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Abstract

Model based clustering is a common approach for modelling data with the use

of finite mixtures of parametric distributions. For count data, the choice of high

dimensional multivariate Poisson distribution can lead to increased computational

effort. Composite likelihoods concept with the use of bi-variate marginals can offer

flexibility in estimations. In order to further reduce the time of estimation of the

composite likelihood method associated parameters, we introduce the sampling

methods which can offer adequate results, especially for large data samples.

When it comes to mixed data sets, the joint probability is not always easy to be

found. Copulas can provide a solution to this problem, and especially Gaussian

copula offers flexibility for description of the dependencies between different types

of variables. Our aim was to reduce computational effort arisen from the use of

Gaussian copula, and the fully parametrized model we assessed, since this approach

causes effort from adding different correlation matrices for every component that

need to be estimated. So, the main target was to achieve parsimony in estimation

with the use of appropriate techniques.
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Chapter 1

Introduction

1.1 Count data

The last decade we have seen a tremendous increase on interest about discrete

valued mixtures models. While methodologies for univariate integer valued mix-

tures are now flourishing, literature on multivariate mixtures for counts is a less

developed area of research. Such multivariate count data occur in several different

disciplines like epidemiology, marketing, criminology and engineering just to name

a few. For example in syndromic surveillance systems the number of patients with

a given symptom is recorded aiming at being able to discover early an abrupt

change on this number, perhaps indicating for a threat for public health. In prac-

tice a large number of symptoms are counted creating multiple mixtures that are

in fact correlated. Correct evaluation of such multiple series need a model that

can take into account the correlation across time but at the same time the cross

correlation between the different symptoms.

Another example comes from geophysical research when the number of earth-

quakes need to be modelled (Boudreault and Charpentier, 2011). In such data

the number of earthquakes above a certain magnitude threshold and for a given

time period are counted. Different series can be generated from adjacent areas,

making an important scientific question the correlation between the two areas. In

criminology one counts the number of occurrences of a specific type of crime in

successive time periods (let say weeks). Working together with more than one

types of crimes generates many count mixtures that can be correlated and need

proper models to work with. In finance one wants to model the number of bids

and asks for a stock or the number of trades of stocks in a portfolio. Similar ex-

amples may be seen for the number of purchases of different but related products

1
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in marketing, the number of claims of different policies in actuarial science and

many others.

Literature on multivariate mixtures of counts is less developed. One of the rea-

sons is that even models not being time series are less developed due to analytical

and computational problems. However, in recent years, there have been some new

models to facilitate modelling approach.

In the literature, methods have been presented for the analysis of count data

classified by fixed and crossed factors under the assumptions that this data can be

modelled by independent binomial or Poisson distributions. In general, the mean

value of these distributions depends on the levels of the classifying factors and a

linear model is proposed for the logit transform or the log transform of these mean

values. In practice many situations occur which are different, such as:

� The counts are independent, but the observed variation in the data is more

than can be explained by e.g. the Poisson distribution;

� The counts are dependent: the factors are not fixed but they are random.

A critical question faced by data analysts while modelling the count data is

how to choose a suitable model for a particular study. For modelling the cat-

egorical count data with excess zero counts, numerous choices of methodologies

have been used by various researchers in literature. Usually Regression models

are widely applied for modelling this kind of data. However other data analy-

sis techniques also has been adopted in the recent years, which includes machine

learning techniques like artificial neural networks. However the major problem

encountered is the selection of most suitable model for analysing the count data,

since various methods provides dissimilar results, which also varies from one data

to another data. One of the widely accepted and used methods for modelling the

count data with excess zero counts is the zero inflated regression models, which

supply a broad and rigorous area of research.

1.1.1 Models for multivariate count data

Even ignoring the mixtures correlation one can see that there are not many

models for multivariate counts. Inference for multivariate counts is analytically

and computationally demanding. Perhaps the case is easier and more developed

when dimensions reduce to two but there are several bivariate models that cannot
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generalize easy to multivariate ones. This obstacles the development of flexible

models to be used also in mixtures context.

We briefly expose some of the issues. Consider for example the simplest ex-

tension of the simple Poisson distribution to the bivariate case. As in Kocher-

lakota and Kocherlakota (1992), the bivariate Poisson has probability mass func-

tion (pmf) is given by

P (y1, y2) = P (Y1 = y1, Y2 = y2; Θ)

= e−(θ1+θ2+θ0) θ
y1
1

y1!

θy22

y2!

min(y1,y2)∑
s=0

(
y1

s

)(
y2

s

)
s!

(
θ0

θ1θ2

)s
, (1.1)

θ1, θ2, θ0 ≥ 0, y1, y2 = 0, 1, . . ., where Θ = (θ1, θ2, θ0) are the parameters. θ0 is the

covariance while the marginal means and variances are equal to θ1 +θ0 and θ2 +θ0

respectively. The marginal distributions are Poisson. One can easily recognize

that this pmf involves a finite summation which can be computational intensive for

larger counts. This bivariate Poisson allows only positive correlation. We denote

this by BP (θ1, θ2, θ0). For θ0 = 0 we get two independent Poisson distributions.

We may generalize this model in a certain extend by considering mixtures of

the bivariate Poisson. There are two ways to do this that have been worked

in detail in practice (though other schemes also apply but are less developed).

Most of the literature assume a BP (αθ1, αθ2, αθ0) distribution and places a mixing

distribution in α. Such a model, depending on the choice of the distribution of α

produces overdispersed marginal distributions but with always positive correlation.

Correlation comes from two sources, the first is the intrinsic one from θ0 and the

second due to the use of a common α.

A more refined model can be produced by assuming a BP (θ1, θ2, 0) and letting

θ1, θ2 jointly vary according to some bivariate continuous distribution, as for ex-

ample in Chib and Winkelmann (2001) where a bivariate lognormal distribution

is assumed. Here all the correlation comes from the correlation of the joint mixing

distribution and thus it can be negative as well. Here the obstacle is that we do

not have flexible bivariate distributions to use for the mixing or some of them may

lead to computational problems. Chib and Winkelmann (2001) used a bivariate

lognormal. The resulting bivariate Poisson lognormal does not have closed form

pmf and bivariate integration is needed thoroughly. Also note that since there are

more than one derivation there is some confusion on the resulting distributions.

For example the literature has a large number of distributions under the name

bivariate negative binomial.
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A different avenue to built multivariate models is to apply copula approach.

Copulas (see Nelsen, 2006) have found a remarkable large number of applications

in finance, hydrology, biostatistics etc., since they allow the derivation and appli-

cation of flexible multivariate models with given marginal distributions. The key

idea is that the marginal properties can be separated from the association prop-

erties leading thus to a wealth of potential models. For the case of discrete data,

copula–based modelling is less developed. For example Genest and Nešlehová

(2007) provided an excellent review on the topic. Since then there are several

attempts to apply copulas to discrete data with quite useful success in practice

(Nikoloulopoulos and Karlis, 2009). It is important to keep in mind that some

of the desirable properties of copulas are not valid when dealing with count data,

as for example dependence properties which are now dependent on the marginal

properties. Also calculation of the pmf can be cumbersome in larger dimensions.

To help the exposition we restrict ourselves to the bivariate case, i.e. to bivari-

ate copulas and later we will discuss the problem when going to higher dimensions.

Definition (Nelsen, 2006). A bivariate copula is a function C from [0, 1]2 to

[0, 1] with the following properties: a) For every {u, v} ∈ [0, 1], C(u, 0) = 0 =

C(0, v) and C(u, 1) = u,C(1, v) = v and b) For every {u1, u2, v1, v2} ∈ [0, 1]

such that u1 ≤ u2 and v1 ≤ v2, C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0.

So, copulas are in fact bivariate distributions with uniform marginals. Recall

the inversion theorem, central in simulation, where starting from a uniform random

variable and applying the inverse transform of a distribution function we can

generate whatever distribution we like. Copulas actually extend this idea in the

sense that we start from two uniforms that are correlated and hence we end up

with variables from whatever distribution we like which are still correlated.

If F (x), G(y) are the cdf ’s of the univariate random variables X and Y , then

C(F (x), G(y)) is a bivariate distribution for (X, Y ) with marginal distributions F

and G respectively. Conversely, if H is a bivariate cdf with univariate marginal

cdf ’s F,G, then, according to Sklar (1959)’s theorem there exists a bivariate copula

C such that for all (X, Y ), H(x, y) = C(F (x), G(y)). If F,G are continuous, then

C is unique, otherwise, C is uniquely determined on range F ×rangeG. This lack

of uniqueness is not a problem in practical applications as it implies that there

may exist two copulas with identical properties.

Actually, copulas provide the joint cumulative function. In order to derive the

joint density (for continuous data) or the joint probability function (for discrete
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data) we need to take the derivatives or the finite differences of the copula. In

the bivariate case we have that for discrete data, the pmf is obtained by finite

differences of the cdf through its copula representation (Genest and Nešlehová,

2007), namely

h(x, y;α1, α2, θ) = C(F (x;α1), G(y;α2); θ)− C(F (x− 1;α1), G(y;α2); θ)

− C(F (x;α1), G(y − 1;α2); θ) + C(F (x− 1;α1), G(y − 1;α2); θ)

where F (·) and G(·) are the marginal cumulative functions, α1 and α2 are the

parameters associated with the marginal distributions respectively and θ is the

parameter(s) of the copula.

And here the problems occur for more dimensions. Since we need to take

differences, for the trivariate case we need to evaluate 8 times the copula and for

d dimensions, one needs to evaluate it 2d times. If the selected copula is not in

closed form, recall that it is a cdf and hence for some well known and used one like

the Gaussian copula this is a multivariate integral, problems occur as dimensions

increase. From the computational point of view one needs to evaluate many time

multivariate integrals or at least to add and subtract several number which leads

to possible truncation errors.

A relative problem is the lack of many copulas that can easily allow for flexible

correlation structure, as for example some multivariate copulas assume the same

correlation to all pairs of variables which is too restrictive in practice. Also if one

needs to specify both positive and negative correlation more restrictions apply.

Having entered in the realm of more than 2 dimensions similar problems occur

for the simple bivariate Poisson and related models. Generalizing the bivariate

Poisson to the multivariate Poisson with one correlation parameter for every pair,

leads to multiple summation, see the details in Karlis and Meligkotsidou (2005).

There are some more strategies to built flexible models for multivariate counts

like models based on conditional distribution; Berkhout and Plug (2004); finite

mixtures Karlis and Meligkotsidou (2007). In most cases things are not simple

and always they are more complicated with respect to continuous models where

the multivariate normal distributions is a cornerstone allowing for great flexibility

and feasible calculations.

In the literature other statistical models have been generated to analyze data

with count nature DB. (2000), D. (1992). The first model to analyze count out-

comes is the Poisson regression model (PRM) Karazsia BT (2008) , Long SJ
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(2006), R. (2016). This model is based on Poisson distribution has two restrictive

assumptions. First, the variance of the count outcome is equal to the mean. The

second assumption is that occurrences of events are independent of each other.

However, in practice, these assumptions are usually violated, and count variables

tend to have a conditional variance that often exceeds the conditional mean, which

is known as ”overdispersion”. Using the PRM to analyze outcomes in which one of

these two assumptions is violated may result in biased data with underestimated

standard error.

The second model is the negative binomial regression model (NBRM) that

attempted to overcome the abovementioned limitations in the Poisson distribu-

tion and has proven to properly represent the observed counts than the Poisson

distribution e.g. Karazsia BT (2008), Hausman JA (1984). Accordingly, unlike

the PRM, this distribution does not require the mean and variance of the count

outcome to be equal. Additionally, the previously mentioned assumption of inde-

pendence of events required for PRM is no longer mandatory in the NBRM since it

assumes that events can be repeated, given the influence of individual differences

on the probability of an event to occur.

Two other alternatives count models are the ZeroInflated Count Models: zero-

inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB). These models

had been developed to overcome circumstances in which the origin of overdisper-

sion is due to excessive zero counts. These kinds of distributions assume that

the zero counts originate from two different sources and can be classified into two

groups. The zero-inflated model selection, whether ZIP or ZINB, is determined by

the sort of overdispersion. If the excessive number of zeros generates the overdis-

persion, then the ZIP is more appropriate to model count data. On the other hand,

if the overdispersion is caused by factors not related to the excessive number of

zeros, then the ZINB model is more suitable.

Summarizing this section, there are models for multivariate counts available but

they can be demanding in practice which creates problems in their applicability.

1.2 Mixed mode data

Clustering is an important tool in data mining,which has many applications in

areas such as bio-informatics, web data analysis, information retrieval, customer

relationship management, text mining, and scientific data exploration. It aims

to partition a finite, unlabeled dataset into several natural subsets so that data
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objects within the same clusters are close to each other and the data objects

from different clusters are dissimilar from each other according to the predefined

similarity measurement.

Cluster analysis aims to partition unlabeled data into homogeneous groups,

such that two instances are similar if they belong to the same cluster, and dissim-

ilar otherwise. Although this unsupervised task is often considered in the context

of either continuous or categorical datasets, this task remains challenging when

dealing with ”heterogeneous” or ”mixed” data, i.e. with both types of variables.

As previously emphasized, clustering of mixed data is challenging because it is

difficult to directly apply mathematical operations to both types of feature vari-

ables. One of the main issues arising in the framework of mixed data clustering

is thus the choice of the most appropriate distance or model to simultaneously

process both data types Preud (2021). Indeed, clinical research usually relies on

heterogeneous data: clinical datasets typically include a mix of variables related to

clinical history (usually categorical variables), general/anthropometric data (usu-

ally continuous variables such as age and body mass index), physical examination

(both categorical and ordinal variables) and laboratory or imaging findings (often

continuous variables). Such heterogeneity urges for ways to guide users and clini-

cal practitioners in choosing appropriate clustering approaches for heterogeneous

clinical datasets in order to achieve efficient phenomapping of patients in various

clinical settings.

Discretization and dummy-coding are some of the simple and intuitive solu-

tions to obtain a homogeneous dataset containing only categorical data on which

classical techniques can be applied. However, this approach may introduce distor-

tion in the original data and may consequently lead to increased bias. Fortunately,

a wide range of clustering algorithms has been specifically developed to deal with

mixed data. A detailed taxonomy of available methods has been reported recently

by Ahmad and Khan (2019). Nevertheless, the end-user may be bewildered when

choosing one of these techniques as there is no clear guidance for choosing the

most appropriate technique in a given context. To our knowledge, few benchmark

studies have examined the performance of clustering strategies for mixed type

variables on both real and simulated data. Moreover, only a few of the available

techniques have been tested in previous benchmark attempts. In addition, an ex-

ternal assessment of available techniques, by a group not directly involved in their

development, may further strengthen the generalizability of the results. In fact, a

better understanding of the strengths and weaknesses of each clustering strategy
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may help to clarify the lack of reproducibility and generalization sometimes ob-

served in the setting of mixed data clustering. Most clustering methods fall into

one of two classes: distance-based methods and model based methods.

At the very high end of the overall taxonomy, two main categories of distance

based clustering, known as partitional clustering and hierarchical clustering, are

envisioned in the literature. We will mainly talk about the first two types of meth-

ods as applied to the mixed-mode data. The distance-based methods have two

sub-branches. One is partitioning algorithms, including K-Means, K-Medians, K-

Medoids and K-prototypes; the other is hierarchical algorithms, including agglom-

erative methods and divisive methods. The probabilistic model-based methods

generally assume a specific form of the generative model, like a mixture of Gaus-

sians. The model parameters are estimated (commonly with the EM algorithm)

using the maximum likelihood method. Then each data point is assigned to the

cluster for which has the highest predicted probability. The density-based meth-

ods assume the data space has the granularity between every dense region with

arbitrary shape. The most popular density-based clustering method is DBSCAN.

1.2.1 Distance-based methods

One of the more common approaches for clustering mixed-type data involves

converting the data set to a single data type, and applying standard distance

measures to the transformed data. Dummy coding all categorical variables is one

example of such an approach. Dummy coding increases the dimensionality of

the data set, which can be problematic when the number of categorical variables

and associated categorical levels increase with the size of the data. Further, any

semantic similarity that may have been observable in the original data set is lost

in the transformed data set. Perhaps most importantly, coding strategies involve a

non-trivial choice of numbers or weights that must be used to represent categorical

levels. The coding strategy introduced by Hennig and Liao (2013) is one example

of such dummy coding strategies. It involves selecting values that control the

expected contribution of categorical variables in relation to the quantity E(X1 −
X2)2 = 2, where Xi denotes independent and identically distributed observations

of a continuous variable standardized to unit variance.

Rather than set the expected contribution of the categorical variables equal

to this quantity, however, Hennig and Liao (2013) set the expected contribution

to half of this quantity, based on a concern that the gaps between the coded

categorical dummy variables would unduly influence the resulting clusters. Hennig
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and Liao (2013) justify this claim based on results of a Monte Carlo study with 50

simulations per condition, in which they inspect the performance of the k-medoids

algorithm CLARA Kaufman (1990) using two weighting schemes.

This family of methods relies exclusively on explicit distances or dissimilari-

ties between individuals. Some algorithms such as Partitioning Around Medoids

(PAM) or Hierarchical Ascendant Clustering (HAC) can take any dissimilarity

matrix as an input, whereas K-prototypes rather build their own distance. Note

that in the present analysis, by misuse of language, the term ”distance” sometimes

means ”dissimilarity” as some measures do not necessarily verify the triangular

inequality.

An alternative approach is to use distance measures developed specifically for

mixed data sets, e.g., Gower (1971) defined as follows. For two observations x and

y , the Gower similarity coefficient is calculated as:

S(x, y) =
1

m

(
q∑
j=1

(
1− |xj − yj|

Range(j)

)
+

p∑
j=q+1

s(xj, yj)

)
(1.2)

where, s(xj, yj) equals 1 if xj = yj and 0 otherwise, and Range(j) represents the

absolute difference between extreme values of the j-th variable. The first term of

the right part is the similarity on the continuous variables, while the second term

deals with categorical variables. By dividing the difference |xj|yj| by the range of

variable j, both coefficients for numeric and categorical variables are included in

the interval [0, 1] . The dissimilarity matrix is then comprised of the dissimilarity

coefficients calculated between each pair of observations.

Huang (1998) proposed the k-prototypes algorithm, a variant of the k-means

algorithm that is based on the weighted combination of squared Euclidean distance

for continuous variables and matching distance for categorical variables. The k-

prototypes algorithm relies on a user-specified weighting factor that determines

the relative contribution of continuous and categorical variables, not unlike what

is required to use Gower’s distance, and thus suffers from the same limitation.

The K-prototypes algorithm defines G virtual individuals (or prototypes) as the

centers of the groups, built from the means by group for numeric variables, and

modes by group for categorical variables. The distance between two subjects X

and Y is then defined as:

d(x, y) =

q∑
j=1

(xi − yj)2 + γ

p∑
j=q+1

δ(xi − yj) (1.3)
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where the first term is the squared Euclidean distance measurement for the

continuous variables and the second term is the Hamming distance. The weight γ

is used to avoid favoring either type of attribute. It can be specified by the user or

estimated via a combined variance of the data. The minimization criteria is the

total sum of distances (TSD) between the subjects and the prototype of the class

bg to which they belong:

TSD =
G∑
g=1

∑
x∈Cg

q∑
j=1

(xj − bjg)2 + γ

p∑
j=q+1

δ(xj − bjg) (1.4)

In practice, the algorithm is very similar to the k-means: initial G prototypes are

selected as temporary centers of the clusters, then each subject is allocated to the

closest prototypes. When all subjects are allocated, the prototypes are updated

to represent their optimal class.

Partitioning around medoids (PAM). The PAM method Kaufman (1990) builds

a partition by affecting observations to the closest ”medoid”, i.e. the best repre-

sentative subject of its cluster. The algorithm is composed of two steps: one

for building the current clustering similarly to the K-means (BUILD phase), and

another to improve the partition toward a local optimum (SWAP phase). The

minimization criteria is the Total Deviation (TD):

TD =
G∑
g=1

∑
x∈Cg

d(xj −mg) (1.5)

where (m1, ...,mG) are the medoids, (C1, ..., CG) the respective clusters they rep-

resent, and d(xj −mg) the dissimilarity between the subject xj and the medoid of

the cluster Cg. The BUILD phase finds the first medoid which minimizes the total

deviation, i.e. with the smallest dissimilarity to all other subjects. The remaining

G−1 medoids are then successively found by maximizing the reduction of the TD.

The SWAP phase subsequently improves the existing partition by considering all

possible swaps of the G medoids with the non-medoids. The swaps which reduce

TD the most are applied, and the process is repeated until no further improvement

is found.

Ascendant hierarchical clustering (HC) (see e.g. Ward (1963)). This well-

known clustering method begins with N clusters (one per subject), then at each

step aggregates the two closest clusters until only one remain. The successive

fusions are represented on a dendrogram to facilitate the a posteriori choice of an

optimal number of clusters. In general, the best partition is the one preceding the
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first sizeable increase in intra-cluster variance. Let us suppose that at a particular

aggregation step, clusters Ci and Cj are the next to be merged. To determine the

distance of the merged cluster with any other cluster Ck , the dissimilarity matrix

must be updated by one aggregation method belonging to the Lance-Williams

algorithm family:

d(Ci ∪ Cj,Ck) = αd(Ci, Ck) + βd(Cj, Ck) + ηd(Ci, Cj) (1.6)

The coefficients α, β and η are dependent on the aggregation method. These

methods for computing distances between clusters are called linkage criteria such as

Ward’s algorithm, which aims at minimizing the increase in intra-cluster variance

at each binary fusion, such that convex and compact clusters are more likely to

be formed.

1.2.2 Probabilistic-based methods

Model-based or statistical approaches to clustering mixed-type data typically

assume the observations follow a normal-multinomial finite mixture model see e.g.

Browne (2012) , Everitt (1988) ,Fraley and Raftery (2002) , Hunt and Jorgensen

(2011) and Lawrence and Krzanowski (1996).

When parametric assumptions are met, model-based methods generally per-

form quite well and are able to effectively use both continuous and categorical

variables, while avoiding undue vulnerability to variables with weak association

with the identified clusters. Normal-multinomial mixture models can be extended

using the location model Krzanowski (1993), which allows a distinct distribu-

tion for the continuous variables for each unique combination of categorical levels.

While this accounts for any possible dependence structure between continuous and

categorical variables, it becomes infeasible when the number of categorical vari-

ables or number of levels within each categorical variable is large. For exclusively

continuous data, kernel density (KD) methods allow these parametric assumptions

to be relaxed however KD methods incur a prohibitively large computational cost

with a large number of continuous variables, along with other well-documented

problems associated with high-dimensional KD estimation.

The Kamila algorithm Foss (2016) is a model-based adaptation of the k-means

for managing heterogeneous datasets. The sample of continuous variables is as-

sumed to follow a mixture distribution with arbitrary spherical clusters (where

the density of the data is only dependent on the distance to the center of the
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distribution). This assumption is less restrictive than those from Mixmod or LCM

(see below). Categorical variables are supposed to be sampled from a mixture of

multinomial variables. Factors are also assumed to be conditionally independent

given the clusters to which they belong. The Kamila algorithm begins with a set

of centroids for the continuous variables and a set of parameters for the categor-

ical variables. For continuous variables, the Euclidean distance with the closest

centroid is computed. This set of N minimal distances is used to estimate the

mixture distribution of continuous variables. For categorical variables, the prob-

abilities of observing the data given the cluster are computed. The log-likelihood

of the sum of these two components is then used to find the most appropriate

cluster for each subject. Based on this temporary partition, the centroids and the

parameters are updated to best represent the clusters. These steps are repeated

until the clusters are stable. Finally, multiple runs of this process are performed

with different initializations, and the partition maximizing the sum of the best

final likelihoods is retained. The KAMILA clustering algorithm is a scalable ver-

sion of k-means well suited to handle mixed-type data sets. It overcomes the

challenges inherent in the various extant methods for clustering mixed continuous

and categorical data, i.e., either they require strong parametric assumptions (e.g.,

the normal–multinomial mixture model), they are unable to minimize the con-

tribution of individual variables (e.g.Modha–Spangler weighting), or they require

an arbitrary choice of weights determining the relative contribution of continu-

ous and categorical variables (e.g., dummy/simplex coding and Gower’s distance).

The KAMILA algorithm combines the best features of two of the most popular

clustering algorithms, the k-means algorithm and Gaussian-multinomial mixture

models both of which have been adapted successfully to very large data sets.

Like k-means, KAMILA does not make strong parametric assumptions about the

continuous variables. Like Gaussian-multinomial mixture models, KAMILA can

successfully balance the contribution of continuous and categorical variables with-

out specifying weights, but KAMILA is based on an appropriate density estimator

computed from the data, effectively relaxing the Gaussian assumption.

Clustering by mixture modeling (Mixmod). Clustering by mixture modeling

was proposed a number of years ago Everitt (1988) , although powerful computers

are needed to realize its full potential. Nowadays, many R packages implement

mixture models such as clustMD or fpc. Mixture models assume that continuous

variables follow a multivariate normal distribution whereas categorical variables
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follow a multivariate multinomial distribution. For an observation xi , the proba-

bility distribution function is defined as:

f(xi, θ) =
G∑
g=1

τgh(xi|αg) (1.7)

where h(xi|αg) is the distribution function for cluster g , with parameters αg. For

example, if h is defined as a multivariate normal distribution, αg would be the

mean vector µgg and the variance–covariance matrix Σg . The mixing proportions

τg ∈ [0, 1] , describe the expected size of each cluster. The set of parameters to be

determined is θ = (τ1, ..., τg, α1, ..., αg). Following an Expectation–Maximization

(EM) framework, the set of parameters θ is computed such that the log-likelihood

is maximized. The τig(θ) are then updated and so forth until convergence is

reached. The crucial portion of this process relies on the choice of the model

for the data within a specific cluster, i.e. the distribution function h . Several

models are available with different levels of constraints. For continuous variables,

the variance–covariance matrices are assumed to be diagonal. The user can decide

to set all cluster volumes equal, and/or all intra-variances equal, which yields 4

possible models. With regard to categorical variables, a re-parametrization allows

an interpretation similar to the center and the variance matrix used for continuous

data. The dispersion parameter can be chosen to be the same across clusters

and/or across variables, or across levels, thereby yielding 5 possibilities.

Latent class model (LCM). This method Marbac (2018) is another type of

mixture modeling quite similar to Mixmod but, in addition, it can also determine

whether a variable is useful for clustering, as well as the optimal number of clus-

ters. If the j-th variable is relevant (i.e., its distribution differs significantly across

clusters), it is labeled with ωj = 1 and belongs to Ω . If j is irrelevant (i.e. its

distribution is similar across clusters), it is labeled with ωj = 0 and belongs to

Ω complementary. Let ω = ω1, ..., ωp be the binary vector of the role of the p

variables, and let m = (G,ω) be the resulting model. For an observation xi , the

probability density function of the mixture distribution is:

f(xi|m, θ) =
∏
j∈Ωc

hj(xij|a1j)
G∑
g=1

τg
∏
j∈Ω

hj(xij|agj) (1.8)

In LCM, the variables are assumed to be independent within clusters. Sim-

ilarly to Mixmod, an EM algorithm is used to determine the optimal partition.

When the selection of relevant variables is enabled, a penalization on the Bayesian
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Information Criterion (BIC) or the Maximum Integrated Complete-data Likeli-

hood (MICL) is applied at the maximization step. The selection of the number

of clusters is achieved by running the algorithm for each number of clusters in a

specified range, and selecting the one which yields the best value of the selected

criterion.

Latent class analysis (LCA). This clustering technique Bandeen-roche (1997)

is derived from the Latent Class Regression. LCA has the particularity of be-

ing applied to categorical data only, implying that continuous variables must be

discretized. This transformation can be achieved based on percentiles in order to

obtain balanced level counts, or based on practitioner knowledge such that the cat-

egories are clinically relevant. Each categorical variable is supposed to be sampled

from a mixture of multinomial distributions, depending to which latent cluster the

subjects belong to. Similarly to mixture modeling methods, the overall density

function is used:

f(xi, θ) =
G∑
g=1

τgh(xi|αg) (1.9)

In this instance, the αg are the sets of probabilities for each level of each

categorical variable if the subject belongs to the latent cluster Cg . Initially, the τg

are uniform (equal cluster sizes), and the αg are randomly sampled. As in Mixmod,

the τig(θ) are computed and used to update the αg according to the Bayes theorem

and the observed data. With the new probabilities of the multinomial mixture, the

τg are updated. Finally, the new parameters allow computing the log-likelihood of

the present iteration:

`(x|θ) =
N∑
i=1

log

(
G∑
g=1

τgh(x|αg)

)
(1.10)

The parameter update is repeated until the maximum number of iterations

is achieved, or the difference between two successive log-likelihoods is too small.

Several runs are subsequently performed to avoid finding a local optimum, and

the run with the best final log-likelihood returns the resulting partition.



Chapter 2

Composite Likelihoods

2.1 Introduction

There is an increasing interest the last years about an inferential approach named

Composite Likelihood (CL hereafter). The method is applicable when the stan-

dard likelihood is hard to be derived because, for example, the underlying model

is too complicated involving multivariate integrals, and hence it maximization is

almost impossible. In such cases CL can be the basis for inference in the sense

that it replaces the computationally impossible likelihood with some other esti-

mating function which while it captures part of the model it is computationally

less intensive.

The CL approach, was originally described in Lindsay (1988) and further de-

veloped on the last decade, see e.g. the review paper of Varin et al. (2011). The

idea behind composite likelihood is the following: In models with complex interde-

pendencies, the joint distribution of the data may be difficult to evaluate, or even

to specify. Typical problems arise from the need to invert large matrices and/or

from approximation of intractable integrals/sums. To avoid evaluation of the full

likelihood, one may approximate/replace the full likelihood with some other func-

tion which while retains a certain amount of information about the quantities of

interest are easier to work with. This is also valid when the multivariate model is

hard to be determined with full detail while an approximate model is possible.

In general CL is an inference function derived by multiplying a collection

of component likelihoods; the particular collection used is often determined by

the context. Typically they are of smaller dimension and hence easier to work

with. Because each individual component is a conditional or marginal density,

the resulting estimating equation obtained from the derivative of the composite

15
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log-likelihood is an unbiased estimating equation. Because the components are

multiplied, whether or not they are independent, the inference function has the

properties of likelihood from a misspecified model.

More Formally, consider an m-dimensional vector random variable Y with

probability density f(y; θ) for some unknown p-dimensional parameter θ ∈ Θ.

Denote by {A1, . . . ,Ak} a set of marginal or conditional events with associated

likelihoods Lk(θ; y) then a composite likelihood is the weighted product

CL(θ; y) =
K∏
k=1

Lk(θ; y)wk

where wk are nonnegative weights used in certain cases to improve efficiency.

The CL is also useful when the multivariate model is difficult to fully determine

yet an approximate model is possible. Such an approach is of particular interest in

the case of multivariate counts. As an example, although it would be challenging

to specify an 8-variate Poisson distribution (as the probabilities would be difficult

to obtain), we could approximate it using products of lower-dimensional (e.g.,

bivariate Poisson) probability functions, corresponding to a pseudo-likelihood that

in this case is a pairwise likelihood. In composite likelihood approaches, the key

ingredient is to identify an approximation that retains as much information as

possible; the corresponding price to pay for the model misspecification relates to

the efficiency of the estimates and more complicated asymptotics. Also note that

the model is now misspecified which can help on the robustness properties of the

procedure. The derived CL estimators are asymptotically unbiased and normally

distributed with variance the inverse of the Godambe Information. It is typical

in practice to construct a surrogate function for the true likelihood using either

marginal of conditional densities. More details can be found in Lindsay (1988)

and Varin et al. (2011). Note also that the approach has been used under certain

other names so far.

Among composite likelihood methods, pairwise likelihood (PL) methods, which

use bivariate likelihoods to approximate the multivariate likelihood, have been used

in many applications. For example, Kuk and Nott (2000) used such an approach

for correlated binary data, and pairwise approaches have been used in mixtures

models (see, e.g., Davis and Yau (2011)), spatial models (e.g., Varin et al. (2005)),

and image models (e.g., Nott and Rydén (1999)). Several improvements for such

pairwise methods have also been proposed. For example, Fieuws and Verbeke

(2006) suggested the use of pairwise likelihood, where relevant estimators were
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derived by averaging estimators obtained from each pair; an improved version

of this approach with optimal weighting is described in Vasdekis et al. (2014).

Joe and Lee (2009) examined optimally weighted pairwise likelihoods to improve

the efficiency of the estimators, while Kuk (2007) proposed replacing the pairwise

likelihood score equations by the optimal linear combinations of the marginal score

functions. More recently, Papageorgiou and Moustaki (2018) proposed a sampling

approach for a factor model based on pairwise likelihoods, where pairs of variables

are sampled rather than using all pairs. In the context of multivariate mixed

models, Hui et al. (2018) proposed constructing a quadratic approximation to

each term in the pairwise likelihood function, which is then augmented with a

penalty to encourage both individual and group coefficient sparsity.

2.2 Composite Likelihoods Concept

Let (Xi1, . . . , Xid), i = 1, . . . , n, be independent random vectors with a com-

mon density f0 in L2(Rd), the space of functions f on Rd such that
∫
|f |p < ∞.

The underlying density f0 is assumed to lie in an identifiable parametric family

{f(·; θ), θ ∈ Θ} for some compact subset Θ of an Euclidean space Rq, where q

is some natural number greater or equal to one. Let θ0 denote the element of

Θ such that f0 = fθ0 . It is convenient to use the following notation. Let A be

the set of all pairs of variables so that the cardinal of A is d(d − 1)/2. (Both

(Xi1, Xi2) and (Xi2, Xi1) count for the same pair.) The pairs in A are ordered in

the lexicographical order. For a in A, denote by a(1) the index of the first variable

and by a(2) the index of the second variable. Denote by fa the marginal density

of (Xia(1), Xia(2)).

The PL function is given by

LPL
n (θ) =

∑
a∈A

n∑
i=1

log fa(Xia(1), Xia(2); θ), θ ∈ Θ. (2.1)

A maximizer of (2.1) over a compact subset of Θ that contains θ0 is called a

maximum pairwise likelihood estimator (MPLE).

The randomized pairwise likelihood (hereafter RPL) approach is similar to Dil-

lon and Lebanon (2010), developed for conditional composite likelihood approach,

and corresponds to binary weights in the weighting case of Joe and Lee (2009).

Although the proposed approach reduces both the number of pairs and the num-

ber of observations to be used in the calculations, both the sampling ratio and
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the sampling scheme are important for the efficiency of the approach. A consis-

tency result was given and also a discussion of the properties of the method; in

particular, given the family of models considered, the underlying model structure

may be reduced, and the sampling approach can thus be improved using suitable

assumptions. Based on the asymptotic normality of the proposed estimator one

can base inference on the estimator, something not possible for other approaches

like, for example, variational approaches.

The use of finite mixture models in clustering is finding a large number of

applications, mainly because it allows st1andard statistical modelling tools to be

used in order to assess and evaluate the clustering. The density or probability

mass function of a finite mixture model is defined as

h(x;θ,π) =
k∑
j=1

πjfj(x;θj) (x ∈ <p) , (2.2)

where θ = (θ>1 , . . . ,θ
>
k )> ∈ Θ1 × . . . × Θk, and πj ∈ (0, 1) with

∑k
j=1 πj = 1.

Appropriate choices of fj(x;θj) can result in flexible models of small complex-

ity. Banfield and Raftery (1993) and the book of McNicholas (2016) provide a

detailed treatment of the framework of finite mixture modelling for clustering and

classification.

For continuous data, a common choice for the component densities fj(x;θj)

(j = 1, . . . , k) is the density of the multivariate Gaussian distribution, also known

as Gausian Mixture Model (GMM). This is mainly because of the convenience it of-

fers in estimation (closed-form maximization steps in the EM algorithm) and inter-

pretation (easy marginalization for visualising fitted components and the mixture

density), see the R package mclust for an implementation (Fraley et al. (2012)).

CL can be useful in this setting for the following reasons:

� For cases with p > n we would like to avoid implementing very large covari-

ance matrices

� For several cases model specification in the high dimension is hard and almost

impossible, e.g. multivariate discrete data

CL can be used to circumvent the issues above. This idea has been used for

finite mixtures in Ranalli and Rocci (2017) at the past.
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2.2.1 Composite Likelihoods Concept for mixtures

Let’s assume n observations of X = (X1, X2, ..., Xp) ∼ fp(X,Θ), from k =

1, ..., K clusters and the complete likelihood to be optimized is written in the

form:

L(X,Θ) =
n∏
i=1

K∑
k=1

pkfp(X,Θ)

where pk the mixing probabilities for the k-th component. The augmented log-

likelihood is defined as follows:

` =
n∑
i=1

K∑
k=1

zik

{
log pk + log fp(X,Θ)

}

. With the use of the bi-variate composite likelihoods we can reduce the p dimen-

sions of the full dataset by using the bivariate p.d.f.s of all combinations
(
p
2

)
of

Xi’s . The complete composite likelihood and log likelihood is now written in the

below forms:

LCL(X,Θ) =
n∏
i=1

K∑
k=1

∏
s<t

pkfst(Xs, Xt,Θstk) (2.3)

`CL =
n∑
i=1

K∑
k=1

∑
s<t

zik

{
log pk + log f(Xisk, Xitk|Θstk)

}
(2.4)

where, s < t, t = 1, ..., p,and Θstk is the parameter space of the joint probabilities

of Xs, Xt for the k-th cluster. The 2.4 can be maximized with the use of EM

algorithm described in the next section.

2.2.2 EM algorithm

With the use of EM algorithm we maximize the complete-data log likelihood of

the model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K and for s < t for all

m =
(
p
2

)
combinations of the p attributes

w
(r+1)
ikst =

p
(r)
k f(Xsi, Xti|Θ(r)

stk))∑K
k=1 p

(r)
k f(Xsi, Xti|Θ(r)

stk))
(2.5)

therefore,
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w
(r+1)
ik =

∑
s<tw

(r+1)
ikst(

p
2

)
M-step : Update p

(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity

Qk =
n∑
i=1

∑
s<t

{
w

(r+1)
ikst f(Xsi, Xti|Θ(r)

stk))
}

to get updated values for all parameters of the parametric space Θk associated

with the k-th component k = 1, 2, ..., K as defined above.

2.2.3 Model Selection

Composite likelihood inference based on low-dimensional marginal or condi-

tional distributions is common when the full likelihood is computationally too

difficult. It is expected that CLM can also be more robust under possible miss

specification of the higher order dimensional distributions and they can allow a

less complex structure on the parameter space that might lead to a smoother

likelihood surface. The central limit theorem for the composite likelihood score

statistic implies that the distribution of θCL can be approximated by the Nor-

mal with mean θ and variance-covariance matrix G−1(θCL) where G(θCL) is the

Godambe information matrix (also known as sandwich information). For model

selection with composite likelihood, the question is if the use of limited or reduced

information leads to different decisions. To understand this, an asymptotic theory

based on the theory of a sequence of contiguous local alternatives is developed to

compare Akaike information criterion (AIC) and Bayesian information criterion

(BIC) in their full likelihood and composite marginal likelihood versions. Con-

sider the composite likelihood versions of Akaike information criterion (AIC) and

Bayesian information criterion (BIC) described in Varin and Vidoni (2005). They

are defined as:

CLAIC = −2LCL( ˆθCL) + 2tr{J(θ̂CL)H−1(θ̂CL)} (2.6)

and

CLBIC = −2LCL( ˆθCL) + (log n) tr{J(θ̂CL)H−1(θ̂CL)} (2.7)
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Here, ˆθCL is the composite likelihood estimator that maximizes the log composite

likelihood. The matrices H(θ̂CL) and J(θ̂CL) are the Hessian matrix and the

covariance matrix of the score function, respectively,

H(θ̂) = − lim
n→∞

∂2LCL
∂θ∂θT

(2.8)

and

J(θ̂) = Cov
{
n−1∂LCL

∂θ

}
(2.9)

The sample estimators for matrices H(θ̂CL) and J(θ̂CL) are:

H(θ̂) =
∂2LCL
∂θ∂θT

(2.10)

and

J(θ̂) = n−1

(
∂LCL
∂θ

)(
∂LCL
∂θ

)T

(2.11)

2.3 Multivariate Poisson mixtures

Mixed multivariate Poisson models, using some mixing distribution for the

parameters as, for instance, multivariate negative binomial models, can solve the

problem of overdispersion. If the mixing distribution is multivariate and allows for

negative correlations, then the resulting model also allows for negative correlations

like, for example, the multivariate Poisson-lognormal model of Aitchinson (1989).

However, in this case the computational burden required for parameter estimation

is quite large Chib (2001).

Karlis and Meligkotsidou (2007) propose finite multivariate Poisson mixtures

as an alternative class of models for multivariate count data. These models are de-

fined by assuming a finite step mixing distribution and they allow for both negative

correlations and overdispersion while being computationally tractable. In general,

step mixing distributions are quite flexible and the resulting finite mixture models

have become a well established approach for modelling non-standard distributions.

Non-parametric maximum likelihood estimation of the mixing distribution can be

performed along the lines of Lindsay (1995) and Bohning (2000). Several inferen-

tial procedures for finite mixtures are also available and can be applied. Moreover,

the proposed models can be considered as the basis for model based clustering for

multivariate count data, offering a great potential for real data applications.
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Let X = (X1, X2, ..., Xm)T be a vector of discrete random variables. The

definition of the multivariate Poisson model is based on the existence of a mapping

u : INq → INm, q ≥ m, such that X = u(Y ) = AY , where Y = (Y1, . . . , Yq)
T , Yr,

r = 1, ..., q, are independent univariate Poisson random variables with parameters

θr respectively, (denoted as Yr ∼ Poisson(θr)), and A is an m× q binary matrix

with no duplicate columns. Then, the vector X is said to follow a multivariate

Poisson distribution with parameter θ = (θ1, . . . , θq)
T . The mean and the variance

covariance matrix of X are given by

E(X | θ) = Aθ and V ar(X | θ) = AΣAT ,

where Σ = diag(θ1, θ2, . . . , θq) is the variance covariance matrix of Y (Σ is diagonal

because of the independence of the Yr’s). Each element of X marginally follows a

univariate Poisson distribution. (For further details for the model, see Karlis and

Meligkotsidou (2005)).

The multivariate Poisson model form variables derived by settingA = [A1,1m],

where A1 is the identity matrix of size m×m and 1m is the m-column vector of

1’s, is frequently used in the literature. The resulting distribution is commonly

referred to as the multivariate Poisson distribution (see, e.g. Karlis (2003)). This

model assumes that all the pairwise covariances are equal. However, this assump-

tion is often not realistic in practice.

Karlis and Meligkotsidou (2007) focus on the case where the matrix A takes

the form

A = [A1,A2], (2.12)

where A1 is again the identity matrix of size m × m and A2 is an m × m(m−1)
2

binary matrix; each column of A2 has exactly 2 ones and (m − 2) zeros and no

duplicate columns exist. The columns of A1 and A2 can be interpreted as main

effects and two-way covariance effects, respectively, in an ANOVA like fashion.

This model, which will be referred to as the multivariate Poisson model with two-

way covariance structure, allows for different pairwise covariances. Therefore, it

can be considered as a counterpart of the multivariate normal distribution and is

suitable for multivariate count data.

In this case the parameter vector θ can be split into a vector θ(1) = (θ1, . . . , θm)T

containing the main effects (hereafter the mean parameters since they appear

only in the means and the variances of the Xj’s but not in the covariances)
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and a vector θ(2) = (θm+1, . . . , θq)
T containing the pairwise covariances (here-

after the covariance parameters). We will denote by λij, i = 1, . . . ,m − 1,

j = i + 1, . . . ,m, the covariance between the pair of variables Xi and Xj. Note

that θ(2) = (λ12, . . . , λ1m, λ23, . . . , λ2m, . . . , λm−1,m).

The main problem, which limits the use of the multivariate Poisson distribu-

tion, is the difficulty in calculating the probability mass function (pmf). Recalling

the definition of an m-dimensional Poisson model through the mapping u, the

joint probability of an m-dimensional vector x = (x1, x2, ..., xm)T is given by the

sum of the joint probabilities of all the q-dimensional vectors y = (y1, y2, ..., yq)
T

such that u(y) = x. If x ∈ INm, let the set u−1(x) ⊂ INq denote the inverse image

of x under u. The pmf of X is then defined as

MPm(x | θ) = Pr(X = x | θ) =
∑

y∈u−1(x)

Pr(Y = y | θ).

Since the elements of Y follow independent univariate Poisson distributions, one

obtain that

MPm(x | θ) =
∑

y∈u−1(x)

q∏
r=1

Po(yr | θr), (2.13)

where Po(y | θ) = e−θθy/y!, y = 0, 1, . . . , θ ≥ 0, i.e. the probability function of the

univariate Poisson distribution with parameter θ. At least one of the elements of

θ is assumed to be non-zero to avoid degenerate cases. In the sequel the m-variate

Poisson model with two-way covariance structure will be denoted by MPm(θ) and

MPm(. | θ), with parameter vector θ and its joint probability function, respec-

tively.

The calculation of these multivariate Poisson probabilities can be computation-

ally expensive. Fortunately, computation of the probabilities can be accomplished

via simple recursive schemes. Kano (1991) provided a general scheme for con-

structing recurrence relations for multivariate Poisson distributions. Even those

recursive relations must be used efficiently in order to lead to feasible calculations.

In the case of model (2.12), each row of A contains exactly m ones, hence each

recurrence relationship for the calculation of Pr(X = x | θ) requires the compu-

tation of m previous probabilities. Obviously, as m increases, the complexity of

the model and hence the computational effort also increase. Efficient use of the

recurrence relationships is described in Tsiamyrtzis (2004).
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2.3.1 Multivariate Mixed Poisson Distributions

Let f(x | θ) Λ
θ
g(θ) be a general mixture of the density f(x | ·) with respect to its

parameter θ ∈ Θ, where g(θ) is the mixing distribution. Clearly, θ can be vector-

valued. The density of the mixed distribution is given by f(x) =
∫

Θ
f(x | θ)dG(θ),

where G(θ) is the cumulative function of the mixing distribution.

Mixtures of multivariate Poisson distributions are rather rare in the literature

mainly due to their complicated form. The existing models can be gathered in

two general groups. The first kind of multivariate Poisson mixtures has the form

MPm(αθ) Λ
α
g(α), where α is a scalar, i.e. all the parameters have a common

element α, which is distributed according to the mixing distribution g(α) and θ

is fixed. This type of mixing always leads to positive correlation between any pair

of variables. The marginal distributions are mixtures of the Poisson distribution

of the form Poisson(αθ) Λ
α
g(α).

The second kind of multivariate Poisson mixtures assumes a multivariate mix-

ing distribution, i.e. the parameters are jointly distributed according to a joint

probability distribution function g(θ). Formally, it has the form MPm(θ) Λ
θ
g(θ).

If X is a random vector which follows a mixed multivariate Poisson distribution

MPm(θ) Λ
θ
g(θ), then the unconditional expectation of X is given by

E(X) = E(θ)

while the unconditional variance covariance matrix is given by

V ar(X) = AD(θ)AT , (2.14)

where

D(θ) =


V ar(θ1) + E(θ1) Cov(θ1, θ2) . . . Cov(θ1, θq)

Cov(θ1, θ2) V ar(θ2) + E(θ2) . . . Cov(θ2, θq)

. . .

Cov(θ1, θq) . . . V ar(θq) + E(θq)

 .

Here are some interesting points derived from this result.

Remark 1: Equation (2.14) implies that if the mixing distribution allows for co-

variances between the θ’s then the resulting unconditional variables are correlated.

Even if one starts with independent Poisson variables, i.e. the covariance terms

are zero, the mixing operation, as expected, leads to correlated variables.
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Remark 2: More importantly, if Cov(θi, θj) < 0, then the unconditional variables

may exhibit negative correlation. Although the multivariate Poisson distribution

cannot incorporate negative correlations, this is not true for mixtures which offer

a wide range of models for real data applications.

Remark 3: The covariances of the unconditional random variables are simple

expressions of the covariances of the mixing parameters and hence of the mixing

distribution’s moments. Having fitted a multivariate Poisson mixture model one

is then able to estimate consistently the reproduced covariance structure of the

data. This is true since the moments of the multivariate Poisson distribution

are simple polynomials with respect to the mixing parameters. Comparing the

estimated covariance matrix to its observed counterpart may serve as a goodness

of fit index.

Note that the first kind of multivariate Poisson mixtures can be viewed as a

special case of the second kind. More details and references for both models can

be found in Karlis (2005).

A particular case of the second kind of multivariate Poisson mixtures arises if

a step mixing distribution is used. This gives rise to the class of finite mixtures of

multivariate Poisson distributions.

2.3.2 The Finite Mixture Model

The p.m.f. of a finite mixture of K multivariate Poisson distributions is given

by

P (x|ψ) =
K∑
k=1

pkMPm(x | θk), x ∈ INm, (2.15)

where MPm(x | θ) is defined in (2.13), ψ = (p1, . . . , pK−1,θ1, . . . ,θK), θk =

(θ1k, . . . , θqk)
T is the specific parameter vector of the k-th component, and the

mixing proportions satisfy 0 < pk ≤ 1, k = 1, . . . , K, and
∑K

k=1 pk = 1. Each

mixture component is defined through a different vector of latent variables Y k,

associated with θk, k = 1, . . . , K. Without loss of generality, it is assumed that

all of the mixture components are defined through the same matrix A of the form

(2.12).

Under this mixture model, the unconditional expectation of X is given by

E(X) =
K∑
k=1

pkAθk,
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while its variance covariance matrix is given by

V ar(X) = A

 K∑
k=1

pk
(
Σk + θkθ

T
k

)
−

(
K∑
k=1

pkθk

)(
K∑
k=1

pkθk

)T
AT ,

where Σk = diag(θ1k, . . . , θqk).

This is a typical finite mixture model and hence several properties and inferen-

tial procedures are applicable, as described in McLachlan and Peel (2000). Such

procedures include ML estimation, selection of the optimal number of components

K∗, non-parametric ML estimation of the mixing distribution etc.

2.3.2.1 Identifiability

Definition (Teicher, 1961): Mixtures of the density f(x | θ) are identifiable if

and only if
∫

Θ
f(x | θ)dG1(θ) =

∫
Θ
f(x | θ)dG2(θ) implies that G1(·) = G2(·).

Following Al-Hussaini (1981), let

Fm,q = {F (x | θ) : x ∈ IRm, θ ∈ IRq
1} (2.16)

be a family of distribution functions and

K = {H : H(x) =

∫
IRq

1

F (x | θ)dG(θ), G ∈ R}

be the class of mixtures H generated by Fm,q, where m, q ∈ IN and m, q ≥ 1, IRq
1

is a Borel subset of the Euclidean q-space IRq, F (x | θ) is measurable in IRm× IRq
1

and R is the class of q-dimensional distributions G whose induced measures µG

assigns measure one to IRq
1. The following theorem holds:

Theorem 1 (Al-Hussaini and Ahmad, 1981): For integers m, q ≥ 1, let Fm,q be

defined as in (2.16) with transforms φ(t) where t = (t1, . . . , tm)T defined for the

domain Sφ of definition of φ such that the mapping M : F → φ is linear and one-

to-one. Suppose that there exists a total ordering (�) of Fm,q such that F1 ≺ F2,

(Fj(x) = F (x | θj)) implies that (i) Sφ1 ⊆ Sφ2 and (ii) there exists some T ∈ S̄φ1
independent of φ2 such that

lim
t→T

(
φ2(t)

φ1(t)

)
= 0.

Then the class of all finite mixtures of Fm,q is identifiable.
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Theorem 2: Finite mixtures of the multivariate Poisson distribution with two-way

covariance structure are identifiable.

Proof: Write the covariance parameters in matrix form, namely define

Λ =


0 λ12 . . . λ1m

λ12 0 . . . λ2m

· · · · · · · · · · · ·
λ1m λ2m . . . 0

 ,

i.e. Λ has zeros at the diagonal and the covariance λij as its ij-th element. For a

general multivariate distribution the probability generating function (pgf) of the

m-variate random vector X is defined as G(t) = E

(
m∏
j=1

t
xj
j

)
. In our multivariate

Poisson case, the pgf is written in the form

G(t) = exp

(
tTθ(1) +

1

2
tTΛt− 1Tq θ

)
, (2.17)

where θ(1) = (θ1, . . . , θm)T and t ∈ IRm (see, Johnson et al. (1997)).

We use the pgf given in (2.17) as the transform needed in Theorem 1 above.

Then,

lim
t→T

G2(t)

G1(t)
= 0,

where t → T implies that every term of the vector t tends point-wise to the

corresponding term of T , if

a)
m−1∑
i=1

m∑
j=i+1

λ1ij >
m−1∑
i=1

m∑
j=i+1

λ2ij, with T = (∞, . . . ,∞),

b)
m−1∑
i=1

m∑
j=i+1

λ1ij =
m−1∑
i=1

m∑
j=i+1

λ2ij and
m∑
i=1

θ1i >
m∑
i=1

θ2i, with T = (∞, . . . ,∞),

c)
m−1∑
i=1

m∑
j=i+1

λ1ij =
m−1∑
i=1

m∑
j=i+1

λ2ij,
m∑
i=1

θ1i =
m∑
i=1

θ2i and for some index j ∈ {1, . . . ,m},

θ1j > θ2j, with T = (T1, . . . , Tm) and elements Tj = ∞ and Tr = c for all

r 6= j, where c is a positive constant, and

d)
m−1∑
i=1

m∑
j=i+1

λ1ij =
m−1∑
i=1

m∑
j=i+1

λ2ij,
m∑
i=1

θ1i =
m∑
i=1

θ2i and for some indices i ∈

{1, . . . ,m − 1}, j ∈ {i + 1, . . . ,m}, λ1ij > λ2ij, with T = (T1, . . . , Tm)

and elements Tj =∞ and Tr = c for all r 6= j, where c is a positive constant.

The subscripts on G and their parameters denote the ordered components.

Hence, Theorem 1 implies the identifiability of finite multivariate Poisson mixtures.
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2.3.2.2 Marginal and Conditional Distributions

Under the finite multivariate Poisson mixture model the marginal distributions

of the elements of X are finite univariate Poisson mixtures. Specifically, if we

denote by aj the j-th row of matrix A, then each Xj follows a finite mixture of

K Poisson distributions with mixing proportions p1, . . . , pK and parameters ajθk,

k = 1, . . . , K. Clearly, the marginal distributions are overdispersed.

The joint marginal distributions are again multivariate Poisson mixture distri-

butions. Let Xm′ = (Xj1 , . . . , Xjm′
)T be a vector consisting of m′ out of the m

components of X, where m′ < m and ji, i = 1, . . . ,m′, are distinct indices with

ji ∈ {1, . . . ,m}. Then, Xm′ follows a finite mixture of K multivariate Poisson

distributions with mixing proportions pk, k = 1, . . . , K; each distribution has pa-

rameter vector A(m′)θk, where A(m′) is the submatrix of A containing the rows

indexed by j1, . . . , jm′ .

The conditional distributions are much more cumbersome and not of standard

form. In the simplest case, the one without covariance terms, the conditional

probability function takes the form

P (xj | x−j) =

K∑
k=1

pk
m∏
r=1

Po(xr | θrk)

K∑
k=1

pk
∏
r 6=j

Po(xr | θrk)
, j = 1, . . . ,m,

where x−j is the vector which contains all the elements of x apart from the j-th.

This can be written as a finite Poisson mixture of the form

P (xj | x−j) =
K∑
k=1

πkPo(xj | θjk) j = 1, . . . ,m,

where

πk =

pk
∏
r 6=j

Po(xr | θrk)

K∑̀
=1

p`
∏
r 6=j

Po(xr | θr`)
, k = 1, . . . , K.

Each πk corresponds to the posterior probability of the vector x−j belonging to

the k− th component. Thus, the conditional distribution is again a finite Poisson

mixture with updated mixing proportions.
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2.3.2.3 Inference

Assume that we have observedm-variate random vectors xi = (xi1, xi2, . . . , xim)T ,

i = 1, . . . , n, which, under the finite multivariate Poisson mixture model, belong

to a superpopulation consisting of K distinct subpopulations in some proportions

p = (p1, . . . , pK), with corresponding multivariate Poisson probability distribu-

tions MPm(x | θkt), k = 1, ..., K, where t is an offset. The probability of each

observation xi can then be represented in the finite mixture form defined in (2.15).

The offset ti, i = 1, . . . , n, may represent time, area, population etc. related to

the i-th observation. In practice we may have different offsets for each variable.

For example, if the vector of counts refers to the number of incidents in different

age groups, naturally the offset for each variable will be the population of each

group. Hence ti can be a vector. For ease of exposition, in what follows we will

treat ti as a scalar, having in mind that the possibility of vector offsets slightly

complicates the approach.

2.3.2.4 ML Estimation via an EM Algorithm

This section focuses on ML estimation of the parameter vector of the finite

multivariate Poisson mixture model, ψ = (p1, . . . , pK−1,θ1, . . . ,θK) . Estimation

of ψ can be obtained as a solution of the likelihood equation. Since this is quite

cumbersome,a standard approach is followed for finite mixtures; using an EM type

algorithm.

For i = 1, . . . , n we define the vector of indicator variablesZi = (Zi1, Zi2, . . . , ZiK)T

with Zik = 1 if xi belongs to the k-th subpopulation and 0 otherwise. Z1, . . . ,Zn

are independent and identically distributed random variables following a multino-

mial distribution with parameters 1 and p.

The derivation of the multivariate Poisson distribution via multivariate re-

duction implies that an EM scheme is also needed for the estimation of the pa-

rameter θk = (θ1k, . . . , θqk)
T of the distribution of each component. For the i-th

observation and for the k-th component we define a vector of latent variables

Y ik = (Yi1k, . . . , Yiqk)
T , i = 1, . . . , n, k = 1, . . . , K. According to the model speci-

fication, for each random variable we have that Yirk ∼ Poisson(θrkti), r = 1, . . . , q.

The complete data consist of the latent variables Y ik and the indicator variables

Zi. Using this data augmentation scheme the complete data loglikelihood is given

by
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`(ψ) =
n∑
i=1

K∑
k=1

zik

[
log pk +

q∑
r=1

log(Po(yirk | θrkti))

]
.

The EM algorithm proceeds as follows. Starting from some initial values for

the model parameters, at the E-step the conditional expectations of the indicator

variables Zi, i = 1, . . . , n, given the xi’s and the current values of the estimates

ψ(b−1) = (p
(b−1)
1 , . . . , p

(b−1)
K−1 ,θ

(b−1)), i.e. wi = E(Zi | xi,ψ(b−1)), are calculated

first. Then, the conditional expectations of the latent variables Y ik, given the

observed data and the current values of the estimates, i.e. the vectors sik =

E(Y ik | xi,ψ(b−1)) are computed for i = 1, . . . , n and k = 1, . . . , K. At the M-Step

the complete likelihood is maximized using wi, sik and the parameter estimates

are updated.

A full description of the EM algorithm is the following. At the b-th iteration

of the algorithm we have

� E-Step: Using the observed data and the current estimates ψ(b−1), calculate

the pseudo values

wik =
p

(b−1)
k MPm(xi | θ(b−1)

k ti)
K∑̀
=1

p
(b−1)
` MPm(xi | θ(b−1)

` ti)

, i = 1, . . . , n, k = 1, . . . , K,

and

sik =

∑
yi∈g−1(xi)

yik
q∏
r=1

Po(yirk | θ(b−1)
rk ti)

MPm(xi | θ(b−1)
k ti)

, i = 1, . . . , n, k = 1, . . . , K,

where sik = (si1k, . . . , siqk)
T , and θ

(b)
k = (θ

(b)
1k , . . . , θ

(b)
qk ).

� M-Step: Update the estimates by

p
(b)
k =

n∑
i=1

wik

n
k = 1, . . . , K.

and in vector form
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θ
(b)
k =

n∑
i=1

wiksik

n∑
i=1

wikti

k = 1, . . . , K.

� If some convergence criterion is satisfied stop iterating, else go back to the

E-step for one more iteration.

The above described EM algorithm has the pros and cons of every EM type

algorithm. Since the size of missing information (latent variables) is large the

algorithm is slow. Moreover, since in every iteration several probabilities are

needed, it is important to use efficient algorithms to calculate the required prob-

abilities through recursive schemes. On the other hand the algorithm is easily

programmable in standard statistical packages. Calculations are tremendously

simplified if the covariance parameters are set equal to zero.

Another feature to mention is that one may choose to work with the frequency

table instead of the original counts, since some values are expected to appear more

than once in the data. In the special case that all the offsets are equal this speeds

up the estimation process substantially. The procedure is particularly suitable

for data mining purposes where the datasets are very large but with some cells

occurring at high frequencies.

2.4 Composite Likelihoods for Gaussian mixtures

Composite Likelihoods can apply in various data types further to the Poisson

mixtures for count data we described in previous section. For the case of Mul-

tivariate Gaussian mixtures the estimators of the parameters associated to the

probability mass function and the marginal bi-variate distributions are easy to

calculate. For that case we explore the mathematical background of the Compos-

ite Likelihood concept and we propose an alternative composite likelihood method.

For simplicity we will consider a 3-dimensional example of Gaussian mixture.
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Example 2.4:

Let us consider X = (X1, X2, X3)T be a vector of random variables which

follows a 3-variate Normal distribution with parameters µ = (µ1, µ2, µ3) and co-

variance matrix Σ, where:

Σ =


σ1 σ12 σ13

σ12 σ2 σ23

σ13 σ23 σ3


The marginal distributions for all pairs of Xi’s are defined as follows:

(X1, X2) ∼ N2(µ12 = (µ1, µ2),Σ12), where

Σ12 =

[
σ1 σ12

σ12 σ2

]

(X1, X3) ∼ N2(µ13 = (µ1, µ3),Σ13), where

Σ13 =

[
σ1 σ13

σ13 σ3

]

(X2, X3) ∼ N2(µ23 = (µ2, µ3),Σ23), where

Σ23 =

[
σ2 σ23

σ23 σ3

]

2.4.1 Full model evaluation

For the case of the illustrative example 2.4 the complete & the augmented

likelihood for the full model evaluation is written in the below form for the above

example and for a dataset of size n:

L(X,µ,Σ) =
n∏
i=1

K∑
k=1

pkN3(Xi|µ,Σ) =
n∏
i=1

K∏
k=1

{
pkN3(Xi|µ,Σ)

}zik

where Xi = (X1i, X2i, X3i) and µ,Σ as described in example 2.4. The log-

likelihood is defined as follows:

` =
n∑
i=1

K∑
k=1

zik

{
log pk + logN3(Xi|µ,Σ)

}
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With the use of EM algorithm we maximize the complete-data log likelihood of

the model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

w
(r+1)
ik =

p
(r)
k N3(Xi|µ(r)

k ,Σ
(r)
k )∑K

k=1 p
(r)
k N3(Xi|µ(r)

k ,Σ
(r)
k )

M-step : Update p
(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K to estimate the

mixing probabilities and then maximize the quantity

Qk = E(`(x; z)) =
n∑
i=1

{
w

(r+1)
ik N3(Xi|µk,Σk)

}
to get updated values for µk,Σk parameters associated with the k-th cluster k =

1, 2, ..., K.

For the k-th component the above optimization is solved as shown below:

∂Qk

∂µk
=

∂

∂µk

n∑
i=1

w
(r+1)
ik

{
− log(

√
(2π)3|Σ|)− 1

2
(Xi − µk)TΣ−1(Xi − µk)

}
= 0

1

2

n∑
i=1

w
(r+1)
ik

{
(Xi − µk)Σ−1

}
= 0

µ̂
(r)
k =

∑n
i=1w

(r+1)
ik Xi

n
= x̄k (2.18)

and

∂Qk

∂Σk

=
∂

∂Σk

n∑
i=1

w
(r+1)
ik

{ 1

|Σk|
− 1

2
(Xi − µk)T (Xi − µk)

1

ΣT
kΣk

}
= 0

Σ̂
(r)
k =

1

n

n∑
i=1

w
(r+1)
ik (Xi − x̄k)T (Xi − x̄k) (2.19)

where 2.18 and 2.19 provide the estimators of the parameters of the 3-variate

Normal distribution of the kth component, k = 1, 2, ..., K.
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2.4.2 Composite Likelihood evaluation

The complete likelihood for the composite likelihood method model evaluation

is written in the below form for the above example and for a dataset of size n:

L(X,µ,Σ) =
n∏
i=1

∏
s<t

K∑
k=1

pkN2(Xs, Xt|µst,Σst)

=
n∏
i=1

{
K∑
k=1

pkN2(X1i, X2i|µ12,Σ12)

}{
K∑
k=1

pkN2(X1i, X3i|µ13,Σ13)

}

×

{
K∑
k=1

pkN2(X2i, X3i|µ23,Σ23)

}

=
n∏
i=1

K∏
k=1

{
pkN2(X1k, X2k|µ12,Σ12)

}zik K∏
k=1

{
pkN2(X1k, X3k|µ13,Σ13)

}zik

×
K∏
k=1

{
pkN2(X2k, X3k|µ23,Σ23)

}zik
(2.20)

The log-likelihood is defined as follows:

` =
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logN2(X1i, X2i|µ12,Σ12)

+
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logN2(X1i, X3i|µ13,Σ13)

+
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logN2(X2i, X3i|µ23,Σ23)

= 3
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logN2(X1i, X2i|µ12,Σ12)

+
n∑
i=1

K∑
k=1

zik logN2(X1i, X3i|µ13,Σ13)

+
n∑
i=1

K∑
k=1

zik logN2(X2i, X3i|µ23,Σ23)

(2.21)

With the use of EM algorithm we maximize the augmented log likelihood of the

model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K
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w
(r+1)
ik12 =

p
(r)
k N2(X1i, X2i|µ(r)

12k,Σ
(r)
12k)∑K

k=1 p
(r)
k N2(X1i, X2i|µ(r)

12k,Σ
(r)
12k)

w
(r+1)
ik13 =

p
(r)
k N2(X1i, X3i|µ(r)

13k,Σ
(r)
13k)∑K

k=1 p
(r)
k N2(X1i, X3i|µ(r)

13k,Σ
(r)
13k)

w
(r+1)
ik23 =

p
(r)
k N2(X2i, X3i|µ(r)

23k,Σ
(r)
23k)∑K

k=1 p
(r)
k N2(X2i, X3i|µ(r)

23k,Σ
(r)
23k)

and so

w
(r+1)
ik =

w
(r+1)
ik12 + w

(r+1)
ik13 + w

(r+1)
ik23

3

M-step : Update p
(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K and with the

use of updated values of the quantities wikst, s < t maximize the quantity:

Qk = E(`(x; z)) =
n∑
i=1

w
(r+1)
ik12 logN2(X1i, X2i|µ12,Σ12)

+
n∑
i=1

w
(r+1)
ik13 logN2(X1i, X3i|µ13,Σ13)

+
n∑
i=1

w
(r+1)
ik23 logN2(X2i, X3i|µ23,Σ23)

(2.22)

to get updated values for µ12k,µ13k,µ23k,Σ12k,Σ13k,Σ23k parameters associated

with the k-th component k = 1, 2, ..., K.

For the k-th component the above maximization is performed as shown below:

∂Qk

∂µ12k

= 0,
∂Qk

∂µ13k

= 0,
∂Qk

∂µ23k

= 0

and
∂Qk

∂Σ12k

= 0,
∂Qk

∂Σ13k

= 0,
∂Qk

∂Σ23k

= 0

The estimators provided by equations 2.18 & 2.19 for all clusters k = 1, 2, ..., K

µ̂
(r)
k =

∑n
i=1w

(r+1)
ik Xi

n

Σ̂
(r)
k =

1

n

n∑
i=1

w
(r+1)
ik (Xi − x̄k)T (Xi − x̄k)
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are solving the above equations and so we can observe that the methodology works

and provides adequate estimations.

2.4.3 An alternative approach

At this section we consider an alternative method of composite likelihood which

in many cases is less computational complicated. For the case of multivariate

Normal mixtures, where the estimators of composite likehood are provided by the

equations 2.18 & 2.19, the alternative proposed method is not adequate, though it

can provide solution to other mixtures which needs an optimization process. The

complete & the augmented likelihood for the composite likelihood method model

is written in the below form for the above example and for a dataset of size n:

L(X,µ,Σ) =
n∏
i=1

K∑
k=1

pk
∏
s<t

N2(Xs, Xt|µst,Σst)

=
n∏
i=1

K∑
k=1

pkN2(X1i, X2i|µ12,Σ12)N2(X1i, X3i|µ13,Σ13)

×N2(X2i, X3i|µ23,Σ23)

=
n∏
i=1

K∏
k=1

{
pkN2(X1k, X2k|µ12,Σ12)N2(X1k, X3k|µ13,Σ13)

×N2(X2k, X3k|µ23,Σ23)

}zik

(2.23)

The log-likelihood is defined as follows:

` =
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logN2(X1i, X2i|µ12,Σ12)

+
n∑
i=1

K∑
k=1

zik logN2(X1i, X3i|µ13,Σ13)

+
n∑
i=1

K∑
k=1

zik logN2(X2i, X3i|µ23,Σ23)

(2.24)

As we can observe from equations 2.21 & 2.24 Difference of this alternative method

compared to the composite likelihood method is that the factor
∑n

i=1

∑K
k=1 zik log pk

appears only one time in the equation of the alternative method. As a result, the

expectation maximization algorithm can be performed via the following steps:
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With the use of EM algorithm we maximize the augmented log likelihood of the

model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

w
(r+1)
ik =

p
(r)
k N2(X1i, X2i|µ(r)

12k,Σ
(r)
12k)N2(X1i, X3i|µ(r)

13k,Σ
(r)
13k)N2(X2i, X3i|µ(r)

23k,Σ
(r)
23k)∑K

k=1 p
(r)
k N2(X1i, X2i|µ(r)

12k,Σ
(r)
12k)N2(X1i, X3i|µ(r)

13k,Σ
(r)
13k)N2(X2i, X3i|µ(r)

23k,Σ
(r)
23k)

M-step : Update p
(r+1)
k =

∑n
i=1w

(r+1)
ik /n for all k = 1, 2, ..., K and with the

use of updated values of the quantities wik, maximize the quantity:

Qk = E(`(x; z)) =
n∑
i=1

w
(r+1)
ik logN2(X1i, X2i|µ12,Σ12)

+
n∑
i=1

w
(r+1)
ik logN2(X1i, X3i|µ13,Σ13)

+
n∑
i=1

w
(r+1)
ik logN2(X2i, X3i|µ23,Σ23)

to get updated values for µ12k,µ13k,µ23k,Σ12k,Σ13k,Σ23k parameters associated

with the k-th component k = 1, 2, ..., K.

The EM algorithm has properties which are violated for the specific approach.

Reason for is that the calculation for the E-step step and the pk
∏

s<tN2(Xs, Xt,mst,Σst),

k = 1, 2, ..., K does not correspond to a distribution function. Once this function

is transformed into a distribution function with a normalized parameter α, so as

α

∫ ∫ ∫
(X1,X2,X3)

pk
∏
s<t

N2(Xsi, Xti|µstk,Σstk)dX1dX2dX3 = 1 (2.25)

the algorithm should provide equivalent results to the full composite likelihood

approach. The calculation of the parameter α of equation 2.25 can lead to high

computational complexity, though the method can be evaluated in which level

provides correct classification.

2.5 Sampling Method

Let X = (X1, X2, ..., Xm)T be a vector of random variables which follows a

Multivariate Poisson distribution with parameters θ = (θ1, θ2, ..., θq). Assume the

transformation: AX = Y where Y = (Y1, Y2, ..., Yq), q = m +
(
m
2

)
≥ m and

Yr ∼ Poisson(θr), r = 1, ..., q.
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A = [A1, A2] is a m× q matrix where A1 is the identity matrix with dimension

m and A2 is an m× (m− 1)/2 matrix where each of its columns contain exactly 2

ones and there are no duplicate columns. The generating function of X ′s is given

by the following expression:

g(s) = exp

{
m∑
t=1

θt(st − 1) +
m−1∑
t=1

m∑
j=t+1

θij(stsj − 1)

}
,

where s = (s1, s2, ...sm) and marginal distributions can be found by setting si =

1 to the appropriate index i. The full augmented likelihood that needs to be

maximized is:

L(X, θ) =
n∏
i=1

K∏
k=1

pkPom(X|Θk) (2.26)

For multidimensional data where m is large, the 2.26 can be very exhaustive in

terms of computational effort. Composite likelihood is a tool that allows less

computational effort. Instead as described in previous sections, we focus on max-

imizing the composite likelihood below:

LCL(X, θ) =
n∏
i=1

∏
s<t

K∑
k=1

pkPo2(Xs, Xt|Θstk) (2.27)

where Θstk, s < t ≤ m are appropriate parameters for each cluster k = 1, 2, ..., K

and for each of the bi-variate Poisson p.m.f. of Xs, Xt and Po2(Xs, Xt|Θstk) is the

probability mass function of the bivariate Poisson distribution for the respective

component defined by s & t.

In order to further reduce the computational effort of maximizing the proposed

CL likelihood, we introduce a technique that uses systematic or non-systematic

sampling to the pairwise bivariate Poisson pmf’s as described below with the fol-

lowing example and in the following sections.

Example 2.5:

Let’s assume a random vector of size n of a 3-variate Poisson distribution so

as X = (X1, X2, X3) ∼ Po3(X|θ1, θ2, θ3, θ12, θ13, θ23). The full complete composite

mixture likelihood to be optimized is written in the below form:

L(X,Θ) =

n∏
i=1

{
K∑

k=1

pkPo2(X1i, X2i|u1k)

}{
K∑

k=1

pkPo2(X1i, X3i|u2k)

}{
K∑

k=1

pkPo2(X2i, X3i|u3k)

}
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where k = 1, 2, ..., K is the number of clusters and

u1k = (θ1k + θ13k, θ2k + θ23k, θ12k), k = 1, ..., K

u2k = (θ1k + θ12k, θ3k + θ23k, θ13k), k = 1, ..., K

u3k = (θ2k + θ12k, θ3k + θ13k, θ23k), k = 1, ..., K

as defined from the Poisson marginal distributions. The augmented likelihood is

now written in the below form:

L(X,Θ) =

n∏
i=1

K∏
k=1

{
pkPo2(Xi1, X2i|u1k)

}zik K∏
k=1

{
pkPo2(X1i, X3i|u2k)

}zik K∏
k=1

{
pkPo2(X2i, X3i|u3k)

}zik

where zik = 1, if the observation from the i-th row comes from cluster k, otherwise

is zik = 0. The log-likelihood to be optimized via EM algorithm is now written in

the form:

` =
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logPo2(X1i, X2i|u1k)

+
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logPo2(X1i, X3i|u2k)

+
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logPo2(X2i, X3i|u3k)

= `CL12 + `CL13 + `CL23

(2.28)

The equation 2.28 can be optimized separately for each of the components in each

row with the use of EM algorithm. For the rth iteration of the algorithm we

perform:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

w
(r+1)
ik12 =

p
(r)
k Po2(X1i, X2i|u(r)

1k )∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k ))

w
(r+1)
ik13 =

p
(r)
k Po2(X1i, X3i|u(r)

2k )∑K
k=1 p

(r)
k Po2(X1i, X3i|u(r)

2k ))

w
(r+1)
ik23 =

p
(r)
k Po2(X2i, X3i|u(r)

3k )∑K
k=1 p

(r)
k Po2(X2i, X3i|u(r)

3k ))



40

and so

w
(r+1)
ik =

w
(r+1)
ik12 + w

(r+1)
ik13 + w

(r+1)
ik23

3

M-step : Update p
(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity:

Qk = Qk12 +Qk13 +Qk23

=
n∑
i=1

w
(r+1)
ik12 logPo2(X1i, X2i|u1k)

+
n∑
i=1

w
(r+1)
ik13 logPo2(X1i, X3i|u2k)

+

n∑
i=1

w
(r+1)
ik23 logPo2(X2i, X3i|u3k)

(2.29)

to get updated values for u1k, u2k, u3k linked to the θ1k, θ2k, θ3k, θ12k, θ13k, θ23k pa-

rameters associated with the k-th cluster k = 1, 2, ..., K. The optimization process

for the case of count data and Poisson mixtures can be also be optimized with the

use of ECM algorithm in a way that the maximization of M-step splits into 4 steps

and in each of the steps the estimated parameters are used as input for the next

CM step. For the case of the 3-variate Poisson distribution the maximization step

of EM provides results directly for the m+
(
m
2

)
= 6 θ parameters in one step. For

m = 4 dimensions M-step should estimate m+
(
m
2

)
= 4+

(
4
2

)
= 10 parameters and

so on. The θj, j = 1, 2, ...,m participate in m− 1 equations out of the
(
m
2

)
, while

all other θij, i, j = 1, ...,m in all
(
m
2

)
equations. So in the general framework of m

dimensions the ECM algorithm can be performed into m + 1 steps, one for each

of the θj, j = 1, 2, ...,m and one for the rest θij, i, j = 1, ...,m. In our example the

ECM is as follows:

CM-step 1 : Update p
(r+1)
k =

∑n
i=1w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity:

Qk1 = Qk12 +Qk13

=

n∑
i=1

w
(r+1)
ik12 logPo2(X1i, X2i|(θ1k + θ

(r)
13k, θ

(r)
2k + θ

(r)
23k, θ

(r)
12k))

+
n∑
i=1

w
(r+1)
ik13 logPo2(X1i, X3i|(θ1k + θ

(r)
12k, θ

(r)
3k + θ

(r)
23k, θ

(r)
13k))
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to get updated values for θ1k, k = 1, 2, .., K.

CM-step 2 : Maximize the quantity:

Qk2 = Qk12 +Qk23

=
n∑
i=1

w
(r+1)
ik12 logPo2(X1i, X2i|(θ(r+1)

1k + θ
(r)
13k, θ2k + θ

(r)
23k, θ

(r)
12k))

+
n∑
i=1

w
(r+1)
ik23 logPo2(X2i, X3i|(θ2k + θ

(r)
12k, θ

(r)
3k + θ

(r)
13k, θ

(r)
23k))

to get updated values for θ2k, k = 1, 2, .., K, with respect to the updated values of

θ
(r+1)
1k .

CM-step 3 : Maximize the quantity:

Qk3 = Qk13 +Qk23

=
n∑
i=1

w
(r+1)
ik13 logPo2(X1i, X3i|(θ(r+1)

1k + θ
(r)
12k, θ3k + θ

(r)
23k, θ

(r)
13k))

+
n∑
i=1

w
(r+1)
ik23 logPo2(X2i, X3i|(θ(r+1)

2k + θ
(r)
12k, θ3k + θ

(r)
13k, θ

(r)
23k))

to get updated values for θ3k, k = 1, 2, .., K, with respect to the updated values of

θ
(r+1)
1k ,θ

(r+1)
2k .

CM-step 4 : Maximize the quantity:

Qk4 = Qk12 +Qk13 +Qk23

=

n∑
i=1

w
(r+1)
ik12 logPo2(X1i, X2i|(θ(r+1)

1k + θ13k, θ
(r+1)
2k + θ23k, θ12k))

+

n∑
i=1

w
(r+1)
ik13 logPo2(X1i, X3i|(θ(r+1)

1k + θ12k, θ
(r+1)
3k + θ23k, θ13k))

+

n∑
i=1

w
(r+1)
ik23 logPo2(X2i, X3i|(θ(r+1)

2k + θ12k, θ
(r+1)
3k + θ13k, θ23k))

to get updated values for θijk, i, j = 1, 2, 3, k = 1, 2, .., K, with respect to the

updated values of θ
(r+1)
1k ,θ

(r+1)
2k ,θ

(r+1)
3k .

The alternative composite likelihood

For the specific example of Poisson mixtures and for the case of the alternative

composite approach, as described for the case of normal mixtures in section 2.4.3,
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the alternative composite likelihood and the corresponding log- likelihood are writ-

ten in the below forms for a dataset of size n:

L(X,Θ) =

n∏
i=1

K∑
k=1

pkPo2(X1i, X2i|u1k)Po2(X1i, X3i|u2k)Po2(X2i, X3i|u3k)

=
n∏
i=1

K∏
k=1

{
pkPo2(X1i, X2i|u1k)Po2(X1i, X3i|u2k)Po2(X2i, X3i|u3k)

}zik
(2.30)

` =
n∑
i=1

K∑
k=1

zik log pk +
n∑
i=1

K∑
k=1

zik logPo2(X1i, X2i|u1k))

+

n∑
i=1

K∑
k=1

zik logPo2(X1i, X3i|u2k))

+
n∑
i=1

K∑
k=1

zik logPo2(X2i, X3i|u3k))

(2.31)

The expectation maximization algorithm can be performed via the following steps:

With the use of EM algorithm we maximize the augmented log likelihood of the

model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

w
(r+1)
ik =

p
(r)
k Po2(X1i, X2i|u(r)

1k )Po2(X1i, X3i|u(r)
2k )Po2(X2i, X3i|u(r)

3k )∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k )Po2(X1i, X3i|u(r)
2k )Po2(X2i, X3i|u(r)

3k )

M-step : Update p
(r+1)
k =

∑n
i=1w

(r+1)
ik /n for all k = 1, 2, ..., K and with the

use of updated values of the quantities wik, maximize the quantity:

Qk = E(`(x; z)) =
n∑
i=1

w
(r+1)
ik logPo2(X1i, X2i|u1k)

+

n∑
i=1

w
(r+1)
ik logPo2(X1i, X3i|u2k)

+
n∑
i=1

w
(r+1)
ik logPo2(X2i, X3i|u3k)

to get updated values for θ1k, θ2k, θ3k, θ12k, θ13k, θ23k parameters associated through

uk1, uk2, uk3 and for the k-th component k = 1, 2, ..., K.
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Sampling methods

Systematic sampling refers to a technique where for a dataset of length n we choose

a specific number of the 3 `CLst components of equation 2.29 in a systematic

way which ensures that all components are found for almost the same number

of observations of the sample X. All n observations of the random vector X

participates in the evaluation of the parameters.

Non-systematic approach refers to choosing the components with one proba-

bility which means that we choose `CLst components of Xi’s and at the same time

rows of Xi’s. Since all θ′s participate in each of the CL components as in equation

2.29 we expect that the methods works well in estimating the Poisson parameters

for the case of multidimensional count data. More details can be found in the

following sections.

2.5.1 Systematic Sampling 1 for Poisson mixtures:

Let’s assume the previous example 2.5 of n observations of X = (X1, X2, X3) ∼
Po3(θ1k, θ2k, θ3k, θ12k, θ13k, θ23k), k = 1, ..., K cluster and the marginal log likeli-

hoods of the bivariate poisson distribution

`CLst =
n∑
i=1

K∑
k=1

zik log pk+
n∑
i=1

K∑
k=1

zik logPo2(Xsi, Xti|ustk), s < t ≤ m, k = 1, .., K

where ustk the corresponding vector of θ’s related to the random vector X =

(Xs, Xt) and the kth cluster, k = 1, 2, ..., K. The log-likelihood that we need

to maximize through composite likelihood concept is described in equation 2.28,

where k = 1, 2, ..., K is the number of clusters and

u1k = (θ1k + θ13k, θ2k + θ23k, θ12k), k = 1, ..., K

u2k = (θ1k + θ12k, θ3k + θ23k, θ13k), k = 1, ..., K

u3k = (θ2k + θ12k, θ3k + θ13k, θ23k), k = 1, ..., K.

The Systematic Sampling approach 1 proposes to maximize the sampled com-

posite likelihood by choosing 2 out of the 3 pairs of marginal log-likelihoods `CLst

described in equation 2.28. The choice of the two pairs correlates to the row of the

observation sample data i, i = 1, ..., n. For the first observation where mode(i,3)=1

we choose the first 2 components,for the second observation the first and the third
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component, while for the third observation the last two components. This is per-

formed for all observations n and the same approach is performed for all clusters

k = 1, 2, ..., K.

In order to estimate the θ parameters let’s define the below indices:

I1i =

1 if mode(i, 3) = 1

0 elsewhere

I2i =

1 if mode(i, 3) = 2

0 elsewhere

I3i =

1 if mode(i, 3) = 0

0 elsewhere

The sampled composite likelihood is now written in the below form:

`Sam1CL = 2

n∑
i=1

K∑
k=1

zik log pk

+
n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X2i|u1k)

}
I1i +

n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X3i|u2k)

}
I1i

+

n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X2i|u1k)

}
I2i +

n∑
i=1

K∑
k=1

{
zik logPo2(X2i, X3i|u3k)

}
I2i

+
n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X3i|u2k)

}
I3i +

n∑
i=1

K∑
k=1

{
zik logPo2(X2i, X3i|u3k)

}
I3i

= 2

n∑
i=1

K∑
k=1

zik log pk +

n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X2i|u1k)

}
(I1i + I2i)

+
n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X3i|u2k)

}
(I1i + I3i)

+
n∑
i=1

K∑
k=1

{
zik logPo2(X2i, X3i|u3k)

}
(I2i + I3i)

(2.32)

2.5.1.1 EM algorithm

Similarly to the full composite likelihood approach, with the use of EM algorithm

we maximize the complete-data log likelihood of the model for the rth iteration as
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follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

if mode(i, 3) = 1

w
(r+1)
ik12 =

p
(r)
k Po2(X1i, X2i|u(r)

1k )∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k )

w
(r+1)
ik13 =

p
(r)
k Po2(X1i, X3i|u(r)

2k )∑K
k=1 p

(r)
k Po2(X1i, X3i|u(r)

2k )

and

w
(r+1)
ik =

w
(r+1)
ik12 + w

(r+1)
ik13

2

if mode(i, 3) = 2

w
(r+1)
ik12 =

p
(r)
k Po2(X1i, X2i|u(r)

1k )∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k )

w
(r+1)
ik23 =

p
(r)
k Po2(X2i, X3i|u(r)

3k )∑K
k=1 p

(r)
k Po2(X2i, X3i|u(r)

3k )

and

w
(r+1)
ik =

w
(r+1)
ik12 + w

(r+1)
ik23

2
if mode(i, 3) = 0

w
(r+1)
ik13 =

p
(r)
k Po2(X1i, X3i|u(r)

2k )∑K
k=1 p

(r)
k Po2(X1i, X3i|u(r)

2k )

w
(r+1)
ik23 =

p
(r)
k Po2(X2i, X3i|u(r)

3k )∑K
k=1 p

(r)
k Po2(X2i, X3i|u(r)

3k )

and

w
(r+1)
ik =

w
(r+1)
ik13 + w

(r+1)
ik23

2

M-step: Update p
(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity:

Qk =

n∑
i=1

{
w

(r+1)
ik12 logPo2(X1i, X2i|u1k)

}
(I1i + I2i)

+
n∑
i=1

{
w

(r+1)
ik13 logPo2(X1i, X3i|u2k)

}
(I1i + I3i)

+
n∑
i=1

{
w

(r+1)
ik23 logPo2(X2i, X3i|u3k)

}
(I2i + I3i)

(2.33)
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to get updated values for u1k, u2k, u3k parameters associated with the k-th com-

ponent k = 1, 2, ..., K as defined above. ECM algorithm can be conducted in a

similar way in four steps as described in the previous section.

2.5.1.2 Model Selection

The chosen number of clusters results from the lowest value of CLBIC (Com-

posite Likelihood Bayesian Information Criterion) which is typical approach for a

family of models running for a range of values of K. The definition of this criterion

is:

CLBIC = −2`(θ̂) + tr(J(θ̂)H−1(θ̂)) log(n)

where θ̂ is the maximum likelihood estimate of vector θ, `(θ̂) is the maximized

likelihood, and matrices H & J as defined in section 2.2.3. The difference between

full model estimation and the sampling method of these section is that we make

use of the estimated wigst mixing weights as defined in section 2.5.1.1.

2.5.2 Systematic Sampling 2 for Poisson mixtures

In the same context of systematic sampling we can further reduce the number

of composite components which will be taken into consideration in the estimation

of parameters. For the specific example of m = 3 dimension of Poisson mixtures we

can assume a sampling method depending on the i−th row of the observed dataset

and consider only one of the composite components instead of two proposed in the

previous section. The adequacy of the number of chosen components depends on

the sample size and the number of clusters for evaluation. The larger the number

the observations the more accurate the resulted estimators will be.

Let’s assume the previous example 2.5 of n observations of X = (X1, X2, X3) ∼
Po3(θ1k, θ2k, θ3k, θ12k, θ13k, θ23k), k = 1, ..., K cluster and the marginal log likeli-

hoods of the bivariate poisson distribution

`CLst =
n∑
i=1

K∑
k=1

zik log pk+
n∑
i=1

K∑
k=1

zik logPo2(Xsi, Xti|ustk), s < t ≤ m, k = 1, .., K

where ustk the corresponding vector of θ’s related to the random vector X =

(Xs, Xt) and the kth cluster, k = 1, 2, ..., K. The log-likelihood that we need
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to maximize through composite likelihood concept is described in equation 2.28,

where k = 1, 2, ..., K is the number of clusters and

u1k = (θ1k + θ13k, θ2k + θ23k, θ12k), k = 1, ..., K

u2k = (θ1k + θ12k, θ3k + θ23k, θ13k), k = 1, ..., K

u3k = (θ2k + θ12k, θ3k + θ13k, θ23k), k = 1, ..., K.

.

The Systematic Sampling approach 2 proposes to maximize the sampled com-

posite likelihood by choosing 1 out of the 3 pairs of marginal log-likelihoods `CLst

described in equation 2.28. The choice of the component correlates to the row

of the observation sample data i, i = 1, ..., n. For the first observation where

mode(i,3)=1 we choose the first component,for the second observation the second,

while for the third observation the last component. This is performed for all ob-

servations n and the same approach is performed for all clusters K.

In order to estimate the θ parameters we will make use of the below indices as

in the case of Systematic sampling method 1:

I1i =

1 if mode(i, 3) = 1

0 elsewhere

I2i =

1 if mode(i, 3) = 2

0 elsewhere

I3i =

1 if mode(i, 3) = 0

0 elsewhere

The sampled composite likelihood is now written in the below form:
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`Sam2CL =
n∑
i=1

K∑
k=1

zik log pk

+

n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X2i|u1k)

}
I1i

+
n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X3i|u2k)

}
I2i

+

n∑
i=1

K∑
k=1

{
zik logPo2(X2i, X3i|u3k)

}
I3i

(2.34)

2.5.2.1 EM algorithm

Similarly to the full composite likelihood approach, with the use of EM algorithm

we maximize the complete-data log likelihood of the model for the rth iteration as

follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

if mode(i, 3) = 1

w
(r+1)
ik12 =

p
(r)
k Po2(X1i, X2i|u(r)

1k )∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k )

if mode(i, 3) = 2

w
(r+1)
ik13 =

p
(r)
k Po2(X1i, X3i|u(r)

2k )∑K
k=1 p

(r)
k Po2(X1i, X3i|u(r)

2k )

if mode(i, 3) = 0

w
(r+1)
ik23 =

p
(r)
k Po2(X2i, X3i|u(r)

3k )∑K
k=1 p

(r)
k Po2(X2i, X3i|u(r)

3k )

and

w
(r+1)
ik = w

(r+1)
ik12 + w

(r+1)
ik13 + w

(r+1)
ik23

M-step: Update p
(r+1)
k =

∑n
i=1 w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity:
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Qk =
n∑
i=1

{
w

(r+1)
ik12 logPo2(X1i, X2i|u1k)

}
I1i

+
n∑
i=1

{
w

(r+1)
ik13 logPo2(X1i, X3i|u2k)

}
I2i

+
n∑
i=1

{
w

(r+1)
ik23 logPo2(X2i, X3i|u3k)

}
I3i

(2.35)

to get updated values for u1k, u2k, u3k parameters associated with the k-th com-

ponent k = 1, 2, ..., K as defined above. ECM algorithm can be conducted in a

similar way in four steps as described in the previous section.

2.5.2.2 Model Selection

The chosen number of clusters results from the lowest value of CLBIC (Com-

posite Likelihood Bayesian Information Criterion). The definition of this criterion

is:

CLBIC = −2`(θ̂) + tr(J(θ̂)H−1(θ̂)) log(n)

where θ̂ is the maximum likelihood estimate of vector θ, `(θ̂) is the maximized

likelihood, and matrices H & J as defined in section 2.2.3. The difference between

full model estimation and the sampling method of these section is that we make

use of the estimated wigst mixing weights as defined in section 2.5.2.1.

2.5.3 Non Systematic Sampling 3 for Poisson mixtures

Let’s assume the example 2.5 of n observations of a random vector X =

(X1, X2, X3) ∼ Po3(θ1k, θ2k, θ3k, θ12k, θ13k, θ23k), k = 1, ..., K cluster and the marginal

log likelihoods of the bivariate poisson distribution

`CLst =
n∑
i=1

K∑
k=1

zik log pk+
n∑
i=1

K∑
k=1

zik logPo2(Xsi, Xti|ustk), s < t ≤ m, k = 1, .., K

where ustk the corresponding vector of θ’s related to the random vector X =

(Xs, Xt) and the kth cluster, k = 1, 2, ..., K. The log-likelihood that we need

to maximize through composite likelihood concept is described in equation 2.28,
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where k = 1, 2, ..., K is the number of clusters and

u1k = (θ1k + θ13k, θ2k + θ23k, θ12k), k = 1, ..., K

u2k = (θ1k + θ12k, θ3k + θ23k, θ13k), k = 1, ..., K

u3k = (θ2k + θ12k, θ3k + θ13k, θ23k), k = 1, ..., K.

.

The Non-Systematic Sampling approach 3 performs maximization of the sam-

pled composite likelihood by choosing a number of the 3 pairs of marginal log-

likelihoods lCLst with probability 2/3, this is Iij ∼ Bernoulli(p = 2/3). Therefore

we produce a matrix I with dimension n× 3 for the specific example of 3-variate

Poisson distribution. In general and for the case of m-variate distribution the

resulted I matrix is of size n ×
(
m
2

)
. The choice of the pairs of components is

not related to the row of the observation sample data i, i = 1, ..., n, j = 1, 2, 3

compared to the Sampling Methods 1 & 2. Due to implementation restrictions

we choose the components to be the same for every cluster k, k = 1, ..., K and

for every step of the EM algorithm, otherwise we will not achieve convergence. In

order to estimate the θ parameters we will make use of the below indices

Ii1 =

1 p = 2/3

0 elsewhere

Ii2 =

1 p = 2/3

0 elsewhere

Ii3 =

1 p = 2/3

0 elsewhere

The sampled composite likelihood is now written in the below form:
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`Sam3CL =
n∑
i=1

3∑
j=1

Iij

K∑
k=1

zik log pk

+

n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X2i|u1k)

}
Ii1

+
n∑
i=1

K∑
k=1

{
zik logPo2(X1i, X3i|u2k)

}
Ii2

+

n∑
i=1

K∑
k=1

{
zik logPo2(X2i, X3i|u3k)

}
Ii3

(2.36)

The rows of the observed dataset with all entries Iij = 0, j = 1, 2, 3 for all

components will be eliminated from the calculations. This way we do not only

sample down the components but also the size of the data set.

2.5.3.1 EM algorithm

With the use of EM algorithm we maximize the complete-data log likelihood of

the model for the rth iteration as follows:

E-step: Calculate for i = 1, ..., n and k = 1, 2, ..., K

w
(r+1)
ik12 =

p
(r)
k Po2(X1i, X2i|u(r)

1k ))Ii1∑K
k=1 p

(r)
k Po2(X1i, X2i|u(r)

1k ))Ii1

w
(r+1)
ik13 =

p
(r)
k Po2(X1i, X3i|u(r)

2k )Ii2∑K
k=1 p

(r)
k Po2(X1i, X3i|u(r)

2k )Ii2

w
(r+1)
ik23 =

p
(r)
k Po2(X2i, X3i|u(r)

3k )Ii3∑K
k=1 p

(r)
k Po2(X2i, X3i|u(r)

3k )Ii3

therefore,

w
(r+1)
ik =


w

(r+1)
ik12 +w

(r+1)
ik13 +w

(r+1)
ik23∑3

j=1 Iij
, if

∑3
j=1 Iij > 0

0, if
∑3

j=1 Iij = 0

M-step : Update p
(r+1)
k =

∑n
i=1w

(r+1)
ik /n for all k = 1, 2, ..., K and then

maximize the quantity
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Qk =
n∑
i=1

K∑
k=1

{
w

(r+1)
ik12 logPo2(X1i, X2i|u1k)

}
Ii1

+

n∑
i=1

K∑
k=1

{
w

(r+1)
ik13 logPo2(X1i, X3i|u2k)

}
Ii2

+
n∑
i=1

K∑
k=1

{
w

(r+1)
ik23 logPo2(X2i, X3i|u3k)

}
Ii3

(2.37)

to get updated values for u1k, u2k, u3k parameters associated with the k-th compo-

nent k = 1, 2, ..., K as defined above.

2.5.3.2 Model Selection

As for previous sampling methods the chosen number of clusters results from

the lowest value of CLBIC:

CLBIC = −2`(θ̂) + tr(J(θ̂)H−1(θ̂)) log(n)

where θ̂ is the maximum likelihood estimate of vector θ, `(θ̂) is the maximized

likelihood, and matrices H & J as defined in section 2.2.3. The difference between

full model estimation and the sampling method of these section is that we make

use of the estimated wigst mixing weights as defined in section 2.5.3.1.

2.6 Simulation Study 1

2.6.1 Data Sample Description

For the particular simulation study we do not assume any mixture model,

though the purpose is to compare the above proposed sampling methodologies in

terms of efficiency to estimate the parameters and time consumed for each method.

Let’s assume a 3-variate count dataset of length n = 200 from a 3-variate Poisson

distribution. In more detail let:

X = (X1, X2, X3) ∼ Po3(θ1 = 4, θ2 = 2, θ3 = 3, θ12 = 3, θ13 = 2, θ23 = 1)
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The marginal distributions of the bi-variate components are written as shown

below for s3 = 1:

(X1, X2) ∼ Po2(u1 = (θ1 + θ13, θ2 + θ23, θ12)) = Po2(6, 3, 3)

(X1, X3) ∼ Po2(u2 = (θ1 + θ12, θ3 + θ23, θ13)) = Po2(7, 4, 2)

(X2, X3) ∼ Po2(u3 = (θ2 + θ12, θ3 + θ13, θ23)) = Po2(5, 5, 1)

2.6.2 Models Evaluated

We simulate 1,000 datasets from the Po3(Θ) distribution and for each of the

produced dataset we estimate the parameters for the different methodologies as

described below:

� Model 1: Maximize the complete data likelihood of the 3-variate Poisson

distribution.

� Model 2: Maximize the full composite likelihood without assuming any

sampling approach.

� Model 3: Maximize the sampled composite likelihood by choosing 2 out of

the 3 pairs of marginal log-likelihoods lCL1j described in Sampling method

1.

� Model 4: Maximize the sampled composite likelihood by choosing 1 out of

the 3 pairs of marginal log-likelihoods lCL2j described in Sampling method

2.

� Model 5: Maximize the sampled composite likelihood by choosing pairs of

marginal log-likelihoods via a Bernoulli distribution with probability p = 2/3

as described in Sampling method 3.

2.6.3 Results

We performed B=1000 iterations and for each model we constructed 1 − α=

95% confidence intervals for the estimators of the parameters of each model as-

sumed. The variance of the confidence interval for each parameter was chosen to

be the sample (of size B) variance s2. Then we calculated the number of correct
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evaluations, that is how many times the true initial values are included to the

intervals.

The table 2.1 demonstrates the results for each model in percentages. Because

of the power of the level of statistical significance α we would expect that these

percentages are approximately 95%.

Model θ1 θ2 θ3 θ12 θ13 θ23

Model 1 95.3 % 92.4 % 94.0 % 94.8 % 95.1 % 94.0 %
Model 2 94.5 % 94.5 % 93.5 % 93.7 % 94.6 % 92.2 %
Model 3 95.5 % 93.6 % 93.6 % 95.0 % 94.7 % 94.4 %
Model 4 94.7 % 93.2 % 94.2 % 94.6 % 94.3 % 94.0 %
Model 5 94.5 % 95.3 % 93.7 % 94.8 % 95.2 % 95.0 %

Table 2.1: Confidence intervals for the parameters of each model

Table 2.2 demonstrates the average estimated value for each parameter of the

models over the 1,000 simulated data sets. We can observe that from the results

there is no significance loss of the estimators not for the confidence intervals or

for the estimated average values. The sampling methods provide good results,

especially for Systematic Sampling method 1, where we choose 2 out of 3 compo-

nents for every row of the dataset and estimated values are close to the Composite

Likelihood method. This observation can be also shown from the boxplots in 2.1.

Some deviations are observed in the Sampling method 3, where we do not only

eliminate components of the CL algorithm with probability p = 2/3 but also rows

of the simulated datasets. This is of course depending on the sample size of the

data.

Model θ1 θ2 θ3 θ12 θ13 θ23

Model 1 3.982422 1.893038 2.845538 2.978983 2.031776 1.122784
Model 2 3.937008 1.878251 2.806886 2.995269 2.069563 1.126527
Model 3 3.934525 1.848262 2.791901 3.004987 2.064968 1.146133
Model 4 3.907458 1.850170 2.810340 3.022138 2.065700 1.127180
Model 5 3.891156 1.861447 2.761783 3.003620 2.110253 1.138074

Table 2.2: Average estimated values for the parameters of each model
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Figure 2.1: Boxplots for estimated parameters for all models

The main purpose of the specific simulation study and the introduction of Sam-

pling methods is to evaluate the computational effort needed for each approach.

The table 2.3 demonstrates the average time needed by each model to maximize the

corresponding likelihood. Maximizing the 3-variate Poisson log-likelihood is time

consuming so the equivalent composite likelihood is proposed since it is proven to

be efficient in many application in bibliography. The time reduction is significant
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for the full Composite Likelihood method, therefore it is prefered, especially for

cases where the multivariate Poisson distributions has a large dimension which

makes computations and optimization much more inefficient.

Model Avg time

Model 1 568.57 sec
Model 2 79.38 sec
Model 3 42.61 sec
Model 4 62.99 sec
Model 5 22.27 sec

Table 2.3: Average time needed for each model

Furthermore, among the proposed CL models via Sampling ,we observe that

we can further reduce computational effort without significant loss of effciency.

In case of Non-Systematic sampling method 3 the average time needed for op-

timization can be reduced 75% compared to the Composite Likelihood method.

We can observe that Systematic Sampling 2 needs more time than the Systematic

Sampling 1 even though we choose less components from the bivariate Composite

Likelihoods. This is mainly due to slower convergence of the maximization process,

to obtain adequate estimations. This observation may be trivial to the specific

example of a 3-variate Poisson without mixture but it can be important when it

comes to high dimensions and mixtures of Multivariate Poisson, where even the

definition of the Multivariate Poisson likelihood is not easy to obtain.

2.7 Simulation Study 2

In this section, we present the results of a simulation study that we conducted

to illustrate the effectiveness of our clustering methodology via the composite

likelihood method and the Sampling methods described in previous sections. Via

simulation,we compare the results of various composite likelihood models with the

ones produced of the full mixture model.

2.7.1 Data Sample Description

Let’s assume a 3-variate count dataset of length n = 200 and n = 400 resulting

from K = 2 components from 3-variate Poisson distributions.
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In more detail let’s assume for k = 1 the 1st cluster:

X1 = (X11, X21, X31) ∼ Po3(θ1 = 3, θ2 = 3, θ3 = 4, θ12 = 0.5, θ13 = 1, θ23 = 1)

and for k = 2

X2 = (X12, X22, X32) ∼ Po3(θ1 = 2, θ2 = 4, θ3 = 2, θ12 = 1, θ13 = 0, θ23 = 0.5).

The marginal distributions of the bi-variate components are written as shown

below:

For k = 1:

(X11, X21) ∼ Po2(u11 = (θ1 + θ13, θ2 + θ23, θ12)) = Po2(4, 4, 0.5)

(X11, X31) ∼ Po2(u21 = (θ1 + θ12, θ3 + θ23, θ13)) = Po2(3.5, 5, 1)

(X21, X31) ∼ Po2(u31 = (θ2 + θ12, θ3 + θ13, θ23)) = Po2(3.5, 5, 1)

and for k = 2:

(X12, X22) ∼ Po2(u12 = (θ1 + θ13, θ2 + θ23, θ12)) = Po2(2, 4.5, 1)

(X12, X32) ∼ Po2(u22 = (θ1 + θ12, θ3 + θ23, θ13)) = Po2(3, 2.5, 0)

(X22, X32) ∼ Po2(u32 = (θ2 + θ12, θ3 + θ13, θ23)) = Po2(5, 2, 0.5)

We choose the data from cluster 1 with a probability p=0.7 , while from cluster

2 with a probability p=0.3.

2.7.2 Models Evaluated

We perform 200 iterations of the simulated dataset and for each of the produced

datasets we perform Expectation-Maximization algorithm to obtain the estimated

parameters of each component for distributions and for different methodologies as

described below. Convergence criteria for each EM step has been set to 10−10.

Furthermore to the previous simulation study we assess the effectiveness of the

alternative composite likelihood method, that is Model 6.

� Model 1: Maximize the complete full likelihood of the 3-variate Poisson

distributions.
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� Model 2: Maximize the full composite likelihood.

� Model 3: Maximize the sampled composite likelihood by choosing 2 out of

the 3 pairs of marginal log-likelihoods lCLj
described in relevant section with

Sampling method 1.

� Model 4: Maximize the sampled composite likelihood by choosing 1 out of

the 3 pairs of marginal log-likelihoods lCLj
described in relevant section with

Sampling method 2.

� Model 5: Maximize the sampled composite likelihood by choosing pairs of

marginal log-likelihoods via a bernoulli distribution with probability p = 2/3

with Sampling method 3.

� Model 6: Maximize the alternative composite likelihood of equation de-

scribed in the relevant section.

2.7.3 Model Selection

The optimal number of clusters will be selected with the use of CLBIC defined

in section 3.4.2.2 through equation 2.7. For the specific example of the 3-variate

Poisson mixture the log likelihood of the mixture composite model that results to

the estimators Θ̂CL of the parameter space is written in the below form:
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` = 3
n∑
i=1

K∑
k=1

wik log pk +
n∑
i=1

K∑
k=1

wik12 logPo2(Xi1, Xi2|uk1)

+
n∑
i=1

K∑
k=1

wik13 logPo2(Xi1, Xi3|uk2) +
n∑
i=1

K∑
k=1

wik23 logPo2(Xi2, Xi3|uk3)

= 3
n∑
i=1

K∑
k=1

wik log pk +
n∑
i=1

K∑
k=1

q∑
r=1

wik12 logPo(yikr1|uk1)

+
n∑
i=1

K∑
k=1

q∑
r=1

wik13 logPo(yikr2|uk2) +
n∑
i=1

K∑
k=1

q∑
r=1

wik23 logPo(yikr3|uk3)

∝
n∑
i=1

K∑
k=1

wik12

{
logPo(yik11|θ1k + θ13k) + logPo(yik21|θ2k + θ23k) + logPo(yik31|θ12k)

}
+

n∑
i=1

K∑
k=1

wik13

{
logPo(yik12|θ1k + θ12k) + logPo(yik22|θ3k + θ23k) + logPo(yik32|θ13k)

}
+

n∑
i=1

K∑
k=1

wik23

{
logPo(yik13|θ2k + θ12k) + logPo(yik23|θ3k + θ13k) + logPo(yik33|θ23k)

}
=

n∑
i=1

K∑
k=1

wik12

{
yik11 log(θ1k + θ13k) + yik21 log(θ2k + θ23k) + yik31 log(θ12k)

− (θ1k + θ2k + θ12k + θ13k + θ23k)− log yik11!− log yik21!− log yik31!
}

+
n∑
i=1

K∑
k=1

wik13

{
yik12 log(θ1k + θ12k) + yik22 log(θ3k + θ23k) + yik32 log(θ13k)

− (θ1k + θ3k + θ12k + θ13k + θ23k)− log yik12!− log yik22!− log yik32!
}

+
n∑
i=1

K∑
k=1

wik23

{
yik13 log(θ2k + θ12k) + yik23 log(θ3k + θ13k) + yik33 log(θ23k)

− (θ2k + θ3k + θ12k + θ13k + θ23k)− log yik13!− log yik23!− log yik33!
}

(2.38)

where: uk1 = (θ1 + θ13, θ2 + θ23, θ12), uk2 = (θ1 + θ12, θ3 + θ23, θ13), uk1 = (θ2 +

θ12, θ3 + θ13, θ23), wik = wik12+wik13+wik23

3
as defined in 2.5. In order to estimate the

matrices H(θ) & J(θ) participating in the calculation of CLBIC of equation 2.7

we have:
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J(θ) = n−1



∂`
∂θ1
∂`
∂θ2
∂`
∂θ3
∂`
∂θ12
∂`
∂θ13
∂`
∂θ23


∗
[
∂`
∂θ1

∂`
∂θ2

∂`
∂θ3

∂`
∂θ12

∂`
∂θ13

∂`
∂θ23

]

and

H(θ) =



∂2`
∂θ21

∂2`
∂θ1∂θ2

∂2`
∂θ1∂θ3

∂2`
∂θ1∂θ12

∂2`
∂θ1∂θ13

∂2`
∂θ1∂θ23

∂2`
∂θ2∂θ1

∂2`
∂θ22

∂2`
∂θ2∂θ3

∂2`
∂θ2∂θ12

∂2`
∂θ2∂θ13

∂2`
∂θ2∂θ23

∂2`
∂θ3∂θ1

∂2`
∂θ3∂θ2

∂2`
∂θ23

∂2`
∂θ3∂θ12

∂2`
∂θ3∂θ13

∂2`
∂θ3∂θ23

∂2`
∂θ12∂θ1

∂2`
∂θ12∂θ2

∂2`
∂θ12∂θ3

∂2`
∂θ212

∂2`
∂θ12∂θ13

∂2`
∂θ12∂θ23

∂2`
∂θ13∂θ1

∂2`
∂θ13∂θ2

∂2`
∂θ13∂θ3

∂2`
∂θ13∂θ12

∂2`
∂θ213

∂2`
∂θ13∂θ23

∂2`
∂θ23∂θ1

∂2`
∂θ23∂θ2

∂2`
∂θ23∂θ3

∂2`
∂θ23∂θ12

∂2`
∂θ23∂θ13

∂2`
∂θ223



Indicatively, we can derive the entries of the matrices based on equation 2.38 as

follows:

∂`

∂θ1

=
n∑
i=1

K∑
k=1

wik12

{ yik11

θ1 + θ13

− 1
}

+
n∑
i=1

K∑
k=1

wik13

{ yik12

θ1 + θ12

− 1
}

∂2`

∂θ2
1

= −
n∑
i=1

K∑
k=1

{
wik12

yik11

(θ1 + θ13)2
+ wik13

yik12

(θ1 + θ12)2

}

∂2`

∂θ1∂θ12

= −
n∑
i=1

K∑
k=1

{
wik12

yik12

(θ1 + θ12)2

}
,

∂2`

∂θ1∂θ13

= −
n∑
i=1

K∑
k=1

{
wik13

yik11

(θ1 + θ13)2

}

∂2`

∂θ1∂θ2

= 0,
∂2`

∂θ1∂θ3

= 0,
∂2`

∂θ1∂θ23

= 0
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Furthermore, for the case of sampling methods the above calculations are executed

similarly, with the only difference that the wikst, s < t components are defined as

in e.g. 2.5.1.1 for Composite Sampling Method 1.

2.7.4 Results

For each iteration of the simulation we calculate the log-likelihood of each

model which of-course is an alteration of the full model’s likelihood as described

in above sections. Obtained likelihoods are not comparable for the models, though

it can be used for optimal number of clusters to be chosen.

Tables 2.4 & 2.5 provides the average estimated values for each model for both

mixing probabilities and the true values for which the dataset was constructed.

Model θ1 θ2 θ3 θ12 θ13 θ23

Model 1 2.596719 2.574240 3.519074 0.671335 1.171275 1.235230

Model 2 2.394133 2.815689 3.545578 0.649722 1.244587 1.080638

Model 3 2.170110 2.677306 3.293150 0.664401 1.388533 1.174902

Model 4 1.668290 2.768176 2.597681 0.690340 1.562008 1.199620

Model 5 2.125479 2.555044 3.183359 0.815358 1.268933 1.212717

Model 6 3.344200 3.080976 4.244008 0.523754 0.619867 1.121181

True Value 3 3 4 0.5 1 1

Table 2.4: Average estimated values for the parameters of each model, π =
0.3

Model θ1 θ2 θ3 θ12 θ13 θ23

Model 1 1.882426 3.931840 1.846500 0.993276 0.189492 0.557063

Model 2 1.946750 4.044773 1.752004 0.902916 0.253646 0.539348

Model 3 1.955200 4.030634 1.738097 0.883362 0.303975 0.569315

Model 4 1.868037 4.010956 1.580126 0.772625 0.638154 0.632163

Model 5 1.914751 4.016434 1.773638 0.866491 0.389403 0.589284

Model 6 1.898210 3.846895 1.616314 0.977497 0.068181 0.621895

True Value 2 4 2 1 0 0.5

Table 2.5: Average estimated values for the parameters of each model,π =
0.7
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The table 2.6 demonstrates the selected number of clusters through CLBIC for

the 200 simulated datasets of both n=200 and n=400. We observe that for the

Alternative Composite method (Model 6) the number of clusters selected for all

iterations is K=3, while for all other methods the minimum value of the criterion

is achieved for K=2 which is the true value the dataset was constructed. For a

data sample of the same structure we observe that the chosen number of clusters

is further improved. With the use of the estimated parameters for each model’s

n = 200 n = 400
Model K=2 K=3 K=2 K=3

Model 1 200 0 200 0
Model 2 199 1 199 1
Model 3 195 5 197 3
Model 4 191 9 195 5
Model 5 188 12 193 7
Model 6 199 1 197 3

Table 2.6: Number of clusters selected over 200 iterations.

components we re-calculate the log-likelihood of the 3-variate Poisson model. This

will allow the models to be comparable in terms of Bayesian Information Criterion.

The selection of the proper number of clusters is now performed with the estimated

BIC values. Table 2.7 demonstrates the updated number of selected clusters. We

observe that even though the alternative composite models fails to choose the

correct number of clusters if we use the estimated likelihood from the model, it

succeeds if we use the re-calculated formula. Similar results are derived for all the

sampling methods. A higher deviation is achieved for the Systematic Sampling

method 3 (Model 4), where we estimate the parameters by choosing one out of

the three Composite Likelihood components.

n = 200 n = 400
Model K=2 K=3 K=2 K=3

Model 1 200 0 199 1
Model 2 198 2 197 3
Model 3 197 3 196 4
Model 4 188 12 179 21
Model 5 194 6 185 15
Model 6 200 0 200 0

Table 2.7: Results from fitting the different models-Estimated number of
clusters selected over 200 iterations.
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Figure 2.2: Estimated Parameters’ Boxplots for k=1 cluster
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Figure 2.3: Estimated Parameters’ Boxplots for k=2 cluster
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Figure 2.4: Estimated Mixing Probabilities’ Boxplots

Figures 2.2, 2.3 & 2.4 provides the results for the fitted values for the parame-

ters of the Poisson distributions of each cluster as well as for the mixing probabil-

ities πj, j = 1, 2 for all the models examined. In general models methods provide

adequate results compared to the 3-variate Poisson distribution estimations. Less

effective seems to be the Systematic Sampling 2 especially for the component with

mixing probability π̂ = 0.3.

The measurement of effieciency of the classification will be performed with the

use of Rand Index (RI) and Adjusted Rand Index (ARI).

X
�Y Y1 Y2 · · · Ys sums

X1 n11 n12 · · · n1s a1

X2 n21 n22 · · · n2s a2

...
...

...
. . .

...
...

Xr nr1 nr2 · · · nrs ar

sums b1 b2 · · · bs n

Table 2.8: Results from fitting the different models-Estimated number of
clusters selected over 200 iterations.
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For a contingency table as shown in the table 2.8 the Rand Index is calculated

as:

RI =

∑∑
i=j nij

n
,

while

ARI =

∑
ij

(
nij

2

)
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
1
2

[∑
i

(
ai
2

)
+
∑

j

(
bj
2

)]
−
[∑

i

(
ai
2

)∑
j

(
bj
2

)]/ (
n
2

)
where nij, ai, bj, n are values from the contingency table.

For our simulation study table 2.10 summarizes for every model the results of

the classification compared to the true values of clusters of the simulated data.

Assigned Component

Model Real Component K=1 K=2 Total

Model 1

(3-Variate

Poisson)

K=1 8,356 3,609 11,965

K=2 2,643 25,392 28,035

Total 10,999 29,001 40,000

Model 2

(Full

Composite)

K=1 7,709 4,256 11,965

K=2 2,276 25,759 28, 035

Total 9,985 30,015 40,000

Model 3

(Sampling

1)

K=1 7,388 4,577 11,965

K=2 2,405 25,630 28,035

Total 9,793 30,207 40,000

Model 4

(Sampling

2)

K=1 6,992 4,973 11,965

K=2 5,141 22,894 28,035

Total 12,133 27,867 40,000

Model 5

(Sampling

3)

K=1 7,118 4,370 11,488

K=2 3,605 23,362 26,967

Total 10,723 27,732 38,455

Model 6

(Alter.

Composite

K=1 9,465 2,500 11,965

K=2 3,961 24,074 28,035

Total 13,426 26,574 40,000

Table 2.9: Results from fitting the different models-Contingency table for
every row of the sample datasets of n=200

For every simulated dataset there are 40,000 combinations examined resulting

from the combinations of 200 rows × 200 iterations. For the case of Model 5 - Non
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Systematic Sampling, since we eliminate rows of the simulated datasets, the num-

ber of combinations examined for similarity is 38,455. The sampling algorithm is

random therefore different rows are excluded in each iteration.

Similarly to the structure of the sample data of n=200, we perform a simulation

study for a data set of n=400 rows. For this case there are 80,000 combinations

examined resulting from the combinations of 400 rows × 200 iterations. For the

case of Model 5 - Non Systematic Sampling the number of combinations examined

is 77,028.

Assigned Component

Model Real Component K=1 K=2 Total

Model 1

(3-Variate

Poisson)

K=1 16,640 7,330 23,970

K=2 3,792 52,238 56,030

Total 20,432 59,568 80,000

Model 2

(Full

Composite)

K=1 15,076 8,894 23,970

K=2 2,841 53,189 56,030

Total 17,917 62,083 80,000

Model 3

(Sampling

1)

K=1 14,801 9,169 23,970

K=2 3,611 52,419 56,030

Total 18,412 61,588 80,000

Model 4

(Sampling

2)

K=1 13,332 10,638 23,970

K=2 6,602 49,428 56,030

Total 19,934 60,066 80,000

Model 5

(Sampling

3)

K=1 14,540 8,524 23,064

K=2 5,574 48,390 53,964

Total 20,114 56,914 77,028

Model 6

(Alter.

Composite

K=1 18,923 5,047 23,970

K=2 7,262 48,768 56,030

Total 26,185 53,815 80,000

Table 2.10: Results from fitting the different models-Contingency table for
every row of the sample datasets of n=400
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Figure 2.5: Residuals of the parameters of π = 0.7 for n=200 & n=400

n = 200 n = 400

Model RI ARI RI ARI

Model 1 0.8437 0.4546 0.8609 0.5020

Model 2 0.8367 0.4304 0.8533 0.4735

Model 3 0.8255 0.3984 0.8403 0.4367

Model 4 0.7472 0.2250 0.7845 0.2952

Model 5 0.7926 0.3210 0.8169 0.3790

Model 6 0.8385 0.4486 0.8461 0.4690

Table 2.11: RI & ARI Results of classification

Results of the RI and ARI values for each model are shown in table 2.11. From

the resulted values of RI and ARI we can observe that the Composite Likelihood

approach and the Alternative Composite Likelihood approach provides similar re-

sults. There is no significant loss for the case of Systematic Sampling approach 1

though the Systematic Sampling approach 2 provides more precarious results.

Figure 2.6 provides the resulted bi-variate contours for the density of the fitted

values of each model assumed. Methods provide similar results with an exception

of model 4 (choose one out of the three composite likelihood components), where

we observe a smoother density failing to capture the mixture schema.
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Figure 2.6: Contours for the mixture bi-variate density of the simulated
data for all models
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2.8 Concluding Remarks

Sampling methods have been introduced to further reduce computational effort

of the Composite Likelihood approach. For our Simulation studies purposes the

dimension reduction was not extended nevertheless the time consumed reduction

was important compared even compared to the full composite likelihood method.

For cases of high dimensional count data, where the full Multivariate Poisson

density function is not easy to be defined the composite likelihood concept offers

flexibility in calculations. We can further reduce the complexity of calculations

via the sampling methods.

Among the Sampling methods the efficiency is much dependable on the sample

data size, the highest the row size the more components or rows we can eliminate

in calculations. For the specific simulation studies with n = 200 rows the Sampling

method where we choose only one of the composite likelihood components provides

poorer results, though for highest data points the method can further provide

adequate results.

Alternative composite likelihood method which is less complex than the full

traditional composite likelihood method can be also provide good classification

without significant loss of miss-classified data points. This method can provide

adequate values for the parameters and which can also be used as starting values

of the full multivariate model estimation or the composite likelihood estimation.

This method can be further investigated in order to provide adequate results.



Chapter 3

Copulas

3.1 Introduction

Model based clustering (MBC) has found a large number of applications in recent

years as opposed to distance based and partition clustering. Most of the existing

MBC literature is based on multivariate Gaussian mixtures and their variants,

like multivariate t- mixtures. Both approaches assume that each cluster has an

elliptical shape which is very restrictive for real data. To correct on this, one

may consider skewed multivariate distributions like mixtures of multivariate skew-

normal or skew-t distributions. For restricted domain, e.g. for data only on the

positive axes, the literature is less developed, a common approach transforms the

data to the real line to apply the models mentioned above, or apply a conditional

independence assumption, i..e within each cluster the variables are independent,

for such an example with multivariate beta mixtures see Sahu et al. (2016).

For non-continuous data models are less developed. For multivariate count

data there are attempts with multinomial distribution (see, Jorgensen (2004) )

and multivariate Poisson models (see, Karlis and Meligkotsidou (2007)). Also con-

ditional independent models are described in Wedel and Kamakura (2000) while

a model with block conditional assumption in Tom Brijs (2004). For mixed mode

data there are works based on latent models and/or conditionally independence

assumption (see, e.g. , McParland and Gormley (2016), Browne (2012) and Mar-

bac et al. (2017) ) The main reason is that it is not easy to create multivariate

models that are simple enough for clustering purposes. For a recent review on

clustering mixed mode data see Foss (2016), Foss et al. (2018) and Hennig and

Liao (2013).

71
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Recently Kosmidis and Karlis (2016) proposed the use of copulas to define the

joint distributions that characterize the distribution of each component. This was

a very generic approach that actually contains all the models as special cases, since

one can define the marginal properties for each component and the dependence

structure in a flexible way.

Copulas are well known as flexible models which allow creating multivariate

distributions with given marginals. Hence, they can create a wealth of multivariate

models including models with different marginal distributions. The purpose of the

present thesis is mainly to expand the derived so far results of using copula based

models for MBC applications.

We think that there are several advantages of using copulas in model based

applications. These are:

• Copulas can be used to create a variety of multivariate models.

• using copulas we may define multivariate distributions with different marginal

distributions and hence expand a lot our tank of potential models. For exam-

ple, we can create a bivariate model with one normal and one t distribution.

Such flexibility is not offered with recent models that restrict the models to

have the same marginal distribution properties.

• The dependence structure as captured by the copula can have several differ-

ent shapes, beyond the elliptical as we usually have with multivariate normal

and their extensions. Therefore we are able to define appropriate multivari-

ate models to allow for possible flexible shapes but stay in the context of

model based clustering.

• It is easy to create multivariate models for several kinds of data (e.g. discrete)

or even mixed model data. Hence one can create realistic models for data

that have for example continuous, discrete and ordinal variables at the same

time. Recent models typically assume conditional independence in order to

derive joint distribution, i.e. they assume that conditional on the cluster we

have independence.

• In some circumstances while the marginal distributions are the same, the

dependence structure changes. Such a behavior occurs for example in fi-

nance (regarding the behavior of a portfolio when news come), sports (scor-

ing behavior depends on the current score), marketing (purchase frequency

patterns depends on household decomposition) etc. Changes in dependence
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structure can be captured by different copulas and hence mixtures of copulas

can be used to cluster data with respect to their dependence behavior.

As mentioned in Kosmidis and Karlis (2016) the approach has some important

advantages, the more important being that the appropriate choice of copulas pro-

vides the ability to obtain a range of exotic shapes for the clusters, which is not

easy with standard models and the explicit choice of marginal distributions for

the clusters allows the modelling of multivariate data of various modes (discrete,

continuous, both discrete and continuous) in a natural way.

In the present thesis we exploit the use of copulas based MBC for mixed mode

data. A similar attempt has been made in Marbac et al. (2017) using a Bayesian

approach to estimate parameters. Our approach uses full likelihood methods using

also dimension reduction approaches to reduce the number of parameters we have

to estimate. We propose two approaches for dimension reduction, the first one is

based on factor analyzers McLachlan et al. (2003) where the correlation matrix

of the Gaussian copula is expressed via the standard factor decomposition. The

second approach makes use of a parsimonious representation of the correlation

matrix due to Tsay and Pourahmadi (2017) that allows to put together variables

and assume a conditional independence between group of variables leading to

reduced parameter space. Note that while the chapter focuses on the mixed mode

data clustering problems, the dimension reduction methods apply to any model

based through copula case.

3.2 Background

3.2.1 Finite Mixture models

The use of finite mixture models in clustering is finding a large number of

applications, mainly because it allows standard statistical modelling tools to be

used in order to assess and evaluate the clustering. The density or probability

mass function of a finite mixture model is defined as

h(x;θ,π) =
k∑
j=1

πjfj(x;θj) (x ∈ <p) , (3.1)

where θ = (θT1 , . . . ,θ
T
k )T ∈ Θ1 × . . . × Θk, and πj ∈ (0, 1) with

∑k
j=1 πj = 1.

Appropriate choices of fj(x;θj) can result in flexible models of small complexity.
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Banfield and Raftery (1993) and the book of McLachlan and Peel (2000) provide

a detailed treatment of the framework of finite mixture modelling for clustering.

For continuous data, a common choice for the component densities fj(x;θj)

(j = 1, . . . , k) is the density of the multivariate Gaussian distribution. This is

mainly because of the convenience it offers in estimation (closed-form maximiza-

tion steps in the EM algorithm) and interpretation (easy marginalization for visu-

alising fitted components and the mixture density). The resultant clusters, though,

are limited to be elliptical in shape, and as is demonstrated in Hennig (2010), one

may need more than one multivariate Gaussian components in order to fit a single

non-elliptical cluster.

Such restrictions of multivariate Gaussian finite mixtures have resulted in an

expanding literature where other special component distributions are considered.

Prominent examples of alternative component densities include multivariate t dis-

tributions (see, Andrews and McNicholas, 2011), multivariate skew-Gaussian and

skew-t distribution (see, for example, Frühwirth-Schnatter and Pyne, 2010; Lee

and McLachlan, 2014), multivatiate skew student-t-Gaussian distributions (Lin

et al., 2014), multivariate Gaussian inverse Gaussian distributions (Karlis and

Santourian, 2009). Other attempts can be found in Forbes and Wraith (2014)

for finite mixtures of multivariate scaled Gaussian distributions and (Morris and

McNicholas, 2013) for mixtures of shifted asymmetric Laplace distributions. The

results of such studies indicate that the introduction of heavy tails and/or skewness

allows the construction of more parsimonious models than multivariate Gaussian

mixtures, that can also bridge the gap between the number of clusters present in

the data and the number of components used in the mixture.

For non-continuous data, one needs to specify fj(x;θj) (j = 1, . . . , k) in (3.1)

through probability mass functions. While there is a wealth of choices for uni-

variate non-continuous distributions, the use of multivariate non-continuous dis-

tributions for the definition of mixture models is limited due to the difficulty in

constructing easy to work with models that allow practical flexibility on the depen-

dence structure. Some successful, but limited in application examples, are finite

mixtures of multivariate Poisson distributions (Karlis and Meligkotsidou, 2007),

finite mixtures of multinomial distributions (Jorgensen, 2004) and models based

on conditionally independent Poisson distributions (see, for example Alfo et al.,

2011). Mixture models with latent structures have been considered in Browne and

McNicholas (2012), but these can have limitations because of assumptions like

conditional independence.
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3.2.2 Mixture models through copulas

A copula C(u1, . . . , up) is a distribution function with uniform marginals. The

importance of copulas in statistical modelling stems from Sklar’s theorem (see,

Nelsen, 2006, §2.3), which shows that every multivariate distribution can be rep-

resented via the choice of an appropriate copula and, more importantly, it provides

a general mechanism to construct new multivariate models in a straightforward

manner.

The copula-based mixture model is defined as in (3.1) but now θj is parti-

tioned as (γ>j ,ψ
>
j )> and fj(x;θj) is the density (or probability mass function)

corresponding to a distribution function

Fj(x;ψj,γj) = Cj(G1(x1,γj1), . . . , Gp(xp;γjp);ψj) (j = 1, . . . , k) , (3.2)

where G1, . . . , Gp are univariate marginal cumulative distribution functions. As

far as the model parameters are concerned, γj contains the parameter vectors γjt

for all marginals for jth component (t = 1, . . . , p) and ψj contains the parameters

of the copula used for the j-th component.

3.2.3 Construction of mixture models for any type of data

The definition of the component density Fj through the choice of a copula Cj

and the choice of marginal distributionsG1, . . . , Gp leads to a flexible framework for

model-based clustering that according to Sklar’s theorem necessarily encompasses

all known mixture models and allows the convenient construction of new mixture

models that can handle any of continuous, discrete data.

Temporarily omitting the component index and suppressing the dependence

on the parameters, assume that the density of the copula C(u1, . . . , up) exists and

is c(u1, . . . , up) = ∂pC(u1, . . . , up)/∂u1 . . . ∂up. Then the component density for

continuous marginals is

f(x) = c(G1(x1), . . . , Gp(xp))

p∏
t=1

gt(xt) .

For discrete data, the probability mass function is given in Panagiotelis et al.

(2012, expression (1.2)), and results from finite differences of the distribution func-

tion as

P (x) =
∑
d

sgn(d)C(G1(d1), . . . , Gp(dp)) , (3.3)
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with d = (d1, . . . , dp) vertices, where each dt is equal to either xt or xt − 1 (t =

1, . . . , p), and

sgn(d) =

{
1 , if dt = xt − 1 for an even number of t’s

−1 , if dt = xt − 1 for an odd number of t’s
.

The model defined from (3.1) and (3.2) being a finite mixture allows for infer-

ential procedures based on the standard theory of finite mixtures, like use of the

EM algorithm for maximum likelihood estimation and the use of model selection

criteria.

3.2.4 Full Expectation Maximization

Following Kosmidis and Karlis (2016), suppose that a sample of n p-vectors

x1, . . . ,xn is available, which are assumed to be realizations of independent ran-

dom variables X1, . . . ,Xn each with distribution with density or probability mass

function as defined by (3.1) and (3.2). The maximization of the likelihood func-

tion based on that sample can be performed using the EM algorithm. At the `th

iteration of the algorithm (` = 2, 3, . . .),

� E-step: Calculate

w
(`+1)
ij =

π
(`)
j fj(xi;θ

(`)
j )∑k

j=1 π
(`)
j fj(xi;θj

(`))
(i = 1, . . . , n; j = 1, . . . , k) .

� M-step 1: Set π
(`+1)
j =

∑n
i=1w

(`+1)
ij /n (j = 1, . . . , k).

� M-step 2: Maximize

k∑
j=1

n∑
i=1

w
(`+1)
ij log {fj(xi;θj)} ,

with respect to θ to obtain an updated value θ(`+1) for the copula and

marginal parameters.

The algorithm iterates between the E-step and the M-step until some con-

vergence criterion is satisfied. In all the examples in the current work the ter-

minating criterion that is used is that the relative increase {l(θ(`+1), π(`+1)) −
l(θ(`), π(`))}/l(θ(`), π(`)) of the log-likelihood l(θ, π) in two successive iterations is

less than ε = 10−8.
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For calculating the starting values for π and θ the following procedure is pro-

posed which takes into account both the copula and the marginal specification

of each component in the mixture model. The procedure is an application of

the Inference Functions from Margins (IFM) method (Joe, 1997, Chapter 10) for

each component, and relies on an initial partitioning of the observation indices

A = {1, . . . , n} into exclusive subsets S1, . . . , Sk, with ∪kj=1Sj = A, of cardinality

N1, . . . , Nk, respectively. More specifically, the procedure for obtaining starting

values consists of the following steps:

S1 Set the starting values for πj using π∗j = Nj/n (j = 1, . . . , k).

S2 Use maximum likelihood to fit the marginal gt on data xit for i ∈ Sj in order

to obtain starting values γ∗jt for γjt (t = 1, . . . , p).

S3 Use maximum likelihood to fit the copula Cj(u1, . . . , up;ψj) on observations

uit = Gt(xit,γ
∗
jt) (i ∈ Sj; t = 1, . . . , p), in order to get starting values ψ∗j for

the copula parameters ψj.

The initial classification vector that is required for this procedure can be ob-

tained either using a hard-partitioning distance-based algorithm (like k-means for

continuous data or k-medoids more generally) or by randomly sampling k obser-

vations and using the minimum distance of each those from all other observations

in order to form S1, . . . , Sk.

For the analysis of continuous data, M-step 2 takes the form

� M-step 2: Maximize the log-likelihood

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γj1), . . . , Gp(xip;γjp);ψj) +

p∑
t=1

log gt(xit;γjt)

]
,

(3.4)

with respect to ψ1, . . . ,ψk,γ11, . . . ,γ1p,γk1, . . . ,γkp, where γjt is the vector of

parameters of the tth marginal distribution for the jth component of the mixture

(t = 1, . . . , p; j = 1, . . . , k).

As is apparent from (3.4) the only necessary ingredients for implementing the

EM algorithm for mixtures of copulas for continuous data are the specification of

the copula densities c1, . . . , ck and the specification of the marginal density and

distribution functions g1, . . . , gp and G1, . . . , Gp , respectively.

The particular form of the complete data log-likelihood for continuous data al-

lows here the use of the Expectation/Conditional Maximization (ECM) algorithm



78

of Meng and Rubin (1993), where the full maximization of the complete data log-

likelihood is relaxed to maximization in blocks; first with respect to the marginal

parameters given the current value of the copula parameter and then with respect

to the copula parameter given the updated values for the marginal parameters. In

mathematical notation, M-step 2 is replaced by the steps

� CM-step 1: Maximize

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γj1), . . . , Gp(xip;γjp);ψ

(`)
j ) +

p∑
t=1

log gt(xit;γjt)

]
,

(3.5)

with respect to γ11, . . ., γ1p, γk1, . . ., γkp to obtain updated values γ
(`+1)
11 ,

. . ., γ
(`+1)
1p , γ

(`+1)
k1 , . . ., γ

(`+1)
kp for the marginal parameters.

� CM-step 2: Maximize

k∑
j=1

n∑
i=1

w
(`+1)
ij

[
log cj(G1(xi1;γ

(`+1)
j1 ), . . . , Gp(xip;γ

(`+1)
jp );ψj)

]
, (3.6)

with respect to ψ1, . . . ,ψk to obtain updated values ψ
(`+1)
1 , . . . ,ψ

(`+1)
k for

the copula parameters.

According to the definitions and results in Meng and Rubin (1993), the ECM

algorithm that results by replacing M-step 2 with the pair CM-step 1 and CM-

step 2 shares all the convergence properties of the full EM algorithm, and, in

this particular case, is more computationally efficient and stable, because CM-

step 2 consists of a simple maximization with respect to the copula parameters.

Furthermore, CM-step 1 and CM-step 2 can each be broken down into parallel

optimizations across components, as in the case of the full EM, which significantly

reduces computation time in multicore systems.

For the pair of CM-step 1 and CM-step 2 their difference lies in CM-step 1

where instead of maximizing the weighted sum of marginal log-likelihoods, a valid

ECM algorithm requires the maximization of a penalized version of it where the

penalty depends on the log copula density at the current value for the copula

parameter.
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3.3 Gaussian copula for mixed mode data

Multivariate Gaussian copula is defined as (see, e.g. Joe (2014))

CN(u1, u2, ..., up;R) = Φp(Ψ(u1), ...,Ψ(up);R), (3.7)

where Φp is the distribution function of a standard p-variate Gaussian distribution

with correlation matrix R, Ψ(·) = Φ−1(·) is the inverse distribution function of

a standard univariate Gaussian distribution and ui, i = 1, ..., p are the marginal

probability distributions Fi(xi;γi) for variables X1, ..., Xp. The correlation matrix

R has the form:

R =


1 ρ12 · · · ρ1p

ρ12 1 · · · ρ2p

...
...

. . .
...

ρ1p ρ2p · · · 1

 , (3.8)

where ρkt is the correlation between the k-th and t-th distribution of variables

k, t = 1, ..., p, k 6= t. In order to represent the joint probability mass function of

a set of variables through a Gaussian copula one has to estimate the parameters

θj associated with the marginals and the correlation matrix R associated with

the copula. For the continuous case the density of a set of variables results from

derivative of the copula function for every marginal and for discrete case at the

same way from finite differences (see e.g. Panagiotelis et al. (2012)). For mixed

mode data where some of the marginals are continuous and some discrete the

procedure of modelling the joint probability is described below.

Example 3.1

Let’s assume X is a continuous random variable and Y a discrete one, with marginal

c.d.f.s u1 = F (x) and u2 = G(y) then:

f(x, y) =
∂F (x, y)

∂x
− ∂F (x, y − 1)

∂x

=

(
∂CN (u1, G(y))

∂u1
− ∂CN (u1, G(y − 1))

∂u1

)
f(x)

=

(
P
(
T2 ≤ Ψ(u2)|T1 = Ψ(u1)

)
− P (T2 ≤ Ψ(G(y − 1))|T1 = Ψ(u1)

)
× P (T1 = Φ−1(u1))

1

φ(Φ−1(u1))
f(x)
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where T2|T1 ∼ N
(
ρ12Φ−1(u1), 1− ρ2

12

)
and T1 ∼ N(0, ρ12)

Let X1, X2, ..., Xk be a set of continuous random variables with distribution func-

tions Fi(Xi; γi), i = 1, ..., k and Xk+1, Xk+2, ..., Xk+l, a set of discrete random

variables with p.d.f. Fj(Xj; γj), j = k + 1, ..., k + l, respectively.

The joint p.d.f. of X1, ..., Xk+l results from 2l−1 finite differences of the k-th partial

derivative of the distribution function F (x1, x2, ..., xp). That is:

f(x1, x2, ..., xk+l) =
∑
d

sgn(d)
∂(k)F (x1, x2, ..., xk, d1, d2, ..., dl)

∂x1∂x2...∂xk
(3.9)

where di is either xi or xi − 1, i = 1, ..., l. For an even number of xi − 1 , sgn(d)

is positive, and negative otherwise (see, e.g. Czado et al. (2012)).

The k-th partial derivative, for the chosen Gaussian copula, can be written to a

simpler form by Leibnitz rule and 3.9 as:

CN (u1, u2, ..., uk, uk+1, ..., uk+l;R) = Φp(Ψ(u1), ...,Ψ(uk+l);R)

∝

∫
Ψ(u1)

−∞

...

∫
Ψ(uk)

−∞

∫
Ψ(uk+1)

−∞

...

∫
Ψ(uk+l)

−∞

exp


−1

2


t1

t2
...

tk+l


′

R−1


t1

t2
...

tk+l




dt1...dtk+l

∂(k)F (x1, ..., xk, d1, d2, ..., dl)

∂x1...∂xk
=
∂(k)CN (u1, u2, ..., uk, uk+1, ..., uk+`;R)

∂u1∂u2 · · · ∂uk
×

k∏
i=1

f(xi)

= P
(
tk+1 ≤ Ψ(uk+1), · · · , tk+` ≤ Ψ(uk+`)|t1 = Ψ(u1), · · · , tk = Ψ(uk)

)
× P

(
t1 = Ψ(u1), · · · , tk = Ψ(uk))×

k∏
i=1

1

φ(Φ−1(ui)
) × k∏

i=1

f(xi)
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∂(1)CN (u1, u2, ..., uk, uk+1, ..., uk+l;R)

∂u1
∝ 1

φ(Φ−1(u1))
×∫

Ψ(u2)

−∞

...

∫
Ψ(uk)

−∞

...

∫
Ψ(uk+l)

−∞

exp


−1

2


Ψ(u1)

t2
...

tk+l


′

R−1


Ψ(u1)

t2
...

tk+l




dt2...dtk+l

By induction:

∂(k)CN (u1, u2, ..., uk, uk+1, ..., uk+l;R)

∂u1∂u2 · · · ∂uk
=

k∏
i=1

1

φ(Φ−1(ui))
×

(2π)−
k+l
2 R−

1
2

∫
Ψ(uk+1)

−∞

...

∫
Ψ(uk+l)

−∞

exp


−1

2



Ψ(u1)
...

Ψ(uk)

tk+1

...

tk+l



′

R−1



Ψ(u1)
...

Ψ(uk)

tk+1

...

tk+l




dtk+1...dtk+l

= P (tk+1 ≤ Ψ(uk+1), tk+2 ≤ Ψ(uk+2), · · · , tk+l ≤ Ψ(uk+l), t1 = Ψ(u1), · · · , tk = Ψ(uk))

×
k∏
i=1

1

φ(Φ−1(ui))

= P (tk+1 ≤ Ψ(uk+1), · · · , tk+l ≤ Ψ(uk+l)|t1 = Ψ(u1), · · · , tk = Ψ(uk))

× P (t1 = Ψ(u1), · · · , tk = Ψ(uk))

k∏
i=1

1

φ(Φ−1(ui))

(3.10)

Lemma 1. Let x =

[
x1

x2

]
be a p-dimensional vector with x ∼ MNp(µ,Σ), µ =[

µ1

µ2

]
and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
. The conditional distribution of x2|x1 = a is also
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multivariate Gaussian distribution with parameters µ′ and Σ′ where

µ′ = µ2 + Σ21Σ
−1
11 (a− µ1)

and

Σ′ = Σ22 −Σ21Σ
−1
11Σ12

The correlation matrix R defined by 3.8 can be split into blocks where R11 is the

correlation matrix between the first k continuous variables, R22 the correlation

matrix for the ` discrete ones and R12 includes the correlations between both of

them.

R =



1 · · · ρ1k ρ1(k+1) · · · ρ1(k+l)

...
. . .

...
...

. . .
...

ρ1k · · · 1 ρ1(k+1) · · · ρk(k+l)

ρ1(k+1) · · · ρk(k+1) 1 · · · ρ(k+1)(k+l)

...
. . .

...
...

. . .
...

ρ1(k+l) · · · 1 ρ(k+1)(k+l) · · · 1


=

[
R11 R12

R21 R22

]

Based on the above Lemma 1 the conditional probability in equation 3.10 P
(
tk+1 ≤

Ψ(uk+1), · · · , tk+l ≤ Ψ(uk+l)|t1 = Ψ(u1), · · · , tk = Ψ(uk)
)

can be estimated as the

probability mass function of a multivariate normal distribution of size l, with mean

µ = R21R
−1
11

[
Ψ(u1), · · · ,Ψ(uk)

]′
and covariance matrix Σ = R22 − R21R

−1
11 R12.

Moreover, the density P
(
t1 = Ψ(u1), · · · , tk = Ψ(uk)

)
can also be estimated as

the probability density function of a multivariate normal distribution of size k,

with zero mean and covariance matrix R11.

In conclusion the log likelihood for a multi-dimensional vector x = (x1, ..., xk+`)

with respect of the parameters of the marginals γ and the copula’s ψ, is now
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written as:

` = log
{
f(x;γ,Ψ)

}
=

k∑
t=1

log(ft(x; γt))−
k∑
t=1

log
{
φ(Φ−1(ut))

}
+

log
{
φk

(
Ψ(u1), · · · ,Ψ(uk) ; 0, R11

)}
+

log

{∑
d

sgn(d) Φ`

(
Ψ(uk+1), · · · ,Ψ(uk+l) ; µ,Σ

)}
(3.11)

where d as defined above, ut = F (xt; γt) t = 1, ..., k the marginal distribution

functions, and u1, ..., ut quantities that follow the standard uniform distribution

and Ψ(ui) quantities that follow MVNk+`(0,R).

3.3.1 CEM for mixtures of copulas

When managing with mixtures of copulas for mixed mode data, the unconditional

density function for an observation x = (x1, ..., xk, xk+1, ..., xk+`) with k continuous

variables and ` discrete, is now written in the following form:

f(x|Θ) =
G∑
g=1

πg

(
c
(
F1g(x1), ..., F(k+l)g(xk+l)

) k∏
t=1

ft(xt)
)

and Θ includes all parameters for the marginals, the Gaussian copula and πg. In

order to evaluate the appropriate model, someone has to estimate not only the

parametric space Θ but also the number of components G. We can produce Θ

with the use of Expectation Conditional Maximization algorithm customized for

mixed mode data. We are interest in maximizing the complete-data log likelihood

of the model

` = log
{ n∏
i=1

G∑
g=1

πgfg(xi;γj)
}

= log
{ n∏
i=1

G∏
g=1

fg(xi;γj)
wig

}
=

n∑
i=1

G∑
g=1

{
wig log fg(xi;γg)

}}
=

n∑
i=1

G∑
g=1

{
wig`ig

} (3.12)

where `ig as described in equation 3.11 for i, i = 1, ..., n sample of (k + `)-

dimension vector x and g, g = 1, ..., G component. At the rth-iteration of ECM
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algorithm we have:

E-step: Calculate for i = 1, ..., n and g = 1, ..., G

w
(r+1)
ig =

π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )∑G

g=1 π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )

CM-step 1: Update π
(r+1)
g =

∑n
i=1 w

(r+1)
ig /n for all g = 1, ..., G and then

maximize

n∑
i=1

{
wig`ig1

}
with respect to the γgt to get updated values for γ

(r+1)
gt parameters associated with

the t-th marginal distribution, t = 1, ..., k+`, and the g-th component g = 1, ..., G.

As in equation 3.11 for the case of mixed mode data with k continuous and `

discrete marginals `ig1 is written in the following form

`
(r+1)
ig1 =

k∑
t=1

log(ftg(xit;γgt))−
k∑
t=1

log
{
φ(Φ−1(F (xit ; γgt))

}
+

log
{
φk

(
Φ−1(F (xi1 ; γg1)), · · · ,Φ−1(F (xik ; γgk)); 0, R

(r)
11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γg(k+1))), · · · ,Φ−1(F (xi(k+`) ; γg(k+`))) ;µg,Σ

(r)
g

)}
(3.13)

where

µg = R
(r)
21g(R

(r)
11g)

−1
[
Φ−1(F (x1 ; γg1)), · · · ,Φ−1(F (xk ; γgk))

]′
and Σ

(r)
g = R

(r)
22g −

R
(r)
21g(R

(r)
11g)

−1R
(r)
12g.

CM-step 2: Maximize for all g = 1, ..., G

n∑
i=1

{
wig`ig2

}
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with respect to the matrix R11g, given the updated values γ(r+1), where

`
(r+1)
ig2 = log

{
φk

(
Φ−1(F (xi1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xik ; γ

(r+1)
gk )); 0, R11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,Φ

−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µg,Σg

)}
,

(3.14)

where

µg = R
(r)
21gR

−1
11g

[
Φ−1(F (x1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xk ; γ

(r+1)
gk ))

]′
and Σg = R

(r)
22g −

R
(r)
21gR

−1
11gR

(r)
12g.

CM-step 3: Maximize for all g = 1, ..., G

n∑
i=1

{
wig`ig3

}
with respect to the matrix R12g and it’s transpose R21g, given the updated values

γ(r+1) and R
(r+1)
11g from previous steps, where

`
(r+1)
ig3 = log

{
φk

(
Φ−1(F (xi1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xik ; γ

(r+1)
gk )); 0,R

(r+1)
11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,Φ

−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µg,Σg

)}
(3.15)

where

µg = R21g(R
(r+1)
11g )−1

[
Φ−1(F (x1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xk ; γ

(r+1)
gk ))

]′
and Σg = R

(r)
22g−

R21g(R
(r+1)
11g )−1R12g.

CM-step 4: Maximize

n∑
i=1

{
wig`ig4

}
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with respect to the matrixR22, given the updated values γ(r+1) andR
(r+1)
11g ,R

(r+1)
12g

from previous steps, where

`
(r+1)
ig4 = log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,

Φ−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µ

(r+1)
g ,Σg

)} (3.16)

where

µ
(r+1)
g as described in previous steps and Σg = R22g −R(r+1)

21g (R
(r+1)
11g )−1R

(r+1)
12g .

That means that the maximization step is executed in 4 steps to evaluate the

parameters γgt associated with the t-th, (t = 1, ..., k) marginal distribution of

continuous variable, for g,(g = 1, ..., G) cluster, and the correlation matrices Rg

split into blocks for all components g = 1, ..., G. The maximization steps for the

G components are independent to each other so these can be performed in parallel

in order to reduce computational time. The algorithm continues to iterate until

a stopping criterion is met. In our case that is the difference in log-likelihood

between the (r) and (r+1) iteration should be less than 10−12.

3.3.2 Starting values

One approach to get starting values of the γgt, t = 1, ..., (k+ `) parameters for the

g-clustering component for all marginals distributions, for the (k+`)×(k+l−1)/2

correlations between variables and the G−1 in total πg probabilities of clusters, is

to use the independence framework. This means that the initial values of all ρij =

0. This of-course is biased because we started with the assumption that we want to

model the dependencies between distributions and EM is doomed to converge slow.

Another approach is to use an alternative EM algorithm which estimates all γ’s

for the marginals and the correlation matrix for each component is estimated from

the sampling correlation matrix of quantities Ψ(utg) = Φ−1(Ft(xtg; γg)) which by

the definition of Gaussian copula, follow a multivariate normal distribution with

µ = 0 and correlation matrix Rg. Those estimators are closer to the real values

and so we can get adequate starting values.
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3.3.3 Model Selection

Once we have decided the extracted from Expectation-Maximization algorithm

parameters associated with the copula, arises the problem of choosing the proper

number of components G. The best model is the one with the lowest value of BIC

(Bayesian Information Criterion) which is typical approach for a family of models

running for a range of values of G. The definition of this criterion is:

BIC = −2`(θ̂) + ρ log(n)

where θ̂ is the maximum likelihood estimate of vector θ,`(θ̂) is the maximized

likelihood, ρ is the number of free parameters in the model and n the sample size.

As the component number grows, the number of free parameters also grows and

BIC gets higher values because it penalizes these extra parameters.

3.4 Towards Parsimonious models

Model-based clustering is becoming increasing popular tool for clustering pur-

poses mainly due to its probabilistic foundations and its flexibility. However, in the

big data era, high-dimensional data are nowadays more and more frequent and, un-

fortunately, classical model-based clustering techniques needs to improve to cope

with high-dimensional spaces. This is mainly due to the fact that model-based

clustering methods are over-parametrized in this case. However, high-dimensional

spaces have specific characteristics which are useful for clustering and recent tech-

niques exploit those characteristics. Parsimonious alternatives have been proposed

based on dimension reduction approaches like factor analysis (see, e.g. McLach-

lan et al. (2003)) or clever representations of the correlation matrices (see, e.g.

McNicholas and Murphy (2008)). For a broad review see Bouveyron and Brunet-

Saumard (2014). In this section we propose two such approaches for reducing the

number of parameters of the correlation matrix in the Gaussian copula to model

the correlation structure.

3.4.1 Correlation matrix decompositions

The Gaussian copula for modelling the joint probability function is an appropriate

choice for mixed mode data because it offers flexibility on the choice of marginals

but also takes account all the internal dependencies which are included to the

copula with the correlation matrix R. For the fully parametrized mixture model,
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described in previous sections, it is obvious that the added components in model

based clustering and the added variables lead to computational complexity. This

drawback is intense because of the correlation matrix. For example for a set of 10

variables and G = 4 clusters we need to estimate (10 × 9/2) × 4 = 45 × 4 = 180

along with G− 1 = 3 probabilities of clusters and the parameters associated with

the marginals. To avoid this in literature we meet a proposed model where all

components may have the same unconstrained corelation matrix which is called the

homogeneous model. This of course can add limitations to the chosen distributions

and the shape of clusters. Here we propose 2 correlation matrices decompositions

in order to achieve parsimony in computations. The first approach involves factor

analysis as data reduction technique and the second structural correlation matrices

customized for mixed data.

3.4.1.1 Factor analysis decomposer

Factor analysis is a data reduction technique that replaces the observed variables

by latent factors with smaller dimension. This method works well when the latent

factors explain a satisfactory amount of the variability of the observed variables.

This approach can offer along with dimension reduction, interpretable results.

Consider n independent k + `-dimensional random variables X1,X2, ...,Xn. The

factor analysis model is written in the form

Xi = µ+ ΛUi + εi

for i = 1, 2, ..., n, where Λ is a (k + `)× q, q < k + ` matrix of factor loadings, the

latent factor Ui ∼ N(0, I), and εi ∼ N(0,Ψ),where Ψ diagonal matrix with the

called communalities. From definition the marginal distribution of Xi’s under the

factor analysis model ∼ N(µ,ΛΛ′ + Ψ). Under this definition the factor analysis

is appropriate for decomposing the correlation matrix of the fully parametrized

mixture model of Gaussian copulas for mixed mode data since it includes high

dependencies between the variables and the correlation matrix Rg for each com-

ponent g = 1, ..., G can be written in the form R = ΛΛ′ + Ψ. So there is the need

of finding a (k + `)× q matrix Λ with λiu, i = 1, ..., k + `, u = 1, ..., q elements so

as

ρij =

q∑
u=1

λiuλju, i 6= j
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and ρii = 1, i = j. With this approach the problem of estimating (k + `)× (k +

`− 1)/2 correlations reduces in estimating (k + `)× q elements λiu, q << (k + `).

There is no need of estimating the diagonal matrix of communalities Ψ since the

diagonal elements of R are always units. The choice of the number of factors is an

important consideration in factor analysis. One approach is to choose the number

of factors that captures a certain proportion of the variation of the data. In our

case we run the factor analysis model for a variety of number of factors. The best

model is revealed from the lowest value of BIC.

The optimization process is performed with the use of CEM algorithm similarly

to the fully parametrized model. Here, we can make use of the fact that for

a number of p factors the correlation matrix can be written in the form R =

Λ1ΛT
1 + Ψ1 + · · ·+ ΛpΛ

T
p + Ψp and so the logarithmic likelihood can be maximized

separately for the parameters of the marginal distributions and for each factor.

The correlation matrix Rg for every component g g = 1, ..., G can also split into

blocks R11g, R12g, R22g as for full model.

E-step: Calculate for i = 1, ..., n and g = 1, ..., G

w
(r+1)
ig =

π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )∑G

g=1 π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )

CM-step 1: Update π
(r+1)
g =

∑n
i=1 w

(r+1)
ig /n for all g = 1, ..., G and then

maximize

n∑
i=1

{
wig`ig1

}
with respect to the γgt to get updated values for γ

(r+1)
gt parameters associated with

the t-th marginal distribution, t = 1, ..., k+`, and the g-th component g = 1, ..., G.

As in equation 3.11 for the case of mixed mode data with k continuous and `

discrete marginals `ig1 is written in the following form
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`
(r+1)
ig1 =

k∑
t=1

log(ftg(xit;γgt))−
k∑
t=1

log
{
φ(Φ−1(F (xit ; γgt))

}
+

log
{
φk

(
Φ−1(F (xi1 ; γg1)), · · · ,Φ−1(F (xik ; γgk)); 0,R

(r)
11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γg(k+1))), · · · ,Φ−1(F (xi(k+`) ; γg(k+`))) ;µg,Σ

(r)
g

)}
(3.17)

where

µg = R
(r)
21g(R

(r)
11g)

−1
[
Φ−1(F (x1 ; γg1)), · · · ,Φ−1(F (xk ; γgk))

]′
and Σ

(r)
g = R

(r)
22g −

R
(r)
21g(R

(r)
11g)

−1R
(r)
12g.

CM-step 2 j: Maximize the log-likelihood for the j-th factor j = 1, ..., p and

for every component g, g = 1, ..., G

n∑
i=1

{
wig`igj

}
with respect to the matrix Rgj , given the updated values γ(r+1) and Rgt from

previous steps, so as

Rg = Rgj +
∑
t6=j

Rgt

where

`
(r+1)
igj = log

{
φk

(
Φ−1(F (xi1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xik ; γ

(r+1)
gk )); 0,R11gj

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,Φ

−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µgj ,Σgj

)}
(3.18)

and

µgj = R21gj(R11gj)
−1
[
Φ−1(F (x1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xk ; γ

(r+1)
gk ))

]′
and Σgj =

R22gj −R21gj(R11gj)
−1R12gj.

3.4.1.2 Structured correlation matrices

Let R denote a symmetric positive definite (k+`) correlation matrix corresponding

to a random vector X. The Choleski factor L is an upper triangular matrix such
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as R = LL′ and with respect to the angles reparametrization matrix Θ we have

an one to one relation between the correlation matrix R and Θ through L such:

L11 = 1, Lii =
i−1∏
u=1

sin θui, Lij = cos θij

i−1∏
u=1

sin θuj, (i, j = 1, ..., k + `, i < j)

(3.19)

where the angles are measured in radians. We require θij ∈ (0, π] so that the

Choleski factor is unique. Generally the Choleski factor for a given covariance

matrix is not unique, but it is unique for the case of correlation matrices where

the diagonal entries are units. The entries of the correlation matrix are related to

the angles:

ρij =
i∑

u=1

LuiLuj, θij = cos−1

{
Lij∏i−1

u=1 sin θuj

}
, i < j, θij = 0, i ≥ j

(3.20)

Because of the angles reparametrization we can assume structures of correlation

matrix where we produce Θ in a way that the R matrix retains the properties of

symmetry and positive definition. Here, for the case of mixed mode data we can

assume at east 2 blocks of correlations; one for the continuous marginal and one for

the discrete, and the maximum number of blocks is equal to the different entries

of the unstructured correlation matrix. For the data set described in section 3

we rank in descend order the variables based on the observed correlation matrix

R̂ separately for continuous and discrete variables so as to achieve the optimal

groups of variables with equal correlations.

The optimization process is performed with the use of CEM algorithm similarly

to the fully parametrized model and the factor analyzers. The correlation matrix

Rg for every component g g = 1, ..., G can also split into blocks R11g, R12g, R22g as

for full model, though every ρij element of the correlation matrix can be written

through the angles re-parametrization as a result of equations 3.19 and 3.20.

E-step: Calculate for i = 1, ..., n and g = 1, ..., G

w
(r+1)
ig =

π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )∑G

g=1 π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )
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CM-step 1: Update π
(r+1)
g =

∑n
i=1 w

(r+1)
ig /n for all g = 1, ..., G and then

maximize

n∑
i=1

{
wig`ig1

}
with respect to the γgt to get updated values for γ

(r+1)
gt parameters associated with

the t-th marginal distribution, t = 1, ..., k+`, and the g-th component g = 1, ..., G.

Similar to the case of mixed mode data with k continuous and ` discrete marginals

`ig1 is written in the following form

`
(r+1)
ig1 =

k∑
t=1

log(ftg(xit;γgt))−
k∑
t=1

log
{
φ(Φ−1(F (xit ; γgt))

}
+

log
{
φk

(
Φ−1(F (xi1 ; γg1)), · · · ,Φ−1(F (xik ; γgk)); 0,R

(r)
11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γg(k+1))), · · · ,Φ−1(F (xi(k+`) ; γg(k+`))) ;µg,Σ

(r)
g

)}
(3.21)

where

µg = R
(r)
21g(R

(r)
11g)

−1
[
Φ−1(F (x1 ; γg1)), · · · ,Φ−1(F (xk ; γgk))

]′
and Σ

(r)
g = R

(r)
22g −

R
(r)
21g(R

(r)
11g)

−1R
(r)
12g and ρij, i, j = 1, ..., k + ` as a result of equations 3.19 and 3.20.

CM-step 2 : Maximize the log-likelihood for every component g, g = 1, ..., G

n∑
i=1

{
wig`ig2

}
with respect to the matrix Rg to get updated values for θ, given the updated

values γ(r+1)

`
(r+1)
ig2 = log

{
φk

(
Φ−1(F (xi1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xik ; γ

(r+1)
gk )); 0,R11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,Φ

−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µg,Σg

)}
,
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µg = R21g(R11g)
−1
[
Φ−1(F (x1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xk ; γ

(r+1)
gk ))

]′
and Σg = R22g−

R21g(R11g)
−1R12g,

ρij =
i∑

u=1

LuiLuj

where for i, j = 1, ..., k + `.

L11 = 1, Lii =
i−1∏
u=1

sin θui

Lij = cos θij

i−1∏
u=1

sin θuj, i < j.

3.4.1.3 Structured correlation matrices and relation with factor de-

composer

The above structures of correlation matrices imply analogous results to factor

loadings. From the definition of the relation between ρij and λiu, if ρij = ρir

then λju = λru, for every factor u = 1, ..., q. For the structure where we consider

different correlations only for continuous and discrete variables, every factor j,

j = 1, ..., p element is obtained by letting λjt = λjk, t = 1, ..., k, and λjt = λj`,

t = 1, ..., `. This can be done due to uniqueness of factor loadings and Choleski

decomosition. The matrix of factors loadings of size (k + `)× p has the form:

Λ1 =



λk1 λk2 · · · λkp
...

...
...

...

λk1 λk2 · · · λkp

λ`1 λ`2 · · · λ`p
...

...
...

...

λ`1 λ`2 · · · λ`p


and the parameters that we need to estimate are of size 2× p.

Following the same rationale, for any structure of correlation matrix , every group

of correlations creates a block to the matrix of factor loadings. Here for group

sizes Nd = {n1, n2, ..., nd}, ni ≥ 1 is
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Λ2 =



λn11 λn12 · · · λn1q

...
...

...
...

λn1i
λni2

· · · λniq

...
...

...
...

λnd1
λnd2

· · · λndq

...
...

...
...

λnd1
λnd2

· · · λndq


where λnji

, j = 1, ..., p, i = 1, ..., d refers to the entry for j-th factor and for i-block

of parameters. Here we have to estimate d× p parameters in total.

3.4.2 Penalized Mixtures of Copulas

Let R denote a symmetric positive definite (k+`) correlation matrix corresponding

to a random vector X. The Choleski factor L as described in section 3.4.1.2

is an upper triangular matrix such as R = LL′ and with respect to the angles

reparametrization matrix Θ we have an one to one relation between the correlation

matrix R and Θ through L such:

L11 = 1, Lii =
i−1∏
u=1

sin θui, Lij = cos θij

i−1∏
u=1

sin θuj, (i, j = 1, ..., k + `, i < j)

(3.22)

where the angles are measured in radians. We require θij ∈ (0, π] so that the

Choleski factor is unique. The entries of the correlation matrix are related to the

angles:

ρij =
i∑

u=1

LuiLuj, θij = cos−1

{
Lij∏i−1

u=1 sin θuj

}
, i < j, θij = 0, i ≥ j (3.23)

Because of the angles reparametrization we can assume structures of correlation

matrix where we produce Θ in a way that the R matrix retains the properties of

symmetry and positive definition. Here, for the case of mixed mode data we can

assume at east 2 blocks of correlations; one for the continuous marginal and one for

the discrete, and the maximum number of blocks is equal to the different entries

of the unstructured correlation matrix. For any data set we change the order of

the variables so as for continuous variables to appear first. No other ordering is

required for the case of penalized algorithm.
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Following the methodology of Structured Correlation Matrices and based on the

fact that unstructured model is equivalent to the independent model where all

θi = π/2 we propose to add a penalty to the unconditional log-likelihood such as:

` =
n∑
i=1

G∑
g=1

log
{
f(xi;γg,Ψg)

}
=

n∑
i=1

G∑
g=1

k∑
t=1

log(ft(xi; γtg))

−
n∑
i=1

G∑
g=1

k∑
t=1

log
{
φ(Φ−1(utg))

}
+

n∑
i=1

G∑
g=1

log
{
φk

(
Ψ(u1g), · · · ,Ψ(ukg) ; 0,R11g

)}
+

n∑
i=1

G∑
g=1

log

{∑
d

sgn(d) Φ`

(
Ψ(u(k+1)g), · · · ,Ψ(u(k+l)g) ; µg,Σg

)}

+ λ
G∑
g=1

p(p−1)/2∑
j=1

sin2 θgj

(3.24)

where all correlation matrices R are written through the correlation matrix re-

parametrization matrix Θ as defined from equations 3.22 and 3.23, and λ takes

values into a grid ( λ > 0). For λ = 0 the approach is equivalent to the full

model evaluation without any constrain to the correlation matrix, while λ inf the

log-likelihood shrinks to the independent model where all θ’s are equal to pi/2.

3.4.2.1 ECM algorithm

The optimization process is performed with the use of CEM algorithm similarly

to the fully parametrized model and the factor analyzers. The correlation matrix

Rg for every component g g = 1, ..., G can also split into blocks R11g, R12g, R22g as

for full model, though every ρij element of the correlation matrix can be written

through the angles re-parametrization as a result of equations 3.19 and 3.20.

E-step: Calculate for i = 1, ..., n and g = 1, ..., G

w
(r+1)
ig =

π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )∑G

g=1 π
(r)
g fg(xi; γ

(r)
g , ψ

(r)
g )

CM-step 1: Update π
(r+1)
g =

∑n
i=1 w

(r+1)
ig /n for all g = 1, ..., G and then

maximize
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n∑
i=1

{
wig`ig1

}
with respect to the γgt to get updated values for γ

(r+1)
gt parameters associated with

the t-th marginal distribution, t = 1, ..., k+`, and the g-th component g = 1, ..., G.

Similar to the case of mixed mode data with k continuous and ` discrete marginals

`ig1 is written in the following form

`
(r+1)
ig1 =

k∑
t=1

log(ftg(xit;γgt))−
k∑
t=1

log
{
φ(Φ−1(F (xit ; γgt))

}
+

log
{
φk

(
Φ−1(F (xi1 ; γg1)), · · · ,Φ−1(F (xik ; γgk)); 0,R

(r)
11g

)}
+

log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γg(k+1))), · · · ,Φ−1(F (xi(k+`) ; γg(k+`))) ;µg,Σ

(r)
g

)}
(3.25)

where

µg = R
(r)
21g(R

(r)
11g)

−1
[
Φ−1(F (x1 ; γg1)), · · · ,Φ−1(F (xk ; γgk))

]′
and Σ

(r)
g = R

(r)
22g −

R
(r)
21g(R

(r)
11g)

−1R
(r)
12g and ρij, i, j = 1, ..., k + ` as a result of equations 3.19 and 3.20.

CM-step 2 : Maximize the log-likelihood for every component g, g = 1, ..., G

n∑
i=1

{
wig`ig2

}
with respect to the matrix Rg to get updated values for θ, given the updated

values γ(r+1)

`
(r+1)
ig2 = log

{
φk

(
Φ−1(F (xi1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xik ; γ

(r+1)
gk )); 0,R11g

)}
+ log

{∑
d

sgn(d) Φ`

(
Φ−1(F (xi(k+1) ; γ

(r+1)
g(k+1))), · · · ,Φ

−1(F (xi(k+`) ; γ
(r+1)
g(k+`))) ;µg,Σg

)}

+ λ

p(p−1)/2∑
j=1

sin2 θgj ,
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µg = R21g(R11g)
−1
[
Φ−1(F (x1 ; γ

(r+1)
g1 )), · · · ,Φ−1(F (xk ; γ

(r+1)
gk ))

]′
and Σg = R22g−

R21g(R11g)
−1R12g,

ρij =
i∑

u=1

LuiLuj

where for i, j = 1, ..., k + `.

L11 = 1, Lii =
i−1∏
u=1

sin θui

Lij = cos θij

i−1∏
u=1

sin θuj, i < j.

The λ factor is chosen in a grid (0, inf) and the algorithm is performed for all

values of λ. For λ = 0 we simply estimate the parameters for the full model

with unstructured correlation matrix. The estimation for the next value of λ is

performed using as initial values the ones resulted from the previous step. In this

way the computational effort is reduced.

3.4.2.2 Model Selection

The ECM algorithm produces the penalized log likelihood for every λ value

into the chosen grid. Once we have decided the extracted from Expectation-

Maximization algorithm parameters associated with the copula, arises the problem

of choosing the proper number of components G and the proper value of λ. The

best model is the one with the lowest value of BIC (Bayesian Information Criterion)

which is typical approach for a family of models running for a range of values of

G. The definition of this criterion is:

BIC = −2`(θ̂) + ρ(λ) log(n) (3.26)

where θ̂ is the maximum likelihood estimator of vector θ,`(θ̂) is the maximized log

likelihood, ρ is the number of free parameters in the model related to the number

of components and n the sample size.

Among models of the same λ value, as the component number grows, the num-

ber of free parameters also grows and BIC gets higher values because it penalizes

these extra parameters.
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Among models for different values of λ value in the chosen grid the number

of free parameters also changes. Following Tingjin Chu and Wang (2011), as

λ → ∞ since the correlation matrix becomes more sparse and allows entries to

shrink towards π/2. Therefore, the number of correlations such as |ρij| < 5 · 10−3

or |θij − π/2| < 5 · 10−3 are omitted from calculation of BIC. The resulted λ is

revealing the optimal structured correlation matrix which yields better fit to the

data.

3.5 Simulation Study

In this section, we present the results of a simulation study that we conducted

to illustrate the effectiveness of our clustering methodology. Via simulation, we

compared the performance of the Penalized Gaussian Copulas method for mixed

mode data for various λ penalties.

3.5.1 Data Sample Description

Let’s assume a 4-variate mixed mode dataset of length n = 200 resulting from

G = 2 components, where consists of 2 continuous variables and 2 discrete vari-

ables. In more detail let’s assume for G = 1 the:

X11 ∼ Normal(µ11 = 10, σ11 = 2)

X12 ∼ Gamma(α12 = 10, γ12 = 2)

X13 ∼ Poisson(λ13 = 7)

X14 ∼ Bernoulli(p14 = 0.8)

which are correlated through a correlation matrix R1 such as shown below:

R1 =


1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1

 =


1 0.6 0.6 0.05

0.6 1 0.05 0.4

0.6 0.05 1 0.3

0.05 0.4 0.3 1


and for G = 2

X21 ∼ Normal(µ21 = 1, σ21 = 2)

X22 ∼ Gamma(α22 = 10, γ22 = 2)
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X23 ∼ Poisson(λ23 = 10)

X24 ∼ Bernoulli(p24 = 0.5)

which are correlated through a correlation matrix R2 such as shown below:

R2 =


1 ρ12 ρ13 ρ14

ρ12 1 ρ23 ρ24

ρ13 ρ23 1 ρ34

ρ14 ρ24 ρ34 1

 =


1 0.4 0.4 0.05

0.4 1 0.05 0.5

0.5 0.05 1 0.1

0.05 0.4 0.1 1



The sample data X have been produced through the R package Copula and

through the Gaussian Copula with the respective correlations and parameters of

each of the components. We choose the data from component 1 with a probability

π = 0.7 , while from component 2 with a probability π = 0.3.

We perform 60 iterations of the simulated dataset and for each of the produced

datasets we perform Conditional Expectation-Maximization algorithm to obtain

the estimated parameters of each component for distributions and correlation ma-

trices with respect to the λ penalty, as described in section 3.3.2. We choose λ in

a sequence of values in [0, 5000) with a step of 10. This means that for every λ

and for the same dataset and component we produce the estimated values which

are then used as starting values for the sequential value of λ. Convergence criteria

for each ECM step has been set to 10−10.
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Figure 3.1: Simulated Data Illustration

3.5.2 Results

For the 60 iterations of the simulation study we calculate the respective BIC

values as defined in section 3.4.2.2 through equation 3.26 with the constraints

arizen from the different values of λ. For the simulated data and for the various

λ’s, table 3.1 provides a summary of the average BIC values of all ierations, while

table 3.2 provides a summary of the chosen number of components through BIC.

We can observe that for growing values of the λ in the grid the minimum value of

Bayesian Information criterion selects higher number of clusters, since the number

of free parameters has been decreased and the correlation matrix becomes sparse.
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Model K=2 K=3

λ = 0 2856.46 2868.34

λ = 10 2859.94 2877.58

λ = 50 2911.58 2924.45

λ = 100 2976.66 2983.74

λ = 200 3025.49 3025.95

λ = 500 3052.28 3040.95

λ = 1000 3054.61 3039.28

λ = 5000 3043.43 3028.10

Table 3.1: Average BIC value for various values of λ.

The lowest value of BIC for any number of clusters and any value of λ, is

achieved for the full model evaluation, where λ = 0, which means that all data

variables are correlated. This is expected due to the structure of the simulated

dataset, which assumes a highly correlated sample which can be seen from corre-

lation matrices R1 & R2 in section 3.5.1.

Model K=2 K=3

λ = 0 55 5

λ = 10 55 5

λ = 50 54 6

λ = 100 43 17

λ = 200 33 27

λ = 500 9 51

λ = 1000 6 54

λ = 5000 5 55

Table 3.2: Results from fitting the different models-Estimated number of
clusters selected over 60 iterations.

From the above tables, a change point in the chosen number of clusters is

observed at around λ = 500, where at this point we start to observe some conver-

gence to the estimated BIC values.
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Figure 3.2: BIC values for the 60 iterations and for the various values of λ
penalty

Figure 3.2 illustrates the confidence intervals and the average values of esti-

mated BIC for the different number of components. For small values, and more

specifically λ ≤ 210, the clusters selected are G = 2, while this number increases

as the λ increases. This change point is achieved for a large value of the penalized

parameter compared to other penalized models, since the penalized factor sin2 θ

takes values in the interval (0,1), therefore, low penalty values apply slight impact

to the penalized likelihood.
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Figure 3.3: Entropy values for the 60 iterations and for the various values of
λ penalty

For the estimated values of G = 2 clusters and G = 3 clusters we calculate

an estimation of the fitted entropy of the mixture model for various values of the

penalty factor λ. The estimation is performed through the below equation:

E(λ) = −
n∑
i=1

G∑
g=1

wig(λ) logwig(λ) (3.27)

where wig are the mixing weights of the mixture model for each iteration of λ .

From figure 3.3 we observe similar results such as in the case of BIC in terms of

convergence for the various penalty values. For G = 2 we achieve a lower value

of entropy which is expected because of the lower number of clusters. As penalty
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values increase we do not have significant loss of clustering efficiency since the

entropy converges to some value.

Table 3.3 illustrates the structure of the correlation matrix for various values

of λ for a selected number of G = 2 components. We can observe that for large

values of the penalty the correlation matrix is close to the identity matrix.

R0 =


1 0.588 0.600 0.049

1 0.042 0.407

1 0.307

1



λ = 0, π̂ = 0.7

R100 =


1 0.317 0.312 −0.006

1 −0.039 0.132

1 0.091

1



λ = 100, π̂ = 0.7

R1000 =


1 0.039 0.037 0.001

1 0.001 0.016

1 0.011

1



λ = 1000, π̂ = 0.7

R5000 =


1 0.008 0.007 0.000

1 0.000 0.003

1 0.002

1



λ = 5000, π̂ = 0.7

R0 =


1 −0.022 0.408 0.035

1 −0.002 −0.001

1 0.088

1



λ = 0, π̂ = 0.3

R100 =


1 −0.006 0.090 0.005

1 0.001 −0.001

1 0.013

1



λ = 100, π̂ = 0.3

R1000 =


1 −0.001 0.010 0.000

1 0.000 0.000

1 0.001

1



λ = 1000, π̂ = 0.3

R5000 =


1 0.000 0.002 0.000

1 0.000 0.000

1 0.000

1



λ = 5000, π̂ = 0.3

Table 3.3: Correlation matrix for various values of λ and for both compo-
nents
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tions for the selected full model
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Figure 3.8: Boxplots for the estimated correlations of G=2 for the 60 itera-
tions for the selected full model

For the selected model of G=2 clusters and λ = 0 figures 3.4 -3.8 provides

boxplots of the estimated parameters for all γg related to the marginals of each

cluster and for all ρg related to the correlations of the marginal distributions, over

the 60 iterations. We observe more precarious results for the correlations of the

second component, which is mainly due to the fact that the mixing probability is

0.3. For a larger dataset than n=200 we would expect better estimations. Another

reason could be that the simulated datasets comes from the same distribution for

both clusters when it comes to the Gamma marginal distribution. This fact might

have forced the estimated correlations ρ12 and ρ24 of the second component to be

close to 0.

Figure 3.9 provides some of the bi-variate contours of the mixture model for

the combinations of continuous-continuous variables and continuous-discrete case,

for several values of the penalty factor. We observe the change in the shape of

the mixture probabilities as λ → ∞, the shape becomes smoother as well as the

density of the mixed clusters.
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3.6 Application Study

3.6.1 Data description

Data are composed of 517 forest fires recorded in north-east Portugal. Cortez

and Morais (2007). Fires are described by 10 meteorological variables based on the

Canadian Forest Fire Weather Index (FWI) System. Some of them are continuous

while some others are binary. We will apply a model based clustering for mixed

data based on the Gaussian copula based model described previously. To achieve

parsimony the models described will be applied. Note that, to show the flexibility

of the copula approach we assume different marginals for the continuous variables.

The available variables are:

� Fine Fuel Moisture Code (FFMC): The Fine Fuel Moisture Code

(FFMC) is a numeric rating of the moisture content of litter and other cured

fine fuels. This code is an indicator of the relative ease of ignition and the

flammability of fine fuel.It is a continuous variable, which takes positive val-

ues. The distribution of FFMC based on recordings is usually right skewed

so we assume a Weibull distribution to describe the data.

� Duff Moisture Code (DMC): The Duff Moisture Code (DMC) is a nu-

meric rating of the average moisture content of loosely compacted organic

layers of moderate depth. This code gives an indication of fuel consumption

in moderate duff layers and medium-size woody material. Also a Weibull

distribution will be fitted for description.

� Relative Humidity (RH): Relative humidity in %. Also the family of

Weibull distributions is used.

� Wind: Wind speed in km/h. Continuous variable which takes positive

values. Here a Weibull distribution is used fit the data.

� Drought code (DC): The Drought Code (DC) is a numeric rating of the

average moisture content of deep, compact organic layers. This code is a

useful indicator of seasonal drought effects on forest fuels and the amount of

smoldering in deep duff layers and large logs. We assume a normal distribu-

tion.

� Initial Spread Index (ISI): The Initial Spread Index (ISI) is a numeric

rating of the expected rate of fire spread. It combines the effects of wind
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and the FFMC on rate of spread without the influence of variable quantities

of fuel. We assume a normal distribution.

� Temperature (temp): Temperature in Celsius degrees. We assume a nor-

mal distribution.

� Summer index (season): Binary variable which takes value equal to 1 if

the season was the summer. Here, we choose a Bernoulli distribution to fit

to the data values.

� Rain index (rain): Binary variable which takes value 1 if there was outside

rainfall in the last 24 hours. It can be modelled as Bernoulli trials.

� Weekend index (day): Binary variable which takes value 1 if the fire burst

into flames at the weekend. Rationally, we assume a Bernoulli distribution.

The same data set has been used in Marbac et al. (2017) but assuming only normal

distributions for the continuous variables. We have selected Weibull marginal

distributions for some variables to better describe their shape, this is rather simple

for copula defined models. We will apply our parsimonious models and a full

likelihood approach for estimating the parameters.
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Figure 3.10: Data visualization

3.6.2 Results

We have fitted a series of different models to the data to achieve parsimony.

Table 3.6 presents results from several different models. The models fitted to the

data are: a) the independent model where the clusters are considered as condition-

ally independent, this is a typical model used so far as it is very simple and does

not need to consider complicated multivariate models b) the model with all clus-

ters having a full correlation matrix which is different for each cluster, this implies

the larger structure and the larger number of parameters to estimate, c-e)factor

models with 1 up to 3 factors, and f-h) the structured correlation models with

different structure. The first structure just teats differently the continuous to the

binary variables, hence blocks the continuous and the binary variables separately.
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The second one creates some blocks within each category, while the 3rd structure

creates a more refined structure at the cost of a large number of parameters. One

can see that the model have a certain amount of parsimony. We have fitted up to

6 clusters. For each model we report the log-likelihood and the BIC, the BIC can

be also seen in Figure 3.11. The number of parameters for each model can be also

seen. All models are fitted using the algorithms described in the previous sections.

To start with the model that assumes conditional independence fails for all

numbers of clusters. This implies that we need to model the correlation structure

inside the clusters. The structured models while capture part of the correlation

lead to an increasing number of parameters. The structure correlation models

implying an increasing structure do not improve a lot and we see based on BIC

that the 2-factors model has the best BIC.

Table 3.4 outlines the number of parameters to be estimated for the chosen

set of marginal distributions and for the chosen structure of correlation matrix.

As the number of factor components increases the number of free parameters also

increases though the likelihood is close to the one of the fully parametrized model.
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Figure 3.11: The BIC for the different models for increasing number of
clusters.

Model 1 2 3 4 5 6

Independent (a) 17 35 53 71 89 107

Fully Parametrized Model(b) 62 125 188 251 314 377

1 Factor (c) 27 55 83 111 139 167

2 Factors (d) 37 75 113 151 189 227

3 Factors (e) 47 95 143 191 239 287

1st Structure Ng= (7,3) (f) 20 41 62 83 104 125

2nd Structure Ng=(3,2,2,1,2) (g) 31 63 95 127 159 191

3rd Structure Ng= (1,1,1,2,1,1,1,2)(h) 47 95 143 191 239 287

Table 3.4: Results from fitting several different models-Number of esti-
mated parameters.
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Table 3.5 provides the estimated log-likelihood values, while 3.6 the estimated

BIC values. We observe that the fully parametrized model chooses as best G = 4

number of clusters, while as we allow the correlation matrix to be more structured

as well as for the independent model, the number of chosen components increases

to G = 5.

Model 1 2 3 4 5 6

a -14902.9 -14180.1 -13843.4 -13726.0 -13596.1 -13596.1

b -13848.5 -13265.2 -13022.4 -12757.9 -12689.9 -12689.9

c -14337.3 -13769.1 -13531.0 -13346.3 -13135.0 -13135.0

d -14142.5 -13610.5 -13265.3 -13035.2 -12903.7 -12903.7

e -13983.2 -13423.2 -13155.7 -13931.3 -12836.8 -12836.8

f -14724.2 -14146.4 -13830.5 -13646.8 -13530.9 -13530.9

g -14224.7 -13754.1 -13496.9 -13278.9 -13259.7 -13259.7

h -13962.3 -13526.5 -13210.3 -12931.3 -12878.55 -12877.3

Table 3.5: Results from fitting several different models-Log likelihood val-
ues.

Model 1 2 3 4 5 6

a 29912.1 28578.7 28017.9 27895.6 27748.3 27860.6

b 28084.5 27311.4 27219.6 27084.0 27341.8 27735.4

c 28843.3 27881.8 27580.6 27386.2 27138.6 27313.5

d 28516.3 27689.6 27236.6 27015.3 26988.3 27225.8

e 28260.0 27439.9 27204.9 27055.9 27166.8 27466.7

f 29573.4 28549.0 28048.4 27812.3 27711.7 27842.9

g 28643.0 27901.9 27587.3 27351.4 27512.9 27712.9

h 28218.2 27646.5 27314.2 27056.1 27520.3 27547.8

Table 3.6: Results from fitting several different models BIC values.
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Figure 3.12: Contours of bi-variate distributions for the selected model
with 2 Factors.

Figure 3.12 provides the bi-variate contours of the selected model of 2 factors for

the chosen number of clusters G = 5 and for the continuous variables wind, DMC

and RH.

3.7 Concluding Remarks

Sampling methods have been introduced to further reduce computational effort

of the Composite Likelihood approach. For our Simulation studies purposes the

dimension reduction was not extended nevertheless the time consumed reduction

was important compared even compared to the full composite likelihood method.

For cases of high dimensional count data, where the full Multivariate Poisson

density function is not easy to be defined the composite likelihood concept offers
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flexibility in calculations. We can further reduce the complexity of calculations

via the sampling methods.

Among the Sampling methods the efficiency is much dependable on the sample

data size, the highest the row size the more components or rows we can eliminate

in calculations. For the specific simulation studies with n = 200 rows the Sampling

method where we choose only one of the composite likelihood components provides

poorer results, though for highest data points the method can further provide

adequate results.

Alternative composite likelihood method which is less complex than the full

traditional composite likelihood method can be also provide good classification

without significant loss of miss-classified data points. This method can provide

adequate values for the parameters and which can also be used as starting values

of the full multivariate model estimation or the composite likelihood estimation.

This method can be further investigated in order to provide adequate results.

In the present work, we focused also on the mixed data problem. The models

and the derivations of parsimonious representations of the correlation matrix of

the Gaussian copula are applicable to all models of model based clustering through

copulas, like only continuous or only discrete random variables. The problem of

parsimony in the model base clustering literature is an important one. Other kind

of parsimonious representations like the representation in Celeux et al. (1995)

can be an alternative approach. Since in copula based models we wok with the

correlation rather the covariance matrix the approach needs to adjust.

Moreover, the model used here is related to the Gaussian copula factor model

as described in Murray JS (2013). Another representation of factor models in the

copula setting has been proposed in Krupskii and Joe (2013) which is perhaps

more general. In the present work we have used the former representation and not

the latter.

The approach based on the representation of Tsay and Pourahmadi (2017)

leads to some interesting model selection problems in the sense that we would

like to identify the best structure of the correlation matrices with some automatic

approach. This problem is described and addressed through the simulation study

and the penalized log likelihood.

Similar results can be applied to other copulas expressed through a correlation

matrix like the t-copulas or some of the elliptical copulas.



Chapter 4

Concluding Remarks

The present thesis contributes towards the analysis of finite mixture models

for model based clustering for count data and mixed data. In chapter 2, in order

to overcome problems related to the problem of defining a model for count data in

high dimensions, we opted to the use of composite likelihood methodology. Such an

approach overcomes the problem of fully specifying the model in high dimensions

but requires to define the marginal models in a lower dimension. We used pairwise

approach in this thesis, namely by specifying only the bivariate marginals. This

allows to work in higher dimensions. It is known that composite likelihood gains

computational efficiently sacrificing statistical efficiency. In the context of model

based clustering where the efficiency is not the main issue but rather the ability to

identify clusters we examined the performance of the methodology. We made use

of different approaches, an heuristic one that while used an alternative surrogate

function it is still able to recognize the clustering.

Sampling methods have been introduced to further reduce computational ef-

fort of the Composite Likelihood approach. Such methods aims at reducing the

computational pattern since the surrogate function used is not consisted of all

possible pairs but fewer either by randomly selecting them or via some stratified

sampling approach. Note the recent work on this randomized approach in Mazo

et al. (2021). For our simulation studies purposes the dimension reduction was not

extended nevertheless the time consumed reduction was important compared even

compared to the full composite likelihood method. For cases of high dimensional

count data, where the full Multivariate Poisson density function is not easy to be

defined the composite likelihood concept offers flexibility in calculations. We can

further reduce the complexity of calculations via the sampling methods.

118
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Among the Sampling methods the efficiency is much dependable on the sample

data size, the highest the row size the more components or rows we can eliminate

in calculations. For the specific simulation studies with n = 200 rows the Sampling

method where we choose only one of the composite likelihood components provides

poorer results, though for highest data points the method can further provide

adequate results.

Alternative composite likelihood method which is less complex than the full

traditional composite likelihood method can be also provide good classification

without significant loss of miss-classified data points. This method can provide

adequate values for the parameters and which can also be used as starting values

of the full multivariate model estimation or the composite likelihood estimation.

It is still an open problem to find proper randomized algorithm to deal with

high dimensional count data so as to achieve parsimony. For applying composite

likelihood an EM type algorithm was developed but the underlying structure gen-

erates some interesting questions since we can get a classifier based on different

approaches, and we have not pursued this further on.

A related problem that has attracted much less work in the literature is the

model based clustering of mixed mode data. For such models, applying the finite

mixture approach has certain limitations since it is not easy to develop multivariate

models for such data. In this thesis we followed an approach developed in Kos-

midis and Karlis (2016) via copulas. In particular one may define an appropriate

multivariate distribution to describe jointly variables of different kind via copulas.

This offers full flexibility and in effect contains several other models as special

cases. For example one may define/select the marginal distributions and couple

them via a copula in order to define the multivariate models. A Gaussian copula

allowing for full structure can provide such a tool. However some issues arise,

especially with respect the parsimony of such models as dimension increases. Here

we worked two such approaches for a parsimonious representation of the Gaussian

copula correlation matrix, one based on a factor decomposition of the correlation

matrix and the other based on the Tsay and Pourahmadi (2017) representation

with angles.

We emphasize that while we applied such parsimonious copula based finite

mixtures for mixed mode data, the models and the derivations of parsimonious

representations of the correlation matrix of the Gaussian copula are applicable to

all models of model based clustering through copulas, like only continuous or only

discrete random variables. The problem of parsimony in the model base clustering
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literature is an important one. Other kind of parsimonious representations like the

representation in Celeux et al. (1995) can be an alternative approach. Since in

copula based models we work with the correlation rather the covariance matrix

the approach needs to adjust.

Moreover, the model used here is related to the Gaussian copula factor model

as described in Murray JS (2013). Another representation of factor models in the

copula setting has been proposed in Krupskii and Joe (2013) which is perhaps

more general. In the present work we have used the former representation and not

the latter.

The approach based on the representation of Tsay and Pourahmadi (2017)

leads to some interesting model selection problems in the sense that we would

like to identify the best structure of the correlation matrices with some automatic

approach.

Finally note that we applied a penalized version of the Tsay and Pourahmadi

(2017) representation that selects the structure in an automatic way by penalizing

more complicated ones. This problem is described and addressed through the

simulation study including penalized log likelihood approach.

Similar results can be applied to other copulas expressed through a correlation

matrix like the t-copulas or some of the elliptical copulas.

4.1 Future Work

Further work that can be exploit in the future consider:

� Computational issues, how can we improve the computing time, like using

parallel computing and tricks in the maximization steps, including the pe-

nalization approach where some more clever search for the optimum lambda

may be used.

� Apply composite likelihood for the copula based model based clustering for

mixed mode data, no need to specify complicated models

� Complement the composite likelihood approach with the penalized approach

in order to achieve parsimony and reduce the need to estimate a huge number

of parameters.

� Examine in more depth the effect of the CL to the clustering problem, can

we get back the clustering (or at least help on that) by a simplified CL

approach?



121

� Expand and check the properties of the randomized version of composite

likelihood in the context of model based clustering through copulas. Create

proper model selection approaches for such an extension.

� Apply the concepts (both the CL and the parsimony) to related copula based

models.
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