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Abstract

Katerina Mantzouni

Bayesian Analysis and Model Selection for

Contingency Tables using Power Priors

March, 2022

In this dissertation, a comprehensive Bayesian model comparison approach is

proposed for association models in contingency tables. The proposed methodology

deals with the suitable specification of the prior distributions, as well as the allied

computational issues regarding the estimation of the Bayesian evidence, which is the

core component of the posterior model probabilities in Bayesian model comparison,

selection and averaging. More specifically, the choice of the prior distribution

in Bayesian model comparison and testing is problematic due to the well-known

sensitivity of the posterior model odds and the associated Barlett-Lindley paradox

(Bartlett, 1957, Lindley, 1957). This fact has led to the development of objective

Bayes techniques which refers to the use of reasonably low information priors when

no actual prior information is available. Within this framework, the utilization

XIV



of the power prior approach is proposed. In order to implement the method, a

set of imaginary data from the most parsimonious model is produced satisfying

by this way the locality criterion of Bayesian model comparison theory, Bayarri

et al. (2012). Then, the prior distribution can be obtained by the product of the

likelihood of the model under consideration evaluated at some historical data raised

to a power and then multiplied by a pre-prior distribution, Ibrahim and Chen

(2000). Here we extend and adapt this method by using instead of historical data

imaginary data supporting the null model or hypothesis and we consider a relatively

flat pre-prior.

Evaluation of the models under consideration and the related Bayesian tests

are obtained by using MCMC based marginal likelihood estimators. We introduce

and examine two versions of the importance sampling estimator of Perrakis et al.

(2014): the independent and the one-block estimator. The results are compared with

two versions of the Laplace approximation: the original one and an MCMC based

approximation Lewis and Raftery (1997a). Results have shown that the one-block

importance estimator works fast and efficiently even in sparse contingency tables

when competitors may fail. We illustrate and compare the proposed methodology

in two real data sets (one sparse and one with full cell frequencies) and by using an

extended simulation study. In the simulation study, we further examine the model

selection consistency of the proposed power-prior based methodology.

Finally, a comprehensive Bayesian analysis expansion is illustrated for graph-

ical models of conditional independence for three way contingency tables using

the power prior setup based on the approach of Tarantola and Ntzoufras (2012).

More specific, extending the proposed methodology from marginal to conditional

independence, involving suitable choices of prior parameters, estimation, model

determination, as well as the allied computational issues. Each conditional inde-

pendence model corresponds to a particular factorization of the cell probabilities

and a conjugate analysis based on a Dirichlet prior performed. Unit information

interpretation priors are used as a yardstick in order to identify and interpret

XV



the effect of any other prior distribution used. The posterior distributions of the

graphical models parameters, are obtained using simple Markov chain Monte Carlo

(MCMC) schemes.

This dissertation offers an innovative analytical and methodological ap-

proach in Bayesian model selection and comparison in categorical data. The first

contribution of this thesis is the prior construction using imaginary data and the

power prior approach in order to obtain an objective Bayes model comparison

approach. The second contribution is the implementation and adaptation of two

versions of Perrakis Monte Carlo estimator for obtaining the marginal likelihood in

contingency tables. The proposed Monte Carlo estimators are simple to implement

and efficient in all examples and simulations illustrated in this thesis. Both esti-

mators can be further used for other practical problems and contexts. A further

but secondary contribution is a fact that we identify the problem of zero counts

in sparse contingency tables and their effect on the estimation of the marginal

likelihood. Here, we propose a way to alleviate this problem, this is an initial

study and needs further treatment. Finally, we develop and study a similar prior

approach based on the power prior and imaginary data for graphical models in three

way contingency tables using conjugate analysis. Future research may include the

Bayesian comparison and combination of the two different groups of models (the

association and graphical models) consider here and their implementation (using

the proposed methods of this thesis) in contingency tables of higher dimension.

The structure of this thesis is the following: Chapter 1 introduces the main

ideas of categorical data and Bayes. Chapter 2 illustrates the main Bayesian

methodology for model comparison for association models. Chapter 3 provides the

implementation in real data and extensive simulation study. Chapter 4 illustrates an

Bayesian analysis for graphical models of conditional independence using conjugate

analysis. Chapter 5 is a sort discussion and conclusions of this thesis.
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ΠΕΡΙΛΗΨΗ

Κατερίνα Μαντζούνη

Μπεϋζιανή Ανάλυση και Επιλογή του

κατάλληλου Μοντέλου σε Πίνακες

Συνάφειας χρησιμοποιώντας

Εκ-των-προτέρων Κατανομές Δύναμης

Μάρτιος, 2022

Κεντρικός πυλώνας της παρούσας διδακτορικής διατριβής είναι η ανάπτυξη προ-

τεινόμενης μεθοδολογίας για τη Μπεϋζιανή ανάλυση κατηγορικών μεταβλητών σε

πίνακες συνάφειας με σκοπό την επιλογή του καταλληλότερου μοντέλου. Η Μπε-

ϋζιανή προσέγγιση εφαρμόστηκε τόσο σε μοντέλα συνάφειας (association models),

όσο και σε γραφικά μοντέλα (graphical models ) σε πίνακες συνάφειας διπλής και τρι-

πλής εισόδου, αντίστοιχα. Η προτεινόμενη μεθοδολογία περιλαμβάνει τον καθορισμό

κατάλληλων εκ-των-προτέρων κατανομών, καθώς επίσης και υπολογιστικές τεχνικές

για την εκτίμηση Μπεϋζιανών περιθώριων πιθανοφανειών, οι οποίες είναι απαραίτητες
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για τον υπολογισμό των εκ-των-υστέρων κατανομών στην Μπεϋζιανή σύγκριση και

επιλογή του καταλληλότερου μοντέλου. Πιο συγκεκριμένα, η επιλογή κατάλληλης

εκ-των-προτέρων κατανομής στη Μπεϋζιανή σύγκριση μοντέλων και των σχετικών

ελέγχων είναι πολλές φορές προβληματική λόγω του γνωστού προβλήματος ευαι-

σθησίας των εκ των υστέρων πιθανοτήτων και του παραδόξου των Barlett-Lindley,

(Bartlett, 1957, Lindley, 1957). Το γεγονός αυτό οδήγησε στην ανάπτυξη αντικειμε-

νικών Μπεϋζιανών τεχνικών, οι οποίες προτείνουν τη χρήση μη πληροφοριακών εκ-

των-προτέρων κατανονών, όταν δεν υπάρχει κάμια εκ-των-προτέρων πληροφορία για

τα δεδομενα. Σε αυτο το πλαίσιο προτείνονται οι εκ-των-προτέρων κατανομές δύνα-

μης. Για την εφαρμογή της προτεινόμενης μεθοδολογίας σε πίνακες συνάφειας, που

στόχο έχει την επιλογή του καταλληλότερου μοντέλου συνάφειας, κατασκευάστηκαν

δύο σενάρια εκ-των-προτέρων κατανομών με τη χρήση πλασματικών δεδομένων, τα

οποία βασίστηκαν στις εκ-των-προτέρων κατανομές δύναμης (Power priors).

Για την αξιολόγηση των υπό εξέταση μοντέλων και Μπεϋζιανών ελέγχων και

για τον υπολογισμό της περιθώριας κατανομής χρησιμοποιήθηκαν Monte Carlo εκτι-

μητές που βασίζονται σε αποτελέσματα MCMC τεχνικών. Εισάγουμε και εξετάζουμε

δύο προτεινόμενους εκτιμητές, οι οποίοι βασίζονται στον εκτιμητή που προτείνεται

από τον Perrakis et al. (2014). Πραγματοποιήθηκε σύκριση των αποτελεσμάτων με

δύο εκδοχές της προσέγγισης κατά Laplace, την απλή και μία όπου συγκεκριμένες

ποσότητες του εκτιούνται μέσω MCMC. Τα αποτελέσματα έδειξαν ότι ο εκτίμητής

που βασίζεται στην μεθοδολογία του Περράκη, λειτουργεί γρήγορα και αποτελεσματι-

κά ακόμα και σε αραιούς (sparse) πίνακες συνάφειας, όπου οι περισσότεροι εκτιμητές

αποτυγχάνουν. ΄Ολες οι τεχνικές εφαρμόστηκαν και ελέγχθηκαν σε πραγματικά δε-

δομένα αλλά και σε αναλυτικές μελέτες προσομοίωσης. Για να ελεγχθεί η εγκυρότητα

της προτεινόμενης μεθοδολογίας χρησιμοποιήθηκαν κριτήρια αντικειμενικών μεθόδων

Bayes, όπως συνέπεια επιλογής μοντέλων, συνέπεια πληροφορίας και το κριτήριο της

αντιστοίχισης προβλεπτικών κατανομών.

Τέλος, παρουσιάζεται η επέκταση της μεθοδολογίας στη χρήση μεθόδων Μπε-

ϋζιανής ανάλυσης γραφικών μοντέλων σε πίνακες συνάφειας τριπλής εισόδου χρησι-
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μοποιώντας εκ-των-προτέρων κατανομές δύναμης με έμφαση στην προσέγγιση των

Tarantola and Ntzoufras (2012). Πιο συγκεκριμένα, η μέθοδος επεκτάθηκε από

περιθώρια ανεξαρτησία σε ανεξαρτησία υπό συνθήκη για τρείς κατηγορικές μεταβλη-

τές, και περιλμβάνει κατάλληλες επιλογές εκ-των-προτέρων κατανομών, εκτίμηση και

προσδιορισμός του μοντέλου κσι συναφή υπολογιστικά ζητήματα. Σε κάθε μοντέλο

ανεξαρτησίας υπό συνθήκη αντιστοιχείται μια συγκεκριμένη παραγοντοποίηση των

πιθανοτήτων των κελιών και εφαρμόζεται συζυγής ανάλυση, βασιζόμενη σε Dirich-

let εκ-των-προτέρων κατανομές. Εκ-των-προτέρων κατανομές μοναδιαίας ερμηνευτι-

κής πληροφορίας χρησιμοποιούνται σαν μέτρο σύγκρισης με στόχο να ελεγχθεί και

να ερμηνευθεί η επίδραση οποιονδήποτε εκ-των-προτέρων κατανομών. Για να υπο-

λογιστούν οι εκ-των-υστέρων κατανομές των παραμέτρων των γραφικών μοντέλων

χρησιμοποιήθηκαν MCMC μέθοδοι. Η προτεινόμενη μεθοδολογία εφαρμόστηκε σε

πραγματικά αλλά και σε προσομοιωμένα δεδομένα.

Αυτή η διατριβή προσφέρει μια καινοτόμο αναλυτική και μεθοδολογική προσέγ-

γιση για την Μπεϋζιανή επιλογή και σύγκριση μοντέλων σε κατηγορικά δοδομένα.

Η πρώτη συβολή της παρούσας διδακτορικής διατριβής είναι η κατασκευή εκ-των-

προτέρων κατανομών, για τις οποίες χρησιμοποιήθηκαν πλασματικά δεδομένα και

η προσέγγιση της εκ-των-προτέρων κατανομής δύναμης, με σκοπό την εξασφάλιση

μιας αντικειμενικής Μπεϋζιανής (Objective Bayes) μεθοδολογίας σύγκρισης μον-

τέλων. Η δεύτερη συνεισφορά είναι η εφαρμογή και προσαρμογή δύο εκδοχών του

Monte Carlo εκτιμητή του Περράκη για την εκτίμηση και τον υπολογισμό της περι-

θώριας κατανομής σε πίνακες συνάφειας. Οι προτεινόμενοι Monte Carlo εκτιμητές

είναι απλοί στην εφαρμογή τους και αποτελεσματικοί σε όλα τα παραδείγματα που

εφαρμόστηκαν όπως και στην αναλυτική προσομοίωση που πραγματοποιήθηκε στα

πλαίσια αυτού του διδακτορικού. Και οι δύο εκτιμητές μπορούν να χρησιμοποιηθο-

ύν και σε άλλα πρακτικά προβλήματα και γενικότερα πλαίσια. Μια επιπλέον, αλλά

δευτερεύουσα συνεισφορά, είναι το γεγονός ότι αναγνωρίσαμε και ταυτοποιήσαμε το

πρόβλημα των μηδενικών κελιών σε αραιούς πίνακες συνάφειας και την επίδρασή που

έχουν στην έκτήμηση της περιθώριας κατανομής. Εδώ προτείνουμε τρόπους για την
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εξομάλυνση του προβλήματος αυτού, είναι μια αρχική μελέτη και χρειάζεται περαι-

τέρω και εις βάθος αντιμετώπιση. Τέλος, αναπτύξαμε και μελετήσαμε μια παρόμοια

προσέγγιση εκ-των-προτέρων κατανομής βασιζόμενοι στη χρήση εκ-των-προτέρων

κατανομών δύναμης και πλασματικών δεδομένων σε γραφικά μοντέλα για πίνακες συ-

νάφειας τριπλής εισόδου χρησιμοποιώνας συζυγή ανάλυση. Σε μελλοντική έρευνα θα

μπορούσε να υπάρχει η σύγκριση και ο συνδιασμός των δύο διαφορετικών γκρουπ

μοντέλων (μοντέλα συνάφειας και γραφικών μοντέλων) που μελετήθηκαν εδώ καθώς

και η εφαρμογή της προτεινόμενης μεθοδολογίας αυτού του διδακτορικού σε πίνακες

μεγαλύτερων διαστάσεων.

Η δομή της παρούσας διδακτορικής διατριβής είναι η ακόλουθη: Κεφάλαιο 1

εισάγει τις βασικές έννοιες των κατηγορικών δεδομένων και του Μπέυζ. Το Κεφάλαιο

2 παρουσιάζει την κύρια Μπεϋζιανή μεθοδολογία σύγκρισης μοντέλων εφαρμοσμένη

σε μοντέλα συνάφειας. Το Κεφάλαιο 3 παρέχει τα αποτελέσματα της εφαρμογής της

προτεινόμενης μεθοδολογίας σε πραγματικά δεδομένα καθώς και τα αποτελέσματα

της αναλυτικής μελέτης προσομοίωσης. Το Κεφάλαιο 4 παρουσιάζει μια Μπεϋζιανή

ανάλυση σε γραφικά μοντέλα υπό συνθήκης ανεξαρτησίας χρησιμοποιώντας συζυγή

ανάλυση. Το Κεφάλαιο 5 αποτελείται από μια σύντομη συζήτηση και τα συμπεράσματα

της παρούσας διδακτορικής διατριβής.
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Chapter 1

Bayesian Inference and Hypothesis

Testing for Contingency Tables

Destiny is variable, not fixed; it is

forever changing depending upon

your free will to make choices for

what you want your life to be

Steven Redhead,

The Solution

1.1 Introduction and Historical Review to the

Analysis of Categorical Data

A contingency table is essentially a way to display cross-classification of two

or more categorical variables. Contingency tables are simple frequency tabulations,

which present the frequencies for each combination of the levels (or categories) of

all variables under consideration.

The literature on categorical data analysis was introduced at the early years

of the twentieth century with the emblematic work of Karl Pearson and George

Udny Yule. However, Stigler (2002) denoted that the first appearance of 2 × 2
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and the fourfold table dated back to Aristotle era. In the 19th century the work

of Quetelet (1849) on measuring association, the hypergeometric analysis for the

2 × 2 table by Bienaymé (see Heyde and Seneta, 1977), and the introduction of

expected values by Galton (1892) formed by the well-known (nowadays) equation:

Expected Count (i, j) = (Row Marginal Total i)× (Column Marginal Total j)
Grand Total

.

(1.1)

Pearson (1900) introduced the chi-squared statistic χ2; the motivation behind

this research was his curiosity to test if the outcome of the roulette wheel in Monte

Carlo was random. George Udny Yule first introduced the cross-product ratio (or

odds ratio) as a formal statistical tool. He also introduced other related measures

of association. In 1904, Pearson introduced the term contingency as a measure of

the total deviation of the classification from independence. Yule (1903) showed the

potential discrepancy between marginal and conditional associations in contingency

tables. This was later studied by Simpson (1951) and he introduced the well-known

Simpson’s paradox. Fisher (1922) corrected the degrees of freedom originally

falsely introduced by Pearson for tests of independence in I × J tables χ2 has

df = (I − 1)(J − 1). This finding came in conflict with the work of Pearson (1900,

1904), who claimed that the degrees of freedom were df = IJ − 1 for two-way

tables. Fisher realized that the degrees of freedom must be adjusted when the

cell counts have linear constraints. Later, in 1934, Fisher introduced the Fisher’s

exact test for 2× 2 contingency tables in the fifth edition of Statistical Methods

for Research Workers.

The definition for homogeneous association (no interaction) in contingency

tables originated in an article by the British statistician Maurice Bartlett (1935)

about 2×2×2 tables. Bartlett showed how to find ML estimates of cell probabilities

satisfying the property of equality of odds ratios between two variables at each level

of the third. Wilks (1935) introduced the likelihood ratio test as an alternative to
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Pearson’s chi-square statistic.

Bartlett (1937) used the expression log
(

y
1−y

)
as a response in regression and

ANOVA in order to transform observations y that are continuous proportions. Fisher

and Yates. (1938) suggested it as a possible transformation of a binomial parameter

for analyzing binary data. In 1940, Fisher developed canonical correlation methods

for contingency tables. He showed how to assign scores to rows and columns of

a contingency table in order to maximize the correlation. Deming and Stephan

(1940) introduced the iterative proportional fitting (ITF) method for estimating

the cell values in a contingency table subject under constraints coming from known

marginal totals, e.g., from a population data set, minimising a least squares criterion

called raking.

Berkson (1944) introduced the term logit for this transformation and popu-

larize the logistic regression. Cornfield (1951) used the odds ratio to approximate

relative risks in case-control studies. Neyman (1949) introduce a family of best

asympotically normal (BAN) estimators, by minimizing chi-squared-type measures

comparing observed proportions to proportions predicted by the model. Cochran

(1940, 1943, 1950) modeled Poisson and binomial responses with variance-stabilizing

transformations, introduced the term of overdispersion and generalized McNemar’s

test for comparing proportions in several matched samples, respectively. Cochran

(1954) proposed the sample size for the chi-square approximation, the directing

inference toward narrow alternatives, the partition of χ2 statistic into components,

the Cochran’s test of conditional independence in 2 × 2 tables, the utilisation

of ordered categories in I × 2 contingency table and a trend statistic for testing

independence by partitioning the Pearson statistic for that hypothesis using a

linear probability model. Roy and Mitra (1956) discussed types of independence

for three-way tables and their large-sample tests. They derived asymptotic chi-

square tests for these different situations, using the union-intersection principle

that Roy had developed in his earlier work on multivariate analysis. Additionally,
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they showed that the “equivalent” hypotheses/designs have the same maximum

likelihood estimates and chi-square goodness-of-fit tests. Mantel and Haenszel

(1959) proposed a non-model-based test of the null hypothesis for conditional

independence in 2× 2×K tables using the response (column) marginal totals as

fixed.

Birch’s never-submitted Ph.D. thesis at the University of Glasgow was

dealing with a variety of important topics in loglinear models. He attained ML

estimates of cell probabilities in three-way tables for Poisson and multinomial

sampling and extended theoretical results of Cramér and Rao on large-sample

distributions for contingency table models (Birch, 1963, 1964a,b, 1965). Caussinus

(1965) introduced the quasi-symmetry model for square tables. Bishop (1967,

1969) used Birch’s results to derive connections between log-linear models and

logit models. She also proposed using a version of the iterative proportional fitting

method developed by Deming and Stephan (1940) to perform computations for

the MLE, as a practical way to implement the ideas of Birch to higher dimensional

tables. She simplify the IPF calculations by multiplicative adjustments to the

estimates for marginal tables— an idea related to models with direct multiplicative

estimates such as conditional independence.

The book of Goodman and Kruskal (1979) is the most classical reference

on association measures, they focused on the I × J and developed new measures

for nominal and ordinal variables. Goodman (1970, 1971) presented methods for

analyzing n-way tables using log-linear models and likelihood ratio statistics. In

particular, he considered the class of hierarchical log-linear models in which the

cell mean vector is expressible in closed form as a rational function of the sufficient

statistics. For such models we can compute the MLE directly without resorting to

any iterative numerical procedure. Goodman emphasized how these models are

interpretable in terms of probability concepts such as independence, conditional

independence and equiprobability.
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Darroch et al. (1980) introduced the graph theory and Markov properties

for modelling interactions of log-linear models for contingency tables. More details

about the leading figures in the development of categorical data analysis can be

found in Agresti (2002).

1.2 Bayesian development of categorical data

analysis

In Bayesian perspective, methods for categorical data analysis in contingency

table form have as a starting point the original work of Bayes (1763) and Laplace

(1774), where they use a uniform prior in order to estimate the binomial parame-

ter. Good (1965, 1953, 1956) proposed a uniform prior distribution over several

categories in estimating the population proportions, log-normal and gamma priors

in estimating association factors in contingency tables and methods for estimating

multinomial probabilities in contingency tables, using a Dirichlet prior distribution.

Good also was innovative in his early use of hierarchical and empirical Bayesian

approaches. His interest in this area apparently evolved out of his service as the

main statistical assistant in 1941 to Alan Turing on intelligence issues during World

War II. Lindley (1964) introduced the Bayesian inference about odds ratios, where

used conjugate beta and Dirichlet priors. Althman (1969, 1971) presented Bayesian

analogs of small-sample frequentist tests for 2 × 2 tables using conjugate priors.

Leonard used a normal prior for logits, which allows greater flexibility. Leonard

(1975) and Laird (1978) introduced the non-conjugate priors in Bayesian analysis

of log-linear models, using a univariate normal prior to the parameters of the

saturated model. Bernardo (1979) attempted to derive non-subjective posterior

distributions that satisfy certain natural criteria such as invariance, consistency

and admissibility. The intention is that even for small sample sizes the information

provided by the data should dominate the prior information. Knuiman and Speed
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(1988) proposed a multivariate normal prior for all parameters in log-linear model

and extented the approach to multi-way contingency tables. They computed the

posterior mode and used the curvature of the log posterior at the mode to measure

precision. King and Brooks (2001) also specified a multivariate normal prior on

the loglinear parameters, which induces a multivariate log-normal prior on the

expected cell counts.

Loglinear model selection using Bayes factors was introduced by Spiegelhalter

and Smith (1982a). They also provided an approximate expression for the Bayes

factor for a multinomial loglinear model with an improper prior (uniform for

the log probabilities) and showed how it is related to the standard chi-squared

goodness-of-fit statistic. Shortly after Raftery (1986) noted that this approximation

is indeterminate if any cell is empty but is valid when using a Jeffreys prior. He also

noted that, for large samples, that the true log of this approximate Bayes factor

when multiplicate by −2 is approximately equivalent to the Schwarz’s BIC model

selection criterion. Albert and Chib (1993) studied probit regression modeling,

with extensions to ordered multinomial responses. Madigan and Raftery (1994)

proposed a strategy for loglinear model selection with Bayes factors that employs

model averaging. Raftery (1996b) used the Laplace approximation to integration

in order to obtain the approximate Bayes factors for generalized linear models.

Albert (1996) suggested partitioning the loglinear model parameters into subsets

and testing whether specific subsets are nonzero. Using normal priors for the

parameters, he examined the behavior of the Bayes factor under both normal

and Cauchy priors, finding that the Cauchy was more robust to misspecified prior

beliefs. Ntzoufras et al. (2000b) developed a MCMC algorithm for loglinear model

selection.

Greenland (2001) proposed the approximation of the prior and the likelihood

distribution by multivariate normal distribution in logistic and Poisson models with

large samples. In the case of sparse data, such approximations may be inadequate.
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For sparse data, he recommended exact conjugate analysis. Giving conjugate

priors for the coefficient vector in logistic and Poisson models, he introduced a

computationally feasible method of augmenting the data with binomial “pseudodata”

having an appropriate prior mean and variance. Greenland also discussed the

advantages conjugate priors have over non-informative priors in epidemiological

studies, showing that flat priors on regression coefficients often imply ridiculous

assumptions about the effects of the clinical variables. Congdon (2005) provides a

comprehensive introduction to Bayesian methods of categorical data, emphasizing

the use of statistical computing and applied data analysis. Forster and Webb

(2007) proposed an Bayesian approach to calculate the predictive probabilities for

those cells in a contingency table which have small sample frequencies and provides

posterior predictive probabilities of identification risk.

Consonni and Pistone (2007) proposed Bayesian analysis of contingency

tables with structural zeros based on algebraic statistics. Agresti and Hitchcock

(2005b) provide a complementary historical overview over Bayesian inference for

categorical data analysis. In Figure 1.1 below some of the leading figures in the

development of categorical data analysis are shown.
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Figure 1.1: Leading figures in the development of categorical data analysis.

(a) Thomas Bayes,
1701-1761

(b) Pierre-Simon Laplace,
1749-1827

(c) Karl Pearson,
1857-1936

(d) George Udny Yule
1871-1951

(e) Frederic Charles
Bartlett,
1886-1969

(f) Ronald Aylmer Fisher,
1890-1962

(g) Jerzy Neyman,
1894-1981

(h) John Henry Gaddum.
1900-1965

(i) Frank Yates,
1902-1994

(j) William G. Cochran,
1909–1980

(k) Irving John Good,
1916–2009

(l) Leo Goodman,
1928–2020

8



1.3 Basic Principles on Bayesian Hypothesis

Testing and Model Comparison

According to the title of the thesis we are going to deal with contingency

tables which is a cross-classification of table of one factor versus the other resulting

in frequency tabulation. In this thesis we focus on contingency tables which is

a tabular representation of categorical data. A contingency table examines the

cross-correlation or the cross-classification of two categorical variables X and Y

with I ≥ 2 and J ≥ 2 levels, respectively, that are cross-classified in a I × J

contingency table. The frequency counts of the contingency table is denoted by nij
for cell (i, j), i = 1, . . . , I, j = 1, . . . , J and notation-wise the index i stands for the

row and j for the column category. The ni+ and n+j are the marginal frequency of

the ith row and jth column, respectively. In tale form this stated as follows:

n11 n12 · · · n1j · · · n1J n1+

n21 n22 · · · n2j · · · n2J n2+

· · · · · · · · · ·

ni1 ni2 · · · nij · · · niJ ni+

· · · · · · · · · ·

nI1 nI2 · · · nIj · · · nIJ nI+

n+1 n+2 · · · n+j · · · n+J n

with n = ∑
ij nij is the total number of observation of the data set, the

sample size. With small nij is the observed frequencies but we are going to treat

them as a random variable as well, so whenever the cell frequencires are random

variables then we are going to denote them with capital Nij.

In the classical hypothesis testing, let a model M1 with parameters Θ1 and

density function f(n|Θ1) and M0 with parameters Θ0 density function f(n/Θ1)
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based on an unknown parameter θ, with θ ∈ Θ we would like to know if θ ∈ Θ0 or

θ ∈ Θ1, with Θ0 ∪Θ1 = Θ and Θ0 ∩Θ1 = ∅.

H0 : θ ∈ Θ0 is the null hypothesis

and to

H1 : θ ∈ Θ1 is the alternative hypothesis.

The probability of rejecting H0 when it is actually true is called Type I Error while

accepting H0 when it is false is called Type II Error . The p-value is used as an

alternative to rejection points to provide the smallest level of significance at which

the null hypothesis would be rejected. When this probability is small enough, in

classical approach the null hypothesisis rejected. Therefore, the probability is the

rate of committing a false alarm, Type error I, when selecting this specific value as

the border of the rejection area and the goal of the decision threshold (usually set

at 0.05) is to limit false alarms under control and to this specific value.

In classical statistic hypothesis testing can be framed as a special case of

model comparison, but only for nested models. On the other hand in the context

of Bayesian inference hypothesis testing is more general and natural. Bayesian

hypothesis testing is based on constructing a probability model M , its likelihood

f(n|ϑM ,M) and the corresponding prior distribution f(ϑM | M), where ϑM is

a parameter vector, n is the data vector and f(ϑM | n, M). The posterior

density is the usual expression where paramerter given the data is proportional

to the likelihood times the prior we have specified before f(ϑM | n, M) ∝

f(n|ϑM ,M)f(ϑM | M). Although, the Bayesian inference is primarily based on

the posterior distribution f(ϑM | n, M), in Bayesian hypothesis testing we want

to quantify the model uncertainty by estimating the posterior model probability

f(M | n). Let us consider two competitive models M0 and M1. If f(M) is the

prior probability of model M , then using the Bayes theorem, the posterior odds
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PO01 of model M0 versus M1 are given by

PO01 = f(M0|n)
f(M1|n) = f(n|M0)

f(n|M1) ×
f(M0)
f(M1) = B01 ×

f(M0)
f(M1) . (1.2)

The posterior odds are now the main quantity of interest and we are going

to use them for model selection or model valuation. Posterior odds are the ratio of

posterior model probabilities of the two models and can be written as the product

of the Bayes factor B01, which is the ratio of the marginal likelihoods of the two

competitive models, multiplied by the prior model odds f(M0)
f(M1) of model M0 against

model M1.

Bayes factor M0 versus M1 is defined as the ratio of the marginal likelihoods

of the two competitive models The quantity f(n|M) involved in the Bayes factor

is defined as the marginal likelihood of model f(n|M0)
f(n|M1)M introduced by Jeffreys

(1961) and is defined as

f(n|M) =
∫
f(n|ϑM , M)f(ϑM |M)dϑM . (1.3)

The Bayes factor B01 of modelM1 againstM0, evaluates the evidence against

the null hypothesis and the prior model probabilities are equal or expressing ignorant

or indifference between the two models under comparison or under consideration

and is familiar framework similar to the classical significant tests. Large values of

B01, usually greater than 12 (this is one of the most common interpretations first

proposed by Jeffreys (1961) and slightly modified by Lee and Wagenmakers (2014)),

indicate strong posterior support of model M0 against model M1. Alternatively,

when we consider a set of competing modelsM =
{
M1, M2, . . . , M|M|

}
, then we

focus our interest on the posterior probability model Mm ∈M and m = 1, . . . ,M,

given by
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f(M |n) = f(n|M)f(M)∑
Mm∈M f(n|Mm)f(Mm) =

 ∑
Mm∈M

POMm,M

−1

(1.4)

where |M| is the number of models under consideration.

The integrals involved in the computation of the posterior model probabilities

are mostly analytically intractable. So sometimes asymptotic approximation or

alternative computational methods must be applied. One of the most popular

techniques is the Markov chain Monte Carlo (MCMC) or the reversible jump

MCMC, Green (1995), denoted by RJMCMC, which helps us to account for model

uncertainty.

Kass and Wasserman (1995) introduce the utilization of Schwarz (1978)

criterion called BIC as an approximation of Bayes factor when unit information

priors (UIP) are used. The definition of a unit information prior (UIP) is a prior

that contains an information content equivalent to a sample of size one.

Given the log-likelihood function f(n|ϑM ,M), the Fisher information matrix

I(θ) is a symmetric (dM × dM) matrix given by I(θ) = − ∂2

∂θi∂θj
f(n|ϑM ,M), with

1 ≤ i, j ≤ dM , where dM is the dimension of the parameter vector ϑM . The

observed Fisher information matrix is simply I(θML), the information matrix

evaluated at the maximum likelihood estimates (MLE). Given a dataset of size

n, the observed Fisher information matrix under model M divided by n can be

interpreted as an estimate of the average amount of information in one data point.

When ϑM ∈ ΘdM one way to form the UIP is

ϑM |M ∼ NdM

(
µϑM , n[J n

M(µϑM )]
)−1

(1.5)

where J n
M (.) is the negative of the Hessian matrix (the matrix of second derivatives of

the likelihood function with respect to the parameters) of the log-likelihood. Under

this prior the logarithm of the Bayes factor is asymptomatically equal to the Schwarz
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criterion (BIC) and by this way UIP provides an extra tool to Bayesian model

selection procedure. The prior mean µϑM can be replaced by the MLE when flat

prior is used. A simpler alternative was proposed by Ntzoufras (2009) by considering

independent prior distributions with mean set to the corresponding posterior means

under a flat prior, while the variance is set equal to the posterior variance under

a flat prior inflated by a factor of n in order to account for approximation of one

data point. This approach will be used by Consonni et al. (2018) as a method for

constructing objective prior distribution, called Unit information principle, a useful

tool to objective Bayes analysis that will be discussed analytically in Chapter 2.

The posterior model probabilities under this approach will be used as a yardstick

in this thesis illustrated examples for comparison with other prior setups. The

combination of the unit information principle with the utilization of power prior

approach specifying the prior mean µϑM by imaginary data is a sensible choice of

prior for model comparison.

1.4 Test of Independence

In contingency tables we usually focus on the underlying association between

the two classification variables and consequently, on testing for their independence.

From the Bayesian perspective, there are several ways depending on the model

(likelihood and prior) assumed. Under conjugacy, we may use the Multinomial-

Dirichlet or the Poisson-Gamma models. In log-linear models, there are only two

options for modelling the dependence structure in two-way contingency tables. The

parsimonious, but restrictive and hardly fulfilled in practice, model of independence

and the saturated one.

In Poisson log-linear models, Nij ∼ Poisson(λij), with i = 1, . . . , I and

j = 1, . . . , J the independence model formed by

M0 : log(λij) = λ0 + λXi + λYj (1.6)
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which is sum of three parameters, λ0 is an overall measure of average log-counts

and λXi and λYj are the marginal effect terms for factors X (rows) and Y (columns),

respectively. In saturated model, which is formed by

M1 : log(λij) = λ0 + λXi + λYj + λXYij (1.7)

has one additional parameter λXYij the interaction term. Association between

factors is expressed via this interaction term and reflects the deviation from the

independence assumption. The basic comparison in contingency tables is:

H0 : λXYij = 0 versus H1 : λXYij 6= 0, i = 1, . . . , I, j = 1, . . . , J

If the interaction term is equal to zero then we obtain the independence model.

In Poisson log-linear models, the Bayes factor is not analytically available

and can be calculated by using Markov Chain Monte Carlo (MCMC) methods.

Gunel and Dickey (1974) considered independence in two-way contingency tables

under the Poisson, multinomial, independent multinomial, and hypergeometric

sampling models. They showed that the Bayes factor for independence itself

factorizes, highlighting the evidence residing in the marginal totals. In classical

approach, the maximum likelihood estimates are the same for the four different

sample schemes. Similar is the result for the Bayesian framework, where the Bayes

factor will be the same for the different sample schemes provided that the specified

priors are compatible across different parameter spaces.

Bayesian analysis follows three steps: constructing a probability model,

computing the posterior distribution and model evaluation. In this chapter, we

are focusing on the third step. It should be stated that a good Bayesian analysis

should include mechanisms to check the adequacy of the fit of the model to the

data. For example, if a model is poor this can lead to misleading inference.
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1.5 Sensitivity of the Bayes Factor

Posterior model probabilities and the Bayes factor are highly sensitive to

the prior specification of the model parameters. This result was reported after the

publication of Lindley (1957), who reported a surprising behavior of the Bayes

factor. When the sample size n increases, then the Bayes factor also increases

and tends to infinity, fully supporting the simpler hypothesis in contrast to the

standard frequentist hypothesis test, which supports the more complex hypothesis.

n→∞ ⇒ B01 →∞.
(1.8)

This behaviour is known as the Lindley’s Paradox. Subsequently, motivated

by the work of Lindley, Bartlett (1957) extended this paradox by observing that the

prior variance of the additional parameters in nested models comparisons (when

M0 ⊆M1 ), also massively affects the Bayes factor B01 as it tends to infinity. This

behaviour is known as Jeffreys or Lindley’s or Barlett’s paradox. For the model

comparison of Section 1.9 the Lindley-Bartlett paradox; this can be expressed as:

V ar(ϑij)→∞ ⇒ B01 →∞
(1.9)

for any dataset n. This behavior is the main quantity of interest of this thesis

and the reason why we start our research in Bayesian hypothesis testing and deal

with the problem of sensitivity of Bayes factor. The problem is that whenever the

sample size or the prior variance increase also Bayes factor increases, which means

that no matter the data we have, we support the null hypothesis or the simpler

model. As a consequence the analysis is informative, without our tension to be

informative. The aim of this thesis is to build an objective Bayesian model selection

procedure in order to eliminate this effect and use it under the prior ignorance.

Therefore, the specification of the prior variance for the parameters under
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testing is of primary importance. When we do not have a clear indication about

this value, we can perform sensitivity analysis of the Bayes factor with respect to

the value of the prior variance for the parameter under testing. This procedure is

similar to the regularization plots used for the selection of the shrinkage parameter

in Lasso-type methods; see for example Lykou and Ntzoufras (2013). In this thesis,

we use power priors to control the effect of the Lindey’s paradox. We consider

imaginary data and weight them to account for one data point as a reasonable,

low-information, choice in Chapter 3.

1.6 Other Bayesian Model Selection Criteria

A variety of information criteria is available in the literature of model

comparison and adequacy. The most popular information criteria are AIC,(AIC;

Akaike, 1973) and the BIC, (BIC; Schwarz, 1978). More recently the DIC was

introduced by Spiegelhalter et al. (2002), as an extension of AIC for Bayesian

hierarchical models. All these criteria are penalized likelihood measures giving

different weight to complexity and goodness of fit. Lower values indicate better

fitted models.

The BIC value for a model M is defined as

BIC(M) = D(ϑ̂M ,M) + dM log n

where D(ϑM ,M) is the deviance measure of modelM evaluated at ϑM , ϑ̂M are the

maximum likelihood estimates under model M and dM is the dimension (number

of parameters) of the model M . For large n and for specific prior families

−2 logB01 ≈ BIC(M0)−BIC(M1) = ∆BIC01,

see, for details Kass and Wasserman (1995). From this form we can obtain

approximate posterior model probabilities, assuming the uniform prior distribution
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for all candidate models.

The Akaike’s information criterion is defined as

AIC(M) = D(ϑ̂M ,M) + 2dM

and is a penalized deviance measure with penalty equal to two for each estimated

parameter. The penalty is log n and 2 for AIC and BIC, respectively. Hence, AIC

supports less parsimonious models than BIC for log n > 2.

Spiegelhalter et al. (2002) proposed the deviance information criterion(DIC)

which is considered as the Bayesian analogue of AIC. DIC can be directly estimated

via the MCMC output and can be applied in a variety of models including the

hierarchical, random effects and latent variable models.

1.7 Objective Bayes principles

The need to work without introducing subjective inputs into the Bayesian

analysis led to the growth of Objective Bayes techniques, which constitutes the

philosopher’s stone for the Bayesian community in the last decades. The focus is

to search for priors with a minimal impact on the corresponding posterior analysis.

Consonni et al. (2018) explain what constitutes an Objective Bayes analysis and

the principles for an objective model comparison. Bayarri et al. (2012) introduced

the desiderata or criteria of an objective prior distribution for Bayesian model

choice. The Objective Bayes criteria are:

• C1: The prior of each model parameter to be proper, so that Bayes factors do

not contain different arbitrary normalizing constants across distinct models.

• C2: The model selection consistency criterion. If data have been generated

by model M , then the posterior probability of M should converge to one as

the sample size diverges.
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• C3: The information consistency criterion. If there exists a sequence of

datasets with the same sample size n such that the likelihood ratio between

M0 and M1 goes to infinity, then the corresponding sequence of Bayes factors

should also go to infinity.

• C4: The intrinsic consistency criterion. While features of the model and

sample size (and possibly even data) frequently affect model selection priors,

such features should disappear for large n.

• C5: The predictive matching deal with the minimal sample size. Informally,

with a minimal sample size, one should not be able to discriminate between

two models, so that the Bayes factor should be close to one, for all samples

of minimal size. In particular, exact predictive matching occurs if the Bayes

factor equals one.

• C6: Measurement invariance broadly states that answers should not be

affected by changes of measurement units. A special type of invariance arises

when the families of sampling distributions of models under consideration

are such that the model structures are invariant to group transformations.

• C7: The group invariance criterion states that if models M0 and M1 are

invariant under a group of transformations G, then the conditional priors

should be chosen in such a way that the conditional marginal distribution

is also invariant under G. This means that if models exhibit an invariance

structure, this should be preserved after marginalization.

Three other principles for an objective model comparison are:

• compatibility of the prior across the models, priors should be related

across models, although in principle they need not be, each being conditional

on a given model. We can identify a benchmark model (often the null model),

which is nested into every other model under consideration (encompassing
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from below), so that compatibility is realized between each model and the

benchmark, and thus indirectly between any pair of models.

• validation of Bayesian approaches using plausible default proper priors.

An acceptable Bayesian procedure should correspond, at least asymptotically,

to a prior which makes sense in the context where it is applied

• methods with good frequentist properties, use prior distributions that

lead to good frequentist performances.

Some popular methods for constructing objective prior distributions are: Unit

information principle, training samples, imaginary observations, fixed imaginary

data, power priors, power expected posterior priors and empirical Bayes approaches.

Some of them will be disused in the next Chapter, for more information about the

Objective Bayes desiderata and principles see Bayarri et al. (2012) and Consonni

et al. (2018).

1.8 Conjugate Multinomial-Dirichlet Setup

Under this setup and under the model of dependence M1 (saturated), we

assume a Multinomial distribution for the random variable N , N ∼ Mult (n,π).

Hence, the likelihood for model M1 is given by

f(n | π,M1) = n!∏I
i=1

∏J
j=1 nij

I∏
i=1

J∏
j=1

π
nij
ij with

I∑
i=1

J∑
j=1

πij = 1. (1.10)

The parameter of interest is the probability table π, with entries πij , πij = P (X =

i, Y = j) for the ith row and jth column of the table. Hence, the parameter matrix

is denoted by π = {πij; i = 1, . . . I, j = 1, . . . , J} = ϑ1.

The conjugate prior for the multinomial parameter π is the Dirichlet dis-

tribution, a multivariate generalization of the Beta distribution. Therefore, we
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a-priori assume that

π ∼ Dirichlet(k) with k = {kij > 0; i = 1, . . . I, j = 1, . . . , J}

with density function given by

f(π) = Γ(K)∏I
i=1

∏J
j=1 Γ(kij)

I∏
i=1

J∏
j=1

π
kij−1
ij ,

where Γ(K) is the Gamma function with K = ∑I
i=1

∑J
j=1 kij .

The posterior distribution is Dirichlet(n + k). Moreover, the marginal

likelihood under M1 is now given by

f(n|M1) = c× Γ(K)
Γ(n+K)

I∏
i=1

J∏
j=1

Γ(nij + kij)
Γ(kij)

, (1.11)

where c = n!∏r
i=1

∏c
j=1 nij!

.

Under the independence model M0 we have that πij = πi+π+j for all i =

1, . . . , I and j = 1, . . . , J . So now the parameters of interest are the marginal

probabilities vectors πR =
(
πi+; i = 1, . . . , I

)
and πC =

(
π+j; j = 1, . . . , J

)
, that

is ϑ0 = (πR,πC). By substituting πij = πi+π+j in (1.10) we obtain

f(n | πR,πC) = c×
I∏
i=1

π
ni+
i+

J∏
j=1

π
n+j
+j .

Assuming independent Dirichlet priors for πR and πC of the following form

πR ∼ Dirichlet
(
kR1 , · · · , kRI

)
and πC ∼ Dirichlet

(
kC1 , · · · , kCJ

)
,

where kR = {kRi ; i = 1, . . . I} and kC = {kCj ; , j = 1, . . . , J} are the parameter

of the Dirichlet of each row and column, respectively. We obtain the marginal
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likelihood under M0 model given by

f(n|M0) = c× Γ(KR)
Γ(N +KR)

Γ(KC)
Γ(N +KC)

I∏
i=1

Γ
(
ni+ + kRi

)
Γ
(
kRi
) ×

J∏
j=1

Γ
(
n+j + kCj

)
Γ
(
kCj
)
(1.12)

From 1.11 and 1.12, the Bayes factor is given by

B10 = B(n+ k)
B(k) × B(kR)

B(nR + kR)
× B(kC)
B(nC + kC)

(1.13)

where nR = (n1+, . . . , nI+), nC = (n+1, . . . , n+J) and B is the normalizing constant

of the Dirichlet distribution (also known as multivariate beta function) given by

B(α) =

|α|∏
i=1

Γ(αi)

Γ

(
|α|∑
i=1

αi

) ;

for any vector α =
(
αi; i = 1, . . . , |α|

)
, with |α| denoting the dimension of α.

The conjugate analysis of this section is summarized in Table 1.1.

Table 1.1: Summary of the Bayesian testing of the independence in the conjugate
Multinomial-Dirichlet setup

H0: there is no association

between the two variables

H1: there is association

between the two variables

M0 : n|πR,πC ∼Multinomial(n,π)

π = πR
[
πC
]T

πR = (πi+) ∼ Dirichlet
(
kR1 , · · · , kRI

)
πC = (π+j) ∼ Dirichlet

(
kC1 , · · · , kCJ

)
i = 1, · · · , I and j = 1, · · · , J

M1 : n|π ∼Multinomial(n,π)

π = (πij)

π ∼ Dirichlet(k)

k = (kij)

i = 1, · · · , I and j = 1, · · · , J
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1.9 Poisson Log-linear Models

Poisson log-linear model belong to the family of generalized linear model

(GLM) and their response is the cell frequencies of a contingency table. Associations

between factors are expressed via interaction terms of the model. In the two-way

contingency table, the model takes the form

Nij ∼ Poisson(λij), i = 1, . . . , I, j = 1, . . . , J

log(λij) = λ0 + λXi + λYj + λXYij (1.14)

with identifiability constraints

I∑
i=1

λXi =
J∑
j=1

λYj =
I∑
i=1

λXYij =
J∑
j=1

λXYij = 0.

Parameter λ0 is an overall measure of average log-counts, while λXi and λYj are

marginal effect terms for factors X (rows) and Y (columns), respectively. The

interaction term λXYij represents the association between X and Y and reflects

the deviations from independence. In the frequentist framework, this model has

zero degrees of freedom and thus fits the data perfectly (all residuals are equal to

zero). Given the sample size n, the kernel of the likelihood is the same for all three

sampling schemes: multinomial, product multinomial and Poisson.

If λXYij is equal to zero for all i and j, then we obtain the independence

model with linear predictor

log(λij) = λ0 + λXi + λYj . (1.15)

Here we illustrate the comparison between the model of independence M0,

given by the log-linear predictor 1.15 versus the saturated model M1 with log-linear
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predictor 1.14. By this comparison we test for

H0 : λXYij = 0 versus H1 : λXYij 6= 0, i = 1, . . . , I, j = 1, . . . , J (1.16)

which is equivalent to testing for independence.

For all log-linear parameters we consider normal prior distributions with zero

means. The prior variances of λ0, λXi (for i = 2, . . . , I) and λYj (for j = 2, . . . , J) are

set equal to large values in order to express prior ignorance. Note that λX1 and λY1
and λXi1 , λY1j are given as function of the rest of parameters since we use sum-to-zero

constraints (STZ). Nevertheless, the prior variance for the interaction parameters

λXYij needs to be specified with caution due to the sensitivity of the Bayes factors

to this value for the parameters under testing. Therefore, the specification of the

prior variance of λXYij is important for avoiding the activation of the Lindley-Barlett

paradox (Bartlett, 1957, Lindley, 1957); see also Section 1.5.

For this comparison, in the illustration of Section 2.4.4 we have used two

different prior setups: (a) a Unit Information Empirical prior (UIE) proposed

by Ntzoufras (2009, chap. 9) and (b) a prior similar to the one proposed by

Dellaportas and Forster (1999) (DF). Regarding the first, we set the prior variance

of the interaction parameters equal to their posterior variances of the full model

multiplied by the sample size, in order to minimize the information introduced

by the double use of the data. Thus, the contribution of the prior information is

approximately equal to one data point; see for details Verdinelli and Wasserman

(1995). This is an empirical Bayes approach and it cannot be considered as an

orthodox Bayesian method since we use information from the data to specify the

prior. Nevertheless, it can be used as a rough approximation of the actual objective

Bayesian procedure since the effect of the prior information on the posterior is

minimized; see for details Consonni et al. (2018). For the second prior setup we

follow the approach proposed by Dellaportas and Forster (1999) for the case of

I = J = 2, hence we set the prior variance equal to two.
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We calculate the posterior model probabilities of the two models under

consideration by using the Gibbs variable selection sampler of Dellaportas et al.

(2002); also see Ntzoufras et al. (2000a) for an implementation in contingency tables

using the Stochastic Search Variable Sampler (SSVS). In order to implement any

Gibbs variable selection, we introduce the latent binary indicator γ which takes

the value of one when λXYij 6= 0 and zero otherwise. Then the log-linear predictors

1.14 and 1.15 are jointly summarized by

log(λij) = λ0 + λXi + λYj + γλXYij .

The full Bayesian procedure is completed by considering a prior γ ∼ Binomial(πγ)

with πγ = 0.5 in order to express indifference between the two models with priors

f(λXi , λYj |γ = 0) and f(λXi , λYj , λXYij |γ = 0) The posterior probabilities P (γ = 1|n)

and P (γ = 0|n) will indicate whether the saturated (γ = 1) or the independence

model (γ = 0), is more suitable for the data in hand. Gibbs variable selection can

be implemented in a straightforward manner using standard Bayesian statistical

packages, such as WinBUGS (see Ntzoufras, 2009, Chapter 11).

1.10 Illustrative Examples

In this section, we implement the Bayesian tests of independence using data

from several real examples. We illustrate two examples, in the first example we use

three 2× 2 contingency tables and testing the independence. The second example

provides a conjugate analysis in I × J contingency tables and tests the sensitivity

of Bayes factor.

1.10.1 Examples of 2× 2 Contingency Tables

First, we implement Bayesian tests via log-linear models in three different

2× 2 contingency tables: The first table is a cross-classification of 100 individuals
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randomly sampled from a large population as part of a study of sex differences by

handedness (dataset a; Source: http://en.wikipedia.org). The second contingency

table (dataset b) refers to the number of ant and vertebrate dispersed plant species

by seed and vegetative regeneration (Source: French and Westoby, 1996) the third

one consists of 200 randomly selected cancer patients examined for the cell phone

usage by the brain cancer diagnosis (dataset c; Source: http://wiki.stat.ucla.edu.).

Table 1.2: Datasets (a)–(c) used for testing independence via log-linear models

Right Left

Handed Handed

Males 43 9

Females 44 4

Ant Vertebrate

Seed only 25 6

Vegetative 36 21

Brain cancer

yes no

Cell

Phone

yes 18 80

no 7 95

Dataset (a) Dataset (b) Dataset (c)

Sex by Handness Dispersal by Regeneration Brain Cancer by Cell Phone Usage

Table 1.3 presents the estimated Odds Ratio (OR), p-values for testing

independence based on the Likelihood Ratio Test (LRT) with α = 0.05 and the

information criteria: DIC and BIC. For the two first examples H0 is not rejected

based on LRT in contrast to the third contingency table. In comparison with the

information criteria, for the second contingency table both DIC and BIC indicate

the saturated model as the best model. Hence, the three selected datasets cover a

variety of different levels of dependence which make them appropriate to illustrate

model uncertainty via the Bayesian paradigm.
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Table 1.3: Bayesian information criteria for datasets (a)–(c)

DIC BIC

Dataset Dependence ÔR LRT M0 M1 M0 M1

(c) Weak 0.43 Not rejected, p-value=0.30 26.38 26.73 24.53 29.85

(d) Medium 2.43 Not rejected, p-value=0.14 28.07 26.91 30.54 30.34

(e) Strong 3.05 Rejected, p-value=0.02 33.36 28.96 36.68 32.46

LRT: Decision concerning the independence (H0) based on the likelihood ratio test with α = 0.05

M0: independence model; M1: saturated model

Using Gibbs variable selection, we have estimated the posterior model

probability P (M1|n) = P (γ = 1|n) for a range of prior variance values for the

interaction term λXY22 , which are depicted in Figure 1.2. From these figures two

points are evident: (i) the surface between the line of the posterior model probability

and 0.5 increases as we move from dataset (a) to dataset (c) and therefore with

ÔR, and (ii) the posterior model probability of M1 decreases as the prior variance

increases after a threshold value. Concerning point (i), the posterior probability for

dataset (a) reaches its maximum value (which is just above 0.5) for prior variance

lower than two. In dataset (b), the maximum of the posterior model probability

is about 0.65, while for (c) is around 0.8. The main characteristic of the latter

is that the posterior model probability of M1 remains above 0.5 for all values

of the prior variance presented here, indicating the strong association between

brain cancer and cell phone usage. Point (ii) clearly depicts a realization of the

Lindley-Bartlett paradox. For datasets with weak association (as in dataset a),

the posterior probability of M1 shrinks fast towards zero as the prior variance of

the interaction term increases, while for strong associations (as in dataset c) the

paradox is delayed and only appears for large values of the prior variance.
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(a) Dataset (b) Dataset (c) Dataset
Figure 1.2: Posterior model probability of M1 versus the prior variance of the
interaction for datasets (a)–(c) of Table 1.2.

1.10.2 Examples of I × J Contigeny Tables

We proceed by illustrating the conjugate analysis in two datasets: (d) a 5×3

cross-classification of the change in the clinical condition by degree of infiltration

(i.e. the skin damage) from leprosy at the start of the experiment (Source: Agresti,

2013) and (e) a 4× 2 contingency table of snoring by heart disease (Source: Norton

and Dunn, 1985).

Table 1.4: Datasets (d) and (e) used for testing independence via conjugate analysis

Degree of Infiltration

Clinical Change High Low

Worse 1 11

Stationary 13 53

Slight improvement 16 42

Moderate improvement 15 27

Marked improvement 7 11

(d) Leprosy dataset (Agresti, 2013)

Heart Disease

Snoring Yes No

Never 24 1355

Occasionally 35 603

Nearly every night 21 192

Every night 30 224

(e) Snoring dataset

(Norton and Dunn, 1985)

For the first dataset, the independence assumption is supported by the

Likelihood Ratio Test (LRT p − value = 0.122), AIC (∆AIC01 = −0.72) and

BIC (∆BIC10 = −13.84) measures. For the second dataset, all corresponding

measures support the dependence between the two factors under consideration
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(LRT p− value� 0.001, ∆AIC01 = 59.9 and ∆BIC01 = 42.45).

(d) Leprosy dataset (e) Snoring dataset

Figure 1.3: Sensitivity of Bayes factor to the Dirichlet prior parameter k for datasets
(d) and (e) of Table 1.4.

In this Section, we implement the Bayesian independence tests based on the

conjugate analysis of Section 1.8. We consider prior values kij = kRi = kCj = k

and we perform sensitivity analysis over different values of prior parameter vector

k. From Figure 1.3 we observe that in dataset (d), the independence model is

supported for a wide range of values, while for large values of k (accumulated

prior information) the log-Bayes factor is stabilized in a value just above zero. In

contrast, in the second example (where the dependence is strongly supported by

other methods) the Bayes factor offers conflicting evidence against M0 for all values

of k. It should be noted that in both cases, the Bayes factor decreases for values of

k close to zero. This is due to Lindley-Barlett paradox since in this case the prior

variance of the probability parameters (induced by the imposed Dirichlet prior) is

increasing.
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1.11 Chapter Structure

This thesis is focused on models comparison for contingency tables. Initially,

we present Bayesian hypothesis tests for the independence between two categorical

variables and we implement conjugate analysis based on the Multinomial-Dirichlet

setup. Then we compute the Bayes factor and assess the sensitivity of the results

to the prior distribution. Next, we focus on log-linear models. We evaluate the

saturated versus the model of independence with the utilization of the Bayes factor,

compared with other several model selection criteria. We illustrate all methods

using real datasets.

In Chapter 2 we present the Bayesian independence tests based on the

conjugate Multinomial-Dirichlet models (Section 1.8) and the Poisson log-linear

models (Section 1.9). We also describe the well-known sensitivity of the Bayes

factor on the prior parameters (Section 1.5), other Bayesian measures of model

comparison (Section 1.6) and we conclude with illustrative examples, in order to

implement and compare these approaches.

In Chapter 3 we propose a comprehensive Bayesian model comparison

approach for association models in contingency tables. The proposed methodology

deals with the suitable specification of the prior distributions, as well as the allied

computational issues regarding the estimation of the Bayesian so-called evidence,

which is the core component of the posterior model probabilities in Bayesian model

comparison, selection and averaging. Specifically the choice of the prior distribution

in Bayesian model comparison and testing is problematic due to the well-known

sensitivity of the posterior model odds and the Barlett-Lindley paradox (Bartlett,

1957, Lindley, 1957). This fact had led to the development of objective Bayes

techniques, which refer to the use of reasonably low information priors when no

actual prior information is available. Within this framework, we propose the

utilization of the power prior approach. In order to implement the method, we

devise a set of imaginary data from the most parsimonious model. Then, the prior
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distribution can be obtained by the product of the likelihood of the model under

consideration evaluated at the imaginary data and raised to a power; then it is

multiplied by (a relatively flat) pre-prior distribution.

Evaluation of the models under consideration and the related Bayesian

tests are obtained by using MCMC-based estimators of the (Bayesian) marginal

likelihood of the data. We introduce and examine two versions of the importance

sampling estimator of Perrakis et al. (2014). The results are compared with two

versions of the Laplace approximation: the original one and an MCMC based

approximation. We illustrate and compare the proposed methodology using two

real data sets (one sparse and one with full cell frequencies) and an extended

simulation study. In the simulation study, we further examine the model selection

consistency of the proposed power-prior based methodology.

1.12 Concluding remarks

In this chapter, we have presented, reviewed and implemented Bayesian

independence hypothesis tests in two-way contingency tables. We have also ex-

plored the sensitivity of Bayes factor and model selection on prior variances of

model parameters. We have presented Bayesian model comparisons based both on

conjugate and log-linear analysis. In the next chapters, we will focus on developing

compatible priors for model comparison in two-way tables. The use of power-priors

will be used for this reason. Moreover, we will work for the construction of efficient

algorithms for the computation of the marginal likelihood both in small and large

scale problems. The mathematical properties of the Bayes factor for the comparison

of association models will also be explored.
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Chapter 2

Bayesian Methodology for Association

Models

You are the salt of the earth. But

remember that salt is useful when in

association, but useless in isolation.

Israelmore Ayivor

2.1 Background Information

In contingency tables, fitting a Poisson log-linear model is the standard

way to analyse the association and the interaction patterns between categorical

factors. Although log-linear models are useful to describe associations of conditional

independence in multi-way contingency tables, in the case of two categorical

variables involved only two models can be considered: (a) the parsimonious but

restrictive model of independence and (b) the saturated model. The first implies

independence between the two variables while the latter does not impose any

structure on the underlying association. Therefore, for the saturated model, the

number of parameters is equal to the number of cells of the contingency table.

In addition to standard log-linear models, the association models, introduced by

31



Goodman (1979) in their present form; earlier related results by other authors [see

1 df test of Tukey (1949), Nelder and Wedderburn (1972), Simon (1974), Haberman

(1974), fill the gap between these two cases by imposing a specific structure on the

local associations of the contingency table. This can be achieved by writing the

interaction term as multiplicative function of scores of the row and the column

levels. This way considers dependence between the variables under consideration

and, on the same time, reduces the number of the interaction parameters compared

to the saturated model by imposing specific structure. Therefore association models

can be considered as in termediate models of dependence. Moreover, they may be

used to analyse the associations between ordinal classification variables since they

attribute (and estimate) scores for each level of the categorical variables.

The general model of association, where both column and row scores are

parameters to be estimated, is called Row-Column association model (RC). The

RC model does not require ordinality for any of the classification variables and

it is invariant to re-ordering of columns or rows. Moreover, special cases of this

model can be obtained if we consider fixed/predefined scores for row and/or column

scores. To be more precise, if the scores are fixed for the categories of all row and

column variables, the model is called linear-by-linear association model (LL) and

has one additional parameter to the independence model. The most characteristic

LL model is the Uniform (U), where the scores are equidistant for the successive

categories. This model requires both classification variables to be ordinal, as this

model is sensitive in re-ordering of the rows or columns. When the scores of the

column variables are fixed but the scores of the row variable are parameters under

estimation, the model is called Row (R) effect association model. The R model is

invariant to re-ordering of the rows of the table and the corresponding classification

variable need not be necessarily ordinal. Equivalently, the Column-effect association

model (C) considers column scores as parameters that need to be estimated while

the row scores are fixed. For a comprehensive and detailed description of the
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association models, see in Kateri (2014, Chapter 6).

Concerning the Bayesian analysis of association models, the simple U model

has been considered by Agresti and Chuang (1989). They imposed a Dirichlet prior

distribution on the probability table for the component means in the U model.

Alternatively to the conjugate prior-type analysis, they proposed the Bayesian

log-linear analysis by considering independent uniform (improper) priors for the

main effect parameters and normal priors for the interaction parameters. The

first attempt for fitting the RC association model within the Bayesian framework

was by Chuang (1982). He used independent uniform (improper) priors on the

main effect parameters and normal priors on the parametric row and column scores

and proceeded with empirical variance estimation. Evans et al. (1993) based their

analysis on the Bayesian estimation of the saturated log-linear model with normal

priors on all parameters and then obtained posterior estimates for the RC model by

considering the Euclidean projection from the posterior of the saturated log-linear

model. Albert (1997) provided an interesting Bayesian approach for testing the fit

of simple models such as independence and uniform association models.

Kateri et al. (2005a) developed the Bayesian inference for the more general

RC(M) association model. Iliopoulos et al. (2007) introduced an approach for

identifying possible score equalities for association models with order-constrained

parametric scores. This approach was based on calculating the posterior probabili-

ties of possible order violations for successive categories in the unrestricted model.

Tarantola et al. (2008) adopted a methodology from product partition models

to make inferences about clustering of scores in the row effect model. Iliopoulos

et al. (2009) focused on the estimation of posterior model probabilities of the

RC order-constrained model, in a full Bayesian way, by allowing for ties in the

prior distribution level. They constructed a trans-dimensional MCMC algorithm

(reversible jump MCMC; Green, 1995) for assessing the equality of successive row

and column scores. For two-group comparison of an ordinal scale, Kateri and
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Agresti (2013) discussed stochastic orderings, based on generalized odds ratios for

ordinal responses for 2× I contingency tables, from the Bayesian point of view.

Demirhan (2013) proposed a prior setup for the Bayesian estimation of

association models with and without order restrictions on scores. He used a

previously introduced multivariate prior in the unrestricted case and an order

statistics approach in the order-restricted case. Specifically, he reformulated the

approach of Chen and Dunson (2003) to decompose the covariance matrix to

reflect the degree of belief in prior knowledge for scores and model parameters.

His approach is composed of three steps: a) decompose the covariance matrix

of scores using the Cholesky decomposition, b) write the Pearson correlation

coefficient in terms of the decomposed elements and c) induce a uniform prior for

each correlation coefficient. When there is no order restriction on the scores, a

generalized multivariate log-gamma prior is chosen for the scores and independent

log-gamma priors are chosen for the main effect parameters of the association

model. In case of order restrictions on scores, he used the joint probability density

function (pdf) of order statistics and assumed the independence of row to column

scores. Finally, he adapted the approach of Chib and Jeliazkov (2001) for the

calculation of the Bayes factor for model comparison. In their approach, for the

calculation of marginal likelihood using multi-block bridge sampling estimators,

the output of the Metropolis–Hastings algorithm is used directly,and the required

Bayes factors are easily obtained at the end of each run of the algorithm.

More recently, Oh (2014) suggested a Bayesian model selection procedure,

that simultaneously compares all possible combinations of equalities of successive

score parameters in the order restricted RC association model. This method

introduces normal latent variables into the model and uses an approximation to

the likelihood function so the full conditional posterior distributions of elements

of the parameter are given as truncated normal distributions. The basic idea of

his approach is based on data augmentation by introducing appropriate normal
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latent variables which, in combination with an approximation of the cumulative

distribution function of the Poisson, results in obtaining all the full conditional

posterior densities such as the truncated normal distributions. Given their conve-

nient form, the generation of the posterior values and the estimation of the Bayes

factor can be conducted in an automated way. The Gibbs sampling algorithm of

Gelfand and Smith (1990) is employed to generate posterior samples from the full

model in which all the scores are strictly ordered. Finally, the formulation of the

method of Oh (1999) allows the calculation of the Bayes factors of the models

under comparison by using the Savage-Dickey density ratio which requires only one

set of posterior samples from the full model.

2.2 Contribution and Aim of this Chapter

Although, Bayesian bibliography has treated several aspects of association

models (including model comparison issues), it lacks simple, practical Bayes ap-

proaches, which incorporate recent findings in objective Bayes model comparisons.

Hence, the aim of this chapter is dual: (a) to propose a default, objective method

for Bayesian comparison of association models in contingency tables when no

prior information is available, and (b) to introduce and study reliable and efficient

MCMC based estimators of the marginal likelihood required in order to compare

models or to implement Bayesian model averaging.

Regarding (a), we propose a comprehensive Bayesian model comparison

approach for association models in contingency tables, which is based on imaginary

data and the use of power prior approach. In Bayesian model comparison and

testing the choice of the prior distribution is of paramount importance due to

the well-known sensitivity of the posterior model odds and the Barlett-Lindley

paradox (Bartlett, 1957, Lindley, 1957). Using prior distributions with large prior

variance leads to the selection of the simplest models regardless of the data we
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may have. This is also the case regarding Bayes factors which cannot be calculated

due to the undetermined normalizing constants involved even when improper

priors have been used. For this reason, within the context of association models

for contingency tables, we need to develop objective Bayes approaches (O’Bayes

for short) and default priors for model comparisons. Following Consonni et al.

(2018), we select one of the main tools for constructing O’Bayes model comparisons

which is the power prior approach combined with the use of imaginary data. In

order to apply this method, we produce a set of imaginary data from the most

parsimonious model. Thus, we satisfy the “group invariance” (or locality) criterion,

which is one of the main criteria for building sensible priors for O’Bayes model

comparisons (Bayarri et al., 2012) and can be interpreted as centering our prior to

the alternative/simpler models. Then, the prior distribution can be obtained by

the product of the likelihood of the model under consideration evaluated at the

imaginary data and raised to a power and then multiplied by (a relatively flat)

pre-prior distribution. Under this perspective, we also quest for model selection

consistency, which is one of the fundamental criteria of Bayarri et al. (2012), and

whether it is satisfied via an extensive simulation study.

Concerning (b), i.e. the MCMC estimators of the marginal likelihoods,

we introduce and examine two versions of the importance sampling estimator of

Perrakis et al. (2014), namely the independent and the one-block estimator. The

results are compared with the original Laplace approximation and the MCMC

based one. Results have shown that the one-block importance estimator works fast

and efficiently even in sparse contingency tables when competitors may fail.

In the next sections, we will proceed as follows. In the Section 2.3, we

introduce the general model formulation of association models and the candidate

models under consideration for comparison or selection along with some basic theory

about Bayes model comparisons, Bayes factors and posterior model probabilities

and their sensitivity on prior probabilities. In the Section 2.6, we present the prior
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specification based on the power priors and their advantages. The computational

estimators and methods of the marginal likelihood are described in the Section 2.4.

The Section 2.6.1 provides a step-by-step description of the proposed methodology.

The Chapter concludes with a short discussion and the closing remarks in the

Section 2.7.

2.3 Model Formulation

Association models are describing the structure of the association between

the two categorical variables assigning scores to the classification variables, which

can be either fixed and prespecified or unknown (to be estimated) parameters. We

denote by {µ1, .., µI} the row scores and by {ν1, .., νI} the column scores. In the

association models (cf. Goodman, 1985), the interaction term is now written as

λXYij = φµiνj and therefore the linear predictor (1.14) is substituted by

log(λij) = λ0 + λXi + λYj + φµiνj (2.1)

for i = 1, . . . , I and j = 1, . . . , J , where µi and νj are the i-th row and j-th column

scores. For identifiability purposes, the sum-to-zero constraints are imposed on row

and column main effects

I∑
i=1

λXi =
J∑
j=1

λYj = 0, (2.2)

while the row and column scores are usually standardized

I∑
i=1

µi =
J∑
j=1

νj = 0 and
I∑
i=1

µ2
i =

J∑
j=1

ν2
j = 1.
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Under this constraints φ is given by

φ =
∑
i,j

µiνj log λij.

The parameter φ is a global measure of association under certain parametrization

and measures the correlation between row and column scores, called intrinsic

association parameter. Whenever a set of scores is unknown, phi is redundant. For

a comprehensive and detailed description of association models, along with their

frequentists implementation in R, see Kateri (2014).

There are three types of association models, depending on the type of the

row and column parameter score:

• The linear-by-linear association model (LL) with fixed row and column scores.

The most characteristic LL model is the Uniform association model (U), in

case the scores are equidistant for the successive category.

• The Row association model (R) with unknown row and fixed column scores

and Column effect association model (C) with unknown column and fixed

row scores.

• The Row-Colum association model (RC) with both row and column scores to

be parameters under estimation.

Iliopoulos et al. (2009) adopted alternative parametrizations for the RC

model µ1 = ν1 = 0 and µI = νJ = 1, which fix the scores of the first and last level

of each classification variable (under ordinality constraints this corresponds to the

minimum and maximum score). By this parametrization, these score parameters

are fixed and prespecified.

In this thesis, we generally follow the parametrization of Iliopoulos et al.

(2009) with the exception of parameter φ, where we set it equal to one for all models

where the row or column scores are stochastic, to-be-estimated, parameters (i.e.

for models R, C and RC). As a consequence, we leave the last row score in the R
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model and the last column score in C and RC models to be free i.e. unconstrained

parameters under estimation. With this parametrization we avoid problems of

auto-correlation which appear in the implemented MCMC algorithms due to the

multiplicative structure of the interaction term. Moreover, this approach is in

compliance with the earlier work of Iliopoulos et al. (2007).

2.3.1 Models Under Consideration

Model selection techniques are used to identify which model fits best the

data and provides accurate estimates of the quantities of interest. In this paper,

we consider the six candidate models for describing the association between two

categorical variables. The models under consideration are the following:

• Independence model (I): It is the simplest model and is specified by Equation

1.15. The parameter vector is given by ϑI =
(
λ0, λ

X, λY
)
, where λX =(

λX1 , . . . , λ
X
I

)
and λY =

(
λY1 , . . . , λ

Y
J

)
. For the main effects, we impose

sum-to-zero (STZ) constraints (see Eq. 2.2) and this is the case also for the

remaining models.

• Uniform (U): It is specified by the log-expected frequencies of Equation

2.1. The parameters vector is now given by ϑU =
(
λ0, λ

X, λY, φ
)
. The

row and column scores are equidistant for the successive categories, µ =

(µi = i, i = 1, . . . , I) and ν = (νj = j, j = 1, . . . , J). This model assumes

that both X and Y are ordinal, while the additional parameter φ is equal to

the log-odds ratio of the 2× 2 contingency sub-table obtained by successive

categories of both ordinal factors under consideration.

• Row effect association model (R): This model is specified by Equation 2.1 with

parameters ϑR =
(
λ0, λ

X, λY, µ
)
. We generally adopt the parametrization

of Iliopoulos et al. (2007) with φ = 1 and µ1 = 0 for the row scores and as a

consequence the model R will have I − 2 additional parameters than model
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U , corresponding to the row score. Ordinality is required only for columns,

ν = {νj = j, j = 1, . . . , J}.

• Column effect association (C): It is defined as analogous to the R association

model by using expression 2.1 and interchanging the role of row and col-

umn scores which are now fixed and unknown (to-be-estimated) parameters,

respectively.

• Row-Column association model (RC): This is the more general associa-

tion model and it is also characterized by Equation 2.1 but with both

row and column scores to be parameters under estimation, i.e. ϑRC =(
λ0, λ

X, λY, µ, ν
)
. We adopt the parametrization of Iliopoulos et al. (2007)

with φ = 1, µ1 = ν1 = 0 and νJ = 1 for the row and column scores.

• Saturated model (S): This model is the most complex model which assumes

no structure in terms of association between X and Y . It has as many

parameters as the number of cells, that is IJ . Model S is given by Equation

1.14. In the set of parameters of the independence model, we further consider

the interaction parameters λXYij resulting in a model parameter vector given

by ϑS =
(
λ0, λ

X, λY, λXY
)
. Additionally to the sum-to-zero constraints

for the main effects, we impose STZ contraints also for the interaction

parameters, i.e. λXY1j = −
J∑
i=2

λXYij for all j = 1, . . . , J and λXYi1 = −
I∑
j=2

λXYij

for all i = 1, . . . , I.

All the models under consideration are members of the log-linear model

family except of the RC model which is log-multiplicative, since the predictor is a

multiplicative function in the row and column parameters µi and νj. When one

set of parameter scores is fixed, the RC model simplifies to the R or C model,

for which the log-expected value is a linear function of its parameters. We denote

with M ∈ M = {I, U,R,C,RC, S} the set with all candidate models for model

selection. The problem of model selection within the framework of association
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models is directly connected to the analysis of the association of categorical factors

in a contingency table and it is strongly based on the interconnection between the

models since I ⊂ U ⊂ R or C ⊂ RC ⊂ S.

Estimation of parameters of the RC model, which is not linear in its parame-

ters, can be arduous since the likelihood may not be concave and therefore multiple

local maxima may exist. For this reason, MCMC methods can be used to explore

the whole posterior space. Goodman (1979) suggested an iterative model-fitting

algorithm. An empirical Bayes analysis of the RC model has been considered by

Chuang (1982) and Evans et al. (1993) as it mentioned in Section 2.1. In their

approach, they set a prior distribution for parameters of the saturated log-linear

model and then they estimated the posterior distribution of the parameters of

the RC model through minimization of the Euclidean squared distance between

the interaction terms of the two models. Kateri et al. (2005b) provided Bayesian

inference for the general association model.

2.4 Marginal Likelihood Computation

Historically, a barrier for establishment of the Bayesian approach as a

standard way to analyse data has been the difficulty in the computation of the

posterior distribution when the prior is not conjugate. This problem has been

solved in the early 90s with the development of MCMC methods for sampling

from the posterior distribution of interest. Nevertheless, the computation of the

marginal likelihood remains cumbersome; this provides a motivation to researchers

to develop alternative estimation methods. Bayesian model comparison via the

Bayes factor, posterior model probabilities and odds (Kass and Raftery, 1995),

requires the computation of the Bayesian marginal likelihood given by (??), where,

in this context, M is one of the six candidate models, that take part in model

comparison, M ∈M = {I, U,R,C,RC, S}.
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Many methods have been introduced to compute the marginal likelihood,

but simplicity is not the strongest point of most of these methods. Another

disadvantage is that the proposed methods are not universal in the sense that

they work under certain assumptions/requirements which are easily checked and

therefore, there are cases where they fail to provide reliable estimates of the marginal

likelihood. Though methods exist to directly compute the Bayes factor or the

posterior odds (see e.g. Dickey (1971) and Verdinelli and Wasserman (1995) for

the (generalized) Savage-Dickey density ratio), computing directly the marginal

likelihood is conceptually the simplest approach. Only in very special cases, most

notably for the exponential likelihood with conjugate priors, the marginal likelihood

can be calculated analytically as the integrating constant of the posterior kernel.

Usually, the marginal likelihoods are estimated by using MCMC estimators or

asymptotic methods which are relatively easy to implement in comparison to other

alternatives such as the trans-dimensional MCMC approaches (e.g. ?). Nevertheless,

they are rather computationally costly since they demand to run multiple MCMC

algorithms, i.e. one for every model under consideration. This fact makes their

implementation rather difficult especially when the model space under consideration

is large. Moreover, all these methods require a considerable amount of fine tuning

and adaptation to each problem at hand and may fail when the posteriors are

complicated with many modes or extreme asymmetries.

Historically, the required calculation of the integration to estimate the

marginal likelihood has been achieved by taking advantage of the conjugacy, by

assuming an approximate posterior normality or by using numerical quadrature

(i.e. the Laplace method or Monte Carlo integration); see Kass and Raftery,

1995. Recently, it has become possible to estimate a wider range of models, using

posterior simulation methods such as the Monte Carlo sampling methods to avoid

the analytical computation of the marginal likelihood (Neal, 2000, Perrakis et al.,

2014). Lartillot and Philippe (2006a) introduced a technique called thermodynamic
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integration to approximate the marginal likelihood. More recently, a similar method

called stepping-stone-sampling (Fan et al., 2011, Xie et al., 2011), has been proposed

(see also Baele et al. (2013), Baele and Lemey (2013), Friel et al. (2014), for a

summary and comparison of these methods).

The previous ways of calculating integrated likelihoods cannot be often used

for models estimated via MCMC or their posterior simulation methods. A standard

method to approximate the marginal likelihood is the Laplace approximation (Tier-

ney and Kadane, 1986) and its MCMC based version (Lewis and Raftery, 1997b).

This approach is based on assuming a multivariate normal approximation of the

posterior and works reasonably well for moderately large datasets and symmetric,

well behaved posterior distributions. A popular alternative is to use MCMC based

estimators where there is a wide variety of methods with the most notable the

harmonic-mean and the prior/posterior mixture importance sampling estimators

(Newton and Raftery, 1994) as well as the more recent stabilized version of it

(Raftery et al., 2007), the bridge-sampling methods (Meng and Wong, 1996), the

candidate’s estimators for Gibbs sampling (Chib, 1995) and Metropolis–Hastings

sampling (Chib and Jeliazkov, 2001), and the power posterior method (Friel and

Pettitt, 2008, Lartillot and Philippe, 2006b). For a detailed review and comparison

of methods we refer to Friel and Wyse (2012) and Ardia et al. (2012). In this thesis

two methods for estimating the marginal likelihood, based on the Laplace approxi-

mation method are presented. The one is the Laplace approximation approach and

the other is the MCMC based version of it (namely Laplace-Metropolis estimator).

In the following section we introduce two versions of the importance sampling

marginal estimator of Perrakis et al. (2014): the independent and the one-block

importance sampling estimators. Laplace approximation and Laplace-Metropolis

estimator will be used as the gold-standards for our comparisons presented in the

illustrative examples.
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2.4.1 Laplace Approximation

One of the most popular methods for the computation of the marginal

likelihood is the Laplace approximation based on the normal distribution. The

Laplace method has been used from the late 80s for approximating Bayes factors in

GLMs. It first appeared in Raftery (1988) and later Leonard et al. (1989) facilitated

Laplace approximations for evaluating the posterior of summary measures of interest

in contingency tables. The Laplace approximation for an integral of the form∫
eh(u)du is found using a Taylor series expansion of a real-valued function of a

P-dimensional vector u. Rosenkranz (1992) reported that the Laplace method

produces much more accurate estimates of the marginal likelihood than posterior

simulation for a variety of models. Raftery (1996a) employed the method to obtain

approximate Bayes factors for GLMs. Under this approach, the marginal likelihood

for contingency tables can be approximated by

log f (n|M) ≈ dM
2 log(2π) + 1

2 log | H∗ | + log f (ϑ∗M |M) + log f (n | ϑ∗M ,M) ,

whereϑ∗M is the posterior mode of model M , and H∗ is minus the inverse Hessian

evaluated at the posterior mode. This approximation works efficiently when the

posterior distribution is relatively symmetric and unimodal, see Tierney and Kadane

(1986).

2.4.2 Laplace-Metropolis Estimator

Lewis and Raftery (1997a) describe a way to use the posterior simulation

output to estimate integrated likelihoods. The Laplace method is often not appli-

cable because it requires the evaluation of derivatives that are not easily available.

This is particularly true for complex models for which posterior simulation, espe-

cially MCMC, is often used. The idea of the Laplace-Metropolis estimator is to

overcome the limitations of the Laplace method by using posterior simulation to
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estimate the quantities needed. To avoid analytic calculation of H∗ and ϑ∗M in

Laplace-Metropolis estimator, we estimate them by the posterior mean ϑ̄M and

the posterior variance-covariance matrix of ϑ, respectively, obtained by the MCMC

output. Hence, under this approach, the marginal likelihood is given by

log f (n|M) ≈ f̂(n|M),

f̂(n|M) = dM
2 log(2π) + 1

2 log | H ∗ | + log f
(
ϑ̄M |M

)
+ log f

(
n | ϑ̄M ,M

)
.

Although, the choice of the posterior mean for ϑ∗M is the most popular choice, it

may be problematic when the actual posterior departs from symmetry and being

unimodal. Hence, there are several alternative ways of estimating ϑ∗M an MCMC

sample:

• Estimate ϑ∗M as that ϑM in the sample at which h(ϑM ) = f(n|ϑM ,M )f(ϑM |M )

achieves its maximum.

• Estimate the components of ϑ∗M by finding the componentwise posterior

means.

• Estimate the components of ϑ∗M by finding the componentwise posterior

medians.

• Estimate ϑ∗M by finding the multivariate median.

The first of these methods is the simplest conceptually and usually the most accurate.

However, it involves calculating the likelihood many times and therefore it might

be computationally expensive. In such cases, the multivariate median might be

used instead, as this does not require too many computing resources. Moreover,

the MCMC estimated posterior median is more robust than the corresponding

posterior mean, which is influenced by outliers. Furthermore, the median is a

more accurate proxy of the model than the mean for a wide range of distributions

(Johnson and Kotz, 1985).
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The other quantity required for the calculation of the Laplace-Metropolis

estimator is H∗. This is asymptotically equal to the posterior variance matrix, and

we could estimate it by the sample covariance matrix of the posterior simulation

output, SM = 1
T − 1

∑T
t=1(ϑ

(t)
M − ϑ̄M)(ϑ(t)

M − ϑ̄M)T . However, because MCMC

trajectories take occasional distant excursions, it is recommended to use a robust

estimator of the posterior variance matrix. One such estimator is the weighted

variance matrix estimate with weights based on the minimum volume ellipsoid

estimate of Rousseeuw and van Zomeren (1990).

2.4.3 Common and Different Characteristics of Laplace ap-

proaches

The Laplace approximation is obtained by using any optimization method,

while the Laplace-Metropolis estimator is based on the output of an MCMC

algorithm. The first method is faster and free of any Monte Carlo error, but it is

not always applicable due to computational problems and not being unimodal. The

second approach is more computationally demanding, but the implementation is

direct when the MCMC sample is available. Both estimators are approximations of

the Bayesian marginal likelihood and therefore they require a large enough sample

size in order to obtain accurate results. Therefore, they will not be accurate for

small or sparse datasets. Both approaches have specific regularity conditions. These

approximations are more efficient when the posterior distributions are symmetric,

otherwise log, logit or Box-Cox transformations may be applied in order to convert

the Laplace approximation on transformations of parameters of interest that are

a-posteriori normally distributed.
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2.4.4 Illustrated Example

In this section, we use the data of a survey conducted at the University

of Ioannina (Greece) in 1995 which studies the association between the use of

cannabis and the alcohol consumption among students (Marselos et al., 1997). The

frequency of alcohol consumption is measured in a four-level scale while the use of

cannabis through a three-level factor (never tried, once or twice, more frequently).

These two ordinal factors are cross-classified in a 4×3 table presented in Table 2.1.

Table 2.1: Cannabis dataset (Marselos, 1997).

Cannabis Use

Alcochol Once More

consumption Never or twice often Total

At most once/month 204 6 1 211

Twice/month 211 13 5 229

Twice/week 357 44 38 439

More often 92 34 49 175

Total 864 97 93 1054

Using this example, we illustrate the Bayesian model comparison of as-

sociation models for two-way contingency tables by approximating all marginal

likelihoods using the Laplace-Metropolis estimator. Two normal prior distributions

with zero means were used: (a) Unit Information Empirical prior (UIE) where

the prior variance of each interaction parameter is set equal to the corresponding

posterior variance multiplied by the sample size, and (b) a prior similar to the one

proposed by Dellaportas and Forster (1999) with prior variance equal to two (DF).
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Table 2.2: Bayesian measures of model evaluation for all models M ∈ M in the
Cannabis dataset.

−2logBFj2 Posterior Probabilities
Mj Model DIC BIC Dif. BIC

UIE? DF † BIC UIE? DF †

1 Independence (I) 228.9 258.7 144.1 139.4 145.5 <0.01 <0.01 <0.01

2 Uniform (U) 81.1 114.8 0.0 0.0 0.0 0.956 0.973 0.801

3 Row (R) 82.8 128.1 13.4 17.9 9.1 <0.01 <0.01 <0.01

4 Column (C) 81.5 120.9 6.2 7.2 2.9 0.043 0.027 0.191

5 Row-Column (RC) 84.9 134.4 19.6 21.8 20.1 <0.01 <0.01 <0.01

6 Saturated (S) 88.2 147.7 32.9 40.4 20.5 <0.01 <0.01 <0.01

∗UIE: Unit Information Empirical prior

†DF: Dellaportas and Foster(1999) prior

Table 2.2 presents several measures (DIC, BIC, logBF and posterior probabili-

ties under the two priors discussed previously) for the six models under consideration

(I, U,R,C,RC, S). All model comparison measures indicate that the Uniform model

is the best, which has equidistant scores for the rows and columns, µ = {1, 2, 3}

and ν = {1, 2, 3, 4}. From Table 2.2 we observe that the DIC and BIC values for

this model are clearly lower than those of other models. Similar is the picture from

the posterior model probabilities where the U model is the Maximum a-posteriori

model (MAP) with probabilities 0.956, 0.973 and 0.801 for BIC, UIE prior and DF

prior, respectively. Results under the two different prior setups differ due to the

effect of the Lindley-Bartlett paradox. The posterior model probabilities under the

empirical prior are closer to the corresponding BIC based probabilities due to the

approximate unit information interpretation of UIE. The column effect association

model appears to be the second best but with considerably lower probabilities

(0.043, 0.027 and 0.191 for BIC, UIE prior and DF prior, respectively). These

results are in agreement with the frequentists analysis (see Kateri, 2014, Chapter

6).

48



2.5 Importance sampling marginal likelihood

estimators

Perrakis et al. (2014) proposed an importance sampling estimator of the

marginal likelihood in which the product of the marginal posterior distributions is

used as an importance sampling function. This approach is generally applicable to

multivariate parameter vector ϑ that can be split in multiple (multivariate) blocks

of parameters ϑ = (ϑ1, . . . , ϑdϑ) (multi-block parameter vector settings). It does

not require additional Markov Chain Monte Carlo (MCMC) sampling and does

not depend on the type of MCMC scheme used to sample from the posterior. It

can be applied in a wide range of models including regression models, finite normal

mixtures and longitudinal Poisson models. It leads to accurate marginal likelihood

estimates provided that the importance sampling distribution used captures the

main characteristics of the posterior such as asymmetries and correlations.

In this thesis, we propose two estimators based on the original estimator

Perrakis et al. (2014): the independent and the one-block Perrakis estimators. In

the first choice ϑ = (ϑ1, . . . , ϑdϑ) becomes univariate scalar while in the second

ϑ is considered as multivariate block where a multivariate approximation of the

posterior is used as proposal. A critical feature in differentiating the independent

Perrakis estimator (IP) from the one-block (OBP) version is the distribution of

the importance sampling function. In the first case (IP), the importance sampling

function g is simply a product of independent normal distributions, as opposed to

one-block variant where g is a multivariate normal distribution. The two variants

of the estimator are used here in the context of association models in Bayesian

contingency tables analysis.

The marginal likelihood estimator of Perrakis et al. (2014) is based on the

use of a proper importance sampling density g which is introduced by the marginal

likelihood given by (??). Hence, the marginal likelihood can be expressed as an
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expectation with respect to g (instead of the prior) given by

f(n|M ) =
∫ f(n|ϑM ,M )f(ϑM |M )

g(ϑM |M ) g(ϑM |M )dϑM = Eg

[
f(n|ϑM ,M )f(ϑM |M )

g(ϑM |M )

]
.

(2.3)

This quantity can be easily estimated by

f̂(n|M ) = 1
T

N∑
n=1

f(n|ϑ(t)
M ,M )f(ϑ(t)

M |M )
g(ϑ(t)

M |M )
(2.4)

where T is the number of randomly generated values of ϑM from g(ϑM |M ) which

will be called importance sampling size. Each generated value is denoted by ϑ(t)
M ,

for t = 1, 2, . . . , T . An ideal importance sampling density should provide easiness

in sampling from it and it should be close to the posterior distribution.

A key issue of the above method is to select appropriately the importance

function g(ϑM |M) which should be easy-to-generate from the distribution. Such

distributions can be built by estimating posterior summaries from the MCMC

output and by selecting known distributions which match the marginal posterior

distributions of interest. Another critical point, is the selection of the dimensional

complexity of g. For models of high dimension, the selection of a multivariate g

that is a good proxy of the target posterior may be difficult to be constructed.

So we proceed by identifying blocks of parameters ϑM = (ϑb1,M ,ϑb2,M , . . . ,ϑbB ,M)

with Cor(ϑbl,M ,ϑb`,M) ≈ 0 for every l 6= ` ∈ {1, 2, . . . , B}; where b` specify the

different blocks of parameters and B the number of selected blocks. Under this

approach we re-write the density of the importance function as

g(ϑM |M ) =
B∏
`=1

g`(ϑb`,M |M )

and we generate each parameter block from

ϑb`,M ∼ g`(ϑb`,M |M ) for ` = 1, . . . , B.
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Next, we describe in detail the two special cases of the general importance sampling

estimator introduced here: the independent and the one-block Perrakis estimators.

2.5.1 Independent Perrakis Estimator

In this case, we assume that each parameter is a single block, that is, B = dM

with dM = |ϑM | denoting the number of parameters of modelM . Although posterior

independence is not frequently met in practice, the product marginal posterior can

serve as a good approximation to the joint posterior even if ϑM is not completely

independent a-posteriori. The parameter blocks could be close to orthogonal

regardless of whether the elements within ϑM are strongly correlated. Furthermore,

appropriate reparameterizations can be used in order to form parameter blocks

which are orthogonal or close to orthogonality (see Gilks and Roberts, 1996).

By using this simplified approach, the simulation of the importance sample will

be accelerated since all distributions that we will sample from are univariate.

Regarding association models, the underlying independence assumption of the

parameters is not realistic; but we intuitively assume that all posterior correlations

between parameters are not high enough to cause severe problems to the estimation

of the marginal likelihood. The importance sampling function is now written as

g(ϑM |M ) = ∏dM
j=1 gj(ϑj,M |M ) and each single parameter ϑj,M is generated from

gj(ϑj,M |M ).

For the association models, we can obtain an estimate of the marginal

likelihood using the independent Perrakis estimator by implementing the Algorithm

1. Initially, we run the MCMC algorithm. From the MCMC output we estimate

the posterior mean ϑ̃j,M and the posterior variance S2
ϑj,M

of each parameter ϑj,M .

We generate the importance sampling values by

ϑ
(t)
j,M ∼ N(ϑ̃j,M , S2

ϑj,M
) for j = 1, . . . , dM

for t = 1, 2, . . . , T . Finally, we estimate the marginal likelihood using 2.4, which
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now becomes

f̂I(n|M ) = 1
T

T∑
t=1

f(n|ϑ(t)
M ,M )f(ϑ(t)

M |M )
dM∏
j=1

1
Sϑj,M

φ
(
ϑ

(t)
j,M−ϑ̃j,M
Sϑj,M

) (2.5)

where φ(z) is the density function of the standardized normal distribution. See

Algorithm 1 for a summary.

Algorithm 1 Independence Monte Carlo estimator algorithm
Input:

MCMC output: ϑ(t)
M =

(
ϑ

(t)
j,M , j = 1, . . . , dM

)
, t = 1, . . . , T0,

T0 = TMCMC : the size of MCMC output

T: the importance sample size
for j = 1 to dM do

ϑ̃j,M = 1
T0

T0∑
t=1

ϑ
(t)
j,M . Estimate the posterior mean

S2
ϑj,M

= 1
T0 − 1

T0∑
t=1

(ϑ(t)
j,M − ϑ̃

(t)
j,M)2 . Estimate posterior variance

end for

for t = 1 to T do

for j = 1 to dM do

ϑ
(t)
j,M ∼ N(ϑ̃j,M , S2

ϑj,M
) . Generate importance sampling values

end for

end for

f̂I(n|M ) = 1
T

T∑
t=1

f(n|ϑ(t)
M ,M )f(ϑ(t)

M |M )
dM∏
j=1

1
Sϑj,M

φ
(
ϑ

(t)
j,M−ϑ̃j,M
Sϑj,M

) . Calculate the marginal likelihood

Output:

The marginal likelihood estimate: f̂I(n|M )

2.5.2 One-Block Perrakis Estimator

In this case, we consider all parameters as a single block (i.e. B = 1) and

generate all importance sampling values from a single multivariate distribution.

Although this will be generally inefficient for high dimensional or complex models,
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in our case we expect that such an estimator will behave reasonably well since

the dimension of association models for two-way tables is usually limited; also

empirical evidence has shown that the posterior distributions in such models are

relatively symmetric and therefore they can be approximated reasonably well from

multivariate normal distributions. The advantage of this approach, in comparison

to the independence approach, is that the importance sampling will be definitely

closer in terms of shape to the posterior distribution since it will incorporate the

correlations between the parameters.

Under this approach, the procedure can be described by the steps of Al-

gorithm 2. First we run the MCMC algorithm. From the MCMC output, we

estimate the posterior mean ϑ̃M and posterior variance-covariance matrix SϑM .

We generate the importance sampling values from a multivariate normal distri-

bution ϑ(t)
M ∼ NdM (ϑ̃M ,SϑM ), for t = 1, . . . , T . Finally, we estimate the marginal

likelihood using 2.4, which now becomes

f̂B1(n|M ) = 1
T

T∑
t=1

f(n|ϑ(t)
M ,M )f(ϑ(t)

M |M )
fNdM (ϑ(t)

M ; ϑ̃M ,SϑM )
. (2.6)

In the above procedure, Np(µ,Σ) is used to denote the p-dimensional normal

distribution with mean µ and variance-covariance matrix Σ and fNp(x;µ,Σ) to

denote the corresponding density function. In the following of this thesis, we will

refer to this approach as the one-block Perrakis estimator. See Algorithm 2 for a

summary.
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Algorithm 2 One-block Monte Carlo estimator algorithm
Input:

MCMC output: ϑ(t)
M =

(
ϑ

(t)
j,M , j = 1, . . . , dM

)
, t = 1, . . . , T0,

T0 = TMCMC : the size of MCMC output

T: the importance sample size
for j = 1 to dM do

ϑ̃j,M = 1
T0

T0∑
t=1

ϑ
(t)
j,M . Estimate posterior mean

end for

Set: ϑ̃M =
(
ϑ̃1,M , ϑ̃2,M , . . . , ϑ̃dM ,M

)
. Posterior mean vector

SϑM = 1
T0 − 1

T0∑
t=1

(
ϑ

(t)
M − ϑ̃

(t)
M

)(
ϑ

(t)
M − ϑ̃

(t)
M

)>
. Estimate posterior

variance-covariance matrix

for t = 1 to T do

ϑ
(t)
M ∼ NdM (ϑ̃M ,SϑM ) . Generate importance sampling values

end for

f̂B1(n|M ) = 1
T

T∑
t=1

f(n|ϑ(t)
M ,M )f(ϑ(t)

M |M )
fNdM (ϑ(t)

M ; ϑ̃M ,SϑM )
. Estimate marginal likelihood

Output:

The marginal likelihood estimate: f̂B1(n|M )

2.6 Prior Specification via Power Priors and

Imaginary Data

Posterior model probabilities and the Bayes factor are highly sensitive to

the prior specification of the model parameters. This behavior is known by the

name of Lindley’s and Barlett paradox, respectively. Hence, the Bayes factor

is quite sensitive to the choices of hyperparameters of vague proper priors, and

thus one cannot simply specify vague proper priors in model selection contexts to

avoid informative prior elicitation. When no prior information is available, a non-

informative prior such as a uniform prior or a Jeffreys prior can be used (see Kass
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and Wasserman, 1996) as possible of choices. When non informative or improper

prior are used, the prior surface is flat. Moreover, such priors do not make use of real

prior information, which is available for a specific application. Thus, informative

priors, such as power-priors (Ibrahim and Chen, 2000), can be of great value in such

situations and, more generally, in applied research settings where the researcher

has access to previous studies measuring the same response and covariates. Real

prior information such as historical data or data from previous similar studies are

often available in applied research. Also, in experiments conducted over time, data

from previous time periods can be used as prior information by quantifying it with

a suitable prior distribution on the mode parameters.

Power prior distributions are based on the idea of raising the likelihood

function of historical data to a power w, where 0 ≤ w ≤ 1. The power prior

approach of Ibrahim and Chen (2000) and Chen et al. (2000b) is adopted to

advocate sensible values for the prior parameters of model used to fit contingency

table data. The initial idea of the power prior can be traced back to Diaconis

and Ylvisaker (1979) and Morris (1983), where they studied conjugate priors for

exponential families. However, these two authors considered only the case of the

power w as a fixed constant.

In this work, the idea of imaginary data is adopted in order to alleviate

the effect of the Lindley-Bartlett paradox and, therefore, specify reasonable priors

which will lead to a sensible Bayesian model comparison. We consider imaginary

data coming from the simplest model of independence and weight them in order

to obtain a contribution equivalent to one additional data point to the posterior.

Thus, we indirectly avoid the use of improper priors by the use of imaginary data.

The initial idea of the imaginary data can be traced in Good (1950). Spiegelhalter

and Smith (1982b), based on the original ideas of Good, considered a thought

experiment with an appropriate dataset that was used to specify the normalizing

constants involved in the Bayes factor when using improper priors. When no
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information is available, a common procedure is to produce or generate imaginary

data with some specific properties. Usually, we consider data coming from the

simplest model (especially in nested model comparisons) in order to center our

priors to the null hypothesis. By this way to satisfy the “locality” principle; see

for details Consonni et al. (2018). Moreover, by adopting the unit information

principle, we minimize the amount of information on our posterior by the imaginary

data to a piece of information equivalent to one additional data point. The use

of common “imaginary” data in building the prior distributions as (re-weighted)

posteriors, ensures that they will be “compatible” across models in the sense that

the same prior information is infused in all models. The term of compatibility refers

to the fact that priors should be somehow related across models (see Consonni

and Veronese, 2008, Dawid and Lauritzen, 2011). Finally, power-priors of unit

information can help us ensure that the prior will be consistent in terms of model

selection in the sense that the posterior probability of the true model will tend

to one when the sample size grows. This is a desirable property which will be

examined extensively here using a simulation study.

The power prior, in the general frameworkwas setup for any under this

setup statistical model M with response Y , covariates X1, . . . , Xp and parameters

ϑ = (β,ψ). Chen et al. (2000a) denoted by y∗ a historical data response vector of

size n0×1 and byX∗ the corresponding data/design matrix of dimension n0×p that

corresponds to covariatesX1, . . . , Xp . Also, let x∗i T = (x∗i1, x∗i2, . . . , x∗ik) to be the ith

row of X∗ with x∗i1 = 1 (for all i = 1, . . . , n) being the elements of the first column

which correspond to the intercept. Moreover, η∗i = x∗i
Tβ denotes the linear predictor

based on the historical data, and D∗ = (y∗, X∗) denotes the historical data. Then

a prior can be obtained as a posterior based on the historical data D∗ and a flat

(pre)prior can be obtained by setting π(ϑM |M) = f(ϑM |D∗) ∝ f(y∗|ϑM ,X∗).A

problem with this induced prior is that each historical data point will account for a

value of information same to that of the actual observed data. Moreover, if the size
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of historical data is large, then the posterior including both actual and historical

data will be governed by the “past ”and not by the actually observed data. The

problem is even more acute, when “imaginary”data are used instead of historical

data in the case of prior ignorance with the aim to build a set of sensible, data

driven Bayesian procedure with a prior compatible across models. For this reason,

Chen et al. (2000a) introduced a “power ”parameter which calibrates or tunes the

amount of information infused in our posterior distribution. Under this approach

the “power”prior is written as

π(ϑ|w) ∝ f(y∗|ϑ,X∗)w, (2.7)

where 0 ≤ w ≤ 1 is a scalar prior precision parameter that weights the historical

data relative to the likelihood of the current study. The prior specification is

complete by specifying a prior distribution or specific value for w. Imaginary data

are assigned higher weight than actual observations when w > 1. This is generally

not desirable, especially when no prior information is available. If we take w = 1

and n0 equal to the observed sample size then the prior and data will account for

50% of the information used in the posterior. The choice of w = 1/n0 means that

the prior data y∗ will account for information of one data point. Hence, we add

information equivalent to adding one observation and, by construction, this will

support simpler models that are closer to the uniform-cells assumption.

Returning back to the notation used for contingency tables, for a set of

imaginary data n∗, the power prior for a model M can be defined as

π(ϑM |w,M) ∝ f(n∗|ϑM ,X)wf0(ϑM), (2.8)

sinceX∗ = X this is a design matrix, fixed by experiment. In the above formulation,

we have also added the pre-prior f0(ϑM ) for generality but this can be eliminated by

considering a uniform, improper prior or almost eliminated by considering a proper

prior with extremely large variance. To simplify the choice of the imaginary data,
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we consider data from the simplest possible model which is the model of uniform

cell frequencies (i.e. all cells have the same frequencies). Furthermore, in order to

consider the unit information approach we set w = 1/n∗ where n∗ =
I∑
i=1

J∑
j=1

n∗ij is

the total sample size of the imaginary contingency table. Thus, we specify

n∗ij = ξ and w = 1
ξIJ
.

For the common value ξ of the imaginary cell frequencies, two are the “natural”

choices:

Prior Choice 1: ξ = 1 which is the minimum value that can be used to fit a

relevant model without identifiability problems.

Prior Choice 2: ξ = n = N/(IJ) which ensures that the constant of all models

will be centered to the “correct” value in terms of effect size. Some may argue

that this prior is (even minimally) empirical due to the use of N , but one

remark against it is that we introduce information to our prior which is based

only on the characteristics of the experiment (i.e. sample size and number

of levels of each categorical factor) and these are fixed before observing the

data. Moreover, no data driven information about the association between

variables is included in our prior building procedure.

Under this approach, the marginal likelihood is now given by

f(n|M ) =
∫
f(n|ϑM ,M )π(ϑM |w,M)dϑM

=
∫
f(n|ϑM ,M )f(n∗|ϑM ,X)wf0(ϑM)dϑM∫

f(n∗|ϑM ,X)wdf0(ϑM)ϑM
. (2.9)

Hence, this approach requires to calculate two distinct Bayesian marginal likelihoods:

one for the imaginary data and one about both the imaginary and the actual data.

Note that the resulting (overall) marginal likelihood can be calculated even in the

case we consider an improper pre-prior distribution. The reason is that the use of
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the imaginary data make the actual power prior proper provided that the imaginary

data provide identifiable information for every parameter. Moreover, the unknown

normalizing constant of the improper pre-prior appears in both the numerator and

the denominator of (2.9) and, thus, they cancel out without creating any problem

to the computation of the marginal likelihood

On the other hand, the requirement of double computations makes the above

procedure unattractive. For this reason, we use a normal approximation of the

posterior distribution using imaginary data and then re-weight them appropriately.

The normal approximation typically works satisfactorily for GLMs; see for example

in ?. Following the arguments used in the Zellner’s g-prior and its connection

with the power prior (Fouskakis and Ntzoufras, 2016, ?), we may consider an

approximation as the following setup

π(ϑM |w,M) ∼ NdϑM
(ϑ̃∗M , w−1Σ̃∗ϑM ) (2.10)

where ϑ̃∗M and Σ̃∗ϑM are the posterior means and variance-covariance matrix of

ϑM estimated using data n∗. Estimates of these values can be obtained by an

MCMC of each model M using the imaginary data n∗. or from the corresponding

MLE estimates. In order to further simplify the approach, we consider Σ̃∗ϑM to

be diagonal. Thus one need only to estimate the posterior variances by using the

imaginary data. The effect of this simplification is minor since the actual prior

information induced by our proposed prior is minimal and equal to one data point.

2.6.1 Implementation of the Proposed Methodology in Asso-

ciation Models

The proposed methodology for association models in contingency tables can

be described by the following five steps.

• Step 1: For w = 1/(IJ), set imaginary data n∗ij = ξ and with ξ = 1 for prior
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choice 1 and ξ = N/(IJ) (or the closest integer) for the second prior.

• Step 2: Set an improper uniform prior or a normal pre-prior with very large

variance.

• Step 3: Compute posterior means and variances of ϑM for each model M

(either using MCMC or any other method) using the imaginary data n∗.

• Step 4: For the actual data, use a normal prior of the type (2.10) for the

model parameters with mean and variance obtained by Step 3.

• Step 5: Compute the marginal densities for allM using a marginal likelihood

estimator (see Section 2.4 for proposed approaches).
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Algorithm 3 Bayesian model evaluation using power prior for contingency tables
1 Notation:

Parameter vector of model M : ϑM
2 Input:

Data: n =
(
nij, i = 1, . . . , I, j = 1, . . . , J

)
Imaginary data: n∗ =

(
n∗ij, i = 1, . . . , I, j = 1, . . . , J

)
MCMC output of parameter: ϑ(t)

M =
(
ϑ

(t)
j,M , j = 1, . . . , dM

)
, t = 1, . . . , T0,

Size of MCMC output: T0 = TMCMC

Importance sample size: T

Weight of imaginary data: w

Value of each n∗ij: ξ (i.e. n∗ij = ξ)
3 for M inM = {I, U,R,C,RC, S} do

4 Specify prior type: Prior 1 : w = 1
IJ
← n∗ij = ξ = 1 or

Prior 2 : w = 1
IJ
← n∗ij = ξ = n

(IJ)
6 Specify pre-prior: i. ϑj,M ∝ 1 (improper) or

ii. ϑj,M ∼ N(0, σ2
ϑj,M

), σ2
ϑj,M
← large

8 for j = 1 to dM do

9 ϑ̃∗j,M = 1
T0

T0∑
t=1

ϑ∗j,M
(t) . Estimate the posterior mean for imaginary data

10 S2
ϑ∗j,M

= 1
T0 − 1

T0∑
t=1

(ϑ∗j,M
(t) − ϑ̃∗j,M)2 . Estimate posterior variance for imaginary data

11 end for

12 Set prior: ϑj,M ∼ N(ϑ̃∗j,M , nS2
ϑ∗j,M

), j = 1, . . . , dM
13 Run MCMC with data n and the above prior

14 Select Algorithm 1 or 2

15 Estimate the marginal likelihood of model M using MCMC output: ϑ(t)
M , t = 1, . . . , T0

16 end for

17 Calculate posterior model probabilities

18 Identify the MAP model

19 Output:

Marginal likelihood estimates f̂(n|M ) for all M ∈M,

Posterior Model Probabilities f(M |n), for all M ∈M,

MAP model
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2.7 Discussion

In this chapter we introduced the main idea of the proposed methodology.

Two prior setups are proposed in order to advocate sensible choices of the prior

using imaginary data and the power prior approach. Additionally, two version

of the Monte Carlo estimators are proposed, independence and one-block Monte

Carlo estimators of the marginal likelihood. They are straightforward to use when

the MCMC output is available, efficient and no computational demanding. In the

next chapter we provide the implementation of the proposed methodology in two

real datasets along with an extensive simulation study.
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Chapter 3

Implementation of Bayesian Model

Comparison Methodology

All laws are simulations of reality.

John C. Lilly

3.1 Real Data Examples

3.1.1 Example 1: Association of Dreams Disturbance Sub-

scales

The classical dataset of Maxwell (1961), in which the severity of dreams

disturbance of 223 boys is cross classified with their age, has been used to illustrate

the proposed methodology. Maxwell discusses an analysis of a 5× 4 contingency

table giving the number of boys with four different ratings for disturbed dreams in

five different age groups, see Table 3.1. The higher the rating, the more the boy

suffers from disturbed dreams.

We set all cells of imaginary data equal to one and impose a normal non-

informative pre-prior with large variance. The posterior mean and posterior
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Table 3.1: Cross-classification of 223 boys by severity of disturbances of dreams
and age.

Age group
Disturbance (from low to high)
1 2 3 4 Total

5-7 7 4 3 7 21
8-9 10 15 11 13 49
10-11 23 9 11 7 50
12-13 28 9 12 10 59
14-15 32 5 4 3 44
Total 100 42 41 40 223

variance for all parameters in each model using the imaginary data are estimated

via MCMC. These values are used to build an approximation of the power prior. The

results of the new MCMC output are listed in Table 3.2 along with the estimated

log-marginal likelihood, the Laplace approximation and the Laplace-Metropolis

estimator approach. The results of the two approaches, supporting the same model,

are very close.

Table 3.2: Estimated logarithm of marginal likelihood for all the competitive models
with the two versions of Laplace method.

Mj Model
log-marginal

Laplace Laplace-Metropolis

1 Independence (I) −91.399 −91.296

2 Uniform(U) −90.167 −90.596

3 Row (R) −103.771 −103.159

4 Column (C) −97.652 −97.096

5 Row-Column (RC) −107.365 −107.446

6 Saturated (S) −131.665 −131.253
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After implementing the proposed methodology using µmin = νmin = 0,

νmax = 1 and φ = 1 parametrization for the RC model, only two models were

found with posterior model probabilities higher than 1%; see Table 3.3. All model

comparison measures indicate that the Uniform model is the best. According to

Table 3.3 the highest probability model is the Uniform association model with

fix row and column scores 77, 4% and 66, 8% for the Laplace Metropolis and the

Laplace Approximation respectively. The independence model is supported as the

second best but with considerably lower probabilities (0.331 and 0.226 for Laplace

approximation and Laplace-Metropolis approach, respectively).

Table 3.3: Estimated logarithm of Bayes factor and posterior model probabilities
for all the competitive models with the two version of Laplace method.

Mj Model
Log-BFj2 Posterior Probabilities

Laplace Laplace-Metropolis Laplace Laplace-Metropolis

1 Independence (I) −0.7 −1.2 0.331 0.226

2 Uniform (U) 0.0 0.0 0.668 0.774

3 Row (R) −12.6 −13.6 <0.01 <0.01

4 Column (C) −6.5 −7.5 <0.01 <0.01

5 Row-Column (RC) −16.8 −17.2 <0.01 <0.01

6 Saturated (S) −40.7 −41.5 <0.01 <0.01

3.1.2 Example 2: Association of Schizotypal Personality Sub-

scales

In this illustration, we re-analyze the dataset of Table 3.4, which presents the

cross-classification of 202 students of the survey according to “social anxiety” and

“odd behaviour”. These variables refer to two of the nine specific characteristics

of a “schizotypal personality” as they are defined in the DSM-III-R diagnostic

and statistical manual of mental disorders, edited by the American Psychiatric

Association (1987). Social anxiety refers to excessive stress, nervousness, or feeling
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extremely uncomfortable when being with other people which does not disappear

with familiarity. Odd behaviour is related to eccentric appearance, unusual habits,

and peculiar actions that may not be acceptable in society. This dataset was

originally considered by Iliopoulos et al. (2009) and extracted from a larger university

survey conducted in Greece by Iliopoulou (2004). The main aim of this survey was

to assess the association between schizotypal traits and impulsive and compulsive

buying behaviour of university students. This dataset is a 5 × 5 contingency

table with many cells with zero frequencies. This fact makes our analysis more

complicated because we have an extra problem to concern and this is the sparsity.

Many methods break down when the table is sparse or when the sample size of the

table is small.

Table 3.4: Schizotypy data: Cross-classification of 202 students by social anxiety
and odd-behavior sub-scales

Social anxiety score
Odd behavior score

0 1 2 3 4 5-7 Total

0 11 5 1 0 1 0 18

1 13 8 8 2 2 3 36

2 8 9 4 1 4 0 26

3 6 7 5 4 4 1 27

4 6 9 5 3 2 4 29

5 3 13 5 4 1 5 31

6-8 0 11 5 10 3 6 35

Total 47 62 33 24 17 19 202

Under the first prior scenario, we set all the imaginary data equal to one,

i.e. n∗i = 1. We impose normal non-informative pre-priors with large variances.

These imaginary data are then used to build an approximation of the power prior
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Table 3.5: Estimated log-marginal likelihood for all the competing models.
Log-marginal

Prior Mj Model Laplace Laplace
Metropolis

Independence
Perrakis

One-Block
Perrakis

Prior 1 1 Independence (I) -151.63 -152.04 (0.024) -151.64 (0.015) -151.59 (0.002)
2 Uniform (U) -148.01 -148.64 (0.025) -147.07 (0.166) -147.95 (0.004)
3 Row (R) -173.61 -175.05 (0.045) -174.08 (1.242) -173.51 (0.012)
4 Column (C) -158.72 -160.16 (0.049) -159.85 (0.776) -158.62 (0.007)
5 Row-Column (RC) -182.86 -182.02 (0.058) -184.02 (2.496) -182.66 (0.048)
6 Saturated (S) -234.43* -289.80 (0.122) -362.79 (11.312) -234.85 (5.944)

Prior 2 1 Independence (I) -160.88 -161.38 (0.026) -160.61 (0.015) -160.83 (0.002)
2 Uniform (U) -157.53 -158.21 (0.023) -158.01 (0.123) -157.49 (0.004)
3 Row (R) -186.19 -187.65 (0.038) -191.32 (1.934) -186.08 (0.012)
4 Column (C) -172.05 -173.52 (0.042) -176.57 (0.448) -171.96 (0.015)
5 Row-Column (RC) -202.24 -203.01 (0.077) -205.55 (3.377) -202.21 (0.028)
6 Saturated (S) -302.73* -287.48 (0.102) -348.57 (5.625) -308.40 (4.366)

* Laplace was obtained after removing cells with zero frequencies.
Importance sampling size T = 15, 000 and MCMC iterations Tmcmc = 11, 000 and additional
1, 000 burn-in.

as described in Section 2.6. Then, the marginal likelihood estimates are estimated

as described in Section 2.4. All estimates (using Laplace, Laplace-Metropolis,

independent Perrakis, and one-block Perrakis estimators) are presented in Table

3.5. The Laplace and Laplace-Metropolis estimators can serve as the gold-standard

for models that fall within the GLM framework (i.e. for all models except the RC

model) given that the sample size is large. On the contrary, results using these two

approaches are only indicative for small samples or for the RC model.

From Table 3.5, we observe that all marginal likelihood estimates are very

close except those of the Saturated model. The reason for this instability is the

existence of zero cell frequencies in the observed contingency table. For this model,

the Laplace approximation (after removing zero frequencies) is in agreement with

the one-block Perrakis estimator. In order to test the accuracy and compare the

efficiency of the estimation of the marginal likelihood of the three estimators,

Laplace Metropolis, Independent Perrakis and One-Block Perrakis, we compute the
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Monte Carlo error. MC error measures the variability of each estimate due to the

number of the importance sample size.The Laplace-Metropolis and the independent

version of Perrakis seem to considerably fail (especially the latter) for the saturated

model with extremely high Monte Carlo error (≈ 11.3). The one-block Perrakis

estimator is adequately accurate but the Monte Carlo error is still high (≈ 5.9

units in terms of log-marginal likelihood). Generally, the Monte Carlo error of the

independence sampler is almost twice as high as the corresponding error of the

one-block sampler of the saturated model, while for the rest of the models this

MCE ratio between the two methods ranged from 7.5 to 110 (the ratio of MCE

of Column association model 0.776
0.007 = 110 between independence and one-block

estimators).

Similar are the results of the second scenario where all the imaginary data

are set equal to the cell mean of the contingency table (here 4.8 ≈ 5). This approach

can be thought of as minimally empirical since the power parameter is set equal to

1/n so that our prior approximately accounts in the posterior for one data point in

total; see the lower part of Table 3.6. Note that, for this prior choice, the MCMC

is significantly improved (5.6 and 4.4 for the independent and one-block estimators

respectively) mainly because the prior imaginary data were adjusted to reflect the

overall mean and this has greater influence on the intercept of the model and the

a-priori expected number of cells assumed and introduced in our analysis.

Table 3.6 and Figure 3.1 present the estimated log-Bayes factors of each

model against the MAP which, here, is the uniform. Again all estimators are

similar and the one-block estimator is very accurate in all cases except for the

saturated model. Note that for this estimator, all log-Bayes factors are calculated

with very low Monte Carlo error even for relatively small samples of 1000 or 3000

generated values. In Figure 3.1, cyan and red shaded areas represent the plus-minus

two times Monte Carlo error for the one-block and independent estimators. It is

clear that the accuracy of the one-block estimator is much higher than that of the
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Figure 3.1: Estimated log-Bayes factors of each model with the uniform association
model (MAP in this analysis). Shaded areas represent ±2× Monte Carlo errors.
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Table 3.6: Estimated log-Bayes factor of all the models compared with the maximum
a-posteriori model (Uniform); Results are in ascending order of log-Bayes factors.

Log-Bayes Factor of Uniform model vs. Mj

Prior Mj Model Laplace Laplace
Metropolis

Independence
Perrakis

One-Block
Perrakis

Prior 1 1 Uniform (U) 0.00 0.00 — 0.00 — 0.00 —
2 Independence (I) 3.63 3.39 (0.034) 4.57 (0.179) 3.64 (0.003)
3 Column (C) 10.71 11.51 (0.054) 12.78 (0.773) 14.89 (0.009)
4 Row (R) 25.61 26.40 (0.048) 27.01 (1.182) 25.56 (0.019)
5 Row-Column (RC) 34.85 33.37 (0.069) 36.95 (1.745) 34.71 (0.053)
6 Saturated (S) 86.43* 141.15 (0.123) 215.72 (11.151) 86.90 (6.011)

Prior 2 1 Uniform (U) 0.00 0.00 — 0.00 — 0.00 —
2 Independence (I) 3.34 3.17 (0.034) 2.59 (0.130) 3.34 (0.005)
3 Column (C) 14.52 15.31 (0.055) 18.56 (0.555) 14.47 (0.021)
4 Row (R) 28.66 29.44 (0.042) 33.32 (1.283) 28.59 (0.015)
5 Row-Column (RC) 44.71 44.81 (0.081) 47.54 (3.346) 44.71 (0.096)
6 Saturated (S) 150.97* 129.27 (0.101) 190.57 (5.616) 150.91 (3.361)

* Laplace was obtained after removing cells with zero frequencies.
Importance sampling size T = 15, 000 and MCMC iterations Tmcmc = 11, 000 and additional 1, 000
burn-in.

independent estimator for all models since the cyan shaded area is much smaller

than the corresponding red ones for all models except for the saturated. For the

saturated model, the one-block estimator demonstrates again smaller intervals but

the improvement in the corresponding intervals of the independent estimator is

considerably higher.
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Figure 3.2: Estimated posterior probability of the uniform association model (MAP
in this analysis) for various importance sampling sizes. Shaded areas represent ±2×
Monte Carlo error (restricted to the zero-one interval); TMCMC = 11000 iterations
and additional 1000 iterations as burn-in.
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The same conclusions can be drawn if we focus on the posterior probability

of the maximum a-posteriori (MAP) model which is the uniform model in our

analysis; see Table 3.2. Even if we observe an instability in the estimation of

the marginal likelihood of the saturated model, all approaches indicate that the

Uniform model is the maximum a-posteriori model (MAP) with 97% posterior

probability (and 99% for the importance Perrakis estimator). The second best

model, is the independence model with posterior probability around 3% for all

methods except for the IP estimator (≈ 1%). All the other models have negligible

posterior model probabilities, lower than 0.1%. The second prior scenario with

larger differences in the estimated of the log-marginal likelihoods, also, complies

to our expectations. The one-block estimator provides an accurate estimate even

when the importance sample size does not exceed 1000. The Monte Carlo error

is equal to 0.033 while the importance sampling estimator required considerably

higher size (about 15,000 generated observations) to reach similar levels of precision.

The variability of the estimated posterior probability was very high for sizes of

5000 observations or lower, with MC error ranging from 1.5% to 8.4% for 1000
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importance sampling generated values.

Concerning the required number of importance sampling iterations T , we

have specified it by using the percentage change of the estimated log-marginal

between subsequent Monte Carlo simulations of different size. To calculate this, we

have considered T ∈ {1K, 5K, 10K, 15K, 50K, 100K, 150K} iterations; where K

stands for thousands. The value of α = 1% accuracy has been selected as threshold

for the percentage differences. If all differences are lower than 1%, then we assume

that the required number of iterations needed for the estimators is at most equal to

1000. And indeed, this is the case for most of the simulations we have considered

here; see columns 6 and 9 of Table 3.7. For some limited cases (models Row, RC

and saturated for the independent sampler and the saturated model only for the

one-block estimator), we needed to increase the importance sampling size and/or

the precision level α in order to get a stabilized estimator in the sense that the

reported precision is achieved for all samples sizes higher than the reported sample

size. For these cases, in Table 3.8 we report the required importance sampling

size for different levels of precision α ∈ {1%, 2%, 3%, 4%, 5%, 6%, 12%, 15%}. For

Table 3.7: Required importance sample size and precision α as percentage change
of the estimated log-marginal likelihood.

Prior 1 Prior 2

Model Estimator Max(%)>α Iterations (>α) α Max(%)>α Iterations (>α) α

Independence
Ind 0.00031 1000 0.01 0.00029 1000 0.01
OB 0.00001 1000 0.01 0.00003 1000 0.01

Uniform
Ind 0.00095 1000 0.01 0.00302 1000 0.01
OB 0.00005 1000 0.01 0.00004 1000 0.01

Row
Ind 0.01217 5000 0.02 0.01264 5000 0.02
OB 0.00017 1000 0.01 0.00022 1000 0.01

Column
Ind 0.00868 1000 0.01 0.00409 1000 0.01
OB 0.00013 1000 0.01 0.00006 1000 0.01

RC
Ind 0.02929 1000 0.03 0.00602 10000 0.01
OB 0.00062 1000 0.01 0.00034 1000 0.01

Saturated
Ind 0.06891 5000 0.07 0.11207 1000 0.12
OB 0.00899 15.000 0.01 0.03022 1000 0.04
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example, for the Row model the precision of α = 2% is achieved for 5000 generated

samples (after that the Monte Carlo error is smaller than 2%) for both prior setups.

For the RC model, a precision of 3% is achieved with 1000 generated samples for

prior 1 while for prior 2 we can achieve precision of 1% but with the increased size

of 10000 generated values. Finally, the saturated model has been proven the most

problematic in terms of estimation due to the zeros appearing in their its structure.

For the one-block estimator we can achieve precision of 1% and 4% with samples

of 15000 and 1000 for priors 1 and 2, respectively. The independent estimator

does not seem cost-effective since the precision of 1% is achieved only when 100

thousand generated values are obtained; see Table 3.8. Hence, a reasonable choice

to settle with an increased precision of 7% and 12% obtained using 5000 and 1000

generated samples as reported in Table 3.7.

Table 3.8: Required importance sample size for different levels of precision α as
percentage difference of the estimated log-marginal likelihood; only reported for
models that required higher than 1000 importance sample siz to achieve precision
of 1% as indicated in Table 3.7.
Prior Model Method α = 1% α = 2% α = 3% α = 4% α = 5% α = 6% α = 12% α = 15%

Prior 1

Row Ind 10K (1.1%) 5K (1.2%) 5K (1.2%) 5K (1.2%) 1K (4.8%)
RC Ind 50K (0.3%) 50K (0.3%) 1K (2.9%)

Saturated
Ind 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 5K (6.9%) 1K (14.6%)
OB 15K (0.9%) 15K (0.9%) 5K (2.8%) 5K (2.8%) 1K (4.7%)

Prior 2

Row Ind 50K (0.3%) 5K (1.3%) 1K (2.1%)
RC Ind 10K (0.6%) 10K (0.6%) 10K (0.6%) 10K (0.6%) 10K (0.6%) 1K (5.1%)

Saturated
Ind 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 100K (0.1%) 1K (11.2%)
OB 50K (0.1%) 50K (0.1%) 50K (0.1%) 1K (3.1%)

Regarding the number of MCMC iterations, Figure 3.3 presents the evolution

of the posterior model probability (and its MCMC error) of the Uniform model

(MAP in this example) over different MCMC sample sizes (with importance sample

size kept to 12000 to ensure minimum variability due to the Monte Carlo variability

of the estimators). Results indicate that the one-block estimator converges very

fast (even for 1000 MCMC iterations) while for both the independent and the

Laplace Metropolis estimators a much higher MCMC sample size is required (about

10-20000 iterations).
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Figure 3.3: Posterior probabilities of the MAP (Uniform) model (a) and the
corresponding MCMC errors (b) vs. the number of MCMC iterations (TMCMC);
Importance sample size equal to 15000.
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Finally, the comparison of the computational time between the two estimators

didn’t reveal adequate distinctions (processor characteristics: Intel(R) Core(TM), i7-

7700 CPU, 3.60 GHz, RAM 16,0 GB). The independent Perrakis estimator approach

with 12.000 MCMC iterations and 15.000 importance sampling observations needed

2.27 min to compute the marginal likelihood and posterior model probabilities

of all models in our example. The one-block estimator needed 2.82 min for

the same computations. The computational time difference between the two

estimators is at most 2.81 secs for the saturated model which is the maximum of

the differences across all models under comparison. The mean difference between

the two estimators (across all six models under consideration) was found to be about
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2.4 secs. However, if we consider that the one-block estimator converges much

faster in terms of importance sampling size we conclude that the attractiveness of

the independent estimator is debatable.

3.1.3 Comparison One-Block Importance sampling with

Bridge sampling marginal likelihood estimator.

For this example we compare the One-Block Perrakis estimator with the

most recently popular marginal likelihood estimator the bridge sampling. Meng

and Wong (1996) introduced an efficient Monte Carlo estimator on the basis of a

simulation sampling and is given by

f̂br(n|M) =
1
T1

∑T1
t=1 h(ϑ?(t)M )f(ϑ?(t)M |M)f(n|ϑ?(t)M ,M)

1
T2

∑T2
t=1 h(ϑ(t)

M )g(ϑ(t)
M )

where g(ϑM) is the proposal distribution, h(ϑM) is an arbitrary bridge func-

tion, ϑ
?(1)
M , . . . , ϑ

?(t)
M , . . . ϑ

?(T1)
M is sample from the proposal distribution and

ϑ
(1)
M , . . . , ϑ

(t)
M , . . . ϑ

0(T2)
M is sample from the posterior distribution usually taken from

MCMC algorithm. The efficiency of this estimator depends on the selection of

the proposal distribution g and the bridge function h. The proposal distribution

must be close to the target posterior distribution and the function h plays the role

of the bridge that links the two distributions. The results, Table A.7, show that

the two estimators, One-Block and the bridge sampling, are quite comparable and

efficient, with one-block being considerably simpler to implement. Bridge sampling

estimator required the specification of both the proposal distribution and the bridge

function, which make the approach unattractive for inexperienced users. Of course

these are initial results and should be assessed thoroughly the behaviour of the two

estimators.
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3.2 Simulation Study

Following Galindo-Garre et al. (2004) and Iliopoulos et al. (2009) simulation

study format, we have also conducted a Monte Carlo study in order to assess the

accuracy and the efficiency of the proposed methodology. To be more specific, with

this extensive simulation study we assess whether the proposed methodology is

model selection consistent (i.e. selects the true model structure). Then, we compare

the efficiency of the two proposed estimators and we also test for the sensitivity

of the posterior results by using different values of the association parameter φ

of the uniform model. We also examine the effect of the total sample size of the

contingency table on the selection of the true model.

First, we consider six different sample sizes, n ∈

{20, 50, 100, 1.000, 10.000, 100.000} for six different scenarios. For each sce-

nario we generate 100 contingency tables of dimension 5 × 5 from the following

models: independence, uniform, row, column, RC and the saturated, that is

M = {I, U,R,C,RC, S}. Therefore, for every scenario (true model structure)

we generate a total of 600 contingency tables (100 tables for every sample size

under consideration). Details about the exact sampling schemes and the parameter

values we have considered are available at Appendix A.4 along with the table of

the expected cell frequencies θij used to generate each contingency table. For all

simulations we have used TMCMC = 11000 with additional 1000 burn-in period

and importance sampling size T = 15000.

Note that, for small sample sizes, the generated contingency tables are usually

very sparse with zero or small frequencies appearing often in specific cells, which

results in the generation of contingency tables with high variability concerning their

structure. This sparsity and uncertainty concerning the structure of the generated

contingency table, makes it difficult to detect the true model for any statistical

procedure. For this reason, in practice we need an increased sample size in order

to be able to identify the true generating model for most cases.
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3.2.1 Assessing model selection consistency

Here we present the evolution of the estimated posterior model probabilities

for each of the selected sample sizes n ∈ {20, 50, 100, 1.000, 10.000, 100.000}. The

results of this analysis are graphically displayed in figures presenting how the

posterior model probabilities vary with different sample sizes. Focus is given to the

true and the highest a-posteriori models of each simulation scenario. Results for the

prior setup 1 are presented in detail while a small summary of the corresponding

results using the second prior setup is provided in Section 3.2.4. The aim here is

to confirm that the proposed methodology leads to a consistent model selection

procedure, i.e. the proposed method identifies the true model structure with

increasing posterior model probability as n increases, eventually leading to the

selection of the true model with probability one for sufficiently large sample size.

Indirectly, we also examine which is the required sample size to identify the true

model structure under the assumed simulation scenarios. Results are presented using

a variety of different graphical representations of the posterior model probabilities

obtained by 100 generated contingency tables for each scenario. The type of plot

has been chosen with regard to the visibility and the scale of the results. In

Appendix A.5 we further provide boxplots, error bars and line plots for all scenarios.

Note that the confidence intervals in the error bars are constructed by using the

5% and 95% percentiles of the posterior model probabilities over the 100 generated

samples/contingency tables while the centered value refers to the median of the

posterior model probabilities obtained across the generated samples/contingency

tables.

For simulation Scenario 1, we have generated values from the independence

model M = I with linear predictor (1.15) and parameters λ0, λX and λY given

at the first column of the table in Appendix A.11, with sum-to-zero constraints

for the main effects. Figure 3.6a presents the results of the simulation study

for this scenario by using error bars of 90% confidence intervals calculated over
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the 100 generated samples. For this scenario, the true model is identified by the

proposed methods even for small samples with average posterior probability of

the independence (true) model higher than 97.5% for n = 20. In over 95% of the

samples the posterior of the true model is a-posteriori supported with probability

higher than 92.5%. The support of the independence model is increased when the

sample size increases, not only in terms of posterior model probabilities, but also

in terms of sampling variability.

Figure 3.6: Error bars of the posterior model probabilities for 100 generated
samples (Scenarios 1 and 2); The lines are connected at the median of the posterior
probability of each model
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(a) Scenario 1: Data generated from the
Independence model

Estimator IP OBP

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Independence model 

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Uniform Model

Posterior Probabilities of Uniform sampling

(b) Scenario 2: Data generated from the Uniform
model

For simulation Scenario 2, we generate values from the uniform model

M = U with linear predictor (2.1) and parameters λ0, λX and λY given at the

second column of Table A.11, with sum-to-zero constraints for the main effects. The

additional association parameter of the Uniform model was set equal to φ = −0.22.

For the score parameters µ and ν, we have considered fixed scores taking values

from one to five. Figure 3.6b presents the results of the simulation study for this

scenario by using error bars of 90% confidence intervals over the 100 generated

samples for the two highest a-posteriori models, the independence and the uniform

(true) model. The true model (uniform) is identified by the proposed methods for

sample size equal to n = 1000 with average posterior probability of the uniform

(true) model higher than 99%. Small sample sizes n = 20 and n = 50 indicate
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the independence model as the MAP with average posterior probability 92.1%

and 88.8%, respectively. The length of the bars is increased as the sample size

increases up to n = 100, where we observe the maximum uncertainty between

the two competing models. Afterwards our proposed method indicates the correct

model revealing that the criterion of the model selection consistency is satisfied in

this scenario.

For simulation Scenario 3, we generate values from the row model M = R

with linear predictor (2.1) and parameters λ0, λX and λY given at the third column

of Table A.11, with sum-to-zero constraints for the main effects. Additionally,

we consider φ = 1, row score parameters given by µ = (0, 0.66, 0.61, 0.16, 0.08)

and fixed column scores ν = (1, 2, 3, 4, 5). From Figure 3.7a, we observe that the

posterior probability of the true model (i.e. R here), tends to one with a slower rate

requiring a higher number of observations to identify the true structure. For very

small datasets, the model of Independence is a-posteriori supported. For samples

of size equal to 1000, the Uniform model is (falsely) indicated as the MAP model.

The Row model is identified as the MAP, when increasing the sample size over

1000 observations. The same happens in Scenario 4 where the Column model was

used to generate 100 samples; see for details in Figure 3.7b.

Figure 3.7: Boxplots of the posterior model probabilities for 100 generated samples
(Scenarios 3 and 4)
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(a) Scenario 3: Data generated from the
Row model
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(b) Scenario 4: Data generated from the Col-
umn model
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For simulation Scenario 5, the RC model is used as the true generating

structure with linear predictor (2.1). We have used the same main effect parameters

as in the simulation Scenario 1, φ = 1, row score parameters as in the simulation

Scenario 3 and column score parameters as in the simulation Scenario 4. For

this case, we have additionally generated samples of 25000, 50000 and 75000

observations in order to smoothly depict the change of the posterior support from

the Independence to the Column and finally to the true (RC) model. Figure 3.8

shows that for samples of size up to 10.000, the Independence model is indicated

as the MAP model. Under this scenario and for n = 25000, we observe (for the

first time in this simulation study) notable differences between the two estimators.

It seems that the one-block Perrakis is better behaved than the independence

estimator spotting the true RC model for small sample sizes with higher posterior

model probabilities.

Figure 3.8: Arithmetic means of the posterior model probabilities for 100 simulated
datasets-Scenario 5 with the RC being the true generating model
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For simulation Scenario 6, the Saturated model is used as the true generating

structure with linear predictor (1.14). In this scenario we had to deal with many

difficulties. We have the same behavior as the previous Scenario 5.
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Figure 3.9: Arithmetic means of the posterior model probabilities for 100 simulated
datasets-Scenario 6 with data generated from the saturated model
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The procedure identify the true model with slower rate requiring a higher

number of observations. This fact makes sense since we usually go to the simpler

model where we have a good approximation of the dataset. the procedure failed

to identify the true model when we use the independent Perrakis estimator. This

failure was our start point to investigate this behavior. We noticed that the

procedure fails under the presence of zeros.

3.2.2 Marginal Likelihood computation under the presence

of zeros

Contingency tables having small cell counts are said to be sparse and usually

contain cells with nij = 0. When data are sparse or the contingency table has

many zero cell counts, these can have undesirable features. A count of zero is a

permissible outcome for a Poisson or multinomial variate. It contributes to the

likelihood function and model fitting. Early applications of Bayesian methods to

contingency tables involved smoothing cell counts to improve estimation of cell
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probabilities with small samples. One possible but naive solution to deal with zeros

in contingency tables is to just ignore them and throw them away. In log-linear

models we must specify the value of log(λij) for every cell. When we consider the

saturated model, the estimated probability of a cell with zero frequency is also

estimated to be zero and as a consequence also λij is estimated to be equal to zero.

The result: log(λij) is undefined.

Many methods break down with the presence of zero counts in statistical

inference. The saturated model can be massively affected in model comparison

than the rest of the models. Although the problem mainly appears in the saturated

model, this leads to the breakdown of the whole model comparison since the

saturated serves as reference to evaluate the goodness of fit.

Initial we have started to experiment with the importance sample size,

since we knew from the previous simulation study that the independence Perrakis

estimator had increased Monte Carlo error in comparison with the one-block

estimator. We have tried to see if this was the reason of the failure increasing a lot

the number of iterations of importance sample size. We managed to identify the

true model in 300K importance sample size!!! So one problem here was the Monte

Carlo variability of the method but this was not the major problem eventually

because we still want a method that estimate the marginal likelihood distribution

with less importance sampling demands. In this section we propose some techniques

to avoid the problem of estimating the marginal likelihood of the model.

First technique is to set the zeros into NA. This implies that the corre-

sponding probability was not observed which can be invalid interpenetration given

that if we increase the sample size n, this will be eventually observed. With this

trick the cell will not carry any information, so the analysis will not be affected

by this cell. We use sum-to-zero constraints. The results of this approach are

summarized in the Table 3.9. Table 3.10 shows that the minimum Monte Carlo

error is 6.2 for the saturated model when the importance sample size is equal to
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150.000. The procedure indicates the saturated model as thee best fitted model

from all the competitive models with posterior probability equal to 1 and the

log-marginal likelihood to be equal to −321.6

Second technique that seems working efficiently is to avoid the zero cell

counts, considering as structural zero. With this way the zero cell count will be

had zero contribution to the analysis. The Table 3.10 shows that the minimum

Monte Carlo error is 11.9 for the saturated model when the importance sample

size is equal to 500.000. The procedure indicates the saturated model as the best

fitted model from all the competitive models with posterior probability equal to 1

and the log-marginal equal to −292

Third technique under sum-to-zero constraints for the main effects and

corner constraints for the interaction parameter, we set a normal prior N(0, 100)

to the parameter of the interaction term of the cell with zeros. As we can see

from Figure 3.10 in order to detect the true model importance sample size equal to

500.00 is required.

The results of the three techniques are summarized in Tables 3.9 and 3.10

Table 3.9: Estimated the posterior probabilities and the log-marginal for all
competitive models, when the minimum Monte Carlo error occurred at t=500.000
importance sample size.

Mj Model
Posterior

Probabibilies

Log-marginal

1st 2nd 3rd

1 Independence (I) 0 -1105.743 -1105.743 -1106.86

2 Uniform (U) 0 -1107.305 -1107.305 -1109.29

3 Row (R) 0 -421.3887 -421.389 -421.96

4 Column (C) 0 -1079.270 -1079.271 -1080.34

5 Row-Column (RC) 0 -431.7123 -431.409 -655.64

6 Saturated (S) 1 -321.6371 -292.002 -399.22
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Table 3.10: Estimated the Monte Carlo error for all competitive models occurred
at t=500.000 importance sample size.

Mj Model
Monte Carlo error

1st 2nd 3rd

1 Independence (I) 0.0004 0.0002 0.0003

2 Uniform (U) 0.0003 0.0002 0.0002

3 Row (R) 0.0009 0.0006 0.0007

4 Column (C) 0.0015 0.0008 0.0014

5 Row-Column (RC) 0.1998 0.1687 8.4529

6 Saturated (S) 6.8107 11.927 35.9917

Figure 3.10: Estimated Monte Carlo Error for the three techniques via the impor-
tance sample size
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Table 3.9 performs the estimated log-marginal for the six candidates model
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using the three techniques, when the minimum Monte Carlo error occurred. From

the results we can see that when the complexity of the model is low the three

techniques start to deviate, with the third technique diverge from the other two.

So, we consider that the third technique fails to give a good estimation of the

log-marginal. The estimated Monte Carlo error of log-marginal likelihood confirms

this assumption with the third technique performs the higher Monte Carlo error,

see Table 3.10. Technique 1 and 2 have similar Monte Carlo error for all candidate

models except the saturated where the first technique has lower MC error.

3.2.3 Concluding Comments based using Prior 1

The simulation study shows that the proposed method performs well in

detecting the true model. More specifically, the results showed that when the total

sample size is small, the probability to detect the true model is quite small. Only

when the true structure is independence, we could detect it by assuming small

samples with n ≥ 20.

3.2.4 Summary of results for Prior 2

The simulation study results for prior 2 are quite similar with those of prior

1. Although the results referring to the prior 2 are not provided here in details,

one can refer to Appendix A.5.2 for associated graphical illustrations. Here we

only present in line plots the evaluation of the posterior model probabilities over

different samples size n for prior 2. From this Figure, prior 2 appears to be stricter

than prior 1 for more complex models and it requires large sampler sizes in order

to detect the true model. Nevertheless this method also appears to be consistent

in terms of the selected model.
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3.2.5 Comparison of Marginal Likelihood Estimators

The gold standard for our comparisons, which are presented in our illus-

trative examples, are the two versions of Laplace estimators. They both provide

a reasonable solution for the marginal likelihood. Laplace approximation is an

optimization method, while the Laplace-Metrolopis estimator is based on the out-

put of an MCMC algorithm. The first method is faster and without any Monte

Carlo error, but is not always easy to apply due to computational problems. This

is the case in Example 1, where we have sparse data and the Laplace estima-

tion fails to accurately compute the marginal likelihood. The second approach

is slower because it requires to run an MCMC algorithm, but when the output

is provided the implementation is direct. For the Laplace-Metropolis we require

only the MCMC estimated posterior mean vector and the posterior covariance

matrix. Both approaches provide approximations of the marginal likelihood and

the required adequately large sample size. They do not work efficiently in small

or sparse datasets. Both approaches have some regularities conditions (see Kass

and Wasserman (1995)). These approximations work efficiently when the posterior

distributions are symmetric, otherwise transformations are applied ( log, logit or

Box-Cox).

The independent and one-block Perrakis estimators require as input only

the posterior marginal samples, which are used to build the importance sampling

function. The approach of Perrakis et al. (2014) is non-iterative and does not

require adaptations in MCMC sampling. The method can fail when the product of

marginal posteriors is a poor approximation to the joint posterior. The proposed

approach is applied efficiently to association models, and leads to accurate marginal

likelihood estimates. As illustrated, in model comparison, the one-block estimator

is more accurate in capturing the true model in both scenarios of the priors. In

general, the overall performance of the estimator depends on; i) the efficiency

of approximating the posterior through independent univariate or multivariate
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marginals and ii) the accuracy in estimating marginal posterior densities.

3.2.6 Parameter φ sensitivity

The Uniform association model has only one parameter additional to the

parameters of the independence model. It can describe a positive or a negative

trend association between the variables. The multiplicative interaction term φµiνj

represents the deviation of log counts from the independence pattern. The greater

it departs from independence, the higher are the frequencies in specific corners of

the table. The direction and strength of association depends on φ. When φ > 0

the categorical variable X increases and then the categorical variable Y will also

increase. When φ < 0, Y tends to decrease as X increases. Small values of φ

indicate weak association between the two variables, so it would be relatively more

difficult to detect the true association model. The simulation results showed that

when φ is equal to zero, then our proposed model comparison procedure correctly

suggests that the Independence model is the best fit model. As φ increases, the

proposed methodology supports a-posteriori more and more the true model.

To test the effect of parameter φ, we consider simulated scenarios with

φ = k|φS2| where φS2 = −0.214 is the corresponding parameter φ in the initial

simulation Scenario 2 (see Table A.11 at the Appendix for details) and k takes

values from −20 to 20 with increment equal to 2. For each value of φ we have

generated 100 samples. In Figure 3.12a, Y –axis represents the mean of the posterior

probabilities of the ten simulated samples for each value of φ. Small values of |φ|

indicate weak association between the two variables. In such cases, it is relatively

more difficult to detect the true association model.

The simulation results indicate that when φ is equal to zero, then the

procedure correctly identifies the Independence model as the best fit model. From

Figure 3.12b and for k > 0 we observe that our method correctly identifies the

uniform model with increasing posterior probability as φ increases. For k < 0,
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the posterior probability of the uniform model increases as |k| increases with an

exception at values around of k = −10.

To further examine this irregularity, in reference to the above simulation

scenario (denoted as S1–Φ), we have considered two additional simulation scenarios

for different choices of fixed effects parameters: λX = λY = (0.3, 0.2, 0.1, 0,−0.6)

(S2–Φ) and λX = λY = (0, 0, 0, 0, 0) (S3–Φ). In S2–Φ, for k = 0 the joint

probabilities of the upper left corner are slightly higher than the corresponding

frequencies of the lower right corner (ranging from 5.5% to 6.7% vs 1.1% to 3.7%,

respectively). Increasing the value of k causes a movement of the cell relative

toward the lower right corner even for small values of k. Reducing the value of k

(going to negative values), creates the opposite movement. For these three examples,

we have observed that all relative cell frequencies are gathered in the lower right

corner of the table for smaller values of φ and k compared to the corresponding

concentration in the upper-left corner of the table which results when k < 0 but for

much larger values of |φ| and |k|. To be more specific, all values are gathered to

the lower right corner (with 100% relative frequency) for k = 12 while for k = 6 the

relative frequency of n55 is equal to 83% for S1–Φ and over 99% for the other two

scenarios (S2–Φ and S3–Φ). Only for k > −14 we achieve high concentration in the

upper-right corner of the contingency table with relative frequency of n11 > 90%.

Thus, in the negative values of φ (and k) there is a large range of values where the

dominance of the uniform model is a-posteriori unclear since the corresponding

posterior probability is close to 50%.

3.3 Discussion and Concluding remarks

In this chapter, we deal with the problem of Bayesian model selection for

association models used in two-way contingency tables. We have focused on the

comparison of association models and the Independence and Saturated model,
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M = {I, U,R,C,RC, S}, using power priors. To achieve this, we test four estima-

tors to compute the marginal likelihood: Laplace, Laplace-Metropolis, independent

Perrakis and one-block Perrakis estimators. We illustrate a comprehensive com-

parison of the four estimators in which the One-Block Perrakis outperformed the

others in every example. The utilization of power priors provides the researcher

with a reasonable prior avoiding the effect of Lindley’s paradox. Moreover, we

achieve compatibility of priors across models under consideration due to the use of

common imaginary data across models. With the term of compatibility we denote

that priors should be related across models, each being conditional on the given

model. Our approach can easily handle sparse tables and the best a posteriori

models are provided automatically by the Bayes factor. The imaginary data were

generated from the simplest model in order to support more parsimonious models.

This way, we achieve a sensible default choice of prior, in the Bayesian context

analysis, with the minimum informative cost. The use of product marginal as

an importance faction makes the method very simple to use and computationally

efficient. Also, the simulation study and the real data analysis suggest that the

proposed methodology performs well.

An obvious extension of our proposed method is to embody to our algorithm

different scenarios of priors between the two cases we present here. Other interesting

issues for future research may include a two-block Perrakis estimator of the marginal

likelihood, where the two block will be the correlated and uncorrelated parameters.

Both Laplace approximation and Laplace-Metropolis estimator provide a

reasonable solution for low information estimation of marginal likelihood. The

utilization of power priors provides good argument for a reasonable prior and

avoids the effect of Lindley’s paradox. Moreover, we achieve compatibility of priors

across models under consideration due to the use of common imaginary data across

models. In the future, we will focus on the implementation of other alternative

estimation methods for the computation of the marginal likelihood, for example
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by using the Monte Carlo estimate proposed by Perrakis et al. (2014) or the Chib

(1995) Chib’s (1995) marginal likelihood estimator.
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Figure 3.4: Estimated MCMC Error of the log–marginal vs the Number of MCMC
iterations (TMCMC).
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Figure 3.5: Estimated MCMC Error of the log–Bayes factor vs the Number of
MCMC iterations (TMCMC).

Estimator IP LM OBP

0.00

0.03

0.06

0.09

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Independence Model

Prior 1

0.00

0.05

0.10

0 10000 20000 30000

Tmcmc
M

C
M

C
E

Uniform vs Independence Model

Prior 2

0.0

0.2

0.4

0.6

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Row Model

0.0

0.1

0.2

0.3

0.4

0.5

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Row Model

0.00

0.05

0.10

0.15

0.20

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Column Model

0.00

0.05

0.10

0.15

0.20

0.25

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Column Model

0.0

0.2

0.4

0.6

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs RC Model

0.0

0.2

0.4

0.6

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs RC Model

0

1

2

3

4

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Saturated Model

0.0

0.5

1.0

1.5

2.0

0 10000 20000 30000

Tmcmc

M
C

M
C

E

Uniform vs Saturated Model

MCMC error of Log−Bayes factor of Uniform versus Mj model

92



Figure 3.11: Line plots for the posterior model probabilities over 100 simulated
datasets for Scenarios 1–6 for Prior 2

Estimator IP OBP

0.85

0.90

0.95

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Independence Model

Posterior Probabilities of Independence sampling

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Uniform Perrakis estimator

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

One−block Perrakis estimator

Model

I

U

Posterior Probabilities of Uniform sampling

Model I R U

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Independence Perrakis estimator

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

One−block Perrakis estimator

Scenario 3: Posterior Probabilities of Row sampling
Model C I U

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Independence Perrakis estimator

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

One−block Perrakis estimator

Posterior Probabilities of Column sampling

Model C I RC

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

Independence Perrakis estimator

0.00

0.25

0.50

0.75

1.00

20 50 100 1.000 10.000 25.000 50.000 100.000

Sample Size

P
os

te
rio

r 
P

ro
ba

bi
lit

y

One−block Perrakis estimator

Posterior Probabilities of RC sampling

93



Figure 3.12: Mean of the posterior probability by the parameter φ for the three
scenarios of main effect λX and λY

(a) Simulation Scenario 2: λX = (0.93, 0.83,−0.14, 1.44,−3.05)
and λY = (0.01, 0.33, 0.69, 0.01,−1.04,−0.22)

(b) For fixed effects equal to λX = λY = (0.3, 0.2, 0.1, 0,−0.6)

(c) For fixed effects equal to λX = λY = (0, 0, 0, 0, 0)
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Chapter 4

Power Priors for the Bayesian

Comparison of Graphical Models in

Three Way Tables

Numerical quantities focus on

expected values, graphical

summaries on unexpected values

John Tukey

4.1 Introduction

In this chapter a Bayesian model comparison procedure of Graphical models

in three way contingency tables using power priors is analysed. So far we have seen

a Bayesian model selection procedure of association models for two-way contingency

tables. Now we proceed in three way contingency tables where we have different

types independence, conditional independence, marginal independence, between the

variables. For this reason we choose to use graphical models in order to express the

different types of independence and build a Bayesian model selection procedure using

also here the power prior approach and the utilization of imaginary data in order to
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build an objective default prior. We illustrate a comprehensive Bayesian analysis

of graphical models of conditional independence, involving suitable choices of prior

parameters, estimation, model determination, as well as the related computational

issues for three-way contingency tables. Each conditional independence model

corresponds to a particular factorization of the cell probabilities and a conjugate

analysis based on a Dirichlet prior. We present an imaginary data approach for

prior specification and we compare alternative prior set-ups. We adopt the idea of

Ibrahim and Chen (2000) and Chen et al. (2000b) of power prior approach in order

to advocate sensible values for the Dirichlet prior parameters. Unit information

interpretation priors are used as a yardstick to identify and interpret the effect of

any other distribution used. The posterior distributions of the graphical models

parameters, are obtained using simple Markov chain Monte Carlo (MCMC) schemes.

A real data application will be analytically presented.

4.2 Graphical Models of Conditional Indepen-

dence

Models that have interpretations in terms of conditional independence are

known as graphical models. In this chapter we have more than two categorical

variables, a K-way contingency table cross-classifying variables Xv, v ∈ {1, ..., K}.

A graphical representation for associations indicates the pairs of conditionally

independent variables. The use of graphical models to describe association between

categorical variables dates back to the work of Darroch et al. (1980), where

graphical log-linear models were introduced. Graphical models has been an efficient

methodology for categorical data analysis and in this paper we focus on graphical

models of conditional independence. Conditional independence is important when

modelling highly complex systems.

A undirected graph G = (V , E) is characterized by a vertex set V, where
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the cardinality of the set is K and every vertex corresponds to a classification

variable of the contingency table, and an edge set E. The pair of nodes {i, j} ∈ V

are adjacent if (i, j) ∈ E, and a subset C ⊂ V is said to be complete if all its

elements are adjacent to each other. A complete subgraph that is maximal (i.e. not

contained within another complete subgraph) is called a clique. An ordering of the

cliques of an undirected graph, (C1, . . . , Cnc) is said to be perfect if the vertices of

each clique Ci also contained in any previous clique C1, C2, . . . Ci−1 are all members

of one previous clique; that is, for i = 2, 3, . . . , nc, Hi = Ci ∩∪i−1
j=1Cj ⊆ Cj for some

h ∈ {1, 2, · · · , i − 1}. The sets Hi, for i = 1, . . . , nc−1, are called separators. We

write S1, . . . , Sns the non-empty separators (some might appear multiple times).

If an undirected graph admits a perfect ordering it is said to be decomposable.

The widespread use of decomposable models is due to the resulting factorization of

densities.

We associate to each vertex a random variable. For sets X, Y and Z ⊂ V,

X and Z are conditionally independent given Y , whenever X and Z are separated

by Y . All paths in the graph connecting X and Z pass through Y . The three

discrete random variables X, Y and Z ∈ V defined by undirected graphs and the

cliques of the graph correspond to the maximal terms in log-linear model.

Dawid and Lauritzen (1993) described the Bayesian framework for decom-

posable models. Figure 4.1 shows such a model which also embodies the assumption

that X and Z are independent given Y .

Figure 4.1: A decomposable undirected graphical model

X Y Z

The cliques of this graph are {X, Y } and {Y, Z} and there is a single

intersection Y . The factorization form of the joint distribution is given by:
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P (XZY ) = P (XZ|Y )P (Y ) = P (X|Y )P (Z|Y )P (Y ) (4.1)

In this section we focus on decomposable models in three-way contingency

tales, for which the graph is chordal. We are going to deal with conjugate models

where their parameter can be estimated without the utilization of iterative methods.

In three-way contingency table a graphical model of conditional independence

can be parametrized in terms of cell-probabilities. For every three-way contingency

table eight possible graphical models exist which can be represented by four different

types of graphs:

• the independence

• the saturated

• the edge (only one edge)

• the gammma structure graph (a single path of length two)

The different types of graphs are represented in Figure 4.2.

Gamma model is characterized by its corner node Y which is connected with

both variables X and Z. A gamma structured model implies that

X is separated from Z by Y.

Then the likelihood is factorized by this expression

f(n|πG, G) =
|IY |∏
j=1

|IX |∏
i=1

[
πX|Y (ij)

]nij
|IY |∏
j=1

|IZ |∏
z=1

[
πZ|Y (z|j)

]nzj |IY |∏
j=1

(πY (j))nj
(4.2)

where πG =
(
πX|Y ,πY ,πZ|Y

)
.
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Figure 4.2: Type of Graphs in Three Way Tables.
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4.3 Conjugate Priors

Next, we use conjugate priors on the probability parameters and then

calculate the corresponding log-linear parameters using Monte Carlo schemes. For

the specification of the prior distribution on the probability parameter vector we

initially consider a Dirichlet distribution with parameters α =
(
α(i), i ∈ I

)
=(

αijz, i = 1, . . . , |IX |, j = 1, . . . , |IY |, z = 1, . . . , |IZ |
)
for the vector of the joint

probabilities π of the full table, expanded to a (I x 1) vector, where I = IX ∗IY ∗IZ .

Hence, for the full table π ∼ Di(α) with prior density given by

f(π) = Γ (α)∏
i∈I

Γ
(
α(i)

) ∏
i∈I

π(i)α(i)−1 (4.3)

= Γ (α)
|IX |∏
i=1

|IY |∏
j=1

|IZ |∏
z=1

Γ
(
αijz

) |IX |∏
i=1

|IY |∏
j=1

|IZ |∏
z=1

π

(
αijz −1

)
ijz = fDi(π; α)

where fDi
(
π; α

)
is the density function of the Dirichlet distribution evaluated at

π with parameters α and α = ∑
i∈I α(i), which control the precision and plays the

role of prior information, volume the prior data like the sample size to the actual

data.

When no prior information is available then we usually set all α(i) = α
|I|

resulting to

E
[
π(i)

]
= 1
|I|

and V
[
π(i)

]
= |I| − 1
|I|2(α + 1) .

Small values of α increase the variance of each cell probability parameter.

Usual choices for α are the values |I|/2 (Jeffrey’s prior), |I| and 1 (corresponding to

α(i) equal to 1/2, 1 and 1/|I| respectively); for details see Dellaportas and Forster

(1999). The choice of this prior parameter value is of prominent importance for the

model comparison due to the well-known sensitivity of the posterior model odds

and the Bartlett-Lindley paradox (Lindley, 1957, Bartlett, 1957). Here for two

reasons this effect is not so adverse, as in usual variable selection for generalized
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linear models. Firstly, even if we consider the limiting case where α(i) = α
|I| with

α→ 0, the variance is finite and equal to (|I|− 1)/|I|2. Secondly, the distributions

of all models are constructed from a common distribution of the full model/table

making the prior distributions ‘compatible’ across different models (Dawid and

Lauritzen, 2000 and Roverato and Consonni, 2004).

A Dirichlet distribution with parameters α =
(
α(i), i ∈ I

)
=
(
αijz, i =

1, . . . , |IX |, j = 1, . . . , |IY |, z = 1, . . . , |IZ |
)
for the vector of the joint probabilities

of the full table π.

p
(
πG
)

=
|IY |∏
j=1


Γ
(
αX|Y

)
|IX |∏
i=1

Γ
(
αX|Y (i|j)

)
|IX |∏
i=1

[
πX|Y (i|j)

]αX|Y (i|j)−1



×
|IY |∏
j=1


Γ
(
αZ|Y

)
|IC |∏
z=1

Γ
(
αZ|Y (z|j)

)
|IZ |∏
z=1

[
πZ|Y (z|j)

]αZ|Y (z|j)−1



× Γ (αY )
|IY |∏
j=1

Γ
(
αY (j)

) |IY |∏
j=1

π

(
αY (j) −1

)
j

(4.4)

where αX|Y =
|IX |∑
i=1

αX|Y (i|j) and αZ|Y =
|IZ |∑
z=1

αZ|Y (z|j).

4.4 Power Priors

The debate in graphical models literature concerns the use of conjugate

priors based on Dirichlet distributions; see for example in Steck and Jaakkola (2002),

Steck (2008) and Ueno (2008). It is clear that the parameters of the Dirichlet prior

should be carefully specified and in this thesis we adopt ideas based on the power

prior approach of Ibrahim and Chen (2000) and Chen et al. (2000). We use their

approach to advocate sensible values for the Dirichlet prior parameters on the full

table and the corresponding induced values for the rest of the graphs.

Imaginary set of data n∗ = (n∗(i), i ∈ I): the table expanded to a vector of
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the imaginary data n∗ = ∑
i∈I n

∗(i): the total sample size of the imaginary data

fDi
(
π; α(i) = α0, i ∈ I

)
: a Dirichlet ‘pre-prior’ with all parameters equal to α0.

Then unnormalized prior distribution can be obtained by:

f(π) ∝ f(n∗|π)w × fDi
(
π; α(i) = α0, i ∈ I

)
∝

∏
i∈I

π(i)wn∗(i)+α0−1

= fDi
(
π; α(i) = w n∗(i) + α0, i ∈ I

)
. (4.5)

• w = 1: each imaginary observation has the same weight as the observations

• w < 1: each imaginary observation less weight than the observations

• w > 1: will increase the weight of believe on the prior/imaginary data

• w = 1, n∗ = n and α0 → 0: both the prior and data will account for 50% of

the information used in the posterior

• w = 1/n∗, α(i) = p∗(i) + α0, p∗(i) = n∗(i)/n∗: the prior data n∗ will account

for information of one data point. Information additional to one data point

will be introduced by pre-prior parameters α0.

• w = 1/n∗, α(i) = p∗(i) + α0, p∗(i) = n∗(i)/n∗, α0 = 0: Unit information

prior (UIP), equivalent to a single observation. No pre-prior information is

introduced.

• When no information is available, set n∗(i) = n∗, n∗ = n∗ × |I| and w =

1/n∗ = 1
n∗×|I| resulting to

π ∼ Di
(
α(i) = 1/|I|, i ∈ I

)
.

This is a UIP with zero pre-prior information and uniform distributed prior

cell
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4.4.1 Specification of Prior Parameters Using Imaginary

Data

Let us consider an imaginary set of data represented by the frequency table

n∗ = (n∗(i), i ∈ I) of total sample size n∗ = ∑
i∈I n

∗(i) and a Dirichlet ‘pre-prior’

with all parameters equal to α0. Then the unnormalized prior distribution can be

obtained by the product of the likelihood of n∗ raised to a power w multiplied by

the ‘pre-prior’ distribution. Hence

f(π) ∝ f(n∗|π)w × fDi
(
π; α(i) = α0, i ∈ I

)
∝

∏
i∈I

π(i)wn∗(i)+α0−1

= fDi
(
π; α(i) = w n∗(i) + α0, i ∈ I

)
. (4.6)

Using the above prior set up, we a priori expect to observe a total number

of w n∗ + |I|α0 observations. The parameter w is used to specify the steepness

of the prior distribution and the weight of belief on each prior observation. For

w = 1 each imaginary observation has the same weight as the actual observation.

Values of w < 1 will give less weight to each imaginary observation while w > 1

will increase the weight of believe on the prior/imaginary data. Overall, the prior

will account for the (w n∗ + |I|α0)/(w n∗ + n+ |I|α0) of the total information used

in the posterior distribution. Hence for w = 1, n∗ = n and α0 → 0 then both the

prior and the data will account for 50% of the information used in the posterior.

For w = 1/n∗ then α(i) = p∗(i) + α0 with p∗(i) = n∗(i)/n∗, the prior data

n∗ will account for information of one data point while the total weight of the prior

will be equal to (1 + |I|α0)/(1 + n+ |I|α0). If we further set α0 = 0, then the prior

distribution (4.5) will account for information equivalent to a single observation.

This prior set-up will be referred in this paper as the unit information prior (UIP).

When no information is available, then we may further consider the choice of

equal cell frequencies n∗(i) = ξ for the imaginary data in order to support the
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simplest possible model under consideration. Under this approach n∗ = ξ × |I|

and w = 1/n∗ = 1
ξ×|I| with a Dirichlet pre-prior with all parameters equal to α0 →,

resulting to π ∼ Di
(
α(i) = 1/|I|, i ∈ I

)
. The latter prior is equivalent to the

one advocated by Perks (1947).

4.4.2 Comparison of Prior Set-ups

Since Perks’ prior (with α(i) = 1/|I|) has a unit information interpretation,

it can be used as a yardstick in order to identify and interpret the effect of any

other prior distribution used. Prior distributions with α(i) < 1/|I|, or equivalently

α < 1, result in larger variance than the one imposed by our proposed unit

information prior and hence they a posteriori support models, which are more

parsimonious. On the contrary, prior distributions with α(i) > 1/|I|, or α > 1,

result in lower prior variance and hence they a posteriori support models with more

complicated graphical structure. So the variance ratio between a Dirichlet prior

with α(i) = α/|I| and Perks prior is equal to

V R =
V
(
π(i)

∣∣∣ α(i) = α
|I|

)
V
(
π(i)

∣∣∣ α(i) = |I|−1
) = 2

α + 1 .

In this chapter we considered the comparison of the information from the

following prior choices:

(i) the Jeffrey’s prior with α(i) = 1/2;

(ii) the Unit Expected Cells prior (UEC) with α(i) = 1;

(iii) the Unit Information Prior (UIP) which is derived by a power prior with

α(i) = p∗(i), w = 1/n∗ and a0 = 0; where p∗(i) is the sample proportion of

cell i estimated from a set of imaginary data n∗(i);

• Perks’ prior (UIP-Perks’) with α(i) = 1/|I| which is equivalent to UIP coming

from a table of imaginary data with all cell frequencies equal to one;
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• the Unit Information Empirical Bayes Prior (UI-EBP), which is derived by

UIP with p∗(i) set equal to the sample proportions p(i) = n(i)/n. This will

inflate the actual data by a factor of n+1
n

It is observed that Jeffreys’ prior variance is lower than the corresponding

Perks’ prior. The reduction is even greater for the Unit Expected Cell prior

reaching. Finally, for the Empirical Bayes prior, based on the UIP approach, the

prior variance for each π(i) is equal to V [π(i)] = 1
2p(i)

(
1− p(i)

)
. Hence it depends

on the observed proportion and can vary from zero (if p(i) = 0 or 1) to 1/8 if

p(i) = 1/2. For values in the interval (0.058, 0.942) the variance of the UI-EBP is

higher than the corresponding UIP variance reaching its maximum when p(i) = 1/2

where it is 4.6 times the corresponding UIP prior variance. For p(i) = 0.058 or

0.942 the variances of the UIP and UI-EBP are equal while for the remaining values,

UIP variance is higher. Table 4.1 summarizes five of the most common prior setups

and shows the comparison of the information under the following prior choices.

Table 4.1: A summary of the five most common prior setups.

Prior Parameter V [π(i)] n∗(i) = ξ

Jeffreys α(i) = 1
2 2 |I| − 1

|I|2|I|+ 2 ξ = 4
|I|+2

UnitExpectedCell(UEC) α(i) = 1 |I|−1
|I|2(|I|+1) ξ = 2

|I|+1

UnitInformationPrior(UIP ) α(i) = p∗(i) 1
2p
∗(i)

(
1− p∗(i)

)
ξ = |I|2

|I| − 1p
∗(i)

(
1− p∗(i)

)
Perk′sPrior(UIP − Perks) α(i) = 1

|I|
|I|−1
2|I|2 ξ = 1

UnitInformationEmpirical

BayesPrior(UI − EBP )
α(i) = p(i) 1

2p(i)
(
1− p(i)

)
ξ = |I|2

|I|−1V
(
π(i)

)

4.4.3 Marginal Likelihood of Each Graphical Model

The marginal likelihood can be calculated analytically since the above prior

set-up is conjugate.
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For the saturated model the marginal likelihood is given by

f(n|G) = C(n)× B(α̃)
B(α)

where C(n) is the multinomial constant and B(α) is the normalizing constant of the

multinomial beta function given by B(α) =
∏
i∈I Γ

(
α(i)

)
Γ
(∑

i∈I α(i)
) . For the independence

model the marginal likelihood is given by

f(n|G) = C(n)× B(α̃X)B(α̃Y )B(α̃Z)
B(αX)B(αY )B(αZ)

while for the edge model the marginal likelihood is calculated by

f(n|G) = C(n)× B(α̃Z)B(α̃XY )
B(αZ)B(αXY )

Finally, for the gamma structure the marginal likelihood is given by

f(n|G) = C(n)× B(α̃X|Y )B(α̃Z|Y )B(α̃Y )
B(αX|Y )B(αZ|Y )B(αY )

.

4.4.4 Illustrative examples

We consider a data set presented by Healy (1988) regarding a study on

the relationship between patient condition (more or less severe), assumption of

antitoxin (yes or not) and survival status (survived or not); see Table 4.2. In Table

4.3 we compare posterior model probabilities under the four different prior set-ups.
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Table 4.2: Antitoxin data

Survival (Y)

Condition (Z) Antitoxin (X) No Yes

More Severe Yes 15 6

No 22 4

Less Severe Yes 5 15

No 7 5

Table 4.3: Posterior model probabilities (%) for the Antitoxin data for Jeffreys’,
Unit Expected Cell, Empirical Bayes, UIP-Perks’ and Dellaportas and Foster prior
set-up

Model
Prior Disribution

Jeffreys’ UEC Empirical Perks’ DF

X+Y+Z 0.09 0.07 0.62 0.42 0.17

XY+Z 0.41 0.36 0.93 0.75 0.53

XZ+Y 0.06 0.06 0.13 0.10 0.07

YZ+X 15.88 12.24 36.09 32.51 2.83

XY+XZ 0.25 0.31 0.20 0.17 0.21

XY+YZ 69.99 67.69 54.30 58.38 67.17

XZ+YZ 9.78 10.63 7.59 7.39 8.82

XYZ 3.55 8.65 0.14 0.28 1.20

We compare the results obtained with our yardstick prior, the UIP-Perks’

prior (α(i) = 1/|I|), with those obtained using Jeffrey’s (α(i) = 1/2), Unit Expected

Cell (α(i) = 1), and unit information Empirical Bayes (α(i) = p(i)) priors. Under

all prior assumptions the maximum a posterior model (MAP) is XY + Y Z ,

assuming that the Antitoxin is conditional independence from Condition given

Survival. Under Empirical Bayes and UIP-Perks priors the posterior distribution
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Figure 4.3: Antitoxin data: Boxplots summarizing 2.5%, 97.5% posterior percentiles
and quantiles of the joint probabilities πXY Z(i, j, k) for the MAP model (YZ+X)
for all prior set-ups (J=Jeffreys’, U=Unit Expected Cell, E=Empirical Bayes,
P=Perks’) .

is concentrate on the MAP model. It takes into account 69.99% and 67.69%,

respectively of the posterior model probabilities. The posterior model probabilities

under Jeffreys and the Unit Expected prior setups are lower, 54.30% and 58.38%,

respectively. The edge model Y Z +X, where Antitoxin is independent from the

connected variables Survival and Condition, is the model with the second highest

posterior probabilities under UIP-Perks and the Empirical prior with posterior

model probabilities equal to 36% and 32.5% and for Jeffreys and UEC 15.9% and

12.2%, respectively. So, we can see here that the four prior setups are grouped into

two pairs, the fisrt ywo and the last two. Figure 4.3 presents box-plots summarizing

2.5% and 97.5% posterior percentiles and quantiles of the joint probabilities for

the MAP model (XY + Y Z) for the four prior setups. From the Figure 4.3 we

observe minor deferences between the posterior distributions obtained under the
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Unit Expected cell and the posterior distributions under the three other prior

setups. Differences are higher for the first two cell probabilities π(1, 1, 1) and

π(2, 1, 1). from the graph we can see that within each model the posterior results

are robust no matter prior we use.

4.5 Discussion

We use the power approach with imaginary data for prior specification. Unit

information interpretation priors are used as a yardstick. We employ this framework

to interpret standard prior choices (Jeffreys, Empirical, Perks, Dellaportas-Foster)

previously used in graphical models and their effect on model comparison. The

approach is general for any dimension.

In the three way case all the considered models are Markov equivalent to

a DAG; see Pearl and Wermuth (1994) and Drton and Richardson (2008). An

immediate question which arises is whether the the graphical structures implied

using the parameterization illustrated in this paper are the same with the ones that

we would derive using the parameterization implied by the corresponding DAG

representation. For example, in our approach the parameters for the edge model

{XZ, Y } are given by πG = (πXZ , πY ) while the parameterization implied by the

corresponding DAG structure is either πG = (πX|Y , πY , πZ). The answer is given

by Heckerman et al. (2013) Heckerman et al. (1995) where they prove that the

posterior distributions and the marginal likelihoods will be the same if the priors

are compatible across models since some normalizing constants cancel out. This

result can be easily confirmed in the above imple example with model {XZ, Y }.

An obvious extension of this work is to implement the same approach in

tables of higher dimension starting from four way tables. Although most of the

models in a four way contingency table can be factorized and analysed in a similar

manner, two type of graphs (the 4-chain and the cordless four-cycle graphs) cannot
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be decomposed in the above way. These models are not Markov equivalent to any

directed acyclic graph (DAG). In fact each bi-directed graph (which corresponds to

a marginal association model) is equivalent to a DAG, i.e. a conditional association

model, with the same set of variables if and only if it does not contain any 4-chain,

see Pearl and Wermuth (1994). We believe that also in higher dimensional problems

our approach can be applied to bi-directed graphs that admit a DAG representation.

For the graph that do not factorize, more sophisticated techniques must be adopted

in order to obtain the posterior distribution of interest and the corresponding

marginal likelihood needed for the model comparison.
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Chapter 5

Discussion and Concluding Remarks

Our goal is to work against things

we have not seen that we will see in

the near future

Nick Saban

5.1 Conclusions, Discussion and Future Work

In this thesis, an efficient Bayesian model selection procedure is proposed

for contingency tables using the power prior approach. When no information is

available for the problem in hand the utilization of imaginary data is proposed as

a possible way to specify an objective data-driven approach. The power prior has

been constructed from imaginary data and its use has been demonstrated in detail

for association models. This class of priors is useful for controlling the sensitivity

of the Bayes factor due to the prior choice. By this way, the prior specification

procedure is automated for all models under consideration. Moreover power priors

are quite robust under a variety of model setups. The proposed methodology can

be described by the following steps: (a) consider data from the uniform constant

model (i.e. the simplest model we may consider for this problem), (b) build the

prior and (c) compute the Bayes factor utilizing the two versions of Perrakis et al.
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(2014) estimator. The simulation study results show that the Bayes factors of

association models are not sensitive to the choice of prior parameter when power

priors are used. Two prior setups are introduced in order to advocate sensible

prior choices avoiding the Lindley-Bartlett paradox. The first prior scenario is to

set all the cell counts equal to one and the second scenario equal to the mean of

the cell counts in order to asses whether the size of imaginary data influence the

past results. The use of imaginary data combined with the real data using the

power prior approach makes the proposed method computationally efficient and

straightforward to implement. In summary we build in this thesis an objective

default prior using the imaginary data and the power prior approach. Due to the

utilization of common imaginary data we achieve compatibility of priors across

models under consideration.

In order to compute the Bayes factor, the computation of the marginal

likelihood is required. Here we have proposed two versions of Monte Carlo estimators

of the marginal likelihood based on the importance estimator of Perrakis et al.

(2014): the one-block and the independent Perrakis estimators. In both cases we

use the product marginal posteriors as importance sample density. Both of these

proposed MCMC marginal likelihood estimators are straightforward to implement

even in complex setups as they are obtained from a non-iterative approach from

the MCMC output. Moreover they do not require to adapt or adjust the MCMC

algorithm. As illustrated the one block estimator is accurate in computing the

marginal likelihood under the several prior setups in Section 3 delivering accurate

estimates even in sparse data.

In contingency tables with zero counts, the computation of the marginal

likelihood of the saturated model has proven challenging. In this dissertation we

have identified and initially dealt with the problem. We have implemented different

techniques in order to estimate the corresponding marginal likelihood using the

conjugate approach (with slightly different prior), which seems to be the most
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appropriate approach which avoids large MCMC errors due to zeros. We came to

the conclusion as in Greenland (2001) and Giudici (1998) where conjugate prior

setups were used in sparse contingency tables. This issue has also discussed in

detail in Agresti and Hitchcock (2005a). The prior parameters of the Gamma

distribution in the Poisson-Gamma conjugate analysis for the saturated model in

the full table specified by the power prior approach. Even this prior approach for

the saturated model is not exactly the same as the proposed methodology, it results

from the same idea of unit information using the same imaginary data and hence

it conveys similar amount of information (equivalent to one data point). Hence,

the two approaches should be intuitively close in terms of model selection.

A Bayesian analysis for graphical models of conditional independence for

three way contingency tables using power prior has proposed in Section 4. This

method is an extension of the approach of Tarantola and Ntzoufras (2012). Each

conditional independence model blend with a particular parametrization of the

cell probabilities and a conjugate Bayesian analysis based on Dirichlet prior is

proposed. The parametrization that imposed proceed from the constraints under

the conditional association structure of a graph. The resulting parametrization

and the corresponding decomposition of the likelihood simplifies the problem and

automatically imposes the conditional independences represented by the considered

graph. By this way the posterior model probabilities and the posterior distribu-

tion for the parameters can be analytically calculated. The proposed method is

straightforward, fast and automatically applicable to any type of datasets, even in

sparse contingency tables. Under this perspective we compare the results under

different priors which fit in this framework.

Our proposed methodology is easily to handle and detect the true model

in automatic way using the Bayes factor. From the simulation study we saw

the the criterion of the model selection consistency is satisfied and the proposed

methodology achieve to detect the true model. Nevertheless in some simulation
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scenarios were required large sample sizes in order to detect the true model, so in

the future we want to tune the prior parameters in order to improve the properties

of model selection consistency criterion.

5.2 Discussion

The need to work without introducing subjective inputs into the Bayesian

analysis led to the growth of Objective Bayes techniques. In this thesis we ac-

complished the goal of finding a prior satisfying two of the basic Objective Bayes

principles, consistency and compatibility of the prior across the model, which are

proved via the extended simulation study in Section 3.2. We test the proposed

methodology under the consistency criterion and the results show a good per-

formance. Additionally methods for constructing objective prior distribution are

applied in the proposed Bayesian model comparison procedure. More specifically,

the unit information principle is identified by the utilization of unit information

prior (UIP) and the combination with the power prior approach, setting the prior

mean equal with the imaginary data mean. One of the main approaches used

to construct prior distributions for objective Bayes methods is the concept of

imaginary observation in combination with the power prior approach.

5.2.1 Further Considerations about the presence of zeros

The estimation of the marginal likelihood in contingency tables under the

presence of zeros Conjugate Analysis is used for the saturated model, getting

all parameters from the full table. The density of the likelihood distribution for

the saturated model is

f(n|λij) =
I∏
i=1

J∏
j=1

e−λijλ
nij
ij

nij!
(5.1)
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Let us consider a set of imaginary data all equal to one n∗ij = 1 and n∗ =∑I
i=1

∑J
j=1 nij = IJ and a Gamma pre-prior. Then the unnormalized prior distri-

bution can be obtained by the product of the of the likelihood raised to a power

w = 1
n
multiplied by the pre-prior distribution

f(λ) = f(λij) = f(λij|n∗ij) ∝
( I∏
i=1

J∏
j=1

e−λijλ
nij
ij

) 1
n

f0(λij) (5.2)

where f0(λij) is a pre-prior. Here we consider f0 ∼ Gamma(a0, b0) and n∗ij = 1.

For a0 = b0 = 1 we obtain

λij ∼ Gamma( 1
IJ
,

1
IJ

) (5.3)

For the saturated model the posterior likelihood is given by

f(λij|n) ∝
e−λijλ

nij
ij e

−
λij
IJ λ

1
IJ
−1

Γ ( 1
IJ

) (5.4)

For the saturate model the marginal likelihood is given by

f(nij|λij) =
( 1
IJ

) 1
IJ
∫ e−λijλ

nij
ij e

−
λij
IJ λ

1
IJ
−1

Γ ( 1
IJ

) dλij

f(n) =
I∏
i=1

J∏
j=1

f(nij) =
I∏
i=1

J∏
j=1

(
1
IJ

) 1
IJ

Γ ( 1
IJ

)
Γ (nij + 1

IJ
)(

1 + 1
IJ

)nij+ 1
IJ

(5.5)

and the logarithm of the marginal likelihood is given by

log(f(n)) =
∑ 1

IJ
log( 1

IJ
)−

I∑
i=1

J∑
j=1

(nij + 1
IJ

)log(1 + 1
IJ

)

+
I∑
i=1

J∑
j=1

log(Γ (nij + 1
IJ

))−
I∑
i=1

J∑
j=1

log(Γ ( 1
IJ

))

log(f(n)) = −log(IJ)− (N + 1)log(1 + 1
IJ

) +
I∑
i=1

J∑
j=1

log(Γ (nij + 1
IJ

)) + IJlog(IJ)

(5.6)
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With this approach one term is explode and the result are not compatible

with the proposed methodology. The identification of the prior mean and variance

provides one possible solution or the utilization of other prior parameters.

5.3 Future Work

An obvious extension of our work is to the Bayesian model selection procedure

between association models and graphical models and test the type of association

in three or tables of higher dimension.

In the future we want to expand and use the methodology of the two

proposed marginal likelihood estimators, the independent and the one-block Perrakis

estimators, in higher dimensional problems, using the product marginal divided

by blocks. In three way contingency tables or higher the multi block parameter

approach will be a solution for computational demands. With some additional

effort one could consider to incorporate with bridge sampling estimation using the

product marginal as a approximation density for categorical data in contingency

table form.

Another interesting introduction to our proposed methodology could be

the utilization of random imaginary data. This class of prior distribution treats

imaginary data as stochastic components. Fouskakis et al. (2015) introduced the

power-expected-posterior (PEP) prior approach in order to alleviate the amount

of information introduced by the size of the training dataset. They combine the

idea of power prior method with the unit information prior approach in order to

procedure a minimal informative prior, and at the same time to reduce the effect

of training sample.

With respect to model selection consistency, detailed empirical evidence via

extended simulation study for association model using power priors in contingency

tables is provided in this thesis. Our intension for the future is to further investigate
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whether empirical evidence also suggests that the rest of the criteria of objective

Bayesian model comparison are also valid.
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Appendix A

Results

A.1 Convergence diagnostics with R package

boa

In order to test the converge of the MCMC algorithm we use the R package

boa, which is a program for carrying out convergence diagnostics and statistical

and graphical analysis of Monte Carlo sampling output and can be used as a

post-processor for the WinBUGS software. We applied three diagnostic methods

for MCMC sampler output: the Geweke, the Heidelberger and Welch and the

Raftery and Lewis test.

In Geweke diagnostic Geweke (1992) the convergence is assessed by com-

paring the sample mean in an early segment of the chain to the mean in a later

segment and is valid when the two segments are independent. The statistic has the

general form

z = x̄1 − x̄2√
Ŝ1(0)/n1 − Ŝ2(0)/n2

where the variance estimate Ŝ(0) is calculated as the spectral density at frequency

zero to account for serial correlation in the sampler output. If the two segments are

from the same stationary distribution, the limiting distribution for this statistic is
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a standard normal. The p-value is a measure of evidence against the two sequences

being from a common stationary distribution.If statistical significance is assess at

the 5% level, these results would be deemed non-significant the diagnostic does not

provide evidence of non-convergence.

In Heidelberger and Welch (1983) diagnostic an estimate of the number

of samples that should be discarded as a burn-in sequence and a formal test for

non-convergence are provided. Given an MCMC chain, the null hypothesis of

convergence uses the Cramer-von-Mises test statistic

∫ 1

0
Bn(t)2dt

where

Bn(t) = Tnt − ntx̄√
nS(0)

with Tk =


0, k = 0

∑k
j=1 xj, k > 1

and S(0) is the spectral density evaluated at frequency zero, given an MCMC

chain {xj : j = 1, . . . , T}. In calculating the test statistic, the spectral density

is estimated from the second half of the original chain. If the null hypothesis is

rejected, then the first 0.1n of the samples are discarded and the test reapplied to

the resulting chain. This processes is repeated until the test is either non-significant

or 50% of the samples have been discarded, at which point the chain is declared

to be non-stationary. If convergence is not rejected in the final step, a half-width

test is performed by computing the mean and associated (1− α)100% confidence

interval. This test is passed if the half-width of the confidence interval is less than

a user-specified level of accuracy ε, otherwise the test is failed.

The third diagnostic we used to test the convergence is the Raftery and

Lewis (1992) method, which estimate the number of MCMC samples needed when

quantiles are the posterior summaries of interest. A summary of the results of the
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three diagnostics are provided in Tables A1-A6:

Table A.1: Summary results of convergence diagnostics: Independence Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.041 7∗ passed passed 3776

a[1] 0.195 3 passed passed 3820

a[2] 0.338 3 passed passed 3724

a[3] 0.497 3 passed passed 3808

a[4] 0.371 3 passed passed 3832

a[5] 0.537 3 passed passed 3771

b[1] 0.189 3 passed passed 3824

b[2] 0.679 3 passed passed 3945

b[3] 0.017 7∗ passed passed 3865

b[4] 0.829 3 passed passed 3759

b[5] 0.249 3 passed passed 3815

∗ Failed for α = 0.05 but passed for α = 0.10
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Table A.2: Summary results of convergence diagnostics: Uniformm Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.599 3 passed passed 3780

a[1] 0.748 3 passed passed 3751

a[2] 0.071 3 passed passed 3641

a[3] 0.312 3 passed passed 3669

a[4] 0.084 3 passed passed 3708

a[5] 0.801 3 passed passed 3798

b[1] 0.693 3 passed passed 3943

b[2] 0.492 3 passed passed 3865

b[3] 0.776 3 passed passed 3810

b[4] 0.995 3 passed passed 3696

b[5] 0.951 3 passed passed 3736

phi 0.652 3 passed passed 6311

∗ Failed for α = 0.05 but passed for α = 0.10
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Table A.3: Summary results of convergence diagnostics: Row Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.934 3 passed passed 3704

a[1] 0.971 3 passed passed 3724

a[2] 0.185 3 passed passed 3774

a[3] 0.042 7∗ passed passed 3792

a[4] 0.189 3 passed passed 3695

a[5] 0.129 3 passed passed 3798

b[1] 0.665 3 passed passed 3744

b[2] 0.782 3 passed passed 3839

b[3] 0.437 3 passed passed 3877

b[4] 0.351 3 passed passed 3783

b[5] 0.115 3 passed passed 3653

mu[2] 0.437 3 passed passed 3696

mu[3] 0.291 3 passed passed 3808

mu[4] 0.226 3 passed passed 3780

mu[5] 0.221 3 passed passed 3759

∗ Failed for α = 0.05 but passed for α = 0.10
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Table A.4: Summary results of convergence diagnostics: Column Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.037 7∗ passed passed 3807

a[1] 0.078 3 passed passed 3696

a[2] 0.071 3 passed passed 3780

a[3] 0.256 3 passed passed 3724

a[4] 0.059 3 passed passed 3696

a[5] 0.129 3 passed passed 3642

b[1] 0.153 3 passed passed 3808

b[2] 0.997 3 passed passed 3848

b[3] 0.955 3 passed passed 3763

b[4] 0.172 3 passed passed 3779

b[5] 0.499 3 passed passed 3669

nu[2] 0.128 3 passed passed 3696

nu[3] 0.079 3 passed passed 3724

nu[4] 0.076 3 passed passed 3736

nu[5] 0.039 7∗ passed passed 3736

∗ Failed for α = 0.05 but passed for α = 0.10
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Table A.5: Summary results of convergence diagnostics: Row-Column Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.206 3 passed passed 3798

a[1] 0.081 3 passed passed 3696

a[2] 0.499 3 passed passed 3923

a[3] 0.212 3 passed passed 3738

a[4] 0.033 7∗ passed passed 3600

a[5] 0.063 3 passed passed 3792

b[1] 0.785 3 passed passed 3848

b[2] 0.025 7∗ passed passed 3716

b[3] 0.521 3 passed passed 3751

b[4] 0.025 7∗ passed passed 3808

b[5] 0.251 3 passed passed 3724

mu[2] 0.083 3 passed passed 3780

mu[3] 0.073 3 passed passed 3865

mu[4] 0.025 7∗ passed passed 3724

mu[5] 0.032 7∗ passed passed 3865

nu[2] 0.172 3 passed passed 3798

nu[3] 0.138 3 passed passed 3780

nu[4] 0.534 3 passed passed 3780

∗ Failed for α = 0.05 but passed for α = 0.10
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Table A.6: Summary results of convergence diagnostics: Saturated Model

Parameters
Geweke Heidelberger & Welch Raftery & Lewis

p-value pass Stationarity Test Halfwidth Test MCMC samples

m 0.962 3 passed passed 3820

a[1] 0.941 3 passed passed 3780

a[2] 0.035 7∗ passed passed 3837

a[3] 0.191 3 passed passed 3669

a[4] 0.298 3 passed passed 3696

a[5] 0.234 3 passed passed 3848

b[1] 0.853 3 passed passed 3786

b[2] 0.819 3 passed passed 3720

b[3] 0.214 3 passed passed 3653

b[4] 0.601 3 passed passed 3642

b[5] 0.596 3 passed passed 3724

ab[2,2] 0.129 3 passed passed 3837

ab[2,3] 0.129 3 passed passed 3751

ab[2,4] 0.132 3 passed passed 3780

ab[2,5] 0.091 3 passed passed 3865

ab[3,2] 0.195 3 passed passed 3732

ab[3,3] 0.364 3 passed passed 3696

ab[3,4] 0.891 3 passed passed 3837

ab[3,5] 0.491 3 passed passed 3708

ab[4,2] 0.324 3 passed passed 3808

ab[4,3] 0.630 3 passed passed 3810

ab[4,4] 0.537 3 passed passed 3894

ab[4,5] 0.327 3 passed passed 3867

ab[5,2] 0.277 3 passed passed 3815

ab[5,3] 0.173 3 passed passed 3751

ab[5,4] 0.901 3∗ passed failed 3724

ab[5,5] 0.715 3 passed failed 3724

∗ Failed for α = 0.05 but passed for α = 0.10
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A.2 Comparison one-block importance sam-

pling and bridge sampling estimators.

Table A.7: Estimated log-marginal likelihood for all the competing models with
the two competitive estimators: one-block and bridge sampling.

Log-marginal

Mj Model One-block Bridge sampling

1 Independence (I) -151.59 (0.002) -151.59 (0.002)

2 Uniform (U) -147.95 (0.004) -147.97 (0.003)

3 Row (R) -173.51 (0.012) -173.68 (0.009)

4 Column (C) -158.62 (0.007) -159.31 (0.008)

5 Row-Column (RC) -182.66 (0.048) -182.96 (0.047)

6 Saturated (S) -234.85 (5.944) -234.80 (5.047)

A.3 Results about the proposed techniques un-

der the presence of zeros 3.2.2

A.3.1 The initial results

Table A.8: Estimated log-marginal in the presence of zeros in Section 3.2.2
t Independence (I) Uniform (U) Row (R) Column (C) Row-Column (RC) Saturated (S)

1 5000 -1105.74 -1107.31 -421.39 -1079.27 -431.95 -947.55

2 10000 -1105.74 -1107.30 -421.39 -1079.28 -430.61 -738.70

3 50000 -1105.74 -1107.31 -421.39 -1079.27 -431.23 -481.06

4 100000 -1105.74 -1107.31 -421.39 -1079.27 -431.39 -481.76

5 150000 -1105.74 -1107.31 -421.39 -1079.27 -431.33 -482.16

6 300000 -1105.74 -1107.30 -421.39 -1079.27 -431.41 -482.85

7 500000 -1105.74 -1107.30 -421.39 -1079.27 -431.28 -483.36
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Table A.9: Estimated posterior probabilities in the presence of zeros in Section
3.2.2

t Independence (I) Uniform (U) Row (R) Column (C) Row-Column (RC) Saturated (S)

1 5000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

2 10000 0.0000 0.9999 0.0000 0.0001 0.0000 0.0000

3 50000 0.0000 0.9999 0.0000 0.0001 0.0000 0.0000

4 100000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

5 150000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000

6 300000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000

7 500000 0.0000 0.0000 0.9999 0.0000 0.0001 0.0000

Table A.10: Estimated Monte Carlo error in the presence of zeros in Section 3.2.2
t Independence (I) Uniform (U) Row (R) Column (C) Row-Column (RC) Saturated (S)

1 5000 0.0016 0.0016 0.0046 0.0073 1.1544 97.8587

2 10000 0.0011 0.0014 0.0030 0.0051 0.8409 88.5555

3 50000 0.0006 0.0005 0.0019 0.0024 0.2944 81.3714

4 100000 0.0005 0.0004 0.0010 0.0015 0.2275 66.7635

5 150000 0.0003 0.0003 0.0009 0.0013 0.2074 61.8563

6 300000 0.0002 0.0002 0.0007 0.0008 0.1266 44.0097

7 500000 0.0002 0.0002 0.0004 0.0007 0.1271 37.3232
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A.4 Simulation study specifics: Details about

the simulated scenarios (Section 3.2)

Table A.11: Coefficients of the true generating models for simulation scenarios 1–6
used in Section 3.2

Coefficients
Simulation Scenario and True Generating Model

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

Independence Uniform Row Column RC Saturated

λ0 4.322 6.161 3.315 3.376 4.322 4.322

λX1 1.436 0.925 0.665 1.831 1.436 1.436

λX2 0.772 0.832 1.148 0.831 0.772 0.772

λX3 −0.715 −0.144 −0.152 −1.052 −0.715 −0.715

λX4 0.415 1.444 1.153 −0.375 0.415 0.415

λX5 −1.907* −3.053* −2.814* −1.234* −1.908* −1.908

λY1 0.571 0.007 0.991 0.0667 0.571 0.571

λY2 0.276 0.328 0.341 0.512 0.276 0.276

λY3 0.079 0.694 −0.277 0.782 0.079 0.079

λY4 −1.131 0.007 −1.966 −0.332 −1.132 −1.132

λY5 0.206* −1.036* 0.913* −1.028* 0.206 0.206

φ −0.215 1.00† 1.00† 1.00†

µ1 0.00† 0.00†

µ2 0.655 0.654

µ3 0.607 0.607

µ4 0.164 0.164

µ5 0.081 0.081

ν1 0.00† 0.00†

ν2 0.709 0.709

ν3 0.479 0.479

ν4 0.218 0.218

ν5 0.039 1.00†

* Sum to zero constrains for the main effects.
† Row and column score constrains: φ = 1, µ1 = ν1 = 0 and νJ = 1 for the RC moodel.

φ = 1, µ1 = 0 and φ = 1, ν1 = 0 for the Row and Column model, respectively.
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Table A.12: Interaction terms coefficients of true saturated model used in the
simulated scenario 6 of Section 3.2

λXYi1 λXYi2 λXYi3 λXYi4 λXYi5

λXY1j 2.060 923 2 −1.068 515 07 −0.721 939 81 −0.329 162 84 −0.058 861 680

λXY2j −0.945 544 7 0.463 777 03 0.313 349 92 0.142 869 45 0.025 548 255

λXY3j −0.878 025 5 0.430 659 79 0.290 974 32 0.132 667 48 0.023 723 913

λXY4j −0.237 353 0 0.116 418 49 0.078 657 90 0.035 863 45 0.006 413 188

λXY5j −0.117 556 2 0.057 659 75 0.038 957 68 0.017 762 45 0.003 176 324
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Table A.13: Expected cell values for each of the six simulated scenarios used in
Section 3.2
Expected Model

cell Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

parameter Independence Uniform Row Column RC Saturated

θ11 13.747 890 6.396 697 7.910 405 6.184 587 13.747 890 107.965 157

θ12 19.794 174 14.654 328 16.428 680 14.692 932 19.794 174 6.799 660

θ13 14.741 084 16.288 631 16.487 926 17.675 335 14.741 084 7.161 351

θ14 12.109 992 18.964 883 17.096 489 19.339 539 12.109 992 8.713 452

θ15 3.606 861 7.695 460 6.076 500 6.107 607 3.606 861 3.400 683

θ21 389.237 136 275.714 818 244.971 505 269.551 751 389.237 136 151.206 145

θ22 560.422 543 509.583 018 485.562 014 508.759 836 891.110 177 891.110 177

θ23 417.356 929 456.960 167 465.086 008 471.545 594 570.944 334 570.944 334

θ24 342.864 144 429.228 585 460.255 924 431.188 293 395.520 943 395.520 943

θ25 102.119 249 140.513 412 156.124 549 130.954 526 196.353 098 104.761 830

θ31 200.418 459 202.687 846 254.824 173 201.616 966 200.418 459 83.294 454

θ32 288.561 938 302.222 827 324.330 114 302.322 621 443.886 786 443.886 786

θ33 214.897 359 218.642 899 199.477 246 215.890 338 287.474 695 287.474 695

θ34 176.540 975 165.687 745 126.758 472 164.983 793 201.586 885 201.586 885

θ35 52.581 269 43.758 683 27.609 995 48.186 281 96.490 912 53.843 617

θ41 45.325 075 61.592 690 63.926 609 62.372 467 45.325 075 35.748 467

θ42 65.258 916 74.092 363 74.895 457 74.303 522 73.316 170 73.316 170

θ43 48.599 510 43.244 042 42.402 232 40.881 201 52.576 610 52.576 610

θ44 39.925 129 26.437 842 24.802 731 26.109 379 41.382 968 41.382 968

θ45 11.891 369 5.633 063 4.972 972 7.333 431 14.012 149 11.967 876

θ51 140.271 440 242.607 949 217.367 308 249.274 229 140.271 440 124.714 011

θ52 201.962 429 235.447 464 234.783 736 235.921 089 213.949 805 213.949 805

θ53 150.405 118 110.864 261 122.546 589 100.007 531 156.380 185 156.380 185

θ54 123.559 760 54.680 945 66.086 384 53.378 996 125.774 092 125.774 092

θ55 36.801 252 9.399 382 12.215 984 14.418 154 39.917 435 36.918 331
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Table A.14: Monte Carlo error of the estimation of the log-marginal as a function of the number of Importance sample size for all the competitive models with the Independence and One-Block Perrakis
estimators and the two prior scenarios.

Monte Carlo error of the log-marginal
T=1.000 T=5.000 T=10.000 T=15.000 T=50.000 T=100.000 T=150.000

Prior Mj Model IP OBP IP OBP IP OBP IP OBP IP OBP IP OBP IP OBP
Prior 1 1 Independence 0.0562 0.0096 0.0316 0.0034 0.0194 0.0030 0.0165 0.0028 0.0102 0.0017 0.0071 0.0010 0.0063 0.0009

2 Uniform 0.8633 0.0127 0.2223 0.0067 0.1646 0.0050 0.1199 0.0036 0.0744 0.0020 0.0544 0.0011 0.0476 0.0011
3 Row 3.5787 0.0336 2.6479 0.0181 2.2862 0.0195 1.7931 0.0190 1.0985 0.0070 0.9857 0.0070 0.7768 0.0100
4 Column 2.5436 0.0230 1.2775 0.0087 0.9960 0.0089 0.7663 0.0081 0.3742 0.0035 0.3434 0.0029 0.2873 0.0022
5 RC 8.1690 0.1077 3.2277 0.0457 2.5878 0.0564 2.2685 0.0530 2.0819 0.0423 1.5897 0.0291 1.3182 0.1211
6 Saturated 21.1382 17.1724 20.3462 10.1307 14.5277 6.9642 11.3116 6.0112 8.3744 3.0267 10.5953 3.4265 7.9363 2.4154

Prior 2 1 Independence 0.0781 0.0114 0.0279 0.0041 0.0184 0.0034 0.0155 0.0022 0.0098 0.0014 0.0077 0.0010 0.0062 0.0009
2 Uniform 0.6227 0.0155 0.1579 0.0053 0.1734 0.0045 0.1277 0.0038 0.0802 0.0025 0.0504 0.0017 0.0374 0.0012
3 Row 4.3775 0.0423 1.9420 0.0210 1.3146 0.0232 1.3250 0.0156 1.1424 0.0113 0.7105 0.0056 0.7491 0.0074
4 Column 2.3907 0.0287 1.2036 0.0129 0.7987 0.0110 0.5615 0.0106 0.5106 0.0039 0.4019 0.0033 0.3102 0.0026
5 RC 4.4522 0.1168 3.2691 0.0463 3.9943 0.0295 3.3771 0.0280 2.6385 0.0380 1.8261 0.0432 1.5091 0.0320
6 Saturated 14.8354 9.5993 10.0692 4.1040 7.3528 4.9028 5.6252 4.3661 4.2050 3.7218 9.9941 2.2958 9.0480 2.0478
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Table A.15: Monte Carlo error of the estimation of the log-Bayes Factor as a function of the number of Importance sample size for all the competitive models with the Independence and One-Block
Perrakis estimators for the two scenarios of imaginary data.

Monte Carlo error of the log −BFUMj

T=1.000 T=5.000 T=10.000 T=15.000 T=50.000 T=100.000 T=150.000
Prior Mj Model IP OBP IP OBP IP OBP IP OBP IP OBP IP OBP IP OBP
Prior 1 1 Independence 0.5875 0.0138 0.2188 0.0074 0.1929 0.0055 0.1791 0.0033 0.1167 0.0022 0.0736 0.0016 0.0705 0.0015

2 Row 3.7339 0.0328 1.8760 0.0178 1.5641 0.0202 1.1822 0.0190 0.6672 0.0071 0.7591 0.0071 0.5002 0.0104
3 Column 2.5826 0.0236 1.3314 0.0097 0.7815 0.0112 0.7731 0.0094 0.5232 0.0043 0.4166 0.0034 0.3300 0.0028
4 RC 7.6176 0.1077 2.5384 0.0482 2.1801 0.0579 1.7495 0.0531 1.5919 0.0421 1.4295 0.0288 1.2036 0.1213
5 Saturated 25.0342 17.1713 19.6509 10.1310 14.0071 6.9647 11.1509 6.0112 7.4078 3.0269 10.2971 3.4266 8.7271 2.415

Prior 2 1 Independence 0.6057 0.0120 0.1522 0.0094 0.1739 0.0064 0.1297 0.0053 0.0788 0.0029 0.0482 0.0022 0.0373 0.0024
2 Row 4.1636 0.0617 1.9307 0.0252 1.3162 0.0129 1.2826 0.0151 1.1517 0.0099 0.7119 0.0111 0.7441 0.0426
3 Column 2.0950 0.0304 1.1916 0.0153 0.7634 0.0282 0.5545 0.0211 0.5231 0.0084 0.4055 0.0055 0.3122 0.0040
4 RC 4.2171 0.0983 3.2248 0.1559 3.9369 0.1186 3.3461 0.0965 2.6201 0.0554 1.8198 0.0367 1.5019 0.0297
6 Saturated 14.5093 10.0915 10.0336 4.1113 7.2991 3.9209 5.6166 3.3607 4.1939 3.7120 9.9873 2.9121 9.0441 2.2440

132



A.5 Summary plots for the simulation study of

Section 3.2

A.5.1 Results using Prior 1

Figure A.1: Boxplots of the posterior model probabilities over 100 simulated
datasets for Scenarios 1–6 for Prior 1
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Figure A.2: Error bars of the 90% confidence intervals for the posterior model
probabilities over 100 simulated datasets for Scenarios 1–6 for Prior 1
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Figure A.3: Line plots for the posterior model probabilities over 100 simulated
datasets for Scenarios 1–6 for Prior 1
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A.5.2 Results using Prior 2

Figure A.4: Boxplots of the posterior model probabilities over 100 simulated
datasets for Scenarios 1–6 for Prior 2
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Figure A.5: Error bars of the 90% confidence intervals for the posterior model
probabilities over 100 simulated datasets for Scenarios 1–6 for Prior 2
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Figure A.6: Line plots for the posterior model probabilities over 100 simulated
datasets for Scenarios 1–6 for Prior 2
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Appendix B

R code

B.1 Packages and Functions in R

B.1.1 Required R-Packages in this thesis

The following R packages in alphabetical order of were used:

• ggplot2: Create elegant data visualisations using the grammar of graphics (H. Wickham,

W. Chang, L. Henry et al. )

• ggpubr: Easy-to-use functions for creating and customizing ggplot2 (A. Kassambara)

• gnm: Generalized nonlinear models (H. Turner and D. Firth).

• MASS: Support functions and datasets for Venables and Ripley’s MASS (B. Ripley, B.

Venables, D.M. Bates et al. )

• mvtnorm:Multivariate Normal and t Distributions (A. Genz, F. Bretz, T. Miwa et al. )

• R2WinBUGS: Running WinBUGS and OpenBUGS from R/S-PLUS (A. Gelman, S. Sturtz

and U. Ligges).

B.1.2 Functions in R

# freq: vector of the frequencies , given by rows

# I: number of rows

# J: number of columns
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row <- gl(I,J, length =I*J)

col <- gl(J,1, length =I*J)

data <-data.frame (freq , row , col)

# Sum -to -zero contrasts

contrasts (data$row)<-contr.sum(I)

contrasts (data$row)<-contr.sum(I)[c(I ,1:(I -1)) ,]

contrasts (data$col)<-contr.sum(J)

contrasts (data$col)<-contr.sum(J)[c(J ,1:(J -1)) ,]

I.model <- glm(freq ~ row+col , family = poisson )

U. model <- glm(freq ~ row+col+mu:nu , family = poisson )

# Variance - Covariance matrix

X<-model. matrix ( model )

# Estimated the Poisson parameter

lamda <-NULL

for (i in 1: length (t)){

lamda [[i]] <-t(apply (prop_theta [[i]], 1 , function (

w) w%*%t(X)))

lamda [[i]] <-exp(lamda [[i]])

}

# Generate the importance sample

# t: importance sample size

# l: posterior mean

# S: posterior variance

temp <-mvrnorm (t, l, S)

prop_theta <- NULL

for (i in 1: length (t)){

prop_ theta [[i]] <-temp [1:t[i],]

}

# Linear predictor for the Row - Column Association model

# beta: the parameter vector from the MCMC output
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# Nrow: number of rows

# Ncol: number of columns

linear . predictor .rc <- function (beta , Nrow=I, Ncol=J) {

J<-Ncol

I<-Nrow

m <- beta [1]

temp <- beta [2:I]

a <- c( -sum(temp), temp )

temp <- beta [(I+1) :(I+J -1)]

b <- c( -sum(temp), temp )

mu <-beta [(I+J):(2*I+J -2)]

mu <- c(0, mu)

nu <-beta [(2*I+J -1) :(2*I+2*J -4)]

nu <- c(0, nu , 1)

phi <- 1

A <- matrix ( a, I, J )

B <- matrix ( b, I, J, byrow=TRUE )

MU <- matrix ( mu , I, J )

NU <- matrix ( nu , I, J, byrow=TRUE )

result <- as. vector ( t(m + A + B + phi*MU*NU) )

return ( result )

}

# Compute the marginal likeligood using

# the independence Perrakis estimator

# PARAMETERS :

# lamda: poisson parameter

# y: the data

# prop_theta: the genetated importance sampling

# l: posterior mean

# sd: posterior standar deviation

# prior.mean: prior mean

# prior.sd: prior standad deviation
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# RETURNS :

# log_lik: the logarithm of the likelihood

# log_prior: the logarithm of the prior

# log_g: the logarithm of the imortance function

Independence _ Perrakis <- function (lamda , y, prop_theta , l,

sd , prior.mean , prior.sd){

log_lik <-apply(lamda , 1, function (x) sum(dpois (y,x

, log=TRUE)))

log_prior <-apply(prop_theta ,1, function (k) sum(

dnorm (k, prior.mean , prior.sd , log=TRUE)))

log_g<-apply(prop_theta , 1, function (z) sum( dnorm (

z, l, sd , log=TRUE)))

w<-log_lik+log_prior -log_g

maxw <-max(w)

w <- w-maxw

perrakis <-log(mean(exp(w)))+maxw

return ( perrakis )

}

# Compute the marginal likeligood using

# the one -block Perrakis estimator

# PARAMETERS :

# lamda

# y: the data

# prop_theta: the genetated importance sampling

# l: posterior mean

# S: posterior variance

# prior.mean: prior mean

# prior.sd: prior standad deviation

# RETURNS :

# log_lik: the logarithm of the likelihood

# log_prior: the logarithm of the prior

# log_g: the logarithm of the imortance function

One_Block _ Perrakis <- function (lamda , y, prop_theta , l, S,
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prior.mean , prior.sd){

log_lik <-apply(lamda , 1, function (x) sum(dpois (y,x

, log=TRUE)))

log_prior <-apply(prop_theta ,1, function (k) sum(

dnorm (k, prior.mean , prior.sd , log=TRUE)))

log_g<-apply(prop_theta , 1, function (z)

sum( dmvnorm (z, l, S, log=TRUE)))

w<-log_lik+log_prior -log_g

maxw <-max(w)

w <- w-maxw

perrakis <-log(mean(exp(w)))+maxw

return ( perrakis )

}
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