
Statistical process control (SPC) is the collection of methods for recognizing special

causes and bringing a process into a state of control and reducing variation about a

target value. Statistical process control is a sector of statistics dealing with the effort

of improving quality constantly. It uses many tools in order to achieve this goal. The

first of them were introduced in 1920’s (Shewhart charts). SPC is extensively used in

industry to keep manufacturing processes under control. The need of monitoring specific

processes led to its great development and improvement. Its tools are used in various

fields of science such as industry, medicine, environment, economics, text analyses and

informatics.

The most valuable tool of SPC is control charts. These charts give a graphical ap-

pearance of the process giving the ability to any manager with or without the knowledge

of statistics to immediately understand if the process is under control or not. The wide

use and popularity of control charts is a result of many reasons. First of all their proven

ability to improve productivity, because the reduction of scrap and rework results in an

increase of productivity, increase in production capacity measured in the number of good

parts per hour and decrease in cost. Their effective prevention of defect items is also

valuable. The use of control charts helps to keep the process under control. Finally,

the diagnostic information of control charts is significant as it allows for changes in the
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process by experienced operators or engineers.

The research in the area of control charts is active for over eight decades now. Al-

though someone would expect that there would be a decreasing interest in this area after

all these years, we observe exactly the opposite. There is an increasing interest for this

tool since it has proved its value in practice. Most of the deficiencies of control charts are

under investigation and at the same time new problems need a solution in the quality field

by the use of control charts. This thesis aims to investigate some of the characteristics

of control charts and tries to give solutions to quality problems.

The outline of the thesis is the following. In Chapter 2, a review of the most known

univariate and multivariate control charts is presented. The control charts presented

are the Shewhart type for variables and attributes in both univariate and multivariate

cases and the Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average

(EWMA) charts again for the univariate and multivariate cases. The main properties of

these charts are also given. Chapter 3 deals with the estimation effect on control charts.

A detailed review of the current status of the subject is given in the univariate and

multivariate cases. Some new results on the estimation effect of the univariate control

charts for dispersion are also presented. Chapter 4 considers the issue of non-normality in-

control charts. The effect of non-normality on the univariate and multivariate Shewhart

and EWMA control charts is presented. Additionally, new results are given in the case

of the EWMA control charts for process dispersion under the presence of non-normality.

Chapter 5 investigates the problem of interpreting a signal on a multivariate control chart.

Several researchers have dealt with this problem and their results are presented. A new

proposal for a chart that addresses this problem is given that is proved to have promising

results. Measurement error effect on control charts is the subject of Chapter 6. The

presence of measurement error is a factor that may affect the performance of a control

chart. The different considerations of authors in the context of Shewhart control charts

are outlined. The effect of such a problem in the EWMA case is examined thoroughly

under the assumption of a specific model. Finally, in Chapter 7 some final thoughts
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and discussion for possible future research issues and generalizations are given for the

different subjects that have been addressed in this thesis.
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Control charts are one of the main tools of statistical process control. The literature

on control charts is huge. In this chapter we try to present the main univariate and

multivariate control charts along with their basic properties. We have to emphasize

that the control charts presented in this chapter and their properties are by no means a

detailed review of all charts.

In Section 2.2, we present the main characteristics of a control chart and a discussion

of its evaluation using the most known measures. Univariate Shewhart Control Charts for

data in subgroups and individual data for the mean and the variance are given in Section

2.3 for both variables and attributes. Cumulative Sum (CUSUM) charts for the mean

and variance and their properties are described in Section 2.4. Exponentially Weighted

Moving Average (EWMA) Control Charts are summarized in Section 2.5. Section 2.6

presents the multivariate Shewhart control charts for the process mean and dispersion for

variables and attributes. Finally, Section 2.7 gives the multivariate CUSUM and EWMA

control charts.

5



When we have a production process there is usually a target value. We want our

process to achieve this target for every product. However, in every process there is

an inherent random variability. Therefore, no matter how good we design the whole

procedure or how accurate our engines are, we expect to be close to the target value but

not always on this value. The existence of this variability affects our process.

There are two different “versions” of this variability. The common cause (chance

cause) variability is the natural variability every process experiences. Its existence is due

to randomness as we can find purely random variability from one product to another.

A process that operates with only common cause variability is said to be in-control.

The special cause (assignable cause) variability is a result of factors that are not purely

random. These factors cause heterogeneity in the process and as a result they affect it,

leading to low quality product. A process that operates in the presence of special causes

of variability is said to be out-of-control. This type of variability can be detected with

control charts giving us the ability to remove its effect and therefore reduce the overall

variability. As a result, removing special causes leads to an improvement of the quality

of the product.

Common cause variability is the remainder of the variability after every component

of special cause has been removed. In order to remove common cause variability we have

to alter the process itself. However, a goal in today’s industrial and technological world

must be the continuous quality improvement. Under this perspective we have to stress

that today’s common cause can be a tomorrow’s special cause. As the inspection process

improves and the target for quality is constant we may be able to identify as special

cause, a up to now identified common cause.

Special causes of variability can be divided in two different groups; transient special

causes and persistent special causes. Transient special causes are those causes that affect

a process for a short time until their reappearance in a future point in time. Persistent

special causes are those causes that when they occur they stay in the process until they
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are detected and removed.

A control chart is a graphical representation of a characteristic of the process under

investigation. It is used as the main tool to identify special causes of variability in a

process. On the horizontal axis we have the number of the sample drawn from the process

or the time that the sample was inspected. On the vertical axis we have the value of the

characteristic measured for each sample or for the time of the horizontal axis. A straight

line connects the successive points indicating the level of the characteristic in time or in

successive samples. There are also three usually straight lines that stand for the upper

control limit (UCL) the center line (CL) and the lower control limit (LCL). An example

of a control chart is given in Figure 2.1.

Figure 2.1. A typical control chart
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We assume that a process operates under control when the line connecting the se-

quence of points does not cross UCL or LCL. When a point is plotted outside these limits

we assume that the process is in an out-of-control state and corrective actions must be

taken in order to remove the assignable cause that led to this problem. The values of

UCL and LCL are chosen usually in such a way that when the process is in-control the
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probability of a point plotting outside these limits is very small. However, there are some

cases that even when all the points plot inside the control limits we characterize the pro-

cess as being in an out-of-control state. Such cases are for example when we see a series

of nine successive points plotting all above (below) the center line or when we see six

successive points in a row steadily increasing or decreasing. We have to state here that

the removal of any cause is not the objective of a control chart. A control chart simply

indicates that an assignable cause may exist. It is the management’s or the operator’s

job to act in order to get rid of the problem, if it exists.

In the literature, two distinct phases of control charting practice have been discussed

(see, e.g. Woodall (2000)). In Phase I, charts are used for retrospectively testing whether

the process was in-control when the first subgroups were being drawn. In this phase, the

charts are used as aids to the practitioner, in bringing a process into a state of statistical

control. Once this is accomplished, the control chart is used to define what is meant by

statistical control. This is referred as the retrospective use of control charts. In general,

there is a lot more going on in this phase than just charting some data. During this

phase the practitioner is studying the process very intensively. The data collected are

then analyzed in an attempt to answer the question “were the data collected from an

in-control process?”.

In Phase II, control charts are used for testing whether the process remains in-control

when future subgroups are drawn. In this phase, the charts are used for monitoring the

process for any change from an in-control state. At each sampling stage, the practitioner

asks the question “has the state of process changed?”. The meaning of in-control, in this

phase, is usually determined by the values of the process parameters e.g., the mean and

standard deviation for univariate continuously distributed variables. The values of the

parameters are either given to the practitioner or they are estimated from the historical

data known to be under control from Phase I. Note that in this phase the data is not taken

as being from an in-control process unless the data provide evidence against no change

in the process. Using these data to define what is meant by the process being in-control
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might lead to use an out-of-control process to define a state of statistical in-control.

Woodall (2000) states that much work, process understanding and process improvement

is often required in the transition from Phase I to Phase II.

In a control chart we have two objectives. Firstly, when a process is in-control, we

want our chart to signal (false alarm) infrequently. In statistical terms we want the chart

to operate with the planned probability of the statistic computed to plot outside the

control limits if we are in-control. Secondly, when a process is out-of-control, we want

the chart to signal as soon as possible. In statistical terms we want the probability of the

statistic computed to plot in-control if we are out-of-control to be as small as possible.

Different measures for evaluating the performance of a chart, concerning the previous

two objectives, have been proposed. The most known measure is the average run length

(ARL), which is based on the run length (RL) distribution. The number of observations

(individual data), or samples (data in subgroups), needed for a control chart to signal is

a run length or alternatively one observation of the RL distribution. The mean of the RL

distribution is the ARL, which is actually the average number of observations needed for

a control chart to signal. Page (1954) defined the average run length as follows: When

the quality remains constant the average run length of a process inspection scheme is

the expected number of articles sampled before action is taken. Ewan and Kemp (1960)

gave a somewhat different definition; When the quality remains constant the average run

length of an inspection scheme is the expected number of samples obtained before action

is taken. Usually, along with the ARL, the standard deviation of the run length (SDRL)

is computed. Alternatively, the ARL is expressed as the average number of observations

to signal (ANOS). A measure similar to the ARL is the average time to signal (ATS),

which is the average time needed for a control chart to signal and it is actually a product

of the ARL and the sampling interval used in the case of fixed sampling.

From the preceding discussion we see that all these measures are related to the ARL.

However the sole use of the ARL has been criticized (see, e.g. Barnard (1959), Bissell

(1969), Woodall (1983) and Gan (1993b, 1994)).The disadvantage of the ARL is the
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skewness of the run length distribution in the out-of-control case and in non-normality

and as a result the misleading conclusions one can draw based on the ARL. An alternative

measure is the median run length (MRL), which is more credible since it is less affected

by the skewness (see, e.g. Gan (1993b, 1994)).

A typical method of comparing control charts is based on the calculation of their

average run length (ARL) (Woodall (1985)). Assume that independent random samples

of size � are drawn successively from a process that measure the quality of a character-

istic. Assume also that the sample means �1� �2� ��� are normally distributed with known

variance �2��. Consider as the objective of the control chart to keep the in-control mean

equal to the target value �0. If �(��) = �� 	 = 1� 2� ��� the parameter 
 = � � �0 ��

denotes the shift in the mean measured in units of the standard error of the sample mean.

We assume that any shift in the mean away from the target value occurs prior to the

implementation of the control chart.

Let �0��1 denote the in-control and out-of-control regions respectively. The in-

control region�0 contains all values of 
 that correspond to acceptable shifts. Although

“acceptable shifts” is an oxymoron, there is a meaningful explanation. When the shift in

a process is very slight the attempt to adjust the process can lead to over-correction and

introduce extra variability into the process. Duncan (1974) and Wetherill (1977) observe

that low ARL values for small deviations from the target value is a drawback when some

slack in the process is acceptable. The out-of-control region �1 contains all values of 


for which a control procedure should give an out-of-control signal.

A control chart has an ARL value of at least �0, when 
 �0, and at most �1, when


 �1. Consider two procedures A, B that are to be compared. If the ARL profile of

A is above that of B for 
 �0 and below that of B for 
 �1, then procedure A is

considered to be uniformly better than procedure B.
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The most known control charts are the Shewhart type control charts. They owe their

name to Walter Shewhart who established them in his pioneering work in 1931. They

are used to detect transient special causes in a process. This property is the result of

the fact that Shewhart Control Charts are memoryless. In the following we present the

Shewhart control charts for variables and attributes.

Assume that we have a variable that is normally distributed with mean � and standard

deviation �. We assume that � and � are both known. Let �1� �2� ���� �� be a sample of �

independent and identically distributed observations drawn from our production process.

Then the average of this sample � is distributed as a normal variable with mean � and

standard deviation �� �. Therefore, we can use as control limits for each sample


�� = �+ ���2�� �

��� = � ���2�� � (2.1)

where 
�� and ��� are the upper and lower control limits respectively, ���2 is the

inverse of the normal cumulative distribution function for probability ��2 and � is the

probability that an in-control sample will plot outside these limits. If all the points

(samples) plot inside the control limits we claim that we have an in-control process. This

plot is a Phase II Shewhart chart for the mean.

However, in real world we usually do not know the values of � and �. Consequently,

we have to estimate them. Therefore, the control limits in such a case will not be

fixed numbers, but rather random variables. The control limits in this case for Phase I
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Shewhart chart for the mean are


�� = �+ ��� �

��� = � ��� �

where � and � are the estimates for the mean and the standard deviation, respectively

and � is a constant used to specify the width of the control limits usually taken to be

equal to 3. If a point plots above 
�� or below ��� we have an indication that this

point (sample) is from an out-of-control process. Let �1, �2, ..., �� be the sample means

from samples each with � observations. Then, an estimate for the mean is � = �, the

average of all the sample means. If the process is in-control this estimator is normally

distributed with mean � and variance �2�(��). For the standard deviation three different

estimators have been proposed. The first one is based on the range. Let �1� �2� ���� ��

denote the range for each of the � samples and � the average of these ranges. Then, a

control charts’ unbiased estimator is given by ���2. The estimated control limits for the

� chart are given by


�� = �+ ���(�2 �)

��� = � ���(�2 �) (2.2)

where �2 is the mean of the random variable ��� and is a function of the sample size

�. Details on the derivation of �2 along with its values for different sample sizes can be

found in textbooks, see e.g. Montgomery (2001).

A second version of the estimated control limits for the mean is based on a different

unbiased estimator for the standard deviation. Let �1� �2� ���� �� denote the standard

deviation for each of the � samples and
_

� = 1
�

�
�=1 �� their average. An unbiased
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estimator for � is ���4 (see e.g. Ryan(2000)) where

�4 =
2

� 1

1�2
Γ (��2)

Γ ((� 1)�2)

and Γ( ) stands for the gamma function, where the gamma function is defined as

Γ(�) =
∞

0

��−1�−���� � � 0.

The control limits will be


�� = �+ ���(�4 �)

��� = � ���(�4 �) (2.3)

A third version for such type of limits is based on 
 = 1
�

�
�=1 �

2
� , where 
��4�� is

an unbiased estimator of � and

�4�� =
2Γ((�(� 1) + 1)�2)

�(� 1)Γ(�(� 1)�2
�

The control limits using this estimator will be


�� = �+ �
�(�4�� �)

��� = � �
�(�4�� �)

It can be proved for the three different unbiased estimators that � �� 
��4��

� �� ���4 � �� ���2 (Derman and Ross (1995)). Therefore, a preferable estimator

for � is 
��4��.

Yang and Hillier (1970) proposed a somewhat different Phase I control charts. The

control limits for the statistic plotted at time 	 are not functions of the 	�� sample. One

or more of the other � 1 samples are used to estimate �0 and �0. If �(�) and �(�) are
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the estimators for the mean and standard deviation respectively when only the 	 sample

is removed the control limits will be


�� = �(�) + ��(�)� �

��� = �(�) ��(�)� �

Champ and Chou (2003) compared the performance of the two Phase I control charts

the one using the � samples and the other using � 1 samples and concluded that the

one using all samples gives better results.

The ARL for Shewhart charts is given by

 �� = 1�Pr(a point plots outside the control limits)� (2.4)

It has to be stressed though that this relationship holds in the case of known parameters.

If the parameters are unknown and as a result they have to be estimated a different

relationship holds. This matter is studied in detail in chapter 3.

Several authors have dealt with the Shewhart chart for the mean and have proposed

improvements or modifications. For instance see Champ and Woodall (1987), Reynolds

et al. (1988) and Quesenberry (1995a).

Assume that we have again a variable from a stable process that is normally dis-

tributed with mean � and standard deviation � comprising � samples of size � each.

We assume that � is known. In this process we want to keep the variability in-control.

Then, it can be proved that the mean and standard deviation of the range of a sample

from this process are �(�) = �2� and �!(�) = �3� where �2 and �3 are functions of

the sample size �. Computation of �2 and �3 and values for different sample sizes can be

found in textbooks, see e.g. Montgomery (2001). Then the Phase II control limits for
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the variability using the range will be


�� = �2� + ��3�

��� = �2� ��3� (2.5)

The value of � is selected in the same way as in the chart for the mean. The most

common value is 3. However, the selection in this case is actually approximating the

0�9973 probability limits for the mean when � = 0�0027.

The usual design of the R-chart involves control limits that have equal tail probabil-

ities (see, e.g. (2.5)). However, in such a case it is possible to have an interval (�1� �2)

with �1 " �2 and for each � in this interval  ��(�) �  ��(�0), where  ��(�0) is the

in control ARL. Such a chart is called a biased R chart. Champ (2001) showed how to

design an ARL unbiased R control chart.

Another way to compute Phase II control limits for the variability is through the

standard deviation. It can be proved that �(�) = �4� and �!(�) = � 1 �24. Then

the control limits will be


�� = �4 + 3 1 �24 �

��� = �4 3 1 �24 � (2.6)

Usually, we do not know the value of � and therefore we have to estimate it from past

data. As in the case of the mean let �1� �2� ���� �� denote the range for each of the �

samples and � the average of these ranges. An estimate based on the range as already

mentioned is

�	 =
�

�2
�
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Then, the Phase I control limits are


�� = 1 +
3�3
�2

_

�

��� = 1
3�3
�2

_

�� (2.7)

A different estimate used is
_

� =
1

�

�

�=1

��

where � is the number of past samples used, �2� =
1

�−1
�

=1 �


_

��

2

is the unbiased

estimator of �2 and � is the sample size. However, we know that � is not an unbiased

estimator of �. It has been proved, as already mentioned, that an unbiased estimate of

� is
_

���4 and that the standard deviation of � equals � 1 �24. The upper and lower

control limits of the chart known as the Phase I � chart are


�� = 1 +
3

�4
1 �24

_

�

��� = 1
3

�4
1 �24

_

� (2.8)

Approaches making use of these limits are known as the three sigma approaches based

on the normal approximation proposed by Shewhart in the early thirties. However, it is

easy to prove that this approximation is not satisfactory since as is known

(� 1)�2

�2
�2

�−1 (2.9)

Although this approximation is not accurate, it is usually used as a first check (see e.g.

Ryan (2000), Klein (2000), Lowry, Champ and Woodall (1995)).

A modification of the control limits (2.6) and (2.8) based on property (2.9) uses

probability limits in place of the three sigma limits (see e.g. Ryan(2000)). If the value
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of the standard deviation � is known the Phase II control limits are


�� = �
#20�999
� 1

(2.10)

��� = �
#20�001
� 1

In these limits, if the process variability operates in-control, the probability that the

standard deviation of future subgroups will fall between them is 0�998, which is approx-

imately equal to the 0�9973, the probability assumed when using the 3 sigma ones. If

the true standard deviation is not known we use its unbiased estimate �̄��4. The Phase

I limits then become


�� =
�̄

�4

#20�999
� 1

(2.11)

��� =
�̄

�4

#20�001
� 1

�

Yang and Hillier (1970) proposed different Phase I control limits using the same

way of thinking as in the case of the mean by excluding sample 	 from the calculation.

Champ and Chou (2003) compared the performance of these different Phase I limits and

concluded that the standard limits and the ones proposed by Yang and Hillier can be

designed to be equivalent.

The ARL of the control charts for the variability of data in subgroups is given by

the relationship (2.4) as this relationship is valid for all Shewhart charts with known

parameters. More details on Shewhart charts for variability and related work can be

found in Lowry, Champ and Woodall (1995), Klein (2000) and Sim(2000).

Let��� 	 = 1� ��� � represent independent and identically distributed observations from

a $(�� �2) process. If the parameters � and �2 are known, the Phase II � chart control
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limits are


�� = �+ 3�

��� = � 3�

Usually, these parameters are not known and they have to be estimated. In this case,

the variability is usually controlled using moving ranges. Nevertheless, Nelson (1982),

Roes et al. (1993) and Rigdon et al. (1994) have recommended either against the use of

the moving range chart or its use together with the classical � chart. Moreover, Sullivan

and Woodall (1996a) showed that a moving range control chart does not contribute

significantly to the identification of out-of-control situations. For these reasons we do

not present it here. Therefore, the use of the � control chart for monitoring both the

process mean and standard deviation is recommended. The Phase I control limits of the

� control chart are


�� = �̄ + 3�

��� = �̄ 3�

where �̄ is an unbiased estimate of the mean of the process and � is an estimate of

the standard deviation � of the process. Usually, the estimate of the standard deviation

used is ����2 where �� denotes the average of the moving ranges and �2 is the usual

function of the sample size � used to make the estimator unbiased. However, Cryer

and Ryan (1990) showed that a preferable estimate of � is %��4 where �4 is defined

the same way as in the case of rational subgroups and % is the standard deviation of

the observations. Sullivan and Woodall (1996a) proposed a Phase I control chart for

independent observations that uses the log-likelihood function and is used to detect shifts

in both the mean and the variance. This chart is shown to have better performance in

comparison to the � chart or the combined � and �� chart. Moreover, it performs

well for detecting sustained shifts in the distribution but not that well for outliers.
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When an item is produced or purchased it is inspected in order to identify if it

satisfies a number of specifications. An item that does not satisfies those specifications

is called a defective or a non-conforming item. These defectives lead to rework or they

are characterized as scrap or second quality product. In any case we have a loss of

money or working time or both. In order to avoid such products, control charts for the

characteristics (attributes) have been developed (see, e.g. Woodall (1997), Ryan (2000)

and Montgomery (2001)).

Assume that we have a random sample of � units and we inspect them for possible

nonconforming items. The fraction nonconforming is defined as the ratio of the number

of nonconforming items in a population to the total number of items in that population.

Suppose the production is operating in a stable manner, such that the probability that

any unit will not conform to specifications is &, and that successive units are produced

independently. If � is the number of units of products that are nonconforming, then �

has a binomial distribution with parameters � and &, that is

' (� = �) =
�

�
&�(1 &)�−�, � = 0� 1� 2� ���� �

where �(�) = �& and � (�) = �&(1 &).

The sample fraction nonconforming is defined as the ratio of the number of noncon-

forming items in a sample to the total number of items in that sample that is

& =
�

�

where �(&) = & and � (&) = &(1 &)��.

If the true fraction nonconforming & in the production process is known or is a stan-

dard value specified by management, then the Phase II control limits for the & chart are
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defined as


�� = &+ 3
&(1 &)

�

��� = & 3
&(1 &)

�

where the charting statistic is &�, for sample 	.

If the true fraction nonconforming & is not known, then it must be estimated from

observed data. The usual procedure is to select � preliminary samples, each of size �.

Then the average of these � individual sample fractions nonconforming is

& =

�

�=1

��

��
=

�

�=1

&�

�

and the Phase I control limits are defined as


�� = &+ 3 &(1 &)��

��� = & 3 &(1 &)��

where the charting statistic is again &�, for sample 	.

For a constant sample size it is also possible to plot on a control chart the number of

nonconforming units, rather than the fraction nonconforming. This chart is called the �&

control chart. If the true fraction nonconforming & in the production process is known or

is a standard value specified by management, then the Phase II control limits are defined

as


�� = �&+ 3 �&(1 &)

��� = �& 3 �&(1 &)

where the charting statistic is �&�, for each sample.
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If the true fraction nonconforming & in the production process is not known, then the

average of the � preliminary individual sample fractions nonconforming & is used and

the Phase I control limits are defined as


�� = �&+ 3 �&(1 &)

��� = �& 3 �&(1 &)

where the charting statistic is �&�, for each sample. If we have a signal on a & chart

we will have also one in an �& chart because of the relation between the two charted

statistics. Therefore, we may say that these charts are equivalent for a constant sample

size.

Borror and Champ (2001) proposed Phase I charts for & and �& charts based on the

recommendation of Yang and Hillier (1970). Borror and Champ (2001) compared the

false alarm rate performance of the standard and the new charts and concluded that the

new chart has a higher false alarm rate. Additionally, the performance of the standard

Phase I charts is not satisfactory. Therefore the practitioner should use such charts

carefully, keeping in mind the possibility of larger number of false alarms than what

should be expected from the design of the charts.

If we count the number of defects or nonconformities in a sampling unit then we

can plot them in a control chart. This chart is used to control the total number of

non-conformities in a unit. In such a chart we usually assume that the number of non-

conformities in sample of constant size follows a Poisson distribution. If � is the number

of nonconformities and ��0 is the parameter of the Poisson distribution, then

' (�) =
�−���

�!
� � = 0� 1� 2� ���

If the true value of � in the production process is known or is a standard value specified
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by management, then the Phase II control limits are defined as


�� = �+ 3 �

��� = � 3 �

where the charting statistic is �� the number of nonconformities in sample 	.

If the true value of � in the production process is not known, then the Phase I control

limits are defined as


�� = �+ 3 �

��� = � 3 �

where � is the average number of nonconformities in a preliminary sample of inspection

units and it is used as an estimate of �. The charting statistic in this case is ��, the

number of nonconformities in sample 	, again.

If we want to develop a control chart for a sample of � sampling units or for a

sampling unit that is � times larger than the standard sampling unit, we may set up

a control chart based on the average number of nonconformities per inspection unit.

Specifically, let ( = ���, then since � is distributed as a Poisson random variable the

Phase II control limits for this chart are


�� = (+ 3
(

�

��� = ( 3
(

�

in the case that ( is known or is a standard value specified by management. If the true
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value of ( is not known then the Phase I control limits will be


�� = (+ 3
(

�

��� = ( 3
(

�

where ( is the average number of nonconformities per inspection unit from a preliminary

sample and it is used as an estimate of (.

If )� is the number of conforming items between the (	 1)�� and the 	�� noncon-

forming item from a stable process with the in-control probability of a nonconforming

item be &0 then this process is a sequence of independent Bernoulli trials with the same

probability &0. Therefore, )�+1 is a geometric random variable with parameter &0. Then,

the Phase II control limits for this chart are


�� =
ln (��2)

ln(1 &0)
1

��� =
ln (1 ��2)

ln(1 &0)

If &0 is unknown the Phase I control limits are


�� =
ln (��2)

ln(1 $��)
1

��� =
ln (1 ��2)

ln(1 $��)

where &0 = $��, $ is the number of nonconforming items in a total of � items sampled.

In all the above control limits we can not accept a negative value. For this reason if

the lower control limit is negative we set it equal to zero.
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CUSUM control charts were introduced by Page in 1954. They are used to identify

persistent causes in a variable instead of Shewhart charts. This ability is attributed to the

fact that they have a memory as they are based on successive sums of the observations

minus a constant. Generally, we can say that CUSUM charts are able to detect small to

moderate shifts whereas Shewhart charts are able to detect large shifts.

Let �1� �2� ����� be � independent and identically distributed observations drawn from

our production process and � is the process mean target. Then, we define as the Phase

II CUSUM control chart, the function

�� =
�

�=1

(�� �)

plotted against the observation number. In the case of subgrouped data instead of each

observation we have the corresponding sample mean.

A more usual way of calculating the CUSUM for an upward shift in mean is by the

formulas

�+0 = 0

�+� = ���(0� �+�−1 + (�� �) �)

where � is a constant called reference value. The CUSUM chart gives a signal if �+� � �

where � is a value we choose to give the desired in-control ARL called decision interval.

The corresponding CUSUM scheme for detecting downward shifts is

�−0 = 0

�−� = min(0� �−�−1 + (�� �) + �)

and it signals if �−� " �. There is a certain way to compute the values of � and �,

24



which is related to the distribution of ��’s. Hawkins and Olwell’s (1998) textbook is an

excellent reference on this subject. We have to state here that in the case of standard

normal data with � = 3 and � = 0 we end up with the classic Shewhart � chart for the

mean. Moreover, in the case of subgrouped data we modify the preceding schemes and

in place of each observation �� we have the sample mean.

Koning and Does (2000) presented Phase I CUSUM control charts using recursive

residuals. They showed that their chart has a better performance than the Likelihood

Ratio chart of Sullivan and Woodall (1996a) and Q chart of Quesenberry (1995a).

In the following subsections for CUSUM charts we focus in the case of continuous dis-

tributed variables. The case of discrete distributed observations has been also examined

see e.g., Lucas (1985), Gan (1993a) and Hawkins and Olwell (1998).

Assume that �1� �2� �� are independent and identically distributed random variables

that are observed sequentially. Let �1� �2� ��� ��−1 have (in-control) distribution func-

tion *0 and ��� ��+1� �� have (out-of-control) distribution function *1 = *0. The two

distributions are known but the time of change � is assumed unknown.

Many schemes can detect such a change (e.g. Shewhart charts). These schemes are

classified by the expected time until the process signals while it remains in-control (false

alarm rate). Among all procedures with the same false alarm rates, the optimal procedure

is the one that detects changes quicker. Or we could say that among all procedures with

the same in-control expected number of samples until signal, the optimal procedure has

the smallest expected time until it signals a change when the process shifts to the out-

of-control state.

Moustakides (1986) proved that the CUSUM scheme was optimal in the above sense.

Specifically, among all tests with the same in-control expected number of samples until

signal, the CUSUM had the smallest out-of-control expected number of samples.

The optimality of the CUSUM is for detecting a shift to a single specific out-of-control
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distribution. The CUSUM that is optimal for detecting one particular shift is not optimal

for detecting a different shift. For a different shift a different CUSUM will be optimal.

However, while a CUSUM for detecting a shift of one standard deviation is optimal only

for this shift, it performs nearly as well as the optimal CUSUM for all shifts that are not

too far from one standard deviation.

Two different methods for the computation of the ARL have been developed; the

integral equation method and the Markov chain approach. Page (1954) used integral

equations for the computation of the ARL. Let the distribution function of a single score

� be * (�) and let �(�) be the ARL of the one sided case. �(0) stands for the ARL with

an initial value of zero. Then, for 0 � " �

�(�) = 1 + �(0)* ( �) +
�

0

+(� �)�(�)��

We may explain the above integral equation with the following description: the ex-

pected run length of a test which is now at � equals 1 (the next observation) plus the

probability that the next observation will return the CUSUM to zero multiplied by the

expected run length from � = 0 plus the integral over the probabilities that the CUSUM

lands somewhere between zero and � multiplied by the respective expected run lengths

from the new value of the CUSUM. Van Dobben de Bruyn (1968) gives a discussion on

the derivation of this equation. Additionally, Wetherill (1977) gave an almost identi-

cal relationship but from a somewhat different way of thinking. Others that have dealt

with the same problem are Ewan and Kemp (1960) and recently Champ, Rigdon and

Scharnagl (2001) that give a general method for obtaining integral equations used in the

evaluation of many control charts.

The Markov Chain approach begins by approximating the problem of obtaining the

average run length (ARL) and then obtains an exact solution to the approximate prob-
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lem. The integral equation approach begins with the exact problem and finds an approx-

imate solution to it. Champ and Rigdon (1991) compared integral and Markov chain

approaches. They propose the integral equation as a preferable method when an integral

equation can be found. On the other hand, there are situations, where only the Markov

chain approach seems appropriate.

Brook and Evans (1972) were the first to propose the new method for computing the

ARL based on a Markov chain. This method applies to both discrete and continuous

variables. In the case of continuous variables let � be the quality characteristic we

want in-control, which is continuously distributed. Consider the one-sided case where we

accumulate the deviations of � from a reference value � and this procedure stops if we

reach the upper decision boundary � or if the cumulative sum equals zero. A Markov

process with continuous state space can represent this scheme.

Suppose that the Markov chain has � + 1 states labeled �0� �1� ����
 where �
 is the

absorbing state. The probability that the chain remains in the same state at the next

step should correspond to the case where the cumulative sum does not change in value

by more than a small amount say 0�5,, meaning that the next value of � does not differ

from the reference value � by more than 0�5,. The value of , determines the width of

the grouping interval that is used to discretize the probability distribution of �. This

value must be carefully chosen because properties like average run length and percentage

points are highly affected by the width of the decision interval. In order to avoid unwilling

behavior a further restriction is the following; the probability of a jump from �� to the

absorbing state �
 should be equal to the probability that the cumulative sum for (� �)

jumps beyond the point � from a position in (0� �) which corresponds approximately to

the state ��. Therefore

, = 2��(2� 1) (2.12)
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The transition probabilities for the Markov chain are for 	 = 0� 1� � � � � � 1 as follows

'�0 = &�(�� �0) = &�(� � 	, + 0�5,)

'�
 = &�(�� �
) = &�((- 	), 0�5, � � (- 	), + 0�5,)� 1 - � 1

'�
 = &�(�� �
) = &�((� 	), 0�5, " � �)

Also, &�(�0 �
) = &�(� � � �) for any , that satisfies relation (2.12). Let

&� = &�(�, 0�5, " � � �, + 0�5,) and *� = &�(� � �, + 0�5,) then the

transition probability matrix P has the following form

P =

*0 &1 &2 ��� &
 ��� &
−1 1 *
−1

*−1 &0 &1 ��� &
−1 ��� &
−2 1 *
−2
...

...
...

...
...

...

*−� &1−� &2−� ��� &
−� ��� &
−1−� 1 *
−1−�
...

...
...

...
...

...

*1−
 &2−
 &3−
 ��� &
−(
−1) ��� &0 1 *0

0 0 0 ��� 0 ��� 0 1

�

A relation that holds is (I R)µ(�) = %Rµ(�)� %=2,3,. . . where � is the matrix

obtained from the transition probability matrix P by deleting the last row and column

(those referring to the absorbing state �
), I is the identity matrix and µ(�) is the vector

of the %�� factorial moments for the random variables �0� �1� ���� �
−1. For %=1 the

equation becomes (I R)µ = 1, where the vector 1 has each of its � elements equal

to unity. The first element of the vector µ gives the average run length for a CUSUM

chart starting from zero and in general the 	�� element gives the mean of the run-length

distribution when starting from state ��, 	=0,1,. . . ,�-1. We have to state here that

the above procedure, suitably modified (Brook and Evans (1972)), can be used for the

computation of the ARL of discrete distributed observations also.

The two different computations of the ARL presented are for a one-sided scheme. In
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the case that we have a two-sided scheme Van Dobben de Bruyn (1968) showed that

1

 ��
=

1

 ��+
+

1

 ��−
�

where  ��+ is the ARL of an upward scheme and  ��− is the ARL of a downward

scheme.

The evaluation of CUSUM charts is usually done by the computation of the ARL.

Two reasons for this are, firstly, that the computation of the run length distribution is

difficult in most situations (see Page (1954), Ewan and Kemp (1960), Brook and Evans

(1972), Woodall (1983,1984), Waldman (1986)) and secondly that the in-control run

length distribution is approximately geometric, therefore it can be characterized by the

ARL. On the contrary, the in-control run length distribution of a CUSUM chart is highly

skewed and accordingly conjectures on the ARL can be misleading because the form of

the run length distribution changes with a shift in the mean. Therefore the ARL is not

a sufficient measure for the performance of the chart. Barnard (1959) and Bissell (1969)

have criticized the use of the ARL only and they have proposed instead the simultaneous

use of percentage points.

On the other hand, the median run length (MRL) is a quantity that we can rely

on because it is more meaningful and more readily understood (see Gan (1994)). For

example when the out-of-control MRL is 50, this means that half of all the run lengths

are less than 50.

Lucas and Crosier (1982) extended the calculation of the average run length by using

a head start value �0 different than zero. The calculation of the ARL for several head

start values showed that for a moderate value the in-control ARL has a small percentage

decrease while the out-of-control ARL has a large percentage decrease. Therefore we

may design a FIR CUSUM, with an almost equivalent in-control ARL and a smaller
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out-of-control ARL than a standard CUSUM, by increasing � (decision interval) slightly

to compensate for the small decrease in ARL caused by the head start.

Lucas and Crosier (1982) recommended a head-start of �0=��2. This recommenda-

tion is a result of the fact that a CUSUM scheme is a sequence of Wald tests (Page

(1954)) with null hypothesis that the mean is zero and alternative hypothesis that the

mean is 2�.

The ARL computation of one-sided schemes is easily done using the proposed pro-

cedures of section 2.4.2. However, in the case of a two-sided FIR CUSUM scheme the

computation is modified (Yashchin (1985)). Let .+ and .− denote the head starts

of an upward and a downward CUSUM scheme, respectively. Also, let  +(%) and  −(%)

denote the ARL of an upward and a downward CUSUM scheme with head starts % and

%, respectively. Then, the ARL of a two-sided FIR CUSUM is

 �� =
 +(.+) −(0) + −(.−) +(0)  +(0) −(0)

 +(0) + −(0)
�

This result holds if the following condition is satisfied

�+ + �− max .+ +.− min(�+� �− � �+ �− )

where �+� �− and �+� �− are the upward and downward reference values and decision

intervals, respectively. This condition ensures that if the upward CUSUM signals the

downward CUSUM will be at zero and vice-versa.

A method for keeping in-control the process dispersion was developed by Chang and

Gan (1995). Assume that the process mean is in-control and let %21� %
2
2� ��� be successive

sample variances observed from a process based on a sample of size �. The upper and
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lower CUSUM charts are obtained through the plotting of

�+� = ���(0� �
+
�−1 + /� �+� )

and

�−� = ���(0� �
−
�−1 + /� + �

−
� )

against 	 respectively, for 	 = 1� 2� � � �, where �+� � �
−
� are constants, /� = log(%

2
� ), �

+
0 = (

for 0 ( " �+ and �−0 = 0 for �− 0 " 0. The upper CUSUM chart is used to

detect increases in the variance and there is an out-of-control signal at the first 	 for

which �+� � �+. The lower CUSUM chart is used to detect decreases in the variance

and there is an out-of-control signal at the first 	 for which �−� " �−. In practice, we

usually have to estimate the in-control variance because it is not known and this is done

by taking samples from a process, which is assumed to be in-control.

The probability density function of log(%2� ), when the measures of the quality charac-

teristic are independent, identically and normally distributed, is

+(/) =
exp [�/ exp (/) �1]

Γ (�)1�
� " / "

where �=(� 1)�2, 1 = 2�2�(� 1) and Γ(�) is the gamma function. Let .(() be the

ARL function of an upper CUSUM chart given that �+0 = ( where 0 ( �+. Then,

an approach similar to Page (1954) for the computation of the ARL is the following

.(() = 1 +.(0) Pr log %2 �+� ( +
�+

0

+(�+ �+� ().(�)���

In practice, most of the processes are out-of-control at the beginning and a FIR CUSUM

is recommended for a faster detection of this situation. As we have already said Lucas

and Crosier (1982) have recommended using ��2 as the head start value for monitoring

normal means. The distribution of log(%2� ) is approximately normal, so �
+�2 and �−�2

are recommended here as head start values for the upper and lower CUSUM charts.
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In order to design a CUSUM chart we have to determine the values of � and �.

Chang and Gan (1995) provided tables for various values of sample sizes and for the

out-of-control standard deviation which we want to detect quickly.

A CUSUM chart based on a larger sample size will be more sensitive than a CUSUM

chart based on a smaller sample size for detecting changes in �. For the two-sided case,

the two one-sided CUSUM charts that are optimal for detecting a specific shift in either

direction can be run simultaneously so as to detect changes in standard deviation in both

directions.

The CUSUM chart described here is based on the assumption that the measures

of the quality characteristic are independent, identically and normally distributed. For

non-normally distributed observations the ARL values are different and especially for

distributions with a tail larger than the normal one, the ARL tends to be small, so the

false alarm rate is higher. When observations are positively serially correlated, then the

CUSUM is less effective in detecting increases in �, because the sample variance decreases

as the serial correlation increases.

For other CUSUM charts developed for monitoring process variance see Yashchin

(1994) and Srivastava (1997).

The EWMA chart was introduced by Roberts (1959) and it is used as the CUSUM

chart to detect persistent shifts in a variable. Its ability is to signal faster than the

Shewhart charts for small and moderate shifts but not that fast for large shifts. Generally,

we can say that its performance is similar to the performance of the CUSUM chart.

In the following subsections we present the EWMA chart for continuous variables.

The case of discrete variables has been studied by Gan (1990), Borror et al. (1998),

Quesenberry (1995b) and Quesenberry (1995c).
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Let the mean � and standard deviation � of a process to be known. The EWMA

chart for individual observations is defined as

�� = 2�� + (1 2)��−1� �0 = �

where �� is the observation at time 	 = 1� 2� ���, 2 is a smoothing parameter that takes

values between 0 and 1 and �0 is the initial value. When the value of 2 is close to 0, the

EWMA chart can detect small to moderate shifts in the process mean, when 2 is close

to unity the EWMA can detect large shifts in the process mean and when 2 = 1 it is

actually the � chart. As a starting value, instead of the in-control process mean, we can

use the target value. The control limits of this chart are


�� = �+ �
�

�

2

2 2
1 (1 2)2�

��� = � �
�

�

2

2 2
1 (1 2)2� � (2.13)

where � is a constant used to specify the width of the control limits, � is the mean of

the process and �√
�

�
2−� 1 (1 2)2� the standard deviation of �� when the process

is in-control. In case the EWMA chart is used for some time, instead of control limits

(2.13), we may use their limiting values


�� = �+ �
�

�

2

2 2

��� = � �
�

�

2

2 2
(2.14)

since lim
�→∞

�2

�
�
2−� 1 (1 2)2� = ��2

(2−�)� (see e.g., Lucas and Saccucci (1990)). In

this case, �√
�

2�(2 2) is the asymptotic standard deviation of ��. In the case of sub-
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grouped data instead of a single observation we have the sample mean of the observations

at time 	. The control limits are correspondingly modified.

The main features of the EWMA chart are the same as the ones for the CUSUM

except of the optimality. The computation of its run length distribution and the ARL

can be done by the exact way using integral equations (Crowder(1987)). The ARL �(()

of a two-sided EWMA chart for the mean given that the EWMA starts at ( is computed

through the relation

�(() = 1 +
1

2

�

−�
+

/ (1 2)(

2
�(/)�/

where /�’s are assumed to be independent, identically distributed observations with prob-

ability density function +( ), � is the upper control limit and � the lower control

limit. This can be explained as follows; if for the first observation /1, we have that

(1 2() + 2/1 � � then we have a signal. On the other hand, if this relation does not

hold, the run length continues to move from (1 2()+2/1 and �((1 2()+2/1) stands

for the additional run length.

The approximation method of the Markov chain is the other alternative (Lucas and

Saccucci (1990)). The ARL in this case is computed by

 �� = (I R)−1 1�

where I is the identity matrix, 1 is a vector of unities and R is a submatrix of the

transition probability matrix P, where

P =
R (I R)1

0� 1
�

If &
� is the probability that the control statistic goes from state - to state � then

&
� = Pr 2
−1 (�� 3) (1 2)�
 " )� 2−1 (�� + 3) (1 2)�
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where �� is the midpoint of the ��� interval, - = �� ����� and� is the number of states

we will use. The larger the number of states the more accurate the computation will be.

The median run length and the fast initial response are properties that have been

implemented and in the context of EWMA charts (see Lucas and Saccucci (1990) and

Gan (1993b)). For further discussion of the EWMA charts and other modifications see

Robinson and Ho (1978), Hunter (1986), Saccucci and Lucas (1990), Domangue and

Patch (1991), Ingolfson and Sachs (1993), Steiner (1999).

Several publications dealing with the subject of keeping in-control the process variance

using an EWMA chart have appeared in the literature like Wortham and Ringer (1971),

Wortham (1972), Sweet (1986), Ng and Case (1989), Domangue and Patch (1991), Crow-

der and Hamilton (1992), Hamilton and Crowder (1992), MacGregor and Harris (1993),

Acosta-Mejia and Pignatiello (2000). In this subsection we present schemes for sample

size larger than unity. The schemes for � = 1 are investigated in Chapter 4.

The EWMA chart of squared deviations from target (EWMAS) was proposed by

Wortham and Ringer (1971) for detecting a shift in the process standard deviation. The

statistic of this chart is given by

�� = 2(�� �0)
2 + (1 2)��−1� �0 = �20�

where 2 is a smoothing parameter that takes values between 0 and 1 and �0 is the initial

estimated value of the mean squared error. It can be proved (MacGregor and Harris

(1993)) that under normality the quantity ����2 is approximately distributed as #2(4)�4

where the degrees of freedom 4 depend on the parameter 2, the correlation of the ��’s

and the degrees of freedom associated with the initial value. If we assume that the

process mean is on target and the variance is �20 then the control limits of �� are the ��2

and 1 ��2 percentiles of �20#
2(4)�4 distribution. In case of independent and normally
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distributed observations we may plot �� and the corresponding control limits are


�� = �0
#21−��2(4)

4

��� = �0
#2��2(4)

4

However, the above statistic has the property to respond both to changes in mean

and in variance. Therefore, a statistic that would plot out of the control limits only in

the case of variance shifts is desirable. Sweet (1986) proposed the use of an estimate

of the process mean in each step in time. Specifically, let �� denote an estimate of the

process mean at time 	. Then

�� = 2(�� ��)
2 + (1 2)��−1� �0 = �20�

A usually used estimate for the mean is the EWMA statistic for the mean (��). MacGre-

gor and Harris (1993) computed control limits for this statistic which is usually addressed

as the Exponentially Weighted Moving Variance (EWMV).

Crowder and Hamilton (1992) proposed a different control chart based on ln �2� .

The scheme is

�� = max (1 2)��−1 + 2/�� ln �20 �

where �0 = ln (�20), 2 is the usual constant taking values between 0 and 1 and /� = ln �2� .

This statistic can be used to identify only upward shifts in the variance. The UCL of

this chart in case of independent observations is given by


�� = 5
2

2 2

2

� 1
+

2

(� 1)2
+

4

3 (� 1)3
16

15 (� 1)5
�

where 5 is a constant chosen together with 2 so as to achieve the desired ARL. If �(()
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is the ARL of this chart with ( the starting value then

�(() = 1 + �(0)*
(1 2)(

2
+
1

2

���

0

+
/ (1 2)(

2
�(/)�/�

where * (�) and +(�) are the cumulative distribution function and the probability distri-

bution function of the log-gamma distribution respectively.

Multivariate Shewhart Control Charts are analogous to the univariate ones but they

involve in the computations several variables instead of one. The Phase I and II charts

discussion does not change in this case. Sparks (1992), Wierda (1994), Lowry and Mont-

gomery (1995), Fuchs and Kenett (1998), Ryan (2000) and other statisticians and engi-

neers agree with the definition of the Phases given in Section 2.2. However, Alt (1985)

gives a somewhat different definition for the two distinct phases of control charting prac-

tice. In the following the definition of Section 2.2 is followed.

A crucial matter in Multivariate Shewhart Control Charts is the sample size � of each

rational subgroup. As Lowry and Montgomery (1995) suggest, the appropriate use of a

test statistic (�2 or 6 2) can be broken into four categories: 1) Phase I and � = 1, working

with individual observations; 2) Phase I and � � 1, working with rational subgroups;

3) Phase II and � = 1, working with individual observations; 4) Phase II and � � 1,

working with rational subgroups.

Mason and Young (2002) recently published a textbook for the implementation of

multivariate statistical process control in the case of Shewhart charts that discusses in

detail several subjects.
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� � 1

Assume that the vector x follows a &-dimensional normal distribution, denoted as

$�(µ0�Σ0), and that there are � samples of size � � 1 available from the process. A

control chart can be based on the sequence of the following statistic

!2
� = �(x� ϑ0)


Z−10 (x� ϑ0)�

where x� is the vector of the sample means of the 	�� rational subgroup, ϑ0 and Z0 are

the appropriate vector of means and the appropriate variance-covariance matrix in either

Phase I or Phase II, respectively. The superscript � is used to define the transpose of

a matrix. The !2
� statistic represents the Mahalanobis distance of any point from the

target ϑ0. Thus, if the value of the test statistic !2
� plots above the control limit (��),

the chart signals a potential out-of-control process. Generally, control charts have both

upper (��) and lower control limits (��). However, in this case only an upper control

limit is meaningful, because extreme values of the !2
� statistic correspond to a point far

away from the target ϑ0, whereas small or zero values of the !2
� statistic correspond to

points close to the target ϑ0.

If ϑ0 = x0, Z0 = S, � � 1 and x� is the mean of the 	�� observation then the

!2
� ��0(&��� �) statistic follows an * distribution with & and (�� � &+1) degrees of

freedom. Here �0(&��� �) = [&(� 1)(� 1)] (�� � &+ 1)−1, the parameter x is

the overall sample mean vector and S is the pooled sample variance-covariance matrix.

Consequently, a multivariate Shewhart control chart for the process mean, with unknown

parameters, has the following control limit

�� = �0(&��� �)*1−������−�−�+1�

This control chart is called a Phase I 6 2-chart. Wemust note that, for a Phase I 6 2-chart

the statement “if the process is in-control the probability of at least one of the !2
� ’s being

outside the control limits is �” does not hold. It does not hold because in this Phase the
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!2
� ’s are not independent (this is valid only for 	 = 1). In practical problems 6

2-chart

is typically recommended for the preliminary analysis of multivariate observations in

process monitoring applications. Nedumaran and Pignatiello (2000) consider the issue of

constructing retrospective 6 2 control chart limits so as to control the overall probability

of a false alarm at a specified value. Furthermore, Mason et. al. (2001) use the 6 2-chart

for monitoring batch processes in both Phase I and Phase II operations.

If ϑ0 = x0, Z0 = S, � � 1 and x� is the mean of a future observation then the

!2
� ��1(&��� �) statistic follows an * Distribution with & and (�� � &+ 1) degrees

of freedom, where �1(&��� �) = [&(�+ 1)(� 1)] (�� � &+ 1)−1. Thus, a multi-

variate Shewhart control chart for the process mean, with unknown parameters, has the

following control limit

�� = �1(&��� �)*1−������−�−�+1�

This control chart is called a Phase II 6 2-Chart.

If ϑ0 = µ0, Z0 = Σ0, � � 1 and x� is the mean of the 	�� observation then the !2
�

statistic follows a �2-distribution with & degrees of freedom. Therefore, a multivariate

Shewhart control chart for the process mean, with known mean vector µ0 and known

variance-covariance matrix Σ0 has the upper control limit �� = �2
��1−�. This control

chart is called a Phase II �2-Chart.

The in-control  ��0 of the multivariate Shewhart chart, when µ0 and Σ0 are known,

can be calculated as  ��0 = 1�� where � is the probability that !2
� exceeds ��. Fur-

thermore, the out-of-control  ��1 of the multivariate Shewhart chart depends on the

mean vector and variance-covariance matrix only through the noncentrality parameter

22(µ1),

22(µ1) = �(µ1 µ0)

Σ−10 (µ1 µ0) = �δ


Σ−10 δ�

where µ1 = µ0 + δ is a specific out-of-control mean vector. Hence, it is possible to

consider the  ��1 as a function of 2(µ1), the square root of 2
2(µ1), and construct an

 ��1 curve by using the equation  ��1 = 1� (1 1) � where 1 is the probability of the
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event “Procedure fails to diagnose an out-of-control situation”. We have to note that

the result that the ARL depends only on the noncentrality parameter is based on the

assumptions that Σ0 is the known variance-covariance matrix and that random sampling

is being done independently from a multivariate normal distribution.

The theory presented up to now considers the case of a pre-defined and fixed sample

of size �. Jolayemi (1995) presented a power function model for determining sample sizes

for the operation of a multivariate process control chart. Moreover, Aparisi (1996), gives

a procedure for the construction of a control chart with adaptive sample sizes.

� = 1

For charts constructed using individual observations (� = 1), the test statistic for the

	�� individual observation has the form

!2
� = (x� ϑ0)


Z−10 (x� ϑ0) �

where x� is the 	�� observation, 	 = 1� 2� ����� following $�(µ0�Σ0), ϑ0 and Z0 are the

appropriate vector of means and the variance-covariance matrix in either Phase I or Phase

II, respectively.

If ϑ0 = x�, Z0 = S� and x� is the 	�� individual observation then the !2
� ��0(�)

statistic follows a Beta distribution with &�2 and (� & 1) degrees of freedom, where

�0(�) = (� 1)2�−1. Thus, a multivariate Shewhart control chart for the process

mean, with unknown parameters, has the following control limit (Tracy et al. (1992))

�� = �0(�)71−��2���2�(�−�−1)�2�

where x� is the overall sample mean and S� is the sample variance-covariance matrix.

This control chart is called a Phase I 6 2-Chart. Alternative estimators of the variance-

covariance matrix has been proposed by Sullivan and Woodall (1996b) and Chou et al.

(1999).
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If ϑ0 = x�, Z0 = S� and x� is a future individual observation then the !2
� ��1(�� &)

statistic follows an * distribution with & and (� &) degrees of freedom, where �1(�� &) =

&(�+ 1)(� 1) [�(� &)]−1. Therefore, a multivariate Shewhart control chart for the

process mean, with unknown parameters, has the following control limits (Tracy et al.

(1992))

�� = �1(�� &)*1−�����−��

This control chart is called a Phase II 6 2-Chart.

If ϑ0 = µ0, Z0 = Σ0 and x� is the 	�� observation then the !2
� statistic follows a

�2-distribution with & degrees of freedom (Seber (1984)). Consequently, a multivariate

Shewhart control chart for the process mean, with known mean vector µ0 and known

variance-covariance matrix Σ0� has upper control limit �� = �
2
��1−�. This control chart

is called a Phase II �2-Chart.

In the following, multivariate control charts for controlling process dispersion are pre-

sented. In the previous two subsections, it was assumed that process dispersion remained

constant and equal to Σ. This assumption, is generally not true, and must be validated

in practice. Process variability is summarized in the & & variance-covariance matrix

Σ which contains & (&+ 1)�2 parameters. There are two single-number quantities for

measuring the overall variability of a set of multivariate data. The first one is the deter-

minant of the variance-covariance matrix, S , which is called the generalized variance.

The square root of this quantity is proportional to the area or volume generated by a set

of data. The second one is the trace of the variance-covariance matrix, ��S, the sum of the

variances of the variables. In this subsection, two different control charts for the process

dispersion are presented since different statistics can be used to describe variability.

Assume that the vector x follows a $�(µ0�Σ0), and that there are � samples of size

� � 1 available from the process. The first multivariate chart for the process dispersion
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can be based on the sequence of the following statistic

8� = &�+ &� ln� � ln A� Σ0
−1 + ����� Σ−10 A�

for the 	�� sample, 	 = 1� 2� �����, where A� = (� 1)S�. The 8� statistic follows an

asymptotic �2-distribution with & (&+1)�2 degrees of freedom. Hence, a multivariate

Shewhart control chart for process dispersion, with known mean vector µ0 and known

variance-covariance matrix Σ0 has the upper control limit �� = �
2
�(�+1)�2�1−�. Therefore,

if the value of the test statistic 8� plots above ��, the chart signals a potential out-of-

control process. This control chart is called a Phase II 8 chart.

The second chart is based on the sample generalized variance S , where S is the & &

sample variance-covariance matrix. One approach in developing an S -Chart is to utilize

its distributional properties. Alt (1985) and Alt and Smith (1988) state that if there are

two quality characteristics, then

2(� 1) S 1�2 Σ0
−1�2 is distributed as a �2

2�−4�

Thus, the control limits for an S -Chart are

�� = Σ0 �2
2�−4�1−��2

2
[2(� 1)]−2

�� = Σ0 �2
2�−4���2

2
[2(� 1)]−2 �

where �� is the upper control limit and �� is the lower control limit.

In a recent paper by Aparisi et al. (2001), the distribution of the S -Chart is studied

and suitable control limits are obtained for the case when there are more than two

variables. Aparisi et al. (2001) propose the design of the S Chart with adaptive sample

size to control process defined by two quality characteristics. Alt (1985) proposes a second

approach in developing an S -Chart by using only the first two moments of S and the
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property that most of the probability distribution of S is contained in the interval

� [ S ] 3 � [ S ]�

Additionally, Alt and Smith (1988) propose a modification, the S 1�2 Chart. Further-

more, Alt (1985) gives a proper unbiased estimator for Σ0 , in order to define a Phase I

control chart for controlling the process dispersion.

Although S is a widely used measure of multivariate variability, it is a relative

simplistic scalar representation of a complex multivariate structure. Therefore, it can be

misleading in some cases. Lowry and Montgomery (1995) present three sample covariance

matrices for bivariate data that all have the same generalized variance and yet have

distinctly different correlations. As a result, it is often desirable to provide more than

the single number S as a summary of S. The use of univariate dispersion charts as

supplementary to a control chart for S is proposed by Alt (1985).

Patel (1973) was the first to deal with methods of quality control, when the &-

dimensional observations are coming from a multivariate binomial or multivariate Poisson

population. Specifically, Patel proposed a �2 chart using an approximation to normal-

ity. Lu et al. (1998) developed a multivariate attribute control chart, called the MNP

chart. The name of this chart stems from the fact that it is a straightforward extension

of the univariate �& chart. Let p = (&1� &2� ���� &�) be the fraction nonconforming vec-

tor, P0 = [3�
]�×� the correlation matrix and c = (�1� �2� ���� ��) the vector of counts of

nonconforming units. Define

� =

�

�=1

��

&�
�

which is the weighted sum of the nonconforming units of all the quality characteristics in

the sample. Since the nonconformance of a quality characteristic in one dimension may

be more serious than in another dimension we want to take into account that information
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in the calculations. Montgomery (2001) suggested a statistic that uses this information.

Let d = (�1� �2� ���� ��) denote the vector of the numbers of demerits, which indicates

the severity of nonconformance in quality characteristics. Then the above statistic � can

be extended as follows

�� =

�

�=1

����

&�
�

For �� Lu et al. (1998) proposed the following multivariate attribute chart


�� = �

�


=1

�
 &
 + 3 �

�


=1

�2
(1 &
) + 2

�

��


(���
3�
 (1 &�)(1 &
))

��� = �

�


=1

�
 &
 3 �

�


=1

�2
(1 &
) + 2

�

��


(���
3�
 (1 &�)(1 &
)) �

Given the values of the parameters, the control limits can be computed and the MNP

chart can then be established using the above equation. If the real values are unknown,

then they must be estimated. Furthermore, Lu et al. (1998) introduced a formula that

can be used to calculate the appropriate sample size � of each rational subgroup and

gave a procedure for the interpretation of an out-of-control signal.

Jolayemi (1999) proposed a multivariate attribute control chart (MACC), which is

based on an approximation of the convolution of independent binomial variables and on

an extension of the univariate �& chart. When a process is monitored with respect to

many independent attributes �1� �2� ���� ��, each of which follows a binomial distribu-

tion, the distribution of the sum or the convolution of the number of defective items found

in a sample of size � from the process, with respect to all � attributes, is well approxi-

mated by a binomial distribution with parameters �� and &0 (the mean of &1� &2� ���� &�).

Therefore, instead of plotting� different �& charts we use a single one using the preceding
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approximation. The control limits of this chart are


�� = ��&0 + � ��&0(1 &0)

��� = ��&0 � ��&0(1 &0)�

where � (usually � = 3) is the constant that determines the width of the control limits

and &0�, 	= 1, 2,...,� is the expected fraction defective produced with respect to attribute

�� when the process is in-control.

Therefore, a corrective action will be taken whenever the sum of the numbers of

defective items found in a sample of size �, with respect to & attributes, exceeds an

acceptance number ��, where �� is the largest integer less than or equal to the upper limit.

The acceptance number �� and the sample size � are given by the following equations

��

�=0

(��� ) &�1(1 &1)
��−� = 1

��

�=0

(��� ) &�0(1 &0)
��−� = 1 ��

where &1 is the mean of &1�, for 	 = 1� 2� ���� &, &1� is the expected fraction defective

produced with respect to attribute �� when the process is out-of-control. The design of

the MACC presupposes to solve the above equations with specified � and 1 values, to

find the proper acceptance number �� and the sample size �. Finally, Jolayemi (1999)

gives a proper statistical procedure for the interpretation of an out-of-control signal.

Multivariate Shewhart control charts use the information only from the current sam-

ple and they are relative insensitive to small and moderate shifts in the mean vector.

Multivariate Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average

(EWMA) control charts are developed to overcome this problem.
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The multivariate CUSUM and EWMA charts presented in the following subsections

are Phase II control charts. Sullivan andWoodall (1998), recommend the use of multivari-

ate CUSUM and EWMA charts for the preliminary analysis of multivariate observations.

The multivariate CUSUM control charts are distinguished in two major categories.

In the first case, the direction of the shift (or shifts) is considered to be known whereas in

the second the direction of the shift is considered to be unknown (directionally invariant

schemes).

We first present the CUSUM control charts for which we assume that the direction of

the shift (or shifts) is known. Woodall and Ncube (1985) described how a &-dimensional

multivariate normal process, can be monitored by using & two or one-sided univariate

CUSUM charts for the & original variables or using & two or one sided univariate CUSUM

charts for the & principal components. This multiple univariate CUSUM scheme is called

the MCUSUM. The MCUSUM gives an out-of-control signal whenever any of the univari-

ate CUSUM charts gives an out-of-control signal. The �� performance in a multivariate

process, is studied in the cases of independent and dependent quality characteristics.

Healy (1987) uses the fact that CUSUM charts can be viewed as a series of sequential

probability ratio tests, in order to develop a multivariate CUSUM chart. Let x� be the

	�� observation, which comes from a $�(µ0�Σ0) with an in-control & 1 mean vector µ0

and a known & & common variance-covariance matrix Σ0. Denote µ1 an out-of-control

& 1 vector of means. The CUSUM for detecting a shift in µ0 towards µ1 may be written

as

91� = max 91�−1 + a

(x� µ0) 0�52(µ1) � 0 �

where 2(µ1) is the square root of the noncentrality parameter and a

 =  �2(µ1) and

 = (µ1 µ0)

Σ−10 . This CUSUM scheme signals when 91� .. For detecting a shift

in the mean of a multivariate normal random variable, the CUSUM procedure reduces to
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a univariate normal procedure. That is, all the available theory for calculating  ��, .,

910 for a univariate normal CUSUM can also be used for multivariate normal CUSUM.

A similar procedure is proposed for controlling the process dispersion. The CUSUM

for detecting a change in the variance-covariance matrix may be written as

92� = max 92� +!
2
� 5 � 0 �

where Σ1 = �Σ0 (� is a real constant), 5 = & log� (��(� 1)) and

!2
� = (x� µ0)


Σ−10 (x� µ0) �

This CUSUM scheme signals when 92� .. We could not find in the literature any

proposal for an analogous charting procedure in the case that the mean vector and the

variance-covariance matrix have to be estimated.

Hawkins (1991) introduced CUSUMs for regression adjusted variables based on the

idea that the most common situation in practice is that departures from control have

some known structure. In particular, it is assumed that the mean shifts with magnitude

3 in only one variable.

Consider the multiple regression of �
, the -�� variable of x on all other variables

of x. Let �
 be the regression residual when the -�� variable is regressed on all other

variables, rescaled to unit variance. This may be used to test the hypothesis that there

is not a shift in the �
 against the alternative that there is. The regression residual �
 is

given by

Z = [�	�:(Σ−1)]−1�2Σ−1(x µ0)

whose null distribution is $ (0� 1) � Hawkins (1991, 1993) proposes to chart each �
 using

a CUSUM procedure because in general it is not known which of the & variables is out-of-

control. For studying the & individual charts simultaneously, Hawkins (1991) proposed
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the following control charts

��� = max(�+��
� �−��
) and �$; =
�


=1

(�+��
 + �
−
��
)

2�

where

�+��
 = max 0� �+�−1�
 + ���
 � and �−��
 = min 0� �−�−1�
 + ���
 + �

and �+0�
 = �
−
0�
 	 = 1� 2� ������ ��� is the MCUSUM statistic introduced byWoodall and

Ncube (1985) applied to the CUSUM for Z. �$; is the squared Euclidean norm of the

resultant vectors of the CUSUM for upward and downward shifts in mean. The CUSUMs

�+� �− test for shifts in location in the upward and downward directions, respectively.

The plot of these CUSUMs on a common chart gives a powerful CUSUM control chart

for location. An out-of-control signal occurs when any of these four CUSUMs exceeds the

decision interval �. The values of � and � are selected as in any other CUSUM because

this chart consists of separate random variables each following the $ (0� 1) distribution.

An out-of-control signal is indicated when ��� and �$; exceed a threshold value set

to fix the in-control  ��. Hauck et al. (1999) applied multivariate statistical process

monitoring and diagnosis with grouped regression-adjusted variables.

In the sequel, we present the directionally invariant CUSUM schemes. Crosier (1988)

proposes two multivariate CUSUM schemes. The first CUSUM proposed by Crosier

(1988) is a CUSUM of the scalars !�, the square root of !2
� statistic, and is given by

93� = max 93�−1 +!� 5 � 0

where 930 0 and 5 0. This scheme signals when 93� ., which is determined

using the Markov chain approach. Crosier (1988) notes that a search for the optimal 5

produced a sequence that closely resemble the square root of the number of variables.
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A similar CUSUM is proposed by Pignatiello and Runger (1990) defined as

94� = max 0� 9
4
�−1 +!

2
� �

with 940 = 0, and � chosen to be 0�52
2(µ1) + &, where & is the number of the variables.

The process is out-of-control if 94� exceeds an upper control limit ., which is determined

using the Markov chain approach.

Crosier (1988) and Pignatiello and Runger (1990) found that ordinary one sided

univariate CUSUMs based on successive values of !2
� or !� statistic, respectively, do not

have good ARL properties.

The second CUSUM proposed by Crosier (1988) is a CUSUM of vectors. A vector-

valued scheme can be derived by replacing the scalar quantities of a univariate CUSUM

scheme by vectors and is given by

95� = g
�Σ
−1
0 g�

1�2
�

where

g� =
(g�−1 + x� µ0)(1 5�−1� ) if �� � 5

0 otherwise

and

�� = (g�−1 + x� µ0)

Σ−10 (g�−1 + x� µ0)

1�2
�

This scheme signals when 95� � ., where . is chosen to provide a predefined in-control

 ��, using simulation. Because of the fact that the  �� performance of this chart

depends on the noncentrality parameter, Crosier (1988) recommends that 5 = 2(µ1)�2

and g0 = 0. Both CUSUMs, as proposed by Crosier (1988) allow the use of recent

enhancements in CUSUM schemes. Among the CUSUM schemes proposed by Crosier

(1988) the vector-valued scheme has a better ARL performance than the scalar scheme.

The second CUSUM proposed by Pignatiello and Runger (1990) can be constructed
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by defining 96� as

96� = max C

�Σ

−1
0 C�

1�2
���� 0 �

where 960 = 0, � is chosen to be 0�52(µ1), µ1 is a specified out-of-control mean, C� equals

C� =
�

�=�−��+1

(x� µ0)

and �� is the number of subgroups since the most recent renewal (i.e. zero value) of the

CUSUM chart, formally defined as

�� =
��−1 + 1� if 96�−1 � 0

1� otherwise
�

This chart operates by plotting 96� on a control chart with an upper control limit .

which is again computed through simulation. If 96� exceeds . then the process is out-

of-control. Pignatiello and Runger (1990), proved that the  �� performance of the 96�

chart depends only on the square root of the noncentrality parameter and it is better in

relation to 95� .

Ngai and Zhang (2001) gave a natural multivariate extension of the two-sided cumu-

lative sum chart for controlling the process mean. Additionally, Chan and Zhang (2001)

propose cumulative sum charts for controlling the covariance matrix.

Let x
� be the 	�� &-dimensional observation. Also, assume that x� follows a$�(µ0�Σ0)

with a known variance-covariance matrix Σ and a known &-dimensional mean vector µ0.

A multivariate EWMA control chart is proposed by Lowry et al. (1992) as follows

z� = R(x� µ0) + (I R) z�−1 =
�


=1

R (I R)�−
 (x
 µ0)� 	 = 1� 2� 3� ����
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where R = �	�:(�1� �2� ���� ��), 0 �� 1 for � = 1� 2� 3� ���� &, and I is the identity

matrix. If there is no a-priori reason to weight past observations differently for the &

quality characteristics being monitored, then �1 = �2 = ��� = �� = �. The initial value

z0 is usually obtained equal to the in-control mean vector of the process. It is obvious

that if R = I then the multivariate EWMA control chart is equivalent to the 6 2-Chart.

The multivariate EWMA chart gives an out-of-control signal if z
�Σ
−1
z�
z� � � where Σz� is

the variance-covariance matrix of z�. The value � is calculated via simulation to achieve

a specified in-control  ��. The  �� performance of the multivariate EWMA control

chart depends only on the noncentrality parameter. This means that the multivariate

EWMA has the property of directional invariance. The variance-covariance matrix of z�

is calculated by the following formula

Σz� =
�


=1

� �� R (I R)�−
 (x
 µ0) =
�


=1

R (I R)�−
 Σ (I R)�−
R

or in case that �1 = �2 = ��� = �� = �

Σz� = 1 (1 �)2� �� (2 �)Σ�

An approximation of the variance-covariance matrix Σz� when 	 approaches infinity, is

the following

Σz� =
�

2 �
Σ�

However, the use of the exact variance-covariance matrix of the multivariate EWMA,

leads to a natural fast initial response for the multivariate EWMA chart.

In a univariate EWMA chart if the plotted statistic is on one side of the center line

and a shift occurs on the other side the result is that the EWMA chart will need more

observations until it signals. Such a problem is called inertia problem. Inertia problem

may occur with the multivariate EWMA chart and the simultaneous use of a Shewhart

type chart is proposed.

51



Lowry et al. (1992) studied the  �� of the multivariate EWMA. The  �� perfor-

mance of the multivariate EWMA procedure depends only on µ0 and Σ0 through the

value of the noncentrality parameter. Since, the multivariate EWMA, the MCUSUM#1

and the vector CUSUM are all directionally invariant, these three charts can be compared

to each other and to Hotelling’s (1947) 6 2-Chart. The comparison of these charts shows

that the  �� performance of the multivariate EWMA is at least as good as those of

vector-valued CUSUM and MCUSUM#1.

Rigdon (1995a, 1995b) gives an integral and a double integral equation for the calcu-

lation of in-control and out-of-control ARLs respectively. Moreover, Bodden and Rigdon

(1999) developed a computer program for approximating the in-control  �� of the mul-

tivariate EWMA chart. Runger and Prabhu (1996) use a Markov chain approximation

to determine the run length performance of the multivariate EWMA chart. This kind of

analysis, can be applied whenever the multivariate control statistic can be modeled as a

Markov chain and has the property of directional invariance. In addition, Prabhu and

Runger (1997) provide recommendations for the selection of parameters for a multivari-

ate EWMA chart. Molnau et. al. (2001) present a program that calculates the ARL

for the multivariate EWMA when the values of the shift in the mean vector, the control

limit and the smoothing parameter are known.

Kramer and Schmid (1997), proposed a generalization of the multivariate EWMA

control scheme of Lowry et al. (1992) for multivariate time dependent observations. Sulli-

van andWoodall (1998) recommended the use of multivariate EWMA for the preliminary

analysis of multivariate observations. Fasso (1999) developed a one-sided multivariate

EWMA control chart, based on the restricted Maximum Likelihood Estimator.

Yumin (1996) proposed the construction of a multivariate EWMA using the principal

components of the original variables. Runger et al. (1999) show how the shift detection

capability of the multivariate EWMA can be significantly improved by transforming

the original process variables to a lower-dimensional subspace through the use of the 


transformation. The 
 transformation is similar to principal components transformation.
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Margavio and Conerly (1995) developed two alternatives for the multivariate EWMA

chart. The first of these alternatives is an arithmetic multivariate moving average while

the second alternative is a truncated version of the multivariate EWMA.
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A feature that may affect the performance of a control chart is the estimation effect.

In this chapter we present the current status of research of this field and some new

results. In Section 3.2, we present the case on the estimation effect issue in univariate

and multivariate Shewhart charts. New results on the effect of estimation on the values

of average run length (ARL) and standard deviation of the run length (SDRL) of the �

chart with three sigma and probability limits in the case of subgroups are also presented.

Corresponding results for the � chart for individual observations are also presented. In

Section 3.3 we refer to the estimation effect in the EWMA chart.

The estimation effect issue in Shewhart charts was investigated by many authors.

Proschan and Savage (1960) considered the effect of the number of samples and sample

size on the performance of the � chart in terms of the probability of the mean plotting

outside the control limits if we are in-control when the average range or a pooled estimate
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of the variance is used as an estimate of the process variability. They provided values

for the number of samples needed for keeping stable the probability of the mean plotting

outside the control limits if we are in-control for given values of the sample size.

Table 3�1�Correlation for several values of � and �

�

� 5 10 20 50

5 0�46581 0�37055 0�30735 0�25370

10 0�30362 0�22741 0�18158 0�14528

20 0�17898 0�12829 0�09986 0�07833

30 0�12689 0�08935 0�06886 0�05362

50 0�08020 0�05560 0�04249 0�03288

100 0�04178 0�02859 0�02171 0�01671

200 0�02133 0�01450 0�01097 0�00843

500 0�00864 0�00585 0�00442 0�00339

1000 0�00434 0�00293 0�00221 0�00170

However, they did not take into account the dependence between the event that the

sample mean of sample 	 exceeds UCL and the event that the sample mean of another

sample - exceeds UCL. Therefore, there results are of limited use. Hillier (1969) dealt

with the problem of estimated control limits in the case of � and � chart. He provided

a method of evaluating the probability of the mean plotting outside the control limits in

the case of the � with the range � used to compute the process variability. This method

did not consider the dependence issue as the method of Proschan and Savage (1960),

consequently we can not base the design of our chart on these results.

Ghosh et al. (1981) gave formulas for the computation of the run length distribution

in the case of the � chart with unknown variance. Quesenberry (1993) examined the

effect of estimation of the process mean and standard deviation on the control limits of

56



the Shewhart chart for the mean for both rational subgroups and individual observations.

Table 3�2� ARL and SDRL values for the S (three sigma) chart when � = 5

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 4 105 1 105 2223�5 7 104 594�02 2 104 105�38 1353�3 37�41 143�16

10 2200�1 3 104 310�65 2288�7 86�99 330�39 39�29 104�72 21�06 45�34

20 551�16 1699�7 139�42 297�08 54�88 95�14 27�47 41�75 16�48 21�70

30 415�06 840�14 112�55 182�48 48�74 74�75 25�79 34�47 15�52 18�54

50 346�68 545�72 101�62 134�96 43�32 55�43 23�36 27�19 14�73 16�19

100 298�59 407�05 91�09 106�99 40�75 44�42 22�35 23�56 14�20 14�55

200 276�08 318�09 85�28 93�97 39�28 41�12 21�55 22�18 13�93 13�92

500 262�29 275�14 85�20 88�07 38�55 39�24 21�75 21�79 13�94 13�52

1000 253�76 258�84 84�37 87�67 37�32 37�06 20�97 20�66 13�59 13�14

249�31 248�81 82�44 81�94 37�72 37�21 21�22 20�71 13�69 13�18

He proved that

�<��(� � 
����
 ���) =
� ��(
��)

� ��(� � 
��)
= 1 +� 1 +

9 (1 �24)

�24

−1 −1

�

which means that there is a correlation between the events �� 
�� and �
 ���. He

concluded that � chart requires about 400�(� 1) samples for estimating the parameters

in order for the estimated control limits to behave as the theoretical ones, where � is the

subgroup size. In the case of individual observations he showed that 300 observations are

needed for the estimated control limits to behave as the theoretical ones. The control

chart he used is the X chart with the variability estimated by the moving range.

Chen (1997) extended this work by using three different estimators of the standard
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deviation in the� chart case. Let��
� 	 = 1� 2� ���� and - = 1� 2� ���� � represent data from

a period known to operate in-control and let )�
� 	 = 1� 2� ��� and - = 1� 2� ���� � represent

Table 3�3� ARL and SDRL values for the S (three sigma) chart when � = 10

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 606�61 1064�81 236�14 634�06 78�31 263�87 29�43 112�67 14�39 41�18

10 538�65 919�10 145�57 329�89 45�83 99�37 19�21 31�64 10�17 13�87

20 461�44 725�80 106�92 175�82 33�86 48�22 15�85 19�75 9�04 10�34

30 430�50 626�79 95�59 137�72 32�34 40�07 15�02 17�08 8�59 9�14

50 389�91 510�09 88�05 106�54 30�29 33�98 14�38 15�65 8�37 8�58

100 359�35 411�69 80�89 88�11 28�79 30�81 13�85 14�24 8�26 8�16

200 344�38 367�08 78�19 82�25 28�46 28�96 13�43 13�31 7�97 7�58

500 334�53 340�97 76�10 76�60 27�45 27�27 13�52 13�14 8�06 7�65

1000 334�56 337�96 75�88 75�93 27�31 27�01 13�50 13�04 7�98 7�48

331�17 330�67 75�66 75�16 27�52 27�01 13�47 12�96 8�00 7�48

current or future data. Also, let ��
 $ (�� �2) and )�
 $ (�+ ��� =2�2) with �, =

constants. Since � $ (�� �2�(��)) and ) � $ (�+ ��� =2�2��) for given � = � and

given � we have

' () � " ��� or ) � � 
�� �� �) = 1 Φ
�

= �
+
3

=
,

�

=
� +Φ

�

= �

3

=
,

�

=
� �

where � = (� �) � (�� ��) and , = ���. Then, the ARL is computed through the

following relation

 �� =
+∞

−∞

+∞

0

1

' () � " ��� or ) � � 
�� �� �)

1

2>
exp 0�5�2 +(,)���,�
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where +(,) is calculated for three different estimators of �. For a detailed discussion on

the different estimators of �, see Vardeman (1999).

Table 3�3�(continued) ARL and SDRL values for the S (three sigma) chart when � = 10

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 24�01 37�43 306�28 520�37 1019�6 1274�5 1136�2 1433�6

10 21�04 25�88 254�28 377�34 1071�7 1253�2 1316�9 1514�7

20 19�77 22�62 230�60 275�74 1079�4 1207�5 1472�6 1603�4

30 19�15 20�62 223�33 249�71 1056�5 1155�1 1569�2 1656�9

50 18�47 19�15 218�20 229�50 1047�3 1106�2 1644�7 1686�9

100 18�21 18�10 210�57 215�40 1037�5 1061�3 1696�2 1729�9

200 17�95 17�93 205�32 205�49 1023�1 1027�8 1744�5 1746�7

500 18�20 17�79 205�59 203�14 1009�1 1022�0 1773�9 1785�0

1000 17�53 17�28 206�96 204�95 1006�7 1007�9 1768�3 1773�9

17�90 17�39 206�06 205�56 1011�7 1011�2 1777�2 1776�7

Nedumaran and Pignatiello (2001) developed new control limits for the � chart

taking into account the estimation effect. Specifically, let � � be the average of a fu-

ture subgroup, � be the average variance of the � initial in-control subgroups and

6� =
��−�
�+1
��

�
. Then, (6�+1� 6�+2� ���� 6�+�) has a positively equicorrelated multi-

variate t distribution with correlation 1�(� + 1), where � is a specified number of

future subgroups. If ' ��� � � 
�� = 1 ?, 	 = � + 1�� + 2� ����� + �

then ? must be equal to the run length distribution percentile when we have true lim-

its, for the estimated limits to have equivalent performance with the true ones. Then

? = ' [�� �] = 1 (1 �)� where � is the probability of a false alarm for a sin-

gle subgroup. If ' max 6�
�+1≤�≤�+�

�
0
 �����! = 1 ? where 4 = �(� 1), we have
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that ' � �
0
 �����!

�+1
��

� � � � + �
0
 �����!

�+1
��

� = 1 ?. Consequently,

the control limits are


�� = � + �
0
 �����!

�+ 1

��
�

��� = � �
0
 �����!

�+ 1

��
� �

Table 3�4�  �� and �!�� values for the S (three sigma) chart when � = 20

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 332�72 444�02 121�96 244�63 32�29 78�86 11�46 27�03 5�54 10�33

10 362�96 457�01 92�99 166�56 23�32 45�79 8�71 11�78 4�62 5�39

20 371�24 439�25 75�00 115�39 19�63 25�36 7�87 8�77 4�32 4�20

30 372�32 430�13 68�53 86�90 18�23 21�84 7�67 8�17 4�29 4�12

50 362�66 403�51 63�80 76�74 17�52 18�73 7�49 7�60 4�24 3�97

100 364�01 393�80 60�17 65�57 17�01 17�34 7�36 7�15 4�11 3�58

200 359�00 374�30 59�56 60�31 16�61 16�45 7�15 6�82 4�11 3�59

500 355�18 358�14 59�11 59�61 16�36 16�15 7�13 6�70 4�09 3�56

1000 353�23 353�28 57�59 57�23 16�26 15�79 7�15 6�66 4�08 3�59

356�50 356�00 57�37 56�87 16�39 15�88 7�15 6�63 4�07 3�53

In the case of the attributes charts & and � with estimated control limits Braun (1999)

computed the run length distributions. If 8 is the run length until the next signal we

have that

' (8 ,) = 1
�

'
�


=1

�
 = � 1 ' *1

�


=1

�
 = �

"

�

where *� is the event that the 	�� new observation is outside the estimated control limits.
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In the case of the � chart we have that

' *1

�


=1

�
 = � = 1

���+3 ���


= ���−3 ��� +1

�−#� (=�)


-!
� � = 0� 1� 2� ���

and in the case of the & chart

' *1

�


=1

�
 = � = 1

����+3 ����(1−���)


= ����−3 ����(1−���) +1

�

-
(=&)
 (1 =&)�−
 �

where � = 0� 1��� 2��� ���� (�� 1)�������. In the case of the � chart �

=1�
 is dis-

tributed as a Poisson random variable with mean�� therefore ' �

=1�
 = $−��(��)�

�!
�

� = 0� 1� 2� ��� In the case of the & chart � �

=1�
 is distributed as a Binomial ran-

dom variable with parameters �� and & that is ' �

=1�
 = ��

��
&�� (1 &)(�−�)� �

� = 0� 1��� 2��� ���� (�� 1)�������. Finally, the ARL is equal to

 �� =
�

'
�


=1

�
 = � ' *1

�


=1

�
 = �

−1

Braun (1999) showed that, as for variables control charts, the estimation effect can be

serious.

Yang et al. (2002) examined the case of the Geometric chart with estimated control

limits. The run length distribution in this case is equal to

' (� �; &� &0) =
�

�=0

[1 � (�)]�−1 � (�)
�

�
&�0 (1 &0)

�−� �

where � (�) = (1 &)ln(��2)[ln(1−���)] (1 &)ln(1−��2)[ln(1−���)] + 1, &0 is the fraction

nonconforming, � is the sample size and � is the number of nonconforming items. The
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ARL in this case is equal to

 �� =
�

�=0

1

� (�)

�

�
&�0 (1 &0)

�−� �

Yang et al. (2002) showed that the effect on the alarm probability is significant even

when the sample size is very large e.g. 10000. Despite that fact, the ARL is not affected

that seriously, unless we have a small sample size and a large process improvement.

Nedumaran and Pigniatiello (1999) investigated the estimation effect on the 6 2 control

charts. They proposed that the number of subgroups needed for the estimated control

limits to behave as the theoretical ones must be between 800&�3(� 1) and 400&�(� 1),

where & is the number of variables and � is the sample size. Moreover, they gave an exact

procedure for the construction of the 6 2 control charts when we estimate the parameters

so as to perform similar to the ones with known parameters.

Table 3�4. (continued)  �� and �!�� values for the S(three sigma) chart when � = 20

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 1�32 0�75 11�92 18�83 111�01 190�51 383�43 457�13

10 1�28 0�64 10�03 12�23 90�20 127�11 423�04 463�05

20 1�26 0�60 9�21 9�96 80�28 94�68 442�70 473�45

30 1�26 0�58 8�97 9�20 78�03 88�22 444�96 471�63

50 1�24 0�54 8�90 8�59 75�70 80�02 451�20 469�84

100 1�25 0�57 8�68 8�20 73�42 75�19 450�90 455�92

200 1�23 0�54 8�70 8�27 73�69 74�61 447�50 446�43

500 1�24 0�55 8�55 8�05 73�62 73�39 441�19 441�96

1000 1�24 0�56 8�54 8�14 72�08 71�77 445�81 448�49

1�24 0�54 8�56 8�04 72�91 72�41 449�79 449�29
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Woodall and Montgomery (1999) emphasized the need for much more research in this

area since it is proved that more data than usually recommended is needed for the control

charts to behave as expected from theory. In the same paper, Woodall and Montgomery

state that much work has been done concerning the control of the process mean but not

that much for the process dispersion.

Table 3�5� ARL and SDRL values for the S (three sigma) chart when � = 50

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 263�03 325�32 59�79 125�84 9�49 18�56 3�23 3�96 1�86 1�57

10 304�52 359�74 44�11 76�18 7�69 9�98 2�89 2�87 1�73 1�23

20 328�25 365�28 36�59 49�56 6�91 7�54 2�83 2�52 1�69 1�15

30 340�23 369�51 33�55 39�88 6�65 6�77 2�76 2�37 1�68 1�11

50 345�02 369�81 32�36 35�89 6�64 6�61 2�72 2�24 1�67 1�09

100 355�17 366�97 30�64 31�98 6�37 6�11 2�7 2�2 1�67 1�08

200 357�85 364�35 30�75 30�97 6�39 6�06 2�67 2�09 1�67 1�06

500 362�32 358�59 30�32 30�28 6�38 5�87 2�65 2�1 1�67 1�06

1000 356�30 352�76 30�62 29�97 6�29 5�89 2�67 2�08 1�67 1�05

365�96 365�46 30�23 29�72 6�35 5�83 2�67 2�11 1�66 1�04

Chen (1998) deals with the run length properties of the �, % and %2 control charts in

the case that � is estimated. Let ��
� 	 = 1� 2� ���� and - = 1� 2� ���� � denote historically

in-control data and )�
� 	 = 1� 2� ��� and - = 1� 2� ���� � represent current or future data.

Let ��
 +((� �)��)�� and )�
 +((/ �)�(=�))�(=�) with = constant, �� � the

process mean and standard deviation respectively and +( ) the form of the known density

function. Denote 
 = ���, where � is an estimate of � calculated from the historical

data set and 
 �((;���). Let 6� = ����, where �� is an estimate of =� using )�
. Also,
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denote 9(�; =� �) = ' (6� �). Then, if �� and 
� are the constants multiplied with �

for the known lower and upper control limits case respectively, we have that

' (�� " ��� or �� � 
�� �) = 9(��(�=; =� �) + 1 9(
�(�=; =� �) = @((; =� �)�

where ( = ���. Then, the ARL is computed through the following relation

 �� =
+∞

0

1

@((; =� �)
�((;���)�(�

Table 3�5� (continued) ARL and SDRL values for the S (three sigma) chart when � = 50

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 1 0 1�25 0�66 8�68 13�45 124�56 199�43

10 1 0 1�23 0�56 7�20 8�36 110�20 171�69

20 1 0 1�21 0�51 6�80 7�10 97�84 128�55

30 1 0 1�20 0�50 6�55 6�53 93�47 110�48

50 1 0 1�20 0�48 6�51 6�38 89�64 98�31

100 1 0 1�20 0�48 6�44 6�04 85�98 91�30

200 1 0 1�19 0�47 6�37 5�91 85�92 88�10

500 1 0 1�18 0�47 6�34 5�92 85�47 85�74

1000 1 0 1�18 0�47 6�26 5�82 85�82 85�86

1 0 1�19 0�48 6�28 5�76 84�25 83�75

Maravelakis, Panaretos and Psarakis (2002) examine the effect of estimation of the

process parameters on the control limits of charts for process dispersion by extending

the results of Chen (1998) for both rational subgroups and individual observations. In

sections 3.2.1-3.2.4 we present this work.
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Assume that we have the control limits (2.6) and their estimated counterparts in

(2.8). Let  � denote the event that the 	�� sample standard deviation �� exceeds 
��

or is exceeded by ���. Then, since �� and �
 are independent for 	 = -, the sequence of

trials  � and  
 are independent meaning that they constitute a sequence of Bernoulli

trials.

Figure 3�1� Empirical Run Length Distribution Functions for the 3 sigma chart
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The mean and standard deviation of the run length distribution,  �� and �!�� respec-

tively, of this process is that of a geometric distribution given by the following formulas

 �� =
1

1 1
(3.1)

�!�� =
1

1 1
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where 1 = 1 Pr( �) = Pr(��� �� 
��).

Assume now that we are in the case when the true value of the standard deviation is

not known, which is the most usual case. Let 7� denote the event that the 	�� sample

standard deviation �� exceeds 
�� or is exceeded by ���.

Table 3�6�Correlation for several values of � and �

�

� 5 10 20 50

5 0�51095 0�39568 0�32137 0�26032

10 0�34314 0�24663 0�19144 0�14964

20 0�20710 0�14066 0�10585 0�08087

30 0�14831 0�09839 0�07315 0�05541

50 0�09460 0�06145 0�04521 0�03400

100 0�04965 0�03170 0�02313 0�01729

200 0�02545 0�01611 0�01170 0�00872

500 0�01034 0�00650 0�00471 0�00351

1000 0�00520 0�00326 0�00236 0�00176

The formulas (3.1) for  �� and �!�� are not valid any more because the events

7� and 7
 are not independent for 	 = -. We can prove that �(
��) = 
�� and

� ��(
��) = 1 + 3
�4

1 �24
2

�2
(1−�24)

�
and using these relations we prove after some

calculations that

�<0(�� 
��� �
 ���) = � ��(
��) = 1 +
3

�4
1 �24

2

�2
(1 �24)

�

and

� ��(�� 
��) = 1 +
1 + 3

�4
1 �24

2

�
�2(1 �24)
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Therefore, the correlation between the random variables �� 
�� and �
 ��� is

�<��(�� 
��� �
 ���) =
� ��(
��)

� ��(�� 
��)
=

1 + 3
�4

1 �24
2

�+ 1 + 3
�4

1 �24
2

Table 3�7�  �� and �!�� values for the S (probability limits) chart when � = 5

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 359�97 463�12 267�35 405�54 173�40 312�06 111�11 231�57 71�17 173�0

10 401�46 491�51 268�52 395�19 154�68 263�77 83�88 161�01 47�93 102�77

20 441�09 495�15 254�39 350�22 127�40 199�04 64�92 106�92 36�69 58�40

30 462�04 509�78 247�68 320�05 115�34 164�84 58�02 84�90 33�35 49�45

50 472�24 504�56 239�29 295�97 108�19 137�80 52�48 65�23 30�29 35�47

100 489�90 512�64 229�28 262�50 99�08 115�37 49�79 54�68 28�81 31�03

200 498�35 505�20 221�61 240�21 94�66 102�45 48�20 50�97 27�67 29�10

500 500�93 505�59 216�74 223�58 93�45 95�24 46�06 46�00 28�00 27�60

1000 497�73 503�09 213�01 217�36 92�29 94�50 47�12 47�08 27�31 26�70

500�02 499�52 214�74 214�24 91�78 91�28 46�51 46�01 27�33 26�82

It is obvious that the correlation is a function of � and � only. In Table 3�1 we present

values of the correlation for combinations of � and �. From this Table we see that as the

sample size and the number of samples increases the correlation decreases. For small or

moderate sample size (� 20) we need 200 samples for the correlation to be negligible.

However, for larger sample size the value � = 50 is suitable.

In order to examine the values of the first two moments of the run length distribution,

we performed a simulation study based on various numbers of samples and various sample

sizes. In particular the number of samples and samples sizes considered were � = 5� 10�

20� 30� 50� 100� 200� 500� 1000 and � = 5� 10� 20� 50. For every combination of � and
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� we simulated � samples of size � from a $(�� �20) distribution and computed 
��

and ���. Then, we simulated samples from a $(�� �21) distribution until we obtained a

value above 
�� or below ���. The number of samples simulated up to the one that

lead to a value outside the control limits constitutes one observation of the run length

distribution. This procedure was repeated 10000 times in order to get estimates of the

values of  �� and �!��. The results are presented in Tables 3�2 3�5.

Table 3�7�(continued)  �� and �!�� values for the S (probability limits) chart when � = 5

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 59�28 92�90 207�50 279�98 367�15 426�84 423�91 494�16

10 51�33 60�99 188�80 229�67 383�62 419�59 478�62 506�71

20 49�25 53�77 178�80 195�31 381�22 406�88 535�06 558�84

30 47�36 50�56 174�26 182�63 378�10 395�01 551�71 561�82

50 47�06 47�90 172�37 175�45 374�69 387�19 572�90 579�90

100 46�45 46�53 170�21 172�41 369�25 373�72 588�21 585�37

200 44�99 44�60 169�92 169�76 369�89 371�74 595�42 594�84

500 45�64 45�22 168�09 168�67 364�29 363�97 604�03 601�67

1000 45�64 44�65 165�86 166�04 364�05 369�30 598�0 601�84

45�09 44�59 167�40 166�90 366�87 366�37 597�91 597�41

From Tables 3�2 through 3�5 certain conclusions are drawn. We see that we have

results for both upward and downward shifts when � � 5 but only for upward when

� = 5. This happens because for � 5 the lower control limit is set to zero. Therefore,

it can never be crossed. For upward shifts as � increases the  �� and �!�� values

decrease and approach their theoretical values. For downward shifts as � increases the

same thing happens for � = 50. For � = 10� 20 the  �� and �!�� values do not follow
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a specific trend. In the in-control state we also do not have a clear pattern for either

 �� or �!�� values. What we can say in every case is that  �� and �!�� values

behave in the same way.

Table 3�8�  �� and �!�� values for the S (probability limits) chart when � = 10

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 341�44 422�99 217�14 329�46 110�54 218�04 52�43 130�38 25�60 62�05

10 391�03 456�05 208�08 307�21 86�61 155�83 36�61 67�22 17�72 28�51

20 428�95 469�37 194�55 257�65 70�14 106�07 28�50 39�48 14�96 18�23

30 448�41 480�41 187�90 234�75 65�03 88�79 27�33 33�58 14�20 16�15

50 464�28 481�37 178�40 209�85 60�27 72�62 25�81 28�64 13�61 14�78

100 479�05 488�20 169�77 184�28 56�35 61�10 24�52 25�62 13�16 13�69

200 484�86 493�03 166�70 176�09 54�73 56�70 24�26 24�50 12�81 12�66

500 490�54 489�97 161�32 164�74 52�91 53�41 24�02 24�08 13�11 12�82

1000 492�16 480�65 161�60 161�87 53�81 53�11 23�60 23�23 12�70 12�38

500�05 499�55 161�99 161�48 53�44 52�94 23�46 22�95 12�74 12�23

As � increases the  �� is getting closer to the theoretical value faster than the

�!��. Moreover, as � increases the theoretical values, in the in-control state, approach

the ones from a normal distribution, which are  �� = 370�4 and �!�� = 369�9. The

same of course happens and for the out-of-control states.

If we use this type of chart for identifying shifts in process dispersion we have to use

samples of size � at least 20, for minimizing the effect of estimating �. If � is less than

this value the practitioner will face an increased number of false alarms. The effect of

estimation is also severe for� 20, especially in the in-control state and for small shifts.
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For values 30 � 50 the effect is moderate and for values of 100 or larger the effect

is small enough. A last point we have to make is that when we have small downward

shifts for � 20 the  �� and �!�� values are larger than the corresponding in-control

values. This result is also confirmed by Klein (2000). Consequently, in such cases special

care must be given and it is better to use control charts for small shifts like CUSUM and

EWMA.

Table 3�8� (continued)  �� and �!�� values for the S (probability limits) chart when � = 10

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 5�34 7�41 46�09 81�74 182�01 262�85 339�52 406�60

10 4�63 4�92 38�28 48�93 162�80 206�09 378�42 422�41

20 4�40 4�27 35�18 40�33 154�72 181�67 396�79 417�98

30 4�36 4�10 34�06 37�31 147�37 159�98 400�78 424�06

50 4�20 3�76 33�36 35�08 144�77 156�54 401�66 421�77

100 4�27 3�81 32�66 34�24 139�43 140�95 402�89 413�00

200 4�26 3�73 32�78 33�25 137�34 137�24 400�48 403�36

500 4�17 3�64 32�44 31�76 136�91 133�59 405�11 405�09

1000 4�21 3�63 31�95 31�10 133�69 132�26 398�98 400�52

4�23 3�70 32�13 31�62 136�47 135�97 400�85 400�35

In Figure 3�1 we present the empirical run length distribution functions (ERL) for

� = 5� 10� 20� 50. In each Figure we plot six different lines representing the ERL func-

tions for � = 5� 20� 50� 100� 1000 and the theoretical run length distribution (	�+). It is

obvious that as � increases the ERL approaches the theoretical run length distribution.

Moreover, as � increases the ERL’s for the � values approach the theoretical run length
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distribution faster.

Consider the control limits 2.10 and 2.11. In the same way of thinking as in the case

of three sigma limits we can prove that � ��(
��) = [�2(1 �24)#
2
0�999]�[(� 1)�24�] and

consequently

�<0(�� 
��� �
 ���) = � ��(
��) =
�2(1 �24)#

2
0�999

(� 1)�24�
�

Moreover,

� ��(�� 
��) = �2(1 �24) 1 +
#20�999

(� 1)�24�

Table 3�9�  �� and �!�� values for the S (probability limits) chart when � = 20

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 327�65 381�36 170�43 279�59 56�40 125�43 18�47 47�23 8�07 17�04

10 379�94 415�88 154�94 241�56 40�09 71�48 13�24 19�53 6�45 8�01

20 421�10 434�89 135�60 194�87 33�08 46�55 11�89 14�66 5�93 6�32

30 442�13 451�34 126�95 170�03 30�45 37�64 11�46 12�67 5�81 6�0

50 461�32 467�99 117�98 139�49 29�17 32�83 11�09 11�54 5�69 5�50

100 476�40 478�77 113�42 126�66 27�69 28�82 10�97 10�94 5�57 5�26

200 486�38 486�97 109�86 115�12 27�35 27�82 10�50 10�20 5�50 5�17

500 485�13 488�22 108�31 108�90 26�81 26�19 10�43 10�12 5�41 4�89

1000 494�29 488�10 106�57 108�41 26�63 25�79 10�30 9�78 5�48 4�91

500�01 499�51 106�64 106�14 26�67 26�17 10�42 9�91 5�46 4�93
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and finally

�<��(�� 
��� �
 ���) =
� ��(
��)

� ��(�� 
��)
=

#20�999
#20�999 + (� 1)�24�

�

Table 3�9�(continued)  �� and �!�� values for the S (probability limits) chart when � = 20

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 1�17 �51 7�0 10�62 56�41 103�25 245�11 324�91

10 1�14 �43 6�11 7�0 45�91 69�83 247�16 304�65

20 1�13 �40 5�71 5�85 40�82 47�93 233�76 273�54

30 1�13 �39 5�44 5�32 40�07 44�78 228�37 256�46

50 1�12 �36 5�49 5�21 38�59 41�06 223�43 242�44

100 1�12 �37 5�36 4�95 37�85 39�05 219�40 225�87

200 1�11 �36 5�40 4�92 37�99 38�81 217�81 217�89

500 1�11 �36 5�36 4�87 37�41 36�61 213�94 209�40

1000 1�12 �37 5�29 4�80 37�69 37�00 213�70 213�52

1�12 �36 5�29 4�77 37�44 36�94 215�93 215�43

As in the case of three sigma limits this correlation depends only on � and �. In

Table 3�6 we calculated the correlation for various combinations of � and �. From this

Table we conclude again that as the sample size and the number of samples increases the

correlation decreases. The recommendation for sample sizes and number of samples is

the same as in the case of three sigma limits.

We computed the  �� and �!�� values for several values of� and � via simulation

along the same lines as in the three sigma limits. The number of samples and sample

72



sizes considered were � = 5� 10� 20� 30� 50� 100� 200� 500� 1000 and � = 5� 10� 20� 50. The

results are presented on Tables 3�7 3�10� From Tables 3�7 through 3�10 we deduce the

following points. For upward shifts as � increases the  �� and �!�� values generally

decrease and approach their theoretical values. For downward shifts as � increases the

same thing happens for � = 20� 50. For � = 5� 10 the  �� and �!�� values do not

follow a specific pattern. In the in-control state the  �� and �!�� values increase until

they get close to their theoretical values, which is in accordance with the results of Chen

(1998). As an overall conclusion we can say that the  �� and �!�� values behave in

the same way except that as � increases the  �� is getting closer to the theoretical

value faster than the �!��.

Table 3�10�  �� and �!�� values for the S (probability limits) chart when � = 50

�21��
2
0

1 1�2 1�4 1�6 1�8

�  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

5 320�32 380�78 93�28 184�90 13�83 29�14 4�02 5�49 2�10 1�90

10 369�19 410�82 70�91 122�34 10�73 15�32 3�61 4�02 1�93 1�49

20 411�62 433�18 58�04 85�60 9�50 10�86 3�37 3�19 1�93 1�42

30 431�22 447�76 53�56 68�63 8�96 9�54 3�42 3�10 1�90 1�36

50 452�27 459�10 50�77 58�78 8�96 8�95 3�28 2�85 1�89 1�30

100 472�90 472�99 48�14 50�64 8�62 8�59 3�25 2�79 1�88 1�32

200 482�50 481�24 47�71 48�24 8�51 8�24 3�25 2�75 1�86 1�29

500 493�58 498�61 47�47 48�19 8�60 8�11 3�24 2�69 1�85 1�23

1000 490�32 499�04 47�59 47�66 8�56 8�10 3�23 2�66 1�86 1�27

500�01 499�51 47�23 46�73 8�52 8�01 3�22 2�67 1�86 1�27

When we are in-control we need at least � = 200, otherwise the practitioner will face

many false alarms whereas the value of � is not equally important. In the out-of-control
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situations the value of � is important for minimizing the effect of estimating �. Specif-

ically, when �21��
2
0 = 1�2 the ARL values for � = 5� 10� 20� 50 are 239�29� 178�40� 117�98

and 50�77 respectively. Therefore, we observe a dramatic reduction as � becomes larger.

A similar situation occurs for downward shifts. Consequently, large values of �, larger

than 20, are recommended. The effect of estimation is severe for � 20, especially for

small shifts. For values 30 � 50 the effect is moderate and for values of 100 or

larger the effect is small enough. When we have small downward shifts for � = 5, and

for � = 10 when � 10, the  �� and �!�� values are larger than the corresponding

in-control values. In such a situation it is better to use control charts for detecting small

shifts like CUSUM and EWMA charts.

Table 3�10� (continued)  �� and �!�� values for the S (probability limits) chart when � = 50

�21��
2
0

0�2 0�4 0�6 0�8

�  �� �!��  �� �!��  �� �!��  �� �!��

5 1 0 1�21 �62 7�47 11�58 107�80 188�75

10 1 0 1�19 �50 6�19 6�96 92�22 141�22

20 1 0 1�18 �47 5�86 5�90 79�17 102�14

30 1 0 1�16 �45 5�69 5�50 74�86 87�60

50 1 0 1�16 �45 5�65 5�46 71�97 78�71

100 1 0 1�15 �42 5�64 5�22 69�87 73�40

200 1 0 1�16 �43 5�62 5�18 69�61 69�69

500 1 0 1�15 �42 5�49 4�95 68�90 70�23

1000 1 0 1�15 �42 5�51 5�06 69�27 70�27

1 0 1�16 �43 5�48 4�96 68�04 67�54

In Figure 3�2 we present the empirical run length distribution functions (ERL) for

� = 5� 10� 20� 50. In each Figure we plot six different lines representing the ERL functions
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for � = 5� 20� 50� 100� 1000 and the theoretical run length distribution (	�+). We see

that as � increases the ERL approaches the theoretical run length distribution. Also,

an increasing � value causes the ERL’s for the � values to approach the theoretical run

length distribution faster.

Figure 3�2� Empirical Run Length Distribution Functions for the probability limits chart
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Consider the control limits of Section 2.3.3. In order to assess the effect of the number

of observations on the control limits of the � chart we performed a simulation study.

The results are presented in Table 3�11� For each value in the Table, we simulated $

values from a $(�� �20) distribution, we computed the 
�� and ��� and subsequently

we generated values from a $(�� �21) distribution until we obtained a value above 
�� or

below ���. The number of samples simulated up to the one that was outside the control

75



limits constitutes one observation on the run length. This procedure was repeated 32000

times in order to get estimates of the values of  �� and �!��.

Table 3�11�  �� and �!�� values for the � control chart

�21��
2
0

1 1�2 1�4 1�6 1�8

$  �� �!��  �� �!��  �� �!��  �� �!��  �� �!��

30 986�31 5024�83 315�36 1058�44 147�93 439�79 84�36 187�50 53�74 98�54

50 614�94 1565�0 229�95 476�60 116�69 200�50 69�61 107�23 47�23 66�81

75 503�75 948�78 202�02 318�54 105�18 150�77 64�51 84�15 43�99 54�87

100 467�07 770�60 190�53 274�54 100�73 131�39 61�98 75�26 42�78 50�48

200 413�88 518�65 173�68 205�96 93�86 105�77 58�63 63�56 40�67 42�81

300 398�94 476�34 167�79 187�69 92�76 100�47 57�93 61�37 41�26 42�29

500 387�38 429�45 167�90 179�39 90�34 93�58 56�80 58�96 39�69 40�54

1000 379�32 401�55 162�96 168�50 89�12 91�10 57�03 57�78 39�90 39�85

2000 372�64 383�71 162�70 166�87 89�45 89�41 56�35 55�82 39�62 39�17

370�40 369�90 162�08 161�58 89�05 88�55 56�48 55�98 39�45 38�95

From Table 3�11 we see that we do not have results for downward shifts. This hap-

pens because a decreasing standard deviation will never cause a value below the lower

control limit. The simulation reveals that the  �� and �!�� values decrease until they

approach their theoretical values. We need at least 300 observations to minimize the

effect of estimation in the control limits of the � chart.

In Figure 3�3 we present the empirical run length distribution function (ERL) for

� = 30� 50� 100� 200� 500� 1000� 2000 and the theoretical run length distribution (	�+). The

result is that as � increases the ERL approaches the theoretical run length distribution.
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In the rational subgroups case we propose larger � values than usual and someone

may report that this is a problem. However, Woodall and Montgomery (1999) remarked

that in industry now there are large data sets available in contrast to the past. Therefore,

such values for the sample size should not be a problem, generally. On the other hand,

if for some special applications this still remains a problem, the practitioner should keep

in mind the great influence on the estimated control chart performance displayed on the

tables of this work.

Figure 3�3� Empirical Run Length Distribution Functions for the X chart

0 1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n=30
n=50
n=100
n=200
n=500
n=1000
n=2000
n=inf

Run Length Distribution Function

x

Pr
(R

un
 L

en
gt

h<
=x

)

77



Jones et al. (2001), considered the problem of estimating the parameters of the

EWMA chart in the normal case. They proved that if the random variable T is the run

length of the EWMA chart, then the ARL of such a chart is given by

 �� = � [6 ?� 3� (] =
∞

−∞

∞

0

� (,� �0� ?� 3� () +" (,)A (�0) �,��0�

where� (,� �0� ?� 3� () = 1+
"
� 

�
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√
�

�0,

? = ���0, 3 = (� �0) � (�0� �), ,, �0 are specific values of the random variables

8 = �0��0, �0 = � (&0−&0)
(�0�

√
�)
and ( is the starting value of the EWMA. Also, �0, �0 are

the in-control mean and standard deviation, �0, �0 are their estimates respectively and

�, � are the mean and standard deviation at time �. Additionally, the second moment of

T is given by
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�0. The SDRL can be computed

by �!�� = � [6 2] (� [6 ])2. Jones et al. (2001) concluded that in both in-control

and out-of-control cases the process’s run length performance is affected. In particular,

the estimation effect results in more false alarms and generally leads to a reduction of

the ability of the chart to detect process shifts.

Additionally, Jones (2002) developed a procedure for designing an EWMA chart with

estimated parameters. Using this procedure a practitioner is able to design an EWMA

chart to have the desirable performance. The steps of this method are

Step 1. Identify the desired in-control ARL of the chart

Step 2. Determine the subgroup size � and number of subgroups � that will be used

to estimate the parameters of the in-control process. Obtain a reference sample of �
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subgroups, of � observations each

Step 3. Ensure that the reference sample is representative of the in-control state of

the process. Estimate the parameters according to �0 =
1
��

�
�=1

�

=1��
 and �0 =

'�

�4��

where �� =
�
�=1

�
�=1(���−��	)

2

�(�−1) and �4�� =
√
2Γ(�(�−1)+1

2 )
�(�−1)Γ(�(�−1)

2 )
.

Step 4. Select the smoothing constant 2.

Step 5. Using 2 from Step 4, identify the constant L that produces an EWMA chart

with the desired in-control ARL.
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In control charting methodology an assumption often used to determine statistical

properties is that the data are normally distributed. However, it can be shown that

this assumption is critical for the performance of the control charts. In Section 4.2, we

present the non-normality effect in Univariate and Multivariate Shewhart Charts. In

Section 4.3 the ascription under non-normality in univariate and multivariate EWMA

Charts is given. The EWMA control charts for dispersion are investigated in detail and

results on their performance are given together with some recommendations.

The usual way of constructing the Shewhart charts is by assuming normality for the

underlying characteristic. In the case of nonnormality if we know the exact distribution of

the characteristic plotted we may construct the corresponding probability limits without a

problem. The case that appears to be the most difficult is when we do not have a normally

distributed characteristic and the probability density function of this characteristic is
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not known. Then, we have two alternatives; either use nonparametric control charts (see

Chakraborti et al. (2001)) or use the existing theory developed for a normally distributed

variable. For this second case, Burr (1967) examined the effect of nonnormality on the

often used constants in the Shewhart control charts and concluded that they are robust

to the assumption of normality except in cases of extremely non-normal distributions.

Additionally, Schilling and Nelson (1976) surveyed on the effect of non-normality on the

control limits of the � chart. They found that usually a sample of size 5 is enough to

ensure the robustness to normality of the control limits. Yourstone and Zimmer (1992)

proposed the use of the generalized Burr distribution for determining non-symmetrical

limits for a control chart for sample averages. They focused on the effect of non-normality

measured by the skewness and kurtosis on the ARL values. They concluded that a

large skewness or kurtosis in the original data will result in sizeable large skewness or

kurtosis values for the sample averages. Therefore, the practitioner should consider non-

symmetrical control charts. Janacek and Meikle (1997) proposed the use of control charts

of medians in the case of non-normal data. They assumed that at the beginning the

process is in-control and we collect a reference sample of size $ . Then, we take samples

of size � to check if the process remains in-control in terms of location. Let 7 be the

number of members of the test sample less than �( where *�(�() = B. If the distribution

of the reference sample *�(�) is unknown and � is the sample median, then

' (7 = =) =

+#−1

#
)+�−
−#

�−#
)+�
�

�

It can be proved that

' �(
) " � " �()−
+1) = 1 2
�

#=[��2]+1


+#−1
#

)+�−
−#
�−#

)+�
�

and this relationship can be used to construct suitable control limits. As Janacek and

Meikle (1997) indicate their proposed approach is very reliable when we have non-normal
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data, but when used with normal data there is a loss of power.

The nonnormality effect on the 6 2 control charts have been studied by many authors

such as Chase and Bulgren (1971), Mardia (1974, 1975), Everitt (1979), Bauer (1981),

Tiku and Singh (1982) and Srivastava and Awan (1982). They proved through simulation

that this statistic is affected by nonnormal distributions and especially in the case of the

highly skewed ones.

The assumption of normality in the EWMA chart has drawn the attention of re-

searchers in the last years. In subsection 4.3.1 we present the recent results on this field

for the EWMA chart for the mean in univariate and multivariate cases. Moreover, some

new results (Maravelakis et al. (2003)) about the robustness to normality of the EWMA

charts for dispersion are given in subsections 4.3.2-4.3.5.

The EWMA is a popular chart for detecting small to moderate shifts and because

of another characteristic. As Montgomery (2001) states “It is almost a perfectly non-

parametric (distribution free) procedure”. Borror et al. (1999), examined the ARL

performance of the EWMA chart for the mean in non-normal cases when the parame-

ters of the process are known and concluded in the same result for certain values of the

smoothing parameter. They proposed that an EWMA chart with smoothing parameter

equal to 0.05 is very effective in the case of nonnormality. Its in-control value is very close

to the one for the normal case. Furthermore, it does not lose its ability to detect fast

an out-of-control situation. However, as the value of the smoothing parameter increases
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the performance of the chart under nonnormality is not that good. Recently, Stoumbos

and Sullivan (2002) and Testik et al. (2003) extended the work of Borror et al. (1999)

to the multivariate case of the EWMA chart. They concluded that a properly designed

multivariate EWMA control chart is robust to the non-normality assumption. In par-

ticular, Stoumbos and Sullivan (2002) showed that for up to five dimensions a value of

the smoothing parameter in the range [0�02� 0�05] is enough to preserve performance as

in the multinormality case. However, when we have more than five dimensions a value

of 0.02 or less is needed for the MEWMA chart to behave as under multinormality.

Let �0 and �0 denote the in-control values of the process parameters that are either

known or estimated from a very large sample taken when the process is assumed to be in-

control. We want to detect any shifts of the dispersion in the process using EWMA charts

that are known to be efficient for detecting small to moderate shifts in the parameters.

For the remaining of this study we assume that we have independent and identically

distributed data with sample size unity and also that we are in the prospective setting

(Phase II) where the estimates or the parameter values are used to monitor the process.

In the case of rational subgroups the central limit theorem applies and therefore the non

normality issue does not bother us as much.

Several publications dealing with the subject of detecting shifts in the dispersion

using an EWMA type chart have appeared in the literature (see, e.g. Domangue and

Patch (1991), MacGregor and Harris (1993), Acosta-Mejia and Pignatiello (2000)). Our

main concern is to detect increases in the process dispersion. We have to stress though,

that detecting decreases in the dispersion is equally important because they indicate

an improvement in the process. Nevertheless, it is not probable that a reduction in the

process standard deviation, or variance, will occur without a corrective action. Therefore,

when an attempt to improve the quality of a process is taking place, the time that this
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possible change occurs is known. A control chart is one of the tools to check for possible

reduction in the variance before and after the corrective action. However, the main use

of a control chart is to detect persistent or sudden shifts in a process at unknown times.

Table 4.1 In-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

WR SR HO DP1 DP2

h 2�876 2�604 2�436 2.1492 2.495

N(�,�2) ARL 370�4 370�4 370�4 370.4 370.4

MRL 260 260 264 259 257

SDRL 361�3 358�1 353�6 361.8 368.3

G(4,1) ARL 151�3 304�2 444�1 490.5 181.2

MRL 106 213 312 340 124

SDRL 148�0 296�3 431�7 486.5 183.0

G(3,1) ARL 133�1 290�6 473�2 535.2 162.6

MRL 93 205 331 372 111

SDRL 131�0 283�0 461�9 532.6 166.0

G(2,1) ARL 112�4 267�5 522�5 641.5 140.3

MRL 79 187 365 444 95

SDRL 110�0 262�1 511�3 640.5 144.1

G(1,1) ARL 84�1 225�3 659�4 1048.1 111.8

MRL 59 158 461 723 75

SDRL 82�7 220�7 647�9 1056.6 116.1

G(0�5,1) ARL 67�8 185�8 840�3 2449.9 94.8

MRL 47 130 583 1679 63

SDRL 66�8 184�3 837�1 2489.1 99.9

The EWMA chart of squared deviations from target (EWMAS) was proposed by

Wortham and Ringer (1971) for detecting a shift in the process standard deviation. The
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statistic of this chart is given by

�� = 2(�� �0)
2 + (1 2)max(��−1� �20)� �0 = �

2
0�

Table 4.1 (continued) In-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

WR SR HO DP1 DP2

h 3.432 2.916 2.628 2.409 3.094

N(�,�2) ARL 370.4 370.4 370.4 370.4 370.4

MRL 259 257 260 259 258

SDRL 365.9 360.8 359.2 363.6 367.4

G(4,1) ARL 129.7 237.0 380.8 421.1 147.2

MRL 91 166 265 293 102

SDRL 127.7 231.7 374.1 418.8 147.3

G(3,1) ARL 114.3 218.0 382.1 437.2 130.7

MRL 79 152 267 304 90

SDRL 113.2 214.5 373.8 433.7 131.3

G(2,1) ARL 95.6 191.6 388.3 472.1 111.8

MRL 66 133 271 328 77

SDRL 94.8 188.9 382.1 469.3 112.7

G(1,1) ARL 72.5 150.6 393.3 569.5 87.0

MRL 51 105 273 396 60

SDRL 71.2 148.3 388.3 570.5 88.2

G(0�5,1) ARL 59.2 120.2 399.4 816.4 73.1

MRL 41 83 278 564 50

SDRL 58.6 119.1 395.1 822.3 74.7

where 2 is a smoothing parameter that takes values between 0 and 1 and �0 is the initial

value. The above statistic is one-sided and it is defined in a way to detect only upward

shifts. This happens because, whenever �� is less than �20� we set it equal to its starting
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value. The control limit of this chart is


�� = �20 + �'�
2
0

22

2 2
�

Table 4.1 (continued) In-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

WR SR HO DP1 DP2

h 4.112 3.215 2.742 2.584 3.821

N(�,�2) ARL 370.4 370.4 370.4 370.4 370.4

MRL 256 257 257 259 258

SDRL 368.9 363.4 363.3 366.4 368.8

G(4,1) ARL 113.4 171.8 281.2 319.7 121.9

MRL 79 120 196 221 84

SDRL 112.6 169.0 277.9 318.3 121.4

G(3,1) ARL 99.7 154.3 263.7 310.5 107.5

MRL 69 107 184 216 75

SDRL 98.9 153.1 260.7 308.2 107.5

G(2,1) ARL 83.5 131.4 240.8 296.4 91.3

MRL 58 92 167 205 63

SDRL 82.7 129.5 238.0 294.4 91.3

G(1,1) ARL 64.1 100.6 205.5 279.1 70.7

MRL 45 70 144 194 49

SDRL 63.3 99.3 202.6 277.7 70.9

G(0�5,1) ARL 52.5 81.0 179.6 291.4 59.4

MRL 36 57 125 201 41

SDRL 51.8 80.3 178.3 293.2 59.4

where �' is a constant used to specify the width of the control limit. Note that �20 would

be the mean and �20 22�(2 2) would be the asymptotic standard deviation of �� if the

reset was not used. However, the control limit is not modified in order to resemble the
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form of an asymptotic EWMA control limit (Reynolds and Stoumbos (2001)).

As Stoumbos and Reynolds (2000) indicate, when the normality assumption is ques-

tionable for the observations, the EWMAS statistic does not converge quickly to normality

Table 4.2. Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

Shift 1�2 1�4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 113.3 116.2 126.1 114.4 100.8 55.6 58.4 65.9 58.6 48.8

MRL 81 84 92 82 72 41 44 50 44 37

SDRL 105.5 105.1 113.1 104.5 94.2 48.2 48.5 54.2 48.7 42.5

G(4,1) ARL 66.0 111.0 167.3 171.9 68.8 36.2 54.5 80.2 77.6 35.5

MRL 47 80 120 121 48 27 40 59 56 26

SDRL 62.6 103.0 155.7 164.8 67.5 32.9 47.8 70.2 70.0 33.3

G(3,1) ARL 64.4 115.4 185.2 193.6 68.9 37.9 59.9 92.0 91.5 37.9

MRL 46 82 132 136 48 27 44 67 66 27

SDRL 61.7 108.2 174.0 187.4 68.1 35.1 53.8 82.1 84.7 36.1

G(2,1) ARL 61.1 119.3 214.1 237.9 67.6 39.2 67.0 111.9 116.8 40.6

MRL 43 85 152 166 46 28 48 81 83 28

SDRL 58.6 113.4 203.1 233.4 68.0 36.8 61.2 101.9 110.5 39.5

G(1,1) ARL 54.6 121.3 294.0 393.6 64.8 39.1 76.8 164.0 196.6 43.3

MRL 39 86 206 271 44 28 55 117 137 29

SDRL 52.7 116.5 284.7 395.9 66.4 37.6 72.8 154.8 194.3 43.8

G(0�5,1)ARL 49.4 117.1 420.7 910.3 62.7 38.5 82.9 252.4 444.3 46.0

MRL 35 82 293 623 41 27 58 177 304 31

SDRL 48.2 114.3 413.2 933.2 65.9 37.3 80.2 245.3 454.7 47.8

because it is a weighted average of squared deviations. For this reason they propose an

EWMA chart of the absolute deviations from target (EWMAV), adjusted for detecting
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only upward shifts. The statistic of this chart is

�� = 2 �� �0 + (1 2)max(��−1� �0 2�>)� �0 = �0 2�>�

where �0 is the initial value. The above statistic, as in the case of the EWMAS statistic,

is one-sided and can detect only upward shifts. The control limit of this chart is


�� = �0 2�> + �� �0 1 (2�>) 2� (2 2)�

where �� is a constant specifying the width of the control limit. We have to mention

that �0 2�> would be the mean and �0 1 (2�>) 2� (2 2) would be the asymptotic

standard deviation of �� if the reset was not used. Again, the control limit is not modified

and therefore it does not resemble the form of the standard EWMA control limit.

Hawkins and Olwell (1998, p.82) suggested a different statistic for monitoring individ-

ual readings for scale changes. Specifically, they recommended the use of the differences

(�� �0) CUSUMming the square root of their absolute values. In our case, and since

we use an EWMA type chart, Maravelakis et al. (2003) introduced such a control chart.

Let. = �� �0 , where �� are our observations. It can be shown that if � is normally

distributed (N(�0, �
2
0)) then

+(�;�20) =
4�

�0 2>
exp

�4

2�20
� 0 �
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�(�) =
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and
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Table 4.2 (continued) Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

Shift 1�6 1�8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 34.9 37.7 43.2 38.5 30.8 25.0 27.5 32.2 28.9 22.3

MRL 27 30 34 30 24 20 22 26 23 18

SDRL 28.5 28.9 32.8 29.6 25.2 19.5 19.7 22.7 20.7 17.5

G(4,1) ARL 23.4 32.9 46.6 44.2 22.4 16.8 22.8 31.3 29.4 15.8

MRL 18 25 35 33 17 13 18 25 23 12

SDRL 20.5 27.0 37.9 37.1 20.1 14.2 17.7 23.5 22.9 13.6

G(3,1) ARL 25.4 37.4 55.0 53.2 24.8 18.7 26.4 37.6 35.7 18.0

MRL 19 28 41 39 18 14 20 29 27 13

SDRL 22.8 31.8 46.1 46.3 22.8 16.1 21.3 29.6 29.2 15.9

G(2,1) ARL 27.8 43.7 69.5 69.4 27.7 21.2 31.6 48.1 47.1 20.8

MRL 20 32 51 50 20 16 24 36 35 15

SDRL 25.4 38.6 60.7 62.9 26.3 19.0 26.8 40.0 40.7 19.2

G(1,1) ARL 30.2 54.3 105.7 117.9 32.1 24.4 41.1 75.4 80.1 25.3

MRL 22 39 76 82 22 18 30 55 57 18

SDRL 28.6 50.1 97.4 114.1 31.8 22.8 37.2 67.8 75.1 24.6

G(0�5,1)ARL 31.5 63.0 170.1 260.8 36.2 26.9 50.5 123.9 173.1 29.8

MRL 22 45 120 178 24 19 36 88 118 20

SDRL 30.4 60.4 164.2 265.8 37.3 25.6 47.9 117.7 175.3 30.2
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Table 4.2 (continued) Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

Shift 1�2 1�4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 124.1 123.3 131.8 123.2 113.0 60.7 61.7 68.2 62.2 54.6

MRL 88 88 94 88 80 44 45 50 45 39

SDRL 119.8 116.6 123.5 116.2 109.1 56.3 55.6 60.7 55.6 50.5

G(4,1) ARL 60.5 94.9 147.9 156.7 62.8 34.3 48.7 71.9 73.6 34.2

MRL 43 67 105 110 44 25 35 52 53 24

SDRL 58.9 91.0 140.8 152.0 61.8 32.4 45.0 66.2 68.6 32.8

G(3,1) ARL 58.5 95.4 157.1 171.3 61.8 35.4 52.4 81.1 84.4 35.9

MRL 41 67 111 120 43 25 37 58 60 25

SDRL 56.8 91.8 151.1 167.4 61.1 33.7 49.0 75.2 79.7 34.8

G(2,1) ARL 54.8 94.4 171.7 195.0 59.8 36.0 55.9 94.3 102.0 37.4

MRL 38 66 120 136 42 25 40 67 72 26

SDRL 53.5 91.5 165.8 191.4 59.5 34.5 52.7 88.5 98.1 36.6

G(1,1) ARL 48.3 89.0 199.0 260.6 54.8 35.3 59.6 119.8 146.0 38.5

MRL 34 62 139 180 38 25 42 85 102 26

SDRL 47.2 87.0 194.2 259.9 55.1 34.2 57.3 114.8 143.9 38.5

G(0�5,1)ARL 43.5 81.7 230.3 400.3 51.6 34.6 60.6 151.6 237.8 39.3

MRL 30 57 161 276 35 24 42 106 164 27

SDRL 42.8 80.3 226.4 404.6 52.5 33.7 59.4 147.7 240.1 39.9

Then,

� ��(�) = �(�2) [�(�)]2 = �0 �
2

>
2
Γ2 (3�4)

>
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and the EWMAH chart is based on the statistic

.� = 2 �� �0 + (1 2)max .�−1� 23�4 Γ (3�4) �0�2> �

.0 = 23�4 Γ (3�4) �0�2>

where .0 is the initial value. The control limit of this chart is


�� = 23�4 Γ (3�4) �0�2> + �* �0 2� 2> 2Γ2 (3�4) �> 2� (2 2)�

where �* is a constant specifying the width of the control limit. The mean of .� is

23�4 Γ (3�4) �0�2> and �0 2� 2> 2Γ2 (3�4) �> 2� (2 2) is the asymptotic

standard deviation of .� if the reset is not used. The control limit in this case also is not

modified to keep the form of a standard EWMA control limit.

Domangue and Patch (1991) introduced the omnibus EWMA control charts. The

statistic used in these charts is �� = (�� �0)��0 and the proposed EWMAA scheme is

 � = 2 ��
� + (1 2) �−1�

where the starting value  0 is set by the practitioner and it is usually equal to the

asymptotic mean of  �. Two different schemes were proposed by Domangue and Patch,

one with � = 0�5 and the second with � = 2. When we have independent samples from

a normal process with mean �0 and standard deviation �0 Domangue and Patch (1991)

showed that the asymptotic mean and variance of  � for the scheme with � = 1�2 are

�( �) = 2�>
1�2

Γ (3�4) and � ��( �) =
√
2�

(2−�)+ [ > Γ2 (3�4)]. In the case of � = 2

they proved that �( �) = 1 and � ��( �) =
2�

(2−�) . Then, the control limit in each case is


�� = �( �) + �,� ��( �)
1�2

where �, is a constant specifying the width of the control limit and either of the schemes
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signal whenever  � 
��. We have to note here that these schemes can signal only

upward because of the way they are constructed. Moreover, as Domangue and Patch

indicate these schemes are sensitive to increases in dispersion.

For all the above schemes we observe that they are vulnerable to shifts in the mean

apart from the dispersion. Therefore a signal of these charts might be the result of a

change in the mean. This deficiency can be resolved by using the moving range (Hawkins

and Olwell (1998, p.82)) or by calculating at each point in time (observation) an estimate

of the mean (MacGregor and Harris (1993)). However, the use of either of these tech-

niques might lead to other problems such as dependence of the observations and since

they involve cumbersome calculations, they are not considered here.

In the context of EWMA charts there are three ways of computing the previously

stated measures of performance. The integral equation method, the Markov chain method

and a simulation study (see e.g., Brook and Evans (1972), Lucas and Saccucci (1990)

and Domangue and Patch (1991)). The integral equation method is an accurate method

but it can not be computed in all cases. The Markov chain method can be implemented

in the cases that the former method can not, but we need to discretise the continuity of

the process using many steps. The simulation study is easy in the implementation and,

when using a large number of iterations, the results are very accurate. In the following

calculations simulation is used and we repeat the simulation 200001 times for each entry

in the tables.

In order to study the effect of non-normality in the performance of the EWMA charts

for dispersion we used the same types of distributions as in Borror et al. (1999) and

Stoumbos and Reynolds (2000); symmetric and skewed ones. Specifically, we simulated

observations in the skewed case from the Gamma(�, =) distribution with probability
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density function

+(�;�� =) =
#


Γ(�)
��−1 exp ( =�) � � 0

0� � 0
�

Table 4.2 (continued) Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

Shift 1�6 1�8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 37.3 38.5 43.4 39.7 33.6 26.1 27.4 31.4 28.8 23.6

MRL 27 29 32 30 25 20 21 24 22 18

SDRL 33.4 32.9 36.6 33.4 29.9 22.5 22.2 25.2 22.9 20.2

G(4,1) ARL 22.4 29.8 42.1 41.9 21.9 16.1 20.6 28.2 27.5 15.5

MRL 16 22 31 31 16 12 16 21 21 11

SDRL 20.5 26.3 36.9 37.2 20.3 14.3 17.4 23.3 23.2 14.0

G(3,1) ARL 24.1 33.4 49.4 49.9 24.0 17.9 23.6 33.6 33.3 17.4

MRL 17 24 36 36 17 13 18 25 25 13

SDRL 22.4 30.1 44.0 45.4 22.7 16.3 20.6 28.6 29.0 16.0

G(2,1) ARL 25.9 37.9 59.8 62.7 26.4 19.9 27.7 42.1 42.9 19.9

MRL 18 27 43 45 19 14 20 31 31 14

SDRL 24.4 34.9 54.6 58.7 25.4 18.6 25.0 37.3 39.0 18.7

G(1,1) ARL 27.6 43.7 81.3 94.0 29.2 22.6 34.0 59.9 66.6 23.4

MRL 20 31 58 66 20 16 24 43 47 16

SDRL 26.4 41.4 77.1 91.6 28.9 21.4 31.7 55.5 63.6 22.8

G(0�5,1)ARL 28.6 47.6 108.9 157.4 31.9 24.4 39.3 83.7 113.1 26.8

MRL 20 34 76 108 22 17 28 59 78 18

SDRL 27.7 46.1 105.6 158.4 32.3 23.5 37.7 80.7 112.9 26.8

where the mean is ��= and the variance is ��=2. In the remaining of the chapter we set =

equal to unity without loss of generality. Under this condition as � increases the gamma

distribution approaches the normal. In the symmetric case we simulated observations
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from the t(�) distribution with probability density function

+(�; �) =
Γ ((� + 1) �2)

>Γ (��2)

1

((�2��) + 1)(�+1)�2
� " � " �

Table 4.2 (continued) Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

Shift 1�2 1�4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 136.7 133.4 137.7 132.0 128.8 69.1 67.0 71.1 67.6 63.5

MRL 95 94 97 93 90 49 48 51 48 45

SDRL 134.5 129.8 133.1 128.0 127.1 67.1 63.6 66.6 63.4 61.4

G(4,1) ARL 56.0 76.9 116.3 128.7 57.6 33.1 42.1 59.8 63.8 32.9

MRL 39 54 82 90 40 23 30 42 45 23

SDRL 54.9 74.7 113.1 126.5 56.8 32.0 40.1 56.7 61.2 32.0

G(3,1) ARL 53.5 75.2 118.5 133.7 55.6 33.5 43.9 65.0 70.7 34.0

MRL 37 53 83 93 39 24 31 46 50 24

SDRL 52.8 73.5 115.3 131.4 55.2 32.3 42.2 62.0 68.4 33.4

G(2,1) ARL 49.6 71.4 119.6 140.2 52.3 33.5 45.4 70.2 79.4 34.5

MRL 35 50 84 97 36 24 32 49 56 24

SDRL 48.7 69.9 116.4 138.7 51.9 32.6 44.0 67.5 77.1 34.0

G(1,1) ARL 43.6 64.0 118.1 151.0 46.8 32.5 45.4 77.7 94.6 34.3

MRL 31 45 83 105 33 23 32 55 66 24

SDRL 42.7 62.6 115.8 150.3 46.8 31.6 44.1 75.3 93.6 33.9

G(0�5,1)ARL 39.5 57.8 117.1 174.9 43.4 31.5 44.6 83.7 118.3 34.3

MRL 28 40 81 121 30 22 31 59 82 24

SDRL 38.8 57.2 115.6 175.8 43.4 30.9 43.6 82.1 118.5 34.2

where � are the degrees of freedom, the mean is 0 and the variance is ��(� 2).

The � distribution is symmetric about 0 but it has more probability in the tails than the
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normal. Moreover, as the degrees of freedom increase, the t distribution approaches the

normal.

In the simulation algorithm, the parameter values we simulated from, are �=0.5, 1,

2, 3, 4 and ==1 in the gamma case, and �= 4, 6, 8, 10, 20, 30, 40, 50 in the � distribution

case. The steps of the algorithm are the following

Step 1. Set the values of �0 and �0

Step 2. Set the values of 2 and the constants specifying the width of the control limits

(�', �� , �* , �,) and calculate the control limits.

Step 3. Generate a value from gamma(�,1) [from a t(�) distribution] and calculate

the appropriate statistic in each case.

Step 4. Repeat Step 3 until the statistic computed crosses the upper control limit

and record the sample this happens.

Step 5. Repeat Steps 3 to 4 200001 times.

Step 6. Obtain estimates of the ARL and SDRL values.

Step 7. Sort the 200001 values and set observation 100001 equal to the MRL.

Evidently, the above algorithm is used for calculating the in-control ARL, MRL and

SDRL values. For the out-of-control cases Step 3 is properly modified. In Step 1, the

in-control mean when we are in the gamma case is equal to ��= and the variance is ��=2.

When we have a � distribution the in-control mean is 0 and the variance is ��(� 2).

The values under the normal distribution are calculated also in each case for studying

the non-normality effect. The values of 2 chosen are 0.05, 0.1 and 0.2 which are the

usually chosen values for studying the non-normality effect (see e.g., Borror et al. (1999),

Stoumbos and Reynolds (2000), Reynolds and Stoumbos (2001)). The values of (�', �� ,

�* , �,) are chosen in a way that under normality they give the same in-control value

for ARL approximately 370.4. Also, in all the cases, results are displayed for asymptotic

control limits. Finally, all the out-of-control computations performed in this chapter are

made under the assumption of immediate occurrence of the shift at the beginning of the
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process.

Table 4.2 (continued) Out-of-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

Shift 1�6 1�8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 42.0 41.4 44.9 42.2 38.6 29.1 28.8 31.6 29.9 26.8

MRL 30 30 32 31 28 21 21 23 22 19

SDRL 40.0 38.1 40.9 38.3 36.7 27.1 25.7 27.7 26.2 24.7

G(4,1) ARL 22.0 26.6 36.1 37.5 21.6 15.8 18.6 24.3 24.9 15.5

MRL 16 19 26 27 15 11 14 18 18 11

SDRL 20.8 24.6 33.1 34.8 20.6 14.7 16.8 21.5 22.5 14.5

G(3,1) ARL 23.2 29.0 40.7 43.2 23.2 17.3 20.9 28.4 29.5 17.1

MRL 16 21 29 31 16 12 15 21 21 12

SDRL 22.1 27.3 37.9 40.9 22.3 16.3 19.2 25.7 27.1 16.2

G(2,1) ARL 24.5 31.6 47.0 51.4 24.9 19.1 23.9 33.8 36.2 19.1

MRL 17 22 33 36 17 14 17 24 26 14

SDRL 23.6 30.0 44.0 49.3 24.2 18.1 22.3 31.2 34.0 18.3

G(1,1) ARL 25.7 34.6 55.8 66.0 26.6 21.1 27.7 43.0 49.2 21.6

MRL 18 24 39 46 19 15 20 30 35 15

SDRL 24.9 33.5 53.3 64.8 26.2 20.4 26.5 40.7 47.5 21.1

G(0�5,1)ARL 26.4 36.2 64.6 87.2 28.1 22.6 30.6 52.0 67.6 24.1

MRL 19 25 45 61 20 16 21 37 47 17

SDRL 25.7 35.3 63.1 86.6 27.8 21.9 29.7 50.5 67.4 23.8

In Tables 4.1 through 4.4, we have the results of the EWMA charts for the dispersion

for the five different charts (EWMAS, EWMAV, EWMAH and EWMAA for �=1/2 and

�=2). We have results for three combinations of 2 and the corresponding �', �� , �*
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and �, values. In the second row of table 4.1 we have the five different �', �� , �* and

�, values, which are calculated so as to give under normality an in-control value of ARL

equal to 370.4. The same values for these � constants are used in Tables 4.2, 4.3 and

4.4 and for this reason they are not displayed. The third column (WR) in each Table

is the ARL, MRL and SDRL values for the EWMAS, the fourth column (SR) is for the

EWMAV, the fifth column (HO) is for the EWMAH and the sixth (DP1) and seventh

(DP2) columns are for the EWMAA with �=0.5 and �=2 respectively.

In Table 4.1, the results for the in-control case for the gamma distribution are dis-

played and in Table 4.3 the corresponding ones for the t distribution (ARL(0)). In Table

4.2, we have the results in the out-of-control case for the Gamma distribution and in

Table 4.4 the corresponding ones for the � distribution (ARL(1)). In each Table we have

computed additionally the ARL, MRL and SDRL values for the normal distribution to

identify the non normality effect. The shift in the out-of-control cases is in the in-control

process variance, whose value is set at the first Step of the algorithm, by multiplying it

with 1.2, 1.4, 1.6 and 1.8.

The conclusions drawn from these tables are the following. When the process is in-

control, the EWMAH chart for 2 = 0�1 has a satisfactory non normality performance.

Additionally, the EWMAA chart when � = 0�5 for 2 = 0�2 gives also results comparable

to the normal ones when we are in-control. One also concludes that the other charts

are much less efficient regarding non normality for every combination of the smoothing

parameter and the process parameters presented. Most of the times they lead to a larger

number of false alarms than the nominal. However, the EWMAH and EWMAA for

� = 0�5 can give for certain parameters, very large ARL values. As the value of � in the

gamma case and � in the �-distribution case, become larger so does the ARL and MRL

for EWMAS, EWMAV and EWMAA for � = 2. On the other hand, the ARL and MRL

values for the EWMAH and EWMAA for � = 0�5 decrease when 2 = 0�05, 2 = 0�1 and

increase for 2 = 0�2.

In the out-of-control cases, as the shift increases the non normality effect decreases.
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Table 4.3. In-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

WR SR HO DP1 DP2

N(�� �2) ARL 370.4 370.4 370.4 370.4 370.4

MRL 260 260 264 259 257

SDRL 361.3 358.1 353.6 361.8 368.3

�4 ARL 112.6 271.0 792.9 2208 147.4

MRL 79 189 549 1515 100

SDRL 110.8 267.4 787.3 2251 151.4

�6 ARL 138.6 297.8 585.2 946.5 170.9

MRL 97 209 410 653 117

SDRL 135.8 290.6 573.1 953.5 173.4

�8 ARL 165.6 318.3 589.9 695.3 195.3

MRL 117 224 412 481 134

SDRL 161.4 310.5 580.7 695.6 197.8

�10 ARL 186.0 329.9 476.8 591.8 216.2

MRL 131 231 336 411 149

SDRL 180.9 321.1 462.4 588.2 218.0

�20 ARL 252.3 352.6 416.0 456.7 276.4

MRL 178 249 292 318 192

SDRL 244.8 341.9 402.2 452.8 274.8

�30 ARL 285.8 358.8 401.2 424.1 303.1

MRL 200 252 282 296 211

SDRL 279.8 346.4 389.3 417.6 301.4

�40 ARL 302.5 361.5 390.6 409.7 319.5

MRL 213 254 275 285 222

SDRL 293.3 349.5 377.5 404.3 317.4

�50 ARL 314.9 366.4 387.7 400.8 327.6

MRL 221 256 272 279 227

SDRL 307.0 356.5 374.1 395.1 324.8
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Table 4.3 (continued) In-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

WR SR HO DP1 DP2

N(�� �2) ARL 370.4 370.4 370.4 370.4 370.4

MRL 259 257 260 259 258

SDRL 365.9 360.8 359.2 363.6 367.4

�4 ARL 97.7 187.4 441.5 882.4 116.4

MRL 68 131 307 609 80

SDRL 96.1 185.5 438.1 890.9 117.5

�6 ARL 120.9 219.9 409.6 590.9 140.1

MRL 84 153 288 410 97

SDRL 119.6 217.4 399.3 590.8 140.2

�8 ARL 145.2 247.1 400.9 508.8 163.9

MRL 101 173 279 354 114

SDRL 143.0 243.0 395.4 506.8 164.1

�10 ARL 167.7 269.7 394.1 470.4 185.0

MRL 117 189 275 326 128

SDRL 165.0 264.5 388.0 467.3 184.9

�20 ARL 233.3 316.5 380.6 412.9 250.2

MRL 163 222 267 287 173

SDRL 230.0 310.3 372.7 408.4 249.3

�30 ARL 270.6 334.3 378.3 397.1 283.2

MRL 190 234 264 277 196

SDRL 264.6 326.7 371.1 392.2 283.8

�40 ARL 291.7 341.8 375.0 390.1 301.0

MRL 205 239 262 272 210

SDRL 286.2 336.0 367.5 385.8 298.9

�50 ARL 305.1 348.1 373.9 386.9 314.3

MRL 213 243 263 269 218

SDRL 301.8 341.1 363.4 381.4 312.6
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Table 4.3 (continued) In-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

WR SR HO DP1 DP2

N(�� �2) ARL 370.4 370.4 370.4 370.4 370.4

MRL 256 257 257 259 258

SDRL 368.9 363.4 363.3 366.4 368.8

�4 ARL 86.7 130.1 238.3 383.0 96.0

MRL 60 91 166 266 67

SDRL 86.4 128.7 235.7 383.1 95.8

�6 ARL 109.2 159.2 265.3 353.8 118.0

MRL 76 111 186 245 82

SDRL 108.0 158.1 261.3 354.3 117.5

�8 ARL 131.2 187.8 283.9 349.7 140.9

MRL 91 131 198 243 98

SDRL 130.8 186.1 278.8 347.4 140.6

�10 ARL 152.1 212.3 302.6 353.4 162.0

MRL 106 148 211 246 112

SDRL 150.3 210.0 298.0 352.3 162.5

�20 ARL 220.0 275.9 332.2 361.4 229.3

MRL 154 192 232 251 159

SDRL 217.8 273.1 328.0 357.4 228.7

�30 ARL 257.1 303.7 347.4 365.5 264.7

MRL 178 212 243 255 184

SDRL 255.4 299.4 343.2 362.4 262.3

�40 ARL 279.3 321.1 351.7 365.5 285.6

MRL 195 223 245 255 198

SDRL 276.2 318.7 346.0 362.8 284.0

�50 ARL 294.7 327.3 355.1 366.1 298.9

MRL 205 228 247 254 207

SDRL 292.6 323.0 351.1 362.4 298.0
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Table 4.4. Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

Shift 1.2 1.4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 113.3 116.2 126.1 114.4 100.8 55.6 58.4 65.9 58.6 48.8

MRL 81 84 92 82 72 41 44 50 44 37

SDRL 105.5 105.1 113.1 104.5 94.2 48.2 48.5 54.2 48.7 42.5

�4 ARL 75.5 159.5 417.6 930.3 91.0 59.5 116.2 283.6 556.6 68.4

MRL 53 112 291 638 62 42 82 199 381 46

SDRL 73.6 155.8 410.6 946.7 92.9 57.7 113.1 277.1 569.0 69.6

�6 ARL 74.9 140.2 275.0 386.2 83.4 53.3 93.2 177.0 231.1 57.1

MRL 53 99 193 267 57 38 66 126 160 39

SDRL 72.0 134.5 265.4 386.8 83.8 50.9 88.0 168.2 230.8 56.5

�8 ARL 77.1 134.6 232.9 284.5 82.2 52.1 85.2 147.5 170.7 54.0

MRL 55 96 165 198 57 37 61 105 119 38

SDRL 73.8 127.8 223.4 281.8 81.8 49.4 79.2 138.0 167.2 52.6

�10 ARL 78.7 131.2 212.2 244.2 82.5 51.6 81.4 133.4 147.1 52.4

MRL 56 93 151 170 57 37 59 96 103 37

SDRL 75.2 124.4 201.6 240.1 81.3 48.5 75.3 123.4 141.9 50.9

�20 ARL 83.6 126.2 180.6 187.6 84.6 50.7 75.3 112.3 114.9 50.3

MRL 60 90 129 132 59 37 55 81 82 36

SDRL 79.1 118.1 169.5 180.7 82.1 47.0 68.1 102.0 108.1 47.5

�30 ARL 86.1 125.1 171.6 175.4 85.8 50.7 73.6 106.6 107.1 49.6

MRL 61 90 123 123 60 37 54 77 77 35

SDRL 81.2 116.9 159.2 168.4 83.2 46.7 66.1 96.1 99.9 47.0

�40 ARL 87.1 124.9 168.0 169.1 86.1 50.5 72.8 103.9 104.0 49.5

MRL 62 89 120 120 61 37 53 76 74 36

SDRL 82.2 116.2 156.1 161.0 83.2 46.8 65.0 93.5 96.8 46.7

�50 ARL 87.7 124.1 165.7 165.6 86.5 50.7 72.1 102.4 101.9 49.2

MRL 63 89 119 117 61 37 53 75 73 35

SDRL 82.5 115.3 153.6 157.5 83.2 46.6 64.6 91.8 94.5 46.0
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Table 4.4 (continued) Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�05

Shift 1.6 1.8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 34.9 37.7 43.2 38.5 30.8 25.0 27.5 32.2 28.9 22.3

MRL 27 30 34 30 24 20 22 26 23 18

SDRL 28.5 28.9 32.8 29.6 25.2 19.5 19.7 22.7 20.7 17.5

�4 ARL 50.7 95.1 220.0 397.5 57.1 45.6 81.9 183.3 311.6 50.1

MRL 36 67 155 273 39 32 58 129 213 34

SDRL 48.8 91.5 213.2 406.4 57.6 43.8 78.8 176.8 318.2 50.4

�6 ARL 43.3 72.1 133.6 166.5 45.3 37.3 60.5 110.0 132.8 38.6

MRL 31 51 95 116 31 27 44 79 93 27

SDRL 41.0 67.7 125.3 164.5 44.6 35.1 56.1 102.2 129.8 37.6

�8 ARL 40.9 65.0 109.9 124.2 41.8 34.8 53.5 90.0 99.8 35.1

MRL 29 47 79 87 29 25 39 65 70 25

SDRL 38.3 59.8 101.2 120.4 40.3 32.3 48.5 81.9 95.4 33.6

�10 ARL 39.7 61.2 99.0 107.5 39.7 33.6 50.3 81.0 86.7 33.3

MRL 29 44 71 76 28 25 37 59 62 24

SDRL 37.0 55.8 90.1 102.0 37.9 31.0 45.2 72.9 81.4 31.5

�20 ARL 37.9 55.3 83.6 84.2 37.2 31.3 44.8 67.9 68.4 30.7

MRL 28 41 61 60 27 23 33 50 49 22

SDRL 34.8 49.0 74.3 78.0 34.8 28.5 39.2 59.4 62.1 28.5

�30 ARL 37.5 53.4 79.0 79.0 36.4 30.8 43.7 64.3 63.9 30.1

MRL 27 39 58 57 26 23 32 48 47 22

SDRL 34.1 47.2 69.4 72.2 33.8 27.7 37.9 55.4 57.2 27.8

�40 ARL 37.2 52.7 77.1 76.2 36.2 30.5 43.0 62.9 61.8 29.5

MRL 27 39 57 55 26 22 32 47 45 22

SDRL 33.8 46.1 67.5 69.1 33.5 27.5 37.2 54.1 55.0 27.1

�50 ARL 37.2 52.4 76.2 75.0 36.1 30.4 42.6 61.9 60.8 29.4

MRL 27 39 56 55 26 22 32 46 45 21

SDRL 33.7 45.8 66.6 67.6 33.3 27.3 36.8 52.9 54.1 26.9
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Table 4.4 (continued) Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

Shift 1.2 1.4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 124.1 123.3 131.8 123.2 113.0 60.7 61.7 68.2 62.2 54.6

MRL 88 88 94 88 80 44 45 50 45 39

SDRL 119.8 116.6 123.5 116.2 109.1 56.3 55.6 60.7 55.6 50.5

�4 ARL 67.4 116.8 254.6 449.8 76.3 53.8 88.6 182.3 300.3 59.6

MRL 47 82 178 310 53 38 62 127 207 41

SDRL 66.0 114.7 250.4 454.0 76.7 52.5 86.9 179.2 302.4 59.6

�6 ARL 68.1 110.8 202.3 270.4 73.4 49.3 76.0 134.3 171.4 52.3

MRL 48 78 142 187 51 35 54 95 119 36

SDRL 66.3 107.6 197.1 269.9 73.5 48.0 73.0 129.5 170.6 51.7

�8 ARL 70.7 110.2 184.7 224.3 75.2 48.5 72.1 118.7 139.7 50.4

MRL 50 78 130 156 52 34 51 84 98 35

SDRL 69.1 106.5 178.6 222.0 74.2 46.7 68.8 113.3 136.8 49.4

�10 ARL 73.0 111.1 175.9 203.6 76.4 48.5 70.1 111.2 126.4 49.5

MRL 51 79 124 142 53 34 50 79 89 35

SDRL 70.9 107.2 169.2 200.5 75.6 46.7 66.6 105.4 122.7 48.3

�20 ARL 79.7 112.9 160.8 172.5 81.4 48.4 67.2 99.1 105.4 48.8

MRL 56 80 113 121 57 34 48 71 75 34

SDRL 77.2 107.9 154.0 167.5 80.0 46.1 63.1 92.9 101.1 47.0

�30 ARL 82.9 114.0 156.5 164.2 83.5 48.7 66.6 95.6 100.3 48.6

MRL 58 81 111 116 59 35 48 68 71 34

SDRL 80.5 109.1 149.4 159.0 81.4 46.1 62.4 89.3 95.7 47.0

�40 ARL 84.3 114.9 154.2 160.8 85.0 49.2 66.0 93.7 97.3 48.5

MRL 60 81 109 113 60 35 47 67 69 34

SDRL 81.2 109.9 147.1 155.3 83.0 47.0 61.9 87.3 92.6 46.9

�50 ARL 85.3 115.4 153.2 158.8 85.4 49.2 66.0 93.2 96.6 48.6

MRL 60 82 109 112 60 35 47 67 68 34

SDRL 82.6 110.4 145.2 153.8 83.7 47.1 61.9 87.0 91.7 46.8
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Table 4.4 (continued) Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�1

Shift 1.6 1.8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 37.3 38.5 43.4 39.7 33.6 26.1 27.4 31.4 28.8 23.6

MRL 27 29 32 30 25 20 21 24 22 18

SDRL 33.4 32.9 36.6 33.4 29.9 22.5 22.2 25.2 22.9 20.2

�4 ARL 46.3 73.8 145.8 229.1 50.4 41.6 64.8 124.2 189.9 45.1

MRL 33 52 102 158 35 29 46 87 131 31

SDRL 45.3 71.7 142.4 231.2 50.5 40.4 62.8 120.9 191.9 45.0

�6 ARL 40.4 59.9 102.9 127.7 42.0 35.1 51.0 85.5 103.8 36.2

MRL 28 42 73 89 29 25 36 61 72 25

SDRL 39.0 57.7 98.3 126.2 41.2 33.7 48.6 80.8 101.7 35.4

�8 ARL 38.4 55.2 89.6 103.4 39.3 32.8 46.4 73.4 84.0 33.4

MRL 27 39 64 73 28 23 33 52 59 24

SDRL 37.0 52.3 84.4 100.2 38.4 31.3 43.8 68.8 80.7 32.3

�10 ARL 37.6 52.8 82.9 92.8 38.3 31.8 44.0 67.6 75.0 32.0

MRL 27 38 59 65 27 23 32 49 53 23

SDRL 35.9 49.7 77.8 89.1 37.0 30.3 41.1 62.7 71.5 30.9

�20 ARL 36.5 49.2 72.7 77.0 36.1 30.0 40.4 59.0 62.2 29.8

MRL 26 35 52 55 26 21 29 43 44 21

SDRL 34.4 45.5 67.0 72.7 34.6 28.3 37.1 53.9 58.2 28.4

�30 ARL 36.2 48.5 70.2 73.1 35.9 29.8 39.2 56.8 59.2 29.4

MRL 26 35 51 52 25 21 28 41 42 21

SDRL 34.3 45.0 64.7 68.5 34.2 27.8 36.0 51.5 55.1 27.9

�40 ARL 36.2 47.9 68.9 71.4 35.5 29.5 38.9 55.7 57.3 29.1

MRL 26 35 50 51 25 21 28 40 41 21

SDRL 34.2 44.2 63.0 67.0 33.9 27.6 35.8 50.3 53.2 27.5

�50 ARL 35.9 47.7 68.3 70.4 35.5 29.4 38.7 55.0 56.5 28.8

MRL 26 34 49 50 25 21 28 40 41 21

SDRL 33.9 44.0 62.4 65.9 33.8 27.5 35.3 49.6 52.4 27.4
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Table 4.4 (continued) Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

Shift 1.2 1.4

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 136.7 133.4 137.7 132.0 128.8 69.1 67.0 71.1 67.6 63.5

MRL 95 94 97 93 90 49 48 51 48 45

SDRL 134.5 129.8 133.1 128.0 127.1 67.1 63.6 66.6 63.4 61.4

�4 ARL 61.2 87.0 149.0 223.9 65.8 49.4 68.1 112.3 162.1 52.7

MRL 43 61 104 155 46 35 48 79 113 37

SDRL 60.3 85.8 146.8 224.1 65.6 48.6 66.7 110.2 161.8 52.4

�6 ARL 62.7 86.3 136.7 175.8 66.0 46.2 60.9 94.3 117.5 47.9

MRL 44 60 96 122 46 32 43 66 82 33

SDRL 61.8 84.7 133.9 174.8 65.5 45.4 59.5 91.5 116.4 47.4

�8 ARL 66.1 88.8 135.1 161.9 68.8 45.9 59.5 88.3 104.7 47.3

MRL 46 62 95 113 48 32 42 62 73 33

SDRL 64.9 87.2 131.3 160.1 68.1 45.0 57.8 85.5 102.9 46.6

�10 ARL 68.8 91.0 133.8 156.3 71.5 46.2 59.5 85.7 98.4 47.1

MRL 48 64 94 109 50 32 42 61 69 33

SDRL 67.5 89.0 130.2 154.6 70.5 45.1 57.7 82.3 96.4 46.2

�20 ARL 76.9 98.1 133.6 147.4 78.0 47.2 58.9 81.5 88.9 47.5

MRL 54 69 94 103 54 33 42 58 63 33

SDRL 75.4 95.6 129.8 144.9 77.1 46.0 56.7 78.0 86.2 46.6

�30 ARL 80.6 100.7 134.1 144.6 81.0 47.9 59.0 80.1 86.6 47.9

MRL 56 70 94 101 56 34 41 57 61 34

SDRL 79.2 98.7 130.4 141.2 80.0 46.7 56.8 76.8 84.3 46.9

�40 ARL 82.4 102.2 133.9 143.1 82.6 48.0 59.0 79.4 85.7 48.2

MRL 57 72 94 100 58 34 42 56 60 34

SDRL 81.0 99.4 129.7 139.8 81.6 46.9 56.9 76.3 83.2 47.2

�50 ARL 83.4 103.5 133.9 143.3 83.9 48.4 58.9 79.3 85.3 47.9

MRL 58 73 94 100 58 34 42 56 60 34

SDRL 82.3 100.6 129.6 140.2 83.1 47.1 56.5 75.8 82.9 46.9
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Table 4.4 (continued) Out—of-control ARL, MRL and SDRL values for upward shifts 2 = 0�2

Shift 1.6 1.8

WR SR HO DP1 DP2 WR SR HO DP1 DP2

N(�� �2)ARL 42.0 41.4 44.9 42.2 38.6 29.1 28.8 31.6 29.9 26.8

MRL 30 31 32 31 28 21 21 23 22 19

SDRL 40.0 38.1 40.9 38.3 36.7 27.1 25.7 27.7 26.2 24.7

�4 ARL 42.6 57.3 92.6 130.4 45.1 38.6 51.2 80.4 111.2 40.5

MRL 30 40 65 91 31 27 36 56 77 28

SDRL 42.0 56.2 90.4 130.2 44.9 37.8 50.1 78.4 111.4 40.1

�6 ARL 38.0 49.2 73.7 90.4 39.1 33.2 42.3 62.3 75.5 33.9

MRL 27 35 52 63 27 23 30 44 53 24

SDRL 37.1 47.9 71.4 89.0 38.5 32.3 40.8 59.9 74.3 33.4

�8 ARL 36.7 46.4 67.3 79.1 37.4 31.5 39.3 55.9 65.1 31.8

MRL 26 33 47 55 26 22 28 40 46 22

SDRL 35.7 45.0 64.9 77.3 36.5 30.5 37.9 53.5 63.4 31.1

�10 ARL 36.2 45.3 64.6 73.6 36.7 30.5 38.1 53.3 60.3 30.8

MRL 26 32 46 52 26 22 27 38 42 22

SDRL 35.1 43.6 61.8 71.8 36.0 29.4 36.5 50.5 58.5 30.1

�20 ARL 35.5 43.4 59.7 65.6 35.6 29.3 35.5 48.4 52.7 29.4

MRL 25 31 43 46 25 21 25 34 37 21

SDRL 34.3 41.6 56.5 63.6 34.7 28.2 33.8 45.8 50.5 28.4

�30 ARL 35.4 43.0 58.3 63.0 35.2 29.1 35.0 46.9 50.9 29.0

MRL 25 30 41 45 25 21 25 34 36 20

SDRL 34.3 41.0 55.2 60.6 34.3 28.0 33.3 44.0 48.8 28.0

�40 ARL 35.3 42.5 57.9 62.1 35.1 29.0 34.6 46.5 50.0 28.7

MRL 25 30 41 44 25 21 25 33 36 20

SDRL 34.0 40.3 54.6 59.8 34.2 27.8 32.8 43.5 47.5 27.7

�50 ARL 35.3 42.6 57.2 61.3 35.1 28.7 34.6 46.1 49.4 28.6

MRL 25 30 41 43 25 20 25 33 35 20

SDRL 34.2 40.5 54.1 58.6 34.1 27.6 32.7 43.2 47.2 27.7
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Note that a direct comparison of the different schemes is not possible because they do

not have the same in-control ARL or MRL values. We observe that the out-of-control

ARL performance of the charts that have a good in-control one, is far from the normal.

They do not give that fast an out-of-control signal, therefore they lose the ability of the

EWMA charts to identify an out-of-control situation for small shifts quickly.

Consequently, the EWMAH and EWMAA (for �=0.5) charts are a very good choice

when normality is questionable for specific values of the smoothing parameter 2 when

our process is in-control. In the out-of-control cases they give disappointing results. The

EWMAS and EWMAA for �=2 charts are not recommended since their performance in

both in-control and out-of-control situations is far from the normal. The EWMAV chart

does not perform well for skewed distributions but in the symmetric case the results are

better for small values of 2. Generally we can say that none of the presented schemes is

robust to the normality assumption.

The research for the non-normality effect of the EWMA control charts for process

dispersion was conducted in a way for the results drawn, to hold for data coming from

any distribution without a need to know this distribution. However, in the particular

case that we know explicitly the distribution our data are coming from, we may use a

transformation of the data to the normal. Such a transformation is given in Hawkins

and Olwell (p. 163, 1998) and it has been used also by Quesenberry (1995a) and Chen

et al. (2001) in the context of EWMA charts. This transformation not only achieves

approximate normality but also independence of the resulting data.
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Multivariate control charts are a powerful tool in Statistical Process Control for iden-

tifying an out-of-control process. Woodall and Montgomery (1999) emphasized the need

for much more research in this area since most of the processes involve a large number of

variables that are correlated. As Jackson (1991) notes, any multivariate quality control

procedure should fulfill four conditions 1) Single answer to the question “Is the process in-

control?” 2) An overall probability for the event “Procedure diagnoses an out-of-control

state erroneously” must be specified 3) The relationship among the variables must be

taken into account and 4) Procedures should be available to answer the question “If the

process is out-of-control, what is the problem?”. The last question has proven to be

an interesting subject for many researchers in the last years. Woodall and Montgomery

(1999) state that although there is difficulty in interpreting the signals from multivariate

control charts more work is needed on data reduction methods and graphical techniques.
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In this chapter we present the available solutions for the problem of identification and

additionally we propose a new method based on principal components analysis (PCA),

for detecting the out-of-control variable, or variables, when a multivariate control chart

for individual observations signals. Section 5.2 describes the use of univariate control

charts for solving the above stated problem, whereas Section 5.3 gives the use of an

elliptical control region. In Section 5.4 a 6 2 decomposition is presented. Section 5.5

summarizes the methods based on principal components analysis. A presentation of the

new method, is given in the Section 5.6 with some interesting points and discussion on

the performance and application of the new method. Moreover, a comparative study

evaluates the performance of the proposed method in relation to the existing methods

that use PCA. Finally, graphical techniques that attempt to solve the problem under

investigation are presented in Section 5.7.

The use of & univariate control charts, gives a first evidence for which of the & variables

are responsible for an out-of-control signal. However, there are some problems in using

& univariate control charts in place of �2-Chart. These problems are that, the overall

probability of the mean plotting outside the control limits if we are in-control is not

controlled and the correlations among the variables are ignored. The problem of ignoring

the correlations among the variables cannot be solved. The problem of controlling the

overall probability of the mean plotting outside the control limits if we are in-control can

be solved by using & univariate control charts with Bonferroni limits.
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The use of Bonferroni control limits, was proposed by Alt (1985). Bonferroni control

limits can be used to investigate which of the & variables are responsible for an out-of-

control signal. Using the Bonferroni method the following control limits are established


�� = �� + �1−��2�
��
�

��� = �� �1−��2�
��
�
�

Thus, & individual control charts can be constructed, each with probability of the mean

plotting outside the control limits if we are in-control, equal to ��& and not �. However,

as Alt (1985) states, this does not imply that & univariate control charts should be used

in place of �2-Chart.

Hayter and Tsui (1994) extended the idea of Bonferroni type control limits by giving

a procedure for exact simultaneous control intervals for each of the variable means. The

control procedure operates as follows. For a known variance-covariance matrix Σ and

a chosen probability of the mean plotting outside the control limits if we are in-control

�, the experimenter first evaluates the critical point �	�� where R is the correlation

matrix obtained from Σ. Then, following any observation x
 = (�1� �2� ���� ��), the

experimenter constructs confidence intervals

(�� ���	��� �� + ���	��)

for each of the & variables. This procedure ensures that an overall probability of the

mean plotting outside the control limits if we are in-control � is achieved. The process

is considered to be in-control as long as each of these confidence intervals contains the
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respective standard value �0�. The process is considered to be out-of-control if any of these

confidence intervals does not contain the respective standard value �0�. The variable or

variables whose confidence intervals do not contain �0�, are identified as those responsible

for the out-of-control signal.

This procedure signals when

� = ��� �� �0� ��� � �	���

Hayter and Tsui (1994) give guidance and various tables for choosing the critical point

�	��.

The second method uses an elliptical control region. This method is discussed by Alt

(1985) and Jackson (1991) and can be applied only in the special case of two quality

characteristics.

The simplest case in multivariate statistics is when the vector x = �1
�2
has a bivariate

normal distribution, where �� is distributed normally with mean ��, standard deviation

��, 	= 1, 2 and C is the correlation coefficient between the two variables. In this case

an elliptical control region, can be constructed. This elliptical region is centered at

µ

0 = (�1� �2) and can be used in place of the �

2-chart. All points lying on the ellipse

would have the same value of �2. While, �2-Chart gives a signal every time the process

is out-of-control, the elliptical region is useful in indicating which variable led to the

out-of-control signal.

Therefore, a 100 (1 �)% elliptical control region can be constructed by applying

the following equation as given by Jackson (1991)

D =
1

1 C2
�1 �1
�1

2

+
�2 �2
�2

2
2C (�1 �1) (�2 �2)

�1�2
= �2

2�1−��
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A unique ellipse is defined for given values of �1� �2� �1� �2� C and �. Points on the

perimeter of the ellipse may be determined by setting �1 equal to some constant and

solving the resulting quadratic equation for �2.

Mader et al. (1996) presented the use of the elliptical control region for power supply

calibration.

2

The third method is the use of 6 2 decomposition, which is proposed by Mason, Tracy

and Young (1995,1997). The main idea of this method (MYT) is to decompose the 6 2

statistic into independent parts, each of which reflects the contribution of an individual

variable. This method is developed for the case of individual observations, but according

to the authors it can be applied also with a few modification for the case of rational

subgroups.

In this section we also present, the methodologies of Roy (1958), Murphy (1987), Do-

ganaksoy et al. (1991), Hawkins (1991, 1993), Timm (1996) and Runger and Montgomery

(1996), which are included in the MYT partitioning of 6 2.

6 2

Mason et al. (1995) presented the following interpretation method of an out-of-

control signal. The 6 2 statistic can be broken down or decomposed into & orthogonal

components. One form of the MYT decomposition is given by

6 2 = 6 21 + 6
2
2·1 + 6

2
3·1�2 + ���+ 6

2
�·1�2������−1 = 6

2
1 +

�−1


=1

6 2
·1�2�����
−1�

The first term of this decomposition, 6 21 , is an unconditional Hotelling’s 6
2 for the
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first variable of the observation vector x,

6 21 =
�1 �1

%1

2

�

where �1 and %1 is the mean and standard deviation of variable �1, respectively.

The general form of the other terms, referred to as conditional terms, is given as

6 2
·1�2�����
−1 =
(�
 �
·1�2�����
−1)2

%2
·1�2�����
−1
� for - = 1� 2� ���� &�

where

�
·1�2�����
−1 = �
 + b



 X

(
−1)
� X

(
−1)

andX(
−1)
� is the (- 1)�� vector excluding the -�� variable, �
 is the sample mean of the

-�� variable, b
 = [S−1xxS�x] is a (- 1)�� dimensional vector estimating the regression

coefficients of the -�� variable regressed on the first (- 1) variables,

%2
·1�2�����
−1 = %
2
� S
�xS

−1
xxS�x

and

S =
Sxx S�x

S
�x %2�

�

Consequently, the 6 2
·1�2�����
−1 value is the square, of the -�� variable adjusted by the

estimates of the mean and standard deviation of the conditional distribution of �
 given

�1� �2� ���� �
−1 and its exact distribution is as follows

6 2
·1�2�����
−1
�+ 1

�
* (1� � 1) �

Thus, this statistic can be used to check whether the -�� variable is conforming to

the relationship with other variables as established by the historical data set, since the

adjusted observation is more sensitive to changes in the covariance structure.
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The ordering of the & components is not unique and the one given above represents

only one of the possible &! different ordering of these components. Each ordering generates

the same overall 6 2 value, but provides a distinct partitioning of 6 2 into & orthogonal

terms. If we exclude redundancies, there are & 2�−1 distinct components among the

& &! possible terms that should be evaluated for potential contribution to signal.

Similarly, the & unconditional 6 2 terms based on squaring a univariate � statistic can

be computed and then be compared to the appropriate * distribution. Moreover, the

distances !� = 6
2 6 2� can be computed and also be compared to the * distribution.

The following is a sequential computational scheme that has the potential of further

reducing the computations to a reasonable number when the overall 6 2 signals, as was

proposed by Mason, Tracy and Young (1997).

Step 0: Conduct a 6 2 test with a specified nominal confidence level �. If an out-of-

control condition is signaled then continue with the step 1.

Step 1: Compute the individual 6 2 statistic for every component of the x vector.

Remove variables whose observations produce a significant 6 2� . The observations on these

variables are out of individual control and it is not necessary to check how they relate to

the other observed variables. With significant variables removed we have a reduced set

of variables. Check the subvector of the remaining � variables of a signal. If you do not

receive a signal we have located the source of the problem.

Step 2: Optional: Examine the correlation structure of the reduced set of variables.

Remove any variable having a very weak correlation (0.3 or less) with all the other

variables. The contribution of a variable that falls in this category is measured by the

6 2� component.

Step 3: If a signal remains in the subvector of � variables not deleted, compute all 6 2�·


terms. Remove from the study all pairs of variables, (��� �
), that have a significant 6 2�·
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term. This indicates that something is wrong with the bivariate relationship. When this

occurs it will further reduce the set of variables under consideration. Examine all removed

variables for the cause of the signal. Compute the 6 2 terms for the remaining subvector.

If no signal is present, the source of the problem is with the bivariate relationships and

those variables that were out of individual control.

Step 4: If the subvector of the remaining variables still contains a signal, compute

all 6 2�·
�� terms. Remove any triple, (��� �
� ��), of variables that show significant results

and check the remaining subvector for a signal.

Step 5: Continue computing the higher order terms in this fashion until there are

no variables left in the reduced set. The worst case situation is that all unique terms will

have to be computed.

Generally, the 6 2 statistic associated with an observation from a multivariate prob-

lem is a function of the residuals taken from a set of linear regressions among the various

process variables. These residuals are contained in the conditional 6 2 terms of the or-

thogonal decomposition of the statistic. Mason and Young (1999) showed that a large

residual in one of these fitted models can be due to incorrect model specification. By

improving the model specification at the time that the historical data set is constructed,

it may be possible to increase the sensitivity of the 6 2 statistic to signal detection. Also,

they showed that the resulting regression residual, can be used to improve the sensitivity

of the 6 2 statistic to small but consistent process shifts, using plots that are similar to

cause-selecting charts.

The productivity of an industrial processing unit often depends on equipment that

changes over time. These changes may not be stable, and, in many cases, may appear

to occur in stages. Although changes in the process levels within each stage may appear

insignificant, they can be substantial when monitored across the various stages. Standard

process control procedures do not perform well in the presence of these step-like changes,

especially when the observations from stage to stage are correlated. Mason et al. (1996)

present an alternative control procedure for monitoring a process under these conditions,
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which is based on a double decomposition of Hotelling’s 6 2 statistic.

The method that is presented in this subsection was proposed by Doganaksoy et al.

(1991). The main idea of this method is the use of the univariate � ranking procedure

and it is based on & unconditional 6 2 terms. The statistic used is

� =
� ���$" � ���$-

%��
1

����
+ 1

�
��

�

where � ���$" is the mean of the new sample, � ���$- is the mean of the reference sample,

%�� is the estimate of the variance of the 	�� variable from the reference sample, ��$" is

the size of the new sample and ��$- is the size of the reference sample. The steps of this

algorithm are the following

Step 1: Conduct a 6 2 test with a specified nominal significance level �. If an out-

of-control condition is signalled then continue with step 2.

Step 2: For each variable calculate the smallest significance level ���. that would yield

an individual confidence interval for (����$- ����$") that contains zero, where ����$" and

����$- are the mean vectors of the populations from which the reference and new samples

are drawn, respectively. For this ���., let � be the calculated value of the univariate

� statistic for a variable and 6 (�� �) be the cumulative distribution function of the �

distribution with � degrees of freedom. Then ���. = [26 (�;��$- 1) 1].

Step 3: Plot ���. for each variable on a 0-1 scale. Note that variables with larger

���. values are the ones with relatively larger univariate � statistic values which require

closer investigation as possible being among those components which have undergone a

change. If indications of highly suspect variables are desired then continue.

Step 4: Compute the confidence interval �#/�- that yields the desired nominal
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confidence interval ���� of the Bonferroni type simultaneous confidence intervals for

����$- ����$". Here, �
#/�- = [(&+ ���� 1) �&].

Step 5: Components having ���. � �#/�- are classified as being those which are most

likely to have changed.

Furthermore, the authors give guidance for the choice of the ����.

This method is proposed by Murphy (1987). It is a subcase of the 6 2 decomposition

method, which was proposed by Mason et al. (1995) and stems from the field of discrim-

inant analysis. It uses the overall 6 2 value and compares it to a 6 2∗ value based on a

subset of variables.

The diagnostic approach is triggered by an out-of-control signal from a 6 2-Chart.

Murphy (1987) partitioned the sample mean vector x into two subvectors x∗1 and x∗2,

where the &1 dimensional vector x∗1 is the subset of the & = &1 + &2 variables, which is

suspect for the out-of-control signal. Then

6 2� = � (x µ0)

Σ−10 (x µ0)

is the full squared distance and

6 2∗ = � (x∗1 µ01)

Σ−101 (x∗1 µ01)

is the reduced distance corresponding to the subset of the & variables that is suspect for

the out-of-control signal.

Finally, the following difference is calculated

! = 6 2� 6 2∗ �
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It is proved that, under the null hypothesis, ! follows a Chi-Square distribution with

&1 degrees of freedom and the subvector x∗1 follows a &1-dimensional distribution with

mean µ01 and variance-covariance matrix Σ01. Murphy (1987) gave a forward selection

algorithm.

The steps of this algorithm are the following; For each x = �1� ���� �� ,

Step 1: Conduct a 6 2 test with a specified nominal significance level �. If an out-

of-control condition is signalled then continue with step 2.

Step 2: Calculate the & individual 6 21 (��), equivalent to looking at & individual

charts, and calculate the & differences!�−1(	) = 6 2� 6 21 (��) . Choose the�	� (!�−1(	)) =

!�−1(�) and test this minimum difference.

If !�−1(�) is not significant then the ��� variable only requires attention.

If !�−1(�) is significant then continue with step 3.

Step 3: Calculate the & 1 differences !�−2(�� -) = 6 2� 6 22 (��� �
) , 1 �, - &

and � = -. Choose the �	� (!�−2(�� -)) = !�−2(�� %) and test this minimum difference.

If!�−2(�� %) is not significant then the ��� and the %�� variables only require attention.

If !�−2(�� %) is significant then continue with step 4.

Step 4:Similar to step 3.

Step .:Similar to steps 3,4.

Step p: If the final !�−(�−1) test is significant then all & variables will require atten-

tion.

Murphy (1987) recommends that in tests of !�−� �2
�−� a significance level in the

interval 0�1 � 0�2 be used. From a practical point of view the applicability of this

approach is severely limited when the number of quality or process variables is moderately

large.
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The method that is presented in this subsection was proposed by Chua and Mont-

gomery (1992). This method, like the method of Murphy (1987), uses the overall 6 2

value and compares it to a 6 2∗ value based on a subset of variables. It is quite similar to

Murphy’s method, but uses a backward selection algorithm (7� ). The operations of

the control scheme can be described as follows;

1) A multivariate observation is fed into the multivariate EWMA control chart.

2) If the observation is in-control, the control operation loops back to the beginning

and checks the next observation. Otherwise, it checks the number of process variables.

3) If the number of process variables is greater than five, bypass the 7� and use

the hyper-plane method directly. Otherwise, feed the observation into 7� .

4) The BSA will select the out-of-control variable set and feed it into the hyper-plane

method.

5) The hyper-plane method will generate the necessary elliptical control charts for

diagnosis.

6) Based on the diagnosis, corrective actions are then taken and the control operation

loops back to the beginning and checks for the next observation.

Chua and Montgomery (1992) describe all the needed actions for the application of

their method. The algorithm divides the & variables into two subsets of size &1 and &2,

where &1 + &2 = &. Also, the sample covariance matrix is divided into two parts with &1

and &2 variables respectively. For all the & variables the 6 2� is calculated. Similarly, for

the &1 variables the 6 2�1 is calculated. Then a difference value ! = 6
2
� 6 2�1 is calculated,

which is distributed as a Chi-Square distribution with &2 degrees of freedom.

The steps of this algorithm are the following; For each x = �1� ���� �� ,

Step 1: Conduct a 6 2 test with a specified nominal confidence level �. If an out-of-

control condition is signalled then continue with step 2.

Step 2: Perform 6 2�−1 tests and calculate the differences !�−1=6 2� -6
2
�−1. If !�−1
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is not significant then the union of variable sets for all sets which are denoted as not

significant is the new criterion. If !�−1(�) is significant then keep the criterion from step

1, denote the �	� (!�−1) = !(&) and continue to the next step.

Step 3: Perform 6 2�−2 tests and calculate the differences !�−2=6 2� -6
2
�−2. If !�−2

is not significant then the union of variable sets for all sets which are denoted as not

significant is the new criterion. If !�−2 is significant then keep the criterion from step 2,

denote the �	� (!�−2) = !(& 1) and continue to the next step.

Step 4: Similar to step 3.

Step .: Similar to step 3, 4.

Step p: Perform 6 21 tests and calculate the differences !1=6
2
� -6

2
1 . If !1 is not

significant then the union of variable sets for all sets which are denoted as not significant

is the new criterion. If !1 is significant then keep the criterion from step p-1, denote the

�	� (!1) = !(1) and continue to the next step.

Step p+1: If all the tests from steps 2 to p are significant, exit. All & variables are

out-of-control. If !(	) !(-), where 	 " -, 	 = 1� 2� ���� & 1, and - = 	+1� ���� & and the

variable set for !(	) is a subset of the variable set for !(-), then the variable set for !(	)

is the out-of-control variable set. Otherwise, increment 	 by 1 and repeat the condition

check.

The hyper-plane method is an extension of the elliptical control chart. Chua and

Montgomery (1992) present the hyper-plane method graphically. The mathematical

background of the hyper-ellipsoid method follows.

The equation for the hyper-ellipsoid control region is (x x)S−1(x x) = 6 21−�. Obvi-

ously, if the left-hand side of the equation is less than 6 21−�, the observation will be inside

the hyper-ellipsoid, and thus in-control. On the other-hand, if it is greater than 6 21−�,

the observation will be outside the hyper-ellipsoid, and thus out-of-control.

Moreover, the vector equation of a hyper-plane is d (x b) = 0, where d is the

direction vector of the hyperplane, x is the observation which lies in the hyperplane. In

order to obtain a hyperplane which has a direction vector parallel to one of the co-ordinate
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axes, it is necessary that the direction vector d be d
 = (0� 0� ���� 	� 0� 0� 0), where 	 = 1

denotes the desired co-ordinate axis. To cut the hyper-ellipsoid with the hyperplane, it

is equivalent to solve the p-1 simultaneous equations

(x x)
S−1(x x) = 6 21−�

d(x b) = 0

for 	 = 1� 2� 3� ���� &, excluding the two targeted control variables.

After the substitution, the remaining equation is a second-degree polynomial equation

with two unknown variables. In fact, the idea here is to reduce the & 1 simultaneous

equations into a second-degree polynomial equation. Then the polynomial equation is

diagonalized, so that the cross-product term is eliminated. The remaining equation is

further reduced to the standard equation of an ellipse by completing the squares. Under

normal conditions, the hyperplane method will provide &(& 1)�2 elliptical control charts.

Another method based on the 6 2 is the step-down procedure of Roy (1958). It assumes

that there is an a priori ordering among the means of the & variables and it sequentially

tests subsets using this ordering to determine the sequence. The test statistic has the

form

*
 =
6 2
 6 2
−1

1 + 6 2
−1� (� 1)
�

where the 6 2
 represents the unconditional 6
2 for the first - variables in the chosen group.

In the setting of a multivariate control chart, *
 would be the charting statistic, which

under the null has the following distribution

(�- 1) -

�- -
* (&
� �- -) �

This procedure can be considered as an alternative to the regular 6 2 chart and not

122



only as supplement. Moreover, it can be shown that the enumerator of *
 is a conditional

6 2 value

6 2
 6 2
−1 = 6
·1�2�����
−1�

Another method based on the 6 2 is the step-down procedure of Timm (1996), using

Finite Intersections Tests (*E6 ). It assumes that there is an a priori ordering among the

means of the & variables and it sequentially tests subsets using this ordering to determine

the sequence.

Although 6 2 is optimal for finding a general shift in the mean vector, it is not optimal

for shifts that occur for some subset of variables, a variable a time. Timm (1996) states

that when this occurs, the optimal procedure is to utilize a finite intersection test.

A process is in-control if each hypothesis

.� : �� = �0�� 	 = 1� 2� ���� &

or equivalently the intersection of the .�

.0 :

�

�=1

.�

is simultaneously true, where �� is the mean of the 	�� variable. To test each hypothesis,

we may use the FIT procedure. To construct a FIT of .0, we may define a likelihood

ratio test statistic for each elementary hypothesis .� and determine the joint distribution

of the test statistics. Let the test statistics be defined as

�2� =
(�� �0�)

2

���
�

The joint distribution of �2� follows a non-central multivariate �
2 distribution with 1

degree of freedom. The known variance-covariance matrix Σ = �2Ω, where Ω = [&�
] is
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the correlation matrix of the accompanying multivariate normal. A multivariate quality

control process is in-control if �2� " �
2
��1−� where ' (�

2
� " �

2
��1−��.0) = 1 � and �2

��1−�

is the 1 � percentage value of the multivariate�2 distribution with 1 degree of freedom.

The process is out-of-control if����2� � �
2
��1−�, where ' (����

2
� � �

2
��1−�) = �� Since a

non-central multivariate �2 distribution with 1 degree of freedom is a special case of the

multivariate � distribution with infinite degrees of freedom, the process may alternatively

be judged as out-of-control if ' (��� 6� = �� �0� � ��� � 6
2
��1−�) = �. Hence,

' ( 6� 6 2��1−��.0) = 1 ��

The 1 � level simultaneous confidence sets are easily established for each variable

�� 6 2��1−� ��� �� �� + 6
2
��1−� ���

The process is said to be out-of-control if the confidence sets �� do not contain �0�

for 	 = 1� 2� ���� &. Timm (1996) gave a step down FIT procedure for the case that the

variance-covariance matrix Σ is unknown.

The contribution of a variable to a control signal can be measured by the minimum

value of the chi-squared statistic that can be obtained by changing a single variable.

Variables that incur large changes are important to the signal. Runger et al. (1996)

propose the following diagnostics.

Let x be the & dimensional vector of an observation, with known mean vector 0 and

known variance-covariance matrix Σ. Let e� be the unit vector in the direction of the 	��

coordinate axis. To measure the contribution of �� to �2, we determine �� to minimize

x
��e�

e
�Σ
−1e�




Σ−1 x
��e�

e
�Σ
−1e�
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The expression e
�Σ
−1e� is a scale factor that is used so that �� can be interpreted as a

measure of Euclidean distance. This is discussed further below. If �� is large relative

to the others ��’s, then a large modification to �� is required to minimize �2 and this

indicates that �� is an important contributor to �2.

Also, let

z = Σ−1�2x (5.1)

and

v� = Σ−1�2
e�

e
�Σ
−1e�

�

Then, v� is a unit vector in the direction Σ−1�2e�. Now, (5.1) can be written as

(z ��v�)

(z ��v�)

and �� is interpreted as the Euclidean distance along the unit vector v� that minimizes

�2. The value of �� that minimizes (5.1) can be determined as the slope of the regression

of z on v�. Therefore,

�� = v


�z =

e
�Σ
−1x

e
�Σ
−1e�

and obviously �� is proportional to e
�Σ
−1x.

Interestingly, �� equals the recommended control statistic to detect a shift of the

process mean along the vector e� as described by Healy (1987), Pignatiello and Runger

(1990), and Hawkins (1993). A simple multivariate control is to compare the relative

magnitudes of �2� for 	 = 1� 2� 3� ���� &. If �
2
� is large, the conclusion is that the component

measurement �� is distant from the bulk of the historical data and �� is a primarily

contributor to �2. Geometrically, �2� is the length of the orthogonal projection of the

vector z onto v�. That is

�2� = P�z �

where the orthogonal projection matrix onto the vector v� is denoted as P�. The geo-
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metric analogies are facilitated by considering Z and �� because, after transforming to

these variables, �2 is just the squared Euclidean distance of Z from the zero vector.

A second approach to the problem is the following. Consider the minimum value of

�2 that is obtained when �� is changed by ��. Define

�2
� = x

��e�

e
�Σ
−1e�




Σ−1 x
��e�

e
�Σ
−1e�

= (z ��v�)

(z ��v�)� (5.2)

Then, (5.2) can be interpreted as the residual sum of squares in a regression model.

Therefore,

�2
� = z


(I P�)z = z

z z
v�v



�z = z


z �2� � (5.3)

Thus, �� is a major contributor to �2, if the value of �2 can be substantially reduced

by a modification to ��. Consequently, if the metric !� = �
2 �2

� is large then �� is

a major contributor to �2. Since �2 = x

�
Σ−1x

�
= z
z and because of relation (5.3) we

have that !� = �
2
� therefore the metric !� is equivalent to �2� . Finally, a third approach to

develop a diagnostic is the union-intersection principle of multivariate hypothesis tests.

Wade and Woodall (1993) consider a two step process in which the steps are not

independent. The first step of a cause-selecting control chart is to chart variable �1 (first

step of the process) and then monitor the outgoing quality�2 (second step of the process)

after adjusting for the incoming quality. This method uses a relation between �2 and

�1, where a simple regression model appears to be very useful. To be more precise, a

chart for �1 and a chart for � = �2 �2, where �2 is the estimate for �2 based on the

regression line, are used. Thus, the ��’s are independent normal random variables if �1

and �2 are normally distributed variables. If controllable assignable causes are present

in the process the distribution of ��’s shifts from normality for some values of 	.
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Hawkins (1991, 1993), as we have already mentioned, defined a set of regression-

adjusted variables in which each variable was regressed on all others. In a first approach

Hawkins defined the set of regression-adjusted variables using the vector Z = Σ−1 (X µ).

If we replace µ and Σ with their sample estimates and expanding the left-hand side of

the previous relation Hawkins showed that the -�� component of Z is equal to

�
 =
6
·1�2�����
−1�
+1�����0
%
·1�2�����
−1�
+1�����0

�

Then, �
 is the standardized residual when the -�� variable is regressed on the remaining

& 1 variables in X. This regression statistic is useful in the interpretation of a 6 2 signal

because its value is directly connected with the value of the 6 2 statistic although it is

only one of the several different conditional 6 2 values.

An additional approach presented by Hawkins is based on the decomposition of the

6 2
 statistics, using the standardized residuals from the -�� variable on the first - 1

variables. This is defined by Y = C (X µ) where C is the Cholesky lower triangular

root of Σ−1. The -�� component of vector Y is given by

)
 =
6
·1�2�����
−1
%
·1�2�����
−1

As in the first approach )
 is one of the conditional 6 2 values.

Sepuldveda and Nachlas (1997) presented a new control chart. This chart is called

the Minimax control chart because it is based on monitoring the maximum standardized

sample mean and the minimum standardized sample mean of samples taken from a

multivariate process. It is assumed that the data are normally distributed and that the

variance-covariance matrix is known and constant over time.
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Samples of size � are taken from a &-dimensional process. The process is assumed to

have sudden shifts in the mean such that the new mean �1�, 	 = 1� 2� ���� &, for the 	��

changing variable is given by �1� = �0� + 3��0� and consequently 3� = (�1� �0�)��0�.

Whenever 3� = 0, the process is said to be in-control. To decide whether the process is

in-control or not, the minimax control chart is used as a method to test in each sample

.0 : δ = 0 against .1 : δ = 0.

The principal idea behind the minimax control chart is to standardize all & means

and to monitor the maximum ��� and the minimum ��� of those standardized sample

means. Note that Timm (1996) monitors only the maximum. Let

��� = min(��)� 	 = 1� 2� 3� ���� &

��� = max(��)� 	 = 1� 2� 3� ���� &�

where

�� =
�� �0�
���� �

�

Therefore, by monitoring the maximum and the minimum standardized sample mean, an

out-of-control signal is directly connected with the corresponding out-of-control variable.

Sepuldveda and Nachlas (1997), also discussed the statistical properties and the  ��

performance of the minimax control chart.

Another method used for the identification problem is principal components analysis

(PCA). This method was first proposed by Jackson (1991) and further discussed later by

Pignatiello and Runger (1990), Kourti and MacGregor (1996). A & & symmetric, non-

singular matrix, such as the variance-covariance matrix Σ, may be reduced to a diagonal

matrix L by premultiplying and postmultiplying it by a particular orthonormal matrixU

such thatU|ΣU = L. The diagonal elements of L, @1� @2� ���� @� are the characteristic roots,
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or eigenvalues of Σ. The columns of U are the characteristic vectors, or eigenvectors of

Σ. Based on the previous result the method of PCA was developed (see e.g., Jackson

(1991)). The PCA transforms & correlated variables �1� �2� ���� �� into & new uncorrelated

ones. The main advantage of this method is the reduction of dimensionality. Since the

first two or three PCs usually explain the majority of the variability in a process, they

can be used for interpretation purposes instead of the whole set of variables.

Principal components can be used to investigate which of the & variables in a mul-

tivariate control chart are responsible for an out-of-control signal. The most common

practice is to use the first � most significant principal components, if a 6 2 control chart

gives an out-of-control signal, for further investigation.

The basic idea is that the first � principal components can be physically interpreted,

and named. Consequently, if the 6 2 chart gives an out-of-control signal and, for example,

the second principal component chart also gives an out-of-control signal, then from the

interpretation of this component, a direction to the variables which are suspect to be

out-of-control can be deduced (Jackson (1991)).

The practice just mentioned transforms and considers the variables as a set of at-

tributes. The discovery of the assignable cause of the problem, with this method, de-

mands a further knowledge of the process itself, from the practitioner. The basic problem

is that the principal components do not always have a physical interpretation.

As we already said one of the ways to use PCA in the problem under question is

to chart them. However, if the components are not easily interpreted the problem re-

mains. Tracy et al. (1995) expanded previous work and provided an interesting bivariate

setting in which the principal components have meaningful interpretations. When mon-

itoring a process with paired measurements (for example two testing laboratories) on
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a single sample, the principal components of the correlation matrix actually represent

the characteristics of interest for process control. The correlation coefficient between the

original variables is the only additional information needed to describe the condition of

the process.

Kourti and MacGregor (1996) provided a newer approach based on principal compo-

nents analysis. The 6 2 statistic is expressed in terms of normalized principal components

scores of the multinormal variables. When an out-of-control signal is received, the nor-

malized scores with high values are detected, and contribution plots are used to find

the variables responsible for the signal. A contribution plot indicates how each variable

involved in the calculation of that score contributes to it. The computation of variable

contributions showed that principal components can actually have physical interpreta-

tion. This approach is particularly applicable to large ill-conditioned data sets, due to

the use of principal components.

Let x�= (�1�� �2�� ���� ���)
| denote the observation (vector) 	 for the & variables of a

process. Assume that x� follows a &-dimensional normal distribution $�(µ0�Σ0), where

µ0 is the vector (& 1) of known means and Σ0 is the known (& &) variance-covariance

matrix. We want to keep this process under control. For this purpose we use a �2

control chart given by the formula �2
� = (x� µ0)

|Σ−10 (x� µ0). If the value of this

statistic plots above �2
��1−�we get an out-of-control signal, where �

2
��1−� is the chi-square

distribution with & degrees of freedom and � is the probability of plotting outside the

control limits if we are in-control. The next problem is to detect which variable is the

one that caused the problem.

The typical form of a PCA model is the following: �� = (1��1+(2��2+(3��3+ ���+
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(����, where �� is the � PC, ((1�� (2�� (3�� ���� (��)| is the corresponding � eigenvector

and �1� ���� �� are the process variables. The score for vector x� in PC � is )�� =

(1��1� + (2��2� + ��� + (�����. Assuming that the process variables follow a multivariate

normal distribution the PCs are also normally distributed.

Our purpose is to use PCA, when we have an out-of-control signal in the �2 control

chart, to identify the variable or variables that are responsible. For this objective two

different methodologies are developed one for the case that the covariance matrix has

only positive correlations and the second one for the case that we have both positive and

negative ones (Maravelakis, Bersimis, Panaretos, Psarakis (2002)).

Assume that using one of the existing methods for choosing PCs (see, e.g. Jackson

(1991)), Runger and Alt (1996)) we choose � & significant PCs. The proposed method

in this case is based on ratios of the form

��� =
((�1 + (�2 + ���+ (�.)���
)1� + )2� + ���+ ).�

� (5.4)

where ��� is the 	�� value of variable ��, )
�, - = 1� ��� � is the score of the 	�� vector of

observations in the -�� PC (Bersimis (2001)). In this ratio, the numerator corresponds

to the sum of the contributions of variable �� in the first � PCs in observation (vector)

	, whereas the denominator is the sum of scores of observation (vector) 	 in the first �

PCs. Since we have assumed that the variables follow a multivariate normal distribution

the ratios are ratios of two correlated normal variables.

The rationale of this method is to compute the impact of each of the & variables on

the out-of-control signal by using its contribution to the total score. It is obvious that

the use of only the first � PCs excludes pieces of information. However, a multivariate

chart is used when there is at least moderate and usually large correlation between the

variables. Under such circumstances the first � PCs account for the largest part of the
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process variability. The main disadvantage of using PCs in process control, as reported

by many authors (see e.g., Runger and Alt (1996), Kourti and McGregor (1996)), is the

lack of physical interpretation. The proposed method eliminates much of that criticism.

Since we have a ratio of two correlated normals its distribution can be computed using

the analytical result of Hinkley (1969). Specifically, if �1� �2 are normally distributed

random variables with means ��� variances �
2
� and correlation coefficient C the distribution

function of � = �1��2 is given by the formula

* (�) = �
�1 �2�

�1�2�(�)
;
�2
�2
;
�2� C�1
�1�2�(�)

+ �
�2� �1
�1�2�(�)

;
�2
�2
;
�2� C�1
�1�2�(�)

� (5.5)

where �(�; �; ?) = 1

2+ 1− 2
∞
�

∞
�
exp �2−2 �1+12

2(1− 2) ���/ is the standard bivariate nor-

mal integral.

However, the proposed method has a correlation problem since the ratios of different

variables are interrelated. A simulation study presented in Section 5�6�4 is implemented

to test the effect on the performance of the proposed procedure. In the following we

present the method as a stepwise procedure.

Step 1. Calculate the �2 statistic for the incoming observation. If we get an

out-of-control signal continue with Step 2.

Step 2. Calculate ratios for all the variables using relation (5�4). Calculate as

many ratios for each variable as the number of observations from the beginning

of the process. If the proposed process is not used for the first time, calculate as

many ratios for each variable, as the number of observations from the last out-of-

control signal till the out-of-control signal we end up with in Step 1. Alternatively,

calculate ratios for only the (last) observation that caused the out-of-control signal

(see Section 5�6�4).

Step 3. Plot the ratios for each variable in a control chart. Compute the � and

1 � percentage points of distribution (5�5) with suitable parameters and use them
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as lower control limit (LCL) and upper control limit (UCL), respectively.

Step 4. Observe which variable, or variables, issue an out-of-control signal

Step 5. Fix the problem and continue with Step 1.

In the case where all the variables are positively correlated as Jackson (1991) indicates,

the first PC is a weighted average of all the variables. Consequently, we can use only this

PC for inferential purposes.

In this case we propose the computation of ratios of the form

�∗�� =
((�1 + (�2 + ���+ (�.)���

) 1 + ) 2 + ���+ ) .

� (5.6)

where ��� is the 	�� value of variable �� and ) 
, - = 1� ���� � is the score of the -�� PC

using, in place of each ��, their in-control values. The subscript � stands for the number

of significant principal components as in the preceding case.

These ratios are the sum of the contributions of variable �� in the first � PCs in

observation (vector) 	, divided by the sum of the in-control scores of the first � PCs.

Since the denominator of this statistic is constant we actually compute the effect of each

of the & variables on the out-of-control signal. The numerator of the ratios is normally

distributed, as already stated, whereas the denominator is just a constant. Therefore the

ratios (5�6) are normally distributed.

Since the variables are correlated the statistic proposed in (5�6) for the � different

variables may exhibit a correlation problem. As in the previous case a simulation study

is presented in Section 5�6�4 to test for the effect of the correlation on the control limits

performance of the proposed procedure. The proposed method in steps is as follows:

Step 1. Calculate the �2 statistic for the incoming observation. If we get an

out-of-control signal continue with Step 2.
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Step 2. Calculate ratios for all the variables using relation (5�6). Calculate as

many ratios for each variable as the number of observations from the beginning

of the process. If the proposed process is not used for the first time, calculate as

many ratios for each variable, as the number of observations from the last out-of-

control signal till the out-of-control signal we end up with in Step 1. Alternatively,

calculate ratios for only the (last) observation that caused the out-of-control signal

(see Section 5�6�4).

Step 3. Plot the ratios for each variable in a control chart. Compute the � and

1 � percentage points of the normal distribution with suitable parameters and

use them as LCL and UCL, respectively.

Step 4. Observe which variable, or variables, issue an out-of-control signal

Step 5. Fix the problem and continue with Step 1.

We have to mention that this procedure can not be applied when we have standardized

values since the denominator of the ratios in (5�6) equals zero.

Two examples, one for each case are presented in the sequel.

Example 1. Assume that we have a process with known covariance matrix

100

70 100

80 80 100

75 85 75 100

75 80 80 80 100

75 72 75 75 75 100
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and in-control vector of means (100� 100� 100� 100� 100� 100)|. We simulated 40 in-control

observations from a multivariate normal distribution with the preceding parameters.

Then, we simulated out-of-control ones with the same covariance matrix but now with

vector of means (100� 115� 100� 85� 100� 100)|, until we get an out-of-control signal in the

�2 test. The shift is 1�5� in the means of variables 2 and 4. We get a signal on the first

out-of-control observation and we plot each of the variables in a control chart (Figure

5�1) with the control limits from distribution (5�5) using � = 0�05. Note that we used

the average root method for simplicity and we ended up with one significant principal

component (see, e.g. Jackson (1991)). It is obvious from Figure 5.1 that the out-of-control

variables were identified and additionally the direction of the shift was also revealed.

Figure 5�1. Control charts for positive covariance matrix
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Example 2. Assume that we have a process with known covariance matrix

100

70 100

80 80 100

75 85 75 100

75 80 80 80 100

75 72 75 75 75 100

and in-control vector of means (100� 100� 100� 100� 100� 100)|. We simulated 40 in-control

observations from a multivariate normal distribution with the same parameters as in the

previous example. Then, we simulated out-of-control ones with vector of means

Figure 5�2. Control charts for positive negative covariance matrix
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(100� 115� 100� 85� 100� 100)|, the same covariance matrix till we get an out-of-control
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signal in the �2 test. The shift is again 1�5� in the means of variables 2 and 4. We plot

each of the variables in a control chart (Figure 5�2) with the control limits from a normal

distribution using � = 0�05. As in example 1, we have one significant PC using the

average root method again (see, e.g. Jackson (1991)). We have to indicate that in Figure

5�2 the ratios are standardized and the control limits are properly modified. However, it

is not necessary to do this when using this technique. From Figure 5�2, we deduce that

the out-of-control variables were identified but the direction of the shift was not.

One may observe that the ratios in both methods are interrelated. This fact may

affect the control limits of the charts. In order to examine this possible correlation we

performed a simulation study. In particular, we simulated 100000 in-control ratios from

the known covariance matrices and vector of means of the two examples and we computed

the theoretical control limits as proposed in Section 5�6�3 with � = 0�05. Then, we checked

if each ratio is in or out of these limits and recorded it. We used this information in order

to approximate the probability of plotting outside the control limits if we are in-control

of our limits and compare it with the theoretical one. The results are presented in Table

5�1.

Table 5�1. Probability of plotting outside the control limits if we are in-control

Variable 1 2 3 4 5 6

example 1 5040 5006 5007 4968 5000 5096

example 2 4941 4983 4898 4882 4906 5005

It should be noted that although the two examples are specific cases, a large number of

other cases revealed the same performance. Consequently, we may draw the conclusion

that the interrelation does not affect either of the proposed processes. However, we

have to point out that after careful examination the procedure proposed for positive
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correlations can be used only when we have positive values for the in-control means. If

a process does not have positive in-control means, which is a rare event, we may use

instead the statistic (5�6) that is not affected in any case.

Another point which has to be checked is the performance of the processes in iden-

tifying the out-of-control variables and the direction of the shift. For this purpose a

simulation study was conducted. Using the covariance matrices and the in-control means

of the examples we computed in each case the theoretical control limits. Then, we simu-

lated observations from the out-of-control mean vector used in the examples until we got

a signal from the �2 test using � = 0�05. Next, we computed the ratios for each variable

and plotted them in a chart with the corresponding control limits. We checked each ratio

if it is in or out of the control limits for every variable and recorded which variable, or

variables, have given an out-of-control signal and in which direction. We repeated the

whole process 10000 times and the results are presented in Tables 5�2 and 5�3. In the

first row of the tables (U), we have the number of times the generated ratios crossed the

UCL for each of the variables, in the second row (L) we have the corresponding number

of times the generated ratios crossed the LCL for each of the variables and in the last line

(Total) we have the number of times the generated ratios crossed UCL or LCL for each of

the variables. One may observe that in some variables there is an inconsistency, since the

sum of rows U and L does not equal the total. This happens because in one iteration we

may generate more than one observations (vectors) until we get an out-of-control signal

in the �2 test -although this test is sensitive for such shifts- and after computing the

ratios for each variable it is possible that for one variable the first ratio crosses UCL and

the second ratio crosses LCL. Therefore, we record one value in row U and one in row L

but only one in row total.
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Table 5�2. Out of control performance for example 1

Variable 1 2 3 4 5 6

U 283 9371 228 0 275 233

L 240 0 299 9429 231 245

Total 523 9371 527 9429 506 478

From Table 5�2, we observe that the statistic used is very informative since it is able

to detect the out-of-control variables with very high precision and also to identify the

direction of the shift with absolute success. This kind of behavior is similar in other

examples also, keeping in mind the limitation about the positive in-control means. Note

also that the total times the other variables gave a false signal almost coincides with the

type I error rate of the constructed limits.

Table 5�3. Out of control performance for example 2

Variable 1 2 3 4 5 6

U 364 1 357 2 366 350

L 353 4627 394 4603 357 371

Total 715 4628 748 4605 717 720

In Table 5�3, we see that the statistic used detected the out-of-control situation but

not with the same degree of success as in the previous case. Moreover, the direction

of the shift was not identified. The false alarm rate of the in-control variables is not

significantly different from the theoretical one.

We already said that the �2 test is sensitive in the sense that it gives a quick signal

when we have out-of-control observations. In order to examine the ability of the last

generated observation (the one that gives the signal on the �2 test) to identify the

shifted variable we checked their performance on the previous simulation study. The

results are displayed in Tables 5�4 and 5�5.

139



Table 5�4. Out of control performance of the last observation for example 1

Variable 1 2 3 4 5 6

U 283 9370 228 0 275 233

L 240 0 299 9429 231 245

Total 523 9370 527 9429 506 478

From Table 5�4, we conclude that the performance of the statistic (5�4) is almost

totally explained by the ratios of the last observation meaning that the ratios of the

last observation are sufficient to draw a conclusion about the out-of-control variable. On

the other hand, from Table 5�5 we observe that this does not happen for the statistic

(5�6). One may argue that since the �2 test is sensitive we produce a small number of

observations in each iteration hence the performance in both cases is a result of this fact.

When we have small shifts, where we produce more observations, the last observation is

not that informative.

Table 5�5. Out of control performance of the last observation for example 2

Variable 1 2 3 4 5 6

U 333 1 316 2 324 315

L 312 4279 343 4251 310 333

Total 645 4280 659 4253 634 648

The proposed procedures are valid under the assumption of known variance-covariance

matrix. However, this is not a case usually met in practice. Tracy et al. (1992) exam-

ined the performance of multivariate control charts for individual observations when the

covariance matrix is known and unknown. They showed that the test statistics used in

either case perform the same for a number of observations that depends on the variables

involved. This number of observations is small enough, for instance when we have five

variables we need 100 observations (vectors) for the two statistics to give a close number.
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As Woodall and Montgomery (1999) note in today’s industry we have huge data sets

therefore such a number of observations should not be a problem. From this number of

observations we estimate the mean vector and the covariance matrix used in our process.

Although the control limits computed using the procedures developed in subsections

5.6.1 and 5.6.2 will not be exact under the estimation process, we expect them to have a

satisfactory performance if we use the required number of observations.

As we already stated in section 5.5, the competitive methods that use principal com-

ponents for the specific problem are Jackson’s (1991), Tracy et al.’s (1995) and Kourti

and MacGregor’s (1996). Kourti and MacGregor (1996) provide an improved method in

relation to Jackson’s (1991) and Tracy et al. (1995) have the disadvantage that their

method is applied to a bivariate case. Therefore, the rival of the proposed method is the

one by Kourti and MacGregor (1996).

In order to check the performance of the two antagonistic methods we perform a

simulation study. We apply the method of Kourti and MacGregor (1996) in the data

of examples 1 and 2 of Section 5.6.3. As Kourti and MacGregor (1996) propose, we

use Bonferroni limits on the normalized scores and we calculate the contributions of the

variables with the same sign as the score, since contributions of the opposite sign does

not add anything to the score, in fact they make it smaller. In the paper of Kourti and

MacGregor (1996) there is not a specific rule on how to decide whether a contribution

is significant or not. Since in the two examples of Section 5.6.3 we have two variables

shifted, we choose to record the first and the second larger contributions in each iteration

of the simulation study if they exist. The simulation study was conducted 10000 times in

order to have a credible estimate of the ability of Kourti and MacGregor’s (1996) method

to identify the out-of-control variables. In Tables 5�6 and 5�7 we have the results of this

simulation for examples 1 and 2 respectively.
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Table 5�6. Performance of Kourti and MacGregor’s method for example 1

Variable 1 2 3 4 5 6

Largest contribution 2 5204 16 4717 0 0

Second largest contribution 1511 2864 1865 3655 30 10

Total 1513 8068 1881 8372 30 12

Table 5�7. Performance of Kourti and MacGregor’s method for example 2

Variable 1 2 3 4 5 6

Largest contribution 23 191 10 2 51 2

Second largest contribution 64 63 47 74 19 12

Total 87 254 57 76 70 14

From the results in Table 5�6 for Example 1, we observe that the method of Kourti

and MacGregor does not succeed in identifying the out-of-control variables as many times

as our proposed method does (see Tables 5�2 and 5�4). Moreover, the inherent inability of

the method to point if there is an upward or a downward shift is also present. Things are

even worse in Table 5�7 for example 2. Specifically, the method of Kourti and MacGregor

leads to recordable contributions very rarely, a fact that may lead the practitioner to

assume that the signal on the multivariate chart is due to the probability of plotting

outside the control limits if we are in-control. The ability of the new method to operate

more effectively is obvious (see Tables 5�3 and 5�5).

The charts proposed in Sections 5.6.1 and 5.6.2 are Shewhart type. Therefore, they

have the ability to identify large shifts quickly but they are not that good for small shifts.

An alternative way to plot these statistics is as a Cumulative Sum (CUSUM) chart. The
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definition of the CUSUM chart for detecting upward shifts is

�+0 = 0

�+� = max(0� �+�−1 + (��� �))�

where ��� is the ��� observation of variable �� and � is called the reference value. The

corresponding CUSUM chart for detecting downward shifts is

�−0 = 0

�−� = max(0� �−�−1 + (� ���))�

In the usual concept of CUSUM charts we evaluate an optimal value of � depending

on the distributional assumption (see Hawkins (1992) and Hawkins and Olwell (1998)).

This value of � is used along with the value �, which is the control limit, to characterize

the ARL performance of a CUSUM chart. In our case the application of this theory

for CUSUM charts is cumbersome due to the underlying distribution. However, we

can use the previously defined statistics for upward and downward shifts as a graphical

technique solely. The only quantity remaining unknown is the value � we have to use.

A straightforward selection for � is to use in each case of statistics (5�4) and (5�6) their

in-control counterparts. Specifically, for statistic (5�4) we use in place of each ��� its in-

control value both in the numerator and the denominator. A similar action takes place

in statistic (5�6) but only in the numerator this time.

To study the performance of these statistics in practice we applied them to the exam-

ples of Section 5�6�3. We used the same 40 in-control observations but now we generated

out-of-control ones with the same covariance matrix as in Section 5�6�3, and vector of

means (100� 105� 100� 95� 100� 100)|, in both examples until we get an out-of-control sig-

nal in the �2 test. The shift is 0�5� in the means of variables 2 and 4. In example

1, we simulated 12 observations till the out-of-control signal and 14 in example 2. We

computed the CUSUM values for the 52 and 54 values for all six variables in examples 1

143



and 2 respectively, and we plotted them in the chart given in Figure 5�3.

Figure 5�3. Control charts for CUSUM values
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From Figure 5�3 we easily deduce that the charts give a clear indication of the out-

of-control variables in both examples. As in the Shewhart type charts of Section 5�6�3,

the statistic (5�4) used in example 1 detected also the direction of the shift something

that did not happen with statistic (5�6) in example 2. We have to mention here that the

effectiveness of the CUSUM as a graphical device for shifts less than 0�5� is questionable.

However, it is an easily interpreted method that can give an indication.

Summarizing, we note that the charts proposed are an easily applied alternative to

most of the existing methods since the computational effort is diminished. Furthermore,

we try to give an answer to the problem under a control charting perspective giving

operational control limits or design strategies that are not difficult for a practitioner to

apply.
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Fuchs and Benjamini (1994) presented a method (multivariate profile chart) for simul-

taneous control of a process and interpretation of an out-of-control signal. The multivari-

ate profile chart (MP chart) is a scatterplot with symbols. Specifically, symbols are used

for data of individual variables whereas the location of the symbol on the scatterplot is

used for providing information about the group. Each group of observations is displayed

by one symbol and this symbol of the profile plot enables the user to get a clear view of

the size and the sign of each variable from its reference value.

The first step in the construction of an MP chart is to draw a horizontal base line

for each symbol and then calculate sequentially a bar for every variable. This bar plots

either above (below) the base line if the deviation is positive (negative). The size of the

bar depends on the size of the deviation. Let ��
 =
���−��

2�
, where ��
 = 1�� � ��
�, 0� is

a scale factor, �� is the 	�� reference value and ��
� is the value of the @�� observation on

the 	�� variable in the -�� subgroup. Then, the size of the bar is proportional to ��
 up

to value of 4. If the standardized deviation exceeds 2 the corresponding bar is painted

gray. If the standardized deviation exceeds 3 the corresponding bar is painted black. If

all variables means are equal to their standard values the symbol is actually the baseline.

The symbols are plotted in sequential order along a horizontal time axis. In the

vertical axis the location of each symbol is determined by the multivariate deviation of

the sample mean vector from the standard mean vector as measured by 6 2. The critical

value of this axis equal to 0.997 is at a symbol size distance from the top and it is chosen

to be equivalent to three standard deviations control limit of the univariate control charts.

Additionally, a dashed line runs across the chart at the 6 20�997 level. The critical value

corresponding to 0 is placed half a symbol size distance from the bottom.

A symbol’s baseline, which is placed horizontally, is located at the appropriate vertical

location when it is less than the 6 2 critical value. Those observations with a 6 2 value
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higher than the critical value are placed at the top of the chart stack at the ceiling and

completely beyond the dashed line.

The numerical value of the 6 2 statistic is not as informative as in the univariate

charts the deviations from standard values that are measured by the standard errors.

For this reason Fuchs and Benjamini (1994) present on the vertical scale of the chart,

the corresponding tail probabilities instead of the actual 6 2 values.

If the process is in-control and at the nominal values, the chart appears as a simple

horizontal line. If the process is out-of-control, the MP chart gives three visual warnings.

The first one is that the symbol for the group that gives an out-of-control signal is located

above the line of the observations that are under control. Secondly, as the size of the

deviations gets large so does the size of the symbol. The last one is that the symbol gets

darker, attracting more visual attention. All three visual warnings hold regardless if we

have an upward or a downward signal. Even if the shift is constantly appearing in one

direction the visual warnings will be there.

Finally, the MP chart can be used to identify easily the cause of a shift. Since all the

individual variables are displayed on a common scale within a group, the MP chart gives

us the ability to detect visually a change in their interrelationships. Additionally, when

they deviate from their standard, our attention is drawn by the behavior of individual

variables, by the height and darkness of the corresponding bars.

Sparks et al. (1997) presented a graphical method for monitoring multivariate process

data based on the Gabriel biplot. This method uses reduction to two dimensions for

identifying the in or out-of-control state. However, we use all the data for the decision if

we are in or out-of-control even though the method is a dimension reduction one. This

method can be used as a control chart and also if we are out-of-control to detect the

reason that led to this problem. In particular with this approach a practitioner is able

to detect changes in location, variation, and correlation structure.

146



A problem faced in the context of control charts generally is the measurement error

variability. This problem is the result of the inability to measure accurately the variable

of interest X. The use of imprecise measurement devices affects the ability of control

charts to detect an out-of-control situation. Moreover, the variable of interest may be

related through a covariate with the measurement system used.

Section 6.2 presents the research in Shewhart control charts with measurement error

in the univariate and multivariate case. A simple linear model together with a model

with covariates are given. In Section 6.3 the research work up to now on the effect of the

measurement error in the EWMA chart is described along with some new results. Specifi-

cally, a covariate model is assumed and investigated together with a detailed examination

of some factors that may affect the performance of the EWMA chart.
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The effect of measurement error on Shewhart control charts was studied by several

authors. Bennet (1954) examined the effect on the Shewhart chart for the mean using the

model ) = � + F, where � is the actual value of the variable and ) is the measurement

we have because of the random error F. It is additionally assumed that variables ) and�

are normally distributed but with different values for the variance. Specifically, variable )

has a larger variance than � because its variance comprises both the variances of � and

F. Bennet (1954) proposed that if the variance due to the measurement error is smaller

than the variance due to the process it can be overlooked. Moreover, he investigated the

measurement error effect on the Shewhart chart for the mean. Abraham (1977) used the

same model as Bennet (1954) and considered the effect of not accurate measurements on

the process variation.

� � � �

Kanazuka (1986) examined the effect of the measurement error on the process variance

of the joined � and � chart assuming the model of Bennet (1954). He showed that the

power of the �-� chart is given by

'�−	 = 1 (1 '�)(1 '	)�

where

'� = Φ
1 + �2

�2 + �2
3 +

� �

1 + �2
+ Φ

1 + �2

�2 + �2
3

� �

1 + �2
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and

'	 = Pr � !2 �2� + �
2
3 + Pr � !1 �2� + �

2
3 �

� = (�
0
�)���� �

2 = �
02
� ��

2
�� �

2 = �23��
2
�, Φ stands for the standard normal distribution

and !1� !2 are control chart factors that depend on the sample size �. Moreover, �� �
0

denote the in and out-of-control mean respectively, �2�� �
02
� are the in and out-of-control

process variance and �23 is the measurement error variance. In order to compute the

probabilities in the formula for the power of the � chart Kanazuka proposed the use of

the table given in Pearson (1941). Kanazuka (1986) noted that the power of the chart to

detect a shift in the vector (�� �2) is diminished and proposed the use of larger sample

sizes to increase this power. Mittag (1995) and Mittag and Stemann (1998) examined

the effect of measurement error on the joined �-� control chart assuming the model of

Bennet (1954). Mittag (1995) considered the effect at the onset of a process whereas

Mittag and Stemann (1998) considered also the effect in the case of subsequent error

occurrence.

Mittag and Stemann (1998) proved that the power function of the �-� control chart

in the case of immediate error occurrence (at the beginning of the implementation of

�-� control chart) is given by

9$(3; F) = 1 .$
�
(3; F).$

'(F)� (6.1)

where

.$
�
(3; F) = 1 Φ

�1−�1�2(1 + G
2)1�2 + 3�1�2

(F2 + G 2)1�2
+ Φ

�1−�1�2(1 + G
2)1�2 3�1�2

(F2 + G 2)1�2
�

and

.$
'(F) = ��

1 + G 2

F2 + G 2
#2�−1;1−�2 � 1 �

�1� �2 are the probabilities of a false signal on the � and � charts respectively, F equals

���0, 3 equals (� �0) ��0, where �0,�0 are the process parameters target values. The
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symbol Φ stands for the standard normal distribution again, �4 denotes its H quantile,

�� is the central chi-squared distribution and #2�−1;4 represents its H quantile with � 1

degrees of freedom. In the case of subsequent error occurrence they proved that the power

function of the �-� control chart is given by relationship (6.1) as in the immediate error

occurrence but now with

.$
�
(3; F) = 1 Φ

�1−�1�2 + 3�
1�2

(F2 + G 2)1�2
+ Φ

�1−�1�2 3�1�2

(F2 + G 2)1�2

and

.$
'(F) = ��

#2�−1;1−�2
F2 + G 2

� 1 �

In both cases we have a reduced ability of the �-� control chart to identify when a

process is out-of-control.

Linna and Woodall (2001) extended the model considered by Bennet (1954) assuming

one with covariates examining the effect on the � and �2 control charts. Specifically,

they considered the model ) =  +7� + F, where � is a normally distributed variable

with mean � and variance �2� and F is normally distributed with mean 0 and variance �
2
�.

If the mean of � shifts to some value �
0
then the probability of a signal on the Shewhart

chart for the mean is

1 Φ 3 +
� �

0
�

�2� + �
2
��7

2
+ Φ 3 +

� �
0

�

�2� + �
2
��7

2
�

The probability of a signal on the Shewhart chart for the variance if the characteristic �

shifts from �2� to �
20
� is

1 Pr
72�2� + �

2
�

72�20� + �
2
�

#2��2��−1 " D "
72�2� + �

2
�

72�20� + �
2
�

#21−��2��−1 �
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where D is a chi-square random variable with � 1 degrees of freedom. They proved

that in both charts the effect of the measurement error variance and the value 7 on

their power is significant. Linna and Woodall among others, proposed the use of multiple

measurements per item as a solution to this problem. If we assume that we take �

successive independent measurements on each of � items then the variance of the sample

mean of the subgroup is 52�2�
�
+ �2�

��
, indicating that as � increases this variance decreases.

In the case of linearly increasing variance we assume that F is normally distributed with

mean 0 and variance � + !�
0
where � and ! are assumed known constants. The

probability of a signal in this case is

1 Φ
� �

0
�+ 3 �2� + ��7

2 +!��72

�2� + ��7
2 +!�0�72

+Φ
� �

0
� 3 �2� + ��7

2 +!��72

�2� + ��7
2 +!�0�72

�

In this case, both charts for the mean and the variance are affected.

Linna, Woodall and Busby (2001) examined the same model with covariates in the

multivariate case, in the case of the �2 chart. In particular, let Y� = A + BX� + ε�,

	 = 1� 2�... where A is a & 1 vector of constants, B is an invertible & & matrix of

constants and ε� is a & 1 normal random vector independent of X with a mean vector

of zeroes and variance covariance matrix Σ�. Linna, Woodall and Busby proved that

multivariate control charts under measurement error effect can detect in a more powerful

way shift in one direction than in other. Moreover, they have shown that multivariate

control charts are affected and this effect can be very serious because of the loss of the

directional invariance property.
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Stemann and Weihs (2001) were the first to investigate the effect of measurement er-

ror on the EWMA chart. They considered the EWMA-�-� chart, as they name it, which

is a combination of the EWMA charts for the mean and the standard deviation. Specif-

ically, they showed through simulation that the ARL behavior of this chart is affected

by the measurement error. The model assumed is the one proposed by Bennet (1954).

They checked both the cases of the presence of measurement error in the beginning of

the process and subsequently during production. However, the model with covariates

proposed by Linna and Woodall (2001) was not investigated. This model is investigated

in the case of measurement error for the EWMA chart for the mean in Maravelakis et

al. (2004) and is presented in the following subsections.

Assume again that we have a process where the true value of the characteristic �

under investigation is normally distributed with mean � and variance �2 when the process

is in-control. However, we are not able to observe this true value but rather a value ) ,

which is related to � with the formula ) =  +7� + F, where  and 7 are constants

and F is the random error distributed independently of � as a normal random variable

with mean zero and variance �2�. We assume here that all model parameters are known.

From the formula relating ) and� it is straightforward that ) is normally distributed

with mean  +7� and variance 72�2 + �2�. We need to construct an EWMA chart for

the measured quantity ) since in this way we can keep under control the variable �.

Assume that at each sampling point we collect n values of ) , we compute the mean of

these observations )� and we compute the EWMA statistic �� using the formula

�� = 2)� + (1 2)��−1�

�0 =  +7�
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where )� is the mean of the observations collected at time 	 = 1� 2� ��� and 2 is the

smoothing parameter.

The control limits are


�� =  +7�+ �
2

2 2
1 (1 2)2�

(72�2 + �2�)

�
(6.2)

��� =  +7� �
2

2 2
1 (1 2)2�

(72�2 + �2�)

�
�

where � is a constant used to specify the width of the control limits and  + 7� and
�
2−� 1 (1 2)2� (52�2+�2�)

�
are the mean and standard deviation of �� respectively,

when the process is in-control. In case the EWMA chart is used for some time, instead

of the control limits (6.2), we may use their limiting values


�� =  +7�+ �
2

2 2

(72�2 + �2�)

�
(6.3)

��� =  +7� �
2

2 2

(72�2 + �2�)

�
�

(see e.g., Lucas and Saccucci (1990)). In this case (2�(2 2)) ((72�2 + �2�) ��) is the

asymptotic standard deviation of ��.

In order to decrease the measurement error effect, a technique that is suggested by

Linna and Woodall (2001) is to take more than one measurements in each sampled

unit. Taking more than one measurements and averaging them leads to a more precise

measurement. Moreover, the variance of the measurement error component in the average

of the multiple observations becomes smaller as the number of multiple measurements

increases. Therefore, ideally if the number of multiple measurements becomes infinite

the variance of the measurement error component will become zero. Consequently, the
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larger the number of multiple measurements the better, keeping in mind always the

additional cost and time needed for these observations. We must understand also that

in the absence of measurement error multiple measurements will not contribute to the

control charting methodology anything (in fact they will add the cost of measuring the

extra observations).

In the case of sufficient number of multiple measurements we can assume that our

process actually operates without measurement error. However, the cost of extra mea-

surements and the time are factors that can not be overlooked. Therefore, a careful

examination of these factors in the specific application we are working on is essential.

We have to stress that the measurement error variance has to be large enough and the

two factors small enough for the extra observations to have a practical value.

In order to compute the EWMA statistic we assume that at each sampling point we

collect � measurements for each of n observations of ) , we compute the overall mean of

these observations )� and we compute the EWMA statistic B� using the formula

B� = 2)� + (1 2)B�−1�

B0 =  +7�

where )� is the mean of the observations collected at time 	 = 1� 2� ���, 2 is a smoothing

parameter that takes values between 0 and 1 and B0 is the initial value. Moreover, we

assume that the � observations collected at the same sampling unit are independent. If

� = 1 we face the measurement error case discussed in Section 6.3.1.

It is straightforward to prove (Linna and Woodall (2001)) that the variance of the

overall mean is 52�2

�
+ �2�

��
� Therefore, the control limits are


��( =  +7�+ �
2

2 2
1 (1 2)2�

72�2

�
+
�2�
��

(6.4)

���( =  +7� �
2

2 2
1 (1 2)2�

72�2

�
+
�2�
��

�
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where � is a constant used to specify the width of the control limits and  + 7� and
�
2−� 1 (1 2)2� 52�2

�
+ �2�

��
are the mean and standard deviation of B� respec-

tively, when the process is in-control. In case the EWMA chart is used for some time,

instead of the control limits (6.4), we may use their limiting values


��( =  +7�+ �
2

2 2

72�2

�
+
�2�
��

(6.5)

���( =  +7� �
2

2 2

72�2

�
+
�2�
��

�

Although the model with covariates considered assumes constant variance it is not

unlikely to have a model with variance that depends on the mean level of the process.

Montgomery and Runger (1994) and Linna and Woodall (2001) refer to practical prob-

lems indicating situations where this phenomenon occurs in industry.

We assume that the variance changes linearly with variable �. The model we use

is again ) =  + 7� + F with the same assumptions as in Section 6.3.1, except that

this time F is distributed as a normal variable with mean 0 and variance � + !�. As

in Section 6.3.1 all model parameters are assumed known. From the relation between

) and � we deduce that ) is normally distributed with mean  + 7� and variance

72�2 + � +!�. The EWMA statistic will be exactly the same as in Section 6.3.1.

It can be shown that the control limits of the EWMA statistic are


��� =  +7�+ �
2

2 2
1 (1 2)2�

72�2 + � +!�

�
(6.6)

���� =  +7� �
2

2 2
1 (1 2)2�

72�2 + � +!�

�
�

where � is again a constant used to specify the width of the control limits and  + 7�

and �
2−� 1 (1 2)2� 52�2+�+�&

�
are the mean and standard deviation of the
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EWMA statistic respectively, when the process is in-control. When the EWMA chart is

used for a suitable number of points in time, instead of the control limits (6.6), we can

use their limiting values


��� =  +7�+ �
2

2 2

72�2 + � +!�

�
(6.7)

���� =  +7� �
2

2 2

72�2 + � +!�

�
�

In order to compute the probability density function, the cumulative distribution

function and the first moment of the run length distribution of the EWMA chart for the

mean we may approximate it as a discrete Markov Chain by dividing the distance between

the control limits in 2m+1 states each of which has width 23 (see, e.g. Brook and Evans

(1972)). We say that the statistic �� remains in state - as long as �
 3 " �� �
 + 3

where � - � and �
 is the midpoint in the -�� interval. When �� crosses the

control limits we say that it is in the absorbing state. On the other hand when the

process is in-control we say that it is in a transient state.

The transition probability matrix for the EWMA chart for the mean is computed as

P =
R (I R)1

0� 1
�

where R is a submatrix containing the transient states, I is a (� �) identity matrix

and 1 is a (� 1) vector of unities. The -��� element of the submatrix R is given by

&
� = ' [�
 3 " 2/� + (1 2)�
 �
 + 3]. In the case of the normal distribution with

the model with covariates of our case the probabilities are given by

&
� = Φ
(�� + 3) (1 2)�
 2 ( +7�)

2 (72�2 + �2�) ��
Φ

(�� 3) (1 2)�
 2 ( +7�)

2 (72�2 + �2�) ��
�
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When we have multiple measurements the probabilities are

&
� = Φ
(�� + 3) (1 2)�
 2 ( +7�)

2 52�2

�
+ �2�

��

Φ
(�� 3) (1 2)�
 2 ( +7�)

2 52�2

�
+ �2�

��

and in the case of linearly increasing variance the probabilities are

&
� = Φ
(�� + 3) (1 2)�
 2 ( +7�)

2 52�2+�+�&
�

Φ
(�� 3) (1 2)�
 2 ( +7�)

2 52�2+�+�&
�

�

Let G denote the run length of the EWMA, then ' (G �) = (I R
)1 and therefore

' (G = �) = (R
−1 R
)1 for � 1. The ARL can be computed using the formula

�(G) = ∞
�=1 �' (G = �) = (I R−1)1.

In the context of EWMA charts as we have already said there are three ways of

computing the ARL. The integral equation method, the Markov chain method and sim-

ulation. Here, we use the Markov Chain method in all the computations.

In Table 6.1, we can see the ARL results of the covariate model for different values of

the ratio �2���
2 when B=1. The in-control ARL value is the same for all combinations

in order to achieve a fair comparison. From the table we see that there is an increasing

effect on the out-of-control ARL as the ratio of �2���
2 increases. This result is similar

to the one in Linna and Woodall (2001). In Table 6.2, we can see the ARL results of

the covariate model for different values of 7. The results are displayed for the same

parameters as in Table 6.1 when �2���
2=1. We observe that as the value of 7 increases

the effect on the ARL diminishes. This result is again in accordance with Linna and

Woodall (2001). Furthermore, in both Tables 6.1 and 6.2 the effect of the measurement

error on the ARL values lessens as the shift increases. We have to state also that  does
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not affect the ARL performance in this study.

Table 6.1. ARL for the covariate model for different values of �2���
2

Shift No Error 0.1 0.2 0.3 0.5 1

0 370.22 370.27 370.27 370.27 370.27 370.26

0.5 41.13 45.22 49.26 53.23 60.96 79.06

1 10.25 11.21 12.18 13.16 15.15 20.26

1.5 5.18 5.57 5.96 6.36 7.16 9.20

2 3.46 3.69 3.91 4.13 4.57 5.67

2.5 2.65 2.80 2.94 3.09 3.37 4.08

3 2.19 2.29 2.40 2.50 2.71 3.22

Table 6.2. ARL for the covariate model for different values of 7

Shift No Error 1 2 3 5

0 370.22 370.26 370.27 370.26 370.27

0.5 41.13 79.06 51.25 45.67 42.78

1 10.25 20.26 12.67 11.31 10.63

1.5 5.18 9.20 6.16 5.61 5.33

2 3.46 5.67 4.02 3.71 3.55

2.5 2.65 4.08 3.01 2.81 2.71

3 2.19 3.22 2.45 2.31 2.23

In Table 6.3, we can see the ARL results for the covariate model with multiple mea-

surements for different values of �2���
2 when � = 5 and 7 = 1. It is obvious that if

the practitioner has the ability to take five measurements in each unit then for values of

�2���
2 less than 0.3 we may say that the process operates actually without measurement

error. For values larger than 0.3 the effect is seriously reduced in comparison to the � = 1

case, which corresponds to the results in Table 6.1, even for �2���
2 = 1.
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Table 6.3. ARL for multiple measurements k=5, B=1 for different values of �2���
2

Shift No Error 0.1 0.2 0.3 0.5 1

0 370.22 370.26 370.26 370.27 370.27 370.27

0.5 41.13 41.96 42.78 43.59 45.22 49.26

1 10.25 10.44 10.63 10.82 11.21 12.18

1.5 5.18 5.25 5.33 5.41 5.57 5.96

2 3.46 3.51 3.55 3.60 3.69 3.91

2.5 2.65 2.68 2.71 2.74 2.80 2.94

3 2.19 2.21 2.23 2.25 2.29 2.40

Table 6.4. ARL for multiple measurements k=5, �2���
2=1 for different values of 7

Shift No Error 1 2 3 5

0 370.22 370.27 370.26 370.28 370.27

0.5 41.13 49.26 43.18 42.05 41.46

1 10.25 12.18 10.73 10.46 10.33

1.5 5.18 5.96 5.37 5.26 5.21

2 3.46 3.91 3.57 3.51 3.48

2.5 2.65 2.94 2.72 2.68 2.66

3 2.19 2.40 2.24 2.21 2.20

Table 6.4 presents the results in the case of multiple measurements for different values

of 7. We see that as the value of 7 increases the effect on the ARL diminishes. This

result is in accordance with the results in Table 6.2. Moreover, in Table 6.5 we have

results in the case of multiple measurements for different � values. As the value of �

increases the measurement error effect lessens. However, since cost and time needed for

the extra measurements are important factors, the practitioner will have to do a trade-off
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between these two concerns and the measurement error he can put up with. We have

to stress here that the results displayed refer to the worst case, since we choose 7 = 1

and �2���
2 = 1, that correspond to the most affected combination. Therefore, one may

conclude that the results in the other cases will be even better.

Table 6.5. ARL for multiple measurements for different values of k

Shift No Error 5 10 20 50

0 370.22 370.27 370.27 370.26 370.26

0.5 41.13 49.26 45.22 43.18 41.96

1 10.25 12.18 11.21 10.73 10.44

1.5 5.18 5.96 5.57 5.37 5.25

2 3.46 3.91 3.69 3.57 3.51

2.5 2.65 2.94 2.80 2.72 2.68

3 2.19 2.40 2.29 2.24 2.21

Table 6.6. ARL for linearly increasing variance for different values of D

Shift No Error 1 2 3 5

0 370.22 370.27 370.28 370.27 370.28

0.5 41.13 231.40 282.70 306.34 328.76

1 10.25 102.95 161.16 198.80 244.30

1.5 5.18 50.14 90.14 122.03 168.52

2 3.46 28.10 53.72 76.89 115.28

2.5 2.65 17.79 34.49 50.85 80.43

3 2.19 12.39 23.73 35.38 57.77

The results in the case of linearly increasing variance are displayed on Tables 6.6 and

6.7. In Table 6.6 we have the ARL values when 7 = 1, � = 0, �2���
2 = 1 for different

values of !. We see that even for small values of ! there is a more serious effect than
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in the no error case. Additionally, as the value of ! increases, this effect is getting

larger. This result is expected because as ! increases so does the variance of the error

component in the model. In this special case of measurement error, extra precaution is

needed because the ability of the EWMA chart to detect fast small shifts is canceled out.

Consequently, serious distortion factors may go undetected for a long time costing a lot

in money, time and credibility.

Table 6.7 presents the ARL results when 7 = 1, ! = 1 and �2���
2 = 1 for different

values of �. In analogy to Table 6.6, increasing values of � cause an increasing mea-

surement error effect on the ARL. However, this effect is not of the same magnitude

as the effect of !. This result is also expected since ! is multiplied by the mean �,

thus increasing faster the error variance as ! increases whereas � is just added to this

variance.

Table 6.7. ARL for linearly increasing variance for different values of C

Shift No Error 0 1 2 3

0 370.22 370.27 370.29 370.27 370.27

0.5 41.13 231.40 239.08 245.96 252.14

1 10.25 102.95 110.13 116.95 123.44

1.5 5.18 50.14 54.53 58.84 63.06

2 3.46 28.10 30.72 33.34 35.95

2.5 2.65 17.79 19.43 21.09 22.75

3 2.19 12.39 13.49 14.59 15.71

In all the computations we used 211 states for the Markov Chain method. The values

of the constants are 2 = 0�25 and � = 2�898. In order to detect small shifts fast the 2

value usually used is 0�1 or less. However, such small values are not able to detect small

to moderate shifts and this is the reason for choosing this particular value of 2. Note

also that in all the cases the control limits used are the ones with the limiting values.
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In this thesis we have presented and studied the main univariate and multivariate

control charts. Our scope was to deal with specific problems in the context of control

charts. The first problem under consideration was the estimation effect on the control

charts performance. This issue was investigated in the case of the univariate Shewhart

charts for dispersion for both subgrouped and individual data. Specific recommendations

are given for the number of samples or the number of observations needed to estimate

accurately the parameters in order for the control chart to behave as in the theoretical

case of known parameters. A second problem is nonnormality and how it affects the

performance of a control chart. It was investigated on the EWMA charts for the disper-

sion when we have individual observations. A new EWMA type chart for the process

dispersion is given that is proved to be robust up to nonnormality when we are in-control.

The identification of the out-of-control variable when a multivariate control chart

signals is another problem examined. A new method is presented that computes prob-

ability limits that indicate with the desired probability the out-of-control variable or

variables. This method has proven to be a competitive alternative to the existing proce-

dures. Finally, the effect of measurement error on the performance of control charts was

considered. A model with covariates for the EWMA chart is presented. This model is

examined in some cases and it is proved that the presence of measurement error seriously
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affects the ability of a control chart to identify the out-of-control situation.

Some thoughts for further research are given in the following discussion. The estima-

tion effect is one of the issues that practitioners have to face. Although until recently

the guidelines in the design of a control chart were talking about a number of subgroups

needed, recent research proved that this recommendation is deceiving. Generally, a larger

number of samples is needed. Although in today’s industry there are usually large data

sets, there are still processes that the recommendation for e.g. 100 samples for the esti-

mation of the process parameters is a very large number and usually impossible to obtain

because of the time needed for these observations or because of the money we have to

spend. Therefore, the control limits have to be adjusted in a way that they will take

into account the estimation effect. Nedumaran and Pignatiello (2001) have given such a

solution for the � control chart and Jones (2002) proposes a way to design the EWMA

chart for this case. Additional work on the other control charts has to be done.

Most of the control charting methodology has been implemented under the normality

assumption. However, most of the times this assumption is not valid. All the charts are

affected in the case of nonnormality but to a different extent. The EWMA chart for the

mean has proved to be less affected when properly designed. The EWMA chart for the

dispersion proposed in Maravelakis et al. (2003) is less disturbed by the nonnormality

issue when we are in-control. Nevertheless, an EWMA chart for dispersion that can be

robust in terms of nonnormality for both in and out-of-control is needed.

In the multivariate case, the nonnormality problem is even more challenging. But if

normality is cumbersome in the univariate case, then in a multivariate environment the

situation is even more dramatic. Recently, Stoumbos and Sullivan (2002) and Testik et.

al. (2003) proved the robustness of the multivariate EWMA chart for the vector of means.

However, there is a lot more work that has to be done in the field. A general technique

able to detect efficiently, under any distribution, the out-of-control situation is needed.

Moreover, since a process might involve both continuous and discrete characteristics

another problem is to find a control charting methodology that will consider both of
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them.

A very important problem in the multivariate control charts is to identify the out-of-

control variable or variables when a multivariate control chart signals. This problem has

generated many different opinions in the last decade. Although this problem is thoroughly

investigated under the multinormality assumption most of the proposed solutions are

mathematically complicated or time consuming. Consequently, new procedures that will

overcome these disadvantages are needed. Graphical techniques are such techniques.

Measurement error is a factor that can affect seriously the performance of a control

chart. The literature up to now investigates this problem under the assumptions of

normality, independence, known parameters and predefined additive relationship of the

true and measured variables. All of these assumptions have to be reconsidered. Moreover,

the estimation effect in other types of control charts is an open problem.
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