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ABSTRACT

Mehdi Kiani

Some Developments in Statistical Quality
Monitoring and Quality Improvement

June 2009

Statistical methods for quality control and quality improvement are commonly
employed in industry (see, e.g. Montgomery (2005)) and are standard
management practices in the service sector, where quality control serves as a
means of improvement from the perspective of total quality (e.g. Stuart, et al.
(1996)). This thesis deals with certain issues in both of these areas. In
particular, in the first part of the thesis we address some problems related to
statistical quality monitoring, specifically, to monitor the mean, the range and

the standard deviation of a quality characteristic.

The Shewhart, the Bonferroni-adjustment and the analysis of means
control charts are usually applied to monitor the mean of a quality
characteristic. We establish a new control chart that is exactly based on normal
and t distribution for known and unknown parameters, respectively. The
advantages of the proposed approach against the Shewhart, the Bonferroni-
adjustment, and the analysis of means approaches are presented in this thesis.
Moreover, the Shewhart and the Bonferroni-adjustment R and S chart usually
are applied to monitor the range and the standard deviation of a quality
characteristic. We establish a new R and S chart and show the advantages of
the proposed approach against the Shewhart and the Bonferroni-adjustment R
and S control chart. To construct R control chart, the mean range (d,) of the
normal distribution function (NDF) should be evaluated. We present a formula
for evaluation of the normal distribution function. Based on the proposed

formula, we construct an extended table for the mean range of the NDF.

I



In the second part of the thesis, we address issues related to quality
improvement. Specifically, we consider extensions for some response surface
methods. These pertain to improving the estimation of the steepest ascent path
that is the preliminary procedure to bring the users toward the vicinity of
optimum response. To this aim, a data augmentation scheme and an extension
to the modified Gram-Schmidt strategy are proposed. Using these methods,
both the variance and the bias of the estimated path appear to decrease,

considerably.
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ITEPIAHYH
Méyt Kwavu

E&eliterg otov Lratiotiko Ilowotiko Eleyyo kar tnv
Beltimon Awnoikaciov

I6viog 2009

O o010T10TIKOC TOOTIKOG EAEYXOG Kal M Peitioon tng modtnTag YPNCHLOTOLOVVTOL
cuovbwg ot Popnyavio (m.y. Montgomery (2005)) kou eivor TomKES TPAKTIKEG
d1oyelplong 6ToV TOPEQ TV VINPEGLAOV, OOV 0 TOOTIKOG EAEYYOG Asttovpyel ®G HEGO
Bektiowong g cvvolkng mowdtntag (m.y. Stuart, et al. (1996)). H Swrpipn av,
0oYOAEITOL e GULYKEKPUEVO TPOBAHATO TOV APOPOVV Kal TIG dVO CVTEC TEPLOYEG.
SUYKEKPLEVE, GTO TPATO LEPOG TG draTpiPrig eetdlovpe TPOPANLATO GYETIKE He TV
TapaKorovONo” pog S10dKaciag G TPOg TNV TOOTNTA, EWOIKOTEPL GE OTL QLPOPE. TOV
Eleyyo TG HEONG TIUNG, TOL €VPOVLEC KOl TNG TLMIKNG OMOKAMONG €VOC TOLOTIKOV

YOPOKTPLOTIKOV.

Ta dwypdppate Shewhart, g 616pBwong Bonferroni 6mmg kot to didypapipa g
avélvong tov péowv epappdlovial cuvnbmg Yo vo ehéyEovv TN pEOM TIUN EVOC
TOLOTIKOV YOPOKTNPOTIKOV. XTn SwTpiPf] aUTH TPOTEIVOLHE £€va VEO SLAYPOLLULQ
eléyyov to omoio Pociletar oTnV KAVOVIKT Kol t KOTAVOUT, Y10 YVOGTEG KOL Gy VOOTEG
nopapéTpovs, avrtiotoyo. E&etdlovpe To  TAEOVEKTNHOTO TNG  TPOTEWVOUEVNS
pocéyylong ce oyéon pe tn peBodo Shewhart, v 616pBwon Bonferroni, kot tnv
avaivon tov pécov tipmv. Emmiéov, n pébodog Shewhart kot n Si6pBwom Bonferroni
ota owypappota R ko S ocvuvBwg epappoloviat yua va eréyEovv o €0POG Kot TNV
TUTIKY] anOKAIOT) EVOG TOLOTIKOV YapakTnpiotikov. [lpotetvovpe éva véo didypappa R
Kot S Ko TepoVCLALOVE TO TAEOVEKTTLOTE TNG TPOTELVOUEVNG TPOGEYYLONG EVAVTL TNG
pebddov Shewhart kot g 616pbwomng Bonferroni yi to Sibypappo eréyyov R kot S.

Mo v katookevn tov dwaypdppatog eréyyov R, omorteitar o mpoodiopiopds tov

pécov gvpovg (d,) ¢ kavovikng katavouns (NDF). TTapovoidlovpe évav tomo yio



TNV QmoTiINoN NG GLVAPTNONG TNG KAVOVIKNAG KOTOVOUAG He Pdom tov omoio

KOTOGKELALOVpE Evav avaluTikd Tivaka Yo to péco gdbpog g NDF.

210 devtepo pépog g Swtpiffig, avipetonilovpe (MTipate GYETIKE pe )
Behtioon g mowdtnTag. Xvykekpuyévo, eEeTGlovpe  KAMOEC  EMEKTAGEIS Yol
ovykekpgveg pebodovg amdkpiong. Ot pébodor avtol agpopodv ™ Peltimon g
EKTiUNONG g Mo omdTopung avodikng mopeiog m omoio eivar M TPOKATOPKTIKY
dwdwcacio M omoia Bo odnynoet tovg ypAoTEG TPOg TV EYYOTNTO. TG PEATIOTNG
andvtnone. ' to okomd owtd, mpoteivoviar £va oyfpa COUTANP®ONG GToyEiOY KoL
po emEKTACT 6TV Tpomomompévn pébodo Gram-Schmidt. Xpnoiponotdvrag avtég Tic
Heddoovg, T6G0 M Sromopd 660 Kot 1 pepoinyia g extipndeicag mopeiog spupaviovy

pia a&loonpeioTn peiowon.
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Introduction

In this thesis, we focus on two main areas of statistical methods in quality
improvement: statistical process control and response surface methodology.

Statistical process control is the collection of strategies for recognizing
particular causes of variation, bringing a process into a state of control and for
reducing variation about a target variable. It is extensively utilized in industry
to retain manufacturing processes under control condition. The most valuable
tool of statistical process control is control charts that we deal with it in
chapters 2 to 5. These charts yield a graphical appearance of the process thus
enabling any manager with or without statistical knowledge to immediately
understand if the process is under control or not.

Statistical strategies for quality improvement require the use of more
than just control charts. It would be difficult to keep a particular process
characteristic in control condition without some information of the factors
affecting that characteristic. Hence, in chapters 5 and 6, we look at response

surface methodology as a subsection of statistically designed experiments.



Some developments in statistical quality monitoring and quality improvement

Statistical procedures in quality improvement have had a long history.
Walter A. Shewhart of the Bell Telephone Laboratories developed the
statistical control-chart concept, in 1924. By the middle of the 1930s, statistical
quality-control methods were in wide wuse at Western Electric, the
manufacturing arm of the Bell System. For more details see Montgomery
(2005), who presents a timeline of quality procedures from years 1700 through
2000s.

Control charts are the primary procedures of statistical process control.
Some known and some newly proposed control charts are studied in the present
thesis. The Shewhart, Bonferroni-adjustment and analysis of means (ANOM)
control charts are typically applied to monitor the mean of a quality
characteristic. The Shewhart and Bonferroni procedures are utilized to
recognize special causes of variation in the production process, where the
control limits are constructed by assuming a normal distribution for when the
parameters (mean and standard deviation) are known and approximately
normal distribution when the parameters are unknown. The ANOM method is
an alternative to the analysis of variance method. It can be used to establish
the mean control charts by applying the equicorrelated multivariate non-central
¢ distribution. In this study, we establish new control charts, in phases I and II
monitoring, based on normal and ¢ distributions having as a cause a known (or
unknown) parameter (standard deviation). Our proposed methods are at least

as effective as the classical Shewhart methods and have some advantages.

The control limits of the average of a quality characteristic depend on
the variability, the range or the standard deviation, of the production process.

When the process variability is out of the control limits, the control limits on
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the average quality characteristic will not have much meaning. The Shewhart
and the Bonferroni-adjustment R and S charts usually are applied to monitor
the range and the standard deviation of a quality characteristic. These charts
are used to recognize the process variability, where the control limits are
constructed by using approximately normal distribution for the known and
unknown standard deviation parameter. In chapter 3, we establish new R and S
charts that are based approximately on the normal distribution. The constant
values to construct the new control limits are depended on both the sample
group size (k) and the sample subgroup size (n) hence, the constant values for
the Shewhart and Bonferroni approach are dependent only on the sample
subgroup size (n). Additionally, the unknown standard deviation for the
proposed approaches is estimated by a uniformly minimum variance unbiased
estimator (UMVUE). This estimator has variance less than the one of the

Shewhart and Bonferroni approach.

For constructing R control charts, the mean range (d,) of the normal
distribution function (NDF) must be evaluated. Chapter 4 presents a formula
for the evaluation of the normal distribution function, F(z), with greatest
absolute error less than 4.02x10™. The proposed formula is based on the values
z::(-0,+) and is generated by applying polar integral. Furthermore, this
chapter provides a precise evaluation and extended tables for the mean range of
the normal distribution (d, ), using the proposed formula of the NDF. The value
d, can be computed by existing commands of the available statistical software

without requiring computer programming.
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To improve the performance of a production process, we introduce an
extension of the response surface methodology, available in the literature of
statistical quality control. The response surface methodology is a heuristic that
locally fits first-order models, and estimates the corresponding steepest ascent
paths. The eventual objective of response surface methodology is to determine
the optimum operating conditions for the factor space in which operating
requirements are satisfied. Particularly, if the system is being investigated for
the first time, starting conditions over operability region would often be not
very close to an optimum. In these circumstances, the objective of the
experimenter is to move rapidly and efficiently along a path of improvement
toward the vicinity of optimum. The experimenters usually need a preliminary
procedure, called steepest ascent, to bring them to a suitable point, optimum,
and then they employ a more elaborate model as a second-order model to locate
the optimum. In chapter 5, we develop a method that would apply more
generally than methods currently available. We also extend the constrained
path of steepest ascent, the confidence region for limited angle to true and
estimated path, the generalized confidence region for the direction of the
steepest ascent, and the confidence cone about the estimated path that is based

on t and Beta distributions.

The parameters of the steepest ascent path are estimated by the ordinary
least squares estimators. To improve the bias and the variance of the estimation
of the parameters, we present strategies for specifying additional data to be
included along with the data of a non-orthogonal design. The additional
observations increase the magnitude of the information matrix X'X and the

orthogonality of the design matrix. The new runs are created in a predefined
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spherical or rectangular region. Optimum number of additional observations is
presented in order to orthogonalize the design matrix X and optimize some
function of the information matrix X'X. Comparisons of the results acquired
with the proposed methods versus the most commonly used procedures for data
augmentation are carried out. In addition, the advantages of the use of our
techniques over the studied methods to solve the augmenting data problems are

discussed.

In addition, to improve the bias and the variance of the estimations of the
parameters of the steepest ascent path, we propose an extension of the modified
Gram-Schmidt algorithm, for constructing an optimal design matrix. The
proposed algorithm presents an orthogonal basis, in full working accuracy, for
the space spanned by the columns of the original matrix. The method discussed
makes use of this modified Gram-Schmidt strategy and employs Gaussian

elimination.

In chapter 9, some final thoughts and a discussion for possible future
research issues and generalizations are given for the different problems

addressed.
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2-1. Introduction

The Shewhart, the Bonferroni-adjustment and the analysis of means
control charts are common techniques for monitoring the process mean.
Shewhart (1931) proposed a scheme for detecting out-of-control signals
and shifts in the mean from its target value p,. Ott (1975), Rocke (1989),
Ryan (1989), Chen (1997), Quesenberry (1997), Smith (1998),
Maravelakis, et al., (2002), Champ and Jones (2004), Woodall et al.
(2004), Montgomery (2005), and several other authors modified and
extended the Shewhart control charts. The Shewhart procedure usually is
based on at least 20 to 25 sample group sizes (k) and at least 4 to 6
sample subgroup sizes (n). This procedure with known mean and standard
deviation parameters is based on a random variable that follows the
normal distribution. When the mean and standard deviation are unknown
the procedure is based on a statistic that follows approximately the

normal  distribution. ©The values of the subgroup averages

(X; =2, X;/n) are plotted on the Shewhart control chart that includes

the center line E(X,) and the control limits E(X,)+Z,,,\/var(X;), where

the quality characteristics X, for i=1,2,..,k and j=1,2,.,n (j"

b}
observation in i" subgroup) are assumed to be independent identically
2

normally distributed with mean x4 and variance o°.

Ryan (1989) introduced the Bonferroni-adjustment control limits as an

alternative to the Shewhart approach. The control limits are given by

E(X,)+Z,,+/var(X;) . In other words, to construct the Bonferroni control



A New Procedure to Monitor the Mean of a Quality Characteristic

limits the value @ of the Shewhart control limits is replaced by the value
alk.

Ott (1967) introduced the ANOM control limits (see also Nedumaran
and Pignatiello (2005)) for comparing a group of means in order to see if

any one of them differs significantly from the overall mean. Schilling

(1973) extended this scheme to what he called the ANOM for treatment
effects or ANOME. Ott’s procedure is carried out by comparing the
sample mean values to the overall grand mean, about which decision lines
have been constructed. If a sample mean lies outside these decision lines, it
is declared to be significantly different from the grand mean. The main

difference between the Bonferroni and ANOM control limits is that in the
first the sample group and subgroup sizes (k,n) are usually as large as 20
or more (k>20), and 4 or more (n>4), respectively to compute the
control limits, whereas in the second k>2 and n>2 i1s sufficient to
compute the decision lines.

Ott’s method is based on the multiple significance test proposed by

Halperin et al. (1955). Later, Nelson (1982) obtained the exact critical
points of h,,,. , and used the decision lines }?_.ih(a/z,k,v)Sb (k-1)/(kn),
where the critical point Peejorny depends on k, v=k(n-1) (degrees of

freedom in S, ), and the significance level « , with,

S = (Tt XXy =X kin-1)" ;X = S X, /Gkn).
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Some other applications of the ANOM for testing the interaction effects
were investigated by Ramig (1983), Nelson (1988), Wludyka and Nelson
(1997), and Budsaba et al. (2000). A full review of the ANOM technique is
given by Rao (2005).

According to equicorrelated multivariate non-central ¢ distribution for

constructing the ANOM scheme, Tsai et al. (2005) examined a control
chart for a random variable W, = (X, —}zfn), with the center line 0, and the

control limits 0+t,,, Vk—k+—l , where
’ n

V=Yr 3" (X;-X) /(k(n-1) and v=k(n-1).
This control chart was introduced by Yang and Hillier (1970).

In this chapter, we represent new control charts given by Kiani, Panaretos
and Psarakis (2008). The purpose in phase I is to perceive the stability
and variation in a process over time. We are concerned with ongoing
monitoring to detect assignable causes in the process in phase II
controlling. Useful recognitions of phase I and phase II applications have
been studied already, for example, by Kang and Albin (2000), Woodall
(2000), Hawkins et al. (2003), Woodall et al. (2004), Montgomery (2005),
and Jensen et al. (2006).

The proposed control limits with known or unknown o are
established for random variables that follow the normal distribution and ¢
distribution, exactly. Another property of the proposed methods is that
the values of both sample group and subgroup sizes (k and n) for

computing the control limits, need to be grater than 1.
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When the parameters x and o are unknown, to construct the
Shewhart and Bonferroni chart we often use the estimates of the
parameters, whereas, as will be shown, for the proposed charts we do not
use any estimators. The effects of the estimation on the performance of
control charts have been studied by Ghosh et al. (1981), Quesenberry
(1993), Chakraborti (2000), Maravelakis (2003), and Albers and
Kallenberg (2004).

The chapter is organized as follows. In sections 2, 3, 4, we set out the
Shewhart, Bonferroni, ANOM, and new control charts, respectively. The
probability of a false alarm for the Shewhart and the strategy proposed
here, as well as the probability of at least a false alarm for the Bonferroni
and ANOM strategy are compared in section 5. The in-control average run
lengths are described in sections 6 for the Shewhart and the proposed
charts. In section 7, the results and some recommendations for

constructing the control limits are presented.

2-2. The Shewhart and Bonferroni Control Chart

Assume that the random variables Xy for i=12,.:k and j=12,..,n,
which measures the quality of process, are independent normally
distributed with mean g and variance o®. The Shewhart control limits for
this quality characteristic with known parameters and confidence 1-a are

Uz, o/ Jn , where the center line of control chart is u . If the mean and

standard deviation of the quality characteristic are unknown, they are

estimated by the unbiased statistics X and S/c, where,

10
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I'(n/2)
r((n-1/2)

§=i5f/k ; 8 =00 (XX /(n-D)"* ; e, 1)1/2

The random variable S;/(n—1)/c is chi distributed with n-1 degrees of

freedom. The mean and the standard deviation of the statistic S; are c,o

and o/l1-c} , respectively. (The constant value ¢, depends only on the
sample subgroﬁp size (n)).

The Shewhart chart with unknown parameters is constructed on the
statistic ()_(i_—)?'__) /(S/(c,Jn)) in phase I and (}—({—)?__) /(S8 /(c,"/n)) in

phase II, where X/ indicates a subgroup average for future observations.

These statistics follow approximately the normal distribution for large
sample sizes. As a consequence, the center line and the control limits for

the Shewhart chart with unknown parameters are,
UCL=X +Z,,8/(c,Nn) ;

CL=X ; (1)
LéL=X -Z,,,5/(c,\n) .

The unknown standard deviation o can be also estimated by the unbiased

statistic R/d,, where the statistic R is the average range and the

constant value d, is the mean range of the standard normal variables.

This statistic gives the Shewhart control limits as

LR/(dn) . (2)

11
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Equation (2) is also based approximately on the normal distribution with

large sample sizes.

The Bonferroni-adjustment control chart to improve the probability of
one or more false alarms of the Shewhart chart was suggested by Ryan
(1989). The Bonferroni-adjustment control limits with known and
unknown parameters for retrospective monitoring in phase I are,

respectively,

HEZ O'/\/E) (3)

)?. +Za/2k'§/(c4\/;l—) - (4)
For constructing equations (3) and (4), the value a of Shewhart control

limits is replaced by the value a/k.

2-3. The Analysis of Means Control limits

The analysis of means can be thought of as an alternative to the
Bonferroni method, since it also considers a group of sample averages
instead of one average at a time in order to determine whether any of the
sample averages differ much from the overall mean. The construction of
ours and the ANOM strategies are based on the t distribution, hence a

brief description of the ANOM technique is presented here.

The random variables X; are iid normal variables with mean x and

variance o’. Therefore, in phase I, the correlated random variables

X, -X and X, -X for i#1'=1,2,..,k, follow the normal distribution with

t. .- T. .

mean 0 and variance o?(k-1)/(kn), (see Appendix I).

12
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Tt T =%, —X)/S-

1 1 X

_z - The ANOM control limits is based on the

i

joint statistic (7,,T,,...,T,) that is equicorrelated multivariate non-central ¢
distributed with equicorrelations p= -1/(k-1). The statistic T; follows the

¢t distribution with k(n—1) degrees of freedom. Here,
Sy, =93,.2, = Slke-D/Uen) ;
§;=6" =Y, > (X~ X, ) [((n-1).
Nelson (1982) defined the joint probability of T, for i=1,2,..,k as

k
P[ﬂlTilsthkv)}zl—a. Thus, P[|T;|<hg;i,,]=1-a'21-a, such that o'
i=1 e ote

is unknown and a'<a . This probability results the ANOM control limits

with center line X and approximately the following limits,

UCL =X +hp 0 Sslk—D/(kn) ;
LCL=X ~hg ;.S J(k=1)/(kn) . (5)

Here, the exact critical values h,,, depend on the desired level of

significance (@), the sample sizes k, and the degrees of freedom

v=k(n-1).
Nelson (1982) and (1993) calculated the critical values h,;,, to

satisfy

PUT 1€ Mo gyl T 1S Aea po iy | T IS hig ey 1=1-2

The left side of this equation is,

13



A New Procedure to Monitor the Mean of a Quality Characteristic

KJ.: .[om[g(Sh’y’p)]k s exp[—(y2 +vsz)/2]dyds ) (6)
where,
h-yJp
h, ) =2R s\ =1
9(sh,y,p)=2 e[cb{ = H 1

DO(x+iy) = ﬁ [ exp[~Curiyy 2]du;

K= 2\/% Br /T[v/2].

The function Re[CD(.)] is the real part of ®(.), and i=+/~1. Nelson (1993)

numerically evaluated the double integral (6). The values P.jox, can be
computed by replacing different values of the desired level o and the

constants k and v. Tables of the critical values h,/,r, are given by

Nelson (1993) for various values of k, v and «.

2-4. A New Control Chart

As previously suggested, the new charts to monitor the mean quality
characteristic with known or unknown parameter o are based on the

normal and the ¢ distribution, respectively. The proposed charts are

dependent only on the parameter o .
In phase I, we have }?i. —)?_, ~N(0,6%(k-1) /(kn)). Therefore, with

known variance o2, the new control limits are
)

X +Z,,0Jk-D/Gn)

(7) since, P(l)?i.—}?“ [/[a«/(k—l)/(kn)]SZH/2)=1—a. In this case, the center

14
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line is }:{ For the construction of new control chart with unknown
parameter o®, it is known that the random  variables
()—(i.—):(..)/\/az(kQI)/(kn) and k(n—l)S,f/az=ZTZZ(X,.J.—X'L)Z/GZ follow
the standard normal distribution and the chi-square distribution,
respectively. According to Cochran’s Theorem, these random variables are

independent. Therefore, the following statistic is t distributed with

k(n-1) degrees of freedom (k>1 and n>1 )2

r K -X)Nek-D/G) XX o).

" [k(n-1S} /0* S,J(k=1)/(kn)
k(n-1)

As a result, the new control chart with unknown variance is given by:

UCL = }:( +ta/2,k(n—1)Sb \’ (k _1) /(kn)

CL=

LCL=X —t,;, 1Sy J(k=1/(kn) ,

kol

(8)

where, P(|X; - X | /[S,J(k—D/Gkm)]<t, 40 ) =1-a
For controlling future subgroups, X/, the variance of X/ ~X s
evaluated to be oc*(k+1)/kn. In phase II, the random variables

(X! -%)/(ok+D/Gn) and (X! -X)/(S,Uc+D/Gn)) follow the

standard normal distribution and the t distribution, respectively. As a
result, the proposed control limits, in phase II, with known and unknown

o are,

15
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X +7,,,0(k+D/(kn) (9)

X £,k Sp(k+1) /(kn) . (10)
Here, the sample group and subgroup sizes required to construct our
proposed charts, with known and unknown parameter o, are greater than

I,1e. k>1 and n>1. The above control limits were first derived by Yang
and Hillier (1970). This was pointed out to the author by one of the

external examiners. The author was unaware of this reference.

2-5. The Performance of Retrospective Charts

Let the individual events G; denote that the subgroup averages X, exceed
the control limits of in control process. If these events are independent,
then the sequence of trials comparing X; with UCL will be a sequence of
Bernoulli trials and the overall occurrences of G; will be a Binomial

random variable with parameters k and P(G;). However, in the case of

unknown parameters, these events for the Bonferroni and ANOM control
limits are not independent. Hence a performance comparison between

these charts for historical data in phase I is given based on a simulation
study. We also use simulation to study the probability P(G,) for the

estimated Shewhart chart, since the control limits are the approximations

of true limits. For our proposed charts, in the case of the known and
unknown parameter o, the P(G;) can be easily evaluated theoretically.
For the Shewhart chart with known parameters the probability of at

least a false signal is 1-(1-a)*, since the events G, follow the Binomial

16
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distribution. Ryan (1989) showed that this probability is approximately

equal to ka . Hence, Ryan suggested the Bonferroni-adjustment scheme for

the mean control limits, where the probability of one or more false alarms

is improved to the desired value a=xI-(l-a /k)*, which is less than

1-(1-a)* for the Shewhart scheme. As already mentioned, the ANOM
method is an alternative to the Bonferroni method, maintaining
approximately the overall false alarm probability at the desired «.
Nedumaran and Pignatiello (2005) compared this probability for the
Bonferroni and ANOM procedures. The performance measure for these
charts is the overall probability of a false signal. Based on their study, the
actual probability of having at least one false alarm, using Monte Carlo
simulation experiments (20,000 times), for the ANOM approach is slightly
less than the one of the Bonferroni approach, and very close to the desired

value a.

To compare the Shewhart scheme to our scheme, we use a performance
measure the probability of a false alarm. In this case, the k subgroups of
size n are generated (20,000 times) from a stable in-control #id normal
process (see Appendix III). It should be noted that the FORTRAN
program used by Nelson (1993) can also be adapted to evaluate the
performance of the proposed scheme (8) when the variance is unknown.

The estimated control limits are obtained according to (1) for the
Shewhart strategy with unknown parameters and according to (7) and (8)
for our strategies with known and unknown parameter. Table 2.1 shows

the results of the estimated probability of a false alarm.

7
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Table 2.1 Estimated probability of a false
alarm, for intended a=0.1.

k  Approach/n 5 10 20
(1) 0.0721 0.0783 0.0823
) (7) 0.1101 0.0996 0.0947
(8) 0.1091 0.0989 0.0982
(1) 0.0801 0.0831 0.0868
15 (7) 0.0994 0.1023 0.0987
(8) 0.0978 0.1039 0.0980
(1) 0.0861 0.0918 0.0901
25 (7) 0.1026 0.0997 0.1031
(8) 0.1062 0.0941 0.1063
(1) 0.0939 0.0924 0.0966
35 (7) 0.1006 0.0989 0.1011
8) 0.1018 0.0972 0.1028
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Table 2.1 (Continued) Estimated probability
of a false alarm, for intended o =0.01.

k Approach/n 5 10 20
(1) 0.00762 0.00772 0.00881
) (7) 0.01016 0.00994 0.00976
(8) 0.01093 0.00979 0.00973
(1) 0.00832 0.00853 0.00872
15 (7) 0.00992 0.01034 0.00991
(8) 0.00988 0.01019 0.00981
(1) 0.00870 0.00921 0.00911
25 (7) 0.01023 0.00989 0.01021
(8) 0.01054 0.00932 0.01070
(1) 0.00949 0.00928 0.00974
35 (7) 0.01009 0.00987 0.01010
(8) 0.01014 0.00976 0.01022
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Table 2.1 (Continued) Estimated probability
of a false alarm, for intended «=0.001.

k Approach/n 5 10 20

0.000759 0.000780 0.000871
0.001027 0.000989 0.000980

)
)

(8) 0.001094 0.000978 0.000975
)

(1 0.000840 0.000861 0.000869

15 (7) 0.000991 0.001032 0.000994
(8) 0.000990 0.001018 0.000983
(1) 0.000871 0.000925 0.000917

25 (7) 0.001020 0.000987 0.001023
(8) 0.001051 0.000933 0.001072
(1) 0.000951 0.000924 0.000971

35 (7 0.001010 0.000984 0.001015
(

)
8) 0.001011 0.000973 0.001011

It can be concluded that the proposed new schemes, for small and large
sizes k and n, perform better than the Shewhart scheme, in the sense
that, the estimated false alarm probability of the proposed schemes is very
close to the intended «. Indeed, in theory the desired a can be exactly

attained applying the proposed schemes (7) and (8). However, because of
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the small errors in simulation experiments and the fact that the random

sample sizes are not large enough this cannot be achieved.

2-6. Average Run Length
The average run length ( ARL) is the average number of subgroups that

are plotted before a subgroup average indicates an out-of-control
condition. The ARL can be calculated as ARL=1/p, under the condition
that the process observations are uncorrelated. Here, p is the probability

that a point exceeds the control limits.

The average run length is considered for future subgroups, when the
process is in control i.e. p=u,, by plotting each subgroup on the control
chart immediately after each sample is collected. Let the individual events
G/ denote that the subgroup averages X/ exceeds the control limits of
the in control process.

In the case where the events G/ are independent, the sequence of
trials, to compare X7 with UCL, will be a sequence of Bernoulli trials and
the run length between occurrences of G/ will be a Geometric random
variable with probability P(G/). The in-control average run length will be
1/a=1/P(G/)),

P(G!)=P(X{ <LCL or X! >UCL|pu=p,).

Quesenberry (1993) suggested that the P(G/) for a classical Shewhart 3o

control chart in case of the known parameters is equal to a=0.0027, and

with unknown parameters is approximately,
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P(G) =2[1—®(3{1+%[1+9(lc;f§)]}“/ Sl (11)

where ®(.) indicates the standard normal distribution function. Using
equation (11), the P(G/) for the often recommended values k=20 and
n=4 is 0.0048, which is greater than the intended a =0.0027. Quesenberry
(1993) recommended sample sizes of about 400/(n-1) to construct the

classical Shewhart chart. Following this recommendation, for m =133 and

n=4, the intended probability of a false alarm, i.e. 0.0027, will be
obtained. As a result, the usual recommendations on the sample sizes are

not sufficient to ensure that the Shewhart estimated control limits are
close enough to the true limits. The P(G/) for the proposed methods (9)

and (10) with known and unknown o is equal to the desired value a for

both small and large sample sizes.
The events G/ and G/, i=i', for the Shewhart chart with known
parameters are uncorrelated, since the control limits are the constant

values and the subgroup averages X/ and X/ are independent. Thus, the
run length between occurrences of G/ is a Geometric random variable

with probability P(G/)=a and the ARL equals to 1/a. But, these events

for the Shewhart chart with unknown parameters and the proposed chart

with known and unknown parameter are not independent, since the

random variables X/ -UCL and X/-UCL are not independent. The

correlation between these random variables for the Shewhart method is,
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e A % A z2,(-c}
corr(R/ ~UCL, B! ~UCL)=[1+ k{1 + Ze202%)

Cs

}—1]—1
while, for the proposed method with known parameter is 1/(k+1), and for
unknown parameter is [1+k{l1+(k+Dt;,, ., (1-¥*)}"'1", (see Appendix II).

In this case, y is an unbiasing factor to estimate o, where E(S,/w)=0c,

var(S, /y)=c’(1-y*)/w*. The statistic S, is chi distributed with k(n-1)
degrees of freedom. Based on the raw moment function of chi distribution,

Yy 18,

[ 2 _(k(n-D+1), (k(n-1)
""\/k(n—l)r( 2 ]/F( 2 )

The correlations evaluated for the Shewhart and the proposed methods

rely on k and n, where these are always positive. These correlations

decrease when we use larger sample sizes k and n. As a consequence, for
the Shewhart method with unknown parameters (1) and the proposed

method with known and unknown parameter (9) and (10), the distribution
of run length between occurrences of the events G/ is not a Geometric

distribution. Hence, when the parameters are unknown, the ARL cannot

be evaluated based on the mean of a Geometric distribution. To overcome
this problem, the ARL=1/ca is estimated by the simulation experiments.
The existence of correlation between the events G/ increases the ARL,

making it greater than the intended ARL. Under these circumstances, the

control limits (10) are not suitable for accomplishing the desired ARL.
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Hence, we propose the following approximate control limits as an

alternative for (10),

X..ita/z,k(n—l)SbW/\/E' (12)

Table 2.2 shows the results of simulation experiments for equations (1),
(9), (10) and (12), (see Appendix IV). For each entry in Table 2.2, the
mean control limits are computed corresponding to k samples of size n,
and future samples are generated from an in control process until a
subgroup average is found outside the control limits. The number of
samples is one observation from the run length distribution. This
procedure is replicated 20,000 times. Each table entry is the average of

observations from the run length distribution.
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Table 2.2 Estimated in-control ARL, for
intended a=0.1.

k Approach/n 5 10 20
(1) 7.27 781 8.84
(9) 11.54 11.41 11.02
(10) 16.80 16.21 15.41
(12) 9.09 921 9.12
(1) 743 825 892
(9) 10.31 11.02 10.06
= (10) 1540 14.96 13.83
(12) 9.46 9.49 10.01
(1) 831 919 883
(9) 10.12  9.98 10.04
@ (10) 13.76  14.03 13.89
(12) 9.72 10.08 9.17
(1) 939 942 931
(9) 10.64 10.14 10.11
% (10) 12:62 13.72- 12.31
(12) 10.19 9.90 9.94
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Table 2.2 (Continued) Estimated in-control
ARL, for intended a =0.01.

k  Approach/n 5 10 20
(1) 71.84  72.92  84.57
(9) 111.74 110.10 111.21
X (10) 163.71 167.87 150.10
(12) 92.26 91.91 91.93
(1) 7451 8172  85.01
(9) 101.01 110.00 103.47
. (10) 152.31 140.89 138.92
(12) 92.41 95.01 103.91
(1) 81.82 95.28 85.74
9) 103.65 94.67 101.44
& (10) 134.27 141.65 138.23
(12) 98.56 102.76  98.98
(1) 97.28  96.01  91.48
(9) 101.26 105.28 102.42
S (10) 123.85 137.96 128.54
(12) 102.15  99.79  99.08
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Table 2.2 (Continued) Estimated in-control
ARL, for intended a=0.001.

k Approach/n 5 10 20
(1) 717.94 783.51 858.18
(9) 1213.04 1128.24 1194.95
: (10) 1582.19 1691.87 1558.74
(12) 951.30 9175.09 963.53
(1) 778.36 8127.58 848.38
(9) 1098.47 1181.27 1029.12
. (10) 1583.42 1426.19 1359.80
(12) 031.25 969.48 1081.79
(1) 825.05 931.24  860.09
(9) 1047.93  962.28 1104.28
e (10) 1389.28 1442.38 1362.86
(12) 980.16 1032.19 989.54
(1) 974.20 971.38 921.93
(9) 1040.19 1071.39 1031.75
& (10) 1267.86 1381.86 1271.19
(12) 1031.03 993.45 995.84
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As already mentioned, the probability P(G/), corresponding to (1), is
approximated to be greater than the intended «. This indicates a reason

to decrease the in control ARL for the Shewhart scheme. On the other
hand, the correlation between the events G/ causes an increase of the

ARL . Based on Table 2.2, it can be concluded that the ARL for the
classical Shewhart scheme is less than the desired ARL. For the proposed

limits (10) the ARL is greater than 1/a, although the P(G,) is exactly

equal a. This is due to the correlation between the events G/ . According

to simulation experiments, the performance of the proposed schemes (9)
and (12), to achieve the intended in control ARL is more satisfactory than
the one of the schemes (1) and (10). The probability of a false alarm for
the scheme (9) is equal to «a, and for the scheme (12) is relatively greater

than .

We have discussed the ARL for the existing method and the proposed
one using simulation experiments. Discussion for analytical methods for
evaluating the ARL can be found in Burroughs, Rigdon, and Champ
(1995), Jones, Champ, and Rigdon (2001), and Jones, Champ, and Rigdon
(2004).

2-7. Conclusion

It has been shown that the procedures suggested in this chapter, in both
phases I and II, have three advantages over the classical Shewhart
method: first the proposed scheme is established using small sample sizes;

second the in-control ARL of the new procedure is very close to the
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desired ARL; third the false alarm probability corresponding to the
proposed methods equals the intended « .

It has been suggested in the literature to use the ANOM and the
Bonferroni procedures to monitor historical data in phase I controlling.
These methods maintain the overall false alarm probability approximately
at a desired level a. The ANOM scheme performs better than the
Bonferroni technique in achieving an overall probability of a false signal at
the desired «.

We recommend using the proposed strategies if the individual

occurrence of events G, and G/ is required, and the ANOM strategy if

the overall occurrence of events G; is considered. The ANOM and the

proposed methods are constructed on the statistic X{.‘i. that includes

more information than X, used for the Shewhart and Bonferroni methods.

Moreover, the distribution function of X, —}?_. relies only on the parameter

o, whereas, that of X; depends on both parameters x and o .

Appendix I:

Var(X, -X )=Var(X, - S* X, k)

=Var(X,)-2Cov(X,, X, 1k)+Var(3* X, /k)

g’ hW2ao>

0_2
+-—_
n kn  kn
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_o’(k-1)
o

Cov(X, -X ,X, -X )=Cov(X,,X,)~Cov(X,,X ) ~Cov(X ,X,)+Cov(X , X )

=0-Cov(X,,) X, k) -Cov(D. X, Ik, X, )+ Var (X )
i=1

=

=—1/kVar(X,)~1/kVar (X, )+Var (X )

= = (COV(X,«A _)?.."Yj. _‘?)

Q
S
i
|
%
S
|

] )
b —\/Var()?,;—/‘:’,.)Var()?j-_):(-~ _

L=

)

Appendix II:

Cow(X! ~UCL, X! —UCL) = Var(UCL)
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=Var(X +1, 540,85k + 1)/ )
=Var(X )+ Var(l, ;o SoJ(k + 1)/ kn) +0
=% [kn+( ) yrry (k + D/ Kn)Var(S,)
=62 T +(1, 1y oy (k + D H) (G (L= 9)

=0 1 Im)A+1, 5 puy (DA - v?)).

Appendix III:

(Maple)

with(LinearAlgebra):

K:=15; N:=5; a:=0.1;

ns:=0; np:=0;

if a=0.1 then z:=1.645 end if; if a=0.01 then z:=2.575 end if;
if a=0.1 and N=2 and K=5 then t:=2.015 end if;
if a=0.1 and N=2 and K=15 then t:=1.753 end if;
if a=0.1 and N=2 and K=25 then t:=1.708 end if;,
if a=0.1 and N=5 and K=5 then t:=1.725 end if;
if a=0.1 and N=5 and K=15 then t:=1.671 end if;
if a=0.1 and N=5 and K=25 then t:=1.66 end if;

if a=0.1 and N=10 and K=5 then t:=1.810 end if;
if a=0.1 and N=10 and K=15 then t:=1.650 end if}
if a=0.1 and N=10 and K=25 then t:=1.645 end if;
if a=0.01 and N=2 and K=5 then t:=4.032 end if;
if a=0.01 and N=2 and K=15 then t:=2.947 end if;
if a=0.01 and N=2 and K=25 then t:=2.787 end if;
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ifa=0.01 and N=5 and K=5 then t:=2.845 end if;
if a=0.01 and N=5 and K=15 then t:=2.660 end if;
if a=0.01 and N=5 and K=25 then t:=2.630 end if;
if a=0.01 and N=10 and K=5 then t:=2.691 end if;
if a=0.01 and N=10 and K=15 then t:=2.580 end if;
if a=0.01 and N=10 and K=25 then t:=2.576 end if;
if N=2 then ¢4:=0.7979; end if;
if N=5 then c4:=0.9400; end if}
if N=10 then c¢4:=0.9727; end if;
with(Statistics):
for r from 1 to 200 do
C:=RandomMatrix(K,N);Xb:=RandomMatrix(K,1);
oneN:=RandomMatrix(N,1); oneK:=RandomMatrix(1,K);
for j from 1 to N do
oneN[j,1]:=1;
end do;
for i from 1 to K do
X = RandomVariable(Normal(6, 16));
C[i,1..N]:=Sample(X, N);
Xbl[i,1]:= C[i,1..N].oneN[1..N,1]/N;
oneK[1,i]:=1;
end do;
G
Xbb:=(oneK.Xb)/K;x22:=0;S2:=0;
for i from 1 to K do; x2:=0;

for j from 1 to N do

x2:=x2+(C[i,j]-Xb[i,11)"2;
end do;S1:=sqrt(x2/(N-1));S2:=S2+S1;
X22:=x22+x2;
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end do; Sb:=sqrt(x22/(K*(N-1))); Sbb:=S2/K;
UCLS:=evalf(Xbb+z*Sbb/(c4*sqrt(N)), 10);LCLS:=evalf(Xbb-
z*Sbb/(c4*sqrt(N)),10); UCLp:=evalf(Xbb+t*Sb*sqrt((K-
1)/(K*N)),10);LCLp:=evalf(Xbb-t*Sb*sqrt((K-1)/(K*N)),10);

for i from 1 to K do;

if Xb[i,1]>UCLS[1,1] or Xb[i,1]J<LCLS[1,1] then ns:=ns+1; end if:
if Xb[i,1]>UCLp[1,1] or Xb[i,1]<LCLp[1,1] then np:=np+1; end if;
end do;

end do;

ns; evalf(ns/(K*(r-1)),5); np; evalf(np/(K*(r-1)),5);

Appendix IV:
(Maple)

with(LinearAlgebra):

K:=5; N:=5; a:=0.1; R:=20; muu:=2; sig:=3;

ns:=0; np:=0; nsll:=0; npI:=0;
Xf:=RandomMatrix(1,N);Xbf:=RandomMatrix(1,1);Rs:=0; RpII:=0;RpkII:=0;
RpkkII:=0; Rpl:=0;Rpkl:=0; RpkkI:=0; Rsk:=0;

if a=0.1 then z:=1.645 end if; if a=0.01 then z:=2.575 end if}
if a=0.1 then z:=1.645 end if; if a=0.01 then z:=2.575 end if}
ifa=0.1 and N=2 and K=5 then t:=2.015; end if}

ifa=0.1 and N=2 and K=15 then t:=1.753; end if}

ifa=0.1 and N=2 and K=25 then t:=1.708; end if; .

ifa=0.1 and N=5 and K=5 then t:=1.725; end if}

ifa=0.1 and N=5 and K=15 then t:=1.671; end if}

if a=0.1 and N=5 and K=25 then t:=1.660; end if;

ifa=0.1 and N=10 and K=5 then t:=1.810; end if;

if a=0.1 and N=10 and K=15 then t:=1.650; end if;
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if a=0.1 and N=10 and K=25 then t:=1.645; end if;
if a=0.01 and N=2 and K=5 then t:=4.032; end if;
if a=0.01 and N=2 and K=15 then t:=2.947; end if;
if a=0.01 and N=2 and K=25 then t:=2.787; end if;
if a=0.01 and N=5 and K=5 then t:=2.845; end if;
if a=0.01 and N=5 and K=15 then t:=2.660; end if;
if a=0.01 and N=5 and K=25 then t:=2.630; end if;
ifa=0.01 and N=10 and K=5 then t:=2.691; end if;
if a=0.01 and N=10 and K=15 then t:=2.580; end if;
if a=0.01 and N=10 and K=25 then t:=2.576; end if;
ps:=evalf(sqrt(2/(K*(N-1)))* GAMMA ((K*(N-1)+1)/2)/ GAMMA ((K*(N-
1))/2),10);
if N=2 then ¢4:=0.7979; end if;
if N=5 then c4:=0.9400; end if;
if N=10 then c4:=0.9727; end if;
with(Statistics):
for r from 1 to R do
C:=RandomMatrix(K,N);Xb:=RandomMatrix(K,1);
oneN:=RandomMatrix(N,1); oneK:=RandomMatrix(1,K);
for j from 1 to N do
oneN[j,1]:=1;
end do;
for i from 1 to K do
X = RandomVariable(Normal(muu, sig));
C[i,1..N]:=Sample(X, N);
Xb[i,1]:= CJ[i,1..N].oneN[1..N,1]/N;
oneK[1,i]:=1;
end do;
Xbb:=(oneK.Xb)/K;x22:=0;S2:=0;
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for i from 1 to K do; x2:=0;

for j from 1 to N do

x2:=x2+(CJ[i,j]-Xb[i,1])"2;

end do;

S1:=sqrt(x2/(N-1));S2:=S2+S1;

X22:=x22+x2;
end do;
Sb:=sqrt(x22/(K*(N-1))); Sbb:=S2/K;
UCLS:=evalf(Xbb+z*Sbb/(c4*sqrt(N)), 10);
LCLS:=evalf(Xbb-z*Sbb/(c4*sqrt(N)),10);
UCLplI:=evalf(Xbb+t*Sb*sqrt((K-+1)/(K*N))*sqrt((K)/(K+1))*ps,10);
LCLplI:=evalf(Xbb-t*Sb*sqrt((K+1)/(K*N))*sqrt((K)/(K+1))*ps,10);
UCLpklII:=evalf(Xbb +z*sig*sqrt((K+1)/(K*N)),10);
LCLpklII:=evalf(Xbb -z*sig*sqrt((K+1)/(K*N)),10);
UCLpkkIL=evalf(muu +z*sig*sqrt((K+1)/(K*N))*sqrt((K)/(K+1))*ps,10);
LCLpkklII:=evalf(muu -z*sig*sqrt((K+1)/(K*N))*sqrt((K)/(K+1))*ps, 10);
UCLpI:=evalf(Xbb+t*Sb*sqrt((K-1)/(K*N)),10);
LCLplI:=evalf(Xbb-t*Sb*sqrt((K-1)/(K*N)),10);
UCLpkI:=evalf(Xbb +z*sig*sqrt((K-1)/(K*N)),10);
LCLpkI:=evalf(Xbb -z*sig*sqrt((K-1)/(K*N)),10);
UCLpkkI:=evalf(muu +z*sig*sqrt((K-1)/(K*N)),10);
LCLpkkI:=evalf(muu -z*sig*sqrt((K-1)/(K*N)),10);
UCLSk:=evalf(muu +z*sig/sqrt(N),10);
LCLSk:=evalf(muu -z*sig/sqrt(N),10);
rs:=0;hs:=0; rpIl:=0;hpIl:=0; rpkII:=0;hpkIl:=0; rpkkIl:=0;hpkkII:=0;
rpl:=0;hpl:=0; rpkl:=0;hpkI:=0; rpkkI:=0;hpkkI:=0; rsk:=0;hsk:=0;
for ii from 1 by 1 while hs=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;

if Xbf[1,1]<UCLS[1,1] and Xbf[1,11>LCLS[1,1] then rs:=rs+1;
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else hs:=1;
end if;
end do;
for ii from 1 by 1 while hpII=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbi[1,1]<UCLpII[1,1] and Xbf[1,1]>LCLpII[1,1] then rpIl:=rpll+1;
else hpll:=1;
end if;
end do;
for ii from 1 by 1 while hpkII=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]<UCLpkII[1,1] and Xbf[1,1]>LCLpkII[1,1] then rpkIl:=rpkII+1;
else hpkll:=1;
end if;
end do;
for ii from 1 by 1 while hpkkII=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]<UCLpkKII and Xbf]1,1]>LCLpkKII then rpkkIL:=rpkkII+1;
else hpkkIl:=1;
end if;
end do;
for ii from 1 by 1 while hpI=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]<UCLpI[1,1] and Xbf[1,1]>LCLpI[1,1] then rpl:=rpI+1;
else hpl:=1;
end if;
end do;
for ii from 1 by 1 while hpkI=0 do
Xf[1,1.N]:=Sample(X,N); Xbf:= Xf.oneN/N;
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if Xbf[1,1]<UCLpkI[1,1] and Xbf[1,1]>LCLpkI[1,1] then rpkl:=rpkI+1;
else hpkl:=1;
end if;
end do;
for ii from 1 by 1 while hpkkI=0 do
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]<UCLpKKI and Xbf[1,1]>LCLpkkI then rpkkI:=rpkkI+1;
else hpkkl:=1;
end if;
end do;
for ii from 1 by 1 while hsk=0 do
X{[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]<UCLSk and Xbf[1,1]>LCLSk then rsk:=rsk+1;
else hsk:=1;
end if;
end do;
Rs:=Rs+trs;
RplI:=RplI+rpll;
RpkIIl:=RpkII+rpkll;
RpkkII:=RpkkII+rpkkII;
RpL:=Rpl+rpl;
Rpkl:=RpkI+rpkl;
RpkkI:=RpkkI+rpkkl;
Rsk:=Rsk-+rsk;
forifrom 1 to R do;
Xf[1,1..N]:=Sample(X,N); Xbf:= Xf.oneN/N;
if Xbf[1,1]>UCLSJ1,1] or Xbf[1,1]<LCLS[1,1] then nsIl:=nslI+1; end if;
if Xbf[1,1]1>UCLpII[1,1] or Xbf[1,1]<LCLplI[1,1] then npIl:=npIl+1; end if;

end do;

37



A New Procedure to Monitor the Mean of a Quality Characteristic

end do;
evalf(Rs/(R),5);
evalf(RpIl/(R),5);
evalf(RpkIl/(R),5);
evalf(RpkkII/(R),5);
evalf(Rpl/(R),5);
evalf(RpkI/(R),5);
evalf(RpkkI/(R),5);
evalf(Rsk/(R),5);
evalf(nsIl/(R"2),5);
evalf(npIl/(R"2),5);
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A New Procedure to Monitor the Range and Standard Deviation of a Quality Characteristic

3-1. Introduction

The Shewhart and Bonferroni-adjustment control chart are common
techniques for monitoring the process range and standard deviation of a
quality characteristic. The Shewhart range and standard deviation control
chart were introduced by Shewhart (1931). Ott (1975), Ryan (1989),
Quesenberry (1997), Smith (1998) among others extended the Shewhart range
and standard deviation control charts. The Shewhart procedure usually is
based on sample group sizes (%) of at least 20 to 25 and on sample subgroup
sizes (n) of at least 4 to 6. The Shewhart chart with known and unknown
standard deviation parameter is based on a random variable that follows

approximately the normal distribution.

In the case of the R chart, the values of the subgroup ranges (R;) are

plotted on a chart that includes the center line E(R,) and the following

control limits
E(R)*Z,,\[Var(R,) .
Here, the quality characteristics X; for i=1,2,.,k and j=1,2,.,n (jth

observation in ith subgroup) are supposed to be identically independently

distributed according to the normal distribution with mean x and

variances’, and R, = Xim- X - Here, Xy and X are order statistics of the

random variable X for the ith subgroup while E(R;) and ,/Var(R;) are the

mean and standard deviation of R;.
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It is well known (see e.g. Johnson, et al. (1994)), that the joint

probability density function of X, and X, is given by

n(n-1) [Fy)-F)I"? f(x)f @), x4l

f;,n(x’y):{o x>y.

Therefore, the joint probability density function of X, and R would be

Sr(xr)=n(n-) [Fr+x)-FO)I"* f(x) f(r+x) .

As a result, the probability density function of R is obtained to be
fo@)= [n(n-1) [Fr+x)-FCOI"? f(x)f(r+x) dx,

where the functions f(x) and F(x) are respectively the probability density
function and the cumulative density function of the normal random variable
X with parameters (4,0%). The mean range (E(R)) can be evaluated to be

E(R) = j j rxn(n-1) [F(r+x)-F)" 2 f(x) f(r+x)dxdr

0 —o

{1—(F(x))"—(1—F(x))"} dx (1)

é'—\g

(see, Hartley (1942), Pearson and Hartley (1970), Barnard (1978) and
Johnson, et al. (1994)).

X.. — yiid
Let Z;=—% £ ~N(0,1). Then the cumulative distribution function of Z;=Z
o
is,
] %=
F(z)=—‘[e2dt , —00 < Z < 400, (2)
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Further, let R’ denote the range of order statistics Z,,, Z,),-» Zy, for the
hth subgroup (h=1,2,...,k). Then, using equations (1) and (2), the mean of
R' is given by
o 1 = =2 Y 1 == Y
)= | 1—[E;[e2dt] —[l—jz_;lezdt] &,
The variance and the covariance of order statistics Zh(]), Zh(z), ...Zh(n) can be

extended as (see Johnson et al. (1994))

Var<zh(i>>=%{<rl);}z+%{z(qi—p,-)w">;w*‘):

+Da ACF P+ ),."]2}}+...,

piq' -1y -1ys 1 -1yn -1yr
Cov(Zyy, Zyy) = SAEFD(F l)j}+&{(q,- ~p)FNE™D,

(n+ 2)2

+q; —p)JF)(F); +%p,-qi(F“ ), (Fr

1 | ~1yme Ep-lyn
+5P,-qj(F DI(F); +5p,~qj(F Di(F '),}+---,

where,
p;=i/(n+1);
q; =1-p;;

(F™);=dF™/dy]

y=r/(n+1) )

(F ) =d*F /dy*|,.. nuy» €EC.
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Thus, the standard deviation of R’ can be written

JVar(R') = G\/Var(Zh(n))+Var(Zh(,))—2Cov(Zh(n),Z,,(,)) :

Tables of the constant values d, = E(R') and d, =./Var(R") are given in
Montgomery (2005), Ryan (1989), Quesenberry (1997) and others. Note that

the parameters d, and d; are dependent only on the sample subgroup size

(n). Furthermore, R=X, .~ X,y and R'=Zwy~Zyq are related by R=oR'.

Consequently, the mean and standard deviation of R,, E(R,) and./Var(R.),

are obtained to be od, and od,, respectively. If the standard deviation of the

quality characteristic (o) is unknown, the Shewhart and the Bonferroni-

adjustment R chart, can be constructed using an unbiased estimate of o that
is given by the statistic R/d,, where R is the average range of the k

preliminary samples.

In the case of the S chart, the values of the subgroup standard
deviations Sf=z;:1(ij‘Xi.)2/(n—1), where X, =" X, /n, are plotted on
the chart. This chart includes the center line E(S;) and the control limits
E(Si)iZa/z\/W(SJ. Here, E(S;)and m are the mean and standard
deviation of S;, respectively.

Ryan (1989) introduced the Bonferroni-adjustment control limits as an

alternative to the Shewhart approach. The Bonferroni-adjustment R and S

control limits are given by E(R)*Z,,Var(R) and E(S)*Z,,uVar(S;).
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Here, the value a of the Shewhart control limits is replaced by the value

a /k to construct these control limits.

The new range and standard deviation control chart with known
standard deviation (o) are established similarly to the Shewhart and the
Bonferroni control chart. When the standard deviation is unknown the
proposed chart is estimated using a statistic with variance less than that of
the Shewhart and the Bonferroni-adjustment chart. Furthermore, the
constant value for the new chart with unknown standard deviation is
dependent on the sample subgroup and group sizes (m,k) whereas the
constant value of the Shewhart and Bonferroni chart is depended only on the

sample subgroup size (n).

It should be suggested that the range and standard deviation control
charts given in this chapter in both phases I and II are the same.
Furthermore, often the Bonferroni R and S charts are used in phase I
controlling for past data. Without lost of generality, the Bonferroni charts are

also examined in phase II to recognize its performance in this phase.

In this chapter, the Shewhart and Bonferroni charts are presented in
section 2, while, in section 3, the new charts are introduced. The in-control
average run length (ARL,) as well as the out-of-control average run length
(ARL,) for comparing these control charts are given in sections 4 and 5.

Finally an example and some conclusions are presented in sections 6 and 7

respectively.
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3-2. The Shewhart and Bonferroni R and S Charts

Suppose that the quality characteristics X; are identically independent
distribution  N(u,0?), for i=1,2,..,k and j=1,2,..n. The statistics
R =Xpy =Xy and S;= 3" (X;-X,)’/(n-1) are used to construct the range

and standard deviation charts, respectively. It is well known that E(R)=0d,,

JVar(R) =od,, E(S;)=oc, and /Var(S;) =o./l-c? , where

S

The Shewhart R chart with a known or unknown parameter o are

based on  the random  variables (R -E(R) /+/Var(R,) and

(Ri—E(Ri)> /JVar(R,), respectively, and for the Shewhart S chart,

(S;-E(S) /Var(S)  and (s,.—E(S,.))/,/V&r(S,.). Let  E(R)=R,

Jvar(R)=d,R/d,, E(S,)=8 and Var(S,)=S\1-c? /c,, where R =>" R/k
and §=ZLS,./ k. These variables, for sample sizes as large as k>20 and

n>4, follow approximately the standard normal distribution. These variables,

for sample sizes as large as k>20 and n>4, follow approximately the

standard normal distribution.
The Shewhart R and S control limits for a known parameter o, with
confidence (1-a)%, are given by o(d,+Z,,d,) and o(c,£Z,,\1-¢c}),

respectively. For these control limits, the center line is od, and oc,, where
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the constant values d,, d; and ¢, depend only on the sample subgroup size
(n).

If the standard deviation of the quality characteristic is unknown, then
it is estimated by the unbiased statistics R/d, and S/c, for Shewhart R and

S chart, respectively. Then, the center line and the control limits for the

Shewhart R chart with unknown parameter (o) take the form

UCL=(R/d,)(d, +z,,d,);

A

CL=R; (3)
LCL=(R/d,)(d,~2,,d,),

while, for the Shewhart S chart,
UCL =(5/c,)c, +2,,\1-¢2);
CL=8 (4)
LCL=(5/c,)(c, -z, 5 1-¢2).

The Bonferroni-adjustment R and S control chart were suggested by Ryan
(1989) in order to improve the probability of detecting one or more false
alarms of the Shewhart chart. The Bonferroni-adjustment R and S control

limits for known standard deviation parameter are given below

o(d,£Z ;)
(5)
(e, £ Z gl —G ).
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Furthermore, the Bonferroni R and S control limits with unknown parameter

are

(R/d,)(d, % Zyed;) (6)

(S/e)e, ~Zym1-c2). (7)

The center lines for the Bonferroni R chart with known and unknown

standard deviation are od, andR, respectively, and for the Bonferroni S

chart, oc, and S.

3-3. The New R and S Chart

When the standard deviation is unknown, for constructing the new
range and standard deviation charts, we need a good estimator of the
standard deviation o of the normal distribution N ~(u,0°). A brief

presentation of some estimators of the standard deviation is given in
subsection 3.1. A uniformly minimum variance unbiased (UMVU) estimator is
suggested in section 3.2. The new R and S charts for both known and

unknown standard deviation are presented in subsection 3.3.

3-3.1 A Brief Overview on the Estimation of the Standard Deviation

Markowitz (1968) suggested the use of the minimum mean-square-error

estimator of o given by & =\/Z:(X,. -X)*/k , where
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Prescott (1971a) introduced a linear estimator for the standard

deviation defined as & =a,W . Here, a, is the unbiasing factor and W is given

by
w :( X~ Xi(j)) /(3r) , 1=l 2k
Jj=n-r+l Jj=1

Furthermore, r=n/6 is rounded up to the nearest whole number if n/6 is

not an integer and X, <X @) S <X is an ordered sample of the normal

(U
distribution N(u,0?). Prescott (1971b) proposed the use of another estimator

for the standard deviation of the N(u,0?) given by

6= iji(j)/Zm.? ‘
j=1 j=1

Jj=

In this case, msz((X.(j)—,u)/o-). This method does not take into

1
consideration the covariance between the order statistics.
Vardeman (1999) considered using minimum mean-square-error

estimator given, for the case of a single sample, by

. Rd, 5 9
oc=—*_ o=—,

Z+d’ c,
where R and S are the range and standard deviation of the single sample,
and the constants d,, d, and ¢, are as introduced in previous sections. He
also introduced a combination of several estimators for the case of r samples
of possibly different sizes n,,n,,..,n, with ranges R,,R,,...,R_ defined by

6=7R +7,R,+...+7.R., where
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(e &)Y d,0) .
y"‘(zfﬂd:(n,.)) d(n)’
d,(n))=E(R)/o;

d,(n;)=+Var(R,) /o .

An analogous estimator was proposed for the case of r samples of possibly
different sizes n,,n,,..,n, with sample standard deviation estimators
S,,8,5..,8,. The proposed estimators are &=x8 +7,S,+...+7.S

and

r

A

0 =8 poea/ Cs(V+1) . Here,

(e )Y )
i (Z cz(nf)J ()’
C4(Tli)=E(Si)/O';

cs(n;)=y/Var(S,) /o ;

(n, -1S? +(n, -1)S? +...+(n. -1)S?
= 1 1 2 2 i 2 T

s2 . ;
(n, =D+, -D+...+(n, -1)

pooled —

v=(n,-D+(n,-D+..+(n.-1).

Some other estimators of the standard deviation have also been given
by Glasser (1962), Khan (1968), Gurland (1971), Donatos (1989), Arnholt and
Hebert (1995), Chen (1997), Watson (1997), Champ and Jones (2004).

However, these authors did not employ UMVU estimators of the standard

deviation of the normal distribution N(u,o?).
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3-3.2 An UMVU Estimator of the Standard Deviation

Let

5= \/z (X, ~X,)*/ (kn—1).

i=l j=1
It is well known that the random variable k(n-1)S*/oc® is chi-square
distributed. Then, the random variable H =.k(n-1)S/oc follows the chi

distribution with k(n-1) degrees of freedom. The probability density function

and the rth raw moment of H are

1 2
P.(h)= g M 2Rk B 8
H 2(k(n—1)/2)—lr(k(n_1)/2) (8)

V2T ((k(n-1)+7)/2)
I'(k(n-1)/2)

E(H") = (9)

Moreover, the standard chi distribution (8) is in fact a standard gamma

distribution with probability density function

Put)= e e, R

L(¢)

where, the values ¢, 7, and y are k(n-1)/2, 2, and 0, respectively, with H

replacing H?. Assume further a constant value y to be the unbiasing factor

of the standard deviation estimator, where

i 2 k(n-1)+1 k(n-1)
w—( k(n—l)r( > )/F( = ]J 5 kn <350 and
o SG=]) kn > 350

Y akn-D+1

o0
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The mean and variance of the statistic § are evaluated to be oy and
o’ (1-y?) respectively using equation (9). Thus, the statistic S/y is an
unbiased estimator of the standard deviation (o ). Champ and Jones (2004)
provide a good discussion about the unbiased estimators of the standard
deviation (o )
The constant value y depends on both the sample subgroup size (22) and the
sample group size (k). The value of y with various sample sizes & and n is
given in Table 3.10, for

k=2(1)10,15(5)30,40,100,120,

and

n=2(1)11,14,15,18,20(5)50,60(10)120 .
The statistic S is an injective function of the complete sufficient statistic S?
and the statistic S/y is an unbiased estimator of o . Therefore according to
the Lehman-Scheffe theorem, the statistic S/w is an UMVU estimator of o

(see Rohatgi (1984)). Then, the UMVU estimator S/y can be used for

constructing the new range and standard deviation control chart with

unknown standard deviation. In the sequel, we compare the range and
standard deviation control charts that are based on the statistic R/d, (for

the Shewhart and Bonferroni approach) to those based on the statistic S/
(for the new approach). Table 3.1 shows that the variance of the statistic

S/w, var(S/w)=c(1-y?)/w?, is less than that of the statistics R/d, and

S/c,,ie., var(R/d,)=od?/(kd?) and var(S/c,)=o’(1-c;)/(ke}).
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Table 3.1 The Variance of the statisticsS/y, R/ d, and S/c, with o*=1.

k

n 2 5 10 15 20 25 60 120

2 027323 0.10440 0.05118 0.03392 0.02527 0.02015 0.00838 0.00413
5 0.06427 0.02527 0.01267 0.00838 0.00620 0.00499 0.00209 0.00104
o'z(l—ylz)/l//2 10  0.02819 0.01117 0.00557 0.00374 0.00280 0.00228 0.00093 0.00046
20 0.01328 0.00531 0.00277 0.00172 0.00132 0.00105 0.00044 0.00022

25 0.01048 0.00413 0.00209 0.00139 0.00104 0.00083 0.00035 0.00017

2 028592 0.11437 0.05718 0.03812 0.02859 0.02287 0.00953 0.00477

5 0.06899 0.02760 0.01380 0.00920 0.00690 0.00552 0.00230 0.00115

=

Cr2d32 /(kd?) 0 0.03352 0.01341 0.00670 0.00447 0.00335 0.00268 0.00112 0.00056
20 0.01905 0.00762 0.00381 0.00254 0.00190 0.00152 0.00063 0.00032

25 0.01622 0.00649 0.00324 0.00216 0.00162 0.00130 0.00054 0.00027

2 028537 0.11415 0.05707 0.03805 0.02854 0.02283 0.00951 0.00476

5 0.06587 0.02635 0.01317 0.00878 0.00659 0.00527 0.00220 0.00110

=

o*(1-c})/(ke?) 0 002846 0.01138 0.00569 0.00379 0.00285 0.00228 0.00095 0.00047
20 0.01336 0.00534 0.00267 0.00178 0.00134 0.00107 0.00045 0.00022

25 0.01056 0.00423 0.00211 0.00141 0.00106 0.00085 0.00035 0.00018
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3-3.3 The New R and S Charts

The control limits for the average of a quality characteristic depend on the
variability of the production process. While the process variability is outside
the control limits, the control limits on the average quality characteristic will
not have much meaning. Therefore, it is best that a range or standard
deviation control limits is first set (see Montgomery (2005)). In this chapter
the range and standard deviation control charts presented by Kiani,
Panaretos and Psarakis (2008) is described in more details.

The quality characteristics X for t=1,2,.k and j=12..n are

identically and independently normally distributed with mean x and variance

o>. The new range and standard deviation control charts with known

standard deviation, like the Shewhart R and S control charts, are given by

UCL=0o(d,+z,,d,);
CL=6d,;

LCL=o(d, -z, d,)
UCL=o(c,+Z,,\1-¢;);

CL=0c¢, ;

LCL=ale, -2, \T-¢}).
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To establish the proposed control charts with unknown standard deviation,

we estimate E(R)=o0d,, \Var(R)=od,, E(S)=o0c, and \Var(S,) =cf1-c

using the UMVU estimators Sd,/v, Sd,/v, Sc,/v and S\l1-¢ /v,

respectively. The resulting control limits for the proposed R chart with

unknown standard deviation would be
UCL=(S/y)(d, +2,,d,) ;
CL=(S/v)(d,); (10)
LCL=(S/y)d, -7,,d,),

and the control limits for the proposed S chart are
UCL = (S/w)(e, +za/2\/1——cf) ;
éL=Sc4/w; (11)
LCL=(S /y)(c, ~z,,\1-¢2).

In sections 4 and 5, the in-control and out-of-control average run length for

the Shewhart, Bonferroni and new R and S control charts are examined.

3-4. In-Control Average Run Length

The average run length is considered for future subgroups, in phase II. The
in-control average run length (called ARL,) is the average number of subgroup
ranges or standard deviations that should be plotted before a subgroup range

or standard deviation indicates an out-of-control condition. The ARL, can be

calculated from ARL,=1/p under the condition that the process observations
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are uncorrelated. Here, p is the probability that any point exceeds the

control limits. The in-control average run length can be used to evaluate the

performance of the control chart.
In this section, the average run length is considered for the initial

group and groups 2,3,... with known and unknown parameter o when the
process is in control. Let the individual events G; denote the subgroup range
R; or standard deviation S, exceeds the control limits of the in control
process (R=R, or oc=0,).

For the initial group of observations with unknown parameter o, the
events G, and G, for i#1i'=1,2,...k are not independent, since the statistics
R,-UCL and Rj—Ué'L, or §-UCL and S; ~UCL, for the Shewhart, the
Bonferroni and the new charts are based on the same observations of the
initial group.

In case the events G, are independent, the sequence of trials,
comparing R, with UCL or S; with UCL will be a sequence of Bernoulli trials
and the run length between occurrences of G; will be a Geometric random
variable with probability a=P(G;). Additionally, the in-control average run

length would be 1/P(G,) or 1/a such that,

P(G,)=P(R, <LCL or R, >2UCL|R=R,) (12)
or
P(G))=P(S,<LCL or 5,2UCL|c=0,). (13)
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However, the statistics Ri—UéL and Rj—Ué'L or Si—UC‘L and S; ~UCL for

the initial group with unknown parameter are not independent events.
Therefore, the in-control ARL for the initial group with unknown parameter

can be not calculated.

For the initial group with known parameter, the correlation between
random variables R,-UCL and R;-UCL or S;-UCL ‘and S;-UCL can be
obtained to be 0. Here, the UCL with known parameter is a constant value
and the subgroup ranges R, and R; or standard deviations S§; and S; are
independent. Thus, the events G; and G; for the initial group with known
parameter are uncorrelated.

For the groups 2,3,... with known and unknown parameter, the events
G, and G, are uncorrelated, since the UCL with known and unknown
parameter are based on the observations of initial group, while the R; or S;
belong to groups 2,3,... Thus, the correlation between random variables

R,-UCL and R;-UCL or S;-UCL and S;-UCL can be obtained to be 0.

Based on the above, the sequence of the events {G;}, for the initial
group with known parameter and the groups 2,3,... with known and unknown
parameter, would be Bernoulli trials and the run length between occurrences

of G, would be a Geometric random variable with probability P(G;). The
probability P(G,) for both the Shewhart and the new approach is «, and for

the Bonferroni-adjustment approach is a/k. As a result, the in-control
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average run length (ARL,) would be 1/P(G,)=1/a for the Shewhart and the
new approach, and 1/P(G;)=k/a for the Bonferroni-adjustment approach.
Thus the ARL, for the Shewhart and proposed chart (1/a) is less than the
ARL, for Bonferroni-adjustment chart (k/a, for k>2). (See, also,
Nedumaran and Pignatiello (2005) and Tsai et al. (2005)).

Now, we discuss the in-control average run length that based on the
average number of groups before a group indicates an out-of-control

condition. Here, the in-control average run length is called ARL;.

For the initial group with known parameter and the groups 2,3,... with
known and unknown parameter, let the random variable Y denote the overall
occurrences of events G, for i=1,2,..,k. Then, this random variable should

follow the Binomial distribution with probability distribution (for the

Shewhart and the new approach) given by
k -
PY=y)=| |a*(-a)™ , y=012,.k.
y

Therefore, the probability of one or more subgroup ranges or standard
deviation falling out of the control limits (the probability of out-of-control

condition for a group) for the Shewhart and the new approach is
P(Y>21)=1-(1-a)*. Ryan (1989) showed that the probability 1-(1-a)* is
approximately equal with ka. Thus, Ryan (1989) suggested the Bonferroni-
adjustment approach for the control limits. In this case, the probability of one
or more false alarm is improved to 1-(1-a/k)* that is less than 1-(1-a)*.

The probability distribution of Y, for the Bonferroni-adjustment approach,
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follows the Binomial distribution with parameters (k,a/k). Therefore, the

probability of one or more subgroup ranges or standard deviations falling out

of the control limits for the Bonferroni-adjustment approach is given by
P(Y >1)=1-(1-a/k)*. As a result, the ARL! is obtained to be 1/(1-(1-a)")
for the Shewhart and the new approach, and 1/(1-(1-a/k)¥) for the
Bonferroni-adjustment approach. That means 1/(1—(1—a)k)<1/(1—(1—a/k)".

Thus, the ARL, for the Shewhart and the new approach is less than that of
the Bonferroni-adjustment approach. Consequently, the in-control average run
length (ARL, ,ARL)) for the Bonferroni-adjustment approach is greater than

the Shewhart and the new approach. In the next section we illustrate that the
out-of-control average run length for the Bonferroni-adjustment approach is
not so satisfactory. In other words, the power of the Bonferroni-adjustment
control limits is considerably less than the one of the Shewhart and new

approach.

3-5. Out-of-Control Average Run Length

The ability of the range and standard deviation control charts to
detect shifts in process quality is described by the out-of-control average run
length (ARL,), in phase II controlling. The probabilities of detecting a one or

more false alarms when the process is in control were improved by using the
Bonferroni-adjustment approach. In this section, the power of control limits

for the usual approach (Shewhart and Bonferroni) and the new approach are

compared using ARL,.
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If the in-control value of the standard deviation shifts from o, to
o, =10, >0,, (A>1) the probability of not detecting the range or standard

deviation shift (8 ) is calculated by

B=P(LCL<R,<UCL|c = Ac,) (R Chart) (14)
or
B=P(LCL<S,<UCL|c=4c,) (S Chart). (15)

These probabilities for both the Shewhart and proposed R and S charts with

known parameter (o ) similarly are obtained to be

Sl V=N dadi ), (R Chart) (16)
2d, ’ Ad,

B=P(

and

~Zapy1-c +c“(1_ﬂ)sZ,. p Zup\1=6 +C4(1_)‘)) (S Chart) (17)
Z\/l—cf l\/l—cf

Meanwhile, the probability B for the Bonferroni-adjustment R and S chart

B=F(

with known parameter (o) is

~Z ;50 +d,(1-1) <7 < Z, 4 +d,(1-4)

= ; a ) (R Chart) (18)

B=P(

and

Zapl=Ci+e-2) ) ZowylmGre0-4), (g Ghart). (19)

afl=c? ' af1-c2

Usually, the parameter o is unknown. In this case we obtain the probability

B=P(

B for the control limits with unknown parameter. We already showed that

S/y is a UMVU estimator of the standard deviation. Let us call S/y by S,.

In order to compute the type II error (g) for the Shewhart, the Bonferroni
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and the proposed approach with unknown parameter the standard deviation
(o,) from equations (14) and (15) is estimated by S,. Thus, the probability
p for the Shewhart approach with unknown parameter is calculated using

equations (3) and (14) for R chart and equations (4) and (15) for S chart

. :P{(R/dz)(dz ~Zupd)-28d, _, _(R/d,)d, +Z,,,2d3)—ﬂ~5td2) (20)

28,d, ' 28,d,

and

s-p (S/e)e,~Z,,,\1-¢;)-ASc, SZ.S(g/c“)(q,+Za/2«/1—c:)—/15rc4 (21)
AS\J1-¢? ] AS1-¢?

Similarly, the probability g for the Bonferroni-adjustment approach with

unknown parameter is obtained by using equations (6) and (14) for R chart

and equations (7) and (15) for S chart,

ﬂ =P (E/dz)(dz _Za/zkda)_/lstdz <7. < (R/dz)(dz +Za/2kd3/d2)_2’Std2
28.d, i 18.d,

J (22)

and

s-p (S5/c)e,—Z, u1-c3)-ASc, o (S/e)e,+Z, yAl1-c;)-AS,c, (23)
AS\1-¢2 ' AS\1-¢2

Also, the probability g for the new approach with unknown parameter is

obtained using equations (10) and (14) for R chart and equations (11) and

(15) for S chart as follow

- P((S/l//)(dz -Z,,,d,)-2Sd, . (S/w)d, +Za/2d3)—lStd2J (24)

28.d, ' 28.d,

and
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pop (S/y)e,—Z,,,\1-c;)-ASc, _— (S/y)e,+Z, ,\1-¢;)-ASc, (25)

AS\J1-¢c: ok AS \J1-c}

The probability g with known standard deviation for various sample sizes n

and coefficient 4 is exhibited by the operating-characteristic (OC) curves.
The OC curves are constructed according to the constant values of Table 3.2
and equations (16) and (17) for the Shewhart and the new R and S charts,
respectively, and equations (18) and (19) for the Bonferroni-adjustment R and
S chart.

Table 3.2 The constant values d,, d; and c, to

construct the OC curves

n

2 5 10 20 25

d, 1.128 2.326  3.078  3.735 3.931
d, 0.853 0.864 0.797 0.729  0.708

&y 0.7979 0.9400 0.9727 0.9869 0.9896
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Figure 1 Operating characteristic curves for
the Shewhart and new R chart (k=20,a=0.01).

105

Figure 2 Operating characteristic curves for
the Bonferroni R chart (k=20 ,2=0.01).
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Figure 3 Operating characteristic curves for
the Shewhart and new S chart (k=20,a=0.01).
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the Bonferroni S chart (k=20,a=0.09).
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Figures 3.1-3.4 indicate that the Shewhart and the new approach are
considerably effective in detecting shifts greater than one standard deviation
(A>1) on the first sample following the shift. Table 3.3 shows the probability

g for various shifts and sample sizes from Figures 3.1-3.4. This table
indicates that the probability g for the Shewhart and the new approach is

less than the probability in not detecting a shift for the Bonferroni-

adjustment approach.

Table 3.3 The Probability g from Figures 3.1-3.4 (k=20, a = 0.01)

n=2 n=10 n=25

Approach
A=1.5 A=2.5 A=1.5 A=25 A=1.5 A =25

ShowhartNow R Chart  0-88363 055954 0.66503 0.09866 0.44671 0.01069

e 096705 071096 0.84909 0.17741 0.68073 0.02625

ShowhartNow § Chart  0-88357 0.55930 0.62462 0.06863 0.28229 0.00098

S e 0.96702 0.71073 0.82199 0.13076 0.51091 0.00312

The probability g with unknown standard deviation for various sample sizes
n and k, and coefficient 2 is exhibited by Table 3.4 and Table 3.5 for R
chart, and Table 3.6 and Table 3.7 for S chart. These tables are constructed
using Monte Carlo simulation experiments (Appendix I for R chart and

Appendix II for S chart) with constant values of Table 3.2 and equations (20),

64



Some developments in statistical quality monitoring and quality improvement

(22), and (24) for the Shewhart, the Bonferroni-adjustment, and the new R
chart, respectively, and equations (21), (23), and (25) for the Shewhart, the
Bonferroni-adjustment, and the new S chart, respectively. If the subgroup
range or standard deviation falls out of the control limits, a counter for that
was increased by one. This procedure was replicated 10,000 times, and then
the probability A was estimated by dividing the number of replications in
which points exceeded the control limits with the total number of replications.
As a result, the estimated probability of not detecting a range or a standard
deviation shift for the Shewhart, the Bonferroni-adjustment and the new R

and S chart are shown in the following tables 3.4-3.7.
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Table 3.4 Estimated probability of not detecting a range shift (B) for
a=0.1.

n=2 n=>5
k Approach/ 1 1.5 2 2.5 3 1.5 2 2.5 3

Shewhart 10.763 0.673 0.517 0.424 | 0.596 0.315 0.170 0.080
10 Bonferroni | 0.898 0.767 0.650 0.551 | 0.804 0.504 0.288 0.163
New 0.747 0.633 0.509 0.421 | 0.594 0.314 0.171 0.080

Shewhart [0.768 0.615 00523 0.444 | 0.580 0.395 0.166 0.088
15 Bonferroni |0.906 0.774 0.675 0.561 | 0.843 0.527 0.315 0.181
New 0.760 0.609 0.524 0.441]0.579 0.322 0.170 0.084

Shewhart [0.767 0.639 0.526 0.445 | 0.592 0.300 0.171 0.088
20 Bonferroni | 0.910 0.779 0.582 0.593 | 0.839 0.546 0.328 0.203
New 0.766 0.635 0.524 0.438 | 0.586 0.306 0.170 0.088

Shewhart [0.766 0.622 0.521 0.440 | 0.608 0.316 0.182 0.089
30 Bonferroni | 0.914 0.795 0.699 0.611 0.857 0.565 0.353 0.204
New 0.762 0.619 0.516 0.439 | 0.608 0.315 0.180 0.089

Shewhart [0.765 0.629 0.523 0.446 | 0.601 0.593 0.171 0.020
40 Bonferroni |0.923 0.807 0.705 0.613 | 0.875 0.593 0.367 0.228
New 0.758 0.627 0.519 0.446 | 0.594 0.323 0.171 0.010

Shewhart [0.764 0.628 0.527 0.441 | 0.601 0.320 0.173 0.095
100 Bonferroni | 0.937 0.832 0.730 0.645 | 0.892 0.639 0.414 0.257
New 0.763 0.627 0.526 0.438 | 0.602 0.317 0.174 0.095

Shewhart [ 0.769 0.628 0.526 0.451 | 0.506 0.321 0.175 0.100
120 Bonferroni | 0.940 0.836 0.741 0.649 | 0.901 0.653 0.419 0.263
New 0.767 0.627 0.524 0.451 | 0.598 0.321 0.175 0.100
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Table 3.4 (Continued) Estimated probability of not detecting a range shift

(B ) for @=0.1.
n=10 =75
k Approach/i | 1.5 2 25 3 | 15 2 25 3
She“’hart_ 0.430 0.117 0.024 0.008  0.224 0.012 0.000 0.000
10 Bonferroni | g 6g7 0949 0.078 0.015 | 0.464 0.048 0.001 0.000
New 0.412 0.122 0.023 0.009 | 0.226 0.012 0.000 0.000
Shewhart g 435 0123 0.026 0.009 | 0.223 0.009 0.000 0.000
15 Bonferroni | 4 709 0292 0.099 0.023 | 0.514 0.055 0.006 0.000
New 0.434 0.125 0.026 0.009 | 0.226 0.010 0.000 0.000
Shewhart 1 447 0128 0.024 0.006|0.218 0.013 0.001 0.000
20 Bonferroni | 749 0317 0.097 0.036 | 0.546 0.066 0.004 0.000
New 0.450 0.128 0.024 0.006 | 0.211 0.013 0.001 0.000
Shewhart 14 447 0124 0.034 0013]0.234 0.016 0.001 0.000
30 Bonferroni | 751 337 0124 0041|0574 0079 0.005 0.000
New 0.442 0.124 0.033 0.013 |0.233 0.016 0.001 0.000
Shewhart 10 445 0131 0.034 0.006|0.224 0.012 0.001 0.000
40 Bonferroni | o 78 0349 0123 0.043 | 0.582 0.083 0.008 0.000
New 0.440 0.132 0.034 0.006 | 0.224 0.011 0.001 0.000
Shewhart 15 449 0123 0.033 0.009|0.233 0.015 0.000 0.000
100 Bonferroni | 853 0419 0.157 0.056 | 0.661 0.125 0.009 0.001
New 0.451 0.123 0.032 0.009 | 0.234 0.014 0.000 0.000
Shewhart 1 o 447 0130 0.033 0.011]0.237 0.013 0.000 0.000
120 Bonferroni | 930 420 0.163 0.059 | 0.666 0.126 0.011 0.001
New 0.445 0.129 0.033 0.010 | 0.235 0.013 0.000 0.000
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Table 3.5 Estimated probability of not detecting a range shift (/) for
a=0.01.

n=2 n=>5
k  Approach/2 @ 1.5 2 2.5 3 1.5 2 2.5 3

Shewhart | 0.903 0.772 0.653 0.566 | 0.800 0.478 0.280 0.172
10  Bonferroni | 0.942 0.862 0.742 0.636 | 0.920 0.625 0.387 0.240
New 0.901 0.745 0.649 0.552 0.798 0.474 0.277 0.175

Shewhart | 0.898 0.742 0.658 0.572 | 0.820 0.490 0.289 0.166
15  Bonferroni | 0.957 0.833 0.737 0.647 ; 0.908 0.631 0.405 0.241
New 0.896 0.730 0.656 0.570 0.808 0.480 0.280 0.168

Shewhart | 0.893 0.769 0.637 0.579 0.819 0.500 0.294 0.171
20  Bonferroni | 0.941 0.837 0.739 0.650 | 0.907 0.649 0.410 0.257
New 0.888 0.766 0.628 0.5750.809 0.497 0.291 0.169

Shewhart | 0.895 0.767 0.643 0.558 i 0.809 0.491 0.312 0.170
30  Bonferroni |0.949 0.839 0.727 0.637  0.898 0.645 0.420 0.253
New 0.893 0.762 0.638 0.555 0.801 0.487 0.312 0.169

Shewhart | 0.882 0.768 0.655 0.556 | 0.806 0.493 0.314 0.175
40  Bonferroni |0.936 0.843 0.733 0.646  0.899 0.637 0.406 0.259
New 0.880 0.766 0.652 0.556  0.801 0.497 0.315 0.174

Shewhart | 0.885 0.762 0.649 0.568 | 0.802 0.514 0.311 0.182
100  Bonferroni | 0.937 0.836 0.732 0.647  0.897 0.639 0.417 0.264
New 0.884 0.761 0.650 0.566 ; 0.801 0.512 0.313 0.181

Shewhart | 0.882 0.757 0.656 0.564 | 0.804 0.509 0.291 0.180
120  Bonferroni | 0.944 0.832 0.738 0.646 | 0.899 0.635 0.407 0.259
New 0.881 0.756 0.654 0.562 0.801 0.509 0.291 0.178

68



Some developments in statistical quality monitoring and quality improvement

Table 3.5 (Continued) Estimated probability of not detecting a range shift

(B) for a=0.01.

n=10 n=25
k Approach/A | 1.5 2 2.5 3 1.5 2 2.5 3
Shewhart 0.694 0.240 0.061 0.015 0.463 0.057 0.007 0.000
10 Bonferroni 0.842 0.396 0.123 0.037  0.653 0.107 0.013 0.000
New 0.690 0.230 0.050 0.015 0.460 0.048 0.004 0.000
Shewhart 0.701 0.271 0.081 0.020]0.471 0.076 0.002 0.000
15 Bonferroni 0.845 0.402 0.164 0.038 0.640 0.135 0.005 0.002
New 0.696 0.264 0.079 0.019 0.467 0.066 0.002 0.000
Shewhart 0.691 0.280 0.058 0.021 | 0.458 0.051 0.003 0.000
20 Bonferroni 0.817 0.422 0.142 0.046  0.666 0.110 0.005 0.000
New 0.689 0.279 0.060 0.020  0.459 0.052 0.003 0.000
Shewhart 0.690 0.266 0.087 0.038  0.465 0.044 0.003 0.000
30 Bonferroni 0.828 0.407 0.158 0.061 | 0.672 0.102 0.007 0.000
New 0.682 0.264 0.085 0.033 | 0.461 0.044 0.003 0.000
Shewhart 0.693 0.260 0.086 0.012|0.480 0.057 0.003 0.000
40 Bonferroni 0.836 0.415 0.157 0.051 |0.647 0.127 0.009 0.000
New 0.694 0.255 0.086 0.012|0.480 0.054 0.003 0.000
Shewhart 0.691 0.279 0.087 0.028 | 0.476 0.054 0.003 0.000
100 Bonferroni 0.819 0.418 0.163 0.054 0.655 0.121 0.008 0.001
New 0.692 0.281 0.088 0.028 | 0.469 0.053 0.002 0.000
Shewhart 0.684 0.270 0.085 0.030|0.474 0.059 0.004 0.000
120 Bonferroni 0.824 0.414 0.152 0.059  0.657 0.117 0.011 0.001
New 0.682 0.267 0.084 0.029 | 0.474 0.058 0.004 0.000
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Table 3.6 Estimated probability of not detecting a standard deviation Shift
(B) for a=0.1.

n=2 n=5
k Approach/ y) 1.5 2 2.5 3 1.5 2 2.5 3

Shewhart | 0.757 0.618 0.529 0.431 | 0.599 0.319 0.173 0.081
10 Bonferroni | 0.881 0.772 0.648 0.560 | 0.809 0.505 0.289 0.162
New 0.745 0.598 0.523 0.425  0.597 0.317 0.172 0.080

Shewhart 10.749 0.627 0.532 0.447 | 0.591 0.328 0.175 0.0%6
15  Bonferroni | 0.904 0.773 0.669 0.567  0.844 0.529 0.319 0.180
New 0.741 0.612 0.530 0.440 ; 0.588 0.325 0.173 0.085

Shewhart | 0.772 0.616 0.529 0.442 | 0.594 0.329 0.179 0.087
20 Bonferroni | 0.909 0.780 0.591 0.594 | 0.848 0.540 0.328 0.207
New 0.768 0.602 0.527 0.437  0.589 0.328 0.176 0.085

Shewhart | 0.763 0.623 0.530 0.444 | 0.606 0.330 0.181 0.080
30  Bonferroni |0.916 0.804 0.703 0.617 | 0.861 0.569 0.352 0.208
New 0.759 0.615 0.529 0.440 | 0.607 0.330 0.181 0.081

Shewhart | 0.767 0.634 0.538 0.442 | 0.608 0.531 0.173 0.101
40  Bonferroni | 0.910 0.809 0.709 0.615|0.881 0.590 0.365 0.227
New 0.761 0.630 0.521 0.441  0.599 0.329 0.172 0.098

Shewhart | 0.766 0.631 0.531 0.445 | 0.609 0.329 0.172 0.098
100  Bonferroni |0.936 0.841 0.741 0.648 | 0.899 0.641 0.418 0.253
New 0.763 0.625 0.529 0.442  0.609 0.329 0.173 0.097

Shewhart [ 0.772 0.634 0.530 0.453 0.612 0.335 0.177 0.101
120 Bonferroni | 0.939 0.839 0.750 0.652 | 0.918 0.657 0.418 0.264
New 0.769 0.632 0.530 0.453 | 0.611 0.333 0.177 0.100
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Table 3.6 (Continued) Estimated probability of not detecting a standard
deviation shift () for a =0.1.

n=10 n=25

k Approach/i | 15 2 25 3 |15 2 25 3
Shewhart | 0.431 0.116 0.025 0.008 | 0.226 0.011 0.000 0.000

10 Bonferroni | 0.686 0.246 0.078 0.016 | 0.467 0.049 0.001 0.000
New 0419 0.116 0.023 0.009 | 0.222 0.010 0.000 0.000
Shewhart | 0.437 0.120 0.020 0.009 | 0.223 0.010 0.000 0.000

15 Bonferroni | 0.711 0.291 0.099 0.025 | 0.514 0.056 0.006 0.000
New 0.437 0.118 0.027 0.009 | 0.226 0.010 0.000 0.000
Shewhart | 0.446 0.122 0.025 0.007 | 0.226 0.012 0.001 0.000

20 Bonferroni | 0.743 0.314 0.096 0.035|0.467 0.065 0.004 0.000
New 0.445 0.120 0.023 0.007 | 0.222 0.011 0.001 0.000
Shewhart | 0.448 0.126 0.035 0.012 | 0.234 0.015 0.001 0.000

30 Bonferroni | 0.754 0.339 0.121 0.043 | 0.573 0.080 0.005 0.000
New 0.444 0.123 0.032 0.012]0.234 0.014 0.001 0.000
Shewhart | 0.442 0.132 0.035 0.007 | 0.226 0.011 0.001 0.000

40 Bonferroni | 0.777 0.342 0.124 0.045 | 0.467 0.085 0.007 0.000
New 0.441 0.132 0.034 0.006 | 0.222 0.012 0.001 0.000
Shewhart | 0.447 0.127 0.031 0.009 | 0.233 0.016 0.000 0.000
100 Bonferroni | 0.823 0.419 0.159 0.058  0.661 0.127 0.009 0.001
New 0.456 0.124 0.031 0.008 | 0.234 0.017 0.000 0.000
Shewhart | 0.448 0.131 0.034 0.012]0.225 0.012 0.000 0.000
120 Bonferroni | 0.834 0.423 0.165 0.058 | 0.462 0.129 0.010 0.001
New 0.447 0.129 0.032 0.011 | 0.221 0.013 0.000 0.000
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Table 3.7 Estimated probability of not detecting a standard deviation shift

(B) for a=0.01.

n=2 n=>h
k Approach/2 | 1.5 2 2.5 3 1.5 2 2.5 3
Shewhart | 0.904 0.760 0.656 0.550 | 0.854 0.526 0.314 0.182
10 Bonferroni | 0.956 0.840 0.748 0.636 1 0.942 0.684 0.448 0.258
New 0.896 0.752 0.652 0.548 | 0.848 0.516 0.298 0.178
Shewhart | 0.908 0.761 0.6564 0.553 | 0.852 0.528 0.318 0.185
15  Bonferroni | 0.959 0.842 0.743 0.638 | 0.942 0.685 0.449 0.259
New 0.896 0.754 0.651 0.550 | 0.847 0.519 0.299 0.180
Shewhart | 0.889 0.763 0.657 0.551 | 0.855 0.527 0.314 0.183
20 Bonferroni | 0.959 0.841 0.745 0.638 | 0.946 0.687 0.447 0.259
New 0.886 0.755 0.655 0.549 | 0.851 0.519 0.299 0.181
Shewhart | 0.895 0.762 0.655 0.556 | 0.853 0.525 0.319 0.184
30 Bonferroni |0.957 0.845 0.743 0.639 | 0.941 0.682 0.451 0.261
New 0.891 0.751 0.650 0.552 | 0.846 0.516 0.305 0.179
Shewhart | 0.889 0.766 0.658 0.553 | 0.857 0.528 0.319 0.186
40 Bonferroni | 0.955 0.841 0.750 0.632 1 0.944 0.687 0.450 0.263
New 0.887 0.756 0.656 0.549 | 0.852 0.520 0.303 0.183
Shewhart | 0.890 0.762 0.652 0.556 | 0.855 0.529 0.313 0.181
100 Bonferroni | 0.961 0.842 0.744 0.641 | 0.946 0.689 0.448 0.255
New 0.888 0.758 0.650 0.551 | 0.851 0.521 0.297 0.182
Shewhart | 0.895 0.761 0.6564 0.552 | 0.852 0.524 0.317 0.181
120 Bonferroni | 0.957 0.843 0.747 0.639 | 0.940 0.683 0.449 0.257
New 0.892 0.759 0.654 0.551 | 0.848

0.515 0.307 0.180
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Table 3.7 (Continued) Estimated probability of not detecting a standard
deviation shift (S ) for a=0.01.

n=10 n=25
k Approach/1 | 1.5 2 2.5 3 1.5 2 2.5 3

Shewhart 0.634 0.214 0.038 0.020]0.264 0.010 0.000 0.000
10 Bonferroni 0.816 0.328 0.084 0.042|0.478 0.024 0.002 0.000
New 0.628 0.214 0.037 0.020 | 0.258 0.011 0.000 0.000

Shewhart 0.638 0.219 0.040 0.023]0.268 0.013 0.000 0.000
15 Bonferroni 0.819 0.332 0.088 0.044  0.483 0.026 0.003 0.000
New 0.632 0.218 0.039 0.0220.259 0.012 0.000 0.000

Shewhart 0.635 0.215 0.039 0.0210.262 0.015 0.000 0.000
20 Bonferroni 0.818 0.329 0.084 0.042  0.477 0.029 0.002 0.000
New 0.629 0.214 0.039 0.021 | 0.254 0.016 0.000 0.000

Shewhart 0.632 0.218 0.038 0.027]0.261 0.010 0.000 0.000
30 Bonferroni 0.815 0.332 0.085 0.049 | 0.477 0.026 0.002 0.000
New 0.627 0.215 0.039 0.0250.258 0.011 0.000 0.000

Shewhart 0.637 0.212 0.043 0.022]0.266 0.015 0.000 0.000
40 Bonferroni 0.819 0.327 0.088 0.043 | 0.481 0.028 0.002 0.000
New 0.634 0.214 0.042 0.023 |0.265 0.013 0.000 0.000

Shewhart 0.634 0.216 0.035 0.0280.269 0.018 0.000 0.000
100 Bonferroni 0.819 0.329 0.080 0.043  0.480 0.030 0.003 0.000
New 0.635 0.215 0.036 0.027|0.269 0.016 0.000 0.000

Shewhart 0.639 0.214 0.045 0.022]0.267 0.012 0.000 0.000
120 Bonferroni 0.821 0.327 0.089 0.044 | 0.479 0.025 0.004 0.000
New 0.639 0.214 0.043 0.023|0.267 0.012 0.000 0.000

The results in tables 3.4-3.7 show that with unknown standard deviation the
new R and S chart perform better than both the Shewhart and the

Bonferroni-adjustment R and S chart.
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To construct the ARL,, let the events W, denote that the subgroup
range or the standard deviation fall out of control limits, while the standard

deviation of the quality characteristic is shifted from o, to Ao,. The events

W, for the initial group with known parameter and the groups 2,3,... with
known and unknown parameter are uncorrelated. Therefore, the sequence of
events {W;} would be a sequence of Bernoulli events and the run length

between occurrences of W, would be a Geometric random variable with

parameter P(W;)= (1- /). Consequently, the out-of-control average run length
would be

ARL, =1/(1-p). (26)
Here, the probability g for known and unknown parameter o is replaced by

equations (16) and (20) for the Shewhart R chart and equations (17) and (21)
for the Shewhart S chart, equations (18) and (22) for the Bonferroni-
adjustment R chart and equations (19) and (23) for the Bonferroni S chart,
equations (16) and (24) for the new R chart and equations (17) and (25) for
the new R chart. Using the OC curves 3.1-3.4, and Table 3.3, for known

parameter o, the ARL for the Shewhart and new approach is demonstrated
to be less than the Bonferroni-adjustment approach for both R and S chart.
For instance, using the probability g of Table 3.3 and the ARL, of equation
(26), for k=20, a=0.01, n=2, and 1=1.5, we have that the ARL, is equal
8.593 and 8.589 for the Shewhart and the proposed R and S chart,

respectively, and equal 30.349 and 30.321 for the Bonferroni-adjustment R

and S chart, respectively. Additionally, for unknown parameter o, it can be
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demonstrated, through Monte Carlo simulation experiments, that the ARL,

for the new chart is slightly less than the Shewhart chart and considerably

less than the Bonferroni-adjustment chart for both R and S chart. For
instance, using the probability A of Table 3.5 and Table 3.7 and the ARL, of
equation (26), for k=20, @=0.01, n=2, and A=1.5, we have that the ARL,
is equal 9.346, 16.949, and 8.928 for the Shewhart, the Bonferroni, and the
proposed R chart, respectively, and equal 9.009, 24.390, and 8.772 for the
Shewhart, the Bonferroni, and the proposed S chart, respectively. It should be

noted that another method for approximating the ARL can be found in Ng
and Cases (1992).

3-6. Example

Twenty samples (k=20) each of size four (n=4) of piston rings for an
automotive engine are produced by a forging process, have been taken when

the process is in control (Table 3.8). Using the data of inside diameter, data

setting up S, R and S, the values of these statistics are calculated to be

0.01055, 0.0221 and 0.00988, respectively.
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Table 3.8 Inside Diameter Measurements (mm) on

Forged Piston Rings, (Montgomery (2005)).
Sa Nu Observations | R, o

i

1 74.030 74.002 74.019 74.008 0.028 0.0i2
2 73.995 73.992 74.001 74.004 0.012 0.005
3 73.988 74.024 74.021 74.002 0.036 0.017
4 73.992 74.007 74.015 74.014 0.023 0.011
S 74.009 73.994 73.997 73.993 0.016 0.007
6 73.995 74.006 73.994 74.005 0.012 0.006
7 73.985 74.003 73.993 73.988 0.018 0.008
8 73.998 74.000 73.990 73.995 0.010 0.004
9 74.004 74.000 74.007 73.996 0.011 0.005
10 73.983 74.002 73.998 74.012 0.029 0.012
11 74.006 73.967 73.994 73.984 0.039 0.016
12 74.000 73.984 74.005 73.996 0.021 0.009
13 73.994 74.012 73.986 74.007 0.026 0.012
14 74.006 74.010 74.018 74.000 0.018 0.008
15 74.000 74.010 74.013 74.003 0.013 0.006
16 73.982 74.001 74.015 73.996 0.033 0.014
17 74.004 73.999 73.990 74.009 0.019 0.008
18 74.010 73.989 73.990 74.014 0.025 0.013
19 74.015 74.008 73.993 74.010 0.022 0.009
20 73.982 73.984 73.995 74.013 0.031 0.014

The values of the out-of-control average run length (Table 3.9) are given
using equations (20), (22), and (24) into equation (26) for the Shewhart, the
Bonferroni-adjustment, and the new R chart, respectively, and also equations
(21), (23), and (25) into equation (26) for the Shewhart, the Bonferroni-

adjustment, and the new S chart, respectively. Here, the constant values
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v,d,, d; and ¢, for k=20 and n=4, are 0.9958, 2.059, 0.88 and 0.9213, in
the order mentioned.

Table 3.9 for fixed values a=0.1,0.01 and A=1.5,2,2.5,3 shows that the
out-of-control average run length for the proposed approach is less than the
Shewhart and Bonferroni-adjustment approach for both R and S chart. The
power of the control limits is 1-4. As a result, it can be demonstrated that
the new approach has maximum power of control limits compared with the

Bonferroni-adjustment approach that has minimum power.

Table 3.9 Out-of-Control Average Run Length (k=20, n=4)

a=0.1 a=0.01

Approach / A 1.5 2 2.5 3 1.5 2 2.5 3

Shewhart R chart ~ 2.541 1.539 1.273 1.166 | 5.885 2.235 1.554 1.317
Bonferroni R chart 7.573 2.501 1.650 1.365 | 17.604 3.658 2.019 1.540
New R chart 2.463 1.517 1.263 1.161| 5.538 2.174 1.531 1.305

Shewhart S chart ~ 2.019 1.527 1.265 1.161 | 5.795 2.205 1.53% 1.306
Bonferroni S chart  7.444 2.464 1.631 1.353 | 17.212 3.588 1.990 1.523
New S chart 2.444 1.507 1.256 1.156 | 5.467 2.148 1.517 1.296

3-7. Conclusion

It has been shown that, for an unknown standard deviation parameter,
the suggested new range and standard deviation control chart has three
advantages over the Shewhart and the Bonferroni-adjustment range and

standard deviation control charts.
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e The first is that the constant values to construct the control chart for
the new approach are based on both sample subgroup size and sample

group size;
e The second advantage is that, for a fixed value a, the ARL, for the
new approach is less than the ARL, for the Shewhart and Bonferroni-

adjustment approach and

e The third advantage is that the new approach is based on a statistic
with variance less than that of the Shewhart and Bonferroni-

adjustment approach.

Therefore, practitioners are advised to use the new approach for monitoring

the variability of a quality characteristic.
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Table 3.10 The constant

chart.

value y

for constructing the R and S control

2
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6

if
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100
110
120

0.8862
0.9400
0.9594
0.9693
0.9754
0.9794
0.9823
0.9845
0.9862
0.9876
0.9904
0.9911
0.9927
0.9934
0.9948
0.9957
0.9963
0.9968
0.9972
0.9974
0.9979
0.9982
0.9984
0.9986
0.9987
0.9989
0.9989

0.9213
0.9594
0.9726
0.9794
0.9835
0.9862
0.9882
0.9896
0.9908
0.9917
0.9937
0.9941
0.9951
0.9956
0.9965
0.9971
0.9976
0.9979
0.9981
0.9983
0.9986
0.9988
0.9989
0.9991
0.9992
0.9992
0.9993

0.9400
0.9693
0.9794
0.9845
0.9876
0.9896
0.9911
0.9922
0.9931
0.9937
0.9952
0.9955
0.9963
0.9967
0.9974
0.9978
0.9982
0.9984
0.9985
0.9987
0.9990
0.9991
0.9992
0.9993
0.9994
0.9994
0.9995

0.9516
0.9754
0.9835
0.9876
0.9901
0.9917
0.9929
0.9937
0.9945
0.9950
0.9962
0.9964
0.9971
0.9974
0.9979
0.9983
0.9985
0.9987
0.9988
0.9990
0.9991
0.9993
0.9994
0.9994
0.9995
0.9995
0.9996

0.9594
0.9794
0.9862
0.9896
0.9917
0.9931
0.9941
0.9948
0.9954
0.9958
0.9968
0.9970
0.9976
0.9978
0.9983
0.9986
0.9988
0.9989
0.9991
0.9991
0.9993
0.9994
0.9995
0.9995
0.9996
0.9996
0.9996

0.9650
0.9823
0.9882
0.9911
0.9929
0.9941
0.9949
0.9955
0.9961
0.9964
0.9972
0.9974
0.9979
0.9981
0.9985
0.9988
0.9989
0.9991
0.9992
0.9993
0.9994
0.9995
0.9995
0.9996
0.9996
0.9997
0.9997

0.9693
0.9845
0.9896
0.9922
0.9937
0.9948
0.9955
0.9961
0.9965
0.9969
0.9976
0.9978
0.9982
0.9984
0.9987
0.9989
0.9991
0.9992
0.9993
0.9994
0.9995
0.9995
0.9996
0.9996
0.9997
0.9997
0.9997

0.9726
0.9862
0.9908
0.9931
0.9945
0.9954
0.9961
0.9965
0.9969
0.9972
0.9979
0.9980
0.9984
0.9985
0.9989
0.9990
0.9992
0.9993
0.9994
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9997
0.9998
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Table 3.10 (Continued) The constant value w for constructing the R and

S control chart.

k

—
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100
110
120

0.9754
0.9876
0.9917
0.9937
0.9950
0.9958
0.9964
0.9969
0.9972
0.9975
0.9980
0.9983
0.9985
0.9986
0.9990
0.9991
0.9993
0.9994
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9997
0.9998
0.9998

0.9835
0.9917
0.9945
0.9958
0.9967
0.9972
0.9977
0.9979
0.9981
0.9983
0.9987
0.9988
0.9990
0.9991
0.9993
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9998
0.9998
0.9998
0.9998
0.9998
0.9999

0.9876
0.9937
0.9958
0.9969
0.9975
0.9979
0.9983
0.9984
0.9986
0.9988
0.9990
0.9991
0.9993
0.9993
0.9995
0.9996
0.9996
0.9997
0.9997
0.9997
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999

0.9901
0.9950
0.9967
0.9975
0.9980
0.9983
0.9986
0.9988
0.9989
0.9990
0.9992
0.9993
0.9994
0.9995
0.9996
0.9997
0.9997
0.9997
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.9917
0.9958
0.9972
0.9979
0.9983
0.9986
0.9988
0.9990
0.9991
0.9992
0.9994
0.9994
0.9995
0.9996
0.9997
0.9997
0.9998
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.9937
0.9969
0.9979
0.9984
0.9988
0.9990
0.9991
0.9992
0.9993
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999

0.9975
0.9988
0.9992
0.9994
0.9995
0.9996
0.9996
0.9997
0.9997
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

0.9979
0.9990
0.9993
0.9995
0.9996
0.9997
0.9997
0.9997
0.9998
0.9998
0.9998
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
0.9999
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
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Appendix I
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2 2 2
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According to Cochran’s Theorem the random variable k(n-1)S*/o* is chi

square distributed with k(n-1) the degrees of freedom.

Appendix II

(S-Plus)

Time=20000 ; al=0.01 ; n=5;lam=2.5 ; k=10

if (al>=0.1 & al<=0.1) { z=1.6449 ; if (k>=10 & k<=10) z2=2.576 ;
if (k>=15 & k<=15) z2=2.713 ; if (k>=20 & k<=20) z2= 2.807

if (k>=30 & k<=30) z2=2.935 ; if (k>=40 & k<=40) z2= 3.023 ;

if (k>=100 & k<=100) z2=3.291 ; if (k>=120 & k<=120) z2=3.341}
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if (al>=0.01 & al<=0.01) { z=2.5758 ; if (k>=10 & k<=10) z2= 3.291 ;
if (k>=15 & k<=15) z2=3.403 ; if (k>=20 & k<=20) z2= 3.481
if (k>=30 & k<=30) z2=3.588 ; if (k>=40 & k<=40) z2=3.662 ;
if (k>=100 & k<=100) z2=3.891 ; if (k>=120 & k<=120) z2=3.935}
if (n>=2 & n<=2){

d2=1.128 ; d3=0.853 ;

if (k>=10 & k<=10) psi= 0.9754 ;

if (k>=15 & k<=15) psi= 0.9835 ;

if (k>=20 & k<=20) psi= 0.9876 ;

if (k>=25 & k<=25) psi= 0.9901 ;

if (k>=30 & k<=30) psi= 0.9917 ;

if (k>=40 & k<=40) psi= 0.9937 ;

if (k>=100 & k<=100) psi= 0.9975 ;

if (k>=120 & k<=120) psi= 0.9979}

if (n>=5 & n<=5){

d2=2.326 ; d3=0.864

if (k>=10 & k<=10) psi= 0.9937 ;

if (k>=15 & k<=15) psi= 0.9958 ;

if (k>=20 & k<=20) psi= 0.9969 ;

if (k>=25 & k<=25) psi= 0.9975

if (k>=30 & k<=30) psi= 0.9979 ;

if (k>=40 & k<=40) psi= 0.9984 ;
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if (k>=100 & k<=100) psi= 0.9994 ;
if (k>=120 & k<=120) psi= 0.9995}
if (n>=10 & n<=10) {

d2=3.078 ; d3=0.797 ;

if (k>=10 & k<=10) psi= 0.9972;

if (k>=15 & k<=15) psi= 0.9981 ;
if (k>=20 & k<=20) psi= 0.9986 ;

if (k>=25 & k<=25) psi= 0.9989 ;

if (k>=30 & k<=30) psi= 0.9991 ;
if (k>=40 & k<=40) psi= 0.9993 ;

if (k>=100 & k<=100) psi= 0.9997 ;
if (k>=120 & k<=120) psi= 0.9998 }
if (n>=25 & n<=25) {

d2=3.931; d3=0.708 ;

if (k>=10 & k<=10) psi= 0.9990 ;

if (k>=15 & k<=15) psi= 0.9993 ;
if (k>=20 & k<=20) psi= 0.9995 ;

if (k>=25 & k<=25) psi= 0.9996 ;

if (k>=30 & k<=30) psi= 0.9997 ;

if (k>=40 & k<=40) psi= 0.9997 ;

if (k>=100 & k<=100) psi= 0.9999 ;

if (k>=120 & k<=120) psi= 0.9999 }
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nn1=0; nn2=0 ; nn3=0 ; Vs=0
b_matrix(rnorm(20*5,0,1),nrow=20,ncol=5)
for (hin 1:20){
Vs_Vs+ (stdev(b[h,])*2) }
St_sqrt(Vs/20)/0.9969 ; Es_( sqrt(Vs/20)/0.9969)*d2 ;
Ss_( sqrt(Vs/20)/0.9969)*d3
for (iin 1:Time) {
a_matrix(rnorm(k*n,0,1),nrow=k,ncol=n)
Rs=0; Vs=0
for (hin 1:k){
Rs_Rs+(max(a[h,])-min(a[h,]))
Rbar_Rs/k
Vs_Vs+ (stdev(alh,])*2)
Vbar_Vs/k }

LCL1_((Rbar/d2)*(d2-z*d3)-(lam*St*d2))/(lam* St *d3) :
UCL1_((Rbar/d2)*(d2+z*d3)-(lam* St*d2))/(lam* Std3)

LCL2_((Rbar/d2)*(d2-z2*d3)-(lam*St*d2))/(lam* St *d3) :
UCL2_((Rbar/d2)*(d2+2z2*d3)-(lam* St*d2))/(lam* St*d3)

LCL3_(( sqrt(Vbar)/psi)*(d2-z*d3)-(lam* St*d2))/(lam* St *d3) ; UCL3_((
sqrt(Vbar)/psi)*(d2+z*d3)-(lam* St*d2))/(lam* St *d3)

for (jin 1:k)

Zi_((max(a[j,])-min(alj,1))-(Es))/(Ss) ; if (Zi<=UCL1 & Zi>=LCL1)
nn1=nn1+1 ; If (Zi<=UCL2 & Zi>=LCL2) nn2=nn2+1
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if (Zi<=UCL3 & Zi>=LCL3) nn3=nn3+1} }
Beta1_(nn1/(k*Time)) ; Beta2_(nn2/(k*Time)) ; Beta3_(nn3/(k*Time))

print(Beta1) ; print(Beta2) ; print(Beta3)

Appendix IIT

(S-Plus)

Time=10000 ; al=0.01 ; n=5;lam=2.5 ; k=10
if (al>=0.1 & al<=0.1) { z=1.6449 ;

if (k>=10 & k<=10) z2=2.576;

if (k>=15 & k<=15) z2=2.713;

if (k>=20 & k<=20) z2= 2.807

if (k>=30 & k<=30) z2=2.935 ;

if (k>=40 & k<=40) z2= 3.023;

if (k>=100 & k<=100) z2=3.291 ;

if (k>=120 & k<=120) z2=3.341}

if (al>=0.01 & al<=0.01) { z=2.5758 ;
if (k>=10 & k<=10) z2= 3.291;

if (k>=15 & k<=15) z2=3.403 ;

if (k>=20 & k<=20) z2= 3.481

if (k>=30 & k<=30) z2=3.588 ;

if (k>=40 & k<=40) z2=3.662 ;

if (k>=100 & k<=100) z2=3.891;
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if (k>=120 & k<=120) z2=3.935}
if (n>=2 & n<=2){
c4=0.7979 ; c42=0.603 ;

if (k>=10 & k<=10) psi= 0.9754

if (k>=15 & k<=15) psi= 0.9835 :
if (k>=20 & k<=20) psi= 0.9876 ;

if (k>=25 & k<=25) psi= 0.9901 ;

if (k>=30 & k<=30) psi= 0.9917 ;

if (k>=40 & k<=40) psi= 0.9937 ;

if (k>=100 & k<=100) psi= 0.9975
if (k>=120 & k<=120) psi= 0.9979}
if (n>=5 & n<=5){

c4=0.94 ; c42=0.381 ;

if (k>=10 & k<=10) psi= 0.9937 :

if (k>=15 & k<=15) psi= 0.9958 :

if (k>=20 & k<=20) psi= 0.9969 ;
if (k>=25 & k<=25) psi= 0.9975

if (k>=30 & k<=30) psi= 0.9979

if (k>=40 & k<=40) psi= 0.9984 ;

if (k>=100 & k<=100) psi= 0.9994
if (k>=120 & k<=120) psi= 0.9995}
if (n>=10 & n<=10) {
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c4=0.9727 ; c42=0.232 ;

if (k>=10 & k<=10) psi= 0.9972 :

if (k>=15 & k<=15) psi= 0.9981 :
if (k>=20 & k<=20) psi= 0.9986 :

if (k>=25 & k<=25) psi= 0.9989 :

if (k>=30 & k<=30) psi= 0.9991 :
if (k>=40 & k<=40) psi= 0.9993 :

if (k>=100 & k<=100) psi= 0.9997 :
if (k>=120 & k<=120) psi= 0.9998 }
if (n>=25 & n<=25) {

c4=0.9895 ; c42=0.144 :

if (k>=10 & k<=10) psi= 0.9990 :

if (k>=15 & k<=15) psi= 0.9993 :
if (k>=20 & k<=20) psi= 0.9995 :

if (k>=25 & k<=25) psi= 0.9996 :

if (k>=30 & k<=30) psi= 0.9997 :

if (k>=40 & k<=40) psi= 0.9997 :

if (k>=100 & k<=100) psi= 0.9999 :
if (k>=120 & k<=120) psi= 0.9999 }
nn1=0 ; nn2=0 ; nn3=0 ; Vs=0
b_matrix(rnorm(20*5,0,1),nrow=20,nco|=5)

for (hin 1:20){
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Vs_Vs+ (stdev(b[h,])"*2) }

St_sqrt(Vs/20)/0.9969 ; Es_( sqrt(Vs/20)/0.9969)*c4 ; Ss_(
sqrt(Vs/20)/0.9969)*c42

for (iin 1:Time) {
a_matrix(rnorm(k*n,0,1),nrow=k,nco|=n)
Sbar1=0; Vs=0
for (hin 1:k){
Sbar1_Sbar1+(stdev(a[h,]))
Sbar_Sbar1/k
Vs_Vs+ (stdev(a[h,])"2)
Vbar_Vs/k }

LCL1_((Sbar/ca)*(c4-z*c42)-(lam*St*c4))/(lam* St *c42) ;
UCL1_((Sbar/cd)*(c4+z*c42)-(lam* St*c4))/(lam* St*c42)

LCL2_ ((Sbar/c4)*(c4-z2*c42)-(lam*St*c4))/(lam* St *c42) ;
UCL2_((Sbar/cd)*(c4+z2*c42)-(lam* St*c4))/(lam* St*c42)

LCL3_(( sqrt(Vbar)/psi)*(c4-z*c42)-(lam* St*c4))/(lam* St *c42) ; UCL3_((
sqrt(Vbar)/psi)*(c4+z*c42)-(lam* St*c4))/(lam* St *c42)
for (jin 1:k){
Zi_((stdev(a[j,]))-(Es))/(Ss) ; if (Zi<=UCLA1 & Zi>=LCL1) nn1=nn1+1
- if (Zi<=UCL2 & Zi>=LCL2) nn2=nn2+1

if (Zi<=UCL3 & Zi>=LCL3) nn3=nn3+1} }
Beta1 (nn1/(k*Time)) ; Beta2_(nn2/(k*Time)) ; Beta3_(nn3/(k*Time))

print(Beta1) ; print(Beta2) ; print(Beta3)
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A Highly Accurate Approximation for the NDF and Mean Range of the Normal

Distribution

4-1. Introduction
The normal distribution function (NDF) plays a central role in statistical

theory. This function numerically has been evaluated in the literature by

using computer programming on values of ze(-w,+»). Theoretically, the
NDF, F(z), has been evaluated only for a subset of the values ze (0,+x)

or ze(-9,+9), where the function F(z) is

F(z)=L J.e_Tdt : —0 < Z <400, (1)

2z

The new evaluation of the function F(z) that is proposed in this
chapter is based on values of ze(-w,+») with integration region (-,z)
for ze(-o,+o) and is based on the error function (erf(z)). The

integration region of the error function is (0,z) for z>0, or (0,-z] for

z<0. The error function is defined by
erf(z)= zj.i e:—;idt , —0 < Z < 4w, (2)
oNT
The relation between the functions F(z) and erf(z) is

F(z)=%(1—erf(—z/\/§)), —0 < Z <40, (3)

The proposed method for the evaluation of the NDF utilizes this
relationship. The error function is first evaluated by using the polar

integration. Then, the NDF 1is evaluated using equation (3). The

associated greatest absolute error is less than 4.02x10™ for ze(—w,+x).
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In section 3-3 a new numerical evaluation of the NDF is present with 21

decimal places accuracy.

Suppose that the random variables Z; are identically standard normal
distributed for i=1,2,...,n, and the range of order statistics Zys Z 3y5e0es Ly
is presented by R=Zz,, -Z4 . The accurate evaluation for the mean range

of the normal distribution (E(R)=d,) is calculated using the proposed

formula of the NDF, where

E(R)=+T{1—(F(z))"—(1—F(z))"} dz

—0

The extended table of the previous equation  for

n =2,(1)100,(20)440 is constructed for the range control charts.

This chapter briefly discusses the existing theoretical and numerical
evaluations of the NDF, in section 3-2. The new evaluation of the NDF
and an application of this evaluation for computing the mean range are

presented in sections 3-3, 3-4, respectively.

4-2. The Existing Formulas for the Evaluation of NDF

There are many formulas for the approximation of the NDF. Here we

briefly present some of them. As already mentioned, most of these
formulas were evaluated for a subset of the values of ze(0,+o)
orze(-9,+9).

Zelen and Severo (1964) suggested the following formulas (I-111),

which hold for ze(0,+©):
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(I F(z)= _[ (a, +a,t’ +at* +at®)'dx : z>0,
0

where a, =2.490895, a,=1.466003, a,=-0.024393, and a,=0.178257. The

associated error, for z>0, is less than 0.0027.

(IT) F(z):l—%(1+alz+azzz+a,_(z3+a4z“)“1 : z>0,
where,

a, =0.196854 ; a, =0.115194;

a, =0.000344 a, =0.019527; a,; =0.937298,

and the associated error, for z>0, is less than 0.00025.

(I1I) F(z):l—(all‘+a2t2nLaKtB)\/—;:_;e'zz/2 , 2>0.
Here,

t=(1+0.332672)"; a, =0.4361836;

a, =-0.1201676; a, =0.937298,

and the associated error, for z>0, is less than 0.00001.
An approximate evaluation of the NDF for z>0 with maximum

absolute error 1.5x10° forz=0, is provided by the formula (see, e.g.,

Abramowitz and Stegun (1964))

>
-x’ -x*

F(z) =% [e 7 dxm1-e* (Bt +b,t* +bf +bt' +bt°)/\2x
ﬂ' —00

where
z2>0 t=1/(1+pz)

p=0.2316419 b, =1.781477937
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b, =0.31938153 b, =-1.821255978

b, =-0.356563782 b, =1.330274429 .

Hart (1966) suggested the following formula forz>2,

F(z)=1-(z/27)"[exp(~Z* /2)]><[1 —M{zg

(1+az?)

1

(€ e
+|:§7rz +—(l+azz) exp(-z /2)} }

This formula gives maximum absolute error 5.32x107° forz=1.04. The

constant values a and b are

a :_1_[1+(1+67t—2ﬂ2)‘/2] =0.212024;

27

b=——[1+(1+6r—27°)"?]" =0.282455.

27

Schucany and Gray (1968) introduced the following formula with

maximum absolute error 1x107°

B 2 B 2 . 6
I—F(Z)z[(z2+2) ,—2”] lxz[exp[ z HX 28+4147° +62" + 2 .

2 —4-20z° +5x° +2°

Badhe (1976) presented the following two formulas:

2

1 -z

e?
Rl T e i il i AL
z (z* +10) (z° +10) (z°+10)
1 3745(8.5(z” - 0428463975327 +1.240964109)™ +1)
x| S54— 445+ >
(z* +10) (z° +10)

with a maximum absolute error 5x10° for z>2 and
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2 2 2 2 2 2 2
F(z2) :l+x{a+z—{b +Z—(c+z—{d+£— [e +Z—[f +Z—[g+hZ—JH}
2 32 32 32 32 32 32 32

for 0<z<2 with a maximum absolute error 2x10~°

Here,
a=0.3989422784 b=-2.127690079
C=10.212566.2121 d =-38.8830314909
e=120.2836370787 f =-303.2973153419
g =575.073131917 h =-603.9068092058 .

Two further formulas for the NDF with maximum absolute error of

0.042% and 0.040% respectively were presented by Derenzo (1977).

F(z)zl—lexp (@3 )z for D=z <55,
2 (703/x)+165
1 z* 0.94
F(z)=1- exp| ——-——— for 5.5<z.
N2z xp[ 2z J

An approximation for the NDF with maximum absolute error 3x10~ for

z>0 was introduced by Divgi (1979).

, 10 ]
F(z)=2n)"*e™ "> a;z’ ,
j=o

where
a, =1.253313402 a, =-0.9999673043
a, =0.6262972801 a, =-0.3316218430
a, =0.1522723563 a, =-5.982834993x107?
a, =1.91564935x107> a, =—4.644960579x107
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a; =7.771088713x10™* a, =-7.830823677x107°

a,, =3.534244658x 107
Moran (1980) suggested using the following series with maximum

absolute error 1x107°.

12 I —(m+q/2)?
F(z):%+%2(n+%} e ° sin{g(nnL%]z}, lz|<7.

n=0
Lew (1981) introduced the following approximation with a

maximum absolute error 0.002.

F(z)={1—(O.5—(2ﬂ)"/2(z—z3/7) , 0<z<I

(1+2)2r) e J(1+2+2%), 1<z.

Bagby (1995) suggested that an approximation of the NDF with
absolute error less than 3x10™ could be

F(2)=0.5£0.5{1-(1/30)[7exp(-2*/2) +
16exp(~2*(2—2)) +(7+ 72* / 4)exp(~z2)]}'/>.
Here, the minus sign refers to z<0.

The following approximation with maximum absolute error 3.1x10~

of the NDF for ze(0,+») was introduced by Waissi and Rossin (1996).

F(z)= 1/(1 + exp(i akzzkﬂj ’
k=0

where

az+a,z° +a,z’ =1.595208466z +0.7412366556 2° +0.00078094316682°.
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Bryc (2002) presented a formula with maximum absolute error

1.9%x107.

z* +5.575192695z +12.77436324 o712

r - > z>0.
27z +14.387181472z% +31.535319772z +2x12.77436324

F(z)=

An approximation for the NDF, with greatest absolute error 2x107°

was suggested by Shore (2004).

F(z)=[1+g(-2)-g(2)1/2,.

Here,
g(z) = exp{-log(2)exp[ Blexp(A + Cz)-1]+ Dz]},,
where,
A=0.072880383; B =-2.36699428 ;
C =-0.40639929 ; D =0.19417768 .

Later, Shore (2005) improved the above approximation with a maximum

absolute error 6x10" by proposing the formula

F(z)=[1+g(-2z)-g(2)]/2 ; -9<z<9.
In this case,
g(2) = exp{-log(2exp{[a /(A /S)I[(1+8,2)**’ 1]+ 8,2}} , =9<z<9,
where,
A=-0.61228883; S, =-0.11105481;
S, =0.44334159; a =-6.37309208.
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Some more approximations for the NDF have been suggested by
Adams (1969), Hamaker (1978), Parsonson (1978), Heard (1979), Kennedy
and Gentle (1980), Martynov (1981), Monahan (1981), Edgeman (1988),
Pugh (1989), Revfeim (1990), Vedder (1993), Johnson et al (1994). In the
sequel, we present some evaluations of the NDF based on computer
programming.

Kerridge and Cook (1976) suggested using the following series for

computing F(z) on a computer (z>0) with absolute error less than 107

F(Z)=;[—\/%€:;— :ze%gz—nlﬁen(z/z), z>0,
where
6,(z)=x"H,(z)/n!
HHH(Z):M , =12
n+l
H_(z)=2zH (z)-nH_(z), n=12,..
Hy(z)=1, H(z)=2z.

Marsaglia (2004) provided the evaluation given bellow with

absolute error less than 8x107™® for ze(—w,+©)

3 5 7 9
F(z)=0.5+02n) e /? o, s o ERCT ARG T
3 345 3.5.7 B8.5.7.9

He provided the following function (using C) for the computation of F(z)
double Phi(double z)

{Longdoubles=2z,t =0,b=z,q=z%*z,i=1;
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while(s!=t) s =(t=5)+(bx=q/(i+=2));
return 0.5+ s*exp(—0.5%q—0.91893853320467274178L); }

In the next section, we present a simple formula for the numerical

evaluation of the NDF with satisfactory accuracy for values of

ze(—o0,+m0).

4-3. A New Evaluation of the NDF

In this section we propose evaluating the NDF using the relationship
between the distribution function F(z) and the error function erf(z) given
by (3). The integration region for the function F(z) is (-,z) while that
for the error function is (0,z) and (0,—z] for z>0 andz<0, respectively.

Replacing z by -z/+/2 in (2), we obtain

o HE
erf(—z/\/_z—)zﬁ 6[ e dt —00< Z <400, (4)
Let
I= _Z/jﬁ etdt. (5)

0

Therefore I* is the following double integral that is based on the
rectangular coordinates
—z/\2-z/2 )
r= [ [ e%9dtd, . (6)
0 0

The relationship between rectangular and polar coordinates can be found

using the definition of trigonometric functions as

t,=rCos(B); t,=rSin(p)- (7)
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For z<0 and r>0 we have from equations (6) and (7),

o_t,s% = OSrsa)s(_;T = Cos()20

=7

0 sr< ‘Sin(ﬂ) \/5

_tzs_Tz = = Sin(8)>0. (8)

Relation (8) gives Osﬁs% (Figure 4.1).
Also, for z>0 and r>0, we obtain from equations (6) and (7),

_Tzst]<0 - O<r§ﬁ;)\5 =5 Cos(B)<0

TZst2<0 — 0<rsm = Sin(B) <0 (9)

Note that relation (9) implies 7 S,Bs%r (Figure 4.2).

In what follows, equation (6) will first be evaluated under the

assumption thatz <0 . Using relation (8):

~z/\V22t 28,20 = Cos ()= Sin(B)=0.

Therefore,
P -z
0<f<— andOsr<——— 10
=y Cos (N2 (10
Similarly,
—z/\/fzt2>t,20 = 0<Cos(p)<Sin(p).
Hence,
T b -z
—<p<— and0<r<——= | 11
4 ¢ 2 Sin(p)2 (11)
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Figure 4.1 Relationship between rectangular and polar coordinates

(r20,2<0,0<p8<x/2)

19

e
((g)1bs(g)soD)/z-

,‘ tl T
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Figure 4.2 Relationship between rectangular and polar coordinates

(r>0,z>0,7rsﬂs37r/2)

B
VI
. < 0
e L/sart(2) . VZ
-7/ (Sin(B)sqrt(2))

Equation (6), forz<o, involving rectangular integrals is
transformed to one involving polar integrals by using equation (7) and

relations (10) and (11), thus
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Ie= ”re"zdrdﬂ
Br
7/4 -z/(Cos(BWD) 7/2 -z/(Sin(PN2)
= re’drdp+ _[ I re” drdf
0 = /4 0
Wy, -z/(Cos(B2) W, —z/(Sin(BW2)
ST P PO
i 2 0 /4 0
74 -1 By i /2 _1 . By 1
- I (2 e/ Costa | 2y gy J‘ (ZLetrsnenr | yqp
J 2 2 /4 2 2
=/4 z/4
-1 ~(z/(Cos(BIN2)) 1 —1 —(z/(Sin(x [ 2- PN 1
= —p " e dB+ el n s d
R S8l 2)dp
/4 -1 By 1 /4 -1 % 1
= '[ (_e—(z/(Cos(ﬂ) 2)) =)dR+ J(__e—(z/(Cos(ﬁ) 2)) +Dydp
0 2 2 0 2 2
/4
= I (_e_(z/(cos(ﬂ)‘/i))l +1)dﬂ
0
Letting,
2
w()=(1/(Cos (AWD)) . (12)

Transforming »(8) tow(z), equation (21), we obtain,

/4

= _f (—e @@ 11)dB =1I= \/é("e—(z)z‘"(” +1).. (13)

0

Therefore, combining (5), (6), and (13), we have

erf(~z/N2)=21/7 , z<0. (14)

Equation (6) can now be evaluated under the assumption that
z>0.

Using relation (9), we have
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0>t >t,2-z/2 = 0> Cos(B) = Sin(B).

Therefore,
ﬂ'SﬂSST” and 0<rsC—OS—E;—)\E. (15)
Similarly,
0>t, 2t 2-z/N2 = 0> Sin(B) = Cos().
Hence,
577r<ﬁ<3—27E and 0<r< Sin(_ﬂz)\/z' (16)
Theerf(-z/~2), forz>0, can be evaluated as
erf(-z/2)=-2I /= z>0. (17)
This is the result of the fact that,
—Z/~/5 ,
erf(-z/2) = T [ etar
2 ]’ e oj etdt  (transforming t to —t)
\[7?~z/ﬁ \/_ N2

z/\/-
= _2 j et dt=—— —-( (2 a(z) +1) =—2I/x/— Similarly to equation 13).
NI \/_ V4

Using equations (14) and (17), we obtain

2I/n , z>0

18
20 /N , z<0 (18)

erf(—z/x/E) = Sign(—z)(ZI/\/;c_) :{

where the function Sign(-z) is defined by

if z>0

=]
Sign(-z) = {l if e
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Equations (13) and (18) give

erf(~z/2) = Sign(—z)W1-e"° . (19)

Let us denote the proposed approximation of F(z) by F,(z). Combining

equations (3) and (19) yields
F,(2)= %(1 ~ Sign(-zW1-e 7). (20)

The function w(z) of equation (20) is approximated using equations (5)

and (13),

a)(z)an[l—i( | i ﬁe-fzdty)pzz. (21)
T 0

e’dt is computed

. . -z/\2
To evaluate equation (21), the integral L i

numerically, using Taylor expansion of this integral that is suitably

convergent. The Taylor series of e™ (21) is

+o (k)
gt =gyl © -y (22)
i k!

Note that ¢ and t are in [0,+), u*(c)=f®(c)/e, and
u®@=1; u(c)=-2¢;
u®(c) =20k -Du*?(c)+(-2c)u*"(c) k>2

The values of ¢ are given below for various intervals of ¢.

c=1 for te[0,1.2) ; c=3 for te[1.2,3.2)
c=5 for tel3.2,5.2) : c=7 dor te[52,7.2)
c=9 for te[7.2,9.2) ; c=11 for te[9.2,+x)
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Based on the above, the maximum absolute error between the exact value

—t2

of e and its approximation using (22) would be -7.9x10% at t=4.1 (see

Table 4.1).

Table 4.1: The error between exact and Taylor expansion values of e

1 Error t error t error t Error t error t Error t Error

0.0 00E+00 1.6 0.0E+00 32 0.0E+00 4.8 -12E25 64 54533 80 0.0E+00 9.6 -3.3E-55
0.1 00E+00 1.7 0.0E+00 3.3 00E+00 49 -65B26 65 0.0E+0 81 -1.8E43 97 -48E-56
02 00E+00 1.8 0.0E+00 34 00E+00 50 O0.0E+00 6.6 0.0E+00 82 -42E44 98 -1.2E-56
03 0.0E+00 1.9 0.0E+00 3.5 00E+00 5.1 -8.1E27 6.7 54E-35 83 -37B-45 9.9  0.0E+00
04 O0O0E+00 20 0.0EH00 3.6 0.0E+00 52 -16E27 68 23E-35 84 74E-46 10.0 0.0E+00
05 0.0E+00 2.1 0.0E+00 3.7 0.0E+00 53 -12E27 69 -3.0E-36 85 0.0E+00 10.1  1.2E-59
06 00E+00 22 0.0E+00 3.8 0.0E+00 54 00E+00 7.0 00E+00 86 0.0E+00 102 -4.3E-60
0.7 00E+00 23 0.0E+00 3.9 0.0E+00 5.5 00E+00 7.1 00E+00 8.7 50E-48 103 -2.1E-61
08 0.0E+00 24 0.0E+00 4.0 00E+0 56 0.0E+00 72 0.0E+00 8.8 0.0E+00 104 -4.0E-62
09 00E+00 25 0.0B+00 4.1 -7.9E-23 57 O0.0E+00 73 0.0E+00 89 -64E-50 10.5 0.0E+00
1.0 0.0E+00 2.6 0.0E+00 42 26E-23 58 -59E-30 74  1.8E-39 9.0 0.0E+00 10.6 -1.0E-63
LI 00E+00 27 0.0E+00 4.3 00E+00 59 1.1E30 7.5 0.0E+00 9.1 S5S5E-51 107 8.1E-65
12 00E+00 28 0.0E+00 44 0.0E+00 6.0 O0.0E+00 7.6 -3.0E-40 92 23E-52  10.8 0.0E+00
13 00E+00 29 0.0E+H0 4.5 O00E+00 6.1 12E31 77 -52E-41 93 15E-52 109 14E-66
14 00E+00 3.0 0.0E+00 4.6 O0.0E+00 62 -43E32 78 0.0E+00 94 -20E-53 11.0 0.0E+00

L5 00E+00 3.1 0.0EH00 4.7 -52E25 63 O0.0E+00 79 8.1E-43 9.5 0.0E+00 Inf  0.0E+00

If we round values of this table to 21 decimal places, we will have

values of error equal to zero. This implies that the right side of (22) is an
exact approximation of e with 21 decimal places. Integrating (22) with

respect to ¢ from 0 to-z/v2, we have

-z/2 -z/\2 +oo o (k)
2 2 u C
J etdt= I e’ E —( )(t—c)" —0 <z <40
k=0 k'
() o
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5.0 (k)
= Sign(=2)le” Z?k +(1c))1

(22 =) = (=) (23)

The right hand side of the previous equation, to (21) decimal places, is the

—z/\2
approximation of J et dt with error equal zero, for—ew <z <+mo.

Using equations (23) and (21) an empirically approximate value for
o is 0.623. This value gives maximum absolute error 0.0016 for F(z)
when|z|=0.6. For more precision, the value o can be replaced by
empirically approximate values of Table 4.2, using (24) or (27). The
greatest absolute error of F(z) using Table 4.2 is 47x107°, in equation (24)

is less than 5x10, and in equation (24) is less than4.02x10™.

The right hand side of equation (23) indicates to an evaluation of

erf(-z/ J2), using this evaluation in equation (3) we will have a numerical

approximation of the NDF with 21 decimal places accuracy.
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Table 4.2: The value o for the NDF

Maximum Absolute Maximum Absolute
Z w Z @
Error Error

0.00<z < 0.25 0.6362 0.00001 2.00< z1<2.25 0.6025 0.0002
0.25<z|<0.50 0.6349 0.00009 2.25< z1<2.50 0.5960 0.0001
0.50<|z[<0.75  0.6325 0.0002 2.50<|z<2.75  0.5900 0.00009
0.75< z |<1.00 0.6295 0.0003 2.75< z 1< 3.00 0.5841 0.000047
1.00<z|<1.25 0.6250 0.0004 3.00<|z|<3.25 0.5785 0.00002
1.25< z |<1.50 0.6202 0.00047 3.25 < z|< 3.50 0.5733 0.00001
1.50 <z |<1.75 0.6145 0.0004 3.50<| z < 3.75 0.5685 0.000004
1.75 <) z |< 2.00 0.6086 0.0003 3.75< z | 0.5639 0.000002

0.00042542" +0.000001 z * ~0.0095654 2> +0.0000003| z|+0.63661977 0<|z|<1.05
e 0.00009561z" +0.0015564|z|3 -0.0123717 +0.00228| z| +0.635919%4 1.05<| z|<1.97 (24)

—0.00039485z" +0.00521546 | zF -0.022652* +0.0151586 | z|+0.6298524 1.97<|z|<7

0.467 7<) z|

Lete(z)=F,(z)-F(z), where F(z) and F,(z) are given by equations

(1) and (20), respectively. From equation (24), we have

0.0017016 |z [ +0.000003 2% —0.0191308| z|

+0.0000003

dw _ |0.00038244|z[* +0.0046692 2% —0.024742| z| +0.00228

9z |-0.0015794| z [} +0.01564638 z* -0.0453| z|
0

The derivative of e(z) is given by
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0<|z]|<1.05
1.05<|z|<1.97
1.97<|z|<7

7<|z|
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%D _ sign(-2)(-4 2120+ aw(z) e [N1-e 7 e D e

Substituting o and faz)
Z

for equation (26) using equations (24) and (25),

leads to the following signal table of e(z), for z>0.

Table 4.3: Signal table of the function e(z) for 0<z<1.05

z 0 0.66 0.93 <1.05
oe(z)/oz | o + 0 e 0 +  <2.14B-09
e(z) 0o 77 4.19E-09 N -4.23E-09 7 <121E-09
Table 4.3: (Continued for 1.05< z<1.97 )
z 1.05 1.13 1.36 1.65 1.88 <1.97
oe(z)/ oz 5.84E-09 + 0 - 0 + 0 - 0 +  <4.14E-09
e(z) 136808 7 331B08 N 389808 7  2.99E-08 N 3ee08 7 <1.88E-08
Table 4.3:(Continued for 1.97 <z <+ )
z 1.97 2.14 2:7; 3 3.14 43 + o0
0e(z)/0z | 321809 0 + 0 0 + 0 0 + 0
e(z) 1.87E-08 N a36E08 7 472E-08 N y3ep0s 7 a30E08 N mps 7 0
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This table indicates that |e(z)|<5x107® for z>0. Similarly, we can derive a
signal table of e(z), for z<0, so that the maximum absolute error be less
than 5x107°. Furthermore, this maximum absolute error is a global

maximum. Therefore, the absolute value of e(z), for each ze(-w,+©), is

less than 5x107°. Figure 4.3 provides a plot of e(z) for all z.

Figure 4.3: Error plot of approximation (20) with value @(z) given by equation (24)

(0<z<+w)

r 9.0E-08
- 4.0E-08
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1AL 1)) G P e T 0.0E+00
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To further improve the maximum absolute error in F(z), we

introduce an empirically approximate value « that is a polynomial of

degree 10 as

w=Az"+A) |2’ |+AZ*+ A, |2 |+AZ° + A | 2° |+ A2 + A | 28 | +A 2" + A, | 2| +4,,

(27)
where the coefficients 4, to A4,, are given by Table 4.4.

Table 4.4 The coefficients 4; to A;, of the value @
0<| z|<0.05 0.05<|z|<0.2 0.2<| 2]<0.6 0.6<|z|<1.3 1.3<|z|<2
A 1 -164311 0.137736 0.00000669889 -0.00000008241225 -0.00000018992895
Az 59955 -0.1715751 -0.0000261114 0.0000015375137 0.000001900488007
A 3 -9319.7 0.09458524 0.00004402746 -0.000007633064 -0.000003559474385
A 4 816.244 -0.030361336 -0.00004721029 0.00001262788065 -0.000024170784487
A 5 -44.6684 0.006280987 0.000034698 -0.00001485887312 0.000124830559738
As 1.595165 -0.0008727685948 -0.000014186178 0.00001779174954 -0.00029708023354
A 7 -0.037152 0.0005065838 0.000428431084 0.0004118896607 0.00087182129003
A 8 0.0005748 -0.00000523618 -0.000000913721 0.0000057016368 -0.000437245711
A‘3 -0.009569667 -0.00956401041 -0.009564100272 -0.0095659762953 -0.0092927825966
A 10 0.0000000287 -0.00000000502 -0.0000000096978 0.0000003187712 -0.0000979290111
A 1n 0.636619772303 0.63661977241954 0.63661977270567 0.6366197463449 0.636635468821
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Table 4.4 (continued ) The coefficients A, to A,, of the value

2<|z|<2.8 2.8<|z[<3.8 3.8<|z|<4.8 48<|z|<7.25 7.25<| 7|
A 1 0.0000003131231703  -0.000000147576219 -0.0000004078129952 -0.00000476686175 0
A 2 -0.0000070000281146 0.000004891566529 0.0000170276673136 0.00025318775948 0
A3 0.000066286888765 -0.00007132986144 -0.000319633235187 -0.0060468613807 0
A 4 -0.000342129007215 0.00059684421948 0.00355340826717 0.0855145832474 0
As 0.001044265987196 -0.00313107114309 -0.02592585496206 -0.7930288951203 0
Ao -0.00202605872942 0.0105849777738 0.1298666026436 5.039109528662 0
A., 0.002921707829 -0.023184927469 -0.453178626455 -22.21941097848 0
As -0.0017726486535 0.0346075158335 1.090715959706 67.13242286399 0
A9 -0.0091022041083 -0.041487748948 -1.73489396344 -133.004448684 0
A 10 0.000208670906 0.016600835847 1.618751155384 156.00174044 0
A 1 0.636488360887 0.63300431742 -0.04666376193 -81.6396720135 0.5265

Figure 4.4 shows an error plot of the NDF with absolute error less than
4.02x10™, replacing the values of 4, to 4,, of Table 4.1 back in equation

(27) and then in equation (20).
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Figure 4.4 Error plot of approximation (20) with the value of @ given by equation (27)

(—0<z<+o)
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4-4. The Mean Range of the Normal Distribution

The probability and cumulative density function of the random variables

iid
Z;~N(0,1) for i=1,2,..,n are

2

1 %

f(z):\/g;r_e 2 —0<z< 400
1 ¢ F
F(z)=J—2_;[we 2 dt (28)
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Let R=2,, -2y, where Z,,2,..,Z,, are order statistics of the random
variables Z,. The joint probability density functions of Zy and Z, is

given by

n(n-1) [F(y)- F(2)]" f(2)f(y), z<y
0 z2y

fi.(z,5)= {

Therefore, the joint probability density function Z.,, and R would be

fip(z,r) =n(n-1) [F(r+2)- F(2)]"*f(2)f(r +z) (29)

Using equation (29), the probability density function R is
(1) = [a(a-D[FG+2)-F@)"* £()f(r+2)dz 120

Johnson, et al (1994), evaluated the mean range (E(R)) as

E(R)= T .Tr xn(n-1) [F(r+2)-F(2)]"*£(2)f(r+ 2z)dzdr

—00 —0

= 1= () - (1- F(2) ) de (30)

The theoretical evaluations that were presented in section 3-2, are not
suitable evaluations for computing equation (30). This is so because the
theoretical approximation of the F(z) are based on subsets of the values
O<z<+w Or -9<z<+9, whereas FE(R) is based on the NDF with values
—w <z<+wo. Furthermore, the numerical evaluations of F(z) in section 3-2,

are not appropriate approximations to compute equation (30). The reason

is that the existing commands, in statistical software such as MATLAB,
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can not calculate this equation; therefore we should use a new computer
program. Using equations (20) and (27) and the following commands in

MATLAB, the mean range of the normal distribution is simply calculated,
F=@(2) 1-F(z)."n-(1-F(2))."n;
d2 =quad (F ,b1,b2);

In these commands, @(z) and quad are syntaxes to introduce the integral
function and integral from b1 to b2, respectively, and F(z) is replaced by

using equations (20) and (27).

Appendix I presents the commands used for computing d, with various
values n. Additionally, Table 4.5 exhibits the mean range of the normal

distribution for n= 2(1)100, 120 (20)440.
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Table 4.5 The mean range of the normal distribution (4, )

n d, n d, n d, n d,

) 1.128399388 31 4.112947754 60 4.638575278 89 4.931322805
3 1.692583920 32 4.139357950 61 4.651140881 90 4.939415336
4 2.058770968 33 4.164837580 62 4.663476164 91 4.947407901
5 2.325954220 34 4.189447042 63 4.675588958 92 4.955302837
6 2.534427881 35 4.213241031 64 4.687486981 93 4.963102400
i 2.704374431 36 4.236269347 65 4.699177286 94 4.970808769
8 2.847220813 37 4.258577446 66 4.710666685 95 4.978424053
9 2.970049046 38 4.280206928 67 4.721961665 96 4.985950289
10 3.077530707 39 4.301195955 68 4.733068410 97 4.993389450
11 3.172900475 40 4.321579619 69 4.743992818 98 5.000743442
12 3.258470416 41 4.341390255 70 4.754740520 99 5.008014113
13 3.335996759 42 4.360657725 71 4.765316893 100 5.015203251
14 3.406780785 43 4.379409655 72 4.775727078 120 5.144189562
15 3.471845840 44 4.397671657 73 4.785975990 140 5.251203103
16 3.532003010 45 4.415453297 74 4.796068336 160 5.342459595
17 3.587905461 46 4.432804816 75 4.806008620 180 5.421871644
18 3.640086532 47 4.449732925 76 4.815801160 200 5.492099946
19 3.688987071 48 4.466256863 7 4.825450095 220 5.554982434
20 3.734975440 49 4.482394608 78 4.834959395 240 5.611867501
21 3.778362420 50 4.498162985 79 4.844332872 260 5.663767153
22 3.819412500 51 4.513577764 80 4.853574185 280 5.711459767
23 3.858338013 52 4.528653744 81 4.862686850 300 5.7556557481
24 3.895363368 53 4.543404832 82 4.871674247 320 5.796546792
25 3.930645066 54 4.557844108 83 4.880539628 340 5.834824904
26 3.964332149 55 4.571983894 84 4.889286119 360 5.870703433
27 3.996555695 56 4.585835808 85 4.897916733 380 5.904481079
28 4.027431559 57 4.599410817 86 4.906434370 400 5.936372257
29 4.057062620 58 4.612719283 87 4.914841823 420 5.966570264
30 4.085540632 59 4.625771010 88 4.923141788 440 5.995240461
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4-5. Conclusions

It has been shown that the new theoretical evaluation for the NDF has

greatest absolute error less than 4.02x10™. In section 3-3 the new
numerical evaluation of the NDF was presented with 21 decimal places
accuracy. The proposed evaluation is based on the values -w<z<+w while
the existent evaluations are based on subset of the values 0<z<+w or
-9<z<9, theoretically, or the values -w<z<+w, numerically. The
numerical evaluations have satisfying precision, but they are based on

computer programming.

The new evaluation of the NDF with a good approximation is applied
for calculating the mean range of the normal distribution with various

sample sizes n.

Appendix I

(Matlab)

A=[-164311 0.137736 0.00000669889 -0.00000008241225
-0.00000018992895 0.0000003131231703 -0.000000147576219

-0.0000004078129952 -0.00000476686175 0

99955 -0.1715751 -0.0000261114 0.0000015375137
0.000001900488007 -0.0000070000281146 0.000004891566529
0.0000170276673136 0.00025318775948 0

-9319.7 0.09458524 0.00004402746 -0.000007633064
-0.000003559474385 0.000066286888765 -0.00007132986144
-0.000319633235187 -0.0060468613807 0

816.244 -0.030361336 -0.00004721029 0.00001262788065
-0.000024170784487 -0.000342129007215 0.00059684421948
0.00355340826717 0.0855145832474 0
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-44.6684 0.006280987 0.000034698 -0.00001485887312
0.000124830559738 0.001044265987196 -0.00313107114309
-0.02592585496206 -0.7930288951203 0
1.595165 -0.0008727685948 -0.000014186178 0.00001779174954
-0.00029708023354 -0.00202605872942 0.0105849777738
0.1298666026436 5.039109528662 0
-0.037152 0.0005065838 0.000428431084 0.0004118896607
0.00087182129003 0.002921707829 -0.023184927469
-0.453178626455 -22.21941097848 0
0.0005748 -0.00000523618 -0.000000913721 0.0000057016368
-0.000437245711 -0.0017726486535 0.0346075158335
1.090715959706 67.13242286399 0
-0.009569667 -0.00956401041 -0.009564100272
-0.0095659762953 -0.0092927825966 -0.0091022041083
-0.041487748948 -1.73489396344 -133.004448684 0
0.0000000287 -0.00000000502 -0.0000000096978
0.0000003187712 -0.0000979290111 0.000208670906
0.016600835847 1.618751155384 156.00174044 0
0.636619772303 0.63661977241954 0.63661977270567
0.6366197463449 0.636635468821 0.636488360887
0.63300431742 -0.04666376193 -81.6396720135 0.5265];
B=[00.050.2 0.6 1.3 2 2.8 3.8 4.8 7.25
0.050.2 0.6 1.3 2 2.8 3.8 4.8 7.25 9e+24];
z=1;
for n =2:30

d2(n)=0;

forj=1:10

s=z;

F= @(z) 1-(0.5*(1-(sign(-s).*sqrt(1-exp(-
((A(1,))*z M 2+A(2,))*abs(z. 1 1)+A(3,)) ¥z 10+A (4,)) *abs(z.29)+A(5,)) ¥z.78
+A(6,))*abs(z."7)+A(7,j)*z.76+A(8,))*abs(z."5)
+A(9,))*z.M+A(10,j)*abs(z."3)+A(11,j)*z.72))))))).”n-(1-(0.5*(1-(sign(-
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s).*sqrt(1-exp(-
((A(1,))*z"M2+A(2,))*abs(z. 1 1)+A(3,))*z.~10+A(4,)) *abs(z.~9)+A(S,)) *z.8
+A(6,))*abs(z."7)+A(7,j)*z. 6+
A(8,j)*abs(z."5)+A(9,)*z.M+A(10,))*abs(z."3)+A(11,))*z.72))))))))."n;
d2(n)=d2(n)+quad(F,B(1,j),B(2,j))+ quad(F,-B(2,j),-B(1,))) ;
end
d2(n)

end
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