the APF [Pitt and

Shephard, 1999, 2001].
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Algorithm 5 Sample h(l) of π(h|θ,y), given that the current value of the chain is (h(l−1),
θ(l−1)), using the aGrad-z sampler [Titsias, 2011; Titsias and Papaspiliopoulos, 2018].

1: Draw an auxiliary variable z fromNn(h
(l−1) + (δ/2)∇h(l−1)f(h(l−1)), (δ/2)In).

2: Draw a candidate value h′ from the proposalNn((2/δ)Σ
(
z + (δ/2)C−1m

)
,Σ), where

Σ ≜
(
C−1 + (2/δ)In

)−1.
3: Calculate the acceptance ratio r = exp{f(h′) − f(h(l−1)) + g(z,h′) − g(z,h(l−1))},

where g(z,h) = (z − h− (δ/4)∇hf(h))
⊤∇hf(h).

4: Set h(l) = h′ with probabilitymin(1, r), otherwise set h(l) = h(l−1).

The filtered density, πθ(ht|y1:t), satisfies the following recursion

πθ(ht|y1:t) =
πθ(yt|ht)πθ(ht|y1:t−1)

πθ(yt|y1:t−1)
, (2.15)

where πθ(ht|y1:t−1) =
∫
H πθ(ht|ht−1)πθ(ht−1|y1:t−1) dht−1. Particle filters (SMC methods

applied to SSMs) approximate πθ(ht−1|y1:t−1) (which may be continuous) with a set ofN par-

ticles, {h(l)
t−1}Nl=1, and associated probability weight {W (l)

t−1}Nl=1 which sum to one, constituting

a discrete density π̂θ(ht−1|y1:t−1) ≜
∑N

l=1W
(l)
t−1δ(ht−1 − h(l)

t−1). Substituting π̂θ(ht−1|y1:t−1)

for πθ(ht|y1:t−1), yields a (continuous density) approximation to πθ(ht|y1:t) given by

π̃θ(ht|y1:t) ∝
N∑
l=1

W
(l)
t−1πθ(yt|ht)πθ(ht|h(l)

t−1). (2.16)

The aim of the tth iteration of the particle filter, is to construct a new (discrete distribution)

approximation to π̃θ(ht|y1:t) via importance sampling and resampling techniques.

Let J be an auxiliary random variable taking values on the set of integers {1, · · · , N},

which can be thought of as a variable selecting one of the components from the mixture in

(2.16). The modified target density is given by

πθ(j, ht|y1:t) ∝ W j
t−1πθ(yt|ht)πθ(ht|hj

t−1).

This augmentation is consistent since by marginalizing out j it is recovered the initial target

density. The proposal distribution is chosen as a factorized form

q(j, ht|y1:t) ∝ W j
t−1ν(h

j
t−1, yt)q(ht|hj

t−1, yt). (2.17)

Drawing one realization from the proposal distribution 2.17 is equivalent to (a) draw the particle
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hj
t−1 where j is selected from {1, · · · , N} with probability proportional to W j

t−1ν(h
j
t−1, yt);

(b) draw ht ∼ q(ht|hj
t−1, yt). The weight assigned to the sample (j, ht) is given by

wt ∝
πθ(yt|ht)πθ(ht|hj

t−1)

ν(hj
t−1, yt)q(ht|hj

t−1, yt)
. (2.18)

This is repeated N times to produce the set of weighted particles at time t, {(h(l)
t , w

(l)
t )}Nl=1,

which gives an importance sampling approximation to πθ(ht|y1:t).

The key idea of APF is to increase the probability of resampling particles at time t−1 that

are in agreement with the observation yt using an algorithm with computational complexity of

O(N) per time step. In other words, ν(ht−1, yt) should take a large value if it is likely to observe

the observation yt at time t, given the system state is ht−1 at time t. This should produce more

even weights and thus a better approximation of the filtering density. Pitt and Shephard [1999]

recommend selecting ν(ht−1, yt) = πθ(yt|ht−1), which is called the predictive likelihood. If it

is not tractable, the authors suggest to be approximated by πθ(yt|µt) where µt is a value (e.g.

mean, mode, or sample value) associated with the distribution of ht|ht−1.

Algorithm 6 Draw h
(l)
t from π(ht|y1:t,θ) given the existing particle system (h

(l)
t−1, w

(l)
t−1)

N
l=1

using the APF [Pitt and Shephard, 1999, 2001]. All operations involving l must be performed
for all l ∈ 1 : N .
1: Calculate λ(l) ∝ w

(l)
t−1πθ(yt|µ

(l)
t ), where µ(l)

t denotes the mean associated with the distri-

bution of ht|h(l)
t−1.

2: Sample the indices j(l) from {1, · · · , N}with probabilities proportional to {λ1, · · · , λN},

and set h̄(l)
t−1 ≜ hj(l)

t−1, and µ̄
(l)
t ≜ µj(l)

t . ▷ resample step

3: Propagate particles h(l)
t ∼ πθ(ht|h̄(l)

t−1).

4: Calculate the weights w(l)
t = πθ(yt|h(l)

t )/πθ(yt|µ̄(l)
t ).

5: Resample the values h(l)
t with replacement from {h(1)

t , · · · , h(N)
t } with probabilities pro-

portional to {w(1)
t , · · · , w(N)

t }, and set w(l)
t = 1.

6: return h(1)
n , · · · , h(N)

n .

The variance of the importance weights is affected by the choice of proposal distributions

in the importance sampling stage. By choosing a proposal which closely resembles the target,

the importance weights will be approximately equal, and thus the variance of the weights will

be close to zero; for more details see Doucet et al. [2000]. Drawing h(l)
t from π(ht|y1:t,θ) given
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the existing particle system {(h(l)
t−1, w

(l)
t−1)}Nl=1 is summarized in Algorithm 6.

2.5.2 Updating the parameters

Wewant to update the posterior conditional density of θ, π(θ|h,y). Often, it is useful to update

the parameter vector in blocks, or its individual components one by one sequentially in time, or

updating the whole parameter in one step. However, when there is strong dependence between

θ and h, the overall efficiency of the MCMC algorithm may be poor. This problem can often

be improved through model parametrizations.

Papaspiliopoulos [2003]; Papaspiliopoulos et al. [2003] present two parametrizations

that can be used for SSMs: centered parameterization (CP) and non-centered parameteriza-

tion (NCP). This terminology was first introduced by Gelfand et al. [1995], who discussed

parametrization for normal linearmixedmodel, andwas generalized by Papaspiliopoulos [2003]

in the context of hierarchical models. More specifically, the CP is defined as the parametriza-

tion under which the data y are independent of the parameters θ conditionally on the state h.

More specifically, the CP is defined by a model where π(θ|h,y) = π(θ|h). Thus, the poste-

rior density of θ is independent of the observations. Since, in the general state space models the

likelihood has an intractable form, the centered parametrization implies that it is likely to update

the component θ via Gibbs sampling. On the other hand, the NCP is based on the assumption

that there is an alternative parametrization (h,θ)→ (h̃,θ) such that: h̃ is a-prior independent

of θ and there is a function ψ(·) where h = ψ(h̃,θ). Under this parametrization the posterior

of θ is not independent of the data, which makes updating θ computationally more challenging

in general.

These parametrizations are complementary, in the sense that the one is likely to perform

well when the other do not and conversely [Papaspiliopoulos, 2003]. Further, Papaspiliopou-

los et al. [2003] provide insights into the conditions under which centered and non-centered

parametrizations outperform each other. Similar to Gelfand et al. [1995], they conclude that

CP is better when the likelihood is informative and NCP is better when the likelihood is rela-

tively uninformative. For spatial models, they observe that CP outperforms NCP in MCMC as

the correlation of the spatial process increases. These ideas have been used extensively within

continuous time stochastic volatility models; see, for instance, Shephard and Kim [1994], Kim

et al. [1998], Frühwirth-Schnatter [2004].
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Yu and Meng [2011] present ancillary-sufficiency interweaving strategy (ASIS) which

is a method of combining both parametrizations by interweaving (and not alternating) the two

strategies at each iteration in order to improve MCMC mixing. The proposed algorithm con-

verges geometrically even when CP and NCP fail to do so; for more details see the original

paper. In a nutshell, the ASIS works as follows: At the lth iteration of the algorithm, let the

current value of the chain be {θ(l−1), h(l−1), h̃(l−1)}, where h(l−1) = ψ(h̃(l−1),θ(l−1)). The

interweaving says that given the model parameter θ(l−1), sample the latent state h(l) (h̃(l)) uti-

lizing CP (NCP). Then, given the updated latent vector sample θ(l) in CP (NCP). Next, move

to NCP (CP) and redraw θ(l) in NCP (CP). At the end, move back to CP (NCP) by the trans-

formation h(l) = ψ(h̃(l),θ(l)) (h̃(l) = ψ−1(h(l),θ(l))). Thus, the parameters are sampled

twice, while the latent state only once; either in CP or NCP. The model parameters may be

updated in blocks of its components, or the whole vector in a single move. Following Kastner

and Frühwirth-Schnatter [2014] if the state is updated in CP it is termed GIS-C, otherwise it

is termed GIS-NC, where the terminology GIS stands for global interweaving strategy and was

introduced by Yu and Meng [2011]. Algorithm 7 presents the GIS-C algorithm where the latent

states are updated in CP.

Algorithm7DrawN samples fromπ(h,θ|y) using theGIS-C algorithm [Yu andMeng, 2011].

1: Start from an initial sample {θ(0),h0}, drawn from any density π0, with the requirement
π0(θ

(0),h0|y) > 0.

2: for l = 1, 2, · · · , N do

3: Draw h(l) in CP from π(h|θ(l−1),y).
4: Draw θ(l) in CP from π(θ|h(l),y).
5: Move to NCP by calculating h̃(l) = h−1(h(l),θ(i).
6: Redraw θ(l) in NCP π(h̃(l)|θ(l),y).
7: Move to CP by calculating h(l) = ψ(h̃(l),θ(l)).
8: end for

9: return (θ(1),h(1)), · · · , (θ(N),h(N)).
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Chapter 3

Bayesian inference of the AD model

3.1 Introduction

In this chapter, we explore Bayesian inference via MCMC and SMC for the ADS model to

analyze high-frequency integer price changes. Models that are similar in spirit to the ADS,

but not necessarily applied on tick data, have been studied among others, by Anatolyev and

Gospodinov [2010] and Kauppi and Saikkonen [2008] in the context of forecasting returns and

recessions, respectively. In the former paper, the return is expressed into a sign component and

absolute value component which are modeled separately as a copula before the joint forecast

is constructed. The authors use a logistic link function and no lagged logit term. In the latter

paper, the authors construct four different model specifications, including the static, dynamic,

autoregressive, and dynamic autoregressive probit models and find that dynamic models have

better predictive power than static models. The last paper is used by Nyberg [2011]; Pönkä

[2017] to investigate the sign predictability of U.S. stock returns. The models discussed in this

paragraph are estimated by maximum likelihood based on the Bernoulli density.

This chapter is organized as follows. Section 3.2 presents the AD model and Section 3.3

analyses the proposed model within a Bayesian framework. Section 3.4 presents the results of

a simulation study. Section 3.5 presents the empirical results.

3.2 The AD model for price movements

Let Pti be the transaction price at time ti and Yi ≜ Pti −Pti−1
be the price difference of the ith

transaction which is an integer multiple of a fixed tick. The interest lies in estimating the condi-
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tional distribution of the discrete price changes, Yi|F i−1, where F i denotes the information set

available at the time transaction i takes place generated by past values of the observed series,

as well as past values of a covariate vector.

The price decomposition model of Rydberg and Shephard [1998a, 2003] specifies the

price movement as a product of a binary (takes only two values) variable Ai on {0, 1} defining

the market activity (the price moves or not), a binary variableDi on {−1, 1} defining a negative

or positive price move (if a change occurs) and the size of a price change in ticks on the strictly

positive integers. In our dataset, most of the transactions prices are the same as their previous

values (78.94%), one tick down and up occur with 10.53% and 10.51% frequency, respectively,

and movements of more than one tick occur about 0.01% of the time. Since only a few trans-

actions result in a price change of more than one tick we convert all price movements in our

data to indicators 1, 0 and –1, corresponding to price increases, no change, and price decreases

respectively. For this reason Yi can be written as

Yi = AiDi, (3.1)

whereDi = 0 if Ai = 0. The conditional joint distribution of (Ai, Di) is decomposed as

π(Ai, Di|F i−1) = π(Ai = 1|F i−1)π(Di|Ai = 1,F i−1). (3.2)

3.2.1 Models for the activity and direction process

Activity is a bivariate variable, denoted asAi, that takes the values of 0 or 1 to indicate whether

there is a price change in the ith trade. Conditional on the information set available at time ti,

FA
i−1, we assume that Ai has a Bernoulli distribution with probability πAi

≜ π(Ai = 1|FA
i−1)

or, in symbols,

Ai|FA
i−1 ∼ Bernoulli(πAi

).

Following Rydberg and Shephard [1998a, 2003], we parametrize πAi
as a GLARMA binary

model of the form

logit(πAi
) = xA,⊤

i−1βA + ZA
i (3.3)

ZA
i = ϕAZ

A
i−1 + δAε

A
i−1, (3.4)
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where logit(πAi
) ≜ log(πAi

)− log(1−πAi
), εAi ≜ (Ai−πAi

)/
√
πAi

(1− πAi
), xA

i−1 denotes

the dA× 1 dimensional vector of explanatory variables (such as volume or time of transaction)

for the activity component known at ti−1 in which the first element is always one and βA is a

dA × 1 parameter vector. Moreover, |ϕA| < 1 and δA > 0.

Consequently,

πAi
=

exp(logit(πAi
))

1 + exp(logit(πAi
))

and 1− πAi
=

1

1 + exp(logit(πAi
))
.

The conditional mean of Ai is E(Ai|FA
i−1) = πAi

and the conditional variance of the price

activity can be defined as V(Ai|FA
i−1) = πAi

(1 − πAi
). Furthermore, the term εi form a

Martingale difference sequence with unit conditional and unconditional variance characterizing

the new information associated with the ith transaction. The log-likelihood function is given by

ℓ(θA) ≜
∑
i∈1:n

log π(Ai = αi|FA
i−1,θA)

=
∑
i∈1:n

(
αi(x

⊤
i−1βA + ZA

i )− log(1 + exp(xA,⊤
i−1βA + ZA

i )
)
, (3.5)

where αi ∈ (0, 1), θA = (ϕA, δA,βA)
⊤ collects the parameters of the price activity process.

The direction component, conditional on the activity component, is a bivariate variable,

denoted as Di, that takes the values of -1 or 1 to indicate a negative or positive price move of

the ith trade. We re-parametrizeDi asD′
i = 1 ifDi = 1, andD′

i = 0 ifDi = −1. In a similar

way, we assign a Bernoulli distributionD′
i with probability πD′

i
≜ π(D′

i = 1|Ai = 1,FD
i−1) =

π(Di = 1|Ai = 1,FD
i−1) ≜ πDi

, conditional on the past information FD
i−1 and Ai = 1 or, in

symbols,

D′
i|Ai = 1,FD

i−1 ∼ Bernoulli(πDi
).

We parametrize πDi
as an autologistic model of the form

logit(πDi
) = xD,⊤

i−1βD + ζ1D
′
i−1 + ζ2D

′
i−2 (3.6)

and a GLARMA binary model similarly to the activity factor; xD
i−1 denotes the dD × 1 dimen-

sional vector of explanatory variables or the direction component known at ti−1 in which the

first element is always one and βD is a dD × 1 parameter vector. The log-likelihood function is
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given by

ℓ(θD) ≜
∑
i∈1:n

∀i:Ai=1

log π(Di = d′i|Ai = 1,FD
i−1,θD)

=
∑
i∈1:n

∀i:Ai=1

(
d′i(x

D,⊤
i−1βD + ZD

i )− log(1 + exp(xD,⊤
i−1βD + ZD

i )
)
, (3.7)

for the GLARMA model, replacing Zi by ζ1D′
i−1 + ζ2D

′
i−2 in (3.7) for the autologistic model.

Moreover, d′i ∈ (0, 1), θD = (ϕD, δD,βD)
⊤ (θD = (ζ1, ζ2,βD)

⊤) collects the parameters of the

direction process.

The next transaction may fall into one of the following categories: no price change with

probability 1−πAi
, a price increase with probability πAi

πDi
or a price decrease with probability

πAi
(1− πDi

). The overall log-likelihood of the AD model is given by

ℓ(θA,θD) ≜ log π(y|F0) = ℓ(θA) + ℓ(θD). (3.8)

Rydberg and Shephard [1998a, 2003] estimate the unknown parameters with maximum likeli-

hood using the Berndt–Hall–Hall–Hausman (BHHH, Berndt et al. 1974) algorithmwith analytic

first derivatives. The authors include higher number of past values of Zi and εi and the selec-

tion of the lag order is determined based on Akaike information criterion (AIC, Akaike [1974])

initializing them to zero when needed. Due to the decomposition of the log-likelihood, the esti-

mation of the AD parameters can be achieved for each component separately and then combine

the output to make inference for the price change. The authors include two separate conditioning

information sets; that is, different set of explanatory variables. The first conditioning informa-

tion set includes only past values of the processes. The second set includes these variables plus

several market microstructure variables, such as current and lagged values of the logarithmic of

trade volume and the logarithmic of time duration between trades, dummy variables to denote

the hour, day of the week and month of the year in which the trade takes place, two trending

variables, as well as the log of the actual price level of the stock price, but this always tested out

in the empirical work.
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3.3 Bayesian analysis of AD

Assuming independence among the parameters, the joint prior is π(θA,θD) = π(θA)π(θD).

Due to 2.3 and (3.8), the joint posterior distribution, π(θA,θD|y), can be written as

π(θA,θD|y) ∝ π(θA|α)π(θD|d,α = 1n), (3.9)

where π(θA|α) ∝ π(α|θA)π(θA) and π(θD|d,α = 1n) ∝ π(d|α = 1n,θD)π(θD) denote

the posterior distribution of the activity and the direction component, respectively. Hence, by

obtaining the posterior distribution for each component of price change and by combining the

outcome, the posterior distribution of the AD model is evaluated.

We now turn to specifying the prior of the parameters that we want to estimate. Note

that for both factors we choose the same prior distributions and all the samplers run on the

unrestricted parameter space. For the parameter ϕ = ϕA or ϕD ∈ (−1, 1), which denotes

the persistence parameter in the model, following Kim et al. [1998] we re-parametrize ϕ by

ψ ≜ 0.5(ϕ+ 1), where ψ is distributed as Beta distribution with parameters (a0, b0) and takes

values on (0, 1). If not specified otherwise, a0 = b0 = 0.5. We transform the variable ψ to the

unrestricted variable θ given by

θ ≜ log(ψ)− log(1− ψ),

which takes values onR. Its prior density is proportional to

π(θ) ∝ θα0 − (α0 + β0) log(1 + exp(θ)).

For the regression parameters, β = βA or βD, we choose a normal prior with zero mean and a

prior variance equal to 103. The same prior is used for the log(δ) parameter.

Independent of the prior choice, the partial posterior distributions of the parameters of

the components do not have a closed form, and it is known up to a normalizing constant. There-

fore, in order to generate samples from the posterior densities π(θA|α) and π(θD|d,α = 1n)

we apply MCMC and SMC for time-invariant parameters. We focus on the adaptive Metropo-

lis (Haario et al. [2001]; Roberts and Rosenthal [2009]) and IBIS algorithm [Chopin, 2002] as

described in Sections 2.3.2 and 2.3.3, respectively.
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3.3.1 Predictive performance

To evaluate the performance of the proposed model we conduct a recursive out-of-sample fore-

casting procedure, using predictive likelihoods.

In our empirical study the total number of trading days are seven; the first five days are

used for estimating the unknown parameters (in which the total number of trades is n), and the

remaining observations (of size n′) are used as a verification sample to assess the predictive

accuracy of our modelling approach. The (one-step ahead) conditional predictive density for

the yn+1, π(yn+1|y1:n,θA,θD) , can be expressed as

π(yn+1|yo1:n,θA,θD) ∝ π(αn+1|αo
1:n,θA)π(dn+1|do1:n, αo

1:n,θD) (3.10)

due to the decomposition of the price change and the decomposition of the posterior density; the

superscript denotes the observed values. The terms on the left side of the equation are called

the predictive distribution for the activity and direction component. Therefore, by obtaining

the predictive distribution for each component of price change we may be able to evaluate the

predictive distribution of price movements. Here we only present the procedure on the activity

component.

At the end of time tn, the existing samples {θ(l)
A }Nl=1 approximate the posterior density

π(θA|αo
1:n), respectively. At time tn+1, calculate logit(π(l)

An+1
) = xA,⊤

n β
(l)
A + Z

A,(l)
n+1 , where

Z
A,(l)
n+1 = ϕ

(l)
A Z

A,(l)
n + δ

(l)
A ε

A,(l)
n and εA,(l)n = (An − π(l)

An
)/
√
π
(l)
An
(1− π(l)

An
). Next, the predictive

distribution of αn+1 can be evaluated numerically by

π(αn+1|αo
1:n) =

∫
π(αn+1|θA)π(θA|αo

1:n) dθA =
1

N

N∑
l=1

π(αn+1|θ(l)
A ).

By replacing αn+1 by the observed value αo
n+1, we observe the value π(αo

n+1|αo
1:n) which is

called the predictive likelihood of αo
n+1. Next we move one period ahead and repeat the same

forecasting procedure with the information set available at time tn+2. The log predictive score

of the model for the evaluation period n+1, · · · , n′ is the sum of the log predictive likelihoods∑n′−1
l=n log π(αo

l+1|αo
1:l). Higher values indicate better (out-of-sample) forecasting ability of the

model. Moreover, draws from the posterior predictive distribution can be obtained by simulating

values α(l)
n+1 from the Bernoulli distribution with probability of success exp(logit(π(l)

An+1
))/1+

exp(logit(π(l)
An+1

)).
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We also consider the Brier score [Brier, 1950; Blattenberger and Lad, 1985]

BS =
1

n′

n′∑
t=n+1

(π̂At − αo
t )

2, (3.11)

which is always between 0 and 1, with a value closer to 0 being more preferable and n′ is the

number of forecasting instances. The quantity π̂At denotes the Monte Carlo [Metropolis and

Ulam, 1949; von Neumann, 1963] average of the probability πAt given by

π̂At =
1

N

N∑
l=1

exp(logit(π(l)
At
))

1 + exp(logit(π(l)
At
))
,

where logit(π(l)
At
) is the sampled value of logit(πAt) in iteration l, after burn in.

3.4 Simulation study

In this section we perform a simulation study to investigate the performance of IBIS, AM and

maximum likelihood for the estimation of the models described in section 3.2.

Suppose that the random variables A1, · · · , An are independent with conditional distri-

bution Ai| F i ∼ Bernoulli(πi), where

logit(πi) = x⊤
i β + Zi,

Zi = ϕZi−1 + δεi−1,

εi = (Ai−πi)/
√
πi(1− πi),Z0 = ε0 = 0 and i = 1, 2, · · · , n. We consider two experiments

with sample size n = 58, 000, which corresponds to the average number of our data during the

trading period between 9:00 and 13:00 eastern standard time (EST).

In the first experiment, it is not included any covariate, i.e. xi = 1 and set ϕ =

0.65, δ = 0.5, β = −1.7. For the second dataset the covariate vector is defined by x⊤
i =

(1, i/n, cos(2πi/n), sin(2πi/n)) is used. This sequence is selected in the study of Wu and

Cui [2014, Section 4.1] where the process {Zi} is specified by an AR(1) model. The true value

of the parameters are taken to be ϕ = 0.8, δ = 0.1 and β⊤ = (1,−2, 2,−2).

About the maximum likelihood estimator, the solver runs from the true value of the pa-

rameters and finds one local maximum. Regarding the AM, the algorithm runs 60,000 (160,000)

iterations for the first (second) dataset after a burn-in of of 10,000 (20,000) iterations and the
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Table 3.1: Maximum likelihood, AM and IBIS estimates of parameters for the simulated
datasets. ‘Run-time’ returns the execution time in minutes. The Bayesian estimates repre-
sent posterior means and standard deviations in parenthesis. For the maximum likelihood in
parenthesis is reported the asymptotic standard errors and the solver runs from the true pa-
rameter vector. The AM algorithm runs 70,000 (180,000) iterations with a burn-in period of
10,000 (20,000) draws, thinning every 30th (80th) iteration over the first (second) simulation,
yielding 2000 draws; the algorithm is initialized with the true parameter vector. For IBIS, the
initial particles are sampled from the posterior density based on the first 3000 observations.
Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤

i−1β + Zi,
Zi = ϕZi−1+ δεi−1, εi = (Ai−πi)/

√
πi(1− πi), Z0 = ε0 = 0, i = 1, · · · , n, n = 58, 000.

Simulation 1: xi = 1, β = β0, Simulation 2: x⊤
i = (1, i/n, cos(2πi/n), sin(2πi/n)). Priors:

(ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), d ∈ {1, 4}.

IBIS
Number of Particles

Parameter True MLE AM 1000 2000 5000

Simulation 1
ϕ 0.65 0.641 0.641 0.641 0.641 0.641

(0.011) (0.012) (0.012) (0.012) (0.012)
δ 0.5 0.497 0.494 0.494 0.495 0.495

(0.008) (0.008) (0.008) (0.008) (0.008)
β0 -1.7 -1.6901 -1.689 -1.689 -1.689 -1.690

(0.018) (0.018) (0.018) (0.018) (0.018)
Run-time 0.008 4.76 11.68 22.84 54.52

Simulation 2
ϕ -0.8 -0.797 -0.790 -0.790 -0.788 -0.790

(0.027) (0.033) (0.032) (0.033) (0.033)
δ 0.1 0.087 0.088 0.088 0.088 0.088

(0.008) (0.009) (0.009) (0.009) (0.009)
β0 1.0 1.023 1.024 1.023 1.023 1.024

(0.025) (0.024) (0.024) (0.025) (0.025)
β1 -2.0 -2.052 -2.052 -2.052 -2.051 -2.052

(0.043) (0.043) (0.042) (0.042) (0.043)
β2 2.0 1.991 1.9913 1.992 1.991 1.991

(0.019) (0.019) (0.019) (0.019) (0.019)
β3 -2.0 -1.994 -1.995 -1.994 -1.994 -1.994

(0.018) (0.018) (0.018) (0.017) (0.018)
Run-time 0.0225 12.22 13.58 25.64 62.11
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autocorrelation is reduced by retaining only every 30th (80th) iteration of the chain. Finally, the

resulting sample consists of 2000 draws and the components of the parameter vector are updated

in a single block. The acceptance ratio is 31.7% (27.7%). As a starting point of the algorithm is

used the true parameter value. IBIS algorithm is initialized withMCMC draws based on the first

3000 observations. The algorithm runs three times over the rest data sequence, with number

of particles N ∈ {1000, 2000, 5000}, and discuss how the estimated parameters are affected.

The resampling threshold is set to 80% and the resampling method is the stratified resampling

scheme [Carpenter et al., 1999].

The simulation results for all datasets and algorithms considered are presented in Table

4.1 along with the running time (in minutes) that describes the amount of time it takes to run an

algorithm. The Bayesian estimates reported in the table represent posterior means and standard
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√
πi(1− πi), Z0 = ε0 = 0, i = 1, · · · , n, n = 58, 000. Simulation 1:

xi−1 = 1. Simulation 2: x⊤
i−1 = (1, i/n, cos(2πi/n), sin(2πi/n)).

Figure 3.1: Results of IBIS estimation for the simulated dataset. ESS along the iterations (first
column), and acceptance rate at each move step (second column). The number of particles is
1000 and a resample-move step is triggered when ESS drops below 800 (red line). The ith row
illustrates the results of the jth simulation study, j = 1, 2.
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√
πi(1− πi), Z0 = ε0 = 0, i = 1, · · · , n, n = 58, 000. Simulation

1: xi = 1. Simulation 2: x⊤
i = (1, i/n, cos(2πi/n), sin(2πi/n)). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5),

log(δ) ∼ N (0, 103), β ∼ Nd(0d, 10
3
Id), d ∈ {1, 4}.

Figure 3.2: Marginal posterior densities of the estimated parameters for the simulated dataset,
estimated from MCMC and IBIS samples using a kernel density (blue and black curve). Red
and cyan lines represent the mle and the true parameter vector, respectively.

deviations in parenthesis. For the maximum likelihood in parenthesis is reported the asymptotic

standard errors. Regarding the running time, for the MCMC it shows the time requirements of

the algorithm using the whole dataset to draw a thinned chain with 2000 samples including the

burn-in length, for IBIS it determines the necessary time to drawN particles without including

the time needed to generate the initial set of particles and for the maximum likelihood it gives

the time needed by the optimization algorithm to end using only one starting value. As shown
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in the table, all three methods give almost identical results. In particularly, as the number of

particles increases, the computational time increases linearly, but the estimated parameters are

not significantly affected. Moreover, by comparing the ratio of execution time between AM and

IBIS, adjusted to generate 2000 samples, the first method is almost five (two) times faster over the

first (second) simulation, thus it is reduced by increasing the number of estimated parameters.

Figure 3.1 shows the ESS (left plots) along the iterations as well as the acceptance rates

(right plots) of the move steps, with 1000 particles. Panels (a, b) of the figure show the results

over for the first simulation, while panels (c, d) depict the results of the second simulation. Since

the resampling threshold is set to 80%, a resample-move is triggered when ESS drops below

800. As expected, the frequency of the resample-moves steps seems to decrease over time. On

the other hand, the acceptance rate in the first simulation is quite high along the iterations, while

in the second simulation is low in the beginning, increases steeply to 50.2%, and continues to

increase gradually to approximately 90%. Similar results are obtained for the other particles of

the corresponding plots; these figures are not presented here. Figure 3.2 illustrates the marginal

posterior densities of the estimated parameters, estimated from AM and IBIS samples using

a kernel density; the two methods produce nearly identical posterior distributions. The figure

also marks the maximum likelihood estimators; it seems that they coincide with the posterior

mode. In Figure 3.3, the wider density represents the sampling density that generates the initial

particles for IBIS, and the shifted and tighter curve shows the target posterior density based on

the whole dataset. The number of samples is 1000 and this tightening is expected as additional

points become available.

3.5 Real data results

In this section we report and evaluate the results of the analysis of ES price changes. The

estimation is based on the AD model with two different set of explanatory variables. The total

number of trading days are seven; the first five days in the study are used for estimating the

unknown parameters, and the rest for predicting price changes. The prediction is discussed in

the next chapter.
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√
πi(1− πi), Z0 = ε0 = 0, i = 1, · · · , n, n = 58, 000. Simulation 1:

xi−1 = 1. Simulation 2: x⊤
i−1 = (1, i/n, cos(2πi/n), sin(2πi/n)). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5),

log(δ) ∼ N (0, 103), β ∼ Nd(0d, 10
3
Id), d ∈ {1, 4}.

Figure 3.3: Marginal posterior density of the parameters for the simulated dataset model, esti-
mated from IBIS samples using a kernel density (blue and black curve). Kernel density estima-
tion of π(ϕ, δ,β|A1:n0

) using MCMC samples, where n0 = 3000 (purple curve).

3.5.1 Preliminaries

Table 3.2 presents the variable definitions. Bothmaximum likelihood and Bayesian estimation is

conducted. The fmincon function inMATLAB’s optimization toolbox is used for the maximum

likelihood estimation with the interior-point optimization algorithm. Furthermore, analytic first

derivatives are provided and MATLAB approximates the Hessian internally. We also have let

fmincon to approximate the first gradients numerically, leading to similar results. In MCMC,
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Table 3.2: Variable Definitions.

Variable Name Description

Continuous Variables
ti the time at which the ith transaction occurs
∆ti ≜ ti − ti−1

τi ≜ log(∆ti + 1)

P b,j
i the jth best bid price just after the ith trade
P a,j

i the jth best ask price just after the ith trade
Pmo

i the ith trade price
V b,j
i the log total volume on the jth best bid quote right after the ith trade
V a,j
i the log total volume on the jth best ask quote right after the ith trade

V mo
i the log volume of the ith trade

Discrete Variables
SPi the spread (in tick) instantaneously after the ith trade
Gb

i ≜ P b,1
i − P b,2

i (in tick)
Ga

i ≜ P a,2
i − P a,1

i (in tick)

Dummy Variables
BMOi 1: if the ith trade is a buy market order, 0: otherwise
D′

i 1: if the ith active trade moves the price up, 0: moves down

Index j corresponds to the jth limit order level, j = 1, 2. Index i corresponds to the ith trade.

samples are drawn from the posterior by AM algorithm with a burn-in period during which the

samples are discarded. Correlation between successive chain draws is reduced by retaining only

every kth iteration; for this task the autocorrelation plots are examined. Finally, the resulting

sample consists of 2000 draws and the components of the parameter vector are updated in a

single block. In SMC, one key parameter of IBIS is the number of particles. In this study,

the algorithm runs three times over the whole data sequence, with number of particles N ∈

{1000, 2000, 5000} and discuss how the estimated parameters are affected. Another important

issue is the generation of the initial set of particles from the posterior distribution of the unknown

parameters. When the algorithm is initialized from the prior density, it degenerates rapidly

due to the flat priors [Chopin, 2002]. Therefore, MCMC is applied to initialize the algorithm

based on a few thousand observations. Besides, the resampling threshold is set to 80%, and the

resampling method is the stratified resampling scheme.

48



MCMC and maximum likelihood estimation require the use of starting values for the pa-

rameters. For the mle, the algorithm runs from different initialization points, the corresponding

log-likelihood is recorded and pick the one that is largest. More specifically, the initial value

for β is set to the returned coefficient estimate for the standard logistic regression to predict the

probability of a price movement or an upward price change, while a list of candidate values for

ϕ and δ is defined. The MCMC algorithm is initialized with the maximum likelihood solution

instead of using random initial values.

The execution time, that is the amount of time it takes to run an algorithm, is denoted

by the variable name ‘Run-time’. It is calculated using tic and toc MATLAB commands;

the elapsed time is recorded in seconds. For AM, the variable shows the time requirements of

the algorithm using the whole dataset to draw a thinned chain with 2000 samples; this time

includes the burn-in length. For IBIS, it determines the necessary time to draw N particles

without including the time needed to generate the initial set of particles. For the maximum

likelihood estimation, the variable gives the average time needed by the optimization algorithm

to end using only one starting value; it equals the time required to find the global maxima using

all different starting points divided by the number of the initialization points.

The estimated model parameters are displayed in tables, using the three estimation meth-

ods, along with the running time. The Bayesian estimates represent posterior means and stan-

dard deviations in parenthesis. For the maximum likelihood in parenthesis is reported the

asymptotic standard errors. The marginal posterior densities of the estimated parameters with

AM and IBIS samples using a kernel density are displayed.

3.5.2 Part A

This section provides results for modelling the activity of ES. The empirical analysis is done on

two separated datasets: morning and afternoon, between 16May (Monday) and 20May (Friday)

with 57,801 and 322,182 observations, respectively. For the process of regressors we consider

two cases:

• Case I: xA,⊤
i−1 = (1,DActii, Aii).

• Case II: xA,⊤
i−1 = (1,DActii, Aii, τii,BMOii, V

mo
ii , SPii, V

b,1
ii , V

b,2
ii , V

a,1
ii , V

a,2
ii , G

b
ii, G

a
ii),

where ii ∈ {i − 2, i − 1}. Thus, the total number of possible covariates are 4 and 24 in the
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first and second case, respectively. The definition of the variables is detailed in Table 3.2. In

the following sections, the estimation results for the two cases are presented. If we do not make

a specific reference to which data segment we are referring to, it means that we imply both

examined time periods.

Table 3.3: Maximum likelihood, AM and IBIS estimates of parameters for the activity model
for ES, May 16th to May 20th, case (I). ‘Run-time’ returns the execution time in minutes. The
Bayesian estimates represent posterior means and standard deviations in parenthesis. For the
maximum likelihood in parenthesis is reported the asymptotic standard errors and the solver
runs from multiple initialization points. The AM algorithm runs 140,000 (190,000) iterations
with a burn-in period of 50,000 draws, thinning every 45th (70th) iteration over the morning
(afternoon) period, yielding 2000 draws; the algorithm is initialized with the mle. For IBIS,
the initial particles are sampled from the posterior density based on the first 3000 observations.
Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤

i−1β + Zi,
Zi = ϕZi−1 + δεi−1, εi = (Ai − πi)/

√
πi(1− πi), Z0 = ε0 = 0, x⊤

i−1 = (1, Ai−1, Ai−2).
Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N3(03, 10

3
I3).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

Morning period
ϕ 0.571 0.571 0.572 0.571 0.572

(0.009) (0.011) (0.011) (0.011) (0.011)
δ 1.086 1.085 1.083 1.084 1.084

(0.034) (0.033) (0.033) (0.033) (0.033)
β0 -1.292 -1.292 -1.294 -1.295 -1.294

(0.033) (0.031) (0.033) (0.031) (0.031)
β1 -1.592 -1.586 -1.583 -1.587 -1.586

(0.095) (0.091) (0.090) (0.089) (0.090)
β2 -0.526 -0.524 -0.524 -0.525 -0.524

(0.036) (0.035) (0.034) (0.034) (0.034)
Run-time 0.8482 9.618 12.851 24.998 60.278

Afternoon period
ϕ 0.691 0.691 0.692 0.692 0.692

(0.003) (0.004) (0.004) (0.004) (0.004)
δ 1.083 1.083 1.082 1.082 1.082

(0.013) (0.015) (0.015) (0.014) (0.016)
β0 -1.123 -1.123 -1.126 -1.126 -1.126

(0.016) (0.016) (0.016) (0.016) (0.016)
β1 -1.477 -1.476 -1.476 -1.476 -1.476

(0.035) (0.038) (0.038) (0.037) (0.038)
β2 -0.608 -0.607 -0.608 -0.608 -0.608

(0.015) (0.013) (0.013) (0.013) (0.013)
Run-time 4.826 71.773 106.783 180.386 404.429
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3.5.2.1 Case (I)

As a starting point, we examine which of the variables do have a significant effect on the price

activity. There seems that the direction of a price movement does not affect the probability

of having a future price change different from zero. Therefore, the final covariate vector is

xA,⊤
i−1 = (1, Ai−1, Ai−2).

The AM algorithm runs 140,000 (190,000) iterations for the morning (afternoon) dataset

with burn-in of 50,000 iterations and the autocorrelation is reduced by retaining only every

45th (70th) iteration of the chain. For IBIS, we use the first 3000 observations to initialize the

algorithm. Table 3.3 lists the parameter estimates of the price activity model, using the three

estimation methods, along with the running time (in minutes). The overall impression is that

AMand IBIS sample estimates agreewell with themaximum likelihood estimates. A closer look
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√
πi(1− πi), i = 1, 2, · · · , n, Z0 = ε0 = 0. x⊤

i−1 = (1, Ai−1, Ai−2).

Figure 3.4: Results of IBIS estimation for ES,May 16th toMay 20th, during themorning (panels
a, b) and afternoon period (panels c, d), case (I). ESS along the iterations (first column), and
acceptance rate at each move step (second column). The number of particles is 1000 and a
resample-move step is triggered when ESS drops below 800 (red line).
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√

πi(1− πi), i = 1, 2, · · · , n, Z0 = ε0 = 0. x⊤
i−1 = (1, Ai−1, Ai−2).

Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N3(03, 10
3
I3).

Figure 3.5: Marginal posterior densities of the estimated parameters for the activity model,
estimated from AM (dotted curve) and IBIS (solid, dashed and dash-dotted curve for 1000,
2000 and 5000 particles, respectively) samples using a kernel density. Vertical line represents
the mle. The data set we are analyzing is ES, May 16th to May 20th, confined to the morning
partition (blue curve) and afternoon partition (black curve), case (I).

at the table shows that all estimated coefficients (except β2) are slightly larger for the afternoon

dataset compared to the morning dataset. Besides, during the afternoon the standard error of

estimation is about one-third than those during the morning. Furthermore, the coefficient on

the lagged price activity is negative for all past period values, indicating that past active trades

tend to decrease the probability of subsequent movements in the price, while this reduction
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decays down at lag two. It can be observed, that by increasing the number of particles does not

significantly affect the estimated parameters. However, since the computational cost grows with

the number of particles, it is suggested to use 1000 particles in the filter. Moreover, comparing

the run time of AM and IBIS to generate 2000 draws, the first method is four times faster.

Figure 3.4 shows the ESS along the iterations (left plots) as well as the acceptance rates

of the move steps (right plots) with 1000 particles. Panels (a, b) of the figure show the re-

sults over for the morning period, while panels (c, d) for the afternoon. Since the resampling

threshold is set to 80%, a resample-move is triggered when ESS drops below 800 (red line).

As expected, the frequency of the resample-move steps seems to decrease over time. On the

other hand, the acceptance rate is quite high along the iterations. Similar results are obtained

for the other particles of the corresponding plots; these figures are not presented here. Figure

3.5 illustrates the marginal posterior densities and it seems that AM and IBIS produce nearly

identical posterior distributions. Note that by increasing the number of particles we obtain rela-

tively similar estimates. The figure also marks the maximum likelihood estimators; it seems that

they coincide with the posterior mode. In Figure 3.6, the wider density represents the sampling

density that generates the initial particles for IBIS, and the shifted and tighter curve shows the

target posterior density based on the whole dataset. The number of samples is 1000 and this

tightening is expected as additional points become available.

3.5.2.2 Case (II)

It turns out that the inclusion of past information of both the direction of a price movement

and the spread do not affect the probability of having a future price change different from zero.

Besides, the type of lagged market order (buy or sell) do not reveals traders’ expectations with

respect to future price movements. Concerning the log bid and ask volume, only the lag-1

volumes of the first level are statistically significant and become insignificant for higher lags or

levels. The best bid and ask limit gap price is not significant. Finally, the log trading volume

at the previous transaction is significant for both time periods, while its penultimate value is

significant only for the afternoon subset. After testing out insignificant explanatory variables

we end up with xA,⊤
i−1 = (1, Ai−1, τi−1, V

mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2) for the morning subset, and

x⊤
i−1 = (1, Ai−1, τi−1, V

mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2, V

mo
i−2) for the afternoon subset.

TheAMalgorithm runs 750,000 (1,150,000) iterationswith burn-in of 150,000 (400,000)
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi, Zi =

ϕZi−1 + δεi−1, εi = (Ai − πi)/
√

πi(1− πi), i = 1, 2, · · · , n, Z0 = ε0 = 0. x⊤
i−1 = (1, Ai−1, Ai−2).

Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N3(03, 10
3
I3).

Figure 3.6: Comparison of kernel density estimation of marginal posterior densities based on
the whole dataset (solid line) and the first 3000 observations (purple curve) with 1000 IBIS
and MCMC samples, respectively. For inference is used ES, May 16th to May 20th, during the
morning (blue curve) and afternoon period (black curve), case (I).

iterations and the autocorrelation is reduced by retaining only every 300th (350th) iteration of

the chain. The acceptance ratio is 30.24%. For IBIS, we use the first 3000 observations to

initialize the algorithm.

Tables 3.4 and 3.5 list the parameter estimates of the price activity model for the morning

and afternoon segment, respectively, using the three estimation methods, along with the running

time (in minutes). A closer look at the table shows that the majority of the estimated coefficients
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Table 3.4: Maximum likelihood, AM and IBIS estimates of parameters for the activity model for
ES, May 16th to May 20th, 9 a.m. to 1 p.m., case (II). ‘Run-time’ returns the execution time in
minutes. The Bayesian estimates represent posterior means and standard deviations in parenthe-
sis. For the maximum likelihood in parenthesis is reported the asymptotic standard errors and
the solver runs from multiple initialization points. The AM algorithm runs 750,000 iterations
with a burn-in period of 150,000 draws, thinning every 300th iteration, yielding 2000 draws; the
algorithm is initializedwith themle. For IBIS, the initial particles are sampled from the posterior
density based on the first 3000 observations. The tick size is $0.25. Model: Ai takes on value
1 (0) with probability πi (1 − πi), where logit(πi) = x⊤

i−1β + Zi, Zi = ϕZi−1 + δεi−1, εi =
(Ai − πi)/

√
πi(1− πi), Z0 = ε0 = 0, x⊤

i−1 = (1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2).

Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N8(08, 10
3
I8).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

ϕ 0.571 0.573 0.572 0.572 0.572
(0.011) (0.014) (0.013) (0.013) (0.013)

δ 0.912 0.908 0.909 0.910 0.909
(0.029) (0.031) (0.032) (0.032) (0.032)

β0 -3.243 -3.248 -3.243 -3.243 -3.246
(0.096) (0.096) (0.091) (0.097) (0.095)

β1 -1.201 -1.192 -1.195 -1.199 -1.195
(0.082) (0.084) (0.085) (0.085) (0.087)

β2 0.369 0.371 0.369 0.369 0.369
(0.023) (0.022) (0.021) (0.021) (0.022)

β3 -0.055 -0.055 -0.055 -0.055 -0.055
(0.008) (0.008) (0.008) (0.008) (0.008)

β4 0.124 0.124 0.124 0.124 0.124
(0.010) (0.010) (0.010) (0.010) (0.010)

β5 0.142 0.1423 0.142 0.142 0.142
(0.013) (0.012) (0.012) (0.012) (0.012)

β6 -0.461 -0.4610 -0.459 -0.461 -0.459
(0.035) (0.035) (0.034) (0.035) (0.034)

β7 0.490 0.489 0.488 0.488 0.489
(0.024) (0.023) (0.022) (0.022) (0.023)

Run-time 1.518 24.783 16.004 31.903 78.379

are slightly larger during the afternoon. The influence of lagged price activity, is negative for

all past period values, indicating that past active trades tend to decrease the probability of sub-

sequent movements in the price, while this reduction decays down at lag two. The table shows
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Table 3.5: Maximum likelihood, AM and IBIS estimates of parameters for the activity model
for ES, May 16th to May 20th, 1 a.m. to 5 p.m., case (II). ‘Run-time’ returns the execution
time in minutes. The Bayesian estimates represent posterior means and standard deviations in
parenthesis. For the maximum likelihood in parenthesis is reported the asymptotic standard
errors. The AM algorithm runs 750,000 iterations with a burn-in period of 150,000 draws,
thinning every 300th iteration, yielding 2000 draws; the algorithm is initialized with the mle.
For IBIS, the initial particles are sampled from the posterior density based on the first 3000
observations. The tick size is $0.25. Model: Ai takes on value 1 (0) with probability πi (1−πi),
where logit(πi) = x⊤

i−1β+Zi, Zi = ϕZi−1+δεi−1, εi = (Ai−πi)/
√
πi(1− πi), Z0 = ε0 =

0, x⊤
i−1 = (1, Ai−1, τi−1, V

mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2, V

mo
i−2). Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5),

log(δ) ∼ N (0, 103), β ∼ N9(09, 10
3
I9).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

ϕ 0.629 0.629 0.629 0.629 0.629
(0.004) (0.004) (0.005) (0.005) (0.005)

δ 0.953 0.961 0.958 0.959 0.958
(0.013) (0.008) (0.015) (0.014) (0.014)

β0 -4.045 -4.033 -4.048 -4.047 -4.045
(0.0636) (0.049) (0.066) (0.064) (0.065)

β1 -1.253 -1.258 -1.251 -1.253 -1.252
(0.033) (0.025) (0.036) (0.036) (0.036)

β2 0.523 0.529 0.523 0.523 0.523
(0.020) (0.016) (0.020) (0.021) (0.021)

β3 -0.108 -0.109 -0.108 -0.108 -0.108
(0.003) (0.001) (0.003) (0.003) (0.002)

β4 0.212 0.210 0.212 0.212 0.212
(0.006) (0.004) (0.006) (0.006) (0.006)

β5 0.239 0.236 0.240 0.240 0.240
(0.007) (0.006) (0.007) (0.006) (0.007)

β6 -0.449 -0.450 -0.449 -0.449 -0.449
(0.014) (0.009) (0.013) (0.013) (0.013)

β7 1.011 1.011 1.010 1.010 1.010
(0.021) (0.017) (0.021) (0.021) (0.021)

β8 -0.075 -0.075 -0.075 -0.075 -0.075
(0.003) (0.003) (0.003) (0.003) (0.003)

Run-time 9.061 235.135 151.481 249.542 554.504
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that lagged log-durations have a very dramatic positive impact on the chance that a trade moves

the transaction price, with their influence being larger at the second lag. Besides, a smaller but

negative impact is made by the log trading volume, with its impact being reduced at the second

lag. For the quoted volumes on the previous best level, we find a positive impact on the activity

process. More specifically, the effect of the buying volume is slightly larger than the impact of

the selling volume. Concerning the number of particles, it can be observed that increasing them

over 1000 does not significantly affect the estimated parameters, while it dramatically affects

the computational time linearly. Moreover, the execution time of drawing a sample of size 2000

with IBIS is almost equal than the corresponding time of drawing the double size with AM.
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1

β + Zi, Zi = ϕZi−1 +δεi−1, εi = (Ai − πi)/
√
πi(1− πi), Z0 = ε0 = 0. Morning:

x⊤
i−1 = (1, Ai−1, τi−1,V

mo
i−1,V

b,1
i−1,V

a,1
i−1,Ai−2,τi−2). Afternoon: x⊤

i−1 = (1, Ai−1, τi−1,V
mo
i−1,V

b,1
i−1,V

a,1
i−1,

Ai−2,τi−2,V
mo
i−2).

Figure 3.7: Results of IBIS estimation for ES,May 16th toMay 20th, during themorning (panels
a, b) and afternoon period (panels c, d), case (II). ESS along the iterations (first column), and
acceptance rate at each move step (second column). The number of particles is 1000 and a
resample-move step is triggered when ESS drops below 800 (red line).

Figure 3.7 shows the ESS along the iterations (left panels) as well as the acceptance

rates of the move steps (right panels) with 1000 particles. Panels (a, b) of the figure show

the results over for the morning period, while panels (c, d) for the afternoon. Since the ESS

threshold is set at 80%, a resample-move is triggered when ESS goes below 800 (red line). The
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frequency of the resample-move steps seems to decrease over time. Besides, the acceptance rate

during the afternoon is quite high along the iterations. On the other hand, during the morning

the acceptance rate is relative low in the beginning, increases steeply to 80%, and continues

to increase gradually to approximately 90% with some sudden drops with the lowest being

just below 30%. Similar conclusions are drawn from the corresponding plots with 2000 and
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi,

Zi = ϕZi−1 + δεi−1, εi = (Ai − πi)/
√

πi(1− πi), Z0 = ε0 = 0. Morning: x⊤
i−1 =

(1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2). Afternoon: x⊤

i−1 = (1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1,

Ai−2, τi−2, V
mo
i−2). Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ Nd(0d, 10

3
Id).

Figure 3.8: Marginal posterior densities of the estimated parameters for the activity model,
estimated from AM (dotted curve) and IBIS (solid, dashed and dash-dotted curve for 1000,
2000 and 5000 particles, respectively) samples using a kernel density. Vertical lines represent
the mle. The data set we are analyzing is ES, May 16th to May 20th during the morning (blue
curve) and afternoon (black curve) period, case (II).
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β + Zi,

Zi = ϕZi−1 + δεi−1, εi = (Ai − πi)/
√

πi(1− πi), Z0 = ε0 = 0. Morning: x⊤
i−1 =

(1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2). Afternoon: x⊤

i−1 = (1, Ai−1, τi−1, V
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i−1, V

b,1
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a,1
i−1,

Ai−2, τi−2, V
mo
i−2). Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ Nd(0d, 10

3
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Figure 3.9: Comparison of kernel density estimation of marginal posterior densities based on
the whole dataset (solid line) and the first 3000 observations (purple curve) with 1000 IBIS
and MCMC samples, respectively. For inference is used ES, May 16th to May 20th, during the
morning (blue curve) and afternoon (black curve) partition, case (II).

5000 particles, although the graphs are not presented here. Figures 3.8 illustrates the marginal

posterior densities; the vertical lines correspond to maximum likelihood estimators. It can be

seen that the twomethods produce nearly identical posterior distributions as well as the posterior

mode corresponds to the maximum likelihood estimate. Furthermore, the impact of increasing

the number of particles is dramatically insignificant. Figures 3.9 compares the sampling density
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that generates the initial particles for IBIS (purple curve) with the target posterior density based

on the whole dataset using 1000 IBIS samples. Not surprisingly, IBIS initial densities are wider

than that of the target. This tightening is expected as additional points become available.

3.5.3 Part B

This section provides results for modelling the price direction of ES. The empirical analysis

is done on two separated datasets: morning and afternoon, between 16 May and 20 May with

10,524 and 69,324 observations, respectively. For the process of regressors we consider two

cases:

• Case I: xD,⊤
i−1 = (1, D′

ii, Aii).

• Case II: xD,⊤
i−1 = (1, D′

ii, Aii, τii,BMOii, V
mo
ii , SPii, V

b,1
ii , V

b,2
ii , V

a,1
ii , V

a,2
ii , G

b
ii, G

a
ii),

where ii ∈ {i−2, i−1} refers to trading time. For example, V mo
i−1 denotes the lag-1 log volume

of the previous active transaction. We have considered the same covariate vector restricted only

in trading time. In this case, for example, V mo
i−1 denotes the lag-1 log volume of the previous

active or not transaction. However, the predictive log likelihood was considerably lower in the

trading time than in the activity time. The results for the covariate vector restricted on trading

time is not presented here.

3.5.3.1 Case I

It turns out that the inclusion of past information of the activity process do not affect the prob-

ability of an upward price movement. Concerning the direction of a non-zero price movement,

only its lag-1 value is statistically significant and become insignificant for higher lags. There-

fore, the final covariate vector is xD,⊤
i−1 = (1, D′

i−1). Concerning the binary GLARMA, the

parameters ϕ and δ do not affect the probability of an upward price movement. Concerning

the autologistic model, theAM algorithm runs 50,000 iterations with burn-in of 10,000 itera-

tions and the autocorrelation is reduced by retaining only every 20th iteration of the chain. The

acceptance ratio is 22.10% (18.72%). For IBIS, we use the first 1000 (3000) observations to

initialize the algorithm for both models.

Table 3.6 lists the parameter estimates for the direction of active trade using an autol-

ogistic model, with the three estimation methods along with the running time (in minutes).
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Table 3.6: Maximum likelihood, AM and IBIS estimates of parameters for the direction of active trade
using an autologistic model, case (I). The results are reported separately for two sub-periods: morning
and afternoon. The Bayesian estimates represent posterior means and standard deviations in parenthesis.
For themaximum likelihood in parenthesis is reported the asymptotic standard errors. ‘Run-time’ returns
the execution time in minutes. Model: D′

i takes on value 1 (0) with probability πi (1 − πi), where
logit(πi) = β0 + β1D

′
i−1. Prior: β ∼ N2(02, 10

3
I2).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

Morning period
β0 1.578 1.578 1.576 1.579 1.578

(0.037) (0.035) (0.035) (0.038) (0.036)
β1 -3.191 -3.191 -3.191 -3.191 -3.190

(0.052) (0.052) (0.048) (0.052) (0.052)
Run-time 0.000 0.286 1.057 2.035 5.112

Afternoon period
β0 2.383 2.383 2.382 2.382 2.382

(0.019) (0.019) (0.020) (0.019) (0.019)
β1 -4.769 -4.770 -4.768 -4.768 -4.769

(0.027) (0.027) (0.028) (0.027) (0.028)
Run-time 0.001 1.178 7.861 14.518 34.433

The overall impression is that AM and IBIS sample estimates agree well with the maximum

likelihood estimates. The table shows that all estimated coefficients are slightly larger during

the afternoon compared to the morning period, while the corresponding standard errors are

smaller. The direction variables are negative, which suggests that the next active trade is less

likely to move upward if the previous trade moved upward. It can be observed, that the number

of particles does not significantly affect the estimated parameters. However, since the computa-

tional cost grows with the number of particles, it is suggested to use 1000 particles in the filter.

Moreover, comparing the run time of AM and IBIS to generate 2000 draws, the first method is

approximately two times faster.

Figure 3.10 shows the ESS along the iterations (left plots) as well as the acceptance

rates of the move steps (right plots) with 1000 particles. Panels (a, b) of the figure show the

results over for the morning period, while panels (c, d) for the afternoon. Since the resampling
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Model: D′
i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = β0 + β1D

′
i−1. Prior:

β ∼ N2(02, 10
3
I2).

Figure 3.10: Results of IBIS estimation for the direction of active trade using an autologistic
model during the morning (panels a, c) and afternoon period (panels d, dh), case (I). ESS along
the iterations (first column), and acceptance rate at each move step (second column). The num-
ber of particles is 1000 and a resample-move step is triggered when ESS drops below 800 (red
line).

threshold is set to 80%, a resample-move is triggered when ESS drops below 800 (red line).

As expected, the frequency of the resample-moves steps seems to decrease over time and the

acceptance rate is quite high along the iterations. Similar results are obtained for the other par-

ticles of the corresponding plots; these figures are not presented here. Figure 3.11 illustrates

the marginal posterior densities; the two methods produce nearly identical posterior distribu-

tions. Note that by increasing the number of particles we obtain relatively similar estimates.

The figure also marks the maximum likelihood estimators; it seems that they coincide with the

posterior mode. In Figure 3.12, the wider density represents the sampling density that generates

the initial particles for IBIS, and the shifted and tighter curve shows the target posterior density

based on the whole dataset.
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Autologistic model: D′
i takes on value 1 (0) with probability πi (1−πi). logit(πi) = β0+β1D

′
i−1, Prior:

β ∼ N2(02, 10
3
I2).

Figure 3.11: Marginal posterior densities of the estimated parameters for the direction of active
trade using an autologistic model, estimated from AM (dotted curve) and IBIS (solid, dashed
and dash-dotted curve for 1000, 2000 and 5000 particles, respectively) samples using a kernel
density. Vertical lines represent the mle, confined to the morning partition (blue curve) and
afternoon partition (black curve), case (I).

3.5.3.2 Case II

It turns out that the inclusion of past information of the activity process as well as the lagged

duration do not affect the probability of an upward price movement. Concerning the direc-

tion of a non-zero price movement, only its lag-1 value is statistically significant and become

insignificant for higher lags. The best bid and ask limit gap price, the past log trading vol-

ume and spread do not affect the probability of having a upward price change. Besides, the

type of lagged market order (buy or sell), only the lag-1 volumes of the first level are is sig-

nificant and become insignificant for higher lags or levels. Finally, the lag-2 log bid and ask

volume of the first level is significant only for the afternoon subset, while the lag-1 bid (ask)

volume of the second (first) level is only statistically significant for the morning (afternoon)

subset. After testing out insignificant explanatory variables we end up with the final covariate
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Model: D′
i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = β0 + β1D

′
i−1, Prior:

β ∼ N2(02, 10
3
I2).

Figure 3.12: Comparison of kernel density estimation of marginal posterior densities for the
direction of active trade using an autologistic model based on the whole dataset (solid line) and
the first 3000 observations (purple curve) with 1000 IBIS and MCMC samples, respectively,
during the morning (blue curve) and afternoon period (black curve), case (I).

vector x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

b,2
i−1, V

a,2
i−1, V

b,1
i−2, V

b,2
i−2, V

a,1
i−2, V

a,2
i−2) for the morning and

x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

a,1
i−1, V

b,1
i−2, V

a,1
i−2) for the afternoon.

Concerning the binary GLARMA, the parameters ϕ and δ do not affect the probability

of an upward price movement. Concerning the autologistic model, the AM algorithm runs

300,000 (200,000) iterations with burn-in of 20,000 iterations and the autocorrelation is reduced

by retaining only every 150th (100th) iteration of the chain. The acceptance ratio is 21.95%

(25.94%) Concerning the autologistic model, theAM algorithm runs 490,000 iterations with

burn-in of 50,000 iterations and the autocorrelation is reduced by retaining only every 220th

iteration of the chain. The acceptance ratio is 26.16% (28.68%). For IBIS, we use the first 1000

observations to initialize the algorithm for both models.

Tables 3.7 - 3.8 list the parameter estimates for the direction of active trade using the

autologistic model, with the three estimation methods along with the running time (in minutes).
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Table 3.7: Maximum likelihood, AM and IBIS estimates of parameters for the direction of active
trade using an autologistic model, during the morning period, case (II). The Bayesian estimates rep-
resent posterior means and standard deviations in parenthesis. For the maximum likelihood in paren-
thesis is reported the asymptotic standard errors. ‘Run-time’ returns the execution time in minutes.
The AM algorithm runs 300,000 iterations with a burn-in period of 20,000 draws, thinning every
150th iteration, yielding 2000 draws; the algorithm is initialized with the mle. For IBIS, the initial
particles are sampled from the posterior density based on the first 1000 observations. The tick size
is $0.25. Model: D′

i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β,

x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

b,2
i−1, V

a,2
i−1, V

b,1
i−2, V

b,2
i−2, V

a,1
i−2, V

a,2
i−2).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

β0 4.088 4.108 4.094 4.075 4.084
(0.624) (0.609) (0.634) (0.644) (0.621)

β1 -1.184 -1.182 -1.189 -1.184 -1.183
(0.111) (0.112) (0.110) (0.113) (0.114)

β2 -6.069 -6.083 -6.074 -6.083 -6.080
(0.132) (0.133) (0.127) (0.129) (0.131)

β3 -0.861 -0.864 -0.862 -0.862 -0.863
(0.045) (0.045) (0.043) (0.043) (0.045)

β4 -3.279 -3.292 -3.290 -3.290 -3.294
(0.183) (0.181) (0.181) (0.178) (0.182)

β5 3.309 3.316 3.302 3.316 3.319
(0.196) (0.189) (0.188) (0.195) (0.197)

β6 0.704 0.705 0.703 0.706 0.706
(0.036) (0.036) (0.036) (0.036) (0.037)

β7 2.651 2.666 2.668 2.662 2.668
(0.173) (0.172) (0.174) (0.174) (0.174)

β8 -0.443 -0.444 -0.445 -0.444 -0.443
(0.041) (0.040) (0.041) (0.041) (0.041)

β9 -2.263 -2.273 -2.260 -2.269 -2.273
(0.193) (0.189) (0.190) (0.193) (0.192)

Run-time 0.028 117.665 90.234 172.297 418.103

The overall impression is that AM and IBIS sample estimates agree well with the maximum like-

lihood estimates. Based on the tables the following findings can be summarized: The influence

of lagged price direction, is negative indicating that if the pricemoved on the last trade then there
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is a large chance that this movement will be reversed if there is an active trade. Concerning the

impact of buy market orders, we observe a significant negative influence at lag one, hence the

odds of an up movement are larger for sell market orders than buy market order at lag one. Bid

(ask) volume at lag one reduces (increases) the chance that the price movement will be upward,

while the reverse is true at the second lag. It can be observed, that the number of particles does

not significantly affect the estimated parameters. However, since the computational cost grows

with the number of particles, it is suggested to use 1000 particles in the filter. Moreover, com-

paring the run time of AM and IBIS to generate 2000 draws, the first method is approximately

faster. Figure 3.13 shows the ESS along the iterations (left panels) as well as the acceptance

rates of the move steps (right panels) with 1000 particles using an autologistic model. Panels

(a, c) of the figure show the results over for the morning period, while panels (c, d) for the after-

noon. Since the ESS threshold is set at 80%, a resample-move is triggered when ESS goes below
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Figure 3.13: Results of IBIS estimation for the direction of active trade using an autologistic
model during the morning (panels a, c) and afternoon period (panels c, d), case (II). ESS along
the iterations (first column), and acceptance rate at each move step (second column). The num-
ber of particles is 1000 and a resample-move step is triggered when ESS drops below 800 (red
line).

800 (red line). The frequency of the resample-move steps seems to decrease over time. Similar
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Table 3.8: Maximum likelihood, AM and IBIS estimates of parameters for the direction of active
trade using an autologistic model, during the afternoon period, case (II). The Bayesian estimates rep-
resent posterior means and standard deviations in parenthesis. For the maximum likelihood in paren-
thesis is reported the asymptotic standard errors. ‘Run-time’ returns the execution time in minutes.
The AM algorithm runs 200,000 iterations with a burn-in period of 20,000 draws, thinning every
100th iteration, yielding 2000 draws; the algorithm is initialized with the mle. For IBIS, the initial
particles are sampled from the posterior density based on the first 1000 observations. The tick size
is $0.25. Model: D′

i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤
i−1β,

x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

a,1
i−1, V

b,1
i−2, V

a,1
i−2).

Parameter MLE AM IBIS
Number of Particles

1000 2000 5000

β0 6.813 6.812 6.815 6.820 6.819
(0.353) (0.346) (0.362) (0.351) (0.354)

β1 -0.723 -0.720 -0.720 -0.724 -0.722
(0.107) (0.107) (0.107) (0.107) (0.108)

β2 -9.384 -9.391 -9.389 -9.390 -9.391
(0.122) (0.122) (0.120) (0.124) (0.123)

β3 -1.845 -1.846 -1.844 -1.846 -1.846
(0.046) (0.045) (0.048) (0.046) (0.046)

β4 1.555 1.556 1.554 1.555 1.557
(0.045) (0.046) (0.046) (0.043) (0.044)

β5 1.543 1.545 1.545 1.544 1.544
(0.035) (0.034) (0.035) (0.035) (0.035)

β6 -1.536 -1.537 -1.537 -1.537 -1.538
(0.040) (0.040) (0.039) (0.039) (0.039)

Run-time 0.002 5.726 9.950 17.891 41.280

conclusions are drawn from the corresponding plots with 2000 and 5000 particles, although

the graphs are not presented here. Figure 3.14 illustrates the marginal posterior densities of the

parameters using the autologistic model; the vertical lines correspond to maximum likelihood

estimators. It can be seen that the two methods produce nearly identical posterior distributions

as well as the posterior mode corresponds to the maximum likelihood estimate. Furthermore,

the impact of increasing the number of particles is dramatically insignificant. Figure 3.15 com-

pares the sampling density that generates the initial particles for IBIS (purple curve) with the

target posterior density based on the whole dataset using 1000 (3000) IBIS samples during the
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morning (afternoon) period. Not surprisingly, IBIS initial densities are wider than that of the

target. This tightening is expected as additional points become available.
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Model: D′
i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤

i−1β. Morn-
ing: x⊤

i−1 = (1, D′
i−1,BMOi−1, V

b,1
i−1, V

b,2
i−1, V

a,2
i−1, V

b,1
i−2, V
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a,2
i−2). Afternoon: x⊤

i−1 =

(1, D′
i−1,BMOi−1, V

b,1
i−1, V

a,1
i−1, V

b,1
i−2, V

a,1
i−2). Prior: β ∼ Nd(0d, 10

3
Id).

Figure 3.14: Marginal posterior densities of the estimated parameters for the direction of active
trade using an autologistic model, estimated from AM (dotted curve) and IBIS (solid, dashed
and dash-dotted curve for 1000, 2000 and 5000 particles, respectively) samples using a kernel
density. Vertical lines represent the mle, confined to the morning (blue curve) and afternoon
(black curve) partition, case (II).
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Model: D′
i takes on value 1 (0) with probability πi (1 − πi), where logit(πi) = x⊤

i−1β. Morn-
ing: x⊤
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Figure 3.15: Comparison of kernel density estimation of marginal posterior densities for the
direction of active trade using an autologistic model based on the whole dataset (solid line) and
the first 3000 observations (purple curve) with 1000 IBIS and MCMC samples, respectively,
during the morning (blue curve) and afternoon period (black curve), case (I).
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Chapter 4

The Bernoulli parameter driven AD model

4.1 Introduction

In this chapter, we extend the AD model, which is an observation driven model for analyz-

ing high-frequency integer price changes, and propose a state space model within a Bayesian

framework. Given the use of logistic regression with a latent process for each component, we

review some similar models applied on binary time series, but not necessarily applied on tick

data. Wu and Cui [2014] consider an AR(1) latent process into the logit link function and pro-

pose a modified GLM estimation procedure and show the resulting estimator is consistent and

asymptotically normal; they apply the model to boat race data. Dunsmuir and He [2016] fo-

cus on the development of methods for detecting serial dependence in time series of binomial

counts in which the logit of the probability of success at each time point is a linear function

of regression variables and a latent autocorrelated process. Dunsmuir and He [2017] consider

a parameter driven model for binomial responses time series. The binary state space model

with probit link, in a Bayesian framework, has been studied by Carlin et al. [1992]; Fahrmeir

[1992]; Song [2000]; Abanto-Valle et al. [2015]; Czado and Song [2008], among others. In the

last paper, the authors allow covariates (and binomial responses) and apply MCMC methods,

while Abanto-Valle and Dey [2014] extend it using the usual links as well as an extension of

them called power links. Fasano et al. [2019] prove that the filtering, predictive and smoothing

distributions in dynamic probit models with Gaussian state variables are available and belong

to a class of unified skew-normals whose parameters can be updated recursively in time via

analytical expressions.

This chapter is organized as follows. Section 4.2 presents the parameter drivenADmodel
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and Section 4.3 analyses the proposed model within a Bayesian framework via MCMC. Section

4.4 presents the results of a simulation study. Section 4.5 discusses the empirical results and

evaluates the predictive performance of the proposed model.

4.2 The AR(1)-AD model

As explained in Section 3.2, Yi can be written as in equation (3.1) with conditional joint distri-

bution given in (3.2). Here we model the logit of the probability of success at each time point

of each price factor as a linear function of regression variables and a latent process. In the

following section we detail the modelling of the activity and direction process.

4.2.1 Models for the activity and direction process

Conditional on a latent process {αA
i }, we assume that the observation Ai only depends on the

current state and not on previous states or observations and is specified by a Bernoulli distribu-

tion with probability πAi
. We parametrize πAi

as a dynamic model of the form

logit(πAi
) = xA,⊤

i−1βA + αA
i

αA
i = ϕAα

A
i−1+ε

A
i , ε

A
i

i.i.d.∼ N (0, 1/τA)

where αA
1 |ϕA, τA ∼ N (0, 1/τA(1 − ϕ2

A)), |ϕA| < 1 and τA > 0. The model can be written

equivalently as

Ai|hA
i ∼ Bernoulli(πAi

) (4.1)

logit(πAi
) = hA

i (4.2)

hA
i = xA,⊤

i−1βA + ϕA(h
A
i−1 − xA,⊤

i−2βA) + εAi , (4.3)

where πAi
≜ π(Ai = 1|hA

i ) and hA
1 |ϕA, τA,βA ∼ N (xA,⊤

0 βA, 1/τA(1 − ϕ2
A)). Equations 4.1

to 4.3 is called the AR(1) activity model in its centered form. If ϕA = 0, the model is called a

WN activity model, while when ϕA = 1 it is called a RW(1) activity model where hA
1 |τA,βA ∼

N (xA,⊤
0 βA, 1/τA). In a similar way, we parametrize πDi

for the direction component. Figure

4.1 shows a graphical representation of the activity model. The shaded nodes indicate that

the corresponding variable is observed, while all variables within the plate are repeated for all
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values of the index i.

θA hA
i

hA
i+1

Ai

Ai+1

i ∈ {1, 2, · · · , n}

Figure 4.1: Directed acyclic graph corresponding to the AR(1) activity model. The shaded
nodes indicate that the corresponding variable is observed. All variables within the plate are
repeated for all values of the index i.

The conditional mean and variance ofAi is defined asE(Ai|hA
i ) = πAi

=
exp(hA

i )

1 + exp(hA
i )

and V(Ai|hA
i ) = πAi

(1− πAi
). The likelihood function involves n intractable integrals and is

given by

LC(θA) ≜
∫ n∏

i=1

π(αi|hA
i )π(hA|θA) dhA, (4.4)

where π(αi|hA
i ) ∝ exp(hA

i αi)(1 + exp(hA
i ))

−1 and the quantity π(hA|θA) is a multivariate

normal density; θA ≜ (ϕA, τA,βA)
⊤ collects the parameters of the price activity process, and

hA ≜ (hA
1 , · · · , hA

n)
⊤.

As discussed in Section 2.5.2, different model parametrizations can perform better than

others under certain conditions. The AR(1) activity model in its non-centered form satisfies

Ai|h̃A
i , τA,βA ∼ Bernoulli(πAi

) (4.5)

logit(πAi
) = xA,⊤

i−1βA + h̃A
i /
√
τA (4.6)

h̃A
i = ϕAh̃

A
i−1 + εAi , ε

A
i ∼ N (0, 1), (4.7)

where πAi
≜ π(Ai = 1|h̃A

i , τA,βA) and h̃A
1 |ϕA ∼ N (0, 1/(1 − ϕ2

A)). Note that h̃A
i ≜

√
τA(h

A
i −x

A,⊤
i−1βA), hence the two parametrizations are equivalent probabilistically. The condi-

tional mean ofAi can be defined as E(Ai|h̃A
i , τA,βA) = πAi

=
exp(xA,⊤

i−1βA + h̃A
i /
√
τA)

1 + exp(xA,⊤
i−1βA + h̃A

i /
√
τA)

.

The likelihood function is given by

LNC(θA) ≜
∫ n∏

i=1

π(αi|h̃A
i , τA,βA)π(h̃A|ϕA) dh̃A, (4.8)
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where π(αi|h̃A
i , τA,βA) ∝ exp((xA,⊤

i−1βA+ h̃
A
i /
√
τA)αi)(1+exp(xA,⊤

i−1βA+ h̃
A
i /
√
τA))

−1 and

the quantity π(h̃A|ϕA) is a multivariate normal density, where h̃A ≜ (h̃A
1 , · · · , h̃A

n). In a similar

way, we parameterize πDi
for the direction component.

4.3 Bayesian analysis of AR(1)-AD

Assuming independence among the parameters, the joint prior is π(θA,θD) = π(θA)π(θD).

The joint posterior distribution, π(θA,hA,θD,hD|y) takes the form

π(θA,hA,θD,hD|y) ∝ π(θA,hA|α)π(θD,hD|d,α = 1n), (4.9)

where π(θA,hA|α) and π(θD,hD|d,α = 1n) denote the posterior distribution of each com-

ponent satisfying

π(θA,hA|α) ∝ π(α|hA)π(hA|θA)π(θA)

π(θD,hD|d,α = 1n) ∝ π(d|α = 1n,hD)π(hD|θD)π(θD).

Furthermore, π(hA|θA) ≜ Nn(mA,Q
−1
A ), where mA ≜ (xA,⊤

0 βA, · · · ,xA,⊤
n−1βA)⊤ (n × 1)

and the precision matrix QA (n × n) is a tridiagonal matrix in which the primary diagonal

is formed by the elements {τA, (1 + ϕA)
2τA, · · · , (1 + ϕA)

2τA, τA}, while the diagonal above

the principal diagonal is a vector whose every element is equal to −ϕAτA. If ϕA = 1, re-

place the elements of the primary diagonal by the elements {2τA, · · · , 2τA, τA}. If ϕA = 0,

the precision matrix is a diagonal matrix with all diagonal elements equal to τA. In NCP,

π(h̃A|θA) ≜ Nn(0n, Q̃
−1
A ), where Q̃A ≜ (1/τA)QA.

Equation 4.9 implies that instead of simulating directly from the target density, this can

be achieved by simulating from the posterior distribution for each component of price change

and by combining the outcome the final samples are from the desired density.

For both factors we choose the same prior distributions and all the samplers run on the

unrestricted parameter space. For the parameter τ = τA or τD > 0, which denotes the condi-

tional precision in the autoregressive sequence, we choose a gamma distributionwith parameters

γ0 and δ0 or, in symbols τ ∼ Gamma(γ0, δ0) with probability density function

π(τ) =
1

δγ00 Γ(γ0)
τ γ0−1(−τ/δ0), for τ > 0, γ0, δ0 > 0,
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where Γ(α) is the gamma function satisfying Γ(α) ≜ (α− 1)! for all positive integers. If not

specified otherwise, γ0 = 1e−3 and δ0 = 1e+3. The variable is transformed to the unrestricted

variable η ≜ log(τ), with prior proportional to log π(η) ∝ ηγ0 + (−1/δ0)(η). The prior of

the parameters ϕ and β is discussed in Section 3.3. Independent of the prior choice, the partial

posterior distributions of the parameters of the components do not have a closed form, and it is

known up to a normalizing constant.

4.3.1 MCMC sampling

We construct a Markov chain which mimics the two-component Gibbs sampler to estimate the

posterior distribution π(hA,θA|α) ∝ π(α|hA)π(hA|θA); the procedure is summarized in

Algorithm 8. For more details Section 2.5.

Algorithm 8DrawN samples from π(hA,θA|α) usingMCMCmethods. varargin is a variable
that enables the function to accept any number of input arguments

1: Initialize h(0)
A , θ(0)

A = (ϕ(0)
A , τ

(0)
A ,β(0)

A ).
2: for l = 1, 2, · · · , N do

3: h(l)
A ← UpdatePathC(h(l−1)

A ,θ(l−1)
A , varargin)

4: θ(l)
A ← UpdateThetaC(h(l)

A ,θ
(l−1)
A , varargin)

5: end for

6: return (h(1)
A ,θ

(1)
A ), · · · , (h(N)

A ,θ(N)
A )

UpdatePathC and UpdatePathNC: We investigate two methods (see Section 2.5.1): Firstly,

we sample the components of the latent state one at time in separate MH steps conditional

on all others values of the state process and on the parameter vector (‘1-1’), and secondly we

update the whole process in one move (‘all’) focused on the aGrad-z (Titsias [2011]; Titsias and

Papaspiliopoulos [2018]) algorithm. After some calculations, the following equations hold:

log π(αi|hA
i ) ∝ hA

i αi − log(1 + (hA
i )),

log π(αi|h̃A
i , τA,βA) ∝ (xA,⊤

i−1βA + h̃A
i /
√
τA)− log(1 + (xA,⊤

i−1βA + h̃A
i /
√
τA))

74



and

log π(hA
1 |θA) ∝ −(τA/2)(1− ϕ2

A)(h
A
1 − xA,⊤

0 βA)
2,

log π(hA
i |hA

i−1,θA) ∝ −(τA/2)(hA
i − xA,⊤

i−1βA − ϕA(h
A
i−1 − xA,⊤

i−2βA))
2.

UpdateThetaC andUpdateThetaNC: We sample fromπ(θA|hA,α) ∝ π(α|hA)π(hA|θA)

π(θA) using a 3-block sampler, a 2-block sampler and the interweaving sampler (Yu and Meng

[2011]; see Section 2.5.2). After some manipulations, the density π(hA|θA), by taking the

logarithm, can be written as

log π(hA|θA) ∝
n

2
log(τA) +

1

2
log(1− ϕ2

A)−
τA
2

n∑
i=1

(hA
∗i − xA,⊤

∗i βA)
2,

where hA
∗ ≜ (hA

∗1, · · · , hA
∗n)

⊤(n× 1) and xA
∗ ≜ (xA

∗1, · · · ,xA
∗n)(dA × n) satisfying

hA
∗i =


√
1− ϕ2

Ah
A
i , i = 1

hA
i − ϕAh

A
i−1, i ≥ 2

and xA
∗i =


√
1− ϕ2

Ax
A
0 , i = 1

xA
i−1 − ϕAx

A
i−2, i ≥ 2.

In the 3-block sampler, ϕA, τA and the block of βA are sampled separately. The param-

eters τA and βA are drawn with Gibbs from their corresponding conditional posterior given

by

τA|hA,α, ϕA,βA ∼ Gamma

(
γ0 +

n

2
,
1

G

)
, βA|hA,α, ϕA, τA ∼ NdA

(
µ,Σ−1

)
,

where G ≜
1

δ0
+

1

2

n∑
i=1

(hA
∗i − xA,⊤

∗i βA)
2, µ ≜ τAΣ

−1xA
∗h

A
∗ and Σ ≜

1

σ2
0

IdA + τAx
A
∗x

A,⊤
∗ .

The parameter ϕA is drawn from its conditional posterior density by utilizing the random walk

Metropolis algorithm with a Gaussian proposal with variance δ, where δ is a tuning constant. In

NCP, due to non-conjugacy of the chosen priors, all parameters are updated with the Gaussian

random walk Metropolis algorithm. In both parametrizations, βA is drawn jointly in one block.

In the 2-block sampler, ϕA and τA are sampled jointly, and then the elements within βA

are updated simultaneously in a different step. The conditional posterior density of ϕA and τA

is not known in closed form, thus it is approximated with a Gaussian random walk Metropolis

algorithm. Each tuning parameter has to be adjusted to reach an acceptance rate around to

44% for univariate parameters and around to 23.4% for multivariate parameters. We follow the
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idea of the adaptive random walk Metropolis-within-Gibbs (Roberts and Rosenthal [2009], see

Section 2.3.2.2) which automatically tune the Markov chain parameters during the run.

4.3.2 Predictive Performance

We conduct a recursive out-of-sample forecasting procedure, using predictive likelihoods. The

general estimation procedure is similar with its corresponding observation driven model that

described in Section 3.3.1.

At the end of time tn, the existing samples {hA,(l)
n }Nl=1 and {θ(l)

A }Nl=1 approximate the

posterior densities π(hA
n |αo

1:n,θA) and π(θA|αo
1:n, h

A
1:n), respectively. Set θA to the mean of

its posterior density, and assume hereafter that it is fixed. At time tn+1, we sample hA,(l)
n+1 ∼

N (xA,⊤
n βA + ϕA(h

A,(l)
n −xA,⊤

n−1βA), 1/τA), ∀l; if αn+1 denotes the first observation of the next

day, then sample from N (xA,⊤
n βA, 1/τA(1 − ϕ2

A)). Next, the predictive distribution of αn+1

can be evaluated numerically by

π(αn+1|αo
1:n,θA) =

1

N

N∑
l=1

π(αn+1|hA,(l)
n+1 ,θA).

The log predictive score of themodel for the evaluation periodn+1, · · · , n′ is the sum of the log

predictive likelihoods
∑n′−1

l=n log π(αo
l+1|αo

1:l,θA). Before the calculation of the predictive like-

lihood π(αo
n+2|αo

1:n+1,θA), we employ the APF (Pitt and Shephard [1999], see Section 2.5.1),

to sample again {hA,(l)
n+1 }Nl=1 with a proposal distribution which depends on the information avail-

able in αo
n+1, as opposed to the previous step in which the proposal density does not depend on

this value in order to increase the probability of producing particles that are in agreement with

αo
n+1.

4.4 Simulation study

Suppose that the random variables A1, · · · , An are independent with conditional distribution

Ai|hi ∼ Bernoulli(πi), where

logit(πi) = hi,

hi = β0 + ϕ(hi−1 − β0) + εi, εi ∼ N (0, 1/τ)
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h1 ∼ N (β0, 1/τ(1 − ϕ2)) and i ∈ {1, 2, · · · , n}. The parameter β0 is equal to 3 and the

parameters ϕ and τ vary on {0, 0.95, 0.85, 0.65, 0.55} × {0.05, 0.5, 1, 2, 10, 50}. The sample

size, n, is fixed to 10, 000 which corresponds to the average number of our data during the

trading period between 9:00 and 13:00 EST for the direction model. We also consider the

negative values of ϕ, different values of β0 and n, as well as larger values of τ , and we report if

the results are influenced.

Initially, we use the prior distributions specified in Section 4.3. However, we notice

that the convergence rate is too slow and gets worse when the parameter ϕ decreases to an

absolute value or the conditional precision increases. This behaviour also deteriorates when

we increase the number of observations or add more explanatory variables. To speed up the

convergence, we use priors with means equaling the true values, more specifically, following

Kastner and Frühwirth-Schnatter [2014], the transformed parameter ψ is assumed to follow a

Beta distribution with parameters (a0, b0), where a0 = 40 and b0 = 80/(1 + ϕtrue) − 40. For

the parameter τ , we use a gamma distribution with parameters (γ0, δ0), where γ0 = 10 and

δ0 ∈ {0.005, 0.05, 0.1, 0.2, 1, 5} for τ ∈ {0.05, 0.5, 1, 2, 10, 50}, respectively. Finally, for

the constant parameter, we use a normal distribution with mean βtrue and variance 10.

We useN = 100, 000MCMCdraws after a burn-in of 30, 000 for each data set. Starting

values are set to the true values. We apply four sampling schemes: C, NC, CNC, NCC. In C

(NC), both the latent state and the parameter vector are updated in the centered (non-centered)

parametrization. In CNC (NCC), the latent state is only updated in the centered (non-centered)

parametrization, while the parameter vector firstly is updated in the centered (non-centered)

setting and then in the non-centered (centered) setting. Besides, The parameter vector is updated

by applying the ‘2-bl’ and ‘3-bl’ sampler. The latent state is updated using the ‘1-1’ and ‘all’

method.

In comparing the performance of the MCMC sampling methods we evaluate the ES-

S/sec. ESS is theoretically defined for each parameter as the total number of samples generated

divided by the autocorrelation time, which is defined to be 1 +
∑N

i=1 ρ(k), where ρ(k) is the

autocorrelation at lag k [Kass et al., 1998; Chib and Carlin, 1999]. The sum over the autocor-

relation is usually truncated when the autocorrelation drops below 0.1. ESS is a rough estimate

of the number of i.i.d. draws that are equivalent to the samples drawn, hence the higher ESS the

better.
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Table 4.1: Performance of MCMC samplers as measured by ESS/sec for π(ϕ|h,α, τ, β0) for
the simulated datasets. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000
for each data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector
is updated by applying the ‘2-bl’ and ‘3-bl’ sampler.

τ

Alg. 0.05 0.5 1 2 10 50
3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 1.14 1.14 0.91 0.73 0.80 0.65 0.49 0.43 0.18 0.10 0.05 0.04

NC(1-1) 0.46 0.35 0.43 0.30 0.37 0.23 0.23 0.19 0.06 0.07 0.04 0.03
CNC(1-1) 1.09 1.11 0.97 0.85 0.77 0.56 0.41 0.41 0.14 0.12 0.04 0.03
NCC(1-1) 1.09 0.67 0.90 0.79 0.52 0.52 0.44 0.37 0.13 0.09 0.04 0.06

C(all) 0.27 0.36 0.22 0.41 0.46 0.32 0.34 0.39 0.44 0.16 0.33 0.14
NC(all) 0.03 0.05 0.09 0.11 0.17 0.09 0.16 0.10 0.32 0.15 0.56 0.31

CNC(all) 0.45 0.40 0.22 0.54 0.28 0.53 0.27 0.39 0.42 0.43 0.60 0.43
NCC(all) 0.18 0.11 0.22 0.39 0.26 0.35 0.27 0.38 0.50 0.36 0.45 0.38

ϕ = 0.85
C(1-1) 1.19 0.95 0.71 0.41 0.40 0.26 0.28 0.15 0.08 0.07 0.05 0.04

NC(1-1) 1.42 1.24 0.58 0.54 0.29 0.33 0.21 0.17 0.05 0.05 0.05 0.03
CNC(1-1) 2.23 1.87 1.03 0.84 0.59 0.49 0.25 0.25 0.08 0.09 0.05 0.04
NCC(1-1) 2.08 1.76 0.93 0.79 0.57 0.46 0.25 0.26 0.08 0.06 0.05 0.04

C(all) 0.33 0.27 0.23 0.29 0.20 0.20 0.24 0.22 0.32 0.17 0.24 0.13
NC(all) 0.17 0.09 0.18 0.12 0.15 0.10 0.19 0.14 0.30 0.24 0.30 0.33

CNC(all) 0.19 0.18 0.28 0.26 0.27 0.23 0.27 0.31 0.36 0.23 0.26 0.23
NCC(all) 0.17 0.19 0.26 0.23 0.25 0.22 0.30 0.22 0.29 0.23 0.25 0.22

ϕ = 0.65
C(1-1) 0.54 0.30 0.28 0.15 0.26 0.14 0.20 0.09 0.11 0.08 0.08 0.05

NC(1-1) 0.84 0.52 0.40 0.31 0.28 0.15 0.16 0.15 0.10 0.07 0.08 0.05
CNC(1-1) 1.11 0.87 0.60 0.44 0.37 0.30 0.19 0.20 0.08 0.08 0.06 0.07
NCC(1-1) 1.05 0.69 0.60 0.44 0.36 0.31 0.16 0.20 0.10 0.10 0.08 0.08

C(all) 0.32 0.32 0.14 0.14 0.15 0.18 0.22 0.13 0.25 0.15 0.24 0.12
NC(all) 0.14 0.12 0.16 0.12 0.16 0.15 0.15 0.21 0.22 0.24 0.22 0.35

CNC(all) 0.16 0.18 0.16 0.16 0.18 0.18 0.25 0.19 0.26 0.20 0.30 0.23
NCC(all) 0.16 0.13 0.18 0.15 0.13 0.15 0.23 0.14 0.18 0.22 0.22 0.23

ϕ = 0.55
C(1-1) 0.36 0.34 0.22 0.14 0.27 0.12 0.23 0.12 0.12 0.08 0.11 0.07

NC(1-1) 0.79 0.44 0.45 0.27 0.34 0.19 0.22 0.15 0.10 0.08 0.12 0.08
CNC(1-1) 0.87 0.65 0.55 0.42 0.35 0.33 0.19 0.17 0.12 0.10 0.09 0.11
NCC(1-1) 0.74 0.59 0.48 0.34 0.35 0.30 0.19 0.19 0.09 0.12 0.10 0.11

C(all) 0.29 0.26 0.11 0.13 0.17 0.16 0.18 0.14 0.26 0.14 0.29 0.14
NC(all) 0.15 0.14 0.12 0.12 0.17 0.16 0.22 0.22 0.29 0.31 0.23 0.36

CNC(all) 0.16 0.16 0.16 0.14 0.20 0.17 0.23 0.21 0.26 0.22 0.33 0.26
NCC(all) 0.18 0.11 0.10 0.14 0.15 0.13 0.21 0.19 0.19 0.23 0.24 0.26
ϕ = 0.0

C(1-1) 8.04 4.65 0.79 0.44 0.41 0.29 0.36 0.21 0.30 0.16 0.32 0.19
NC(1-1) 7.81 5.68 0.77 0.61 0.44 0.37 0.37 0.25 0.34 0.23 0.33 0.21

CNC(1-1) 7.31 7.52 0.73 0.74 0.47 0.43 0.34 0.33 0.31 0.32 0.28 0.31
NCC(1-1) 7.04 6.81 0.79 0.76 0.40 0.45 0.35 0.32 0.29 0.34 0.36 0.33

C(all) 0.34 0.40 0.20 0.26 0.25 0.20 0.27 0.20 0.44 0.23 0.41 0.26
NC(all) 0.37 0.28 0.30 0.24 0.27 0.20 0.27 0.20 0.41 0.49 0.40 0.50

CNC(all) 0.32 0.36 0.20 0.19 0.19 0.24 0.29 0.30 0.38 0.35 0.48 0.43
NCC(all) 0.32 0.31 0.19 0.21 0.20 0.23 0.24 0.27 0.26 0.38 0.24 0.42
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Table 4.2: Performance of MCMC samplers as measured by ESS/sec for π(τ |h,α, ϕ, β0) for
the simulated datasets. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000
for each data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector
is updated by applying the ‘2-bl’ and ‘3-bl’ sampler.

τ

Alg. 0.05 0.5 1 2 10 50
3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 0.06 0.05 0.15 0.17 0.22 0.21 0.17 0.18 0.10 0.06 0.05 0.05

NC(1-1) 0.72 0.47 0.59 0.44 0.45 0.30 0.26 0.26 0.07 0.09 0.27 0.23
CNC(1-1) 0.73 0.73 1.24 1.04 0.95 0.74 0.68 0.53 0.16 0.13 0.23 0.13
NCC(1-1) 0.73 0.74 1.01 0.87 0.80 0.67 0.51 0.48 0.15 0.14 0.23 0.18

C(all) 0.03 0.03 0.05 0.08 0.08 0.11 0.16 0.16 0.25 0.13 0.14 0.07
NC(all) 0.10 0.06 0.11 0.11 0.14 0.10 0.18 0.13 0.40 0.23 2.45 1.51

CNC(all) 0.26 0.21 0.47 0.45 0.46 0.59 0.37 0.60 0.68 0.54 2.44 1.85
NCC(all) 0.23 0.20 0.28 0.39 0.31 0.41 0.35 0.44 0.52 0.46 2.19 1.83

ϕ = 0.85
C(1-1) 0.08 0.07 0.20 0.16 0.21 0.15 0.16 0.09 0.10 0.07 0.08 0.05

NC(1-1) 0.54 0.35 0.59 0.50 0.34 0.36 0.28 0.22 0.21 0.15 2.09 0.67
CNC(1-1) 0.54 0.55 0.91 0.75 0.69 0.54 0.31 0.33 0.33 0.30 2.21 0.89
NCC(1-1) 0.56 0.45 0.91 0.74 0.65 0.51 0.34 0.33 0.33 0.27 1.84 0.71

C(all) 0.04 0.04 0.09 0.07 0.09 0.08 0.14 0.12 0.19 0.12 0.14 0.10
NC(all) 0.13 0.08 0.24 0.15 0.18 0.14 0.26 0.22 1.26 1.10 17.82 3.44

CNC(all) 0.16 0.14 0.32 0.28 0.36 0.27 0.40 0.38 1.82 0.85 17.95 3.66
NCC(all) 0.18 0.14 0.30 0.29 0.30 0.29 0.38 0.29 1.45 0.74 15.59 3.52

ϕ = 0.65
C(1-1) 0.12 0.08 0.14 0.09 0.14 0.08 0.11 0.08 0.09 0.06 0.12 0.06

NC(1-1) 0.31 0.20 0.41 0.29 0.37 0.21 0.39 0.29 3.00 0.96 11.22 1.50
CNC(1-1) 0.37 0.30 0.64 0.41 0.49 0.38 0.46 0.44 2.71 0.90 9.11 1.35
NCC(1-1) 0.39 0.26 0.58 0.41 0.53 0.38 0.47 0.39 2.90 0.81 9.82 0.91

C(all) 0.03 0.03 0.06 0.05 0.08 0.08 0.14 0.09 0.18 0.11 0.14 0.10
NC(all) 0.09 0.10 0.21 0.14 0.26 0.25 0.53 0.59 9.70 1.90 41.28 2.92

CNC(all) 0.12 0.11 0.22 0.19 0.34 0.25 0.80 0.50 10.29 1.95 37.74 2.75
NCC(all) 0.11 0.09 0.20 0.18 0.23 0.25 0.62 0.40 7.11 1.83 34.76 2.50

ϕ = 0.55
C(1-1) 0.08 0.07 0.11 0.08 0.14 0.07 0.11 0.06 0.10 0.06 0.13 0.07

NC(1-1) 0.26 0.15 0.44 0.25 0.53 0.26 0.99 0.38 5.08 1.26 18.86 1.52
CNC(1-1) 0.29 0.23 0.56 0.39 0.64 0.37 0.93 0.54 4.62 0.97 15.46 1.40
NCC(1-1) 0.26 0.22 0.47 0.30 0.60 0.34 0.82 0.50 4.24 0.78 15.57 0.78

C(all) 0.02 0.04 0.05 0.05 0.08 0.08 0.16 0.08 0.18 0.11 0.16 0.09
NC(all) 0.10 0.08 0.16 0.14 0.33 0.32 1.30 0.72 12.66 1.84 45.53 2.73

CNC(all) 0.10 0.07 0.19 0.17 0.42 0.25 1.40 0.67 13.15 1.75 42.84 2.36
NCC(all) 0.09 0.07 0.16 0.15 0.26 0.24 0.98 0.66 9.76 1.73 40.38 2.08
ϕ = 0.0

C(1-1) 0.11 0.06 0.10 0.05 0.10 0.06 0.10 0.06 0.12 0.07 0.13 0.08
NC(1-1) 0.20 0.13 0.65 0.31 1.36 0.44 3.02 0.66 14.62 1.10 39.05 1.25

CNC(1-1) 0.26 0.18 0.52 0.34 1.04 0.51 2.55 0.66 13.61 0.89 36.03 0.98
NCC(1-1) 0.27 0.14 0.59 0.32 1.13 0.46 2.21 0.51 13.05 0.61 35.40 0.61

C(all) 0.04 0.04 0.05 0.05 0.08 0.06 0.14 0.07 0.15 0.10 0.14 0.10
NC(all) 0.10 0.08 0.32 0.17 0.82 0.30 2.29 0.73 21.18 1.51 54.90 1.85

CNC(all) 0.11 0.07 0.31 0.19 0.75 0.43 2.31 0.81 19.47 1.50 50.13 1.88
NCC(all) 0.09 0.06 0.24 0.19 0.66 0.36 1.94 0.75 17.60 1.48 48.77 1.43
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Table 4.3: Performance of MCMC samplers as measured by ESS/sec for π(β0|h,α, ϕ, τ) for
the simulated datasets. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000
for each data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector
is updated by applying the ‘2-bl’ and ‘3-bl’ sampler.

τ

Alg. 0.05 0.5 1 2 10 50
3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 1.79 0.95 0.74 0.85 0.78 0.87 0.82 0.65 0.23 0.19 0.05 0.05

NC(1-1) 0.09 0.06 0.07 0.09 0.09 0.09 0.07 0.09 0.15 0.16 0.73 0.34
CNC(1-1) 5.43 4.89 7.54 6.75 7.22 6.97 6.21 5.71 3.50 3.83 1.46 1.67
NCC(1-1) 5.19 5.02 7.46 6.03 6.39 5.91 6.57 5.36 2.95 2.37 1.79 0.94

C(all) 1.61 1.59 0.71 0.45 0.41 0.47 0.40 0.54 0.61 0.71 1.36 1.06
NC(all) 0.06 0.04 0.05 0.04 0.05 0.04 0.07 0.04 0.73 0.54 7.54 5.15

CNC(all) 1.38 2.50 2.51 3.12 4.54 4.17 6.08 6.27 12.72 11.77 9.96 6.53
NCC(all) 2.00 1.11 3.38 2.53 5.35 4.10 6.15 4.89 16.28 10.88 14.20 8.72

ϕ = 0.85
C(1-1) 0.17 0.18 0.34 0.31 0.34 0.26 0.25 0.16 0.11 0.11 0.06 0.05

NC(1-1) 0.35 0.29 0.75 0.69 0.86 0.74 0.99 0.84 0.99 0.83 5.14 1.51
CNC(1-1) 0.97 0.89 2.42 2.34 2.25 1.95 1.92 1.93 1.48 1.68 8.08 3.16
NCC(1-1) 1.00 1.03 2.64 2.27 2.25 1.90 2.13 1.96 1.43 1.09 5.65 2.08

C(all) 0.53 0.32 0.16 0.10 0.14 0.12 0.17 0.18 0.48 0.38 0.99 0.94
NC(all) 0.08 0.06 0.22 0.09 0.39 0.20 1.03 0.67 5.01 3.53 9.94 9.25

CNC(all) 0.28 0.37 1.08 1.01 1.42 1.34 2.42 1.98 5.71 4.03 8.67 9.14
NCC(all) 0.36 0.27 1.10 1.02 1.63 1.20 2.48 2.04 6.41 4.09 6.15 7.44

ϕ = 0.65
C(1-1) 0.13 0.10 0.16 0.11 0.16 0.11 0.13 0.15 0.14 0.12 0.07 0.06

NC(1-1) 0.31 0.19 0.59 0.39 0.94 0.51 2.40 1.16 2.99 1.23 39.15 17.29
CNC(1-1) 0.38 0.33 0.77 0.53 0.94 0.66 2.22 1.16 2.63 1.93 32.09 19.23
NCC(1-1) 0.42 0.27 0.84 0.55 1.20 0.67 2.13 1.00 2.20 1.13 33.48 22.82

C(all) 0.04 0.06 0.07 0.05 0.09 0.09 0.21 0.12 0.41 0.41 0.57 0.62
NC(all) 0.12 0.08 0.31 0.20 0.75 0.52 2.05 1.28 6.77 3.46 55.78 53.10

CNC(all) 0.16 0.13 0.30 0.26 0.80 0.56 2.29 1.31 6.26 3.44 52.72 38.29
NCC(all) 0.13 0.11 0.32 0.33 0.59 0.53 1.86 1.33 5.95 3.13 54.29 36.26

ϕ = 0.55
C(1-1) 0.09 0.08 0.12 0.09 0.15 0.11 0.14 0.10 0.15 0.13 0.07 0.07

NC(1-1) 0.23 0.15 0.54 0.30 1.07 0.44 2.84 1.06 4.81 1.70 51.59 43.07
CNC(1-1) 0.29 0.24 0.55 0.42 0.93 0.59 2.32 1.16 3.92 1.74 41.78 36.66
NCC(1-1) 0.25 0.23 0.65 0.35 1.23 0.56 2.40 0.84 4.75 1.78 43.81 42.64

C(all) 0.03 0.06 0.05 0.05 0.08 0.09 0.24 0.09 0.41 0.36 0.41 0.45
NC(all) 0.11 0.08 0.21 0.18 0.70 0.57 2.38 1.15 11.18 5.10 72.10 66.36

CNC(all) 0.09 0.08 0.24 0.17 0.74 0.40 2.38 1.26 11.50 4.21 67.95 56.91
NCC(all) 0.12 0.07 0.21 0.21 0.54 0.49 1.85 1.20 8.68 3.79 66.95 59.01
ϕ = 0.0

C(1-1) 0.10 0.07 0.10 0.05 0.10 0.06 0.12 0.07 0.20 0.19 0.07 0.06
NC(1-1) 0.20 0.12 0.56 0.27 1.20 0.40 2.86 0.72 33.51 9.43 55.74 55.70

CNC(1-1) 0.21 0.17 0.42 0.30 0.87 0.50 2.36 0.71 30.11 6.37 50.57 47.95
NCC(1-1) 0.27 0.14 0.47 0.27 0.85 0.43 1.68 0.52 30.22 2.90 50.43 49.75

C(all) 0.04 0.04 0.04 0.05 0.07 0.06 0.15 0.08 0.23 0.22 0.07 0.11
NC(all) 0.09 0.07 0.26 0.14 0.59 0.24 1.79 0.72 46.60 9.54 77.84 75.03

CNC(all) 0.08 0.06 0.28 0.18 0.63 0.41 2.11 0.86 41.72 9.85 70.89 65.30
NCC(all) 0.10 0.07 0.22 0.15 0.50 0.31 1.58 0.83 38.13 10.31 70.24 67.47
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The simulation results for all datasets and algorithms considered are presented in Tables

4.1 - Table 4.3. The quarantines in the tables are averaged over twenty runs under different seeds

initializations. The mean running time (in minutes) that describes the amount of time it takes

for the C(1-1), NC(1-1), CNC(1-1), NCC(1-1), C(all), NC(all), CNC(all), NCC(all) algorithm

to complete 130,000 iterations is 5.72, 5.86, 6.49, 6.36, 4.10, 4.19, 4.87, 4.70 for the 3-block

sampler and 5.67, 5.85, 6.53, 6.46, 4.02 4.19, 4.87, 4.81 for the 2-block sampler, respectively.

Concerning the simulation efficiency of ϕ (Table 4.1), the results show that keeping ϕ

fixed, it seems that as the value of τ increases, the sampling efficiency of ϕ deteriorates. Keep-

ing τ fixed, as the value of |ϕ| decreases, the sampling efficiency of ϕ gradually decline, and

rise when ϕ = 0. Note that, when τ < 1, as |ϕ| drops form 0.95 to 0.85, the sampling ef-

ficiency increases. Comparing the sampling schemes, it seems that the interweaving samplers

exhibit lower autocorrelation (and therefore a higher ESS/sec) and show similar values for both

parametrizations with the centered parametrization has larger (even slightly) values for most un-

derlying parameter values. In most cases, for |ϕ| ≥ 0.85, the centered parametrization exhibits

lower autocorrelation than the non-centered, however for the rest values of |ϕ| this behaviour

is reversed. Comparing the latent path strategy, the results show that as the value of the condi-

tional precision increases it is preferable to update the components of the latent state in one step.

Finally, by comparing the blocking strategy the 3-block sampler shows higher ESS/sec most of

the time. As the sample size increases, the sampling efficiency deteriorates, for example, when

n = 5, 000 the ESS/sec is on average four times larger than its corresponding value when the

sample size is doubled.

Concerning the simulation efficiency of τ (Table 4.2), it seems that for the two smallest

(largest) values of τ , as |ϕ| decreases, the sampling efficiency deteriorates (increases), while

its moderate values witness a gradual decline, followed by a rise. Comparing the sampling

schemes, the result show that the centered parametrization performs poorly compared to the

non-centered which exhibits, for some underlying parameter values, ESS/sec similar to the in-

terweaving samplers which have the smallest autocorrelation for both parametrizations for most

of the parameters values. Comparing the method for updating the latent state, the table reports

that for τ < 2 it is preferable to update the components of the latent state one at time, while for

the rest values of τ it is preferable to update the latent state in one step. Besides, by comparing

the blocking strategy the 3-block sampler shows lower autocorrelation most of the time. The
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above results hold irrespective of the sample size or the choice of β0. Finally, as the sample size

increases, the sampling efficiency deteriorates, for example, when n = 5, 000 the ESS/sec is

on average three times larger than its corresponding value when the sample size is doubled.

Concerning the simulation efficiency of β0 (Table 4.3), the results show that keeping |ϕ|

fixed, it seems that as the value of τ increases, the sampling efficiency increases. On the other

hand, for τ < 10 (τ ≥ 10), as |ϕ| decreases, the ESS/sec declines (initially declines and then

rises). However, the last conduction depends on the true value of β0, for example, when β0 = 0

and τ = 0.05 (10), the sampling efficiency increases (deteriorates). Comparing the latent path

strategy, the results show that when τ ≥ 10, it is preferable to update the whole latent state in

one move, while for the rest values of τ it is preferable to update its components one at a time.

Comparing the sampling schemes, it seems that the interweaving samplers have higher ESS/sec

and show similar values for both parametrizations for most underlying parameter values. In

most cases, the non-centered parametrization exhibits lower autocorrelation than the centered,

but this conclusion does not hold in general, as it depends on the sample size and the choice of

β0. Comparing the blocking strategy, the 3-block sampler show higher ESS/sec. Finally, as the

sample size increases, the sampling efficiency deteriorates, for example, when n = 5, 000 the

ESS/sec is on average three times larger than its corresponding value when the sample size is

doubled.

4.5 Real data results

The general estimation procedure is described in Section 3.5.1. If we do not make a specific

reference to which data segment we are referring to, it means that we imply both examined

time periods. The curves with blue (black) color refer to the morning (afternoon) period. The

regressors are explained in Sections 3.5.2 and 3.5.3.

4.5.1 Part A

We use the CNC algorithm combined with the 3-block sampler in which the latent path is up-

dated using the ‘1-1’ method. Red curves indicate that the latent path is drawn in one move.
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Figure 4.2: Trace plot of the 5,000,000 iterations of the Markov chain targeting the posterior
distribution of the estimated parameters for the activity model, May 16th to May 20th, 9 a.m.
- 1 p.m., case (I), generated by the algorithm CNC combined with the 3-block sampler. The
latent path is updated using the ‘1-1’ method.

4.5.1.1 Case (I)

Using the default priors the algorithms result in very slow convergence, for example, Figure

4.2 displays the trace plot of the MCMC chains (i.e. a plot of iterations vs. sampled values)

during the morning period, indicating that the series of iterations has not converged even af-

ter 5,000,000 iterations. However, if we pre-specify the conditional precision, τA, as a known

constant (despite a parameter in the model) this behaviour of the model improves, for exam-

ple, Figure 4.3 shows the trace plot of the 100,000 iterations of the Markov chain targeting the

posterior distribution of the estimated parameters, during the morning (afternoon) period with

τA = 0.07 (0.1).

Figure 4.4 displays the effect of the choice of τA, based on the (one-step ahead) log

predictive score of the model for the last two days of the dataset. The figure suggests that it

is maximized for values of τ near 0.07 (0.1) for the morning (afternoon) period. A suitable

informative prior for ψA is Be(23, 4) (Be(41, 5)) with a prior mean 0.7 (0.78) and variance
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Figure 4.3: Trace plots of the 100,000 iterations post burn-in of Markov chains targeting the
posterior distribution of the estimated parameters for the activity model, May 16th to May 20th,
9 a.m. - 1 p.m. (blue curve) and 1 a.m. to 5 p.m. (black curve), case (I), with τ = 0.07 (0.1).
The samples are generated by the algorithm CNC combined with the 3-block sampler in which
the latent path is updated using the ‘1-1’ and the ‘all’ (red curve) method.

0.02 (0.01) ofϕA during themorning (afternoon) period. For τA, we choose aGamma(70, 1e−3)

(Gamma(1e+3, 1e−4)) with priormean 0.07 (0.1) and variance 6.98e−5 (9.98e−6). We have

tried priors with larger prior variance, for exampleGamma(35, 2e−3) (Gamma(100, 1e−3))

with variance 1.40e−4 (1.01e−4), however this choice results in high autocorrelation samples.

The algorithm runs 3,800,000 (2,880,000) iterations for the morning (afternoon) dataset with
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burn-in of 50,000 iterations and the autocorrelation is reduced by retaining only every 1900th

(1440th) iteration of the chain. Figure 4.5 illustrates the marginal posterior densities of the

estimated parameters and prior densities (dashed line).
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Figure 4.4: Forecasting performance: (one-step ahead) log predictive score versus τ for the
activity model for ES, May 23rd & 24th 2011, 9 a.m. - 1 p.m. (left panel) and 1 p.m. - 5 p.m.
(right panel), case (I).

Table 4.4 lists the parameter estimates along with the running time (in hours). The pos-

terior mean of ϕA is 0.68 (0.78), and the posterior mean of σA ≜
√
1/τA is 4.03 (3.20) for the

morning (afternoon) dataset. The negative value of the posterior mean of the lagged price activ-

ity shows that past active trades tend to decrease the probability of subsequent movements in the

price. The standard deviations are smaller for the afternoon dataset compared to the morning

dataset.
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Model: Ai takes on value 1 (0) with probability πi (1−πi), with logit(πi) = hi, hi = x⊤
i−1β+ϕ(hi−1−

x⊤
i−2β) + εi, εi ∼ N (0, 1/τ), x⊤

i−1 = (1, Ai−1, Ai−2). Priors: (ϕ + 1)/2 ∼ Be(23, 4) (Be(41, 5)),
τ ∼ Gamma(70, 1e−3) (Gamma(1e+3, 1e−4)), β ∼ N3(03, 10

3
I3).

Figure 4.5: Marginal posterior densities (using a kernel density with 2000 MCMC thinned
samples) of the estimated parameters for the activity model, estimated with the algorithm CNC
combined with the 3-block sampler in which the latent path is updated using the ‘1-1’ method;
prior (dashed line). The data set we are analyzing is ES, May 16th to May 20th, confined to the
morning partition (blue curve) and afternoon partition (black curve), case (I).
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Table 4.4: MCMC estimates of parameters for the activity AR(1) model for ES, May 16th to
May 20th, case (I), estimated by the algorithm CNC combined with the 3-block sampler in
which the latent path is updated using the ‘1-1’ (‘all’) method, for the AR1 (WN) model. ‘Run-
time’ returns the execution time in hours. Model: Ai takes on value 1 (0) with probability
πi (1 − πi), with logit(πi) = hi, hi = x⊤

i−1β + ϕ(hi−1 − x⊤
i−2β) + εi, εi ∼ N (0, 1/τ),

x⊤
i−1 = (1, Ai−1, Ai−2).

MCMC

Parameter Morning Afternoon

ϕ 0.680 0.775

(0.008) (0.002)

σ 4.028 3.195

(0.2413) (0.049)

β0 -4.614 -3.495

(0.231) (0.049)

β1 -1.283 -1.441

(0.144) (0.043)

β2 -1.030 -1.012

(0.107) (0.032)

Run-time 18h, 0.75 days 78h, 3.25 days

4.5.1.2 Case (II)

As in the previous section, the algorithms result in very slow convergence, for example, Figure

4.6 displays the trace plot of the MCMC chains during the morning period, indicating that the

series of iterations has not converged even after 3,000,000 iterations. However, keeping τA fixed

result in better mixing; see Figure 4.7. Figure 4.8 suggests that the log predictive score of the

model is maximized for τ near 0.08 (0.25) for the morning (afternoon) period. However, for

largest values of the conditional precision the mixing of the autocorrelation parameter is slow.

For this reason, we keep constant ϕA and τA and compare the effect of these choices leading to

the same conduction; the results are not presented here.
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Figure 4.6: Trace plot of the 3,000,000 iterations of the Markov chain targeting the posterior
distribution of the estimated parameters for the activity model, May 16th to May 20th, 1 p.m.
- 5 p.m., case (II), generated by the algorithm CNC combined with the 3-block sampler. The
latent path is updated one at time.
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Figure 4.7: Trace plots of the 100,000 iterations post burn-in of Markov chains targeting the
posterior distribution of the estimated parameters for the activity model, May 16th to May 20th,
9 a.m. - 1 p.m. (blue curve) and 1 a.m. to 5 p.m. (black curve), case (II), with τ = 0.08 (0.25).
The samples are generated by the algorithm CNC combined with the 3-block sampler in which
the latent path is updated using the ‘1-1’ and the ‘all’ (red curve) method.

For ψA, we choose a Be(25, 5) (Be(23, 4)) with a prior mean 0.67 (0.70) and variance

0.02 of ϕA during the morning (afternoon) period. For τA, we choose a Gamma(80, 1e−3)

(Gamma(250, 1e−3)) with prior mean 0.08 (0.25) and variance 7.99e−5 (2.49e−4). We have

tried priors with larger prior variance, for example Gamma(41, 2e−3) (Gamma(25, 0.01))

with variance 1.64e−4 (3e−3), however this choice results in high autocorrelation samples.
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The algorithm runs 3,200,000 (3,400,000) iterations for the morning (afternoon) dataset with

burn-in of 50,000 (100,000) iterations and the autocorrelation is reduced by retaining only every

1600th (1700th) iteration of the chain.
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Figure 4.8: Forecasting performance: (one-step ahead) log predictive score versus τ for the
activity model for ES, May 23rd & 24th 2011, 9 a.m. - 1 p.m. (left panel) and 1 p.m. - 5 p.m.
(right panel), case (II).

Table 4.5 lists the parameter estimates along with the running time (in hours). The pos-

terior mean of ϕA is 0.66 (0.73), and the posterior mean of σA ≜
√
1/τA is 3.62 (2.05) for

the morning (afternoon) dataset. The influence of lagged price activity, is negative for all past

period values, indicating that past active trades tend to decrease the probability of subsequent

movements in the price, while this reduction decays down at lag two. The table shows that

lagged log-durations have a very dramatic positive impact on the chance that a trade moves the

transaction price. Besides, a smaller but negative impact is made by the log trading volume. For

the quoted volumes on the previous best level, we find a positive impact on the activity process.

More specifically, the effect of the buying volume is slightly larger than the impact of the selling

volume. The standard deviations are smaller for the afternoon dataset compared to the morning

dataset. Figure 4.9 illustrates the marginal posterior densities of the estimated parameters and
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prior densities (dashed line).
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Model: Ai takes on value 1 (0) with probability πi (1 − πi), with logit(πi) = hi, hi = x⊤
i−1β +

ϕ(hi−1 − x⊤
i−2β) + εi, εi ∼ N (0, 1/τ), x⊤

i−1 = (1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2). Priors:

(ϕ+ 1)/2 ∼ Be(25, 5), τ ∼ Gamma(80, 1e−3), β ∼ Nd(0d, 10
3
Id).

Figure 4.9: Marginal posterior densities (using a kernel density with 2000 MCMC thinned
samples) of the estimated parameters for the activity model, estimated with the algorithm CNC
combined with the 3-block sampler in which the latent path is updated using the ‘1-1’ method;
prior (dashed line). The data set we are analyzing is ES, May 16th to May 20th, confined to the
morning partition, case (II).
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Table 4.5: MCMC estimates of parameters for the activity model for ES, May 16th to
May 20th, case (II), estimated by the algorithm CNC combined with the 3-block sam-
pler in which the latent path is updated using the ‘1-1’ method. ‘Run-time’ returns the
execution time in hours. The Bayesian estimates represent posterior means and stan-
dard deviations in parenthesis. The algorithm runs 3,200,000 (3,400,000) iterations with
a burn-in period of 50,000 (100,000) draws, thinning every 1600th (1700th) iteration
over the morning (afternoon) period, yielding 2000 draws. Model: Ai takes on value
1 (0) with probability πi (1 − πi), with logit(πi) = hi, hi = x⊤

i−1β + ϕ(hi−1 −
x⊤

i−2β) + εi, εi ∼ N (0, 1/τ), x⊤
i−1 = (1, Ai−1, τi−1, V

mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2) (x⊤

i−1 =

(1, Ai−1, τi−1, V
mo
i−1, V

b,1
i−1, V

a,1
i−1, Ai−2, τi−2, V

mo
i−2)). Priors: (ϕ+1)/2 ∼ Be(25, 5), (Be(23, 4)),

τ ∼ Gamma(80, 1e−3) (Gamma(250, 1e−3)), β ∼ Nd(0d, 10
3
Id), d ∈ {8, 9}. The ac-

ceptance ratio is 0.38, 0.50, 0.46, 0.56, 0.45, 0.52, 0.39. 0.56, 0.46 0.27 (0.44 0.46, 0.45, 0.44,
0.44, 0.42, 0.46, 0.39, 0.45, 0.54, 0.27) for ϕ, τ , β, respectively.

MCMC

Parameter Morning Afternoon

ϕ 0.659 0.729
(0.009) (0.004)

σ 3.624 2.053
(0.194) (0.056)

β0 -9.102 -7.859
(0.453) (0.166)

β1 -1.213 -0.565
(0.129) (0.040)

β2 1.150 1.198
(0.072) (0.043)

β3 -0.148 -0.207
(0.023) (0.007)

β4 0.330 0.408
(0.031) (0.013)

β5 0.373 0.432
(0.035) (0.014)

β6 -0.954 -0.470
(0.096) (0.026)

β7 1.143 1.544
(0.082) (0.048)

β8 - -0.134
- (0.006)

Run-time 18h, 0.75 days 126h, 5.25 days
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4.5.2 Part B

The results obtainedwith the AR(1) directionmodel still lead to highly autocorrelated parameter

values, even after keeping the conditional precision as a known constant. For this reason, we

consider only the WN and RW(1) model.

4.5.2.1 Case I

Concerning theWNmodel, the algorithm runs 180,000 (300,000) iterations for themorning (af-

ternoon) dataset with burn-in of 20,000 iterations and the autocorrelation is reduced by retaining

only every 90th (150th) iteration of the chain. Concerning the RW(1) model, the algorithm runs

2e+6 iterations with burn-in of 20,000 iterations and the autocorrelation is reduced by retaining

only every 1000th iteration of the chain. We use the CNC algorithm combined with the 3-block

sampler in which the latent path is updated using the ‘all’ method.

Table 4.6: MCMC estimates of parameters of the WN and RW(1) direction model for ES, May
16th to May 20th, case (I), estimated by the algorithm CNC combined with the 3-block sampler
in which the latent path is updated using the ‘all’ method. ‘Run-time’ returns the execution time
in minutes. The Bayesian estimates represent posterior means and standard deviations in paren-
thesis. WNmodel: the algorithm runs 180,000 (300,000) iterations for the morning (afternoon)
dataset with burn-in of 20,000 iterations and the autocorrelation is reduced by retaining only
every 90th (150th) iteration of the chain. RW(1) model: the algorithm runs 2e+6 iterations with
burn-in of 20,000 iterations and the autocorrelation is reduced by retaining only every 1000th
iteration of the chain. Model: D′

i takes on value 1 (0) with probability πi (1 − πi) in which
logit(πi) = hi, hi = x⊤

i−1β + ϕ(hi−1 − x⊤
i−2β) + εi, εi ∼ N (0, 1/τ) and ϕ ∈ (0, 1). Priors:

τ ∼ Gamma(1e+3, 1e−3), β ∼ N2(02, 10
3
I2).

WN (ϕ = 0) RW(1) (ϕ = 1)

Parameter Morning Afternoon Morning Afternoon

σ 0.131 0.092 0.012 0.007

(0.082) (0.050) (0.002) (0.001)

β0 1.581 2.387 1.549 2.430

(0.038) (0.020) (0.114) (0.117)

β1 -3.198 -4.779 -3.207 -4.785

(0.053) (0.029) (0.054) (0.028)

Run-time 6.53 7319 29.16 514.95
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Table 4.6 lists the parameter estimates of the price direction model, along with the run-

ning time (in hours). According to the estimation results, the estimates of the conditional stan-

dard deviation through RW(1) are much smaller than those from the white noise. The direction

variables are negative, which suggests that the next active trade is less likely to move upwards if

the previous trade moved upwards. Figure 4.10 illustrates the marginal posterior densities of the

estimated parameters for the WN and RW(1) direction model using a kernel density, confined

to the two time periods, along with the autologistic model (red curve).
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Figure 4.10: Marginal posterior densities (using a kernel density) of the estimated parameters for
the WN (solid curve) and RW(1) (dashed curve) direction model, estimated with the algorithm
CNC combined with the 3-block sampler in which the latent path is updated using the ‘all’
method, along with the autologistic model (red curve). The data set we are analyzing is ES,
May 16th to May 20th, confined to the morning partition (blue curve) and afternoon partition
(black curve), case (I).
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4.5.2.2 Case II

In order to reduce the correlations, the regression parameters are updated in groups; namely, for

the afternoon andmorning period the groups are β0, (β1, β2), (β3, β5), (β4, β6), and β0, (β1, β2,

β3, β6, β8), (β4, β7),(β5, β9), respectively. However, the autocorrelation of the estimated regres-

sion parameters is still high: during the morning the maximum value of the autocorrelation is

8000 (> 9000) for the WN (RW(1)), while during the afternoon it is 3000 (2000). Since the

correlations involved in the proposal covariance matrix of the regression parameters influence

the direction of the proposed movement, for each value of the conditional precision, we roughly

estimate the correlation structure of this marginal posterior distribution and then run again the

algorithm using this estimated correlation matrix. Concerning the WN model, the algorithm

runs 4e+6 (3.2e+6) iterations for the morning (afternoon) dataset with burn-in of 20,000 itera-

tions and the autocorrelation is reduced by retaining only every 2000th (1600th) iteration of the

chain. Concerning the RW(1) model, the algorithm runs 4e+6 (2.2e+6) iterations with burn-in

of 20,000 iterations and the autocorrelation is reduced by retaining only every 2000th (1100)th

iteration of the chain. We use the CNC algorithm combined with the 3-block sampler in which

the latent path is updated using the ‘all’ method, except for the white noise model during the

afternoon in which the latent path is updated with the ‘1-1’ method.

Table 4.7 lists the parameter estimates of the price direction model, along with the run-

ning time (in minutes). According to the estimation results, the estimates of the conditional

standard deviation through RW(1) are much smaller than those from the WN. The influence of

lagged price direction, is negative indicating that if the price moved on the last trade then there

is a large chance that this movement will be reversed if there is an active trade. Concerning the

impact of buy market orders, we observe a significant negative influence at lag one, hence the

odds of an up movement are larger for sell market orders than buy market order at lag one. Bid

(ask) volume at lag one reduces (increases) the chance that the price movement will be upwards,

while the reverse is true at the second lag.

95



Table 4.7: MCMC estimates of parameters of the WN and RW(1) direction model for ES, May
16th to May 20th, case (II). ‘Run-time’ returns the execution time in minutes. The Bayesian
estimates represent posterior means and standard deviations in parenthesis. WN model: the
algorithm runs 4e+6 (3.2e+6) iterations for the morning (afternoon) dataset with burn-in of
20,000 iterations and the autocorrelation is reduced by retaining only every 2000th (1600th)
iteration of the chain. RW(1) model: the algorithm runs 4e+6 (2.2e+6) iterations with burn-in
of 20,000 iterations and the autocorrelation is reduced by retaining only every 2000 (1100)th
iteration of the chain. Model: D′

i takes on value 1 (0) with probability πi (1 − πi) in which
logit(πi) = hi, hi = x⊤

i−1β+ϕ(hi−1−x⊤
i−2β)+εi, εi ∼ N (0, 1/τ) and ϕ ∈ (0, 1). Morning:

x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

b,2
i−1, V

a,2
i−1, V

b,1
i−2, V

b,2
i−2, V

a,1
i−2, V

a,2
i−2) for the morning and After-

noon: x⊤
i−1 = (1, D′

i−1,BMOi−1, V
b,1
i−1, V

a,1
i−1, V

b,1
i−2, V

a,1
i−2). Priors: τ ∼ Gamma(1e+3, 1e−3),

β ∼ Nd(0d, 10
3
Id).

Morning Afternoon

Parameter WN RW(1) WN RW(1)

σ 0.225 0.016 1.680 0.017
(0.198) (0.003) (0.142) (0.003)

β0 4.137 5.061 8.303 7.992
(0.626) (0.603) (0.488) (0.487)

β1 -1.200 -1.183 -0.996 -0.733
(0.118) (0.113) (0.137) (0.108)

β2 -6.166 -6.141 -12.056 -9.564
(0.188) (0.132) (0.429) (0.128)

β3 -0.875 -0.863 -2.236 -1.899
(0.048) (0.045) (0.082) (0.048)

β4 -3.317 -3.398 1.930 1.532
(0.193) (0.175) (0.080) (0.048)

β5 3.358 3.309 1.913 1.536
(0.213) (0.196) (0.071) (0.036)

β6 0.715 0.705 -1.894 -1.599
(0.040) (0.037) (0.074) (0.042)

β7 2.687 2.643 - -
(0.180) (0.165) - -

β8 -0.447 -0.450 - -
(0.041) (0.040) - -

β9 -2.303 -2.310 - -
(0.207) (0.194) - -

Run-time 159.69 259.63 589.77 961.46

Figures 4.11 - 4.12 illustrate the marginal posterior densities of the estimated parameters
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for theWN and RW(1) direction model using a kernel density, along with the autologistic model

(red curve). It is observed that the posterior distributions of the regression parameters, through

the three models, are almost identical; an exception arises during the afternoon from the white

noise model.
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Figure 4.11: Marginal posterior densities (using a kernel density) of the estimated parameters for
the WN (solid curve) and RW(1) (dashed curve) direction model, estimated with the algorithm
CNC combined with the 3-block sampler in which the latent path is updated using the ‘all’
method, along with the autologistic model (red curve). The data set we are analyzing is ES,
May 16th to May 20th, confined to the morning partition, case (II).
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Figure 4.12: Marginal posterior densities (using a kernel density) of the estimated parameters for
the WN (solid curve) and RW(1) (dashed curve) direction model, estimated with the algorithm
CNC combined with the 3-block sampler in which the latent path is updated using the ‘all’
method, except for the white noise model in which the latent path is updated with the ‘1-1’
method, along with the autologistic model (red curve). The data set we are analyzing is ES,
May 16th to May 20th, confined to the afternoon partition case (II).

4.5.3 Predicting price movements

In the section we analyze the predictive performance of each price component and predict price

changes from May 23 to May 24 during the morning and afternoon period. We report each day

separately allowing us to assess the predicted accuracy over the two days separately.
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Table 4.8: Brier score (BS) and log predictive density (LPS) of the active model of ES for the
evaluation period May 23 to May 24.

Case (I) Case (II)

Morning Afternoon Morning Afternoon

Model May 23 May 24 May 23 May 24 May 23 May 24 May 23 May 24

Panel A: BS

GLM 0.153 0.145 0.151 0.148 0.145 0.137 0.145 0.144

GLARMA 0.156 0.148 0.156 0.156 0.148 0.139 0.149 0.147

WN 0.153 0.145 0.151 0.148 0.145 0.137 0.145 0.144

Panel B: LPS

GLM -6260.0 -4111.0 -30119.0 -26775.0 -5877.6 -3812.0 -28752.0 -25634.0

GLARMA-6375.8 -4185.3 -31139.0 -27637.0 -5999.1 -3904.8 -29440.0 -26266.0

WN -6260.0 -4111.0 -30119.0 -26775.0 -5876.6 -3812.0 -28752.0 -25635.0

We apply the MSE, the MAE and the Brier score [Brier, 1950; Blattenberger and Lad,

1985] for model comparison which are specified as

BS =

∑n′

i=n+1(π̂i − oi)2

n′ , MSE =

∑n′

i=1(Z
o
i − Ẑi)

2

n′ , MAE =

∑n′

i=1|Zo
i − Ẑi|
n′ ,

where π̂i denoted the predicted probability and oi is the true value associated with the ith ob-

servation, Zo
i and Ẑi denote the true and predicted value associated with the ith transaction

as well as n′ is the number of forecasting instances. The quantity π̂i denotes the Monte Carlo

[Metropolis and Ulam, 1949; von Neumann, 1963] average of the probability πAt given by

π̂i =
1

N

N∑
l=1

exp(logit(π(l)
i ))

1 + exp(logit(π(l)
i ))

,

where logit(π(l)
i ) is the sampled value of logit(πi) in iteration l, after burn in. The lower the

BS/MSE/MAE value the better and 0 means the model is perfect. Besides, we compare the

predicted observations with their values changes in the original sample data by using scalar

performance measures, namely, accuracy, sensitivity (or recall), precision and specificity de-

rived from the confusion matrix [Hajmeer and Basheer, 2003]. Accuracy is a ratio of correctly
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predicted observations to the total observations. Sensitivity (of the jth event) is the ratio of j-

events correctly predicted. In fact, out of all the j-events, howmany of them have been predicted

by the algorithm. Specificity (of the jth event) is the ratio of not j-events correctly predicted.

Precision (of the jth event) is the percentage of correct j-predictions out of all j-predictions,

which are used to calculate the model’s ability to classify j-predictions correctly.

Tables 4.8-4.9 provide the BS (panel A) and the log predictive likelihood (panel B) for

active trades and the direction of them, respectively. The tables consist of three main columns;

the first column gives the process that is used for each price component, while the last two main

columns contain the line headings of the information set that is used and they are splitted into two

sub-columns with names corresponding to the morning and afternoon time period. Regarding

the direction model, the results show that the predictive ability of the proposed models is the

same, indicating that there is not much difference between the models. On the other hand, the

performance of the GLM andWNmodel for the activity process is the same. The BS of the best

performancemodel (for each component) shows it is almost two times smaller than a BS of value

0.25 which indicates a random guess. Judging by the information set, the BS of the direction

model using only past values of the processes is 3.5 (7) times smaller than the corresponding

wider information set during the morning (afternoon) period. However, the improvement of the

activity model is significantly lower.

Table 4.9: Brier score (BS) and log predictive density (LPS) of the direction model of ES for
the evaluation period May 23 to May 24.

Case (I) Case (II)

Morning Afternoon Morning Afternoon

Model May 23 May 24 May 23 May 24 May 23 May 24 May 23 May 24

Panel A: BS

GLM 0.128 0.156 0.084 0.079 0.036 0.050 0.012 0.012

WN 0.128 0.156 0.084 0.079 0.036 0.050 0.012 0.012

Panel B: LPS

GLM -1166.3 -854.9 -4282.6 -3631.8 -401.3 -308.3 -689.7 -611.4

WN -1165.9 -854.8 -4282.8 -3631.8 -399.4 -307.6 -688.9 -610.7

100



Table 4.10: Prediction accuracy of the activity and direction model for the evaluation period
May 23 to May 24. The results are presented as percentages. Notes: Inactive (no active trade),
Sensitivity (sens), specificity (spec), precision (prec) and accuracy (Acc).

May 23 May 24

Morning Afternoon Morning Afternoon

Class Sens Prec Spec Sens Prec Spec Sens Prec Spec Sens Prec Spec

Panel A: Plain activity model

inact 83.34 84.96 43.59 84.11 84.28 40.94 84.40 85.87 40.97 84.99 84.76 41.76

active 43.59 40.62 83.34 40.94 41.55 84.61 40.97 38.20 84.40 41.76 42.20 85.00

Acc 75.10 75.40 76.13 76.01

Panel B: Activity model with covariates

inact 87.48 86.06 42.40 87.04 84.85 41.36 86.90 87.42 44.65 86.42 85.31 42.92

active 42.40 45.45 87.48 41.36 45.82 87.24 44.65 43.50 86.90 42.92 45.16 86.42

Acc 78.58 77.47 79.11 77.43

Panel C: Direction model with covariates

down 95.44 94.82 94.76 98.60 98.43 98.42 94.59 91.83 91.65 98.64 98.49 98.48

up 94.76 95.38 95.44 98.42 98.60 98.60 91.65 94.46 94.59 98.48 98.63 98.64

Acc 95.10 98.51 93.11 98.56

Accuracy, sensitivity, specificity, and precision measures for all the price components

are summarized in Table 4.9 using the two different information sets. In the following we only

present the results for May 23 which are similar to May 24. We use the activity GLM and the

direction GLM. If we do not make a specific reference to which data segment we are referring

to, it means that we imply both examined time periods; the same is true for the different trade

bar sizes. About the activity model, it can be seen that the ability of the model to classify

correctly the trade activity is over 75% for the plain model, and it improves 3% with the wider

set. Regarding the sensitivity, the results show that the active trades are harder to classify than

the inactive. More specifically, 6 of every 10 active trades, in reality, are missed by our model

and 4 are correctly identified as active. On the other hand, less than 20% of non-active trades

are incorrectly classified as active. Regarding the precision, out of the total observations that the
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model predicts as active (inactive) trades over 40% (85%) are correct. Regarding the specificity,

themodel allows to identify activemoves as inactive at a rate less than 60%, and non active trades

as active at a rate less than 20%. The correspondingmeasures using the wider set is a little better.

About the direction model, the model has a good accuracy, sensitivity and specificity which are

over 90%, and some of them even reach 99%.

Table 4.11: Prediction accuracy of the Bernoulli AD model for the evaluation period May 23
to May 24. The results are presented as percentages. Notes: Down (one tick down), Zero (zero
move), Up (one tick up), Sensitivity (sens), specificity (spec), precision (prec) and accuracy
(Acc). Lag1 reports the MSE (MAE) values using a model that assume that the best prediction
for tomorrow’s market price is simply today’s.

May 23 May 24

Morning Afternoon Morning Afternoon

Class Sens Prec Spec Sens Prec Spec Sens Prec Spec Sens Prec Spec

down 40.00 34.78 93.18 43.80 43.92 93.28 37.90 38.71 93.57 43.44 43.59 93.34

zero 84.21 84.22 40.65 84.32 84.32 42.57 85.11 85.11 38.17 84.73 84.73 43.06

up 39.45 38.58 92.65 40.65 40.54 92.84 35.70 34.98 92.84 42.00 41.85 93.12

Acc 74.86 75.29 75.73 75.85

MSE 0.259 0.243 0.253 0.243

MSE-lag1 0.581 0.609 0.523 0.603

MAE 0.254 0.248 0.247 0.242

MAE-lag1 0.415 0.428 0.381 0.422

Considering the execution time, since the BSs of the best parameter and observation

driven models are almost equal we conclude that it is better to use a Bernoulli GLM for both

price factors. About the information set, the wider set is clearly superior than the simpler set for

the direction model, meanwhile, for the activity model the improvement is slightly better. Table

4.11 summarizes the accuracy, sensitivity, specificity, and precision measures for all the price

changes using the activity GLM and direction GLM. The results show that the price direction

moves are harder to classify than the zero moves, while on the afternoon the predictive measures

are slightly better. More specifically, the ability of the model to classify correctly the price

changes is 75%. Less than 20% of non-zero moves are incorrectly classified as zero moves,
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while 6 of every 10 up (down) moves, in reality, are missed by our model and 4 are correctly

identified as up (down)moves. Finally, more than 85% out of zero predictivemoves are correctly

classified, while this value drops to over 40% in identifying the non-zero price moves.
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Chapter 5

The Binomial AD model

5.1 Introduction

Following the idea of decomposition, we propose a new parameter and observation drivenmodel

for analyzing high-frequency integer price changes. The model is applied on data where a trans-

action can move the stock price either one tick up or one tick down or not at all. We aggregate

observations over a small number of trade intervals (denoted trade bars), assign each interval

the last price included in it, and then use the price change between the two consecutive intervals

for analyzing the process of price changes. This chapter is organized as follows. Section 5.2

presents the binomial ADmodel and Section 5.3 analyses the proposed model within a Bayesian

framework via MCMC. Section 5.4 presents the results of a simulation study. Section 5.5 pro-

vides the data, introduces variables for modelling price changes, discusses the empirical results

and evaluates the predictive performance of the proposed model.

5.2 The binomial AD model

In our dataset, price movements of more than one tick occur about 0.01% of the time. If we

observe a transaction that moves the price greater than one tick, for example two ticks, it is

treated as two transactions where each transaction moves the price by one tick. Let Aj be a

binary (takes only two values) variable on {0, 1} defining the market activity (the price does

moves or not) and a binary variableDj on {0, 1} defining a negative or positive price move (if

a change occurs) of the jth transaction. We split the observations into trade bars of sizeNi, and

during each bar we aggregate the binary observations. We assume that the variablesAj andDj
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that belong to the ith trade bar follows a Bernoulli distribution with the same probability πAi

and πDi
, respectively. Let Ai and Di denote the number of active trades and the number of up

moves (if at least one change occurs) during the ith trade bar, respectively. Besides, Pti denotes

the transaction price of the last price included in the i trade bar which is recorded at time ti.

Under these definitions, the transaction price evolves over time by

Pti = Pti + 2Di − Ai,

where Di = 0 if Ai = 0. Here we choose Ni = N , ∀i. Ai ∈ {0, · · · , N} and Di|Ai > 0 ∈

{1, · · · , Ai}.

The conditional joint distribution of (Ai, Di) is decomposed as

π(Ai, Di|F i−1) = π(Ai|F i−1)π(Di|Ai > 0,F i−1),

whereF i−1 is a σ-field generated either by past values of the observed series (observation driven

models) or by a latent process (parameter driven models), as well as past or present values of

the covariates.

5.2.1 Models for the component factors

We model the logit of the probability of success at each time point of each price factor as a

linear function of regression variables, and a process {gi} based on the binomial distribution.

Firstly, we consider a GLARMAprocess as described in Section 3.2.1. Secondly, we examine an

AR(1), WN and a RW(1) latent process with Gaussian (see Section 4.2) and Student’s t errors.

All the price changes, Yi, can be classified into one of the following categories: no price

change with probability π(Yi = 0|F i−1) = π(Ai = 0|F i−1)+
∑[N

2
]

l=1 π(Ai = 2l|F i−1)π(Di =

l|Ai = 2l,F i−1), an upward or downward price change of size yi ∈ {1, · · · , N} with proba-

bility π(Yi = yi|F i−1) =
∑[

N−yi
2

]

l=0 π(Ai = yi + 2l|F i−1)π(Di = yi + l|Ai = yi + 2l,F i−1)

and π(Yi = −yi|F i−1) =
∑[

N−yi
2

]

l=0 π(Ai = yi + 2l|F i−1)π(Di = l|Ai = yi + 2l,F i−1),

respectively; [u] truncates the fractional part of the number u towards zero.

The overall log-likelihood of the binomial AD model is given by equation (3.8), and

ℓ(θA) ≜
∑
i∈1:n

log π(Ai = αi|FA
i−1,θA), ℓ(θD) ≜

∑
i∈1:n

∀i:Ai>0

log π(Di = di|Ai > 0,FD
i−1,θD),
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where αi ∈ {0, · · · , N} and di ∈ {1, · · · , Ai}.

5.3 Bayesian analysis of the AR(1) component model with

Student’s t errors

The general estimation procedure (as well as the predictive performance) is similar with its

corresponding model with Bernoulli observations that described in the previous chapters. For

this reason, is presented only the proposed model with Student’s t errors and some details, for

example, the posterior distribution of the estimated parameters.

The binomial AR(1) activity model in its centered form is given through

Ai|hA
i ∼ Binomial(N, πAi

) (5.1)

logit(πAi
) = hA

i (5.2)

hA
i = xA,⊤

i−1βA + ϕA(h
A
i−1 − xA,⊤

i−2βA) + σA
i

√
λA
i ε

A
i , ε

A
i

i.i.d.∼ N (0, 1), (5.3)

where πAi
≜ π(Ai = 1|hA

i ) and hA
1 |ϕA, σA, λ

A
1 ∼ N (0, λA

1 σ
2
A/(1 − ϕ2

A)). Note that ηi ≜√
λA
i ε

A
i ∼ tν(0, 1) and λA

i ∼ G−1(ν/2, ν/2), where tν(0, 1) denotes the Student t distribu-

tion with mean 0, variance 1 and ν degrees of freedom, G−1(α, β) denotes the inverse gamma

distribution with shape and scale parameters α and β, respectively.

The joint distribution of the latent path, hA|θA,λA, follows a multivariate normal dis-

tribution with mean mA and precision matrix QA (n × n) which is a tridiagonal matrix in

which the primary diagonal is formed by the elements τA{(1 − ϕ2
A)/λ

A
1 + ϕ2

A/λ
A
2 , (1/λ

A
2 +

ϕ2
A/λ

A
3 ), · · · , (1/λA

n−1 + ϕ2
A/λ

A
n), 1/λ

A
n}, while the diagonal above the principal diagonal is

the vector τA{−ϕA/λ
A
2 ,−ϕA/λ

A
3 , · · · ,−ϕA/λ

A
n , }, where and λA ≜ (λA

1 , · · · , λA
n). In the

3-block sampler, ϕA, τA and the blocks of βA, λA and ν are sampled separately. In C, the pa-

rameters τA and βA are drawn with Gibbs from their corresponding conditional posterior given

by

τA|hA,α, ϕA,βA ∼ Gamma

(
γ0 +

n

2
,
1

G

)
, βA|hA,α, ϕA, τA ∼ NdA

(
µ,Σ−1

)
,

whereG ≜ δ0+
1

2

n∑
i=1

(hA
∗i − xA,⊤

∗i βA)
2

λi

,µ ≜ τAΣ
−1xA

∗Λh
A
∗ andΣ ≜

1

σ2
0

IdA+τAx
A
∗Λx

A,⊤
∗ ;Λ
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is a diagonal matrix with all diagonal elements the vector (λA
1 , · · · , λA

n). The marginal posterior

of λA
i is given through

λA
i |hA,α, ϕA,βA,λ−i ∼ G−1

(
ν + 1

2
,
ν

2
+
τA(h

A
∗i − xA,⊤

∗i βA)
2

2

)
,

in which λ−i denotes the elements of λA excluding λA
i . In NC, the conditional posterior den-

sity of ϕA is not known in closed form, thus it is approximated with a Gaussian random walk

Metropolis algorithm, while the marginal posterior of λA
i is given through

λA
i |h̃A,α, ϕA,λ−i, ν ∼ G−1

(
ν + 1

2
,
ν + (h̃A

i − ϕAh̃
A
i−1)

2

2

)
, i ≥ 2

while its scale parameter equals (ν + (1− ϕ2
A)h̃

A
1 )/2 for i = 1. In both parameterizations, due

to non-conjugacy of the chosen priors, ϕA and ν are updated with the Gaussian random walk

Metropolis algorithm. The full conditional posterior of the degrees of freedom parameter, only

depends on λA, and its log density is given through

log π(ν|λA) ∝ log π(ν) + log π(λA|ν),

where log π(λA|ν) =
νn

2
log(ν/2) − n log(Γ(ν/2)) − ν

2

n∑
i=1

(log(λA
i ) + 1/λA

i ) and π(ν)

denotes the prior density of ν.

In the interweaving sampler, the reparameterization between the centered and non-centered

is the same as described in the previous section, hence the degrees of freedom as well as the

auxiliar vector λA are not redrawn.

5.4 Simulation study

We perform a simulation study to investigate the effectiveness of our algorithms similar to the

one described in Section 4.4. Suppose that the random variables A1, · · · , An are independent

with conditional distribution Ai|hi ∼ Binomial(N, πi), where

logit(πi) = hi,

hi = β0 + ϕ(hi−1 − β0) + εi, εi ∼ N (0, 1/τ)
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h1 ∼ N (β0, 1/τ(1 − ϕ2)) and i ∈ {1, 2, · · · , n}. The parameter β0 is equal to -2 and the

parameters ϕ and τ vary on {0, 0.55, 0.65, 0.75, 0.85, 0.95} × {1, 2, 5, 10, 30}. The sample

size, n, is fixed to 6, 000 and N ∈ {2, 5, 10}.

To speed up the convergence, we use priors with means equalling the true values, more

specifically, following Kastner and Frühwirth-Schnatter [2014], the transformed parameter ψ

is assumed to follow a Beta distribution with parameters (a0, b0), where a0 = 40 and b0 =

80/(1+ϕtrue)−40. For the parameter τ , we use a gamma distribution with parameters (γ0, δ0),

where γ0 = 10 and δ0 ∈ {0.1, 0.2, 0.5, 1, 3} for τ ∈ {1, 2, 5, 10, 30}, respectively. Finally,

for the constant parameter, we use a normal distribution with mean βtrue and variance 10.

We useN = 100, 000MCMCdraws after a burn-in of 30, 000 for each data set. Starting

values are set to the true values. We apply four sampling schemes: C, NC, CNC, NCC. Besides,

we use the 2-block and 3-block sampler, the ‘1-1’ and ‘all’ method. The performance of the

MCMC sampling methods are evaluate by the ESS/sec.

The simulation results for all datasets and algorithms considered are presented in Tables

5.1 - 5.9 along with the mean running time (in minutes). The quarantines in the tables are aver-

aged over twenty runs under different seeds initializations. The mean running time (in minutes)

that describes the amount of time it takes for the C(1-1), NC(1-1), CNC(1-1), NCC(1-1), C(all),

NC(all), CNC(all), NCC(all) algorithm to complete 130,000 iterations is 2.78, 2.82, 3.19, 3.12,

2.05, 2.03, 2.48, 2.32 for the 3-block sampler and 2.79, 2.86, 3.30, 3.24, 2.01, 2.09, 2.51,2.47

for the 2-block sampler, respectively.

Concerning the simulation efficiency of ϕ (Tables 5.1, 5.4, 5.7), the results show that

keeping ϕ fixed, it seems that as the value of τ increases, the sampling efficiency of ϕ deterio-

rates. Keeping τ fixed, as the value of ϕ decreases, the sampling efficiency gradually decline,

and, in some cases rise when ϕ = 0. Note that, as ϕ drops form 0.95 to 0.85, the sampling effi-

ciency sometimes increases. Besides, as the number ofN decreases, the sampling efficiency of

ϕ decreases. Comparing the sampling schemes, it seems that the interweaving samplers exhibit

lower autocorrelation (and therefore a higher ESS/sec), while the centered parameterization

gives similar values in some cases, for most underlying parameter values. Comparing the la-

tent path strategy, the results show that as the value of the conditional precision increases it is

preferable to update the components of the latent state in one step, but the value of τ for this

change depends on the value of N ; as N increases, this value increases. Finally, by comparing
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Table 5.1: Performance of MCMC samplers as measured by ESS/sec for π(ϕ|h,α, τ, β0) for
the simulated datasets where N = 2. Higher is better. The quantities are averaged over twenty
runs under different seeds initializations. All algorithms run 130,000 iterations after a burn-
in of 30, 000 for each data set. The latent state is updated using ‘1-1’ and ‘all’ method. The
parameter vector is updated by applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 5.63 3.12 4.22 2.35 2.25 1.23 1.07 0.61 0.32 0.27

NC(1-1) 1.90 1.34 1.26 1.09 0.72 0.59 0.46 0.50 0.20 0.17
CNC(1-1) 5.38 3.58 4.67 2.73 2.56 1.80 1.05 0.99 0.44 0.32
NCC(1-1) 5.13 3.49 4.18 2.69 2.40 1.42 0.92 0.86 0.29 0.36

C(all) 1.43 1.25 1.67 2.08 1.58 1.72 1.92 1.61 1.46 0.80
NC(all) 0.27 0.75 0.41 0.65 0.64 0.89 0.64 1.09 1.35 1.27

CNC(all) 2.20 1.53 2.18 1.80 2.38 1.90 1.85 1.99 1.93 1.45
NCC(all) 1.48 0.83 2.17 1.20 2.15 1.51 2.31 1.46 1.57 1.30

ϕ = 0.85
C(1-1) 4.77 2.32 2.01 1.21 1.06 0.40 0.63 0.36 0.25 0.20

NC(1-1) 2.66 2.62 1.44 1.12 0.71 0.72 0.30 0.36 0.18 0.16
CNC(1-1) 5.05 3.65 2.68 2.16 1.14 0.94 0.57 0.42 0.26 0.29
NCC(1-1) 5.35 3.78 2.63 1.89 1.05 0.83 0.57 0.45 0.23 0.21

C(all) 1.51 1.43 1.50 1.14 1.14 0.77 0.86 0.70 0.81 0.76
NC(all) 0.47 0.56 0.41 0.70 0.49 0.65 0.68 0.74 0.91 1.02

CNC(all) 1.35 1.10 1.36 1.05 1.05 0.97 0.99 0.87 0.95 0.81
NCC(all) 1.42 1.31 1.17 1.06 0.98 0.84 1.03 0.92 0.81 0.69

ϕ = 0.75
C(1-1) 3.29 1.58 1.57 0.69 0.80 0.58 0.53 0.34 0.31 0.22

NC(1-1) 2.88 2.39 1.38 1.10 0.63 0.43 0.42 0.35 0.22 0.22
CNC(1-1) 4.34 3.35 1.97 1.64 0.82 0.77 0.50 0.44 0.28 0.26
NCC(1-1) 4.14 2.77 1.95 1.57 0.74 0.61 0.50 0.45 0.19 0.18

C(all) 1.06 1.08 0.72 0.75 0.73 0.50 0.65 0.48 0.88 0.55
NC(all) 0.47 0.55 0.54 0.60 0.54 0.62 0.66 0.72 0.64 0.82

CNC(all) 1.11 1.04 1.01 0.73 0.68 0.66 0.82 0.72 0.73 0.85
NCC(all) 1.09 0.93 0.94 0.77 0.72 0.62 0.74 0.63 0.69 0.60

ϕ = 0.65
C(1-1) 2.92 1.90 1.45 1.05 0.68 0.36 0.59 0.29 0.32 0.29

NC(1-1) 2.71 1.22 1.36 0.50 0.66 0.62 0.48 0.32 0.25 0.25
CNC(1-1) 3.14 2.74 1.45 1.47 0.72 0.55 0.51 0.45 0.32 0.28
NCC(1-1) 3.54 2.84 1.43 1.48 0.64 0.69 0.48 0.33 0.29 0.38

C(all) 0.68 0.86 0.62 0.67 0.56 0.50 0.74 0.45 0.72 0.53
NC(all) 0.59 0.58 0.42 0.56 0.57 0.60 0.63 0.60 0.59 0.59

CNC(all) 0.79 0.82 0.81 0.67 0.67 0.70 0.68 0.70 0.88 0.79
NCC(all) 0.85 0.86 0.76 0.63 0.69 0.59 0.72 0.61 0.80 0.61

ϕ = 0.55
C(1-1) 2.63 2.14 1.26 1.11 0.87 0.65 0.60 0.46 0.45 0.32

NC(1-1) 2.55 1.06 1.10 0.54 0.78 0.38 0.57 0.38 0.42 0.33
CNC(1-1) 3.18 2.66 1.44 1.34 0.72 0.64 0.44 0.45 0.41 0.35
NCC(1-1) 3.08 2.44 1.37 1.26 0.67 0.82 0.49 0.51 0.31 0.31

C(all) 0.74 0.85 0.61 0.56 0.60 0.54 0.71 0.60 1.02 0.53
NC(all) 0.61 0.64 0.50 0.59 0.60 0.58 0.77 0.57 0.85 0.46

CNC(all) 0.82 0.71 0.71 0.61 0.79 0.62 0.61 0.72 0.61 0.83
NCC(all) 0.78 0.72 0.64 0.61 0.66 0.64 0.72 0.57 0.79 0.82
ϕ = 0.0

C(1-1) 3.77 2.58 2.15 1.53 1.46 1.06 1.15 0.99 1.11 0.92
NC(1-1) 2.66 1.64 1.92 0.91 1.24 0.64 1.10 0.60 0.90 0.48

CNC(1-1) 2.76 3.01 1.60 1.99 0.87 1.17 0.94 1.02 0.85 1.07
NCC(1-1) 3.27 3.47 1.74 1.75 1.17 1.22 0.91 1.08 0.96 1.11

C(all) 0.98 0.90 0.92 0.85 1.03 0.74 1.08 1.09 1.22 1.15
NC(all) 0.91 0.91 0.84 0.64 0.89 0.75 0.99 0.70 1.16 0.84

CNC(all) 0.90 0.78 0.81 0.65 0.95 0.92 0.94 0.96 0.76 1.14
NCC(all) 0.73 0.79 0.48 0.80 0.74 0.84 1.17 1.03 1.11 1.46
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Table 5.2: Performance of MCMC samplers as measured by ESS/sec for π(τ |h,α, ϕ, β0) for
the simulated datasets where N = 2. Higher is better. The quantities are averaged over twenty
runs under different seeds initializations. All algorithms run 130,000 iterations after a burn-
in of 30, 000 for each data set. The latent state is updated using ‘1-1’ and ‘all’ method. The
parameter vector is updated by applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 1.21 0.85 1.12 0.80 0.71 0.56 0.50 0.34 0.19 0.14

NC(1-1) 1.43 1.08 0.82 0.78 0.55 0.46 0.39 0.40 0.27 0.18
CNC(1-1) 5.14 3.75 3.40 2.17 1.80 1.26 0.95 0.82 0.36 0.39
NCC(1-1) 4.83 3.62 3.25 2.16 1.86 1.11 0.88 0.68 0.51 0.39

C(all) 0.38 0.43 0.66 0.55 0.76 0.81 0.91 0.90 0.90 0.53
NC(all) 0.38 0.43 0.31 0.46 0.46 0.63 0.60 0.88 1.62 1.44

CNC(all) 1.44 1.32 1.79 1.50 1.56 1.38 2.01 1.67 1.80 1.61
NCC(all) 1.26 1.29 1.40 1.11 1.71 1.12 1.60 1.26 2.37 1.42

ϕ = 0.85
C(1-1) 1.63 1.02 0.96 0.68 0.64 0.29 0.40 0.25 0.40 0.19

NC(1-1) 2.39 2.15 1.48 1.02 0.87 0.83 0.46 0.54 0.67 0.74
CNC(1-1) 4.90 3.68 2.93 2.18 1.38 1.11 0.97 0.76 1.27 1.22
NCC(1-1) 4.91 3.06 2.74 1.87 1.35 1.03 0.87 0.64 0.98 0.81

C(all) 0.57 0.54 0.66 0.51 0.66 0.48 0.61 0.47 0.72 0.44
NC(all) 0.46 0.56 0.43 0.78 0.59 0.77 1.09 1.23 4.65 4.47

CNC(all) 1.49 1.25 1.33 1.10 1.36 0.97 1.71 1.42 5.29 2.70
NCC(all) 1.39 1.26 1.24 1.10 1.18 1.08 1.59 1.25 3.66 2.59

ϕ = 0.75
C(1-1) 1.53 0.88 0.94 0.50 0.49 0.33 0.41 0.14 0.35 0.14

NC(1-1) 3.00 2.29 1.66 1.34 1.04 0.82 0.94 0.87 3.59 1.92
CNC(1-1) 4.89 3.35 2.55 1.73 1.38 1.12 1.53 1.32 4.27 2.29
NCC(1-1) 4.46 2.85 2.46 1.75 1.30 0.98 1.48 1.02 3.28 2.11

C(all) 0.51 0.43 0.43 0.48 0.53 0.34 0.57 0.42 0.64 0.40
NC(all) 0.54 0.68 0.61 0.75 0.97 0.99 2.01 1.88 11.70 5.47

CNC(all) 1.33 1.07 1.29 0.90 1.37 1.14 2.52 1.61 11.06 4.57
NCC(all) 1.28 1.15 1.16 0.90 1.26 1.08 2.23 1.54 11.60 5.75

ϕ = 0.65
C(1-1) 1.39 0.72 0.85 0.36 0.51 0.24 0.44 0.19 0.40 0.15

NC(1-1) 3.32 2.07 1.91 1.26 1.85 1.31 3.61 2.12 7.27 3.04
CNC(1-1) 4.19 2.80 2.17 1.83 2.00 1.09 3.22 2.14 8.29 3.32
NCC(1-1) 4.06 2.82 2.08 1.84 1.74 1.31 2.81 1.47 8.26 2.63

C(all) 0.35 0.37 0.43 0.38 0.48 0.35 0.54 0.37 0.69 0.38
NC(all) 0.69 0.76 0.58 0.83 1.70 1.49 4.03 2.66 23.32 5.98

CNC(all) 1.16 1.02 1.23 0.93 2.03 1.54 4.62 2.46 23.90 6.62
NCC(all) 1.14 1.08 1.10 0.95 1.82 1.44 4.02 2.46 19.60 5.44

ϕ = 0.55
C(1-1) 1.27 0.70 0.70 0.39 0.55 0.19 0.44 0.17 0.39 0.10

NC(1-1) 3.47 2.44 2.25 1.62 3.03 1.64 5.94 2.41 14.81 4.37
CNC(1-1) 4.23 2.59 2.82 1.82 3.54 1.85 6.34 3.05 14.21 3.77
NCC(1-1) 4.44 2.99 2.32 1.74 3.24 1.84 6.22 2.11 14.47 2.29

C(all) 0.39 0.34 0.43 0.31 0.49 0.33 0.53 0.35 0.70 0.36
NC(all) 0.86 0.87 0.85 0.94 2.31 1.92 8.78 3.84 34.87 6.61

CNC(all) 1.38 1.16 1.36 1.00 3.55 1.77 8.77 3.48 30.41 6.01
NCC(all) 1.31 1.18 1.31 0.92 2.68 2.00 7.65 2.97 27.50 4.98
ϕ = 0.0

C(1-1) 1.46 0.92 0.70 0.28 0.47 0.19 0.48 0.11 0.45 0.13
NC(1-1) 8.72 4.68 8.11 3.70 9.83 2.87 15.08 3.51 32.40 3.32

CNC(1-1) 9.54 4.23 8.13 2.80 10.08 2.83 15.39 3.34 31.41 3.69
NCC(1-1) 9.71 4.00 7.67 2.95 9.74 1.68 14.81 1.98 31.40 1.79

C(all) 0.34 0.30 0.29 0.28 0.44 0.30 0.53 0.31 0.47 0.31
NC(all) 4.18 3.01 4.47 2.58 8.91 3.28 16.91 4.27 46.28 5.83

CNC(all) 3.23 2.77 3.74 2.37 7.65 3.14 14.70 3.33 39.07 5.19
NCC(all) 3.05 2.69 3.52 2.23 6.49 2.98 14.14 4.12 41.33 3.84
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Table 5.3: Performance of MCMC samplers as measured by ESS/sec for π(β0|h,α, ϕ, τ) for the sim-
ulated datasets where N = 2. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 30.25 30.59 17.46 24.18 9.27 14.21 4.69 6.17 1.02 1.41

NC(1-1) 0.12 0.11 0.18 0.12 0.18 0.16 0.19 0.17 0.21 0.25
CNC(1-1) 127.54 122.17 133.15 132.83 135.00 140.48 143.16 137.89 120.22 87.81
NCC(1-1) 112.05 96.82 123.56 122.82 133.53 138.98 138.35 139.38 116.85 90.13

C(all) 11.27 16.34 10.32 10.38 10.87 11.26 11.26 12.58 9.82 10.00
NC(all) 0.05 0.05 0.06 0.07 0.16 0.18 0.37 0.44 2.18 1.91

CNC(all) 107.61 72.12 142.96 92.93 171.80 139.25 210.31 184.75 184.16 156.24
NCC(all) 107.61 58.83 135.12 85.05 162.57 131.93 203.78 173.71 177.33 150.25

ϕ = 0.85
C(1-1) 9.65 9.97 4.53 4.89 1.76 1.98 1.05 1.28 0.54 0.58

NC(1-1) 1.27 1.12 1.63 1.47 1.89 2.18 2.75 2.54 4.39 4.06
CNC(1-1) 56.51 52.95 43.87 38.05 34.72 28.37 33.20 25.63 23.01 13.61
NCC(1-1) 57.59 52.95 40.47 32.59 34.29 28.03 31.68 24.15 18.82 17.16

C(all) 3.44 2.57 2.98 2.66 2.87 2.52 3.07 2.59 3.51 3.22
NC(all) 0.35 0.30 0.73 0.79 2.32 2.16 6.02 6.13 22.69 23.37

CNC(all) 31.30 28.26 28.05 23.68 34.91 31.55 51.81 38.54 64.15 43.36
NCC(all) 28.52 22.97 27.04 22.45 31.51 29.87 53.52 41.46 47.56 41.80

ϕ = 0.75
C(1-1) 4.70 4.00 2.64 2.11 1.24 1.14 0.84 0.64 0.44 0.53

NC(1-1) 4.25 3.45 4.52 4.70 7.22 5.65 10.38 8.00 15.25 13.32
CNC(1-1) 31.09 22.41 22.83 15.16 21.63 15.09 23.05 16.11 38.20 20.53
NCC(1-1) 29.13 21.31 19.88 14.88 20.52 11.57 22.28 14.28 33.75 18.02

C(all) 1.48 1.38 1.36 1.34 1.65 1.11 1.94 1.48 2.72 2.30
NC(all) 1.13 1.17 2.46 2.25 7.82 6.69 16.37 14.02 47.80 37.27

CNC(all) 11.71 11.33 12.05 8.48 20.05 16.49 38.14 22.74 62.86 44.80
NCC(all) 12.39 10.50 13.00 11.87 19.76 15.38 32.74 23.88 50.91 43.52

ϕ = 0.65
C(1-1) 3.18 2.30 2.04 1.21 1.10 0.93 0.91 0.71 0.48 0.46

NC(1-1) 6.68 5.72 7.16 6.36 13.81 10.38 20.54 13.82 31.80 27.21
CNC(1-1) 17.07 11.55 16.42 10.37 20.27 11.38 27.02 14.51 44.92 31.16
NCC(1-1) 17.20 12.54 16.45 9.93 19.84 9.80 26.48 12.52 45.72 28.17

C(all) 0.71 0.78 0.99 0.83 1.46 0.84 1.80 1.13 2.32 1.92
NC(all) 2.23 2.09 4.02 3.77 14.29 10.04 30.03 19.17 70.31 45.59

CNC(all) 8.19 5.58 9.63 6.60 19.24 13.88 35.71 20.84 66.32 48.81
NCC(all) 7.71 6.11 8.79 6.96 16.13 13.10 31.56 18.84 74.53 46.03

ϕ = 0.55
C(1-1) 2.32 1.91 1.45 1.11 1.16 0.69 0.88 0.82 0.61 0.36

NC(1-1) 9.57 7.15 11.56 6.89 16.97 9.98 24.55 17.10 54.25 40.51
CNC(1-1) 15.85 8.60 13.78 7.81 20.04 9.58 29.46 13.94 64.56 38.11
NCC(1-1) 15.13 9.58 12.84 7.60 19.74 8.80 28.84 12.93 62.40 40.47

C(all) 0.70 0.54 0.74 0.60 1.18 0.79 1.48 1.34 2.04 1.88
NC(all) 3.32 2.89 6.22 4.93 15.37 11.54 36.06 19.34 89.53 64.62

CNC(all) 7.15 5.00 7.13 6.30 16.30 11.06 35.04 21.82 76.74 64.64
NCC(all) 5.71 4.75 7.20 5.59 15.79 10.35 33.05 18.64 92.24 58.53
ϕ = 0.0

C(1-1) 2.08 1.55 1.01 0.55 0.87 0.54 0.99 0.45 0.57 0.53
NC(1-1) 11.76 7.01 12.06 6.42 20.02 7.87 44.86 17.00 94.06 71.68

CNC(1-1) 13.48 6.94 12.48 4.83 19.87 7.47 42.42 17.46 82.15 79.38
NCC(1-1) 13.83 6.37 12.10 5.01 19.37 5.27 44.37 11.73 84.54 67.48

C(all) 0.45 0.38 0.44 0.35 0.91 0.60 1.28 0.98 0.78 0.91
NC(all) 5.54 4.64 7.04 4.40 18.15 8.97 50.26 22.65 132.09 107.50

CNC(all) 6.75 4.52 6.06 4.39 15.91 8.44 42.62 20.95 102.95 90.71
NCC(all) 4.89 4.47 5.53 4.27 13.00 7.83 43.66 21.71 116.83 97.86
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Table 5.4: Performance of MCMC samplers as measured by ESS/sec for π(ϕ|h,α, τ, β0) for the sim-
ulated datasets where N = 5. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 8.94 4.25 9.76 4.63 4.35 2.96 2.57 1.80 0.96 0.49

NC(1-1) 2.35 2.20 2.53 2.39 0.87 1.31 0.78 0.57 0.33 0.37
CNC(1-1) 8.40 5.78 8.77 5.54 5.33 4.01 2.61 2.01 0.77 0.82
NCC(1-1) 7.48 4.26 8.47 4.75 4.81 3.24 2.35 1.92 0.72 0.70

C(all) 1.95 1.79 2.02 2.22 2.52 2.20 2.47 1.56 1.50 0.81
NC(all) 0.38 0.53 0.33 0.57 0.91 0.77 0.81 0.72 1.12 0.76

CNC(all) 1.49 1.03 2.62 1.89 2.98 2.37 2.41 1.85 1.90 1.33
NCC(all) 0.85 1.24 2.00 1.87 2.28 2.03 2.29 1.80 1.67 1.09

ϕ = 0.85
C(1-1) 13.29 6.96 7.10 3.77 2.16 1.60 1.15 0.71 0.64 0.31

NC(1-1) 6.01 4.56 3.17 2.86 1.48 1.43 0.76 0.68 0.37 0.32
CNC(1-1) 12.96 8.37 7.00 4.48 2.77 2.33 1.35 1.15 0.47 0.42
NCC(1-1) 12.68 7.55 7.15 4.81 2.61 2.01 1.17 0.88 0.38 0.36

C(all) 2.19 2.04 1.94 1.56 1.28 1.00 0.90 0.61 0.75 0.43
NC(all) 0.82 0.95 0.96 0.80 0.72 0.57 0.66 0.56 0.82 0.85

CNC(all) 1.76 1.64 1.83 1.43 1.65 1.08 1.13 0.91 0.86 0.73
NCC(all) 1.93 1.45 1.96 1.71 1.38 1.00 1.13 0.93 0.85 0.68

ϕ = 0.75
C(1-1) 11.19 5.73 5.18 2.78 1.69 1.27 1.00 0.54 0.59 0.34

NC(1-1) 7.36 4.60 3.48 2.90 1.43 0.90 0.62 0.41 0.39 0.34
CNC(1-1) 11.21 7.54 5.30 4.23 2.12 1.61 0.77 0.83 0.48 0.37
NCC(1-1) 11.16 7.35 5.80 4.37 2.12 1.43 0.85 0.80 0.38 0.39

C(all) 1.60 1.73 1.45 1.39 0.78 0.83 0.65 0.48 0.75 0.53
NC(all) 1.27 0.94 1.12 0.75 0.75 0.57 0.60 0.47 0.87 0.74

CNC(all) 1.79 1.39 1.42 1.35 1.05 0.80 0.89 0.67 0.82 0.81
NCC(all) 1.43 1.40 1.21 1.20 1.03 0.73 0.87 0.82 0.83 0.67

ϕ = 0.65
C(1-1) 9.66 5.93 4.26 3.10 1.42 1.21 1.07 0.70 0.54 0.41

NC(1-1) 7.58 4.30 3.71 2.35 1.44 0.66 0.87 0.41 0.44 0.36
CNC(1-1) 9.97 7.91 4.80 3.65 1.63 1.24 0.74 0.70 0.37 0.33
NCC(1-1) 10.34 7.99 4.64 3.64 1.77 1.48 0.86 0.95 0.34 0.45

C(all) 1.39 1.69 1.06 1.28 0.64 0.63 0.62 0.55 0.76 0.52
NC(all) 1.26 1.08 1.01 0.82 0.67 0.53 0.66 0.52 0.80 0.69

CNC(all) 1.43 1.38 1.21 1.04 0.87 0.69 0.82 0.66 0.79 0.74
NCC(all) 1.11 1.22 1.03 1.10 0.85 0.67 0.78 0.76 0.69 0.65

ϕ = 0.55
C(1-1) 9.22 4.77 3.99 1.81 1.60 1.12 0.90 0.71 0.69 0.47

NC(1-1) 7.30 5.90 3.69 3.02 1.54 0.72 0.79 0.49 0.49 0.38
CNC(1-1) 9.29 7.44 4.19 3.81 1.27 1.36 0.74 0.78 0.46 0.57
NCC(1-1) 9.29 8.08 3.83 3.55 1.25 1.33 0.77 0.76 0.49 0.39

C(all) 1.33 1.47 0.95 1.08 0.60 0.67 0.69 0.74 0.82 0.54
NC(all) 1.32 1.02 1.02 0.75 0.58 0.58 0.64 0.57 0.84 0.77

CNC(all) 1.41 1.30 1.12 0.85 0.83 0.72 0.74 0.62 0.71 0.80
NCC(all) 1.06 1.15 1.03 1.00 0.79 0.57 0.75 0.62 0.69 0.64
ϕ = 0.0

C(1-1) 8.61 6.45 4.07 3.30 1.81 1.60 1.40 1.02 1.18 0.90
NC(1-1) 8.59 4.67 3.77 1.60 1.43 0.99 1.25 0.88 1.04 0.64

CNC(1-1) 7.38 7.50 3.54 3.74 1.39 1.73 0.95 1.34 0.85 1.11
NCC(1-1) 8.35 8.17 3.67 3.81 1.58 1.81 1.23 1.40 1.07 1.10

C(all) 1.26 1.47 1.04 0.98 0.77 0.71 0.72 0.70 1.00 0.81
NC(all) 1.44 1.29 1.07 0.73 0.92 0.90 1.04 1.10 1.08 1.34

CNC(all) 1.04 1.04 0.85 1.09 0.71 0.67 0.91 0.84 0.98 1.05
NCC(all) 1.18 1.17 0.92 0.93 0.65 0.85 0.77 0.84 1.17 1.18
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Table 5.5: Performance of MCMC samplers as measured by ESS/sec for π(τ |h,α, ϕ, β0) for the sim-
ulated datasets where N = 5. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 3.38 2.35 3.08 2.00 1.66 1.20 1.16 0.78 0.53 0.28

NC(1-1) 1.58 1.68 1.16 1.24 0.72 0.75 0.57 0.39 0.29 0.35
CNC(1-1) 9.14 5.78 6.45 4.19 3.27 2.44 1.71 1.34 0.71 0.71
NCC(1-1) 8.59 4.99 6.19 4.65 3.67 2.56 1.91 1.47 0.68 0.59

C(all) 0.76 0.55 0.80 0.77 0.96 1.04 1.22 0.79 0.96 0.54
NC(all) 0.33 0.45 0.30 0.35 0.50 0.46 0.63 0.46 1.07 0.72

CNC(all) 1.59 1.80 1.72 1.41 1.97 1.56 1.86 1.33 1.59 1.16
NCC(all) 1.58 1.08 1.70 1.41 1.62 1.52 1.57 1.28 1.83 1.27

ϕ = 0.85
C(1-1) 5.44 3.07 3.45 2.01 1.20 0.94 0.76 0.49 0.39 0.20

NC(1-1) 3.61 3.13 2.47 2.27 1.46 1.38 0.86 0.76 0.63 0.51
CNC(1-1) 11.99 6.91 7.27 4.46 3.06 2.36 1.63 1.05 0.93 0.60
NCC(1-1) 11.27 6.84 6.82 3.73 2.84 2.04 1.40 1.25 0.79 0.62

C(all) 0.81 0.73 0.92 0.60 0.80 0.59 0.62 0.36 0.60 0.27
NC(all) 0.66 0.72 0.79 0.67 0.70 0.58 0.81 0.65 1.41 1.41

CNC(all) 2.07 1.85 1.95 1.42 1.51 1.16 1.34 1.11 1.60 1.32
NCC(all) 1.88 1.51 1.72 1.61 1.55 1.01 1.28 1.12 1.47 1.15

ϕ = 0.75
C(1-1) 5.88 2.69 2.64 1.58 1.01 0.50 0.70 0.26 0.41 0.20

NC(1-1) 5.59 3.62 3.42 2.77 1.70 1.39 0.90 0.68 1.56 1.20
CNC(1-1) 12.07 7.14 6.47 4.48 2.94 1.92 1.36 1.23 2.11 1.27
NCC(1-1) 11.52 6.65 6.30 4.39 2.66 1.72 1.30 1.04 1.62 1.55

C(all) 0.91 0.67 0.86 0.71 0.60 0.56 0.53 0.31 0.57 0.31
NC(all) 1.15 0.86 1.17 0.79 1.02 0.67 0.97 0.84 3.48 2.28

CNC(all) 2.21 1.72 1.60 1.66 1.34 1.02 1.32 1.18 3.90 2.55
NCC(all) 1.93 1.61 1.58 1.42 1.29 1.05 1.32 1.03 3.05 2.22

ϕ = 0.65
C(1-1) 5.29 2.60 2.75 1.47 0.95 0.49 0.56 0.29 0.41 0.13

NC(1-1) 6.79 5.33 4.19 3.31 2.04 1.47 1.78 1.24 3.30 2.29
CNC(1-1) 11.91 7.69 6.34 4.04 2.61 1.92 1.86 1.48 4.50 2.19
NCC(1-1) 12.12 8.10 5.83 4.03 2.64 1.58 1.79 1.40 4.09 1.63

C(all) 0.71 0.79 0.68 0.67 0.54 0.44 0.53 0.35 0.51 0.28
NC(all) 1.59 1.16 1.25 1.00 0.96 0.74 1.39 1.33 5.83 3.64

CNC(all) 1.97 1.85 1.56 1.45 1.34 1.03 1.65 1.31 6.22 3.34
NCC(all) 1.51 1.63 1.39 1.46 1.12 1.07 1.97 1.55 6.67 3.51

ϕ = 0.55
C(1-1) 6.05 2.88 2.85 1.29 0.97 0.48 0.49 0.28 0.43 0.18

NC(1-1) 7.55 6.01 4.91 3.47 2.91 1.58 2.48 1.72 6.20 3.14
CNC(1-1) 12.95 8.96 6.19 4.26 2.87 2.10 3.30 2.07 7.94 2.82
NCC(1-1) 12.49 8.01 5.97 4.45 2.56 1.85 2.91 2.08 7.10 2.00

C(all) 0.77 0.66 0.65 0.69 0.48 0.43 0.53 0.39 0.48 0.27
NC(all) 1.84 1.42 1.53 1.16 1.16 1.14 2.41 2.09 11.63 5.03

CNC(all) 2.06 1.94 1.70 1.49 1.68 1.21 3.29 2.07 10.44 3.25
NCC(all) 1.74 1.85 1.65 1.49 1.59 1.22 2.56 1.74 11.28 4.27
ϕ = 0.0

C(1-1) 7.46 3.67 3.17 1.61 0.91 0.46 0.60 0.25 0.42 0.17
NC(1-1) 17.98 12.26 15.54 8.33 11.04 4.16 11.20 3.71 17.07 3.03

CNC(1-1) 25.21 14.19 17.37 8.85 11.31 4.44 11.82 3.39 19.71 3.30
NCC(1-1) 24.65 13.14 16.93 8.67 10.46 2.99 9.79 2.54 16.69 2.08

C(all) 0.74 0.69 0.73 0.56 0.46 0.38 0.41 0.33 0.46 0.35
NC(all) 6.80 6.02 5.94 4.91 6.39 4.28 7.44 3.12 17.97 3.49

CNC(all) 6.04 5.81 5.44 4.67 5.30 3.22 8.41 4.24 20.44 4.91
NCC(all) 6.41 4.95 5.26 4.30 5.39 3.60 7.64 3.73 19.68 4.35
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Table 5.6: Performance of MCMC samplers as measured by ESS/sec for π(β0|h,α, ϕ, τ) for the sim-
ulated datasets where N = 5. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 144.84 116.90 136.26 148.98 70.13 94.61 30.45 36.78 5.08 5.83

NC(1-1) 0.09 0.14 0.13 0.12 0.12 0.12 0.11 0.10 0.15 0.15
CNC(1-1) 204.73 171.56 279.15 240.69 288.09 268.69 280.71 249.48 210.73 192.20
NCC(1-1) 184.23 184.73 249.93 258.79 306.95 282.16 280.48 261.87 217.08 197.48

C(all) 161.59 162.20 125.36 125.28 52.94 49.47 27.58 31.63 16.06 19.23
NC(all) 0.04 0.04 0.05 0.04 0.07 0.09 0.11 0.17 0.59 0.80

CNC(all) 230.95 153.68 336.16 294.35 336.11 339.02 349.89 331.12 269.74 251.73
NCC(all) 248.58 231.14 324.45 303.67 375.44 338.95 360.21 332.49 299.81 276.36

ϕ = 0.85
C(1-1) 60.48 56.98 32.79 27.78 10.21 9.54 3.95 5.38 1.18 1.51

NC(1-1) 0.93 0.90 1.09 1.02 1.61 1.50 1.71 1.93 3.55 3.77
CNC(1-1) 157.38 146.67 143.84 123.47 108.04 92.54 80.31 62.45 52.79 39.89
NCC(1-1) 155.23 145.05 141.97 129.38 106.37 102.66 79.44 71.84 53.56 45.05

C(all) 9.49 8.42 8.31 8.29 5.62 6.08 4.81 5.68 3.80 3.58
NC(all) 0.11 0.17 0.22 0.22 0.79 0.87 2.17 2.05 10.65 10.88

CNC(all) 88.75 64.25 108.26 100.21 87.20 84.47 78.26 77.02 68.43 64.36
NCC(all) 97.60 109.18 113.67 116.91 105.50 85.55 92.09 75.31 81.24 62.03

ϕ = 0.75
C(1-1) 37.04 29.98 17.79 13.56 5.59 4.11 2.34 2.39 1.18 1.06

NC(1-1) 2.78 2.40 3.69 3.90 5.13 5.30 7.55 7.20 15.14 12.72
CNC(1-1) 106.93 86.94 87.27 67.87 57.73 35.37 44.40 31.99 42.53 35.49
NCC(1-1) 105.35 93.30 83.83 75.59 46.54 36.69 43.31 28.54 43.64 37.11

C(all) 4.78 3.90 3.99 3.27 2.83 2.74 2.62 2.34 2.61 2.35
NC(all) 0.37 0.35 0.94 1.01 3.16 2.86 7.58 7.40 32.15 27.83

CNC(all) 54.26 40.63 49.91 44.99 38.96 31.49 41.16 33.35 63.11 50.44
NCC(all) 62.27 50.35 49.30 45.63 37.72 31.75 40.79 37.24 68.14 54.60

ϕ = 0.65
C(1-1) 24.01 20.24 11.76 7.69 3.33 3.64 2.18 1.96 1.13 1.00

NC(1-1) 5.75 6.28 9.04 7.92 13.78 10.10 18.17 15.43 29.51 20.35
CNC(1-1) 77.57 61.61 56.36 40.92 36.19 22.55 36.43 23.24 50.42 30.80
NCC(1-1) 77.47 71.19 55.31 42.17 31.82 22.37 34.30 22.83 48.05 29.09

C(all) 3.37 2.41 2.74 2.16 2.04 1.72 2.08 1.56 2.28 2.15
NC(all) 0.94 1.02 2.35 2.23 6.19 5.85 16.37 13.68 50.34 36.63

CNC(all) 34.56 27.29 28.13 22.91 22.65 19.23 31.14 24.31 64.09 46.28
NCC(all) 36.71 32.25 29.21 24.13 22.71 17.63 33.08 27.66 66.94 47.11

ϕ = 0.55
C(1-1) 21.05 15.24 9.25 5.95 3.09 2.51 1.46 1.95 1.01 1.00

NC(1-1) 9.67 8.66 14.73 12.32 18.99 12.11 25.67 17.26 37.93 28.21
CNC(1-1) 63.10 49.10 45.05 28.02 32.83 17.82 34.59 21.61 53.52 37.31
NCC(1-1) 61.85 55.35 43.35 30.45 30.30 17.71 32.82 19.38 53.87 31.60

C(all) 2.52 1.66 2.09 1.79 1.57 1.26 1.75 1.58 2.07 2.01
NC(all) 1.75 1.83 4.21 3.63 9.98 9.05 24.73 17.26 61.53 44.83

CNC(all) 26.89 20.96 20.07 18.06 19.88 14.59 31.87 25.02 65.38 45.57
NCC(all) 29.14 24.80 22.50 16.17 20.91 15.36 32.59 23.12 70.95 50.46
ϕ = 0.0

C(1-1) 12.23 7.76 5.59 3.92 2.22 1.70 1.64 2.01 1.07 1.45
NC(1-1) 23.10 19.95 26.25 17.13 25.34 13.05 33.85 15.52 74.59 38.15

CNC(1-1) 39.86 27.57 32.55 19.67 26.73 13.25 33.82 14.08 67.83 43.92
NCC(1-1) 39.15 29.28 31.10 19.82 26.81 10.85 33.19 12.44 70.42 41.15

C(all) 1.25 1.03 1.22 0.95 1.07 0.83 1.31 0.93 1.30 1.60
NC(all) 8.52 8.74 12.11 10.67 17.41 12.55 31.19 19.28 92.10 61.33

CNC(all) 14.28 13.87 13.05 12.38 15.10 11.22 26.36 16.24 77.30 58.33
NCC(all) 14.85 11.80 13.93 11.57 16.59 11.10 27.90 17.48 88.33 58.06
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Table 5.7: Performance of MCMC samplers as measured by ESS/sec for π(ϕ|h,α, τ, β0) for the sim-
ulated datasets where N = 10. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 16.43 11.95 18.05 8.23 11.92 3.39 5.92 1.29 1.78 0.35

NC(1-1) 4.17 7.67 4.25 5.09 2.73 2.64 1.81 1.37 0.57 0.49
CNC(1-1) 16.41 15.30 18.38 11.12 12.73 4.81 6.08 2.25 1.58 0.78
NCC(1-1) 16.20 14.01 16.22 9.95 10.31 4.77 5.78 2.15 1.38 0.62

C(all) 3.25 3.43 3.52 2.99 4.09 1.92 3.32 1.32 2.44 0.68
NC(all) 0.88 1.30 0.92 1.01 0.67 0.78 0.91 0.71 0.67 0.52

CNC(all) 2.86 2.51 4.00 3.00 4.03 2.08 3.47 1.48 2.63 0.93
NCC(all) 1.73 2.44 3.97 2.61 3.57 1.60 4.07 1.29 2.04 0.84

ϕ = 0.85
C(1-1) 27.20 11.95 16.33 8.23 5.92 3.39 2.41 1.29 0.76 0.35

NC(1-1) 11.88 7.67 7.51 5.09 3.53 2.64 1.41 1.37 0.50 0.49
CNC(1-1) 24.86 15.30 17.02 11.12 6.37 4.77 3.10 2.25 0.86 0.62
NCC(1-1) 24.50 14.01 15.73 9.95 6.36 4.81 3.15 2.15 0.78 0.78

C(all) 2.56 3.43 2.71 2.99 1.97 1.92 1.42 1.32 0.83 0.68
NC(all) 1.14 1.30 1.09 1.01 0.72 0.78 0.70 0.71 0.63 0.52

CNC(all) 2.50 2.51 2.29 3.00 1.84 2.08 1.56 1.48 1.12 0.84
NCC(all) 1.79 2.44 2.83 2.61 2.14 1.60 1.66 1.29 1.17 0.93

ϕ = 0.75
C(1-1) 26.04 11.43 13.65 6.84 4.04 2.75 1.79 1.15 0.71 0.34

NC(1-1) 13.64 9.12 8.49 6.25 3.44 2.83 1.55 1.41 0.62 0.54
CNC(1-1) 23.82 16.51 13.38 9.38 5.24 4.15 2.55 1.82 0.71 0.73
NCC(1-1) 23.15 15.43 13.23 9.22 5.26 3.64 2.40 1.71 0.63 0.57

C(all) 2.54 2.98 2.27 2.14 1.53 1.35 0.89 0.87 0.68 0.55
NC(all) 1.26 1.34 1.06 0.98 0.82 0.80 0.64 0.59 0.74 0.61

CNC(all) 2.02 2.55 2.10 2.28 1.45 1.40 1.13 1.04 0.89 0.77
NCC(all) 1.96 2.44 1.75 1.99 1.36 1.22 1.08 0.95 0.76 0.69

ϕ = 0.65
C(1-1) 22.93 10.49 10.98 5.23 3.71 1.77 1.65 0.62 0.82 0.38

NC(1-1) 15.72 9.67 8.52 5.95 3.41 2.84 1.58 1.39 0.69 0.49
CNC(1-1) 20.93 15.24 11.84 8.69 4.16 3.56 1.86 1.52 0.67 0.63
NCC(1-1) 20.82 15.36 10.87 8.56 4.06 3.33 1.73 1.71 0.67 0.75

C(all) 2.55 2.44 2.02 1.94 1.07 1.19 0.70 0.78 0.67 0.55
NC(all) 1.36 1.23 1.13 0.94 0.84 0.76 0.80 0.55 0.73 0.56

CNC(all) 1.55 2.14 1.59 1.87 1.20 1.18 0.93 0.91 0.82 0.75
NCC(all) 1.52 2.26 1.45 1.64 1.16 1.10 0.89 0.84 0.79 0.79

ϕ = 0.55
C(1-1) 19.87 9.76 9.33 4.74 3.10 1.29 1.44 0.60 0.95 0.47

NC(1-1) 15.28 10.36 8.67 5.92 3.14 2.65 1.63 1.40 0.69 0.74
CNC(1-1) 19.72 14.73 10.75 8.25 3.68 2.97 1.67 1.47 0.58 0.59
NCC(1-1) 18.78 14.60 9.80 7.86 3.72 3.12 1.50 1.38 0.67 0.73

C(all) 2.03 1.92 1.29 1.64 1.01 0.95 0.74 0.75 0.69 0.58
NC(all) 1.45 1.40 1.21 1.04 0.86 0.69 0.82 0.71 0.85 0.64

CNC(all) 1.90 2.07 1.45 1.62 1.11 1.03 0.83 0.82 0.79 0.83
NCC(all) 1.81 1.90 1.07 1.42 1.03 1.02 0.79 0.75 0.59 0.69
ϕ = 0.0

C(1-1) 17.60 9.99 8.16 4.42 3.00 1.51 1.97 0.76 1.26 0.68
NC(1-1) 17.10 11.11 8.35 6.61 2.60 1.99 1.48 1.26 1.04 1.06

CNC(1-1) 15.10 14.25 6.98 7.04 2.60 2.83 1.61 1.65 1.23 1.27
NCC(1-1) 14.95 14.21 7.49 7.61 2.85 2.67 1.42 1.50 1.05 1.05

C(all) 1.80 1.59 1.41 1.16 0.86 0.90 0.82 0.79 1.19 0.70
NC(all) 1.82 1.74 1.46 1.29 1.06 0.90 0.90 1.00 1.14 0.97

CNC(all) 1.37 1.13 0.91 0.95 0.70 0.83 0.92 0.83 1.09 1.02
NCC(all) 1.52 1.47 1.07 1.06 0.75 0.77 0.53 0.77 1.01 0.90
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Table 5.8: Performance of MCMC samplers as measured by ESS/sec for π(τ |h,α, ϕ, β0) for the sim-
ulated datasets where N = 10. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 7.11 4.79 6.90 4.25 4.21 2.44 2.45 1.77 1.02 0.61

NC(1-1) 1.94 1.86 1.63 1.45 1.22 1.12 0.97 0.72 0.41 0.30
CNC(1-1) 15.17 9.64 11.86 6.92 6.31 4.03 3.58 2.41 1.20 0.99
NCC(1-1) 14.72 8.42 11.66 6.85 6.92 4.11 3.50 2.35 1.13 1.00

C(all) 0.69 0.66 1.01 0.97 1.11 1.10 1.18 1.03 1.22 0.83
NC(all) 0.29 0.20 0.30 0.23 0.32 0.34 0.37 0.38 0.50 0.58

CNC(all) 1.40 1.29 1.70 1.62 1.85 1.41 1.84 1.42 1.65 1.38
NCC(all) 1.26 1.20 1.78 1.46 1.66 1.38 2.37 1.37 2.09 1.17

ϕ = 0.85
C(1-1) 11.87 7.08 7.45 4.68 3.54 1.76 1.77 0.81 0.64 0.30

NC(1-1) 4.72 4.17 3.75 3.45 2.67 2.18 1.35 1.35 1.03 0.59
CNC(1-1) 21.08 11.68 13.46 8.63 5.81 4.30 3.31 2.22 0.60 0.80
NCC(1-1) 20.28 12.56 13.12 8.17 5.84 4.11 3.20 2.28 1.00 0.98

C(all) 0.70 0.87 0.90 0.99 0.97 1.02 0.90 0.90 0.60 0.47
NC(all) 0.54 0.56 0.59 0.58 0.59 0.63 0.69 0.69 0.87 0.66

CNC(all) 2.03 2.20 2.17 2.08 1.82 1.68 1.77 1.35 1.53 1.14
NCC(all) 2.11 2.17 1.91 1.96 1.56 1.45 1.56 1.42 1.44 1.09

ϕ = 0.75
C(1-1) 13.09 6.80 7.63 3.94 2.72 1.94 1.33 0.56 0.59 0.20

NC(1-1) 6.63 5.07 6.12 4.83 3.33 2.64 1.91 1.60 1.16 0.77
CNC(1-1) 22.73 14.13 14.57 8.93 6.33 4.07 3.31 2.15 1.42 1.12
NCC(1-1) 22.49 13.34 13.24 8.13 6.04 4.01 3.09 2.04 1.17 1.21

C(all) 0.90 1.07 1.00 0.94 0.96 0.84 0.75 0.58 0.54 0.38
NC(all) 0.83 0.93 0.93 0.83 0.88 0.86 0.95 0.68 1.41 1.01

CNC(all) 2.18 2.57 2.11 2.37 1.57 1.63 1.35 1.31 1.77 1.23
NCC(all) 1.94 2.26 1.82 2.02 1.61 1.40 1.35 1.15 1.65 1.28

ϕ = 0.65
C(1-1) 13.76 6.77 6.99 3.67 2.65 1.10 1.23 0.43 0.60 0.20

NC(1-1) 8.62 6.81 7.57 5.50 4.10 3.28 2.45 1.82 2.47 1.27
CNC(1-1) 24.22 14.47 15.11 9.05 5.84 3.93 3.05 2.46 2.51 1.91
NCC(1-1) 23.87 13.24 13.21 8.87 5.75 4.41 2.90 2.10 2.25 1.53

C(all) 0.93 1.07 0.97 0.81 0.86 0.79 0.62 0.51 0.54 0.40
NC(all) 1.14 1.12 1.25 1.03 1.13 0.94 1.30 0.85 3.35 1.84

CNC(all) 2.15 3.25 1.97 2.20 1.65 1.62 1.38 1.33 2.92 2.17
NCC(all) 2.17 2.67 1.80 2.22 1.59 1.37 1.32 1.32 2.53 1.81

ϕ = 0.55
C(1-1) 13.12 6.50 6.93 3.20 2.31 0.91 0.98 0.36 0.63 0.25

NC(1-1) 10.31 7.62 8.59 6.07 4.44 3.20 2.81 1.93 4.78 2.44
CNC(1-1) 25.84 15.36 15.93 9.09 6.06 4.53 3.46 2.47 5.56 2.72
NCC(1-1) 24.67 14.22 13.98 9.31 5.78 3.96 3.30 2.10 4.83 1.86

C(all) 0.95 0.96 0.82 0.78 0.79 0.67 0.61 0.54 0.54 0.36
NC(all) 1.55 1.46 1.51 1.32 1.38 1.03 1.83 1.24 5.64 3.55

CNC(all) 2.99 3.14 2.15 2.38 1.56 1.69 1.64 1.57 5.40 3.55
NCC(all) 2.93 2.66 2.02 2.04 1.60 1.59 1.63 1.40 4.65 3.01
ϕ = 0.0

C(1-1) 16.97 7.79 8.79 4.19 2.53 1.16 1.03 0.45 0.54 0.25
NC(1-1) 22.17 15.74 22.74 14.24 16.19 7.99 13.96 5.06 16.72 3.85

CNC(1-1) 43.67 24.16 32.24 16.64 17.65 7.57 13.48 4.48 16.05 3.87
NCC(1-1) 43.67 22.52 32.04 15.97 16.26 7.09 12.86 4.01 15.77 2.80

C(all) 0.99 0.80 1.02 0.89 0.69 0.61 0.61 0.38 0.60 0.32
NC(all) 6.62 6.22 8.32 7.20 6.86 5.16 7.81 4.65 16.44 4.85

CNC(all) 10.18 7.43 8.46 6.55 6.41 4.87 7.22 4.06 14.65 4.44
NCC(all) 9.18 7.39 8.00 5.96 6.59 4.35 7.48 4.13 13.48 4.54
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Table 5.9: Performance of MCMC samplers as measured by ESS/sec for π(β0|h,α, ϕ, τ) for the sim-
ulated datasets where N = 10. Higher is better. The quantities are averaged over twenty runs under
different seeds initializations. All algorithms run 130,000 iterations after a burn-in of 30, 000 for each
data set. The latent state is updated using ‘1-1’ and ‘all’ method. The parameter vector is updated by
applying the ‘2-bl’ and ‘3-bl’ sampler.

τ
Alg. 1 2 5 10 30

3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl 3-bl 2-bl

ϕ = 0.95
C(1-1) 30.09 24.37 16.77 13.49 6.51 4.58 3.71 2.82 2.13 2.19

NC(1-1) 23.67 22.27 33.16 27.61 38.33 27.27 45.58 26.70 76.77 51.65
CNC(1-1) 74.64 62.55 61.86 45.69 47.34 28.95 47.44 24.82 70.09 51.32
NCC(1-1) 75.81 62.92 62.48 49.18 45.11 29.47 47.80 23.08 70.87 51.00

C(all) 1.61 1.73 1.77 1.87 1.60 1.44 1.59 1.26 1.72 1.95
NC(all) 4.85 4.43 10.40 10.57 21.06 17.90 35.39 24.63 94.30 66.00

CNC(all) 26.47 26.05 28.04 25.61 25.30 21.17 36.67 24.69 77.77 55.10
NCC(all) 33.29 24.20 29.56 22.04 26.94 21.96 38.30 23.88 83.10 63.17

ϕ = 0.85
C(1-1) 151.25 169.61 104.61 120.74 39.34 45.56 18.94 14.94 4.06 3.99

NC(1-1) 0.62 0.75 0.83 0.88 1.39 1.48 1.81 2.08 3.19 2.87
CNC(1-1) 256.39 237.52 242.35 227.49 193.61 179.19 153.93 139.21 99.60 79.79
NCC(1-1) 267.97 236.94 248.82 226.70 193.28 192.32 148.89 145.13 107.61 95.28

C(all) 9.80 22.72 10.83 19.51 8.87 12.30 6.44 9.33 4.74 6.63
NC(all) 0.09 0.05 0.12 0.11 0.26 0.43 0.82 0.98 4.14 3.68

CNC(all) 174.26 164.86 230.35 192.27 206.01 186.11 162.16 141.35 113.82 101.66
NCC(all) 221.69 159.53 257.20 243.19 230.26 182.78 172.56 157.89 124.07 111.03

ϕ = 0.75
C(1-1) 111.72 112.49 60.20 61.02 21.02 21.67 8.33 6.49 2.30 1.96

NC(1-1) 2.00 1.86 2.79 2.79 4.51 4.78 6.79 6.32 11.84 10.95
CNC(1-1) 202.77 185.02 172.66 150.53 125.96 104.37 86.09 65.93 63.55 47.96
NCC(1-1) 206.38 189.99 167.85 162.65 113.77 107.85 84.72 72.27 68.99 48.06

C(all) 6.76 10.19 6.63 8.95 4.51 5.21 3.68 4.21 3.07 4.08
NC(all) 0.14 0.12 0.31 0.35 1.38 1.21 3.51 3.00 16.19 14.31

CNC(all) 103.45 90.73 113.05 120.16 86.30 74.98 64.87 62.44 70.62 60.79
NCC(all) 124.26 113.25 130.28 101.56 109.25 77.54 80.47 62.57 85.46 57.01

ϕ = 0.65
C(1-1) 79.28 78.36 42.62 40.00 14.76 11.12 5.59 4.97 1.90 1.89

NC(1-1) 3.35 3.12 5.71 5.63 10.17 9.41 13.65 13.05 25.41 21.23
CNC(1-1) 164.48 143.55 132.49 114.12 92.47 71.06 67.14 47.72 65.12 41.13
NCC(1-1) 164.23 151.34 132.61 119.38 84.38 75.25 64.06 52.35 61.98 40.28

C(all) 5.63 6.82 4.30 4.95 3.31 3.58 2.81 3.06 2.68 3.02
NC(all) 0.35 0.29 0.90 0.96 2.98 2.63 7.21 6.52 29.41 28.12

CNC(all) 80.34 75.65 73.28 74.41 51.63 48.30 47.61 43.92 66.43 49.83
NCC(all) 89.31 78.63 91.35 68.08 64.80 44.41 54.83 39.86 71.27 52.28

ϕ = 0.55
C(1-1) 64.20 57.17 32.64 28.23 10.54 7.45 4.27 3.80 2.02 1.95

NC(1-1) 5.67 6.02 9.59 9.69 16.42 14.57 23.02 18.34 38.89 33.73
CNC(1-1) 141.58 119.06 107.61 89.65 68.50 52.01 54.75 38.78 64.45 43.00
NCC(1-1) 139.49 126.35 109.01 92.16 69.88 59.56 57.99 41.14 68.44 41.41

C(all) 3.87 4.60 3.29 3.42 2.70 2.61 2.31 2.50 2.42 2.50
NC(all) 0.71 0.69 1.63 1.60 5.27 4.47 11.88 11.63 46.52 37.20

CNC(all) 62.11 60.80 54.70 50.30 43.71 35.76 41.93 34.20 68.25 55.80
NCC(all) 72.20 61.65 68.63 51.40 46.80 35.10 45.39 38.55 77.44 53.98
ϕ = 0.0

C(1-1) 30.09 24.37 16.77 13.49 6.51 4.58 3.71 2.82 2.13 2.19
NC(1-1) 23.67 22.27 33.16 27.61 38.33 27.27 45.58 26.70 76.77 51.65

CNC(1-1) 74.64 62.55 61.86 45.69 47.34 28.95 47.44 24.82 70.09 51.32
NCC(1-1) 75.81 62.92 62.48 49.18 45.11 29.47 47.80 23.08 70.87 51.00

C(all) 1.61 1.73 1.77 1.87 1.60 1.44 1.59 1.26 1.72 1.95
NC(all) 4.85 4.43 10.40 10.57 21.06 17.90 35.39 24.63 94.30 66.00

CNC(all) 26.47 26.05 28.04 25.61 25.30 21.17 36.67 24.69 77.77 55.10
NCC(all) 33.29 24.20 29.56 22.04 26.94 21.96 38.30 23.88 83.10 63.17
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the blocking strategy the 3-block sampler shows higher ESS/sec most of the time. As the sample

size increases, the sampling efficiency deteriorates, for example, when n = 6, 000 the ESS/sec

is on average two and half times larger than its corresponding value when the sample size is

doubled.

Concerning the simulation efficiency of τ (Tables 5.2, 5.5, 5.8), it seems that for some

values of τ , as ϕ decreases, the sampling efficiency may increase, decrease or witness a gradual

decline, followed by a rise. Besides, as the number ofN decreases, the sampling efficiency of τ

decreases. Comparing the sampling schemes, the result show that the non-centered parameter-

ization performs better compared to the centered (in most cases), and the ESS/sec is similar to

the interweaving samplers which have the smallest autocorrelation for both parameterizations

for most of the parameters values. Comparing the method for updating the latent state, the re-

sults report that forN = 2 (N ∈ {5, 10}) it is preferable to update the components of the latent

state in one step for τ > 10 (τ > 30). Besides, by comparing the blocking strategy the 3-block

sampler shows lower autocorrelation most of the time. The above results hold irrespective of

the sample size or the choice of β0. Finally, as the sample size increases, the sampling efficiency

deteriorates, for example, when n = 6, 000 the ESS/sec is on average two times larger than its

corresponding value when the sample size is doubled.

Concerning the simulation efficiency of β0 (Tables 5.3, 5.6, 5.9), the results show that in

most cases, keeping ϕ fixed, as the value of τ increases, the sampling efficiency initially declines

and then rises. On the other hand, for τ ≥ 10 (τ = 30), as ϕ decreases, the ESS/sec declines

(initially deteriorate and then increase). Besides, as the number of N increases, the sampling

efficiency of β0 increases. Comparing the latent path strategy, the results show that as the value

of the conditional precision increases it is preferable to update the components of the latent

state in one step, but the value of τ for this change depends on the value of N ; as N increases,

this value increases. Comparing the sampling schemes, it seems that the interweaving samplers

have higher ESS/sec, whereas the baseline of the interweaving strategy is of minor influence.

Comparing the non-centered and centered parameterization, the results show that keeping ϕ

fixed, it seems that as the value of τ increases, the non-centered parameterization exhibits lower

autocorrelation than the centered (in most cases where ϕ < 0.85). Comparing the blocking

strategy, the 3-block sampler show higher ESS/sec. Finally, as the sample size increases, the

sampling efficiency deteriorates, for example, when n = 6, 000 the ESS/sec is on average two
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times larger than its corresponding value when the sample size is doubled.

5.5 Real data results
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Figure 5.1: Time series plot of ES prices. The sample period covers Monday to Friday from
May 16th 2011 to May 24th 2011, 9:00 a.m. to 5:00 p.m. eastern time. The labels along the
x-axis depict the last transaction of the corresponding day. Tick size equals $0.25.

The ES data are compressed into trade bars of size two and five. The total number of observa-

tions is 262, 356 from which 39, 924 (222, 432) are reported on the morning (afternoon) time

period with 12, 100 (74, 957) active trades when N = 2. Similarly, when N = 5, the ob-

servations are 104, 926 from which 15, 961 (88, 965) are reported on the morning (afternoon)

with 8, 203 (46, 965) active trades. The tick size is considered to be 1/4th of a dollar for each

segment. In Figure 5.1, the ES is plotted from May 16 through May 24, 9 a.m. to 5 p.m. for

both trade bar sizes. Besides, Table 1.3 shows the percentage of the transaction price changes

between 09:00 and 17:00 after the aggregation. Variable definitions are presented in Table 5.10.

If we do not make a specific reference to which data segment we are referring to, it means

that we imply both examined time periods; The same it is true for the trade bar sizes. The curves
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Table 5.10: Variable Definitions.

Variable Name Description

Continuous Variables
ti the time at which the last trade of the ith trade bar occurs
∆ti ≜ ti − ti−1

τi ≜ log(∆ti + 1)

V b,j
i the log total volume on the jth best bid quote right after the last trade of
the ith trade bar
V a,j
i the log total volume on the jth best ask quote right after the last trade of
the ith trade bar
V mo
i the log volume of the last trade of the ith trade bar

Discrete Variables
SPi the spread (in tick) instantaneously after the ith trade bar

Dummy Variables
Upi 1: if at the end of the ith trade bar the price moves down,

0: moves down
BMOi 1: if the last trade of the ith trade bar is a buy market order, 0: otherwise
MOi type of market data update action of the last trade of the ith trade bar

1: change, 0: delete

Index j corresponds to the jth limit order level, j = 1, 2. Index i corresponds to the ith trade bar.

with blue (black) color refer to the morning (afternoon) period. The Bayesian estimates reported

in the tables represent posterior means and standard deviations in parenthesis. For the maximum

likelihood in parenthesis is reported the asymptotic standard error.

5.5.1 Part A

In order to investigate whether the probability of a price movement is predictable based on

past sequences of the trading process and limit orders, we include some possible covariates

given by xA,⊤
i−1 = (1, Aii, Dii,Upii, τii,BMOii, V

mo
ii , SPii, V

b,1
ii , V

b,2
ii , V

a,1
ii , V

a,2
ii ,MOii) where

ii ∈ {i − 2, i − 1}. After testing out insignificant explanatory variables we end up with

xA,⊤
i−1 = Ai−1 and xA,⊤

i−1 = (Ai−1, Ai−2) during the morning and afternoon period, respectively.

As a short summary, the length of burn-in, acceptance rate, and thinning to draw 2000

MCMC thinned samples for the activity binomial GLM, GLARMA, AR(1), WN and RW(1)

model are shown in Table 5.11. The parameters of the observation driven models are estimated
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Table 5.11: Length of burn-in, acceptance rate, and thinning to draw 2000MCMC thinned sam-
ples for the activity binomial GLM, GLARMA, AR(1), WN and RW(1) model. The parameters
of the observation driven models are estimated (in one step) using the AM algorithm, while the
parameters of all parameter driven model except the WN are estimated with the CNC algorithm
combined with the 3-block sampler in which the latent path is updated using the ‘1-1’ method.
The AR(1)’s ratio shows the acceptance rate of (ϕ, τ,β), while the WN’s and RW’s ratio show
the acceptance rate of (τ,β).

Model N = 2 N = 5

Binomial - Morning Afternoon Morning Afternoon

GLM
burn-in 1e+4 1e+4 1e+4 1e+4

thinning 50 50 50 50
ratio (in %) 22.02 16.96 22.24 16.14

GLARMA
burn-in 2e+4 2e+4 2e+4 2e+4

thinning 100 100 100 100
ratio (in %) 16.90 28.46 24.96 27.13

AR(1)
burn-in 2e+4 2e+4 2e+4 2e+4

thinning 300 900 900 900
ratio (in %) (47.19,37.78, (49.22,40.83, (41.39,43.78, (41.02,41.59,

21.80) 29.09) 19.09) 27.41)

WN
burn-in 2e+4 2e+4 2e+4 2e+4

thinning 200 200 200 200
ratio (in %) (41.78,22.15) (38.83,29.55) (44.91,32.67) (42.40,27.98)

RW(1)
burn-in 2e+4 2e+4 2e+4 2e+4

thinning 2000 1500 800 120
ratio (in %) (33.96,24.24) (43.18,31.89) (47.90,36.06) (47.16,36.83)

(in one step) using the AM algorithm, while the parameters of all parameter drivenmodel except

the WN are estimated with the CNC algorithm combined with the 3-block sampler in which the

latent path is updated using the ‘1-1’ method. IBIS is initialized with MCMC draws based on

the first 1000 (500) observations during the morning (afternoon) period.

Tables 5.12 - 5.15 list the parameter estimates of the activity model, along with the run-

ning time. Firstly, it is clear that AM and IBIS sample estimates agree well with the maximum

likelihood estimates and by increasing the number of particles does not significantly affect the

estimated parameters, meanwhile, the computational cost grows with the number of particles.

Judging by the influence of the regression parameters, the tables show that the number of active
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Table 5.12: MCMCparameter estimation of the activity binomial GLMwith the ES,May 16th to
May 20th. ‘Run-time’ returns the execution time (in minutes). The Bayesian estimates represent
posterior means and standard deviations in parenthesis based on 2000 draws. Model: Ai ∼
Binomial(N, πi), logit(πi) = x⊤

i−1β and N ∈ {2, 5}. Morning: x⊤
i−1 = Ai−1. Afternoon:

x⊤
i−1 = (Ai−1, Ai−2). Priors: β ∼ N3(03, 10

3
I3). Parameter estimation algorithm: AM.

N = 2 N = 5

Parameter Morning Afternoon Morning Afternoon

β0 -1.877 -1.917 -1.882 -1.961
(0.015) (0.007) (0.018) (0.009)

β1 1.034 1.143 0.683 0.979
(0.021) (0.009) (0.023) (0.009)

β2 - 0.377 - 0.139
- (0.009) - (0.009)

Run-time 1.17 6.32 0.59 2.44

movements is positive for all past period values, indicating that past active movements tend to

increase the change of subsequent active movements, but the influence decays down at lag two.

However, the RW(1) model returns a negative β2 value for the afternoon period when N = 5.

Regarding the posterior mean of ϕ, whenN = 2 the AR1’s value is negative during the morn-

ing and insignificant on the afternoon subset, while when N = 5 it is almost 0.3. On the other

hand, GLARMA’s value approximates one when N = 5 and it is more than 0.8 when N = 2.

Concerning the posterior mean of the conditional standard deviation of the latent process, we

can see that its value is small for the random walk model of order one except for the afternoon

period with trade bar of size five which is 0.8. The corresponding values for the rest parameter

driven models is around to 1.4 (1.2) over the morning (afternoon) dataset.
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Table 5.13: Maximum likelihood, AM and IBIS parameter estimation for the activity binomial
GLARMA model with the ES, May 16th to May 20th over the morning period. ‘Run-time’
returns the execution time (in minutes). The Bayesian estimates represent posterior means and
standard deviations in parenthesis. For MLE, in parenthesis, is reported the asymptotic standard
error. AM is initialized with mle yielding 2000 draws. Model: Ai ∼ Binomial(N, πi) with
logit(πi) = x⊤

i−1β+Zi, Zi = ϕZi−1+δεi−1, εi = (Ai−Nπi)/
√
Nπi(1− πi), Z0 = ε0 = 0.

x⊤
i−1 = Ai−1. Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N3(03, 10

3
I3).

IBIS

Number of Particles

Parameter MLE AM 500 1000 2000

Panel A: N = 2

ϕ 0.824 0.825 0.825 0.825 0.825

(0.022) (0.027) (0.026) (0.026) (0.027)

δ 0.099 0.098 0.098 0.098 0.098

(0.011) (0.013) (0.013) (0.013) (0.013)

β0 -1.798 -1.799 -1.799 -1.799 -1.799

(0.017) (0.019) (0.020) (0.020) (0.020)

β1 0.741 0.745 0.742 0.745 0.745

(0.034) (0.040) (0.039) (0.041) (0.041)

Run-time 0.00 7.65 3.28 6.49 12.47

Panel B: N = 5

ϕ 0.977 0.976 0.977 0.976 0.976

(0.005) (0.007) (0.007) (0.008) (0.007)

δ 0.018 0.019 0.019 0.019 0.019

(0.002) (0.003) (0.003) (0.003) (0.003)

β0 -1.854 -1.855 -1.851 -1.853 -1.854

(0.018) (0.024) (0.023) (0.022) (0.023)

β1 0.623 0.623 0.618 0.621 0.622

(0.019) (0.025) (0.023) (0.022) (0.024)

Run-time 0.00 1.80 1.31 2.55 5.09
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Table 5.14: Maximum likelihood, AM and IBIS parameter estimation for the activity binomial
GLARMA model for ES, May 16th to May 20th over the afternoon period. ‘Run-time’ re-
turns the execution time (in minutes). The Bayesian estimates represent posterior means and
standard deviations in parenthesis. For MLE, in parenthesis, is reported the asymptotic stan-
dard error. AM is initialized with mle yielding 2000 draws. Model: Ai ∼ Binomial(N, πi)
with logit(πi) = x⊤

i−1β + Zi, Zi = ϕZi−1 + δεi−1, εi = (Ai − Nπi)/
√
Nπi(1− πi),

Z0 = ε0 = 0. x⊤
i−1 = (Ai−1, Ai−2). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103),

β ∼ N3(03, 10
3
I3).

IBIS
Number of Particles

Parameter MLE AM 500 1000 2000

Panel A: N = 2

ϕ 0.858 0.858 0.858 0.858 0.858
(0.006) (0.006) (0.006) (0.006) (0.006)

δ 0.126 0.126 0.126 0.126 0.126
(0.005) (0.006) (0.005) (0.005) (0.005)

β0 -1.752 -1.753 -1.752 -1.752 -1.753
(0.009) (0.010) (0.010) (0.010) (0.010)

β1 0.826 0.827 0.826 0.827 0.827
(0.014) (0.010) (0.016) (0.016) (0.016)

β2 0.163 0.164 0.164 0.163 0.163
(0.010) (0.011) (0.012) (0.011) (0.011)

Run-time 0.01 43.18 26.84 45.19 82.39

Panel B: N = 5

ϕ 0.989 0.989 0.989 0.989 0.989
(0.001) (0.002) (0.002) (0.002) (0.002)

δ 0.012 0.012 0.012 0.012 0.012
(0.001) (0.001) (0.001) (0.001) (0.001)

β0 -1.925 -1.926 -1.927 -1.925 -1.925
(0.009) (0.012) (0.012) (0.011) (0.012)

β1 0.942 0.942 0.942 0.942 0.942
(0.008) (0.010) (0.010) (0.010) (0.010)

β2 0.103 0.103 0.103 0.102 0.103
(0.007) (0.010) (0.010) (0.010) (0.009)

Run-time 0.00 16.62 8.95 16.67 32.41
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Table 5.15: MCMC parameter estimation of the activity binomial AR(1), WN and RW(1) model
with the ES,May 16th toMay 20th. The last model is estimated by the algorithmCNC combined
with the 3-block sampler in which the latent path is updated using the 1-1’method. ‘Run-time’
returns the execution time in hours. The Bayesian estimates represent posterior means and
standard deviations in parenthesis based on 2000 samples. Model: Ai ∼ Binomial(N, πi)
with logit(πi) = hi, hi = x⊤

i−1β + ϕ(hi−1 − x⊤
i−2β) + εi, εi ∼ N (0, 1/τ). Morning:

x⊤
i−1 = Ai−1. Afternoon: x⊤

i−1 = (Ai−1, Ai−2). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5), τ ∼
Gamma(1e−3, 1e+3), β ∼ N3(03, 10

3
I3). ∗ indicates not significant parameter at the 5%

level.

N = 2 N = 5

Parameter AR(1) WN RW(1) AR(1) WN RW(1)

Panel A: Morning period

ϕ -0.186 - - 0.244 - -

(0.029) - - (0.052) - -

σ 1.420 1.441 0.018 1.100 1.124 0.047

(0.033) (0.031) (0.003) (0.025) (0.023) (0.007)

β0 -2.601 -2.521 -1.947 -2.146 -2.308 -1.754

(0.034) (0.030) (0.094) (0.046) (0.029) (0.231)

β1 1.647 1.370 0.982 0.508 0.829 0.598

(0.054) (0.034) (0.023) (0.077) (0.033) (0.024)

Run-time 1.441 0.920 5.863 1.752 0.391 0.941

Panel B: Afternoon period

ϕ -0.016∗ - - 0.261 - -

(0.015) - - (0.018) - -

σ 1.404 1.405 0.013 1.184 1.209 0.811

(0.013) (0.013) (0.001) (0.010) (0.009) (0.012)

β0 2.575 -2.570 -1.996 -2.298 -2.486 -1.231∗

(0.015) (0.013) (0.152) (0.023) (0.015) (1.182)

β1 1.539 1.516 1.110 0.849 1.233 0.133

(0.027) (0.015) (0.010) (0.032) (0.016) (0.016)

β2 0.522 0.531 0.345 0.211 0.186 -0.374

(0.016) (0.013) (0.010) (0.016) (0.015) (0.014)

Run-time 27.749 6.166 34.266 9.835 2.185 1.439
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Figure 5.2 shows the ESS along the iterations as well as the acceptance rates of the move

steps with 500 particles for the activity binomial GLM. Since the resampling threshold is set

to 80%, a resample-move is triggered when ESS drops below 400 (red line). As expected, the

frequency of the resample-moves steps seems to decrease over time. On the other hand, the

acceptance rate is quite high along the iterations. Similar results are obtained for the other

particles of the corresponding plots as well as for the GLARMA process; these figures are not

presented here.
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N ∈ {2, 5}. Priors: β ∼ N5(05, 10
3
I5).

Figure 5.2: Results of IBIS estimation for the activity binomial GLM with the ES, May 16th
to May 20th, during the morning (blue) and afternoon period (black), N = 2 (rows 1, 2) and
N = 5 (rows 3, 4). ESS along the iterations and acceptance rate at each move step. The number
of particles is 500 and a resample-move step is triggered when ESS drops below 400 (red line).
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Model: Ai ∼ Binomial(N, πi) with logit(πi) = x⊤
i−1β + Zi, Zi = ϕZi−1 + δεi−1, εi = (Ai −

Nπi)/
√

Nπi(1− πi), Z0 = ε0 = 0. Morning: x⊤
i−1 = Ai−1. Afternoon: x⊤

i−1 = (Ai−1, Ai−2).
Priors: (ϕ+ 1)/2 ∼ Be(0.5, 0.5), τ ∼ Gamma(1e−3, 1e+3), β ∼ Ndd(0d, 10

d
Id).

Figure 5.3: Bayesian marginal posterior densities for parameters estimated by the activity bino-
mial GLARMA model, estimated from AM (dotted curve) and IBIS (solid, dashed and dash-
dotted curve for 500, 1000 and 2000 particles, respectively) samples using a kernel density.
Vertical lines represent the mle. The data set we are analyzing is ES, May 16th to May 20th
during the morning (blue curve) and afternoon period (black curve).

Figure 5.3 illustrates the marginal posterior densities of the estimated parameters for the

the activity binomial GLARMA model estimated from AM and IBIS samples using a kernel

density; the two methods produce nearly identical posterior distributions. Note that by increas-
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ing the number of particles we obtain similar estimates. The figure also marks the maximum

likelihood estimators; it seems that they coincide with the posterior mode. Figures 5.4-5.5 illus-

trate the marginal posterior densities of the estimated parameters for the binomial parameters

driven models.
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Model: Ai ∼ Binomial(N, πi)with logit(πi) = hi, hi = x⊤
i−1β+ϕ(hi−1−x⊤

i−2β)+εi, εi ∼ N (0, 1/τ).
Morning: x⊤

i−1 = Ai−1. Afternoon: x⊤
i−1 = (Ai−1, Ai−2).

Figure 5.4: Marginal posterior densities (with 2000 MCMC thinned samples) for parameters
estimated by the activity binomial AR(1) (dotted curve) and WN (solid curve) model.
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Model: Ai ∼ Binomial(N, πi)with logit(πi) = hi, hi = x⊤
i−1β+(hi−1−x⊤

i−2β)+εi, εi ∼ N (0, 1/τ).
Morning: x⊤

i−1 = Ai−1. Afternoon: x⊤
i−1 = (Ai−1, Ai−2). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5), τ ∼

Gamma(1e−3, 1e+3), β ∼ Ndd(0d, 10
d
Id).

Figure 5.5: Marginal posterior densities (with 2000 MCMC thinned samples) for parameters
estimated by the activity binomial RW(1) model.

We have also considered the WN model with Student’s t errors with ν degrees of free-

dom. However, the MCMC algorithms produce posterior samples with very high autocorrela-

tion, for example, Figure 5.6 displays trace plots for parameters during themorning withN = 2.

It appears that the regression parameters are less correlated, while the serial correlation of the

rest parameters is stronger even for long lags. When N = 5, only the parameter ν appears to
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have poor mixing, while the rest parameters are mixing well. The significant autocorrelation

suggests that chains require a thinning interval which is calculated as the maximum value of a

vector whose the jth element is the first lag that the serial correlation of the jth parameter drops

to zero. However, this value is high implying a high computational cost. Instead of thinning the

posterior chains, we pre-specify ν as a known constant to deal with high autocorrelation and

we notice that the mixing behaviour improves. For example, Figure 5.7 illustrates MCMC trace

plots for two and ten degrees of freedom. The samples are generated by the CNC algorithm

combined with the 3-block sampler in which the latent path is updated with the ‘1-1’ and the

all’ (red curve) method. All algorithms run 100,000 iterations after a burn-in of 50, 000. The

figure shows that the algorithms achieve well mixing chain.
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Model: Ai ∼ Binomial(2, πi) with logit(πi) = hi, hi = x⊤
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tν(0, 1). Morning: x⊤
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3
I2).

Figure 5.6: MCMC trace plots for parameters estimated by the activity binomial WN model
with Student’s t errors with unknown degrees of freedom with the ES, May 16th to May 20th,
during the morning, N = 2.
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Model: Ai ∼ Binomial(N, πi) with logit(πi) = hi, hi = x⊤
i−1β+(hi−1−x⊤

i−2β)+σεi, εi ∼ tν(0, 1).
Morning: x⊤

i−1 = Ai−1. Priors: τ ∼ Gamma(1e−3, 1e+3), β ∼ N2(02, 10
3
I2).

Figure 5.7: MCMC trace plots for parameters estimated by the activity binomialWNmodel with
Student’s t errors with ν = {2, 10} with the ES, May 16th to May 20th, during the morning,
N = 2.

Figure 5.8 displays the effect of the choice of ν for trade bar of size two, based on the

(one-step ahead) log predictive score of a thinned chain with 500 draws for the last two days

of the dataset. The figure suggests that it is maximized for one degree of freedom for all time

periods. When N = 5, the results suggest that it is maximized for values of ν greater than

30, approximating the WN component model with normal errors. Regarding the latent path

strategy, the results (which are not presented here) show that it is better to use the 1-1 strategy

and as the value of ν increases the ESS/sec of the parameters increases.
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Model: Ai ∼ Binomial(2, πi) with logit(πi) = hi, hi = x⊤
i−1β + (hi−1 − x⊤

i−2β) + σεi, εi ∼ tν(0, 1).
Morning: x⊤

i−1 = Ai−1. Priors: τ ∼ Gamma(1e−3, 1e+3), β ∼ N2(02, 10
3
I2).

Figure 5.8: Forecasting performance: (one-step ahead) log predictive score versus ν for the
activity binomial model with the ES, May 23rd & 24th 2011, 9 a.m. - 1 p.m. (left panel) and 1
p.m. - 5 p.m. (right panel), N = 2.

Concerning the AR(1) model with Student’s t errors with ν degrees of freedom, if ν is

not known the sampler generates also highly autocorrelated samples. However, keeping ν fixed,

the autocorrelation of the estimated parameters in some cases is still high. Figure 5.9 displays

the MCMC autocorrelation plots during the morning with N = 2 and ν ∈ {1, 2, 4, 10}. All

algorithms run 100,000 iterations after a burn-in of 50, 000. When ν = 1 or 2, it appears that

the serial correlation of the ϕ parameter is strong even for long lags, and drops more quickly

for larger degrees of freedom. During the afternoon period, we conclude to similar results,

however the serial correlations are a little larger. To deal with autocorrelation, we pre-specify

ν as a known constant and when ν ∈ {1, 2} we also keep ϕ parameter fixed and examine the

(one-step ahead) log predictive score. The results show that for trade bars of size two, the best

choice of ν is one with ϕ = −0.1 (0) during the morning (afternoon) period, while for trade

bars of size five the best choice of ν appears to be greater than 30, approximating the AR(1)
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component model with normal errors. However, we left the model incomplete.
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Model: Ai ∼ Binomial(2, πi) with logit(πi) = hi, hi = x⊤
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i−2β) + σεi, εi ∼ tν(0, 1).
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3
I2).

Figure 5.9: MCMC autocorrelation plots of the activity binomial AR(1) model with Student’s
t errors with ν degrees of freedom with the ES, May 16th to May 20th, during the morning,
N = 2.

Table 5.16 lists the parameter estimates of the price activity binomial WN model for

trade bars of size two, using the CNC algorithm combined with the 3-block sampler in which

the latent path is updated one at time, conditional on all other values of the state process and

parameters, along with the running time (in hours). The Bayesian estimates reported in the table

represent posterior means and standard deviations in parenthesis. The algorithm runs 320,000

(500,000) iterations for the morning (afternoon) dataset with burn-in of 20,000 iterations and

the autocorrelation is reduced by retaining only every 160th (250th) iteration of the chain. The

posterior mean of σ is 0.34 (0.38) for themorning (afternoon) dataset, which is four time smaller

that the corresponding model with normal errors. The influence of the regression parameters

are positive and slightly smaller than the corresponding model with Gaussian errors. Figure

5.10 illustrates the marginal posterior densities.
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Table 5.16: MCMC parameter estimation of the activity binomial WN model with Student’s t
errors with one degree of freedom with the ES, May 16th to May 20th, N = 2. The model is
estimated by the algorithm CNC combined with the 3-block sampler in which the latent path
is updated using the 1-1’method. ‘Run-time’ returns the execution time in hours. The Bayesian
estimates represent posterior means and standard deviations in parenthesis based on 2000 sam-
ples. Model: Ai ∼ Binomial(2, πi)with logit(πi) = hi, hi = x⊤

i−1β+ϕ(hi−1−x⊤
i−2β)+σεi,

εi ∼ t1(0, 1). Morning: x⊤
i−1 = Ai−1. Afternoon: x⊤

i−1 = (Ai−1, Ai−2). Priors: τ ∼
Gamma(1e−3, 1e+3), β ∼ Nd(0d, 10

3
Id).
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Nd(0d, 10
3
Id).

Figure 5.10: Marginal posterior densities (with 2000 MCMC thinned samples) for parameters
estimated by the activity binomialWNmodel with Student’s t errors with one degree of freedom.
The data set we are analyzing is ES, May 16th to May 20th during the morning (blue curve) and
afternoon period (black curve).
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5.5.2 Part B

In order to investigate whether the probability of a price movement is predictable based on past

sequences of the trading process and limit orders, we include the covariates

xD,⊤
i−1 = (1, Aii, Dii,Upii, τii,BMOii, V

mo
ii , SPii, V

b,1
ii , V

b,2
ii , V

a,1
ii , V

a,2
ii ,MOii)

where ii ∈ {i− 2, i− 1}. After testing out insignificant explanatory variables we end up with

xD,⊤
i−1 = (1, V b,1

i−1, V
a,1
i−1,Upi−1,BMOi−1).

About the observation driven component model, the results of the GLARMA model

show that the ϕ and δ coefficients are not significant during the morning period, so only a

GLM component model is discussed for the morning dataset. Relative to the parameter driven

component model, trace plots of the AR(1) model with normal errors show that the samples

from the full conditional of the estimated persistence parameter are not well mixed with very

strong autocorrelation. For this reason, we only examine a RW(1) and aWNmodel. Besides, we

have also considered the corresponding models with Student’s t errors with unknown ν degrees

of freedom. Due to the bad mixing and convergence behaviour of ν, it is pre-specified as a

known constant and the mixing behaviour improves. The best choice of the degrees of freedom

is determined by optimizing the model’s one-step ahead predictive likelihood. However, the

results suggest that it is maximized for values of the conditional variance, σ2 ≜ 1/τ greater

than 30, approximating the component models with normal errors.

As a short summary, the length of burn-in, acceptance rate, and thinning to draw 2000

MCMC thinned samples for the different models are shown in Table 5.17. The observation

driven models are estimated (in one step) using the AM algorithm, while the parameter driven

models are estimated with the CNC algorithm combined with the 3-block sampler in which the

latent path is updated in one move. In order to reduce the correlations, the regression parameters

are updated in groups which are β0, (β1, β2), (β3, β4). IBIS algorithm is initialized withMCMC

draws based on the first 1000 observations.
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Table 5.17: Length of burn-in, acceptance rate, and thinning to draw 2000 MCMC thinned
samples for the upward movements GLM, GLARMA, RW(1) and WN model. The parameters
of the first two models are estimated (in one step) using the AM algorithm. The parameters of
the last two models are estimated with the CNC algorithm combined with the 3-block sampler
using the 1-1’method, while the regression parameters are updated in groups. The ratio of the
parameter driven models show the acceptance rate of (τ, β0, β1:2, β3:4).

Model N = 2 N = 5

Binomial - Morning Afternoon Morning Afternoon

GLM

burn-in 2e+4 2e+4 2e+4 2e+4

thinning 130 150 100 150

ratio (in %) 15.85 14.27 15.55 14.41

GLARMA

burn-in - 5e+4 - 6e+4

thinning - 120 - 100

ratio (in %) - 31.27 - 32.73

RW(1)

burn-in 2e+4 2e+4 2e+4 2e+4

thinning 1800 1800 1800 1300

ratio (in %) (38.12,31.99, (41.13,41.64, (41.13,41.64, (44.24,41.25,

19.93,24.68) 26.18,22.17) 26.18,22.17) 22.11,21.72)

WN

burn-in 2e+4 2e+4 2e+4 2e+4

thinning 700 1400 1100 1400

ratio (in %) (38.28,43.798, (41.49,44.34, (49.76,41.49, (41.49,44.34,

30.46,24.55) 24.82,22.17) 28.63,24.76) 24.82,22.17)

Tables 5.18 - 5.20 list the parameter estimates of the activity binomial models, along

with the running time. Firstly, it is clear that AM and IBIS sample estimates agree well with the

maximum likelihood estimates and by increasing the number of particles does not significantly

affect the estimated parameters, meanwhile, the computational cost grows with the number of

particles. Judging by the influence of the regression parameters, the tables show that the influ-

ence of lagged movement, is negative indicating that if the price moved on the last trade bar

then there is a large chance that this movement will be reversed if there is an active batch trade.

Relative to the impact of buy market orders, we observe a significant negative influence at lag
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Table 5.18: AM parameter estimates of the upward movements binomial GLM with the
ES, May 16th to May 20th. ‘Run-time’ returns the execution time (in minutes). The
Bayesian estimates represent posterior means and standard deviations in parenthesis based
on 2000 draws. Model: Di|Ai > 0 ∼ Binomial(Ai, πi) with logit(πi) = x⊤

i−1β,
x⊤

i−1 = (1, V b,1
i−1, V

a,1
i−1,Upi−1,BMOi−1) and Ai ∈ {1, · · · , N}, N ∈ {2, 5}. Priors: β ∼

N5(05, 10
3
I5).

Parameter MLE AM IBIS
Number of Particles

500 1000 2000
Panel A: Morning, N = 2

β0 1.135 1.132 1.135 1.136 1.130
(0.141) (0.141) (0.141) (0.139) (0.144)

β1 0.134 0.135 0.135 0.135 0.136
(0.018) (0.018) (0.018) (0.018) (0.018)

β2 -0.198 -0.198 -0.198 -0.198 -0.198
(0.019) (0.019) (0.019) (0.019) (0.019)

β3 -0.198 -0.198 -0.197 -0.199 -0.197
(0.046) (0.046) (0.045) (0.047) (0.046)

β4 -1.471 -1.473 -1.471 -1.471 -1.473
(0.046) (0.046) (0.043) (0.044) (0.046)

Run-time 0.000 1.445 0.536 0.951 1.851
Panel B: Morning, N = 5

β0 0.588 0.594 0.602 0.585 0.587
(0.125) (0.125) (0.115) (0.120) (0.120)

β1 0.062 0.061 0.061 0.062 0.062
(0.016) (0.016) (0.014) (0.016) (0.015)

β2 -0.101 -0.102 -0.103 -0.101 -0.101
(0.017) (0.017) (0.016) (0.016) (0.016)

β3 -0.104 -0.103 -0.103 -0.103 -0.102
(0.041) (0.041) (0.040) (0.039) (0.040)

β4 -0.693 -0.693 -0.691 -0.691 -0.692
(0.042) (0.042) (0.040) (0.042) (0.041)

Run-time 0.000 0.870 0.311 0.592 1.163
Panel C: Afternoon, N = 2

β0 1.296 1.296 1.293 1.301 1.301
(0.082) (0.082) (0.082) (0.085) (0.084)

β1 0.135 0.135 0.135 0.134 0.134
(0.009) (0.009) (0.009) (0.009) (0.009)

β2 -0.177 -0.177 -0.177 -0.178 -0.178
(0.009) (0.009) (0.009) (0.009) (0.010)

β3 -0.201 -0.202 -0.201 -0.201 -0.201
(0.019) (0.019) (0.018) (0.018) (0.019)

β4 -1.853 -1.853 -1.854 -1.852 -1.853
(0.019) (0.019) (0.018) (0.018) (0.019)

Run-time 0.000 6.102 3.736 6.509 12.224
Panel D: Afternoon, N = 5

β0 0.618 0.620 0.622 0.617 0.620
(0.072) (0.072) (0.068) (0.073) (0.072)

β1 0.057 0.056 0.056 0.056 0.056
(0.008) (0.008) (0.008) (0.007) (0.008)

β2 -0.089 -0.090 -0.090 -0.089 -0.090
0.008) (0.008) (0.007) (0.008) (0.008)

β3 -0.080 -0.080 -0.079 -0.080 -0.080
(0.016) (0.016) (0.016) (0.017) (0.017)

β4 -0.751 -0.751 -0.751 -0.750 -0.752
(0.017) (0.017) (0.016) (0.017) (0.017)

Run-time 0.000 3.861 2.082 3.721 6.855
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Table 5.19: Maximum likelihood, AM and IBIS parameter estimation of the upward move-
ments GLARMA model with the ES, May 16th to May 20th over the afternoon period.
‘Run-time’ returns the execution time (in minutes). The Bayesian estimates represent poste-
rior means and standard deviations in parenthesis. For MLE, in parenthesis, is reported the
asymptotic standard errors and the solver runs from multiple initialization points. Model:
Di|Ai > 0 ∼ Binomial(Ai, πi) with logit(πi) = x⊤

i−1β + Zi, Zi = ϕZi−1 + δεi−1,
εi = (Di − Aiπi)/

√
Aiπi(1− πi), Z0 = ε0 = 0, x⊤

i−1 = (1, V b,1
i−1, V

a,1
i−1,Upi−1,BMOi−1)

and Ai ∈ {1, · · · , N}, N ∈ {2, 5}. Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5), log(δ) ∼ N (0, 103),
β ∼ N5(05, 10

3
I5).

Parameter MLE AM IBIS
Number of Particles

500 1000 2000

Panel A: N = 2
ϕ 0.981 0.981 0.981 0.981 0.981

(0.005) (0.004) (0.004) (0.004) (0.004)
δ 0.033 0.033 0.033 0.033 0.033

(0.005) (0.004) (0.004) (0.004) (0.004)
β0 1.471 1.468 1.469 1.469 1.468

(0.126) (0.101) (0.099) (0.099) (0.101)
β1 0.151 0.152 0.152 0.151 0.152

(0.012) (0.010) (0.010) (0.010) (0.010)
β2 -0.219 -0.218 -0.219 -0.218 -0.218

(0.014) (0.011) (0.011) (0.011) (0.011)
β3 -0.193 -0.193 -0.193 -0.194 -0.193

(0.025) (0.019) (0.019) (0.019) (0.019)
β4 -1.908 -1.908 -1.907 -1.908 -1.906

(0.025) (0.020) (0.019) (0.021) (0.020)
Run-time 0.034 19.331 2.882 4.783 9.173

Panel B: N = 5
ϕ 0.973 0.971 0.973 0.972 0.972

(0.018) (0.010) (0.010) (0.010) (0.010)
δ 0.027 0.028 0.027 0.028 0.028

(0.012) (0.006) (0.006) (0.006) (0.006)
β0 0.720 0.722 0.723 0.716 0.722

(0.166) (0.083) (0.080) (0.082) (0.084)
β1 0.063 0.063 0.062 0.064 0.063

(0.016) (0.009) (0.008) (0.008) (0.008)
β2 -0.109 -0.109 -0.109 -0.109 -0.109

(0.018) (0.009) (0.009) (0.009) (0.009)
β3 -0.077 -0.077 -0.077 -0.076 -0.077

(0.035) (0.017) (0.016) (0.017) (0.017)
β4 -0.793 -0.792 -0.790 -0.793 -0.792

(0.036) (0.018) (0.018) (0.019) (0.017)
Run-time 0.021 11.192 4.230 7.693 15.322
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Table 5.20: MCMC parameter estimation of the upward movements binomial WN and
RW(1) model for ES, May 16th to May 20th, estimated by the algorithm CNC combined
with the 3-block sampler in which the latent path is updated using the 1-1’method. ‘Run-
time’ returns the execution time in hours. The Bayesian estimates represent posterior means
and standard deviations in parenthesis based on 2000 samples. Model: Di|Ai > 0 ∼
Binomial(Ai, πi) with logit(πi) = hi, hi = x⊤

i−1β + ϕ(hi−1 − x⊤
i−2β) + εi, εi ∼

N (0, 1/τ), x⊤
i−1 = (1, V b,1

i−1, V
a,1
i−1,Upi−1,BMOi−1). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5),

τ ∼ Gamma(1e−3, 1e+3), β ∼ N5(05, 10
3
I5).

WN RW(1)

N = 2 N = 5 N = 2 N = 5

Parameter Morn. Aft. Morn. Aft. Morn. Aft. Morn. Aft.

σ 0.042 0.025 0.034 0.020 0.011 0.007 0.011 0.006

(0.016) (0.006) (0.011) (0.004) (0.002) (0.001) (0.002) (0.000)

β0 1.138 1.292 0.591 0.619 1.083 1.495 0.563 0.716

(0.147) (0.084) (0.128) (0.073) (0.176) (0.134) (0.155) (0.109)

β1 0.135 0.135 0.062 0.056 0.137 0.133 0.062 0.055

(0.018) (0.009) (0.016) (0.008) (0.018) (0.010) (0.016) (0.008)

β2 -0.199 -0.177 -0.101 -0.089 0.204 -0.196 -0.103 -0.099

(0.020) (0.009) (0.017) (0.008) (0.020) (0.010) (0.018) (0.009)

β3 -0.197 -0.201 -0.103 -0.080 -0.193 -0.199 -0.105 -0.080

(0.046) (0.019) (0.042) (0.017) (0.047) (0.018) (0.042) (0.017)

β4 -1.473 -1.854 -0.694 -0.752 -1.484 -1.871 -0.698 -0.760

(0.046) (0.019) (0.042) (0.017) (0.048) (0.020) (0.042) (0.018)

Run-time 38.296 461.057 46.538 249.126 161.164 1025.064 70.227 447.698

one, hence the odds of an up movement are larger for sell market orders than buy market orders.

Besides, bid (ask) volume at lag one increases (reduces) the chance that the price movement

will be upward. According to the estimation results, the posterior mean of ϕ of the GLARMA

model approximates one during the afternoon period. Concerning the posterior mean of the

conditional standard deviation of the latent path, we can see that WN’s value is 0.04 on the

morning, meanwhile, the RW’s values is smaller (0.01).

Figures 5.11 - 5.12 illustrate the marginal posterior densities of the estimated parameters

for the GLARMA and parameter driven model, respectively, using a kernel density, confined to
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the morning partition and afternoon partition. It is observed that the posterior distributions of
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Model: Di|Ai > 0 ∼ Binomial(Ai, πi) with logit(πi) = x⊤
i−1β+Zi, Zi = ϕZi−1 + δεi−1, εi = (Di−

Aiπi)/
√

Aiπi(1− πi), Z0 = ε0 = 0, x⊤
i−1 = (1, V b,1

i−1, V
a,1
i−1,Upi−1,BMOi−1). Priors: (ϕ + 1)/2 ∼

Be(0.5, 0.5), log(δ) ∼ N (0, 103), β ∼ N5(05, 10
3
I5).

Figure 5.11: Bayesian marginal posterior densities for parameters estimated by the upward
movements GLARMA model, estimated from AM (dotted curve) and IBIS (solid, dashed and
dash-dotted curve for 500, 1000 and 2000 particles, respectively) samples using a kernel den-
sity. Vertical lines represent the mle. The data set we are analyzing is ES, May 16th to May
20th during the afternoon period.

the regression parameters, through the GLM (red curve), WN and RW(1) models, are almost

identical. The results of theWNmodel with Student’s t errors show that the parameter ν appears
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to have poor mixing, while the rest parameters are mixing well. As in the previous section, we

pre-specify ν as a known constant to deal with high autocorrelation. The results show that the

best choice of ν appears to be greater than 30, approximating the corresponding component

model with normal errors.
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Model: Di|Ai > 0 ∼ Binomial(Ai, πi) with logit(πi) = hi, hi = x⊤
i−1β + ϕ(hi−1 − x⊤

i−2β) + εi,
εi ∼ N (0, 1/τ), x⊤

i−1 = (1, V b,1
i−1, V

a,1
i−1,Upi−1,BMOi−1). Priors: (ϕ + 1)/2 ∼ Be(0.5, 0.5), τ ∼

Gamma(1e−3, 1e+3), β ∼ N5(05, 10
3
I5).

Figure 5.12: Marginal posterior densities (with 2000 MCMC thinned samples) for parameters
estimated by the upward movements RW(1) (dotted curve) and WN (solid curve) model, es-
timated with the algorithm CNC combined with the 3-block sampler in which the latent path
is updated using the 1-1’method. The data set we are analyzing is ES, May 16th to May 20th
during the morning (blue curve) and afternoon period (black curve). Red curves denote the
corresponding GLMs.
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Table 5.21: Relative frequencies of price changes of ES in multiple of tick size, from May 23th
2011 to May 24th 2011, after the trade aggregation. The results are presented as percentages.
tick =$0.25.

N = 2 N = 5

Morning Afternoon Morning Afternoon

Number (tick) 23/5 24/5 23/5 24/5 23/5 24/5 23/5 24/5

-2 0.06 0.13 0.03 0.02 0.19 0.62 0.12 0.10
-1 12.59 12.11 12.33 11.98 16.47 15.73 14.52 14.32
0 74.92 75.54 75.30 76.09 67.06 67.19 70.81 71.36
1 12.20 11.95 12.30 11.87 15.82 15.62 14.38 14.12
2 0.23 0.27 0.04 0.03 0.84 0.84 0.16 0.10

5.5.3 Predicting price movements

In the section we predict price changes from May 23 to May 24 during the morning and af-

ternoon period. We analyze each day separately allowing us to assess the predicted accuracy

over the two days separately. The estimation procedure is described in Section 4.5.3. Table

5.21 shows the percentage of the transaction price changes, after the trade aggregation, for the

two sub-periods. It seems that most of the transactions are the same as their previous values,

while the distribution of transaction price changes is roughly symmetric. Furthermore, both

downward and upward moves greater than one tick occur too rarely.

Tables 5.22 - 5.23 provide the MSE and MAE for price changes reported for the next

two days separately with N = 2 and N = 5, respectively. The first column (A-B) gives the

process that is used for each price component, for example, ‘GLM-GLARMA’ means that the

activity component is modeled with a binomial GLM and the upward movements are modeled

with a binomial GLARMA model. The last table row (Lag1) reports the corresponding values

using a model that assume that the best prediction for tomorrow’s market price is simply today’s

price. Concerning the trade bar of size two, Table 5.22 suggests that throughout the morning

the MSE (MAE) is equal for all approaches but GLARMA-GLM. During the afternoon pe-

riod, the best results for MSE and MAE belong to the GLM-GLM and WN-WN, followed by

GLM-GLARMA and WN-RW with differences of 0.1. The worst performance is produced by

GLARMA-GLM, RW-WN and RW-RWwith differences of approximately 0.3. The comparison

of the best performance models and the lag1 model indicates that MSE (MAE) is approximately
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Table 5.22: MSE and MAE of one-step-ahead forecasts for predicting price movements with
N = 2 over May 23th to May 24th. For the activity component model, during the afternoon
the parameter ϕ of the AR(1) process is not significant. For the upward movements, during the
morning, the parameter ϕ of the GLARMA process is not significant. Lag1 reports the MSE
(MAE) values using a model that assume that the best prediction for tomorrow’s market price
is simply today’s. ‘WN(t)’ defines the white noise model with Student’s t errors.

MSE MAE

Morning Afternoon Morning Afternoon

A - B 23/5 24/5 23/5 24/5 23/5 24/5 23/5 24/5

GLM - GLM 0.346∗ 0.349∗ 0.302∗ 0.296∗ 0.332∗ 0.331∗ 0.297∗ 0.293∗

GLARMA - GLM 0.576 0.558 0.587 0.568 0.445 0.434 0.439 0.429
GLARMA - GLARMA - - 0.575 0.601 - - 0.437 0.445

GLM - GLARMA - - 0.303 0.297 - - 0.298 0.294
AR1 - WN 0.346∗ 0.349∗ - - 0.332∗ 0.331∗ - -
WN - WN 0.346∗ 0.349∗ 0.302∗ 0.296∗ 0.332∗ 0.331∗ 0.297∗ 0.293∗

RW - WN 0.346∗ 0.349∗ 0.480 0.478 0.332∗ 0.331∗ 0.402 0.399
WN - RW 0.346∗ 0.349∗ 0.303 0.297 0.332∗ 0.331∗ 0.298 0.294
RW - RW 0.346∗ 0.349∗ 0.481 0.460 0.332∗ 0.331∗ 0.403 0.389
AR1 - RW 0.346∗ 0.349∗ - - 0.332∗ 0.331∗ - -
WN(t) - WN 0.346∗ 0.349∗ 0.302∗ 0.296∗ 0.332∗ 0.331∗ 0.297∗ 0.293∗

WN(t) - RW 0.346∗ 0.349∗ 0.303 0.297 0.332∗ 0.331∗ 0.297∗ 0.293∗

Lag1 0.708 0.689 0.715 0.689 0.497 0.486 0.492 0.478

two (one and a half) times larger. Concerning the trade bar of size five, Table 5.23 suggests that

the RW-WN model has the lowest values, but nevertheless they are still approximately equal to

the lag1 model during the morning. On the other hand, during the afternoon the MSE/MAE is

two and a half times larger. However this result is misleading because the model almost always

predict the most common class, or in other words the zero class.

Concerning the MSEs (MAEs), we can conclude that the binomial AD model is clearly

superior than the lag1model for the trade bar of size two, but for the trade bar of size five it is not.

Considering the execution time when N = 2, since the MSEs (MAEs) of the best parameter

and observation driven models are equal we conclude that it is better to use a binomial GLM

for both price factors.

We compare the predicted price changes with the price changes in the original sample

data by using four scalar performance measures, namely, accuracy, sensitivity (or recall), preci-
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Table 5.23: MSE and MAE of one-step-ahead forecasts for predicting price movements with
N = 5 over May 23th to May 24th. For the upward movements, during the morning, the
parameter ϕ of the GLARMA process is not significant.

MSE MAE

Morning Afternoon Morning Afternoon

A - B 23/5 24/5 23/5 24/5 23/5 24/5 23/5 24/5

GLM - GLM 1.328 1.412 1.084 1.058 0.996 1.031 0.869 0.859
GLARMA - GLM 1.328 1.392 1.109 1.109 0.996 1.022 0.886 0.891

GLARMA - GLARMA - - 1.115 1.114 - - 0.889 0.893
GLM - GLARMA - - 1.118 1.115 - - 0.889 0.893

AR1 - WN 1.328 0.996 1.303 1.278 1.403 1.027 1.004 0.995
WN - WN 1.324 0.994 0.963 0.950 1.403 1.027 0.796 0.772
RW - WN 0.901∗ 0.940∗ 0.301∗ 0.296∗ 0.806∗ 0.882∗ 0.295∗ 0.289∗

WN - RW 1.325 1.394 0.964 0.946 0.995 1.022 0.796 0.792
RW - RW 1.020 1.175 0.302 0.296∗ 0.811 0.886 0.295∗ 0.289∗

AR1 - RW 1.331 1.392 1.303 1.276 0.999 1.022 1.004 0.994

Lag1 0.906 0.941 0.814 0.808 0.627 0.633 0.573 0.564

sion and specificity derived from the confusion matrix [Hajmeer and Basheer, 2003]. Accuracy

is a ratio of correctly predicted observations to the total observations. Sensitivity (of the jth

event) is the ratio of j-events correctly predicted, where j ∈ {−2,−1, 0, 1, 2}. In fact, out of

all the j-events, how many of them have been predicted by the algorithm. Specificity (of the

jth event) is the ratio of not j-events correctly predicted. Precision (of the jth event) is the per-

centage of correct j-predictions out of all j-predictions, which are used to calculate the model’s

ability to classify j-predictions correctly.

The results of the empirical research and their statistical processing are summarized in

Tables 5.24 - 5.25. Clearly the model fails to provide a good prediction of upward and down-

ward moves greater than one tick, since there are no instances where the algorithm declares

these cases; a reason might be that these moves occur too rarely. In the following we only

present the results for May 23 which are similar to May 24. Besides, when N = 2 we use the

binomial GLM-GLMwhich is the top-performing choice, and whenN = 5 during the morning

(afternoon) we use the RW-WN (WN-WN) model which is the (second) top-performing choice.

If we do not make a specific reference to which data segment we are referring to, it means that
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Table 5.24: Prediction accuracy of GLM-GLM measured by confusion matrix over May 23th
to May 24th with N = 2. The results are presented as percentages. Notes: Sensitivity (sens),
specificity (spec), precision (prec) and accuracy (Acc). ‘-’ indicates not a number.

May 23 May 24

Morning Afternoon Morning Afternoon

Class Sens Prec Spec Sens Prec Spec Sens Prec Spec Sens Prec Spec

-2 0 - 100 0 - 100 0 - 100 0 - 100
-1 51.65 40.32 88.64 61.30 48.89 90.20 50.27 41.53 89.79 61.79 48.66 90.24
0 73.78 82.46 54.08 76.30 84.75 61.89 75.30 82.25 51.39 77.00 85.19 61.76
1 52.07 39.00 88.32 61.05 47.19 89.58 47.29 36.50 88.30 60.66 47.47 90.02
2 0 - 100 0 - 100 0 - 100 0 - 100

Acc 68.22 72.35 68.66 72.91

we imply both examined time periods; the same is true for the different trade bar sizes.

Firstly, judging by the prediction accuracy, it can be seen that the accuracy decreases as

we increase the size of aggregated trades and is affected by the time period. More specifically,

when N = 5, the prediction ability of the RW-WN and WN-WN model is less than 30%.

Despite the fact that this prediction ability is not significant, the model works slightly better

than a random guessing. On the other hand, when N = 2, the total accuracy of the GLM-

GLM yields much better results which are slightly more than 68% and 72% on the morning and

afternoon, respectively.

Similarly to accuracy, the sensitivity is affected both of the size of aggregated trades and

the time period. More specifically, when N = 2, sensitivity in identifying up/down moves

over the afternoon achieves 61%, or in other words, 4 of every 10 up/down moves, in reality, are

missed by our model and 6 are correctly identified as up/down moves, while during the morning

the corresponding value drops. On the other hand, the recall of zero state is over 70%, hence

less than 30% of non-zero moves are incorrectly classified as zero moves. When N = 5, the

ability of the model to identify correctly each event drops to 30%, meanwhile, the recall of zero

moves on May 24 drops to 20 on the morning (afternoon) segment.

Concerning the specificity, the RW-WN and WN-WN model achieve specificity of 65%

when identifying the non-up/down moves, i.e. 4 of every 10 non-up/down moves in reality are

miss-labeled as up/down moves and 6 are correctly labeled as non-up/down moves. The speci-
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ficity of zero moves is drops to 60%. WhenN = 2, the ratio of non-up/down moves incorrectly

identified as up/down moves is low (10% on average). However, specificity of 54.08% (61.80%)

in identifying zero moves during the morning (afternoon) is achieved. It means that the model

allows to identify non-zero moves as zero moves at a rate of 46% (38%).

Table 5.25: Prediction accuracy of WN-WN measured by confusion matrix over May 23th to
May 24th with N = 5. The results are presented as percentages. Notes: Sensitivity (sens),
specificity (spec), precision (prec) and accuracy (Acc). ‘-’ indicates not a number.

May 23 May 24

Morning Afternoon Morning Afternoon

Class Sens Prec Spec Sens Prec Spec Sens Prec Spec Sens Prec Spec

-2 0 - 100 0 - 100 0 - 100 0 - 100

-1 30.32 15.47 67.32 30.06 13.63 63.39 28.62 12.34 65.45 29.04 12.38 65.65

0 30.02 60.00 59.26 21.08 59.39 70.48 27.24 61.70 58.99 26.40 60.73 57.47

1 27.72 12.83 64.63 36.20 13.99 58.79 29.29 12.01 63.98 30.12 12.01 63.74

2 0 - 100 0 - 100 0 - 100 0 - 100

Acc 29.51 25.11 27.24 27.63

Regarding the precision, the results show that the up/down moves are harder to classify

than the zero moves. For example, when N = 5, out of the total observations that the model

predicts as up/down moves on the morning only 15% are correct, and gets a little worse on the

afternoon. On the other hand, precision of 60% in identifying zero moves is achieved. When

N = 2, more than 80% out of zero predictive moves are correctly classified. On the other hand,

around the half out of the upward (downward) predictive moves are truly an upward (downward)

move on the afternoon, meanwhile, this value drops to 40% on the morning.

Themodel which is used for estimating the activity component is crucial (as expected) for

the final results of the empirical research. For example, let assume that the values of the activity

process on May 23 to May 24 is known, so we only need to predict the upward movements. The

models correctly identified more than 80% on each trade bar size. When N = 2, the recall of

zero state is 90% and rises to 99% when N = 5, while the recall of up/down one tick moves

is on average 80%. The recall of up/down two tick moves in on average 30% (<10% )for trade

bars of size two (five).
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Chapter 6

Conclusion and Future Directions

In this chapter some of the most important, general conclusions derived in each chapter of the

thesis are summarized and directions for further work are given.

6.1 Summary

We employ the AD model, introduced by Rydberg and Shephard [1998a, 2003], which defines

the price change as the product of a binary process for a change in price or not, and a second

binary process for a positive or negative change when one occurs. For both components of the

price process, the dynamics are modeled using a GLM and a GLARMA model with a logistic

link function. Bothmaximum likelihood and Bayesian estimation viaMCMC and SMCmethods

is conducted. We perform a simulation study to investigate the performance of the proposed

algorithms for the estimation of the model.

We extend the approach of Rydberg and Shephard [1998a, 2003] bymodelling each price

component sequentially using a parameter driven binary generalized model with an AR(1) and a

WN in the mean, and estimate each of these components via MCMCmethods. We consider two

different parametrizations: the centered parametrization and the non-centered parametrization.

Our simulation experiments show that the convergence rate of the MCMC algorithms deterio-

rates when the autoregressive coefficient, ϕ, decreases to an absolute value or the conditional

precision, τ , increases. It becomes clear that the interweaving samplers [Yu and Meng, 2011]

exhibit lower autocorrelation (and therefore a higher ESS/sec) with respect to all parameters at

a very little extra computational cost, whereas the baseline of the interweaving strategy is of

minor influence. Regarding the latent path strategy, the results show that as the value of the
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conditional precision increases it is preferable to update the components of the latent state in

one step, while for the smaller values it is preferable to update its components one at a time.

Comparing the blocking strategy of the parameters, the 3-block sampler shows higher ESS/sec

most of the time. Finally, as the sample size increases, the sampling efficiency deteriorates.

We apply the above models to the ES. The results show that the influence of lagged price

activity, is negative for all past period values, indicating that past active trades tend to decrease

the probability of subsequent movements in the price, while this reduction decays down at lag

two. Lagged log-durations have a very dramatic positive impact on the chance that a trademoves

the transaction price. Besides, a smaller but negative impact is made by the log trading volume.

For the quoted volumes on the previous best level, we find a positive impact on the activity

process. More specifically, the effect of the buying volume is slightly larger than the impact of

the selling volume. The standard deviations are smaller for the afternoon dataset compared to

the morning dataset. Furthermore, the influence of lagged price direction, is negative indicating

that if the price moved on the last trade then there is a large chance that this movement will be

reversed if there is an active trade. Concerning the impact of buy market orders, we observe a

significant negative at influence lag one, hence the odds of an up movement are larger for sell

market orders than buy market order at lag one. Bid (ask) volume at lag one reduces (increases)

the chance that the price movement will be upwards, while the reverse is true at the second lag.

One-step ahead predictions for the next two trading days for each component are ob-

tained. Regarding each component model, the results show that the predictive ability of the

proposed models is the same, indicating that there is not much difference between the models,

with Brier score (BS) almost two times smaller than a BS of value 0.25 which indicates a random

guess. Regarding the information set, the BS of the direction model using only past values of

the processes is 3.5 (7) times smaller than the corresponding wider information set during the

morning (afternoon) period. However, the improvement of the activity model is significantly

lower. Considering the execution time, we conclude that it is better to use a Bernoulli GLM

for both price factors. The direction model with the wider information set has a good accuracy,

sensitivity and specificity which are over 90%, and some of them even reach 99%. About the

activity model, the ability of the model to classify correctly the trade activity is over 75% for the

plain model, and it improves 3% with the wider set. Regarding the sensitivity, the results show

that the active trades are harder to classify than the inactive. More specifically, 6 of every 10
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active trades, in reality, are missed by our model and 4 are correctly identified as active. On the

other hand, less than 20% of non-active trades are incorrectly classified as active. Regarding the

precision, out of the total observations that the model predicts as active (inactive) trades over

40% (85%) are correct. Regarding the specificity, the model allows to identify active moves as

inactive at a rate less than 60%, and non active trades as active at a rate less than 20%. The

corresponding measures using the wider set is a little better.

We compare the predicted price changes with the price changes in the original sample

data using the activity GLM and direction GLM. The results show that the price direction moves

are harder to classify than the zero moves, while on the afternoon the predictive measures are

slightly better. More specifically, the ability of the model to classify correctly the price changes

is 75%. Less than 20% of non-zero moves are incorrectly classified as zero moves, while 6 of

every 10 up (down) moves, in reality, are missed by our model and 4 are correctly identified as

up (down) moves. Finally, more than 85% out of zero predictive moves are correctly classified,

while this value drops to over 40% in identifying the non-zero price moves. Comparing the

model with an alternative model that assume that the best prediction for tomorrow’s market

price is simply today’s price we can conclude the AD model is clearly superior for the trade bar

of size two since the MSE (MAE) is approximately two (one and a half) times smaller.

We propose the binomial AD model for the analysis of trade by trade price changes.

The model is applied on data where a transaction can move the trade price one tick up or one

tick down or not at all. Following the idea of decomposition, we define the price change as the

subtraction of two binomial processes. The first process denotes the number of active trades

over a short trade interval (denoted trade bar) of a fixed size, and the second process indicates

the number of upward moves (if at least one change occurs) during the trade bar. Based on this

decomposition, we model each component sequentially using a generalized linear model with

logit link function, as well as a first order GLARMA model to investigate serial dependence in

the data. Besides, we consider an AR(1), a WN and a random walk of order one latent process

into the logit link function, and use MCMC techniques for estimation.

We perform a simulation study to investigate the effectiveness of the binomial parame-

ter driven model using different algorithms. The results show that as the number of trials, N ,

decreases, the sampling efficiency of all parameters decreases. Concerning the simulation effi-

ciency of the autoregressive coefficient the results show that keeping ϕ fixed, it seems that as the
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value of τ increases, the sampling efficiency of ϕ deteriorates. Keeping τ fixed, as the value of

ϕ decreases, the sampling efficiency gradually decline. For most underlying parameter values,

the interweaving samplers exhibit lower autocorrelation with respect to all parameters, whereas

the baseline of the interweaving strategy is of minor influence. Regarding the method for up-

dating the latent state, the results show that as the value of the conditional precision increases

it is preferable to update the components of the latent state in one move, rather than one at time

conditional on all the others values of the state process (and on the parameter vector). However,

the value of τ for this change depends on the value of trials; asN increases, this value increases.

About the blocking strategy of the parameter vector, the 3-block sampler shows higher ESS/sec

most of the time for all parameters. Finally, as the sample size increases, the sampling efficiency

of the parameters deteriorates.

The binomial ADmodel is applied on ES data using trade bars of size two and five during

the morning and afternoon time period. The time gaps between trading days are ignored. We

investigate the impact of two lagged values of: the number of active trades, the number of

upward moves, the logarithmic duration, the logarithmic traded volume, the bid-ask spread,

the logarithmic bid and ask volume on the two best observed quote levels of the LOB, a not

aggressive market order dummy variable, a buy market order dummy variable and a dummy

variable denoting that a trade moves up the price, on the subsequent price movement for each

price component. Regarding the activity process, the results suggest that the number of active

trades at the previous trade bar is significant for both time periods, while its penultimate value

is significant only for the afternoon subset. Past active movements tend to increase the change

of subsequent active movements, while the influence decays down at lag two. Regarding the

upward movement process, bid (ask) volume at lag one increases (reduces) the chance that the

price movement will be upward, while if the price moved on the last trade then there is a large

chance that this movement will be reversed if there is an active trade bar. Finally, the odds of

an up movement are larger if the past active trade is a sell market order.

One-step ahead predictions for the next two trading days are obtained. In order to assess

the predictive performance of the binomial AD model with the alternative serial dependence

structures we apply the MSE and MAE criterion. About the trade bar of size two, the results

suggest that throughout the morning the MSE (MAE) is equal for all approaches except the

GLARMA-GLM (the notation means that the activity component is modeled with a binomial
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GLARMA model and the upward movements are modeled with a binomial GLM model). Dur-

ing the afternoon period, the best results for MSE andMAE belong to the GLM-GLM andWN-

WN, followed by GLM-GLARMA andWN-RWwith differences of 0.1. The worst performance

is produced by GLARMA-GLM, RW-WN and RW-RW with differences of approximately 0.3.

Considering the execution time, we conclude that it is better to use a binomial GLM for both

price factors. About the trade bar of size five, the results show that the RW-WN (WN-WN)

model during the morning (afternoon) perform better. Comparing the top-performing choice

with an alternative model that assume that the best prediction for tomorrow’s market price is

simply today’s price we can conclude the binomial AD model is clearly superior for the trade

bar of size two since the MSE (MAE) is approximately two (one and a half) times smaller, but

for the trade bar of size five it is not.

We compare the predicted price changes with the price changes in the original sample

data by using the accuracy which is a ratio of correctly predicted observations to the total obser-

vations. It can be seen that the accuracy decreases as we increase the size of aggregated trades

and is affected by the time period. More specifically, whenN = 5, the prediction ability of the

RW-WN andWN-WNmodel is less than 30%. Despite the fact that this prediction ability is not

significant, the model works slightly better than a random guessing. On the other hand, when

N = 2, the total accuracy of the GLM-GLM yields much better results which are slightly more

than 68% and 72% on the morning and afternoon, respectively.

Furthermore, we compare three scalar performance measures, namely, sensitivity (or

recall), precision and specificity derived from the confusion matrix. Unfortunately, the model

fails to provide a good prediction of upward and downward moves greater than one tick, since

there are no instances where the algorithm declares these cases. This is because the activity

model has a tendency to underestimate the extreme values. When N = 2, sensitivity in identi-

fying up/down one tick move over the afternoon achieves 61%, or in other words, 4 of every 10

up/down moves, in reality, are missed by our model and 6 are correctly identified as up/down

one tick moves, while during the morning the corresponding value drops. On the other hand, the

recall of zero state is over 70%, hence less than 30% of non-zero moves are correctly classified

as zero moves. When N = 5, the ability of the model to identify correctly each event drops

to 30%, meanwhile, the recall of zero moves on May 24 drops to 20 on the afternoon segment.

Concerning the specificity, when N = 2, the model allows to identify non-zero moves as zero
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moves at a rate of 46% (38%) during the morning (afternoon) period, while the ratio of non-up

(down) one tick moves incorrectly identified as up (down) one tick moves is 10%. WhenN = 5,

4 of every 10 non-up (down) one tick moves in reality are miss-labeled as up (down) one tick

moves and 6 are correctly labeled as non-up (down) one tick moves, while the specificity of zero

moves is 60%. Regarding the precision, the results show that the up (down) one tick moves are

harder to classify than the zero moves. When N = 2, more than 80% out of zero predictive

moves are correctly classified. On the other hand, around the half out of the upward (downward)

predictive moves are truly an upward (downward) one tick move on the afternoon, meanwhile,

this value drops to 40% on the morning. When N = 5, precision of 60% in identifying zero

moves is achieved. However, out of the total observations that the model predicts as up (down)

one tick moves only 15% are correct on the morning, and gets a little worse on the afternoon.

6.2 Further developments

The work presented in this thesis extended the existing empirical literature on trade by trade

price changes by explicitly accounting for prices discreteness of the tick data. There are still

much work to be done, both in extending and perfecting our study which is presented below.

Modelling the proportion of excess of zeros. Our models have the tendency to underestimate

the extreme values in the tails. Therefore, in order to add more flexibility to the tails of the

Binomial distribution, we may use a ZIB regression model, proposed by Hall [2000], which is

a statistical model to fit binary data with excessive zeros. It is a mixture of observation of only

zeros and a weighted binomial distribution. Two unknown parameters in ZIB are probability of

observation from only zeros and probability of success in binomial distribution, and for regres-

sion, logit link functions can be imposed on these two parameters to incorporate covariates. The

analysis may run with different parameters each day, which are assumed to be i.i.d. following a

normal distribution.

Alternative processes. We may consider alternative processes such as an autoregressive pro-

cess of order two and check if the performance of classifiers will be affected or not.

Online estimation. So far we have assumed that all data have been collected before performing

any inference, and when we predict a new observation we keep the parameters fixed equal to the
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estimated coefficients and we propagate the particles using suitable particle filter algorithms. In

contrast to MCMC methods, SMC are useful for online estimation problems, or in other words,

if we want to update our analysis after each new observation comes in. Numerous approaches

for online estimation (where the parameters are estimated as well) have been proposed; Kantas

et al. [2015] presents a comprehensive review.

Alternative data. Studying price changes in other futures market, or stocks traded for example

at NYSE with various trade intensities. Besides, it is interested to apply the model to more

balanced data and examine its performance of identifying each class.

Bivariate model for price changes and time duration. When combined with a propel model

for the time between trades, for example, the autoregressive conditional duration proposed by

Engle and Russell [1998] the analysis provides a complete model for the evolution of prices

in real time. Following the idea of decomposition, the joint conditional density of the price

change and the duration is decomposed into the product of the conditional density of the mark

and the marginal density of the arrival times, both conditioned on the past filtration of the joint

information set.

153



Appendices

154



Appendix A

Data and matching algorithm

This appendix describes the procedure to match trade and limit order book data as well as to

identify each order book event as a limit order, cancel order or market order; the process is

implemented in MATLAB 2013b.

The front month E-mini S & P 500 futures contracts were recorded electronically on

a continuous 23-hour schedule on the Globex between January and December 2011. Globex

is active from Monday to Friday. The data is provided as virtual folders, one folder for each

month. Within a folder MAT-files are included, one file for each day (file names are in the format

YYYMMDD.mat). Each file contains the following variables: arr, deltaVol, lob, myTime with

sizes narr×14, narr×1, nlob×60 and nlob×1, respectively. Always narr>nlob.

Each row in the arr matrix records every trade and change of the order book whenever

it occurs, while the variable lob stands for the LOB and it was rebuilt by arr. In what follows,

all operations involving r must be performed for all r ∈ 1 : narr. Furthermore, immediately

after the beginning of the r-loop set if arr(r,1)~=-1, l=l+1; end, where l is initialized

with zero and takes values in {1, 2, · · · , nlob}. Index l corresponds to the lth order book event.

The variable lob contains actual bid and ask prices and their corresponding volumes up

to ten levels; the first six columns give information for the best bid/ask quotes, the second six

columns contain similar information for the second level of the book etc. The associated date

and time is stored in the variable myTime. To reformat the date and time, and also show the

milliseconds the MATLAB command datestr(myTime,'dd-mm-yyyy HH:MM:SS.FFF') is

used.

The column arr(:,1) takes the values {−1, 1, 2, · · · , 10}; if arr(r,1)==-1 it in-

dicates that at date and time arr(r,2) a trade occurred with price arr(r,7) and volume
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arr(r,8). Whether arr(r,11)==1(2), then the trade was a buy (sell) market order. On the

other hand, if arr(r,1)==j it shows that a change took place on the jth level in the book where

j ∈ 1 : 10; if the bid (ask) size has changed, then the bid (ask) price arr(r,3) (arr(r,5))

and the bid (ask) volume arr(r,4) (arr(r,6)) will be real values, otherwise it will be NaN.

The variable deltaVol contains both integers and NaN values. If deltaVol(r,1)>0, it

means that the volume at the arr(r,1)th price level has increased and the lth event is always a limit

order; if arr(r,3:4) (arr(r,5:6)) are real numbers then it is a bid (ask) limit order. Similarly,

when deltaVol(r,1)<0 then the volume on the arr(r,1)th level in the book has decreased and

the lth event may be a cancel order, market order or both. Besides, NaN value is returned only

when arr(r,1)==-1.

Here it is assumed that deltaVol(r,1)<0. In order to characterize the lth event we

continue as follows: firstly, we examine whether the change occurred on the best level of the

order book. If it was not, then it is always a cancellation; see the elements arr(r,3:4) and

arr(r,5:6) to decide if it is a bid or an ask cancel order. Conversely, if arr(r,1)==1, initially

we examine if arr(r-1,1)==-1. If it is, since a buy (sell) market order generally will execute

at or near the best ask (bid) price, the lth line in arr should have real values on the ask (bid) side

and NaN values on the bid (ask) side. However, if we observe the opposite, then the lth event is

characterised as a bid (ask) cancel order. When arr(r-1,1)~=-1, then the lth event may be a

trade.

Nowwe emphasize in the case where arr(r,1)==1, deltaVol(r,1)<0 and arr(r-1,1

)~= -1. Set trades_nearby=MOindex+find(arr((MOindex+1):r,1)==-1), where MOindex

is initialized with zero. This variable denotes the ‘closest’ trades up to r that has not yet been

combined with a LOB. You may observe that some elements in arr(trades_near by,11)

take the value 1 and others the value 2. If the bid (ask) price and volume in the rth line in

the arr matrix are real numbers, then it is a sell (buy) market order; consequently, only the

elements of trades_nearby such that arr(trades_nearby,11) equals 2 (1) are kept. If the

vector trades_nearby is empty, then the lth event is characterized as a cancel order; oth-

erwise set jtrades=find(arr(trades_nearby,7)==arr(r,3)(arr(r,5))). Again, if the

resulting vector jtrades is empty the lth event is classified as a cancel order, otherwise set

trades_nearby=trades_nearby(jtrades) and the lth event is characterized as a trade. The

corresponding traded volume is tradedVol=sum(arr(trades_nearby,8)). Let mySize=-

156



deltaVol(r)-tradedVol. If mySize>0, then there is a cancelling order plus a trading. On the

contrary, if mySize<0, then tradedVol=-deltaVol(r). If the lth event has been characterized

as a trade set MOindex=trades_nearby(end,1). Note that it is possible to combine multiple

trades with the same trade price with a LOB observation.
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