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ABSTRACT

The main objective of this dissertation is the stochastic modelling and quantifica­
tion of the earthquake risk in the insurance context. It serves as a basis for mak­
ing the most important actuarial decisions of the engaged institutions, including
the premium rating, the assessment of the Solvency Capital Requirement (SCR)
and the design of the respective Catastrophe (CAT) bond. Generally, the earth­
quake models developed in the insurance industry (Poisson processes at most)
are based on historical catalogues, which provide information relevant to a few
hundred years. Contrary, the simulation mechanism in this thesis considers the
information derived by the geometry of faults covering a period up to 15 thousand
years in the past in order to get reliable and robust actuarial estimates. More­
over, Voronoi polygons or the ETAS model are used for the modelling of histori­
cal catalogues instead of typical Poisson processes and continuous fragility curves
instead of discrete and more uncertain damage probability matrices. While sim­
ilar models in the industry are defined in terms of region pricing, the coordinate
precision achieved in this work is useful for an insurance company to have com­
plete information about the composition of its portfolio of buildings and avoid
or handle adverse selection. Furthermore, the shortage of equity capital in insur­
ance and reinsurance companies makes them unable to compensate the large­scale
claims caused by extreme catastrophic events. Therefore, the industry employs
catastrophe (CAT) bonds, that transfer this risk to investors in capital markets. In
the present thesis, CAT bond designing and pricing is processed with respect to
the proposed fault­specific earthquake model involving various statistical and ma­
chine learning discounting methods and credit risk. CAT bonds could be issued in
order to mitigate the earthquake effects.



VIII



IX

ΠΕΡΙΛΗΨΗ

Κύριος σκοπός της διατριβής είναι η στοχαστική μοντελοποίηση και ποσοτι­
κοποίηση του σεισμικού κινδύνου στο πλαίσιο της ασφάλισης του συγκεκριμένου
κινδύνου. Θέτει τη βάση για τις πιο ορθές αναλογιστικές αποφάσεις των εμπλεκό­
μενων μερών, όπως η τιμολόγηση ασφαλίστρων, ο υπολογισμός του απαιτούμε­
νου κεφαλαίου φερεγγυότητας και ο σχεδιασμός του αντίστοιχου ομολόγου κατα­
στροφής. Τα σεισμικά μοντέλα που χρησιμοποιούνται ευρέως στην ασφαλιστική
αγορά (κατά κύριο λόγο διαδικασίες Poisson) είναι βασισμένα σε ιστορικούς κα­
ταλόγους, οι οποίοι παρέχουν σχετική πληροφορία κάποιον εκατοντάδων ετών.
Αντίθετα, ο μηχανισμός προσομοίωσης που παρουσιάζεται στη διατριβή βασί­
ζεται στη γεωμετρία των ρηγμάτων, η οποία καλύπτει πληροφορία έως και 15
χιλιάδων ετών στο παρελθόν ώστε να εξαχθούν αξιόπιστα αναλογιστικά μεγέθη.
Επιπρόσθετα, πολύγωνα Voronoi ή το επιδημικό μοντέλο ETAS χρησιμοποιού­
νται για την μοντελοποίηση των ιστορικών καταλόγων αντί τυπικών διαδικασιών
Poisson και συνεχείς καμπύλες τρωτότητας αντί διακριτών και πιο αβέβαιων πι­
νάκων πιθανοτήτων ζημίας. Καθώς παρόμοια μοντέλα της αγοράς είναι κατα­
σκευασμένα ώστε να παράγουν τιμολόγηση ανά περιοχές, στην εργασία αυτή έ­
χει επιτευχθεί ακρίβεια ανά συντεταγμένη χρήσιμη για μια ασφαλιστική εταιρεία
για πλήρη γνώση του χαρτοφυλακίου κτιρίων της ώστε να μπορεί η ασφαλιστική
εταιρεία να αποφύγει ή να διαχειριστεί καταστάσεις αντιεπιλογής. Επιπρόσθετα,
οι μεγάλης κλίμακας καταστροφικές αποζημιώσεις του σεισμού καθιστούν τις α­
ντασφαλιστικές εταιρείες ανίκανες να διαχειριστούν μόνες τους τα έξοδα αυτά.
Για τον λόγο αυτό, η ασφαλιστική αγορά δημιούργησε τα ομόλογα καταστροφής
ώστε να μεταφέρεται ο εν λόγω κίνδυνος στους επενδυτές της αγοράς κεφαλαίων.
Στην παρούσα διατριβή, διεξάγεται ο σχεδιασμός και η τιμολόγηση του σχετι­
κού ομολόγου καταστροφής συναρτήσει του προτεινόμενου σεισμικού μοντέλου
χρησιμοποιώντας είτε αμιγώς στατιστικές προεξοφλητικές μεθόδους είτε σε συν­
δυασμό με μηχανικής μάθησης λαμβάνοντας υπόψη και τον πιστωτικό κίνδυνο
κάθε εκδότη. Τα ομόλογα αυτά μπορούν να εκδοθούν για την αποτελεσματική
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αντιμετώπιση των οικονομικών συνεπειών ισχυρών σεισμών.
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Chapter 1

Introduction

In this introductory chapter, we discuss some preliminary notation with respect to
the Solvency II Directive regulating the reserving process of insurance institutions
and the main type of deformations causing earthquakes, the so­called faults. First,
we discuss the necessity of a proper estimation of the technical provisions and cap­
ital requirements according to Solvency II. Then, the reason of using simulations
and faults in a seismic risk project (insurance or CAT bond pricing) is discussed
as means of dealing with the lack of sufficient historical data (Deligiannakis et
al., 2018; Deligiannakis et al., 2021; Louloudis et al. 2022) and their economic
impacts. Finally, we present the structure of the present thesis referring briefly to
the innovative methods used and the results induced.

1.1 Solvency II Directive

The European Directive Solvency II for insurance companies was introduced in
2009 and was fully adopted in 2016 to replace the former directive Solvency I
which was active by 2002. Solvency II is essentially the insurance analogue of the
Basel II Directive for international financial regulations. Basel II was published in
2004, following a series of amendments, concerning the capital adequacy of bank­

1



2 CHAPTER 1. INTRODUCTION

ing institutions and the establishment of a stable framework for risk management
in the banking sector. Compared to its predecessor, Solvency II is structured in
such a way so as to create lower surpluses while maintaining large­sized reserves
for capital needs as follows in Figure 1.1 below. Generally, Solvency I (at least re­
garding life insurance) and Solvency II stipulate that, within the framework of the
internal market, consumers will be provided with a more diverse range of insur­
ance products and will benefit from the increased competition amongst insurance
undertakings. Both Solvency I (with respect to both life and non­life insurance)
and Solvency II specify that it is in the best interest of insurance consumers to have
access to the full range of possible insurance services so that they can choose the
insurance service which is best suited to their needs (Loguinova, 2019).

SurplusUnrealized 
gains

Eligible assets

Surplus

Margin

Technical 
Reserves

Market 
consistent 
valuation

Margin

Best 
estimate 

of 
technical 
reserves

MCR

SCR-MCR

Solvency I Solvency II

Figure 1.1: Comparison between Solvency I and Solvency II



1.1. SOLVENCY II DIRECTIVE 3

As the book valuationmay differ from the real one if the company is a bankruptcy
candidate and has several liens against its assets, assets and liabilities are mainly
priced according to the value of the stock market in Solvency II, i.e., the market
value. The market technical reserves are currently (under Solvency II) separated
into the best estimates of technical reserves as the expected present value of fu­
ture cash flows and the risk margin characterizing their variation, which was not
the case with Solvency I. The risk margin is designed to ensure that the value
of technical provisions is sufficient for another insurer to take over and meet the
insurance obligations. According to Solvency I (see Figure 1.1), the net surplus
of an insurance company was part of its eligible assets allowing the firm to real­
ize additional gains while exposing it to risk. In contrast, the amount of surplus
is significantly reduced under Solvency II and it is used for reserving purposes
against unexpected losses. Therefore, the standards for capital requirements do
not depend primarily on the amount of premiums as before, but rather on the mag­
nitude of risks. The previous Directive (Solvency I) was not so risk sensitive due
to several facts including the following:

• Some important risks were not properly considered, such as credit risk.

• It was based on past data.

• It did not adequately recognize the risk mitigation techniques, such as rein­
surance, derivatives, and securitization.

• It did not allow for a deduction from the requirement of diversification ef­
fect, between the lines of business of an insurer and legal entities of a group,
and therefore, it did not encourage insurers to had properly managed their
risks and their capital.

• It did not take into consideration qualitative requirements, such as quality of
governance and the risk management framework; thus, did not incentivise
an insurer to pursue best practices of risk management.
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The assets of the insurer’s balance sheet as described in Solvency II (Figure
1.2) consist of investments (bonds, shares, property etc.) and receivables from
customers and reinsurers (Starita &Malafronte, 2014). The liabilities on the other
hand consist of the technical provisions (best estimates plus the risk margin) for
premiums and claims and the own funds, i.e., the assets subtracting the debt. The
minimum capital requirement (MCR) and the solvency capital requirement (SCR)
are calculated as portions of the unexpected liabilities (own funds).

Assets Liabilities

Receivables 
from 

costumers and 
reinsurers

Financial Assets

- Shares

- Bonds

- Property Premium and claims 
provisions

Risk margin

Own funds=Assets-Debt

Debt

Own funds > SCR for the
 survival of the company

Figure 1.2: Description of the Assets and Liabilities according to Solvency II

The SCR (unexpected losses covered by own funds) is calculated as the 99.5%
quantile of the distribution of losses (Figure 1.3) subtracting the expected losses
(technical provisions), i.e., an insurer is expected to exceed its own funds once in
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200 years. Similarly, the MCR is calculated as the 85% quantile of the distribu­
tion of losses subtracting the expected losses. As long as the SCR is sufficient to
meet all the needs of policyholders and beneficiaries of insurance obligations, the
MCR can be regarded as a sublevel of the SCR, since its breach is likely to lead to
supervisory intervention.

Expected Loss=Risk 
Provisions

VaR

Unexpected Loss = SCR

PDF

Expected Loss

Loss

Figure 1.3: Distribution of the loss random variable and its relationship with re­
serving

According to the standard formula (SF), the calculated SCR covers the follow­
ing quantifiable risks: the underwriting risk for life, non­life, and health business,
the credit risk, the market risk, the risk linked to intangible assets, and the oper­
ational risk. According to a modular approach, each risk is divided into a set of
sub risks, and the process of aggregating the SCR for each risk is based on the
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correlation between each risk component and the others. An interesting work by
Cifuentes (2016) investigates how operational risk is correlated to the other 5 main
risks of pillar 1. A more detailed identification of risks is presented in Figure 1.4.

The overall capital requirement SCR of an insurance company according to
the SF of Solvency II as defined in Pillar I follows:

SCR = BSCR + SCRop,

where SCRop is the SCR due to operational risk and

BSCR =

√∑
i,j

Cori,jSCRiSCRj + SCRint,

where SCRint is the SCR due to intangibles.
The Cor matrix is described below in Table 1.1.

Table 1.1: Correlation matrix for BSCR estimation
Cor Market Default Life Health Non­Life
Market 1 0.25 0.25 0.25 0.25
Default 0.25 1 0.25 0.25 0.25
Life 0.25 0.25 1 0.25 0
Health 0.25 0.25 0.25 1 0
Non­Life 0.25 0.5 0 0 1

The objectives of the Solvency II project represent an articulated structure
based on objectives introduced below. The objectives of the first order are general:
improving the protection of policyholders and beneficiaries through the integration
of the European Insurance Market, enhancing the international competitiveness of
European insurers and reinsurers, and promoting better regulation as pursued by
the European Union.

The objectives of the second order are specific: from the insurer’s perspective,
making the risk management of insurers and reinsurers in the EU more effective,
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Insurance
- Mortality
- Morbidity

- Underwriting
- Catastrophe

- Policyholder actions

Market
- Equities
- Property

- Interest rate
- Inflation

- Currencies

Liquidity
- Cash flow matching

Credit
- Reinsurance

- Derivative counter-parties
- Corporate bonds

Operational risk
- Systems
- Controls

- Procedures

Concentration
- Increased exposure to losses 

due to concentration of 
investments

Figure 1.4: Map of identified risks according to Pillar I of Solvency II

and giving them better tools to allocate capital to risk; from the supervisor’s per­
spective, advancing supervisory convergence and cooperation as well as promot­
ing international convergence and encouraging cross­sectorial consistency. All of
these efforts lead to an increase in transparency. The third order seeks to achieve
several operative objectives: from the insurer’s point of view, harmonizing the
most important component of solvency, that is, the calculation of technical provi­
sions, also to introduce risk­sensitive and proportionate capital requirements for
small insurers; from the supervisor’s point of view, to ensure efficient supervi­
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sion of insurance groups and financial conglomerates by harmonizing supervisory
powers, methods and tools as well as supervisory reporting.

Generally speaking, the three pillars of Solvency II are organized as follows
(Heep­Altiner et al. 2018). The first pillar is composed of quantitative require­
ments, which include the solvency capital requirement (SCR), the minimum capi­
tal requirement (MCR), and the rules to calculate the technical provisions and the
portfolio of assets that cover technical provisions. Insurance companies can use
internal models, completely or partially to calculate the SCR, which models must
be approved by the supervisory authorities. However, not all type of risks can be
adequately assessed through solely quantitative measures. The second pillar of
Solvency II aims at identifying businesses that have economic, organizational or
other characteristics that would be likely to lead to a higher risk profile. There­
fore, the second pillar represents qualitative requirements related to the oversight
of the risk profile and the capital necessary to satisfy solvency needs by the reg­
ulator and by the insurer itself through its risk management policy and its own
risk solvency assessment. The second pillar also includes the asset liabilities man­
agement (ALM) from a solvency point of view. Finally, the third pillar is based
on market discipline requirements to communicate the quantitative and qualitative
requirements through supervisory reporting and public disclosure (transparency).
The insurance part of this thesis is concentrated on the first pillar since quantitative
requirements are investigated.

1.2 Natural hazards in Greece and capital require­
ments

The Hellenic Association of Insurance Companies has provided a report composed
in 2018 including all natural hazard maps of Greece1 i.e., earthquake, flood, hail,

1http://www.eaee.gr/cms/sites/default/files/cat­hazard_ maps.pdf
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wind/storm, landslide, wildfire, lighting and tsunami. There are certain predefined
regions where risk associated with natural hazards is estimated and plotted on geo­
graphical maps. These regions are called CRESTA zones. A total of 137 countries
are divided in CRESTA zones and there are two resolutions available: High Res­
olution (HR) and Low Resolution (LR). These zones are derived from postal and
administrative boundary data rather than being peril dependent. HR is used for
risk modelling and data exchange, while LR is used for risk analyses and report­
ing. HR CRESTA zones in Greece consist of the 1188 different 5­digit zip codes
and LR CRESTA zones consist of the 70 different 2­digit zip codes. Different or­
ganizations produce different hazard maps with respect to their subjective models.
For example, the seismic hazard map provided by the Nathan Tool of Munich Re
is the following (Figure 1.5).

The legend of this map refers to the maximum intensity with an exceedance
probability of 10% in 50 years. There are of course similar maps for all perils, but
we only focus on the seismic hazard in this thesis.

In the present thesis, we focus on the calculation of a submodule ofSCRnon−life,
the SCR due to earthquakes, namely SCREQ. According to the SF published in
the Official Journal of the European Union2, SCREQ should be estimated as fol­
lows3.

SCREQ =

√∑
r,s

CorEQr,sSCREQ,rSCREQ,s + SCR2
EQ,other,

where the sum includes all possible combinations (r,s) of the regions set out in
Annex VI of Solvency II Directive that are subsets of the portfolio (e.g., portfolio
of countries) under investigation and SCREQ,r and SCREQ,s denote the capital

2DIRECTIVE 2009/138/EC OF THE EUROPEAN PARLIAMENTANDOF THE COUNCIL
of 25 November 2009

3https://www.eiopa.europa.eu/rulebook/solvency­ii/article­6931_
en?fbclid=IwAR0EFkuPpragkp3QA_ ebxJUfzlL_ vd7GT7sEQUV7XT1LDbv3HKe9X6xY6Gk
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Figure 1.5: Seismic hazard map provided by the Nathan Tool of Munich Re

requirements for earthquake risk in region r and s respectively. CorEQr,s denotes
the correlation coefficient for earthquake risk for region r and region s as set out
in Annex VI. Finally, SCREQ,other denotes the capital requirement for earthquake
risk in regions other than those set out in Annex XIII.

For all regions (countries) set out in Annex VI, the capital requirement for
earthquake risk in a particular region r i.e., SCREQ,r shall be equal to the loss
in basic own funds of insurance and reinsurance undertakings that would result
from an instantaneous loss of an amount that, without deduction of the amounts
recoverable from reinsurance contracts and special purpose vehicles, is equal to
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the following amount:

SCREQ,r =

√∑
i,j

CorEQr,i,jWSIEQ,r,iWSIEQ,r,j

where the sum includes all possible combinations of risk zones (i, j) belonging
to region r as set out in Annex IX,CorEQr,i,j denotes the correlation coefficient for
earthquake risk in risk zones i and j of region r set out in Annex XXIII,WSIEQ,r,i

is the weighted sum insured for earthquake risk in risk zone i of region r set out in
Annex IX described as:

WSIEQ,r,i = QEQ,rWEQ,r,iSIEQ,r,i,

QEQ,r denotes the earthquake risk factor for region r as set out in Annex VI,
WEQ,r,i denotes the risk weight for earthquake risk in risk zone i of region r set out
in Annex X and SIEQ,r,i denotes the sum insured for earthquake risk in earthquake
zone i of region r. It is defined as:

SIEQ,r,i = SI(property; r, i) + SI(on­shore property; r, i).

SI(property;r,i) denotes the sum insured of the insurance or reinsurance under­
taking for lines of business 7 and 19 as set out in Annex I in relation to contracts
that cover earthquake risk and where the risk is situated in risk zone i of region r
and SI(on­shore property;r,i) denotes the sum insured of the insurance or reinsur­
ance undertaking for lines of business 6 and 18 as set out in Annex I in relation to
contracts that cover onshore property damage by earthquake and where the risk is
situated in risk zone i of region r.

The capital requirement for earthquake risk in regions other than those set out
in Annex XIII shall be equal to the loss in basic own funds of insurance and rein­
surance undertakings that would result from an instantaneous loss in relation to
each insurance and reinsurance contract that covers one or both of the following
insurance or reinsurance obligations: (a) obligations of lines of business 7 or 19 as
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set out in Annex I that cover earthquake risk, where the risk is not situated in one
of the regions set out in Annex XIII, (b) obligations of lines of business 6 or 18
as set out in Annex I in relation to onshore property damage by earthquake, where
the risk is not situated in one of the regions set out in Annex XIII.

Finally, we estimate:

SCREQ,other = 1.2(0.5DIVEQ + 0.5)PEQ,

where DIVEQ is calculated in accordance with Annex III, but based on the
premiums in relation to the obligations referred to in points (a) and (b) of paragraph
5 and restricted to the regions 5 to 18 set out in Annex III and PEQ is an estimate
of the premiums to be earned by insurance and reinsurance undertakings for each
contract that covers the obligations referred to in points (a) and (b) of paragraph 5
of the Directive during the following 12 months: for this purpose premiums shall
be gross, without deduction of premiums for reinsurance contracts.

However, due to lack of transparency of the derivation of the SF rendering it a
“black­box”, a self­constructed purely internal model for SCREQ is proposed in
this thesis.

1.3 Preliminaries of earthquake generation

Earth consists of several rigid plates that evolve in space and time. The interaction
between these plates explains earthquakes (Marshak, 1997). Faults are formed in
response to pushes and pulls associated with the forces that arise from the move­
ment of tectonic plates or as a consequence of differential buoyancy between parts
of the lithosphere. A fault in a broad sense is defined as a surface or zone across
which there has been measurable sliding parallel to the surface. The various types
of faults based on the direction of their blocks move are presented in Figure 1.6.
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Figure 1.6: Different types of faults according to their geometry as described in
Marshak (1997)

A normal fault is a dip­slip fault on which the hanging wall has slipped down
relative to the footwall. When someone thinks about a typical fault, the most usual
case is the normal fault. The angle that a planar geologic surface (in this study,
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a fault) is inclined from the horizontal is called the dip angle4. Moreover, the
intersection between a given plane and the horizontal surface is called strike.

Description of the fault steepness

• Horizontal faults: dip about 0o.

• Sub­horizontal faults: 0o < dip < 10o.

• Shallowly dipping faults: 10o < dip < 30o.

• Moderately dipping faults: 30o < dip < 60o.

• Steeply dipping fault: 60o < dip < 80o.

• Vertical faults: 90o.

When fault movement occurs, one fault block slides relative to the other, which
is described by the net slip. Net slip therefore is the vector between two before
stuck together points and rake is the angle they created after the event. This also
becomes more obvious in Figure 1.7 below.

The slip direction on a dip­slip fault is approximately parallel to the dip of the
fault (i.e., has a rake between 80° and 90°). The slip direction on an oblique­slip
fault has a rake that is not parallel to the strike or dip of the fault. In the field,
faults with a slip direction between 10° and 80° are generally called oblique­slip.
The slip direction on a strike­slip fault is approximately parallel to the fault strike
(i.e., the line representing slip direction has a rake [pitch] in the fault plane of less
than 10°). Strike­slip faults are generally steeply dipping to vertical.

The boundary between the slipped and unslipped region at the end of a fault is
the tip line of the fault. In the field, faults are mapped at the ground surface either
as a result of the fault crossing the ground during its movement or because the
fault has been exposed by erosion. An underground fault that does not intersect

4https://earthquake.usgs.gov/learn/glossary/?term=dip
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Figure 1.7: Graphical representation of geometrical definitions for a sliding nor­
mal fault

the ground surface, but dies out in the subsurface, is known as a blind fault. Blind
faults have no surface ruptures by definition. However, the traces of the fault may
be inferred from differential ground movement. Ground­based survey equipment
and GPS (global positioning system) equipment are both capable of detecting this
movement. The surface area above rupture produces a 2­D polygon, which is the
main object of study in a fault­specific hazard analysis.

Most earthquakes are caused by release of elastic strain (distortion of a body in
response to an applied force) accompanying sudden displacement on faults (Yeats,
2012). An earthquake’s hypocenter, or the focal point where it originated, is lo­
cated beneath the Earth. On the other hand, its epicenter, the point directly above
the hypocenter, is located on Earth’s surface. This release of strain energy results in
ground shaking that is recorded on seismograms, providing information about the
earthquake process and the materials through which seismic waves pass. Increas­
ing tectonic forces continuously shear and compress the earth’s crust (Towhata,
2008). Over time, the strain energy in rock is accumulated as the stress in rock in­
creases. The crust is eventually broken by mechanical means, which releases elas­
tic energy. This results in an earthquake. The subsequent accumulation of strain
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energy paves the way for an earthquake in the future. This cycle is explained by
time­dependent inter­event time probability distribution functions as we describe
in section 2.

In reality, the whole fault does not rupture in a single event (Towhata, 2008).
The first breakage occurs at a place where the factor of safety is minimum. A
further rupture occurs due to the working stress being transferred to other areas
of the fault. This leads to the rupture propagating along the fault. Each rupture
has a considerable impact on the ground surface. The combined effects of all the
impacts produce the sensation of an earthquake with duration. The rock rupture
is reported to be associated with a generation of electric current. This may be
related to many precursors. Measurement of electric current in Greece is making
a success to some extent in prediction of earthquakes. This method is called the
VAN method by the initials of its founders (Varotsos et al. 1981a). The VAN
method is more suitable for short­term earthquake prediction, while the present
thesis is concentrated to financial and insurance products associated with seismic
risk where the investigated hazard is at least annual but can also reach decade(s)
of years. Therefore, long­term stochastic models are needed.

There are two types of elastic seismic waves that generate earthquake shaking:
body and surface waves (Elnashai & Di Sarno, 2008). The feeling of shaking is
generally caused by the combination of all these waves. An analytical description
of body (“P­” and “S­”) and surface (“Love” and “Rayleigh”) waves can be found
in Kumar (2008). There is no evidence that all plate boundaries are associated with
strong earthquakes. San Andreas Fault in California, located along the boundary
between North American and Pacific Ocean Plates, undergoes continuous defor­
mation and hence does not rupture suddenly. In contrast, in the past there have
been many large earthquakes that occurred inside tectonic plates. Therefore, there
is virtually no earthquake­risk­free region in the world. The level of this risk is
thus determined by factors such as local population (life) and building (non­life)
density (Towhata, 2008).
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As large­magnitude earthquakes are infrequent events causing lack of com­
pleteness in their historical catalogues, the geometry of fault sources can contribute
to our missing knowledge. Moreover, for the same exact reason there is lack of
known losses or claims from these events. Therefore, seismic projects should be
based on simulations, ideally stochastic in nature.

1.4 Thesis structure

The structure of the present thesis is further organized as follows. In the second
chapter, the statistical­geomechanical part of the seismic phenomenon is analyzed.
More specifically, some inter­event time distributions are introduced and the spa­
tial inference of the two different (area and fault) seismic sources is presented. The
characteristics of the area sources are developed with respect to Voronoi polygons,
while the characteristics of fault sources are developed by their geometrical proper­
ties. We also describe the groundmotion prediction equations relating the intensity
arrived on a geographical point after an earthquake of a certain moment magnitude
(energy released). Finally, the very popular Epidemic Type Aftershock Sequence
(ETAS) model is described. In the third chapter, the loss random variable based on
fragility curves is introduced and the algorithms used for the insurance pricing and
SCR evaluation are provided. The fourth chapter presents a potential structure of
the respective CAT bond that could be issued as an alternative reinsurance method
potentially by the Greek government to deal with catastrophic events such as that
of Athens, 1999. More specifically, the trigger parameters are tuned with respect
to the recurrence of faults and their consequences to structures as described by
the model of chapter 2. Both loss and nature triggering parameters are considered
to yield the probabilities of default. In the absence of a Special Purpose Vehicle
(SPV), the CAT bond pricing is also evaluated under the existence of credit risk
by issuers of different creditworthiness. Discounting methods based on short rate
models and yield curves are examined concluding to different prices. Finally, the
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fifth chapter includes the results and further discussion and research for this topic.



Chapter 2

Earthquake statistical modelling

In this chapter, the theoretical background needed for the seismic risk assessment
is provided and explained. Two main types of sources characterize earthquake
events, namely area and fault sources (McGuire, 2004). An area source is a region
within which future seismicity is assumed to have characteristics and locations of
energy release that are constant over time and space. It is possible to define the
geometry of area sources using historical seismicity alone in the simplest case.
Alternatively, fault sources are faults or zones that have been identified as the
origins of earthquakes by tectonic movements as already discussed in chapter 1.
In contrast to area sources, fault sources exhibit a cycle behavior, where stress is
accumulated and released over an expected time period. This return period, how­
ever, is characterized by a large degree of uncertainty. Unlike historical catalogs,
which provide information up to a few hundred years in the past, the geometry of
fault sources provides information for seismicity over a thousand years in the past.
Therefore, the co­integration of area and fault sources is essential in developing a
successful and realistic model.

The first purpose of this thesis is the simulation of earthquakes over space and
time. The events over time are modelled by exponential inter­event times (hence
events are modelled in terms of the Poisson process) for area sources and fault

19
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sources without historical activity. Fault sources associated with a historical event
in the past are modeled by a time­dependent log­normal model as in Papanikolaou
et al. (2013). There is a detailed description of the inter­event time distributions
characterizing seismic events due to faults in Console et al. (2017). The most
significant of them are outlined below in a brief summary.

1. Time­independent exponential inter­event times (Poisson Process) Let λs

be the intensity of the Poisson process Zt. Then, the distribution of the
i.i.d inter­event times T1,…, Tn ∼ exp  (λs) and λs = 1/E(T ) , while
E(Zt) = λst. Thus, the probability distribution function (PDF) of the inter­
event times denoted by fT (t) is:

fT (t) = λse
−λst

.

The likelihood of the inter­event times given that an amount of time s has
passed, is characterized by:

P (T1 > s+ t|T1 > s) = P (T > t),

thus independent of time s. This memoryless property does not hold for the
other distributions presented below. These are renewal processes and gener­
ate earthquakes with respect to the time­dependent conditional probabilities
P (T1 > s+ t|T1 > s). Thus, the inter­event time for a next fault activation
is a truncated distribution of the below stated PDFs having the knowledge
that time s has passed since the latest fault decompression.

2. Time­dependent Log­Normal inter­event times

f(t) =
1

σs

√
2πx

exp−
(lnt−µs)

2

2σ2
s

,where µs and σs are the mean and standard deviation of the logarithm of
the identically distributed inter­event times.
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3. Time­dependent Gamma inter­event times

f(t) =
1

βsΓ(γs)

(
t

βs

)γs−1

exp−
t
βs ,

where Γ is the Gamma function and γs and βs are respectively the shape and
the scale parameters of this PDF.

4. Time­dependent Weibull inter­event times

f(t) =
γs
µs

(
x

µs

)γs−1

exp−( x
µ
)γs

5. Time­dependent Double­Exponential inter­event times

f(t) =
1

2bs
exp−|x− µ

bs
|,

where bs and µs are the shape and scale parameters, respectively.

6. Time­dependent Brownian Passage Time (BPT) inter­event times

f(t) =

(
E(T )

wπC2
vx

3

)1/2

exp
(
−(t− E(T ))2

2C2
vE(T )t

)
,

where E(T) is the mean value of the inter­event time andCv is the coefficient
of variation or aperiodicity, defined as

Cv =
σ(T )

E(T )
.

The use of a more advanced epidemic­type branching process for modeling
earthquake recurrence is also analysed in the end of this chapter.

The second purpose of this work is the generation of earthquake magnitudes
processed by the use of the inverse simulation method. Regarding area sources,
this simulation is dependent on a significant parameter known as the b­value,
which is discussed in section 2.1.1.
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2.1 Statistical analysis of area sources

2.1.1 Analysis of seismicity

The most frequent law regarding seismicity is the frequency–magnitude distribu­
tion by Gutenberg and Richter (1944). The Gutenberg–Richter (GR) law is applied
to regions to describe their seismicity behaviour (rate of earthquakes arrived and
proportionality of the different magnitudes generated). According to the GR law:

Λ(m1) = 10a−bm1 , (2.1)

where Λ(m1) is the rate of events having magnitude greater than m1. The
rate of all earthquakes with positive magnitude is 10a, while b is the unknown
parameter of the probability density function (PDF) of their magnitude. These
unknown parameter values (a referred as the α­value and b referred as the b­value)
vary from region to region. According to the GR law, the rate of earthquakes of
magnitudesm0 up tom1 is described as follows:

Λ(m1;m0) = 10a−bm0 − 10a−bm1 . (2.2)

2.1.2 Inverse simulationmethod for truncatedGutenberg–Richter
(GR) distribution

In this subsection, the computational method for generating values from the trun­
cated Gutenberg–Richter distribution describing the magnitudes in area sources is
presented. This theoretical tool is necessary for the simulation performed in the al­
gorithms that follow. According to the inverse simulation method if U ∼ U(0, 1),
then P (F−1

X (U) ≤ x) = FX(x), where FX denotes the cumulative distribution
function (CDF) of the random variableX . This provides a way to generate values
from the truncated GR distribution by generating values from a standard uniform
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distribution and applying the inverse CDF. The CDF of the truncated GR is ob­
tained by equation (2.2) that yields equation (2.3):

F (m) =
Λ(m;mmin)

Λ(mmax;mmin)
=

1− exp(−B(m−mmin))

1− exp(−B(mmax −mmin))
, (2.3)

where B = b ln 10 andmmin ≤ m ≤ mmax. The inverse function of F is then
computed as follows:

F−1(u) =
ln[u exp(−B(mmax −mmin))− u+ 1]−Bmmin

B
(2.4)

2.1.3 Spatiotemporal analysis using Voronoi polygons

As it is evident, these parameters (α­value and b­value of equation (2.2)) are re­
quired to be estimated. The method used for estimating these parameters is de­
scribed and analyzed in this section. We used the historical catalogue of the Na­
tional Observatory of Athens from 1968 to 2019 on magnitudes greater or equal
to 4 Mw. A sufficient number of events corresponding to magnitudes of 4Mw

and higher have been recorded throughout the past 50 years. This historical cat­
alogue contains 7,051 events with magnitude greater than 4Mw since 1968. The
annual minimum observed magnitude in the historic catalogues downloaded from
theNational Observatory of Athens indicates that there is a sufficient completeness
above this threshold, from 1968 and after something that is very closely justified
by Papazachos et al. (2000) proposing 4.5Mw as a completeness threshold.

First, one needs to decluster the seismic historical catalogue. Declustering
is a technique performed to separate background events from foreshocks and af­
tershocks. Background events are considered to be independent and sufficiently
modelled in terms of a Poisson process. In this work, the declustering technique
by Gardner and Knopoff (1972 and 1974) is used. This declustering technique is
used as it keeps in general the largest events that are useful for this risk analysis.
Many declustering techniques can be found in the literature (Talbi et al. 2013) but
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they have not been rigorously tested (Kagan, 2013). Most of them are based on
the Epidemic Type Aftershock Sequence model (ETAS), see Jalilian (2019) and
Ogata (1988, 1998). The ETAS model however identifies a significant proportion
of large events as aftershocks and removes them from background events leading
to an underestimation of the premium rating. Nevertheless, a method in section
2.4 is also proposed that overcomes the above difficulty.

The events are ordered in decreasing magnitude to perform the declustering.
Starting from the first event of the ordered catalogue, space–time windows are
measured around each event in the catalogue. The size, S, and duration, T, of each
window vary depending on the magnitude, M, of the potential mainshock. The
largest event in each window is identified as a mainshock, while the others (fore­
shocks and aftershocks) are identified and removed. The space–time windows are
the predicted values of the following regressions (2.5) and (2.6) performed on the
data of Table 2.1 following Gardner and Knopoff (1974):

ln(T ) = a1M + b1 (2.5)

ln(S) = a2M + b2 (2.6)

The result of the declustering is shown in Figure 2.1. The statistics of these
regressions are:

b̂1 = −0.2683, â1 = 0.998

with an R2 = 0.9491 and

b̂2 = 2.2634, â2 = 0.2851

with an R2 = 0.9997.

The area under analysis is enclosed by the rectangle with longitude degrees that
belong to the interval [19, 29] and latitude degrees that belong to the interval [34,
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Table 2.1: Gardner­Knopoff windows
M S (km) T (days)
2.5 19.5 6
3 22.5 11.5
3.5 26 22
4 30 42
4.5 35 83
5 40 155
5.5 47 290
6 54 510
6.5 61 790
7 70 915
7.5 81 960
8 94 985

Figure 2.1: Declustering of the earthquakes in Greece
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43]. The initial historical catalogue contains 7051 events with magnitude greater
than 4 Mw since 1968. The number of background (after declustering) events is
2981 (37 events are outside of the specified spatial window), and 58% of the events
are identified as triggering or triggered events and deleted. We obtained a similar
proportion of aftershocks as in Gardner and Knopoff (1974), where they arrived
at 66%. For reasons of robustness, we also checked the success of the decluster­
ing for the highly seismogenic region of Kefallinia. Applying a Box–Pierce test
(1970) to the inter­event times of the declustered catalogue, the null hypothesis
of independence was not rejected with a high p­value of 0.9146. The area is par­
titioned to different polygons, with each one governed by a unique b­value. We
introduced the notion of Voronoi polygons to perform this spatial separation. First,
we defined central points having a distance of 0.5 degrees (∼ 50km), resulting in
360 different points covering the whole examined area. The Dirichlet tile associ­
ated with a particular data point xi (in this application, any of the above centres)
was defined as the region of space that is closer to xi than to any other point in the
pattern x (the remaining centres). Thus, the mathematical definition is as follows:

D(xi|x) = {v ∈ ℜ2 : ||v − xi||2 = min
j

||v − xj||2}

These tiles form the Dirichlet tessellation or Voronoi diagram. The procedure
for estimating the Voronoi diagram that best fits our data (i.e., which centres to
use) follows below. The whole investigation area is partitioned into k polygons
(number of centers=k). In each polygon, r, with the number of data points,Nr, the
maximum likelihood estimator (MLE) of the b­value, br, is estimated using the
following equation:

b̂r =
Nr∑Nr

i=1 mi −Nrmmin ln(10)
,

because the Gutenberg–Richter distribution is:

f(m) = b ln(10)10−b(m−mmin),          m > mmin
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and the total log­likelihood is given by

l(b) =
k∑

r=1

lnLr(br|mr),

where Lr is the likelihood of the magnitude in the r − th polygon and b =

(b1, ..., br, ...).
The ideal Dirichlet tessellation corresponds to the lowest Bayesian information

criterion (BIC):

BIC = −2l(b) + kln (n),

where k is the number of different centres and n is the total number of events.
As the number of different tessellations that are produced with these 360 cen­

tres is huge, the procedure for the Voronoi analysis was undertaken as outlined
below. Starting from the assumption that there are only two different tiles, 20000
different random tessellations were tested. We repeated the procedure with the as­
sumption that there are three different tiles, continuing until 20000 different ran­
dom tessellations had been tested given that there were 20 different tiles.

Thus, the resulting Voronoi diagram better describes the seismicity of Greece
based on the Bayesian Information Criterion (BIC). The tessellation with the low­
est BIC value was chosen and is presented together with the b­values of its tiles in
Figure 2.2.

The best tessellation produced a BIC equal to 219.65, while the BIC under no
separation (null model) was 261.85. We assigned to each cell, j, of the grid its rate,
λj (number of events observed over the time horizon), and its b­value (the same
b­value as the polygon to which the cell belongs). This 20x18 grid confirmed that
our partition preserved the average seismicity behaviour. The average b­value is
1.21 very close to 1.26, which was the estimated b­value obtained using the ZMAP
software (Wiemer, 2001) for the same data.

The number of events inside each polygon were as follows: Polygon 1: 601
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Figure 2.2: G–R b­values based on the BIC Voronoi algorithm

events; Polygon 2: 20 events; Polygon 3: 664 events; Polygon 4: 511 events;
Polygon 5: 134 events; Polygon 6: 448 events; Polygon 7: 342 events; and Poly­
gon 8: 224 events.

The annual activation rate of each cell of the (20x18) grid was estimated and
is presented in Figure 2.3.

To get a smoother version of the rates, the Frankel kernel was applied. The
Frankel kernel is obtained with respect to the correlation distance, c, between each
area. The correlation distance is estimated according to the methodology of Valen­
tini et al., (2017) equal to c = 30 km.

Having estimated c, the Frankel kernel intensity function maps the smoothed
annual rate, λj , of earthquakes in each cell, j, of the grid, and it is defined as
follows:
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Figure 2.3: Annual rates of earthquakes without kernel

λj =

∑
i λi exp

(
−∆2

ji

c2

)
∑

i exp
(

−∆2
ji

c2

) ,

where ∆ji is the distance between the centroids of cells j and i. The result is
provided in Figure 2.4.

The smoothed rates obtained by Frankel’s kernel are affected by a weighting
function that depends on the distances from the center of each cell to the nearest
point of the projected surface of all faults (Valentini et al., 2017). The distance
from a point of interest to the nearest point of the projected surface is called the
Joyner–Boore (JB) distance. This function must be applied to the area rates based
on the assumption that the closer an earthquake occurs to a fault on the same range
with the potential magnitudes of the fault, the more probable it is that it has oc­
curred due to that fault. Thus, the rates obtained by the Frankel kernel are trans­
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Figure 2.4: Annual rates of earthquakes with kernel

formed as outlined below.
Denoting the weighting function by h, the total rate of earthquakes (denoted

by vj) arriving in an area source j where a higher than 6Mw earthquake has been
observed in the past can be done as follows:

vj(m > 4) = λj(4 < m ≤ 6) + λj(6 < m ≤ mup)×h

= λj(m > 4)P (4 < m ≤ 6) + λj(m > 4)P (mup ≥ m > 6)h =: k1 + k2,

wherem follows the GR distribution, the lowest potential moment magnitude
produced by all faults is approximately 6Mw,mup is the maximum observed mag­
nitude in each area source, and λj is estimated by the Frankel kernel. The total rate
of each area source is the summation of the rate of the weaker earthquakes, k1, and
the strongest but more improbable, k2. The weighting function ensures that there is
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no double counting of events due to the simultaneous use of area and fault sources.
The next section analyses the properties of fault sources.

2.2 Statistical analysis of fault sources

Historical catalogues typically cover several decades or even a few hundred years;
thus, they reveal only a small amount of information compared to the thousands of
years that make up the typical period of occurrence for earthquakes in a specific ge­
ographic area. The current research approach progresses by adding fault sources,
which is the recent trend of geophysical research in order to address the missing
information. Geological and geomorphological studies of faults may provide in­
formation for up to 15 thousand years in the past (Deligiannakis et al. 2018). On
the other hand, the information contained in all available historical catalogues is
very poor, with the oldest recorded events in Greece—which has one of the longest
historical catalogues worldwide—reported as occurring in 1500 AD, correspond­
ing to events between 7.3 and 8Mw (Papazachos et al. 2000).

The fault database of GreDaSS (Pavlides et al. 2010) was used for the analysis
of faults in Greece (Figure 2.5).

For the properties of faults, the main analysis is in line with Pace et al. (2016),
assuming the default geological values of shear modulus µ = 3 × 1010 Pa (see
also Youngs and Coppersmith, 1985 for more details) and strain drop equal to
k = 3× 10−5.

Elementary, though not very precise, estimates of themaximummagnitude that
each fault produces along with its mean reactivation time are obtained as follows.
The average displacement (in meters) over all the area of each fault is equal to

D = kLstr,

where Lstr is the along­strike length of the fault in meters. The maximum
scalar seismic moment is computed by Aki (1966) from the formula
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Figure 2.5: Faults of GreDaSS plotted in R

M0 = µLstrDW,

where W is the down­dip width estimated by

W =
seismogenic thickness

dip
.

Then, by Hanks and Kanamori (1979) the maximum expected magnitude

E(Mf ) =
2

3
ln(M0 − 9.1)

.
The average reactivation time is equal to:

E(Tf ) =
D

SR
,
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where SR is the slip rate of the fault in meters/year. However, this elementary
method was not adopted in the present thesis and the following more advanced
procedure was applied.

As beforementioned, the magnitude of a fault has a mean value denoted by
E(Mf ) and a standard deviation of σ(Mf ); it is reactivated at an average time
of E(Tf ) with a standard deviation of σ(Tf ). These four parameters are esti­
mated via theMB tool of the FiSH (version 1.02) Package inMATLAB (Pace et al.
2016), which uses many empirical equations relating E(Mf ) to certain properties
of the faults, as for example the equation of Hanks and Kanamori (1979) or Wells
and Coppersmith (1994) and returns overall values of E(Mf ), σ(Mf ), E(Tf ) and
σ(Tf ).The mean reactivation time E(Tf ) is estimated by the following ratio:

E(Tf ) =
109.1+1.5E(Mf )

µSRLstrW

where SR is the slip rate of the fault, Lstr is the is the along­strike length of
the fault, and W is the down­dip width of the fault. This is the ratio between the
seismic moment released from a maximum event and the seismic moment rate
defined by slip rate (García­Mayordomo et al. 2017). Its standard error referred
to as σ(Tf ) is obtained via the law of error propagation (Peruzza et al. 2010).

The first two moments of Tf are estimated, but still there is no knowledge
for the true probability distribution of the inter­event times. Thus, we introduce a
time­dependent model. We assume that the inter­event time of each fault, t, that is
related to a previous earthquake follows a left­truncated at the latest elapsed time
lognormal distribution (Papanikolaou et al. 2013) with parameters:

µt = −0.5(ln(σ(Tf )
2 + E(Tf )

2)− 4ln(E(Tf )))

and

st =
√

2(ln(E(Tf ))− µt),
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as these faults have been recently decompressed.
The remaining faults are handled with exponential inter­event times (Poisson

process). The magnitude of all faults is supposed to follow a truncated below at
mlow = E(Mf )−σ(Mf ) and above atmhigh = E(Mf )+σ(Mf )Normal distribu­
tion with parameters E(Mf ) and σ(Mf ). The magnitudes of the faults are respec­
tively simulated under a truncated normal distribution using R statistical software
and the inverse simulation method. Lastly, the energy released is very intense at
the generating point of an occurring earthquake, attenuating as the distance from
the epicenter increases. This phenomenon is modelled by ground motion predic­
tion equations (GMPEs), as described further in section 2.3.

2.3 Ground motion prediction equations (GMPEs)

When an earthquake occurs, the produced seismic wave attenuates as the distance
from the epicenter to a cite increases. The ground motion caused by that wave
propagation is measured by some intensity measures described by ground motion
prediction equations (GMPEs). There are many different GMPEs (or attenuation
equations) describing this phenomenon. The online resource created by Douglas
(2014) summarizes most of the empirical GMPEs and their errors. In the present
work, we use the GMPE by Rinaldis et al. (1998), as shown below in equation
(2.7). Yucemen (2005) presented research regarding annual insurance pricing for
different seismic zones in Turkey using damage probability matrices and based on
the expected annual damage ratio caused by the Mercalli intensity scale (MMI).
TheMMI employs personal reports and observations to measure earthquake inten­
sity, but peak ground acceleration (PGA) is measured by instruments such as ac­
celerographs. PGA can be correlated to macro seismic intensities on the MMI, but
these correlations are associated with large uncertainty (Cua et al. 2010). There­
fore, PGA is directly used in this work, as in Asprone et al. (2013) and Lin (2018).
The major quantity of interest is the peak ground acceleration (PGA), which is as­
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sumed to be a random variable as modelled by equation (2.8). The GMPE predicts
the mean of the natural logarithm of the PGA accepted by a point on the surface
of the earth R kilometres away from the epicentre of an earthquake of magnitude
M:

E[ln (PGA)] = 0.82M − 1.59ln(R + 15) + 5.25, (2.7)

where PGA is in units of cm/sec2. The magnitude of the earthquake that will
be produced by a seismic source remains unknown. The natural logarithm of PGA
given M,R is normally distributed as in equation (6):

ln(PGA│M,R) ∼ Normal(E[ln (PGA)], σ(ln(PGA))), (2.8)

where σ = σ(ln(PGA)) = 0.68 for this GMPE constant for all magnitudes
and distances. The ground motion accepted by a building due to a strong earth­
quake then results to economic losses as presented in chapter 3. The vulnerability
of each building determines its potential damage state with respect to the size of
the ground acceleration. This is modelled via fragility curves. The next section
2.4 presents an epidemic­type model for earthquake recurrence along with the dis­
tribution of the associated produced magnitudes.

2.4 ETAS model for historical catalogues

While most actuarial considerations, including section 2.1 of the present thesis,
concentrate on models with simpler dynamics, such as the homogeneous Poisson
model, this section examines modeling the historical catalog as a branching pro­
cess (by the epidemic­type aftershock sequence or ETAS model). Based on the
stochastic declustering of the events, the maximum magnitude of the background
events (modeled as a homogeneous Poisson process) and their descendants is used
as the input for the premium rating process in chapter 3.
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The Gardner and Knopoff (1972 and 1974) declustering of seismic past events
offers the advantage of being a quite simple technique for implementation. Earth­
quakes are sorted in descending order with respect to their magnitude and the rest
events around the larger magnitude earthquakes are discarded in order to result in
an independent Poisson catalogue. Thus, the stronger andmore catastrophic events
are considered as the main events. This declustering constitutes a good approx­
imation but in practice the seismic phenomenon is better described and modeled
by a branching process. The epidemic­type aftershock sequence (ETAS) model
is the most widely used statistical model to describe earthquake catalogs (Jalilian,
2019; Ogata, 1988; Ogata, 1998 and many others). The problem that arises when
estimating actuarial values using the ETAS model is that the actual losses are un­
derestimated with respect to the background rates of the events (Kohrangi et al.
2021). The need of a Poisson distribution for long­term prediction forces the risk
analyst to discard aftershocks that include strong events (potentially stronger than
the background event that triggers them). In this work, we deal with this prob­
lem using the probability distribution of the largest magnitude of the whole cloud
of events triggered by a background event including itself (Zhuang et al., 2006,
Zhuang, 2012). Zhuang et al. (2006) provided a formula for the distribution func­
tion of this largest magnitude considering events larger than a lower bound. We
provide the analytical formula considering there is also an upper magnitude limit.
This computation is quite useful as events larger than 6Mw are suggested to be im­
puted to fault sources instead of area sources. As the upper limit reaches infinity,
the provided formula coincides with the formula of Zhuang et al. (2006). There­
fore, this analysis is also considering fault sources to deal with the incompleteness
of the historical catalogues.
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2.4.1 Description of the spatiotemporal ETASmodel for histor­
ical catalogues

The conditional intensity function of the spatiotemporal ETAS model is described
by:

λB,θ(t, x, y,m│Ht) = fB(m)λθ(t, x, y│Ht),

where fB(m) = Bexp (−B(m −m0)), B > 0 is the probability distribution
function (PDF) of the magnitude of an event and

λθ(t, x, y|Ht) = ũ(x, y) +
∑
i:ti<t

kA,a(mi)gc,p(t− ti)fD,g,q(x− xi, y − yi;mi)

under the following definitions:

• ũ(x, y) is the background seismicity rate

• kA,a(mi) is the expected number of triggered events generated from an event
of magnitudemi equal to:

kA,a(mi) = A exp(a(m−m0)),

• gc,p(t−ti) is the PDF of the occurrence time of a triggered event by an event
of magnitudemi occurring at time ti. Based on the modified Omori’s law:

gc,p(t− ti) =


p−1
c

(
1 + t−ti

c

)−p
, t− ti > 0

0 , t− ti ≤ 0

• fD,w,q(x− xi, y − yi;mi) is defined as:

fD,w,q(x−xi, y−yi;mi) =
q − 1

πD exp(w(mi −mo))

(
1 +

(x− xi)
2 + (y − yi)

2

D exp(w(mi −m0))

)−q
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The background events are generated by a stationary in time Poisson process
with intensity ũ(x, y). Previous events, background or triggered, generate further
events according to a non­stationary Poisson process with intensity function:

∑
i:ti<t

kA,a(mi)gc,p(t− ti)fD,w,q(x− xi, y − yi;mi).

The unknown parameters c, p, A, a, d, w, q are estimated by theDavidon­Fletcher­
Powell algorithmic method (Ogata, 1988) as described in Jalilian (2019) by the
ETAS package in R. The simpler case where the conditional intensity function is
only dependent on time can be found on Harte (2010).

The total spatial intensity function in an interval of length T is approximated
by:

Λ(x, y) = ũ(x, y) +
1

T

∑
i:ti<t

kA,a(mi)fD,w,q(x− xi, y − yi;mi),

used to obtain the clustering coefficient

ω(x, y) = 1− ũ(x, y)

Λ(x, y)

at the point (x, y).
The historical catalogue is presented in the figure 2.6.
Following the declustering, each event is categorized as either background or

triggered based on its respective probability, as shown in the Figure 2.7 below.
The probabilities associated with these events are estimated as follows.
Let pij the probability that event j is triggered by i. Zhuang et al. (2002)

proposed that

pij =


kA,a(mi)gc,p(tj−ti)fD,w,q(xj−xi,yj−yi;mi)

λθ(tj ,xj ,yj |Ht)
, tj − ti > 0

0 , otherwise
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Figure 2.6: Description of the historical catalogue where the ETAS model is fitted

Therefore, pj =
∑

i:ti<tj
pij, j = 1, . . . N is the probability that j is a triggered

event and

1− pj =
ũ(xj, yj)

λθ(tj, xj, yj|Ht)

is the probability that j is a background event.
For computational reasons, it is also assumed that ũ(x, y) = µu(x, y).
The unknown parameters B, θ = (µ,A, a, c, p,D,w, q), u(x, y) are estimated

via the Davidon­Fletcher­Powell algorithm (Ogata, 1998; Jalilian, 2019). Once
these quantities are estimated,

û(x, y) =
1

T

N∑
j−1

(1− p̂j)ϕk(x− xj, y − yj;hj),
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Figure 2.7: Background vs triggering events after stochastic declustering

where

ϕk(x, y;h) =
1

2πh2
exp(−x2 + y2

2h2
)

is the isotropic Gaussian kernel and h is described in Jalilian (2019).
Then,

Λ̂(x, y) =
1

T

N∑
j=1

ϕk(x− xj, y − yj;hj)

and

ω̂(x, y) = 1− û(x, y)

Λ̂(x, y)
.

The bandwidth hj can be found in Jalilian (2019). The estimates provided by
the package ETAS are: B=3.61, equivalently the total b­value= 1.56, a = 1.58,
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µ = 0.98, A = 0.28, c = 0.03, p = 1.15, D = 0.002, q = 1.64, w = 0.39. Below,
there is a graphic representation of all rates in Figure 2.8.

Figure 2.8: Estimated rates by the ETAS model

If we only used background events and their generatedmagnitudes, therewould
be a substantial underestimation of the actual risk. Therefore, it is necessary to
also obtain the PDF of the maximummagnitude of the cloud of events that a back­
ground event carries. This is analytically estimated in section 2.4.2.

2.4.2 PDF of the maximummagnitude of a cloud of events gen­
erated by a background event including itself.

The purpose of this section is the analytical estimation of the PDF ϕ of the maxi­
mum magnitude over a whole cluster of events generated by a background event.
The cumulative distribution function (CDF) according to the Gutenberg­Richter
law for magnitudes truncated from both sides is:

FM(m) =
1− exp(−B(m−mmin))

1− exp(−B(mmax −mmin))
.
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The respective PDF, namely s(m), is obtained by differentiating F with respect
to m yielding:

s(m) =
dFM(m)

dm
=

B exp(−B(m−mmin))

1− exp(−B(mmax −mmin))
.

Following Zhuang & Ogata (2006), the probability for the largest with respect
to magnitude earthquake in an arbitrary cluster including the initial event and all
its descendants to be greater thanm is computed by:

Fc(m) = 1−
∫ m

mmin

s(v) exp (−k(v)FC(m)) dv.

Equivalently,

FC(m) = 1− 1

1− exp(−B(mmax −mmin))
[[Γ−B/a(AFC(m))

−Γ−B/a(AFC(m) exp(a(m−mmin)))]
B

a
(AFc(m))B/a],

where Γa(x) =
∫∞
x

exp(−u)uadu is the Gamma function.
Considering the fact that:

Γϕ(x1)− Γϕ(x2) =
∞∑
n=0

(−1)n(xn+ϕ
2 − xn+ϕ

1 )

n!(n+ ϕ)
,

we get:

FC(m) = 1−K

[
B

a
(AFC(m))B/a

∞∑
n=0

(−1)nXn(m)

]
,

where

K =
1

1− exp(−B(mmax −mmin))

and
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Xn(m) =


[AFC(m) exp(a(m−mmin))]

n−B/a−[AFC(m)]n−B/a

n!(n−B/a)
, n ̸= B/a

a(m−mmin)
n!

, otherwise

Thus, under Taylor approximation keeping the first two terms:

FC(m) = 1−K

[
B

a
(AFC(m))B/a(X0(m)−X1(m))

]
.

After some algebra, we get:

FC(m) = 1−K[−exp−B(m−mmin)) + 1

− B

a−B
AFC(m)(−1 + exp((a−B)(m−mmin)))].

For the special case of K=1 i.e.: mmax → ∞, the equation (24) of Zhuang &
Ogata (2006) is obtained.

Solving for FC(m):

FC(m) =
r(m)

h(m)
,

where

r(m) = 1 +K[exp(−B(m−mmin))− 1]

and

h(m) = 1 +K
AB

a−B
[1− exp((a−B)(m−mmin))].

For the special case of K=1 i.e.: mmax → ∞, the equation (25) of Zhuang &
Ogata (2006) is obtained.

The PDF of interest is the derivative of 1− FC(m) with respect to m, as pre­
sented below:
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ϕ(m) = −dFC(m)

dm
,

where

dFC(m)

dm
=

r′(m)h(m)− r(m)h′(m)

h2(m)
.

The shape of ϕ along with generated values from its density using the Rejec­
tion Algorithm are presented in Figure 2.9 below. These values are useful for the
premium rating and the SCR evaluation in the algorithms of chapter 3 further.

Figure 2.9: PDF of ϕ with a histogram of generated values from this density using
the Rejection Algorithm

Continuing in chapter 3, the estimation of losses arising from seismic hazard
and their quantification in actuarial terms is discussed.



Chapter 3

Insurance pricing & capital
requirements

There are similar works regarding premium rating for seismic risk including As­
prone et al. (2013), Lin (2018), Tao et al. (2010) and Yucemen (2005) as well as
a published work for SCR calculation by Deligiannakis et al. (2021). None of the
models apart from Deligiannakis et al. (2021), consider fault sources. Moreover,
their models produce results in terms of zone pricing (or at the municipality and
city levels), in opposition to our model producing coordinate precision pricing for
the whole country of Greece. Furthermore, their estimates depend on expected
loss, which is indeed useful for insurance pricing but always under the certainty
equivalence principle of premium calculation. However, in a more reliable risk
analysis, the main interest should be concentrated on the total probability mea­
sure of the damage ratio, including the extremal events. This was achieved in
the present risk assessment using simulations, resulting in a reliable SCR estimate
where convex risk measures were also applied, apart from Value at Risk (VaR).

45
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3.1 Fragility curves

There are two main types of empirical methods for conducting the seismic vulner­
ability assessment of buildings based on the damage observed after earthquakes
(Calvi et al., 2006). The first type involves the damage probabilitymatrices (DPM),
which express in a discrete form the conditional probability of obtaining a damage
level j, due to a ground motion of discrete intensity i according to Whitman et al.
(1973). An example of the structure of damage probability matrices is presented
in Table 3.1 provided by Meslem & Lang (2017).

The second type involves fragility curves, which are continuous functions ex­
pressing the probability of exceeding a given damage state, considering a continu­
ous earthquake intensitymeasure. Numerous different forms of fragility curves are
widely used for vulnerability assessment (Meslem & Lang, 2017). These curves
correspond to cumulative distribution functions in their majority, but this is not
strict. Examples of fragility curves are presented in Table 3.2 according to a liter­
ature review processed by Meslem & Lang (2017). The variable DS denotes the
damage state, while the variable IM denotes the continuous intensity measure.
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Table 3.2: Examples of fragility curve functions
Type P (DS ≥ ds(i)|IM = x) Parameters
Log­Normal CDF Φ

(
ln(x)−λ

ζ

)
λ, ζ

Normal CDF Φ
(
x−µ
σ

)
µ, σ

Logistic PDF 1
1+exp(−[θ0+θ1x])

θ0, θ1

Exponential Functcion 1− exp(−θ0x
θ1) θ0, θ1

The levels of damage states (1­9) characterizing fragility curves refer to dif­
ferent damage percentages according to different proposed taxonomies (Pitilakis
et al. 2014) or damage scales . Different proposed taxonomies are summarized in
Table 3.3.

In this work, the fragility curves outlined by Kappos et al. (2006) and Kappos
(2013) for buildings of type RC3.1LL (Reinforced Concrete with regularly infilled
frames, Low Rise, Low Code seismic design level) and RC3.1LM (Reinforced
Concrete with regularly infilled frames, Low Rise, Moderate Code seismic design
level) are used, as they refer to the region of Greece, account for many damage
states, and are defined in terms of PGA. The fragility curves by Kappos et al. have
the following form:

P (DS ≥ ds(i)|PGA) = Φ

[
1

βds(i)

ln
(

PGA
PGA[ds(i)]

)]
,

where: PGA[ds(i)] is the median value of peak ground acceleration where
the building reaches the threshold of the damage state, ds(i); βds(i) is the standard
deviation of the natural logarithm of peak ground acceleration for damage state,
ds(i); Φ is the standard normal cumulative distribution function; and DS is the
discrete random variable denoting the damage state.
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The damage states are described in Table 3.4 below. We have defined a loss
index uniformly distributed inside each interval. If one wants to be more risk
averse, a beta distribution with negative skewness is the ideal distribution for the
loss index inside each interval.

Table 3.4: Damage states of Kappos et al.’s fragility curves
Damage State Range of Loss Index (%)
ds0 0
ds1 (0–1]
ds2 (1–10]
ds3 (10–30]
ds4 (30–60]
ds5 (60–100]

The parameters for the fragility curves are introduced in Table 3.5 and their
shapes in Figure 3.1. The probability of occurrence of a certain damage state dsj
is described by:

P (DS = ds(j)|PGA) = P (DS ≥ ds(j)|PGA)− P (DS ≥ ds(j + 1)|PGA).
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3.2 Loss random variable & risk measures

The pecuniary value of the damage incurred to a building i, denoted by Li, is de­
fined as the random variable (3.1), where wi is the random variable corresponding
to the maximum loss percentage of the total insured value of the building, TIVi,
over the year:

Li = wi×TIVi (3.1)

When the loss due to the Nb insured buildings of an insurance company port­
folio (needed for the SCR) is investigated, the loss random variable is as follows:

LT =

Nb∑
i=1

wiTIVi. (3.2)

In this work, the case study considers buildings of the same type, thus assuming
they have the same TIVi = TIV , so:

LT = NbTIV w

and

w =

∑Nb

i=1wi

Nb

.

It is obvious from the equations that both loss random variables are completely
defined by the random loss indices wi and w. These losses are highly affected by
large uncertainties because of the insufficient historical data of seismic events, as
they are infrequent (Dong et al. 1996; Kunreuther, 1996). The proper risk man­
agement of risk LT ensures the solvency of the insurance company. Therefore,
convex risk measures are applied to w to deal with these uncertainties. An advan­
tage of convex risk measures is that they can admit a representation of a whole
set of probability measures dealing with uncertainty. Therefore, we can avoid the
unpleasant position of choosing a unique probability measure, especially as we are
not sure if it is sufficiently representative, as is the case with the use of VaR.
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Risk measures are mappings from the space of bounded random variables to
the real numbers representing the amount of capital that the holder of risk X should
add to its position and safely invest to satisfy a regulator (Mc Neil et al., 2015). A
commonly used measure of risk (though not a risk measure in the above sense in
general) is VaR. According to Mc Neil et al., VaR has certain difficulties; the most
important being that it does not always coincide with one of the basic principles
in finance—that risk is reduced by diversification between the portfolio assets.
Therefore, we define the larger class of convex risk measures (Föllmer & Schied,
2011). Convex risk measures account for uncertainty due to their robust repre­
sentation (Follmer, 2011). If M is a set of probability measures on (Ω,F) and
α : M → ℜ∪+{∞}, then:

ρ(L) = sup
Q∈M

(EQ(L)− α(Q))

A convex risk measure can be thought as the worst­case scenario which is
adjusted by a penalty function showing our belief in each probability measure. A
risk measure ρ is said to be convex if it is a risk measure according to Artzner et al.
(1999) (properties 1–3 below) and also satisfies the fourth property of convexity.
Let L1, L2 represent random variables denoting losses.

Properties of convex risk measures:

1. Monotonicity: ρ(L1) ≤ ρ(L2) for L1 ≤  L2.

2. Translation invariance: ρ(L+ c) = ρ(L) + c

3. Normalization: ρ(0) = 0

4. Convexity: ρ(λL1 + (1− λ)L2) ≤ λρ(L1) + (1− λ)ρ(L2), λ ∈ [0, 1]

A commonly used way of quantifying risk is Value at Risk (VaR), defined as:

V aRa(L) = inf  {l ∈ ℜ : FL(l) ≥ a}.
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A related quantity, which is a coherent risk measure, is Expected Shortfall,
defined as:

ESa(L) = E(L|L ≥ V aRa(L)).

Positive Homogeneity that coherent risk measures satisfy has been doubted in
general by many authors, for example Mc Neil et al., (2015). The reason is that
due to positive homogeneity a coherent risk measure does not adapt to liquidity
problems that may occur. Therefore, the above problems lead us to define the
larger set of convex risk measures. The most common convex risk measure is the
entropic risk measure (Föllmer & Schied, 2011). It is defined as follows: Let the
exponential utility function:

u(x) = 1− exp(−θx)

for some θ > 0. The entropic measure of risk induced by this utility function is
given by:

ρθ(L) =
1

θ
lnE(exp(θL)).

The implementation of a larger θ leads to higher risk aversion. In this the­
sis, (convex) risk measures are used only with the intention of reserving against
losses, while pricing is processed under the certainty equivalence principle (risk
premium). A premium calculation principle is defined as a function π : X → ℜ
representing the price (premium) that an insurer would charge for insuring risk
X ∈ X (Tsanakas & Desli, 2005). There is also a variety of methods where risk
measures can also be applied for insurance pricing under uncertainty (Peng, 2011
and Escobar & Pflug, 2018) by means of a distortion function. The proposed al­
gorithms for the processed insurance pricing follow in section 3.3.
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3.3 The algorithm

1. Generate N0 = 100 uniformly spatially distributed points inside each area
source (grid cell).

2. Compute the distances from each insured building of the portfolio to each
point of every area source and the centroid of each fault.

3. Generate the number of earthquakes for each area and fault based on their
annual activation rates (chapter 2).

4. Generate as many magnitudes as depicted in step 3 based on the b­value for
areas and the geometrical properties for faults. For area sources, distances
are also generated by resampling from the matrices of step 2.

5. Attenuate each produced magnitude to all buildings using equations (2.7)
and (2.8).

6. Transform all peak ground accelerations to damage indices using fragility
curves (equation (7)) with respect to the properties of the buildings.

7. Keep themaximumproduced annual damage of each building from all sources
(random variable Li) and the summation of these losses for the whole port­
folio (random variable LT ).

8. Go to step 3 and repeat until a large number of simulations has been per­
formed.

9. The expected value of Li is the risk premium, while risk measures are ap­
plied to LT for the SCR evaluation.

The respective algorithm considering the ETASmodel for historical catalogues
is provided in the Appendix. These algorithms were applied to 100 buildings with
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specific coordinates in Greece. The portfolio was constructed based on the build­
ing census that was carried out by the Hellenic Statistical Authority (ELSTAT) in
2011. It contains 53 buildings in Attica (ATT), 21 buildings in Central Macedonia
(CMC), 5 in Thessaly (THE), 4 in Western Greece (WGR), 3 in Easter Macedo­
nia and Thrace (EMT), 3 in Crete (CRE), 3 in Peloponnese (PEL), 2 in Western
Macedonia (WMC), 2 in Epirus (EPI), 2 in Central Greece (CGR), 1 in the Ionian
islands (ION), and 1 in the South Aegean (SAE).

The distance considered from an area source to a building is a random variable
because there is no prior knowledge where on the cell surface the epicenter will
be. In the first case, the sources of the source­to­site distance are considered as
uniformly distributed in each grid square, while the sources for the ETAS case are
chosen as the centroids of each grid.

As a large number of simulations is needed for the actuarial estimations due
to the low frequency of seismic events, one may also use the Rcpp package in R
for faster computations by cointegrating R and C++ languages (Eddelbuettel, D.
& François, R., 2011 and Eddelbuettel, D., 2013).

3.4 Insurance pricing

Risk premium is estimated for low­rise buildings built under low code (up to 1985),
moderate code (1986–1995), and high code (similar to the latest seismic Eurocode
8). The risk premium is estimated for each building of an insured value of 200,000
euros based on different models. On average, the moderate­code buildings accept
1/4 of the damage of the low­code buildings. The moderate­code buildings have
a strength derived by interpolation between the values estimated for the L and H
cases, assuming the distance from the low­code value is twice that of the high­code
value (Kappos et al., 2006). Therefore, multiplying the damage of the moderate­
code buildings by 2/4, we get an approximation for the high­code buildings.

The expected annual loss (risk premium) and the median annual loss in euros
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are presented in Table 3.6 and Table 3.7 for Greece and the region of Attica, respec­
tively. We denote A0 as the model with areas without kernel and A1 as the model
with areas and kernel. AF00 denotes the model using faults without the weighting
function and areas without kernel. In this model, areas are activated up to 6 Mw,
and their contributions to faults are cancelled after this threshold. The next model
is denoted as AF01, describing the co­integration of areas and faults without kernel
but with the weighting function. The model AF10 uses areas with kernel and faults
without the weighting function, while the full model AF11 is used to co­integrate
areas with the kernel smoother and the faults with the weighting function.

If an insurance company decides to avoid high­risk buildings (adverse selec­
tion), then the mean risk premium drops even further. Our algorithm produces
risk premiums with coordinate precision. Thus, two buildings have a different
premium even if they are too close. This is crucial for identifying buildings at a
short distance from active faults or seismically active areas to avoid insuring them.
We observed that the weighting function offers an increase in the results because
of the activation of stronger events of areas far from faults. Moreover, the ker­
nel smoother lowers the occurrence rate of high­rate tiles while simultaneously
slightly increasing the rate of low­rate tiles. A sample of the estimated premium
rates for the whole portfolio under the AF10 model are also provided in Table A1
of the appendix. Table A2 includes the respective rates when the ETAS model is
applied (AFe model).

In Tables A1 and A2 of the appendix, the first column refers to the longitude
degrees, the second to the latitude degrees, the third to the region, and the fourth
to the postal code. Furthermore, L denotes the premium ratings of the low­code
buildings, M the moderate­code buildings, and H the high­code buildings.

It is worth mentioning that the insurance pricing process must be carried in­
cluding fault sources. Inspecting Table 3.6 and the simpler models A0 and AF00,
the addition of faults for the seismic hazard increases the risk premium by an
amount of 10%. The increment may even reach 18% (AF11 vs. A1). Moreover,
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Table 3.6: Overall risk premium estimation for Greece
Risk Premium Low Code Mode Code High Code
Model Mean Median Mean Median Mean Median
A0 797 730 202 169 101 84
A1 800 720 207 178 103 89
AF00 846 768 222 193 111 96
AF01 891 817 238 207 119 103
AF10 887 780 235 211 117 105
AF11 930 871 246 224 123 112

Table 3.7: Overall risk premium estimation for the region of Attica
Risk Premium Low Code Mode Code High Code
Model Mean Median Mean Median Mean Median
A0 630 638 150 147 75 73
A1 648 635 155 165 77 82
AF00 691 702 169 172 84 86
AF01 737 757 186 188 93 94
AF10 717 737 184 172 92 86
AF11 835 819 211 213 105 106

in the region of Attica (Table 3.7), model AF11 adds 36% to the risk premium
estimated by model A1 for the moderate code.

Therefore, insurance companies should use area and fault co­integration mod­
els to estimate the premium rating. This is highlighted even further when using
other premium principles rather than the certainty equivalence.

The addition of faults is important for the results, as seen in Figure A1 and
Figure A2 of the Appendix comparing the model A1 considering area sources and
AF10 adding faults. Thanks to their coordinate precision, these algorithms are
useful for an insurance company in order to identify and avoid or handle adverse
selection but simultaneously remain competitive. Our estimates are in accordance
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with the premiums the insurance companies are charged in Greece by the largest
reinsurance companies, which are roughly 100 euros annually (for 200000 euros
of insured value at most, using historical catalogues).

The model proposed offers a significant advantage for insurance pricing. Pre­
mium rates are no longer constant over large areas, but their size is determinedwith
respect to their exact coordinates. Therefore, buildings close to seismically active
areas or faults that have not been recently decompressed have higher premium
rates. For the use of the ETAS model, the respective premium rates are presented
in Table 3.8 and Table 3.9 for Greece and the region of Attica respectively.

Table 3.8: Overall risk premium estimation for Greece using the ETAS model
Risk Premium Low Code Mode Code High Code
Model Mean Median Mean Median Mean Median
Ae 1035 862 282 214 141 107
AFe 1118 964 307 240 153 120

Table 3.9: Overall risk premium estimation for Attica using the ETAS model
Risk Premium Low Code Mode Code High Code
Model Mean Median Mean Median Mean Median
Ae 836 789 225 208 112 104
AFe 931 902 253 239 126 119

Comparing Table 3.6 with Table 3.8 and Table 3.7 with Table 3.9, it is obvious
that the ETASmodel yields higher premium estimates than the model based on GK
declustering. These increases must be considered by the respective companies as
the earthquake process is better described by an epidemic behaviour. It is also
worth mentioning that the actual rates of the reinsurance market are in line with
the ETAS model in median terms opposed to the GK declustering model where
they are in line in average terms. Inspecting Table 3.8 and the models Ae and
AFe, the addition of faults for the seismic hazard increases the risk premium by
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an amount of 9%. The increment may even reach 12.5% in the region of Attica
(Table 3.9).

3.5 Capital requirements

In terms of the related insurance, companies must conform to the requirements
of Solvency II and hold sufficient reserves. The European Directive Solvency II,
which came into effect in 2016, sets the quantitative requirements for the mea­
surement of risks. It also allows insurance companies to use internal models com­
pletely or partially (along with or substituting the SF) to calculate the solvency
capital requirement (SCR) induced by a certain type of risk. Each risk must be
separately computed so that the total SCR is an overall value depending on these
risks and the dependence among them. The standards for capital requirements are
no longer related to the number of premiums, as with Solvency I, but rather to
the magnitude of the risks. Thus, the existence and use of a seismic risk model is
crucial for the quantification of this risk component. A robust model is also essen­
tial for any given society, as it guarantees that insurance companies are capable
of compensating their customers. Consequently, the balance of the economy is
preserved by considering the potential extreme losses caused by earthquakes.

The SCR for this portfolio was calculated equal to 405000 euros by the SF of
Solvency II. The SCR is defined as the unexpected loss. Thus,

SCR(Loss) = Risk Measure(Loss)­Expected(Loss).

Our algorithm is applied to evaluate the SCR for different models (A0 to AF11)
and Ae, AFe, building codes, and risk measures. The entropic risk measure is a
function of the risk aversion parameter p(θ). We estimate the mean value of this
function in an interval [r1, r2], where r1 is the risk aversion parameter assigning
the entropic risk measure a value equal to VaR (99.5%), while r2 is the parameter
assigning the entropic risk measure a value equal to ES(99.5%). The results are
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presented in the tables below.
It is worth mentioning that the SF for the estimation of the SCR does not con­

sider the construction year of each building leading to overestimation or under­
estimation. The proposed model deals with that weakness. Therefore, the results
presented in Table 3.10 prove that the SCR for moderate­code buildings using
VaR and model AF10 is 67% of the SCR induced by the SF. This weakness of the
standard formula forces an insurance company that in general undertakes modern
buildings to hold reserves without substantial reason, while at the same time un­
derestimates the essential reserves for an insurance company undertaking a risky
portfolio.

The first consequence has a negative impact on the investment of these capitals,
but the second could even make it insolvent towards its customers. For example,
the SCR estimated using high­code buildings, model AF10, and VaR is only 33%
of the SCR proposed by the SF. The same estimates are processed using the co­
integration of the ETAS model with fault sources. For the use of the ETAS model,
the respective SCR is presented in Table 3.11 below.

Comparing Tables 3.10 and 3.11, the ETAS model yields higher estimates of
the SCR than the Gardner­Knopoff declustering combined with Voronoi polygons.
However, these estimates are always lower than the estimate of the SF for the low­
code and moderate­code buildings when the VaR is used as a risk measure. The
SCR induced by the ETAS model is closer to the SCR induced by the SF than the
SCR induced by the first A0 to AF11 models.
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Table 3.10: SCR evaluation in thousand euros
Low Code VaR ES Entropic
A0 538 775 669
A1 612 892 759
AF00 646 1168 924
AF01 751 1277 1027
AF10 699 1137 932
AF11 824 1413 1135
Mode Code VaR ES Entropic
A0 196 289 246
A1 201 336 274
AF00 241 402 325
AF01 252 496 381
AF10 271 425 354
AF11 259 475 371
High Code VaR ES Entropic
A0 98 144 123
A1 100 168 137
AF00 120 201 162
AF01 126 248 190
AF10 135 212 177
AF11 129 237 185

For the use of the Voronoi model, the SCR compared to the standard formula
is presented in Table 3.12. For the use of the ETAS model respectively, the SCR
compared to the SF is presented in Table 3.13 below. While the difference of the
induced SCR for the A0 to AF11 models compared to the standard formula’s SCR
ranges from ­52% to +22%, the respective range for the Ae and AFe models is
from ­29% to +22%.
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Table 3.11: SCR evaluation in thousand euros using the ETAS model
Low Code VaR ES Entropic
Ae 897 1244 1084
AFe 988 1503 1279
Mode Code VaR ES Entropic
Ae 288 420 360
AFe 338 496 425
High Code VaR ES Entropic
Ae 144 210 180
AFe 169 248 212

Convex risk measures used in this work extend the most common measure of
VaR and propose a larger SCR. Insurance companies should consider those higher
values as convex risk measures cover the large uncertainty of losses due to natural
catastrophes.
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Table 3.12: SCR compared to the standard formula using Voronoi polygons and
faults
Low Code VaR ES Entropic
A0 +33% +91% +65%
A1 +51% +120% +87%
AF00 +60% +188% +128%
AF01 +85% +215% +154%
AF10 +73% +181% +130%
AF11 +103% +249% +180%
Mode Code VaR ES Entropic
A0 ­52% ­29% ­39%
A1 ­50% ­17% ­32%
AF00 ­40% ­1% ­20%
AF01 ­38% +22% ­6%
AF10 ­33% +5% ­13%
AF11 ­36% +17% ­8%
High Code VaR ES Entropic
A0 ­76% ­64% ­70%
A1 ­75% ­59% ­66%
AF00 ­70% ­50% ­60%
AF01 ­69% ­39% ­53%
AF10 ­67% ­48% ­56%
AF11 ­68% ­41% ­54%
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Table 3.13: SCR compared to the standard formula using the ETAS model and
faults
Low Code VaR ES Entropic
Ae +121% +207% +168%
AFe +144% +271% +216%
Mode Code VaR ES Entropic
Ae ­29% +4% ­11%
AFe ­17% +22% +5%
High Code VaR ES Entropic
Ae ­64% ­48% ­56%
AFe ­58% ­39% ­48%



Chapter 4

CAT bond pricing

Since 2004, private property consists primarily of expensive and valuable build­
ings constructed according to the latest seismic code, Eurocode 8. Every citizen
and owner of a building located within a developed European country would like
to ensure that his investment is secured and protected against a possible large loss.
As a result, they purchase an insurance policy for natural disasters. In most cases,
homeowner insurance policies do not cover earthquake damage, with the exception
of Turkey, where earthquake insurance is mandatory. The low­frequency, high­
severity nature of this catastrophe risk encourages insurance companies to engage
in reinsurance contracts. However, the balance sheets and creditworthiness of rein­
surance companies are highly sensitive to catastrophic events (European Central
Bank, 2005)1. Although the available capital of (re)insurance companies is very
large, it is still insufficient to deal with extreme catastrophic losses. Thus, the in­
surance industry developed a new financial instrument called a catastrophe bond
or CAT bond (Polacek 2018). Thus, the insurance risk is transferred to the capital
market (Stupfler et al. 2018).

1Financial Stability Review (2005), European Central Bank
https://www.ecb.europa.eu/pub/financial­stability/fsr/focus/2005/pdf/ecbf8̃e9aaa84d.fsrbox200505_
15.pdf?acc257e30d1d876a16086c7a30a11c51

67
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A CAT bond is a special kind of defaultable bond (Duffie, 1999). Its default
risk is primarily associated with the natural hazard, but it may also include credit
risk in special cases. Therefore, induced payments for the product are uncertain,
and the likelihood of their occurrence is subject to a parameter of the earthquake.
This could be a natural earthquake parameter as the local magnitude or depth as in
Zimbidis et al., 2007 and Shao et al., 2015, or a damage index as in Loubergé et al.
(1999). It should be noted that in the latter work, the default due to natural hazard
only affects the sequence of coupon payments (while the face value is assured),
whereas in the former works, including the present thesis, the coupon rates and
the par value are both under risk. These bonds are inherently risky, rated BB in
general, (see for example the Greek Government bonds rated by Fitch2). This
is also justified from the fact that the regulation (EU) 2016/1799 of the Official
Journal of the European Union defines the mid­default rate in a 3­time horizon
to be equal to 7.5%3 (varying from 2.40% to 11%), while the default rate in the
3­time horizon of the proposed CAT bond is 6% as seen further in this work.

In the present empirical analysis, bond is priced from the capital market per­
spective. With regard to the bond pricing, there are several methods that have
been employed and most of them are based on Monte Carlo simulation as in Vau­
girard (2003) and Romaniuk (2003). Arbitrage­free pricing is employed in several
works as in Zimbidis et al. (2007), Shao et al. (2015) and Jarrow (2010) while in
other works risk neutral pricing is employed (see Ma et al., 2013 and Nowak et
al., 2013). In this work, we additionally employ CAT bond pricing based upon
credit risk, in the simplified scenario where cat bonds are issued by the insurers
themselves, as described in Lee & Yu (2002).

CAT bonds require a third­party mediator known as a Special Purpose Vehi­
cle (SPV). The analytical transaction between the parties involved in a CAT bond,

2http://www.worldgovernmentbonds.com/country/greece/
3https://eur­lex.europa.eu/legal­content/EN/TXT/HTML/?uri=CELEX:32016R1799&

from=en# d1e32­12­1
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namely the sponsor, the SPV, and the investor, has been detailed in several works,
such as Galeotti et al. (2013) and Stupfler et al. (2018). Härdle et al. (2010) ex­
amine the calibration of a CAT bond issued by CAT­MEX Ltd in 2006 and spon­
sored by the Mexican government. In practice, the insurer (e.g., a government)
enters into a reinsurance agreement with a reinsurance company. The reinsurance
company reaches an agreement with the SPV for the larger potential losses while
remaining capable of paying the lower magnitude losses alone. In return for the
capital received from the investors, the SPV can return interest rates and the face
value if the bond is not triggered. If the bond is triggered, the SPV will pay to the
reinsurer the invested capital used to protect the insureds against earthquake losses
(see Figure 4.1). Härdle et al (2010) highlighted the importance of a modelled loss
trigger mechanism as well as the missing information of losses. In order to over­
come these problems, we use the recurrent activation times of seismic faults, i.e.,
the source of large earthquakes that can trigger the CAT bond. Simulations are
used to model losses based on fragility curves.
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4.1 Description of the CAT bond

The payment scheme of the CAT bond by the capital market aspect is presented in
Figure 4.2 below. The coupon payment in the case of no triggering event consists
of the coupon rate Ct which is determined by the 12­month Libor rate rt increased
by a spread ct and multiplied by the face value FV (assumed to be 100 euros) i.e.,

Ct = (rt + ct)FV , t = 1,…10 years

.
There are two special cases to consider. The first is the case where the investors

are also the insureds and the second is where the insurer is also the issuer. The 12­
month Libor Rate is described by the Vasicek’s interest short rate model. The data
are obtained by the Federal Reserve Bank of St. Louis (Figure 4.3) containing the
daily announced 12­month LIBOR rates from 2000 up to 2015, a long time­period
including the financial crisis.

Because of the break in the financial series due to the financial crisis, two
different time­periods are considered for the estimation. The first time­period is
from 2000 up to and including 2009, while the second is from 2010 up to 2015.

The SDE of the Vasicek interest rate model is:

dr1t = av(bv − r1t)dt+ σvdW1t

with the Euler discretization (Iacus, 2009):

r1,k+1 − r1,k = av(bv − r1,k)∆k + σv[W1(k + 1)−W1(k)],

where W1(t) is a standard Brownian motion and rk denotes the value of the
12­month LIBOR on day k. This SDE has the solution:

r1t = r10 exp(−αvt) + bv(1− exp(−avt)) + σv exp(−avt)

∫ t

0

exp(−avs)dW1s.
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Figure 4.3: 12­month LIBOR announced on a daily basis from 2000 to 2015.

Therefore,

r1t ∼ N

(
r10 exp(−αvt) + bv(1− exp(−avt)),

σ2
v

2a
(1− exp(−2avt))

)
.

The parameters of the SDE are estimated under the Bayesian methodology us­
ing HMC by the package “rstan” (see the respective code in the Appendix) or by
MLE. BayesianMonte Carlo algorithms are also used for the parameter estimation
of SDEs in other studies as in Golightly et al. (2010). The average of each param­
eter’s posterior sample is considered as the estimate. The posterior mean is the
Bayes estimator under the squared error loss function. The same exact results are
also obtained using maximum likelihood estimation (MLE). The transition density
is normal and the parameters can be obtained by differentiating the log­likelihood
function with respect to each of the three parameters on the observed rates. The
equations for obtaining the parameters are provided in Fergusson, K. & Platen, E.
(2015).
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The main parameter of interest is bv which is the value of the 12­month Libor
Rate in the long run. Therefore, the expected value of each of the t coupons (with­
out any other risk considered) would be equal to bv + ct. However, a CAT bond
is a defaultable bond. The expected payments are affected by the probabilities of
“default” due to seismic events. Thus, these probabilities are multiplied by bv and
the last element of the probability vector also by the nominal value (100 euros) to
get the expected payments at times t = k, k = 1,…, 10. From 2000 up to 2009,
the parameters are estimated as:

av = 0.008, bv = 3.23%, σv = 0.15%,

while the respective parameters from 2010 to 2015 are:

av = 0.01, bv = 0.85%, σv = 0.11%.

If a triggering event occurs, then the remaining coupons and the face value
are not paid to the bondholder (investor). Due to the risk involved in such an
investment, CAT bonds offer greater yields than traditional bonds. The trigger
parameter in this study is based upon the total material loss of the most destructive
earthquake that occurred in Greece. It was the earthquake of Athens in 1999,
resulting in approximately 3­4 billion dollars in damages (approximately 3 billion
euros).

4.2 Discounting process

The price of any bond strongly depends on the discounting process. The most
common methods for bond pricing consist of using short rate processes or for­
ward rate processes. There are two categories for the forward rate processes (De
La Grandville, O., 2003), the empirical forward rate curves (e.g., Nelson­Siegel,
Svenson or splines) and the general Heath­Jarrow­Morton (Heath et al. 1992)
model of forward rate curves (HJM) of which the Vasicek model is a special case.
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Let r2,t the short rate used for discounting. In this work, this rate is the 3­month
Interbank rate of Germany. The stochastic differential equation of Vasicek is:

dr2,t = ad(bd − r2,t)dt+ σddW2t.

The respective pricing kernel or discount factor is:

B(t) = EQ[exp(−
∫ t

0

r2(u)du))].

A closed form solution of the Vasicek interest rate model is presented in Nowak
(2013). More specifically, the discounting factor at t=0 of a payment on time T
denoted by B(T) is equal to:

B(T ) = exp(−TR(T, r0)),

where:

R(x, y) = R∞ − 1

adx

[
(R∞ − y)(1− exp(−adx))−

σ2
d

4a2
(1− exp(−adx))

2

]
and

R∞ = bd −
λσd

ad
− σ2

d

2a2d
.

For comparison purposes, we proceed in an arbitrage­free context, assuming
that the market price of interest rate risk λ = 0. Short­rate discounting models are
not well suited for long­maturity bonds, as demonstrated below. Simulation­based
pricing and the relation of the HJM with the Vasicek model are also detailed in
the Appendix. Comparisons between the results using various discounting meth­
ods follow in the next sections. CAT bond pricing estimation with respect to the
overnight Libor is also investigated. However, it does not yield sufficient esti­
mates as described in the Appendix.
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4.2.1 Short­rate Vasicek model for the 3­month interbank rate
of Germany

A much more rational pricing is provided considering the 3­month interbank rate
of Germany as the short rate under consideration. Specifically, the estimated pa­
rameters of the Vasicek model using “rstan” are:

ad = 0.03, bd = 0.88%, σd = 0.5%,

B(4) = B(1year) = 0.97 euros at time T=0 for a face value of 1 euro at time
T=1 year.

The respective parameters for the time period 2010­2015 are:

ad = 0.03, bd = −0.71%, σd = 0.17%.

The prices of zero­coupon bonds with a face value of 1 euro for maturities 1 to
10 with respect to the two different historical periods are presented in Table 4.1.

Table 4.1: Prices of zero­coupon bonds using the 3­month IBR of Germany
Maturity 2000­2009 2010­2015
1 0.97 1.00
2 0.94 1.01
3 0.92 1.02
4 0.90 1.03
5 0.88 1.05
6 0.86 1.07
7 0.84 1.09
8 0.83 1.11
9 0.82 1.13
10 0.81 1.16
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4.2.2 Yield curves

Short rate models as the one used by Vasicek do not also provide forecasts, but
the pricing process assumes that short rates will follow the same behaviour as
historically. Therefore, the pricing of the CAT bond in this work is mainly based
on the time­dependent yield curves of the European Central Bank (ECB), which
reflect a much more rational bond pricing able to adapt to the negative interest
periods as well. Moreover, these curves offer different yields based on thematurity
time. Therefore, their induced discount factors may be larger than 1 for the first
one or two years if the economic conditions are not favorable and then become
lower than 1. This does not happen when discounting with short­rate models. The
data of the ECB euro­area yield curves are presented in the graph below (Figure
4.4). The models explaining the yield curves are summarized below for both the
time­independent and time­dependent cases.

Figure 4.4: ECB yield curves. In this graph, x­axis shows the time the yield curves
announced with 1 denoting September 2004 up to 136 denoting December 2015.
The y­axis depicts the maturity in years while the z­axis refers to the yields (%).

The forward rate curves of Nelson­Siegel are analyzed below. The forward
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rate curve is described as:

f(T ) = b0 + b1 exp(−
T

λ
) +

b2
λ
T exp(−T

λ
),

where b0, b1, b2, λ are parameters to be estimated and T is the time to maturity.
The future spot rate curve or yield curve is obtained through averaging the forward
rate curve and equal to:

R(T ) = b0 + (b1 + b2)
1− exp(−T

λ
)

T
λ

− b2 exp(−
T

λ
).

The pricing kernel using the yield curves is

B(T ) = exp (−TR(T )).

Following the reasoning of Diebold and Li (2006), the lambda shape parameter is
pre­determined to result in order to achieve reduction to a linear problem. This
parameter determines the maturity at which the loading on the medium­term, or
curvature, factor achieves it maximum. Diebold and Li (2006) state that two or
three­year maturities are commonly used in that regard and thus they consider the
average. In order to provide a more objective interpretation, the lambda parameter
is estimated by the package rstan, and it is graphically illustrated in our work to
facilitate a better adaptation to our data set. It appears that lambda is equal to 10.
The graphs in Figures 4.5 and 4.6 below illustrate that the fit is of high quality.

We assume there is variability between R(T) and our data described by a nor­
mal distribution as in Das (2019). More specifically,

Ri(τj) = µi(τj) + eij, eij ∼ N(0, σ2
3).

The total likelihood is:

L(data|θ) =
n∏

i=1

m∏
j=1

f(µi(τj), σ
2
3).
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Figure 4.5: Average Actual Yield Curves vs Yield Curve fitted with the NS­model
(shape parameter=10) for the time­period 2004­2009.

After defining the likelihood and by using flat priors, the average of the poste­
rior samples obtained from “rstan” yields us the estimates of all parameters of the
defined model. The same exact estimates are obtained by MLE. In order to check
the goodness of fit, we compare the one step ahead cross validation out of sample
MSE of the yield curves across the different used models later in the thesis.

For the sample period between 2004 and 2009, the estimates of the model are:

b0 = 0.04, b1 = −0.015, b2 = 0.033, σ3 = 0.005, λ = 10.

For the period between 2010 and 2015, the estimates of the model are:

b0 = 0.03, b1 = −0.03, b2 = 0.06, σ3 = 0.01, λ = 10.



80 CHAPTER 4. CAT BOND PRICING

Figure 4.6: Average Actual Yield Curves vs Yield Curve fitted with the NS­model
(shape parameter=10) for the time­period 2010­2015.

The respective zero­coupon prices for maturities from 1 to 10 years ahead are
summarized in Table 4.2.

Inspecting Table 4.1, we observe that there is a constantly increasing spread
between the different time­span discount factors being functions of the 3­month
IBR of Germany and the Vasicek model. On the other hand, the respective spread
made by the different time­span ECB yield curves (Table 4.2) is not so volatile and
pessimistic for the 2nd time period.

The Svensson (1995) model adds flexibility to the Nelson­Siegel formulation
by adding a potential extra hump in the forward curve. Its equation is:

f(T ) = b0 + b1 exp(−
T

λ1

) + b2
T

λ1

exp(− T

λ1

) + b3
T

λ2

exp(− T

λ2

).
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Table 4.2: Prices of zero­coupon bonds using the yield curves of the ECB and the
Nelson­Siegel model
Maturity 2004­2009 2010­2015
1 0.97 0.99
2 0.94 0.98
3 0.91 0.96
4 0.88 0.93
5 0.84 0.90
6 0.81 0.87
7 0.77 0.84
8 0.74 0.81
9 0.70 0.78
10 0.67 0.74

This model is widely used in practice: It was used by most central banks,
including the Bank of England, between 1995 and the end of the 20th century.
Averaging the forward rate curve, the spot rate curve is equal to:

R(T ) = b0 + b1
1− exp(− T

λ1
)

Tλ1

+ b2

(
1− exp(− T

λ1
)

Tλ1

− exp(− T

λ1

)

)

+b3

(
1− exp(− T

λ2
)

Tλ2

− exp(− T

λ2

)

)
.

The extra shape hump appears to be statistically insignificant for the analyzed
data for all positive λ2. Specifically, the lowest p­value for the analogous t­test
is equal to 0.17 for the respective term corresponding to λ2 being equal to 1.27
for the time period 2010­2015 and the lowest p­value for the analogous t­test is
equal to 0.55 for the respective term corresponding to λ2 being equal to 0.8 for
the time period 2004­2009. Therefore, only a single hump is needed in order to
model the shape of the specific yield curves. However, we still need to model the
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upward or downward movement of the curves for each period. This is processed
by time­dependent algorithms as described in the following section.

4.2.3 Time dependent (dynamic) cases

In this point, we also consider the announced month t of the yield curve. By
using time dependent models, we may predict the yield curve for each time period
(month) in order to have a forecast for the future price of the CAT bond.

Following the model of Nelson and Siegel (Das, 2019), the unobserved latent
factors bt are assumed to follow the system equation:

bt = θ0 + Zbt−1 + ht,

where

bt = (b1t, b2t, b3t)
, θ0 = (θ01, θ02, θ03)

T ,

Z =


θ11 θ12 θ13

θ21 θ22 θ23

θ31 θ32 θ33


and ht ∼ N3(0, S) i.e., a VAR(1) model. The general multivariate ARMAX

model is discussed in Shumway & Stoffer (2010) and the VAR implementation
in R by Cowpertwait & Metcalfe (2009). The yield curves at time t obey the
observation equation:

y
t
= Φbt + ϵt,

where
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Φ =


1 f1(1) f2(1)
... ... ...
1 f1(30) f2(30)

 .

The functions f1 and f2 are defined as:

f1(u) =
1− exp(−u

λ
)

u
λ

,

f2(u) = f1(u)− exp(−u

λ
)

and

ϵt ∼ N30(0, σ
2
ϵ I30).

The unobservable beta factors in the Nelson­Siegel formulation determine the
dynamics of the yield curve over time. This means that if one can forecast these
factors, one is directly able to forecast the yield curve and the price of the CAT
bond as well. Diebold and Li (2006) recognize that the factors in the Nelson­
Siegel equation are strongly dependent over time, which suggests that they are
forecastable.

Applying ordinary least squares to the yield data for eachmonth gives us a time
series of estimates of b1t, b2t, b3t and a corresponding panel of residuals, or pricing
errors (Diebold and Li, 2006). The estimation of betas allows us to model them by
any arbitrary model (statistical or machine learning) and then use the observation
equation for the forecast of the yield curve. In this manner, we also use neural
networks for the latent factors and compare the results of the different models by
out­of­sample MSE applied on the yields.

The VAR model is based on the assumption that the series are co­stationary
implying that each of the time series is separately stationary. However, each of
the considered time series {b1t}t, {b2t}t, {b3t}t has a stochastic trend based on the
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augmented Dickey­Fuller (2009) and Philipps­Perron (1988) tests. Therefore, im­
mediate regression between the series is not advisable and the respective first dif­
ferences should be taken first as in Chalamandaris & Tsekrekos (2011). This is
also justified by the fact that the MSE of the integrated model is lower than the
MSE of the typical dynamic VAR(1) model of the literature. The non­dynamic
case corresponds to a high MSE of 0.37 for 2000­2009 initial training period and
3.74 for the 2010­2015 initial training period.

4.2.4 Neural network auto­regression (NNAR) for betas

A neural network is briefly described in Figure 4.7. There are a number of in­
terconnected nodes that make up a neural network, known as neurons. The input
layer nodes correspond to the number of features you wish to feed into the neural
network, while the number of output nodes correspond to the number of items you
wish to predict or classify. Each input is an explanatory variable of the output.
There is at least one extra introduced layer in neural networks called the hidden
layer except from the input and output layer. The number of nodes (or neurons) in
the hidden layer is arbitrarily chosen by the analyst usually by trial and error look­
ing for a better fit on their data. The outputs of the nodes in one layer are inputs
to the next layer. The inputs to each node are combined using a weighted linear
function. The result is then modified by an activation function (usually nonlinear)
before producing the output. For our data, experimentation suggests that the linear
activation function performs better than the sigmoid. The NNAR is described in
the work of Hyndman & Khandakar (2008). The NNAR is a feed­forward neural
network where the input layer consists of the lagged values of the time series itself.

The weights used are initially random and modified at each step based on a
learning function. The starting randomness of the weights is corrected by repeating
the algorithm thousands of times and getting an overall forecast value for reasons
of robustness. The learning or error function in this work is the sum of square
errors (sse). Neural networks are as black boxes non­interpretable, but they are
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Input layer Hidden layer Output layer

Output

b1(t-1)

b2(t-1)

b3(t-1)

Figure 4.7: The scheme of a typical neural network with three inputs, one hidden
layer with two nodes and an output. In our problem, this figure presents the typical
NNARX(1) with two nodes.

very commonly used for forecast reasons usually outperforming other methods.
The other crucial benefit of neural networks is that they are not based on statistical
assumptions. The inputs of the 3 NNARs used here are {b1t}t, {b2t}t, {b3t}t or
their lagged values. An inclusion of the lagged values of the other series (NNAR
with external regressors) as inputs is also tested as an analogue of the statistical
full VAR(1) model. The same exact models are also tested for the increments even
though stationarity is not necessary for applying neural networks.

4.2.5 Recurrent neural networks (RNN) for betas

Recurrent neural networks are composed of neurons that connect back to other
neurons; information flow is multi­directional, so that neurons’ activation can cy­
cle in a loop. This type of neural network has a sense of time and memory of
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earlier networks states which enables it to learn sequences which vary over time
(Lewis 2015). A brief description of those neural networks is provided in Figure
4.8 (Lewis 2015):

f1 f2X(t) w1

b1

Y1(t)

b2

w3 Y(t)

w2

Y1(t-1)

Figure 4.8: The scheme of a typical recurrent neural network as described by Lewis
(2015).

In the Elman case, we have the following equations based on Figure 4.8:

Y1(t) = f1(w1X(t) + b1) and

Y (t) = f2(w3f1(w1X(t) + w2Y1(t− 1) + b1) + b2).

Two simple cases of RNNs include the Elman and Jordan networks. Unlike
Jordan networks, Elman networks are configured such that context units receive
input not from output units, but from hidden units. Furthermore, there is no direct
feedback in the context units. In an Elman net, the number of context units and
hidden units needs to be the same. Compared to Jordan nets, Elman nets provide



4.2. DISCOUNTING PROCESS 87

a greater degree of flexibility as the number of context units is not directly deter­
mined by the output size (as in Jordan nets). It is determined by the number of
hidden units, which is more flexible, as it is easy to add/remove hidden units, but
not output units.

Based on one­step ahead cross­validation (RMSE) in Table 4.3, we conclude
that the best predictive model is the VAR(1) used on the increments (first differ­
ences) considering the first sample period, while the best predictive model is the
integratedNNARX(1) considering the second financial period including economic
crisis.

Table 4.3: Summary of out of sample MSEs for all used models
Train time period 2004­2009 2010­2015
Model Differences 0 1 0 1
VAR(1) 0.030 0.020 0.027 0.022
NNAR(1) 0.028 2.32 0.044 0.022
NNARX(1) 0.37 0.10 0.029 0.016
Elman 0.035 0.024 0.06 0.027
Jordan 0.23 0.025 0.055 0.029

The sufficient fit of the models is justified in Figure 4.9 and Figure 4.10 below,
presenting the close distance between the predicted and the actual yield curve for
December 2010 and December 2016 respectively.
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Figure 4.9: Predicted using integrated VAR(1) and actual yield curve of December
2010.
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Figure 4.10: Predicted using integrated NNARX(1) and actual yield curve of De­
cember 2016.
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4.3 Estimating the seismic “default” probabilities

In this section, the statistical method used for the 10­year simulation of the maxi­
mum loss by a single event in Greece is analyzed. Only catastrophic events with
moment magnitude larger than 6Mw can cause extreme losses and trigger the CAT
bond. Therefore, unlike other studies that use historical catalogues, fault sources
are used in this work. The insufficiency of the historical catalogues is eliminated
with the use of the geometrical properties of faults in both the reactivation times
and the construction losses.

The Simulation Algorithm for the annual damage follows.

1. Fill a (1,000,000x267) matrix D with each column representing 1,000,000
different realizations of the number of earthquakes the specific fault pro­
duced according to the preceding theory.

2. Fill a (1,000,000x267) matrix F with each column representing 1,000,000
different realizations of the magnitude of earthquakes the specific fault is
able to produce according to the preceding theory.

3. Create an empty zero (1,000,000x267) matrixG1 with each column contain­
ing the total (over all buildings) losses from each fault and an empty zero
(1,000,000x267) matrix G2 containing the maximum magnitude from each
fault.

4. For each fault source, simulate events with replacement from D and F and
keep the maximum annual magnitude for each simulation in G2.

5. Attenuate each of these magnitudes according to the attenuation equation
of to all buildings according to the attenuation equation of Rinaldis et al.
(1998), transform the seismic intensity to damage percentage using the fragility
curves and store the total losses due to each fault source to G1.
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6. Estimate the proportion of simulations where the total damage exceeds the
defined threshold of 3 billion euros due to each fault from G1.

The same algorithm is repeated for a 2­year time interval, a 3­year time inter­
val and so on until 10 years are reached. Based on the fragility curves of a typical
Low­Rise Moderate Code building (construction years 1986­1995) and assuming
that each building corresponds to an average cost of 150 thousand euros, the an­
nual loss per building will be 68 euros. In accordance with ELSTAT 2011, there
are approximately 4 million residential buildings in Greece resulting in an esti­
mated annual loss of 272 million euros due to all faults combined. In the largest
event of Athens 1999, an amount of C = 3 billion euros was estimated to occur.
Therefore, C = 3 billion euros will be our threshold for default. If losses are over
C, then the remaining coupons and the face value of the bond are not paid to bond­
holders. Thus, the payments of each year are multiplied with the summation of the
267 probabilities Pr [the fault causes a damage larger than C] in the time interval
k,k=1,…,10. These probabilities for a year are depicted in Figure 4.11. According
to our seismic model there is a 2% chance the bond defaults due to the potential
activation of all faults. 126 euros and 4% are the expected damage by building in
two years and the respective probability of exceedance of the threshold C.

It is likely that the payments will occur based on the following probabilities
in Table 4.4. The probabilities in this table increase in a linear manner over time.
Considering one million simulations, the probability of default for a year is 0.0196
and 0.1946 for a decade. Clearly, this result is attributed to the fact that 1 to 10
years is a relatively short interval in comparison to the reactivation time of the
recently activated faults. Consequently, these specific faults are unlikely to be
activated and the time­dependent model serves as a barrier to their recurrence.
The probabilities are theoretically increasing over time. However, rounding to a
precision of two decimal digits determines the above conclusions yielding a linear
approximation over time.

There is a need for an equivalent parametric triggered bond so as to be more ro­
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Figure 4.11: Probabilities of exceedance of C = 3 billion euros for each fault

bust against the investors and eliminate moral hazard risk (Cummins et al. 2004).
Thus, the modeled­loss index bond can be replaced by an equivalent parametric­
triggered bond. The main reason for this change is that the magnitude of an earth­
quake is announced by an independent organization, usually a geophysical insti­
tute, which has no financial interest in announcing a stronger or weaker earth­
quake. It is also important to note that the model used to estimate losses is a
closedmodel, unknown to the investors while themagnitude threshold offers trans­
parency to all parties involved. Thus, we split the region in two zones with differ­
ent thresholds as presented in Figure 4.12.

In this figure, it is worth observing that in the region of Attica and north Pelo­
ponnese, there are even weaker earthquakes that may exceed the threshold of 3
billion euros as was in the case of Athens, 1999. By comparing the two seis­
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Table 4.4: Probabilities of occurrence of payments of the CAT bond
Years Probabilities
1st year 0.98
2nd year 0.96
3rd year 0.94
4th year 0.92
5th year 0.90
6th year 0.88
7th year 0.86
8th year 0.84
9th year 0.82
10th year 0.80

mic risk maps with the probability of loss threshold exceedance and the minimum
produced magnitude on an annual basis, we can determine that the bond should
be triggered in the manner outlined below. All remaining payments to investors
should be canceled if an earthquake of at least 6.4Mw happens located in Attica or
north Peloponnese or an earthquake of at least 6.7 Mw happens located in Mace­
donia or south Peloponnese or Ionian islands or Crete. Therefore, on an annual
basis, P(at least one earthquake in zone1 > 6.4) + P(at least one earthquake in zone
2 > 6.7) = 2%, as estimated by the matrix G2 from the proposed algorithm.

The CAT bond pricing based on these probabilities is presented in the fol­
lowing tables considering a variety of discounting methods starting from the time
independent models.
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Figure 4.12: Zone 1 (purple region with threshold 6.4 Mw) and zone 2 (pink re­
gions with threshold 6.7Mw).
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4.3.1 Time independent models

1. 3­month IBR of Germany

(a) 2000­2009 (Expected CouponFace Value = 3.23%+ spread)

Table 4.5: CAT bond pricing using the 3­month IBR of Germany for the time
period 2000­2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 97.89 97.45 97.19 97.11 97.20 97.43 97.80 98.28
2% 100.61 100.99 101.52 102.20 103.01 103.95 104.99 106.12
3% 103.33 104.54 105.86 107.29 108.83 110.46 112.18 113.96
4% 106.05 108.09 110.19 112.38 114.65 116.98 119.37 121.80
5% 108.77 111.63 114.53 117.47 120.46 123.49 126.55 129.64

(b) 2010­2015 (Expected CouponFace Value = 0.85%+ spread)

Table 4.6: CAT bond pricing using the 3­month IBR of Germany for the time
period 2010­2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 101.48 102.34 103.34 104.48 105.74 107.10 108.55 110.08
2% 104.40 106.21 108.15 110.23 112.42 114.71 117.09 119.55
3% 107.32 110.08 112.97 115.98 119.11 122.33 125.64 129.02
4% 110.24 113.94 117.78 121.73 125.79 129.94 134.18 138.49
5% 113.15 117.81 122.59 127.49 132.48 137.56 142.72 147.96

We observe that prices are lower during the more promising financial period
2000­2009 corresponding to Table 4.5 than during 2010­2015 correspond­
ing to Table 4.6 despite the fact that the first bond also provides greater
payments as based on a higher total coupon rate. This observation does not
hold for the case of the ECB yield curves as presented below.



96 CHAPTER 4. CAT BOND PRICING

2. ECB Yield Curves

(a) 2004­2009 (Expected CouponFace Value = 3.23%+ spread)

Table 4.7: CAT bond pricing using the ECB yield curves for the time period 2004­
2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 96.94 95.39 93.71 91.95 90.16 88.37 86.60 84.88
2% 99.66 98.91 97.99 96.94 95.81 94.63 93.45 92.26
3% 102.37 102.43 102.26 101.92 101.45 100.90 100.29 99.64
4% 105.08 105.95 106.53 106.90 107.10 107.16 107.13 107.02
5% 107.79 109.46 110.81 111.88 112.74 113.43 113.97 114.39

(b) 2010­2015 (Expected CouponFace Value = 0.85%+ spread)

Table 4.8: CAT bond pricing using the ECB yield curves for the time period 2010­
2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 95.23 92.60 89.70 86.62 83.46 80.28 77.15 74.10
2% 98.05 96.27 94.18 91.87 89.43 86.94 84.44 81.99
3% 100.86 99.95 98.66 97.12 95.41 93.60 91.74 89.87
4% 103.67 103.62 103.15 102.38 101.39 100.25 99.03 97.76
5% 106.48 107.29 107.63 107.63 107.37 106.91 106.32 105.65

In general, bonds derived by the ECB yield curves offer lower prices as the
maturity time increases. Moreover, prices are lower during the financial period
that includes the economic crisis in this case. The forecasts derived by the best
performing time­dependent models are summarized in the tables below.
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4.3.2 Time dependent models

1. using the forecasted “December 2010” yields by the integratedVAR(1)model
(Expected CouponFace Value = 3.23%+ spread)

Table 4.9: CAT bond pricing using the yields for December 2010 as forecasted by
the integrated VAR(1) model for betas
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 99.71 98.38 96.71 94.83 92.84 90.81 88.80 86.84
2% 102.48 101.98 101.09 99.95 98.64 97.25 95.82 94.41
3% 105.25 105.58 105.48 105.06 104.44 103.68 102.85 101.99
4% 108.02 109.19 109.86 110.18 110.24 110.12 109.88 109.56
5% 110.79 112.79 114.25 115.30 116.04 116.55 116.90 117.13

2. using the forecasted “December 2016” yields by the integrated NNARX(1)
model (Expected CouponFace Value = 0.85%+ spread)

Table 4.10: CAT bond pricing using the yields for December 2016 as forecasted
by the integrated NNARX(1) model for betas
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 99.50 98.49 97.19 95.65 93.93 92.08 90.13 88.12
2% 102.39 102.30 101.88 101.19 100.30 99.23 98.04 96.75
3% 105.29 106.11 106.57 106.74 106.66 106.39 105.95 105.38
4% 108.18 109.91 111.26 112.29 113.03 113.54 113.86 114.01
5% 111.07 113.72 115.95 117.83 119.40 120.70 121.77 122.65

Comparing Tables 4.9 and 4.10, it is obvious that prices are fairly close for the
two different time­period structured CAT bonds. However, the first one is more
profitable due to the increased total coupon rate. Furthermore, it is worth mention­
ing that the fixed spread of 4% makes the CAT bond price roughly constant in the
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first case and equal to 110 euros, while the fixed spread of 3%makes the CAT bond
price roughly equal to 105 euros in the second case. The time­dependent models
suggest higher prices than the respective time­independent models, because they
adapt to the current state of the economy each time.

4.4 Credit risk

In the present section, the case where the insurers are the bond issuers themselves
is analysed. Then, SPV does not exist, and credit risk is introduced. Suppose
there are three bond issuers (states of an issuer) concerned as “Good”, ”Bad” and
“Bankrupt” respectively. The price of each issuer’s CAT bond varies based on
the credibility power of the issuer. The dynamic behaviour of the different states
is modeled by a Markov Chain (see Privault, 2013 for a gentle introduction to
Markov Chains). According to the below transition probability matrix, the likeli­
hood of a transition from each state to another state next year independently of the
seismic events is:

P =


0.95 0.045 0.005

0.25 0.50 0.25

0 0 1


According to P, each good issuer remains to the same state in a year with prob­

ability 95%, while moves to the state of a bad issuer with probability 4.5% and
bankrupts with probability 0.5%. Since the CAT bond is assumed to have a 3 to
10­year maturity, it is necessary to estimate all state probabilities for the next 10
years. The matrices are arranged in the following order:

P 2 =


0.914 0.065 0.021

0.363 0.261 0.376

0 0 1


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...

P 10 =


0.73 0.07 0.2

0.385 0.037 0.578

0 0 1


For a “good” bond issuer (state 1) every k year’s payment is multiplied with

pk11 + pk12 = 1− pk13 , i.e., the probability that this issuer remains solvent (remains
to the same state 1 or moves to state 2). As a result of the credit risk of the issuers,
the bond’s price is reduced even further, increasing its attractiveness and offering
a higher yield. The pricing formula is provided in the equation below:

PV (t, T, j) =
T∑

h=1

e−hyt(h)(1− ph)Pj,h(bv + c)FV + FV e−Tyt(T )(1− pT )Pj,T ,

where FV: Face Value= 100 euros and Pj,h the probability of issuer j not
bankrupting after h years based on matrix P. Specifically,

Pj,h = 1− P h(j, 3).

The probability vector that the 1st issuer will be able to fulfil its obligations
each of the ten years of the bond’s life is presented in Table 4.11, while the proba­
bility vector that the 2nd issuer will be able to fulfil its obligations each of the ten
years of the bond’s life is presented in Table 4.12.
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Table 4.11: Probabilities of occurrence of bond payments with respect to the credit
risk of issuer 1
Years Probabilities
1st year 0.995
2nd year 0.979
3rd year 0.958
4th year 0.935
5th year 0.912
6th year 0.888
7th year 0.865
8th year 0.843
9th year 0.821
10th year 0.799

Table 4.12: Probabilities of occurrence of bond payments with respect to the credit
risk of issuer 2
Years Probabilities
1st year 0.750
2nd year 0.624
3rd year 0.557
4th year 0.518
5th year 0.493
6th year 0.474
7th year 0.459
8th year 0.446
9th year 0.434
10th year 0.422

The prices of the CAT bonds issued by each issuer of different credibility are
summarized below incorporating their creditworthiness.
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4.4.1 Time independent cases

1. For the 3­month IBR of Germany

(a) 2000­2009

i. Issuer 1

Table 4.13: CAT bond pricing using the 3­month IBR of Germany for issuer 1
incorporating credit risk for the time­period 2000­2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 94.02 91.63 89.46 87.54 85.87 84.43 83.19 82.12
2% 96.68 95.06 93.61 92.37 91.33 90.47 89.78 89.24
3% 99.34 98.50 97.77 97.19 96.78 96.51 96.38 96.35
4% 102.00 101.93 101.92 102.01 102.23 102.55 102.97 103.47
5% 104.66 105.36 106.07 106.84 107.68 108.59 109.57 110.58

ii. Issuer 2

Table 4.14: CAT bond pricing using the 3­month IBR of Germany for issuer 2
incorporating credit risk for the time­period 2000­2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 55.52 51.95 49.75 48.26 47.16 46.30 45.60 45.01
2% 57.28 54.13 52.32 51.19 50.43 49.88 49.47 49.16
3% 59.04 56.32 54.90 54.13 53.69 53.46 53.34 53.31
4% 60.80 58.51 57.47 57.06 56.96 57.04 57.21 57.45
5% 62.56 60.69 60.05 59.99 60.23 60.61 61.08 61.60

CAT bond prices by both issuers are decreasing by maturity time when
spreads are low (1%­3%). The above does not hold when spreads are
larger (4% and 5%). Prices also increase by the increase of the spread.
This increase is almost the same for both issuers. For example, there
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is an increase of 35% when we get from spread=1% to spread=5% for
T=10 considering the 1st issuer, while the same increase is 37% for
the 2nd issuer.

(b) 2010­2015

i. Issuer 1

Table 4.15: CAT bond pricing using the 3­month IBR of Germany for issuer 1
incorporating credit risk for the time­period 2010­2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 96.58 95.66 94.35 93.48 92.68 91.84 91.70 91.17
2% 99.17 98.86 98.77 98.40 98.37 98.32 98.93 99.26
3% 101.59 101.88 102.57 103.37 104.16 105.04 106.00 107.11
4% 104.93 106.64 108.02 109.28 111.15 113.19 115.04 116.93
5% 107.35 109.56 111.96 114.74 117.48 119.78 122.10 124.99

ii. Issuer 2

Table 4.16: CAT bond pricing using the 3­month IBR of Germany for issuer 2
incorporating credit risk for the time­period 2010­2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 57.07 54.15 52.23 51.18 50.31 50.04 49.54 49.32
2% 58.74 55.95 54.49 53.73 53.33 53.38 53.72 53.70
3% 60.62 58.23 57.35 57.11 57.30 57.64 58.11 58.70
4% 62.23 60.50 60.07 60.32 60.84 61.62 62.43 63.25
5% 64.96 63.65 63.69 64.54 65.63 66.80 68.02 69.21
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2. ECB yield curves modeled with NSTI

(a) 2004­2009

i. Issuer 1

Table 4.17: CAT bond pricing using the ECB yield curves for issuer 1 incorporat­
ing credit risk for the time­period 2004­2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 93.11 89.71 86.29 82.95 79.77 76.76 73.95 71.33
2% 95.76 93.12 90.38 87.68 85.07 82.58 80.24 78.05
3% 98.42 96.52 94.48 92.40 90.36 88.40 86.53 84.77
4% 101.07 99.93 98.57 97.13 95.66 94.22 92.82 91.50
5% 103.72 103.33 102.67 101.85 100.96 100.04 99.12 98.22

ii. Issuer 2

Table 4.18: CAT bond pricing using the ECB yield curves for issuer 2 incorporat­
ing credit risk for the time­period 2004­2009
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 55.00 50.88 48.03 45.80 43.91 42.23 40.71 39.31
2% 56.75 53.05 50.57 48.68 47.10 45.69 44.42 43.24
3% 58.51 55.22 53.12 51.56 50.28 49.15 48.13 47.18
4% 60.26 57.40 55.66 54.44 53.47 52.61 51.84 51.12
5% 62.02 59.57 58.21 57.32 56.65 56.08 55.55 55.06

CAT bond prices by both issuers are decreasing bymaturity time what­
ever the spreads are. Prices also increase by the increase of the spread.
This increase is almost the same for both issuers. For example, there
is an increase of 38% when we get from spread=1% to spread=5% for
T=10 (Table 4.17) considering the 1st issuer, while the same increase
for the 2nd issuer is 37.5% (Table 4.18).
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(b) 2010­2015

i. Issuer 1

Table 4.19: CAT bond pricing using the ECB yield curves for issuer 1 incorporat­
ing credit risk for the time­period 2010­2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 90.27 85.95 81.50 77.24 72.96 68.53 64.54 60.89
2% 93.35 89.66 86.15 82.35 78.24 75.02 71.38 68.33
3% 96.12 93.44 90.19 87.03 84.00 81.25 78.21 75.64
4% 98.85 96.40 93.84 91.42 88.99 87.03 84.83 82.69
5% 101.45 99.97 98.15 96.43 94.33 92.37 90.53 89.07

ii. Issuer 2

Table 4.20: CAT bond pricing using the ECB yield curves for issuer 2 incorporat­
ing credit risk for the time­period 2010­2015
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 53.64 48.85 45.31 42.54 40.17 37.84 35.75 33.76
2% 55.54 51.25 48.24 45.52 43.10 41.24 39.37 37.63
3% 58.29 54.28 51.28 49.20 47.24 45.73 43.94 42.62
4% 59.55 56.05 53.67 51.83 50.31 49.01 47.64 46.62
5% 60.58 57.81 56.25 54.97 53.70 52.56 51.53 50.64

It is worth mentioning that ECB yield curves suggest lower prices than the
respective IBR of Germany. The CAT bond priced by the 2nd issuer results to
lower prices, because the 1st one is more credible. Moreover, both issuers provide
a lower CAT bond price than the SPV as a result of the introduction of credit risk.
We continue by presenting the results by the time dependent models.
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4.4.2 Time dependent cases

In this section, the results of the CAT bond pricing incorporating credit risk consid­
ering the time dependent forecasts of the discounting yield curves are presented:

1. using the forecasted “December 2010” yields by the integratedVAR(1)model

(a) Issuer 1

Table 4.21: CAT bond pricing for issuer 1 using the yields for December, 2010 as
forecasted by the integrated VAR(1) model for betas incorporating credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 95.76 92.51 89.04 85.54 82.13 78.87 75.82 72.98
2% 98.48 96.00 93.24 90.39 87.57 84.85 82.28 79.88
3% 101.19 99.48 97.44 95.24 93.01 90.83 88.74 86.78
4% 103.90 102.97 101.64 100.09 98.45 96.81 95.21 93.68
5% 106.61 106.46 105.84 104.94 103.90 102.79 101.67 100.58

(b) Issuer 2

Table 4.22: CAT bond pricing for issuer 2 using the yields for December, 2010 as
forecasted by the integrated VAR(1) model for betas incorporating credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 56.55 52.45 49.54 47.21 45.20 43.38 41.73 40.21
2% 58.35 54.67 52.15 50.17 48.46 46.93 45.53 44.25
3% 60.14 56.90 54.76 53.12 51.73 50.49 49.34 48.29
4% 61.93 59.12 57.36 56.08 55.00 54.04 53.15 52.33
5% 63.72 61.34 59.97 59.03 58.27 57.59 56.96 56.37
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2. using the forecasted “December 2016” yields by the integrated NNARX(1)
model

(a) Issuer 1

Table 4.23: CAT bond pricing for issuer 1 using the yields for December, 2016 as
forecasted by the integrated NNARX(1) model for betas incorporating credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 94.51 91.43 88.43 85.13 81.95 78.61 75.59 72.28
2% 97.31 95.30 92.99 90.43 87.84 85.36 83.06 80.46
3% 99.98 98.72 97.35 95.75 93.61 92.06 90.36 88.75
4% 103.74 103.09 102.36 101.31 100.14 99.34 98.24 96.85
5% 106.29 107.01 107.06 106.90 106.48 106.04 105.29 104.46

(b) Issuer 2

Table 4.24: CAT bond pricing for issuer 2 using the yields for December, 2016 as
forecasted by the integrated NNARX(1) model for betas incorporating credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 56.15 52.01 49.06 46.91 45.02 43.07 41.37 39.82
2% 57.45 53.76 51.41 49.70 48.10 46.51 45.04 43.76
3% 60.09 56.77 54.62 53.30 52.09 51.19 50.19 49.27
4% 62.54 59.90 58.27 57.24 56.54 55.82 55.01 54.10
5% 63.51 61.54 60.48 59.69 59.36 59.04 58.82 58.30

Time dependent prices are increased compared to their average time indepen­
dent counterparts, as the state of the economy rapidly worsens since 2010. More­
over, we infer the following. The 3­month Interbank Rate of Germany results to
a more pessimistic pricing by the view of the investor considering the worse fi­
nancial period. Specifically, the prices are increased compared to the respective
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prices of the more promising financial period despite the fact that the total coupon
rate is much lower in the 2nd time­period.

4.5 Dynamic credit risk with respect to events

We also introduce an interdependence between the credit risk of the issuer and the
seismic sequence. A negative shock is experienced in the solvency capacity of the
issuer in case of a significant event since the obligation to pay claims comes into
conflict with the obligation to return the payments to the investors. The transition
probability matrix is assumed to change as follows given that a strong and larger
than 6Mw but weaker than 6.4Mw in zone 1 and 6.7Mw in zone 2 occurs during
the lifetime of the bond in the insured zones:

P =


0.95− ϵ 0.045 + 2 ϵ

3
0.005 + ϵ

3

0.25− 2 ϵ
3

0.50− ϵ
3

0.25 + ϵ

0 0 1


For ϵ = 9%and aftermany lines of coding and simulations, the CATbond price

under a Monte­Carlo approach for each different discounting model is presented
in the tables below. The less complicated time independent models are provided in
the Appendix for this case (Tables A3­A10), while we present the time dependent
models in this section.
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4.5.1 Time dependent cases

In this section, the results of the CAT bond pricing incorporating dynamic credit
risk considering the time dependent forecasts of the discounting yield curves are
presented:

1. using the forecasted “December 2010” yields by the integratedVAR(1)model

(a) Issuer 1

Table 4.25: CAT bond pricing for issuer 1 using the yields for December, 2010 as
forecasted by the integrated VAR(1) model for betas incorporating dynamic credit
risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 94.07 90.80 87.22 83.50 79.88 76.17 72.93 70.05
2% 96.85 94.11 90.71 87.77 84.62 81.84 79.26 76.49
3% 99.56 97.23 94.91 92.62 90.11 87.44 84.82 82.67
4% 101.58 100.53 98.75 96.57 94.65 93.10 91.20 89.21
5% 104.52 104.05 102.96 101.59 100.23 98.77 97.25 95.77

(b) Issuer 2

Table 4.26: CAT bond pricing for issuer 2 using the yields for December, 2010 as
forecasted by the integrated VAR(1) model for betas incorporating dynamic credit
risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 56.24 52.05 48.94 46.31 44.04 42.13 40.29 38.69
2% 56.73 53.30 50.83 48.83 46.97 45.23 43.83 42.45
3% 59.73 56.14 53.80 51.97 50.26 48.81 47.47 46.15
4% 61.93 58.39 56.36 54.93 53.62 52.60 51.41 50.51
5% 62.97 60.62 59.00 57.96 56.95 56.20 55.35 54.68
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2. using the forecasted “December 2016” yields by the integrated NNARX(1)
model

(a) Issuer 1

Table 4.27: CAT bond pricing for issuer 1 using the yields for December, 2016 as
forecasted by the integrated NNARX(1) model for betas incorporating dynamic
credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 93.60 90.33 86.64 82.97 79.09 75.53 71.82 68.33
2% 96.43 93.67 91.10 87.59 84.61 81.67 78.58 75.34
3% 99.25 97.06 94.69 92.61 90.27 87.74 85.19 82.94
4% 102.43 101.49 99.95 98.44 96.43 94.43 92.94 91.15
5% 105.49 104.80 103.81 102.99 102.20 100.73 99.38 98.04

(b) Issuer 2

Table 4.28: CAT bond pricing for issuer 2 using the yields for December, 2016 as
forecasted by the integrated NNARX(1) model for betas incorporating dynamic
credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 55.35 50.92 47.91 45.47 42.97 40.81 38.78 37.19
2% 56.43 52.45 49.86 47.61 45.69 43.96 42.22 40.58
3% 59.64 56.33 54.08 52.30 50.57 48.80 47.33 46.05
4% 60.07 57.02 55.02 53.50 52.36 51.44 50.53 49.42
5% 63.77 60.92 59.81 58.76 57.76 56.79 56.04 55.36

As expected, the dynamic with respect to credit risk CAT bond pricing yields
even lower prices due to the shape of the transition probability matrix.
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4.6 CAT bond design

In this section, we describe the process of determining the ideal spread over the
coupon of a conventional bond. Data containing the prices of the standard govern­
ment bond and its coupons as quoted by the Bank of Greece are used as a bench­
mark for our design and calculations. For example, on November 17, 2022, the
price announced was 80.41 euros with a coupon of 4.29%. The effective interest
rate of this bond is estimated to be 7% as seen in Figure 4.13. Incorporating the
seismic hazard default risk, the proposed spread is the one that yields the same
price with the government bond. In this case, we assume that only the coupons
are at risk, while the capital is assured to be paid to the investor. After discounting
the CAT bond by the same discount rate and using the 2% annual probability of
default due to seismic risk (according to Table 4.4), the proposed spread is found
to be equal to 1.99% as presented in Figure 4.14. It is thus concluded that a total
coupon of 4.29%+1.99%=6.28% is the ideal for the CAT bond. This same spread
for January 2010 is estimated as 2.41%. In the following chapter, the results of
the thesis are summarized, as well as recommendations for future research in this
topic.
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Figure 4.13: Effective interest rate estimation of the government bond
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Chapter 5

Conclusion and further research

The main objective of this thesis is to present an earthquake model that can be
used not only for insurance pricing and reserving, but also for SCR calculations
in the context of Solvency II and the design and pricing of a CAT bond. The
algorithms used in the present study may produce premium rates with coordinate
precision in contrast to other studies that refer to regional pricing. After comparing
different models, encoded as A0 to AF11, and Ae or AFe, we present the results
that deserve special attention. The model that uses the weighting function, AF01,
offers a slight increase of about 6% in the premium rate over the simpler model
AF00 as presented in Table 3.6. The kernel smoother models lower the earthquake
occurrence rate of the high­intensity tiles, but increase the earthquake occurrence
rate of the low­intensity tiles resulting to the increase of the premium rates and
SCR (AF10 vs AF00 or AF11 vs AF01). This high­resolution pricing could be
beneficial to insurance companies in terms of adverse selection.

The incorporation of faults contributes to premium rating by a significant per­
centage in the region of Greece, equal to roughly 10% when the typical models
are used (A0 vs AF00), but also when the ETAS model is used (Ae vs AFe). This
contribution becomes slightly greater for Attica as it is a region containing plenty
of faults as presented in Figure 2.5. More specifically, it offers an addition of

113
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12% to 13% when the typical Voronoi model or the ETAS model are used for the
historical catalogues. These contributions are significant, as faults complete the
data gaps that exist in the historical catalogues. The ETAS model should also be
considered by insurance institutions and analysts since earthquakes exhibit an epi­
demic behaviour in practice. The ETAS model yields higher premium estimates
than the simpler model, which is based on GK declustering, by an amount of 39%
when the expected value is used. The respective contribution when the median
value is used is estimated as 27%. The actual rates of the reinsurance market are
about 100 euros annually per 200,000 euros of insured value. These actual market
rates coincide with those of the ETAS model in median terms as the median rate
of the Ae model is found to be 107 euros, opposed to the GK declustering model,
where they coincide in average terms as the average rate of the A0 model is found
to be 101 euros.

Contrary to this work, the standard formula of Solvency II for the estimation of
the SCR does not consider the construction year of each building leading insurance
companies to over­reserving. The results of the proposed models prove that the
SCR based on VaR should be lower than the one calculated using the standard
formula considering moderate and high code buildings which is the vast majority
of the insured cases. For example, the proposed SCR by the AF10 model is only
67% of the standard formula’s considering moderate code buildings (Table 3.10).
If we do not consider faults (A0 model), then the proposed SCR is only 48% of the
standard formula’s (Table 3.10), which also considers historical catalogues. The
SCR induced by the ETAS model ranges from ­29% up to 22% compared to the
standard formula’s SCR depending on the construction year (Table 3.12) versus
the A0 to AF11 models where it ranges from ­52% up to 22% of the standard
formula’s SCR (Table 3.13). Convex risk measures propose larger SCR values,
but they should be strongly considered by insurance institutions as they deal with
model uncertainty thanks to their robust representations. For example, the SCR
induced by the AF00 model and the Expected Shortfall coincides with the one by
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the SF (Table 3.12).
As the magnitude of equity capital in insurance and reinsurance companies

is potentially small compared to the large­scale claims caused by extreme catas­
trophic events making them unable to compensate them, the industry employs
catastrophe (CAT) bonds to transfer this risk to investors in capital markets. In
this thesis, CAT bond pricing is processed to deal with events such that of 1999 in
Athens, which resulted to c = 3 billion euros of total material loss1 by the activa­
tion of the Parnitha fault. Therefore, the bond is used as a reinsurance alternative.
The proposed fault­specific model estimates the probability of overcoming this
threshold c equal to 2% on an annual basis based on the geometrical properties of
faults as described by the GreDaSS database (Table 4.4). A CAT bond design that
could be potentially issued by the Greek government is provided. The proposed
spread over a typical coupon of the Greek government bond is estimated as 2% to
undertake the risk of the natural catastrophe of earthquake.

Various discounting methods are considered for the estimation of the present
value of the bond. The 3­month IBR of Germany (modelled by the model of Va­
sicek) yields more pessimistic estimates for the investor than the ECB yield curves
and with a wider price range between the two different investigated time­periods.
For example, the price of the 10­year zero­coupon bond discounted with ECB
yield curves (Face Value=1) ranges from 0.67 to 0.74 for the two different time
periods (Table 4.2). Respectively, the price of the 10­year zero­coupon bond (Face
Value=1) discounted with 3­month IBR of Germany ranges from 0.81 to 1.16 for
the different time periods (Table 4.1). The Svensson model appears to be statisti­
cally insignificant proving that the simpler Nelson­Siegel model is sufficient for
modelling the ECB yield curves. In order to deal with the non­stationarity of the
beta factors of the Nelson­Siegel model, the differenced time­series is used. Com­
paring the different models based on cross­validation, the best predictive model
for the first (more promising) financial period is the VAR(1) used on the incre­

1https://en.wikipedia.org/wiki/1999_Athens_earthquake
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ments of betas with an MSE of 0.020. The best predictive model for the second
(including the financial crisis) financial period respectively is the NNARX(1) used
on the increments of betas with an MSE of 0.016 (Table 4.3).

CAT bond pricing by theVasicekmodel on the 3­month IBR ofGermany yields
higher CAT bond prices during the second financial period compared to the first
despite the lower coupon payments. On the other hand, the exactly opposite hap­
pens with ECB yield curves fitted by the Nelson­Siegel model. We also observed
that there can be found different spread fixed values that keep the CAT bond price
roughly constant across different maturities. Moreover, the prices with respect
to time­dependent methods offer the benefit of providing forecasts and they are
increased compared to their time independent counterparts as the financial crisis
appeared since 2010.

In the absence of the mediator SPV, credit risk is introduced as the insurer is
also the issuer. An insurance company must be able to simultaneously receive
premiums for its policies and pay claims, receive capital and pay returns for the
issuance of the CAT bond. Dynamic and non­dynamic credit risk is investigated
as two issuers are introduced where the first appears to be more solvent than the
second based on a transition probability matrix. As expected, the CAT bond pric­
ing involving credit risk yields lower prices than the one issued by an SPV, and the
bond issued by the first issuer appears to be more expensive than the second. Fi­
nally, the prices are more reduced in the dynamic case where there is a dependence
between the seismic sequence and the creditworthiness of the issuers.

The present research could be extended in many aspects. Further research
could include more inter­event time distributions and more GMPEs. Different
premium principles may also be used to account for uncertainty. The claims in
this work are also supposed to be equal to the estimated losses. This could be
evolved by considering deductions and inflation costs to premium rating. A CAT
bond could be also issued for different hazard phenomena considering the pro­
posed discounting processes (wildfire, hurricane, flood etc.). However, all pro­
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posed methods are again applicable after such changes.
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Appendix

Table A1: Premium rating under AF10 model

LON LAT REG POS L M H
23.70203 37.95552 ATT 17672 570 139 69
23.70381 38.08099 ATT 13341 1087 250 125
23.81193 38.07281 ATT 14561 746 274 137
23.75344 37.86282 ATT 16674 478 110 55
23.69955 37.93208 ATT 17561 541 147 73
23.75725 37.93191 ATT 16342 588 154 77
23.74914 37.91107 ATT 16452 601 121 60
23.75792 38.13064 ATT 13676 1151 279 140
23.76154 37.97615 ATT 15771 521 177 88
23.96096 38.15526 ATT 19007 822 194 97
23.88193 38.00473 ATT 15351 725 174 87
23.85231 37.95401 ATT 19002 560 171 86
24.05712 37.71496 ATT 19500 294 57 29
23.54212 38.04323 ATT 19200 1072 269 135
23.49645 37.96421 ATT 18900 815 230 115
23.8075 38.05457 ATT 15124 907 261 130
23.8019 37.81836 ATT 16672 418 70 35
23.64693 37.94292 ATT 18535 618 162 81
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23.83581 38.04966 ATT 15127 832 262 131
23.85963 38.14042 ATT 14565 803 250 125
23.71506 37.91368 ATT 17455 499 149 74
23.73473 37.94994 ATT 17235 737 157 78
23.79551 38.00501 ATT 15561 764 179 90
23.75581 38.01821 ATT 11147 780 223 112
23.75353 37.95507 ATT 16232 578 159 80
23.77612 38.06198 ATT 14122 858 240 120
23.65941 37.99038 ATT 12351 771 173 86
23.72977 38.0507 ATT 13562 937 281 141
23.67848 37.99223 ATT 12241 719 215 108
23.68491 38.04189 ATT 13231 990 247 123
23.66446 38.00506 ATT 12461 778 195 97
23.75214 38.04316 ATT 14231 841 275 138
23.712 37.93188 ATT 17123 591 148 74
23.72896 37.98618 ATT 10432 586 160 80
23.75852 38.06114 ATT 14452 860 234 117
23.71031 38.01227 ATT 12133 694 213 107
23.87291 37.90004 ATT 19400 472 94 47
23.94367 37.8881 ATT 19003 402 93 47
24.01216 38.01726 ATT 19009 541 128 64
23.49539 38.07622 ATT 19600 1196 306 153
23.72409 37.92426 ATT 17342 518 149 74
23.70673 38.0348 ATT 13122 1024 222 111
23.77491 38.00356 ATT 15451 603 192 96
23.73209 37.99412 ATT 10434 799 161 80
23.82762 38.03645 ATT 15235 751 216 108
23.76568 37.84049 ATT 16673 462 125 62
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23.65314 37.94207 ATT 18534 785 162 81
23.81007 38.07659 ATT 14561 1071 230 115
23.76461 37.88315 ATT 16561 522 124 62
23.71178 37.97872 ATT 11854 741 161 80
23.68544 37.9435 ATT 17674 662 123 61
23.76534 37.99299 ATT 11523 605 154 77
23.66657 37.97476 ATT 18233 752 163 82
23.70523 40.66364 CMC 57014 698 168 84
22.94226 40.63101 CMC 54623 1341 334 167
23.00504 40.72466 CMC 57200 1159 395 197
22.24465 40.49624 CMC 59100 743 229 115
22.8745 40.99389 CMC 61100 1050 323 161
23.82878 41.03015 CMC 62042 382 92 46
23.28228 41.18158 CMC 62400 859 229 115
22.93031 40.67187 CMC 56431 1126 316 158
23.86562 40.17014 CMC 63078 636 144 72
22.95452 40.58541 CMC 55133 1102 314 157
23.0323 40.58168 CMC 55236 1006 308 154
22.9226 40.6438 CMC 54627 1175 362 181
22.90862 40.66949 CMC 56224 1154 307 154
22.94631 40.66158 CMC 56533 1160 340 170
23.54281 41.08831 CMC 62125 633 154 77
22.50866 40.27148 CMC 60132 437 59 30
23.10803 40.29715 CMC 63080 505 114 57
23.44028 40.3778 CMC 63100 518 123 61
22.05069 40.8024 CMC 58200 1060 214 107
22.94309 40.63478 CMC 54624 1061 302 151
23.8633 40.89849 CMC 62041 349 119 59
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22.41598 39.63878 THE 41222 550 102 51
21.76825 39.55562 THE 42132 698 164 82
21.92381 39.36755 THE 43131 958 289 145
22.94659 39.3615 THE 38221 945 286 143
22.74508 39.38092 THE 37500 781 181 91
21.118 39.04306 WGR 30500 1446 380 190
22.0811 38.25058 WGR 25100 2355 675 337
21.73507 38.24621 WGR 26221 2423 664 332
21.44249 37.67254 WGR 27131 2655 768 384
24.14679 41.15005 EMT 66133 264 45 22
24.40948 40.9365 EMT 65302 164 34 17
24.88367 41.1356 EMT 67133 241 34 17
25.13475 35.33122 CRE 71305 1107 299 149
24.01881 35.51624 CRE 73132 910 210 105
24.47945 35.36557 CRE 74131 1050 305 153
22.80866 37.56818 PEL 21100 779 211 105
22.93203 37.93858 PEL 20131 1345 345 173
22.10912 37.02737 PEL 24131 1435 493 247
21.78596 40.30103 WMC 50131 1087 264 132
21.42584 40.08355 WMC 51100 1276 378 189
20.84021 39.67453 EPI 45333 1732 501 251
20.98617 39.15907 EPI 47132 1538 386 193
22.43368 38.8999 CGR 35132 1616 412 206
23.3229 38.31986 CGR 32200 1958 529 264
20.43696 38.20129 ION 28200 3079 803 401
25.16147 37.53807 SAE 84200 162 18 9
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Figure A1: Premium mode code rates under model AF10.
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Figure A2: Premium mode code rates under model A1.
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Table A2: Premium mode code rating under AFe model

LON LAT REG POS L M H
23.70203 37.95552 ATT 17672 878 195 97
23.70381 38.08099 ATT 13341 1116 285 142
23.81193 38.07281 ATT 14561 1103 261 131
23.75344 37.86282 ATT 16674 468 112 56
23.69955 37.93208 ATT 17561 679 188 94
23.75725 37.93191 ATT 16342 902 200 100
23.74914 37.91107 ATT 16452 752 174 87
23.75792 38.13064 ATT 13676 916 240 120
23.76154 37.97615 ATT 15771 1029 340 170
23.96096 38.15526 ATT 19007 511 119 59
23.88193 38.00473 ATT 15351 661 241 121
23.85231 37.95401 ATT 19002 629 162 81
24.05712 37.71496 ATT 19500 263 57 29
23.54212 38.04323 ATT 19200 890 221 111
23.49645 37.96421 ATT 18900 957 232 116
23.8075 38.05457 ATT 15124 1221 343 171
23.8019 37.81836 ATT 16672 409 87 43
23.64693 37.94292 ATT 18535 774 174 87
23.83581 38.04966 ATT 15127 1162 233 117
23.85963 38.14042 ATT 14565 725 170 85
23.71506 37.91368 ATT 17455 779 183 92
23.73473 37.94994 ATT 17235 889 253 126
23.79551 38.00501 ATT 15561 1271 377 189
23.75581 38.01821 ATT 11147 1519 547 273
23.75353 37.95507 ATT 16232 1043 203 101
23.77612 38.06198 ATT 14122 1438 516 258
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23.65941 37.99038 ATT 12351 858 236 118
23.72977 38.0507 ATT 13562 1366 410 205
23.67848 37.99223 ATT 12241 1022 314 157
23.68491 38.04189 ATT 13231 1170 327 163
23.66446 38.00506 ATT 12461 1051 276 138
23.75214 38.04316 ATT 14231 1786 518 259
23.712 37.93188 ATT 17123 664 210 105
23.72896 37.98618 ATT 10432 1219 324 162
23.75852 38.06114 ATT 14452 1325 405 203
23.71031 38.01227 ATT 12133 1323 391 196
23.87291 37.90004 ATT 19400 565 116 58
23.94367 37.8881 ATT 19003 395 69 35
24.01216 38.01726 ATT 19009 410 107 54
23.49539 38.07622 ATT 19600 998 297 149
23.72409 37.92426 ATT 17342 655 169 85
23.70673 38.0348 ATT 13122 1245 340 170
23.77491 38.00356 ATT 15451 1442 397 198
23.73209 37.99412 ATT 10434 1343 334 167
23.82762 38.03645 ATT 15235 1041 269 134
23.76568 37.84049 ATT 16673 553 126 63
23.65314 37.94207 ATT 18534 674 175 87
23.81007 38.07659 ATT 14561 878 295 147
23.76461 37.88315 ATT 16561 591 97 48
23.71178 37.97872 ATT 11854 1096 290 145
23.68544 37.9435 ATT 17674 785 211 106
23.76534 37.99299 ATT 11523 1120 406 203
23.66657 37.97476 ATT 18233 815 240 120
23.70523 40.66364 CMC 57014 2223 673 337
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22.94226 40.63101 CMC 54623 1792 587 294
23.00504 40.72466 CMC 57200 1585 450 225
22.24465 40.49624 CMC 59100 667 124 62
22.8745 40.99389 CMC 61100 979 289 144
23.82878 41.03015 CMC 62042 457 97 49
23.28228 41.18158 CMC 62400 849 202 101
22.93031 40.67187 CMC 56431 1899 673 336
23.86562 40.17014 CMC 63078 733 187 93
22.95452 40.58541 CMC 55133 1468 461 231
23.0323 40.58168 CMC 55236 1787 436 218
22.9226 40.6438 CMC 54627 2011 604 302
22.90862 40.66949 CMC 56224 2269 609 304
22.94631 40.66158 CMC 56533 1877 558 279
23.54281 41.08831 CMC 62125 516 127 64
22.50866 40.27148 CMC 60132 486 83 42
23.10803 40.29715 CMC 63080 591 142 71
23.44028 40.3778 CMC 63100 763 199 100
22.05069 40.8024 CMC 58200 627 134 67
22.94309 40.63478 CMC 54624 1813 603 301
23.8633 40.89849 CMC 62041 510 101 50
22.41598 39.63878 THE 41222 448 59 30
21.76825 39.55562 THE 42132 668 146 73
21.92381 39.36755 THE 43131 2406 701 351
22.94659 39.3615 THE 38221 1856 537 268
22.74508 39.38092 THE 37500 2739 793 396
21.118 39.04306 WGR 30500 972 205 102
22.0811 38.25058 WGR 25100 1949 549 274
21.73507 38.24621 WGR 26221 2327 597 298



140

21.44249 37.67254 WGR 27131 4261 1338 669
24.14679 41.15005 EMT 66133 310 60 30
24.40948 40.9365 EMT 65302 209 36 18
24.88367 41.1356 EMT 67133 165 30 15
25.13475 35.33122 CRE 71305 1905 530 265
24.01881 35.51624 CRE 73132 768 178 89
24.47945 35.36557 CRE 74131 803 161 81
22.80866 37.56818 PEL 21100 1008 288 144
22.93203 37.93858 PEL 20131 2173 743 371
22.10912 37.02737 PEL 24131 904 227 114
21.78596 40.30103 WMC 50131 923 265 133
21.42584 40.08355 WMC 51100 899 204 102
20.84021 39.67453 EPI 45333 1432 310 155
20.98617 39.15907 EPI 47132 1201 327 164
22.43368 38.8999 CGR 35132 1403 533 267
23.3229 38.31986 CGR 32200 1091 231 115
20.43696 38.20129 ION 28200 3580 884 442
25.16147 37.53807 SAE 84200 183 30 15
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HJM theory and the relation with the Vasicek model

The following hold for the forward rate f(t, T ):

df(t, T ) = σ(t, T )dWt + a(t, T )dt.

Integrating df :

f(t, T ) = f(0, T ) +

∫ t

0

σ(s, T )dWs +

∫ t

0

a(s, T )ds.

Then, the short rate

r(t) = lim
t→T

F (t, T ) = f(0, t) +

∫ t

0

σ(s, t)dWs +

∫ t

0

a(s, t)ds.

The accumulation factor

B(t) = exp[
∫ t

0

r(s)ds]

and let

B(t, T ) = exp[−
∫ T

t

f(t, u)du].

Then, the present value is

Z(t, T ) = B−1(t) +B(t, T ) = exp(−Xt)

where:

Xt =

∫ T

0

f(0, u)du+

∫ t

0

∫ T

s

σ(s, u)dudWs +

∫ t

0

∫ T

s

a(s, u)dudt.

Applying Ito’s lemma to Z(t, T ), we obtain:

dZ(t, T ) = Z(t, T )

[
−v(t, T )dWt −

∫ T

t

a(t, u)dudt+
v2(t, T )

2
dt

]
,



142

where v(t, T ) =
∫ T

t
σ(t, u)du. The two necessary conditions in order to make

Z(t,T) a martingale and suppress arbitrage opportunities are respectively:

1. dW̃t = dWt + γt, γt =
1

v(t,T )

∫ T

t
a(t, u)dt− v(t,T )

2
,

2. a(t, T ) = σ(t, T )[v(t, T ) + γt.

For the case of Vasicek, assuming γt = 0 and σ(t, T ) = σ exp[−α(T − t)],
where α is the speed reversion, we obtain the well­known equation of the Vasicek
SDE.
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Simulation based short­rate pricing

The discount process is described byB(t) = EQ[exp(−
∫ t

0
r(u)du)] (Privault,

2012), where r(t) is the short­rate stochastic process denoting the daily Libor rate.
andQ is the risk neutral (or martingale) measure. The SDE under the initial natural
measure P is:

drt = a(b− rt)dt+ σdWt.

By the theorem of Girsanov (1960), the change of measure by

dWt = dW̃t − λdt

leads to a standard Brownian motion W̃t, where λ is the market price of risk
which gives the extra increase in the expected instantaneous rate of return on the
bond per an additional unit of risk.

The SDE under the new measure Q becomes:

drt = a

(
b− λσ

a
− r(t)

)
dt+ σdW̃t.

A closed form solution for the Vasicek interest rate model is presented in
Nowak (2013). Nowak considered the parameters as estimated by Episcopos (2000).
However, we present a simulation methodology which fits to every SDE form.
We assume that the 3­month IBR obeys the Vasicek interest rate law, where r(0)
is the last observable rate in our data. Following Mikosch (1998), we denote
W̃t = W (t) + λt the Brownian motion which is a martingale under the equiv­
alent to P measure Q and dt = 1 day. We produce many (M=5000) paths. Each
path j has a ten­year maturity for the stochastic processes, and it is constructed as
follows:

W (0) = 0
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W (t) = W (t− 1) + dWt, dW (t) ∼ N(0, 1)

W̃ (t) = W (t) + λt

r(t) = r(t− 1) + [a(b∗ − r(t− 1))]dt+ σ(W̃ (t)− W̃ (t− 1)),

where b∗ = b− λσ
a
. Then,

B(k) = EQ

[
exp

(
−

4k∑
t=0

r(t)

)]
is the discounting factor for a payment that occurs k years after today (t=0),

k = 1,…, 10, estimated using the Monte­Carlo method by

B̂k =

∑
j=1 M exp(−

∑4k
t=0 r(t))

M
.
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Results using the Short­rate Vasicek model for overnight libor

For example, we first consider the overnight libor rate (in euros) as the dis­
counting short rate. With the use of the Vasicek model, the pricing of longmaturity
bonds is highly dependent on the choice of the historical data period, resulting in
prices of approximately 450 euros for 100 euros of face value in the time period
of 2020­2021 or even approximately 22 euros for 100 euros of face value in the
time period 2009­2011 for a zero­coupon bond.

From 2000 up to 2009 estimates of the Vasicek model and of B(261 days)=B(1
year): We chose 261 days as the number that LIBOR is announced per year.

ad = 0.017, bd = 2.7%, σ = 0.2%

and B(261) = B(1year) = 0.015 euros at T=0 for 1 euro at time T=1 year.
From 2009 up to 2011 estimates of the Vasicek model and of B(261 days)=B(1

year):
ad = 0.08, bd = 0.6%, σ = 0.15%

and B(261) = B(1year) = 0.22 euros at T=0 for 1 euro at time T=1 year.
From 2020 up to 2021 estimates of the Vasicek model and of B(261 days)=B(1

year):
ad = 0.09, bd = −0.6%, σ = 0.004%

and B(261) = B(1year) = 4.5 euros at T=0 for 1 euro at time T=1 year.
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Insurance pricing algorithm using the ETAS model and fault
sources

1. Fill a matrix FN containing simulations of annual number of earthquakes
for each fault source described by a mix of a Poisson and a time­dependent
process with lognormal inter­event times as in chapter 2.

2. Fill a matrixAN containing simulations of annual number of earthquakes for
each area source based on the background seismicity described by a homo­
geneous in time Poisson Process as in chapter 2.

3. Fill a matrix FM containing simulations of magnitudes of earthquakes for
each fault source described by a truncatedGaussian distribution as in chapter
2.

4. Fill a matrix AM containing simulations of maximum magnitudes over the
whole cloud generated by a background event for each area source as de­
scribed in chapter 2.

5. Create an empty zero matrix G4 containing the maximum over­a­year loss
due to all seismic sources

6. For each area source create an empty zero matrixG1 containing several sim­
ulations of the maximum over­a­year losses of each building due to each
source

7. Generate earthquakes based on AN and the maximum magnitude AM for
each area source, attenuate it to all buildings using the attenuation equation
(2.7) and transform it to damage using the fragility curves of Kappos et al.
(2006) and store it to G1.

8. Take the element­by­element maximum damage between the previous and
next matrix G1 before moving to the next area source. Repeat for all area
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sources to result to a matrix G2 containing simulations of the maximum
over­a­year damage from all area sources to each building of the investigated
portfolio.

9. For each fault source create an empty zero matrix G3 containing several
simulations of the maximum over­a­year losses of each building due to each
source

10. Generate earthquakes based on FN and keep the maximummagnitude based
on FM for each fault source, attenuate it to all buildings using the attenua­
tion equation (2.8) and transform it to damage using the fragility curves of
Kappos et al. (2006) and store it to G3.

11. Take the element­by­element maximum between the previous G2 and next
matrixG3 beforemoving to the next fault source. Repeat for all fault sources
to result to a matrixG4 containing simulations of the maximum over­a­year
damage from all sources to each building of the investigated portfolio.

12. The expected loss of each building of G4 is its risk premium, while risk
measures are applied to the total loss to evaluate the SCR.
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STAN algorithm for the derivation of the 12­month LIBOR
Vasicek estimates

vas.stan = ”
data {
int<lower=0> N;
vector[N] libor12;
}

parameters {
real alpha;
real beta;
real<lower=0> sigma;
}

model {
libor12[2:N] ∼ normal(alpha*beta + (1­alpha) * libor12[1:N­1], sigma);
}
” fit = stan(model_ code=vas.stan, data=list(libor12=libor12, N=length(libor12)))
theta_ draws = extract(fit)
(alpha2<­mean(theta_ draws$alpha))
(beta2<­mean(theta_ draws$beta))
(sigma2<­mean(theta_ draws$sigma))
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Dynamic Credit Risk CAT bond pricing for time independent
cases

1. For the 3­month IBR of Germany

(a) 2000­2009

i. Issuer 1

TableA3: CATbond pricing using the 3­month IBR ofGermany for issuer 1 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 92.50 89.39 87.32 85.03 83.23 81.45 79.48 78.46
2% 94.90 92.92 90.91 89.29 87.77 86.62 85.76 85.17
3% 97.68 96.46 95.12 94.30 93.35 92.59 92.14 91.79
4% 100.12 99.86 99.56 99.46 98.78 98.95 98.79 99.09
5% 103.34 103.80 103.81 104.38 105.01 105.36 105.95 106.63

ii. Issuer 2

TableA4: CATbond pricing using the 3­month IBR ofGermany for issuer 2 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 54.64 50.71 48.21 46.43 45.08 43.98 43.00 42.18
2% 57.52 54.08 51.75 50.49 49.76 48.80 48.37 47.76
3% 58.33 55.29 53.82 52.92 52.25 51.93 51.77 51.59
4% 60.14 57.52 56.34 55.94 55.73 55.63 55.71 55.75
5% 62.40 60.41 59.50 59.02 59.11 59.02 59.28 59.56
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(b) 2010­2015

i. Issuer 1

TableA5: CATbond pricing using the 3­month IBR ofGermany for issuer 1 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 95.53 94.05 91.83 90.10 88.74 87.33 85.83 84.87
2% 98.66 97.48 96.61 95.79 95.25 94.04 93.52 92.97
3% 101.14 100.95 100.64 100.32 100.28 99.75 99.58 99.32
4% 104.40 105.21 106.36 107.16 108.23 108.72 109.72 110.82
5% 107.77 109.51 111.03 113.18 114.30 115.96 117.63 118.95

ii. Issuer 2

TableA6: CATbond pricing using the 3­month IBR ofGermany for issuer 2 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 56.74 53.39 51.26 49.99 49.03 48.08 47.10 46.54
2% 58.36 55.04 53.17 51.87 51.02 50.49 50.13 49.67
3% 60.23 57.67 56.43 55.83 55.52 55.23 55.21 55.41
4% 62.33 60.37 60.01 59.89 60.17 60.16 60.66 61.06
5% 64.58 62.70 62.61 62.92 63.43 64.35 65.16 65.98



151

2. ECB yield curves modeled with Nelson­Siegel time independent model

(a) 2004­2009

i. Issuer 1

TableA7: CATbond pricing using the ECByield curves for issuer 1 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 91.03 87.33 83.97 80.39 77.31 73.95 70.86 68.11
2% 93.93 90.84 87.76 84.64 81.90 78.88 76.23 73.79
3% 96.56 94.30 92.29 89.80 87.23 84.74 82.72 80.60
4% 99.35 97.74 96.33 94.77 92.84 91.18 89.45 87.64
5% 101.94 101.37 100.48 99.10 97.99 96.68 95.55 94.20

ii. Issuer 2

TableA8: CATbond pricing using the ECByield curves for issuer 2 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 53.40 49.18 46.07 43.63 41.92 40.08 38.37 36.82
2% 56.18 52.25 49.41 47.08 45.38 43.94 42.58 41.21
3% 56.78 53.42 51.34 49.59 48.12 46.80 45.63 44.56
4% 59.56 56.53 54.67 53.35 52.28 51.34 50.35 49.49
5% 61.02 58.56 57.04 55.82 55.00 54.19 53.42 52.70
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(b) 2010­2015

i. Issuer 1

TableA9: CATbond pricing using the ECByield curves for issuer 1 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 89.79 84.76 79.67 74.92 70.62 66.04 61.75 57.74
2% 92.58 88.67 84.72 80.43 76.54 72.39 68.44 64.68
3% 95.25 91.87 88.18 84.77 81.25 77.57 74.27 70.98
4% 97.87 95.59 92.88 89.92 86.82 83.91 81.06 78.59
5% 101.01 99.14 96.92 94.46 92.08 89.86 87.61 85.19

ii. Issuer 2

TableA10: CATbond pricing using the ECByield curves for issuer 2 under dynamic credit risk
Spread|maturity T=3 T=4 T=5 T=6 T=7 T=8 T=9 T=10
1% 52.40 47.58 43.76 40.71 38.10 35.60 33.29 31.19
2% 54.21 49.47 46.01 43.45 41.18 39.09 36.88 34.95
3% 57.77 53.21 50.24 47.72 45.34 43.37 41.61 39.92
4% 57.72 53.80 51.33 49.36 47.32 45.66 44.25 42.77
5% 60.10 56.86 54.66 52.95 51.33 50.10 48.76 47.51
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