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ABSTRACT

Michalis Linardakis

Extensions of Latent Variables Models with applications on

econometric and educational models

March 2004

The present thesis deals with some extensions of latent variable models.
We present the family of discrete choice models, we analyze complicated but
realistic ranking data generation structures that have either not been
considered before or have not been adequately handled, and we propose novel
methodological approaches and MCMC technicalities. We enhance the
multinomial probit model by including ranking responses and we refer to this
model as the multiranked probit model. We also adopt the notion of utility
threshold parameter, which deals realistically with ranking responses and ties,
and we enrich the model with random effects on the utility thresholds. To
illustrate the proposed model, a real data set is analysed.

Under the general frame of the latent variable models, another family, the
IRT models, is presented. We propose a multidimensional IRT model with
thresholds; we analyse multiple-choice responses in multiple-choice tests
when there are penalties for each wrong answer such as a subtraction of points
(a widely used technique that attempts to prevent students from guessing).
The literature is still sparse in analysing data sets of multiple-choice answers
with omissions. We extend the use of item response models to capture this
situation by including guessing and threshold latent parameters. We also
separate the ability of each student into several parts, which express different
cognitive tasks by a multidimensional scaling approach. A Pseudo-Bayes
factor model choice approach (based on cross-validation predictive densities)
is used to select the number of dimensions that fit the data better. The

proposed model is illustrated with two real data sets.
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MNEPIAHYH
Muiyding Awapddkng

Aievpovon Moviéhov AavBavovsov MetafAntov ue
Epapuoyéc otnv Owovopetpio kot tTnv Exmaidevtikn

2 TOTIGTIKY

Méptiog 2004

H dwrtpifn aocyoieitar pe vmodeiypota AavBavovodv peETAPANTOV.
[Tapovoidletar M olkoyéveln HOVTEA®V OlOKPITNG EMAOYNG OAAE Kot
avaAivovtal dedopéva, 1 dou TOV omoimv dev €xel AVTIHETOTICOEL EMAPKDG
and to vmdpyovra vmodeiypatoa. o to okomd owvtd, mpoteivetar M
pefodoroyioa mov Pacilerar otig Monte Carlo Mapxofravég AAvoideg g
Y1atioTikng katd Bayes. Xtnv mpotewvopevn pebodoioyia, dtevphvovue 1o
voderypo multinomial probit é1o1 dote va aviipetonilel anokpicelg dtdtaéng
Kot ovopalovpe avtd to povréro multiranked probit. Eniong, ypnoiponotovpue
v évvotla tov «opiov ypnoipdtnracy (utility thresholds), 6tav ota dedopéva
dtdtaéng mapatnpovvtal tocomariec. To poviého mov  mpoteiverat,
ypNoipomoleital yio va avarvdel Eva 6ET TPAYUATIKAOV 0E00UEVOV.

Eniong mopovcialetrar po GAAN owkoyévelo HovIEA®V AavOoavovomv
petapintov, ta IRT povtéra. Ilpoteivovpe éva moivdiaoctato IRT poviéro
pe O6pwa (thresholds). Mg to poviého avtd, avaivovpe dedopéva amd TECT
TOALATTA®V EMIAOYDOV G€ HOONTEG, OTIC MEPMTAOCELS TOV LIAPYEL HelwOn 01N
Babpoioyia (penalty) yia kéBe AavBoacpévn omdvinom (Mo TEYVIKN 7OV
YPNOLUOTOLEITOL YIO VO OTOTPEYEL TOLS MAONTEG amd TNV ATAVINGT «KOTA
ToxM»). Ztn Biploypagic dev €xel aKOUN E€UEAVICTEL HOVTIEAO TOL Va
EMTPETEL TN AETTOUEPT) AVAALON TETOLOV €1d0VG dedopévav. ['a to Adyo avtd
npoteivoupe to poviéro pe ypnon mapapétpov «opiov» (thresholds). Emiong,
Yopilovpe TNV EKTILAOUEVT YEVIKN 1KovOTnTO KAOBE poOnT oE emMuEPOLS

YVOOTIKEG Kavotnteg - mapdyoviec. H dwodwkacio emAoynig povtéAov —

VII



aplOpod moapayoviov yivetar pécw tng pedodov Pseudo-Bayes factor. Télog,
TO TPOTELVOUEVO HOVTEAO YPMNOIUOTOLEITAL Y100 VO avOALOOVY 000 TTpayUATIKA

OET 0E0OUEVOV.
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Chapter 1

Introduction: basic ideas and

utilization of latent variables

1.1 Defining a latent variable

The term latent variable covers the idea of something underlying what is observed, some-
thing that is hidden behind the measurements we record. In this context, our ability to
answer a question that measures intelligence is a latent variable; we observe a variable
that denotes whether our answer was correct or not, and this categorical variable is what
we record. Nevertheless, this indication is only what we can observe from the underlying
continuous variable named “intelligence”.

Our decision on how to behave in a given situation also has to do with something
latent; we finally decide to follow one way or another, meanwhile we have thought out
the utilities of any possible ways (probably unconsciously) and we follow the one that
maximizes the utility function. In other words, the utility is a summarizing concept that
comes prior to its indicators which we measure.

Is it so common? Are there latent variables in many situations, whether this situation
can be measured or not? In fact, even in the simplest examples of a statistical problem,

we may be faced with latent variables. A usual practise, for example, is to record the

1



age or the income in a questionairre as categorical (ordinal) variables. In fact, these are
continuous variables that we probably cannot or we are not willing to record. We simplify
the process by writing them down as ordinal but an underlying latent variable is hidden
behind them. However, in the following chapters, we will not pay attention to this kind
of latent variables (although the way to work with them will be the same) but to those

which cannot be directly observed in any way, simplifying a process or not.

1.2 The use of latent variables

A next plausible question is why it is useful to include latent variables in a model since
they are not directly revealed, instead of using the indicator variables we have already

observed. As Bartholomew and Knott (1999) explain:

One reason, common to many techniques of multivariate analysis, is to reduce
dimensionality. 1If, in some sense, the information contained in the interre-
lationships of many variables can be conveyed, to a good approximation, in a
much smaller set, our ability to ‘see’ the structure in the data will be much
improved. This is the idea which lies behind much factor analysis and the

newer applications of linear structural models.

The authors give an example that illustrates the use of a large questionnaire that
attempts to investigate the basic political position, which is, in a sense, the underlying

latent variable, via a large set of questions:

One’s view about the desirability of private health care and of tax levels for
high earners might both be regarded as a reflection of a basic political position.
Indeed, many enquires are designed to probe such basic attitudes from a variety
of angles. The question is then one of how to condense the many variables
with which we start into a much smaller number of indices with as little loss
of information as possible. Latent variable models provide on way of doing

this.



A second reason to use latent variables in a statistical model is inherent to the nature
of the variables themselves; though these are important for the research, they cannot be
directly observed, as it was pointed out from the beginning of this chapter. Bartholomew

and Knott (1999) state:

Latent quantities figure prominently in many fields to which statistical meth-
ods are applied. This is especially true of the social sciences. A cursory
inspection of the literature of social research or of public discussion in news-
papers or on television will show that much of it centres on entities which
are handled as if they were measurable quantities but for which no measuring
instrument exists. Business confidence, for example, is spoken of as though it
were a real variable, changes in which affect share prices or the value of the
currency. Yet business confidence is an ill-defined concept which may be re-
garded as a convenient shorthand for a whole complex of beliefs and attitudes.
The same is true of quality of life, conservatism, and general intelligence.
It is virtually impossible to theorize about social phenomena without invok-
ing such hypothetical variables. If such reasoning is to be expressed in the
language of mathematics and thus made rigorous, some way must be found
of representing such ‘quantities’ by numbers. The statistician’s problem is to
establish a theoretical framework within which this can be done. In practice
one chooses a variety of indicators which can be measured, such as answers
to a set of yes/no questions, and then attempts to extract what is common to

them.

The latent variables may either be continuous (metrical) or categorical. The same is
valid for the manifest variables which are observed. Depending on the different types of
the variables which are involved in a statistical problem, a different analysis of the same
“family” arises. Hence, when the manifest variables are continuous and the resulting
latent variables are continuous, we are faced with the well-known factor analysis. In the

case where the manifest variables are continuous and the latent variables are categorical,

3



the analysis is called latent profile analysis. On the other hand, when the manifest
variables are categorical, we use the latent class analysis, in the case of categorical latent
variables, or the latent trait analysis, in the case of continuous latent variables. This
later case may involve many different alternative cases which arise from different forms
of the categorical manifest variables. Therefore, when the categorical manifest variables
are in an ordinal form, the conjoint analysis results. A special case of this analysis is
formed when the categorical manifest response variable is binary, which gives rise to the
so called discrete choice model. If the ranking responses-manifest variables include ties,
we end up with a multiranked model, which is proposed in the present thesis.

There are many other models within the wide family of the latent variables models.
Depending on the scientific field, econometrics, marketing, psychology, education etc, we
meet the appropriate latent variable models, which have been designed to deal with the
specific problems. One of the analyses of this wide family is the item response theory, that
is used for psychometric and educational purposes. This model, in its multidimensional

version, is also under consideration in the present thesis.

1.3 Outline of the thesis

Each chapter of the following in this thesis, begins with an introductory section, where
an outline of the chapter is provided.

The proposed methodology of the thesis is Bayesian and the implementation tool
adopted is Markov Chain Monte Carlo (MCMC). To introduce the reader with some
basic ideas of the Bayesian methodology, Chapter 2 presents two widely used methods
for sampling from conditional distributions: the Gibbs Sampler and the Metropolis-
Hastings algorithm. Chapter 3 reviews the discrete choice models and the modifications
that improve these models, which have been proposed in the literature (a detailed review

and an application of these models is also given in Linardakis, 1997; see also Linardakis,

2001).



The multiranked probit model is proposed in the thesis, that is used to analyze data
sets where the responses are of ranking form with ties. That is, the respondents rank
a number of alternatives, based on the utility maximization. In the case where the dif-
ference of the utilities of two or more alternatives does not exceed a threshold quantity,
the alternatives are considered to be indistinguishable with respect to their utility and,
hence, a tie occurs. Thus, we analyze complicated but realistic ranking data generation
structures that either have not been considered before or have not been adequately han-
dled, and we propose novel methodological approaches and MCMC technicalities. The
proposed model is presented in Chapter 4 and an application of this model is provided
in Chapter 5. Selected contents of these chapters have also been presented in the articles

by Linardakis and Dellaportas (1998, 1999 and 2003).

In the multiranked probit model:

e we ensure identifiable parameters for the covariance matrix of the underlying utility

vectors

e we adopt the notion of utility threshold parameter which deals realistically with

ranking responses and ties

e we enrich the model with random effects on the utility thresholds (we include a

hierarchical step that models the unit-specific utility thresholds as exchangeably
distributed)

e we permit the use of heavy tail distributions for the stochastic error term. This
is proved to be fruitful when small data sets (that is, sets with a small number of
responses) are analysed. In this case, the use of normal errors leads to inexplicable

results

o to illustrate the proposed model, we analyze a complicated ranking data set from

a stated preference experiment for Attiko Metro

5



e we present practical graphical answers on pivotal questions of the transportation
policy with respect to value of some specific attributes (for example, the price of

the ticket) that results into maximization of the profits.

Under the general family of the latent variable models, the Item Response Theory
(IRT) is also considered. Chapter 6 reviews the most widely used IRT models and presents
the proposed model that analyses data sets with omissions in the responses. Chapters 7
and 8 illustrate the proposed model with two real data set applications (selected contents
of chapter 7 have also been presented in Linardakis and Dellaportas, 2000).

In the proposed IRT model:

e we analyze multiple choice responses in multiple choice tests when there are penal-
ties for each wrong answer and we extend the use of item response models to capture
this situation by including latent threshold parameters and appropriate guessing

parameters,

e we separate the ability of each student into several parts, which express different
cognitive tasks by a factor analysis approach (this is a factor analysis that is applied
on latent variables, the abilities of the students, and some constraints have to be

placed on the parameters for identification and rotation purposes),

e we use a Pseudo-Bayes factor model choice approach (based on cross-validation
predictive densities) in order to select the number of dimensions that fit the data

better,

e we illustrate the proposed model with a real data set from a multiple-choice test
that we constructed from us, and was used as an exam paper in the Department
of Statistics, of Athens University of Economics and Business. The analysis of this
data also illustrates the interpretation of the factors into the IRT models, with

quite reasonable results,



e we compare the model with ¢; parameters with the three parameter normal ogive
model, in terms of predicted students ranking. That is, we construct the credible
intervals of the predicted ranking of the students based on the two models outputs,
and we check the agreement of the intervals with the grades and the grades’ ranking

the students received,

e another large data set that is analysed (the SAT data) illustrates the convergence

and the interpretation of the parameters of the proposed model.






Chapter 2

MCMC Methods and Inference

2.1 Introduction

The approach of this thesis will be Bayesian and the Markov Chain Monte
Carlo (MCMC) method will be used throughout. For this reason, we will
briefly present the Gibbs Sampler and the Metropolis-Hastings algorithm in
this chapter; especially, the Gibbs Sampler is a necessary background for the
multinomial probit (MNP) Sampler, which is essential in the presentation of

the multiranked probit model that we propose.

2.2 The problem

Suppose that a posterior density f(y) with y = (y1,...,y,), ¥y € R?, is what we would
like to obtain for a particular problem. However, the calculation of such a density may
require extremely difficult integrations and, moreover, these may, by no means, be done
analytically but only numerically. Furthermore, the calculation of a marginal density that
is obtained from the joint density f(y) is of particular interest. However, for instance,

think of the joint density mentioned above. The marginal density f(yi) is given by:
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) = /---/f(yl,---,yp)dyz---dyp-

Then, for p large, it is obvious that direct calculation would be either time-consuming
or simply impossible! Nevertheless, instead of calculating the posterior density (or the
marginal posterior densities) directly, one can draw from conditional densities for all the
parameters, given the remaining, in order to obtain a draw from the desired posterior

density. This is what the Gibbs Sampler obtains. The method is discussed below.

2.3 The Gibbs Sampler

Suppose we need to calculate the joint density f(y) = f(v1,...,y,) (or the marginal
posterior distributions from a desired density) but only the full conditional distribu-
tions f(yily—:),y—: denotes all the components except y;, of the desired quantities are
available to sample from. These conditionals can be easily calculated from the product:
likelihood x priors for each parameter, if one ignores the terms which do not include
the parameter of interest . Then, given some initial values for all of the quantities of
interest, we can take a random value from the first conditional distribution as if the other
quantities were equal to the respective initial values. We then replace the initial value
of the first quantity with the first sampled value and the same work is repeated for the
next conditional distributions until a value has been sampled for all the desired quantities
(given, in each step, the updated values-or the most recent value of the quantity that has

been generated -for all the remaining).

So, an iteration has been completed and if the algorithm runs for a sufficient number
of iterations, say R, then a Markov chain for each quantity will have been generated. It

can be proved that these draws converge to the posterior distribution of interest.

The algorithm can be presented as follows:

10



L.pick initial values y° = (y3, ..., yg)

2.for 1 =1 to a suf ficiently large R do

make the random drawings

yi from f(yi]y'3h)
y% from f(yz|yi, yé_lv ey y;_l)
yg from f(y3|yi, yév yf;_la e y;_l)

y, from f(y,ly,)

As R approaches to infinity, the joint distribution of y* can be shown to approach the
joint distribution of y so that, these drawings can be used to compute posterior moments
and density estimates.

It must be mentioned that the total number R of iterations which are needed in order
to obtain convergence depends on the nature of the problem, the correlation between the
quantities, the autocorrelation of each quantity etc. With respect to the initial values
that are used, the Sampler will finally converge to the true posterior distribution even
with starting values which are far from the reality but, in this case, the total number of
the required iterations will be much larger due to the higher autocorrelation within the
chains which will be formed.

For details about the Gibbs Sampler, see Geman and Geman (1984), Gelfand et al.

11



(1990), Casella and George (1992), Smith and Roberts (1993) among others.

2.4 The Metropolis-Hastings Algorithm

In the Metropolis-Hastings algorithm, the aim is the same as in the Gibbs Sampler, but
this algorithm is used when the conditional distributions, which we would like to sample
from, do not have the form of a known distribution. Then, a transition probability
function ¢(y,y’) is used in order to accept a generated value y" and replace y with y’.
So, if y* = y, y’ drawn from q(y,y’) is considered as a proposed possible value for y'*!

and is accepted with probability

min{ f(y")q(y',y)/ [(w)aly,y"), 1} if f(y)a(y,y’) >0

a(y,y') = '
1 if f(y)a(y,y’) <0

A sufficient condition for f(y) to be the equilibrium distribution of the constructed
chain is that if ¢(y,y’) to be chosen to be irreducible and aperiodic on a suitable state
space. Different functions for ¢(y,y’) can be used and can lead to different specific
algorithms. For instance, if ¢(y,y’) = q(v',y), then a(y,y’) = min{%, 1} which is the
Metropolis algorithm.

For details about the Metropolis-Hastings algorithm, see Chib and Greenberg (1995).
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Chapter 3

Discrete Choice Modelling

3.1

Introduction

The discrete choice models are widely used in econometrics, as a special case
of the general latent variables models. It is a case where there is a number of
explanatory variables, in the form of vectors which are supposed to influence
a latent binary vector (the dependent variable-vector). Thus, it is a form of
the latent multivariate regression model. This chapter presents the general
framework about the discrete choice models and a review on the most widely
used models; the multinomial logit model (MNL), the nested logit model and
the multinomial probit model. For presentations of discrete choice models,

see Maddala (1983), McFadden (1980).

This background and the review that is presented, is necessary for the com-
plete presentation of the discrete choice models and it will lead us to the
multiranked probit model that is proposed in the present thesis (which is
the subject of the next chapter). The first two models that are presented in
sections 3.3 and 3.4 were mostly used in the past, due to the complexity of
the multinomial probit model (chapter 3.5). Nevertheless, since this model

can also be easily applied, due to the multinomial probit Sampler (MNP), its
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advantages make it more promising.

3.2 Discrete Choice Models

Let N be the number of individuals of the sample. Suppose that the ith (: = 1,..., V)
individual chooses among a set of p mutually exclusive alternatives (for example, brands
of a product) (j =1, ..., p), using some given values of K attributes (for example, price).
Alternative j is chosen if the utility of this alternative is larger than the utilities of the
remaining (p — 1) alternatives, given some particular values for the K attributes for each
alternative and some characteristics of the ¢th individual which may also influence the
choice (for example, income). For convenience of notation, the total number of attributes
and the individuals’ characteristics will be denoted as K, since both the alternatives’
attributes and individuals’ characteristics are the regressor values for the utilities which

are formed.

For each choice occasion, a (p x 1) latent normal vector z; is present which represents
the unobserved utilities, and choice of alternative j is observed if the jth component of
z; 1s larger than all other components. Note that, the investigator finally observes N
multinomial vectors, one per individual, where each multinomial vector y;, (¢ = 1,..., N
individuals) consists of p rows; each row corresponds to an alternative and its element
is equal to 1 if the alternative is the most preferable by the respective individual, and 0
otherwise. However, he does not observe the individual utilities z; . The model can be

written as:

Z, = Rzﬁ + u, , izl,...,N, (31)

and the element of the (px1) vector y; which corresponds to the jth alternative is given

by (having in mind that the probability of ties in the normal vector is practically zero):
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1 if z;; = max of all the elements in z;,
Y= 0 otherwise
where R; 1s a px K" matrix which consists of the ith individual characteristics and of the
regressor values which the ith individual faces for the alternatives (alternative-specific
attributes) and u; is an error term; a stochastic element the distribution of which we
shall discuss later. In fact, different assumptions for the distribution of this term lead to

the different models which will be discussed.

So, we need to estimate the vector 3 , the individual utilities and, consequently, the
probability F;; that individual 1 will choose alternative j. Nevertheless, one can easily
notice that an identification problem arises here; any shift with location m and scale
¢>0 from z; to me + cz;, L?lxp) = (1,...,1), will leave the observed choices unchanged
and, hence, the problem is unidentifiable. The standard solution for this problem of
the latent variables is to work with the differenced system which is achieved by letting
w, = (w1, ..., w; p—1) where w; is a (p-1)x1 latent normal vector and w;; = z;; — 2, or,
in words, w; is the latent normal vector which comes from z; if we subtract each element
of z; with the last element of the vector (i.e. w; is the vector of the differences). The

last element of w; is, obviously, always 0 and, hence, it is omitted.

Hence, equation (3.1) can be rewritten as:

W, = Xzﬁ +e&; 5 (32)

OifWZ'<0

index of max(w;;, j =1,...,p — 1) otherwise

where X; is of dimension (p-1)xK which is obtained from R; of dimension pxK by sub-
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tracting the pth row from the first (p-1) rows, e; is the stochastic part which corresponds
to u; in equation (3.1) and d; is a number which simply includes the information of the
multinomial vector y;; it is equal to 0 if the last alternative (whose utility has been sub-
tracted from the remaining) has been chosen by individual ¢, or, in the case where one of
the first (p — 1) alternatives has been chosen, it is equal to the index which corresponds

to the row that represents the chosen alternative.

Note that w; can be thought of as the set of utilities for individual ¢, given that the
utility of the last alternative is zero, or, in other words, the utilities of the (p — 1) first
alternatives (the value that is formed for these utilities) with respect to the last utility if

it is fixed to the constant value 0.

But, even in this differenced system, one can notice that, scaling w; by a positive
constant ¢, the value of d; (i.e. the choice) will not change. Then, for example, if
we suppose for the error term that e; ~ N(0,Y), the parameters (3,%) have to be
estimated for the model but they are observationally equivalent to (¢3,¢*X) for all ¢>0.
The proposed multiranked probit model in chapter 4, deals with this problem and works
with fully identified parameters.

With respect to the probability P;;, let V; = X;3 be the non-stochastic part in (3.2)
that reflects the “representative” tastes of the population, whereas €; is stochastic and
reflects the idiosyncrasy of individual ¢ in tastes for the alternative with some particular

attributes.
Then, the probability of the jth alternative to be chosen by individual 7 is:

Py = PVij+ey>Vie+en, forall k# j)
= Pleip —ei; < Vij — Vi, for all k # j].

In addition, if F'(ey,...,£,) denotes the joint cumulative distribution function over the

values ¢; for 5 = 1,...,p and F; the partial derivative of F' with respect to the jth

16



argument, the probability P;; can be written:

+oo
P, :/ File 4 Vi— Viyoose + Vi — V) )de (3.3)

E=—00

Different discrete choice models can yield if one assumes F' to be a different cumulative
distribution; the multivariate normal distribution and the extreme value distribution will

be mentioned.

3.3 The Multinomial Logit Model (MNL)

The assumption that each &;; is distributed independently and identically in accordance
with the extreme value distribution yields the multinomial logit model. This is given in

the following lemma (see McFadden, 1973).

Lemma 1 Suppose that each member of a population of utility-maximizing consumers
has a utility function z;= V;+e;, i=1,...,N which represents individuals, where €; is a
function that varies randomly in the population with the property that in each possible al-
ternative set B = {xq,...,x,}, the values €;;,5 = 1, ..., p are independently identically dis-
tributed with the extreme value distribution with density f(e;;) = exp{—e;; } exp{—exp{—ei; }}
and cumulative function F(e;;) = exp{—exp{—e;;}}. Then, the selection probabilities

eViJ

given by (3.3) satisfy the equation P;; = T
keB

Proof. The probability of alternative j to be chosen from individual 7 is
P = PlVij+ey; > Vig+ e, for all k#3], (k,j=1,...pandi=1,...,N)

= P[@ik—&]‘ < VZ']‘ — Vi fOT allk;«é]]

Suppose that e;; takes, for the moment, the value s. Then, the probability F;;, i.e.
the probability that alternative j is chosen, is the probability that each ;. is less than
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s+ Vi; — Vig for all k, k#j, and is equal to the probability:

Pleg, < s+ Vij — Vig, for all k # j].

The probability that ;; = s and, simultaneously, that ¢;; < s+ V,; — Vii is the density
of ei; evaluated at s multiplied by the cumulative distribution for each e, except e

evaluated at s + Vi; — Vi

—s =€ 5+Vi]—Vik))

e pire exp(—e

which is equal to:

e *lep exp(—e_(s"'v"ﬂ_v"k))

because, when k& = 7, then

exp(—e~CHVu=Vin)y = g=e7°
Since the random variable ;; is not necessarily equal to s, but it can take any value

within its range, the probability F;; is then:

+oo
P = / exp ’ Ilren eXp(—e_(s"'ViJ—Vik))dS

§=—00

+ oo
= / exp”*exp(— Z e_(s""v"ﬂ_v"k))ds

s=—ce keB

+ oo
= / exp exp(—e ™ Y e_(wﬂ_‘/ik))ds.

§=—00 kEB
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Let ¢=® = t. Then,

dt dt
—ePds =dl = ds = —— :—?.
e S

When s— oo, then t—0 and, when s—-o0, t— oco. So, the probability F;; is:

Py= [ tesplot 3 ety 2
ZH — eX e ? ? —_—
! —oo p( t

keB

:/ exp( tZe (Vij= V’k

keB

_ exp(—t Ypep e Vo)™
B —Ypepe”Vu=Vin)

1

Ve VTV

exp’

> ke explix '

The probabilities for each alternative to be chosen which were found from the MNL

model, exhibit the property of Independence of Irrelevant Alternatives (ITA) which is

given in the following axiom. This axiom was introduced by Luce (1959) and it is nec-

essary for the specification of the model (see also McFadden, 1973, Train, 1986, Hensher

and Johnson, 1979).

Axiom 1 Independence of Irrelevant Alternatives: For all possible alternative sets B,
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measured attributes s, and members x and y of B,

P(z[s,{z,y}) - P(yls, B) = Plyls,{z,y}) - P(xls, B).

That is, when P(x|s, B) is positive (there is a little loss of generality in assuming that
the selection probabilities are positive since, empirically, a zero probability is indistin-
guishable from one that is very small), then

Plyls, {x,y}) _ Plyls, B)

P(z|s,{z,y})  Plz]s,B)

Also, for two alternatives x and y in B, the ratio

Py exp’ / Xren exp
Py exp'v [ Yrep exp¥it
Vie
— P expVeVe

expiv

depends only on alternatives x and y, or, in other words, the ratios of probabilities are
necessarily the same no matter what other alternatives are in B or what the character-
istics of other alternatives are.

Clearly, a model with such a property is very simple to be applied but is obviously
inappropriate for some situations and can lead to wrong results. For instance, consider
the example given by Train (1986) about a two-choice problem where a traveller has to

choose, given some values of the attributes, between auto (a) and blue bus (bb). Suppose

1 Pe _

that the utilities for these two alternatives are equal and, hence, P, = Py, =

Suppose now, that a red bus is introduced and that the traveller considers the red bus
(rb) to be exactly like the blue bus. Then, the ratio ﬁ_ii = 1 but also the ratio % is equal
to one due to the IIA property (the presence of a new alternative does not affect the ratio

of the probabilities of the two alternatives). Hence, P, = Py = P, = % Nevertheless,

in this case, we would expect P, to be unchanged and Py (before the third alternative
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is introduced) to be split: Py, = P, = i. So, the multinomial logit model overestimates

Py, and P, and underestimates P,.

So, the MNL model is inappropriate for situations as in the one described above. A
solution is to apply the MNL in subsets of the alternative set B (nested logit) taking into
account that the coefficients 3 of the attributes should be the same for all the alternatives

in B (see section 3.4). Another solution is the multinomial probit model (see section 3.5).

3.3.1 Estimation in MNL

Recall equation (3.1) where y;; = 1 if individual i chooses alternative j and 0 otherwise.

The response vector is a (p x 1) multinomial vector. The likelihood function is then:

L =I111 Pi*
ik

where ¢ = 1,..., N represents individuals and j,k = 1,..., p represent alternatives.

The log-likelihood is given by:

expn‘kﬁ

InL :ZZ YirIn P, :ZZ Yip In
ik ik

Y iepexprif

:ZZ Yie(riB — In Z expf’wﬁ)
Tk

JEB

:Z[ﬁ(z yikrik) —In Z expriw@]

JEB

So,

Jdln L > jeB Tij exp’P
= kTik)— :
- B
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:Z[; (Yirrin)— Z i Pij)]

7

and, since k and j both indicate the alternatives, this is equal to:

S (Yik— P )i

1k

Furthermore, the second derivative is given by:

0*InL
I e

1k

where ;=5 73 P, i1 is the vector of K individual’s characteristics and attributes which
%

individual ¢ faced for alternative k.

This last equation is the negative of a weighted moment matrix of independent vari-

ables, it is negative semidefinite and InL is concave in B, meaning that is maximized at

any critical point where aé%L = 0. If further, the matrix 221811[31'7 is nonsingular, InL, has a

unique maximum in 3 (see McFadden, 1973).
This model had been widely used in the past due to its simplicity compared with

the multinomial probit model. For some applications, see, for example, Louviere and

Woodworth (1983), Eagle (1984), Louviere (1984).

The analysis of these data sets is usually performed by the use of discrete choice
models which include such diverse fields in econometrics as shopping behavior, housing
choices and travel mode choices (see, for example McFadden, 1978, Louviere, 1984). A
widely used model, mainly due to its simplicity, is the multinomial logit model despite

its property of independence of irrelevant alternatives that is often violated (see Hensher

and Johnson, 1979, Maddala, 1983, Train, 1986).
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3.4 The Nested Logit Model (GEV)

As it has been shown, the logit model is inappropriate in situations, where the Indepen-
dence of Irrelevant Alternatives (ITA) property is assumed but it is not true. However, if
the alternatives were partitioned into subsets such that the ratio of probabilities for any
two alternatives that are in the same subset is independent of the existence or charac-
teristics of other alternatives, then another type of logit model, the nested logit model
(GEV) could be derived. In that case, the IIA property holds within each subset but not
between alternatives from different subsets.

In the GEV model, the errors ¢;; are assumed to follow the generalized extreme value
distribution (that’s why, the name GEV is used); the marginal distribution of each &;;
is the extreme value distribution but the ¢;;s in the same subset are correlated and the
;55 between different subsets are uncorrelated. We assume that the set of alternatives
can be partitioned into K subsets named By, k=1,..., K.

The joint cumulative distribution of the random variables ¢;; for all j in the set of

alternatives is then:

K .
expq =D ar( D e )¢,
k=1  bEB
where K is the number of subsets, Ay is a measure which drops when the correlation of

€;;’s within subset k arises ((1-A) is a measure of the correlation). Then, the probability

for alternative j in subset By to be chosen is

B eXpr//\k (ZjeBk eXpVik//\k )/\k_l
N Y (X em, expVor/ M)t

For a proof, see McFadden (1978).

Moreover, if the observed component of the utility is written as a term common for
all alternatives within a subset plus a part that differs for alternatives within subsets,

plus ¢;5, 1.e.
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Ui = WP 4 0% 4 for jin By,
then the probability that alternative j in subset By is chosen is the product of the proba-
bility that subset By will be chosen times the probability that alternative j within subset
k will be chosen.

That is,

exp(Vi)  exp(W + A\eli)
2jeBy, eXP(Yig‘k)) Yty exp(Wh + M)

Py =Py, - Pp, =

where I, =In 3" cp5, eYil;, Py, is the probability that alternative j within subset By
will be chosen by individual ¢ and Pp, is the probability for By to be chosen.

It is clear now, that the GEV model uses the logit model within subsets (note the
conditional probability Pjjp,) and the same model to handle the different subsets as
alternatives of a general set (note the marginal probability Pg, , where I can be thought
of as the average utility that an individual expects from subset k; it is usually called “the
inclusive value”). So, the ITA property is assumed again for each one of the logit models

which arise. Hence, the problem has been reduced but has not been eliminated.

3.5 The Multinomial Probit Model (MNP)

It has already been mentioned that the Independence of Irrelevant Alternatives (ITA)
property implies that the unobserved components in ;; in (3.2), for all j, and for a
particular individual 7, are assumed to have the same distribution, with the same mean
and variance and to be uncorrelated making the MNL model unrealistic for most of the
cases.

On the contrary, the multinomial probit model (MNP) arises if one relaxes these as-

sumptions letting ¢;; to be jointly normal distributed with zero mean vector and variance-
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covariance matrix X.
The model was first proposed by Thurstone (1927) but has not been widely used due
to its computational difficulties.

In this model, the density function of the vector g; is:
_1 _1 I,y
f(si) = (27r) 3P |Z| 2 eXp[—§ g; X Ei]

where p is the number of alternatives.

3.5.1 Choice probabilities and likelihood function

Recall the probability

Py = P[Vij +eij > Vix + i for all k # j]

:P[e’fik<5i]“|"/ij_‘/ikforauk7éj]

and, finally, suppose for simplicity that e;; is known. That is, the probability is the
cumulative distribution function of ;; evaluated at ¢;; + V;; — Vi, for all k, i.e. the
probability F;;, given a particular value of ¢;;, is given by the multiple integral over all

e's except ¢
Ei]‘l"/i]_‘/il Ei]‘l"/i]_‘/& Ei]‘l"/i]_‘/ip

f(si)dafip...d@il.

Eil=—co €i2=—co Eip=—oco

Since the value ¢;; is not known, the probability F;; is then :

Ei]‘l"/i]_‘/il Ei]‘l"/i]_‘/& Ei]‘l"/i]_‘/ip

/:O / / / flei)deip...deqde;;.

=00
(¥ . . .
Eil=—c0 €i2=—co Eip=—oco

Substituting this formula into the log-likelihood function 3" yix In P, we take the
Tk
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function which has to be maximized in order to obtain estimators for the parameters:

Ei]‘l"/i]_‘/il Ei]‘l"/i]_‘/& Ei]‘l"/i]_‘/ip
_1 _L
()b 8 h

o0

>3 vl
ik ET ol fi2=—o0 Fip=—co

1
expl—3 & N7 eildei...deindey;)
The expense of the estimation in such a model using classical methods is obvious.

Classical simulation approaches have been proposed to overcome the computational
burden of the estimation with respect to the multinomial probit model (see Hajivassiliou
and Ruud, 1994, for an overview of these methods; McFadden, 1989; McFadden and
Ruud, 1994, the method of simulated scores (Hajivassilion and McFadden, 1990). Al-
ternatively, Albert and Chib (1993) developed a Bayesian data augmentation method
combined with the Gibbs sampler (Smith and Roberts, 1993) to obtain the latent data
multinomial probit model. This model reconstructs the latent utilities w via the avail-
able information provided by y whereas it is based on the edifying note that, conditional
on w, the model is simplified to a standard Bayesian multivariate regression analysis.
Geweke, Keane and Runkle (1994) have shown that, although these methods are not
less computationally demanding than a Bayesian one, their asymptotic approximations
can be inaccurate. We will focus on this Bayesian approach in the next section, since it

provides slightly better results with respect to the accuracy.

3.6 Bayesian Discrete Choice Models

Interest has recently focused on the more powerful and realistic multinomial probit model
so as to ease its computational burden; McCullogh and Rossi (1994); Chib and Greenberg
(1998); Nobile (1998); Allenby and Rossi (1999); Chen and Dey (2000).
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3.6.1 General Framework and Theoretical background

The MNP Sampler (McCullogh and Rossi, 1994) is the Bayesian approach for estimating
the parameters in the multinomial probit model.

Recall that:

w; = X0 + e,

0 ifWZ'<0

index of max(w;;, j =1,...,p—1) otherwise

where g; ~ N(0,%).

The first problem which arises with respect to this equation is that the utilities w;
(i.e. the utilities of the (p — 1) alternatives, given that the pth utility is 0, for individual
i) have not been observed. The solution for this provides the data augmentation step; a
way of changing the multinomial vector into a normal vector.

So, after this change, the equation w; = X;8 + e; is a regression equation with
multivariate terms, where the parameters 8 and ¥ and the latent variables w; have to
be estimated.

In the Bayesian framework, this requires draws from the conditional distributions
of each one of the parameters 8 and X and the latent variables w;. Hence, 8 can be
drawn from a multivariate normal distribution, ¥ can be drawn from an inverted Wishart
distribution or, for convenience, ¥™! = G can be drawn from a Wishart distribution
and, finally, the latent vector w; can be drawn from a multivariate normal distribution,
with covariance matrix 3 or, for convenience, each w;;, j=1,...,p-1, can be drawn from a
univariate normal distribution, conditional on the (p — 2) remaining latent variables (see
theorem below).

The definition of the Wishart distribution and the theorem that was mentioned, with
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respect to the multivariate normal distribution, are given in the following:

Definition 2 Wishart distribution W(k —p —1,R): A p X p positive definite matriz X
has a Wishart distribution if

k—p—1 1
J(X Tk, R) o[BI [ X] = — expl =5 tr(RX)

with k>p degrees of freedom and R a p X p symmetric non-singular matriz (scale

matriz). E(X):(%_l) and X~ is a covariance matrix (E(X_l) = I )

k—p—1

The Wishart distribution is a multivariate extension of a chi-square distribution. For

details, see De Groot (1970).

X
Theorem 3 Let X=| = | ~ Ny(, X)) a partition of X into two parts, where
X
H Y1 Yo
p=|""|.2= ; [Y22[ >0
Mo Yio1 Yoo

Then, the conditional distribution of X1, given X5 = X5 is multivariate normal with

mean = p; + S12(Xa2) " (X2 — )

and

variance = 211 — 212(222)_1221.

For a proof and for other details about the theorem and the definition above, see
Johnson and Wichern (1988), pp. 131-132 and 143-144.

The MNP Sampler can now be described in detail in the next section.
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3.6.2 Prior Distributions for the MNP Sampler

The Bayesian approach that deals with the MNP model, requires the specification of the
priors over the parameters (3, X), computation of the posterior density and the MNP

likelihood. Setting a normal prior on 3 and an independent Wishart on X7

B~NB, A ) and G=3" ~ W(v,V),
the formulae of these prior distributions for the parameters 3 and ¥~! are analogous to:

P(BIB. A) o | AP expl— (8 — BIAB ~ B))

and
1
p(Glo, V) x |G|(U_p_1)/2€t7“{—§GV}.

Then, the posterior density, which has to be calculated, is given by:

p(B,X|y1, YN, X) x p(B, X) - log —likelihood.

The MNP Sampler avoids the direct evaluation of multiple integrals that mentioned

before.

3.6.3 The Data Augmentation Step

Recall the problem that has been mentioned; the investigator has observed y; and X;
but w; are unknown and, hence, the dependent variables’ vector is, up to now, discrete.
Albert and Chib (1993) suggested the data augmentation step as a solution for this
problem; instead of the use of the multinomial vector Y; they introduce an independent
unobserved latent vector Z;,1 = 1,..., N, where Z; = (21, ..., z;,) are specified in such a

way that, alternative j is chosen if z;;> 2z, for k # 7, and k,7 =1, ..., p.
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In the differenced system that is described here, this idea yields the latent vector
w;,where w;|3, (i; d; is a (p-1)variate normal distribution truncated over the appropriate
cone in RP~™' The truncation is used so that, if y;; = 1 (or, equivalently, d; = j), then
w;;>max(w;g, 0), V k # j, and, if y;, = 1 (or, equivalently, d; = 0), then w;;<0, V j and
k,j=1,..p—1.

For simplicity, one can draw from all the conditional distributions of each component
of vector w;, given all the others and which will yield draws from the truncated (p-
1)variate normal distribution (see theorem 1). In such a way, the discrete multinomial
vector Y; has been substituted by w; which yields (after the convergence) the differences
of the unobserved utilities among the (p-1) alternatives and the last pth alternative for
the ith individual. Note that, the equation w; = X;3 +¢; is now a multivariate regression

equation with a continuous dependent (latent) vector.

3.6.4 The Steps of the Algorithm

Now since the differences among the unobserved utilities are not unknown any more, the

MNP Sampler (McCullogh and Rossi, 1994) can be presented.

The Sampler consists of three main steps from which the successive draws from the

conditional distributions will finally converge to the posterior distribution.

Step 1

Draw from Nx(p-1) conditionals on w;;|w; _;),8,G di, forie =1,.... N, 53 =1,...,p—1,

where w; (_;) is the vector wy, of dimension (p-1)x1 except the jth component:

Using theorem 1 and setting

X1 = wij and X2 = Wi7(_]‘),
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the distribution of w; can be written

/

Wiy X Tjj Tj(~4)

p—1

Wi(—j) Xi-)B O(=j)j Y=y =4)

and w;; has a truncated normal distribution over the appropriate cone in RP~:
wij|wi—j, B, G di ~ N(mij, 7).

where

mij; = X8 + (UJ(_J)Z(__lj)(_j))(Wi(—j) — Xi-»B),

Th =05 — Uz‘(—j)z(—lj)<—j)0(—j)j

and x;; is the jth row of X, Xj_;) is the submatrix created by deleting the jth row from
X, and the submatrices in the covariance matrix of the distribution of w; come from the

partitioning of G, with respect to the jth argument:

-1

Then, perform the following acceptance-rejection procedure which corresponds to the
data augmentation step: if d; # 0, accept the sampled values if the highest value is
positive and corresponds to the chosen alternative, i.e. the alternative which corresponds
to the d;th row. If d; = 0 (i.e. the last alternative, which has been subtracted and
corresponds to utility equal to zero, has been chosen, so that, all the remaining utilities
have to be lower than the chosen one, i.e. lower than 0), accept the sampled values if

they are all negative. Otherwise, reject them and sample again from step 1.

31



Step 2
Draw from B|w, G :

Transform the regression equation
W, = Xzﬁ + €, E; N(O, G_l)

to an equation with i.i.d. errors using the Cholesky decomposition of G=CC’". To obtain

this, premultiply the equation by C" :

C'w; =C'X;B8+C'¢;,C'e; ~ N(0,1,_4),
or, in stacked form:

C'w =C'XB +C'e,C’e ~ N(0, In(,-1))-

Then, draw from the distribution:

Blw,G ~ N(3,%5),

where
Sg = [(C'X)(C'X) + A7}
and
B = S4[(C'X)C'w + AB.
Step 3

Draw from G|w, 3 :

Given B,w (from steps 1 and 2) and X ,the e;s can be calculated: e; = w; — X, 8.
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The conditional Wishart distribution is then:

N
Glw, B ~W(v+ N,V +> eel).

=1

In order to obtain a random matrix G drawn from this distribution we can use again

the Cholesky decomposition of (V 4+ 3N e;el)™t = 57!
STt=1LL.

Moreover, if 1" is a lower triangular matrix with diagonal elements ¢;; ~ /X2 y_i14

and draws from N(0,1) for the elements below the diagonal, we obtain the matrix

V=TT,

which is a random matrix from the standardized Wishart distribution with v+N degrees

of freedom (i.e. Wishart with scale matrix the identity one):

Vi~ W(v+ N, I).

Finally, the random matrix G is given by:

G=LVL.

For details of the procedure in step 3, see Johnson (1987), pp. 203-204.

Note that d; has not been used in steps 2 and 3 because this information is included

n W, .
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3.6.5 Identification Problem for the Parameters

However, another problem arises here. Note that the full posterior over 8 and ¥ has

been computed and we have to report the marginal posterior of the identified (properly

normalized) parameters UL and variance-covariance coefficients:

Cov(utility l, utility m)

2 9
p—1

where I, m=1,...,p-1 and o,_; is the standard deviation of the utility for alternative p—1.
That is, in order to obtain convergence, we have to divide each parameter with, say,
the standard deviation (for B) or the variance (for the covariances and the remaining
variances) of the utility of one alternative. In other words, we have to keep this variance
constant (equal to one). Otherwise, if we examine each of the parameters without divi-
sion, the sequence of draws will follow a random walk without convergence due to the
identification problem (recall that all of the sets (¢3, ¢*Y) are observationally equivalent
to (3,%)). Moreover, proper priors have to be used to keep the sequences for the para-
meters away from going to infinity (c can go to infinity in the set (¢3,c*Y) if one uses

improper priors).

The necessity of the division of each sequence with the sequence of a variance in order
to obtain convergence, demonstrates that the algorithm is a hybrid Gibbs Sampler and
requires specific handling. Also, the use of proper priors may not be suitable if no prior

information is available.

We believe that these are serious drawbacks of the method of McCullogh and Rossi
(1994). In the proposed multiranked model in chapter 4, we provide an algorithm which
improves the McCullogh and Rossi methodology.
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3.7 Modifications for the MNP Sampler

Some modifications of the MNP Sampler, which attempt to solve the identification prob-
lem for the parameters of the model, have been proposed over the years for this identifi-
cation problem; see Nobile (1998), McCullogh, Polson and Rossi (2000), Chen and Dey
(1998, 2000), Chib and Greenberg (1998).

3.7.1 Gibbs Sampler with a Metropolis Step

It has been mentioned that, multiplying the set of parameters (3,%) by a positive con-
stant ¢, a new set of parameters is yielded which is also valid. The restriction for ¢ (to
avoid the case where ¢ — o0) comes, up to now, from the use of proper priors. Nobile
(1998) suggests another restriction for the constant ¢ by rescaling the set of parameters.
That is, after a Gibbs cycle has yielded ¢4 = (3, X), and before the next cycle, one may
change the scale of 1, taking care to respect the equilibrium distribution of the sampling

chain. The algorithm is described below.

At first, perform a MNP Sampler step, as it has already been described, and take

Yo = (9, wij), ¥ =(B,%).

Then, before the next MNP Sampler, perform a Metropolis step. Draw ¢ = ¢y from
some distribution h(t|i,) and accept it with probability:

1) hlold)
T B )]

min

where f(¢) o« k(data|9)m(?) is the equilibrium distribution of the Markov chain and 1)

Yo
W)
f (o)

). Also, the candidate ¢™ is best obtained by sampling c¢. For instance, if ¢ is drawn

~—]

*

depends only on the ratio between the prior distribution at ¥ and ¥° = edq (

w(9*)
7(do)

from an Exp(1) distribution, the acceptance probability of the Metropolis step is
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This algorithm, with some slightly more expensive programming requirements, pro-

vides a faster convergence because c is restricted to vary in a smaller set of values.

Nevertheless, the problems which were mentioned at the end of the previous chapter

are still unsolved.

3.7.2 A Modification by McCullogh and Rossi

An alternative algorithm has been suggested by McCullogh and Rossi (1994) in order to
obtain fully identified parameters. In this algorithm, the first and the second step remain

the same as in the MNP Sampler, that has been described, but the third step (draw for
¥) has been modified in order to restrict oy (= o7) equal to 1.

Let U = ¢y and Z = (e2,...6,-1)" so that e = (U, Z). ¥ indexes the joint distribution of
(U, Z) which is N(0,%). Also, let v = E(UZ) so as Z|U ~ N(U%U, Yz —~v/o11). Finally,
let ® = ¥, —vv/0o11. There is one to one correspondence between ¥ and (o741, v, ®), hence,

setting 013 = 1 and putting priors on v and @, we obtain a prior on (X|oy; = 1). ¥ is

then equal to ! v . Setting the priors
v @+
¥~ N(3,B7)
and
' ~ W(k,(C),

we obtain the conditional distributions which replace the third step of the MNP algorithm

by using:
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O~ Wk +n,C+(Z-Uy)(Z = UY))

7~ N(A, (vee(@7 2'U) + By), A,)

where A, = (U'U®~! + B)~%.

Although the use of this algorithm remedies the problems which have been mentioned,
there is a difficulty in setting priors for v and ®~!; these parameters are not very natural
to think about. To see how one can get in trouble with the priors for v and ®~1, consider

~

the case where p = 3, X is 2x2 and the correlation p = Jarr If the prior for ~ is much
Y

more diffuse than that of ®, the prior distribution for p will concentrate near +1.
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Chapter 4

The proposed multiranked probit

model

4.1

Introduction

This chapter presents the proposed multiranked probit model. Almost all the
existing analysis techniques are concerned with the modeling of the utilities
using the information of just the discrete choice (the response that indicates
the one most preferable alternative) of each multinomial response data point,
whereas the literature in modeling ranking or rating responses is still sparse.
Of course, in each case of different alternatives attributes, only the first choice
is the one that will actually be used by a particular decision maker in practice.
However, compared to the discrete choice, a ranking response contains useful
additional information about the structure of the relation between the utilities

and the attributes of the competing alternatives.

The model we propose deals with data which are of ranking form, thus, it is a
generalization of the discrete choice models described in the previous chapter.
Hence, this model can also be easily used in the data of the discrete choice

form. The resulting model formulations give rise to the so-called multiranked
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probit model which emerges from a series of ranking responses in a set of hy-
pothetical scenarios. In summary, in this model, we enhance the multinomial
probit model with the embodiment of a utility threshold parameter which
deals realistically with ranking responses, intransitivity of indifference among
alternatives, or ties. Moreover, we ensure identifiable parameters for the co-
variance matrix of the underlying utility vectors, we include a hierarchical step
that models the unit-specific utility thresholds as exchangeably distributed
and, finally, we permit the use of heavy tail distributions for the stochastic

error term. Qur proposed methodology is Bayesian and the implementation

tool adopted is MCMC.

4.2 Methodology

4.2.1 Aggregate Analyses

An essential element of the first step in stated preference data collection is the design
of an appropriate experiment that includes some prespecified values of the continuous
or discrete covariates-attributes of the alternatives. These attributes normally cover as
many aspects transport experts believe that affect the probabilities of the alternatives
chosen by a decision maker as possible. Depending on the experimental design that is
used, some different combinations of these attributes values form different hypothetical
scenarios and each decision maker may face all or a subset of the hypothetical scenarios
originated by the design.

At the data collection step, each respondent is faced with a set of mutually exclusive
and collectively exhaustive alternatives and either selects the most preferable alternative
or orders all the competitive alternatives or rates them, according to the corresponding
utilities. Hence, the observed responses may be one of three types; discrete choices or
ranking vectors or rating vectors respectively. We denote the observed responses as y;,,

of dimension (J x 1), for the mth decision maker in the ith response of the sample,
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where J, J > 2, is the number of the alternatives used in the experiment. In addition, if
an additive “main effects” compositional rule forms the utilities vector u;,, of the same

dimension as y;,,, then

Wiy = (Uit oo, Uimd) = RiBm, (4.1)

where R; is a (J x K') matrix of the values of the K attributes in the hypothetical scenario
of situation i, B3,, is a vector of dimension (K x 1) that depicts the mth respondent
attributes weights, t = 1,..., N, m = 1,..., M. Note that, in equation (4.1), not only 3,,
is to be estimated but also u;,,, the continuous underlying (latent) utility vector which is
hidden behind the observed response vector y;,,. The way the underlying (latent) vector
is estimated 1s in conjunction with the information derived from y;,. For instance,
adopting the concept of random utility (Thurstone, 1927), if alternative j appears to be
the first choice in y;m, then u;,; should be equal to max.(u;m.). The model described
in (4.1), which is based upon an “individual-by-individual” basis, is usually estimated
using classical conjoint analysis but it may be absolutely useless or difficult to be handled
when, for instance, a manager is interested in making decisions for the whole market or

segments of it (see Moore, 1980, Louviere, 1984).

Almost all the existing aggregate analysis techniques are concerned with the model-
ing of the utilities using the information of just the discrete choice (the response that
indicates the one most preferable alternative) of each multinomial response data point,
whereas the literature in modeling ranking or rating responses is still sparse. Of course,
in each case of different alternatives attributes, only the first choice is the one that will
actually be used by a particular decision maker in practice. However, beyond a shadow
of doubt, compared to the discrete choice, a ranking response contains useful additional
information about the structure of the relation between the utilities and the attributes of
the competing alternatives. Unlike this limitation of the discrete choice models, their ap-
plications (besides the travel mode choice) include such diverse fields as housing choices
and shopping behavior (see, for example, McFadden, 1978, Louviere, 1984). This wide

use causes the requirement for the evaluation of the statistics to meet its obligation.
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In this chapter, we are motivated by a challenging real ranking response data set to
demonstrate that complicated but realistic data generation structures have either not
been considered before or have not been adequately handled.

In the aggregate analyses, we are not interested any more in estimating the vector 3,
per decision maker but a vector 3. Hence, in discrete choice models, where the responses
of different decision makers as well as the responses on different hypothetical scenarios by
a decision maker are assumed independent, equation (4.1) can be written, by dropping

the subscript m, as

u; = R;3 + e, (4.2)

where e; is a stochastic term vector of dimension (J x 1).

4.2.2 The multiranked probit model

We denote the observed responses as y; of dimension (J x 1), for the ¢ — th response of
the sample, where J, J > 2, is the number of the alternatives used in the experiment.
In addition, if an additive “main effects” compositional rule forms the utilities vector
u; (of the same dimension as y;) and the responses of different decision makers as well
as the responses on different hypothetical scenarios by a decision maker are assumed

independent, then
u; = (uilv "'7uij)/ = Rzﬁ + e, (43)

where R; is a (J x K') matrix of the values of the K attributes in the hypothetical scenario
of situation 7, 3 is a vector of dimension (K x 1) that captures the “general tastes” of the
attributes weights throughout the population of interest or particular market segments,
i =1,...,N,and e; is a stochastic term vector of dimension (JJ x 1). As in equation (4.1),
note that, in equation (4.3), not only 3 is to be estimated but also u;, the continuous
latent utility vector which is related to the observed response vector y;. Adopting the
concept of random utility (Thurstone, 1927), this relationship states that if alternative j

appears to be the first choice in y;, then wu;; should be equal to max.(u;.).
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However, if u; = (u;1, ..., u;7)T, J > 2, any shift with location v and scale 7 > 0 from
u; to vIy+4 Tu;, where [; is the unit vector of dimension .J, will leave the observed choices
y; unchanged. Hence, as in equations (3.1) and (3.2), for these identification purposes
(see McCullogh and Rossi, 1994), we usually work with the differenced system which is

achieved by letting w; = (wi — wig, ..., Ui(g—1) — u; ;)T and re-expressing (4.3) as
w; = Xzﬁ + €;, (44)

where w; is a latent vector of dimension (J — 1) x 1, X; is the matrix of dimension
(J —1) x K that derives from R; if we subtract the first (J — 1) rows by the last one and
€; is the error term of dimension (J — 1) which characterizes the link function density;
recall that, in the multinomial probit model €; is assumed to follow N;_1(0,Y), i.e. the
multivariate normal distribution of dimension (J — 1) (Aitchison and Bennett, 1970).
The corresponding multinomial probability p;; of alternative j to be chosen in situation

¢ 1s given by

pij = PxiiB + eij > %348 + &iy], for all ¢ # 5, (4.5)
where x;; 1s the 3 —th row of X;, j,¢ =1,...,J and ¢;; is the j — th element of ¢;.

The likelihood function of this model is formed by the product of N independent

multinomial distributions
N J
L(672|y177yN7X2) :HHP?]” (46)
=1 7=1

It is clear, however, that the computation of the multinomial probabilities entails the
calculation of multiple integrals of the multivariate normal density making a maximum

likelihood estimation burdensome.

In section 3.5, it was mentioned that, within the above Bayesian data augmentation

framework, McCullogh and Rossi (1994) developed a Gibbs sampler procedure to obtain
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draws from the posterior distributions of 3, ¥ and w; for the multinomial probit model.
Since the latent vectors w; in the model are not directly observed, each set of the pa-
rameters (3,Y) is observationally equivalent to (¢3,c*Y), for any ¢ > 0. We chose to
obtain the re-parametrization of ¥, with almost no additional computational cost, where
O'(QJ_l)X(J_l) = 1 throughout the algorithm, and ensure identifiable parameters by using
a theorem of standard multivariate analysis, proved by Dawid (1988). In the context of
MCMC sampling this was first applied in Dellaportas (1998). A similar, but more com-
plicated procedure was used by McCullogh et al. (2000) who define a prior density on the
elements of the conditional Wishart. As pointed out by Nobile (2000) both algorithms
produce similar results. Although we deal with ranking responses, discrete choices can

be treated similarly since they just form a special case of our approach.

There is no suitable statistical method to deal with ranking responses with ties in
the data structure, even though ties usually appear in real data sets. Georgesku-Roegen
(1958) introduced the threshold parameters into the theory of consumer choice so that
a choice between any two alternatives will be considered only when their utilities exceed
some necessary minimum (see also Krishnan, 1977, Lioukas, 1984). We model ties in the
data adopting this idea. The threshold § is defined such that, for two alternatives a and

b, with utilities w;, and w;, respectively,a is preferred to b when
Wiq > Wi, + 9, (4.7)
and a and b are equally preferred when

|wm — wib| S (S (48)

In addition, a probability of intransitivity of indifference among some alternatives

may be reported when, for instance, among three alternatives a, b and ¢, with respective
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utilities w,, w, and w,,

w, — wp < 0,

Wy — We > 0.

Then, the decision maker will be indifferent between ¢ and b and between b and ¢,
though a will be clearly preferred to ¢. Such deviations from the behavior imposed by
the discrete choice models may be part of the decision making mechanism and, hence,
it seems reasonable to systematize the treatment of thresholds and threshold-associated

intransitivities.

We adopt this threshold parameter ¢ into the multinomial probit model. We also
propose a hierarchical model which treats the threshold parameters of all decision makers
as exchangeable. Thus, there are thresholds §,,, m = 1,...M, where M is the number of
the decision makers (M < N; equality holds in case where each decision maker responses
to just one hypothetical scenario). We denote as NV,,,, the number of responses of decision
maker m, i.e. the decision maker m provides the responses from 1,, (first response) to

Ny 3o Now = N).

Finally, rather than assuming the multiranked probit model with normal errors, we
will be concerned with a general error structure model that is obtained by assuming that
the N vectors of the utilities follow a multivariate Student-t distribution with v degrees

of freedom, i.e.
W, ~ NJ_I(XZ»B,)\;lZ), (410)

where A; follows a gamma distribution:

v v
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i =1,..., N; see, for example, Chen and Dey (1998). The degrees of freedom are used in

our approach as an additional continuous parameter to be estimated.

4.2.3 The proposed model

In summary, equation (4.4), enriched by the approaches described above, yields the

model:

w; = X;8 +€;,
1
e ~ N(0, r2|0-(2J—1)><(J—1) = 1),

v v
W;j > Wig + O, if, in y;, alternative j is preffered to ¢ by decision maker m; |w;; — w;,| <
dm, if, in y;, alternatives j and ¢ are equally preferred by decision maker m; w;; = 0 for all
i; Om ~ N(us,03), where j, g = 1,...,J alternatives, i = 1,..., N responses, m = 1,.... M

decision makers.

4.3 Implementation

In this section we provide MCMC implementation details. To facilitate the derivation of
the MCMC steps, we first break down the model probabilistic structure into its condi-

tional independence parts.

4.3.1 The link function

Rather than assuming the multivariate probit model, we will be concerned with a general
error structure model that is obtained by assuming that the N vectors of the utilities
follow a scale mixture of multivariate normal link functions, i.e. w; ~ Nj_1(X;8,x(\;)Y)
and A; ~ w(A;), where x();) is a positive function of one-dimensional positive-valued scale

mixing variable A; and 7(};) is a mixing distribution, ¢ = 1, ..., N. The special case where
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k(X)) = + and A; ~ G(%, %) yields the multivariate Student-t distribution with v degrees
of freedom. Using different degrees of freedom, a variety of link functions arises; when
v = 1 we obtain the multivariate Cauchy distribution, when v — oo the multivariate

normal arises etc. Hence, the multivariate probit model is a special case when A; = 1.

4.3.2 The conditional independence structure

The proposed model specification models the latent utilities, where the coefficient vector
3 of the covariates, the covariance matrix ¥ of the error term, the mixing parameters
A; and the degrees of freedom v are parameters to be estimated. Recall that, given the
vectors of the utilities w;, 7 = 1, ..., NV, the above parameters are of the standard Bayesian

multivariate regression form.

The vectors w;, which are hidden behind the stated preferences, can be thought of as
auxiliary quantities for the procedure but, at heart, they do reveal additional important
information as it will be evident in section 2.4. We recover the latent vectors w; using
the observed ranking responses y; and the latent threshold parameters §,,, normally

distributed around the mean pg with variance o3%.

The conditional independence structure of the model gives rise to three MCMC sam-
pling steps. First, the regression parameters (3, X', A, ..., Ay, v/), conditional on wy, ...,
wy and the covariates X1, ..., Xy are easily obtained from standard Bayesian multivariate
regression results. Next, note that the threshold-related parameters &y, ..., das, 15 and o3,
are conditionally independent of all other parameters given wy, ..., wy. Finally, we need
to sample wy, ..., wy, given the information obtained from the remaining parameters of

the model and yq,..., yn.

The conditional independence structure described above yields the following full con-

ditional distributions,

[6|] = [6|2_17 )‘17 ceey )‘N7W17 "'7WN7X17 "'7XN]7
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[Z_1|'] = [Z_1|6, )\17 cees )\]\T,Wl7 ...,W]\f,)(l7 ...,XN],

[)‘ZH = [)\Z'|5,Z_1,Wi,l/,Xi], ] = 1, N

Y Y

[v]-] =[] A1y ey AN,

for the sampling step of the regression parameters,
[5m|] = [5m|/“657 0-?7 Wims s WNp Yy o me]7 m = 17 ) M7

[/“LSH = [/“L5|517"'75M70-§]7
[0-?” = [U§|517"'75M7/“L5]7

for the threshold-related parameters and

[WZH = [Wi|672_la)\i75m7Yi7Xi]7 7= 1, N

Y Y

for the latent utilities calculation. To complete our model formulation, we need to specify
prior densities for the parameters 3, X' A\, ..., Ay, v, s and o%. In the application of

the next chapter, we use either non informative improper or locally diffuse priors.

4.3.3 Sampling the Parameters of the multivariate regression

Setting a prior [B] = Nk(8*,A7") on 3, its required full conditional distribution is
6|Z_17 )\17 ) AN? Wi, ., WH, le ) Xy ~ NK(B? 251)7

where $g = S NX TS IX] + A and 8 = Sp{ M XIS wy] 4+ AF*)
A Wishart prior W (v, V) with v degrees of freedom and scale matrix V on ¥7! yields

a Wishart conditional distribution

N
S8 AL o AN W e W, Xy, Xy ~ W (o + NV + ) Negel), (4.13)

=1
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where €, = w; — X;3.

To ensure identifiable parameters in the model, we sample the matrix ¥ such that
the (J — 1) — th element of the diagonal of ¥ is fixed to 1. That is, the variance of
the utilities of the (J — 1) — th alternative is equal to 1 throughout the algorithm. To
obtain it, we use lemma (2) of Dawid (1988) (see also Dempster, 1969, for a slightly
different version). According to it, instead of sampling ¥~! from the conditional Wishart
distribution given in (4.13), we use the steps outlined in the following to sample indirectly
from X7to? | =1

-Split the scale matrix V + vazl Me;el in (4.13) into the matrices

G(l}—Z)x(J—2) G(13—2)><1

Glxp-ny G

Draw T from W= (v + N + 1, G*" — G'*(G**)~1G*).
Draw BT from Nj_,((G**)7'GH, (G**)~"t @ T).
-Perform the inverse transformation

r+BTB BT
Y
B 1

The next step in the algorithm is to draw the mixing variables \;. Setting [A;] =
Gi(%,%), the conditional distribution of A; is
v+J—-11

v (Wi = XiB) TS (w Xlﬂ)D G=1,...N

)\i 2_1 . XZNG<
|57 s Wi, U, 9 9

Examining thoroughly the proposed model, a natural next step is to find out the link
function of the error term that fits the data as good as possible. In our approach, we avoid
the usual computational burden of fitting several models with different degrees of freedom
on the data by using instead an additional Metropolis-Hastings step in the procedure that

samples from the continuous positive distribution of the degrees of freedom v. Given A;,
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and setting [v] = G(a,b), the conditional distribution of v is

[ A1, oo An] o 2T (2) N (2) 5 H)\ 51 exp[—= 26+Z)\ (4.14)

2

The unknown form of this conditional density requires specific handling that can be
obtained by an additional Metropolis-Hastings step. We propose the use of a random
walk step with a proposal taken as a normal density (truncated to positive values) with

variance appropriately tuned to achieve accepted probability between 0.25-0.50.

4.3.4 Threshold parameters

Recall that the N,, responses of the m — th decision maker is a subset of the NV responses
of the sample. Then, §,,, m = 1,...M, conditional on the latent responses w; that
correspond to the m — th decision maker, are assumed to follow a normal distribution
with common mean p; and variance o3, appropriately truncated in an interval (I, u,,)

defined for each decision maker. These bounds are defined such that

[ = max |w;; — w;g] (4.15)
q

for all pairs j and ¢ of distinct alternatives at which a tie has been observed (over all the

response vectors of the m — th decision maker) and

U, = MiN |w;; — w;g (4.16)
7q

for all pairs 7 and ¢ of distinct alternatives which have been clearly ranked without ties
by the m — th decision maker. Note that, if the ranking response vectors of a particular
decision maker do not include a tie, [, = 0. That is, discrimination has been obtained,

no matter how small §,, is.
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With respect to the random effects in the model, if we set [i5] = 1, the conditional

distribution of yz|dy1, ..., 0ar, o3, is

Zm(sm 0-(%
N( wtn 0L)

In addition, setting [03] = [G(a*,b*), the inverse gamma conditional of &3|us, d,, is
* 1 * 1 2
IG | a —|-§M,b +§Z(5m_ﬁ‘5) :

4.3.5 Latent utilities

The conditional distribution of w;, is multivariate normal of dimension J — 1, truncated
over the appropriate cone in R7~1, or, alternatively, each element w;; of w; is drawn from
a univariate normal distribution truncated over an appropriate interval. Hence, we draw

from N x (J — 1) conditionals
wij|Wi(—j)767 2_17 )‘iv(smv}Iiin ~ N(mijaT?j)7 (417)
fore=1,.... N, 3=1,...,J — 1, where

mij = X8 + (05 2 (Wi-i) — Xi-nB);

1

i = 37005 = i T i)

Wi(—j) is the vector w; of dimension (J —1) x 1 except the j —1h element, x;; is the j —1h
row of X;, Xj_;) is the submatrix created by deleting the j — th row from X; and the
submatrices X(_j(—;), Tj(=j)» 0(—j); and o;; come from the partitioning of ¥ with respect

to the j — th argument, such that



These conditional distributions are appropriately truncated so that the drawn utilities

are consistent with the ranking of the alternatives obtained by the corresponding decision

maker. For given d,,, the intervals on the real line which truncate the draws of w;; are

defined as follows. Let wl(»f) denote the utility of alternative j in the ¢ — th response

such that y;; = k (k = 1 for the most preferable alternative etc.). Then, the conditional
(k)

distribution of w;;’, given by (4.17), is truncated in the interval (l,,u,,), where

Ly = (W 45, (4.18)

and

u = (w7 = 6,). (4.19)

(r) _

We define wl(»?) = oo and, for p > max;(y;;), for j = 1,...,J, w;y’ = —oo. Then, using as
a base line the condition w;; = 0, one can generate the truncation intervals of each value
w;; given the remaining elements of w;. For example, in a set with three alternatives, if
y: = [1,3,2]%, the truncation we use is w;; > &, and wyy < —§,,. If y; = [2,3,1]%, the
truncation is w;y + 9, < wy < —d,, and wye < wy — d,,. This procedure guarantees that
unequally preferred alternatives correspond to utilities with difference larger than § and

that a higher utility and, consequently, a higher probability of alternative to be chosen

corresponds to a more preferred alternative.

However, the formulae just outlined capture the situation where no ties have been
observed in y;. Note that max;(y;;), for j = 1,...,.J is not necessarily equal to J because
a tie may take place for all j where y;; = k. Some modifications are required on the
procedure that calculates the constraints of the utilities distribution of (4.17) in the case

of ties or apparent intransitivities.
To demonstrate the utilities constraints in cases of intransitivity and ties in response

vectors, we denote as

6 = (1, ... 113) (4.20)

1z R
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the vector of the Z elements of w; which correspond to y;; = k. Then, one can generate

the truncation interval of tgf) using the formulae (4.18) and (4.19) (unless y;; = k, where

(%)

one can set ¢;;” = w;y = 0) and the truncation intervals (I, u;) of the remaining elements

of tgk) using the sampled value tgf) and the bounds

L = max|(t}) — 6,,), (w4 5,)]

)

and

Uy = mm[(tif) + 5m)7 (w(k_l) - 5m)]

]
Nevertheless, in this case, if one attempts to form the truncation intervals for the re-

maining non-tied responses using (4.18) and (4.19), more than one utilities correspond

toy,; =k+1ortoy,; =k—1. Then, if £ > 1 or k < max;(y;;), one should use

wl(»f—l_l) = max(tgf—l_l)) (4.21)
and
W = min() (4.22)

in (4.18) and (4.19), respectively. For example, in the set with three alternatives, if y; =
[1,1,2], then the truncation one could use is w;; > §,, and maz(w;; — 6, 6,m) < Wi <
w;1+6,,, whereas, if y; = [1,2,2]7 the truncation one could use is w;; > max(w;+8,m, §,m)

and —d,, < wiy < Min(dpm, wir — 6p).

Another possible response is the apparent intransitivity. In this case, if y;; = k is

an intransitive choice (in the sense that wh wl(»f) < I, wh — wl(»f—l_l) < §,, though

I I
(k=1)_ (k+1 (h=1) (B o (B D)

by Wy S dm ), the truncation intervals for w;; ™/, w; . are, respectively,

(w4 6,0 4 6,0),
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(=) 5w 16,) (4.23)

and

Hence, in a three alternatives response, if the first and the second alternatives are tied,
the second and the third are tied, but the first alternative is ranked ahead of the third one,
then the truncation intervals for w;; and w;y are, respectively, w;y + &, < w;; < Wiz +26,,
and w;; — d,, < w;y < 0,,. In addition, if the first and the second alternatives are tied
with the third one but the second is ranked ahead of the first, the truncation one could
use is —d,, < w; < Wiy — 6, and w;; + 0, < W < §,,. Table 4.1 shows some examples
of truncation intervals in a four-alternatives example, that includes ranking responses,
ties or apparent intransitivities. The element “2.5”7 of the last choice vector indicates
that this alternative (the second one) is equally preffered with the first and the third
alternative (an apparent intransitivity occurs), the first is more preferable than the third
though.

Finally, the sampled values w;; are obtained by an “one-for-one” sampling method
by Devroye (1986) along with the exponential rejection sampling suggested by Robert
(1995).
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Table 4.1: Example of truncation intervals of the utilities in a four-alternatives choice.

Choice vector y; Utility w;; Lower bound Upper bound
1 Wi Wiz + Oy +o0
2 Wig Wiz + O, Wi — O,
3 W;s Om Wiz — Oy,
4 Wi4 0 0
2 Wiy Om Wiz — Oy,
4 Wia —0 —4,,
1 w;3 Wi + O, +o0
3 W4 0 0
3 Wiy Wiz + O, —0p
1 Wia Om 40
4 Wis —00 Wi — O,
2 Wi4 0 0
3 Wiy Wiz + Oy Wiz — Oy,
4 Wig —00 Wi — O,
2 (% Wi + O, —0p
1 Wi4 0 0
1 Wi max (Wi, Wis) + O 400
2 Wi2 Om Wi — O,
2 Wi max(Wig — Om, 0 ) min(wiz + Gy Wi — )
3 W4 0 0
2 Wiy max (0, w;s) + &y, Wi — O
1 Wio Wi + O, +o0
3 Wi —Om min(d.m,, Wit — Op)
3 W4 0 0
2 Wi Wis + O, min(wiz + 6y —p)
2.5 Wio Wi — O Wiz + O
W;s Wiz — Oy Wi — O,
1 Wi4 0 0

35



56



Chapter 5

Latent Utilities for Transportation

Services; Analysis of Attiko Metro

Data

5.1

Introduction

In this chapter, we analyze a real data set from a stated preference experiment
which was designed to explain and predict passengers behavior towards three
main transportation modes in the city of Athens. This data set will illustrate
the proposed model and the practical information that can be derived from
the output. A key feature of the analysis of transportation systems is the
prediction of the passengers’ behavior when changes are brought about by
new services, investments in infrastructure or changes in operating and pricing
policies. The focus of these analyses is usually on the estimation of the
“value of time” and the trade-off between travel cost and travel characteristics
such as in-vehicle time, walking time, waiting time, parking search time, etc.,
of some competitive alternatives (e.g. metro, car, bus). Such estimations

are based upon the continuous utilities of the alternatives which are hidden
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behind a stated preferences designed experiment aimed to the transportation

services users.

5.2 A stated preference experiment for transporta-

tion modes

In the development study of Athens’ metro, a designed stated choice experiment aimed to
assess the value and relative importance of certain travel characteristics (attributes) with
respect to transportation modes “car”, “metro” and “bus”. The set of characteristics
included the travel cost in drachmas, the total walk time to/from transportation modes
in minutes, the total in-vehicle time in minutes excluding parking search time of private
means of transport, the total waiting time in minutes for public transportation, the
parking search time in minutes (applicable to cars only) and the inconvenience associated
with a mode transfer in the course of a journey. To investigate individual behavior in
terms of trip purpose, income and car availability, the sample was partitioned into five
segments based on the trip purpose (home-based work, home-based social / recreation,
home-based education, all non home-based purposes and home-based other, like business,
shopping etc.), based on monthly household income (3 groups: up to 200 thousand
drachmas, between 201-400 thousand drachmas and above 400 thousand drachmas) and,
finally, based on car availability (daily-occasionally or never). The survey was designed to
collect about 100 effective interviews per segment. This required a minimum total of 500
effective interviews. The set of characteristics with their corresponding levels are given
in Table 5.1 (inconvenience of a transfer = 1 denotes that more than one transportation
modes were needed).

The stated choice experiment was elaborated using hypothetical scenarios about the
values of the attributes which the respondents faced in order to form their choices. The
“main effects” orthogonal fractional factorial design consisted of 32 different combinations

of the attribute levels of Table 5.1. The 32 runs of the experiment (i.e. hypothetical
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Table 5.1: Attribute levels for travel characteristics.

Walking In-vehicle  Parking waiting inconvenience
time time search time cost time of a
(min) (min) (min) (drachmas)  (min) transfer
Car 2or7 10 or 30 5orld 200 or 400 - -
Metro 10 or 20 15 or 25 - 100 or 300 2or7 Oorl
Bus 5 or 10 25 or 40 - 75 or 150 10 or 25 Oorl

scenarios or, otherwise stated, triplets of mode alternatives metro, bus and car) were
clustered in 8 blocks of 4 runs each. Each respondent was faced with one of the eight

blocks. The resulting data structure for each run has the form of Table 5.2.

Table 5.2: A part of the data. In this particular hypothetical scenario, the decision
maker’s first choice was “Metro” and the second one was “Car”.

Choice Walking In-vehicle Parking search Cost Waiting Inconvenience
time time time time of a
(min) (min) (min) (min) transfer
Car 2 2 30 5 400 0 0
Metro 1 10 15 0 300 7 1
Bus 3 5 25 0 75 25 1

One may wonder why the data contain a ranked rather than a discrete choice pref-
erence. In fact, the actual experiment did not use the structure appeared in Table 5.2
and the ranking responses were caused by necessity rather than desire. As indicated by
a pilot study, it is very difficult for a decision maker to take into account the complexity
of the 14 attribute values (of Table 5.1) per scenario, so it was decided that all three pos-
sible combinations of pairs of the triplet (car-metro, metro-bus and car-bus) should be
shown instead of one triplet. In each paired choice, the “none” alternative was added to
avoid forcing the respondent into selecting a non-preferred response. Thus, each respon-
dent faced 12 cards (4 runs by 3 cards per run). The three pairwise comparisons were
converted to a single ranked triplet, possibly with ties, inconsistencies and lexicographic
responses. Inconsistencies and lexicographic responses were eliminated; see Wardman

(1988). The former inconsistent responses yielded when the rational choice axioms were

59



violated. For instance, in a hypothetical scenario, the decision maker may had preferred
car compared to metro, metro compared to bus, but bus compared to car whereas, in the
logical ranking, car should had been more preferable than bus. Furthermore, the lexico-
graphic responses were caused when, for instance, the ranking responses of an individual
were based only on the values of a particular attribute, such as the lowest in-vehicle
time, whereas the trade-offs among attributes were ignored. The number of the triplets
of valid responses and the number of the decision makers per trip purpose and based on
car availability are shown in Table 5.3. For a detailed description of this stated choice

experiment, see Spanos, Deloukas and Anastassaki (1997).

Table 5.3: Number of triplets of valid responses and decision makers.

Trip Purpose Valid responses Decision Makers
Work 664 176
Recreation 282 74

Other 323 87
Education 310 83

Non home-based 270 73

Car availability

Daily 648 169
Occasionally 348 94

Never 853 230

When analysing such data, a primary goal is to estimate the relative importance
of travel characteristics for the five different trip purposes. Rather than dealing with
the whole data set using appropriate explanatory dummy variables for the trip purpose,
we chose to analyze these five data sets separately. This is a usual strategy in the
transportation literature. For example, Wardman (1988) points out that the calibration
of separate models for each category of interest allows a more detailed examination of
the responses. Moreover, another potential problem caused when the analysis is based
on all data is the “majority fallacy”. As Moore (1980) writes (see also Huber and Moore,
1980):

The majority fallacy is caused by heterogeneity of preferences; for example,
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if half of the people like large cars and the other half like small cars, the
‘average’ person may like medium sized cars best, even though no real person

wants one.

Hence, if we include all the different groups in just one analysis, we may conclude to
an aggregation of the different tastes that the groups may have into an average “taste”

that will represent none of the respondents.

5.2.1 Prior specifications and MCMC output

The five data sets were analyzed using the proposed model with multivariate student-t
distribution for the error term and with random effects for the sampling step of §,,. For
a series of diffuse prior specifications (gamma densities) for the degrees of freedom v,
we noticed that the MCMC algorithm does not converge due to the uncontrollably large
values of v. The analysis showed the parameter for the degree of freedom to take large
values as if it was trying to approach the normal distribution against the gamma prior
information that was given. Using several values for the mean and the variance for the
gamma prior, the posterior density was taking the prior shape providing evidence for the
posterior density’s smothering within the prior frames. In addition, when the variance of
the proposal distribution was very large, this parameter was taking uncontrollably large
values and it was varying without convergence. In fact, all of these values of the degrees
of freedom were providing good approximations of the multivariate normal distribution.
Hence,we based our algorithm on A; = 1. Hence, we ended up assuming normal errors
for all the data subsets except one that will be discussed later.

For the rest of the parameters, we used a normal prior for 3 with mean 0 and
covariance matrix diag(100), a conjugate Wishart prior for ¥~ with v = 3 and scale
matrix diag(3) which results to a mean equal to diag(1), and an inverse gamma prior for
o% with ¢* = 0.5 and b* = 1. When a Student-t distribution was used, the prior for A,

was (/(%,%). These prior specifications provided fairly vague priors.
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We used 4000 sampled values from the posterior densities for each data set. After a
burn-in of 5000 iterations, a lag 20 was used to save computer space. The Raftery and
Lewis, the Geweke and the Heilderberger-Welch diagnostics (see, for example, Brooks
and Roberts, 1998) were used and they provided evidence for the convergence of all the

parameters.

5.2.2 Calibration of separate models

Our first goal is to estimate the relative importance of travel characteristics for the five
different trip purposes. Rather than dealing with the whole data set using appropriate
explanatory dummy variables for the specification of the trip purpose, we chose to analyze
these five data sets separately. Wardman (1988) pointed out that the calibration of
separate models for each category of interest allows a more detailed examination of the
responses; this is a usual strategy of the transport experts and that was also used in
the analysis with the multinomial logit model in our data set in the case where only the
discrete (first) choice was reported (Spanos et al., 1997). Hence, the use of the same
strategy in our analysis is considered as a facilitation for the transport experts since, at

least, rough comparisons of the results may be performed.

5.2.3 Results

The posterior output consists of practical information such as travel characteristics (e.g.
walking time, waiting time etc.), expressed either in drachmas per hour or in minutes
of in-vehicle time, and 95% credible intervals of the probability of choosing a particular
transportation mode: key factors in determining whether a policy has positive or negative
net benefits.

Table 5.4 shows the estimated posterior parameters along with their 95% credible
intervals (the 2.5th and 97.5th percentiles of the sampled values of the parameters).
INT denotes the inconvenience associated with the mode transfer in the course of a

journey, PST denotes the parking search time, INVT denotes the in-vehicle time, AASC
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denotes the alternative specific constant for car and MASC denotes the alternative specific

constant for metro.

The coefficients of all the travel characteristics are negative for all the five purposes as
they were plausibly expected to be. In addition, almost all of these 95% credible intervals
do not include 0. Exception is the credible intervals of parking search time for the trip
purposes “Recreation” and “Other”. Also, the coefficients of the alternative specific
constants for car and metro are all close to 0 which shows that the travel characteristics
which were included in the stated choice experiment can sufficiently explain the choices

of the decision makers and the utilities which were formed.

Furthermore, note that the credible intervals for the covariance o1, of all the five trip
purposes include only positive values which shows that a simple model which assumes
uncorrelated utilities of the alternatives within each response (such as the multinomial
logit or a multivariate probit with zero off-diagonal elements of ¥) would not had been

a suitable choice for these particular data sets.

The parameter p; is larger (equal to 0.223) for decision makers whose trip purpose
is non home-based whereas the smallest value for p; appears when the trip purpose
is “work”. That is, non home-based commuters seem more indifferent in their choice
of transportation mode whereas commuters to work seem more decisive in their choices.
This result provides evidence for the way the utilities are quantified; 15% of the responses
by non-home based commuters include ties or intransitivities whereas the respective

percentages for the remaining data sets are 6-9%.

We will concentrate on some of the results and we will illustrate some examples of
the way we provided answers to some questions posed by the transportation engineers.
Assume, for example, that the travel characteristic “Inconvenience of transfer” (IoT) is of
interest. Figure 5-1a shows the posterior error bars of the elements of 3 that correspond
to IoT for the five trip purposes. These represent the 95% credible intervals of this
parameter. The existence of loT reduces the utility of transportation modes; note that

commuters to recreation are more discouraged when using more than one transportation
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Table 5.4: Posterior means of the parameters for the five trip purposes. In parentheses,
the 2.5th and 97.5th percentiles are presented.

Work Recreation Other Education Non
home-based

walk -0.053 -0.041 -0.068 -0.083 -0.063
(-0.069,-0.038)  (-0.067,-0.016) (-0.093,-0.044) (-0.108,-0.058) (-0.090,-0.037)

walit -0.031 -0.023 -0.020 -0.037 -0.046
(-0.043,-0.020)  (-0.045,-0.002) (-0.038,-0.002) (-0.055,-0.019) (-0.065,-0.027)

INT -0.248 -0.556 -0.230 -0.264 -0.370
(-0.379,-0.118)  (-0.777,-0.353) (-0.429,-0.030) (-0.466,-0.063) (-0.602,-0.153)

PST -0.024 -0.026 -0.022 -0.061 -0.053
(-0.046,-0.001)  (-0.073,0.020)  (-0.063,0.016) (-0.104,-0.020) (-0.102,-0.007)

INVT -0.031 -0.034 -0.042 -0.047 -0.028
(-0.039,-0.023)  (-0.048,-0.020) (-0.055,-0.028) (-0.062,-0.034) (-0.043,-0.014)

cost -0.004 -0.003 -0.003 -0.006 -0.004
(-0.005,-0.003)  (-0.005,-0.002) (-0.004,-0.002) (-0.007,-0.005) (-0.005,-0.003

AASC 0.171 0.647 0.024 0.805 0.087
(-0.197,0.544)  (-0.040,1.372)  (-0.593,0.658)  (0.197,1.464)  (-0.590,0.776)

MASC 0.587 0.711 0.574 0.584 0.440
(0.350,0.824) (0.316,1.102) (0.214,0.930) (0.211,0.979) (0.022,0.835)

o 1.942 3.498 2.578 2.719 3.033
(1.536,2.415) (2.400,4.993) (1.760,3.614) (1.915,3.813) (2.040,4.405)

012 0.610 0.761 0.468 0.729 0.498
(0.475,0.750) (0.482,1.018) (0.237,0.705) (0.493,0.979) (0.214,0.774)

s 0.123 0.178 0.164 0.155 0.223
(0.095,0.151) (0.116,0.240) (0.111,0.220) (0.102,0.209) (0.152,0.299)

modes.

The transport experts’ inference is usually based on ratios of the estimated para-

meters of the travel characteristics. This emerges from the identification problem and

the restriction on the covariance matrix of w; that permit the inference to be based on

ratios of the estimated parameters and not on the parameters themselves. The usual,

and sensible ratios used in such applications are created by dividing each travel charac-

teristic by “cost” or by “in-vehicle time”. The corresponding error bars similar to [oT

are given in Figures 5-1b and 5-1c and the resulting ratios in Figures 5-2a and 5-2b.

These ratios were constructed by manipulating the MCMC output in the usual way; see,
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Figure 5-1: Posterior error bars. la: Inconvenience of a transfer. 1b: Cost. lc: In-vehicle
time. 1d: pg. Trip purpose 1:Work, 2:Recreation, 3:Other trip purposes, 4:Education,
5:Non home-based.

65



2a 2b

30

300

25

250

20

200

15

Drachmas

150
Minutes of in-vehicle time

10

Figure 5-2: Medians and 95% credible intervals of ratios. 2a: Inconvenience of a transfer
expressed in drachmas. 2b: Inconvenience of a transfer expressed in in minutes of in-
vehicle time. Trip purpose 1:Work, 2:Recreation, 3:Other trip purposes, 4:Education,
5:Non home-based.

for example, Smith and Roberts (1993). Figure 5-1b provides evidence that commuters
for educational purposes are more discouraged to use a transportation mode when the
cost 1s high. Moreover, note that commuters to recreation would be willing to pay about
174 drachmas to avoid IoT (Figure 5-2a) and that IoT is, on average, 16 times more
important for them than a minute of in-vehicle time (Figure 5-2b).

Table 5.5 provides the relation between the in-vehicle time and the remaining travel
characteristics via the median and 2.5th and 97.5th percentiles of the ratio of walk, wait,
[oT, and parking search time (PST) with the parameter “in vehicle time” (INVT). We

report the median rather than the mean of each ratio because the normal densities of the
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parameters of the travel characteristics generate a Cauchy distributed ratio where the
mean does not exist. This yields an expression of these travel characteristics equivalent

to minutes of in-vehicle time.

Table 5.5: Travel characteristics in minutes of in-vehicle time.

Work Recreation Other Education  Non home-based
walk 1.72 1.23 1.64 1.74 2.24
(1.16,2.48)  (0.47,2.44)  (1.06,2.51)  (1.16,2.65) (1.11,4.90)
walt 1.01 0.69 0.48 0.78 1.64
(0.63,1.55)  (0.07,1.58)  (0.05,1.01)  (0.40,1.26) (0.86,3.37)
IoT 8.09 16.47 5.53 5.58 13.12
(3.73,13.54)  (9.74,28.95) (0.77,10.97) (1.24,11.28) (5.13,28.51)
PST 0.77 0.76 0.52 1.28 1.90
(0.03,1.62)  (-0.63,2.36) (-0.36,1.66)  (0.42,2.33) (0.23,4.58)

It is usually considered by transport experts that the travel characteristics “walk”,
“wait” and “PST” should be up to 2.5 times higher than “INVT” and that the penalty of
a transfer in the course of a journey should be 3-4 times higher than “INVT”. However,
only the parameter of “walk” seems to be consistent to such a consideration for all the
trip purposes. The values of “wait” and “PST” are, in general, lower than 1 (which is
the value that corresponds to “INVT” for the purposes of the comparison). That is,
a minute of in-vehicle time may be more important than a minute of waiting time or a
minute of parking search time for that particular population. However, the corresponding
95% credible intervals include the unity so there is evidence that the values of “wait”
and “PST” are, at least, equally important to the value of “INVT”. It is also noteworthy
that the value of “IoT” in minutes of in-vehicle time is higher than it was expected for
all the trip purposes.

The value of time (the money in drachmas that the decision makers would pay in
order to avoid an hour of the travel characteristic “walk”, “wait”, “PST” or “INVT”) is
also a ratio of interest which we calculated as the median of the ratio 60-(travel character-
istic)/cost. In addition, the money in drachmas the decision makers would pay in order

to avoid the penalty associated with a transfer in the course of a journey was calculated
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as INT/cost. The medians and the 2.5th and 97.5th percentiles of these ratios are given
in Table 5.6.

Table 5.6: Travel characteristics in drachmas per hour.

Work Recreation Other Education Non home-based
walk 800 776 1301 847 884
(564,1094) (282,1579)  (775,2233) (607,1128) (483,1431)
walt 471 440 377 377 645
(297,676) (46,967) (46,308) (191,587) (370,1009)
INT 63 174 73 45 87
(29,102) (99,310) (9,161) (11,83) (35,148)
PST 355 484 412 617 47
(14,717)  (-398,1495) (-302,1293) (203,1075) (90,1502)
INVT 465 633 788 484 396
(335,619)  (355,1064)  (497,1286)  (346,655) (196,658)

Moreover, note that the in-vehicle time is almost equally important for commuters to
work and recreation. However, the ratio (in-vehicle time/cost) showed that commuters
to recreation are willing to pay more in order to avoid an hour of in-vehicle time. Never-
theless, these two densities were highly overlapped, indicating that this difference is, at

least, not significant.

5.2.4 Segmentation of the sample based on car availability

Another segmentation of the sample (besides the trip purpose) is based on the car avail-
ability. We ran the programs for the respondents who had a car available daily or
occasionally and for those who never have a car available. We also provide the results of
the model for the whole data set (without any segmentation) for purposes of comparison.

Table 5.7 shows the posterior means (and the credible intervals) of the two levels of
“car availability” and the respective results for the whole sample. Note the narrower
credible intervals of the parameters for the whole sample (as they should plausibly be,
due to the large sample size).

In addition, Tables 5.8 and 5.9 show the travel characteristics expressed in minutes
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Table 5.7: Posterior means of the parameters for the three levels of “Car Availability”

and for the whole data set.

Car Availability Whole sample
Daily/Occasionally Never
walk -0.0551 -0.0596 -0.0550
(-0.0676,-0.0421)  (-0.0736,-0.0455)  (-0.0644,-0.0457)
wait -0.0310 -0.0279 -0.0287
(-0.0409,-0.0213)  (-0.0385,-0.0174)  (-0.0358,-0.0213)
INT -0.3297 -0.2402 -0.2853
(-0.4395,-0.2224)  (-0.3550,-0.1297) (-0.33628,-0.2079)
PST -0.0221 -0.0480 -0.0317
(-0.0419,-0.0025)  (-0.0710,-0.0239)  (-0.0468,-0.0180)
INVT -0.0319 -0.0361 -0.0325
(-0.0384,-0.0253)  (-0.0441,-0.0286)  (-0.0373,-0.0277)
cost -0.0033 -0.0045 -0.0037
(-0.0039,-0.0027)  (-0.0052,-0.0038)  (-0.0042,-0.0033)
AASC -0.2292 0.3915 0.2824
(-0.0722,0.5353) (0.0218,0.7528) (0.0519,0.5141)
MASC 0.6192 0.4831 0.5433
(0.4172,0.8183) (0.2524,0.6939) (0.3980,0.6895)
o 2.1578 2.4544 2.1443
(1.7846,2.6047) (1.9576,3.0320) (1.8659,2.4656)
o012 0.5836 0.5949 0.6029
(0.4610,0.7067) (0.4534,0.7330) (0.5095,0.6923)
Ls 0.1326 0.1395 0.1205
(0.1107,0.1560) (0.1161,0.1658) (0.1068,0.1348)

of in-vehicle time and in drachmas per hour respectively. It is noteworthy that those
who use a car daily or occasionally, believe that a minute of walking time and a waiting
time and an inconvenience of a transfer are more important for them (than for those who
do not have a car available) and they would be willing to pay more in order to avoid
them. The only characteristic that seems not to annoy them is the parking search time

(compared to those who do not have a car!).
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Table 5.8: Travel characteristics in minutes of in-vehicle time.

Car Availability Whole sample
Daily/Occasionally Never
walk 1.73 1.65 1.69
(1.26,2.35) (1.22,2.22) (1.35,2.09)
wait 0.97 0.77 0.88
(0.66,1.38) (0.48,1.15) (0.65,1.16)
INT 10.38 6.67 8.82
(6.91,14.66) (3.40,10.47) (6.23,11.70)
PST 0.71 1.34 0.97
(0.08,1.35) (0.66,2.08) (0.55,1.49)

Table 5.9: Travel characteristics in drachmas per hour.

Car Availability Whole sample
Daily/Occasionally Never

walk 995 785 884
(731,1325) (596,1004) (719,1063)

wait 562 364 459
(375,773) (228,525) (338,590)

INT 100 53 7

(65,140) (28,30) (54,99)

PST 403 640 509
(45,767) (317,950) (286,756)

INVT Y 476 521
(438,741) (367,604) (434,621)

5.2.5 Model validation

We used a simple method of discrepancy measurements to detect possible outliers (see
Chen and Dey, 2000). In particular, we calculated the difference between the expected
and the observed ranking responses. Thus, if R is the number of the drawn values from
the posterior distribution of each parameter of interest, then R vectors W; are reproduced
for each one of the N responses of the sample. Combining the information of 4,, and

W;, we can obtain the expected responses ¥;., r = 1, ..., R, for the ¢ — th response. The
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discrepancy D between observed and expected responses can then be measured as
1
D=7 Vi — ¥ ) (Fir — yi)-
N R Ei:ET:(yW i )(Fir = ¥i)

The standardized observational level discrepancy measures d; were calculated for each
alternative separately. When |d;| > 3 (Chen and Dey, 2000), the observation is considered
as aberrant.

This detection of possible outliers was applied to the commuters to work dataset of
664 responses. The number of aberrant observations with respect to the alternatives car,
metro and bus were 9, 9 and 3 respectively. The examination of all these responses showed
that those decision makers either did not choose the respective alternative although its
attributes had the lowest possible values specified by the experiment or chose the alter-
native although its attributes had the highest possible values, whereas the characteristics

of the remaining alternatives were much more attractive.

5.2.6 Models with Student-t Errors for Small Data Sets

As it was previously mentioned, the surprising result for these data sets (that was also
appeared in the analysis with the multinomial logit model where only the discrete choices
where analyzed, see Spanos et al., 1997) is that the value of in-vehicle time (in drachmas
per hour) is higher for the trip purpose “recreation” than for “work”. Nevertheless, these
two densities are highly overlapped (Figure 5-3).

However, the suspicion of such a peculiarity for that particular population could have
dramatically influenced the transportation politics. So, we tried to go deeper into that
problem by reanalyzing these two data sets (trips for work and recreation) using the
additional information of the household monthly income categories. This resulted in
three subsets for each of the two trip purposes.

The analysis of these six data sets first required the investigation of the appropriate

distribution for the degrees of freedom of the error term (see equation 4.14). This pro-
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Figure 5-3: Densities of the value of time in drachmas per hour. The solid line represents
the trip purpose “Work” and the dashed line the trip purpose “Recreation”.

cedure showed only the model for the smallest data set, that corresponds to recreation
trip purposes for individuals with household monthly income above 400 thousand drach-
mas (Table 5.10 provides the sample sizes), to prefer a distribution for the error term
with heavier tails than those of the normal distribution. This data set contains 41%
of responses with intransitivities and ties whereas such responses in the five remaining
data sets where much fewer (1-11%). In particular, we tried gamma priors with several
values of a and b which resulted to similar posterior densities. We ran the programs using

different initial values to avoid absorption points in the Metropolis-Hastings step of the
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algorithm, see Gelman, Carlin, Stern and Rubin (1995, pp. 362). Finally, a gamma prior
for the degrees of freedom with @ = 1.1 and b = 0.011 was used and resulted to a posterior
mean equal to 2.07 and posterior variance 0.016. In the Metropolis within Gibbs step
for the parameter of the degrees of freedom, a normal proposal distribution was used
with variance equal to 0.005, which yielded a probability of acceptance about 0.49 in
the Metropolis-Hastings algorithm. This proposal density was truncated to values larger
than 2 so as not to include long-tailed distributions while they have infinite variance
and are not realistic in the far tails (see Gelman et al., 1995, pp. 350). To obtain 4000

posterior values, a lag equal to 100 was used after a burn-in of 10000 iterations.

Table 5.10: Sample sizes by Household Monthly Income (in thousand drachmas) for trip
purposes “Work” and “Recreation”

Work Recreation
Income  Responses Respondents Responses Respondents
up to 200 214 58 89 24
201-400 308 80 112 29
above 400 142 38 81 21

Having satisfied ourselves that the data sets themselves chose the distribution for the
error term that fits them better, we proceed on the estimation of the parameters and
we focus on the calculation of the value of in-vehicle time (in drachmas per hour). As
it is shown (Table 5.11), the 95% credible intervals of the two estimations are highly
overlapped for all of the three categories of the monthly household income and, hence,

none of these groups behaves in a particular way that requires special treatment.

It is important to mention, however, that the model with normal errors for the com-
muters for a recreation purpose with a monthly income of above 400 thousand drachmas
provided inexplicable coefficients (for example, almost all the posterior values of the pa-
rameter of “walk” had positive signs) whereas, when used the model with varying degrees

of freedom, no such problems were reported.
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Table 5.11: Value of in-vehicle time in drachmas per hour for each monthly household
income category.

Income Work Recreation
up to 200 368 695
(174,614)  (289,1677)
201-400 501 417
(308,767) (-308,2620)
above 400 531 405 782

(207,889)  (267,620)  (411,1915)

¢ Normal errors.

b Student-t errors with varying v.

5.3 On the decisions of transportation policy

The last step in our attempt is the investigation of the transportation policy that is
proposed in the light of the information we derived from this analysis. A manager may
be interested in investigating the behavior of the decision makers against changes of the
value of an alternative’s attribute (or the values of some alternative attributes) when all
the remaining attributes values are known.

For illustrative purposes, we focus on the trip purpose “Work” and on the rela-
tion between travel cost and the probabilities of the three alternatives to be chosen. A
straightforward question is related to the way the cost may influence these probabilities
and, finally, to the optimal ticket price of the recently constructed metro in Athens. For
this reason, in a presumptive situation, we created a possible scenario to be investigated.
We fixed each of the remaining travel characteristics to the mean value of the values used
at the experimental design, whereas the travel cost was varying from 100 to 300 drachmas
(which were the two values specified in the experiment for the travel cost of metro) with
an increment of 4 drachmas. Using the posterior quantities output at hand, we generated
200 trials per each of the 4000 posterior sampled draws. In each trial, we reported the
alternative with the highest utility; if this utility was greater than the second greater
utility plus a threshold ¢ (which is also available by the output at hand via ps and o%),

then success of this alternative was obtained, otherwise, a tie occurred. Recall that the
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utility of the last alternative “Bus” was fixed to 0 throughout the whole procedure as
it was mentioned in the presentation of the model. Then, from the 200 trials of each
posterior draw, the probabilities of the three alternatives to be chosen were estimated.
Finally, approximate credible intervals of these probabilities were calculated as the 2.5th
and the 97.5th percentiles of the 4000 estimated values of the three probabilities. The

results are reflected in Figure 5-4.
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Figure 5-4: 95% credible intervals of the probability of choosing a transportation mode
with varying cost of using Metro. Solid lines correspond to metro, dotted lines to car
and dashed lines to bus.

Note that, in our hypothetical scenario, the probability of bus to be the first choice is

lower than the respective probability of metro even if the ticket price of metro takes the
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highest value specified by the experiment. In addition, the alternative “car” is able to
compete with the metro when the travel cost of the latter is above of about 250 drachmas.
Incidentally, the Athens Metro came into operation on the 31th of January 2000 with a
ticket price of 250 drachmas for all routes.

One more question that can be investigated using the output, is related to the optimal
waiting time for Metro. The same procedure as before was repeated where the waiting
time for the Metro varied from 2 to 7 minutes with an increment of 0.1 minutes. We fixed
each of the remaining travel characteristics to the mean value of the values used at the
experimental design, except the cost of using Metro which was set equal to 250 drachmas.
Moreover, since the behaviors of commuters to work and recreation are different, we
investigated both of these groups. For commuters to work, the optimal waiting time for
Metro is, on average, 5 minutes (Figure 5-5a). On the other hand, for commuters for
recreational purposes, “Metro” is not able to compete “Car” even if the waiting time for

the former is just 2 minutes (Figure 5-5b).
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Figure 5-5: 95% credible intervals of the probability of choosing a transportation mode

with varying waiting time for Metro.

4a: Trip purpose “Work”.

4b: Trip purpose

“Recreation”. Solid lines correspond to metro, dotted lines to car and dashed lines to

bus.
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Chapter 6

Item response Theory

6.1

Introduction

Item Response Theory (IRT) models are widely used in psychological and
educational statistical analyses that aim to quantify parameters of a person,
named abilities, and parameters of items, named discrimination and difficulty.
In the educational framework, the multiple choice tests are subject of IRT
models, where the data consist of series of correct or incorrect responses of
each student per item included in the test. Thus, IRT is the study of test and
item scores based on assumptions concerning the mathematical relationship

between abilities (or other hypothesized traits) and item responses.

A simple model that is usually used is the Rasch model (Rasch, 1961) that
quantifies the general ability of each person and the difficulty parameter of
each item. More general models include the discrimination parameters of
each item and the item-guessing parameters (see, Albert and Ghosh, 2000).
However, in most of the cases, the performance of a student and, hence, the
respective ability can not be assumed to be unidimensional; multiple skills of

a student are involved in producing the manifest responses.

Moreover, the literature is still sparse in the analysis of data that are not
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dichotomous. Nevertheless, in multiple choice tests, a common practice is
that a penalty is being imposed (e.g. subtraction of points for each incorrect
answer) so as to prevent students from guessing behavior. This yields a
number of omissions in the responses. In usual item response models, these
omissions are regarded as incorrect answers. However, the omissions include
some kind of different information than the incorrect responses; in the case
where a penalty is used for each wrong answer, omissions may yield due
to uncertainty of the students whereas incorrect responses may yield due to

misinformed or confused students.

In this chapter, we present a widely used IRT model, the three parameters
logistic model. Special cases of this model are the Rasch model and the two
parameters logistic model. We propose a Bayesian approach for a multidi-
mensional item response model, that can be seen as a generalization of the

three parameters model.

In section 6.3, a general multidimensional item response model is proposed
for use in data with “non-answer” responses. In chapter 7, a real data set
is analyzed using the proposed model. Another real data set illustrates the

multidimensional item response model in chapter 8.

6.2 Review of IRT Modes

Item response theory models deal with the item level responses rather than the total
scores of the students on a test. The first IRT models were analysing data from tests in
which the responses were of a dichotomous correct-incorrect format. The distribution of
this “correct-incorrect” variable or, otherwise stated, the probability of a correct response
is decomposed on the general ability of the examinee’s parameters § € (—oo, +00), the
difficulty parameters b; € (—oo, +00) and the discrimination parameters a; € (0, +00).

The ability is a structural parameter; the probability of success on item j is usually
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presented as P;(6), whereas the item parameters (difficulty and discrimination) are con-
sidered as nuisance parameters. The function of the probability of success is known as

item response function.

6.2.1 The Normal-Ogive Model

The first IRT model was the normal-ogive model. The idea of the model is first presented
by Thurstone’s discriminal dispersions theory of stimulus perception (Thurstone, 1927),
also, the same basic model has been studied among others by Richardson (1936), Ferguson
(1942) and Lawley(1943).

The response function for the jth item, based on this model, is given by a normal

cumulative distribution function:

Pi() = / e P12, (6.1)

6.2.2 The Rasch Model

Rasch introduced what he called “a structural model for items in a test”, (see Rasch,

1960). As van der Linden and Hambleton (1997) state:

Rasch’s main motivation for his models was his desire to eliminate references
to populations of examinees in analyses of tests (Rasch, 1960, Preface; Chap.
1). Test analysis would only be worthwhile if it were individual-centered, with
separate parameters for the items and the examinees. To make his point,
Rasch often referred to the work of Skinner, who was also known for his
dislike of the use of population based statistics and always experimented with

individual cases.

The probability of a correct answer (U;; = 1) is formulated by:
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1
P(UZJ = 1|02) = 1 + e_(gi_bj)v (62)

and, hence, the joint likelihood function of this model is given by:

1. 657 T1; 0%
L(0,b;u) = e T 6.3
(6 55) [T IL;(1 + 0:/65) )
where ¢ = 1,...,n is the index of the examinees, 7 = 1,..., k is the index of the items and

u;, and u ; are the marginal sums of the data matrix, i.e. the total scores of student ¢
and item j respectively.

Several methods have been proposed for the estimation of the parameters in this
model; the EM algorithm (Thissen, 1982) calculates the marginal maximum-likelihood
to eliminate the impact of the ability parameters when estimating item parameters, an
iterative least-squares method (Verhelst and Molenaar, 1988), semiparametric methods
(De Leeuw and Verhelst, 1986) and Bayesian methods that use a hierarchical modeling
(see Swaminathan and Gifford, 1982).

For the Rasch model, item totals and individual totals are sufficient statistics for the

model parameters.

6.2.3 The Two and Three Parameters Logistic Models

Birnbaum proposed a logistic model instead of the one parameter normal ogive model

(see Birnbaum, 1968):

1

bi0) =5 T oo (60

(6.4)

that also includes the discrimination parameters «a;.

82



One of the most commonly used models among applied psychologists is the Three-
Parameter Logistic Model. This model has been used primarily for modeling cognitive
ability data, but recently it has been applied to personality data as well (see Embretson
and Reise, 2000, for some other applications).

This model is a more general form of the one parameter (Rasch Model) and two
parameter logistic model. The formula of the model consists of three parameters: item
discrimination (parameter a), item location or difficulty (parameter b), and the height of
the lower asymptote of the response function (parameter ¢). Note that the two parameter
logistic model can be obtained from three parameters model be setting ¢ = 0; the Rasch
model, with one parameter, can be obtained by setting ¢ = 0 and @ = 1. The formula of

the three parameter model is:

4 1
C]) 1+ e_DaJ(e_bJ) ’

(6.5)

where @ represents the value of the latent trait (e.g., conscientiousness or cognitive
ability), P(8) represents the probability of a correct response, D is a scaling constant

equal to 1.702, and a, b, and ¢ are the parameters characterizing an item.

LL ”

Under this formulation, larger parameters provide better discrimination among

examinees. The item difficulty parameter “b” (or threshold parameter) is related to the
proportion-correct score, “p,” in classical test theory. Obviously, “p” and “b” are inversely
related. Large values of “p” indicate relatively “easy” items, whereas large values of “b”

indicate “difficult” items. Finally, the guessing parameter ¢ indicates the probability of

responding correctly for examinees who have very low 6.

The likelihood function of the two-parameter logistic model can be written as:

L(0,a,b;u) HHP (055 a;,b;)“9[1 — Pi(0:5a;,b;)] 7. (6.6)
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The parameter estimation of this model requires the maximization of the logarithm

of the likelihood function which leads to the following estimation equations:

> aj(uij — Pi(0i5a5,b;)) =0,i =1,...,n,

J

> aj(uij — Pi(05a5,b5)) = 0,5 =1,.., k, (6.7)

> (uij = Pi(0i505,67))(0: = b;) = 0,5 = 1,.... k.,

Birnbaum suggested the joint maximum likelihood estimates to jointly solve the equa-
tions for the values of the unknown parameters iteratively, by starting with initial values
for the ability parameters, solves the equations for the item parameters, fixes the item
parameters, and solves the equations for improved estimates of the values of the ability
parameters etc. However, the convergence behaviour of this algorithm was not satisfac-
tory; Bock and Lieberman (1970) introduced the marginal maximum likelihood method
for the normal-ogive model, which was also applicable for the two and three parameters
logistic models. According to this method, for a density function f(#) of the ability dis-
tribution, the marginal probability of obtaining a response vector u = (uy, ...u;) on the

items in a test is equal to:

Plalab) = [ TIP0: s, b1 11 = P05 b)) F(0)do. (6:5)

The marginal likelihood function associated with the full data matrix u is given by

the multinomial kernel
277,
L(a,byu) = [T 70, (6.9)
u=1

where 7, is the probability of the response function in (6.8), which has frequency r,, in the
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data matrix. However, also this algorithm is slow, especially for large number of items.
For this reason, Bock and Aitkin (1981) proposed a version of the method in which an
EM algorithm is implemented, in such a way that a realistic larger number of items can
be handled. Moreover, this method characterizes the ability distribution empirically and,
hence, arbitrary assumptions about its form are avoided.

In addition to the methods described above, a variety of Bayesian approaches that
estimate the parameters of the two and three parameters logistic models have been pro-
posed (see, for example, Tsutakawa, 1992, Tsutakawa and Lin, 1986, Swaminathan and

Gifford 1985, 1986, Tsutakawa and Johnson, 1990, Tsutakawa and Soltys, 1988).

6.2.4 A Bayesian estimation of the normal ogive model

Rather than assuming the logistic representation, one can adopt the normal one, which
leads to the so called normal ogive model. We will focus on the Bayesian approach for
estimating the parameters of the model, since this will be essential for the presentation
of section 6.3.

The approach to estimating the two-parameter normal ogive model has been presented
by Albert (1992). A generalization for the inclusion of the guessing parameter can be
found in the work of Sahu (2002) (see also Béguin and Glas, 2001).

Following the notation of the previous sections, the Bayesian estimation of the three
parameter normal ogive model is outlined in the following.

Let Y;; = 1 denotes a correct response of a person 7 on an item j. The probability of

a correct response is given by:

P(Yi; = 1,05, a5,b5,¢5) = ¢; + (1 — ¢;)®(n;;)

= O(ny) + (1 — @(n;)), (6.10)

where ® denotes the standard normal cumulative distribution function, n,; = a;0; — b;
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and ¢; 1s the “pseudo-guessing parameter”. Under this scheme, the respondent either
knows the correct answer with probability @(7;;) or guesses correctly with probability
(1 — ®(n;;)). Hence, a correct response does not necessarily means knowledge of the
respondent. Suppose that K;; is a binary vector that is equal to 1 if person ¢ knows
the correct answer to item j and 0 otherwise (in the two-parameter logistic or normal
ogive models, K;; are identical to the actual response Y;;, this data augmentation with
the latent K;; is fruitful in the three parameter models though). Thus, the conditional
probability of Aj; given Yj; is:

i)
P(Ki; = 0]Y;; = 1,n,;,¢;) o< ¢;(1 — @(n;;))
P([(Z] = 1|}/2] 0 772]70]) = 0

P([(Z']‘ = OD/” = 07772']‘701‘) =L

In addition, the latent variables K;; are further augmented by the underlying (latent)
variables Z; ; for all 4, j, which are independent and normally distributed with mean 7,;
and standard deviation equal to 1, such that Z;; > 0 if K;; =1 and Z;; <0 if K;; = 0.

This leads to the following conditional distribution of Z;:

P(Zij| Kijsmi;) = &(Zigimi;, DU Zig > O)I(Ky; = 1) + 1(Z;; < 0)I(K;; =0)),  (6.11)

where ¢(Zij;n,;,1) is the normal density with mean 5,; and standard deviation 1.

The joint posterior distribution which we need to simulate from is:

p(Z,K,8,a,bly) = p(Z,Kly;a,b,c,0)p(8)p(a,b)p(c). (6.12)
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If we set a prior p(a,b) = [[I(a; > 0) for the block parameters ¢ and b, and a
conjugate non informative prior Beta(l,1) on the guessing parameter ¢;, the draws can

be obtained from the following full conditional distributions:

Draw Z;;|K,8,a,b,y) from the conditional distribution N(7;;, truncated on the

left by 0 if K;; =1 or truncated on the right otherwise.

e Draw from the conditional distribution of 8, given the remaining parameters:

N (Zj a;(Zij +b;) + p/o” 1 ) (6.13)

Yjai+1/0? "y al41/0?
where 1 and o are the parameters of the normal prior on 6.

e Draw from the conditional distribution of the block parameters a, b, which is
N((XTX)1XTZ;, (XTX)"'I(a; > 0)), where X = (8 — 1), 1 is the n-dimensional

column vector with elements 1.

e Draw from the conditional distribution of A, given the remaining parameters:

P(K;; = 1|Yy; = 1,n;;,¢5) o< ®(n;;)
P(Ky = 0[Y;; = L, ¢5) o< ¢5(1 — @(n,;))
P([XU - 1|}/2] - 0 772]76]) 0

P([(Z']‘ = OD/” = 07772']‘701‘) =L

e Draw from the conditional distribution of the probability for guessing ¢, given K
and y: Beta(s;+1,t;—s;+1), where t; denotes the number of the students who do
not know the correct answer and guess, and s; is the number of correct responses

of those who do not know the answer and guess for the response.

In addition, one may assume that the ability of the students is not unidimensional;

then the ability to answer may require several different cognitive tasks, or, otherwise
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stated, several factor to contribute to the correct response. Thus, the above model can
be extended to the multidimensional case, where a latent factor analysis is performed. A

model under this assumption is described in section 6.3.

6.2.5 Data structures other than the dichotomous case

The models that presented in the previous sections cover the dichotomous case of the
data, where the responses are of the “correct-incorrect” form. Several modifications of
the above models have been proposed in the literature that deal with other variations of
the data types. Incomplete responses is one of these cases, where the students do not
respond to the same set of items. Also, the rating scale model (see Andersen, 1997) is
a modification of the Rasch model that deals with polytomous responses to a set of test
items. In this case, the response categories are scored in such a way that the total score
of the items constitute a rating of the respondents on a latent scale. Typical examples
of such data structures are often found in the psychological tests where, for example, the
respondent answers questions like “Feeling nervous making decisions” or “Feeling lonely”
where the possible responses could be “ Always”, “Often”, “Moderately”, “A little bit”
and “Not at all”.

Another variation of the Rasch family of models is the partial credit model (see
Masters and Wright, 1997). This model deals with responses recorded in two or more
ordered categories in such a way that combines results across items to obtain measures
on some underlying variable. An example of this data structure could arise when several
markers (which are considered as different “items” grade essays of students in a 5-scale
evaluation (e.g. A for “excellent”, B, C, D, or E for “very bad”). By combining the
different evaluations of the markers, the partial credit model can estimate the ability of
each student in writing essays.

These are two typical examples of the plethora of the data structures that can arise
and the respective models to deal with. However, there is still no appropriate model

in the literature that can deal with responses which include omissions. For example, in
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the American SAT examination, there is a penalty for each wrong response, whereas the
omission is acceptable (and does not subtract points which is not the case of a wrong
response). Nonetheless, omissions provide useful additional information on the students’
ability and have to be treated in a different manner than the wrong responses. Moreover,
these are definitely not missing data which are not to be included in the analysis; they
do give a different aspect of the general ability. A model that deals with this kind of

data structure is proposed in the next section.

6.3 The proposed model

Suppose that there are n students (i = 1,...,n), each facing k& multiple choice questions
(j = 1,...k). In addition, suppose that d latent groups of different abilities (factors)
form the general ability of each student. The latent ability w;; of student i on item j is

supposed to follow a normal distribution with unit variance, i.e.

d
N(Z Cl]‘p(gip — b]‘,l). (614)
p=1

The actual responses restrict the underlying (latent) quantities w;; as follows:
e y;;=1 (correct response), then w;; > ¢,

e y;;=0 (incorrect response), then w;; <0

e y;;=omission, then w;; <4,

where §; is the positive threshold ability that a student has to exceed so as to respond
correctly due to uncertainty (the same across the items). Moreover, there is a probability
¢; that w;; < 6§; even if y;; = 1; we call it guessing probability for item j.

Under this scheme, the parameters to be estimated are:

o difficulty parameter b; of each item: the higher the value of this parameter, the

more difficult the item is.
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e guessing parameter ¢; for each item. Estimation of guessing parameters is impor-
tant since students’ chance success due to guessing contributes to error variance and

diminishes the reliability of multiple choice tests (see Zimmerman and Williams,

2003) .

o threshold parameter ¢; for each student: it represents the difference between the
ability that corresponds to the correct answers and the ability that corresponds to

omissions. In other words, §; shows how risky the student is.

e Discrimination parameters a;, for each item. Since the multiple choice test con-
sists of several items which require different cognitive abilities to be answered, we
estimate different discrimination parameters for different factors (factor loadings)
per item. We assume that most of the items require a combination of cognitive
abilities and the form of this combination is of major interest. Therefore, we use a

d-dimensional factor item response model (Béguin and Glas, 2001).

e The abilities 0;, for each student: thus, we can find the students with good per-
formance but also students with a high general performance in one cognitive task
but low performance in another. Also, sometimes we need to discriminate between
students who perform well due to their discernment and students who perform well

just because are good to remember things by heart.

The conjunction of the latent abilities and the probabilities that student ¢ will answer
item j correctly, is straightforward (for a nice presentation, see Albert and Ghosh, 2000).

Given these constraints, the likelihood of the model is proportional to
1 d )
[Texp(=5(wiy = > apbiy +6;)%). (6.15)
g p=1

Note that the likelihood is free from the data y;;; they influence the likelihood only

indirectly through the constraints that form the underlying variables w;;.
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6.3.1 Prior and Conditional Distributions

We place a normal prior distribution for ©; = (0,1, 0,9, ...,0;4)T, say Nz(0,T~'). Then,
the conditional distribution of ©; given B = (b1,bs,...,b;) and W; = (w1, wiz, ..., wik)
18

OF |A, B, Wi ~ Na((AA" + T)7" 30 Aj(wij + b)), (AA +T)7),
j

where A is a d x k matrix of the discrimination parameters a;; and A; is the j —th column

of A. To ensure identifiability, we set T' to be equal to the identity matrix.

Using a normal prior distribution Nz41)(0, V') for the block parameter vector (AJT b)7T,

the conditional distribution of the block parameters is
(A7 0)T1©, W, ~ N(X'X + V)TN W5, (XX + V)7,

where X = (® —1) is an n x (d + 1) matrix, ® = [0 0 ... 0717 (1) is a column
vector with elements (1), and W; = (wq;,wzj, ..., w,;). To make the model identifiable,
we set each element of A A;;=0, if i > j (hence, we fix one element equal to 0 for a

two-factor model, three elements for a three-factor model etc., see Fraser, 1988).

In the model, we treat the parameters ¢; as random effects which are drawn from a
normal distribution. Suppose we set an inverse gamma prior on the variance of the ran-
dom effects, with parameters 0.5 and 1. Then, the variance of the conditional distribution

for the random effects is:

n+l >il(60 — ps)?
5 ,1+ 5 ).

o} ~ 1/gammal(
The mean of the random effects is given by:
Hs ™~ N(Z §i/n, o5 /n).

The distribution of §; is normal with mean p; and variance o, appropriately truncated
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between the values lo; and up;, where

lo; = max (0, max;[w;; I (y;; = omission)])

and

up; = min;(wi;l(wi; > 6;)),

where [(.) is an indicator function with values 1 if (.) is true, otherwise w;; is omitted
from the calculations. If [(w;; > 4;) is false for all j, §; is set to be equal to lo; (see
Linardakis and Dellaportas, 2003). In addition, §; are considered to be random effects

with mean and variance to be estimated.

To simulate the guessing parameters ¢;, we introduce Bernoulli random variables u;;
with success probability ¢;. Depending on the actual response, we simulate the values of

u;; and wj;, as it is shown in the diagram below.

Since ¢; is the probability of success, we assume a conjugate beta prior distribution
with parameters x and A. Hence, the posterior conditional distribution is Beta(x + ¥, u;;
+(number of incorrect responses in item j), A4(number of omissions in j)+(number of

correct responses in j)-3_; u;;).
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If the response is:

INCorrect Correhrﬁssion

simulate u;; from

a Bernoul]i distri-

e simulate from the Eélstsl%%ol?)wﬁ)%itifug; e simulate from the

normal distribution normal distribution

in (6.14), truncate in (6.14), truncate
to values lower to values lower
than 0 than 9;

o set u;; =0 e set u; =0

uij_() uijzl

/N

iimulate ‘El})fj simulate  w;;
rom €

normal dis- from fhe
tribution in ?ﬁﬁ?ﬁgn dlisﬁ
(6.14),  trun- (6.14)

cated to values

%feater than / \

Wy, > 52 Wi; < 52
Y N

set u;; =0 set u;; =1

Finally, the latent variables w;; are drawn from (6.14), appropriately truncated using

the information given by the original data y;; and the quantities ¢;.

6.4 Code for the 0 IRT Model

We will concentrate our presentation a bit more on the parameters w;; and ¢;, by looking
at the codes that can be used, since these parameters simulated in a different way in the §
IRT model, compared to the other widely used models. For simplicity of the presentation,
we will focus on the unidimensional model, the generalization to the multivariate “factor
model” case is straightforward.
The latent variables w;; are truncated such that:
if response=wrong then

begin
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u; ;= 0;
w; j = normal(8; x a; — b;, 1); truncated to negative values
end
if response=omission then
begin
u; ;= 0;
w; j = normal(§; x aj — b;, 1); truncated to the interval (—oo,d;)
end
if response=correct then

begin
u; ;= bernoulli(c;);
if u;; =0 then

begin

w; ;= normal(8; x a; — b;, 1); truncated to the interval (§;,00)

end
else if u;; =1 then

begin

w; j = normal(8; x aj —b;, 1);

if wi; < i then u;j:=1 else u;; :=0;

end;
end;

Finally, the guessing parameters ¢; are drawn such that:
e n ; =number of correct responses and omissions of item ]
® U= )i Ui

o ¢j:=beta(k +uj+n—njA+n;—uj);
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Chapter 7

An Application of the Proposed IRT
Model

7.1 Introduction

In this chapter, we analyze multiple choice response data in multiple choice tests when
there are penalties for each wrong answer such as a subtraction of points (a widely used
technique that attempts to prevent students from guessing); the literature is still sparse
and the usual item response theory models are inappropriately used. We extend the use
of item response models to capture this situation by including guessing and threshold
latent parameters. We also separate the ability of each student into several parts, which
express different cognitive tasks by a multidimensional scaling approach. A Pseudo-Bayes
factor model choice approach (based on cross-validation predictive densities) is used to
select the number of dimensions that fit the data better. The model with §; parameters
is also compared with the three parameter normal ogive model, in terms of predicted

students ranking.
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7.2 Data and Models Used

We analyze a data set obtained from the exam paper of the course “Data Analysis” of the
third and fourth year (102 students) in the department of Statistics, Athens University
of Economics and Business. Some selected items of this test are given in Appendix A.

We constructed the test of 33 items using the terms:
e 3 points for each correct response

e 0 points for omission

e -1 point for each incorrect response.

The total score for each student was the sum of the points in each of the 33 items.

The MCMC of the conditional distributions mentioned in section 6.3, as well as in
section 6.2.4 in its multidimensional form, was implemented using the Gibbs sampler.
We applied four different models on the data set, with two and three factors and with
and without threshold parameter § (sections 6.3 and 6.2.4 respectively) .

7.2.1 Prior specifications

To ensure identifiability of the model, we set the prior variance of the parameters «a;,
equal to 1 (the first d elements of the diagonal of the prior variance matrix V). A diffuse
prior was used for b;; so the (d + 1)th element of the diagonal was set to 10*. Finally,
the parameters of the Beta prior distribution of ¢; were set equal to 2 and 6 for x and
A respectively. These parameters were chosen so that E(¢;) is a prespecified value, for

example 0.25, see Sahu (2002) and references therein.

7.2.2 Convergence of the parameters

Taking sampled values with lag 5, we produced MCMC chains with autocorrelation close

to 0. A burn-in equal to 100 was eliminated from the sampled values and convergence
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was verified both graphically and with the Raftery-Lewis, the Heidelberger and Welch,
and the Geweke convergence criteria.

Raftery and Lewis convergence diagnostic uses a small number of iterations and the
diagnostic responses the total number of iterations that is needed for the specific problem
in order to obtain convergence, the number of iterations which have to be discarded (burn-
in), a dependence factor (values close to 1 indicate independence within each chain) and
a thinning value k that may be used in order to reduce the dependence within each chain.
The value of k is set to a value high enough that successive draws of the parameter are

approximately independent (for details, see Raftery and Lewis, 1992).

“This strateqy, known as thinning, can be useful when the set of simulated
values is so large that reducing the number of simulations by a factor of k
gives important savings in storage and computation time. Fxcept for storage
and the cost of handling the simulations, however, there is no advantage in

discarding intermediate simulation draws, even if highly correlated” (Gelman,

1995).

3000 sampled values from each posterior distribution were available for inference.
These values seem to be a stationary chain with low autocorrelation. We used the
Bayesian Output Analysis Program (BOA)! of Brian Smith that provides the convergence
criteria for the MCMC chains. Table 7.1 shows the results of the Raftery and Lewis
criterion, of an accuracy = £0.01 and probability = 0.9. To save space, we present the
results of some randomly selected parameters of the three-factor model. The results of
all the remaining models which are used in the following sections, behaved in a similar
way, with respect to the convergence.

We also used the Geweke convergence diagnostic (which responses z-scores between

the interval (-2,2) in the case where convergence is obtained) and the Heidelberger and

!The program may be found and is freely available at www.public-health.uiowa.edu. It runs under

S-plus and R
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Table 7.1: Raftery and Lewis Convergence diagnostic for the parameters for the IRT
model with delta

Thin Burn-in  Total Dependence Factor
ability parameters
2 2 1456 2.206061
1 1 710 1.075758
1 2 7 1.177273
1 1 705 1.068182
1 2 741 1.122727
1 1 693 1.050000
discrimination parameters
1 2 741 1.122727
1 1 800 1.212121
1 2 805 1.219697
1 1 666 1.009091
1 2 772 1.169697
1 2 741 1.122727
difficulty parameters
1 2 816 1.2363636
1 1 693 1.0500000
1 1 655 0.9924242
1 1 628 0.9515152
1 1 632 1.0333333

Welch stationarity and interval halfwidth test (which also suggests the number of iter-
ations to be kept and to be discarded). For details about these diagnostics, see Cowles

and Carlin (1994).

Table 7.2 shows the Geweke diagnostic criterion results. All of the parameters’ sam-
pled values that are shown, resulted to a z-score between the interval (-2,2), indicating
that convergence has been achieved. The same results were obtained by the Heidelberger
and Welch diagnostic; all of the parameters passed the test, where there was no need in

discarding additional sampled values.

Finally, Table 7.3 shows the autocorrelations of the same selected parameters. All
of them are close to 0, even with lag equal to 5. Hence, since the diagnostic tests also

suggested not to use any additional lag, we used the 3000 sampled values for inference.
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Table 7.2: Geweke Convergence diagnostic for the parameters for the IRT model with
delta

Z-Score  p-value || Z-Score p-value Z-Score  p-value
ability parameters || discrimination parameters || difficulty parameters
1.5574  0.1193 1.5485 0.1214 -0.8569 0.3914
0.1594  0.8732 0.0198 0.9841 -1.4124 0.1578
-0.6182  0.5363 || -0.0137 0.9890 0.9409 0.3467
-0.7757  0.4378 || -0.6014 0.5475 -0.9356 0.3494
-0.8172  0.4137 || -1.1989 0.2305 -1.4046 0.1601
-0.2037  0.8385 || -1.1595 0.2462

30

20
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Figure 7-1: Prior and posterior densities of guessing parameters.

7.2.3 Sensitivity Analysis

A necessary feature of the model is that the prior specification does not force the posterior
densities. We examine the guessing parameters behaviour graphically in Figure 7-1. The
solid lines show densities of two randomly selected guessing parameters and the dashed
line shows the prior density that was used. Obviously, the prior variance is much greater
than the posterior ones, hence evidence is provided that the densities have not been
forced by the prior one.

In addition, recall that the prior variance of the difficulty parameters was equal to

1000. The posterior variance of these parameters was close to 0.005. Even for the
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Table 7.3: Autocorrelations for the parameters for the IRT model with delta
Lag 1  Lag5 Lag 10  Lag 50

ability parameters
0.1485 0.0273 -0.0285 0.0017
0.1026 -0.0160 0.0226 -0.0059
0.1287 -0.0174 0.0351  0.0088
0.1624  0.0211  0.0096 -0.0155
0.0568 0.0151 -0.0017 -0.0165
0.1290 0.0143  0.0532  0.0212
discrimination parameters
0.3330 0.0149  0.0430  0.0253
0.0824 -0.0139 -0.0162 -0.0109
0.1981 0.0251 -0.0155 -0.0226
0.1776  0.0090 -0.0103 0.0116
0.3136  0.0052 -0.0097  0.0094
0.3018 -0.0027 0.0039 -0.0031
difficulty parameters
0.1766  0.0201  0.0424 -0.0135
0.1001  0.0154 -0.0042 -0.0346
0.2881 0.0432  0.0130 -0.0052
0.0758 0.0031 0.0336  0.0212
0.4469 0.1038  0.0060  0.0009

discriminatory parameters, which had a prior variance equal to 1 for purposes of model

identification, the posterior variance of them was close to 0.007.

7.2.4 The Pseudo-Bayes Factor

To compare the four models, we used the pseudo-Bayes factor (see Sahu, 2002) that is
defined as the ratio of the cross-validation predictive densities under the two competitive

models. The cross-validation predictive density is defined as:

7T(%’b’(r),obs) - /77(}’r|C7Y(r),obs)ﬂ'(c|Y(r),obs)dc, (71)

where y(;).0bs denotes the set of observations yops with rth component deleted, and ¢ is

the set of the parameters in the model.
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The Pseudo-Bayes factor is then defined as the ratio of (7.1) under the two models.
That is:

N
r,008 0 S?M

: 7.2
yr obs|y ,obs) MZ) ( )

where N is the total number of observations (i.e. the product of the number of items
and the number of students). This quantity is a surrogate for the Bayes factor and has
similar interpretation.

The computation of (7.2) involves the evaluation of (7.1) for each binary response.
Having the MCMC sampled values for the parameters (say B sampled values of each
parameter of the model), a Monte Carlo estimate of (7.1) is given by:

7ér(y7’|Y(7’),obs) - (73)

where p;; is the probability of correct response under the assumed model and it is eval-
uated at the simulated parameter values (. This estimation is quite accurate when B is
large (see Gelfand and Dey, 1994).

The logarithm of the quantities which are needed to calculate the Pseudo-Bayes fac-

tors in our models are given in Table 7.4.

Table 7.4: Log(cross-validation predictive densities).

model  without § with 6
2 factors  -836.81  -828.03
3 factors -817.11  -810.29

Note that the Pseudo-Bayes factor for the three-factor model with the inclusion of §
indicated supremacy over the three other models, producing pseudo-Bayes factors greater
than exp(6.82) (for example, exp(-810.294+817.11)=exp(6.82) That is, the three-factor
model with delta parameters is exp(6.82) times more probable than the three-factor

model without delta parameters). In the following, we use the three-factor model with ¢
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for inference.

7.3 Predicted ranking of the students

Recall that the Pseudo Bayes factor showed that the model with the inclusion of the
parameters 0; is preferable compared to the model without these parameters. We can
also check the behaviour of the models in terms of the ranking of the students (the
student with the highest ability takes the ranking number “17, etc.). Since the grade the
students received (i.e. 3 points per correct answer, 0 points per omission and -1 point
per wrong response) does not take into account any weight of the items, we consider it
as a “unidimensional” calculation. Thus, to make it more comparable with the results
of the models, we run the unidimensional models (that is, without the inclusion of the
factors), with and without the parameters d;. The former is the unidimensional case of
the model presented in section 6.3 and the latter is the unidimensional three parameter
normal ogive model of section 6.2.4. It must be noted that in the case of the latter model,
the omissions in the data set were treated as wrong responses, as it is the case in this
model, without the help of the § parameters.

After convergence had achieved, we ran the two models in order to obtain 1000
sampled values from the posterior distributions of the parameters. To save space, a
lag equal to 10 was used. Using the values of the abilities of the students 8; for each
iteration, we sorted them in descending order (such that the highest performance or,
otherwise stated, the highest §; received ranking number 1, etc.), From these 1000 ranking
vectors per model, we constructed the 95% credible intervals of the rankings (i.e. 102
credible intervals, one per student).

We also constructed the ranking of the scores received on the test. These scores had
many ties, especially in the middle of the rankings. That is, many students with an
“average performance” received the same grade. In these cases, the mean ranking of

the scores with ties was given to these students. Then, we counted the number of the
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Figure 7-2: Credible intervals of the students rankings. Students ranked 1-51.

intervals per model which include the “based on the grade received” ranking. Both of
the two models agreed with this observed ranking; the intervals of the model without
d; parameters all included the observed ranking, whereas 101 out of 102 intervals of the

model with §; included the observed ranking.

To make things more difficult, we also constructed the 50% credible intervals per
student ranking for each of the two models. The results are shown in Figures 7-2 and
7-3.

In the graphs, the horizontal axis represents the students in ascending order of the
ranks. The dotted lines represent the credible intervals which were constructed from the
model without § parameters, the solid lines, on the right of the dotted ones, represent the
respective intervals from the model with § parameters and, finally, the cycles represent

the “based on the grade received” ranking.

Based on these results, 80 out of 102 intervals of the model with ¢; included the
observed ranking. On the other hand, 69 out of 102 intervals of the model without
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Figure 7-3: Credible intervals of the students rankings. Students ranked 52-102.

d; included the observed ranking. These results indicate a difference on the estimated
parameters of the two models. Another important outcome is that the credible intervals
of the model with §; parameters were, in general, wider than the respective intervals
of the model without ¢;. Hence, the model that has taken into account the omissions
(with the inclusion of 4;) expresses a higher uncertainty (i.e. higher variability) on the
estimated rankings, which may be interpreted as a larger number of ties on the ranks,
or, otherwise stated, as a lower variability on the ability parameters. Finally note that
the credible intervals of the low or high rankings (high and low performance respectively)
are quite tighter compared to the intervals of the “mean performance” students (in the
middle of the graphs). This is quite plausible since (as it was mentioned before) a lot of
ties were observed at the “mean performance” students, which means that the estimated

abilities were close to each other, producing wider credible intervals of the rankings.
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7.4 Output of the three factor IRT model with J;
parameters

In section 7.2.4, it was shown that the three factor model with delta is preferable com-
pared to the remaining models that were examined. Hence, our interpretation of the
results will be based on the output of this model.

The three factors seem to have valuable physical interpretation. Factor 1 seems to
include items that require the recovery of specific numbers from output tables. Items
of this factor require students to remember and use formulae (see Table 7.5 for some
selected items, their loadings to the factors and the difficulty and guessing parameters)?.
Factor 2 seems to include items that require both memory and discernment. Finally,
factor 3 includes methodological items (appropriate analysis etc.).

We calculated the total estimated ability of each student as the sum of the abilities
of the three factors (the mean of the 3000 sampled values per person of the estimands
i1, 0;2 and 0;3). A scatter plot of these abilities against the actual total score is given
in Figure 7-4. Note that the estimated abilities are close to the actual score but not
identical. It seems that, using a single sum to construct the observed total is unfair for
some students.

In Table 7.6, we provide the characteristics and estimated parameters of students who
appear to have interesting deviations from the general behavior. Note that students no.
66 and 72 are much better in items of factor 1 compared to their general performance.
Moreover, student no. 26 has much better performance in items that are methodolog-
ical or require discernment than items which require one to remember things by heart.
Student 102 is better in methodological items whereas student no. 92 is worse in them
compared to his general score. Student no. 18 would be unfairly dealt with a test with
only methodological or discernment items. On the other hand, students no. 26 and 61

would be unfairly dealt with a test with only items that require recovery of numbers from

More details on items that load on each particular factor as well as characteristics of the items can
be found at the end of Appendix A

105



Table 7.5: Indicative items and parameters

Item

Cljl

Cl]‘Q

le

14

16

The cross-tabulation provides the relation between
gender and smoking (yes-no). The % of female who
smoke is...

The ANOVA table of a linear model is given. R?
was calculated as:...

The ANOVA table of a linear model is given. The

sum of squared residuals is...

0.81

1.06

1.50

0.44

0.50

0.43

0.51

-0.50

0.31

-0.80

0.15

0.15

0.18

17

32

Find the linear model that has been used by just
looking at the graph of the unstandardized pre-
dicted values versus a continuous independent vari-
able. (answer:linear regression with one indepen-
dent dummy variable; the continuous one was not
used)

Find the linear model that has been used by just
looking at the graph of the unstandardized predicted
values versus a continuous independent variable.
(answer:linear regression with the continuous vari-
able of the graph as independent)

A simple linear regression equation was estimated
as Y = 4.15 — 0.96X + ¢ with R?> = 0.81. The

correlation between X and Y is equal to...

0.39

0.12

0.69

0.46

0.41

1.00

0.25

0.29

0.89

1.30

0.62

0.91

0.13

0.21

0.17

10

12

33

In a linear model, in order to include an inde-
pendent categorical variable with 4 levels, where
each level denotes a different profession category,
we have to...

A data set includes the results of a medical test
with 2 possible outcomes and a variable that de-
notes whether the person is a smoker or not. We
will try to analyze the data using...

In a data set, the dependent variable is the grade in
a test (max 105) and the independent variables are
the gender and the marital status (single, married,
divorced). A possible analysis could be...

0.20

0.24

0.38

0.55

0.35

0.59

0.88

0.75

0.62

-0.55

-0.27

0.85

0.15

0.15

0.17
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Figure 7-4: Scatter plot between estimated total ability and actual total score.

estimated total ability

tables.
Table 7.6: Students’ parameters and characteristics.

id correct incorrect | omissions | total || ¢ ability 1 | ability 2 | ability 3
# score

18 16 16 1 32 0.08 0.70 -0.37 -0.29
26 16 14 3 34 0.08 -1.18 0.74 1.05
57 20 6 7 54 0.11 0.62 0.37 0.59
61 20 12 1 43 0.09 -0.08 0.83 0.76
66 15 13 5 32 0.10 0.96 -0.13 -0.45
72 16 13 4 35 0.09 0.98 0.03 -0.46
92 26 7 0 71 0.09 1.62 0.85 0.40
102 | 21 10 2 53 0.09 0.29 0.62 0.98

The correlations between the mean of 8;; per person and the corresponding means

of ;5 and #;3 are 0.295 and 0.064 respectively. Moreover, the correlation between the

means per person of ;5 and ;5 is 0.677; the ability in items of factor 1 (which require

memory or recovery of appropriate numbers from tables) is almost uncorrelated to the
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Figure 7-5: Scatter plot between estimated total ability and number of omissions per
student.

abilities related to methodology or discernment. On the other hand, methodology and
discernment are positively correlated (as it is plausible). This relation also provides some
evidence that one more factor in the model (a forth one) may not be useful.

Figure 7-5 shows the relation between the estimated total ability and the number of
omissions; a negative relation shows that the greater the ability is, the more confident
the student is (which is also plausible). However, note, in Table 7.6, that student no. 57
has a high performance but he is unexpectedly highly uncertain.

In Figure 7-6 it is shown that the parameters §; are positively related to the number
of omitted items per student (which is also plausible; the greater §; means the less risky
student and, hence, the greater number of omissions).

Moreover, we calculated the correlations of the ability per factor with the parameters
d;; the greater the ability is, the lower §; (the more risky the student is); é; does not seem
to be related to the abilities of factor 1 (the correlation is equal to -0.126), whereas, it
is negatively related to the abilities of factor 2 and 3 (correlations equal to -0.435 and
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Figure 7-6: Scatter plot between §; and number of omissions per student.

-0.357 respectively). Note, in Table 7.6, however, that, for example, student no. 18 is

unexpectedly risky if we take into account his low performance in items of factor 2.
Finally, Figure 7-7 presents the difficulty parameters of the items against the number

of correct responses per item. A strongly negative relation provides evidence that the

data support the model and the estimated parameters.
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Chapter 8

SAT data analysis via a latent

variables factor model with

thresholds

8.1

Introduction

In this chapter, the analysis of the SAT data set is presented. A brief presen-
tation of the SAT tests and the data set that is used here are given, as well as
of the model that is used and the prior specifications are also provided. The
model with §; parameters is compared with the three parameter normal ogive
model, in terms of students ranking. The features of the model with respect
to the convergence (graphically examined) is given. Finally, the outcome of
the model and inference on the estimated parameters are given both with

Tables and graphically
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8.2 The SAT Data

8.2.1 General

The SAT test! is offered to American students after or during the high school. A high
grade on the test is an admission requirement of the college the students are interested in
attending, since 1t is supposed to measure the student’s ability to do college-level work.
The basic SAT I tests include the verbal and the math tests, each of them containing
different sessions that are supposed to measure different skills and reasoning abilities of
the students. The Verbal SAT I test includes different question types-sessions which refer
to critical reading, analogies and sentence completions. The Math SAT I test includes
arithmetic and algebraic reasoning and geometric reasoning.

The scores are reported on the 200-t0-800 scale. The average score of the students
in each of the two basic SAT I tests is about 500. The final score is calculated by a two
step process. First, the raw score is calculated based on the following rules: Questions
answered correctly receive one point. Omitted questions receive no points. For multiple
choice questions answered incorrectly, a fraction of a point is subtracted; either 1/4 point
is subtracted for five-choice questions or 1/3 point is subtracted for four-choice questions.

To get the raw score, a fraction of the multiple-choice questions answered wrong is
subtracted from the number of questions answered correctly. If that resulting score is a
fraction, it is rounded to the nearest integer number. At the second step, the raw score
is changed into a scaled score; it is weighted to adjust for slight differences in difficulty
between test editions and it ensures the comparability of the scores among different tests.

The available time for answering the test is calculated so as the time is enough for
most of the students. Studies are done to find out whether most students have enough
time to attempt to answer all the questions in each test section. These studies show the
time limits are appropriate if all the students taking the test answer 75% of the questions

in each section and if 80% reach the last question in the section. Based on these studies,

LFor more details on the SAT tests, see the official web site of the SAT test www.collegeboard.com
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the limits are appropriate for the majority of the students.

8.2.2 The analyzed SAT data set

In chapter 7, we illustrated the proposed IRT model with §; parameters, showing the
convergence behaviour of the model, the influence of the priors used, the Pseudo Bayes
factor model choice, the estimated ranking of the students and the interpretation of the
results of the model, including the three ability factors which were resulted. In the data
set that is analyzed in the present chapter, the convergence behaviour did not appear to
have a different behaviour. Hence, (since the items of the test analyzed are not known,
for further interpretation), we will focus on the estimated ranking of the students and
on some students and items with specific features (e.g. risky students, items with high
discrimination power etc.).

The data set that is used in the analysis refers to the October 1998 test takers.
A sample of 1000 test takers is used for the purposes of the illustration. We use the
raw responses (correct, incorrect, omit) of the test takers to the SAT I verbal test that
consists of 3 sections. Section 1 includes 35 questions, section 2 consists of 31 questions
and section 3 contains 12 questions. Thus, there are 78 questions in the whole test
and the raw responses to be analyzed are 78000. Table 8.1 shows a summary of the 78
items on the test; it reports the percent of correct and incorrect answers and omissions
that were given by the 1000 students to each item. The table also shows the difficulty
parameters that were estimated; these will be discussed in section 8.3.5.

Note that there are some questions which are difficult compelling the students to
omit them. See, for example, questions number 10 and 35. The percentage of incorrect
responses are quite high; 50.9% and 54.7% respectively, so are the percents of omission;
26.8% and 33.1% respectively. So, these questions might be tricky and the students
do not realize that they answer incorrectly. On the other hand, there are some other
questions that while also difficult, they prevent students from a guessing behaviour. For

example, questions 9, 16 and 44 are difficult as the previously mentioned questions are
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(percents of incorrect responses are 53.6%), 61.9% and 63% respectively). These questions
prevent students from answering incorrectly though; the percents of omission are 16.2%,
3.5% and 7.2% respectively.

There are also some questions, for example the questions number 12 and 47, where
almost all of the respondents answered them correctly; the percentages of correct re-
sponses are 95.8% and 90.1% respectively. Finally, the questions number 23 and 64 seem
to be quite difficult to be answered from the majority of the students. The respective
percentages of correct responses are 17.5% and 19.7%. It is interesting to see how these
particular questions-items, that are interesting with respect to their percentages, will

behave in the analysis and the outcome of the model.

8.3 Analysis

8.3.1 The estimated ranking of the students based on the SAT
data

In section 7.3 we examined the estimated ranking of the students and we compared the
results of the univariate normal ogive model with ¢; parameters, with the results of the
univariate normal ogive model without ;. The same procedure was followed for the SAT
data as well.

We focused on the 100 first students, since a ranking of the whole sample size (1000
test takers) would have included too many ties. We constructed the ranking of the scores
received on the test. The scores had some ties, especially in the middle of the rankings,
but these were fewer compared with the data in section 7.3. This was plausible since
the number of items was larger and the grades were varying in a wider interval. After
that, we constructed the 95% credible intervals of the estimated ranking and we counted
the number of the intervals per model which include the “based on the grade received”
ranking. Both the set of intervals derived from the two models included 99 out of 100 of

the observed rankings.
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We also constructed the 50% credible intervals per student ranking for each of the

two models. The results are shown in Figures 8-1 and 8-2.
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Figure 8-1: Credible intervals of the students rankings. Students ranked 1-50.

In the graphs, the dotted lines represent the credible intervals which were constructed
from the model without § parameters, the solid lines on the right of the dotted ones
represent the respective intervals from the model with § parameters and, finally, the

cycles represent the “based on the grade received” ranking.

According to the results, 80 out of 100 intervals of the model with §; included the
observed ranking, whereas 79 out of 100 intervals of the model without ¢; included the
observed ranking. In addition, the credible intervals of the model with é; parameters
were, in general, wider than the respective intervals of the model without ¢;, as it was
also the case in the data set of section 7.3. However, if we compare these intervals with
those of section 7.3, we note that the credible intervals of the rankings for the SAT test

takers are tighter (probably, due to the larger data set, the larger number of items).

115



100

80

60

ranking

40 |*

50 53 56 59 B2 65 68 V1 V4 V7 80 83 86 83 92

]
(]
[tu]
[

student

Figure 8-2: Credible intervals of the students rankings. Students ranked 51-100.

8.3.2 A three factor model

A three factor model is also used to analyze the SAT data set. A threshold parameter §;
(as random effects) is used for each test taker in order to determine how risky a student
is. In the same manner, with the same constraints that are applied to the abilities of
the different students at the same question (and not to the abilities of each different
student at the 78 questions as it is used in the illustration here) and with no additional
computational cost, one can estimate a J; parameter for each question. This helps
the researcher to distinguish among questions which prevent students from a guessing
behaviour or not, or, in other words, to find out the tricky questions (low estimated mean

of §) and non-tricky questions (high estimated mean of the parameter 4).

8.3.3 Prior specifications

The discrimination parameters of the items that are examined here were truncated to non

negative values from a truncated normal prior with a variance equal to 1 for identification
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purposes. On the other hand, since the restrictions have been applied on the discrimina-
tion parameters, due to identification, the difficulty parameters need not be restricted;
a vague normal prior with variance equal to 1000 was used. The guessing parameters
conjugate prior was Beta with prior parameters K = 2 and A = 6. Finally, a vague normal
prior (with prior variance equal to 1000) was used for the abilities parameters per factor

for each student.

8.3.4 Convergence of the parameters

All the parameters of the model converged rapidly. It seems that if one discards at most
the 50 first iterations, convergence has achieved for all of the parameters. The algorithm
ran for 20000 iterations. To save space, a lag equal to 5 was used. Convergence of some
selected parameters is depicted in the graphs of Appendices B, C and D.

First, the convergence of the parameters that have to do with the items (discrim-
ination and difficulty parameters) are given. Figures 9-1 to 9-5 of Appendix B show
the convergence of the discrimination parameters (abilities of the items to discriminate
among students) of the first 7 items of the test, for all of the three factors of the model.
Hence, for each item, three convergence plots are presented; one per factor. Note that 5
out of 19 graphs that are shown, indicate a rapid convergence where no sampled value
need to be discarded in order to achieve convergence. Note, in addition, that the conver-
gence graphs of item 1 for the ability parameters of factors 2 and 3 are not presented; they
have been set equal to 0 due to identification problems mentioned in the presentation of
the general model.

The graphs in Appendix C show the convergence of the difficulty parameters for the
first 20 out of 78 items. All of the parameters shown here need the first iterations to be
discarded in order to achieve convergence. However, the number of the initial iterations
to discard is small; in all of the cases, it is enough if we discard the first 50 iterations.

With respect to the parameters that refer to the students, the convergence was ob-

tained without discarding the first iterations for all the parameters. The rapid conver-
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gence of the parameter for the ability of the first student on the first factor is depicted in
the following graph. To save space, the remaining graphs of the students of the sample

are not shown here, since they all showed the same immediate convergence.

ability of student # 1

0 500 1000 1500 2000 2500

iterations

Figure 8-3: Convergence scatter plot of the ability of student #1 on factor 1

Finally, the autocorrelation plots for the convergence of the § parameters of the first
20 out of 1000 students of the sample are shown in Appendix D. Like in the previous
graphs, it is shown that convergence was achieved without high autocorrelation on the

sampled values.

8.3.5 Posterior outcome on the difficulty parameters

Since the convergence of the parameters has been achieved, we present the posterior
distributions by reporting the mean and the respective credible intervals of selected pa-
rameters.

Table 8.1 shows the characteristics of the 78 items of the test (percent of correct and

incorrect responses and omissions) for comparison purposes along with the means and
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the credible intervals of the difficulty parameters.

The easier the item is, the lower the difficulty parameter. For example, questions 1,
2, 12 and 47 have percents of correct responses 92.5, 88.8 and 90.1 respectively. The
mean of the estimated difficulty parameters for these items are -2.09, -1.76, -2.04 and
-1.83 respectively. On the other hand, items 23 and 64 have low percentages of correct
responses; 17.5 and 19.7 respectively. The mean of the estimated difficulty parameters for
these items are 1.06 and 1.10 respectively. These results provide evidence with respect to
the correctness of the way that the parameters have been estimated. Moreover, note that
question number 16 had been mentioned in section 8.2.2 as a question with extremely
high percentage of incorrect responses. However, this question does not have a high
estimated difficulty parameter (the mean value is 0.43); this is plausible since the number
of omissions should be taken into account and the model does it. In this case, this
percentage is 3.5%, much lower comparing with the remaining items’ percentages. The

same 1is valid for question number 44.

The above results show us that omissions and incorrect responses provide quite dif-
ferent information and should not be treated in the same way during the calculation
of the students’ scores. On the other hand, the percent of correct responses should be
clearly related in a linear way to the difficulty parameter. The relation of the difficulty
parameters of the items with the percent of correct responses per item is depicted in
Figure 8-4. Note that the points are close to a straight line with a negative slope, as
they should be; the difficulty parameters have been estimated correctly, based on the
information the data provide via the number of correct responses per item (or, otherwise

stated, the number of incorrect responses plus the omissions).

In addition, Figure 8-5 shows the relation of the difficulty parameters of the items
with the percent of incorrect responses per item. The scatter of the points is also linear,
with a positive slope in this case. This means that the higher the percentage of incorrect
responses is, the higher the difficulty parameter is. However, the points of the graph are

not so close to a straight line as in the case of Figure 8-4. As it was discussed above,
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Table 8.1: Items’ characteristics and difficulty parameters

item # || % of correct | % of incorrect | % of omissions | difficulty credible
responses responses parameter interval

1 92.5 6.9 0.6 -2.09 (—2.43,—1.78)

2 8.8 10.7 0.5 176 | (193, 1.56)

3 535 13.9 2.6 0.13 | (-0.23,.0.04)

4 63.9 28.3 7.8 -0.45 (-0.55,-0.35)

5 64.4 32.3 3.3 -0.61 (—0.74,—0.48)

6 63.3 30.0 6.7 -0.51 (-0.62,-0.40)

7 53.6 35.2 6.2 Z0.30 | (-0.40,.0.20)

8 54.5 37.0 8.5 -0.16 (-0.25,-0.07)

9 30.2 53.6 16.2 0.56 (0.46,0.65)
10 22.3 50.9 26.8 0.83 (0.73,0.94)
11 88.4 10.4 1.2 -1.55 (—1.72,—1.39)
12 95.8 4.1 0.1 -2.04 (—2.33,—1.82)
13 88.1 11.1 0.8 -1.33 (—1.45,—1.21)
14 84.7 9.7 5.6 -1.47 (—1.64,—1.31)
15 81.0 17.8 1.2 -1.00 (—1.10,—0.90)
16 34.6 61.9 3.5 0.43 (0.34,0.53)
17 11 23.7 5.2 0.67 | (-0.77,0.57)
B 17 95.6 % C0.87 | (-1.02,0.74)
19 42.3 37.5 20.2 0.20 (0.10,0.29)
20 36.8 57.5 5.7 0.36 (0.27,0.45)
21 29.9 39.4 30.7 0.61 (0.50,0.72)
22 21.3 49.6 29.1 0.82 (0.72,0.91)
23 17.5 54.1 28.4 1.06 (0.94,1.18)
24 79.2 18.8 2.0 -1.00 (—1.12,—0.88)
25 38.7 53.5 7.8 0.32 (0.22,0.42)
2% 72.9 93.2 3.9 078 | (-0.89,-0.68)
27 42.6 50.0 7.4 0.18 (0.09,0.27)
28 57.4 34.0 8.6 -0.26 (—0.35,—0.16)
29 63.4 253 6.3 054 | (-0.62,0.45)
30 39.7 46.9 13.4 0.28 (0.19,0.37)
31 33.0 50.1 16.9 0.50 (0.40,0.60)
32 45.4 35.6 19.0 0.10 (0.00,0.21)
33 78 314 17.8 0.00 | (-0.14,0.13)
34 26.0 50.3 23.7 0.82 (0.70,0.95)
35 12.2 54.7 33.1 1.29 (1.17,1.42)
36 2.4 16.7 0.9 124 | (-1.41,1.09)
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Table 8.1:Items’ characteristics and difficulty parameters

item # || % of correct | % of incorrect | % of omissions | difficulty credible
responses responses parameter interval
37 S1.0 17.0 2.0 1.04 | (1.15,0.93)
38 52.7 117 2.6 0.10 | (-0.19,.0.01)
39 55.4 36.7 7.9 -0.18 (-0.27,-0.09)
10 7.7 11.6 0.7 1.38 | (-1.53,1.24)
41 56.0 39.0 5.0 -0.26 (-0.37,-0.15)
42 48.9 38.1 13.0 -0.01 (-0.12,0.09)
43 57.8 36.3 5.9 -0.29 (-0.39,-0.19)
] 29.8 63.0 72 0.64 (0.53,0.75)
45 82.2 14.1 3.7 -1.11 (-1.23,-0.99)
46 80.5 19.0 0.5 -0.96 (-1.06,-0.85)
17 90.1 6.9 3.0 1.83 | (2.05,1.62)
48 48.2 47.0 4.8 0.03 (-0.06,0.11)
19 237 a4 29.9 0.61 (0.51,0.70)
50 23.6 37.6 38.8 0.81 (0.70,0.92)
51 81.4 16.9 1.7 -1.02 (-1.13,-0.92)
52 59.2 39.2 1.6 -0.29 (-0.39,-0.20)
53 76.9 21.5 1.6 -0.83 (-0.93,-0.73)
54 67.6 28.1 4.3 -0.55 (-0.64,-0.45)
55 6.8 31.0 12 Z0.50 | (-0.60,0.40)
56 59.7 388 5 0.34 | (0.44,0.24)
57 58.2 35.8 6.0 -0.25 (-0.34,-0.17)
58 36.4 56.4 7.2 0.38 (0.29,0.48)
59 68.6 24.5 6.9 -0.60 (-0.71,-0.50)
60 86.4 0.1 45 170 | (-2.00,1.47)
61 60.0 34.3 5.7 -0.36 (-0.46,-0.26)
62 52.7 10.0 73 011 | (-0.21,0.02)
63 58.0 31.7 10.3 -0.26 (-0.36,-0.17)
64 19.7 57.8 225 1.10 (0.97,1.23)
65 58.3 24.7 17.0 -0.35 (-0.46,-0.24)
66 56.0 28.5 15.5 -0.27 (-0.39,-0.15)
67 2.3 272 0.5 072 | (-0.82,0.61)
63 742 216 1.2 077 | (-0.87,.0.67)
69 30.5 49.0 20.5 0.56 (0.47,0.65)
70 60.0 37.1 2.9 Z0.30 | (-0.38,0.21)
71 79.0 17.9 3.1 1.05 | (-1.18,0.03)
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Table 8.1:Items’ characteristics and difficulty parameters

item # || % of correct | % of incorrect | % of omissions | difficulty credible
responses responses parameter interval

72 37.1 53.0 9.9 0.34 (0.25,0.42)

73 49.3 43.7 7.0 -0.02 (-0.12,0.08)

74 41.5 46.2 12.3 0.23 (0.14,0.33)

75 55.7 36.1 8.2 -0.18 (-0.26,-0.09)

76 50.9 34.7 14.4 -0.07 (-0.17,0.04)

7 388 10.1 211 0.33 (0.23,0.44)

78 52.5 26.5 21.0 0.13 | (-0.24,0.03)

this happens because the difficulty of a question is shown by the number of incorrect
responses but also by the number of omissions; both of these responses show how difficult
the question is. The relation of the difficulty parameters of the items with the percent
of omissions per item is shown in Figure 8-6. To confirm the above results, if we add
the number of incorrect responses and omissions, we obviously conclude with the whole
information provided by the number of correct responses, except that the slope of the

line in the scatter plot is positive in this case (see Figure 8-7).

8.3.6 Information derived from the discrimination parameters

Table 9.1 of Appendix F shows the discrimination parameters of the 78 items of the test
for each of the three factors of the model; the means and the credible intervals (in the
parentheses) are reported. Note that the estimated mean of item 1 on factors 2 and 3, as
well as the estimated mean of item 36 on factor 3 have been set equal to 0 by the model
due to the restrictions that solve the identification problem.

The highest estimated mean among the three (one per factor) means of the item is
written in bold; it shows the factor that the particular item matches best. These scores
can also be treated exactly as the factor loadings in the classical factor analysis. However,
the three factors do not seem to contain the items of each session of test separately. It
seems that the factors describe different abilities than those the different session of the

test attempt to measure. The questions of the test have not been provided by the test
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mean of difficulty parameter

percent of correct responses

Figure 8-4: Scatter plot of the difficulty parameter and % of correct responses

makers since some questions are repeated in different years; hence, it is not possible to
check the exact kind of ability each factor measures (as we did with the data in the
illustration of the model described in the previous chapter). However, some parts of the
test seem to contain many questions of one factor together. For example, questions 1
to 7 all measure mainly the ability that factor 1 represents (also, questions 11-18 and
52-59). It must be mentioned that the discrimination parameters do not relate with the
difficulty parameters in any way; all the factors contain both difficult and easy questions

(characterized by the valuation of the difficulty parameters).

From Table 9.1 of Appendix E, it is obvious that there are some questions which do
have a significant discrimination power. Question number 33 contributes to all the three
factors with relatively high loadings. It was not a rather easy question (percentage of
correct responses 47.8%) but also its percentage of incorrect responses was 34.4%, which
ranged the question almost in the middle of the difficulty scale (indeed, the difficulty

parameter’s mean was 0, just in the middle of the latent variable “difficulty”). Moreover,
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Figure 8-5: Scatter plot of the difficulty parameter and % of incorrect responses

this question seems to necessitate different cognitive abilities in order to be answered, at

least all the three different cognitive abilities that the factors of the model represent.

Two of the “difficult” questions, that had been mentioned in the presentation of the
data, were the questions number 23 and 64. These two questions do not seem to have
an extremely high parameter mean in any of the three factors. The same is valid for the
“too easy” question number 12. Hence, the discrimination ability of a question seems to
be irrelevant with the difficulty (indeed, in practise there is no use to include questions in
a test that can not be answered by anybody or questions which have an obvious answer
for anybody). The discrimination parameter of item 1 in factor 1 is an exception since

the values of the other two factor parameters were set by default equal to 0.

It must be noted that if we had set different discrimination parameters equal to 1,
we would have ended up with a rotation of the matrix of the estimated parameters;
however the rotation of the factor loadings in a factor analysis is beyond the scope of

this presentation of the IRT model with omitted responses.
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Figure 8-6: Scatter plot of the difficulty parameter and % of omissions

8.3.7 Posterior outcome for the students’ performance

After the SAT examination, each student’s performance is reported through the general
score on the SAT test. However, the model that is proposed here distinguishes the
performance of the students on the different items groups that are formed by the latent
factor analysis that was used. To save space, the separate performance of the first 100
students of the sample on the three groups are reported in Table 9.2 of Appendix E. The

mean abilities along with the respective credible intervals are reported.

Since the abilities of all the students are supposed to follow a normal distribution
with mean 0 and variance 1, each positive value of Table 9.2 indicated performance of
the student that is greater than the average. From the table, one can note that there
are students with high abilities in all the different factors (see, for example, students
1, 39, 54, 59, 83, 87, 93 and 100) and, of course, students with bad performance in all
the different factors (see student number 8). However, there are also some students who

perform very well in one factor but not in another. Such students receive a medium-level
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Figure 8-7: Scatter plot of the difficulty parameter and % of incorrect responses and
omissions

grade on the test; they can be very good in some particular sciences though, that require
high performance on a specific kind of problems. For example, students 14, 19, 74 are
very good on items of the third factor but not so good on the remaining items of the
test. Also, students 35, 49 and 90 are very good only on the items of the first factor and

not on the remaining.

8.3.8 Posterior outcome for the students’ ¢ parameters

The § parameters for each one of the 100 first students are reported in Table 8.2. These
parameters are of great importance for the presentation here, since they are newly im-
ported, theoretically and practically, into the IRT model.

The parameters are all truncated to non-negative values (hence, the lower band of
each credible interval that is shown in Table 8.2 is 0; it is presented for the reader to

recall this restriction. This lower band does not make any other sense).The lower the
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mean of the parameter is, the more risky the student is. In other, words, the mean of
the parameters show the mean additional ability the students have to have in order to
decide to answer a question when they do not know the answer for sure. The higher
additional ability that have to have also means that they can recognize which responses
are able to answer and which (and how many) of them should be omitted. In addition,
an explanation from another point of view can be given in this case: the less risky the
student is, the higher ability she/he needs to guess for an answer, and, moreover, the
more number of omissions in case that she/he feels that this additional ability that is

required, is not available.

Note in Table 8.2 that there are some students with high mean 4, for example students
27, 64, 84, 91, 99 and 100, with respective mean of § equal to 0.045, 0.045, 0.049, 0.053
and 0.053. These students have a large number of omissions (from 17 to 32 omissions
each), thus, they are less risky than the remaining students and they need to feel that
they have higher ability than the other in order to try to answer a question that they
don’t know. On the other hand, there are also some students with high mean value of
4, for example, students 9, 28, 33, 36 and 57 (respective mean value of § 0.047, 0.044,
0.044, 0.044 and 0.045) who they do have a very small number of omissions (5, 2, 1, 0,
and 3 respectively). But as in the previous case, this means that they are not risky at
all, since also the number of incorrect responses they have are very small (5, 6,9, 8 and 7
respectively). Hence, they are students with low risk and good performance on the test.
In addition, there are students who are very risky and try to answer a question when
they are not sure about the answer. See, for example, students 4, 10, 11, 40, 47 and 74.
Their respective mean values of § are 0.032, 0.030, 0.031, 0.034, 0.033 and 0.031, and
their number of omissions are 0, 0, 0, 1, 0 and 0 respectively. This means that they try
to answer the questions when they are don’t know the answer; this guessing behaviour
is also apparent from the large number of incorrect responses these students have given;
these are 51, 46, 29, 22 45 and 38 respectively. This indicates that they are risky students

with low performance. This is also taken into account by the model in the calculation of
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their general ability since a portion of their correct responses might had been given by

chance, due to their guessing behaviour.
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Table 8.2: ¢ parameters of the students
(continued...)

student number number number 0 credible
of correct | of incorrect of parameter interval
number || responses | responses | omissions

1 59 19 0 0.035 (0.000,0.105)

2 41 20 17 0.041 (0.000,0.120)

3 57 12 9 0.043 (0.000,0.120)

4 27 51 0 0.032 (0.000,0.100)

5 44 21 13 0.038 (0.000,0.120)

6 37 2/ 17 0.037 (0.000,0.120)

7 26 41 11 0.037 (0.000,0.100)

8 33 45 0 0.034 (0.000,0.100)

9 68 5 5 0.047 (0.000,0.130)
10 32 46 0 0.030 (0.000,0.095)
11 49 29 0 0.031 (0.000,0.100)
12 48 18 12 0.039 (0.000,0.110)
13 32 41 5 0.031 (0.000,0.100)
14 44 32 2 0.032 (0.000,0.090)
15 48 26 4 0.040 (0.000,0.120)
16 47 31 0 0.033 (0.000,0.090)
17 57 21 0 0.037 (0.000,0.110)
18 51 26 1 0.034 (0.000,0.110)
19 53 25 0 0.036 (0.000,0.100)
20 26 41 11 0.039 (0.000,0.120)
21 64 10 4 0.037 (0.000,0.110)
22 32 35 11 0.038 (0.000,0.110)
23 30 48 0 0.032 (0.000,0.100)
2/ 35 38 5 0.035 (0.000,0.100)
25 28 50 0 0.033 (0.000,0.100)
26 56 16 6 0.039 (0.000,0.110)
27 28 25 25 0.045 (0.000,0.125)
28 70 6 2 0.044 (0.000,0.130)
29 39 3/ 5 0.037 (0.000,0.110)
30 62 16 0 0.038 (0.000,0.110)
31 66 12 0 0.035 (0.000,0.105)
32 35 42 1 0.032 (0.000,0.105)
33 68 9 1 0.044 (0.000,0.120)
3/ 55 23 0 0.034 (0.000,0.110)
35 48 32 3 0.033 (0.000,0.100)
36 70 8 0 0.044 (0.000,0.120)

129




Table 8.2:4 parameters of the students
(continued...)

student number number number 0 credible
of correct | of incorrect of parameter interval
number || responses | responses | omissions
37 47 21 10 0.038 (0.000,0.110)
38 60 14 4 0.041 (0.000,0.110)
39 67 11 0 0.037 (0.000,0.100)
40 55 22 1 0.034 (0.000,0.095)
41 32 3/ 12 0.037 (0.000,0.110)
42 55 11 12 0.042 (0.000,0.120)
48 38 21 19 0.037 (0.000,0.110)
44 55 20 3 0.040 (0.000,0.110)
45 56 19 3 0.034 (0.000,0.100)
46 48 23 7 0.039 (0.000,0.110)
47 33 45 0 0.033 (0.000,0.100)
48 40 35 3 0.035 (0.000,0.100)
49 50 2/ 4 0.039 (0.000,0.120)
50 30 29 19 0.040 (0.000,0.120)
51 37 35 6 0.036 (0.000,0.100)
52 44 29 5 0.036 (0.000,0.100)
53 55 18 5 0.041 (0.000,0.110)
5/ 48 30 5 0.034 (0.000,0.100)
55 3/ 36 8 0.032 (0.000,0.100)
56 29 49 0 0.033 (0.000,0.100)
57 68 7 3 0.045 (0.000,0.130)
58 59 19 0 0.041 (0.000,0.120)
59 30 35 13 0.038 (0.000,0.115)
60 67 9 2 0.043 (0.000,0.120)
61 47 22 9 0.040 (0.000,0.115)
62 69 9 0 0.043 (0.000,0.125)
63 64 13 1 0.037 (0.000,0.110)
64 35 16 27 0.045 (0.000,0.130)
65 48 26 4 0.033 (0.000,0.100)
66 63 14 1 0.041 (0.000,0.120)
67 49 29 0 0.034 (0.000,0.100)
68 53 21 4 0.037 (0.000,0.100)
69 62 12 4 0.041 (0.000,0.125)
70 33 40 5 0.034 (0.000,0.100)
71 71 7 0 0.045 (0.000,0.125)
72 20 55 3 0.035 (0.000,0.100)
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Table 8.2:4 parameters of the students

student || number number number ) credible
of correct | of incorrect of parameter interval
number || responses | responses | omissions
73 68 7 3 0.044 (0.000,0.125)
74 40 38 0 0.031 (0.000,0.100)
75 47 31 0 0.032 (0.000,0.100)
76 59 12 7 0.044 (0.000,0.120)
7 34 28 16 0.039 (0.000,0.110)
78 64 11 3 0.040 (0.000,0.115)
79 39 20 19 0.044 (0.000,0.130)
80 45 26 7 0.043 (0.000,0.120)
81 31 47 0 0.032 (0.000,0.100)
82 29 48 1 0.034 (0.000,0.105)
83 33 40 5 0.033 (0.000,0.100)
84 53 8 17 0.049 (0.000,0.135)
85 38 37 3 0.033 (0.000,0.110)
86 51 19 8 0.037 (0.000,0.110)
87 49 21 8 0.040 (0.000,0.120)
88 38 36 4 0.034 (0.000,0.100)
89 48 27 3 0.035 (0.000,0.110)
90 43 24 11 0.041 (0.000,0.110)
91 45 4 29 0.048 (0.000,0.140)
92 52 26 0 0.034 (0.000,0.105)
93 34 25 19 0.040 (0.000,0.110)
94 28 32 18 0.037 (0.000,0.110)
95 53 21 4 0.040 (0.000,0.110)
96 76 1 1 0.052 (0.000,0.140)
97 71 6 1 0.043 (0.000,0.120)
98 45 30 3 0.036 (0.000,0.120)
99 26 20 32 0.053 (0.000,0.135)
100 29 17 32 0.053 (0.000,0.135)
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Figure 8-8: Scatter plot of mean of § with the number of correct responses

It is obvious, from the discussion of Table 8.2, that the parameters § are not related to
a single descriptive measurement that arises from the data but it expresses an informative
combination of all the characteristics of the data. Hence, the relation of § with any single
descriptive measurement of the data can not be strong. It seems that a combination
of them may result to a stronger relationship. The relations between the parameter ¢
estimated by the model and the descriptives for each student (number of correct and

incorrect responses and omissions) are depicted in the following Figures.

Figure 8-8 shows the weak relation between ¢ and the number of correct responses. It
seems that the information provided by the number of correct responses is not depicted
by the parameter §; this has to do with the ability parameters of each student on each
factor that have been presented in the previous discussions. Therefore, both good and

bad students may be or may not be risky (this was also obvious from the discussion of

Table 8.2).

The same information is provided by the Figures 8-9 and 8-10, although the relation
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Figure 8-9: Scatter plot of mean of § with the number of incorrect responses

is not that weak as it was in Figure 8-8. Hence, students with large value of incorrect
responses may or may not be risky, depending on whether they also responded with a
large value of omissions or not.

Figures 8-11 and 8-12 show the relations of a combination of the descriptive mea-
surements of the sample with the parameter §. The former graph shows the sum of the
incorrect responses and omissions and the latter shows the sum of the correct responses
and omissions. Both of these graphs show a weak relation with the parameter 4.

Finally, Figure 8-13 depicts the relation of the parameter § with the difference between
the incorrect responses and omissions. This relation seems to be stronger than all of the
previously mentioned graphs. This seems to be evidence for the way the parameter ¢ has
been quantified; the higher the incorrect responses and the lower the omissions are, the

more risky the student is.
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Figure 8-10: Scatter plot of mean of § with the number of omissions
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Figure 8-11: Scatter plot of mean of § with the number of incorrect responses plus
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Figure 8-12: Scatter plot of mean of § with the number of correct responses plus omissions

Figure 8-13: Scatter plot of mean of § with the number of incorrect responses minus

omissions

number of incorrect responses-omissions
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Chapter 9

Further Research

We have presented some latent variable models along with modifications on them which
arise from the specific particularities of the data. In the multiranked probit model, we
have presented a realistic model generation structure which describes ranking responses
collected from stated preference experiments and we have provided MCMC details which
implement our proposed models. We have also illustrated that real problems originated
by small sample sizes or large percentage of responses with ties and intransitivities can
be incorporated by adopting a more general error structure. What led us to carrying
out this work was the utilisation of all the ranking responses which included ties and
intransitivities. Therefore, the responses that were difficult to handle were not eliminated

nor were inappropriate link functions used with the intent of simplifying calculations.

We have also covered many modeling aspects by utilizing a broad family of models
(multivariate probit, mixture scale of normal link functions with varying degrees of free-
dom in the real domain). However, in the model uncertainty and model selection task, one
can also use a marginal likelihood approach (see Chib, 1995) to choose or evaluate among
different models which can arise. This approach can also be applied in the proposed mul-
tidimensional IRT model with thresholds where the number of the dimensions-factors
was pre-defined. A marginal likelihood approach can be used to determine the number

of factors that fit the data better.
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Finally, the results of the proposed IRT model can be compared with the results of
a model for nominal data, if we treat the omissions as a different response category, see

Bock (1972), Thissen and Steinberg (1984).
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Appendix A: Multiple choice test of

the “Data Analysis” course
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mmmm The crosstabulation provides the relation between gender (male, appev- female,0njAv) with
the systematic body exercise (yes,vai- no,0y).

SUCTNURAT LK &OBAnon

Noat Ox L Total

[16pNe] Appev Count 91 10 101
Expected Count 79,9 21,1 101,0

% within ®UAo 90,1% 9,9% 100,0%

ieZ;E:ln EUompoE 66,9% 27,8% 58,7%

OnAU Count 45 26 71

Expected Count 56,1 14,9 71,0

% within ®UAo 63,4% 36,6% 100, 0%

ieiii:in EuoTnuoT Lxs 33,1% 72,2% 41,3%

Total Count 136 36 172
Expected Count 136,0 36,0 172,0

% within ®UAo 79,1% 20,9% 100, 0%

¥ within Svotnpatixn 100, 0% 100, 0% 100,0%

&OAnon

The percentage of the female which do not exercise their body systematically is:
a) 14,9%
b) 36,6%
c) 72,2%
d) 33,1%

mmmm In a multiple linear regression with independent variables X1 and X2, we construct the
ANOVA table of the model.

ANOVA
Sum of
Model Squares df F Sig.
1 Regression 375,097 2 22,469 , 0007
Residual 308,834 37
Total 683,930 39

a. predictors: (Constant), X1, X2

The sum of residuals for this model is:
a) 308,834

b) 308,834 /37

c) 0

d) 37

VA

= A data set includes the result of a lung capacity test as “Within accepted (normal) bounds”
or “Out of accepted (normal) bounds” as well as whether the person is a smoker or not. We will
try to analyze the data set using:

a) Two separate t-tests

b) Regression with the use of dummy variables

c¢) Two-way ANOVA

d) X test

140



mmmm In a linear regression model, where the dependent variable is the weight of the persons, and
independent the continuous variables A, B and C, we obtain the following output with the

coefficients
Coefficients
Unstandardized
Coefficients

Std.
Model B Error t Sig.
1 (Constant) 24,674 2,317 10,648 , 000
A -6,201 , 953 -6,506 , 000
B ,119 ,414 ,287 ,776
C 9,3E-02 ,048 1,922 , 062

@. pependent Variable: Bd&poc

In order to construct a satisfactory model that explains the weight of the persons, (with
hypothesis testing at significance level a= 5%), the next step of our analysis should be:

a)
b)
¢)
d)

To eliminate the variable A, since the estimated coefficient has the highest standard error (0,953),
compared with the remaining independent variables, and to fit the model again.

To eliminate the variables B and C since their coefficients are not statistically significant, and to fit
the model again.

To eliminate the variable B since its coefficient is not statistically significant, and to fit the model
again

To eliminate the variable C since its coefficient is almost equal to 0 (0,093), and to fit the model
again

mmm In a data set, the dependent variable Y is continuous. The data points come from 2
different groups (variable «group», with values 0 and 1) where the mean values of Y for the 2
groups differ statistically significantly. There is also an independent continuous variable X that
is statistically significant. We use a model (with either «group», or X, or both) and we find the
expected values of Y; these expected values along with the values of X are given in the graph
below:

16

14

12

10

s 8% GROUP

Unstandardized Predicted Value
®
L]

INDEPENDENT VARIABLE X

The linear model that has been used in that case is:

a) linear regression with independent variables group and X

b) linear regression with independent variables X and the product (X*group)
c) two way ANOVA

d) one way ANOVA (using the variable group as independent)
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=mmm In a data set, the dependent variable Y is continuous. The data points come from 2
different groups (variable «group», with values 0 and 1) where the mean values of Y for the
2 groups differ statistically significantly. There is also an independent continuous variable X
that is statistically significant. We use a model (with either «group», or X, or both) and we
find the expected values of Y; these expected values along with the values of X are given in
the graph below:

Unstandardized Predicted Value

I o0 (1 11 N BN ] L L ] L ] L ] L ]
E GROUP
4 1
3 ® 0

0 10 20 30 40

INDEPENDENT VARIABLE X

The linear model that has been used in that case is:

a) linear regression with independent variables group and X

b) a separate linear regression for each group with independent variable X
c) two-way ANOVA

d) linear regression with independent variable group

VA

mmmmThe table below shows the results of a Chi-square test.

Chi-Square Tests

Asymp. Exact
Sig. Sig.
Value df (2-sided) (2-sided)
Pearson Chi-Square 3,969%* 1 ,046
Fisher's Exact Test ,090

*. 1 cells (25,0%) have expected count less than 5. The minimum
expected count is 4,35.

If we use a 5% confidence level, we can conclude that:

a) There is independence between rows and c) There is independence between rows and
columns (according to the Pearson Chi- columns (according to the Fisher’s exact
Square test) test)

b) There is no independence between rows d) We can not conclude, since the two tests
and columns (according to the Pearson Chi- (Pearson Chi-Square and Fisher’s exact) do
Square test) not agree with respect to the conclusion.
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mmmm In a linear model, the coefficient of an independent variable is not statistically
significant (with 0=5%). The 95% CI for this parameter is:

a) (-125,-39)

b) (12,42)

¢) (0.04,0.09)

d) (-1,24)

mmmm In a linear model (where the dependent variable is

continuous) in order to include an independent

categorical variable with 4 levels, where each level

denotes a different profession category, we have to:

a) multiply the categorical variable with each of the continuous independent variables of the model
b) construct 4 dummy variables

¢) construct 3 dummy variables

d) include the variable in the model as it is, considering it as a variable that is ordinal

mmmm A linear regression equation was calculated as Y=4.15-0.96X+eg, with coefficient of
determination equal to R’=0.81. The correlation coefficient between X and Y is equal to:

a) 0.96 c) 0.9

b) -0.96 d) -0.9

mmm In a data set, the dependent variable is the (continuous) grade on a test, and the
independent variables are the gender of the students and the year of studies (3", 4™, 5™). We will
try to analyze the data set using:
a) Regression analysis with two independent d) t-test with independent variables the gender
variables and the year of studies
b) Two-way ANOVA
c¢) ANCOVA of the gender with the year of
studies

mmm In order to introduce a discrete independent variable into a linear model (where the
dependent is continuous), where the discrete variable contains S levels, each level denoting the
number of children in the family, we should:

a) Multiply the discrete variable with all the ¢) Construct one dummy variable instead of
continuous independent variables of the the original discrete variable
model d) Insert the variable in the model , as it is,
b) Construct 5 dummy variables given that it is an ordinal one

mmmm A data set includes the result of a lung capacity test with values from 40 to 98.4 as well as
whether the person is a smoker or not. We will try to analyze the data set using:

a) regression with two dummy variables ¢) Two-way ANOVA

b) t-test d) ANCOVA
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== In an experiment we record the weight of fishes. A different diet was used for each of the
three groups of the experiment. The data set was analyzed with ANOVA and the pairwise
comparisons (using the Scheffe test) are given in the table below:

Multiple Comparisons

Dependent Variable: B&pocg

Scheffe
Mean
Difference std.
(I) DIAITES (J) DIAITES (I-J) Error Sig.
Alatta A Alalta B 10,6667 * 1,756 ,000
Alotta T 13,0667 * 1,756 ,000
Alalta B AlaLtta A -10,6667 * 1,756 ,000
Alotta T 2,4000 1,756 , 401
Alotta T Alotta A -13,0667 * 1,756 ,000
Alotta B -2,4000 1,756 , 401

* The mean difference is significant at the .05 level.

According to the results, if we use a= 5%, we can conclude that, in general, the diet that is
suggested in order to obtain higher weight of the fishes, as well as the worst diet are:

a) the differences of the weights are not d) A is a better diet, whereas there is no
statistically significant statistically significant difference between
b) A is a better diet, B is a worse diets B and C

c) A is abetter diet, C is a worse

VA

mmmThe ANOVA table of an analysis is given below.

ANOVA
Bd&pocg
Sum of Mean
Squares df Square F Sig.
Between Groups x 2 z 31,383 , 000
Within Groups y 42 \
Total 2422,578 44
The value 31,383 of F was calculated as:
a) x/z c) x/2
b) z/w d) x/y

VA

= A data set includes the result of a lung capacity test with values from 40 to 98.4, whether the
person is a smoker or not, and the (continuous) age of the person. We will try to analyze the data
set using:
a) ANCOVA ¢) One-way ANOVA
b) Regression analysis with independent d) t-test

variables the age and two dummy variables
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mmmm In a multiple regression model with independent variables X1 and X2, we construct the

ANOVA table of the model.

ANOVA
Sum of
Model Squares df F Sig.
1 Regression 375,097 2 22,469 ,000¢
Residual 308,834 37
Total 683, 930 39
a. predictors: (Constant), X1, X2
Using the F test of the table, we conclude that:
a) there is at least one statistically significant c¢) we should not include any other

independent variable in the model
b) all the coefficients of the independent
variables are statistically significant

independent variable in the model, since
the ones which were used suffice

d) the constant and all the coefficients in the

model are statistically significant

mmmm In a linear regression with dependent variable Y, and independent the continuous variables

A, B and C, we get the following output:

Model Summary’

std.
Error of

Adjusted the
Model R R Square R Square Estimate
1 , 7542 ,568 , 537 5,0495

4. predictors:

b. Dependent Variable: Y

The value 0,754 of R can be interpreted as:
a) The correlation coefficient between Y and

A

Y
b) The correlation coefficient between Y and
the independent variables

(Constant), A, B, C

¢) The correlation coefficient between Y and

the residuals of the model

d) The correlation coefficient between Y and

the residuals of the model

mmmm In a regression analysis, where Y is the dependent variable, we use the assumption of the
normality of y;. In order to check this assumption, we can:

a) Check the normality of Y graphically (for
example, using a histogram)

b) Test the normality of Y using the non
parametric test Kolmogorov-Smirnov of
one sample

¢) Check Y graphically to see whether there
are outliers (which are far from normality)
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and, in case there are, to eliminate them
from the sample

d) Test the normality via the residuals using
the non parametric test Kolmogorov-
Smirnov of one sample



mmmm A linear regression analysis, with dependent variable Y and independent varl, var2 and
var3, provides the following table.

Model Summary’

Adjusted
Model R R Square R Square
1 ,930°% , 865 , 537

4. predictors: (Constant), varl, var2, var3

b. Dependent Variable: Y

The large difference between R* and adjusted R” may be due to:

a) wrong choice of independent variables d) either the small sample size or the use of
b) small sample size some independent variables which do not
c) the fact that the normality and explain a significant amount variability of
independence assumptions of y; are the dependent variable
violated

== [n a data set, the dependent variable Y is continuous. The data
points come from 2 different groups (variable «group», with values 0
and 1) where the mean values of Y for the 2 groups differ
statistically significantly. There is also an independent continuous
variable X that is statistically significant. We use a model (with
either «group», or X, or both) and we find the expected values of Y;
these expected values along with the values of X are given in the
graph below:
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The linear model that has been used in that case is:
a) linear regression with independent variables group and X
b) linear regression with independent variables X and the product (X*group)
c) linear regression with independent variable X
d) one-way ANOVA (with variable group)
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mmmm Which one of the above is not an assumption for the linear model
a) homoscedasticity of the residuals

b) y; are independent

¢) y; are normally distributed with mean 4+Bx; and variance ¢*

d) the errors are uncorrelated

==mm An estimated parameter is tested, in significance level 5% and is found to be statistically
significant. What could be the result of the test if we used a significance level equal to 1% and
10%;

a) in 0=1%, the parameter would be statistically significant whereas in a=10% it would not.

b) in 0=1%, the parameter would not be statistically significant whereas in 0=10% it would be.

¢) in 0=10% and 0=1%, the parameter would be statistically significant

d) in a=10%, the parameter would be statistically significant whereas we can not conclude for a=1%

mmmm Which of the following is not an assumption of the linear model
a) the errors are normally distributed with ¢) yi have mean a+fx;

mean 0 d) the errors are identically distributed
b) the independent variables are not correlated

VA

mmmThe ANOVA table of a problem is given below:

ANOVA
Bd&pocg
Sum of Mean
Squares df Square F Sig.
Between Groups X 2 z 31,383 ,000
Within Groups y 42 w
Total 2422,578 44

The sum of squares of the residuals is:
a) y

b) x

) (x-y)

d) (x-y)'/44

mmm In a multiple regression model, in which of the following cases, we are not faced with a

problem:

a) when the independent variables are far ¢) when we perform multiple tests on the
from normality parameters of the model

b) when the independent variables are highly d) when the sample size is at most equal to the
correlated or some of them are a linear number of parameters of the model

combination of some other
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VA

mmmThe ANOVA table of a linear model is given below.

ANOVER
Sum of Mean
Model Squares df Square F Siley.
1 Regressio: 60,975 1 60,975 5,830 ,022
Residual 334,672 32 10,459
Total 395,647 33

@. predictors: (Constant), INDEPEND

b. Dependent Variable: DEPEND

The coefficient of determination (R”) of this model is:
a) 0,154 (=60,975/395,647)

b) 0,171 (=10,459/60,975)

c) 0,846 (=334,672/395,647)

d) it can not be calculated with the numbers provided

= In a simple regression analysis, we estimate the growth (mapoaywyn) of
an agricultural product given the quantity of fertilizer (Airaopa) (in kilos)
that has been used. The table of the coefficients estimated is given below

Coefficient’
Unstandardized
Coefficients

Sieel,
Model B Error t Salejo
1 (Constant) , 757 ,550 1,375 ,176

NAinmoopa oe

,925 ,035 26,726 ,000

K LA&

4. Dependent Variable: Hapaywyh o& TSVOUCQ

With respect to the coefficient of the variable «fertilizer», we can conclude that

a) the fertilizer does not influence statistically significantly the growth

b) Increase of the fertilizer by 0,925 kilos causes mean increase of growth by 1 ton

¢) Increase of the fertilizer by 1 kilos causes mean increase of growth by 0,925 tons

d) Increase of the fertilizer by 1 kilos causes mean increase of growth by 1,682 (=0,757+0,925'1) tons
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Items that load on the first factor

Item 1 Item 1

/ Discrimination 1 0.81

mmmThe crosstabulation provides the relation between Discrimination 2 0

gender (male, appev- female,01iv) with the systematic body e — 0

exercise (yes,vai- no,6y). Difficulty -0.50
Guessing pr. 0.15

TUocTNUAT LK &BAnon

Not b Ox L Total

[eXipNe] Appev Count 91 10 101
Expected Count 79,9 21,1 101,0

% within ®UAo 90,1% 9,9% 100, 0%

zezi;:in ARG 66,9% 27,8% 58,7%

@NAU Count 45 26 71
Expected Count 56,1 14,9 71,0

% within ®UAo 63,4% 36,6% 100, 0%

ie:ri]ct::in ARG 33,1% 72,2% 41,3%

Total Count 136 36 172
Expected Count 136,0 36,0 172,0

% within ®UAo 79,1% 20,9% 100,0%

& within Zuotapatixd 100,0% 100, 0% 100, 0%

&eAnon

The percentage of the female which do not exercise their body systematically is:

a) 14,9%
b) 36,6%
c) 72,2%
d) 33,1%
Item 3
Item 3
mmmin a multiple linear regression with independent Discrimination 1 0.86
variables X1 and X2, we construct the ANOVA table of the Discrimination 2 0.62
model. Discrimination 3 0.64
Difficulty 0.73
Guessing pr. 0.18
ANOVA
Sum of
Model Squares df F Sig.
1 Regression 375,097 2 22,469 , 0007
Residual 308,834 37
Total 683,930 39

a. predictors: (Constant), X1, X2

The sum of residuals for this model is:

a) 308,834

b) 308,834/37
c) 0

d) 37
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Item 14

Item 14
mmmThe ANOVA table of a linear model is given Discrimination 1 1.06
below Discrimination 2 0.44
Discrimination 3 0.43
Difficulty 0.31
Guessing pr. 0.15
ANOVR
Sum of Mean
Model Squares df Square F Siley .
1 Regressio 60,975 1 60,975 5,830 ,022
Residual 334,672 32 10,459
Total 395,647 33
. predictors: (Constant), INDEPEND
b. pependent Variable: DEPEND
The coefficient of determination (R”) of this model is:
a) 0,154 (=60,975/395,647)
b) 0,171 (=10,459/60,975)
c) 0,846 (=334,672/395,647)
d) it can not be calculated with the numbers provided
Item 16
/ Item 16
mmmm The ANOVA table of a problem is given below: Discrimination 1 1.50

Discrimination 2 0.50
Discrimination 3 0.51

Difficulty -0.80
Guessing pr. 0.18
ANOVA
Bé&pog
Sum of Mean
Squares df Square F Sig.
Between Groups x 2 z 31,383 ,000
Within Groups y 42 w
Total 2422,578 44
The sum of squares of the residuals is:
a) 'y
b) x
0 (x-y)
d) (x-y)/44
Item 19
Item 19
=mmm ADn estimated parameter is tested, in significance Discrimination 1 0.83
level 5% and is found to be statistically significant. Discrimination 2 | 0.63
What could be the result of the test if we used a D et & 037
significance level equal to 1% and 10%; Difficulty 20.62

Guessing pr. 0.19

a) in 0=1%, the parameter would be statistically significant whereas in a=10% it would not.

b) in a=1%, the parameter would not be statistically significant whereas in a=10% it would be.

¢) ino=10% and 0=1%, the parameter would be statistically significant

d) in 0=10%, the parameter would be statistically significant whereas we can not conclude for
a=1%
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Item 20

J Item 20

mmm The ANOVA table of a regression model is Discrimination 1 0.78

given below. Discrimination 2 0.29
Discrimination 3 0.29
Difficulty -1.22
Guessing pr. 0.17
ANOVA
Bdapocg
Sum of Mean
Squares df Square F Sig.
Between Grou x 2 z 31,383 , 000
Within Group: y 42 w
Total 2422,578 44
The value 31,383 of F was calculated as:
a) x/z
b) z/'w
c) x/2
d) x/y
Item 26
Item 26
mmmIn a simple regression analysis, we estimate Discrimination 1 0.66

the growth (mrapaywyn) of an agricultural product
given the quantity of fertilizer (AMiraopa) (in kilos)
that has been used. The table of the coefficients

Discrimination 2 0.63
Discrimination 3 0.56

. At Difficulty -0.42
estimated is given below .
Guessing pr. 0.17
Coefficientd
Unstandardized
Coefficients
std.
Model B Error t Sig.
1 (Constant) , 757 ,550 1,375 ,176
Alnoopa oe
,925 ,035 26,726 ,000

KLA&

4. Dependent Variable: Hopaywyh oe TéVOoUQ

With respect to the coefficient of the variable «fertilizer», we can conclude that
a) the fertilizer does not influence statistically significantly the growth
b) Increase of the fertilizer by 0,925 kilos causes mean increase of growth by 1 ton
¢) Increase of the fertilizer by 1 kilos causes mean increase of growth by 0,925 tons
d) Increase of the fertilizer by 1 kilos causes mean increase of growth by 1,682 (=0,757+0,925'1)
tons
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Items that load on second factor

Item 7

= In a data set, the dependent variable Y is continuous.
The data points come from 2 different groups (variable
«group», with values 0 and 1) where the mean values of Y for
the 2 groups differ statistically significantly. There is also an
independent continuous variable X that is statistically
significant. We use a model (with either «group», or X, or
both) and we find the expected values of Y; these expected
values along with the values of X are given in the graph

below:

Unstandardized Predicted Value

0 10 20

INDEPENDENT VARIABLE X

30

The linear model that has been used in that case is:

a) linear regression with independent variables group and X

b) a separate linear regression for each group with independent variable X

c) two-way ANOVA
d) linear regression with independent variable group

Item 17

mmm In a data set, the dependent variable Y is
continuous. The data points come from 2 different
groups (variable «group», with values 0 and 1) where
the mean values of Y for the 2 groups differ
statistically significantly. There is also an independent
continuous variable X that is statistically significant.
We use a model (with either «group», or X, or both)
and we find the expected values of Y; these expected
values along with the values of X are given in the
graph below:
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Item 7
Discrimination 1 0.39
Discrimination 2 0.46
Discrimination 3 0.25
Difficulty 1.30
Guessing pr. 0.13

: GROUP
1
® 0
40
Item 17
Discrimination 1 0.12
Discrimination 2 0.41
Discrimination 3 0.29
Difficulty 0.62
Guessing pr. 0.21



12

10

Unstandardized Predicted Value

GROUP

0 10 20

INDEPENDENT VARIABLE X

The linear model that has been used in that case is:

a) linear regression with independent variables group and X
b) linear regression with independent variables X and the product (X*group)

c) linear regression with independent variable X
d) one-way ANOVA (with variable group)

Item 32

mmm A simple linear regression equation was
estimated as Y=4.15-0.96X+¢ with coefficient of
determination R’=0.81. The correlation
between X and Y is equal to:

a) 0.96
b) 0.96
c) 09

d) -0.9

Items that load on the third factor

Item 6

i In a data set, the dependent variable Y is
continuous. The data points come from 2 different groups
(variable «group», with values 0 and 1) where the mean
values of Y for the 2 groups differ statistically
significantly. There is also an independent continuous
variable X that is statistically significant. We use a model
(with either «group», or X, or both) and we find the
expected values of Y; these expected values along with the
values of X are given in the graph below:
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Item 32
Discrimination 1 0.69

Discrimination 2 1.00
Discrimination 3 0.89

Difficulty 0.91
Guessing pr. 0.17
Item 6
Discrimination 1 0.46
Discrimination 2 0.46
Discrimination 3 0.55
Difficulty 0.36
Guessing pr. 0.13



o 89 GROUP

Unstandardized Predicted Value

INDEPENDENT VARIABLE X

The linear model that has been used in that case is:
a) linear regression with independent variables group and X
b) linear regression with independent variables X and the product (X*group)
c) twoway ANOVA
d) one way ANOVA (using the variable group as independent)

Item 9 Item 9
Discrimination 1 0.57

mmm In a linear model, the coefficient of an independent
variable is not statistically significant (with a=5%). The

Discrimination 2 0.62
Discrimination 3 0.65

95% CI for this parameter is: Difficulty 001
a) (-125,-39) Guessing pr. 0.13
b) (12,42)
¢) (0.04,0.09)
d) (-1.24)
Item 10
Item 10
= In a linear model (where the dependent variable is D%Scr%m%nat%on 1 0.20
continuous) in order to include an independent D}scr}m%na'qon 2 0.55
categorical variable with 4 levels, where each level Discrimination 3 0.88
denotes a different profession category, we have to: Difficulty -0.55
Guessing pr. 0.15

a) multiply the categorical variable with each of the
continuous independent variables of the model

b) construct 4 dummy variables

¢) construct 3 dummy variables

d) include the variable in the model as it is, considering it
as a variable that is ordinal

Item 12
Item 12
= A data set includes the result of a lung capacity test as Discrimination 1 0.24
“Within accepted (normal) bounds” or “Out of accepted Discrimination 2 0.35
(normal) bounds” as well as whether the person is a smoker Discrimination 3 0.75
or not. We will try to analyze the data set using: Difficulty -0.27
Guessing pr. 0.15

a) Two separate t-tests

b) Regression with the use of dummy variables
c¢) Two-way ANOVA

d) X test
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Item 18

mmmWhich one of the above is not an assumption for
the linear model

a) homoscedasticity of the residuals

b) y;are independent

c) vy are normally distributed with mean a+fx; and
variance 6%

d) the errors are uncorrelated

Item 24

VA

mmmA data set includes the results of a medical test with
values from 40 to 98.4 and whether the patient was smoker
or not. A possible analysis could be:

a) linear regression with 2 dummy variables
b) t-test

¢) two-way anova

d) ancova

Item 29

mmmIn a simple regression analysis, where Y is the
dependent variable, we assume the normality of y;. To
test that assumption, we may:

a) check the normality of Y via a graph(e.g. a histogram)

b) check the normality of Y using the non-parametric one
sample Kolmogorov-Smirnov test

¢) check Y with a graph to see whether there are outlies and,
if yes, to remove them from the analysis

d) check the normality of the residuals using the non-
parametric one sample Kolmogorov-Smirnov test

Item 33

mmmmin a data set, the dependent variable is the grade in
the test (max 105), and the independent variables are the
gender and the marital status (with values single,
married and divorced). A possible analysis could be:

a) regression analysis with 2 independent variables

b) two way anova

¢) ancova of the gender with the marital status

d) t-test with independent variables the gender and the marital
status
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Item 18
Discrimination 1 0.34
Discrimination 2 0.44
Discrimination 3 0.55
Difficulty 0.68
Guessing pr. 0.17

Item 24
Discrimination 1 0.22
Discrimination 2 0.31
Discrimination 3 0.49
Difficulty 0.57
Guessing pr. 0.19

Item 29
Discrimination 1 0.40
Discrimination 2 0.53
Discrimination 3 0.58
Difficulty 0.99
Guessing pr. 0.15

Item 33
Discrimination 1 0.38
Discrimination 2 0.59
Discrimination 3 0.62
Difficulty 0.85
Guessing pr. 0.17
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Appendix B: Convergence of
discrimination and ability

parameters
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factor # 1

ability parameter, item # 1

factor # 1

ability parameter, item # 2.

factor # 2

ability parameter, item # 2

ability parameter, item # 2, factor # 3
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Figure 9-1:
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iterations

Convergence scatter plot of selected ability parameters.

158




factor # 1

ability parameter, item # 3

factor # 2

ability parameter, item # 3,

factor # 3

ability parameter, item # 3

ability parameter, item # 4, factor # 1
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500 1000 1500 2000 2500

iterations

Convergence scatter plot of selected ability parameters.
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factor # 2

ability parameter, item # 4

factor # 3

ability parameter, item # 4,

factor # 1

ability parameter, item # 5,

ability parameter, item # 5, factor # 2
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Figure 9-3: Convergence scatter plot of selected ability parameters.
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factor # 3

ability parameter, item # 5

factor # 1

ability parameter, item # 6,

factor # 2

ability parameter, item # 6,

ability parameter, item # 6, factor # 3
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Figure 9-4: Convergence scatter plot of selected ability parameters.
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ability parameter, item # 7, factor # 1

ability parameter, item # 7, factor # 2

ability parameter, item # 7, factor # 3
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Figure 9-5: Convergence scatter plot of selected ability parameters.
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Appendix C: Convergence graphs of
the difficulty parameters for the first

20 1items
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Figure 9-6: Convergence scatter plot of the difficulty parameters.

164



difficulty parameter for item # 7 difficulty parameter for item # 6 difficulty parameter for item # 5
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Figure 9-7: Convergence scatter plot of the difficulty parameters.
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difficulty parameter for item # 11 difficulty parameter for item # 10 difficulty parameter for item # 9
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Figure 9-8: Convergence scatter plot of the difficulty parameters.
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difficulty parameter for item # 15 difficulty parameter for item # 14 difficulty parameter for item # 13
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Figure 9-9: Convergence scatter plot of the difficulty parameters.
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difficulty parameter for item # 19 difficulty parameter for item # 18 difficulty parameter for item # 17
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Figure 9-10: Convergence scatter plot of the difficulty parameters.
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Appendix D: Autocorrelation plots
for the convergence of the o

parameters
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Student 1 Student 2 Student 3

Student 4 Student 5 Student 6
Student 7 Student 8 Student 9
Student 10 Student 11 Student 12

Figure 9-11: Autocorrelation plots of the  parameters.
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Student 13 Student 14

Student 15 Student 16
Student 17 Student 18
Student 19 Student 20

Figure 9-12: Autocorrelation plots of the ¢ parameters.
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Appendix E: Tables of parameter

estimates in the SAT data model

Table 9.1: Items’ discrimination parameters
(continued...)

item # discrimination discrimination discrimination
parameter, factor 1 | parameter, factor 2 | parameter, factor 3

1 1.04 0.00 0.00
(0.77,1.37) (0.00,0.00) (0.00,0.00)

2 0.88 0.34 0.39
(0.67,1.10) (0.12,0.58) (0.12,0.65)

3 0.52 0.33 0.51
(0.38,0.66) (0.18,0.47) (0.15,0.47)

4 0.40 0.38 0.25
(0.28,0.52) (0.25,0.52) (0.12,0.40)

5 0.87 0.70 0.25
(0.69,1.07) (0.49,0.90) (0.07,0.45)

6 0.71 0.52 0.32
(0.55,0.88) (0.35,0.70) (0.14,0.49)

7 0.49 0.48 0.21
(0.35,0.63) (0.32,0.63) (0.06,0.37)

8 0.35 0.42 0.15
(0.22,0.48) (0.28,0.58) (0.02,0.30)

9 0.12 0.47 0.18
(0.01,0.25) (0.33,0.61) (0.03,0.33)

10 0.10 0.49 0.12
(0.01,0.24) (0.35,0.64) (0.01,0.28)
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Table 9.1:Items’ discrimination parameters
(continued...)

item # discrimination discrimination discrimination
parameter, factor 1 | parameter, factor 2 | parameter, factor 3
11 0.72 0.17 0.28
(0.53,0.91) (0.02,0.36) (0.06,0.52)
12 0.43 0.04 0.40
(0.21,0.64) (0.00,0.13) (0.09,0.80)
13 0.34 0.26 0.16
(0.19,0.48) (0.09,0.43) (0.02,0.34)
14 0.85 0.32 0.39
(0.65,1.06) (0.11,0.55) (0.15,0.64)
15 0.46 0.08 0.15
(0.32,0.60) (0.00,0.21) (0.01,0.33)
16 0.41 0.39 0.18
(0.28,0.56) (0.25,0.53) (0.04,0.35)
17 0.44 0.17 0.35
(0.30,0.58) (0.04,0.31) (0.18,0.53)
18 0.86 0.57 0.25
(0.68,1.06) (0.38,0.78) (0.06,0.45)
19 0.42 0.50 0.15
(0.29,0.56) (0.35,0.64) (0.02,0.30)
20 0.40 0.18 0.21
(0.27,0.53) (0.06,0.30) (0.06,0.36)
21 0.34 0.61 0.09
(0.18,0.51) (0.44,0.80) (0.00,0.25)
22 0.15 0.29 0.07
(0.03,0.28) (0.16,0.43) (0.00,0.19)
23 0.09 0.56 0.18
(0.00,0.21) (0.40,0.72) (0.02,0.38)
2/ 0.51 0.15 0.40
(0.35,0.68) (0.02,0.30) (0.19,0.61)
25 0.51 0.18 0.28
(0.36,0.66) (0.04,0.33) (0.10,0.46)
26 0.38 0.47 0.39
(0.23,0.52) (0.31,0.63) (0.23,0.56)
27 0.17 0.29 0.36
(0.04,0.30) (0.16,0.42) (0.21,0.52)
28 0.45 0.51 0.42
(0.32,0.60) (0.17,0.46) (0.27,0.57)
29 0.21 0.23 0.24
(0.08,0.33) (0.10,0.37) (0.08,0.40)
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Table 9.1:Items’ discrimination parameters
(continued...)

item # discrimination discrimination discrimination
parameter, factor 1 | parameter, factor 2 | parameter, factor 3
30 0.29 0.35 0.43
(0.14,0.43) (0.20,0.49) (0.24,0.62)
31 0.23 0.51 0.42
(0.08,0.38) (0.34,0.66) (0.24,0.62)
32 0.37 0.62 0.68
(0.21,0.53) (0.42,0.81) (0.47,0.90)
33 0.68 0.99 0.580
(0.47,0.89) (0.72,1.2) (0.56,1.08)
3/ 0.29 0.69 0.52
(0.13,0.46) (0.51,0.88) (0.31,0.74)
35 0.25 0.35 0.28
(0.09,0.42) (0.19,0.51) (0.07,0.47)
36 0.73 0.45 0.00
(0.55,0.92) (0.26,0.65) (0.00,0.00)
37 0.47 0.23 0.27
(0.33,0.61) (0.07,0.39) (0.09,0.45)
38 0.39 0.41 0.09
(0.25,0.52) (0.28,0.55) (0.01,0.22)
39 0.53 0.34 0.17
(0.40,0.66) (0.20,0.49) (0.03,0.32)
40 0.55 0.18 0.16
(0.40,0.72) (0.03,0.35) (0.01,0.36)
41 0.72 0.63 0.23
(0.56,0.89) (0.45,0.81) (0.06,0.42)
42 0.46 0.71 0.25
(0.30,0.62) (0.55,0.89) (0.08,0.40)
48 0.50 0.54 0.15
(0.35,0.65) (0.38,0.72) (0.02,0.33)
44 0.41 0.68 0.07
(0.25,0.58) (0.50,0.87) (0.00,0.21)
45 0.53 0.28 0.14
(0.39,0.68) (0.13,0.45) (0.01,0.30)
46 0.39 0.13 0.09
(0.26,0.53) (0.02,0.27) (0.00,0.22)
47 0.81 0.42 0.36
(0.62,1.03) (0.18,0.65) (0.13,0.60)
48 0.21 0.35 0.12
(0.10,0.33) (0.23,0.47) (0.01,0.24)
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Table 9.1:Items’ discrimination parameters (continued...)

item # discrimination discrimination discrimination
parameter, factor 1 | parameter, factor 2 | parameter, factor 3
49 0.30 0.40 0.09
(0.16,0.44) (0.27,0.53) (0.01,0.22)
50 0.15 0.56 0.11
(0.02,0.29) (0.42,0.73) (0.01,0.28)
51 0.27 0.25 0.33
(0.14,0.40) (0.11,0.41) (0.17,0.50)
52 0.53 0.28 0.18
(0.40,0.67) (0.15,0.42) (0.04,0.32)
53 0.38 0.05 0.24
(0.23,0.52) (0.00,0.15) (0.08,0.42)
54 0.46 0.14 0.30
(0.32,0.60) (0.02,0.27) (0.13,0.48)
55 0.68 0.16 0.29
(0.54,0.83) (0.03,0.31) (0.08,0.49)
56 0.57 0.38 0.36
(0.43,0.72) (0.22,0.53) (0.20,0.53)
57 0.40 0.14 0.29
(0.27,0.53) (0.02,0.27) (0.12,0.45)
58 0.44 0.30 0.21
(0.32,0.57) (0.16,0.45) (0.06,0.37)
59 0.43 0.27 0.38
(0.30,0.57) (0.14,0.43) (0.21,0.54)
60 0.81 0.13 0.82
(0.57,1.06) (0.01,0.33) (0.47,1.21)
61 0.53 0.48 0.39
(0.38,0.67) (0.33,0.64) (0.22,0.56)
62 0.49 0.34 0.43
(0.34,0.63) (0.18,0.50) (0.26,0.61)
63 0.27 0.31 0.39
(0.14,0.40) (0.17,0.45) (0.24,0.56)
64 0.48 0.60 0.43
(0.30,0.66) (0.42,0.78) (0.23,0.64)
65 0.63 0.55 0.60
(0.46,0.79) (0.37,0.72) (0.43,0.78)
66 0.42 0.63 0.69
(0.26,0.58) (0.45,0.81) (0.50,0.91)
67 0.56 0.22 0.20
(0.42,0.70) (0.08,0.36) (0.04,0.37)
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Table 9.1:Items’ discrimination parameters

item # discrimination discrimination discrimination
parameter, factor 1 | parameter, factor 2 | parameter, factor 3
68 0.44 0.24 0.26
(0.31,0.57) (0.09,0.40) (0.10,0.43)
69 0.32 0.36 0.28
(0.18,0.46) (0.22,0.50) (0.12,0.45)
70 0.27 0.27 0.16
(0.16,0.39) (0.15,0.40) (0.03,0.29)
71 0.62 0.33 0.35
(0.46,0.77) (0.17,0.48) (0.17,0.55)
72 0.17 0.26 0.32
(0.04,0.29) (0.14,0.39) (0.18,0.46)
73 0.46 0.55 0.36
(0.32,0.60) (0.39,0.70) (0.21,0.52)
74 0.41 0.41 0.37
(0.27,0.55) (0.27,0.55) (0.22,0.52)
75 0.27 0.27 0.21
(0.15,0.39) (0.15,0.39) (0.08,0.34)
76 0.55 0.49 0.39
(0.39,0.70) (0.33,0.64) (0.21,0.57)
7 0.29 0.64 0.49
(0.12,0.44) (0.47,0.83) (0.27,0.73)
78 0.36 0.64 0.48
(0.20,0.51) (0.47,0.83) (0.23,0.75)
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Table 9.2: Students abilities parameters

(continued...)

student # ability ability ability
parameter on factor 1| parameter on factor 2 | parameter on factor 3

1 0.46 0.19 1.17
(-0.70,1.65) (-0.83,1.25) (-0.01,2.45)

2 -1.47 0.70 -0.45
(-2.40,-0.45) (-0.43,1.88) (-1.41,0.58)

5) -1.94 -0.15 0.83
(-2.95,-0.97) (-1.14,0.89) (-0.40,2.20)

4 -1.01 0.30 0.62
(-2.05,0.05) (-0.74,1.43) (-0.41,1.78)

d -0.91 0.12 1.29
(-1.84,0.02) (-0.94,1.23) (0.10,2.55)

6 0.38 0.64 0.57
(-0.68,1.52) (-0.50,1.84) (-0.47,1.75)

7 -0.02 -0.54 0.65
(-1.08,1.10) (-1.51,0.51) (-0.51,1.88)

8 -0.29 -0.67 -0.55
(-1.33,0.74) (-1.64,0.36) (-1.58,0.50)

9 -1.06 -0.72 -0.18
(-2.04,-0.02) (-1.70,0.25) (-1.21,0.93)

10 1.11 0.36 1.25
(-0.20,2.43) (-0.65,1.47) (-0.01,2.54)

11 0.93 -0.23 0.35
(-0.32,2.27) (-1.26,0.86) (-0.88,1.59)

12 0.77 -0.03 1.24
(-0.34,1.97) (-1.06,1.09) (-0.13,2.65)

13 0.23 1.37 0.63
(-0.85,1.35) (0.18,2.63) (-0.61,1.93)

14 0.71 -0.88 1.38
(-0.43,1.88) (-1.87,0.08) (0.22,2.56)
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Table 9.2:Students abilities parameters

(continued...)

student # ability ability ability
parameter on factor 1| parameter on factor 2 | parameter on factor 3
15 -0.21 0.52 -0.27
(-1.19,0.87) (-0.56,1.73) (-1.30,0.82)
16 0.16 -0.64 0.26
(-0.92,1.27) (-1.58,0.37) (-0.80,1.38)
17 0.53 -0.64 -0.20
(-0.61,1.65) (-1.55,0.30) (-1.18,0.81)
18 -0.34 0.34 0.22
(-1.31,0.70) (-0.76,1.49) (-0.84,1.34)
19 -0.71 -0.38 1.37
(-1.72,0.29) (-1.42,0.69) (0.08,2.66)
20 0.74 -0.29 0.71
(-0.50,2.01) (-1.32,0.75) (-0.51,2.03)
21 0.01 1.15 0.56
(-1.07,1.09) (-0.12,2.53) (-0.57,1.80)
22 0.34 0.42 1.07
(-0.72,1.47) (-0.63,1.52) (-0.13,2.34)
23 0.54 -0.07 0.56
(-0.59,1.71) (-1.13,1.11) (-0.71,1.85)
24 -0.81 0.80 -1.43
(-1.76,0.19) (-0.49,2.12) (-2.39,-0.42)
25 0.72 -0.15 0.06
(-0.47,2.02) (-1.14,0.89) (-0.98,1.17)
26 0.82 0.06 0.38
(-0.35,2.05) (-1.03,1.19) (-0.77,1.66)
27 0.53 0.22 -0.39
(-0.60,1.68) (-0.84,1.35) (-1.39,0.65)
28 -0.99 -0.66 0.73
(-1.93,0.01) (-1.60,0.37) (-0.45,1.93)
29 -0.531 -0.16 0.26
(-1.31,0.70) (-1.20,0.91) (-0.81,1.34)
30 -0.83 0.15 0.14
(-1.77,0.10) (-0.88,1.21) (-0.87,1.22)
31 0.48 0.28 -0.17
(-0.68,1.74) (-0.78,1.40) (-1.18,0.90)
32 -0.72 0.96 1.50
(-1.71,0.35) (-0.16,2.15) (0.03,2.99)
33 0.88 -0.10 -0.06
(-0.44,2.26) (-1.13,0.98) (-1.07,1.02)
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Table 9.2:Students abilities parameters

(continued...)

student # ability ability ability
parameter on factor 1| parameter on factor 2 | parameter on factor 3
34 -0.30 -0.18 -1.79
(-1.27,0.78) (-1.23,0.92) (-2.71,-0.90)
35 1.32 0.31 -0.97
(0.03,2.64) (-0.87,1.54) (-1.96,0.06)
36 -1.05 0.70 0.53
(-1.98,-0.03) (-0.36,1.78) (-0.55,1.63)
37 0.73 0.91 -0.09
(-0.38,1.92) (-0.21,2.11) (-1.11,1.02)
38 1.00 -0.12 0.35
(-0.17,2.22) (-1.15,0.98) (-0.66,1.51)
39 0.29 0.69 0.41
(-0.80,1.39) (-0.58,2.01) (-0.67,1.53)
40 -0.55 -0.39 -0.26
(-1.55,0.47) (-1.42,0.68) (-1.24,0.85)
41 -0.64 -0.00 -0.42
(-1.60,0.39) (-0.97,1.05) (-1.41,0.59)
42 -1.80 1.58 0.17
(-2.87,-0.78) (0.16,3.03) (-0.87,1.29)
43 -0.15 -0.99 0.43
(-1.12,0.91) (-1.95,0.02) (-0.69,1.55)
44 0.23 0.13 -0.51
(-0.82,1.36) (-1.01,1.38) (-1.52,0.61)
45 0.48 1.03 -0.42
(-0.58,1.56) (-0.27,2.3/) (-1.37,0.57)
46 -1.46 0.90 -1.06
(-2.38,-0.54) (-0.21,2.11) (-1.99,-0.06)
47 1.07 0.97 1.45
(-0.30,2.44) (-0.24,2.23) (0.09,2.84)
48 -0.59 -0.56 -1.47
(-1.55,0.40) (-1.62,0.58) (-2.44,-0.48)
49 0.83 0.14 -1.37
(-0.38,2.03) (-0.93,1.21) (-2.33,-0.36)
a0 0.81 0.12 1.19
(-0.36,2.02) (-0.88,1.19) (-0.14,2.55)
o1 -0.08 -0.19 1.21
(-1.10,0.92) (-1.20,0.89) (0.06,2.44)
52 -0.52 -1.14 0.42
(-1.52,0.47) (-2.12,-0.10) (-0.74,1.61)
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Table 9.2:Students abilities parameters

(continued...)

student # ability ability ability
parameter on factor 1| parameter on factor 2 | parameter on factor 3

%) 0.03 -0.20 -2.51
(-0.94,1.15) (-1.22,0.87) (-3.51,-1.49)

94 1.38 0.04 0.85
(0.07,2.70) (-1.03,1.19) (-0.41,2.12)

i3] 0.03 -0.53 -0.02
(-1.05,1.16) (-1.56,0.57) (-1.04,1.10)

510) 0.24 0.46 -0.84
(-0.80,1.39) (-0.65,1.55) (-1.76,0.10)

o7 -1.56 1.31 0.89
(-2.44,-0.64) (0.18,2.53) (-0.26,2.06)

a8 0.30 -0.41 0.45
(-0.76,1.40) (-1.43,0.64) (-0.66,1.59)

59 0.93 0.23 0.63
(-0.26,2.13) (-0.97,1.47) (-0.54,1.80)

60 0.95 0.07 -0.16
(-0.35,2.27) (-0.93,1.12) (-1.20,0.95)

61 -0.07 0.17 0.26
(-1.12,1.00) (-0.88,1.28) (-0.85,1.41)

62 0.56 -0.36 -0.29
(-0.53,1.71) (-1.42,0.68) (-1.28,0.73)

63 0.91 -0.08 0.08
(-0.39,2.24) (-1.10,0.98) (-0.98,1.20)

64 0.84 0.66 -0.531
(-0.35,2.06) (-0.46,1.86) (-1.31,0.77)

65 -0.60 0.39 -0.58
(-1.57,0.43) (-0.69,1.55) (-1.58,0.45)

66 -0.27 0.47 1.21
(-1.21,0.73) (-0.68,1.65) (0.04,2.41)

67 0.75 -0.66 1.03
(-0.59,2.06) (-1.64,0.38) (-0.33,2.46)

68 0.40 0.85 -0.72
(-0.72,1.52) (-0.40,2.16) (-1.71,0.34)

69 -0.44 -1.21 -0.01
(-1.50,0.69) (-2.20,-0.14) (-1.05,1.07)

70 0.51 -0.43 0.82
(-0.55,1.68) (-1.46,0.66) (-0.29,1.95)

71 -1.37 0.67 1.00
(-2.36,-0.41) (-0.41,1.80) (-0.33,2.35)
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Table 9.2:Students abilities parameters (continued...)

student # ability ability ability
parameter on factor 1 | parameter on factor 2 | parameter on factor 3
72 -0.41 -1.06 -0.67
(-1.39,0.60) (-2.02,-0.08) (-1.61,0.37)
73 -0.25 -0.28 -0.59
(-1.27,0.81) (-1.24,0.82) (-1.60,0.44)
74 0.82 -0.72 1.19
(-0.32,2.01) (-1.70,0.37) (-0.07,2.43)
75 -0.37 -0.44 0.97
(-1.47,0.77) (-1.33,0.50) (-0.22,2.21)
76 -1.20 0.50 0.98
(-2.19,-0.10) (-0.62,1.67) (-0.29,2.30)
77 0.03 -1.98 -0.31
(-0.99,1.13) (-2.95,-0.96) (-1.31,0.72)
78 0.12 0.42 -0.87
(-0.91,1.16) (-0.73,1.60) (-1.90,0.26)
79 -0.03 1.06 1.13
(-1.05,1.05) (-0.10,2.22) (-0.14,2.48)
80 -0.74 -0.54 0.09
(-1.67,0.32) (-1.54,0.51) (-1.00,1.20)
81 -0.27 -0.41 0.83
(-1.32,0.81) (-1.40,0.70) (-0.41,2.17)
82 -0.76 -1.21 0.40
(-1.77,0.30) (-2.15,-0.17) (-0.73,1.62)
83 0.53 0.67 0.54
(-0.54,1.74) (-0.52,1.87) (-0.72,1.84)
84 -0.64 1.53 0.81
(-1.60,0.34) (0.27,2.82) (-0.36,2.02)
89 0.69 0.45 -0.08
(-0.46,1.84) (-0.72,1.68) (-1.06,0.99)
86 0.43 0.09 -1.01
(-0.66,1.57) (-0.95,1.20) (-1.97,-0.01)
87 0.81 0.48 0.50
(-0.36,2.09) (-0.57,1.59) (-0.57,1.67)
88 0.48 -0.47 -0.49
(-0.63,1.66) (-1.47,0.58) (-1.47,0.55)
89 -0.42 -0.49 -0.32
(-1.44,0.65) (-1.46,0.52) (-1.36,0.82)
90 0.83 -0.47 -0.02
(-0.31,2.11) (-1.45,0.60) (-1.10,1.19)
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Table 9.2:Students abilities parameters

student # ability ability ability
parameter on factor 1 | parameter on factor 2 | parameter on factor 3
91 0.14 -0.41 1.17
(-0.94,1.21) (-1.40,0.62) (-0.07,2.43)
92 0.51 0.42 -0.98
(-0.64,1.72) (-0.69,1.57) (-1.95,-0.01)
93 1.16 0.78 0.81
(-0.27,2.59) (-0.43,2.02) (-0.38,2.01)
94 0.42 0.31 -0.61
(-0.64,1.52) (-0.81,1.48) (-1.61,0.44)
95 0.72 -0.53 0.10
(-0.37,1.89) (-1.54,0.54) (-0.92,1.18)
96 1.07 0.93 0.32
(-0.07,2.26) (-0.25,2.10) (-0.73,1.40)
97 1.11 0.21 0.72
(-0.02,2.27) (-0.87,1.41) (-0.47,1.98)
98 -0.30 -1.80 -0.01
(-1.28,0.79) (-2.80,-0.73) (-1.11,1.14)
99 -1.28 -0.04 -0.69
(-2.26,-0.30) (-1.12,1.00) (-1.68,0.34)
100 0.39 0.68 0.10
(-0.69,1.52) (-0.46,1.85) (-1.05,1.27)
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