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ABSTRACT

The current thesis is mainly focused on the design of Univariate nonparametric schemes

for monitoring shifts in the process location or scale parameter. Enhanced and robust

methodologies are provided which guarantee the chart’s optimal and most important re-

liable statistical performance. In particular, first a short literature review is presented

about existing parametric and nonparametric control charts. Additionally, two enhanced

distribution-free control charts based on the Sign statistic are introduced, for monitoring

shifts in the process location or scale parameter of interest. For each scheme, an exten-

sive numerical analysis is conducted in order to provide to the reader a detailed presentation

about each chart’s statistical performance. Moreover, we introduce two distribution-free con-

trol charts based on the Wilxocon Signed Rank statistic and a simple methodology for the

determination of the general distribution of the Wilxocon Signed Rank statistic is provided.

Finally, for each proposed scheme, its statistical performance is examined and guidelines to

practitioners are given regarding its optimal design. Finally, some concluding remarks and

discussion for future work are stated.
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Chapter 1

General introduction to Statistical

Process Control

Introduction

In the world of business, quality improvement is of high importance for the manufactur-

ing industries. Due to the fact that the competition in the globamarket is strong, industries

are interested in measuring their products’s characteristics as a variable using continuous

measurements, such as length or content. The quality characteristics should reach a desired

value (target value), relative to specifications. These target values are bounded by a range

of values that are believed to be sufficiently close to the target value without affecting the

process when the quality characteristic of the product is in this range. Statistical process

control (SPC), is a valuable process, using statistical methods for monitoring and control-

ling the process performance. SPC techniques are employed to examine specific parts of a

process and detect changes in process performance. One of the major tools of the statistical

process control are the control charts. They are an on-line process monitoring technique

whose purpose is to quickly detect shifts in the mean or in the variance of the process. It

is worth mentioning that SPC techniques are being widely used not only in industrial and

manufacturing fields but also in chemical and pharmaceutical applications. Additionally,

they can be also used in Medicine in order to monitor a patient’s treatment results. Conse-

quently, SPC is a growing field of research where statistical methods are applied and give to

the practitioners the capability, using graphical methods (charts), to check at each sampling

point if the parameter of interest is in control.

It is well acknowledged in the literature (see e.g. Montgomery (2020)) that standard control

charts usage involves two phases, phase I and phase II. During phase I, using a set of process
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data, a retrospective analysis is conducted and trial control limits are constructed in order

to determine if the process has been in control over the period of time where the data were

collected and to see if reliable control limits can be established to monitor future production.

As Montgomery (2020) states: control charts in phase I, primarily assist operating personnel

in bringing the process into a state of statistical control. During phase II the control chart is

used to monitor the process by comparing the sample statistic for each successive sample as

it is drawn from the process to the control limits. In particular, during phase II, the control

chart is used in order to detect shifts in the mean or in the variance by comparing the sample

statistic for each successive sample as it is drawn from the process to the control limits. If

the value of the statistic falls in between the control limits the process is considered to be

in control. Otherwise an out of control signal is given and possible causes of this signal are

investigated.

Depending on the parameter of interest, the number of characteristics to be monitored

or their design phase, control charts can be divided into several categories as presented in

Figure 1.1. In particular, the main categorization relies on the number of characteristics to

be monitored. For instance, when practitioners want to monitor a single characteristic of

a product, a univariate scheme is used. On the other hand, in cases where more than one

characterising is needed to be monitored the use of a multivariate control chart is desired.

Moreover, usually, conventional control charts for process monitoring are Fixed Sampling

Rate (FSR) control charts based on taking samples of fixed size (n0) with a fixed sampling

interval (h0) between samples. In variable sampling rate (VSR) control charts the sampling

rate is varied as a function of the data from the process, based on the idea that the sampling

rate should be increased when there is an indication of a potential shift in the process, and

decreased when there is no indication of a problem with the process. A control chart is

considered adaptive if at least one of the parameters i.e sample size, sampling interval, con-

trol limit, is allowed to change in real time during process monitoring. In order to design an

adaptive control chart besides the sample size, sampling interval and control limits a warning

limit (w) needs to be defined. The warning limit identifies a decision rule for switching from

one value of the design parameter to another. In general, the type of control chart that is the

optimal choice for monitoring a process, depends on the type of the characteristic to mon-

itored. As a consequence, over the past decades, there is a plethora of schemes introduced

into the literature focusing on monitoring shifts in the process mean or variability (in the

univariate or multivariate case respectively). Moreover, in many industries, the quality of

processes or products can be characterized by a profile that describes a relationship between

a response variable and one or more explanatory variables. A change in the profile relation-

ship may indicate a change in the quality characteristic of interest. Most of the work on
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profile monitoring has been in the case where the profile can be sufficiently represented by a

simple linear regression model. However, in many applications the simple linear regression

model is not sufficient to represent the shape of a profile, so more complicated methods are

needed. For all the categories mentioned above extensive literature reviews can be found in

Bersimis et al. (2007), Castagliola et al. (2011), Nomikos and MacGregor (1995), Perdikis

and Psarakis (2019), Woodall (2007).

Control

Charts

Number of

Characteristics

Chart’s Design

parameters

Statistical

approach

Parameter

of interest

Univariate

Multivariate

Fixed

Adaptive

Frequentist

Bayesian

Location

Scale

Batch

Profiles

Figure 1.1: Control chart categories

1.1 Conventional control charts assuming Normality

Control charts have been widely used in manufacturing industries, as a powerful tool for

the on-line monitoring of a process. Shewhart (1926) is considered as the pioneer of control

charts, introducing schemes capable of monitoring relative large shifts in the process mean (X̄

chart) or the variability (R and S charts). It has been shown that a conventional Shewhart

control chart is preferable in detecting large shifts in the process mean. When shifts of small

magnitude occur in the process parameters, Cumulative Sum (CUSUM, see Page (1954)) or

Exponentially Weighted Moving Averge (EWMA, see Roberts (1959)) charts are preferable

due to their superiority in early shift detection. redIn order to avoid any confusion, it should

be clarified the fact that in this current thesis we are investigating a chart’s performance in

terms of persistent shifts instead of transient shifts.
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Additionally, the schemes mentioned above are based on the assumption that the observa-

tions, collected at each sampling point, are random variables following a known distribution.

This class of schemes are called as parametric/conventional control charts. It should be

noted that, this work, is mainly focusing on the design of improved EWMA charts. As a

result, before we begin to any new suggestions it is wise to review first the conventional X̄

and EWMA charts.

1.1.1 The Shewhart X̄ chart

Charting statistic and Control limits : In the early 1930′s, Shewhart (1926) in-

troduced the control chart in which at each sampling point a sample of size n is collected,

and the corresponding value of the X̄ statistic is computed and plotted. With reference

to the Phase II implementation of the control chart, at each sampling point a subgroup

{Xt,1, Xt,2, . . . , Xt,n} of size n is collected at time t = 1, 2, . . .. Each Xt,j, j = 1, 2, . . . , n are

independently identically distributed normal random variables with parameters (µ0, σ0). Ad-

ditionally, let X̄t be the sample mean calculated at each time t. The Upper (UCL) and Lower

(LCL) control limits are computed through the in-control distribution of the X̄ statistic as:

UCL = E(X̄) + Zα/2V(X̄),

LCL = E(X̄)− Zα/2V(X̄),

where α is a probability to be defined. Under the assumption of Normality, for the

in-control case the above expressions can are expressed as:

UCL = µ0 + Zα/2σ0/
√
n,

LCL = µ0 − Zα/2σ0/
√
n.

Run Length properties: The RL (Run Length) properties of the X̄ control chart are

determined by the random variable L defined as “the number of plotted points until the t-th

value falls outside the control limits”. As a consequence, the variable L follows a Geometric

distribution and the Average Run Length (ARL), is computed as:

ARL =
1

α
.
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When the process is in-control (i.e. µ = µ0) then α equals to:

α = P(X̄ ≤ LCL or X̄ ≥ UCL|µ = µ0),

and corresponds to the Type I error probability. The ARL is called as the in-control ARL

(denoted as ARL0) referring to “the average number of plotted points until the t-th value

falls outside the control limits given the process is in-control”. Similarly, when the process is

out-of-control (i.e. µ = µ1) then

ARL =
1

1− β
.

where

β = P(LCL ≤ X̄ ≤ UCL|µ = µ1),

corresponds to the Type II error probability. The ARL then is called as the out-of-control

ARL (denoted as ARL1) referring to “the average number of plotted points until the t-th

value outside the control limits given the process is out-of-control”.

During the design phase of a control chart, practitioners need to find the proper values

of the design parameters (for instance the corresponding control limits) in order to satisfy

that the in-control ARL will be a relative large number (usually ARL0 = 370.4). In the case

of the standard X̄ chart α = 0.0027.

1.1.2 The Exponentially weighted moving average control chart

The Exponentially weighted moving average control chart (EWMA-X̄ chart) has been

introduced into the literature by Roberts (1959). In particular, the EWMA-X̄ control chart,

was originally designed as a scheme capable of monitoring shifts in the process mean (µ).

The characteristic of this control chart, is that in contrast to the conventional Shewhart X̄

chart, it can detect a mean shift faster due to the fact that, at each sampling point, it takes

into account previous measurements.

The two-sided EWMA-X̄ chart : The charting statistic for the two-sided EWMA-X̄

chart is defined by the following recursive formula:

Zt = λX̄t + (1− λ)Zt−1, Z0 = E0(X̄t). (1.1)

where (0 ≤ λ ≤ 1) is a parameter to be fixed called as the smoothing parameter. In

particular, the value of λ defines the level of the past “information” which is being taken

into account. Values close to zero assign more information to past data. Clearly, when λ = 1
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the above statistic is consistent with the traditional X̄ chart. For a better understanding of

the operation of the charting statistic let us considered the following example.

• Suppose that at time t = 1, the sample {X1,1, X1,2, . . . , X1,n} of size n is collected with

corresponding sample mean X̄1. Then the charting statistic equals to

Z1 = λX̄1 + (1− λ)Z0.

• At time t = 2, the sample {X2,1, X2,2, . . . , X2,n} of size n is collected with corresponding

sample mean X̄2. Then the charting statistic equals to

Z2 =λX̄2 + (1− λ)Z1 = λX̄2 + (1− λ)(λX̄1 + (1− λ)Z0)

=(1− λ)2Z0 + λ(1− λ)0X̄2 + λ(1− λ)1X̄1.

...

• At time t, the sample {Xt,1, Xt,2, . . . , Xt,n} of size n is collected with corresponding

sample mean X̄t. Then the charting statistic equals to

Zt = (1− λ)tZ0 + λ
t−1∑
j=0

(1− λ)jX̄t−j.

Similarly with the design of a conventional control chart, an out-of-control signal is given

if at time t, the charting statistic Zt defined in (1.1) exceeds the lower LCL or the upper

UCL control limits defined as

UCL = E0(Zt) +K
√

V0(Zt)

LCL = E0(Zt)−K
√

V0(Zt).

where K is a parameter to be determined. Moreover, E0(Zt) and V0(Zt) are the in-control

mean and variance of Zt. For the computation of the in-control mean of Zt, assuming
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E(Z0) = µ0 we have:

E0(Zt) =(1− λ)tE0(Z0) + λ
t−1∑
j=0

(1− λ)jE0(X̄t−j)

=(1− λ)tµ0 + λµ0
1− (1− λ)t

λ

=(1− λ)tµ0 + µ0 − (1− λ)tµ0

=µ0. (1.2)

Similarly, for the in-control variance assuming V0(X̄t−j) =
σ2
0

n
we have :

V0(Zt) =(1− λ)2tV0(Z0) + λ2

t−1∑
j=0

(1− λ)2jV0(X̄t−j)

=(1− λ)2tV0(Z0) + λ2σ
2
0

n

(
1− (1− λ)2t

λ(2− λ)

)
.

Finally, assuming that Z0 = µ0 the above expression can be simplified as:

V0(Zt) =

(
λ

2− λ

)
σ2

0

n
(1− (1− λ)2t). (1.3)

Alternately, if we consider Z0 as a random variable with mean E0(Z0) = µ0 and variance

V0(Z0) =
σ2
0

n
the in-control variance of Z0 is defined as:

V0(Zt) =
σ2

0

n

(
λ+ 2(1− λ)2t+1

2− λ

)
. (1.4)

It can be noticed that the variance of the series Z1, Z2, . . . , Zt, . . ., when t→ +∞, lim V0(Zt) =
λ

2−λ
σ2
0

n
. For instance, using the expressions presented in (1.2) and (1.3) the corresponding

UCL,LCL values are computed and plotted in Figure (1.2) for λ = 0.2, K = 2.7, n = 5,vσ0 =

1,µ0 = 0 and t = 1, 2, . . . , 25. It can be clearly seen, that after the 20-th sampling point

the control limits become steady. As a consequence, it usually recommended the use of the

“steady-state” control limits :

UCL = µ0 +K

√
λ

2− λ
σ2

0

n

LCL = µ0 −K

√
λ

2− λ
σ2

0

n
.

7



−0.4

−0.2

0.0

0.2

0.4

0 5 10 15 20 25
t

 

Values of LCL and UCL as a function of t

Figure 1.2: Values of UCL (upper line) and LCL (lower line) as a function of t

The upper-sided EWMA-X̄ chart : In cases where practitioners has the desire of

monitoring only increases in the process characteristic of interest (or know a-priori that only

increases might happen in the process), upper-sided control charts are an efficient alternative

and perform better for detecting increases in the process characteristic. In particular, for

an upper-sided control chart only the corresponding upper control limit needs to de defined,

along with the central line (CL which corresponds to the restart case). The upper-sided

EWMA-X̄ chart is defined by the following recursive formula:

Zt = max(E0(X̄t), λX̄t + (1− λ)Zt−1), Z0 = E0(X̄t), (1.5)

with a fixed asymptotic upper control limit and central line defined as:

UCL =µ0 +K1

√
λ

2− λ
σ2

0

n
.

CL =µ0,

Similarly, with the two-sided case, K1 is a parameter to be determined.

1.1.2.1 RL properties of the EWMA-X̄ chart

Similarly with the design of a Shewhart control chart, the performance of the two-sided

EWMA-X̄ chart is evaluated in terms of its RL distribution. Concerning two-sided control

schemes, RL is defined as the number of samples until the statistic plotted on a control chart
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crosses for the first time one of the control limits.

RL properties of the two-sided EWMA-X̄ chart : In most existing parametric phase II

EWMA charts their RL properties are obtained through the standard approach proposed by

Brook and Evans (1972). In particular they proved that the RL distribution of a EWMA-type

scheme can be considered as a Discrete Phase-type (DPH) random variable of parameters

(Q,q). In particular, it is assumed that the operation of a EWMA-X̄ control chart can be

well represented by a discrete-time Markov chain where the interval [LCL,UCL] is divided

into 2m+ 1 subintervals (Hj −∆, Hj + ∆), j = {−m, . . . , 0, . . .m} of width 2∆ = UCL−LCL
2m+1

.

Moreover, let Hj = LCL+UCL
2

+ 2j∆ be the midpoint of state j = {−m, . . . , 0, . . . ,m}. The

transition probability matrix P of the EWMA-X̄ chart is defined as:

P =

(
Q r

0ᵀ 1

)
=



Q−m,−m . . . Q−m,−1 Q−m,0 Q−m,1 . . . Q−m,m r−m
...

...
...

...
...

...
...

Q−1,−m . . . Q−1,−1 Q−1,0 Q−1,1 . . . Q−1,m r−1

Q0,−m . . . Q0,−1 Q0,0 Q0,1 . . . Q0,m r0

Q1,−m . . . Q1,−1 Q1,0 Q1,1 . . . Q1,m r1

...
...

...
...

...
...

...

Qm,−m . . . Qm,−1 Qm,0 Qm,1 . . . Qm1,m rm

0 . . . 0 0 0 . . . 0 1


where Q is the (2m + 1, 2m + 1) matrix of transient probabilities, 0ᵀ = (0, 0, . . . , 0) and

r = 1 − Q1. Moreover, let q = (q−m, . . . , q0, . . . , qm)ᵀ be the (2m + 1, 1) vector of initial

probabilities associated with the 2m + 1 transient states which contains the probabilities

that the Markov chain starts in a given state. For the two-sided EWMA-X̄ chart without

the head-start feature being considered (i.e Z0 = E0(X̄t)), it is assumed that q0 = 1 and

qi = 0 for i 6= 0. Finally, the transient probabilities, Qj,k are obtained as:

Qj,k = P(Zt is in state k|Zt−1 is in state j)

= P(Hk −∆ ≤ Zt ≤ Hk + ∆|Zt−1 = Hj). (1.6)

By substituting the definition of the charting statistic, defined in (1.1), into (1.6) the
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transient probabilities, Qj,k are equal:

Qj,k = P
(
Hk −∆ ≤ λX̄t + (1− λ)Zt−1 ≤ Hk + ∆

∣∣Zt−1 = Hj)

= P
(
Hk −∆ ≤ λX̄t + (1− λ)Hj ≤ Hk + ∆

)
= P

(
Hk −∆− (1− λ)Hj

λ
≤ X̄t ≤

Hk + ∆− (1− λ)Hj

λ

)
= FX̄t

(
Hk + ∆− (1− λ)Hj

λ
|n, µX̄t , σX̄t , δ

)
− FX̄t

(
Hk −∆− (1− λ)Hj

λ
|n, µX̄t , σX̄t , δ

)
.

where µX̄t = µ0, σX̄t = σ0√
n

and FX̄t is the c.d.f. of the X̄t defined as:

FX̄t(x|n, µX̄t , σX̄t , δ) = FN

(
x− µX̄t
σX̄t

− δ
)

with FN(. . .) be the c.d.f of the standard Normal distribution with mean zero and variance

equal to 1. The parameter δ accounts for the shift magnitude in the process mean. In par-

ticular is defined through the expression µ1 = µ0 + δσ0, where µ1 is the process mean when

a shift occurs. It is clear that when δ = 0 we are refereeing to the in-control case (i.e the

ARL0) and when δ 6= 0 we are refereeing to the out-of-control case (i.e the ARL1).

The p.m.f. fRL(t|Q,q) and the c.d.f.FRL(t|Q,q) of RL are defined for t = {1, 2, . . . , } and

they are respectively, equal to (see, for instance Neuts (1981) or Latouche and Ramaswami

(1999)):

fRL(t|Q,q) = qᵀQt−1r,

FRL(t|Q,q) = 1− qᵀQt−11.

The determination of the mean and standard deviation of RL can be derived through some

simple computations based on the factorial moment formula, νi = E (RL(RL− 1) . . . , (RL− i+ 1))

of order i ≥ 1 defined as:

νi = i!qᵀ(I−Q)−iQi−11.

For i = 1, 2 the first two factorial moments ν1 and ν2 of order 1 and 2 respectively are:

ν1 = qᵀ(I−Q)−11

ν2 = 2qᵀ(I−Q)−2Q1.
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Finally, since V(RL) = E(RL2)− (E(RL))2 and ν2 = E(RL(RL− 1)) = E(RL2)−E(RL) the

mean and standard deviation of RL equal:

E(RL) = ν1

SDRL(RL) =
√
ν2 − ν2

1 + ν1.

When the number 2m + 1 of subintervals is sufficiently large (say 2m + 1 ≈ 200), the

approach of Brook and Evans (1972) provides an effective method that allows the Average

Run Length (ARL) and the Standard Deviation Run Length (SDRL) of continuous statistics

to be accurately evaluated by using the following classical formulas from the theory of Markov

chains

ARL = qᵀ(I−Q)−11, (1.7)

SDRL =
√

2qᵀ(I−Q)−2Q1 + ARL(1− ARL). (1.8)

RL properties of the upper-sided EWMA-X̄ chart : In order to obtain the zero-

state ARL and SDRL of the one-sided EWMA-X̄ control chart, similarly with the two-sided

case, the standard approach proposed by Brook and Evans (1972) is used with some small

modifications. Specifically, the interval [CL,UCL] is divided into m+1 subintervals of width

∆ = UCL
2m

. Moreover, let Hj = (2j − 1)∆ be the midpoint of state j = {1, . . . ,m}. The

transient state i = 0 corresponds to the “restart state” feature of the chart (due to the

presence of the max(. . .) in the charting statistic defined in (1.5)). This state is represented

by the value H0 = 0. Finally, the transition probability matrix P is defined as:

P =

(
Q r

0ᵀ 1

)
=


Q0,0 Q0,1 . . . Q0,m−1 Q0,m r0

Q1,0 Q1,1 . . . Q1,m−1 Q1,m r1

...
...

. . .
...

...
...

Qm,0 Qm,1 . . . Qm,m−1 Qm,m rm

0 0 . . . 0 0 1


where Q is the (m + 1,m + 1) matrix of transient probabilities, 0ᵀ = (0, 0, . . . , 0) and

r = 1−Q1. In addition, the transient probabilities, Qk,j will be computed as:

• if j = 0,

Qk,0 = FX̄t

(
−(1− λ)Hk

λ
|n, µX̄t , σX̄t , δ

)
.
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• if j = 1, 2, . . . ,m,

Qk,j = FX̄t

(
Hi + ∆− (1− λ)Hk

λ
|n, µX̄t , σX̄t , δ

)
− FX̄t

(
Hi −∆− (1− λ)Hk

λ
|µX̄t , σX̄t , δ

)
.

(1.9)

Finally, let q = (q0, q1, . . . , qm)ᵀ be the (m+ 1, 1) vector of initial probabilities associated

with the m + 1 transient states. In our case, we assume q = (1, 0, . . . , 0)ᵀ, i.e. the initial

state corresponds to the “restart state”.

1.1.2.2 Reliability of the Brook and Evans method in the chart’s RL properties

Generally, in conventional parametric EWMA control charts for monitoring measurement

data from a continuous distribution as the number of subintervals (i.e. 2m + 1) increases

the method proposed by Brook and Evans (1972) is known to be a reliable approximation of

the chart’s RL properties. In Table 1.1, several in-and out-of-control pairs of (ARL, SDRL)

are reported as a function of the number of subintervals 2m + 1 = {51, 61, . . . , 201} for the

two-sided EWMA-X̄ chart. It can be clearly seen that the number of subintervals does not

affect the ARL, or the SDRL of the two-sided EWMA-X̄ chart. Similarly, for the upper-

sided case, from Table 1.2 we may conclude that its RL properties also remain unaffected

by the number of subintervals.
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Table 1.1: In- and out-of-control pairs of (ARL, SDRL) values for the two-sided EWMA-X̄
chart as a function of 2m+ 1 = {51, 61, . . . 201}.

(n = 1, λ = 0.2, K = 2.7)

2m+ 1 δ = 0 δ = 0.5 δ = 1

51 (236.6,232.6) (29.3,24.5) (8.8,5.2)

61 (236.9,233.5) (29.3,24.5) (8.8,5.2)

71 (237.1,233.2) (29.3,24.5) (8.8,5.2)

81 (237.3,233.3) (29.3,24.5) (8.8,5.2)

91 (237.3,233.4) (29.3,24.5) (8.8,5.2)

101 (237.4,233.5) (29.3,24.5) (8.8,5.2)

111 (237.5,233.5) (29.3,24.5) (8.8,5.2)

121 (237.5,233.6) (29.3,24.5) (8.8,5.2)

131 (237.5,233.6) (29.3,24.5) (8.8,5.2)

141 (237.6,233.6) (29.3,24.5) (8.8,5.2)

151 (237.6,233.6) (29.3,24.5) (8.8,5.2)

161 (237.6,233.6) (29.3,24.5) (8.8,5.2)

171 (237.6,233.7) (29.3,24.5) (8.8,5.2)

181 (237.6,233.7) (29.3,24.5) (8.8,5.2)

191 (237.6,233.7) (29.3,24.5) (8.8,5.2)

201 (237.6,233.7) (29.3,24.5) (8.8,5.2)

13



Table 1.2: In- and out-of-control pairs of (ARL, SDRL) values for the upper-sided EWMA-X̄
chart as a function of 2m+ 1 = {51, 61, . . . 201}.

(n = 1, λ = 0.2, K = 2.7)

m δ = 0 δ = 0.5 δ = 1

50 (311.4,306.7) (27.7,23.1) (8.7,5.1)

60 (311.5,306.8) (27.7,23.1) (8.7,5.1)

70 (311.6,306.9) (27.7,23.1) (8.7,5.1)

80 (311.6,307.1) (27.7,23.1) (8.7,5.1)

90 (311.6,307.1) (27.7,23.1) (8.7,5.1)

100 (311.7,307.1) (27.7,23.1) (8.7,5.1)

110 (311.7,307.1) (27.7,23.1) (8.7,5.1)

120 (311.7,307.1) (27.7,23.1) (8.7,5.1)

130 (311.7,307.1) (27.7,23.1) (8.7,5.1)

140 (311.7,307.1) (27.7,23.1) (8.7,5.1)

150 (311.7,307.1) (27.7,23.1) (8.7,5.1)

160 (311.7,307.1) (27.7,23.1) (8.7,5.1)

170 (311.7,307.1) (27.7,23.1) (8.7,5.1)

180 (311.7,307.1) (27.7,23.1) (8.7,5.1)

190 (311.7,307.1) (27.7,23.1) (8.7,5.1)

200 (311.7,307.1) (27.7,23.1) (8.7,5.1)

1.1.3 The Cumulative Sum Control Chart

Another efficient memory-type scheme capable of monitoring small shifts in the process

mean is the Cumulative Sum (CUSUM-X̄) control chart introduced by Page (1954). At each

sampling point, t, a normally distributed sample is collected and its corresponding sample

mean X̄t is computed. The charting statistics of the CUSUM-X̄ chart are then computed

as:

Y +
t = max{0, X̄t − (µ0 + k) + Y +

t−1}
Y −t = max{0, (µ0 − k)− X̄t + Y −t−1}
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where k is a parameter to be fixed called as the reference value. Finally an out-of-control

signal is given if:

max(Y +
t , Y

−
t ) > H

where H is the control limit coefficient which satisfies the in-control ARL equals to a pre-

defined value, ARL0. In general, for the determination of the optimal value of H and the

chart’s out-of-control performance, the method of Brook and Evans (1972) is used based on

a similar design as for the EWMA-X̄ chart regarding the computation of the midpoints at

each subinterval.

1.2 Parametric versus non-parametric approach

In general, in the design of conventional control charts as the ones mentioned above, it

is assumed that the distribution of the observations collected over time is known, with the

most common choice being that of normal distribution. However, in practice, either the as-

sumption of, say, normal distribution is violated or practitioners do not want to use a specific

distribution model for their process. As a result, designing schemes capable of monitoring

shifts in the process without any knowledge of the observations’ underlying distribution,

have drawn the researchers’ attention and led to nonparametric (or distribution-free) con-

trol charts. Over the past decades there is a growing amount of publications related with

the design of distribution-free control charts for monitoring shifts in the process. In par-

ticular, the work of Chakraborti et al. (2001) is considered as the first general framework

regarding the design and operation of distribution-free control charts. Additionally, recent

extensions of nonparametric Shewhart, EWMA and CUSUM control charts can be found in

Chakraborti and Graham (2019), Triantafyllou and Ram (2021b), Triantafyllou and Ram

(2021a). In Figure 1.3, several publications related with univariate distribution-free control

charts are illustrated (blue dots) across the past three decades (red dashed lines). For in-

stance, during the 90’s, Amin and Searcy (1991) and Amin et al. (1995) introduced the use

of nonparametric tests (such as the Sign and the Wilcoxon Signed Rank statistics) in the

design of distributions-free EWMA and CUSUM charts for monitoring the process location

parameters (for instance the median or any other quantile of interest). Similarly Hackl and

Ledolter (1991) and Hackl and Ledolter (1992) presented two nonparametric EWMA control

charts based on sequential ranks. Additionally, over the last decade, from Figure 1.3 it can

be seen that, there is an increased number of publications introducing new nonparametric

schemes for monitoring shifts in the process mean and dispersion. It is worth stretching

that, using distribution-free control charts, for monitoring the process median for example,

there is no need for any a-priori information of the in-control value of the process dispersion.

On the other hand, in conventional parametric schemes such as the X̄ chart, besides the
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in-control value of the sample’s mean, µ0, the corresponding value of the in-control variance,

σ0, is needed. Fairly speaking, the use of nonparametric control charts may also have some

drawbacks. For instance, their proper operation and ability for detecting a shift in the pro-

cess parameter, require a sufficiently large number of data. Moreover, comparing with the

parametric schemes, they are not useful in settings with short runs.
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Figure 1.3: Univariate non-parametric control charts
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1.3 State of the art

It is worth stretching that, regarding the design phase of an EWMA-type control chart a

proper computation of its RL (Run length) properties is crucial. Specifically, for the deter-

mination of the design parameters λ (smoothing parameter) and K (control limit parameter)

of an EWMA-type chart, a search algorithm needs to be run, for a particular shift in the

process, in order to find the optimal pair (λ∗, K∗) which minimizes the out-of-control ARL,

under the constraint ARL = ARL0 where ARL0 is a predefined value of the in-control ARL.

In conventional EWMA-type schemes the RL properties are often obtained by using the

Markov Chain approach of Brook and Evans presented in Brook and Evans (1972), which is

based on a discretization of the control limits interval into a pre-specified number of subin-

tervals. In the case of measurement data (usually assuming normality) as the number of

subintervals increase, the method of Brook and Evans tends to give reliable approximations

of the chart’s RL properties. Generally, the nonparametric statistics (such as sign, Wilcoxon

signed rank, etc.) used by the distribution-free schemes mentioned above, are defined on a

discrete domain. When the standard continuous EWMA chart is applied to discrete data,

a common technique in order to compute its RL properties is to use simulation-based tech-

niques. The main disadvantage of this approach is that it leads to approximated results

which depend on the number of runs.

In this work, we aim to present new enhanced formulas regarding the design of nonpara-

metric EWMA charts based on the Sign and Wilcoxon signed rank statistics with exact

and robust RL properties. In particular a combination of the approach of Brook and Evans

(1972) and a Kernel-based method will be utilised to make the results unaffected by the

number of subintervals. The rest of the current thesis is organised as follows: In Chapter 2,

a short review regarding the original design of nonparametric Shewhart and EWMA charts

is presented based on the Sign and the Wilcoxon Signed Rank statistics. More specifically,

their statistical design is presented and the robustness of their in- and out-of-control perfor-

mance is investigated using the convetional method of Brook and Evans (1972). In Chapter

3, a modified version of the “classical” Sign EWMA chart is presented in which an enhanced

approach is used for the exact determination of the chart’s RL properties, while in Chapter

4, an examination of the proposed chart’s performance is preformed under the presence of

tied observations during the process monitoring. In particular, a simple solution is provided

in which the distribution-free properties of the chart remain unaffected by the occurrence of

ties. Additionally, in Chapter 5, a new nonparametric EWMA chart for monitoring the pro-

cess dispersion is proposed which is based on a Sign-type statistic and its exact in- and out-of

control properties are determined. Moreover, Chapters 6 and 7 are focusing on the design of

EWMA control charts based on the Wilcoxon Signed Ranks statistic. More specifically, in
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Chapter 6, an EWMA-type chart based on the Wilcoxon Signed Rank statistic is introduced

in which the exact number of subintervals is determined leading into the exact determination

of the chart’s RL properties. In Chapter 7, The same approach used in Chapter 3 is applied

to the corresponding EWMA chart based on the Wilcoxon Signed Rank statistic. Finally, in

Chapter 8, some concluding remarks of this thesis are presented and suggestions for future

works are discussed.
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Chapter 2

Shewhart and EWMA control charts

based on the Sign and Wilcoxon

Signed Rank statistics

Introduction

Generally, the Sign or the Wilcoxon Signed Rank statistics have been extensively applied

in the design of nonparametric schemes for monitoring shifts in the process location (as the

process median or any quantile of interest). Due to their simplicity in design, schemes based

on these statistics, are efficient tools that can successively detect shifts during the process

monitoring. In this Chapter, a short revision regarding the theoretical properties of these

statistics will be presented and their application in nonparametric Shewhart and EWMA

charts will be revisited. Finally, a discussion will be made regarding the robustness of these

charts and their optimal design.

2.1 Theoretical background of the Sign and Wilcoxon

Signed Rank statistics

2.1.1 Distribution of the Sign statistic

The Sign test, is a simple nonparametric technique, for testing hypotheses about a loca-

tion parameter, θ0. Suppose that, at time t = 1, 2, . . ., a subgroup {Xt,1, Xt,2, . . . , Xt,n} of

size n following an unknown continuous distribution with c.d.f. FX(x|θ) is collected where
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θ is the location parameter of interest. The test statistic is computed as:

SNt =
n∑
j=1

St,j, (2.1)

where St,j = sign(Xt,j − θ0) with sign(x) = −1, 0 or +1 if x < 0, x = 0 or −1 respectively.

Moreover, let p =(p−1, p0, p+1) be the vector of probabilities:

p−1 = P(St,j = −1) = P(Xt,j < θ0) = FX(θ0|θ),
p0 = P(St,j = 0) = P(Xt,j = θ0),

p+1 = P(St,j = +1) = P(Xt,j > θ0) = 1− FX(θ0|θ).

It should be noted that the assumption of having samples from a continuous distribution,

prevents to have tied pairs for Xt,j and θ0 and so, the event St,j = 0 is not possible to occur.

As a consequence, St,j can be either +1 or −1 and we have p0 = 0 and p−1 = 1− p+1.

The theoretical properties of SNt can be derived by taking into account that SNt is defined

on {−n,−n+ 2, . . . , n− 2, n} and its distribution can be derived from the relationship

SNt = 2Dt − n (2.2)

where Dt is the number of observations {Xt,1, Xt,2, ...Xt,n} larger than θ0. As a result, Dt

is a binomial random variable with parameters n and success probability p+1. Therefore,

assuming that the location parameter of interest is the median we simply have p+1 = P(Xt,j >

θ0). The c.d.f. FSNt(s|n, p+1) of SNt is equal to

FSNt(s|n, p+1) = FBin

(
n+ s

2

∣∣n, p+1

)
, (2.3)

where s ∈ {−n,−n + 2, . . . , n − 2, n} and FBin(. . . |n, p+1) is the c.d.f. of the binomial

distribution which depends on the sample size n and p+1.
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Using the relationship between SNt and Dt, the mean and variance of SNt are equal to

E(SNt) = 2E(Dt)− n = 2np+1 − n, (2.4)

V(SNt) = 4V(Dt) = 4np+1(1− p+1). (2.5)

Under the null hypothesis, since p−1 = p+1 = 0.5, the mean E0(SNt) and variance

V0(SNt) of SNt are simply defined as:

E0(SNt) = 0, (2.6)

V0(SNt) = n. (2.7)

2.1.2 Distribution of the Wilcoxon Signed Rank statistic

The Wilcoxon Signed Rank test statistic is one of the most commonly used nonparametric

technique for testing hypotheses about a location parameter, θ0. Suppose that at each

sampling point a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n, following a continuous symmetric

distribution, is collected at time t = 1, 2, . . .. Let Lt,j ∈ {1, 2, . . . , n} denotes the rank of

the absolute value of the differences |Xt,j − θ0| , j = 1, 2, ..., n for subgroup t = 1, 2, . . . . The

usual test statistic is the sum of the SRt defined as:

SRt =
n∑
j=1

sign(Xt,j − θ0)Lt,j. (2.8)

Due to the assumption that each sample follows a continuous distribution, the condi-

tion Xt,j = θ0, does not hold. Moreover, by definition, the SRt statistic is defined on

{−n(n+1)
2

,−n(n+1)
2

+ 2, . . . , n(n+1)
2
− 2, n(n+1)

2
}. It should be noted that the domain on which

SRt is defined contains zero only if n(n+1)
2

is an even integer.

Two equivalent test statistics linearly related to (2.8) can be considered as the sum of the

corresponding positive ranks

SR+
t =

n∑
j=1

r+
t,jLt,j, (2.9)

with

r+
t,j =

1 if Xt,j − θ0 > 0

0 if Xt,j − θ0 < 0
,
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or the sum of the of the negative ranks

SR−t =
n∑
j=1

r−t,jLt,j, (2.10)

with

r−t,j =

1 if Xt,j − θ0 < 0

0 if Xt,j − θ0 > 0
.

It should be noted that since the sum of the statistics SR−t and SR+
t is just the sum of the

numbers from 1 to n, they are related through the relation:

SR+
t + SR−t =

n(n+ 1)

2
.

Hence, the following relations between the statistics SR+
t , SR−t , SRt arise:

SR−t = −SR+
t +

n(n+ 1)

2
.

and

SRt = 2SR+
t −

n(n+ 1)

2
. (2.11)

Under the null hypothesis, the distributions of SR+
t and SR−t are the same, symmetric about

n(n+1)
4

and ranging from 0 to n(n+1)
2

. Moreover, the distribution of SRt is symmetric about

zero and ranges from −n(n+1)
2

to n(n+1)
2

. Note that, the sum of the positive signed ranks

(SR+
t ) defined in (2.9), is often called as the null distribution of Wilcoxon and under the

null hypothesis its distribution is known. Finally, the distribution of SRt, is usually derived

through the distribution of SR+
t using the relation presented in (2.11).

2.1.3 Approaches for the Computation of the Null Distribution

of SR+
t

Generally, in schemes based on the Wilcoxon Signed Rank statistic, their Run Length

properties have been investigated only under the in-control case. Regarding their out-of-

control performance, it has been examined only based on a given distribution. As a conse-

quence, the fact that the distribution of SRt is determined only for the in-control case, makes

it difficult to optimise the chart for detecting efficiently shifts of a specific magnitude. In

the rest of this Section, after a brief review of existing methodologies on the determination

of the SR+
t statistic, a new approach will be provided for the exact determination of the
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general distribution of SR+
t .

c.d.f. of SR+
t via a recursive formula : The methodology regarding the computa-

tion of the null distribution of SRt was originally presented by Wilcoxon (1947) through the

computation of the p.m.f. (probability mass function), fSR+
t

(s|n) of SR+
t . More specifically,

the p.m.f. of SRt is computed by evaluating the number NSR+
t

(s|n) of subsets of integers in

{1, . . . , n} having a sum equal to s ∈ {0, 1, . . . , n(n+1)
2
} and by computing

fSR+
t

(s|n) =
NSR+

t
(s|n)

2n
.

For a better understanding, let us consider an example where the p.m.f, fSR+
t

(s|n) of SR+
t

is computed for n = 3 (Table 2.1). With 23 possible patterns of signed ranks ±1,±2,±3

and assuming that all differences are positive (i.e the signed ranks are +1,+2, and +3), the

sum of the positive ranks is SR+
t = 6 . Since there is only one such configuration, then

NSR+
t

(6|3) = 3. For the remaining cases we simply have:

• For s = 0 the only configuration that satisfies a sum equal to 0 is (−1,−2,−3).

• For s = 1 the configuration that satisfies a sum equal to 1 is (+1,−2,−3).
...

• For s = 5 the configuration that satisfies a sum equal to 1 is (−1,+2,+3).
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Table 2.1: Computation of the null p.m.f. of SR+
t for n = 3

s NSR+
t

(s|n) Configurations fSR+
t

(s|n)

0 1 (−1,−2,−3) 1
8

1 1 (+1,−2,−3) 1
8

2 1 (−1,+2,−3) 1
8

3 2 (+1,+2,−3), (−1,−2,+3) 2
8

4 1 (+1,−2,+3) 1
8

5 1 (−1,+2,+3) 1
8

6 1 (+1,+2,+3) 1
8

Finally the c.d.f.(cummulative distribution function) will be simply computed as FSR+
t

(s|n) =∑s
w=1 fSR+

t
(w|n). Extended tables and critical values for large values on n have been derived

by McCornack (1965) who proposed the use of the following recursive formula:

NSR+
t

(s|n) = NSR+
t

(s|n− 1) +NSR+
t

(s− n|n− 1).

Normal approximation of SR+
t under the null hypothesis, H0: Under the null

hypothesis, H0, assuming θ = θ0 as the median of the process, by definition, we have that

P(Xt,j > θ0|θ = θ0) = P(Xt,j < θ0|θ = θ0) = p0 = 0.5. As a consequence we are interested in

testing the hypothesis

H0 : p = 0.5 vs H1 : p 6= 0.5.

Wilcoxon (1947) investigated the asymptotic properties of the SR+
t statistic and provided

tables based on the Normal approximation for the signed-rank statistic. Bennett (1972) re-

vised the asymptotic properties of the SR+
t statistic proving its asymptotically normality

properties not only for the null but also for the alternative distribution.

It is well known into the literature that the statistic SR+
t =

∑n
j=1 r

+
t,jLt,j can be expressed as
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a linear combination of the ranks of the positive differences, Lt,j and i.i.d random variables

from a Bernoulli distribution ψk ∼ Ber(p) as:

SR+
t =

n∑
j=1

ψt,jLt,j.

For the use of the Normal approximation the mean and variance of SR+
t need to be

defined first. More specifically, for a given value of p ∈ (0, 1) and n the mean and variance

are defined as:

E(SR+
t ) = E(ψt,j)︸ ︷︷ ︸

p

n∑
j=1

Lt,j︸ ︷︷ ︸
n(n+1)

2

=
n(n+ 1)p

2
, (2.12)

and

V(SR+
t ) = V(ψt,j)︸ ︷︷ ︸

pq

n∑
k=1

L2
t,j︸ ︷︷ ︸

n(n+1)(2n+1)
6

=
n(n+ 1)(2n+ 1)pq

6
, (2.13)

with q = 1− p. Under H0, since p = 0.5, the mean and variance are obtained though the

following expressions

EH0(SR+
t ) =

n(n+ 1)

4
,

VH0(SR+
t ) =

n(n+ 1)(2n+ 1)

24
. (2.14)

Finally, under H0, for s ∈ {0, 1, . . . , n(n+1)
2
}, the c.d.f FSR+(s|n, p) of SR∗t , which will be

depend on the sample size n and p, can be replaced by its Normal approximation as (see,

Wilcoxon (1947) :

FSR+(s|n, 0.5) ' FN

(
s+ 0.5− EH0(SR+

t )√
VH0(SR+

t )

)

where FN(. . . ) is the c.d.f. of the standard Normal, distribution, N(0, 1). It has been proven

that, for a sufficient large sample size (n > 30), this approximation works efficiently, for

p ∈ (0, 1). In particular, it tends to be more accurate as p ' 0.5 and less accurate as p→ 0

or p→ 1.

As for the computation of the p.m.f. fSR+
t

(s|n, 0.5) of SR+
t ,under H0, it is computed
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though its c.d.f. as:

fSR+(s|n, 0.5) = FSR+(s|n, 0.5)− FSR+(s− 1|n, 0.5).

p.g.f. of SR+
t under H0 : Another efficient and accurate method is to derive the null

distribution of SR+
t through its p.g.f. (probability generating function). By definition, in

the random sample {X1, X2, . . . , Xn}, the variable whose rank is j contributes either 0 or j

to SR+
t . Under the null hypothesis, both of those have probability p = 1

2
. Then the SR+

t

statistic presented in (2.9) can be rewritten as:

SR+
t =

n∑
j=1

wj (2.15)

where wj is a characteristic function defined as:

wj =

j if Xt,j − θ0 > 0

0 otherwise
.

The p.g.f of each wj is defined as

Pwj(ω) = E(ωwj) =
1

2
ω0 +

1

2
ωj =

1 + ωj

2
. (2.16)

Additionally, due to the independence of wj’s, the p.g.f of SR+
t under the null hypothesis

is computed as:

PSR+
t

(ω) = Pw1(ω) . . .Pwn(ω) =
1

2n

n∏
j=1

(1 + ωj). (2.17)

Finally, expanding the above product the coefficient of ωj corresponds to P(SR+
t = j),

j = {0, 1, . . . n(n+1)
2
}. For a better understanding, an example for n = 6 is provided. In

particular, following the above steps, the p.g.f. of SR+
t is computed as:
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PSR+
t

(ω) = =
1

64
(1 + ω1)(1 + ω2)(1 + ω3)(1 + ω4)(1 + ω5)(1 + ω6)

=
1

64

(
1 + ω + ω2 + 2ω3 + 2ω4 + 3ω5 + 4ω6 + 4ω7

+4ω8 + 5ω9 + 5ω10 + 5ω11 + 5ω12 + 4ω13

+4ω14 + 4ω15 + 3ω16 + 2ω17 + 2ω18 + ω19 + ω20 + ω21
)
,

and the p.m.f. of of SR+
t under H0, fSR+(s|n = 6, p = 0.5) is obtained as:

• For s = 0 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 1

64
which corresponds to the

coefficient of ω0).

• For s = 1 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 1

64
which corresponds to the

coefficient of ω1).
...
...

• For s = 10 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 5

64
which corresponds to the

coefficient of ω10).

• For s = 11 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 5

64
which corresponds to the

coefficient of ω1).
...
...

• For s = 20 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 1

64
which corresponds to the

coefficient of ω20)

• For s = 21 the p.m.f of SR+
t is equal to fSR+(s|6, 0.5) = 1

64
which corresponds to the

coefficient of ω21)

2.2 The Shewhart Sign control chart

The nonparametric Shewhart control chart based on the a sign statistic (to be denoted

as S-SN chart) has been originally introduced by Amin et al. (1995). Suppose that, at

each sampling point t = 1, 2, . . ., a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n following an
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unknown continuous distribution with c.d.f. FX(x|θ) is collected where θ is the location

parameter to be monitored. If θ = θ0 the process is declared as in-control and, if θ = θ1, the

process is declared as out-of-control. Generally, in nonparametric schemes, the parameter

θ is considered as the median of the process, but theoretically it can be considered as any

percentile of interest. As a result, at each time t, the statistic SNt =
∑n

j=1 St,j is computed

and plotted. The signal rule for the phase II implementation of a two-sided S-SN chart is that

an out-of-control signal is given if SNt /∈ [−Cl, Cl] where Cl is the control limit coefficient to

be fixed, defined in {1, 2 . . . , n}. Similarly, for an upper-sided control chart, an out-of-control

signal is given if SNt ≥ C ′l and for a lower-sided if SNt ≤ −C ′l .

2.2.1 Performance and Run Length properties

Similarly with most of the conventional phase II control charts (parametric or not) the

RL properties of the S-SN chart are computed through the type-II error probability β. In

particular, the computation of the ARL values of the two-sided S-SN chart is computed

through the type-II error probability β as:

ARL =
1

1− β

where

β = P(−Cl < SNt < Cl|θ) = P(−Cl < SNt ≤ Cl − 1|θ),

which can be rewritten in terms of the binomial distribution as:

β = FBin

(
n+ s

2
− 1
∣∣n, p+1

)
− FBin

(
n+ s

2

∣∣n, p+1

)
,

where p+1 = 1−FX(θ0|θ). It is clear that when θ = θ0 we are referring to the in-control case

while when θ = θ1 we are referring to the out-of-control.
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Regarding the design phase of nonparametric Shewhart charts, due to the discrete nature

of the statistics to be monitored, it is not always possible to be designed with a corresponding

ARL0 value be exactly equal to the desired one. In Table 2.2 several ARL0 values for the S-SN

chart are presented for different combinations of (n,Cl). It can be seen that for n < 15, there

is no candidate value for Cl that guarantees an ARL0 value close 370 or 500. Generally, when

the sample size increases, it is possible to find a value of Cl which will give a corresponding

ARL0 value close to 370.4. It is worth stretching that, during the design phase of the S-SN

chart, for moderate or even large sample sizes, there might be cases for which the ARL0

values are far from the desired ones. For example, when n = 20, 25, 30 the corresponding

“optimal” ARL0 values are 388, 400.98, 300.58. Similarly, for n = 40, 45, 50 the corresponding

ARL0 values are 450.16, 406.69, 384.29. Practically speaking, of course choosing a value of C

which gives an ARL0 = 450.16 will provide to practitioners a nonparametric chart capable

of monitoring large shifts in the process median. However, it will not be fairly comparable

with other schemes with corresponding ARL0 ≈ 370.4 or ARL0 ≈ 500.

Table 2.2: pairs of (ARL0, Cl) for different sample sizes n = {5, 10, . . . , 50}

Sample Size

5 10 15 20 25 30 35 40 45 50

(1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1) (1,1)

(1.45,2) (1.33,2) (1.24,2) (1.21,2) (1.18,2) (1.17,2) (1.15,2) (1.14,2) (1.13,2) (1.13,2)

(2.67,3) (1.82,3) (1.65,3) (1.51,3) (1.45,3) (1.39,3) (1.36,3) (1.32,3) (1.31,3) (1.28,3)

(4.57,4) (2.91,4) (2.2,4) (1.99,4) (1.79,4) (1.71,4) (1.62,4) (1.57,4) (1.52,4) (1.49,4)

(16,5) (4.41,5) (3.31,5) (2.61,5) (2.36,5) (2.11,5) (2,5) (1.88,5) (1.81,5) (1.74,5)

(9.14,6) (4.76,6) (3.8,6) (3.06,6) (2.77,6) (2.47,6) (2.33,6) (2.17,6) (2.08,6)

(15.28,7) (8.44,7) (5.28,7) (4.36,7) (3.56,7) (3.22,7) (2.87,7) (2.69,7) (2.49,7)

(85.33,9) (28.44,9) (12.76,9) (9.28,9) (6.68,9) (5.7,9) (4.74,9) (4.3,9) (3.81,9)

(512,10) (47.01,10) (24.16,10) (13.24,10) (10.13,10) (7.55,10) (6.5,10) (5.44,10) (4.93,10)

(135.4,11) (37.59,11) (23.1,11) (14.13,11) (11.17,11) (8.53,11) (7.4,11) (6.22,11)

(239.18,12) (84.62,12) (34.53,12) (23.38,12) (15.33,12) (12.39,12) (9.63,12) (8.41,12)

(>1000,>13) (138.94,13) (68.34,13) (33.96,13) (24.41,13) (16.78,13) (13.8,13) (10.88,13)

(388.07,14) (106.89,14) (62.02,14) (34.7,14) (25.99,14) (18.49,14) (15.41,14)

(671.3,15) (245.26,15) (93.69,15) (59.97,15) (36.32,15) (28.01,15) (20.46,15)

(400.98,16) (191.47,16) (88.25,16) (60.28,16) (38.62,16) (30.45,16)

(>1000,>17) (300.58,17) (167,17) (86.9,17) (62.13,17) (41.51,17)

(698.86,18) (254.25,18) (155.6,18) (88.09,18) (65.16,18)

(>1000,>19) (532.42,19) (231.27,19) (151.31,19) (91.13,19)

(838.05,20) (450.16,20) (220.56,20) (151.5,20)

(>1000,>21) (689.42,21) (406.69,21) (217.33,21)

(609.2,22) (384.29,22)

(565.23,23)

(>1000,>24)
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2.3 The EWMA control chart based on the Sign statis-

tic

Graham et al. (2011a) introduced a new nonparametric two-sided EWMA chart based

on the Sign statistic and, using the Markov-Chain approach of Brook and Evans (1972),

they obtained its optimal design parameters and investigated its out-of-control performance

under several distributions.

The two-sided EWMA Sign chart : Suppose that, at each sampling point t = 1, 2, . . .,

a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n following an unknown continuous distribution is

collected where θ is the median of the distribution. The two-sided EWMA chart ( 2-SN

EWMA chart) based on the Sign statistic is defined by the following formula:

Zt = λSNt + (1− λ)Zt−1, Z0 = E0(SNt), (2.18)

where E0(SNt) is the in-control expectance of SNt. The asymptotic upper and lower control

limits of the two-sided SN EWMA chart are obtained by using the following classical formulas

LCL = E0(SNt)−K
√

V0(SNt)×
√

λ

2− λ
,

UCL = E0(SNt) +K
√

V0(SNt)×
√

λ

2− λ
.

If we consider the in-control values E0(SNt) and V0(SNt) as presented in (2.6) and (2.7)

the asymptotic upper and lower control limits simply reduce to

LCL = −K
√

nλ

2− λ
,

UCL = K

√
nλ

2− λ
.

The upper-sided EWMA Sign chart : The plotting statistic of the upper-sided EWMA

chart based on the Sign statistic (SN EWMA chart) is defined by the following formula:

Zt = max(E0(SNt), λSNt + (1− λ)Zt−1), Z0 = E0(SNt), (2.19)
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with asymptotic upper and lower control limits defined as:

LCL = 0

UCL = K1

√
nλ

2− λ
.

2.3.1 Performance

Generally, in most existing phase II EWMA charts (parametric or not) their RL properties

are derived through the standard method of Brook and Evans (1972). As a consequence, the

RL properties of the two-sided 2-SN EWMA chart are obtained as presented in Chapter 1

(see, Section 1.1.2.1) with the only difference that the transient probabilities are computed

as:

Qj,k = FSNt

(
Hk + ∆− (1− λ)Hj

λ
|n, p+1

)
− FSNt

(
Hk −∆− (1− λ)Hj

λ
|n, p+1

)
, (2.20)

where FSNt(x|n, p+1) is the c.d.f. of SNt as defined in equation (2.3). Similarly, for the

upper-sided EWMA chart the transient probabilities, Qk,j are computed as:

• if j = 0,

Qk,0 = FSNt

(
−(1− λ)Hk

λ
|n, p+1

)
.

• if j = 1, 2, . . . ,m,

Qk,j = FSNt

(
Hi + ∆− (1− λ)Hk

λ
|n, p+1

)
− FSNt

(
Hi −∆− (1− λ)Hk

λ
|n, p+1

)
.

(2.21)

In order to examine the efficiency of the Brook and Evans (1972) method used for the

computation of the RL properties of the two- and upper-sided EWMA Sign charts, in Ta-

ble 2.3 several pairs of in-control (ARL, SDRL) values are presented, as a function of the

number of subintervals 2m + 1, for the 2-SN EWMA chart (top) and the SN EWMA chart

(bottom) for different sample sizes. The corresponding ARL0 values are plotted as a function

of the number of subintervals in Figure 2.1 (two-sided) and Figure 2.2 (upper-sided). In par-

ticular, in these plots, the red dashed lines correspond to the simulated ARL0 values obtained

through a Monte Carlo simulation of 106 runs. From Table 2.3 it can be concluded that, the

in-control ARL and SDRL values are strongly affected by the number of subintervals. For

instance:
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• For the two-sided case, when n = 8, the ARL0 values vary from 376 to 418. Addition-

ally, for the same case, the SDRL0 values vary from 371.5 to 413.5.

• Similarly, for the upper-sided case when n = 17, the ARL0 values fluctuate from 478.7

to 500.8. and the SDRL0 values vary from 471.5 to 495.7.
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Figure 2.1: ARL0 (plain lines) as a function of the number of sub-intervals 2m + 1 ∈
{51, 61, . . . , 201} for the 2-SN EWMA chart with parameters (λ = 0.2, K = 2.85) and
n ∈ {6, 8, 12, 21} using the standard Markov Chain method
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Figure 2.2: ARL0 (plain lines) in function of the number of sub-intervals m ∈
{50, 60, . . . , 200} for the SN EWMA chart with parameters (λ = 0.2, K1 = 2.85) and
n ∈ {10, 13, 17, 23} using the standard Markov Chain method

In general, as the number of sub-intervals increases, the results tend to be more “steady”,

but still, as it can be seen, there are cases where the results differ significantly from the ones

obtained using simulations. An immediate consequence of these results is that it is almost

impossible to “optimize” (i.e. find optimal pairs (λ,K) or (λ,K1)) the Sign EWMA chart

(upper- or two-sided) if ARL0 values are computed using the standard Markov Chain method

of Brook and Evans (1972). Therefore, a more efficient technique is needed for the exact and

robust determination of ARL values regardless the number of subintervals,the sample size,

n or the pair of the design parameters.

34



Table 2.3: pair of (ARL0, SDRL0) values as a function of the number of subintervals for the
2-SN EWMA chart (top) and the SN EWMA chart (bottom) for different sample sizes.

(ARL0, SDRL0) values for the 2-SN EWMA chart for (λ,K) = (0.2, 2.85)

2m+ 1 n = 6 n = 8 n = 12 n = 21

51 (392.5,387.9) (384.7,380.4) (418.1,413.5) (350.3,346.1)

61 (469.6,464.6) (404,399.5) (372.9,368.5) (366.7,362.4)

71 (427.5,422.8) (405.4,401) (382.9,378.5) (377.6,373.3)

81 (426.9,422.3) (418,413.5) (399.6,395.2) (368.1,363.7)

91 (433,428.4) (376,371.5) (397.7,393.2) (378.9,374.5)

101 (437.4,432.8) (385.3,380.8) (386.6,382.2) (377.1,372.8)

111 (419.9,415.3) (392.7,388.2) (389.5,385) (375.7,371.4)

121 (406.6,401.9) (398.3,393.8) (388.3,383.9) (383.5,379.1)

131 (409.5,405) (397.9,393.3) (391.8,387.3) (381.2,376.9)

141 (400.9,396.3) (387.4,382.9) (372.5,368.1) (369.2,364.8)

151 (406.6,401.9) (408.5,403.9) (375.5,371.1) (379.1,374.7)

161 (431.1,426.5) (394.6,390) (375.8,371.4) (385,380.6)

171 (431,426.4) (412.4,407.8) (372.7,368.4) (373.2,368.9)

181 (419.6,414.9) (394.4,389.8) (382.2,377.8) (371.3,367)

191 (419.9,415.3) (399.1,394.4) (382.6,378.2) (373.8,369.4)

201 (416.9,412.3) (397,392.5) (386.1,381.6) (375.7,371.4)

(ARL0, SDRL0) values for the SN EWMA chart (λ,K1) = (0.2, 2.85)

m n = 10 n = 13 n = 17 n = 23

50 (535.3,530) (508.6,503.4) (500.8,495.7) (494.2,489.2)

60 (528.2,522.9) (498.1,493) (495.8,490.8) (491.5,486.4)

70 (522.4,517.1) (509.7,504.5) (478.7,473.6) (487.2,482.2)

80 (507.4,502.2) (498.5,493.4) (481.5,476.4) (483.5,478.5)

90 (539.6,534.4) (507.7,502.5) (496.2,491.2) (487.7,482.7)

100 (509.4,504.2) (506.4,501.3) (492.1,487.1) (502,497)

110 (513.9,508.7) (486.5,481.4) (476.6,471.5) (480.3,475.3)

120 (524.8,519.6) (492.6,487.5) (488.3,483.3) (489,483.9)

130 (513.7,508.5) (506.5,501.3) (489.7,484.6) (491.6,486.6)

140 (509,503.7) (496.9,491.8) (485.4,480.4) (481.3,476.3)

150 (525.2,520) (506.2,501.1) (486.5,481.4) (483.3,478.3)

160 (507.6,502.4) (502.3,497.1) (495,489.9) (484.8,479.8)

170 (509.8,504.6) (500.5,495.4) (489.3,484.3) (487.3,482.3)

180 (509.3,504.1) (502.4,497.2) (500.5,495.4) (488.8,483.7)

190 (517.9,512.6) (500.4,495.2) (490.7,485.7) (488.8,483.7)

200 (509.7,504.5) (501.1,496) (489.1,484) (482.2,477.2)

2.4 The Shewhart chart based on Wilcoxon Signed Rank

statistic

Bakir (2004) introduced a non-parametric Shewhart-type control chart based on the

Wilcoxon signed rank statistic (S-WSR chart). Following the same notation presented in

section (2.1.2), at each sampling point a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n, following

a continuous symmetric distribution, is collected at time t = 1, 2, . . .. At each sampling
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point the test statistic SRt =
∑n

j=1 sign(Xt,j − θ0)Lt,j is computed and plotted. The sig-

nal rule for the phase II implementation of a two-sided S-WSR chart is that an out-of-

control signal is given if SRt /∈ (−C ′, C ′) where C ′ is a pre-defined control limit coefficient,

C ′ ∈
{

1, 2, . . . , n(n+1)
2

}
. Additionally, for a upper-sided control chart an out-of-control signal

is given if SRt ≥ C and for a lower-sided if SRt ≤ −C∗. where C,C∗ ∈
{

1, 2, . . . , n(n+1)
2

}

2.4.1 Performance and Run Length properties

According to Bakir (2004), the RL properties of the upper-sided, lower-sided and two-

sided S-WSR chart are defined respectively by the random variables L+, L− and L, as:

L+ = min{t; SRt ≥ C }

L− = min{t; SRt ≤ −C∗ }

L = min{t; SRt ≤ −C ′ or SRt ≥ C ′ }

Since, each one of the run lengths L+, L− and L follows a Geometric distribution with

parameters α+ = P(SRt ≥ C), α− = P(SRt ≤ −C∗) and α = P(SRt ≤ −C ′ or SRt ≥ C ′

) respectively, the ARL, ARL−, and ARL+ of the upper-, lower- and the two-sided S-WSR

chart are computed as:

ARL+ =
1

α+

ARL− =
1

α−

ARL =
1

α

In particular, for the computation of the in-control ARL+ value of the upper-sided S-WSR

chart (to be denoted as ARL+
0 ) the Type I error, α+ is computed as:

α+ = P(SRt ≥ C|θ = θ0) = 1− P(SRt < C|θ = θ0)

= 1− P(SRt ≤ C − 1|θ = θ0) = 1− FSRt(C − 1|n, p = 0.5)
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where FSRt(s|n, p = 0.5), s ∈ {−n(n+1)
2

,−n(n+1)
2

+ 2, . . . , n(n+1)
2
− 2, n(n+1)

2
} is the c.d.f of

SRt under the in-control case (i.e. when θ = θ0) and can be derived through the relation

presented in (2.11) as:

FSRt(s|n, p = 0.5) = FSR+
t

(
s+ n(n+1)

2

2

∣∣n, p = 0.5)

)
.

Then the ARL+ of the upper-sided S-WSR chart is finally computed as:

ARL+ =
1

α+
= 1− FSRt(C − 1|n, p = 0.5)

Similarly for the lower-sided S-WSR chart we have:

ARL−0 =
1

a−
=

1

P(SRt ≤ C∗|θ = θ0)
=

1

1− FSRt(C
∗|n, p = 0.5)

Finally, concerning the computation of the in-control ARL for the two-sided case, is com-

puted as (see, Bakir (2004)):

ARL0 =
ARL+

0

2
.

Regarding the value of the control limit coefficient C, it is chosen accordingly to satisfy

the condition that the corresponding in-control value ARL0 will be equal to a fixed con-

stant(say 370.4).

Bakir (2004) studied the chart’s RL properties verifying its in-control distribution-free prop-

erties. He provided several in-control ARL+
0 for given values of n = {8, 10} and C (see Table

2.4). Regarding the out-of-control case, he examined the chart’s performance under different

scenarios of given symmetric distributions.
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Table 2.4: Values of ARL+
0 in subgroups of size n (presented in Bakir (2004), Table 2.)

n = 8 n = 10

C ARL+
0 α+ C ARL+

0 α+

18 8.00 0.12500 25 8.60 0.11621

20 10.24 0.09766 27 10.34 0.09668

22 13.47 0.07422 29 12.49 0.08008

24 18.26 0.05469 31 15.28 0.06543

26 25.60 0.03906 33 18.96 0.05273

28 36.57 0.02734 35 23.81 0.04199

30 51.20 0.01953 37 31.03 0.03223

32 85.33 0.01172 39 40.96 0.02441

34 128.00 0.00781 41 53.89 0.01855

36 256.00 0.00391 43 73.146 0.01367

> 36 ∞ 0.00 45 102.40 0.00977

47 146.29 0.00684

49 204.80 0.00488

51 341.33 0.00293

53 512.00 0.00195

55 1024.00 0.00098

> 55 ∞ 0.00

It should be noted that, in the design of the upper-sided S-WSR chart (or similarly for

the lower- or the two-sided cases) is not possible to find a value for C which guarantees a

corresponding value to be exactly equal to the desired ARL+
0 (say ARL+

0 = 370.4). As a

consequence, during the design phase of the control chart, a value for C is chosen in order

to give an ARL+
0 value as close as possible to the desired one. Generally, for relative large

samples, it may be possible to find a proper value of C which gives a corresponding ARL+
0

value relative close to the desired value, but even so, from Table 2.4 it can be seen that for

n = 10, assuming 370.4 as the desired in-control, the closest value is ARL+
0 = 341.33 for

C = 51 which is practically far from 370.4. As, a consequence, it is not always possible to

obtain the chart’s optimal design parameters in order to perform fair comparisons with other

schemes. Additionally, the determination of the chart’s out-of-control performance is made

through simulations for a given distribution. In fact, in almost all existing schemes based on

the Wilcoxon Signed Rank statistic, their out-of-control performance is examined through
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simulations.

2.4.2 The S-WSR chart with exact RL properties

As it has been already mentioned in previous Sections, over the last two decades there

is a large amount of publications related with distribution-free control charts based on the

Wilcoxon signed rank statistic. However, the determination of their out-of-control perfor-

mance is examined via simulation-based techniques for a given distribution. As a conse-

quence, practitioners may not always be sure about the chart’s exact out-of-control perfor-

mance.

In this Section, we aim to provide an answer to the question “What is the distribution

of SR+
t in general”. More specifically, following the notation presented in section 2.1.2,

the p.m.f. of SR+
t will be depend on n and p = P(Xt,j > θ0|θ), p ∈ (0, 1) and will

be denoted as fSR+
t

(s|n, p). With respect to the Phase II implementation of the control

chart, when the process is in-control, assuming θ as the median of the process we have

that P(Xt,j > θ0|θ = θ0) = P(Xt,j < θ0|θ = θ0) = p0 = 0.5. On the other hand, let

p1 = P(Xt,j > θ0|θ = θ1) = 1 − FX(θ0|θ1) be defined as the probability of having an obser-

vation larger than θ0 when the process runs out-of-control with median θ = θ1. Note that,

a value of p1 close to p0 = 0.5 corresponds to a “small” shift from θ0 to θ1 while, a value of

p1 close to 0 or 1 corresponds to a “large” shift from θ0 to θ1.

2.4.2.1 RL properties of the S-WSR chart

The question that needs to be answered first is “What is p.m.f. of the Wilcoxon Signed

Rank statistic when p = p1 6= p0 ?”, or at least,“ How can we approximate it well ?”. In order

to give an answer to these questions, two approaches will be presented and their efficiency

will be tested. In particular, first the efficiency of the Normal approximation, presented in

Section 2.1.2, for the general distribution of SR+
t will be tested. Moreover, the design of

control schemes based on Signed Ranks in which the general distribution of SR+
t will be

derived through the p.g.f. of SR+
t not only under H0 but also for the alternative hypothesis.

RL properties of the S-WSR chart using the Normal approximation : As it was

presented in Section 2.1.2, Wilcoxon (1947) investigated the asymptotic properties of the

SR+
t statistic under H0. Similarly, Bennett (1972) proved the asymptotic properties of SR+

t

not only under H0 but also for the alternative, H1. In particular, the c.d.f. of SR+ for

p ∈ (0, 1) and s ∈ {0, 1, . . . , n(n+1)
2
} can be replaced by its normal approximation as :
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FSR+(s|n, p) ' FN

(
s+ 0.5− E(SR+

t )√
V(SR+

t )

)
.

Moreover, by substituting the definition of the mean and variance of SR+
t presented in

(2.14) we have:

FSR+(s|n, p) ' FN

s+ 0.5− n(n+1)p
2

)√
n(n+1)(2n+1)pq

6

 .

In terms of the theoretical properties of the distribution of SR+
t , the Normal approxima-

tion provides reliable results, especially as n increases. However, practically speaking, for

the design of a control chart, the primary goal is to make sure that an approximation of SR+

will provide a robust approximation to the corresponding chart’s RL properties. Taking as

an example the upper-sided S-WSR chart, in Figure 2.3 the corresponding ARL+ values are

plotted for different combinations of n = {10, 15, 20} and C (blue dashed lines) when the

Normal approximation is being used. Additionally, the red dashed lines correspond to the

results obtained through Monte-Carlo simulation in which the SR+
t statistic was simulated

from the exact null distribution of SR+
t . It can be clearly seen that even though the Normal

approximation is an efficient way to approximate the distribution of SR+
t , for the compu-

tation of the chart’s RL properties of the control chart the approximation is not accurate

enough.

For a better understanding of why these large differences in the ARL+
0 values might oc-

cur, it will be very useful to compare the in-control RL properties of the upper-sided S-WSR

chart when using the exact null distribution of SRt (entitled as Exact SRt) v.s. using the

Normal approximation (entitled as Normal Approximation). In Table 2.5 some in-control

ARL+ values are presented for different combinations of n and the control limit coefficient C

using the exact null distribution of SRt and the Normal approximation. Moreover, for each

case, the corresponding probabilities p+ are reported along with their absolute differences

between the two cases (entitled as “abs of p+’s”). From Table 2.5, it can be seen that, at each

case, even though the absolute errors of p+ are small (i.e. the Normal approximation works

efficiently), the corresponding values of the ARL+
0 = 1

p+
are quite sensitive to these small

differences. For instance, when n = 20 and C = 136 the absolute difference between the

exact and the approximated probabilities p+ is 0.004. However, regarding the corresponding
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ARL+
0 value, using the Normal approximation we get ARL+

0 = 115.5 while the true value of

ARL+
0 is 211.96. Consequently, the Normal approximation does not guarantee reliable in-

control RL properties for the control chart making it useless for the general approximation

or the chart’s RL properties.
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Figure 2.3: Comparisons for ARL+
0 values between the exact and approximated distribution

of SRt
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Table 2.5: Comparisons for ARL+
0 values between the exact and approximated distribution

of SRt

n = 10

Exact SRt Normal Aproximation

C ARL+ p+ ARL+ p+ abs of p+’s

37 31.03 0.03223 22.79 0.04388 0.01165

39 40.96 0.02441 28.40 0.03521 0.01079

41 53.89 0.01855 35.73 0.02799 0.00944

43 73.14 0.01367 45.35 0.02205 0.00838

45 102.40 0.00977 58.09 0.01721 0.00745

47 146.29 0.00684 75.12 0.01331 0.00648

49 204.80 0.00488 98.04 0.01020 0.00532

51 341.33 0.00293 129.15 0.00774 0.00481

n = 15

Exact SRt Normal Aproximation

C ARL+ p+ ARL+ p+ abs of p+’s

80 92.83 0.01077 56.17 0.01780 0.00703

82 110.70 0.00903 64.70 0.01545 0.00642

84 132.66 0.00754 74.74 0.01338 0.00584

86 160.63 0.00623 86.59 0.01155 0.00532

88 195.04 0.00513 100.61 0.00994 0.00481

90 239.18 0.00418 117.24 0.00853 0.00435

92 297.89 0.00336 137.01 0.00730 0.00394

94 372.36 0.00269 160.60 0.00623 0.00354

n = 20

Exact SRt Normal Aproximation

C ARL+ p+ ARL+ p+ abs of p+’s

120 83.50 0.01198 53.46 0.01870 0.00673

122 93.09 0.01074 58.61 0.01706 0.00632

124 103.98 0.00962 64.33 0.01554 0.00593

126 116.40 0.00859 70.70 0.01414 0.00555

128 130.61 0.00766 77.80 0.01285 0.00520

132 165.57 0.00604 94.56 0.01058 0.00454

134 187.11 0.00534 104.44 0.00957 0.00423

136 211.96 0.00472 115.50 0.00866 0.00394

138 240.71 0.00415 127.90 0.00782 0.00366

140 274.13 0.00365 141.81 0.00705 0.00340

n = 25

Exact SRt Normal Aproximation

C ARL+ p+ ARL+ p+ abs of p+’s

175 115.52 0.00866 73.10 0.01368 0.00502

177 125.21 0.00799 78.33 0.01277 0.00478

179 135.85 0.00736 83.99 0.01191 0.00454

181 147.55 0.00678 90.12 0.01110 0.00432

183 160.43 0.00623 96.76 0.01033 0.00410

185 174.62 0.00573 103.96 0.00962 0.00389

187 190.28 0.00526 111.77 0.00895 0.00369

189 207.57 0.00482 120.24 0.00832 0.00350

191 226.69 0.00441 129.43 0.00773 0.00331

193 247.86 0.00403 139.43 0.00717 0.00314

195 271.33 0.00369 150.29 0.00665 0.00297
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2.4.2.2 The general distribution of SR+
t through the p.g.f. of SR+

t

So far we saw that even though the Normal approximation is an efficient way to ap-

proximate the distribution of SR+
t , it does not provide reliable results in the computation of

the RL properties of a control chart based on the Wilcoxon signed ranks statistic. In this

section a simple method for the exact computation of the general distribution of SR+
t will be

provided not only for the null but also for the alternative hypothesis. As illustrated in 2.1.2

existing methodologies for computing the distribution of SR+
t only focus on the in-control

case. Computing the p.m.f. of SR+
t (exactly, without any approximation) under the alterna-

tive hypothesis (i.e. p 6= 0.5) is more tricky. The solution that has been opted to, consists

in evaluating firstly the p.g.f. GSR+
t

(ω) of SR+
t as (see Bennett (1972))

GSR+
t

(ω) =
n∏
i=1

(pωi + q), (2.22)

where q = 1− p and to obtain the p.m.f. fSR+
t

(s|n, p) of SR+
t by differentiating GSR+

t
(ω),

s times, at ω = 0, using the formula

fSR+
t

(s|n, p) =
1

s!
G

(s)

SR+
t

(ω)

∣∣∣∣
ω=0

,

where G
(s)

SR+
t

(ω) is the sth derivative of GSR+
t

(ω). As GSR+
t

(ω) is a polynomial of degree
n(n+1)

2
then, for s ∈ {0, 1, . . . , n(n+1)

2
}, G(s)

SR+
t

(ω) is a polynomial of degree n(n+1)
2
− s and we

can write

1

s!
G

(s)

SR+
t

(ω) =

n(n+1)
2
−s∑

j=0

cs,jw
j,

where cs,j is the coefficient of degree j corresponding to the polynomial 1
s!
G

(s)

SR+
t

(ω). For a

better understanding of this approach let us consider the following example with n = 4 and

p = 0.2. In this case SR+
t ∈ {0, 1, . . . , 10} and we have

• 1
0!
GSR+

t
(ω) = 0.0016ω10 + 0.0064ω9 + 0.0064ω8 + 0.032ω7 + 0.032ω6 + 0.0512ω5 +

0.128ω4 + 0.128ω3 + 0.1024ω2 + 0.1024ω + 0.4096. The coefficients c0,j are listed

in the first row (for s = 0) of Table 2.6. Replacing ω = 0 in this polynomial gives

fSR+
t

(0|4, 0.2) = 0.4096.

• Now, if we evaluate the first derivative, we have 1
1!
G

(1)

SR+
t

(ω) = 0.016ω9 + 0.0576ω8 +

0.0512ω7 + 0.224ω6 + 0.192ω5 + 0.256ω4 + 0.512ω3 + 0.384ω2 + 0.2048ω + 0.1024.

The coefficients c1,j are listed in the second row (for s = 1) of Table 2.6. Replacing

ω = 0 in this polynomial gives fSR+
t

(1|4, 0.2) = 0.1024.
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...

• If we evaluate the 9th derivative, we have 1
9!
G

(9)

SR+
t

(ω) = 0.016ω + 0.0064. The co-

efficients c9,j are listed in the row corresponding for s = 9 of Table 2.6. Replac-

ing ω = 0 in this polynomial gives fSR+
t

(9|4, 0.2) = 0.0064. A final derivative gives
1

10!
G

(10)

SR+
t

(ω) = 0.0016 and we have fSR+
t

(10|4, 0.2) = 0.0016.

Because polynomials can be efficiently coded as vectors of coefficients, fast arithmetic

operations (addition, multiplication and power) and derivation can be efficiently implemented

(as in Matlab for instance) and the evaluation of fSR+
t

(s|n, p) can be obtained in a very fast

way. Equivalently, the p.m.f of SR+
t can be simply obtained by expanding the product in

(2.22) as showed in Section 2.1.3. It should be noted that this method can also be applied

when p = 0.5, i.e. for the null hypothesis case. As a consequence, this approach is effective

and guarantees the exact determination of the RL properties of the S-WSR chart.

Table 2.6: Computation of the p.m.f. of SR+
t for n = 4 and p = 0.2

s cs,10 cs,9 cs,8 cs,7 cs,6 cs,5 cs,4 cs,3 cs,2 cs,1 cs,0 fSR+
t

(s|4, 0.2)

0 0.0016 0.0064 0.0064 0.0320 0.0320 0.0512 0.1280 0.1280 0.1024 0.1024 0.4096 0.4096

1 - 0.0160 0.0576 0.0512 0.2240 0.1920 0.2560 0.5120 0.3840 0.2048 0.1024 0.1024

2 - - 0.0720 0.2304 0.1792 0.6720 0.4800 0.5120 0.7680 0.3840 0.1024 0.1024

3 - - - 0.1920 0.5376 0.3584 1.1200 0.6400 0.5120 0.5120 0.1280 0.1280

4 - - - - 0.3360 0.8064 0.4480 1.1200 0.4800 0.2560 0.1280 0.1280

5 - - - - - 0.4032 0.8064 0.3584 0.6720 0.1920 0.0512 0.0512

6 - - - - - - 0.3360 0.5376 0.1792 0.2240 0.0320 0.0320

7 - - - - - - - 0.1920 0.2304 0.0512 0.0320 0.0320

8 - - - - - - - - 0.0720 0.0576 0.0064 0.0064

9 - - - - - - - - - 0.0160 0.0064 0.0064

10 - - - - - - - - - - 0.0016 0.0016

2.4.2.3 Exact performance of the S-WSR chart

Since an efficient and robust methodology for the computation of the general distribution

of SRt has been provided, practitioners are now capable of designing a scheme based on the

statistic with exact in- and out-of-control RL properties without any prior knowledge for the

sample’s underlying distribution.

As shown in Section 2.4, the in-control average run length of the upper-sided S-WSR

chart is computed as:

ARL+
0 =

1

α+
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where the Type I error, α+ is:

α+ = P(SRt ≥ C|θ = θ0) = 1− FSRt(C − 1|n, p = 0.5).

Similarly,the out-of-control average run length of the upper-sided S-WSR chart is com-

puted as:

ARL+
1 =

1

1− β+

where the Type II error, β+ is:

β+ = P(SRt < C|θ = θ1) = 1− FSRt(C − 1|n, p = p1).

In Table 2.7 the exact distribution-free in- and out-of-control performance of the upper-

sided S-WSR chart is presented for different values of the sample size n. Generally, in

practice, for the desired in-control ARL+
0 close to values like 200, 370 or 500 are preferable.

So, for sample size n, the corresponding C values are presented with the corresponding in-

control ARL+ to be as close as possible to the above values. Note that, the corresponding

in-control ARL0 values and the false alarm rate probabilities ( α0) of the symmetric two-sided

S-WSR chart can be obtained through the relations ARL0 =
ARL+

0

2
and α0 = 2α+

0 .
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Table 2.7: In- and out-of-control ARL performance of the upper-sided S-WSR chart

p

C 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

(n = 8)

32 85.33 45.30 25.52 15.11 9.34 5.99 3.97 2.71 1.90 1.36

34 127.99 65.68 35.72 20.40 12.14 7.49 4.77 3.12 2.09 1.43

36 255.97 119.42 59.54 31.38 17.35 9.99 5.96 3.67 2.32 1.51

(n = 10)

50 204.79 95.73 48.01 25.57 14.34 8.41 5.14 3.25 2.13 1.44

52 341.30 149.75 70.88 35.76 19.06 10.65 6.21 3.75 2.35 1.51

54 511.93 217.14 99.23 48.28 24.78 13.32 7.45 4.32 2.58 1.59

(n = 12)

64 215.58 94.25 44.78 22.86 12.43 7.16 4.35 2.78 1.87 1.33

66 292.58 124.61 57.69 28.70 15.20 8.52 5.03 3.12 2.03 1.39

68 409.62 168.00 75.18 36.23 18.63 10.15 5.82 3.50 2.21 1.45

(n = 15)

90 239.17 93.91 40.77 19.33 9.93 5.49 3.26 2.09 1.45 1.12

92 297.87 114.68 48.87 22.76 11.48 6.24 3.64 2.28 1.55 1.16

94 372.33 140.46 58.70 26.82 13.28 7.08 4.05 2.49 1.66 1.21

(n = 18)

120 260.03 93.24 37.70 16.96 8.42 4.58 2.74 1.80 1.31 1.07

122 304.06 107.23 42.65 18.88 9.22 4.94 2.90 1.87 1.34 1.08

124 357.08 123.82 48.44 21.10 10.13 5.34 3.08 1.95 1.37 1.09

(n = 25)

200 326.42 95.78 33.15 13.32 6.16 3.26 1.98 1.38 1.11 1.01

202 358.64 104.01 35.59 14.14 6.46 3.38 2.03 1.40 1.11 1.01

204 394.52 113.08 38.26 15.03 6.79 3.52 2.08 1.42 1.12 1.01

It is worth stretching that, even though the S-WSR chart can be theoretically used with

a relatively small sample size, it is practically impossible to design it in order to guarantee an

acceptable and relative large in-control ARL0 say ARL0 > 200. In Table 2.8 some in-control

ARL+ values for the positive-sided S-WSR chart are presented for n = {5, 6, . . . , 10}. For

instance it can be seen that, when n = 5, the largest feasible in-control ARL+ is obtained
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for C = 15 and equals to ARL+
0 = 32. Similarly, when n = 7, the largest feasible in-

control ARL+ is obtained for C = 28 and equals to ARL+
0 = 128. As a general guidance to

practitioners, they are advised to use the S-WSR chart for moderate to large values of the

sample size.

Table 2.8: ARL+
0 values for small sample sizes

(ARL+
0 , C)

n = 5 n = 6 n = 7 n = 8

(6.40, 9) (12.80, 15) (25.60, 22) (51.20, 30)

(6.40, 10) (12.80, 16) (25.60, 23) (51.20, 31)

(10.67, 11) (21.33, 17) (42.67, 24) (85.33, 32)

(16.00, 13) (32.00, 19) (64.00 ,26) (127.99, 34)

(32.00, 15) (64.00, 21) (128.00, 28) (255.97, 36)

(∞, > 15) (∞, > 21) (∞, > 28) (∞, > 36)

2.5 The EWMA chart based on the Wilcoxon Signed

Rank statistic

Graham et al. (2011b) introduced a new nonparametric two-sided EWMA chart based

on the Wilcoxon Signed Rank statistic. Using the Markov-Chain approach of Brook and

Evans (1972) they computed its in-control Run Length properties and obtained its optimal

design parameters. Concerning its out-of-control performance they performed a Monte Carlo

simulation under several symmetric distributions and different shifts in the process median.

In this Section, we will revisit the design and practical implementation of the EWMA chart

based on Signed Ranks as it was originally introduced by Graham et al. (2011b) along with

its in- and out-of-control Run Length properties. The only difference will be that, similarly

with the WSR Shewhart chart, the chart’s out-of-control performance, will be computed

exactly without any assumption of the sample’s underlying distribution.
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The two-sided EWMA chart based on Signed Ranks : Suppose that at each

sampling point a subgroup {Xt,1, Xt,2, . . . , Xt,n} of size n, following a continuous symmetric

distribution, is collected at time t = 1, 2, . . .. The two-sided EWMA chart based on Signed

Ranks (2-WSR EWMA chart) is defined by the following recursive formula:

Zt = λSRt + (1− λ)Zt−1, Z0 = E0(SRt). (2.23)

Similarly with the design of the conventional parametric EWMA chart the asymptotic

upper and lower control limits for the 2-WSR EWMA chart are defined as:

UCL = E0(SRt) +K
√

V0(SRt)×
√

λ

2− λ
.

LCL = E0(SRt)−K
√

V0(SRt)×
√

λ

2− λ
.

where E0(SRt) and V0(SRt) are the in-control mean and variance of SRt. Using the relation-

ship between SRt and SR+
t , presented in (2.11), the in-control expected value and variance

of SRt are equal to:

E0(SRt) = E0

(
2SR+

t +
n(n+ 1)

2

)
=
n(n+ 1)(2p0 − 1)

2
, (2.24)

V0(SRt) = V0

(
2SR+

t +
n(n+ 1)

2

)
=

2n(n+ 1)(2p0 − 1)

3
, (2.25)

where p0 is the in control value. If we assume that θ is the median (i.e. p0 = 0.5) we

simply have E0(SRt) = 0 and V0(SRt) = n(n+1)(2n+1)
6

. As a consequence, the in-control limits

are simply reduced:

UCL = +K

√
λ

2− λ
n(n+ 1)(2n+ 1)

6
. (2.26)

LCL = −K
√

λ

2− λ
n(n+ 1)(2n+ 1)

6
. (2.27)

It should be noted that, as it will be shown hereafter the two-sided WSR EWMA chart,

besides monitoring the median, can be also used for monitoring any percentile defined on
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p0 ∈ (0, 1).

The upper-sided EWMA chart based on Signed Ranks : For the upper-sided

EWMA chart based on Signed Ranks (WSR EWMA chart) the charting statistic is defined

by the following recursive formula:

Zt = max(E0(SRt), λSRt + (1− λ)Zt−1), Z0 = E0(SRt),

with a fixed asymptotic upper control limit and central line defined as:

UCL =E0(SRt) +K1

√
V0(SRt)×

√
λ

2− λ
.

CL =E0(SRt).

Finally, assuming θ0 as the in-control value of the process median (i.e E(SRt) = 0 and

V(SR+
t ) = n(n+1)(2n+1)

6
) the above expressions are simply reduced as:

UCL = +K1

√
λ

2− λ
n(n+ 1)(2n+ 1)

6
.

CL =0.

As a Phase II practical implementation of the operation of the 2-WSR EWMA chart

the following example is provided. Suppose that a practitioner is interested in monitoring a

shift in the process median θ0 = 5 (i.e p0 = 0.5) in the phase II sample of 10 subgroups of

size n = 10 listed in Table 2.9. Additionally, the values of the charting statistic Zt at each

time t, are plotted in Figure 2.4. For illustrative purposes the chart parameters are set to

λ = 0.2, K = 2.7 and Zt = 0. Since p0 = 0.5, the upper, UCL, and lower, LCL control limits

will be symmetric around zero (CL = 0) and will be computed thought the expressions

presented in equations (2.26) and (2.27). The computation of the charting statistic, Zt

defined in (2.23) will be:

• For t = 1 we have SR1 =
∑10

k=1 sign(X1,k − 5)L1,k = 5. The corresponding value for

the charting statistic is Z1 = 0.2× (5) + 0.8× 0 = 1.

• For t = 2 we have SR2 =
∑10

k=1 sign(X2,k − 5)L2,k = 25. The corresponding value for

the charting statistic is Z2 = 0.2× (25) + 0.8× 1 = 5.80.
...
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• For t = 10 we have SR10 =
∑10

k=1 sign(X10,k − 5)L10,k = 31. The corresponding value

for the charting statistic is Z10 = 0.2× (31) + 0.8× (−5.64) = 1.69.

Table 2.9: Illustrative example for the operation of the 2WSR-EWMA chart

Xt,k

n 1 2 3 4 5 6 7 8 9 10

1 5.87 5.98 5.28 5.17 4.88 6.00 7.95 4.97 4.71 7.55

2 5.45 6.55 5.80 4.47 4.69 3.22 4.05 4.99 5.72 4.19

3 4.85 5.32 4.94 5.22 4.34 6.09 4.23 4.65 4.79 3.55

4 4.48 5.43 3.61 6.04 3.82 4.49 5.27 3.94 4.20 5.57

5 5.04 6.14 5.64 5.90 6.37 5.03 4.61 5.15 3.70 5.83

6 3.89 4.57 6.26 5.56 4.74 6.60 5.41 4.98 3.86 5.33

7 3.89 5.56 3.45 4.68 4.12 4.56 3.86 5.11 5.87 6.84

8 5.13 4.40 5.04 4.75 5.54 2.24 4.66 5.32 4.53 6.01

9 6.11 4.77 4.80 5.26 4.56 4.03 4.39 5.81 5.19 5.23

10 6.88 4.84 5.94 3.64 5.16 4.31 5.43 5.21 5.03 6.33

Zt 1.00 5.80 6.04 6.23 1.19 -1.25 -4.00 -1.80 -5.64 1.69

SRt 5 25 7 7 -19 -11 -15 7 -21 31
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2−WSR EWMA chart for Phase II data

Figure 2.4: Illustrative example for the 2-WSR EWMA chart for the Phase II data listed in
Table 2.9

2.5.1 RL properties of the two- and upper-sided WSR EWMA

chart

Following the same approach used for the conventional parametric EWMA chart pre-

sented in Section 1.1.2.1, the transition probability matrix P of the 2-WSR EWMA chart is

the same with the only difference that the transient probabilities, Qj,k are obtained as:

Qj,k = P(Zt is in state k|Zt−1 is in state j)

= P(Hk −∆ ≤ Zt ≤ Hk −∆|Zt−1 = Hj). (2.28)

By substituting the definition of the charting statistic, defined in (2.23), into (2.28) the
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transient probabilities, Qj,k are equal:

Qj,k = P (Hk −∆ ≤ λSRt + (1− λ)Zt−1 ≤ Hk + ∆|Zt−1 = Hj)

= P (Hk −∆ ≤ λSRt + (1− λ)Hj ≤ Hk + ∆)

= P

(
Hk −∆− (1− λ)Hj

λ
≤ SRt ≤

Hk + ∆− (1− λ)Hj

λ

)
= FSRt

(
Hk + ∆− (1− λ)Hj

λ
|n, p1

)
− FSRt

(
Hk −∆− (1− λ)Hj

λ
|n, p1

)
.

Regarding the computation of fSRt(x|n, p1), the method introduced in Section 2.4.2.2

will be used, in which the general distribution of SRt is computed through the p.g.f. of

SR+
t without any knowledge of the underlying distribution. It is worth stretching that in

existing EWMA nonparamtetric control charts based on the Wilcoxon Signed Rank statistic

the out-of-control performance is examined for a given distribution. On the other hand, the

use of this method provides the capability of computing the chart’s RL properties without

any knowledge of the underlying distribution.

As a consequence, the transient probabilities, Qj,k of the 2-WSR EWMA chart for a given

sample size, n and shift p1 ∈ (0, 1), are defined as:

FSR+
t

(
1

2

(
Hk + ∆− (1− λ)Hj

λ
+
n(n+ 1)

2

) ∣∣∣∣n, p1

)
−

FSR+
t

(
1

2

(
Hk −∆− (1− λ)Hj

λ
+
n(n+ 1)

2

) ∣∣∣∣n, p1

)
(2.29)

Finally, The ARL and SDRL values of the WSR EWMA control chart, similarly with

the upper-sided case presented in Section 1.1.2.1, are computed via the standard approach

proposed by Brook and Evans (1972). The only difference will be in the computation of the

transient probabilities where:

• if j = 0,

Qk,0 = FSRt

(
−(1− λ)Hk

λ
|n, p1

)
.
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• if j = 1, 2, . . . ,m,

Qk,j = FSRt

(
Hi + ∆− (1− λ)Hk

λ
|n, p1

)
− FSRt

(
Hi −∆− (1− λ)Hk

λ
|n, p1

)
.

(2.30)

2.5.2 Reliability of the Brook and Evans method in the chart’s RL

properties

The two-sided case : In order to examine the efficiency of the standard method of Brook

and Evans (1972), for computing the RL properties of a EWMA chart based on the Wilcoxon

signed rank statistic, in Figure 2.5 (plain lines) some in control ARL values are presented for

n = {5, 7, 11, 14} and 2m + 1 = {51, 61, . . . , 251} with parameters λ = 0.2, K = 2.85. The

values for λ and K have been randomly selected since in practice, for EWMA schemes, it is

recommended to set λ ≈ 0.2 and K ≈ 3. Moreover, for each case, the corresponding ARL

values, computed through a Monte Carlo simulation of 106 iterations, are reported (dotted

lines). As it was previously stated, in conventional parametric EWMA control charts, setting

the number of subintervals 2m+1 ≈ 200 yields to a reliable approximation of the chart’s RL

properties. However, from Figure 2.5, it can be seen that in the content of a nonparametric

EWMA chart based on the Wilcoxon signed rank statistic the ARL0 values are affected by

the number of subintervals 2m+ 1. In particular, from Figure 2.5 we may conclude that:

• When n = 5, the in control ARL values vary from 468.9 to 509.0 and the corresponding

simulated value is 494.8.

• When n = 7, the in control ARL values vary from 435.2 to 458.0 and the corresponding

simulated value is 450.7.

• When n = 11, the in control ARL values vary from 404.2 to 415.0 and the corresponding

simulated value is 413.7.

• When n = 14, the in control ARL values vary from 384.3 to 416.1 and the corresponding

simulated value is 401.8.

Additionally, from Figure 2.6 it can be seen that, as expected, the exact same pattern occurs

for the corresponding SDRL values also. More specifically:

• When n = 5, the in control SDRL values vary from 463.9 to 503.8 and the corresponding

simulated value is 494.2.

• When n = 7, the in control SDRL values vary from 430.4 to 453.18 and the corre-

sponding simulated value is 445.6.
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• When n = 11, the in control SDRL values vary from 399.6 to 410.4 and the corre-

sponding simulated value is 409.9.

• When n = 14, the in control SDRL values vary from 379.8 to 411.5 and the corre-

sponding simulated value is 393.4.
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Figure 2.5: ARL0 (plain lines) in function of the number of sub-intervals 2m + 1 ∈
{51, 61, . . . , 251} for the 2- WSR EWMA chart with parameters (λ = 0.2, K = 2.85) and
n ∈ {5, 7, 11, 14} using the standard Markov Chain method
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Figure 2.6: SDRL0 (plain lines) in function of the number of sub-intervals 2m + 1 ∈
{51, 61, . . . , 251} for the 2- WSR EWMA chart with parameters (λ = 0.2, K = 2.85) and
n ∈ {5, 7, 11, 14} using the standard Markov Chain method

The upper-sided case : Similarly with the two-sided case the efficiency of the stan-

dard method of Brook and Evans (1972), for the upper-sided WSR EWMA chart is tested.

In Figure 2.7 some in-control ARL values are presented for n = {5, 10, 15, 20} and m =

{50, 60, . . . , 200} with parameters λ = 0.2, K1 = 2.75. From Figure 2.7 we may conclude

that the in-control ARL values are highly affected by the number of subintervals m. For

instance, when n = 15, the in control ARL values vary from 293.4 to 535.5 and the cor-

responding simulated value is 494.8. Similarly, when n = 20, the in control ARL values

vary from 342.4 to 382.6 and the corresponding simulated value is 374.8. We can see that

comparing with the two-sided case the differences are way much larger.
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Figure 2.7: ARL0 values in function of the number of sub-intervals m ∈ {50, 60, . . . , 250} for
the WSR EWMA chart with parameters (λ = 0.2, K1 = 2.75) and n ∈ {5, 10, 15, 20} using
the standard Markov Chain method

2.6 Conclusions

As it has been highlighted so far, the conventional method of Brook and Evans (1972) is

an efficient tool regarding the determination of the RL properties of a phase II parametric

control chart. However, it has been proven that, when it is applied to nonparametric EWMA

charts, there might be cases where the chart’s RL properties are affected by the number of

subintervals. As a consequence, the practitioners, during the design phase of the control

chart, might not be able to properly optimized. The main motivation of this thesis is

to propose schemes in which their RL properties are obtained through robust and simple

methodologies in order to remain unaffected by the number of subintervals. In the rest of

this work, efficient and simple approaches will be provided in which the ARL values (not

only for the in-control but also for the out-of-control cases) are no longer affected by the

number of sub-intervals and become rapidly stable.
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Chapter 3

EWMA charts based on the Sign

statistic with exact run length

properties

Introduction

So far, it has been proved that the standard method of Brook and Evans (1972) is a ro-

bust technique for computing the RL properties of a conventional parametric EWMA chart.

On the other hand, in the previous Chapter, it was highlighted the fact that when a non-

parametric statistic, such as the Sign statistic, is considered, the chart’s corresponding ARL

and SDRL values might be affected by the number of subintervals. As a consequence, there

might be cases where it is impossible to derive the chart’s optimal deign parameters which

will guarantee its optimal performance in terms of the ARL and SDRL metrics.

Recently, Wu et al. (2020) proposed a distribution-free EWMA-TBEA (Time Between Events

and Amplitude) control chart where they introduced a new approach called as the “continu-

ousify” method in which the values of the initial discrete random variables are transformed

into continuous ones based on weighted Gaussian Kernels. As a result, since the Markov

chain of Brook and Evans (1972) performs well in the case of continuous random variables,

Wu et al. (2020) showed that the above method yields robust results without the need of

setting large values for the number sub-intervals used in the Markov chain. In the rest of

this Chapter, the“continuousify” method will be applied to the nonparametric EWMA chart

based on the Sign statistic which, as it will be proven hereafter, yields to reliable results and

the exact determination of the chart’s in- and out-of-control RL properties. Parts of this

Chapter have been published in Perdikis et al. (2021c).
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3.1 A short review on the Kernel estimation method

The KDE (Kernel Density Estimation), originally introduced from the idea of Rosenblatt

and Parzen (Parzen (1962)) dedicated to density estimation, is a very efficient technique

being widely used for the estimation of the p.d.f. or the c.d.f. of random variables. (Wand

and Jones (1994), Silverman (1986))

The Rosenblatt-Parzen Kernel estimator for the p.d.f. is:

f̂(x) =
1

nh

n∑
i=1

K

(
x− ui
h

)
, (3.1)

where u = (u1, u2, . . . , un) is the random sample from the population with unknown density

function f(x) of size n. The parameter h controls the smoothness of the estimator. Note

that, for every Kernel function, the following conditions must hold:

• K(x) is non-negative: K(x) ≥ 0.

• K(x) is symmetric: K(x) = K(−x).

In addition K(x) should be centered around zero with finite variance, i.e.:

∫
Ω

K(x)dx = 1,∫
Ω

xK(x)dx = 0,∫
Ω

x2K(x)dx = k2 > 0.

Similarly, the Nadaraya Kernel estimator for the c.d.f. is defined as follows:

F̂ (x) =
1

n

n∑
i=1

∫ x−ui
h

−∞
K(y)dy =

1

n

n∑
i=1

W

(
x− ui
h

)
, (3.2)

where W (x) =
∫ t
−∞K(t)dt. According to Silverman (1986), the most popular metric, used

as a measure of accuracy is the MISE (Mean Integrated Squared Error) expressed as:

MISE(f̂(x)) =

∫
∀x
MSE(f̂(x))dx,

where MSE(f̂(x)) = E(f̂(x) − f(x))2 is the mean squared error term. As shown in Parzen

(1962) the optimal value of the parameter h can be obtained through the minimization of
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the AMISE (approximated MISE):

AMISE(f̂(x)) =
1

4
h4k2

2

∫
∀x

(f (2)(x))2dx+
1

nh

∫
∀t
K2(t)dt.

Moreover, Parzen (1962) showed that the optimal value of ha obtained by minimizing the

AMISE is:

ha = k
− 2

5
2

(∫
∀t
K2(t)dt

) 1
5
(∫
∀x

(f (2)(x))2dx

)− 1
5

n−
1
5 .

In case where the density function of the observed data is unknown (as a consequence f (2)(x)

is unknown) Rahman et al. (1995) proposed the following estimation:

ˆf (2) =
1

nh

n∑
i=1

K(2)

(
x− ui
h

)
.

Alternately, a general class of density estimators, (or equivalently for c.d.f. Kernel esti-

mation) can be defined in terms of a normalised sample, ζ1, ζ2, . . . , ζn (
∑n

i=1 ζi = 1) carrying

a weight attached to the observations:

f̂(x) =
1

nh

n∑
i=1

ζiK

(
x− ui
h

)
(3.3)

F̂ (x) =
1

n

n∑
i=1

ζiW

(
x− ui
h

)
(3.4)

3.1.1 The use of the “continuousified” method in SPC

Wu et al. (2020) proposed that any discrete random variable, X, can be well-presented by

a new continuous one, X∗ as a mixture of Normal distributions Y ∗t where, for each ψt ∈ Ψ,
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Y ∗t ∼ N(ψt, h) the corresponding p.d.f. fX∗(x|θ) and c.d.f. FX∗(x|θ) of X∗t is computed as:

fX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)fN(x|ψ, h), (3.5)

FX∗(x|θ) =
∑
ψ∈Ψ

fX(ψ|θ)FN(x|ψ, h), (3.6)

For illustration purposes and a better understanding of the “continuousify”method the fol-

lowing example is considered. Suppose that X is an discrete random variable, defined in

{−1, 0, 1} with corresponding p.m.f. fX(x):

fX(x) =


1
4
, if x = −1

1
4
, if x = 0

1
2
, if x = 1

.

Then according to Wu et al. (2020), X can be well-presented by a new continuous random

variable, X∗ as a mixture of Normal distributions as:

X∗ =


Y ∗−1, if X = −1

Y ∗0 , if X = 0

Y ∗1 , if X = 1

.

where Y ∗−1 ∼ N(−1, h), Y ∗0 ∼ N(0, h) and Y ∗1 ∼ N(1, h) Additionally, the parameter h is

a fixed value called as the “continuousify” parameter.

Then the p.d.f and c.d.f of the transformed variable X∗ are computed as:

fX∗(x|h) = w−1fN(x| − 1, h) + w0fN(x|0, h) + w1fN(x|1, h),

FX∗(x|h) = w−1FN(x|0, h) + w0FN(x|0, h) + w1FN(x|1, h),

with weights w−1 = 1
4
,w0 = 1

4
and w1 = 1

2
, corresponding to the probabilities of fX(x|h), x ∈

{−1, 0, 1}.
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3.2 The “continuousified” two-sided SN EWMA chart

3.2.1 Theoretical properties of the new transformed variable

For the proposed scheme based on the Sign statistic, since the domain in which SNt is

defined is Ψ = {−n,−n + 2, . . . , n − 2, n}, the statistic SNt will be transformed into a new

continuous one denoted as SN∗t :

SN∗t =



Generate from N(−n, h), if SNt = −n

Generate from N(−n+ 2, h), if SNt = −n+ 2
...

...

Generate from N(0, h), if SNt = 0
...

...

Generate from N(n− 2, h), if SNt = n− 2

Generate from N(n, h), if SNt = n

.

The computation of the p.d.f. fSN∗t (s|n, p+1) and c.d.f. FSN∗t (s|n, p+1) of the new transformed

statistic, SN∗t defined for s ∈ Ψ will be obtained as:

fSN∗t (s|n, p+1) =
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
fN(s|ψ, h), (3.7)

FSN∗t (s|n, p+1) =
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
FN(s|ψ, h), (3.8)

3.2.2 Charting statistic and control limits

Following the same design with the conventional two-sided EWMA chart, the charting

statistic of the “continuousified” two-sided SN EWMA (denoted as 2C-SN EWMA chart)

will be defined as:

Z∗t = λSN∗t + (1− λ)Z∗t−1, Z
∗
0 = E0(SN∗t ), (3.9)

with fixed asymptotic control limits:

LCL = E0(SN∗t )−K
√

SN(SN∗t )×
√

λ

2− λ
. (3.10)
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UCL = E0(SN∗t ) +K
√

V0(SN∗t )×
√

λ

2− λ
. (3.11)

The mean E(SN∗t ) and variance V(SN∗t ) of SN∗t are equal to:

E(SN∗t ) = E(SNt),

V(SN∗t ) = V(SNt) + h2. (3.12)

More specifically, let EN(X) = µ and VN(X) = h2 denote the mean and variance of a

random variable, X, from a Normal distribution. Then the mean of SN∗t , is computed as:

E(SN∗t ) =

∫ ∞
−∞

s× fSN∗t (s|n, p+1)ds

=

∫ ∞
−∞

s×
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
× fN(s|ψ, h)ds

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
×
∫ ∞
−∞

s× fN(s|ψ, h)ds

]
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
× EN(s)

]
=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
× ψ

]
= E(SN)

Similarly, using the fact that E(SN∗t ) = E(SN) the variance of SN∗t is computed as:
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V(SN∗t ) = E (SN∗t )
2 −

(
E(SN∗t )

)2

=

∫ ∞
−∞

s2 × fSN∗t (s|n, p1)ds−
(
E(SN∗t )

)2

=

∫ ∞
−∞

s2 ×
∑
ψ∈Ψ

[
fSNt

(
ψ + n

2
|n, p+1

)
× fN(s|ψ, h)

]
ds−

(
E(SNt)

)2

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
×
∫ ∞
−∞

s2 × fN(s|ψ, h)ds

]
−
(
E(SNt)

)2

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
× EN(s2)

]
−
(
E(SNt)

)2

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
×
(
VN(s) + (EN(s))2

)]
−
(
E(SNt)

)2

=
∑
ψ∈Ψ

[
fBin

(
ψ + n

2
|n, p+1

)
×
(
h2 + ψ2

)]
−
(
E(SNt)

)2

= h2 ×
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
+
∑
ψ∈Ψ

ψ2 × fBin

(
ψ + n

2
|n, p+1

)
−
(
E(SNt)

)2

= h2 + E (SNt)
2 −

(
E(SNt)

)2

= h2 + V(SNt).

It can be clearly seen that the expressions in (3.12) are obtained regardless the nonpara-

metric statistic being used. As a consequence, the “continuousified” method is applicable to

any nonparametric statistic. Finally, for the in-control case (i.e. for p0 = 0.5, assuming θ as

the process median. the in-control mean and variance of SN∗t will be:

E(SN∗t ) = 0,

V(SN∗t ) = n+ h2. (3.13)

For illustrative purposes regarding the computation of the charting statistic of the pro-

posed chart, a random generated dataset of t = 5 subgroups of size n = 10 is provided

in Table 3.1. The values of the design parameters, (λ,K, h) = (0.2, 2.85, 0.2), have been

randomly chosen just for illustration purposes. Finally, the charting statistic Z∗t is plotted

in Figure 3.1.

• For t = 1 we have SN1 = −2. The corresponding value for SN∗1 is computed by
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generating a N(−2, 0.2) random variable Y1 = −1.953. The value of the charting

statistic is Z∗1 = 0.2× Y1 + 0.8× 0 = −0.391.

• For t = 2 we have SN2 = 4. The corresponding value for SN∗2 is computed by generating

a N(4, 0.2) random variable Y2 = 3.792. The value of the charting statistic is Z∗2 =

0.2× Y2 + 0.8× (−0.391) = 0.446.
...

• For t = 10 we have SN10 = −4. The corresponding value for SN∗10 is computed by

generating a N(−4, 0.2) random variable Y10 = −4.131. The value of the charting

statistic is Z∗10 = 0.2× Y10 + 0.8× (1.296)) = 0.211.

−2

−1

0

1

2

1 2 3 4 5 6 7 8 9 10
sample 

Z
t

2C−SN EWMA chart for Phase II data

Figure 3.1: Illustrative example for the 2C-SN EWMA chart for the Phase II data listed in
Table 3.1
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Table 3.1: Illustrative example for the 2C-SN EWMA chart

Xt,k

n 1 2 3 4 5

1 4.021 5.539 6.061 5.287 3.082

2 4.257 6.795 5.856 4.105 5.579

3 5.015 4.767 5.767 5.123 4.047

4 5.092 5.194 4.549 4.927 4.049

5 3.463 5.677 5.615 5.475 4.954

6 3.899 5.166 5.896 5.051 3.986

7 5.220 5.260 4.536 5.534 2.978

8 5.708 4.169 5.540 4.047 3.408

9 4.769 4.925 5.627 3.055 6.139

10 4.111 5.973 3.813 6.222 6.974

SNt -2 4 4 2 -4

SN∗t -1.953 3.792 3.875 1.953 -4.131

Z∗t -0.391 0.446 1.132 1.296 0.211

3.2.3 Run Length properties and efficiency

In order to obtain the RL properties of the two-sided 2C-SN EWMA control chart, the

standard discrete-time Markov chain approach of Brook and Evans (1972) presented in Sec-

tion 2.3.1 will be used with the only difference that the p.m.f. of SNt will be replaced by the

p.d.f. of SN∗t in the computation of the transient probabilities Qk,i as:

FSN∗t

(
Hk + ∆− (1− λ)Hj

λ

∣∣∣∣n, p1

)
− FSN∗t

(
Hk −∆− (1− λ)Hj

λ

∣∣∣∣n, p1

)
.

(3.14)

It should be pointed out that even though the operations of this chart requires random

numbers to be generated, its Run Length properties (ARL, SDRL, . . .), are obtained directly

through the distribution of the SN∗t with the exact Markov chain method shown above with-

out the need of performing any simulations. This fact has also mentioned by Wu et al. (2020).

In order to show the efficiency of the “continuousify” method, Table 3.2 presents some

in-control ARL values of the 2-SN EWMA (without “continuousify”) and 2C-SN EWMA

(with “continuousify”) charts for λ = 0.2, K = 2.85 for several combinations of (n, p0). In

65



Table 3.2, the value h = 0.2 has been fixed but, as it will be highlighted in the next Section,

the results are are not significantly affected by this choice. Additionally, even though the

value of K is fixed as it will be shown hereafter the following results are consistent regardless

the value of K. Based on the results in Table 3.2 we draw the following conclusions:

• As it has has been already shown in Figure 2.1, the ARL0 values obtained without

“continuousify” (i.e. the 2-SN EWMA chart) strongly fluctuate depending on the value

of 2m+1. Clearly, they do not exhibit any monotonic convergence. For instance, when

n = 6, the in control ARL values obtained without “continuousify” range from 392.5

to 469.6 (see, Table 3.2). Of course, we may argue with the fact that, by considering

a really large number of subintervals and a large sample size, the results, obtained by

the classical method of Brook and Evans (1972), will eventually converge. However,

for small to moderate sample sizes, there is not guarantee that the same will happen

and most important the computational cost is significantly increased.

• On the contrary, for 2m+ 1 ≥ 101, the ARL values obtained with the “continuousify”

method (i.e. the 2C-SN EWMA chart) exhibit a strong stability and they seem to

converge rapidly to a reliable value. Even for 2m + 1 = 101 the results obtained

with the “continuousify” approach are very reliable. For instance, using the same case

when n = 6, the ARL0 values obtained with “continuousify” converge rapidly to 419.

As a consequence, we are able to compute the chart’s ARL0 value eliminating the

effect of ties an most important minimizing the computational cost during the chart’s

optimization.

We have also computed the ARL values of the 2-WSR EWMA chart using 106 Monte-

Carlo simulation runs (see bottom of Table 3.2). What can be seen is that the in-control

ARL values obtained with the “continuousify” method are almost the same or just a bit

larger to the ones obtained using simulations. Additionally, as expected, the same pattern

occurs for the corresponding SDRL values.

Based on the results presented so far, for randomly selected values of the design param-

eters (λ,K) the superiority of the “continuousify” method was verified when is being used in

a nonparametric two-sided EWMA scheme based on the Sign statistic. It has been proven

that the continuous transformation of the discrete statistic (such as the Sign statistic) com-

bined with the standard method of the Brook and Evans (1972) makes the in-control ARL

values steady and unaffected by the number of subinterval, even when 2m + 1 ≈ 101. The

rest of this Chapter will be focused to an extensive sensitivity analysis, regarding the per-

formance and reliability of the “continuousify” method when is used in the two-sided Sign

EWMA charts.
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Table 3.2: Comparison of ARL values for the two-sided 2-SN EWMA (without “contin-
uousify”) and two-sided 2C-SN EWMA (with “continuousify” and h = 0.2) chart when
λ = 0.2 and K = 2.85

(n = 6, p+1 = 0.5) (n = 12, p+1 = 0.5) (n = 21, p+1 = 0.5) (n = 23, p+1 = 0.5)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 (392.5,387.9) (416.5,411.9) (418.1,413.5) (382.6,378.1) (350.3,346.1) (367.1,362.7) (376.3,372) (371.6,367.3)

61 (469.6,464.6) (417.4,412.8) (372.9,368.5) (382.6,378.2) (366.7,362.4) (372.2,367.8) (383.9,379.6) (371.5,367.1)

71 (427.5,422.8) (418,413.3) (382.9,378.5) (383.1,378.6) (377.6,373.3) (372.3,368) (359,354.8) (371.4,367.1)

81 (426.9,422.3) (418.3,413.7) (399.6,395.2) (383.4,379) (368.1,363.7) (372.9,368.6) (381.1,376.8) (372.4,368.1)

91 (433,428.4) (418.5,413.9) (397.7,393.2) (383.6,379.2) (378.9,374.5) (373.1,368.8) (375.1,370.7) (372.7,368.4)

101 (437.4,432.8) (418.7,414.1) (386.6,382.2) (383.8,379.4) (377.1,372.8) (373.3,368.9) (376.8,372.4) (372.8,368.4)

111 (419.9,415.3) (418.8,414.2) (389.5,385) (383.9,379.5) (375.7,371.4) (373.4,369.1) (368,363.7) (372.9,368.5)

121 (406.6,401.9) (418.9,414.3) (388.3,383.9) (384,379.6) (383.5,379.1) (373.5,369.1) (377.2,372.9) (373,368.6)

131 (409.5,405) (419,414.4) (391.8,387.3) (384.1,379.6) (381.2,376.9) (373.5,369.2) (370.7,366.4) (373,368.7)

141 (400.9,396.3) (419.1,414.4) (372.5,368.1) (384.1,379.7) (369.2,364.8) (373.6,369.3) (381.7,377.4) (373.1,368.8)

151 (406.6,401.9) (419.1,414.5) (375.5,371.1) (384.2,379.8) (379.1,374.7) (373.6,369.3) (373.7,369.3) (373.1,368.8)

161 (431.1,426.5) (419.2,414.5) (375.8,371.4) (384.2,379.8) (385,380.6) (373.7,369.3) (372.9,368.6) (373.2,368.8)

171 (431,426.4) (419.2,414.6) (372.7,368.4) (384.2,379.8) (373.2,368.9) (373.7,369.4) (376.9,372.5) (373.2,368.9)

181 (419.6,414.9) (419.2,414.6) (382.2,377.8) (384.3,379.8) (371.3,367) (373.7,369.4) (372.8,368.5) (373.2,368.9)

191 (419.9,415.3) (419.3,414.6) (382.6,378.2) (384.3,379.9) (373.8,369.4) (373.8,369.4) (371.7,367.3) (373.2,368.9)

201 (416.9,412.3) (419.3,414.6) (386.1,381.6) (384.3,379.9) (375.7,371.4) (373.8,369.4) (369.5,365.2) (373.3,368.9)

sim (418.7, 414.5) (384.0,379.9) (373.6 ,368.8) (372.0 ,378.4)

(n = 6, p+1 = 0.52) (n = 12, p+1 = 0.55) (n = 21, p+1 = 0.53) (n = 23, p+1 = 0.52)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 (300.9,295.9) (318.4,313.3) (77.3,71.5) (73.3,67.7) (101.2,95.7) (104.6,99.1) (172.3,167) (170.7,165.4)

61 (354.8,349.5) (318.9,313.9) (71.7,66.1) (73.3,67.6) (104.4,98.9) (105.5,100) (174.9,169.6) (170.5,165.2)

71 (325.7,320.6) (319.3,314.2) (73.1,67.5) (73.3,67.6) (107,101.5) (105.5,100) (165.7,160.5) (170.5,165.2)

81 (325.2,320.1) (319.5,314.4) (74.9,69.2) (73.3,67.7) (104.3,98.7) (105.6,100.1) (173.8,168.5) (170.8,165.5)

91 (329.6,324.6) (319.6,314.6) (74.6,68.9) (73.3,67.7) (106.7,101.1) (105.6,100.1) (171.5,166.2) (170.9,165.6)

101 (333,328) (319.7,314.7) (73.5,67.8) (73.3,67.7) (106.1,100.6) (105.7,100.1) (172.1,166.8) (170.9,165.6)

111 (319.2,314.2) (319.8,314.8) (73.7,68) (73.3,67.7) (106.1,100.5) (105.7,100.1) (169.2,163.9) (170.9,165.6)

121 (310.5,305.4) (319.9,314.8) (73.9,68.2) (73.4,67.7) (107.6,102.1) (105.7,100.2) (172.5,167.2) (170.9,165.7)

131 (312.6,307.6) (319.9,314.9) (73.7,68) (73.4,67.7) (107.3,101.8) (105.7,100.2) (169.7,164.4) (171,165.7)

141 (306.7,301.7) (320,314.9) (71.5,65.9) (73.4,67.7) (104.7,99.2) (105.7,100.2) (174.1,168.8) (171,165.7)

151 (310.5,305.4) (320,314.9) (72,66.4) (73.4,67.7) (106.5,100.9) (105.7,100.2) (171,165.7) (171,165.7)

161 (327.8,322.8) (320,315) (72.2,66.6) (73.4,67.7) (107.8,102.3) (105.7,100.2) (170.6,165.3) (171,165.7)

171 (327.8,322.8) (320,315) (71.8,66.2) (73.4,67.7) (105.5,99.9) (105.7,100.2) (172.3,166.9) (171,165.7)

181 (319.9,314.8) (320.1,315) (72.8,67.1) (73.4,67.7) (105.2,99.6) (105.7,100.2) (170.8,165.5) (171,165.7)

191 (320.1,315) (320.1,315) (73,67.3) (73.4,67.7) (105.3,99.7) (105.7,100.2) (170.2,164.9) (171,165.7)

201 (317.9,312.9) (320.1,315) (73.4,67.7) (73.4,67.7) (105.9,100.4) (105.7,100.2) (169.8,164.5) (171,165.7)

sim (317.5,312.7) (73.1,66.7) (104.9,99.4) (170.6,164.4)
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3.2.4 Sensitivity analysis

Based on the results presented so far, it is clear that the “continuousify” method is a

great improvement in the computation of the RL properties of a nonparametric EWMA

control chart based on the Sign statistic. In this Section, the stability, and the advantages

that the “continuousify” method provides will be highlighted, focussing on the:

• Effect of the chart parameters (λ,K, h) and the desired value for ARL0.

• Effect of the shift magnitude p1.

• Effect of the Kernel density estimation method.

• Effect of the in-control value of p+1.

3.2.4.1 Effect of the chart parameters (λ,K, h) and the desired value of ARL0

In should be noted that, in the computations performed so far, the smoothing parameter

h was fixed and equal to 0.2. Generally, in Kernel density estimation methods, the optimal

value of h is usually obtained through optimization procedures as presented in Section 3.1.

In Table 3.3 for different combinations of n, p+1 and h = {0.1, 0.15, 0.2, 0.25, 0.3} the corre-

sponding in-control ARL values are presented as a function of the number of subintervals.

For each case, the chart’s parameters λ,K are chosen in order to give a desired ARL0 = 370.4.

From Table 3.3 it can be seen that the value of h does not affect the results. In particular,

when h is neither too small or too large the results the same. As a consequence, setting the

value of h ≈ 0.2 is a reasonable choice to consider.

During the design phase of an EWMA chart, practitioners need to find a combination of the

parameters λ,K which will give a corresponding in control ARL(K,λ, p0) = ARL0 where

ARL0 is a predefined fixed constant. In practice, the desired value of the in-control ARL is

set to be equal (or at least really close) to relative large values such as 200, 370.4, or 500. In

Table 3.4 comparisons between the two-sided 2-SN EWMA (without “continuousify”) and

two-sided 2C-SN EWMA (with “continuousify” and σ = 0.2) charts are presented when the

desired fixed ARL0 values are 200, 370.4 and 500. It can be seen that for ARL0 = 200

there are no significant differences between the two approaches. For, ARL0 = 370.4 or

ARL0 = 500 from Table 3.4 we see that by considering a small numbers of subintervals the

results obtained by the standard approach of Brook and Evans fluctuate.
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Table 3.3: ARL values of the 2C-SN EWMA chart for λ = 0.2, K = 2.85 and for fixed values
of h = {0.1, 0.15, . . . , 0.3} and different values of n

(n, p+1) = (5, 0.5) (n, p+1) = (8, 0.5) (n, p+1) = (11, 0.5)

h h h

2m+ 1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 416.1 420.4 420.6 420.1 419.6 392.0 393.2 393.6 393.9 394.1 369.7 382.7 388.3 389.3 388.9

61 424.6 422.3 421.7 421.2 420.6 393.1 394.0 394.4 394.7 395.0 395.2 392.2 391.0 390.3 389.6

71 422.9 422.9 422.3 421.8 421.3 395.0 394.7 394.9 395.2 395.5 392.8 392.0 391.4 390.7 390.0

81 423.8 423.3 422.7 422.2 421.7 394.8 395.0 395.3 395.6 395.9 392.4 392.1 391.6 390.9 390.2

91 424.1 423.6 423.0 422.5 421.9 395.0 395.3 395.5 395.8 396.1 392.0 392.3 391.8 391.1 390.4

101 424.3 423.8 423.2 422.7 422.1 395.3 395.4 395.7 396.0 396.2 393.4 392.4 391.9 391.2 390.6

111 424.5 423.9 423.4 422.8 422.3 395.4 395.6 395.8 396.1 396.4 392.9 392.5 392.0 391.3 390.7

121 424.6 424.0 423.5 423.0 422.4 395.5 395.7 395.9 396.2 396.5 392.9 392.6 392.0 391.4 390.7

131 424.7 424.1 423.6 423.1 422.5 395.6 395.8 396.0 396.3 396.6 393.0 392.7 392.1 391.5 390.8

141 424.8 424.2 423.7 423.1 422.6 395.6 395.8 396.1 396.3 396.6 393.1 392.7 392.1 391.5 390.9

151 424.8 424.3 423.7 423.2 422.6 395.7 395.9 396.1 396.4 396.6 393.1 392.7 392.2 391.6 390.9

161 424.9 424.3 423.8 423.2 422.7 395.7 395.9 396.1 396.4 396.7 393.1 392.8 392.2 391.6 390.9

171 424.9 424.4 423.8 423.3 422.7 395.7 395.9 396.2 396.5 396.7 393.1 392.8 392.2 391.6 390.9

181 424.9 424.4 423.8 423.3 422.8 395.8 395.9 396.2 396.5 396.8 393.2 392.8 392.2 391.6 391.0

191 425.0 424.4 423.9 423.3 422.8 395.8 396.0 396.2 396.5 396.8 393.2 392.8 392.3 391.6 391.0

201 425.0 424.4 423.9 423.4 422.8 395.8 396.0 396.2 396.5 396.8 393.2 392.8 392.3 391.7 391.0

(n, p+1) = (13, 0.6) (n, p+1) = (15, 0.55) (n, p+1) = (20, 0.52)

h h h

2m+ 1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 17.7 17.8 17.8 17.9 17.9 59.4 59.4 59.4 59.5 59.6 179.4 182.2 183.9 184.9 185.3

61 17.8 17.8 17.9 17.9 17.9 58.9 59.2 59.4 59.5 59.6 185.9 185.7 185.7 185.7 185.7

71 17.9 17.9 17.9 17.9 17.9 59.3 59.3 59.4 59.5 59.6 184.0 185.1 185.6 185.8 185.8

81 17.8 17.8 17.9 17.9 17.9 59.2 59.3 59.4 59.5 59.6 185.6 185.7 185.8 185.8 185.9

91 17.8 17.8 17.9 17.9 17.9 59.4 59.3 59.4 59.5 59.7 185.5 185.8 185.8 185.9 185.9

101 17.8 17.8 17.9 17.9 17.9 59.3 59.3 59.4 59.5 59.7 186.5 185.9 185.9 185.9 186.0

111 17.8 17.8 17.9 17.9 17.9 59.3 59.3 59.4 59.5 59.7 185.8 185.9 185.9 186.0 186.0

121 17.8 17.8 17.9 17.9 17.9 59.3 59.3 59.4 59.5 59.7 186.0 185.9 185.9 186.0 186.0

131 17.8 17.8 17.9 17.9 17.9 59.3 59.3 59.4 59.5 59.7 185.8 185.9 186.0 186.0 186.1

141 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 185.9 186.0 186.0 186.1

151 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.8 185.9 186.0 186.0 186.1

161 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 186.0 186.0 186.0 186.1

171 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 186.0 186.0 186.0 186.1

181 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 186.0 186.0 186.1 186.1

191 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 186.0 186.0 186.1 186.1

201 17.8 17.8 17.9 17.9 17.9 59.3 59.4 59.4 59.5 59.7 185.9 186.0 186.0 186.1 186.1
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Table 3.4: Comparison of in control ARL values for the two-sided 2-SN EWMA (without
“continuousify”) and two-sided 2C-SN EWMA (with “continuousify” and h = 0.2) for several
desired ARL0 values

(In-control ARL values for the 2-SN EWMA and 2C-SN EWMA charts for desired ARL0 = 200)

(n, λ,K) = (5, 0.2, 2.6014) (n, λ,K) = (8, 0.2, 2.6114) (n, λ,K) = (9, 0.2, 2.6130) (n, λ,K) = (11, 0.2, 2.6143)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 218.2 199.0 209.7 199.2 192.8 199.0 206.4 199.4

71 200.0 199.5 187.0 199.6 201.5 199.6 203.1 199.7

91 206.3 199.7 201.5 199.8 204.0 199.8 210.5 199.8

111 192.0 199.8 197.0 199.9 197.9 199.9 197.6 199.9

131 201.6 199.9 198.2 199.9 205.1 199.9 198.6 199.9

151 201.4 199.9 199.0 200.0 200.0 200.0 198.4 200.0

171 196.8 200.0 200.9 200.0 196.1 200.0 198.8 200.0

191 198.8 200.0 200.5 200.0 196.0 200.0 203.4 200.0

201 198.0 200.0 197.2 200.0 201.6 200.0 201.6 200.0

(In-control ARL values for the 2-SN EWMA and 2C-SN EWMA charts for desired ARL0 = 370.4)

(n, λ,K) = (5, 0.2, 2.8074) (n, λ,K) = (8, 0.2, 2.8276) (n, λ,K) = (9, 0.2, 2.8252) (n, λ,K) = (11, 0.2, 2.8306)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 327.1 367.7 381.0 368.1 387.3 368.4 351.9 367.4

71 375.9 369.1 382.8 369.2 352.0 369.4 372.9 369.6

91 366.1 369.7 368.8 369.8 355.5 369.9 361.3 369.9

111 359.2 370.0 370.6 370.0 357.3 370.1 378.1 370.1

131 367.8 370.2 387.8 370.2 366.4 370.2 367.0 370.2

151 382.0 370.3 366.7 370.3 363.2 370.3 384.8 370.3

171 365.7 370.3 367.7 370.3 377.6 370.3 373.4 370.4

191 374.8 370.4 367.0 370.4 381.0 370.4 362.4 370.4

201 362.0 370.4 371.4 370.4 369.5 370.4 369.4 370.4

(In-control ARL values for the 2-SN EWMA and 2C-SN EWMA charts for desired ARL0 = 500)

(n, λ,K) = (5, 0.2, 2.85) (n, λ,K) = (7, 0.2, 2.882) ((n, λ,K) = (9, 0.2, 2.89) (n, λ,K) = (11, 0.2, 2.910)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 579.0 495.6 525.2 495.9 473.3 497.0 587.5 497.7

71 527.0 497.8 528.6 498.0 548.8 498.5 491.3 498.3

91 516.0 498.7 515.2 498.8 498.1 499.1 525.0 499.0

111 519.9 499.2 521.3 499.2 512.6 499.4 484.9 499.4

131 524.1 499.4 532.0 499.5 501.4 499.6 496.9 499.6

151 492.2 499.6 487.1 499.6 500.5 499.7 501.4 499.7

171 508.7 499.7 493.3 499.7 502.8 499.8 491.2 499.8

191 502.4 499.8 494.2 499.8 501.9 499.9 508.7 499.9

201 506.4 499.8 491.6 499.9 502.7 499.9 498.5 499.9
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3.2.4.2 Effect of the shift magnitude p1

As it was presented above, the in-control ARL values of the 2-SN EWMA chart are

significantly affected by the number of subintervals. For the investigation of the out-of-

control performance of the “continuousify”method two types of scenarios will be investigated.

The first one account for large shifts in the process (Table 3.5), while the second one for small

shifts in the process median (Table 3.6). From Table 3.5 it can be seen that minor differences

exist for p1 > 0.6. Nevertheless, since we proved that for the in-control case the results are

different, practitioners may not be sure about the true out-of-control performance of the

chart in term of its RL properties. On the other hand, when we have a small shift p1 ≈ 0.5,

from Table 3.6, we can observe that for small sample sizes and small number of subintervals

the results fluctuate. For example, for n = 5 and p1 = 0.52 the ARL1 values range from

305.1 to 341.7. On the other hand, for the same case, using the “continuousify”method the

corresponding ARL1 values become steady really soon even when 2m+ 1 ≈ 101.
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Table 3.5: l ARL1 values for the two-sided 2-SN EWMA (without “continuousify”) for large
shifts

n = 8 n = 11 n = 15

2m+ 1 p+1 = 0.55 p+1 = 0.6 p+1 = 0.65 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.65 p+1 = 0.7

51 102.9 28.6 13.0 7.9 76.0 20.5 9.7 6.1 58.6 15.4 7.6 5.0

61 105.4 28.9 13.1 7.9 84.5 21.8 10.1 6.3 59.7 15.5 7.6 4.9

71 106.7 29.3 13.2 7.9 81.9 21.4 10.0 6.2 59.0 15.4 7.6 4.9

81 108.0 29.4 13.2 8.0 80.6 21.2 9.9 6.2 58.7 15.4 7.6 4.9

91 100.5 28.1 12.8 7.8 80.2 21.1 9.9 6.2 60.2 15.6 7.7 5.0

101 102.7 28.5 13.0 7.9 85.1 21.9 10.1 6.3 59.3 15.5 7.6 5.0

111 103.6 28.6 13.0 7.9 80.2 21.1 9.9 6.2 58.7 15.4 7.6 4.9

121 105.1 29.0 13.1 7.9 80.7 21.2 9.9 6.2 59.7 15.5 7.6 4.9

131 104.4 28.8 13.1 7.9 79.3 21.0 9.9 6.2 58.6 15.4 7.6 4.9

141 102.8 28.6 13.0 7.9 79.9 21.1 9.9 6.2 60.2 15.6 7.6 5.0

151 106.8 29.3 13.2 8.0 80.3 21.1 9.9 6.2 58.5 15.3 7.6 4.9

161 104.3 28.8 13.1 7.9 78.8 20.9 9.8 6.2 59.5 15.5 7.6 5.0

171 107.6 29.4 13.3 8.0 79.7 21.1 9.9 6.2 59.0 15.4 7.6 4.9

181 104.3 28.8 13.1 7.9 79.9 21.1 9.9 6.2 59.6 15.5 7.6 5.0

191 104.8 28.9 13.1 7.9 80.6 21.2 9.9 6.2 58.0 15.3 7.5 4.9

201 104.7 28.9 13.1 7.9 79.7 21.0 9.9 6.2 59.1 15.4 7.6 5.0

n = 20 n = 12 n = 16

2m+ 1 p+1 = 0.55 p+1 = 0.6 p+1 = 0.65 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.65 p+1 = 0.7

51 43.6 11.7 6.0 4.0 77.3 19.9 9.4 5.9 56.8 14.7 7.3 4.8

61 45.7 12.0 6.1 4.1 71.7 19.0 9.1 5.8 62.1 15.4 7.5 4.9

71 44.8 11.8 6.1 4.1 73.1 19.2 9.1 5.8 57.4 14.8 7.3 4.8

81 45.7 12.0 6.1 4.1 74.9 19.4 9.2 5.8 55.2 14.5 7.2 4.7

91 45.2 11.9 6.1 4.1 74.6 19.4 9.2 5.8 54.3 14.3 7.2 4.7

101 45.5 11.9 6.1 4.1 73.5 19.3 9.2 5.8 55.8 14.6 7.2 4.7

111 45.3 11.9 6.1 4.1 73.7 19.3 9.2 5.8 56.4 14.6 7.2 4.7

121 46.0 12.0 6.1 4.1 73.9 19.4 9.2 5.8 55.3 14.5 7.2 4.7

131 45.1 11.9 6.1 4.1 73.7 19.3 9.2 5.8 56.9 14.7 7.3 4.7

141 44.9 11.8 6.1 4.1 71.5 19.0 9.1 5.8 57.0 14.7 7.3 4.7

151 44.6 11.8 6.1 4.1 72.0 19.0 9.1 5.8 56.0 14.6 7.2 4.7

161 45.1 11.9 6.1 4.1 72.2 19.1 9.1 5.8 56.2 14.6 7.3 4.7

171 45.2 11.9 6.1 4.1 71.8 19.0 9.1 5.8 56.2 14.6 7.2 4.7

181 45.2 11.9 6.1 4.1 72.8 19.1 9.1 5.8 56.5 14.7 7.3 4.7

191 45.1 11.9 6.1 4.1 73.0 19.2 9.1 5.8 56.2 14.6 7.3 4.7

201 45.3 11.9 6.1 4.1 73.4 19.3 9.2 5.8 55.7 14.5 7.2 4.7
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Table 3.6: Comparison of in control ARL values for the two-sided SN EWMA (without
“continuousify”) and two-sided C-SN EWMA (with “continuousify” and σ = 0.2) using
(λ,K) = (0.2, 2.85) for different (n, p+1) combinations.

(n, p+1) = (5, 0.52) (n, p+1) = (5, 0.53) (n, p+1) = (5, 0.54) (n, p+1) = (5, 0.55)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 305.3 334.2 243.0 264.3 187.6 202.9 143.9 154.8

71 317.5 335.4 251.2 265.2 192.9 203.5 147.3 155.2

91 346.9 335.8 272.8 265.5 208.2 203.7 158.1 155.3

111 339.1 336.1 267.3 265.6 204.5 203.8 155.6 155.4

131 328.1 336.2 259.1 265.7 198.6 203.9 151.4 155.4

151 319.7 336.3 253.1 265.8 194.5 203.9 148.5 155.4

171 335.1 336.4 264.4 265.8 202.5 203.9 154.2 155.5

191 341.7 336.4 269.2 265.9 206.0 203.9 156.6 155.5

201 338.4 336.4 267.1 265.9 204.6 203.9 155.9 155.5

(n, p+1) = (15, 0.52) (n, p+1) = (15, 0.53) (n, p+1) = (15, 0.54) (n, p+1) = (15, 0.55)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 210.2 213.9 133.6 264.3 86.6 87.9 58.6 59.4

71 212.5 214.2 134.8 265.2 87.3 87.9 59.0 59.4

91 218.9 214.4 138.4 265.5 89.3 88.0 60.2 59.4

111 211.3 214.5 134.1 265.6 86.9 88.0 58.7 59.4

131 210.6 214.6 133.7 265.7 86.6 88.0 58.6 59.4

151 210.4 214.6 133.5 265.8 86.5 88.0 58.5 59.4

171 213.3 214.7 135.2 265.8 87.4 88.0 59.0 59.4

191 207.8 214.7 132.1 265.9 85.7 88.0 58.0 59.4

201 213.6 214.7 135.4 265.9 87.5 88.0 59.1 59.4

(n, p1) = (20, 0.52) (n, p1) = (20, 0.53) (n, p1) = (20, 0.54) (n, p1) = (20, 0.55)

2m+ 1 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA 2-SN EWMA 2C-SN EWMA

51 174.7 183.9 104.7 109.4 65.6 68.1 43.6 45.0

71 183.7 185.6 109.1 110.2 67.8 68.5 44.8 45.2

91 185.8 185.9 110.2 110.4 68.4 68.5 45.2 45.3

111 186.3 185.9 110.5 110.4 68.6 68.6 45.3 45.3

131 185.2 186.0 109.9 110.4 68.3 68.6 45.1 45.3

151 182.3 186.0 108.4 110.4 67.4 68.6 44.6 45.3

171 186.0 186.0 110.4 110.4 68.5 68.6 45.2 45.3

191 185.3 186.0 110.0 110.4 68.3 68.6 45.1 45.3

201 186.3 186.0 110.6 110.4 68.7 68.6 45.3 45.3

3.2.4.3 Effect of the Kernel density estimation

Following the approach of Wu et al. (2020) the distribution / kernel used for transforming

the discrete random variable SNt into a continuous one, is chosen to be the Normal (ψ, h)

distribution (see (3.5) and (3.6)) which can be simply derived from the N(0, 1) distribution
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by a straightforward standardization. More specifically. For the Gaussian kernel we have

KNor

(
x
)

=
1√
2π
e−

x2

2

where E(KNor) = 0 , V(KNor) = 1. The corresponding Kernel density function for SNt is

defined as:

f(s|n, p+1) =
1

h

n∑
k=−n

wkKNor

(
s− k
h

)
=

1

h

n∑
k=n

wkfN

(
s− k
h
|0, 1

)

where wk = fBin(k+n
2
|n, p+1), s ∈ R, k = {−n,−n+ 2, . . . , n− 2, n} and h is the bandwidth.

A legitimate question is what happens to the previous results concerning the 2C-SN EWMA

chart if the normal kernel used in (3.5) and (3.6) is replaced by another continuous one?

Are the ARL values obtained by this modification different from what has been obtained

with the normal kernel? Therefore, the goal is to investigate the impact of the choice of the

kernel on the ARL values of the 2C-SN EWMA chart if (3.5) and (3.6) are replaced by

fSN∗t (s|n, p+1) =
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
fK

(
s− ψ
h

)
FSN∗t (s|n, p+1) =

∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p+1

)
FK

(
s− ψ
h

)
,

where fK(. . . ) and FK(. . . ) are the p.d.f. and c.d.f. of a continuous kernel as the ones listed

in Table 3.7.
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Table 3.7: Some continuous kernels

Kernel Domain K(x)
∫
xK(x)dx

∫
x2K(x)dx

Parabolic [−1, 1] 3
4

(1− x2) 0 1
5

Biweight [−1, 1] 15
16

(1− x2)2 0 1
7

Triweight [−1, 1] 35
32

(1− x2)3 0 1
9

Cosine [−1, 1] π
4

cos(xπ
2
) 0 1− 8

π2

Normal (−∞,∞) e−x
2/2

√
2π

0 1

In general, for illustration and fair comparison purposes, it is helpful to consider the

standardised version of the above Kernels. In particular, if the probability density exists

for all values of the complete parameter set, then the density (as a function of the scale

parameter, s) satisfies:

fs(x) =
1

s
fZ

(x
s

)
,

where fZ(. . .) is the density of a standardized version of the Kernel density.

Let f(x) be the kernel with support |x| ≤ 1 and variance h2. If we set s =
√
σ then the

kernel with unit variance fz(z) will be defined as:

fZ(z) = sf(sz), |z| ≤ 1

s

with corresponding c.d.f Fz(z) =
z∫
1
s

fz(t)dt.

Let us consider the simplest density Kernel estimation technique based on the Uniform

Kernel, f(x) = 1
2

for |x| ≤ 1 with variance h2 = 1
3
. If we set s = 1√

3
then the p.d.f with unit

variance, fz(z), will be defined as:

fz(z) =
1

2
√

3
, |z| ≤

√
3,

then

√
3∫

−
√

3

fz(z)dz = 1 with unit variance:
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•
√

3∫
−
√

3

fz(z)dz =

√
3∫

−
√

3

1
2
√

3
dz = 1

2
√

3
z

∣∣∣∣
√

3

−
√

3

= 1
2
√

3
2
√

3 = 1

•
√

3∫
−
√

3

z2fz(z)dz =

√
3∫

−
√

3

z2 1
2
√

3
dz = 1

2
√

3
z3

3

∣∣∣∣
√

3

−
√

3

= 1
2
√

3

2(
√

3)3

3
= 2(

√
3)2

2·3 = 1

Similarly, for the parabolic Kernel f(x) = 3
4

(1− x2) with |x| ≤ 1 and h2 = 1
5
, if we set

s = 1√
5

then the p.d.f. with unit variance will be defined as:

fz(z) =
3

4
√

5

(
1− 1

5
z2

)
, |z| ≤

√
5,

and the c.d.f will be computed as:

Fz(z) =

z∫
−
√

5

fz(t)dt =

z∫
−
√

5

3

4
√

5

(
1− 1

5
t2
)
dt =

z∫
−
√

5

3

4
√

5
dt−

z∫
−
√

5

3

4
√

5

t2

5
dt

=
3

4
√

5
t

∣∣∣∣z
−
√

5

− 1

4 · 5
√

5
t3
∣∣∣∣z
−
√

5

=
3

4
√

5

(
z +
√

5
)
− 1

4 · 5
√

5

(
z3 + (

√
5)3
)

=
3z

4
√

5
+

3
√

5

4
√

5
− z3

4 · 5
√

5
− (
√

5)3

4 · 5
√

5
=

3z

4
√

5
+

3

4
− z3

4 · 5
√

5
− 1

4

=
3z

4
√

5
− z3

4 · 5
√

5
+

1

2
.

Finally, the c.d.f if defined as:

Fz(z) =


0 if z < −

√
5

3z
4
√

5
− z3

4·5
√

5
+ 1

2
if |z| <

√
5

1 if z >
√

5

.

For the remaining Kernels presented above, their corresponding standardised version is

presented in Table 3.8. In order to examine if the choice of the Kernel function for the

computation of the p.d.f. and c.d.f. of SN∗t affects the performance of the 2C-SN EWMA

chart, for each standardised Kernel listed in Table 3.8 and for different values for the sample

size and the desired ARL0, the corresponding in-control ARL0 are computed and listed in

Table 3.9. From the results presented in Table 3.9 we may conclude that regardless the
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desired ARL0 value the performance of the “continuousified” method in the 2C-SN EWMA

chart is the same regardless the Kernel density being used. In particular, for 2m + 1 > 101

the corresponding ARL0 values are exactly the same. Only some minor differences in the

first decimal point are occurred for 2m + 1 < 101, but practically speaking they are not

significant.

Table 3.8: standardized continuous kernels

Kernel Domain K(x)

Parabolic [−
√

5,
√

5] 3
4
√

5

(
1− 1

5
x2
)

Biweight [−
√

7,
√

7] 15
16
√

7
(1− x2

7
)2

Triweight [−3, 3] 35
96

(
1− x6

36
− 3x2

9
+ 3x4

34

)
Cosine

[
− 1√

1− 8
π2

, 1√
1− 8

π2

] √
π2

16
− 1

2
cos

(√
π2x2

4
− 2x2

)
Normal (−∞,∞) e−x

2/2
√

2π
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Table 3.9: ARL values of the 2C-SN EWMA chart for σ = 0.2, n ∈ {5, 8, 9} for the stan-
dardised kernels listed in Table 3.7
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3.2.4.4 Effect of the in-control value of p+1

Generally, in nonparametric charts, when the shift in the process characteristic, θ0, is

expressed in terms of p+1, it is possible to design a chart (Shewhart-type or EWMA-type)

capable of detecting shifts for every quantile (or percentile) of interest. In particular, con-

sidering that we are interested in monitoring shifts in the 3rd quantile, the in-control value

of p+1 will be equal to p+1 = 0.75. As a consequence, from equations (2.6) and (2.7) the

corresponding in-control mean and variance of SN∗t will be equal to:

E0(SN∗t ) = 2n
1

3
− n =

n

3
, (3.15)

V0(SN∗t ) = 4n
1

3
(1− 1

3
) =

8n

9
. (3.16)

Finally, the charting statistic and the control limits of the 2C-SN EWMA chart will be

adjusted as:

Z∗t = λSN∗t + (1− λ)Z∗t−1, Z
∗
0 = E0(SN∗t ) =

n

3
,

with fixed asymptotic control limits:

UCL∗ =
n

3
+K

√
λ

2− λ

(
8n

9
+ h2

)
.

LCL∗ =
n

3
−K

√
λ

2− λ

(
8n

9
+ h2

)
.

Similarly, for any in-control value of p+1 ∈ (0, 1), practitioners can design a scheme,

capable of monitoring any percentile of interest. In order to examine the stability of the in-

control ARL with and without the “continuousify” method, 4 cases regarding the in-control

value of p+1 are considered. In Figure 3.2 the corresponding in-control ARL values for

the two-sided 2-SN EWMA (without “continuousify”) and two-sided 2C-SN EWMA (with

“continuousify” and h = 0.2), for monitoring the different percentiles of interest, p+1 =

{0.65, 0.75, 0.85, 0.95} are presented. From Figure 3.2 it can be concluded that regardless

the in-control value of p+1 the “continuousify” method is a great improvement for the stability

of the ARL0 values for 2m+ 1 ≈ 101.
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Figure 3.2: ARL0 (plain lines) as a function of the number of sub-intervals 2m + 1 ∈
{51, 61, . . . , 251} for the 2-SN EWMA and 2C-SN EWMA charts for different values of
the in-control p+1

3.2.5 Optimal design of the 2C-SN EWMA chart

Regarding the optimal design parameters of the proposed scheme the next simple steps

have been followed:

• Step 1 : Set the number of subintervals 2m + 1, the in-control value of p+1 and the

desired ARL0.

• Step 2 : For a specified set of values λ ∈ (0, 1) find the corresponding K that gives an

in-control ARL = ARL0

• Step 3 : For all the possible optimal pair of (λ,K) obtained in Step 2 for a specified

shift p+1 ∈ (0.5, 1) (assuming p+1 = 0.5 for the in-control case) find the combination

of (λ,K) that give the minimum out-of-control ARL.

In particular, for step 2 (i.e the searching algorithm), the classical Regula–Falsi method

was initialised. Through its simplicity, for a given value of λ, it is capable of finding the
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corresponding value of K that gives an in-control ARL = ARL0. This method is presented

in algorithm 3.1 where arlt is the desired in-control ARL value and h1, h2 are two initial

values for K. During our computations, we saw that for n ∈ {5, 6, . . . , 25} and setting

h1 ≈ 2.5, h2 = h1 + 0.01 this method is quite fast and it is not sensitive to the initial

values of h1, h2. Nevertheless, we may argue with the fact that setting the initial values

so close to each other it could be dangerous we suggest that setting h2 ≈ h1 + 0.05 or

h2 ≈ h1 + 0.1 can be considered as a reasonable choice. It is worth streaking, that through

the “continuousify” method, practitioners are capable of finding a value of K that gives a

corresponding in-control ARL to be exactly equal to the desired one. Finally, in Table 3.10

the optimal pairs of (λ∗, K∗) for the two-sided 2C-SN EWMA chart are given, along with

the corresponding ARL1 values for different shifts magnitudes and sample sizes. As a result,

when the parameter of interest to be monitored is the median, determining the desirable value

for the sample size and choosing the appropriate pair of (λ,K) from Table 3.10 practitioners

are capable of monitoring efficiently shifts in the process median. In cases where the shift

magnitude is unknown, for monitoring small, moderate or large shift magnitudes, choosing

the corresponding pair of (λ,K) for p+1 ≈ 0.5, p+1 ≈ 0.7 or p+1 ≈ 0.9 can be considered as

an efficient choice.

Algorithm 3.1 Computation of candidate combination of (λ,K) for the EWMA chart)

Define arlt,λ,h1,m,p+1

h2 → h1 + 0.01

for each λ do

repeat

arl1 → ARL0(λ, h1,m, p+1)

arl2 → ARL0(λ, h2,m, p+1)

hnew → h2 + (arlt − arl2) (h2−h1)
(arl2−arl1)

arl1 → arl2

h1→ h2

h2 → hnew

arl2 → ARL0(λ, h2,m, p+1)

until (|arlt − arl2| < 10−8)

Use as staring value,h1, for the next iteration the newest value of h2

end for
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Table 3.10: Optimal combinations of (λ∗, K∗) for the two-sided 2C-SN EWMA chart along
with the corresponding ARL1 values.

p+1

n 0.55 0.60 0.65 0.70 0.80 0.85 0.9

2 (0.02,2.138,135.61) (0.02,2.138,57.65) (0.04,2.41,33.49 ) (0.06,2.54,22.2) (0.12,2.693,11.97) (0.16,2.719,9.3) (0.195,2.72,7.43)

3 (0.02,2.14,106.54) (0.03,2.304,44.087) (0.055,2.509,25.13) (0.085,2.62,16.48) (0.15,2.737,8.72) (0.19,2.769,6.81) (0.31,2.757,5.38)

4 (0.02,2.138,89.04) (0.035,2.363,36.21) (0.065,2.57,20.38) (0.1,2.682,13.26) (0.185,2.775,7.01) (0.215,2.783,5.46) (0.33,2.798,4.32)

5 (0.02,2.138,77.25) (0.04,2.407,31.03) (0.08,2.621,17.3) (0.12,2.726,11.18) (0.215,2.814,5.89) (0.345,2.815,4.59) (0.455,2.799,3.46)

6 (0.02,2.137,68.74) (0.05,2.489,27.27) (0.09,2.661,15.11) (0.135,2.746,9.76) (0.27,2.844,5.06) (0.295,2.848,3.91) (0.315,2.849,3.13)

7 (0.02,2.137,62.29) (0.055,2.513,24.44) (0.1,2.69,13.46) (0.145,2.771,8.67) (0.33,2.857,4.53) (0.37,2.861,3.48) (0.38,2.862,2.81)

8 (0.02,2.137,57.2) (0.06,2.548,22.2) (0.11,2.709,12.19) (0.175,2.805,7.82) (0.285,2.863,4.09) (0.36,2.866,3.18) (0.4,2.865,2.56)

9 (0.025,2.229,53.03) (0.065,2.572,20.38) (0.12,2.736,11.15) (0.18,2.811,7.16) (0.345,2.881,3.72) (0.38,2.882,2.91) (0.715,2.838,2.19)

10 (0.025,2.231,49.47) (0.07,2.594,18.88) (0.135,2.76,10.29) (0.195,2.83,6.6) (0.375,2.887,3.45) (0.66,2.866,2.65) (0.67,2.865,1.94)

11 (0.025,2.228,46.48) (0.075,2.616,17.61) (0.135,2.763,9.58) (0.205,2.835,6.14) (0.525,2.894,3.22) (0.545,2.893,2.4) (0.565,2.891,1.87)

12 (0.03,2.303,43.85) (0.08,2.632,16.53) (0.145,2.781,8.96) (0.23,2.856,5.73) (0.47,2.902,2.98) (0.485,2.9,2.3) (0.505,2.898,1.84)

13 (0.03,2.3,41.57) (0.085,2.652,15.57) (0.165,2.802,8.44) (0.24,2.866,5.39) (0.435,2.908,2.8) (0.745,2.889,2.05) (0.77,2.885,1.5)

14 (0.03,2.303,39.55) (0.095,2.68,14.74) (0.16,2.802,7.98) (0.26,2.873,5.1) (0.595,2.91,2.65) (0.625,2.907,1.95) (0.645,2.905,1.49)

15 (0.035,2.36,37.73) (0.095,2.683,14) (0.17,2.811,7.57) (0.25,2.874,4.84) (0.535,2.915,2.49) (0.555,2.914,1.89) (0.56,2.914,1.49)

16 (0.035,2.362,36.1) (0.1,2.696,13.35) (0.18,2.824,7.2) (0.27,2.884,4.6) (0.48,2.921,2.38) (0.78,2.91,1.77) (0.8,2.91,1.33)

17 (0.035,2.361,34.65) (0.105,2.708,12.76) (0.19,2.836,6.87) (0.28,2.888,4.4) (0.65,2.921,2.25) (0.69,2.918,1.64) (0.71,2.916,1.26)

18 (0.04,2.411,33.3) (0.11,2.721,12.22) (0.195,2.838,6.59) (0.285,2.894,4.21) (0.59,2.926,2.13) (0.59,2.926,1.62) (0.95,2.874,1.27)

19 (0.04,2.411,32.07) (0.115,2.73,11.74) (0.2,2.846,6.32) (0.34,2.913,4.03) (0.51,2.931,2.09) (0.8,2.924,1.56) (0.815,2.925,1.21)

20 (0.04,2.411,30.96) (0.12,2.743,11.29) (0.22,2.861,6.07) (0.305,2.903,3.89) (0.69,2.93,1.94) (0.72,2.928,1.43) (0.73,2.928,1.14)

3.3 The “continuousified” upper-sided SN EWMA chart

The charting statistic of the “continuousified” upper-sided SN EWMA (denoted as C-SN

EWMA chart) will be defined as:

Z∗t = max(0, λSN∗t + (1− λ)Z∗t−1), Z∗0 = E0(SN∗t ),

with fixed upper asymptotic control limit:

UCL = E0(SN∗t ) +K1

√
V0(SN∗t )×

√
λ

2− λ
.

Assuming that θ0 is the in-control value of the process median since E(SNt) = 0 and

V(SN∗t ) = n the above expressions can be rewritten as:

UCL = +K1

√
λ

2− λ
(n+ h2).

CL =0.
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3.3.1 Run Length properties and efficiency of the C-SN EWMA

chart

In order to obtain the RL properties of the upper-sided C-SN EWMA control chart,

the standard discrete-time Markov chain approach of Brook and Evans (1972) presented in

Section 2.3.1 will be used with, the only difference that the p.m.f. of SNt will be replaced by

the p.d.f. of SN∗t in the computation of the transient probabilities Qk,j as:

• if j = 0,

Qk,0 = FSN∗t

(
−(1− λ)Hk

λ
|n, p+1

)
.

• if j = 1, 2, . . . ,m,

Qk,j = FSN∗t

(
Hj + ∆− (1− λ)Hk

λ
|n, p+1

)
− FSN∗t

(
Hj −∆− (1− λ)Hk

λ
|n, p+1

)
.

(3.17)

Similarly, with the two-sided case in Table 3.11 several pairs of in control (ARL, SDRL)

values are presented as a function of the number of subintervals between the upper-sided SN

EWMA (without “continuousify”) and upper-sided C-SN EWMA (with “continuousify” and

h = 0.2) charts. It is clear that, as expected, the “continuousify” method yields to steady

ARL and SDRL values regardless the number of the subintervals.
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Table 3.11: Comparison of in-control (ARL, SDRL) values for the upper-sided SN EWMA
(without “continuousify”) and upper-sided C-SN EWMA (with “continuousify” and h = 0.2)
chart when λ = 0.2 and K1 = 2.75

(n = 5, p+1 = 0.5) (n = 9, p+1 = 0.5) (n = 12, p+1 = 0.5) (n = 16, p+1 = 0.5)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 (410.9,405.6) (400.8,395.7) (392,387) (384.7,379.7) (383.1,378.2) (374.2,369.3) (370.7,365.8) (372,367.1)

60 (400.9,395.7) (401.1,395.9) (400.6,395.6) (384.8,379.9) (377.9,373) (374.5,369.6) (367.6,362.7) (372.2,367.3)

70 (409,403.8) (401.2,396) (380.3,375.4) (384.9,380) (360.3,355.4) (374.6,369.7) (372,367.1) (372.4,367.5)

80 (396.3,391.1) (401.3,396.1) (385.8,380.8) (385,380) (376,371.2) (374.7,369.8) (366.4,361.6) (372.4,367.6)

90 (422,416.7) (401.3,396.2) (389.3,384.3) (385,380.1) (374.4,369.5) (374.8,369.9) (369.6,364.7) (372.5,367.6)

100 (396.3,391.1) (401.4,396.2) (387.8,382.9) (385.1,380.1) (384.2,379.3) (374.8,369.9) (373.2,368.4) (372.5,367.7)

110 (395.5,390.3) (401.4,396.2) (406.5,401.5) (385.1,380.1) (383,378.1) (374.8,369.9) (394.8,389.9) (372.6,367.7)

120 (409,403.8) (401.4,396.3) (380.9,376) (385.1,380.2) (370.7,365.8) (374.9,370) (374.6,369.8) (372.6,367.7)

130 (395.9,390.7) (401.4,396.3) (380.1,375.2) (385.1,380.2) (379.6,374.7) (374.9,370) (375.9,371) (372.6,367.7)

140 (410.6,405.4) (401.5,396.3) (383.1,378.2) (385.1,380.2) (378.8,373.8) (374.9,370) (377.6,372.7) (372.6,367.8)

150 (405.7,400.5) (401.5,396.3) (387.1,382.2) (385.2,380.2) (378.5,373.6) (374.9,370) (374.9,370) (372.6,367.8)

160 (398,392.8) (401.5,396.3) (380.7,375.8) (385.2,380.2) (374.5,369.6) (374.9,370) (376.2,371.3) (372.6,367.8)

170 (408.3,403.1) (401.5,396.3) (376.2,371.3) (385.2,380.2) (371.8,366.8) (374.9,370) (374.8,369.9) (372.7,367.8)

180 (404,398.7) (401.5,396.3) (378.9,373.9) (385.2,380.2) (374.7,369.8) (374.9,370) (372.2,367.4) (372.7,367.8)

190 (404.2,399) (401.5,396.3) (383.2,378.2) (385.2,380.2) (379.9,375) (374.9,370) (376,371.1) (372.7,367.8)

200 (407.6,402.4) (401.5,396.3) (382.3,377.3) (385.2,380.2) (382,377.1) (374.9,370) (372.3,367.4) (372.7,367.8)

sim (400.2,396.2) (384.5 ,376.4) (374.7,365.8) (373.4,367.8)

3.3.2 Sensitivity analysis

Similarly with the “continuousified” two-sided SN EWMA control chart, an extensive nu-

merical analysis has been performed, regarding the efficiency of the “continuousify” method,

applied to the two- and upper-sided EWMA Sign chart, focussing on the effect of the chart’s

parameters (λ,K1, h) the in-control ARL value, the in-control probability p+1 and the Kernel

density estimation method. In particular for the proposed upper-sided Sign EWMA Sign

chart based on the “continuousify” method we may draw the following:

• Effect of the design parameters λ,K1 and fixed value of ARL0

For the C-SN EWMA (Table 3.13) chart we may conclude that using the “contin-

uousify”method the ARL values become steady even when m ≈ 100 regardless the

sample size and the desired in-control ARL0 ∈ {200,370.4,500}. Additionally, the

value of h does not affect the results (see Table 3.12 ). In particular, when h is neither

too small or too large the results the same. Consequently, similarly with the EWMA

chart based on Signed Ranks, setting the value of h ≈ 0.2 is a reasonable choice to be

considered.

• Effect of the shift magnitude p+1
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Regarding the out-of-control cases, for small shifts in the process location parame-

ter, p+1 < 0.6, the corresponding out-of-control values are affected by the number of

subintervals. On the other hand, using the “continuousify”method the results become

immediately stable (Table 3.15). On the contrary, for large shifts (p+1 > 0.6) minor dif-

ferences exist (Table 3.14). Nevertheless, since we proved that for the in-control case

the results are different, practitioner may not be sure about the true out-of-control

performance of the chart in term of its RL properties.

• Effect of the Kernel density estimation

Similarly with the two-sided case, from Table 3.16 it can been observed that regard-

less the values of the predefined ARL0 and sample size, corresponding in-control ARL

values remain unaffected by the choice of the Kernel.

• Effect of the in-control value of p+1

For any value of the in-control quantile of interest p+1 the “continuousify” method

yields to reliable results for the chart’s RL properties regardless the number of the

subintervals. (see, Figure 3.3)
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Table 3.12: ARL values of the C-SN EWMA chart for λ = 0.2, K1 = 2.75 and for fixed
values of h = {0.1, 0.15, . . . , 0.3} and different values of n

(n, p+1) = (5, 0.5) (n, p+1) = (8, 0.5) (n, p+1) = (11, 0.5)

h h h

m 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

50 401.0 400.8 400.8 400.9 400.9 384.9 385.0 385.0 385.1 385.2 383.9 382.7 381.9 381.1 380.4

60 401.2 401.1 401.1 401.1 401.1 385.3 385.2 385.3 385.4 385.4 383.8 382.8 382.0 381.2 380.5

70 401.4 401.2 401.2 401.2 401.3 385.5 385.4 385.4 385.5 385.6 383.8 382.9 382.1 381.3 380.6

80 401.5 401.3 401.3 401.3 401.4 385.6 385.5 385.5 385.6 385.6 383.8 382.9 382.1 381.4 380.7

90 401.5 401.3 401.3 401.4 401.4 385.7 385.6 385.6 385.6 385.7 383.8 383.0 382.2 381.4 380.7

100 401.6 401.4 401.4 401.4 401.4 385.8 385.6 385.6 385.7 385.8 383.8 383.0 382.2 381.4 380.7

110 401.6 401.4 401.4 401.4 401.5 385.8 385.6 385.6 385.7 385.8 383.8 383.0 382.2 381.5 380.8

120 401.6 401.4 401.4 401.5 401.5 385.8 385.7 385.7 385.7 385.8 383.8 383.0 382.2 381.5 380.8

130 401.6 401.4 401.4 401.5 401.5 385.9 385.7 385.7 385.8 385.8 383.8 383.0 382.2 381.5 380.8

140 401.7 401.5 401.4 401.5 401.5 385.9 385.7 385.7 385.8 385.8 383.9 383.0 382.3 381.5 380.8

150 401.7 401.5 401.5 401.5 401.5 385.9 385.7 385.7 385.8 385.9 383.9 383.1 382.3 381.5 380.8

160 401.7 401.5 401.5 401.5 401.6 385.9 385.7 385.7 385.8 385.9 383.9 383.1 382.3 381.5 380.8

170 401.7 401.5 401.5 401.5 401.6 385.9 385.8 385.7 385.8 385.9 383.9 383.1 382.3 381.5 380.8

180 401.7 401.5 401.5 401.5 401.6 385.9 385.8 385.7 385.8 385.9 383.9 383.1 382.3 381.5 380.8

190 401.7 401.5 401.5 401.5 401.6 385.9 385.8 385.8 385.8 385.9 383.9 383.1 382.3 381.5 380.8

200 401.7 401.5 401.5 401.5 401.6 385.9 385.8 385.8 385.8 385.9 383.9 383.1 382.3 381.5 380.8

(n, p+1) = (13, 0.5) (n, p+1) = (15, 0.5) (n, p+1) = (20, 0.5)

h h h

m 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

50 375.0 375.4 375.4 375.3 375.1 371.0 369.9 370.1 370.3 370.5 370.7 370.8 370.4 370.0 369.6

60 375.3 375.6 375.6 375.4 375.2 369.9 370.0 370.2 370.5 370.7 371.6 371.0 370.6 370.2 369.8

70 375.7 375.8 375.7 375.5 375.3 369.9 370.1 370.3 370.6 370.8 371.5 371.1 370.7 370.3 369.9

80 375.8 375.8 375.8 375.6 375.4 369.9 370.2 370.4 370.6 370.9 371.5 371.1 370.7 370.3 369.9

90 375.8 375.9 375.8 375.6 375.4 370.0 370.2 370.4 370.7 370.9 371.5 371.2 370.8 370.4 370.0

100 375.8 375.9 375.8 375.7 375.5 370.0 370.2 370.5 370.7 370.9 371.6 371.2 370.8 370.4 370.0

110 375.8 375.9 375.9 375.7 375.5 370.0 370.3 370.5 370.7 371.0 371.6 371.2 370.8 370.4 370.0

120 375.9 375.9 375.9 375.7 375.5 370.1 370.3 370.5 370.8 371.0 371.6 371.3 370.9 370.4 370.1

130 375.9 376.0 375.9 375.7 375.5 370.1 370.3 370.5 370.8 371.0 371.6 371.3 370.9 370.5 370.1

140 375.9 376.0 375.9 375.7 375.5 370.1 370.3 370.5 370.8 371.0 371.7 371.3 370.9 370.5 370.1

150 375.9 376.0 375.9 375.8 375.5 370.1 370.3 370.5 370.8 371.0 371.7 371.3 370.9 370.5 370.1

160 375.9 376.0 375.9 375.8 375.5 370.1 370.3 370.6 370.8 371.0 371.7 371.3 370.9 370.5 370.1

170 375.9 376.0 375.9 375.8 375.5 370.1 370.3 370.6 370.8 371.0 371.7 371.3 370.9 370.5 370.1

180 375.9 376.0 375.9 375.8 375.5 370.1 370.3 370.6 370.8 371.0 371.7 371.3 370.9 370.5 370.1

190 375.9 376.0 375.9 375.8 375.6 370.1 370.3 370.6 370.8 371.0 371.7 371.3 370.9 370.5 370.1

200 375.9 376.0 375.9 375.8 375.6 370.1 370.3 370.6 370.8 371.0 371.7 371.3 370.9 370.5 370.1
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Table 3.13: Comparison of in control ARL values for the upper-sided SN EWMA (without
“continuousify”) and C-SN EWMA (with “continuousify” and h = 0.2) for several desired
ARL0 values

(In-control ARL values for the SN EWMA and C-SN EWMA charts for desired ARL0 = 200)

(n, λ,K1) = (5, 0.2, 2.50) (n, λ,K1) = (8, 0.2, 2.507) (n, λ,K1) = (9, 0.2, 2.515) (n, λ,K1) = (11, 0.2, 2.514)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 189.7 199.8 202.9 199.8 212.6 199.8 205.5 199.9

70 202.4 199.9 203.9 199.9 205.8 199.9 197.9 200.0

90 201.7 200.0 196.1 200.0 202.8 200.0 201.3 200.0

110 203.0 200.0 200.5 200.0 199.7 200.0 200.6 200.0

130 200.7 200.0 207.9 200.0 198.7 200.0 200.9 200.0

150 203.6 200.0 201.8 200.0 199.4 200.0 201.8 200.0

170 202.6 200.0 203.9 200.0 198.4 200.0 199.4 200.0

190 196.0 200.0 202.5 200.0 198.5 200.0 200.7 200.0

200 203.9 200.0 202.0 200.0 199.0 200.0 200.8 200.0

(In-control ARL values for the SN EWMA and C-SN EWMA charts for desired ARL0 = 370.4)

(n, λ,K1) = (5, 0.2, 2.722) (n, λ,K1) = (8, 0.2, 2.736) (n, λ,K1) = (9, 0.2, 2.736) (n, λ,K1) = (11, 0.2, 2.738)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 390.3 369.9 368.0 369.9 380.5 370.0 381.7 370.1

70 370.3 370.2 369.9 370.2 378.6 370.3 373.3 370.3

90 361.7 370.4 383.9 370.4 370.4 370.4 368.9 370.4

110 376.6 370.4 374.2 370.4 369.8 370.4 375.1 370.4

130 348.5 370.5 373.6 370.5 366.9 370.5 377.3 370.4

150 370.2 370.5 369.6 370.5 370.3 370.5 377.6 370.5

170 375.6 370.5 379.6 370.5 370.1 370.5 367.9 370.5

190 367.8 370.5 372.2 370.5 369.4 370.5 377.2 370.5

200 368.6 370.5 368.4 370.5 370.3 370.5 368.1 370.5

(In-control ARL values for the SN EWMA and C-SN EWMA charts for desired ARL0 = 500)

(n, λ,K1) = (5, 0.2, 2.822) (n, λ,K1) = (7, 0.2, 2.837) (n, λ,K1) = (9, 0.2, ) (n, λ,K1) = (11, 0.2, 2.84)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 521.5 499.1 495.8 499.0 496.7 499.3 544.5 499.4

70 523.9 499.6 494.3 499.5 505.1 499.7 509.1 499.7

90 494.1 499.8 503.8 499.8 503.0 499.8 497.7 499.9

110 492.9 499.9 498.2 499.9 502.2 499.9 508.1 499.9

130 492.8 500.0 510.1 500.0 490.0 500.0 498.9 500.0

150 494.8 500.0 498.5 500.0 504.7 500.0 497.0 500.0

170 495.3 500.0 499.9 500.0 516.2 500.0 502.9 500.0

190 509.5 500.0 493.8 500.0 498.4 500.0 497.3 500.0

200 494.4 500.0 505.5 500.1 505.1 500.0 499.5 500.0
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Table 3.14: ARL1 values for the UPPER-sided C-SN EWMA (without “continuousify”) for
large shifts

n = 8 n = 11 n = 15

m p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7

50 94.1 28.1 13.0 7.9 75.6 21.1 10.0 6.3 56.3 15.4 7.6 5.0

60 96.0 28.4 13.1 8.0 71.5 20.4 9.7 6.1 54.1 15.1 7.5 4.9

70 89.4 27.1 12.7 7.8 73.2 20.7 9.8 6.2 54.3 15.1 7.5 4.9

80 92.7 27.8 12.9 7.9 72.9 20.6 9.8 6.2 54.4 15.1 7.5 4.9

90 94.0 28.0 13.0 7.9 74.0 20.8 9.9 6.2 54.5 15.1 7.5 4.9

100 93.8 28.0 13.0 7.9 71.7 20.4 9.7 6.1 54.3 15.1 7.5 4.9

110 94.4 28.1 13.0 7.9 72.3 20.5 9.8 6.2 54.7 15.2 7.6 4.9

120 92.6 27.8 12.9 7.9 71.2 20.3 9.7 6.1 54.6 15.1 7.5 4.9

130 92.7 27.8 12.9 7.9 72.5 20.6 9.8 6.2 54.6 15.1 7.5 4.9

140 93.6 28.0 13.0 7.9 71.6 20.4 9.7 6.1 53.7 15.0 7.5 4.9

150 93.4 27.9 12.9 7.9 71.8 20.4 9.8 6.1 54.8 15.2 7.5 4.9

160 92.2 27.7 12.9 7.9 72.8 20.6 9.8 6.2 54.7 15.1 7.5 4.9

170 92.7 27.8 12.9 7.9 72.6 20.6 9.8 6.2 54.9 15.2 7.6 4.9

180 93.8 28.0 13.0 7.9 72.7 20.6 9.8 6.2 54.6 15.1 7.5 4.9

190 92.8 27.8 12.9 7.9 72.3 20.5 9.8 6.2 54.6 15.1 7.5 4.9

200 93.1 27.9 12.9 7.9 72.5 20.6 9.8 6.2 54.8 15.2 7.5 4.9

n = 20 n = 12 n = 16

2m+ 1 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7 p+1 = 0.55 p+1 = 0.6 p+1 = 0.64 p+1 = 0.7

50 42.4 11.7 6.1 4.1 66.6 18.7 9.0 5.8 52.4 14.4 7.2 4.7

60 43.4 11.8 6.1 4.1 69.0 19.1 9.2 5.8 51.6 14.3 7.2 4.7

70 43.3 11.8 6.1 4.1 66.8 18.8 9.0 5.8 52.4 14.4 7.2 4.7

80 42.7 11.7 6.1 4.1 67.8 19.0 9.1 5.8 51.6 14.3 7.2 4.7

90 42.8 11.8 6.1 4.1 66.3 18.7 9.0 5.8 52.4 14.4 7.2 4.7

100 42.5 11.7 6.1 4.1 66.2 18.7 9.0 5.8 52.3 14.4 7.2 4.7

110 43.0 11.8 6.1 4.1 66.7 18.8 9.1 5.8 52.7 14.4 7.2 4.7

120 42.8 11.8 6.1 4.1 67.2 18.8 9.1 5.8 52.2 14.4 7.2 4.7

130 42.6 11.7 6.1 4.1 65.7 18.6 9.0 5.8 51.9 14.3 7.2 4.7

140 42.8 11.8 6.1 4.1 65.9 18.6 9.0 5.8 52.0 14.3 7.2 4.7

150 42.6 11.7 6.1 4.1 66.4 18.7 9.0 5.8 52.5 14.4 7.2 4.7

160 42.8 11.8 6.1 4.1 66.6 18.7 9.1 5.8 52.3 14.4 7.2 4.7

170 41.9 11.6 6.0 4.0 66.8 18.8 9.1 5.8 52.3 14.4 7.2 4.7

180 42.4 11.7 6.1 4.1 66.7 18.8 9.1 5.8 52.3 14.4 7.2 4.7

190 42.5 11.7 6.1 4.1 66.9 18.8 9.1 5.8 53.2 14.5 7.2 4.7

200 42.4 11.7 6.1 4.1 66.5 18.7 9.0 5.8 51.9 14.3 7.2 4.7
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Table 3.15: Comparison of in control ARL values for the upper-sided SN EWMA (without
“continuousify”) and upper-sided C-SN EWMA (with “continuousify” and σ = 0.2) using
(λ,K1) = (0.2, 2.75) for smalls shifts.

(n, p+1) = (4, 0.52) (n, p+1) = (4, 0.53) (n, p+1) = (4, 0.54) (n, p+1) = (4, 0.55)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 262.2 261.5 205.2 204.6 162.1 161.6 129.4 129.0

70 256.4 261.7 200.5 204.7 158.4 161.7 126.3 129.1

90 258.7 261.7 202.2 204.7 159.7 161.8 127.3 129.1

110 285.2 261.8 221.5 204.8 173.8 161.8 137.8 129.1

130 271.7 261.8 211.6 204.8 166.5 161.8 132.4 129.1

150 273.1 261.8 212.8 204.8 167.4 161.8 133.1 129.1

170 263.0 261.8 205.5 204.8 162.2 161.8 129.3 129.1

190 263.3 261.8 205.8 204.8 162.5 161.8 129.5 129.1

200 261.4 261.8 204.3 204.8 161.2 161.8 128.5 129.1

(n, p+1) = (7, 0.52) (n, p+1) = (7, 0.53) (n, p+1) = (7, 0.54) (n, p+1) = (1570.55)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 198.7 199.9 146.2 147.1 109.4 110.1 83.3 83.8

70 196.7 200.1 144.9 147.2 108.5 110.1 82.7 83.9

90 198.6 200.1 146.1 147.2 109.3 110.1 83.2 83.9

110 195.8 200.1 144.2 147.2 108.0 110.2 82.4 83.9

130 195.6 200.1 144.1 147.2 107.9 110.2 82.2 83.9

150 195.3 200.2 143.9 147.2 107.8 110.2 82.2 83.9

170 197.4 200.2 145.3 147.2 108.7 110.2 82.8 83.9

190 198.2 200.2 145.9 147.2 109.2 110.2 83.2 83.9

200 197.9 200.2 145.7 147.2 109.0 110.2 83.0 83.9

(n, p1) = (12, 0.52) (n, p1) = (12, 0.53) (n, p1) = (12, 0.54) (n, p1) = (12, 0.55)

m SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA SN EWMA C-SN EWMA

50 163.3 160.0 111.3 204.6 78.1 76.8 56.5 55.6

60 161.3 160.1 109.9 204.6 77.2 76.8 55.9 55.7

80 160.6 160.1 109.6 204.7 77.0 76.8 55.8 55.7

100 163.6 160.2 111.4 204.8 78.2 76.8 56.5 55.7

120 158.4 160.2 108.1 204.8 76.0 76.8 55.1 55.7

140 161.4 160.2 109.9 204.8 77.2 76.8 55.9 55.7

160 159.9 160.2 109.1 204.8 76.7 76.8 55.5 55.7

180 160.0 160.2 109.1 204.8 76.6 76.8 55.5 55.7

190 161.8 160.2 110.2 204.8 77.3 76.8 56.0 55.7

200 162.5 160.2 110.6 204.8 77.6 76.8 56.1 55.7
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Table 3.16: ARL values of the C-SN EWMA chart for σ = 0.2, n ∈ {5, 8, 9} for the stan-
dardised kernels listed in Table 3.7

(In-control ARL values the C-SN EWMA chart for desired ARL0 = 370.4)

(n, λ,K1) = (5, 0.2, 2.722) (n, λ,K1) = (8, 0.2, 2.736) (n, λ,K1) = (9, 0.2, 2.736)

m Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

50 370.0 369.9 370.0 369.9 369.9 369.8 369.8 369.8 369.8 369.9 369.9 370.1 370.0 370.1 370.0

60 370.1 370.1 370.1 370.1 370.1 370.1 370.1 370.1 370.1 370.1 370.4 370.2 370.3 370.2 370.2

70 370.2 370.2 370.2 370.2 370.2 370.2 370.2 370.2 370.2 370.2 370.3 370.3 370.3 370.3 370.3

80 370.3 370.3 370.3 370.3 370.3 370.2 370.3 370.2 370.3 370.3 370.4 370.4 370.4 370.4 370.3

90 370.4 370.4 370.4 370.4 370.4 370.3 370.3 370.3 370.3 370.4 370.4 370.4 370.4 370.4 370.4

100 370.4 370.4 370.4 370.4 370.4 370.3 370.4 370.4 370.4 370.4 370.5 370.4 370.5 370.4 370.4

110 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.5 370.5 370.5 370.5 370.4

120 370.5 370.4 370.5 370.4 370.4 370.4 370.4 370.4 370.4 370.5 370.5 370.5 370.5 370.5 370.4

130 370.5 370.5 370.5 370.5 370.5 370.4 370.4 370.4 370.4 370.5 370.5 370.5 370.5 370.5 370.5

140 370.5 370.5 370.5 370.5 370.5 370.4 370.4 370.4 370.5 370.5 370.6 370.5 370.5 370.5 370.5

150 370.5 370.5 370.5 370.5 370.5 370.4 370.5 370.4 370.5 370.5 370.6 370.5 370.5 370.5 370.5

160 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.6 370.5 370.6 370.5 370.5

170 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.6 370.5 370.6 370.5 370.5

180 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.6 370.5 370.6 370.5 370.5

190 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.6 370.6 370.6 370.5 370.5

200 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.5 370.6 370.6 370.6 370.5 370.5

(In-control ARL values for the C-SN EWMA chart for desired ARL0 = 500)

(n, λ,K1) = (5, 0.2, 2.822) (n, λ,K1) = (8, 0.2, 2.837) (n, λ,K1) = (9, 0.2, 2.843)

m Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

50 499.2 499.1 499.1 499.1 499.1 498.9 499.0 498.9 499.0 499.0 499.2 499.3 499.2 499.3 499.3

60 499.4 499.4 499.5 499.4 499.4 499.2 499.3 499.3 499.3 499.3 499.5 499.5 499.5 499.5 499.6

70 499.6 499.6 499.6 499.6 499.6 499.6 499.5 499.6 499.5 499.5 499.6 499.6 499.6 499.7 499.7

80 499.8 499.7 499.8 499.7 499.7 499.6 499.6 499.6 499.7 499.7 499.7 499.8 499.7 499.8 499.8

90 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8

100 499.9 499.9 499.9 499.9 499.9 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.8 499.9 499.9

110 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9

120 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 500.0

130 499.9 499.9 499.9 500.0 500.0 499.9 499.9 499.9 499.9 500.0 499.9 499.9 499.9 499.9 500.0

140 500.0 500.0 500.0 500.0 500.0 499.9 500.0 499.9 500.0 500.0 499.9 499.9 499.9 499.9 500.0

150 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 499.9 499.9 499.9 500.0 500.0

160 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 499.9 500.0 499.9 500.0 500.0

170 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 499.9 500.0 500.0

180 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0

190 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0

200 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.0 500.1 500.0 500.0 500.0 500.0 500.0
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Figure 3.3: ARL0 (plain lines) as a function of the number of sub-intervals m ∈
{50, 60, . . . , 200} for theSN EWMA and C-SN EWMA charts for different values of the
in-control p0

3.3.3 Optimal design of the C-SN EWMA chart

Following the same steps, with the two sided case, in Table 3.17 the optimal pairs of

(λ,K1) are given for different shifts in the process median along with the corresponding

chart’s out-of-control performance in terms of the ARL1 values for each shift and sample

size.
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Table 3.17: optimal pairs of (λ,K1) for the upper-sided C-SN EWMA chart, along with
the corresponding chart’s out-of-control performance in terms of the ARL1 values for p+1 ∈
{0.55, 0.6, . . . , 0.95} and n ∈ {5, 6, . . . , 20}
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3.4 Conclusions

In this Chapter a modified version of the conventional EWMA Sign chart was introduced.

We we proposed the use of the “continuousify method, introdused by Wu et al. (2020), prov-

ing that this method leads to reliable results regardless the number of subintervals. Finally,

an extensive sensitivity analysis was conducted stating the superiority of this method and

the optimal design parameters for the proposed two- and upper-sided charts were provided.
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Chapter 4

Performance of the Sign EWMA

chart when ties are present

Introduction

In the previous Chapters, where extensions of nonparametric EWMA charts based on

the Sign statistic were presented, an essential assumption was made, regarding the presence

of ties between the sample’s observations and the location parameter to be monitored. In

particular, the assumption that the sample’s distribution is a continuous one, prevents the

occurrence of ties. However in practice, during the process monitoring, especially in the man-

ufacturing industries the characteristic to be monitored is usually a continuous measurement

(for instance length, weight, height etc). However, there might be cases where even though

the characteristic to be monitored is a continuous measurement, possible ties might occur

in the computation of the Sign statistic, due to the so called “measurement errors”. As a

consequence, there are some valid questions that need to be answered. “ Is the performance

of a nonparametric scheme affected by the presence of ties?”, “Is there any efficient and

simple way to tackle this issue?”

Over the past decades, the investigation of conventional control charts (i.e. charts assum-

ing normality) under measurement errors has drawn the researchers’ interest, in particular

with reference to the bias and precision errors which introduce a rounding-off error result-

ing in a discretization of the observed measures. For a detailed literature review of control

charts under measurement errors the reader is refered to Maleki et al. (2017). It is worth

stretching that, rounding-off errors often result in “ties”, even if their true distribution is

continuous. Generally, in nonparametric statistical inference, the treatment of ties is of high

importance due to the fact that the distribution of the nonparametric statistics such as the
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Sign or the Wilcoxon signed rank statistics is seriously affected (Gibson and Melsa (1976);

Putter (1955)). In this Chapter, the distribution-free property under measurement errors

of the “continuousified” Sign EWMA chart is investigated and procedures to handle the

occurrence of ties are discussed. Parts of this Chapter have been published in Perdikis et al.

(2021c).

4.1 Distribution of the Sign statistic when ties are present

As presented in Section 2.1.1 considering θ0 as the median of the distribution, the test

statistic is defined as:

SNt =
n∑
j=1

St,j,

with p =(p−1, p0, p+1) being the vector of probabilities:

p−1 = P(St,j = −1) = P(Xt,j < θ0) = FX(θ0|θ),
p0 = P(St,j = 0) = P(Xt,j = θ0),

p+1 = P(St,j = +1) = P(Xt,j > θ0) = 1− FX(θ0|θ).

Additionally, it was stated that when the characteristic to be monitored, X, is a continuous

random variable, regardless the value of θ0, we always have p0 = P(Xt,j = θ0) = 0. Then,

the c.d.f. of SNt can be easily derived through the Binomial distribution as presented in

equation (2.3). However, in practice, due to the measurement system resolution, the real

values Xt,j are not directly observed. Instead, a measured value X
′
t,j 6= Xt,j is obtained

introducing a rounding-off error which results in a discretization of the observed measures.

Note that, even if the sample’s true distribution is continuous, the presence of rounding-off

errors might result in “ties” between the real values Xt,j and the in-control value θ0 of the

median.

A well known linear measurement error model to account for three well-known sources of

error is (see Linna and Woodall (2001)):

X
′

t,j =
⌊A+BXt,j + εt,j

ρ
+

1

2

⌋
ρ, (4.1)
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where the constants (A,B) are related with the bias- linearity error, the noise εt,j is the

random variable which accounts for the precision error and ρ is a parameter quantifying

the device resolution, which introduces a rounding-off error. More specifically, if ρ is the

resolution of the measurement system thenX
′
t,j = x ifXt,j ∈ (x−ρ

2
, x+ρ

2
). For instance, if ρ =

0.2 and θ0 = 100 then possible measured values X
′
t,j are {. . . 99.6, 99.8, 100, 100.2, 100.4, . . .}

and, if the real value is Xt,j = 100.038, then the measured observation is X
′
t,j = 100. As

a consequence, a tie is generated. In general, the rounding-off error introduced by the

device resolution in the measurement of the true value of a quality characteristic, results in a

discretization of the observed quality characteristic and, in case of continuous measurements,

the probability of having ties is therefore increased. It should be clarified the fact that, the

primary goal of this work is to investigate the performance of a nonparametric scheme under

the presence of ties. As a result, in order to make the interpretation of the results easier, we

will investigate the effect of the tool resolution by maintaining the assumption of a perfect

tool calibration, (A,B) = (0, 1) and we will overlook the precision error. As a consequence,

the error model given in (4.1) will simply be defined as:

X
′

t,j =
⌊Xt,j

ρ
+

1

2

⌋
ρ, (4.2)

In order to present a practical implementation regarding the effect of the rounding-off

errors in the sample during the process monitoring, in Table 4.1 several samples of size

n = 10 are considered, from the Normal distribution. At each column, the corresponding

“observed” sample is presented computed through the measurement error model presented

in equation (4.2) for different values of ρ along with the corresponding differences from the

“true” sample (Table 4.2). It is clear, that as ρ starts to increases the “observed” sample

differs from the “true” one. In particular, it can be seen that for ρ > 0.2 the observed values

differ significantly from the true ones, or in many cases, tend to be the same. However, it

is important to remind that the primary use of the measurement error model in this work,

is to investigate the behaviour of the Sign EWMA chart under the occurrence of ties. As

a consequence, aberrations of this magnitude, are not even practical for implementation

and so it is relatively meaningless to perform any further investigation for large values of ρ.

Nevertheless, in the rest of this Chapter, an extensive sensitivity analysis will be performed

for different scenarios and general guidelines will be given for dealing with tied observations

in the design of a nonparametric control chart.
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Table 4.1: Effect of the rounding-off errors in the sample

N(0.5, 1), θ0 = 0.5 N(0.5, 5), θ0 = 0.5

ρ ρ

Xi,j 0 0.01 0.05 0.10 0.20 0.30 0.40 0.70 0 0.01 0.05 0.10 0.20 0.30 0.40 0.70

1 1.7473 1.75 1.75 1.70 1.80 1.80 1.60 1.40 7.6155 7.62 7.60 7.60 7.60 7.50 7.60 7.70

2 2.8989 2.90 2.90 2.90 2.80 3.00 2.80 2.80 1.3327 1.33 1.35 1.3 1.4 1.2 1.2 1.4

3 -1.9247 -1.92 -1.90 -1.90 -2.00 -1.80 -2.00 -2.10 3.0070 3.01 3.00 3.00 3.00 3.00 3.20 2.80

4 0.0131 0.01 0.00 0.00 0.00 0.00 0.00 0.00 -0.0468 -0.05 -0.05 0.00 0.00 0.00 0.00 0.00

5 1.2718 1.27 1.25 1.30 1.20 1.20 1.20 1.40 3.9081 3.91 3.90 3.90 4.00 3.90 4.00 4.20

6 -1.1106 -1.11 -1.10 -1.10 -1.20 -1.20 -1.20 -1.40 4.8317 4.83 4.85 4.80 4.80 4.80 4.80 4.90

7 0.2560 0.26 0.25 0.30 0.20 0.30 0.40 0.00 -0.3215 -0.32 -0.30 -0.30 -0.40 -0.30 -0.40 0.00

8 1.2655 1.27 1.25 1.30 1.20 1.20 1.20 1.40 -1.3748 -1.37 -1.35 -1.40 -1.40 -1.50 -1.20 -1.40

9 -1.0723 -1.07 -1.05 -1.10 -1.00 -1.20 -1.20 -1.40 -6.6831 -6.680 -6.70 -6.70 -6.60 -6.60 -6.80 -7.00

10 0.5223 0.52 0.50 0.50 0.60 0.60 0.40 0.70 -5.2006 -5.20 -5.20 -5.20 -5.20 -5.10 -5.20 -4.90

N(10, 1), θ0 = 10 N(10, 5), θ0 = 10

ρ ρ

Xi,j 0 0.01 0.05 0.10 0.20 0.30 0.40 0.70 0 0.01 0.05 0.10 0.20 0.30 0.40 0.70

1 10.5406 10.54 10.55 10.50 10.60 10.50 10.40 10.50 8.4316 8.43 8.45 8.40 8.40 8.40 8.40 8.40

2 10.4953 10.50 10.50 10.50 10.40 10.50 10.40 10.50 4.3207 4.32 4.30 4.30 4.40 4.20 4.40 4.20

3 8.3949 8.39 8.40 8.40 8.40 8.40 8.40 8.40 1.4402 1.44 1.45 1.40 1.40 1.50 1.60 1.40

4 8.4831 8.48 8.50 8.50 8.40 8.40 8.40 8.40 16.1216 16.12 16.10 16.10 16.20 16.20 16.00 16.10

5 9.5129 9.51 9.50 9.50 9.60 9.60 9.60 9.80 10.6650 10.66 10.65 10.70 10.60 10.80 10.80 10.50

6 8.7961 8.80 8.80 8.80 8.80 8.70 8.80 9.10 13.0649 13.06 13.05 13.10 13.00 13.20 13.20 13.30

7 10.7427 10.74 10.75 10.70 10.80 10.80 10.80 10.50 8.9060 8.91 8.90 8.90 9.00 9.00 8.80 9.10

8 8.4570 8.46 8.45 8.50 8.40 8.40 8.40 8.40 4.1332 4.13 4.15 4.10 4.20 4.20 4.00 4.20

9 11.8820 11.88 11.90 11.90 11.80 12.00 12.00 11.90 10.4116 10.41 10.40 10.40 10.40 10.50 10.40 10.50

10 9.3638 9.36 9.35 9.40 9.40 9.30 9.20 9.10 6.4064 6.41 6.40 6.40 6.40 6.30 6.40 6.30
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Table 4.2: Differences between the “true” and “observed” samples

N(0.5, 1), θ0 = 0.5 N(0.5, 5), θ0 = 0.5

ρ ρ

Xi,j 0.01 0.05 0.10 0.20 0.30 0.40 0.70 0.01 0.05 0.10 0.20 0.30 0.40 0.70

1 -0.00 -0.00 0.05 -0.05 -0.05 0.15 0.35 -0.00 0.02 0.02 0.02 0.12 0.02 -0.08

2 -0.00 -0.00 -0.00 0.10 -0.10 0.10 0.10 0.00 -0.02 0.03 -0.07 0.13 0.13 -0.07

3 -0.00 -0.02 -0.02 0.08 -0.12 0.08 0.18 -0.00 0.01 0.01 0.01 0.01 -0.19 0.21

4 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 -0.05 -0.05 -0.05 -0.05 -0.05

5 0.00 0.02 -0.03 0.07 0.07 0.07 -0.13 -0.00 0.01 0.01 -0.09 0.01 -0.09 -0.29

6 -0.00 -0.01 -0.01 0.09 0.09 0.09 0.29 0.00 -0.02 0.03 0.03 0.03 0.03 -0.07

7 -0.00 0.01 -0.04 0.06 -0.04 -0.14 0.26 -0.00 -0.02 -0.02 0.08 -0.02 0.08 -0.32

8 -0.00 0.02 -0.03 0.07 0.07 0.07 -0.13 -0.00 -0.02 0.03 0.03 0.13 -0.17 0.03

9 -0.00 -0.02 0.03 -0.07 0.13 0.13 0.33 -0.00 0.02 0.02 -0.08 -0.08 0.12 0.32

10 0.00 0.02 0.02 -0.08 -0.08 0.12 -0.18 -0.00 -0.00 -0.00 -0.00 -0.10 -0.00 -0.30

N(10, 1), θ0 = 10 N(10, 5), θ0 = 10

ρ ρ

Xi,j 0.01 0.05 0.10 0.20 0.30 0.40 0.70 0.01 0.05 0.10 0.20 0.30 0.40 0.70

1 0.00 -0.01 0.04 -0.06 0.04 0.14 0.04 0.00 -0.02 0.03 0.03 0.03 0.03 0.03

2 -0.00 -0.00 -0.00 0.10 -0.00 0.10 -0.00 0.00 0.02 0.02 -0.08 0.12 -0.08 0.12

3 0.00 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.00 -0.01 0.04 0.04 -0.06 -0.16 0.04

4 0.00 -0.02 -0.02 0.08 0.08 0.08 0.08 0.00 0.02 0.02 -0.08 -0.08 0.12 0.02

5 0.00 0.01 0.01 -0.09 -0.09 -0.09 -0.29 0.00 0.01 -0.04 0.06 -0.14 -0.14 0.16

6 -0.00 -0.00 -0.00 -0.00 0.10 -0.00 -0.30 0.00 0.01 -0.04 0.06 -0.14 -0.14 -0.24

7 0.00 -0.01 0.04 -0.06 -0.06 -0.06 0.24 -0.00 0.01 0.01 -0.09 -0.09 0.11 -0.19

8 -0.00 0.01 -0.04 0.06 0.06 0.06 0.06 0.00 -0.02 0.03 -0.07 -0.07 0.13 -0.07

9 0.00 -0.02 -0.02 0.08 -0.12 -0.12 -0.02 0.00 0.01 0.01 0.01 -0.09 0.01 -0.09

10 0.00 0.01 -0.04 -0.04 0.06 0.16 0.26 -0.00 0.01 0.01 0.01 0.11 0.01 0.11

In order to fully understand the association between the magnitude of ρ and the number

of tied observations, in Figure 4.1 some histograms are presented regarding the occurrence

of ties for different values of ρ. In particular, for each case, a simulation of 50000 generated

samples from N(0, 1) has been performed, and for each generated sample, the corresponding

number of ties is reported. Then, for each case the corresponding histogram is presented

regarding the distribution of the number of ties. It can be seen that for small values of ρ

the number of ties is relative small. However, it is crucial to investigate if the chart’s RL

properties are affected by this small occurrence of ties.
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Figure 4.1: Distribution of the total number of ties for the random generated samples for
N(0, 1) for different values of ρ = {0, 005, 0.1, 0.2, 0.25}

Before we proceed to any further computations, the distribution of the SNt statistic needs

to be re-defined under the presence of ties. It is clear that, due to the occurrence of tied

observations caused by the rounding-off errors of the measurement system, the statistic St,j

presented in Section 2.1.1 is no longer defined on {−1, 1} but rather on {−1, 0, 1}. As a

consequence, the quantity St,j = sign(Xt,j − θ0) has to be replaced by St,j = sign(X
′
t,j − θ0)

and the vector of probabilities p = (p−1, p0, p+1) must be re-defined as:
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p−1 = P(X
′

t,j < θ0) = P
(
Xt,j ≤ θ0 −

ρ

2

)
= FX

(
θ0 −

ρ

2
|θ
)
,

p0 = P(X
′

t,j = θ0) = P
(
θ0 −

ρ

2
< Xt,j ≤ θ0 +

ρ

2

)
= FX

(
θ0 +

ρ

2
|θ
)
− FX

(
θ0 −

ρ

2
|θ
)
,

p+1 = P(X
′

t,j > θ0) = P
(
Xt,j > θ0 +

ρ

2

)
= 1− FX

(
θ0 +

ρ

2
|θ
)
.

4.1.1 Cumulative distribution and probability mass functions of

SNt when ties are present

Based on the above statements, it can be clearly concluded that, the variable SNt is no

longer defined on {−n,−n+ 2, . . . , n− 2, n} but it is rather defined on {−n,−n+ 1, . . . , n−
1, n}. Additionally, the p.m.f. of SNt cannot longer be computed through to the Binomial

distribution as for the “without ties” case. Castagliola et al. (2020) provided three different

ways for evaluating, the p.m.f. of SNt when ties are present. More specifically, the results

obtained through these approaches are equivalent and consistent with the “no ties” case (i.e.

when ρ = 0). Additionally, for illustration purposes, in Figures 4.2 and 4.3 the p.m.f. of SNt

with (ρ = {0.05, 0.1, 0.2, 0.5}) and without ties (ρ = 0) is presented for n = 25 and n = 40

respectively.

1st approach

Firstly, a simple way to consider for the computation of the p.m.f., fSNt(s|n, p+1), of SNt

is a recursive one. In particular, since SNt = St,1 + St,2, . . . , St,n = s equals to:

• (St,1 + St,2, . . . , St,n−1 = s+ 1) ∪ (St,n = −1), or

• (St,1 + St,2, . . . , St,n−1 = s) ∪ (St,n = 0), or

• (St,1 + St,2, . . . , St,n−1 = s− 1) ∪ (St,n = +1).

Then, for s ∈ {−n,−n+ 1, . . . , n} we have

fSNt(s|n, p+1) = p−1fSNt(s+ 1|n− 1, p+1) + p0fSNt(s|n− 1, p+1) + p+1fSNt(s− 1|n− 1, p+1),
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with fSNt(s|n = 1, p+1) = ps for s ∈ {−1, 0, 1}.

2nd approach

The second method for the computation of the p.m.f. of SNt is by considering the possible

values of SNt = {−n,−n+1, . . . , n−1, n} as the states of a discrete time Markov chain with

transition probability matrix P:

state i

−n −n+ 1 −n+ 2 . . . n− 2 n− 1 n ∗
−n p0 p+1 . . . . . . . . . . . . 0 p−1

−n+ 1 p−1 p0 p+1 0

−n+ 2 0 p−1 p0 p+1
...

state j
...

... -1
...

n− 2
... p−1 p0 p+1

...

n− 1
... p−1 p0 p+1 0

n
... -1 . p−1 p0 p+1

∗ ...
...

... 0 0 1

where the state “∗” corresponds to the absorbing state. Additionally, if we consider

p = (0, . . . , 0, 1, 0, . . . , 0)ᵀ the vector of initial probabilities the corresponding p.m.f. vector

f = (fSNt(−n|n, p+1), fSNt(−n+ 1|n, p+1), . . . , fSNt(n|n, p+1))ᵀ,

can be computed through f = pPn.

3th approach

Finally, an alternative way is to evaluate the p.m.f. of SNt by summing all the possible

combinations, like the Binomial distribution. More specifically, if we denote n−1 to be the

number of occurrences of St,j = −1 in {St,1, St,2, . . . , St,n}, then the possible values of SNt

falls between n−1 and n−1 + n+ n−1 = n− 2n−1. As a consequence, if SNt = s we have that

−s ≤ n−1 ≤ n−s
2

and as n−1 is a positive integer max(0,−s) ≤ n−1 ≤ bn−s2
c. Therefore, for
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each integer value in i ∈ {max(0,−s), . . . , bn−s
2
c} by counting all the possible combinations

of

• i occurrences of St,j = −1

• n− s− 2i occurrences of St,j = 0

• s+ i occurrences of St,j = +1

the following formula is obtained

fSNt(s|n,p) =

bn−s
2
c∑

i=max(0,−s)

(
n

i

)(
n− i
s+ i

)
pi−1p

n−s−2i
0 ps+i+1

Mean and variance of SNt when ties are present

Since SNt =
∑n

k=1 Si , St,j ∈ {−1, 0, 1}, for the mean and variance of SN, we have:

Etied(SNt) = n×m1,

and

Vtied(SNt) = n× µ2

where m1 and µ2 are the corresponding mean and variance of St,j defined as:

m1 = E(St,j) =
∑
∀St,j

pi × Si = p−1 × (−1) + p0 × 0 + p+1 × (1) = p+1 − p−1,

and

µ2 = V(St,j) =
∑
∀Sit,j

pi× (St,j −m1)2 = p−1× (−1−m1)2 + p0× (0−m1)2 + p+1× (1−m1)2

It can be easily seen that when p+1 = p−1 = 0.5 and p0 = 0 (i.e. for ρ = 0 ) we have that

E(SNt) = 0 and V(SNt) = n which are the corresponding in-control mean and variance of

SNt where there is no tie.
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Figure 4.2: p.m.f. of SNt with and without ties for ρ = {0.05, 0.1, 0.2, 0.5} and n = 25
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Figure 4.3: p.m.f. of SNt with and without ties for ρ = {0.05, 0.1, 0.2, 0.5} and n = 40

4.2 A short Review on the Shewhart SN chart when

ties are present

Recently, Castagliola et al. (2020), investigated the distribution-free properties of the

Shewhart Sign chart when ties are present. They showed that, when ties are present, the

chart’s RL properties are highly affected and its distribution-free properties are no longer

valid. They investigated two approaches and came up with the solution of a Bernoulli-

based approach called as the “flip a coin” strategy (see, Sections below). Additionally,

they presented the chart’s in- and out-of-control properties under the benchmark of several

Johnson-type Distributions defined below and listed in Table 4.3.

Johnson Distributions

By definition, (see, Johnson (1949)) the random variable Z follows a Johnson distribution

with parameters a, b, c, d where a, b > 0, c ∈ R and d > 0, if it can be reduced to a standard

Normal variable Y ∼ N(0, 1) through the following transformation:

Y = a+ bfJ =

(
Z − c
d

)
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where fJ is a Johnson transformation that leads to two kind of distributions; the Johnson

SB defined on [c, c + d] and the Johnson SU defined on (−∞,+∞). Generally, the c.d.f.

FZ(. . .) and inverse c.d.f. F−1
Z (. . .) of a Johnson’s-type distribution are defined as:

• bounded on [c, c+ d] (denoted as B in Table 4.3) with FZ(x) equal to:

FZ(x) = FN

(
a+ b ln

(
x− c

c+ d− x

))
, x ∈ [c, c+ d]

F−1
Z (u) = c+

d

1 + exp
(
a−F−1

N (u)

b

) , 0 < u < 1

• unbounded on (−∞,∞) (denoted as U in Table 4.3) with FZ(x) equal to:

FZ(x) = FN

(
a+ b sinh−1

(
x− c
d

))
, x ∈ (−∞,∞)

F−1
Z (u) = c+ d sinh

(
F−1

N (u)− a
b

)
, 0 < u < 1.

where F−1
N (. . .) is the inverse c.d.f. of the standard normal distribution respectively.

Similarly, with the design of a conventional parametric control chart the process shift can

be expressed in terms of the standardized distribution shift of magnitude δ, as θ1 = θ0 + δσ.

Also, let FX(x|θ) belongs to a location-scale family of distributions which can be rewritten

as FX(x|θ) = FZ(x−θ
σ

) where σ is the standard deviation of X. Finally, by defining the

quantity κ = ρ
σ

as the standardized resolution, the vector of probabilities p = (p−1, p0, p+1),

can be rewritten as a function of the system resolution:

p−1 = FZ

(
−κ

2
− δ
)
,

p0 = FZ

(κ
2
− δ
)
− FZ

(
−κ

2
− δ
)
, (4.3)

p+1 = 1− FZ
(κ

2
− δ
)
.
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Table 4.3: Benchmark of 17 Johnson’s type distributions.

case γ3 γ4 type a b c d
1 0 -1.2 B 0 0.64646 -1.81530 3.63060
2 0 -0.6 B 0 1.39830 -3.10970 6.21950
3 0 0 U 0 100 0 100
4 0 1 U 0 2.3212 0 2.10940
5 0 3 U 0 1.6104 0 1.31180
6 0 6 U 0 1.3493 0 1
7 2 4.3 B 1.7464 0.69076 -0.48932 6.6213
8 2 6.1 B 3.3279 1.227 -1.0016 16.088
9 2 7.9 U -4.85600 1.8044 -1.41900 0.19332
10 2 10.8 U -1.0444 1.432 -0.65538 0.82361
11 2 16.7 U -0.52977 1.2093 -0.33154 0.73314
12 2 25.5 U -0.34371 1.0892 -0.2023 0.63054
13 5 52.6 B 5.2193 0.98134 -0.47316 97.043
14 5 65.3 U -4.01870 1.0864 -0.56652 0.02806
15 5 86 U -0.75701 0.98744 -0.32033 0.37954
16 5 128.7 U -0.43187 0.90797 -0.18538 0.37543
17 5 192.1 U -0.29868 0.85558 -0.12122 0.34029

When the process is in-control (i.e. δ = 0) the above expressions can be simplified into

p−1 = FZ

(
−κ

2

)
,

p0 = FZ

(κ
2

)
− FZ

(
−κ

2

)
,

p+1 = 1− FZ
(κ

2

)
.

In Table 4.3, 17 cases of the Johnson’s family distributions are presented. Moreover, for

each distribution, the corresponding values of the parameters a, b, c, d, have been selected in

order to satisfy med(Z) = 0 (for the median) and σ(Z) = 1 (for the standard-deviation).

These values have been obtained from Castagliola et al. (2020). The cases #1−#6 approx-

imatively match some well known symmetric distributions. In particular, case #1 is close

to the Uniform distribution, case #2 is close to the Triangular distribution while case #3

almost corresponds to the Standard Normal distribution. Additionally, cases #4−#6 are

close to the Student t distribution with 10, 6 and 5 degrees of freedom, respectively. Finally,

the remaining 12 cases, under different values for the skewness γ3 > 0 and kurtosis γ4 > 0

aim to cover a large variety of asymmetric and heavily-tailed distributions. For more details,

a graphical representation of these distributions is provided in Figure 4.4 where, for each of

them, the same scale has been used.
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Figure 4.4: Johnson-type Distributions listed in Table 4.3
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Performance of the S-SN chart when ties are present

An efficient strategy to handle ties in the design of a Sign chart, is the “flip a coin”

strategy, originally proposed by Castagliola et al. (2020), in which the probability p0 is

equally allocated on both sides for values St,j = +1 and St,j = −1. More specifically, for

each value St,j = 0 it is proposed the transformation St,j = 2∆t,j − 1 where ∆t,j ∼ Ber(0.5)

is a Bernoulli random variable of parameter 0.5. As a consequence, applying this strategy is

equivalent to consider the two-sided Sign Shewhart control chart in the “without ties” case

with the following new probabilities:

p′−1 = p−1 +
p0

2
,

p′0 = 0,

p′+1 = p+1 +
p0

2
.

In Table 4.4, the in-control (δ = 0) vectors of probabilities p′ = (p′−1, p′0, p
′
+1) for the 17

distributions are reported for different values of κ. We can conclude that when κ = 0, as

expected, we always have p′0 = 0, p′+1 = p′−1 = 0.5 no matter the considered distribution.

Moreover, for the symmetric cases #1−#6, (when κ > 0) we always have p′+1 = p′−1 = 0.5

This is also an expected result. Finally, for the asymmetric cases, even though p′+1 differs

from p′−1 all the p′+1 values remain really close to 0.5, since |p′+1 − 0.5| < 0.01 for the cases

#7−#17.
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Table 4.4: Vector of in-control probabilities (p′−1, p
′
0, p
′
+1) with the “flip a coin” strategy for

the 17 distributions in Table 4.3.

case κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

1 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

2 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

3 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

4 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

5 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

6 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000 0.5000 0.0000 0.5000

7 0.5000 0.0000 0.5000 0.4996 0.0000 0.5004 0.4986 0.0000 0.5014 0.4942 0.0000 0.5058

8 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4994 0.0000 0.5006 0.4976 0.0000 0.5024

9 0.4999 0.0000 0.5001 0.4998 0.0000 0.5002 0.4995 0.0000 0.5005 0.4982 0.0000 0.5018

10 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4984 0.0000 0.5016

11 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4985 0.0000 0.5015

12 0.5000 0.0000 0.5000 0.4999 0.0000 0.5001 0.4996 0.0000 0.5004 0.4985 0.0000 0.5015

13 0.5000 0.0000 0.5000 0.4994 0.0000 0.5006 0.4978 0.0000 0.5022 0.4912 0.0000 0.5088

14 0.4999 0.0000 0.5001 0.4995 0.0000 0.5005 0.4983 0.0000 0.5017 0.4932 0.0000 0.5068

15 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4987 0.0000 0.5013 0.4950 0.0000 0.5050

16 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4989 0.0000 0.5011 0.4957 0.0000 0.5043

17 0.5000 0.0000 0.5000 0.4997 0.0000 0.5003 0.4989 0.0000 0.5011 0.4959 0.0000 0.5041

In table 4.5 the in-control ARL values of the S-SN chart are presented with and without

the “flip a coin” strategy for n = 20 and κ = {0, 0.05, 0.1, 0.2}. It is clear that, when ties

are present, the conventional S-SN chart is no longer distribution-free. In particular, even

for small values of κ, the ARL0 are highly affected and are far from 388.8 (i.e. the “no ties”

case). On the other hand, the “flip a coin” strategy makes the results robust, and unaffected

by the underlying distribution.
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Table 4.5: Performance of the S-SN chart for n = 20 with and without the “flip a coin
strategy”

Without“flip a coin” strategy With “flip a coin” strategy

Cases κ = 0 κ = 0.05 κ = 0.1 κ = 0.2 κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

#1 388.07 468.83 551.73 722.16 388.07 388.07 388.07 388.07

#2 388.07 490.45 595.75 815.83 388.07 388.07 388.07 388.07

#3 388.07 502.13 619.58 868.52 388.07 388.07 388.07 388.07

#4 388.07 513.81 643.47 923.14 388.07 388.07 388.07 388.07

#5 388.07 528.64 673.93 995.93 388.07 388.07 388.07 388.07

#6 388.07 542.86 703.31 1070.04 388.07 388.07 388.07 388.07

#7 388.07 563.52 746.96 1183.49 388.07 388.05 387.77 383.29

#8 388.07 537.88 693.17 1044.11 388.07 388.07 388.02 387.24

#9 388.07 532.44 681.85 1015.69 388.07 388.07 388.04 387.61

#10 388.07 544.19 706.15 1077.52 388.07 388.07 388.05 387.71

#11 388.07 577.55 776.18 1273.13 388.07 388.07 388.05 387.76

#12 388.07 714.21 1095.10 2274.84 388.07 387.84 384.33 387.80

#13 388.07 629.74 891.35 1638.64 388.07 388.03 387.37 377.24

#14 388.07 609.63 846.21 1489.18 388.07 388.04 387.64 381.55

#15 388.07 618.18 864.95 1558.77 388.07 388.06 387.84 384.49

#16 388.07 639.55 913.25 1739.21 388.07 388.06 387.89 385.36

#17 388.07 663.39 969.14 1967.48 388.07 388.06 387.91 385.68

4.3 The “continuousified” two-sided 2C-SN EWMA

chart when ties are present

Motivated by the fact that for nonparametric Shewhart charts the presence of ties affects

their performance, we are going to investigate the effect of the measurement errors in the per-

formance of the two-sided EWMA chart introduced in Sections 3.2. In particular, the exact

same design will be used, with the only difference that, regarding computation of the p.m.f.

of SNt, the general expression of its distribution will be used as presented in Section 4.1.1.

For the 17 Johnson’s type distributions presented in Table 4.3, the ARL values of the two-

sided EWMA control chart will be presented for shifts δ ∈ {−0.5,−0.2,−0.1, 0, 0.1, 0.2, 0.5}
and for standardized resolution κ = 0 (without ties) and κ ∈ {0.05, 0.1, 0.2} (with ties)

using three different strategies. More specifically, in Section 4.3.1 the same control lim-

its (UCL,LCL) will be used, for the 17 Johnson’s type distributions. In Section 4.3.2 a

semi-parametric approach will be used where, new control limits will be defined, adjusted

to the underlying distribution. Lastly, in Section 4.3.3, the Bernoulli trial-based approach

presented in Section 4.2 will be investigated where tied observations will be equally treated

as negative or positive differences.
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4.3.1 Run length properties of the 2C-SN EWMA chart using the

traditional control limits

First, the RL properties of the two-sided 2C-SN EWMA chart will be examined, under

tied scenarios using the charting statistic defined in equation (3.9) and the fixed control limits

as defined in Section 3.2.2. Regarding the computation of the control limits, the in-control

mean, E0(SN∗t ) and variance, V0(SN∗t ) of SN∗t will be the same for all the cases regardless

the underlying distribution as defined in (3.12). In Table 4.6 the performance of the 2C-SN

EWMA chart is investigated under the benchmark of the 17 Johnson distributions for a fixed

value of n = 20 and two optimal pairs (λ∗, K∗) listed in Table 3.10:

• The first optimal pair is (λ∗ = 0.12, K∗ = 2.743). This one corresponds to the optimal

pair (λ∗, K∗) for detecting a shift corresponding to a small value p+1 = 0.6 for n = 20.

The value p+1 = 0.6 is considered as a small shift in the in-control process median.

• The second optimal pair is (λ∗ = 0.72, K∗ = 2.928). This one corresponds to optimal

pair (λ∗, K∗) for detecting a shift corresponding to a moderate to large value p+1 = 0.85

for n = 20. The value p+1 = 0.85 corresponds to a moderate shift in the in-control

process median.

It should be noted that the pairs of (λ∗, K∗) have been randomly chosen only for pre-

sentation reasons, in order to examine how the Sign EWMA chart behaves when ties are

present. In the following sections of the this Chapter, there will be an detailed examination

regarding the effect of these parameters. From Table 4.6 we can conclude the following:

• For κ = 0 the in-control values of ARL are steady and exactly equal to 370.4 (as

expected). Note that this is an advantage of our proposed scheme since, regardless

the sample size, it can be designed giving a corresponding in-control ARL value, to

be exactly equal to the predefined value of ARL0. On the other hand, for κ > 0,

even for small values of κ, the in-control ARL values are different. For example when

(p+1, λ,K) = (0.6, 0.12, 2.743) and κ = 0.05 we have ARL0 = 391.1 for case 1 and

ARL0 = 432.2 for case 15. In addition, for heavy tailed distributions (i.e. for large

values of γ4) the ARL0 values become larger (see for example the last four cases).

• For the first 6 symmetric cases the corresponding out-of-control values are the same

for shifts δ and −δ regardless the value of κ. On the other hand for asymmetric

cases, negative shifts, −δ give larger ARL1 values than positive ones. For example,

for case #10, when (p+1, λ,K) = (0.6, 0.12, 2.743) and κ = 0.2 for δ = −0.1 we have

ARL1 = 37.7 and for δ = 0.1 we have ARL1 = 30.6.
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• Regardless the type of distribution, as κ increases the out-of-control ARL1 values are

becoming larger. For instance, for δ = 0.1 and (p+1, λ,K) = (0.85, 0.72, 2.928) we have

ARL1 = 131.7 for κ = 0, ARL1 = 143.4 for κ = 0.05, ARL1 = 157.4 for κ = 0.1 and

ARL1 = 193.9 for κ = 0.2.

Table 4.6: ARL values when n = 20 for (p+1, λ,K) = (0.6, 0.12, 2.743) and (p+1, λ,K) =
(0.85, 0.72, 2.928) using traditional control limits.
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4.3.2 Run length properties of the 2C-SN EWMA chart using new

control limits

As it was previously presented, when ties are present, the ARL0 values of the Sign

EWMA chart are seriously affected. In particular, as κ increases, the chart’s distribution-

free properties are no longer valid, even for small values of κ = 0.05. In this Section, an

alternative approach is investigated in order to tackle this issue and ideally maintain the

chart’s distribution-free properties regardless the number of ties. Amin et al. (1995), for

the design of the Sign Shewhart chart, suggested to maintain the values St,j = 0 in the

computation of the SNt statistic and the control limits (LCL,UCL) = (−C ′,−C ′) should

be defined through the Binomial distribution similarly with the “no ties” case. However, in

this approach, the effect of the rounding-off error, is totally overlooked since this changes

the distributional properties of the SNt statistic. An alternative solution has been suggested

by Chakraborti et al. (2001) who suggested to remove ties from the sample and to update

the sample size n, if their probability of occurrence is small. This approach makes harder

to define a priori the statistical performance of the SN control chart because varying n re-

quires to redefine the control limit coefficient C ′. In the work of Castagliola et al. (2020),

the distribution-free properties of the Shewhart Sign chart were investigated by adjusting

the control limit coefficient C ′ based on the underlying distribution. However, they showed

that, this method is not efficient in the design of Sign Shewhart-type charts.

Motivated by the above statements, we will focus on adjusting the control limits (i.e. the

in-control values of E0(SN∗t ) and V0(SN∗t ) along with the pair of (λ,K) based on the un-

derlying distribution and the values of κ, using the expressions presented in Section 4.1.1.

In Table 4.7, for the 17 distributions listed in Table 4.3 and κ = {0, 0.05, 0.1, 0.2} , the

corresponding vector of probabilities p = (p−1, p0, p+1) along with the mean and variance of

SNt are illustrated when n = 20. From Table 4.7 we may conclude the following:

• When κ = 0 (i.e. the “no-ties” case) for every case the corresponding mean and

variance of SN∗t equal to E0(SNt) = 0 and V0(SNt) = 20. Note that, this is an expected

result and consistent with the computations of the previous Chapter in the “no ties”

case.

• As κ increases the result significantly change. In particular, regardless the values of

κ (small or large) the corresponding values of the variance are no longer equal to n,

but they tend to decrease instead. Moreover, the in-control value of the mean of SNt

is equal to zero only for cases #1-#6, (i.e. for symmetric distributions).
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Table 4.7: Vector of probabilities (first line) along with the mean and variance (second row)
when κ = {0, 0.05, 0.1, 0.2} for the 17 distributions in Table 4.3.

case κ = 0 κ = 0.05 κ = 0.1 κ = 0.2

#1
(0.5,0,0.5)

(0,20)
(0.4929,0.0142,0.4929)

(0,19.716)
(0.4858,0.0284,0.4858)

(0,19.432)
(0.4716,0.0568,0.4716)

(0,18.864)

#2
(0.5,0,0.5)

(0,20)
(0.491,0.0179,0.491)

(0,19.64)
(0.482,0.0359,0.4821)

(0.002,19.282)
(0.4641,0.0717,0.4642)

(0.002,18.566)

#3
(0.5,0,0.5)

(0,20)
(0.49,0.0199,0.49)

(0,19.6)
(0.4801,0.0399,0.4801)

(0,19.204)
(0.4602,0.0797,0.4602)

(0,18.408)

#4
(0.5,0,0.5)

(0,20)
(0.489,0.0219,0.489)

(0,19.56)
(0.4781,0.0439,0.4781)

(0,19.124)
(0.4562,0.0876,0.4562)

(0,18.248)

#5
(0.5,0,0.5)

(0,20)
(0.4878,0.0245,0.4878)

(0,19.512)
(0.4755,0.0489,0.4755)

(0,19.02)
(0.4512,0.0976,0.4512)

(0,18.048)

#6
(0.5,0,0.5)

(0,20)
(0.4865,0.0269,0.4865)

(0,19.46)
(0.4731,0.0538,0.4731)

(0,18.924)
(0.4464,0.1072,0.4464)

(0,17.856)

#7
(0.5,0,0.5)

(0,20)
(0.4844,0.0304,0.4852)

(0.016,19.397)
(0.4681,0.0609,0.471)

(0.058,18.843)
(0.4329,0.1227,0.4444)

(0.23,18.498)

#8
(0.5,0,0.5)

(0,20)
(0.4868,0.0261,0.4871)

(0.006,19.479)
(0.4733,0.0521,0.4745)

(0.024,18.966)
(0.4455,0.1043,0.4503)

(0.096,18.082)

#9
(0.4999,0,0.5001)

(0.004,20)
(0.4873,0.0251,0.4876)

(0.006,19.499)
(0.4744,0.0503,0.4754)

(0.02,19.003)
(0.448,0.1004,0.4516)

(0.072,18.085)

#10
(0.5,0,0.5)

(0,20)
(0.4863,0.0271,0.4865)

(0.004,19.456)
(0.4725,0.0542,0.4733)

(0.016,18.921)
(0.4443,0.1082,0.4475)

(0.064,17.91)

#11
(0.5,0,0.5)

(0,20)
(0.4849,0.03,0.4851)

(0.004,19.4)
(0.4697,0.0599,0.4704)

(0.014,18.806)
(0.4388,0.1193,0.4419)

(0.062,17.683)

#12
(0.5,0,0.5)

(0,20)
(0.4835,0.0328,0.4837)

(0.004,19.344)
(0.4669,0.0655,0.4676)

(0.014,18.694)
(0.4334,0.1303,0.4363)

(0.058,17.455)

#13
(0.5,0,0.5)

(0,20)
(0.4709,0.0556,0.4735)

(0.052,18.937)
(0.4389,0.1119,0.4491)

(0.204,18.509)
(0.3645,0.2293,0.4062)

(0.834,27.934)

#14
(0.5,0,0.5)

(0,20)
(0.4786,0.0416,0.4798)

(0.024,19.178)
(0.4561,0.0833,0.4606)

(0.09,18.48)
(0.4075,0.1675,0.425)

(0.35,18.855)

#15
(0.4999,0,0.5001)

(0.004,20)
(0.4804,0.0382,0.4814)

(0.02,19.243)
(0.46,0.0765,0.4635)

(0.07,18.558)
(0.4165,0.1534,0.43)

(0.27,18.242)

#16
(0.5,0,0.5)

(0,20)
(0.4799,0.0396,0.4805)

(0.012,19.211)
(0.4591,0.0792,0.4617)

(0.052,18.465)
(0.4161,0.1578,0.4261)

(0.2,17.564)

#17
(0.5,0,0.5)

(0,20)
(0.4781,0.0432,0.4787)

(0.012,19.139)
(0.4557,0.0863,0.458)

(0.046,18.312)
(0.4102,0.171,0.4189)

(0.174,17.127)

In order to apply the strategy where new control limits are defined based on the sample’s

underlying distribution, the following procedure will be followed. In particular, for a given

value of n and κ for each distribution listed in Table 4.3:
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• step 1 : Compute the vector of probabilities p = (p−1, p0, p+1) for δ = 0 and a given

value of κ.

• step 2 : Compute the in-control mean and variance of SNt as defined in Section 4.1.1.

• step 3 : For a given value of λ, compute the corresponding value of K ′ as presented in

Section 3.2.5.

• step 4 : Compute the new control limits using the formulas:

UCLnew = Etied(SN∗t ) +K ′
√

λ

2− λ
Vtied(SN∗t )

LCLnew = Etied(SN∗t )−K ′
√

λ

2− λ
Vtied(SN∗t )

• step 5 : Compute the chart’s Run Length properties as presented in 3.2.

In Tables 4.8 (n = 10) and 4.9 (n = 20) the corresponding values of (λ,K ′,ARL0) are

presented (first line) along with the vector of probabilities (second line), for each distribution,

for κ = {0, 0.05, 0.1, 0.15, 0.2}, using λ = 0.2 as a fixed constant. Based on these Tables we

may conclude that:

• For a given value of κ and a priori information of the underlying distribution practition-

ers are capable of designing the chart in order to satisfy the condition ARL0 = 370.4

(or for any pre-defined value of the in-control ARL). In particular, based on the under-

lying distribution, adjusting not only the in-control values for the mean and variance,

but also the coefficient K ′, is an efficient semi-parametric technique for dealing with

tied observations without affecting the chart’s RL properties.

• It is worth stretching that, as it has been already noted in Chapter 3, for small (n = 10)

or even moderate (n = 20) values of n, the Shewhart Sign chart is impossible to be

designed in order to give a corresponding ARL0 value to be exactly equal to 370.4 (or

even relatively close to that value). On the other hand, using the proposed EWMA

Sign chart, regardless the value of the sample size, practitioners are able to design the

chart for any pre-defined ARL0 of their choice.
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Table 4.8: Vector of probabilities (first line) along with the vector of of (λ,K ′,ARL0) (second
line), for each distribution, for κ = {0, 0.05, 0.1, 0.15, 0.2} and n = 10 using λ = 0.2 as a
fixed constant

Case κ = 0 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

1
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4929,0.0142,0.4929)

(0.2,2.8337,370.4)
(0.4858,0.0284,0.4858)

(0.2,2.8338,370.4)
(0.4787,0.0426,0.4787)

(0.2,2.8335,370.4)
(0.4716,0.0568,0.4716)

(0.2,2.8334,370.4)

2
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.491,0.0179,0.491)
(0.2,2.8337,370.4)

(0.482,0.0359,0.4821)
(0.2,2.8337,370.4)

(0.4731,0.0538,0.4731)
(0.2,2.8335,370.4)

(0.4641,0.0717,0.4642)
(0.2,2.8334,370.4)

3
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.49,0.0199,0.49)
(0.2,2.8336,370.4)

(0.4801,0.0399,0.4801)
(0.2,2.8335,370.4)

(0.4701,0.0598,0.4701)
(0.2,2.8334,370.4)

(0.4602,0.0797,0.4602)
(0.2,2.8333,370.4)

4
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.489,0.0219,0.489)
(0.2,2.8336,370.4)

(0.4781,0.0439,0.4781)
(0.2,2.8334,370.4)

(0.4671,0.0658,0.4671)
(0.2,2.8335,370.4)

(0.4562,0.0876,0.4562)
(0.2,2.8335,370.4)

5
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4878,0.0245,0.4878)

(0.2,2.8333,370.4)
(0.4755,0.0489,0.4755)

(0.2,2.8336,370.4)
(0.4633,0.0733,0.4633)

(0.2,2.8335,370.4)
(0.4512,0.0976,0.4512)

(0.2,2.8336,370.4)

6
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4865,0.0269,0.4865)

(0.2,2.8335,370.4)
(0.4731,0.0538,0.4731)

(0.2,2.8335,370.4)
(0.4597,0.0805,0.4597)

(0.2,2.8335,370.4)
(0.4464,0.1072,0.4464)

(0.2,2.8338,370.4)

7
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4844,0.0304,0.4852)

(0.2,2.8332,370.4)
(0.4681,0.0609,0.471)

(0.2,2.8323,370.4)
(0.4509,0.0917,0.4574)

(0.2,2.8283,370.4)
(0.4329,0.1227,0.4444)

(0.2,2.8169,370.4)

8
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4868,0.0261,0.4871)

(0.2,2.8335,370.4)
(0.4733,0.0521,0.4745)

(0.2,2.8334,370.4)
(0.4596,0.0782,0.4623)

(0.2,2.8324,370.4)
(0.4455,0.1043,0.4503)

(0.2,2.8307,370.4)

9
(0.4999,0,0.5001)
(0.2,2.8342,370.4)

(0.4873,0.0251,0.4876)
(0.2,2.8334,370.4)

(0.4744,0.0503,0.4754)
(0.2,2.8333,370.4)

(0.4613,0.0754,0.4634)
(0.2,2.8328,370.4)

(0.448,0.1004,0.4516)
(0.2,2.832,370.4)

10
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4863,0.0271,0.4865)

(0.2,2.8335,370.4)
(0.4725,0.0542,0.4733)

(0.2,2.8333,370.4)
(0.4585,0.0813,0.4602)

(0.2,2.8331,370.4)
(0.4443,0.1082,0.4475)

(0.2,2.8324,370.4)

11
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4849,0.03,0.4851)
(0.2,2.8334,370.4)

(0.4697,0.0599,0.4704)
(0.2,2.8334,370.4)

(0.4543,0.0897,0.456)
(0.2,2.8332,370.4)

(0.4388,0.1193,0.4419)
(0.2,2.8326,370.4)

12
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4835,0.0328,0.4837)

(0.2,2.8333,370.4)
(0.4669,0.0655,0.4676)

(0.2,2.8333,370.4)
(0.4502,0.098,0.4518)

(0.2,2.8332,370.4)
(0.4334,0.1303,0.4363)

(0.2,2.833,370.4)

13
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4786,0.0416,0.4798)

(0.2,2.833,370.4)
(0.4561,0.0833,0.4606)

(0.2,2.8309,370.4)
(0.4324,0.1252,0.4423)

(0.2,2.8214,370.4)
(0.4075,0.1675,0.425)

(0.2,2.7937,370.4)

14
(0.4999,0,0.5001)
(0.2,2.8342,370.4)

(0.4804,0.0382,0.4814)
(0.2,2.833,370.4)

(0.46,0.0765,0.4635)
(0.2,2.8319,370.4)

(0.4387,0.1149,0.4464)
(0.2,2.8263,370.4)

(0.4165,0.1534,0.43)
(0.2,2.8104,370.4)

15
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4799,0.0396,0.4805)

(0.2,2.8331,370.4)
(0.4591,0.0792,0.4617)

(0.2,2.8326,370.4)
(0.4378,0.1186,0.4435)

(0.2,2.8298,370.4)
(0.4161,0.1578,0.4261)

(0.2,2.8212,370.4)

16
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4781,0.0432,0.4787)

(0.2,2.833,370.4)
(0.4557,0.0863,0.458)

(0.2,2.8329,370.4)
(0.433,0.1289,0.438)

(0.2,2.831,370.4)
(0.4102,0.171,0.4189)

(0.2,2.8245,370.4)

17
(0.5,0,0.5)

(0.2,2.8342,370.4)
(0.4761,0.0472,0.4767)

(0.2,2.833,370.4)
(0.4519,0.0941,0.454)

(0.2,2.833,370.4)
(0.4275,0.1403,0.4322)

(0.2,2.8313,370.4)
(0.4031,0.1857,0.4112)

(0.2,2.8263,370.4)
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Table 4.9: Vector of probabilities (first line) along with the vector of of (λ,K ′,ARL0) (second
line), for each distribution, for κ = {0, 0.05, 0.1, 0.15, 0.2} and n = 20 using λ = 0.2 as a
fixed constant

Case κ = 0 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

1
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4929,0.0142,0.4929)

(0.2,2.8448,370.4)
(0.4858,0.0284,0.4858)

(0.2,2.8456,370.4)
(0.4787,0.0426,0.4787)

(0.2,2.8458,370.4)
(0.4716,0.0568,0.4716)

(0.2,2.846,370.4)

2
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.491,0.0179,0.491)

(0.2,2.845,370.4)
(0.482,0.0359,0.4821)

(0.2,2.8458,370.4)
(0.4731,0.0538,0.4731)

(0.2,2.846,370.4)
(0.4641,0.0717,0.4642)

(0.2,2.8462,370.4)

3
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.49,0.0199,0.49)
(0.2,2.8451,370.4)

(0.4801,0.0399,0.4801)
(0.2,2.8457,370.4)

(0.4701,0.0598,0.4701)
(0.2,2.8461,370.4)

(0.4602,0.0797,0.4602)
(0.2,2.8462,370.4)

4
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.489,0.0219,0.489)
(0.2,2.8451,370.4)

(0.4781,0.0439,0.4781)
(0.2,2.8458,370.4)

(0.4671,0.0658,0.4671)
(0.2,2.8462,370.4)

(0.4562,0.0876,0.4562)
(0.2,2.8463,370.4)

5
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4878,0.0245,0.4878)

(0.2,2.845,370.4)
(0.4755,0.0489,0.4755)

(0.2,2.846,370.4)
(0.4633,0.0733,0.4633)

(0.2,2.8463,370.4)
(0.4512,0.0976,0.4512)

(0.2,2.8464,370.4)

6
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4865,0.0269,0.4865)

(0.2,2.8453,370.4)
(0.4731,0.0538,0.4731)

(0.2,2.8461,370.4)
(0.4597,0.0805,0.4597)

(0.2,2.8464,370.4)
(0.4464,0.1072,0.4464)

(0.2,2.8466,370.4)

7
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4844,0.0304,0.4852)

(0.2,2.8449,370.4)
(0.4681,0.0609,0.471)

(0.2,2.8414,370.4)
(0.4509,0.0917,0.4574)

(0.2,2.8229,370.4)
(0.4329,0.1227,0.4444)

(0.2,2.7726,370.4)

8
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4868,0.0261,0.4871)

(0.2,2.8452,370.4)
(0.4733,0.0521,0.4745)

(0.2,2.8453,370.4)
(0.4596,0.0782,0.4623)

(0.2,2.8421,370.4)
(0.4455,0.1043,0.4503)

(0.2,2.8333,370.4)

9
(0.4999,0,0.5001)
(0.2,2.8442,370.4)

(0.4873,0.0251,0.4876)
(0.2,2.845,370.4)

(0.4744,0.0503,0.4754)
(0.2,2.8453,370.4)

(0.4613,0.0754,0.4634)
(0.2,2.8437,370.4)

(0.448,0.1004,0.4516)
(0.2,2.8391,370.4)

10
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4863,0.0271,0.4865)

(0.2,2.8453,370.4)
(0.4725,0.0542,0.4733)

(0.2,2.8456,370.4)
(0.4585,0.0813,0.4602)

(0.2,2.8447,370.4)
(0.4443,0.1082,0.4475)

(0.2,2.8406,370.4)

11
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4849,0.03,0.4851)
(0.2,2.8453,370.4)

(0.4697,0.0599,0.4704)
(0.2,2.8458,370.4)

(0.4543,0.0897,0.456)
(0.2,2.8447,370.4)

(0.4388,0.1193,0.4419)
(0.2,2.841,370.4)

12
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4835,0.0328,0.4837)

(0.2,2.8453,370.4)
(0.4669,0.0655,0.4676)

(0.2,2.8459,370.4)
(0.4502,0.098,0.4518)

(0.2,2.8449,370.4)
(0.4334,0.1303,0.4363)

(0.2,2.8418,370.4)

13
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4786,0.0416,0.4798)

(0.2,2.8447,370.4)
(0.4561,0.0833,0.4606)

(0.2,2.8351,370.4)
(0.4324,0.1252,0.4423)

(0.2,2.7912,370.4)
(0.4075,0.1675,0.425)

(0.2,2.6757,370.4)

14
(0.4999,0,0.5001)
(0.2,2.8442,370.4)

(0.4804,0.0382,0.4814)
(0.2,2.8448,370.4)

(0.46,0.0765,0.4635)
(0.2,2.8395,370.4)

(0.4387,0.1149,0.4464)
(0.2,2.813,370.4)

(0.4165,0.1534,0.43)
(0.2,2.743,370.4)

15
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4799,0.0396,0.4805)

(0.2,2.8452,370.4)
(0.4591,0.0792,0.4617)

(0.2,2.8425,370.4)
(0.4378,0.1186,0.4435)

(0.2,2.8281,370.4)
(0.4161,0.1578,0.4261)

(0.2,2.7882,370.4)

16
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4781,0.0432,0.4787)

(0.2,2.8452,370.4)
(0.4557,0.0863,0.458)

(0.2,2.8434,370.4)
(0.433,0.1289,0.438)
(0.2,2.8323,370.4)

(0.4102,0.171,0.4189)
(0.2,2.8015,370.4)

17
(0.5,0,0.5)

(0.2,2.8442,370.4)
(0.4761,0.0472,0.4767)

(0.2,2.8454,370.4)
(0.4519,0.0941,0.454)

(0.2,2.8439,370.4)
(0.4275,0.1403,0.4322)

(0.2,2.8338,370.4)
(0.4031,0.1857,0.4112)

(0.2,2.8071,370.4)

Effect of the value of K ′: For each distribution listed in Table 4.3, the corresponding

values of K ′ are plotted in Figures 4.5 and 4.6. For both cases, we may observe that:

• n = 10 (small sample size): When κ = 0 the value of K ′ is the same for all the cases.

This is an expected result, since we are referring to the “no ties” case. For κ ≤ 0.1, the
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values of K ′ are almost the same with some differences in the fourth decimal place. As

κ increases, for the first six cases (i.e. for symmetric distributions) the corresponding

values of K ′ are the same (strictly speaking, are almost the same). For asymmetry and

heavily tailed distribution (cases #13−#17) the values of K ′ are a little bit different.

• n = 20 (moderate sample size): For n = 20 the exact same pattern occurs as in

the previous case. The only difference is that for heavily tailed distributions (cases

#13 − #17), as κ increases, the differences between the corresponding values of K ′

tend to be larger.
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Figure 4.5: Corresponding values of K ′ for ρ = {0.05, 0.1, 0.15, 0.2} and n = 10
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Figure 4.6: Corresponding values of K ′ for ρ = {0.05, 0.1, 0.15, 0.2} and n = 20

It can be seen that the values of K ′ are quite close (almost the same) even for large values

of κ. As a result, a logical question arises regarding the effect of the value of K ′. In particular,

since these values are quite close (differences in the third or even in the fourth decimal place),

by setting the value of K ′ as a fixed constant, it is questionable if the corresponding ARL

values will be affected by this choice. In Figures 4.7 and 4.8 the corresponding ARL values

are presented for κ = {0.05, 0.1, 0.15, 0.2} using for all the distributions the same value for

the design parameter (λ,K ′) as the ones in the “no-ties” case. In particular, in Figures

4.7 and 4.8 the corresponding ARL values are reported for each distribution, for a fixed

value of λ = 0.2. Additionally, the value K ′ = 0.8342 for n = 10 and K ′ = 0.8442 for

n = 20 respectively. At each plot, the dashed red lines correspond to a fixed “interval”

where 370.4± 2.
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Figure 4.7: Corresponding values of ARL0 for λ = 0.2, K ′ = 2.8342, when ρ =
{0.05, 0.1, 0.15, 0.2} and n = 10

From Figures 4.7 and 4.8 we may conclude the following:

• n = 10 (small sample size): When κ ≤ 0.1 the ARL0 values are relative close and they

do not exceed the interval (370.4 − 2, 370.4 + 2). When 0.1 ≤ κ ≤ 0.15, for the first

six cases (i.e. for symmetric distributions) the chart’s distribution-free properties are

maintained. On the other hand, as κ increases, it can be observed that in cases #7

and #14 − #17 (heavily tailed distributions) the ARL values differ significantly. As

a consequence, for small sample sizes (and symmetric distributions) K ′ is not affected

by the underlying distribution.

• n = 20 (moderate sample size): As κ increases the results change significantly, espe-

cially for heavily tailed distributions. Clearly it can be concluded that even quite small

changes in the value of K ′ may significantly change the results.
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Figure 4.8: Corresponding values of ARL0) for λ = 0.2, K ′ = 2.8442, when ρ =
{0.05, 0.1, 0.15, 0.2} and n = 20

Taking a closer look at Figures 4.7-4.8 (effect of K ′) and Figures 4.5-4.6 (ARL0 values

with fixed value of K ′), and interesting relation between K ′ and the chart’s distribution-free

properties can be easily observed. In particular, in Figure 4.9 two plots are presented for

n = 20 and κ = 0.2. The plot on the left corresponds to the “optimal” values of K ′ for

each one of the 17 distributions while the plot on the right corresponds to the ARL0 values

when a fixed value of K ′ = 2.8442 is used. It can be seen that, there is a pattern that

occurs between the values of K ′ and the type of distribution. In particular, for symmetric

distributions, there is no impact in the chart’s distribution-free properties. On the other

hand, heavily tailed distributions correspond to smaller values for K ′ in order to achieve a

distribution-free performance. As as general conclusion, adjusting the control limits and the

coefficient K ′, with respect to the value of κ and the underlying distribution, is an efficient

semi-parametric technique where practitioners are able to deal with tied observations and

compute correctly the chart’s Run Length properties.
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Figure 4.9: Relation between K ′ and ARL0 when ρ = 0.2 and n = 20

4.3.3 Run length properties of the 2C-SN EWMA chart under

the “flip a coin strategy”

In the previous Section it was proven that, when ties are present, using the semi-

parametric approach of the “new limits” strategy is a quite efficient method for dealing

with the problem of ties. Of course, someone might argue the fact that, this approach have

a strict assumption regarding an a priori information about the parameters in the measure-

ment error model (i.e. the value κ) and the knowledge of the underlying distribution. As a

consequence, the “new control” limits might not be always applicable in practice. Motivated

by the work of Castagliola et al. (2020) the “flip a coin” strategy will be tested in the design

of the 2C-SN EWMA chart when ties are present. More specifically, using the same pairs

of (λ,K) in Table 4.6, the corresponding in- and out-of control ARL values are presented in

Table 4.10 for κ = {0, 0.05, 0.1, 0.2} and n = 20 using the “flip a coin” strategy. From Table

4.10 we may conclude:

• For symmetric distributions, no matter the value of κ and the pair of (λ,K), the “flip

a coin” strategy guarantees that our proposed nonparametric control chart maintains

its distribution-free property. On the other hand, if we do not use the “flip a coin”

strategy we proved that the chart is no longer distribution-free.

• Regarding the choice of the pair (λ,K) it seems that using larger values of λ, except

from cases #14 and #15 improves significantly the distribution-free property of our

chart for heavy-tailed distributions (cases 13− 17) and large values of κ. For example

for κ = 0.2 using (λ,K) = (0.12, 2.743) the in-control ARL value for case #16 is

ARL = 347.5 and for case #17 it is ARL = 350. On the other hand, using the pair

(λ,K) = (0.72, 2.928),the in-control ARL value for case #16 is ARL = 365.8 and for

case #17 it is ARL = 366.3.
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• Similarly, for the out-of-control cases, we can conclude that no matter the value of κ

the ARL1 values are almost the same. For example, when δ = 0.1 using using (λ,K) =

(0.72, 2.928) for κ = {0, 0.05, 0.1, 0.2} the corresponding ARL1 = {78.2, 78.2, 78.2, 78.5}.
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Table 4.10: ARL values when n = 20 for (p+1, λ,K) = (0.6, 0.12, 2.743) and (p+1, λ,K) =
(0.85, 0.72, 2.928) with the “flip a coin” strategy.
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Sensitivity analysis

Ideally, during the design phase of a nonparametric EWMA control chart, for a given

value of the sample size, practitioners should find the proper combination of (λ,K) which

will guarantee its distribution-free (or at least approximately distribution-free) properties,

regardless the type of the underlying distribution (symmetric/asymmetric ) or the magnitude

of κ. From the results presented above, it has been shown, that the “flip a coin strategy” is

an efficient technique dealing with ties during the process monitoring. However, before we

proceed to any conclusions or performance evaluations, the effect of the design parameters

(λ,K), the sample size n and the magnitude of κ in the chart’s distribution-free properties

needs to be examined. In order to investigate the robustness of the “flip a coin” strategy,

for each pair of (λ,K), listed in Table 4.11, and for different values of κ, the corresponding

ARL0 values will be presented and their stability will be examined under the Benchmark of

the distributions listed in Table 4.3.

Table 4.11: Pairs of (λ,K) for different sample sizes when ties are not present for the 2C-SN
EWMA chart

λ = 0.05 λ = 0.15 λ = 0.25 λ = 0.35 λ = 0.45 λ = 0.55 λ = 0.65 λ = 0.75 λ = 0.85 λ = 0.95

n = 5 2.4813 2.7690 2.8230 2.8142 2.8003 2.7648 2.6972 2.6053 2.4983 2.3991

n = 15 2.4901 2.7860 2.8744 2.9034 2.9176 2.9140 2.9121 2.9042 2.9022 2.8771

n = 20 2.4891 2.7918 2.8808 2.9134 2.9310 2.9320 2.9327 2.9275 2.9153 2.8239

n = 35 2.4906 2.7946 2.8831 2.9204 2.9389 2.9427 2.9446 2.9422 2.9457 2.9834

n = 25 2.4893 2.7944 2.8843 2.9256 2.9439 2.9496 2.9528 2.9517 2.9506 2.9420

n = 35 2.4906 2.7953 2.8877 2.9288 2.9470 2.9548 2.9587 2.9584 2.9557 2.9190

n = 40 2.4909 2.7970 2.8895 2.9303 2.9491 2.9590 2.9629 2.9633 2.9612 2.9121

Effect of the charting parameter λ: In general, as it is presented in Table 3.10,

large values of λ (λ→ 1) correspond to red shifts (p+1 → 1) and small values of λ (λ→ 0)

correspond to small shifts (p+1 → 0). In Table 4.11, several pairs of (λ,K) are presented in

the case where no ties exists which guarantee that ARL0 = 370.4. In particular, for several

values of n and λ = 0.05, 0.15, . . . , 0.95 the corresponding values of K have been computed in

order to satisfy the condition ARL0 = 370.4. Additionally, for each pair of (λ,K) presented

in Table 4.11 and for each distribution presented in Table 4.3, the corresponding ARL0 have

been computed (see, Tables, A1, A2 and A3 in appendix) and plotted in Figures 4.10, 4.11

and 4.12 for n = 5, n = 20 and n = 30, respectively. Moreover, at each plot, the red dashed

lines represent the “reliability limits” (REL = ARL0 ± 5) as a decision rule that the chart

approximately maintains its distribution-free properties. We can conclude the following:
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• n = 5: For κ ≤ 0.1 the value of λ does not significantly affects the ARL0 values. For

0.1 ≤ κ ≤ 0.2, beside cases #14, #15, when the value of the parameter λ > 0.25 the

chart behaves approximately as a distribution-free scheme.

• n = 20 or n = 30: For the first 6 cases (symmetric distributions) λ does not affects

the ARL0 values. As κ increases the ARL0 values are affected and larger aberrations

occur for heavily-tailed distributions (#13-#17).

Based on the results presented above, for symmetric distributions, the value of λ has no

impact in the chart’s performance, regardless the sample size. On the other hand, for heavily

tailed and skewed distributions larger values of λ are preferable. In conclusion, for moderate

values of κ ≈ 0.2, choosing the value of λ ≈ 0.8 can be considered as a reasonable choice in

order to have an approximately distribution-free behaviour.
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Figure 4.10: Effect of λ for n = 5 when ties are present (Table A1)
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Figure 4.11: Effect of λ for n = 20 when ties are present(Table A3(top))
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Figure 4.12: Effect of λ for n = 30 when ties are present(Table A3(botom))

Effect of the sample size (n) and magnitude of ties (κ): In Table 4.12, sev-

eral in-control ARL. are presented for λ = {0.75, 0.8, . . . , 0.95}, n = {5, 15} and κ =

{0.3, 0.35, 0.4, 0.45}. Similarly, in Table 4.13, for the same values of λ and κ, the correspond-

ing ARL0 values are presented for n = {30, 35, 40}. We may conclude the following:

• For the symmetric distributions, regardless the sample size or the value of κ, the “flip

a coin” strategy guarantees the chart’s distribution-free properties. As consequence,
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for symmetric distributions and specified value of n, practitioners are able to design

the proposed scheme in order to maintain its distribution free properties regardless the

magnitude of κ.

• On the other hand, as κ and n increase, when the underlying distribution is heavily

tailed or heavily skewed (see, cases #14−#17) the ARL0 values are affected and the

chart tend to loose its distribution-free properties.

Table 4.12: ARL0 for small/moderate sample sizes and large values of κ for the 2C-SN
EWMA chart

n=5

λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45

1 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

2 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

3 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

4 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

5 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

6 370.30 370.30 370.30 370.30 370.40 370.40 370.40 370.40 370.70 370.70 370.70 370.70

7 358.30 348.30 333.50 313.50 360.60 352.30 340.00 323.00 364.80 359.70 352.00 341.00

8 368.20 366.50 363.90 360.20 368.70 367.30 365.10 362.10 369.70 368.80 367.50 365.70

9 369.20 368.30 367.00 365.10 369.50 368.80 367.70 366.10 370.10 369.70 369.00 368.10

10 369.40 368.70 367.60 366.20 369.70 369.10 368.20 367.00 370.20 369.90 369.40 368.70

11 369.50 368.90 368.00 366.80 369.80 369.30 368.50 367.50 370.30 370.00 369.60 369.00

12 369.60 369.00 368.20 367.20 369.80 369.30 368.70 367.80 370.30 370.00 369.70 369.10

13 344.30 324.80 298.60 267.10 349.10 332.60 310.20 282.30 357.70 347.20 332.40 313.00

14 354.70 342.50 325.40 303.60 357.60 347.50 333.20 314.50 362.90 356.70 347.60 335.30

15 362.10 356.00 347.80 337.50 363.70 358.70 351.90 343.30 366.60 363.60 359.40 354.10

16 364.40 360.30 355.00 348.50 365.60 362.20 357.90 352.50 367.80 365.80 363.10 359.80

17 365.30 362.10 358.00 353.40 366.30 363.70 360.40 356.50 368.20 366.60 364.60 362.30

n=10

λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45

1 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

2 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

3 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

4 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

5 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

6 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.40 370.50 370.50 370.50 370.50

7 342.70 321.20 292.00 256.20 345.70 326.30 299.50 266.10 349.10 332.10 308.10 277.40

8 365.40 361.30 355.20 346.80 366.00 362.40 356.90 349.40 366.70 363.60 358.90 352.40

9 367.80 365.60 362.50 358.00 368.10 366.20 363.40 359.40 368.50 366.90 364.50 361.10

10 368.30 366.60 364.00 360.60 368.50 367.00 364.80 361.70 368.90 367.60 365.70 363.00

11 368.50 367.00 364.90 362.00 368.70 367.40 365.50 363.00 369.10 368.00 366.30 364.10

12 368.60 367.30 365.40 362.90 368.80 367.60 366.00 363.70 369.20 368.20 366.70 364.80

13 313.10 275.80 232.40 187.80 319.00 284.50 243.40 200.00 325.50 294.40 256.20 214.50

14 334.70 309.30 277.00 240.20 338.50 315.50 285.60 250.80 342.80 322.40 295.40 263.20

15 351.20 337.70 320.20 299.50 353.30 341.20 325.40 306.50 355.70 345.20 331.20 314.30

16 356.40 347.10 335.40 321.70 358.00 349.70 339.10 326.80 359.80 352.60 343.40 332.50

17 358.60 351.20 342.10 331.90 359.90 353.30 345.20 336.00 361.50 355.80 348.70 340.60
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Table 4.13: ARL0 for large sample sizes and large values of κ for the 2C-SN EWMA chart

n=30

λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45

1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

7 317.6 281.3 237.2 190.4 326.1 294.4 254.4 210.0 329.7 300.0 262.0 218.8

8 360.4 352.3 340.7 325.1 362.2 355.5 345.7 332.5 362.9 356.8 347.8 335.7

9 365.1 360.8 354.5 346.0 366.0 362.5 357.3 350.2 366.4 363.2 358.5 351.9

10 366.1 362.7 357.7 350.8 366.9 364.0 359.9 354.2 367.2 364.6 360.8 355.6

11 366.6 363.6 359.4 353.7 367.3 364.8 361.3 356.6 367.6 365.3 362.1 357.8

12 366.8 364.1 360.3 355.3 367.5 365.3 362.1 358.0 367.7 365.7 362.9 359.1

13 268.5 215.3 162.8 117.8 283.0 233.8 182.8 136.6 289.2 242.1 191.9 145.4

14 303.7 262.8 216.8 171.5 314.1 277.8 235.2 191.4 318.5 284.3 243.5 200.5

15 333.0 308.8 279.7 248.1 339.3 318.5 293.0 264.4 341.9 322.7 298.7 271.6

16 342.9 325.7 304.9 282.1 347.6 333.0 315.1 295.1 349.6 336.1 319.5 300.7

17 347.0 333.1 316.6 298.9 351.1 339.3 325.3 309.9 352.7 341.9 328.9 314.6

n=35

λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45 κ = 0.3 κ = 0.35 κ = 0.4 κ = 0.45

1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

7 310.0 269.9 222.9 174.7 319.5 284.2 240.9 194.4 324.2 291.4 250.2 204.9

8 358.7 349.4 336.1 318.4 360.8 353.1 341.8 326.8 361.8 354.8 344.6 330.9

9 364.2 359.2 352.0 342.1 365.3 361.2 355.2 346.9 365.8 362.1 356.7 349.2

10 365.4 361.4 355.6 347.7 366.3 363.0 358.2 351.6 366.7 363.7 359.4 353.5

11 365.9 362.5 357.6 351.0 366.7 363.9 359.8 354.4 367.1 364.6 360.9 356.0

12 366.2 363.1 358.7 352.9 367.0 364.4 360.7 356.0 367.3 365.0 361.7 357.4

13 256.1 200.1 147.2 103.7 271.7 219.2 166.8 121.4 279.6 229.2 177.4 131.0

14 294.6 249.9 201.6 155.8 306.1 266.0 220.7 175.5 311.8 274.2 230.6 186.1

15 327.4 300.2 268.2 234.4 334.5 311.0 282.6 251.6 337.9 316.4 289.9 260.5

16 338.6 319.1 295.8 270.9 344.0 327.3 307.2 285.0 346.6 331.4 312.8 292.1

17 343.4 327.4 308.9 289.2 348.0 334.5 318.6 301.4 350.2 337.9 323.3 307.4

4.3.4 Guidelines for practitioners when dealing with rounding-off

errors

In this Chapter has been shown that under the presence of ties the performance of a

conventional chart based on a nonparametric statistic (such as the Sign statistic) is seriously

affected. A new enhanced nonparametric Sign EWMA chart under the case of rounding-off

errors was proposed, where two alternative approaches were considered for dealing with tied

observations. After an extensive sensitivity analysis our results showed that:

• Symmetric distributions : Both the “flip a coin” and the “new limits” strategies

are equivalent regardless the sample size or the value of κ. In fact, an advantage of the

“flip a coin strategy” is that, for symmetric distributions, if practitioners are unable
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to estimate the underlying distribution or the value of κ, they can just use the same

optimal pairs of (λ,K) with the ones in the “no ties” case for a specific value of n (see,

Table 3.10). In particular for small, moderate and large shifts in the process median

the corresponding pair of (λ,K) for p+1 ≈ 0.5, p+1 ≈ 0.7 and p+1 ≈ 1 are recommended

without any knowledge of the value of κ. Traditionally, the use of the proposed chart

outperforms the Shewhart Sign chart for any shift magnitude.

• asymmetric distributions : When the sample sample and the value of κ are not

large the chart also maintain its approximately distribution-free properties as long as

λ ≈ 0.8. However, for large values of κ and n, for heavily skewed distributions (cases

#7,#13), the use of the Shewhart or the 2C-SN EWMA charts might not be efficient

under the “flip a coin strategy”. As a result, choosing a relative small/moderate sample

size is preferable for these cases.

4.3.5 Performance comparisons

Dealing with ties and rounding-off errors in nonparametric control charts, is a relative

new research field. As far as we are concerned, the modified Shewhart Sign chart introduced

by Castagliola et al. (2020) is the only existing scheme dealing with rounding-off errors. As

a result, the performance of the 2C-SN EWMA chart under the “flip a coin strategy” will be

compared with the Shewhart Sign chart (Castagliola et al. (2020)) under the benchmark of

the distributions listed in Table 4.3. In Table 4.14 the corresponding differences between the

2C-SN EWMA and Shewhart Sign charts are presented for n = 20 and κ = {0, 0.050.1, 0.2}.
It is clear that, negative values in this table, correspond to the superiority of our proposed

scheme.

In order to perform fair comparisons, our chart has been optimized in order to have the

same ARL0 with the Shewhart chart (ARL0 = 388.1). More specifically, for a fixed value

of λ > 0.7, the corresponding value of K will be computed such that ARL0 = 388.1 when

κ = 0. Finally, the same optimal pair of (λ,K) will be used in order to compute the

chart’s performance for κ = {0.05, 0.1, 0.2}. Note that, as presented in the previous sections,

under the “flip a coin strategy”, when n < 20 and κ < 0.2, setting λ > 0.7 guarantees

an approximately distribution-free behaviour for the 2C-SN EWMA chart. So it would be

logical to optimize λ also. Nevertheless, it is not necessary to do this since, even by setting

λ = 0.7, our chart outperforms the Shewhart chart. In particular, from Table 4.14 we may

conclude that our chart performs better for any shift magnitude regardless the underlying

distribution or the value of κ.
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Table 4.14: Performance comparisons between the Sign Shewhart and 2-C SN EWMA charts
when ties are present

κ = 0 κ = 0.05

case -1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1 -1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1

#1 -0.70 -13.50 -60.80 -52.90 0.00 -52.90 -60.80 -13.50 -0.70 -0.70 -13.50 -60.80 -52.90 0.00 -52.90 -60.80 -13.50 -0.70
#2 -0.20 -7.20 -50.60 -61.80 0.00 -61.80 -50.50 -7.20 -0.20 -0.20 -7.20 -50.70 -61.80 0.00 -61.80 -50.60 -7.20 -0.20
#3 -0.20 -5.10 -44.70 -64.00 0.00 -64.00 -44.70 -5.10 -0.20 -0.20 -5.20 -44.80 -64.10 0.00 -64.10 -44.80 -5.20 -0.20
#4 -0.10 -3.70 -39.20 -64.90 0.00 -64.90 -39.20 -3.70 -0.10 -0.10 -3.70 -39.20 -65.00 0.00 -65.00 -39.20 -3.70 -0.10
#5 0.00 -2.60 -33.00 -64.40 0.00 -64.40 -33.00 -2.60 0.00 0.00 -2.60 -33.10 -64.60 0.00 -64.60 -33.10 -2.60 0.00
#6 0.00 -1.90 -27.70 -62.60 0.00 -62.60 -27.70 -1.90 0.00 0.00 -1.90 -27.90 -62.80 0.00 -62.80 -27.90 -1.90 0.00
#7 -0.30 -3.70 -29.60 -61.60 0.00 -53.80 -11.80 0.00 0.00 -0.30 -3.70 -29.90 -62.60 0.00 -52.40 -11.50 0.00 0.00
#8 -0.20 -3.90 -34.10 -64.10 0.00 -62.10 -23.70 -0.30 0.00 -0.20 -4.00 -34.30 -64.70 0.00 -61.50 -23.60 -0.30 0.00
#9 -0.20 -3.80 -35.10 -64.50 0.00 -63.30 -27.10 -0.70 0.00 -0.20 -3.80 -35.20 -65.00 0.00 -62.90 -27.00 -0.70 0.00
#10 -0.10 -2.80 -30.30 -63.00 0.00 -61.40 -24.00 -0.70 0.00 -0.10 -2.80 -30.50 -63.50 0.00 -61.20 -24.00 -0.70 0.00
#11 -0.10 -1.80 -24.70 -60.10 0.00 -58.10 -19.80 -0.60 0.10 -0.10 -1.80 -24.80 -60.60 0.00 -58.00 -19.90 -0.60 0.10
#12 0.00 -1.30 -20.20 -56.30 0.00 -54.20 -16.40 -0.40 0.10 0.00 -1.30 -20.40 -56.80 0.00 -54.20 -16.50 -0.40 0.10
#13 0.00 -1.20 -15.40 -47.80 0.00 -35.50 -3.80 0.00 0.00 0.00 -1.20 -15.60 -48.90 0.10 -34.40 -3.70 0.00 0.00
#14 0.00 -1.40 -17.90 -51.70 0.00 -41.60 -6.30 0.00 0.00 0.00 -1.40 -18.10 -52.70 0.10 -40.70 -6.20 0.00 0.00
#15 0.00 -0.90 -15.20 -48.70 0.00 -41.40 -7.40 0.00 0.00 0.00 -1.00 -15.40 -49.60 0.00 -41.00 -7.40 0.00 0.00
#16 0.00 -0.60 -11.70 -43.30 0.00 -37.20 -6.50 -0.10 0.00 0.00 -0.60 -11.90 -44.10 0.00 -37.20 -6.60 -0.10 0.00
#17 0.00 -0.40 -9.00 -37.90 0.00 -32.70 -5.40 -0.10 0.00 0.00 -0.40 -9.20 -38.70 0.00 -32.90 -5.50 -0.10 0.00

κ = 0.1 κ = 0.2

case -1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1 -1 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1

#1 -0.70 -13.50 -60.70 -52.90 0.00 -52.90 -60.70 -13.50 -0.70 -0.70 -13.40 -60.50 -52.70 0.00 -52.70 -60.50 -13.40 -0.70
#2 -0.20 -7.20 -50.80 -61.90 0.00 -61.90 -50.70 -7.20 -0.20 -0.30 -7.60 -52.40 -63.40 0.00 -63.40 -52.30 -7.60 -0.30
#3 -0.20 -5.20 -44.90 -64.30 0.00 -64.30 -44.90 -5.20 -0.20 -0.20 -5.60 -47.40 -67.00 0.00 -67.00 -47.40 -5.60 -0.20
#4 -0.10 -3.80 -39.40 -65.30 0.00 -65.30 -39.40 -3.80 -0.10 -0.10 -4.20 -42.70 -69.30 0.00 -69.30 -42.70 -4.20 -0.10
#5 0.00 -2.60 -33.30 -65.00 0.00 -65.00 -33.30 -2.60 0.00 -0.10 -3.10 -37.40 -71.00 0.00 -71.00 -37.40 -3.10 -0.10
#6 0.00 -1.90 -28.20 -63.30 0.00 -63.30 -28.20 -1.90 0.00 0.00 -2.40 -32.90 -71.50 0.00 -71.50 -32.90 -2.40 0.00
#7 -0.30 -3.80 -30.70 -65.80 0.30 -48.20 -10.60 0.00 0.00 -0.40 -4.50 -45.10 -120.30 42.50 1.60 -1.40 -0.20 0.00
#8 -0.20 -4.00 -34.90 -66.60 0.10 -59.80 -23.20 -0.30 0.00 -0.30 -4.70 -45.30 -96.20 7.70 -36.00 -17.80 -0.40 0.00
#9 -0.20 -3.90 -35.80 -66.50 0.10 -61.80 -26.80 -0.70 0.00 -0.30 -4.50 -44.80 -89.80 4.00 -45.70 -23.40 -0.90 0.00
#10 -0.10 -2.80 -31.00 -65.00 0.00 -60.50 -23.90 -0.70 0.00 -0.10 -3.40 -39.40 -87.90 3.30 -50.50 -23.40 -1.00 0.00
#11 -0.10 -1.90 -25.30 -62.10 0.00 -57.70 -20.00 -0.60 0.10 -0.10 -2.40 -33.50 -85.70 2.90 -54.00 -21.90 -1.00 0.00
#12 0.00 -1.30 -20.90 -58.50 0.00 -54.30 -16.70 -0.50 0.10 0.00 -1.80 -28.80 -83.20 2.60 -55.60 -20.10 -0.80 0.00
#13 -0.10 -1.20 -16.20 -52.20 0.70 -31.40 -3.50 0.00 0.00 -0.10 -1.60 -27.60 -116.50 83.60 -0.10 -1.20 0.00 0.00
#14 0.00 -1.50 -18.70 -55.70 0.50 -37.90 -5.90 0.00 0.00 0.00 -1.90 -29.90 -111.20 53.00 -7.30 -3.00 -0.10 0.00
#15 0.00 -1.00 -16.00 -52.30 0.30 -39.90 -7.50 0.00 0.00 0.00 -1.40 -25.90 -99.30 28.00 -28.10 -8.90 -0.20 0.00
#16 0.00 -0.60 -12.40 -46.70 0.20 -37.10 -6.80 -0.10 0.00 0.00 -1.00 -21.50 -90.80 19.80 -37.70 -10.40 -0.30 0.00
#17 0.00 -0.40 -9.70 -41.30 0.20 -33.50 -5.70 -0.10 0.00 0.00 -0.70 -18.10 -84.90 16.30 -42.20 -10.30 -0.20 0.00

4.4 An illustrative example

In this Section a modified version of the example originally discussed by Celano et al.

(2016) is provided, to show a practical Phase II implementation of the design and operation

of our proposed chart under the case of measurement error. In this example, the quality

characteristic to be monitored is the radial error, defined as “a quality characteristic fre-

quently monitored in hole drilling processes of mechanical parts and assembly processes of

printed circuit boards”. At each sampling point t, a subgroup of size n = 20 is collected

in order to detect a shift in the median of the quality characteristic of interest such that

p0 = 0.5 shifts to p1 = 0.7. Additionally, as shown in Celano et al. (2016) the in-control

value of the median for the radial error is θ0 = 0.338. The original dataset is presented in

Table 4.15 (top). For illustration purposes let us assume that the practitioner does not have

at his disposal the true values due to a rounding-off error in the measurement system (the
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resolution value is ρ = 0.05). A a results, through the model presented in equation (4.1),

the practitioner obtains the values presented in Table 4.15 (bottom). Similarly the observed

value of the median will be θ′0 = 0.3 instead of the true one θ0 = 0.338.

Moreover, in Table 4.15 (top) the corresponding values of St,j = sign(X
′
t,j − θ′0) are pre-

sented. In can be clearly seen that due to the rounding-off error in the measurement system

many ties occur (zero values for St,j). In order to overcome this problem we will use the “flip

a coin” method presented in Section 4.3.2. More specifically, each St,j = 0 will be substituted

by S ′t,j = 2∆t,j−1 where ∆t,j will be a random number generated from Ber(0.5). These values

are presented in Table 4.15 (bottom) along with the corresponding values of SNt, SN∗t and

Z∗t . Additionally, for the design of the chart’s parameters we used λ∗ = 0.305, K∗ = 2.903

(as the optimal pair for detecting a shift p+1 = 0.7 when n = 20), σ = 0.2 (“continuousify”

parameter) and Z∗0 = 0 (no head-start feature). Then, by substituting these values in equa-

tions (3.10) and (3.11), we obtain the values of the control limits for the two-sided C-SN

EWMA chart as LCL = −5.5127,UCL = 5.5127.

More specifically:

• For t = 1 we have SN1 = 8. The corresponding value for SN∗1 is computed by generating

a N(8, 0.2) random variable. The value of the charting statistic is Z∗1 = 0.305 ×
(7.8729) + 0.695× 0) = 2.4012.

• For t = 2 we have SN2 = 2. The corresponding value for SN∗2 is computed by generating

a N(2, 0.2) random variable. The value of the charting statistic is Z∗2 = 0.305 ×
(1.6446) + 0.695× 2.4012) = 2.175.
...

• For t = 10 we have SN10 = 2. The corresponding value for SN∗10 is computed by

generating a N(2, 0.2) random variable. The value of the charting statistic is Z∗10 =

0.305× (1.8322) + 0.695× 0.6990) = 1.0447

Finally, the values of the charting statistic Z∗t are plotted in Figure 4.13. It can be seen

that at the 4th sampling point (t = 4) an out-of-control signal is given stating that the

process median has changed.

4.5 Conclusions

In this Chapter, we aimed to present a general framework in order to tackle the occurrence

of ties during the process monitoring. Through the measurement error model presented in

Section 4.1, we saw that, when ties are present, the conventional Sign Shewhart and EWMA
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Table 4.15: Radial error example: Phase II sample of t = 1, . . . 10 subgroups of size n = 20
for the true values (top) and the observed values (bottom) along with the St,j values with
and without the ”flip a coin strategy” when ρ = 0.05

Without the “flip a coin” strategy

Xt,j true values
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.289 0.380 0.483 0.288 0.544 0.390 0.567 0.512 0.433 0.168 0.128 0.428 0.081 0.575 0.396 0.574 0.730 0.407 0.367 0.452
2 0.447 0.599 0.207 0.317 0.256 0.433 0.218 0.329 0.432 0.674 0.233 0.570 0.748 0.364 0.372 0.798 0.218 0.405 0.060 0.632
3 0.081 0.368 0.435 0.216 0.246 0.229 0.623 0.455 0.394 0.616 0.116 0.611 0.666 0.262 0.410 0.234 0.692 0.719 1.033 0.376
4 0.954 0.537 0.621 0.513 1.540 0.609 0.801 1.080 1.069 0.954 0.852 0.425 1.389 0.794 1.081 0.900 0.521 0.576 0.761 0.535
5 0.316 0.237 0.286 0.879 0.190 0.104 0.570 0.448 0.269 0.746 0.344 0.191 0.366 0.315 0.408 0.522 0.598 0.232 0.671 0.448
6 0.342 0.378 0.287 0.328 0.589 0.233 0.255 0.119 0.284 0.499 0.410 0.668 0.385 0.594 0.390 0.265 0.409 0.434 0.628 0.316
7 0.370 0.391 0.525 0.459 1.280 0.470 0.482 0.032 0.525 0.628 0.686 0.584 0.300 0.245 0.555 0.113 0.194 0.932 0.597 0.523
8 0.352 0.264 0.759 0.154 0.256 0.426 0.363 0.310 0.303 0.316 0.807 0.235 0.173 0.183 1.105 0.068 0.368 0.736 0.097 0.060
9 0.305 0.352 0.468 0.224 0.739 0.234 0.171 0.250 0.308 0.431 0.092 0.326 0.455 0.569 0.354 0.475 0.530 0.312 0.102 0.651
10 0.603 0.363 0.628 0.314 0.029 0.436 0.207 0.553 0.645 0.122 0.759 0.296 0.691 0.425 0.441 0.323 0.287 0.310 0.194 0.582

St,j values when ρ = 0.05

t St,j = sign(X ′t,j − θ′0)

1 -1 0 1 -1 1 0 1 1 1 -1 -1 1 -1 1 0 1 1 0 -1 1
2 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 0 -1 1
3 -1 -1 1 -1 -1 -1 1 1 0 1 -1 1 1 -1 0 -1 1 1 1 0
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
5 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 0 1 1 -1 1 1
6 -1 0 -1 -1 1 -1 -1 -1 -1 1 0 1 0 1 0 -1 0 1 1 -1
7 -1 0 1 1 1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1
8 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1
9 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1
10 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1

With the “flip a coin” strategy

X ′t,j observed values when ρ = 0.05
t 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 0.30 0.40 0.50 0.30 0.55 0.40 0.55 0.50 0.45 0.15 0.15 0.45 0.10 0.55 0.40 0.55 0.75 0.40 0.35 0.45
2 0.45 0.60 0.20 0.30 0.25 0.45 0.20 0.35 0.45 0.65 0.25 0.55 0.75 0.35 0.35 0.80 0.20 0.40 0.05 0.65
3 0.10 0.35 0.45 0.20 0.25 0.25 0.60 0.45 0.40 0.60 0.10 0.60 0.65 0.25 0.40 0.25 0.70 0.70 1.05 0.40
4 0.95 0.55 0.60 0.50 1.55 0.60 0.80 1.10 1.05 0.95 0.85 0.45 1.40 0.80 1.10 0.90 0.50 0.60 0.75 0.55
5 0.30 0.25 0.30 0.90 0.20 0.10 0.55 0.45 0.25 0.75 0.35 0.20 0.35 0.30 0.40 0.50 0.60 0.25 0.65 0.45
6 0.35 0.40 0.30 0.35 0.60 0.25 0.25 0.10 0.30 0.50 0.40 0.65 0.40 0.60 0.40 0.25 0.40 0.45 0.65 0.30
7 0.35 0.40 0.55 0.45 1.30 0.45 0.50 0.05 0.55 0.65 0.70 0.60 0.30 0.25 0.55 0.10 0.20 0.95 0.60 0.50
8 0.35 0.25 0.75 0.15 0.25 0.45 0.35 0.30 0.30 0.30 0.80 0.25 0.15 0.20 1.10 0.05 0.35 0.75 0.10 0.05
9 0.30 0.35 0.45 0.20 0.75 0.25 0.15 0.25 0.30 0.45 0.10 0.35 0.45 0.55 0.35 0.45 0.55 0.30 0.10 0.65
10 0.60 0.35 0.65 0.30 0.05 0.45 0.20 0.55 0.65 0.10 0.75 0.30 0.70 0.45 0.45 0.30 0.30 0.30 0.20 0.60

S ′t,j values using the “flip a coin strategy” along with the corresponding SNt,SN∗t ,Z
∗
t values

t S ′t,j = sign(X ′t,j − θ′0) SNt SN∗t Z∗t

1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 1 1 1 1 1 -1 1 6 5.948 1.814
2 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -1 1 -1 1 0 0.079 1.285
3 -1 -1 1 -1 -1 -1 1 1 1 1 -1 1 1 -1 -1 -1 1 1 1 -1 0 -0.170 0.841
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 20 20.530 6.846
5 -1 -1 -1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 1 1 -1 1 1 -2 -1.969 4.158
6 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 1 1 1 1 -1 -1 1 1 -1 -2 -1.774 2.348
7 -1 1 1 1 1 1 1 -1 1 1 1 1 -1 -1 1 -1 -1 1 1 1 8 7.542 3.933
8 -1 -1 1 -1 -1 1 -1 -1 -1 -1 1 -1 -1 -1 1 -1 -1 1 -1 -1 -10 -9.852 -0.272
9 -1 -1 1 -1 1 -1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 1 -4 -4.263 -1.489
10 1 -1 1 -1 -1 1 -1 1 1 -1 1 -1 1 1 1 -1 -1 -1 -1 1 0 0.184 -0.979
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2C−SN EWMA chart for Phase II data

Figure 4.13: Radial error example: the C-SN EWMA chart for the Phase II data presented
in Table 4.15 (bottom)

charts are unable to maintain their distribution-free properties. On the other hand, through

the “flip coin strategy” these charts, under a reasonable number of ties and a sample size

n < 20 are approximately distribution-free. Strictly speaking, for large values of κ and

n > 20, when the underlying distribution is heavily skewed the RL properties are affected.

An alternative solution was given via a semi parametric design with adjusted control limits,

but still the values of the shift magnitude, the value of κ and the underlying distribution

need to be known. Nevertheless, in the beginning of this Chapter, it was highlighted the

fact that, large values of κ are practically not meant to exist in practice, and even if they

are, due to the large differences between the true and observed samples, practitioners does

not have a reliable sample measurements at the first place. Even so, for these extreme cases,

if the underlying distribution is heavily-skewed, choosing a relative small/moderate sample

size (i.e. n ≈ 10) can be considered an efficient design.
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Chapter 5

Improved Sign Shewhart and EWMA

charts for monitoring shifts in the

process dispersion

Introduction

In this Chapter, we will investigate a semi-parametric design of the two-sided Shewhart

and EWMA charts, where a modified sign-type statistic is used, which can efficiently detect

shifts in the process variability. In particular, for both charts, their exact in- and out-of-

control performances will be provided and comparisons with other schemes will be performed.

Additionally, specified and efficient method will be provided regarding the optimization

procedure for both charts.

5.1 The Interquartile Range Sign statistic for disper-

sion

Suppose that, at each sampling point t, a random sample {Xt,1, Xt,2, . . . , Xt,n} of size n

is collected, where Xt,j, j = 1, 2, ..., n, follows an unknown continuous distribution with cor-

responding cumulative distribution function (c.d.f.) FX(x|σ). The parameter σ corresponds

to the scale parameter of interest (i.e. the standard deviation). It is assumed that σ = σ0

when the process is in-control and σ = σ1 = τσ0 when the process is out-of-control. The pa-

rameter τ reflects the shift magnitude in the process variability, i.e. τ ∈ (0, 1) corresponds to

a decrease in the variability (usually a process improvement) while τ ∈ (1,+∞) corresponds

to an increase in the variability (usually a process deterioration).
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Let Xp0/2 and X1−p0/2 be the p0/2 and 1−p0/2 quantiles of FX(x|σ0), i.e. when the process

is in-control, where p0 ∈ (0, 1) is a parameter considered to be known (or pre-specified). By

definition, Xp0/2 and X1−p0/2 are such that FX(Xp0/2|σ0) = p0/2, FX(X1−p0/2|σ0) = 1− p0/2

and we obviously have

p0 = 1− FX(X1−p0/2|σ0) + FX(Xp0/2|σ0).

When the process shifts from σ0 to σ1, the corresponding probability is defined as

p1 = 1− FX(X1−p0/2|σ1) + FX(Xp0/2|σ1).

If σ1 < σ0 (decrease in the variability) then we have p1 < p0 and if σ1 > σ0 (increase in

the variability) then we have p1 > p0. Consequently, a shift from σ0 to σ1 in one direction

is similar to a shift from p0 to p1 in the same direction. This suggests a simple distribution-

free Shewhart-type Sign chart for monitoring shifts in the process variability based on the

following statistic

SDt =
n∑
j=1

Dt,j,

where

Dt,j =


1, if Xt,j < Xp0/2 or Xt,j > X1−p0/2

0, if Xt,j = Xp0/2 or Xt,j = X1−p0/2

−1, if Xp0/2 < Xt,j < X1−p0/2

.

Note that, due to the continuous nature of the variables to be monitored, the condition

Dt,j = 0 is not supposed to hold in practice. Similarly with the theoretical properties of

the traditional Sign statistic for testing changes in the median, the SDt statistic belongs to

{−n,−n+ 2, . . . , n− 2, n}. In addition, let us define the random variable At = SDt+n
2

as the

number of observations less than Xp0/2 or larger than X1−p0/2. By definition, this random

variable At follows a binomial distribution Bin(n, p) with parameters n and p ∈ {p0, p1}
(depending on whether the process is in- or out-of-control). Therefore, we obtain the c.d.f.

FSDt(s|n, p) of SDt with the aid of the c.d.f. FBin(·|n, p) of the Bin(n, p) distribution as

FSDt(s|n, p) = FBin

(
s+ n

2
|n, p

)
, s ∈ {−n,−n+ 2, . . . , n− 2, n}.
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In addition, the mean E(SDt) and the variance V(SDt) are given by

E(SDt) = 2E(At)− n = n(2p− 1), (5.1)

V(SDt) = 4V(At) = 4np(1− p). (5.2)

5.2 The optimized Sign Shewhart chart for dispersion

Generally, the idea of varying the value of the parameter p0 is not new. In fact, it has been

originally introduced by Pawar et al. (2018). In their paper, they proposed a nonparametric

upper-sided Shewhart chart for dispersion, based on the SDt statistic where the value of p0

is allowed to vary. However, during the design phase of their scheme, the value of p0 is not

optimized, and regarding its out-of-control performance, Pawar et al. (2018) only considered

values of τ > 1 (i.e., the case of increasing shifts in process variability) for a fixed value of

p0 . In this section, we aim to investigate the optimal design of the two-sided Sign chart for

dispersion originally introduced by Pawar et al. (2018) (to be denoted as the S-SD chart)

and examine its out-of-control performance for several distributions.

Charting statistic and RL properties

At each sampling point, a sample of size n is collected and the value of the plotting

statistic SDt is computed. Then if the value of this statistic falls beyond the interval [L,U ]

an out of control signal is given, where L,U ∈ N are the upper and lower control limit

coefficients to be fixed. In particular, during the design phase, for a given value of n and τ ,

a proper searching algorithm needs to be conducted in order to find the optimal values of L

and U that minimise the corresponding value of ARL1 where:

ARL1 =
1

1− β
,

under the condition that

ARL0 =
1

α
≈ 1

α0

,

where a0 denotes the maximum allowed false alarm rate. It is clear that, similarly with

any conventional phase II Shewhart chart, the probabilities α and β accounts for the Type I

and II error probabilities and equals to p0 and p1 respectively. In particular these probabilities

depend on the control limits and the quantiles of the underlying distribution:
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α(L,U, p0, σ0|n) =P(SDt > U ∪ SDt < U |σ0) = 1− P(L ≤ SDt ≤ U |σ0)

=1− FBin

(
U + n

2
|n, p0

)
+ FBin

(
(L− 1) + n

2
|n, p0

)

β(L,U, p0, σ0, τ |n) =P(L ≤ SDt ≤ U |τσ0)

=1− FBin

(
U + n

2
|n, p1

)
+ FBin

(
(L− 1) + n

2
|n, p1

)

where the probability p1, associated with the corresponding chart’s ARL1 values will be

derived as:

p1 = 1− FZ(X1−p0/2|a, b, τc, τd) + FZ(Xp0/2|a, b, τc, τd).

where a, b, c, d are the parameters that define a distribution form the Johnson family.

Note that the reason that we express p1 in terms of the Johnson family distributions is that

the chart’s out-of-control performance will be examined under a benchmark of cases from

this family of distributions, as we did in the Sign EWMA chart under the presence of ties.

It is clear that, the chart’s parameters that need to optimised are p0, L and U , and have

to be optimally determined by solving the following mixed-integer non-linear problem:

Min : β(L,U, p0, σ0, τ |n)

subject to

α(L,U, p0, σ0|n) ≈ α0

0 < p0 < 1, L ≤ U

L,U ∈ {−n,−n+ 2, . . . , n− 2, 2}

where α0 is a pre-defined constant. Note that the above model can be simplified by letting

p0 takes only a discrete set of values; say p0 = {0.1, 0.15, . . . , 0.95}. This discretization is

justified by the fact that, in practice, only easy-to-manage values of p0 are meant to be used

(for instance, p0 = 0.5 in the original definition of the sign statistic, as already remarked). As
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a consequence, for the specification of the optimal values (p∗0, L
∗, U∗) the following procedure

is utilised.

• step 1 : For a given value of n and p0 = {0.1, 0.15, . . . , 0.95}, find all the candidates

(p0, L, U) that satisfy the following condition:

D(p0, L, U) =
|ARL(p0, L, U)− ARL0|

ARL0

≤ ν (5.3)

where ν is a fixed constant. Regarding the value of ν, it is up to practitioners to decide

which will be the desired in-control ARL0. In the following computations, in order to

design the chart to be comparable with schemes with corresponding ARL0 ≈ 370.4 we

set ν = 0.15.

• step 2 : For a given shift, τ , among all the combinations of (p0, L, U) , find the optimal

one (p∗0, L
∗, U∗), that minimises the corresponding ARL1(τ).

The above steps can be summarised as follows:

Algorithm 5.1 Computation of candidate combination of (p0, L, U)

Define n and p0.

ARL0 ← 370.4.

ARL∗ ←∞.

for L = −n,−n+ 2 . . . , n− 2, n do

for U = −n,−n+ 2 . . . , n− 2, n do

compute and store ARL(p0, L, U)

end for

end for

exclude the ones where the condition in (5.3) does not hold
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Algorithm 5.2 Computation of optimal combination of (p∗0, L
∗, U∗)

Define n, τ .

ARL∗ ←∞.

p∗0 ←Null.

L∗ ←Null.

U∗ ←Null.

for every candidate (p0, L, U) do

Compute the quantiles Xp0/2, X1−p0/2 as:

Xp0/2 ← FX(p0/2|σ0).

X1−p0/2 ← FX(1− p0/2|σ0).

Compute p1 = 1− FX(X1−p0/2|τσ0) + FX(Xp0/2|τσ0).

Compute ARL(p1, L, U).

if ARL(p1, L, U) < ARL∗ then

p∗0 ← p0.

L∗ ← L.

U∗ ← U .

end if

end for

It should be clarified the fact that, for the optimization procedure presented in step 1,

someone may argue that, regarding its potential computational cost, is not the optimal one.

Nevertheless, even for a large value of n, following these steps, the computation of the ARL

values is extremely fast, since at each iteration, only a simple probability needs to be com-

puted. As a result, there is no need of investigating a more efficient procedure. Additionally,

as it has been showed in Chapter 1, for nonparametric Shewhart charts, due to the discrete

nature of the statistics to be monitored, is not always possible to be designed in order to

satisfy that ARL0 ≈ 370 or even ARL0 ≈ 500. In particular, this is the main reason that

the condition presented in (5.3) is being used; by setting ν = 0.15 we are trying to be as

consistent as possible in order to have ARL0 ≈ 370.

Effect of p0

Before to proceed to any investigation of the chart’s optimal performance a logical ques-

tion arises: “Varying the value of p0, does it really have a significant impact in the chart’s
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out-of-control performance?”. In Table 5.2, for each Johnson-type distribution, three differ-

ent cases are presented in which, for each case, the value of p0 is different. In particular,

for every distribution, and for p0 = {0.15, 0.5, 0.7} the corresponding in- and out-of-control

RL properties are reported for τ = 0.25 (large decrease), τ = 0.95 (small decrease) and

τ = 1.6 (large increase) for n = 45. More specifically, in Table 5.2, for each type of dis-

tribution and shift magnitude τ , the corresponding pair of (L∗, U∗) is reported (first block)

along with the pairs of (ARL1,ARL0) (second block) and the pairs of (p0, p1) (third block).

From the results presented in Table 5.2 we may conclude that the value of p0 affects the

chart’s out-of-control performance. In particular, for τ = 0.25 no significant differences

exist. On the other hand, for τ = 0.95, the choice of p0 affects the results. For ex-

ample in case #9, setting p0 = 0.15, the optimal combination is (L∗, U∗) = (−43,−17)

giving a pair of (ARL1,ARL0) = (408.37, 484.32). Similarly, for p0 = 0.5 and p0 = 0.7

we obtain (L∗, U∗) = (−19, 19), (ARL1,ARL0) = (268.97, 406.69) and (L∗, U∗) = (1, 37),

(ARL1,ARL0) = (203.93, 389.75) respectively. As a consequence, for small decreases in

the process variability (τ = 0.95) setting p0 = 0.7 gives better performance. Similarly, for

τ = 1.6, the smallest ARL1 value is obtained by setting p0 = 0.15. It should be noted

that, taking as example case #9 when τ = 0.95, the corresponding pairs of (p0,ARL0) are

(0.15, 484.32), (0.5, 406.69) and (0.4, 389.75). Strictly speaking, these ARL0 values are rela-

tive close, but even so, not equal. So we may argue that, by comparing designs with different

ARL0 values, the theoretical comparisons in terms of the corresponding ARL1’s, might not

be realistic. Nevertheless, in practice, varying the value of p0, is an improvement in the

design of the S-SD chart.

For the results presented in Table 5.1, a large value of the sample size was used n = 45 in

order to maintain the in-control ARL0 ≈ 370.4. In general, as it has extensively mentioned

in this work, the main disadvantage of Sign-type Shewhart schemes is that for small to mod-

erate sample sizes it is not possible to find proper design parameters to satisfy ARL0 ≈ 370.

For instance, in Table 5.1, the number of candidate vectors of (L,U, p0), which satisfy the

condition in (5.3) for ν = 0.2, is presented for different values of n and p0 when the desired

ARL0 = 370 or 512. As expected, for n < 25 it is not always possible to design the chart in

order to satisfy ARL0 ≈ 370. Of course practitioners might search for a combination which

will give ARL0 > 370.4, but theoretically speaking, it will not be easy to optimally design it

and compare it with other schemes.
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Table 5.1: Number of vectors of (L,U, p0), which satisfy the condition in (5.3) for 370.4,ν =
0.2 and different values of n and p0

D
es

ir
ed

A
R

L
0

=
37

0

n
p 0

=
0.

05
p 0

=
0.

10
p 0

=
0.

15
p 0

=
0.

20
p 0

=
0.

25
p 0

=
0.

30
p 0

=
0.

35
p 0

=
0.

40
p 0

=
0.

45
p 0

=
0.

50
p 0

=
0.

55
p 0

=
0.

60
p 0

=
0.

65
p 0

=
0.

70
p 0

=
0.

75
p 0

=
0.

80
p 0

=
0.

85
p 0

=
0.

90
p 0

=
0.

95

10
0

0
0

0
0

0
0

0
2

0
2

0
0

0
0

0
0

0
0

12
0

0
0

0
1

0
0

2
0

2
0

2
0

0
1

0
0

0
0

14
0

0
0

1
0

0
4

0
4

0
4

0
4

0
0

1
0

0
0

15
0

0
0

0
0

0
1

1
1

0
1

1
1

0
0

0
0

0
0

18
0

0
1

0
0

1
0

1
4

0
4

1
0

1
0

0
1

0
0

20
1

1
0

1
9

0
1

0
1

1
1

0
1

0
9

1
0

1
1

23
0

0
0

1
1

10
2

0
1

1
1

0
2

10
1

1
0

0
0

25
0

1
0

0
1

1
5

8
7

2
7

8
5

1
1

0
0

1
0

28
1

0
0

1
13

3
0

13
8

2
8

13
0

3
13

1
0

0
1

30
1

0
1

1
3

3
2

6
1

16
1

6
2

3
3

1
1

0
1

35
0

0
0

0
17

21
3

1
2

18
2

1
3

21
17

0
0

0
0

40
0

0
1

3
1

24
7

7
13

20
13

7
7

24
1

3
1

0
0

45
0

0
1

26
1

28
19

1
12

23
12

1
19

28
1

26
1

0
0

D
es
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ed

A
R

L
0

=
51

2

n
p 0

=
0.

05
p 0

=
0.

10
p 0

=
0.

15
p 0

=
0.

20
p 0

=
0.

25
p 0

=
0.

30
p 0

=
0.

35
p 0

=
0.

40
p 0

=
0.

45
p 0

=
0.

50
p 0

=
0.

55
p 0

=
0.

60
p 0

=
0.

65
p 0

=
0.

70
p 0

=
0.

75
p 0

=
0.

80
p 0

=
0.

85
p 0

=
0.

90
p 0

=
0.

95

10
0

1
0

0
0

0
0

1
0

1
0

1
0

0
0

0
0

1
0

12
1

0
0

0
0

1
0

2
1

0
1

2
0

1
0

0
0

0
1

14
0

0
1

1
1

1
3

0
2

1
2

0
3

1
1

1
1

0
0

15
0

1
0

0
0

0
1

2
3

0
3

2
1

0
0

0
0

1
0

18
0

0
0

0
0

7
1

0
0

0
0

0
1

7
0

0
0

0
0

20
0

1
0

0
0

1
7

2
1

0
1

2
7

1
0

0
0

1
0

23
0

0
0

0
0

2
0

1
0

0
0

1
0

2
0

0
0

0
0

25
0

1
1

0
1

4
9

8
11

10
11

8
9

4
1

0
1

1
0

28
1

0
0

16
0

0
1

0
1

14
1

0
1

0
0

16
0

0
1

30
0

1
0

1
15

16
13

2
1

0
1

2
13

16
15

1
0

1
0

35
0

1
0

2
2

17
7

6
12

1
12

6
7

17
2

2
0

1
0

40
0

0
1

1
3

3
2

15
1

1
1

15
2

3
3

1
1

0
0

45
0

0
2

3
2

3
1

9
2

2
2

9
1

3
2

3
2

0
0
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Table 5.2: ARL1 values for different fixed values of p0 and n = 45 under the benchmark of
the Johnson distributions for τ = {0.25, 0.95, 1.6} using ν = 0.15.

p0 = 0.15 p0 = 0.5 p0 = 0.7

τ = 0.25 τ = 0.95 τ = 1.6 τ = 0.25 τ = 0.95 τ = 1.6 τ = 0.25 τ = 0.95 τ = 1.6

1

(-43,-17)
(1,424.32)
(0.15,0)

(-43,-17)
(159.38,424.32)

(0.15,0.107)

(-43,-17)
(1.02,424.32)
(0.15,0.474)

(-19,19)
(1,406.69)

(0.5,0)

(-19,19)
(242.39,406.69)

(0.5,0.473)

(-19,19)
(3.08,406.69)

(0.5,0.69)

(-43,33)
(1,389.22)

(0.7,0)

(1,37)
(196.68,389.75)

(0.7,0.684)

(-3,33)
(7.72,346.83)
(0.7,0.813)

2

(-43,-17)
(1,424.32)
(0.15,0)

(-43,-17)
(382.36,424.32)

(0.15,0.126)

(-43,-17)
(1.2,424.32)
(0.15,0.393)

(-19,19)
(1,406.69)

(0.5,0)

(-19,19)
(271.76,406.69)

(0.5,0.477)

(-19,19)
(3.82,406.69)
(0.5,0.677)

(1,37)
(1,389.75)
(0.7,0.085)

(1,37)
(203.22,389.75)

(0.7,0.685)

(-3,33)
(8.28,346.83)

(0.7,0.81)

3

(-43,-17)
(1,424.32)
(0.15,0)

(-43,-17)
(436.63,424.32)

(0.15,0.13)

(-43,-17)
(1.36,424.32)
(0.15,0.368)

(-19,19)
(1,406.69)
(0.5,0.007)

(-19,19)
(279.4,406.69)

(0.5,0.478)

(-19,19)
(4.07,406.69)
(0.5,0.673)

(1,37)
(1,389.75)
(0.7,0.123)

(1,37)
(205,389.75)
(0.7,0.685)

(-3,33)
(8.44,346.83)

(0.7,0.81)

4

(-43,-17)
(1,424.32)
(0.15,0)

(-43,-17)
(464.85,424.32)

(0.15,0.132)

(-43,-17)
(1.54,424.32)
(0.15,0.351)

(-19,19)
(1,406.69)
(0.5,0.02)

(-19,19)
(284.69,406.69)

(0.5,0.478)

(-19,19)
(4.27,406.69)
(0.5,0.671)

(1,37)
(1,389.75)
(0.7,0.147)

(1,37)
(206.28,389.75)

(0.7,0.685)

(-3,33)
(8.57,346.83)
(0.7,0.809)

5

(-43,-17)
(1.03,424.32)
(0.15,0.001)

(-43,-17)
(484.06,424.32)

(0.15,0.134)

(-43,-17)
(1.78,424.32)
(0.15,0.334)

(-19,19)
(1,406.69)
(0.5,0.034)

(-19,19)
(289.99,406.69)

(0.5,0.479)

(-19,19)
(4.5,406.69)
(0.5,0.668)

(1,37)
(1,389.75)
(0.7,0.167)

(1,37)
(207.63,389.75)

(0.7,0.685)

(-3,33)
(8.7,346.83)
(0.7,0.809)

6

(-43,-17)
(1.08,424.32)
(0.15,0.002)

(-43,-17)
(494.22,424.32)

(0.15,0.135)

(-43,-17)
(2.02,424.32)
(0.15,0.323)

(-19,19)
(1,406.69)
(0.5,0.046)

(-19,19)
(294.06,406.69)

(0.5,0.479)

(-19,19)
(4.69,406.69)
(0.5,0.666)

(1,37)
(1,389.75)
(0.7,0.182)

(1,37)
(208.71,389.75)

(0.7,0.685)

(-3,33)
(8.81,346.83)
(0.7,0.808)

7

(-43,-17)
(1,424.32)
(0.15,0)

(-43,-17)
(188.06,424.32)

(0.15,0.11)

(-43,-17)
(1.08,424.32)
(0.15,0.428)

(-19,19)
(1,406.69)
(0.5,0.046)

(-19,19)
(245.47,406.69)

(0.5,0.473)

(-19,19)
(3.56,406.69)
(0.5,0.681)

(1,37)
(1,389.75)
(0.7,0.147)

(1,37)
(197.33,389.75)

(0.7,0.684)

(-3,33)
(8.11,346.83)
(0.7,0.811)

8

(-43,-17)
(1.01,424.32)

(0.15,0)

(-43,-17)
(364.57,424.32)

(0.15,0.125)

(-43,-17)
(1.22,424.32)
(0.15,0.389)

(-19,19)
(1,406.69)
(0.5,0.035)

(-19,19)
(268.97,406.69)

(0.5,0.476)

(-19,19)
(3.9,406.69)
(0.5,0.676)

(1,37)
(1,389.75)
(0.7,0.122)

(1,37)
(202.56,389.75)

(0.7,0.685)

(-3,33)
(8.34,346.83)

(0.7,0.81)

9

(-43,-17)
(1.03,424.32)
(0.15,0.001)

(-43,-17)
(408.37,424.32)

(0.15,0.128)

(-43,-17)
(1.3,424.32)
(0.15,0.376)

(-19,19)
(1,406.69)
(0.5,0.031)

(-19,19)
(274.86,406.69)

(0.5,0.477)

(-19,19)
(4.02,406.69)
(0.5,0.674)

(1,37)
(1,389.75)
(0.7,0.119)

(1,37)
(203.93,389.75)

(0.7,0.685)

(-3,33)
(8.42,346.83)

(0.7,0.81)

10

(-43,-17)
(1.06,424.32)
(0.15,0.001)

(-43,-17)
(474.69,424.32)

(0.15,0.133)

(-43,-17)
(1.63,424.32)
(0.15,0.344)

(-19,19)
(1,406.69)
(0.5,0.038)

(-19,19)
(285.59,406.69)

(0.5,0.478)

(-19,19)
(4.36,406.69)

(0.5,0.67)

(1,37)
(1,389.75)
(0.7,0.158)

(1,37)
(206.4,389.75)

(0.7,0.685)

(-3,33)
(8.62,346.83)
(0.7,0.809)

11

(-43,-17)
(1.12,424.32)
(0.15,0.003)

(-43,-17)
(495.58,424.32)

(0.15,0.135)

(-43,-17)
(2.04,424.32)
(0.15,0.322)

(-19,19)
(1,406.69)
(0.5,0.052)

(-19,19)
(293.53,406.69)

(0.5,0.479)

(-19,19)
(4.69,406.69)
(0.5,0.666)

(1,37)
(1,389.75)
(0.7,0.184)

(1,37)
(208.47,389.75)

(0.7,0.685)

(-3,33)
(8.81,346.83)
(0.7,0.808)

12

(-43,-17)
(1.19,424.32)
(0.15,0.004)

(-43,-17)
(503.18,424.32)

(0.15,0.136)

(-43,-17)
(2.4,424.32)
(0.15,0.309)

(-19,19)
(1,406.69)
(0.5,0.062)

(-19,19)
(298.52,406.69)

(0.5,0.48)

(-19,19)
(4.94,406.69)
(0.5,0.663)

(1,37)
(1,389.75)
(0.7,0.2)

(1,37)
(209.89,389.75)

(0.7,0.686)

(-3,33)
(8.94,346.83)
(0.7,0.808)

13

(-43,-17)
(1.19,424.32)
(0.15,0.004)

(-43,-17)
(318.14,424.32)

(0.15,0.121)

(-43,-17)
(1.19,424.32)
(0.15,0.395)

(-19,19)
(1,406.69)
(0.5,0.057)

(-19,19)
(262.74,406.69)

(0.5,0.476)

(-19,19)
(3.88,406.69)
(0.5,0.676)

(1,37)
(1,389.75)
(0.7,0.145)

(1,37)
(201.14,389.75)

(0.7,0.685)

(-3,33)
(8.33,346.83)

(0.7,0.81)

14

(-43,-17)
(1.17,424.32)
(0.15,0.003)

(-43,-17)
(344.48,424.32)

(0.15,0.123)

(-43,-17)
(1.21,424.32)
(0.15,0.39)

(-19,19)
(1,406.69)
(0.5,0.053)

(-19,19)
(266,406.69)
(0.5,0.476)

(-19,19)
(3.92,406.69)
(0.5,0.675)

(1,37)
(1,389.75)
(0.7,0.14)

(1,37)
(201.89,389.75)

(0.7,0.685)

(-3,33)
(8.36,346.83)

(0.7,0.81)

15

(-43,-17)
(1.25,424.32)
(0.15,0.005)

(-43,-17)
(498.84,424.32)

(0.15,0.136)

(-43,-17)
(2.08,424.32)
(0.15,0.32)

(-19,19)
(1,406.69)
(0.5,0.064)

(-19,19)
(291.85,406.69)

(0.5,0.479)

(-19,19)
(4.68,406.69)
(0.5,0.666)

(1,37)
(1,389.75)
(0.7,0.188)

(1,37)
(207.73,389.75)

(0.7,0.685)

(-3,33)
(8.8,346.83)
(0.7,0.808)

16

(-43,-17)
(1.38,424.32)
(0.15,0.007)

(-43,-17)
(508.78,424.32)

(0.15,0.138)

(-43,-17)
(2.9,424.32)
(0.15,0.296)

(-19,19)
(1,406.69)
(0.5,0.079)

(-19,19)
(302.41,406.69)

(0.5,0.481)

(-19,19)
(5.19,406.69)
(0.5,0.661)

(1,37)
(1,389.75)
(0.7,0.216)

(1,37)
(210.82,389.75)

(0.7,0.686)

(-3,33)
(9.07,346.83)
(0.7,0.807)

17

(-43,-17)
(1.5,424.32)
(0.15,0.009)

(-43,-17)
(511.12,424.32)

(0.15,0.138)

(-43,-17)
(3.48,424.32)
(0.15,0.286)

(-19,19)
(1,406.69)
(0.5,0.089)

(-19,19)
(307.77,406.69)

(0.5,0.481)

(-19,19)
(5.52,406.69)
(0.5,0.658)

(1,37)
(1,389.75)
(0.7,0.23)

(1,37)
(212.56,389.75)

(0.7,0.686)

(-3,33)
(9.24,346.83)
(0.7,0.806)

Optimal parameters and out-of-control performance

With respect to the findings mentioned above, in Tables 5.3 and 5.4 the optimal design

of the D-SN chart is presented under the benchmark of the 17 Johnson distributions for

n = 20 and n = 30 respectively. In particular, for each distribution, the step presented in

145



Algorithms 5.1 and 5.2 will be followed. Regarding the decision rule presented in (5.3) we

set ν = 0.05. The criterion for choosing this value, yields to the fact that we are interested

to optimise the chart in order to be comparable with other schemes with ARL0 ≈ 370. From

the results presented in Tables 5.3 and 5.4 we may conclude that:

• For a large increase (τ ≈ 2) or a large decrease (τ ≈ 0.25) the corresponding ARL1

values of the D-SN chart are really close to 1. Theoreticaly speaking, this was an

expected result, since for large shifts and large sample sizes we expect that the ARL1

values to be close to 1. As τ → 0 the ARL1 values tend to increase. Note that, this is

also an expected result, due to the fact Shewhart schemes (parametric or not) are not

preferable for detecting small shifts.

• Regarding the optimal p∗0 it can be clearly seen that it varies depending on the shift

magnitude τ . In particular, large values of p0 are preferable for small values of τ ; as

τ → 1 the optimal p∗0 tends to decrease. For example for case #17 (Table 5.3), for

τ < 1 the optimal value p∗0 = {0.5, 0.8} while for τ > 1 the optimal p∗0 = 0.2.
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Table 5.3: Out-of-control performance for the S-SD chart along with the corresponding
optimal parameters for n = 20

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

1

(-12,12)
(1,388.07)
(0.5,0.183)

(-12,12)
(1,388.07)
(0.5,0.598)

(-12,12)
(15.14,388.07)

(0.5,0.733)

(2,20)
(258.39,385.38)

(0.8,0.789)

(-20,-2)
(6.68,385.38)

(0.2,0.84)

(-20,-2)
(2.05,385.38)
(0.2,0.867)

(-20,-2)
(1.34,385.38)
(0.2,0.886)

(-20,-2)
(1.19,385.38)
(0.2,0.895)

(-20,-2)
(1.13,385.38)

(0.2,0.9)

2

(-12,12)
(1,388.07)
(0.5,0.29)

(-12,12)
(1.55,388.07)
(0.5,0.609)

(-12,12)
(27.87,388.07)

(0.5,0.735)

(2,20)
(260.53,385.38)

(0.8,0.79)

(-20,-2)
(14.58,385.38)

(0.2,0.84)

(-20,-2)
(3.6,385.38)
(0.2,0.866)

(-20,-2)
(1.88,385.38)
(0.2,0.885)

(-20,-2)
(1.52,385.38)
(0.2,0.894)

(-20,-2)
(1.37,385.38)
(0.2,0.899)

3

(-12,12)
(1,388.07)
(0.5,0.311)

(-12,12)
(1.94,388.07)
(0.5,0.612)

(-12,12)
(32.32,388.07)

(0.5,0.736)

(2,20)
(261.11,385.38)

(0.8,0.79)

(-20,-2)
(18.67,385.38)

(0.2,0.839)

(-20,-2)
(4.46,385.38)
(0.2,0.866)

(-20,-2)
(2.18,385.38)
(0.2,0.885)

(-20,-2)
(1.7,385.38)
(0.2,0.894)

(-20,-2)
(1.51,385.38)
(0.2,0.899)

4

(-12,12)
(1,388.07)
(0.5,0.324)

(-12,12)
(2.28,388.07)
(0.5,0.614)

(-12,12)
(35.72,388.07)

(0.5,0.736)

(2,20)
(261.53,385.38)

(0.8,0.79)

(-20,-2)
(22.2,385.38)
(0.2,0.839)

(-20,-2)
(5.25,385.38)
(0.2,0.866)

(-20,-2)
(2.46,385.38)
(0.2,0.885)

(-20,-2)
(1.87,385.38)
(0.2,0.894)

(-20,-2)
(1.64,385.38)
(0.2,0.899)

5

(-12,12)
(1,388.07)
(0.5,0.337)

(-12,12)
(2.67,388.07)
(0.5,0.617)

(-12,12)
(39.38,388.07)

(0.5,0.736)

(2,20)
(261.98,385.38)

(0.8,0.79)

(-20,-2)
(26.22,385.38)

(0.2,0.839)

(-20,-2)
(6.22,385.38)
(0.2,0.866)

(-20,-2)
(2.81,385.38)
(0.2,0.885)

(-20,-2)
(2.09,385.38)
(0.2,0.894)

(-20,-2)
(1.8,385.38)
(0.2,0.899)

6

(-12,12)
(1.01,388.07)
(0.5,0.347)

(-12,12)
(3.01,388.07)
(0.5,0.618)

(-12,12)
(42.37,388.07)

(0.5,0.737)

(2,20)
(262.34,385.38)

(0.8,0.79)

(-20,-2)
(29.6,385.38)
(0.2,0.839)

(-20,-2)
(7.09,385.38)
(0.2,0.865)

(-20,-2)
(3.14,385.38)
(0.2,0.884)

(-20,-2)
(2.29,385.38)
(0.2,0.893)

(-20,-2)
(1.95,385.38)
(0.2,0.899)

7

(2,20)
(1,385.38)
(0.8,0.226)

(-12,12)
(1.44,388.07)

(0.5,0.59)

(-12,12)
(13.99,388.07)

(0.5,0.733)

(2,20)
(258.6,385.38)

(0.8,0.789)

(-20,-2)
(8.66,385.38)

(0.2,0.84)

(-20,-2)
(2.69,385.38)
(0.2,0.866)

(-20,-2)
(1.65,385.38)
(0.2,0.885)

(-20,-2)
(1.41,385.38)
(0.2,0.894)

(-20,-2)
(1.31,385.38)
(0.2,0.899)

8

(-12,12)
(1,388.07)
(0.5,0.263)

(-12,12)
(1.47,388.07)
(0.5,0.606)

(-12,12)
(25.51,388.07)

(0.5,0.735)

(2,20)
(260.31,385.38)

(0.8,0.79)

(-20,-2)
(14.21,385.38)

(0.2,0.84)

(-20,-2)
(3.69,385.38)
(0.2,0.866)

(-20,-2)
(1.97,385.38)
(0.2,0.885)

(-20,-2)
(1.59,385.38)
(0.2,0.894)

(-20,-2)
(1.44,385.38)
(0.2,0.899)

9

(-12,12)
(1,388.07)
(0.5,0.289)

(-12,12)
(1.7,388.07)
(0.5,0.609)

(-12,12)
(29.09,388.07)

(0.5,0.735)

(2,20)
(260.77,385.38)

(0.8,0.79)

(-20,-2)
(16.64,385.38)

(0.2,0.839)

(-20,-2)
(4.14,385.38)
(0.2,0.866)

(-20,-2)
(2.11,385.38)
(0.2,0.885)

(-20,-2)
(1.67,385.38)
(0.2,0.894)

(-20,-2)
(1.49,385.38)
(0.2,0.899)

10

(-12,12)
(1.01,388.07)
(0.5,0.324)

(-12,12)
(2.41,388.07)
(0.5,0.614)

(-12,12)
(36.24,388.07)

(0.5,0.736)

(2,20)
(261.56,385.38)

(0.8,0.79)

(-20,-2)
(23.57,385.38)

(0.2,0.839)

(-20,-2)
(5.6,385.38)
(0.2,0.866)

(-20,-2)
(2.61,385.38)
(0.2,0.885)

(-20,-2)
(1.97,385.38)
(0.2,0.894)

(-20,-2)
(1.72,385.38)
(0.2,0.899)

11

(-12,12)
(1.02,388.07)
(0.5,0.344)

(-12,12)
(3.02,388.07)
(0.5,0.618)

(-12,12)
(42,388.07)
(0.5,0.737)

(2,20)
(262.25,385.38)

(0.8,0.79)

(-20,-2)
(29.75,385.38)

(0.2,0.839)

(-20,-2)
(7.13,385.38)
(0.2,0.865)

(-20,-2)
(3.16,385.38)
(0.2,0.884)

(-20,-2)
(2.31,385.38)
(0.2,0.893)

(-20,-2)
(1.97,385.38)
(0.2,0.899)

12

(-12,12)
(1.03,388.07)
(0.5,0.356)

(-12,12)
(3.47,388.07)

(0.5,0.62)

(-12,12)
(45.91,388.07)

(0.5,0.737)

(2,20)
(262.73,385.38)

(0.8,0.79)

(-20,-2)
(34.11,385.38)

(0.2,0.839)

(-20,-2)
(8.33,385.38)
(0.2,0.865)

(-20,-2)
(3.61,385.38)
(0.2,0.884)

(-20,-2)
(2.59,385.38)
(0.2,0.893)

(-20,-2)
(2.18,385.38)
(0.2,0.899)

13

(2,20)
(1,385.38)
(0.8,0.232)

(-12,12)
(1.45,388.07)
(0.5,0.601)

(-12,12)
(21.64,388.07)

(0.5,0.734)

(2,20)
(259.85,385.38)

(0.8,0.79)

(-20,-2)
(12.62,385.38)

(0.2,0.84)

(-20,-2)
(3.49,385.38)
(0.2,0.866)

(-20,-2)
(1.94,385.38)
(0.2,0.885)

(-20,-2)
(1.59,385.38)
(0.2,0.894)

(-20,-2)
(1.45,385.38)
(0.2,0.899)

14

(2,20)
(1,385.38)
(0.8,0.245)

(-12,12)
(1.45,388.07)
(0.5,0.603)

(-12,12)
(23.48,388.07)

(0.5,0.734)

(2,20)
(260.1,385.38)

(0.8,0.79)

(-20,-2)
(13.56,385.38)

(0.2,0.84)

(-20,-2)
(3.65,385.38)
(0.2,0.866)

(-20,-2)
(1.99,385.38)
(0.2,0.885)

(-20,-2)
(1.62,385.38)
(0.2,0.894)

(-20,-2)
(1.46,385.38)
(0.2,0.899)

15

(-12,12)
(1.04,388.07)
(0.5,0.339)

(-12,12)
(3.05,388.07)
(0.5,0.615)

(-12,12)
(40.91,388.07)

(0.5,0.736)

(2,20)
(261.97,385.38)

(0.8,0.79)

(-20,-2)
(30.06,385.38)

(0.2,0.839)

(-20,-2)
(7.18,385.38)
(0.2,0.865)

(-20,-2)
(3.18,385.38)
(0.2,0.884)

(-20,-2)
(2.33,385.38)
(0.2,0.893)

(-20,-2)
(1.99,385.38)
(0.2,0.899)

16

(-12,12)
(1.07,388.07)
(0.5,0.364)

(-12,12)
(3.98,388.07)
(0.5,0.621)

(-12,12)
(49.3,388.07)
(0.5,0.737)

(2,20)
(263.02,385.38)

(0.8,0.79)

(-20,-2)
(39.05,385.38)

(0.2,0.839)

(-20,-2)
(9.75,385.38)
(0.2,0.865)

(-20,-2)
(4.15,385.38)
(0.2,0.884)

(-20,-2)
(2.94,385.38)
(0.2,0.893)

(-20,-2)
(2.45,385.38)
(0.2,0.898)

17

(2,20)
(1.09,385.38)
(0.8,0.376)

(-12,12)
(4.57,388.07)
(0.5,0.624)

(2,20)
(51.46,385.38)

(0.8,0.738)

(2,20)
(263.63,385.38)

(0.8,0.79)

(-20,-2)
(44.16,385.38)

(0.2,0.839)

(-20,-2)
(11.41,385.38)

(0.2,0.865)

(-20,-2)
(4.82,385.38)
(0.2,0.884)

(-20,-2)
(3.36,385.38)
(0.2,0.893)

(-20,-2)
(2.77,385.38)
(0.2,0.898)
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Table 5.4: Out-of-control performance for the S-SD chart along with the corresponding
optimal parameters for n = 30

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

1

(-26,0)
(1,359.27)

(0.25,0.009)

(-26,0)
(1,359.27)

(0.25,0.496)

(-26,0)
(1.12,359.27)
(0.25,0.666)

(-26,0)
(128.82,359.27)

(0.25,0.737)

(-30,-2)
(5.38,363.7)
(0.25,0.8)

(-30,-2)
(1.68,363.7)
(0.25,0.834)

(-30,-2)
(1.18,363.7)
(0.25,0.857)

(-30,-2)
(1.08,363.7)
(0.25,0.869)

(-30,-2)
(1.05,363.7)
(0.25,0.875)

2

(-26,0)
(1,359.27)

(0.25,0.171)

(-26,0)
(1.01,359.27)
(0.25,0.518)

(-26,0)
(6.56,359.27)
(0.25,0.67)

(-14,18)
(179.68,360.5)

(0.5,0.737)

(-30,-2)
(10.52,363.7)
(0.25,0.799)

(-30,-2)
(2.59,363.7)
(0.25,0.832)

(-30,-2)
(1.46,363.7)
(0.25,0.856)

(-30,-2)
(1.24,363.7)
(0.25,0.867)

(-30,-2)
(1.16,363.7)
(0.25,0.874)

3

(-14,18)
(1,360.5)

(0.5,0.202)

(-24,4)
(1.12,365.04)
(0.3,0.524)

(-24,4)
(9.81,365.04)
(0.3,0.671)

(-14,18)
(184.81,360.5)

(0.5,0.737)

(-30,-2)
(12.97,363.7)
(0.25,0.799)

(-30,-2)
(3.06,363.7)
(0.25,0.832)

(-30,-2)
(1.62,363.7)
(0.25,0.856)

(-30,-2)
(1.33,363.7)
(0.25,0.867)

(-30,-2)
(1.22,363.7)
(0.25,0.873)

4

(-14,18)
(1,360.5)

(0.5,0.222)

(-14,18)
(1.27,360.5)
(0.5,0.528)

(-24,4)
(12.45,365.04)

(0.3,0.672)

(-14,18)
(188.43,360.5)

(0.5,0.737)

(-30,-2)
(15.07,363.7)
(0.25,0.799)

(-30,-2)
(3.47,363.7)
(0.25,0.831)

(-30,-2)
(1.75,363.7)
(0.25,0.855)

(-30,-2)
(1.41,363.7)
(0.25,0.867)

(-30,-2)
(1.28,363.7)
(0.25,0.873)

5

(-14,18)
(1,360.5)
(0.5,0.24)

(-14,18)
(1.39,360.5)
(0.5,0.532)

(-14,18)
(14.17,360.5)
(0.5,0.672)

(-14,18)
(192.12,360.5)

(0.5,0.737)

(-30,-2)
(17.46,363.7)
(0.25,0.798)

(-30,-2)
(3.97,363.7)
(0.25,0.831)

(-30,-2)
(1.92,363.7)
(0.25,0.855)

(-30,-2)
(1.51,363.7)
(0.25,0.866)

(-30,-2)
(1.35,363.7)
(0.25,0.873)

6

(-14,18)
(1,360.5)

(0.5,0.253)

(-14,18)
(1.49,360.5)
(0.5,0.535)

(-14,18)
(15.28,360.5)
(0.5,0.673)

(-14,18)
(195,360.5)
(0.5,0.738)

(-30,-2)
(19.5,363.7)
(0.25,0.798)

(-30,-2)
(4.41,363.7)
(0.25,0.831)

(-30,-2)
(2.07,363.7)
(0.25,0.855)

(-30,-2)
(1.6,363.7)
(0.25,0.866)

(-30,-2)
(1.42,363.7)
(0.25,0.873)

7

(-26,0)
(1,359.27)

(0.25,0.183)

(-14,18)
(1.05,360.5)
(0.5,0.48)

(-24,4)
(2.71,365.04)
(0.3,0.665)

(-26,0)
(136.37,359.27)

(0.25,0.737)

(-30,-2)
(6.79,363.7)
(0.25,0.8)

(-30,-2)
(2.09,363.7)
(0.25,0.833)

(-30,-2)
(1.35,363.7)
(0.25,0.856)

(-30,-2)
(1.2,363.7)
(0.25,0.867)

(-30,-2)
(1.14,363.7)
(0.25,0.874)

8

(2,30)
(1,363.7)

(0.75,0.164)

(-14,18)
(1.06,360.5)
(0.5,0.512)

(-24,4)
(5.97,365.04)
(0.3,0.669)

(-14,18)
(177.84,360.5)

(0.5,0.737)

(-30,-2)
(10.35,363.7)
(0.25,0.799)

(-30,-2)
(2.66,363.7)
(0.25,0.832)

(-30,-2)
(1.51,363.7)
(0.25,0.856)

(-30,-2)
(1.28,363.7)
(0.25,0.867)

(-30,-2)
(1.19,363.7)
(0.25,0.874)

9

(-14,18)
(1,360.5)

(0.5,0.182)

(-14,18)
(1.11,360.5)
(0.5,0.518)

(-24,4)
(7.96,365.04)

(0.3,0.67)

(-14,18)
(181.75,360.5)

(0.5,0.737)

(-30,-2)
(11.81,363.7)
(0.25,0.799)

(-30,-2)
(2.9,363.7)
(0.25,0.832)

(-30,-2)
(1.58,363.7)
(0.25,0.856)

(-30,-2)
(1.32,363.7)
(0.25,0.867)

(-30,-2)
(1.22,363.7)
(0.25,0.873)

10

(-14,18)
(1,360.5)

(0.5,0.226)

(-14,18)
(1.31,360.5)
(0.5,0.527)

(-14,18)
(13.01,360.5)
(0.5,0.672)

(-14,18)
(189.05,360.5)

(0.5,0.737)

(-30,-2)
(15.83,363.7)
(0.25,0.799)

(-30,-2)
(3.65,363.7)
(0.25,0.831)

(-30,-2)
(1.82,363.7)
(0.25,0.855)

(-30,-2)
(1.46,363.7)
(0.25,0.866)

(-30,-2)
(1.32,363.7)
(0.25,0.873)

11

(-14,18)
(1,360.5)

(0.5,0.252)

(-14,18)
(1.49,360.5)
(0.5,0.533)

(-14,18)
(15.14,360.5)
(0.5,0.673)

(-14,18)
(194.63,360.5)

(0.5,0.738)

(-30,-2)
(19.52,363.7)
(0.25,0.798)

(-30,-2)
(4.42,363.7)
(0.25,0.831)

(-30,-2)
(2.08,363.7)
(0.25,0.855)

(-30,-2)
(1.61,363.7)
(0.25,0.866)

(-30,-2)
(1.43,363.7)
(0.25,0.873)

12

(-14,18)
(1,360.5)

(0.5,0.267)

(-14,18)
(1.63,360.5)
(0.5,0.537)

(-14,18)
(16.61,360.5)
(0.5,0.674)

(-14,18)
(198.22,360.5)

(0.5,0.738)

(-30,-2)
(22.2,363.7)
(0.25,0.798)

(-30,-2)
(5.04,363.7)
(0.25,0.831)

(-30,-2)
(2.29,363.7)
(0.25,0.854)

(-30,-2)
(1.74,363.7)
(0.25,0.866)

(-30,-2)
(1.52,363.7)
(0.25,0.872)

13

(2,30)
(1,363.7)

(0.75,0.18)

(-14,18)
(1.06,360.5)
(0.5,0.502)

(-24,4)
(4.49,365.04)
(0.3,0.668)

(-24,4)
(170.9,365.04)

(0.3,0.737)

(-30,-2)
(9.39,363.7)
(0.25,0.799)

(-30,-2)
(2.56,363.7)
(0.25,0.832)

(-30,-2)
(1.51,363.7)
(0.25,0.856)

(-30,-2)
(1.29,363.7)
(0.25,0.867)

(-30,-2)
(1.2,363.7)
(0.25,0.873)

14

(2,30)
(1,363.7)

(0.75,0.175)

(-14,18)
(1.06,360.5)
(0.5,0.507)

(-24,4)
(5.26,365.04)
(0.3,0.669)

(-14,18)
(175.89,360.5)

(0.5,0.737)

(-30,-2)
(9.97,363.7)
(0.25,0.799)

(-30,-2)
(2.64,363.7)
(0.25,0.832)

(-30,-2)
(1.53,363.7)
(0.25,0.856)

(-30,-2)
(1.3,363.7)
(0.25,0.867)

(-30,-2)
(1.21,363.7)
(0.25,0.873)

15

(-14,18)
(1,360.5)

(0.5,0.251)

(-14,18)
(1.5,360.5)
(0.5,0.53)

(-14,18)
(14.73,360.5)
(0.5,0.672)

(-14,18)
(193.43,360.5)

(0.5,0.737)

(-30,-2)
(19.49,363.7)
(0.25,0.798)

(-30,-2)
(4.42,363.7)
(0.25,0.831)

(-30,-2)
(2.09,363.7)
(0.25,0.855)

(-30,-2)
(1.62,363.7)
(0.25,0.866)

(-30,-2)
(1.44,363.7)
(0.25,0.872)

16

(-14,18)
(1,360.5)

(0.5,0.279)

(-14,18)
(1.8,360.5)
(0.5,0.54)

(-14,18)
(17.89,360.5)
(0.5,0.674)

(-14,18)
(201.06,360.5)

(0.5,0.738)

(-30,-2)
(25.1,363.7)
(0.25,0.798)

(-30,-2)
(5.73,363.7)
(0.25,0.83)

(-30,-2)
(2.54,363.7)
(0.25,0.854)

(-30,-2)
(1.89,363.7)
(0.25,0.865)

(-30,-2)
(1.63,363.7)
(0.25,0.872)

17

(-14,18)
(1,360.5)

(0.5,0.293)

(-14,18)
(1.99,360.5)
(0.5,0.544)

(-14,18)
(19.7,360.5)
(0.5,0.675)

(-14,18)
(205.06,360.5)

(0.5,0.738)

(-30,-2)
(28.42,363.7)
(0.25,0.797)

(-30,-2)
(6.6,363.7)
(0.25,0.83)

(-30,-2)
(2.86,363.7)
(0.25,0.854)

(-30,-2)
(2.08,363.7)
(0.25,0.865)

(-30,-2)
(1.78,363.7)
(0.25,0.872)
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5.3 The two-sided D-SN-C EWMA chart for disper-

sion (The “continuousified” approach)

In the previous Chapters, the design of a modified EWMA chart based on the Sign

statistic, with and without the presence of tied observations, was presented, using the “con-

tinuousify” method. Motivated by the efficiency and the robust design of this chart, in this

Section a modified version of this scheme is presented (entitled as the D-SN-C EWMA chart)

capable of monitoring shifts in the process variability.

Regarding the charting statistic of the proposed two-sided D-SN-C EWMA chart, it will

be simply defined as:

Z∗t = λSD∗t + (1− λ)Z∗t−1, Z
∗
0 = E0(SD∗t ). (5.4)

Practically speaking, the distribution of SD∗t is exactly the same with the one of SN∗t
as presented in Chapter 3. The only difference is that the probability of “success ”, p+1,

is now accounted for shifts in the process variability as defined in Section 5.1. The reason

that the definition and notation for the testing statistics, SD∗t , SN∗t are different, is to avoid

causing any confusions to the readers. Moreover, similarly with the median case, the p.d.f.

fSD∗t (s|n, p) and c.d.f. FSD∗t (s|n, p) of SD∗t will be defined for s ∈ R and they are equal to

fSD∗t (s|n, p) =
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p

)
fN(s|ψ, h), (5.5)

FSD∗t (s|n, p) =
∑
ψ∈Ψ

fBin

(
ψ + n

2
|n, p

)
FN(s|ψ, h). (5.6)

As for the computation of the mean and the variance of SD∗t , we also have:

E(SD∗t ) = E(SDt), (5.7)

V(SD∗t ) = V(SDt) + h2. (5.8)

Lastly, the control limits, are defined as:

LCL = E0(SDt)−K
√

V0(SDt)×
√

λ

2− λ
,

UCL = E0(SDt) +K
√

V0(SDt)×
√

λ

2− λ
. (5.9)

When the process is in-control, the above expressions can be rewritten as:
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LCL∗ = n(2p0 − 1)−K
√
λ(4np0(1− p0) + h2)

2− λ
, (5.10)

UCL∗ = n(2p0 − 1) +K

√
λ(4np0(1− p0) + h2)

2− λ
. (5.11)

5.3.1 Optimization of the D-SN-C EWMA chart

The out-of-control performance of our proposed chart will be examined under the bench-

mark of the 17 Johnson’s type distributions listed in Table 4.3, for different sample sizes and

shifts in the process variability. More specifically, regarding the optimization procedure, for

each distribution, the following simple steps have been followed.

• Step 1 : For p0 = {0.05, 0.1, 0.15, . . . , 0.9} and λ = {0.05, 0.1, . . . , 0.95} the correspond-

ing value for K is obtained for 2m + 1 = 151 in order to satisfy a desired in-control

ARL equal to ARL0 = 370.4. Note that, the number 2m+ 1 = 151 has been chosen in

order to not be too large but large enough to guarantee the stability of the results. Of

course, practitioners can also set any value for 2m+ 1 > 151. It should be noted that,

the ARL and SDRL values are computed by using the exact same procedure as in the

2-C SN EWMA chart, with the only difference that the transient probabilities will be

computed by using the distribution of SDt as presented in 5.3.

• Step 2 : Among all the combinations of (p0, λ,K), for a given shift τ , the optimal set

(p∗0, λ
∗, K∗) is chosen which gives the smallest out-of-control ARL at a specific shift τ .

In Tables 5.5 and 5.6 the optimal combinations of (λ∗, K∗) (first line of each block) are

presented, along with the corresponding out-of-control ARL values (second line) and the

corresponding pairs of (p∗0, p1) (third line) for n = 10 (Table 5.5) and n = 20 (Table 5.6).

It should be clarified that p∗0 defines the suggested quantiles for the test for dispersion for a

specific value of τ . Also, it is related to the in-control case (i.e. when p = p∗0 we are referring

to an in-control process while when, p 6= p∗0 the process is out-of-control). For example, from

the first six symmetric distributions we may see that:

• For large decreases in the process variability (e.g., τ = 0.25), it can be seen that, for

p∗0 > 0.6, the corresponding out-of-control ARL values are ARL1 ≈ 1. On the other

hand, for a large increase (τ = 2), small values for p∗0 are preferable. For instance, from

Table 5.5 it can be seen that, when τ = 0.25, the optimal value of p0 is p∗0 ≥ 0.7. On

the other hand, p∗0 = 0.1 for large increases (i.e. τ = 2).

• For moderate decreases in the variability (such as τ = 0.5 or 0.75), from Table 5.5 we

may see that p∗0 takes values between 0.3 and 0.6. On the other hand, for moderate
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increases in the variability (τ = 1.5 or 1.75), the optimal value of p0 is p∗0 ≤ 0.2 for all

the cases.

• Finally, for small decreases (such as τ = 0.95) or increases (τ = 1.25) the optimal value

of p0 ranges from 0.05 to 0.25.

• From Table 5.6 we may see that all the above statements are also valid for n = 20.

In addition, for the remaining cases (heavy-skewed distributions) similar conclusions are

made. In particular,

• For large decrease in the process variance a value for the optimal p∗0 = {0.75, 0.55}, is

suggested.

• For moderate decreases in the variability (such as τ = 0.5 or 0.75), from Table 5.5

setting p∗0 ≈ 0.5 or p∗0 ≈ 0.35 respectively.

• For small decreases (such as τ = 0.95) or increases (τ = 1.25) the optimal p∗0 could

take values from 0.15 to 0.2.

As a consequence, it can be concluded that as the value of τ increases then p∗0 decreases.
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Table 5.5: Out-of-control performance for the proposed chart along with the corresponding
optimal parameters for n = 10

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

#1

(0.75,2.845)
1

(0.5,0)

(0.75,2.845)
1.12

(0.5,0.0130)

(0.3,2.908)
4.26

(0.25,0.018)

(0.05,2.478)
27.22

(0.05,0.014)

(0.3,3.349)
2.88

(0.05,0.233)

(0.3,3.349)
1.61

(0.05,0.364)

(0.35,3.434)
1.27

(0.05,0.457)

(0.8,3.755)
1.15

(0.05,0.514)

(0.8,3.755)
1.13

(0.05,0.526)

#2

(0.75,2.845)
1

(0.5,0)

(0.65,2.867)
2.66

(0.5,0.150)

(0.15,2.791)
9.11

(0.25,0.107)

(0.05,2.481)
106.13

(0.15,0.125)

(0.15,2.93)
7.11

(0.05,0.139)

(0.3,3.349)
2.92

(0.05,0.231)

(0.3,3.349)
1.93

(0.05,0.313)

(0.3,3.349)
1.59

(0.05,0.369)

(0.3,3.349)
1.53

(0.05,0.382)

#3

(0.65,2.88)
1.05

(0.6,0.0359)

(0.4,2.89)
3.07

(0.5,0.177)

(0.1,2.691)
10.99

(0.3,0.167)

(0.05,2.483)
131.57

(0.25,0.22)

(0.1,2.722)
10.33

(0.05,0.116)

(0.25,3.244)
3.97

(0.05,0.191)

(0.3,3.349)
2.43

(0.05,0.262)

(0.3,3.349)
1.92

(0.05,0.314)

(0.3,3.349)
1.83

(0.05,0.327)

#4

(0.7,2.876)
1.11

(0.6,0.057)

(0.4,2.89)
3.34

(0.5,0.193)

(0.1,2.695)
12.22

(0.35,0.221)

(0.05,2.49)
145.23

(0.3,0.27)

(0.15,2.829)
12.77

(0.1,0.176)

(0.2,2.929)
5.01

(0.1,0.252)

(0.3,3.349)
2.97

(0.05,0.228)

(0.3,3.349)
2.27

(0.05,0.276)

(0.3,3.349)
2.15

(0.05,0.287)

#5

(0.65,2.88)
1.19

(0.6,0.078)

(0.4,2.89)
3.62

(0.5,0.208)

(0.1,2.695)
13.44

(0.35,0.229)

(0.05,2.486)
156.8

(0.35,0.327)

(0.1,2.697)
15.23

(0.15,0.231)

(0.2,2.929)
5.86

(0.1,0.235)

(0.4,3.239)
3.51

(0.1,0.299)

(0.4,3.239)
2.64

(0.1,0.345)

(0.4,3.239)
2.49

(0.1,0.356)

#6

(0.7,2.876)
1.25

(0.6,0.092)

(0.35,2.889)
3.81

(0.55,0.268)

(0.1,2.689)
14.3

(0.4,0.281)

(0.05,2.486)
164.51

(0.35,0.328)

(0.1,2.697)
16.93

(0.15,0.225)

(0.2,2.88)
6.47

(0.15,0.296)

(0.4,3.096)
3.92

(0.15,0.359)

(0.4,3.239)
2.93

(0.1,0.327)

(0.4,3.239)
2.75

(0.1,0.337)

#7

(0.75,3.052)
1.11

(0.75,0.183)

(0.65,2.88)
1.93

(0.6,0.194)

(0.2,2.832)
5.6

(0.35,0.136)

(0.05,2.487)
40.16

(0.1,0.062)

(0.25,3.244)
3.52

(0.05,0.205)

(0.3,3.349)
1.99

(0.05,0.306)

(0.35,3.434)
1.55

(0.05,0.376)

(0.35,3.434)
1.38

(0.05,0.4195)

(0.35,3.434)
1.35

(0.05,0.429)

#8

(0.7,3.039)
1.08

(0.75,0.164)

(0.65,2.867)
2.54

(0.5,0.143)

(0.15,2.783)
8.71

(0.3,0.145)

(0.05,2.481)
98.21

(0.15,0.124)

(0.2,3.107)
6.47

(0.05,0.146)

(0.3,3.349)
2.85

(0.05,0.235)

(0.3,3.349)
1.98

(0.05,0.307)

(0.3,3.349)
1.66

(0.05,0.355)

(0.3,3.349)
1.6

(0.05,0.366)

#9

(0.95,2.848)
1.1

(0.7,0.118)

(0.4,2.89)
2.86

(0.5,0.162)

(0.1,2.691)
10.01

(0.3,0.158)

(0.05,2.489)
117.81

(0.2,0.175)

(0.15,2.93)
8.27

(0.05,0.129)

(0.3,3.349)
3.39

(0.05,0.210)

(0.3,3.349)
2.22

(0.05,0.280)

(0.3,3.349)
1.81

(0.05,0.329)

(0.3,3.349)
1.74

(0.05,0.340)

#10

(0.65,2.88)
1.19

(0.6,0.077)

(0.4,2.89)
3.43

(0.5,0.199)

(0.1,2.695)
12.6

(0.35,0.224)

(0.05,2.49)
148.82

(0.3,0.277)

(0.15,2.829)
13.88

(0.1,0.172)

(0.2,2.929)
5.35

(0.1,0.245)

(0.4,3.239)
3.22

(0.1,0.311)

(0.4,3.239)
2.46

(0.1,0.359)

(0.4,3.239)
2.33

(0.1,0.370)

#11

(0.65,2.88)
1.28

(0.6,0.097)

(0.35,2.889)
3.8

(0.55,0.267)

(0.1,2.689)
14.28

(0.4,0.280)

(0.05,2.49)
164.24

(0.4,0.378)

(0.1,2.697)
17.08

(0.15,0.224)

(0.2,2.88)
6.51

(0.15,0.295)

(0.4,3.096)
3.95

(0.15,0.358)

(0.4,3.239)
2.96

(0.1,0.325)

(0.4,3.239)
2.78

(0.1,0.335)

#12

(0.7,3.039)
1.34

(0.75,0.266)

(0.35,2.889)
4.04

(0.55,0.278)

(0.1,2.694)
15.3

(0.45,0.334)

(0.05,2.49)
172.13

(0.4,0.379)

(0.1,2.695)
18.96

(0.2,0.278)

(0.2,2.88)
7.28

(0.15,0.284)

(0.25,2.939)
4.37

(0.15,0.344)

(0.4,3.096)
3.27

(0.15,0.387)

(0.4,3.096)
3.08

(0.15,0.397)

#13

(0.75,3.052)
1.1

(0.75,0.179)

(0.5,2.886)
2.35

(0.55,0.175)

(0.15,2.783)
7.65

(0.3,0.132)

(0.05,2.487)
78.08

(0.1,0.07)

(0.25,3.244)
5.31

(0.05,0.162)

(0.3,3.349)
2.58

(0.05,0.252)

(0.3,3.349)
1.89

(0.05,0.318)

(0.3,3.349)
1.63

(0.05,0.361)

(0.3,3.349)
1.58

(0.05,0.370)

#14

(0.75,3.052)
1.09

(0.75,0.175)

(0.5,2.886)
2.46

(0.55,0.185)

(0.15,2.783)
8.21

(0.3,0.139)

(0.05,2.487)
89.88

(0.1,0.07)

(0.2,3.107)
5.91

(0.05,0.153)

(0.3,3.349)
2.74

(0.05,0.241)

(0.3,3.349)
1.96

(0.05,0.309)

(0.3,3.349)
1.67

(0.05,0.3528)

(0.3,3.349)
1.62

(0.05,0.362)

#15

(0.75,3.052)
1.28

(0.75,0.250)

(0.35,2.889)
3.78

(0.55,0.2664)

(0.1,2.694)
14.17

(0.45,0.328)

(0.05,2.490)
162.79

(0.4,0.378)

(0.1,2.695)
17.22

(0.2,0.283)

(0.2,2.880)
6.6

(0.15,0.294)

(0.4,3.096)
4

(0.15,0.357)

(0.4,3.096)
3.01

(0.15,0.401)

(0.4,3.096)
2.84

(0.15,0.411)

#16

(0.7,3.039)
1.39

(0.75,0.279)

(0.35,2.886)
4.23

(0.6,0.340)

(0.1,2.694)
16.21

(0.45,0.338)

(0.05,2.487)
178.51

(0.45,0.430)

(0.1,2.696)
20.93

(0.25,0.329)

(0.2,2.855)
8.07

(0.2,0.339)

(0.3,2.940)
4.83

(0.2,0.398)

(0.4,3.096)
3.64

(0.15,0.370)

(0.4,3.096)
3.42

(0.15,0.380)

#17

(0.7,3.039)
1.45

(0.75,0.293)

(0.35,2.886)
4.49

(0.6,0.3495)

(0.1,2.689)
17.31

(0.5,0.393)

(0.05,2.487)
185.84

(0.45,0.430)

(0.05,2.49)
22.91

(0.3,0.379)

(0.2,2.855)
8.92

(0.2,0.330)

(0.25,2.905)
5.27

(0.2,0.3867)

(0.35,2.971)
3.96

(0.2,0.426)

(0.35,2.971)
3.74

(0.2,0.436)
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Table 5.6: Out-of-control performance for the proposed chart along with the corresponding
optimal parameters for n = 20

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

#1

(0.65,2.948)
1

(0.35,0)

(0.65,2.948)
1

(0.35,0)

(0.4,2.949)
2.35

(0.25,0.018)

(0.05,2.487)
15.84

(0.05,0.014)

(0.5,3.4)
1.73

(0.05,0.233)

(0.55,3.445)
1.1

(0.05,0.364)

(0.45,3.357)
1.02

(0.05,0.457)

(0.5,3.4)
1

(0.05,0.514)

(0.5,3.4)
1

(0.05,0.526)

#2

(0.65,2.948)
1

(0.35,0)

(0.7,2.937)
1.38

(0.4,0.0613368)

(0.25,2.888)
5.3

(0.25,0.107)

(0.05,2.489)
58.21

(0.1,0.0792381)

(0.25,3.075)
4.31

(0.05,0.139)

(0.5,3.4)
1.75

(0.05,0.231)

(0.6,3.49)
1.22

(0.05,0.313)

(0.55,3.445)
1.09

(0.05,0.369)

(0.55,3.445)
1.07

(0.05,0.382)

#3

(0.7,2.947)
1

(0.35,0)

(0.7,2.931)
1.67

(0.45,0.130)

(0.2,2.847)
6.46

(0.3,0.167)

(0.05,2.49)
76.22

(0.2,0.177)

(0.2,2.966)
6.28

(0.05,0.116)

(0.5,3.4)
2.38

(0.05,0.191)

(0.5,3.4)
1.48

(0.05,0.263)

(0.55,3.445)
1.22

(0.05,0.314)

(0.55,3.445)
1.18

(0.05,0.327)

#4

(0.7,2.931)
1

(0.45,0.01)

(0.7,2.93)
1.86

(0.5,0.193)

(0.15,2.793)
7.22

(0.35,0.221)

(0.05,2.49)
87.22

(0.25,0.227)

(0.2,2.888)
7.76

(0.1,0.176)

(0.5,3.181)
3

(0.1,0.252)

(0.5,3.4)
1.78

(0.05,0.228)

(0.55,3.445)
1.39

(0.05,0.276)

(0.55,3.445)
1.33

(0.05,0.287)

#5

(0.75,2.927)
1

(0.5,0.034)

(0.7,2.93)
2.06

(0.5,0.208)

(0.15,2.792)
7.9

(0.4,0.276)

(0.05,2.489)
96.79

(0.3,0.278)

(0.2,2.867)
9.22

(0.15,0.231)

(0.3,3.004)
3.54

(0.1,0.235)

(0.55,3.21)
2.07

(0.1,0.299)

(0.55,3.21)
1.59

(0.1,0.345)

(0.55,3.21)
1.52

(0.1,0.356)

#6

(0.75,2.927)
1.01

(0.5,0.045)

(0.7,2.931)
2.19

(0.55,0.268)

(0.15,2.792)
8.4

(0.4,0.281)

(0.05,2.489)
103.28

(0.35,0.328)

(0.15,2.802)
10.28

(0.15,0.225)

(0.3,2.946)
3.92

(0.15,0.296)

(0.55,3.21)
2.32

(0.1,0.282)

(0.55,3.21)
1.75

(0.1,0.327)

(0.55,3.21)
1.66

(0.1,0.337)

#7

(0.85,2.969)
1

(0.7,0.146)

(0.7,2.937)
1.19

(0.6,0.194)

(0.35,2.92)
3.25

(0.35,0.136)

(0.05,2.487)
22.66

(0.05,0.022)

(0.5,3.4)
2.1

(0.05,0.205)

(0.55,3.445)
1.25

(0.05,0.306)

(0.55,3.445)
1.08

(0.05,0.376)

(0.5,3.4)
1.04

(0.05,0.419)

(0.5,3.4)
1.03

(0.05,0.429)

#8

(0.75,2.927)
1

(0.5,0.034)

(0.75,2.927)
1.38

(0.5,0.143)

(0.25,2.888)
5.09

(0.25,0.103)

(0.05,2.489)
53.13

(0.1,0.078)

(0.25,3.075)
3.94

(0.05,0.146)

(0.5,3.4)
1.71

(0.05,0.235)

(0.55,3.445)
1.25

(0.05,0.307)

(0.5,3.4)
1.12

(0.05,0.355)

(0.5,3.4)
1.1

(0.05,0.366)

#9

(0.75,2.927)
1

(0.5,0.030)

(0.75,2.927)
1.53

(0.5,0.162)

(0.2,2.847)
5.84

(0.3,0.158)

(0.05,2.49)
66.68

(0.15,0.127)

(0.2,2.966)
5.02

(0.05,0.129)

(0.5,3.4)
2.03

(0.05,0.210)

(0.5,3.4)
1.37

(0.05,0.280)

(0.6,3.49)
1.17

(0.05,0.329)

(0.5,3.4)
1.15

(0.05,0.340)

#10

(0.7,2.931)
1

(0.55,0.054)

(0.7,2.93)
1.93

(0.5,0.1991)

(0.15,2.793)
7.44

(0.35,0.224)

(0.05,2.489)
90.67

(0.3,0.277)

(0.2,2.867)
8.4

(0.15,0.236)

(0.3,3.004)
3.23

(0.1,0.245)

(0.55,3.21)
1.91

(0.1,0.311)

(0.55,3.445)
1.49

(0.05,0.260)

(0.55,3.445)
1.42

(0.05,0.270)

#11

(0.7,2.931)
1.01

(0.55,0.071)

(0.7,2.931)
2.19

(0.55,0.267)

(0.15,2.792)
8.38

(0.4,0.280)

(0.05,2.489)
103.09

(0.35,0.328)

(0.15,2.799)
10.32

(0.2,0.284)

(0.3,2.946)
3.94

(0.15,0.295)

(0.45,3.038)
2.34

(0.15,0.358)

(0.55,3.21)
1.77

(0.1,0.325)

(0.55,3.21)
1.67

(0.1,0.335)

#12

(0.75,2.929)
1.02

(0.55,0.083)

(0.65,2.939)
2.34

(0.6,0.332)

(0.15,2.792)
9.02

(0.4,0.286)

(0.05,2.489)
110.36

(0.4,0.379)

(0.15,2.799)
11.48

(0.2,0.278)

(0.35,2.953)
4.39

(0.2,0.350)

(0.45,3.038)
2.58

(0.15,0.344)

(0.65,3.038)
1.97

(0.2,0.453)

(0.65,3.038)
1.86

(0.2,0.463)

#13

(0.6,2.959)
1

(0.7,0.1459)

(0.75,2.929)
1.3

(0.55,0.175)

(0.3,2.911)
4.46

(0.3,0.132)

(0.05,2.489)
42.1

(0.1,0.074)

(0.45,3.357)
3.24

(0.05,0.162)

(0.5,3.4)
1.56

(0.05,0.252)

(0.55,3.445)
1.21

(0.05,0.318)

(0.6,3.49)
1.1

(0.05,0.361)

(0.5,3.4)
1.09

(0.05,0.370)

#14

(0.65,2.948)
1

(0.65,0.111)

(0.75,2.929)
1.36

(0.55,0.185)

(0.25,2.885)
4.81

(0.3,0.139)

(0.05,2.489)
48.16

(0.1,0.076)

(0.25,3.075)
3.62

(0.05,0.153)

(0.5,3.4)
1.65

(0.05,0.241)

(0.55,3.445)
1.24

(0.05,0.309)

(0.55,3.445)
1.12

(0.05,0.3529)

(0.55,3.445)
1.1

(0.05,0.362)

#15

(0.75,2.929)
1.02

(0.55,0.083)

(0.65,2.939)
2.16

(0.6,0.32)

(0.15,2.792)
8.34

(0.4,0.280)

(0.05,2.489)
102.38

(0.35,0.328)

(0.15,2.799)
10.4

(0.2,0.283)

(0.3,2.946)
4

(0.15,0.294)

(0.45,3.038)
2.37

(0.15,0.357)

(0.55,3.21)
1.8

(0.1,0.321)

(0.55,3.21)
1.71

(0.1,0.331)

#16

(0.7,2.937)
1.04

(0.6,0.130)

(0.65,2.939)
2.47

(0.6,0.340)

(0.15,2.792)
9.57

(0.45,0.338)

(0.05,2.489)
116.03

(0.4,0.380)

(0.1,2.697)
12.65

(0.25,0.329)

(0.3,2.927)
4.86

(0.2,0.339)

(0.45,3.038)
2.89

(0.15,0.329)

(0.6,3.028)
2.14

(0.2,0.440)

(0.6,3.028)
2.02

(0.2,0.450)

#17

(0.95,2.876)
1.05

(0.65,0.181)

(0.45,2.935)
2.65

(0.6,0.349)

(0.15,2.792)
10.25

(0.45,0.343)

(0.05,2.489)
123.14

(0.4,0.381)

(0.1,2.698)
13.75

(0.3,0.379)

(0.3,2.918)
5.33

(0.25,0.391)

(0.4,2.971)
3.16

(0.2,0.386)

(0.6,3.028)
2.34

(0.2,0.426)

(0.6,3.028)
2.2

(0.2,0.436)

153



5.3.2 Performance comparisons

5.3.2.1 Comparisons under Normality

It is clear that, similarly with the Shewhart chart presented in Section 5.2, the proposed

EWMA chart, follows a semi-parametric design regarding the determinations of its optimal

design parameters. As a consequence, it is logical to examine first its performance by as-

suming that the sample’s underlying distribution is the Normal one.

In Table 5.7, the out-of-control performance of the D-SN-C EWMA chart is compared with

three parametric Shewhart-type control charts for monitoring the process variability for

n = {5, 20, 30} and different values of τ along with the corresponding ARL1 values. In

particular, the D-SN-C EWMA chart is compared with the modified R and S charts pro-

posed by Zhang (2014) and an enhanced R chart proposed by Khoo and Lim (2005). Of

course, there is an enormous amount of parametric Shewhart schemes for monitoring the

variability; the choice for these charts has been made motivated by the fact that their design

yields to robust determinations of their RL properties. For each case, the proposed chart

is optimized as explained in Section 5.3.1 assuming a normal distribution. It can be clearly

seen that, regardless the sample size or the shift magnitude τ , the D-SN-C EWMA chart has

the best performance among its competitors. It should be noted that, for small to moderate

decreases (0.5 < τ < 0.9) or increases (1.1 < τ < 1.5), the proposed chart’s corresponding

ARL1 are significantly smaller compared with their parametric counterparts. For instance,

for n = 20, and τ = 0.9 the ARL1 values for the Zhang’s R chart, S chart and Khoo and

Lim’s R chart are 188.04, 174.67 and 232.12, respectively, while for the proposed chart it is

ARL1 = 26.21. Similarly, when τ = 1.1 the ARL1 values of Zhang’s R chart, S chart and

Khoo and Lim’s R chart are 127.59, 78.82 and 139.9, respectively, while for the proposed

chart it is ARL1 = 24.47. It should be noted that these comparisons are not entirely fair

since the competitors are Shewhart-type charts and is performance are weak when they are

compared with a memory-based control chart such as the proposed EWMA scheme. As a

result, in the rest of this Section we consider history-based control charts ( EWMA and

CUSUM schemes) in order to examines our chart’s performance.

A well known EWMA scheme, capable of monitoring shifts in the process variability is

the S2 EWMA chart, proposed by Castagliola (2005). In Table 5.8 (top) its optimal design

is presented for n = {3, 5, 9, 11}. Additionally it Table 5.8 (bottom) the optimal design and

performance of the D-SN-C EWMA chart is presented for the same combinations of n and

τ . Finally, in Table 5.9, the corresponding percentage of the differentness between these
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schemes is presented via the quantity:

ARLSD
1 − ARLS2

1

ARLSD
1

× 100% (5.12)

where the upper-script S2 is referring to the S2 EWMA chart, while the upper-script

SD refers to the D-SN-C EWMA chart. It is clear that negative values, correspond to the

superiority of the proposed chart. From Table 5.9 we may conclude that for small sample

sizes (n = {3, 5}) when τ < 1 (i.e. for decreases in the process variability) the D-SN-C

EWMA chart has better performance. On the other hand, for n = {3, 5} and τ > 1 (i.e.

for increases in the process variability) the S2 chart performs better. As the sample size

increases (see for n = 10), for large increases in the process variability, the D-SN-C EWMA

chart performs slightly better. It should be noted that as n increases, in most cases, the

fact that the parametric S2 EWMA chart performs better than the proposed nonparametric

scheme is an expected result. However, the results, show that for small samples sizes and

τ < 1 (i.e. decreases in the process variability) the D-SN-C EWMA chart performs better.

Additionally, as n increase, when τ > 1.5 (i.e. moderate to large increases in the process

variability) the D-SN-C EWMA chart tends to perform slightly better. As a result, under the

assumption of normality the proposed scheme can be considered as an efficient alternative.
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Table 5.7: Out-of-control performance of the D-SN-C EWMA chart versus several parametric
control charts when the underling distribution is the Normal for n = {5, 20, 30}

Zhang’s R Chart Zhang’s S Chart Khoo and Lim’s R Chart D-SN-C EWMA Chart

τ n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20 n = 5 n = 10 n = 20

0.1 1.04 1.00 1.00 1.03 1.00 1.00 1.14 1.00 1.00

(0.7,2.951)
1

(0.7,0)

(0.75,2.846)
1

(0.5,0)

(0.65,2.948)
1

(0.35,0)

0.2 2.66 1.00 1.00 2.62 1.00 1.00 4.22 1.01 1.00

(0.65,2.958)
1.27

(0.7,0.05)

(0.65,2.881)
1

(0.6,0.008)

(0.65,2.948)
1

(0.35,0)

0.3 8.58 1.23 1.00 8.45 1.14 1.00 15.13 1.46 1.00

(0.6,2.958)
2.14

(0.7,0.199)

(0.65,2.881)
1.2

(0.6,0.080)

(0.75,2.935)
1

(0.4,0.005)

0.4 23.08 2.53 1.08 22.62 2.27 1.01 41.19 3.57 1.15

(0.5,2.787)
3.31

(0.5,0.091)

(0.7,2.861)
1.85

(0.5,0.091)

(0.75,2.929)
1.11

(0.45,0.058)

0.5 51.96 6.75 1.71 51.79 6.14 1.34 90.55 10.45 2.04

(0.3,2.827)
5.24

(0.55,0.231)

(0.4,2.886)
3.06

(0.5,0.177)

(0.7,2.932)
1.67

(0.45,0.130)

0.6 101.99 19.12 4.20 103.07 17.71 3.10 173.87 30.56 5.55

(0.15,2.764)
8.28

(0.45,0.208)

(0.3,2.892)
4.88

(0.45,0.2080)

(0.45,2.935)
2.82

(0.4,0.160)

0.7 181.22 52.19 13.60 185.49 49.66 10.58 288.14 79.70 18.89

(0.1,2.684)
13.89

(0.35,0.181)

(0.05,2.123)
7.83

(0.35,0.181)

(0.25,2.884)
4.73

(0.35,0.181)

0.8 301.02 134.53 50.44 307.97 129.11 42.94 433.69 189.02 68.61

(0.05,2.482)
26.12

(0.3,0.195)

(0.05,2.123)
13.34

(0.35,0.242)

(0.15,2.797)
9.27

(0.25,0.150)

0.9 423.90 308.45 188.04 444.64 300.21 174.67 520.23 373.87 232.12

(0.05,2.482)
80.41

(0.3,0.249)

(0.05,2.123)
34.88

(0.35,0.299)

(0.05,2.491)
26.21

(0.2,0.154)

1.05 266.38 258.73 248.50 263.01 225.27 187.23 268.00 260.36 250.36

(0.05,2.467)
124.63

(0.05,0.061)

(0.05,2.207)
81.34

(0.25,0.273)

(0.05,2.49)
64.72

(0.1,0.117)

1.1 172.68 148.12 127.59 157.38 120.29 78.82 182.01 160.40 139.97

(0.05,2.467)
57.26

(0.05,0.074)

(0.05,2.207)
36.6

(0.25,0.295)

(0.1,2.701)
24.47

(0.1,0.134)

1.15 110.96 87.26 66.21 99.95 63.97 35.54 123.02 98.38 76.27

(0.05,2.467)
33.61

(0.05,0.088)

(0.1,2.738)
21.65

(0.05,0.088)

(0.15,2.85)
13.36

(0.05,0.088)

1.2 73.80 52.27 37.91 64.13 12.57 18.32 84.63 62.24 44.01

(0.05,2.467)
22.88

(0.05,0.1023985)

(0.1,2.738)
14.22

(0.05,0.102)

(0.15,2.85)
8.66

(0.05,0.102)

1.3 35.50 22.35 14.32 30.48 14.99 6.72 44.69 28.29 17.77

(0.1,2.84)
12.99

(0.05,0.1316303)

(0.15,2.935)
8.03

(0.05,0.131)

(0.2,2.966)
4.86

(0.05,0.131)

1.4 19.61 11.53 7.11 16.85 7.76 3.43 25.91 15.27 8.86

(0.1,2.84)
8.87

(0.05,0.16150788)

(0.25,3.255)
5.39

(0.05,0.161)

(0.45,3.358)
3.27

(0.05,0.161)

1.5 12.23 6.89 4.17 10.49 4.74 2.20 16.70 9.27 5.20

(0.15,3.105)
6.65

(0.05,0.19131831)

(0.25,3.255)
3.99

(0.05,0.191)

(0.5,3.4)
2.38

(0.05,0.191)

1.6 8.30 4.63 2.78 7.20 3.26 1.64 11.89 6.26 3.49

(0.2,3.288)
5.28

(0.05,0.2205657)

(0.3,3.356)
3.16

(0.05,0.220)

(0.5,3.4)
1.88

(0.05,0.220)

1.8 4.70 2.62 1.68 1.80 2.01 1.20 7.00 3.60 2.07

(0.25,3.424)
3.75

(0.05,0.27619046)

(0.3,3.356)
2.28

(0.05,0.276)

(0.55,3.445)
1.39

(0.05,0.276)

2 3.17 1.84 1.28 2.87 1.51 1.07 4.85 2.49 1.53

(0.25,3.424)
2.95

(0.05,0.32707178)

(0.3,3.356)
1.83

(0.05,0.327)

(0.55,3.445)
1.18

(0.05,0.327)

3 1.41 1.07 1.00 1.35 1.03 1.00 2.03 1.25 1.04

(0.3,3.536)
1.64

(0.05,0.51352518)

(0.8,3.756)
1.15

(0.05,0.513)

(0.5,3.4)
1

(0.05,0.513)
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Table 5.8: Optimal combinations and smallest possible out-of-control values for τ ∈ (0.5, 2),
n = {3, 5, 7, 9} and ARL0 = 370, for the S2 EWMA chart, (top) and for the D-SN-C EWMA
chart( bottom )

S2 EWMA chart

n = 3 n = 5 n = 7 n = 9

τ λ K ARL1 λ K ARL0 λ K ARL1 λ K ARL1

0.5 0.14 2.755 12.3 0.24 2.819 6.2 0.34 2.850 4.2 0.44 2.866 3.2

0.6 0.10 2.689 17.7 0.18 2.790 9.0 0.25 2.836 6.1 0.31 2.863 4.7

0.7 0.08 2.642 28.4 0.12 2.724 14.6 0.17 2.791 10.0 0.20 2.822 7.7

0.8 0.05 2.546 54.2 0.08 2.634 28.1 0.10 2.689 19.5 0.12 2.732 15.1

0.9 0.05 2.546 155.2 0.05 2.514 80.8 0.05 2.505 56.7 0.06 2.555 44.5

0.95 0.05 2.546 323.5 0.05 2.514 202.1 0.05 2.505 150.1 0.05 2.501 120.5

1.05 0.05 2.546 153.5 0.05 2.514 121.2 0.05 2.505 99.3 0.05 2.501 84.1

1.1 0.05 2.546 65.1 0.05 2.514 44.9 0.05 2.505 35.0 0.05 2.501 29.1

1.2 0.05 2.546 21.8 0.05 2.514 15.3 0.05 2.505 12.5 0.05 2.501 10.8

1.3 0.05 2.546 11.7 0.05 2.514 8.8 0.05 2.505 7.4 0.05 2.501 6.6

1.4 0.05 2.546 7.9 0.05 2.514 6.2 0.05 2.505 5.4 0.05 2.501 4.8

1.5 0.05 2.546 5.9 0.05 2.514 4.8 0.05 2.505 4.3 0.05 2.501 3.9

1.6 0.05 2.546 4.8 0.05 2.514 4.0 0.05 2.505 3.6 0.05 2.501 3.2

1.7 0.05 2.546 4.1 0.05 2.514 3.5 0.05 2.505 3.1 0.05 2.501 2.9

1.8 0.05 2.546 3.6 0.05 2.514 3.1 0.05 2.505 2.8 0.05 2.501 2.6

1.9 0.05 2.546 3.2 0.05 2.514 2.8 0.05 2.505 2.5 0.05 2.501 2.4

2 0.05 2.546 2.9 0.05 2.514 2.5 0.05 2.505 2.3 0.05 2.501 2.2

D-SN-C EWMA chart

n = 3 n = 5 n = 7 n = 9

τ λ K ARL1 λ K ARL1 λ K ARL1 λ K ARL1

0.5 - -

(0.25,2.775)
7.76

(0.55,0.231) - -

(0.3,2.827)
5.24

(0.55,0.231) - -

(0.35,2.86)
4

(0.45,0.130) - -

(0.4,2.882)
3.31

(0.5,0.177)

0.6 - -

(0.1,2.667)
12.25

(0.45,0.208) - -

(0.15,2.764)
8.28

(0.45,0.208) - -

(0.2,2.821)
6.34

(0.4,0.160) - -

(0.25,2.856)
5.26

(0.4,0.160)

0.7 - -

(0.05,2.488)
20.3

(0.35,0.181) - -

(0.1,2.684)
13.89

(0.35,0.181) - -

(0.1,2.692)
10.7

(0.35,0.181) - -

(0.15,2.786)
8.84

(0.3,0.138)

0.8 - -

(0.05,2.486)
38.77

(0.3,0.195) - -

(0.05,2.482)
26.12

(0.3,0.195) - -

(0.05,2.491)
20.45

(0.3,0.195) - -

(0.1,2.691)
17.3

(0.25,0.150)

0.9 - -

(0.05,2.486)
121.16

(0.3,0.249) - -

(0.05,2.482)
80.41

(0.3,0.249) - -

(0.05,2.489)
60.82

(0.25,0.201) - -

(0.05,2.49)
49.14

(0.2,0.154)

0.95 - -

(0.25,2.825)
251.62

(0.7,0.685) - -

(0.05,2.482)
204.69

(0.3,0.275) - -

(0.05,2.491)
167.75

(0.3,0.275) - -

(0.05,2.49)
142.08

(0.25,0.225)

1.05 - -

(0.05,2.473)
147.11

(0.05,0.061) - -

(0.05,2.467)
124.63

(0.05,0.061) - -

(0.05,2.474)
110.63

(0.05,0.061) - -

(0.1,2.737)
99.81

(0.05,0.061)

1.1 - -

(0.05,2.473)
74.65

(0.05,0.074) - -

(0.05,2.467)
57.26

(0.05,0.074) - -

(0.05,2.474)
47.68

(0.05,0.074) - -

(0.1,2.737)
41.58

(0.05,0.074)

1.2 - -

(0.05,2.473)
31.26

(0.05,0.102) - -

(0.05,2.467)
22.88

(0.05,0.102) - -

(0.1,2.78)
18.08

(0.05,0.102) - -

(0.1,2.737)
15.14

(0.05,0.102)

1.3 - -

(0.05,2.473)
18.45

(0.05,0.131) - -

(0.1,2.84)
12.99

(0.05,0.131) - -

(0.1,2.78)
10.26

(0.05,0.131) - -

(0.15,2.95)
8.64

(0.05,0.131)

1.4 - -

(0.1,2.942)
12.7

(0.05,0.161) - -

(0.1,2.84)
8.87

(0.05,0.161) - -

(0.15,3.016)
7

(0.05,0.161) - -

(0.2,3.121)
5.79

(0.05,0.161)

1.5 - -

(0.1,2.942)
9.54

(0.05,0.191) - -

(0.15,3.105)
6.65

(0.05,0.191) - -

(0.2,3.178)
5.26

(0.05,0.191) - -

(0.25,3.266)
4.3

(0.05,0.191)

1.6 - -

(0.15,3.24)
7.61

(0.05,0.220) - -

(0.2,3.288)
5.28

(0.05,0.220) - -

(0.25,3.314)
4.2

(0.05,0.220) - -

(0.25,3.266)
3.42

(0.05,0.220)

1.7 - -

(0.15,3.24)
6.32

(0.05,0.248) - -

(0.25,3.424)
4.39

(0.05,0.248) - -

(0.45,3.707)
3.45

(0.05,0.248) - -

(0.25,3.266)
2.87

(0.05,0.248)

1.8 - -

(0.2,3.454)
5.43

(0.05,0.276) - -

(0.25,3.424)
3.75

(0.05,0.276) - -

(0.45,3.707)
2.91

(0.05,0.276) - -

(0.3,3.38)
2.48

(0.05,0.276)

1.9 - -

(0.2,3.454)
4.77

(0.05,0.302) - -

(0.25,3.424)
3.29

(0.05,0.302) - -

(0.5,3.768)
2.53

(0.05,0.302) - -

(0.25,3.266)
2.21

(0.05,0.302)

2 - -

(0.2,3.454)
4.28

(0.05,0.327) - -

(0.25,3.424)
2.95

(0.05,0.327) - -

(0.5,3.768)
2.24

(0.05,0.327) - -

(0.3,3.38)
2

(0.05,0.327)
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Table 5.9: Performance comparisons between the S2 EWMA chart, and for the D-SN-C
EWMA charts based on the metric defined in equation (5.12)

τ n = 3 n = 5 n = 7 n = 9

0.5 -58.51 -18.32 -5.00 3.32

0.6 -44.49 -8.70 3.79 10.65

0.7 -39.90 -5.11 6.54 12.90

0.8 -39.80 -7.58 4.65 12.72

0.9 -28.10 -0.49 6.77 9.44

0.95 -28.57 1.27 10.52 15.19

1.05 -4.34 2.75 10.24 15.74

1.1 12.79 21.59 26.59 30.01

1.2 30.26 33.13 30.86 28.67

1.3 36.59 32.26 27.88 23.61

1.4 37.80 30.10 22.86 17.10

1.5 38.16 27.82 18.25 9.30

1.6 36.93 24.24 14.29 6.43

1.7 35.13 20.27 10.14 -1.05

1.8 33.70 17.33 3.78 -4.84

1.9 32.91 14.89 1.19 -8.60

2 32.24 15.25 -2.68 -10.00

5.3.2.2 Comparisons versus other Nonparametric schemes

Since the motivation of designing the D-SN-C chart is to provide to practitioners a new

semi-parametric scheme capable of detecting shifts in the process variability, necessary com-

parisons with existing non- or semi- parametric schemes need to be made. So far, it has

been proven that the D-SN-C EWMA chart has, in most cases, a better performance among

several schemes in monitoring shifts in the process variability when the underlying distri-

bution is the Normal one. As an extension of investigating the out-of-control performance

of the D-SN-C EWMA chart, it would be interesting to examine its efficiency under the

benchmark of the distributions listed in Table 4.3 against the Sign Shewhart presented in

5.2. In order to perform fair comparisons between the Shewhart S-SD and the EWMA D-

SN-C charts, for each distribution, the optimal parameters of the D-SN-C EWMA chart

will be derived in order to have the same in-control ARL as the ones listed in Table 5.3

(n = 20) and Table 5.4 (n = 30). In particular, since in Table 5.3 for most of the cases the

corresponding ARL0 ≈ 385, the same value will be set at a desired in-control value for the
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EWMA chart. Similarly, for n = 30 the desired in-control ARL will be ARL0 ≈ 365. Finally

the performance of the two charts is compared through the same quantity a before, i.e.

ARLSD
1 − ARLSh1

ARLSD
1

× 100% (5.13)

where ARLSh1 denotes the out-of-control performance of the Shewhart chart. These dif-

ferences are presented in Table 5.10 (n = 20) and Table 5.11 (n = 30). It can be clearly

concluded that the EWMA chart outperforms the Shewhart chart regardless the sample

size, shift magnitude or the underlying distribution. Practically speaking, for large increases

(τ > 2) or decreases (τ → 0) in the process variability these two schemes have similar

performance, but for small shifts clearly the D-SN-C chart is superior. Moreover, another

advantage of the proposed Sign EWMA chart is that it can be designed to have an in-control

ARL to be exactly equal to the desired value (for example 370.4).

Table 5.10: Performance comparisons Between the Shewhart and EWMA Sign charts for
dispersion when n = 20

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

1 0.00 0.00 -541.53 -1514.94 -286.13 -86.36 -31.37 -19.00 -13.00

2 0.00 -12.32 -421.91 -339.34 -235.17 -105.71 -52.85 -39.45 -28.04

3 0.00 -15.48 -398.00 -235.66 -194.48 -85.83 -47.30 -39.34 -27.97

4 0.00 -20.63 -389.99 -193.39 -183.52 -72.13 -37.43 -34.53 -23.31

5 0.00 -28.37 -392.25 -164.65 -181.94 -74.72 -34.45 -30.62 -18.42

6 0.00 -35.59 -397.30 -148.12 -185.44 -79.49 -34.19 -30.11 -16.77

7 0.00 -21.01 -327.83 -1027.29 -310.43 -115.20 -52.78 -35.58 -27.18

8 0.00 -6.52 -398.24 -381.25 -257.93 -114.53 -57.60 -41.96 -30.91

9 0.00 -10.39 -395.57 -283.54 -228.85 -102.94 -54.01 -41.53 -29.57

10 -1.00 -23.59 -382.56 -182.22 -177.95 -72.31 -35.23 -31.33 -20.28

11 -0.99 -36.65 -393.54 -148.51 -185.78 -79.60 -34.47 -29.78 -17.26

12 -0.98 -47.03 -402.30 -132.67 -194.56 -88.04 -38.85 -30.15 -12.30

13 0.00 -18.85 -504.47 -844.91 -428.03 -158.52 -71.68 -48.60 -36.79

14 0.00 -10.69 -421.78 -508.14 -313.41 -133.97 -64.46 -47.27 -33.94

15 -4.00 -124.26 -747.00 -434.85 -725.82 -335.15 -156.45 -108.04 -80.91

16 -4.90 -82.57 -482.05 -150.97 -272.26 -141.94 -74.37 -61.54 -42.44

17 -4.81 -83.53 -431.61 -121.93 -245.81 -133.33 -65.64 -54.84 -35.78
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Table 5.11: Performance comparisons Between the Shewhart and EWMA Sign charts for
dispersion when n = 30

case τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.95 τ = 1.25 τ = 1.5 τ = 1.75 τ = 1.95 τ = 2.0

1 0.00 0.00 25.33 -1015.32 -304.51 -64.71 -18.00 -8.00 -5.00

2 0.00 4.72 -70.83 -335.59 -228.75 -93.28 -37.74 -22.77 -14.85

3 0.00 7.44 -109.17 -238.67 -178.92 -73.86 -37.29 -25.47 -17.31

4 0.00 4.51 -137.14 -197.30 -161.18 -58.45 -28.68 -23.68 -15.32

5 0.00 4.79 -144.31 -171.82 -156.01 -53.88 -23.08 -19.84 -11.57

6 0.00 3.87 -147.65 -156.68 -156.92 -53.66 -21.76 -20.30 -10.94

7 0.00 -0.96 -15.32 -709.32 -332.48 -95.33 -33.66 -20.00 -14.00

8 0.00 3.64 -61.79 -370.60 -253.24 -101.52 -41.12 -25.49 -16.67

9 0.00 3.48 -88.18 -283.12 -217.47 -90.79 -39.82 -26.92 -18.45

10 0.00 5.76 -140.04 -186.22 -154.09 -55.98 -24.66 -22.69 -13.79

11 0.00 3.87 -145.78 -156.06 -156.17 -52.94 -21.64 -20.15 -11.72

12 0.00 1.21 -150.53 -141.70 -161.48 -56.04 -20.53 -20.00 -10.14

13 0.00 -0.95 -72.69 -751.94 -436.57 -128.57 -46.60 -27.72 -18.81

14 0.00 0.93 -64.37 -480.69 -317.15 -114.63 -45.71 -27.45 -19.80

15 0.00 -37.61 -323.28 -462.13 -624.54 -245.31 -95.33 -58.82 -41.18

16 0.00 -16.88 -191.84 -165.50 -226.82 -95.56 -46.82 -40.00 -25.38

17 0.00 -13.07 -180.23 -134.52 -205.26 -84.36 -34.27 -31.65 -19.46

Generally, the design of control schemes (distribution-free or semi-parametric) for detect-

ing shifts in the process variability is a growing research area, so it is practically impossible

to compare all of them with our scheme. In this work, our proposed chart is compared with

schemes which are relatively new additions into the literature, and the most important, the

distribution of the statistic to be monitored is derived without any approximation. In par-

ticular, based on the results presented in this work, it is our belief that, for discrete statistics

(such as the Sign or the Wilcoxon signed rank), any approximation of the statistic’s actual

distribution though a continuous distribution (such as the Normal) should be avoided or,

at least, be used with caution. For instance, In Chapter 2, we saw that, even though the

Normal distribution is a reliable approximation of the distribution of SR+
t , the approximated

and the true values of ARL0 ≈ 370.4 are significantly different. As a consequence, schemes

where the Normal approximation is applied, should be treated cautiously when are being

used in practice.

Recently, a non-parametric upper-sided CUSUM (denoted as D-CUSUM) chart was pro-

posed into the literature by Shirke and Barale (2018) for monitoring upwards shifts in the

process variability. In particular, it is an extension of the approach of Amin et al. (1995)
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and (Pawar et al., 2018) in which the in-control probability is fixed and equals to p0 = 0.2.

In the work of Shirke and Barale (2018), it has been stated that the D-CUSUM chart is

an efficient scheme for detecting small to moderate increases in the process variability. In

Table 5.12 the out-of-control performance of the D-CUSUM chart (as presented in Shirke

and Barale (2018)) is compared with the proposed chart for different sample sizes, shifts

and underlying distributions. Note that, in order to perform fair comparisons, our chart was

optimised in order to have the same in-control ARL with the D-CUSUM chart. Moreover,

since in the work of Shirke and Barale (2018) the same design parameters were used fro all

the shifts, in order to performed unbiased comparisons, the optimal value of p0 was set to be

fixed to p∗0 = 0.05 (for Normal and Laplce distributions) and p∗0 = 0.2 (for the Exponential

distribution) for all the shifts. Note that, this value has not be chosen at rand. In particu-

lar, based on our findings presented in the previous Sections, when it is desired to monitor

small increases in the process variability for symmetric distributions, setting p∗0 = 0.05 is a

reasonable choice. In Table 5.12 the results presented by Shirke and Barale (2018) (top) are

compared with the proposed chart. It can be clearly seen, that our chart, for any shifts and

sample size, outperforms the D-CUSUM chart. As a consequence, the D-SN-C EWMA chart

can be considered as an efficient scheme capable of monitoring small to moderate increases

in the process variability.
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Table 5.12: Performance comparisons between the D-CUSUM and the D-SN-C EWMA
charts for different sample sizes and underling distributions

D-SN-C chart

Normal Laplace Exponential

τ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

1.2

(0.1,2.589)
13.07

(0.05,0.102)

(0.15,2.746)
9.88

(0.05,0.102)

(0.15,2.726)
8.13

(0.05,0.102)

(0.1,2.589)
24.41

(0.05,0.082)

(0.1,2.596)
18.82

(0.05,0.082)

(0.15,2.726)
15.64

(0.05,0.082)

(0.05,2.374)
40.43

(0.2,0.242)

(0.05,2.375)
31

(0.2,0.242)

(0.05,2.375)
25.37

(0.2,0.242)

1.4

(0.2,2.954)
5.01

(0.05,0.161)

(0.25,3.002)
3.81

(0.05,0.161)

(0.4,3.171)
3.06

(0.05,0.161)

(0.15,2.779)
9.45

(0.05,0.117)

(0.2,2.888)
7.11

(0.05,0.117)

(0.2,2.832)
5.81

(0.05,0.117)

(0.1,2.59)
15.93

(0.2,0.284)

(0.15,2.695)
11.95

(0.2,0.284)

(0.15,2.7)
9.71

(0.2,0.284)

1.6

(0.25,3.094)
3.01

(0.05,0.220)

(0.55,3.4)
2.27

(0.05,0.220)

(0.45,3.222)
1.83

(0.05,0.220)

(0.2,2.954)
5.48

(0.05,0.153)

(0.25,3.002)
4.15

(0.05,0.153)

(0.4,3.171)
3.36

(0.05,0.153)

(0.2,2.752)
9.2

(0.2,0.322)

(0.25,2.802)
6.86

(0.2,0.322)

(0.25,2.8)
5.57

(0.2,0.322)

1.8

(0.25,3.094)
2.21

(0.05,0.276)

(0.65,3.486)
1.62

(0.05,0.276)

(0.45,3.222)
1.38

(0.05,0.276)

(0.25,3.094)
3.81

(0.05,0.189)

(0.25,3.002)
2.95

(0.05,0.189)

(0.4,3.171)
2.32

(0.05,0.189)

(0.25,2.803)
6.3

(0.2,0.358)

(0.35,2.853)
4.7

(0.2,0.358)

(0.35,2.858)
3.8

(0.2,0.358)

D-CUSUM chart
(Shirke and Barale (2018))

Normal Laplace Exponential

τ n = 10 n = 15 n = 20 n = 10 n = 15 n = 20 n = 10 n = 15 n = 20

1 284.00 284.40 283.10 284.00 284.40 283.10 284.00 284.40 283.10

1.2 20.20 15.30 12.40 28.20 21.90 17.90 75.3 64.40 56.00

1.4 9.20 6.80 5.50 12.10 9.00 7.30 29.4 22.90 18.80

1.6 6.30 4.70 3.80 8.00 5.90 4.80 16.4 12.30 10.00

1.8 5.10 3.80 3.10 6.20 4.60 3.80 11.3 8.40 6.80

5.3.3 An illustrative example

In this section, two examples are presented, in order to show a practical Phase II im-

plementation of the operation of the proposed D-SN-C EWMA chart. The datasets of each

example, which have been originally introduced in Castagliola et al. (2006), are presented

in Table A4 in appendix and plotted in Figures 5.1 and 5.2, respectively. Both datasets

consists of 30 subgroups of size n = 5 where the first 20 subgroups are the same for both

examples. In particular, for the first example, we are interested to detect a shift of mag-

nitude τ = 2 (i.e. an increase in the process variability) and for the second one we are

interested to detect a shift of magnitude τ = 0.5 (i.e. detect a decrease in the process vari-

ability). Regarding the values of the optimal parameters, they have been chosen following

the same steps of the optimization procedure presented in Section 5.3.1. Additionally, the

control limits for each case are computed using the expressions (5.10) and (5.11) presented in

Section 5.3 where the value of the “continuousify” parameter is set to h = 0.2. More specif-

ically, the optimal vector of parameters (p∗0, λ
∗, K∗) for detecting shifts of magnitude τ = 2

is (p∗0 = 0.05, λ∗ = 0.25, K∗ = 3.424) with corresponding control limits LCL∗ = −5.789,
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UCL∗ = −3.212. Similarly, for detecting shifts of magnitude τ = 0.5 the optimal vec-

tor of parameters is (p∗0 = 0.5, λ∗ = 0.25, K∗ = 2.823) and the control limits are equal to

LCL∗ = −2.395, UCL∗ = 2.395. Finally, the corresponding values of SDt, SD∗t and Z∗t are

presented in Table 5.13.

From Figure 5.3, it can be seen that the proposed chart can efficiently detect the increase in

the process variability at the 22th sampling point. Similarly, for the second example, which

corresponds to a decrease in the process variability (Figure 5.4), we may see that the D-SN-C

EWMA chart also detects this shift at the 29th sampling point.

Table 5.13: Values of SDt, SD∗t , Z
∗
t of each subgroups for the two examples

Example plotted in Figure 5.3 Example plotted in Figure 5.4

Subgroup SDt SD∗t Z∗t SDt SD∗t Z∗t

1 -5 -4.905 -4.601 -1 -1.033 -0.258
2 -5 -5.142 -4.736 -1 -1.051 -0.456
3 -5 -4.878 -4.772 -1 -0.861 -0.557
4 -3 -3.187 -4.376 1 1.111 -0.140
5 -5 -5.251 -4.594 -1 -1.138 -0.390
6 -5 -4.942 -4.681 3 2.859 0.422
7 -3 -3.089 -4.283 5 5.073 1.585
8 -5 -5.000 -4.462 -5 -4.846 -0.023
9 -5 -4.985 -4.593 1 0.978 0.227
10 -5 -5.118 -4.724 3 3.176 0.965
11 -5 -5.114 -4.822 1 1.080 0.993
12 -5 -5.027 -4.873 -3 -3.122 -0.036
13 -3 -2.764 -4.346 3 3.068 0.740
14 -5 -5.305 -4.586 1 0.774 0.749
15 -3 -2.881 -4.159 3 3.287 1.383
16 -5 -4.933 -4.353 3 3.396 1.886
17 -5 -4.787 -4.462 3 2.927 2.146
18 -5 -5.061 -4.611 3 2.791 2.308
19 -5 -4.926 -4.690 1 1.114 2.009
20 -3 -2.947 -4.254 1 0.973 1.750
21 -3 -3.109 -3.968 -3 -2.520 0.683
22 -1 -0.758 -3.165 -5 -5.008 -0.740
23 -3 -2.768 -3.066 -1 -0.862 -0.770
24 -3 -2.860 -3.015 -3 -2.994 -1.326
25 -1 -0.683 -2.432 1 0.851 -0.782
26 1 1.112 -1.546 -5 -4.962 -1.827
27 -3 -3.255 -1.973 -3 -3.361 -2.211
28 -1 -1.115 -1.759 -3 -2.707 -2.335
29 -5 -5.245 -2.630 -3 -2.969 -2.493
30 -1 -1.095 -2.246 -5 -4.565 -3.011
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Figure 5.1: Dataset for the first example
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Figure 5.2: Dataset for the second example

5.4 Conclusions

In this Chapter two new Shewhart and EWMA Sign-type control schemes have been

presented for monitoring shifts in the process variability. In their design, the in-control

value of the probability, p0, instead of being fixed was allowed to vary. It was proven that,

by varying the value of p0, the chart’s performance is improved significantly for detecting
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Figure 5.3: The D-SN-C EWMA chart for the Phase II data presented in Figure 5.1

increases or decreases in the process dispersion. After performing several comparisons it

was proven that the proposed Sign-type EWMA chart is an efficient scheme and it can be

considered as a good alternative since its superiority was proven against nonparametric or

even parametric existing control charts.
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Figure 5.4: The D-SN-C EWMA chart for the Phase II data presented in Figure 5.2
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Chapter 6

EWMA Signed Ranks Control Charts

with Reliable Run Length

Performances

6.1 The EWMA-type chart based on Signed ranks for

monitoring discrete statistics

Introduction

In this Section, using the approach of Rakitzis et al. (2015) and the Shewhart sign control

chart proposed by Amin et al. (1995), we will propose a modified distribution EWMA-type

control chart using the Wilcoxon Signed Rank statistic. Parts of this Chapter have been

published in Perdikis et al. (2021a) and Perdikis et al. (2021b).

6.1.1 A short review on the CEWMA SN chart

Castagliola et al. (2019), following the approach of Rakitzis et al. (2015), introduced a

new nonparametric EWMA-type chart based on the Sign statistic (denoted as CEWMA SN

chart) for monitoring shifts in the location parameter providing exact results for its Run

Length distribution. In particular, Castagliola et al. (2019) proposed a modified recursive

formula, equivalent with the original one presented in Chapter 2, with the only difference

that now the plotting statistic is discrete. More specifically, the following recursive formula

is considered

Yt = γxSNt + γyYt−1, , t ≤ 1, (6.1)
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where (γx, γy) ∈ N2 are two fixed positive integer-valued parameters. It should be noted

that, even though using the formula in (6.1) we obtain integer values for Yt, the sequence

Y1, Y2, . . . goes (rather) rapidly to infinity. This fact has been originally mentioned by Rak-

itzis et al. (2015). In order to tackle this problem, a simple “standardization” is applied by

dividing the term in the right hand side (RHS) of (6.1) with γx + γy:

Yt =
γx + SNt + γyYt−1

γx + γy
. (6.2)

It is clear that the above expression is the same with the conventional EWMA formula

presented in Chapter 2 with λ = γx
γx+γy

. However, let us keep in mind that the primary

goal is to obtain integer values for Yt but in (6.2), Yt is no longer an integer. As a solution,

Rakitzis et al. (2015), in order to ensure only integer values for Yt’s, the Euclidean division

is used with a remainder Rt as:

(γx + γy)Yt +Rt = γxSNt + γyYt−1 (6.3)

Note that, at the t−1-th sampling point, in equation (6.2), apart from Yt−1, the remainder

Rt−1 is also available and must contribute to the value of Yt at time t and so:

(γx + γy)Yt +Rt = γxSNt + γyYt−1 +Rt−1. (6.4)

It is worth stretching that solving (6.4) with respect to Yt we obtain the classical formula

of a two-sided Sign EWMA chart as:

Yt =
γx

γx + γy
SNt +

γy
γx + γy

Yt−1 +
Rt−1 −Rt

γx + γy
. (6.5)

where λ = γx
γx+γy

is the smoothing parameter as shown before and Rt−1−Rt
γx+γy

the is rounding

factor, defined in:

{−1 +
1

γx + γy
,−1 +

2

γx + γy
, . . . , 1− 1

γx + γy
}

Finally, the plotting statistic, Yt, for the CEWMA SN control chart is obtained as the

quotient of the Euclidean division: ⌊
γxSNt +Bt−1

γx + γy

⌉
,

where b. . . e denotes the rounded towards zero integer,Bt−1
def
= γyYt−1 + Rt−1, and Rt is

the remainder of this Euclidean division defined as:

Rt = γxSNt +Bt−1 − (γx + γy)Yt.
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When the initial values Y0 = y0, R0 = r0 and the current values SNt, Yt−1, Rt−1 are

fixed, both Yt and Rt are uniquely defined. The initial values y0 and r0, are set equal to

y0 = r0 = 0. However, if a head-start feature is desired, any choice of y0 6= 0 or r0 6= 0 can

be considered.

As explained by Castagliola et al. (2019), the former design allows practitioners to adjust any

nonparametric statistic besides the Sign statistic in order to design an EWMA-type scheme

in which the charting statistic will be an integer value. As a consequence, a proper Discrete

Markov Chain method similar to the Brook and Evans (1972) method can be established in

order to guarantee exact Run Length properties for the control chart.

6.1.2 Design of the CEWMA WSR control chart

Similarly with the design of the CEWMA SN control chart, at each sampling point, the

plotting statistic Yt for the CEWMA WSR control chart is obtained through the following

formula:

(γx + γy)Yt +Rt = γxSRt + γyYt−1 +Rt−1︸ ︷︷ ︸
Bt−1

. (6.6)

Concerning the initial values y0 and r0 for Y0 and R0 they are both set to y0 = r0 = 0.

The process is declared to be in-control if −K < Yt < K and out-of-control otherwise where

K ∈ {2, . . . , n(n+1)
2
}. Let us consider an example presented in Table 6.1 in order to clarify

the design and operations of the charting statistic Yt of our proposed scheme. A simulated

dataset containing m = 15 subgroups of size n = 10 have been simulated where the first

10 subgroups are considered as in-control samples (p0 = 0.5) and the other 5 subgroups as

out-of-control samples (p1 = 0.8). For illustrative purposes the design parameters are γx = 1

and γy = 5, respectively and no head-start feature is used (i.e. Y0 = 0 and R0 = 0). The

values of Yt are computed as follows:

• For t = 1 we have Y0 = 0, R0 = 0, SR1 = −17 and the equation to be solved is

6× Y1 + R1 = 1× (−17) + 5× 0 + 0 = −17. The unique solution of this equation (as

an Euclidean division) is Y1 = −2 and R1 = −5.

• For t = 2 we have Y1 = −2, R1 = −5, SR2 = 15 and the equation to be solved is

6 × Y2 + R2 = 1 × (15) + 5 × (−2) − 5 = 0. The unique solution of this equation is

Y2 = 0 and R2 = 0.
...

• For t = 15 we have Y14 = 15, R14 = 0, SR15 = 47 and the equation to be solved is
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Table 6.1: An example of calculation of Yt and Rt given SRt

t SRt Yt Rt

0 - 0 0
1 -17 -2 -5
2 15 0 0
3 21 3 3
4 -7 1 5
5 -15 0 -5
6 -13 -3 0
7 -31 -7 -4
8 -9 -8 0
9 37 0 -3
10 47 7 2
11 25 10 2
12 13 10 5
13 27 13 4
14 21 15 0
15 47 20 2

6× Y15 +R15 = 1× (47) + 5× (15) + 0 = 122. The unique solution of this equation is

Y15 = 20 and R15 = 2.

It is interesting to note that the values of the charting statistic, Yt reacts similarly as for

a classical EWMA chart, i.e. they are randomly distributed around zero when the process is

in-control (samples 1− 10) and they start to increase when a shift occurs (samples 11− 15).

This fact has also been mentioned in Castagliola et al. (2019). Also note that, our proposed

scheme can both be extended to monitor any particular quantiles (provided that the sample

size n is large enough) by changing the value p0 = 0.5 to any other value of interest.

It is well acknowledged into the literature that in a conventional EWMA chart varying

the value of the smoothing parameter, λ, allows more weight to be assigned to the past

(λ → 0), or to the current observations (λ → 1). As pointed out in Rakitzis et al. (2015),

if γx < γy then the CEWMA scheme assigns more weight to the past observations while,

if γx > γy, this scheme assigns more weight to the most recent ones. For instance, setting

γx = 2, γy = 98 the corresponding value for the “conventional” smoothing parameter equals

to λ = γx
γx+γy

= 2
100

= 0.02 which is close to zero. On the other hand, if we set γx = 9, γy = 1

then λ = 9
10

= 0.9 which is close to 1.

Additionally, the corresponding limiting conditions for the CEWMA WSR chart in the

case where λ = 1 or λ = 0 can be expressed respectively as:
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• for γx > 0 and γy = 0 we have Yt = SRt and Rt = r0, t = 1, 2, . . .. Consequently, in this

situation, the CEWMA WSR chart coincides with the nonparametric Shewhart-type

control chart based on signed ranks proposed by Bakir (2004).

• for γx = 0 and γy > 0 we have Yt = y0 and Rt = r0, t = 1, 2, . . .

6.1.3 Run length properties of the CEWMA WSR chart

Using the design proposed by Castagliola et al. (2019), we are able to obtain an integer

value for the charting statistic, even though that the value to be monitored (such as the Sign

or the Wilcoxon) is discrete.

In order to obtain the exact RL properties of our proposed scheme, the discrete-time

Markov chain approach presented for the CEWMA SN control chart is used. Specifically,

the transition probability matrix P is defined as:

P =

(
Q r

0ᵀ 1

)
=


q−b,−b q−b,−b+1 . . . q−b,b−1 q−b,b r−b

q−b+1,−b q−b+1,−b+1 . . . q−b+1,b−1 q−b+1,b r−b+1

...
...

. . .
...

...
...

q−b+1,−b qb−1,−b+1 . . . qb−1,b−1 qb−1,b rb−1

0 0 . . . 0 0 1



where Q is the (2b + 1, 2b + 1) matrix of transient probabilities qi,j, 0ᵀ = (0, 0, . . . , 0) and

r = 1 − Q1. Similar to the approach used for the CEWMA (Rakitzis et al. (2015)) and

CEWMA SN (Castagliola et al. (2019)) charts, at time t − 1 the transient states of the

discrete-time Markov chain will be defined as the integers bt−1 ∈ {−b,−b + 1, . . . ,+b}
where b = γx + Kγy − 1. More specifically, assuming that at time t − 1, as long as

yt−1 ∈ {−K + 1, . . . , K − 1} the process is declared to be in-control, the transient states of

the discrete-time Markov chain are defined as the integers bt−1 ∈ {γy × yt−1 + rt−1} where

rt−1 ∈ {−γx − γy + 1, . . . , γx + γy − 1}. As a consequence, the minimum, bmin, and the

maximum, bmax, numbers of states are respectively defined as

bmin = γy(−K + 1)− γx − γy + 1 = −γx −Kγy + 1,

bmax = γy(K − 1) + γx + γy − 1 = γx +Kγy − 1,

where b = bmax = −bmin. As a result, the total number of transient states is 2b + 1 =
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2(γx +Kγy − 1) + 1. Finally, each transient probability qi,j is computed using the p.m.f. of

SRt as introduced in Chapter 2. In summary, the transient probabilities qi,j will be computed

as detailed in Algorithm 6.1. So far, regarding the design of our proposed two important

advantages may be highlighted:

• The exact number of transient states b has been defined and so the chart’s Run Length

properties will be no longer depend on the number of subintervals nor on any approx-

imation.

• Since the general distribution of SRt has been defined we are able to compute exactly

any probabilities, not only for the in-control case but also for the out-of-control one.

For a better understanding of the structure of the matrix of the transient probabilities q

an example is presented for K = 2, γx = 3, γy = 2 and n = 5 in Table 6.2. In particular, the

integer values inside the matrix are the values of SRt that must be replaced by the probability

fSRt(s|n, p1) in matrix Q and the “.” are the positions where the probabilities are equal to

0. More specifically, since K = 2, γx = 3, γy = 2 the total number of transient states is

2b+ 1 = 2× (γx +Kγy− 1) + 1 = 2× (3 + 2× 2− 1) + 1 = 13, i.e. i, j ∈ {−6, . . . 0, . . . , 6}. If

we take as an example state i = −6, since SRt ∈ {−15,−13, . . . , 15} we have the following:

• For SRt = −1 then Yt =
⌊

3×1−6
5

⌉
= −2, and since −2 < Yt < 2, we have r =

3 × (−1) − 5 × (−2) = 1 and the process moves to the transient state j = −6 with a

probability fSRt(−1|5, p1).

• For SRt = 1 then Yt =
⌊

3×(−1)−6
5

⌉
= −1, and since −2 < Yt < 2, we have r =

3 × 1 − 5 × (−1) = 2 and the process moves to the transient state j = −3 with a

probability fSRt(1|5, p1).

• For SRt = 3 then Yt =
⌊

3×3−6
5

⌉
= 0, and since−2 < Yt < 2, we have r = 3×3−5×0 = 2

and the process moves to the transient state j = 3 with a probability fSRt(3|5, p1).

• For SRt = 5 then Yt =
⌊

3×5−6
5

⌉
= 1, and since−2 < Yt < 2, we have r = 3×5−5×1 = 4

and the process moves to the transient state j = 6 with a probability fSRt(5|5, p1).

• For the remaining values of SRt 6∈ {−1, 1, 5} the process moves to the absorbing state.
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Algorithm 6.1 Computation of transient probabilities qi,j

Define n, K, γx, γy and p1.
b← γx +Kγy − 1.
for i = −b,−b+ 1, . . . , b− 1, b do

for SR = −n(n+1)
2

,−n(n+1)
2

+ 2, . . . , n(n+1)
2
− 2, n(n+1)

2
do

y ←
⌊
γx×SR+i
γx+γy

⌉
.

if −K < y < K then
r ← γx × SR + i− (γx + γy)× y.
j ← γy × y + r.

qi,j ← qi,j + fSR+

(
SR+

n(n+1)
2

2
|n, p1

)
.

end if
end for

end for

Table 6.2: Structure of matrix when K = 2, γx = 3, γy = 2 and n = 5

j

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

-6 -1 . . 1 . . . . . 3 . . 5

-5 . -1 . . 1 . . . . . 3 . .

-4 . . -1 . . 1 . . 3 . . . .

-3 . . . -1 . . 1 . . 3 . . .

-2 . . . . -1 . . 1 . . 3 . .

i -1 . . -1 . . . . . 1 . . 3 .

0 -3 . . -1 . . . . . 1 . . 3

1 . -3 . . -1 . . . . . 1 . .

2 . . -3 . . -1 . . 1 . . . .

3 . . . -3 . . -1 . . 1 . . .

4 . . . . -3 . . -1 . . 1 . .

5 . . -3 . . . . . -1 . . 1 .

6 -5 . . -3 . . . . . -1 . . 1

Finally, since we defined the exact number of transient probabilities and the structure of

matrix Q, the RL properties of the CEWMA WSR chart will be obtained using the same

equations presented in (1.7) and (1.8).
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6.1.4 Performance Comparisons

In this work, the parameter θ0 will be considered as the median of the process distribution,

so we assume p0 = 0.5. For fixed values of the sample size n and p1 = P(Xt,j > θ0|θ = θ1),

in order to obtain the optimal combination of the design parameters (K∗, γ∗x, γ
∗
y) which will

provide the minimum corresponding out-of-control ARL, a specific search algorithm is used

aiming to select the optimal values of (K, γx, γy) which guarantee the following conditions:

(K∗, γ∗x, γ
∗
y) = argmin

(K,γx,γy)

ARL(K, γx, γy, n, p1)

ARL(K∗, γ∗x, γ
∗
y , n, p0) = ARL0

where ARL0 = 370.4 is the target in-control ARL value. Due to the fact that the charting

statistic, Yt, is a discrete random variable, it is not possible to find an optimal combination

(K∗, γ∗x, γ
∗
y) that exactly meets the constraint ARL(K∗, γ∗x, γ

∗
y , n, p0) = ARL0. Similarly to

the design of the CEWMA SN chart, we suggest to accept, as tentative design parameters,

all those combinations of parameters (K∗, γ∗x, γ
∗
y) satisfying the following condition:

D(K∗, γ∗x, γ
∗
y , n) =

∣∣ARL(K∗, γ∗x, γ
∗
y , n, p0)− ARL0

∣∣
ARL0

≤ δ (6.7)

where δ is a predefined constant. For the determination of the optimal parameters for

n = {10, . . . , 25} in the CEWMA SN chart, Castagliola et al. set δ = 0.05 (see Castagliola

et al. (2019)), to ensure that the corresponding optimal combination of (K∗, γ∗x, γ
∗
y) will be

obtained successfully. Based on our findings, we saw that, in general, the CEWMA WSR

chart guarantees a smaller error than the CEWMA SN chart with respect to the constraint

on the nominal in-control performance. As a consequence, for the determination of the de-

sign parameters of the CEWMA WSR control chart we suggest to set δ = 0.01. Additionally,

since ARL(K, γx, γy, n, p1) = ARL(K, γx, γy, n, 1−p1) we will only focus on shifts p1 ∈ (0, 0.5)

as the same results would have been obtained for p1 ∈ (0.5, 1). As a consequence, for given

values of n and p1, the optimal combination of the design parameters (K∗, γ∗x, γ
∗
y) will be

obtained through the searching Algorithm 6.2.

In the following tables some results regarding the performance of our proposed chart are

provided, including comparisons with the CEWMA SN chart. In Table 6.3, the optimal

combinations (K∗, γ∗x, γ
∗
y) for our proposed chart are given, along with the corresponding

in-control and out-of-control ARLs for n = {10, . . . , 25}. Based on the results presented in

Table 6.3 it can be concluded that when p1 < 0.5, for large values of the sample size or large

shifts (p1 ' 0) the corresponding optimal ARL1 values tend to decrease. In addition, for
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Algorithm 6.2 Computation of optimal combination (K∗, γ∗x, γ
∗
y)

Define n and p1 ∈ (0, 0.5).
ARL0 ← 370.4.
ARL∗ ←∞.
for K = 1, . . . , n(n+1)

2
do

for γx = 1, 2, . . . do
γy ← 0.
repeat
γy ← γy + 1

until D(K, γx, γy, n) ≤ 0.01
if ARL(K, γx, γy, n, p1) < ARL∗ then

ARL∗ ← ARL(K, γx, γy, n, p1),
K∗ ← K, γ∗x ← γx and γ∗y ← γy.

end if
end for

end for

fixed values in the sample size, as the value of p1 < 0.5 becomes closer to 0.5 the “smoothing

ratio” γx
γx+γy

and the value of the control limit K of our proposed chart also tend to decrease.

For example for n = 20 and p1 ∈ {0.05, . . . , 0.2}, we have γx
γx+γy

= 10
10+3

= 0.77 and the con-

trol limit equals to K = 117. On the other hand for p1 = 0.4 the corresponding smoothing

ratio equals to γx
γx+γy

= 4
4+27

= 0.13 and K = 39. It is worth mentioning that these findings

are consistent with the ones of the CEWMA (see Rakitzis et al. (2015)) and CEWMA SN

(see Castagliola et al. (2019)) charts.

In Table 6.4 the performance of our proposed chart is compared to the CEWMA SN

chart for n ∈ {5, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}. In order to make fair compar-

isons, we obtained the optimal design parameters of the CEWMA SN with corresponding

D(K∗, γ∗x, γ
∗
y , n) ≤ 0.01 (except from some values of n where the bound 0.01 in (6.7) has

been replaced by 0.02), for n ∈ {5, 6, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}. The ∆ values

are defined as:

∆ = 100× ARLSR − ARLSN

ARLSN

,

where ARLSN and ARLSR are the ARL values of the CEWMA SN and CEWMA WSR

charts respectively. A negative value for ∆ corresponds to an outperformance of the CEWMA

WSR scheme versus the CEWMA SN chart. According to our findings, it can be concluded

that when 5 ≤ n ≤ 15, for large shifts (p1 ≤ 0.2) in 55% of the cases the CEWMA WSR

scheme has a better performance. In addition for small to moderate shifts (p1 > 0.2) in 60%

of the cases the CEWMA WSR chart also outperforms the CEWMA SN chart. On the other
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Table 6.3: Optimal combinations (K∗, γ∗x, γ
∗
y) (first line of each block) for the CEWMA WSR

chart along with the corresponding in-control ARL’s (second line) and the out-of-control
(ARL, SDRL) (third line) for n ∈ {10, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}

p1

n 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

10

(26,8,15)
369

(2.2,0.4)

(26,8,15)
369

(2.6,0.7)

(26,8,15)
369

(3.2,1.1)

(26,8,15)
369

(4.1,1.8)

(22,10,28)
369.4

(5.5,2.5)

(19,7,27)
368.4
(7.8,4)

(15,9,57)
369.3

(12.3,6.7)

(9,1,16)
367.7

(22.4,12.1)

(5,6,249)
367.8

(57.6,35.4)

11

(47,5,2)
373.9

(1.5,0.7)

(47,5,2)
373.9

(2.1,1.1)

(36,10,11)
369.3

(2.9,1.1)

(27,5,12)
367.4

(3.8,1.5)

(25,7,20)
374

(5.1,2.3)

(20,8,37)
368.9

(7.3,3.4)

(16,8,58)
371.6

(11.5,5.9)

(12,9,110)
370.3

(21,12)

(6,3,115)
366.9

(54.2,33.4)

12

(55,9,3)
367.3

(1.5,0.7)

(53,5,2)
368.1
(2,1)

(34,6,11)
370.4

(2.8,0.9)

(34,6,11)
370.4

(3.6,1.5)

(29,10,27)
370.5

(4.8,2.1)

(25,10,38)
371.2

(6.9,3.3)

(21,7,38)
369.9

(10.8,5.9)

(13,7,92)
366.7

(19.7,10.8)

(7,7,255)
370.3

(51.5,31.6)

13

(43,3,4)
368.4

(2,0.2)

(43,3,4)
368.4

(2.2,0.5)

(43,9,12)
368.4

(2.7,0.9)

(43,9,12)
368.4

(3.4,1.5)

(32,6,17)
373.2

(4.6,1.9)

(30,8,26)
368.2

(6.5,3.2)

(22,6,37)
368.7

(10.1,5.2)

(15,7,87)
368.1

(18.6,10.2)

(7,1,43)
368.2

(49.1,28.5)

14

(73,8,2)
369.1

(1.4,0.6)

(73,8,2)
369.1

(1.9,0.9)

(57,9,7)
367.6

(2.4,1)

(49,4,5)
368

(3.2,1.4)

(36,9,25)
369.9

(4.3,1.8)

(34,7,22)
367.3
(6.1,3)

(24,5,32)
371.1

(9.6,4.7)

(16,3,40)
369.1

(17.8,9.3)

(9,3,103)
369.1

(46.7,28.2)

15

(81,4,1)
366.8

(1.3,0.5)

(81,4,1)
366.8

(1.7,0.9)

(71,4,2)
371.5

(2.3,1.1)

(57,10,11)
373.6

(3,1.3)

(49,9,15)
368.8

(4.1,1.9)

(34,7,27)
367.2

(5.8,2.6)

(29,8,43)
366.8

(9.1,4.6)

(21,6,59)
368.9

(16.9,9.5)

(11,4,117)
372.6

(44.8,27.7)

16

(91,9,2)
367

(1.3,0.5)

(91,9,2)
367

(1.7,0.8)

(67,9,8)
370.7

(2.2,0.8)

(55,7,11)
366.8

(2.9,1.1)

(45,5,13)
371.3

(3.9,1.6)

(47,9,21)
368.6

(5.6,2.9)

(31,3,17)
372.8

(8.7,4.3)

(23,6,59)
368.3

(16.1,8.9)

(12,3,88)
366.7

(42.8,26.1)

17

(96,7,2)
369.2

(1.2,0.4)

(96,7,2)
369.2

(1.6,0.7)

(83,7,4)
372.4

(2.1,0.9)

(74,7,6)
367.4

(2.8,1.3)

(60,5,8)
371.3

(3.7,1.7)

(45,7,22)
369.8

(5.3,2.4)

(37,4,19)
371.2

(8.3,4.2)

(23,2,23)
368.3

(15.4,8)

(14,3,79)
367.8

(41.2,25.4)

18

(117,8,1)
367.1

(1.1,0.4)

(117,8,1)
367.1

(1.5,0.8)

(98,5,2)
372.5
(2,1)

(77,10,10)
371.7

(2.7,1.1)

(69,8,11)
368.6

(3.6,1.7)

(51,8,23)
370.6

(5.1,2.3)

(40,5,24)
368.3
(8,4)

(30,7,58)
367.3

(14.8,8.3)

(14,1,30)
369.6

(39.7,23.4)

19

(108,8,3)
370.5

(1.1,0.4)

(108,8,3)
370.5

(1.4,0.6)

(96,8,5)
367.5

(1.9,0.8)

(96,8,5)
367.5

(2.5,1.3)

(71,7,11)
370.5

(3.4,1.5)

(60,8,19)
370

(4.9,2.4)

(48,7,27)
367.8

(7.7,4)

(29,6,61)
368.4

(14.2,7.4)

(16,2,55)
370.3

(38.3,22.8)

20

(117,8,3)
372.7

(1.1,0.3)

(117,8,3)
372.7

(1.4,0.6)

(117,8,3)
372.7

(1.8,0.9)

(102,9,6)
373.6

(2.5,1.2)

(75,3,5)
370.5

(3.3,1.4)

(57,7,22)
369.5
(4.7,2)

(51,8,32)
371.8

(7.4,3.8)

(39,4,27)
368.2

(13.8,8)

(17,2,56)
368

(37,21.7)

21

(131,10,3)
373.1

(1.1,0.3)

(131,10,3)
373.1

(1.3,0.5)

(131,10,3)
373.1

(1.8,0.9)

(118,10,5)
370.8

(2.4,1.2)

(85,9,13)
367.3

(3.2,1.4)

(70,3,7)
371.3

(4.5,2.1)

(52,7,31)
368.8

(7.1,3.4)

(37,2,17)
368.9

(13.2,7)

(23,3,58)
370.6

(36.1,23)

22

(156,7,1)
367.8

(1.1,0.2)

(156,7,1)
367.8

(1.3,0.5)

(148,9,2)
368.6

(1.7,0.9)

(107,10,9)
367.5

(2.3,0.9)

(91,9,13)
370.4

(3.1,1.3)

(80,7,14)
367.3

(4.4,2.1)

(63,9,31)
367.9

(6.9,3.6)

(44,4,28)
366.9

(12.8,7.1)

(23,2,43)
367.1

(34.7,21.3)

23

(164,6,1)
368.8

(1.1,0.2)

(164,6,1)
368.8

(1.2,0.5)

(139,9,4)
373.2

(1.6,0.7)

(123,7,5)
370.2

(2.2,1)

(107,9,10)
369.2
(3,1.4)

(92,9,15)
373.1

(4.3,2.2)

(69,4,13)
371.8

(6.7,3.5)

(41,1,9)
370.8

(12.4,6.3)

(28,3,52)
368.8

(34,21.9)

24

(157,6,2)
371.3

(1,0.2)

(148,9,4)
367.6

(1.2,0.5)

(157,9,3)
371.3

(1.6,0.7)

(131,7,5)
373.4

(2.1,0.9)

(109,8,10)
368

(2.9,1.2)

(88,6,13)
366.8

(4.1,1.9)

(71,4,14)
372.5

(6.5,3.2)

(49,4,29)
368.5

(12,6.4)

(17,1,42)
372

(33.7,17.1)

25

(163,8,3)
373

(1,0.2)

(148,7,4)
372.1

(1.2,0.5)

(163,8,3)
373

(1.5,0.7)

(148,7,4)
372.1

(2,0.9)

(104,3,5)
369.6

(2.8,1.1)

(102,8,14)
366.9
(4,1.9)

(78,4,13)
368.7

(6.2,3.2)

(56,3,19)
370.6

(11.7,6.5)

(29,1,20)
369.2

(31.9,19.3)
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Table 6.4: Comparison between the CEWMA SN and CEWMA WSR chart for n ∈
{5, . . . , 25} and p1 ∈ {0.05, 0.1, . . . , 0.45}

p1

n 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

5 -37.21 -22.45 -10.53 -2.90 3.45 11.21 18.75 6.91 -11.55
6 37.50 26.67 12.20 0.00 -14.89 -31.93 -32.31 -18.97 1.42
7 -22.58 -8.82 0.00 8.16 12.70 15.91 9.72 -6.23 -2.05
8 9.09 11.54 15.62 16.67 8.33 12.20 12.50 1.16 -3.06
9 57.14 35.00 21.43 -2.22 -24.36 -44.44 -38.32 -25.00 -3.61
10 -69.01 -67.09 -64.44 -60.58 -55.65 -49.68 -40.00 -27.04 -5.73
11 -28.57 -12.50 3.57 8.57 15.91 17.74 16.16 -1.41 -6.39
12 0.00 11.11 21.74 16.13 6.67 -8.00 -28.95 -50.50 -63.14
13 81.82 57.14 42.11 21.43 2.22 -24.42 -44.20 -31.11 -8.74
14 16.67 26.67 20.00 10.34 -6.52 -25.61 -44.19 -30.74 -8.61
15 -35.00 -26.09 -14.81 -6.25 5.13 11.54 18.18 19.01 5.66
16 30.00 41.67 37.50 31.82 11.43 16.67 19.18 20.15 9.18
17 -77.78 -74.19 -70.00 -65.43 -61.46 -55.46 -47.47 -34.47 -11.59
18 -63.33 -57.14 -50.00 -42.55 -35.71 -27.14 -14.89 0.68 16.08
19 0.00 7.69 11.76 13.64 6.25 -10.91 -35.29 -36.61 -13.93
20 0.00 7.69 5.88 19.05 17.86 14.63 15.62 21.05 15.62
21 -78.00 -76.79 -71.43 -67.12 -63.22 -58.33 -50.35 -38.03 -14.45
22 -35.29 -31.58 -15.00 0.00 10.71 18.92 21.05 17.43 -11.93
23 10.00 0.00 6.67 15.79 20.00 19.44 3.08 -6.06 14.48
24 0.00 9.09 23.08 23.53 20.83 13.89 12.07 20.00 11.22
25 0.00 9.09 15.38 17.65 21.74 14.29 19.23 20.62 19.03
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hand, for n > 15, when p1 ≤ 0.2 or p1 > 0.2 the CEWMA WSR chart performs better only

in 38% of the cases. As a consequence, in most cases, our proposed scheme has an overall

better performance when n < 15 and, as the sample size increases, the CEWMA SN chart

performs better.

In Tables 6.5 (for n = 10) and 6.6 (for n = 20) the CEWMA WSR chart is compared

with other nonparametric schemes presented in the literature. More specifically, we exam-

ined the performance of the CEWMA WSR chart against the CEWMA SN chart, the two

EWMA sign charts proposed by Yang et al. in Yang et al. (2011), denoted as standard sign

EWMA (EWMA) and arcsine sign EWMA (A-EWMA), the distribution free cumulative

sum mean chart (CUSUM) of Yang et al. in Yang and Cheng (2011) and the modified sign

EWMA chart proposed by Lu in Lu (2015) (S-GWMA). For the computation of the in- and

out-of-control ARL values of the competitors of the CEWMA WSR chart, a Monte Carlo

simulation was performed, except for the CEWMA SN chart where the exact Markov chain

approach was used. Regarding the design parameters of each chart, for the CEWMA WSR

and CEWMA SN charts (K, γx, γy) have been selected to get the optimal performance for

each chart; for the EWMA charts proposed in Yang et al. (2011), the pair (λ,W ) corresponds

to the optimal values of the smoothing parameter λ and the distance W . Moreover, the pair

(k, h) corresponds to the values of the reference value k and the decision interval h of the

CUSUM chart. Finally, (q, α,W ) correspond to the values of the design parameters for the

S-GWMA chart. For more information regarding the design and operations of the above

schemes the reader is advised to see Yang et al. (2011); Yang and Cheng (2011); Lu (2015).

Based on the results presented in Tables 6.5 and 6.6 it can be concluded that the CEWMA

WSR chart outperforms its competitors for moderate to large shifts (p1 < 0.3). On the

other hand, for small shifts, i.e. when p1 tends to be close to 0.5 the standard or the arcsine

transformed EWMA chart have better performance. Finally, in cases where 0.25 < p1 < 0.3

the use of the S-GWMA chart or the SN EWMA can be considered.

6.2 The “continuousified” WSR EWMA chart with ex-

act RL properties

6.2.1 Charting statistic, control limits and RL properties

As proposed by Wu et al. (2020), any discrete random variable, can be well-presented by

a new continuous one as a mixture of Normal distributions. As a result, for the proposed

scheme based on the Wilcoxon Signed Rank statistic, since the domain in which SRt is defined
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Table 6.5: ARL values of the CEWMA WSR chart, the CEWMA SN chart, the standard and
the arcsine transformed EWMA chart, the CUSUM chart and the S-GWMA chart (n = 10,
p0 = 0.50, ARL0 ≈ 370)

p CEWMA WSR CEWMA SN EWMA A-EWMA CUSUM S-GWMA

0.50 369.0 371.4 366.3 367.6 370.0 370.6
0.45 131.4 61.1 51.4 51.4 63.2 58.0
0.40 38.0 30.9 19.0 19.0 20.2 19.0
0.30 8.6 15.5 8.1 7.9 7.9 7.2
0.25 5.6 12.4 6.3 6.1 6.0 5.4
0.20 4.0 10.4 5.2 4.9 4.9 4.3
0.15 3.2 9 4.4 4.1 4.2 3.6
0.10 2.6 7.0 3.9 3.4 3.6 3.1
0.05 2.2 7.0 3.4 2.9 3.2 2.7

γX 8 1 - - - -
γY 15 1 - - - -
K 26 58 - - - -
λ - - 0.05 0.05 - -
W - - 2.487 2.487 - 2.698
k - - - - 0.5 -
h - - - - 10.65 -
q - - - - - 0.9
α - - - - - 0.9
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Table 6.6: ARL values of the CEWMA WSR chart, the CEWMA SN chart, the standard and
the arcsine transformed EWMA chart, the CUSUM chart and the S-GWMA chart (n = 20,
p0 = 0.50, ARL0 ≈ 370)

p CEWMA WSR CEWMA SN EWMA A-EWMA CUSUM S-GWMA

0.50 370.6 370.2 370.0 367.6 373.7 370.9
0.45 84.7 37.3 31.0 30.9 40.3 33.0
0.40 20.2 11.4 12.3 12.2 11.7 11.5
0.30 4.9 4.5 5.6 5.4 4.5 4.7
0.25 3.3 3.5 4.4 4.2 3.5 3.7
0.20 2.6 2.9 3.7 3.5 2.9 3.0
0.15 2.1 2.4 3.2 2.9 2.4 2.5
0.10 1.8 2.1 2.9 2.5 2.1 2.2
0.05 1.5 2.0 2.6 2.1 2.0 2.0

γX 3 3 - - - -
γY 5 16 - - - -
K 75 4 - - - -
λ - - 0.05 0.05 - -
W - - 2.487 2.487 - 2.709
k - - - - 1.0 -
h - - - - 11.62 -
q - - - - - 0.9
α - - - - - 0.9
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is Ψ = {−n(n+1)
2

,−n(n+1)
2

+ 2, . . . , n(n+1)
2
− 2, n(n+1)

2
}, the statistic SRt can be transformed

into a new continuous one denoted as SR∗t :

fSR∗t (s|n, p1) =
∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
fN(s|ψ, h), (6.8)

FSR∗t (s|n, p1) =
∑
ψ∈Ψ

fSR+
t

(
ψ + n(n+1)

2

2
|n, p1

)
FN(s|ψ, h), (6.9)

The two-sided case : Following the same design with the conventional two-sided

EWMA chart, the charting statistic of the “continuousified” two-sided WSR EWMA (de-

noted as 2C-WSR EWMA chart) will be defined as:

Z∗t = λSR∗t + (1− λ)Z∗t−1, Z
∗
0 = E0(SR∗t ), (6.10)

with fixed asymptotic control limits:

LCL∗ = E0(SR∗t )−K
√

E0(SR∗t )×
√

λ

2− λ
.

UCL∗ = E0(SR∗t ) +K
√

V0(SR∗t )×
√

λ

2− λ
.

Finally, for the in-control case (i.e. for p0 = 0.5, assuming θ as the process median) the

in-control mean and variance of SR∗t will be:

E(SR∗t ) = 0,

V(SR∗t ) =
n(n+ 1)(2n+ 1)

6
+ h2, (6.11)

and the upper and lower control limits of the 2-C WSR EWMA chart can be rewritten as:

LCL∗ = −K
√

λ

2− λ
n(n+ 1)(2n+ 1)

6
+ h2.

UCL∗ = +K

√
λ

2− λ
n(n+ 1)(2n+ 1)

6
+ h2.

The upper-sided case : The charting statistic of the “continuousified” upper-sided
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WSR EWMA (denoted as C-WSR EWMA chart) will be defined as:

Z∗t = max(0, λSR∗t + (1− λ)Z∗t−1), Z∗0 = E0(SR∗t ),

with fixed upper asymptotic control limit:

UCL∗ = E0(SR∗t ) +K1

√
V0(SR∗t )×

√
λ

2− λ
.

Similarly with the two-sided case, for p0 = 0.5 we have

UCL∗ = +K1

√
λ

2− λ

(
n(n+ 1)(2n+ 1)

6
+ h2

)
.

CL =0.

Finally The RL properties for both 2C-WSR EWMA and C-WSR EWMA charts, are

obtained based on the standard discrete-time Markov chain approach of Brook and Evans

(1972) presented in Section 2.5 with the only difference that the p.m.f. of SRt will be replaced

by the p.d.f. of SR∗t in the computation of the transient probabilities.

6.2.2 Comparisons with and without the “continuousify” method

As is has been illustrated in Figures 2.5 and 2.7 (see, Section 2.5) it can been clearly

concluded that, the RL properties of the EWMA chart based on Signed Ranks are highly

affected by the number of subintervals. In order to clarify this statement, and justify the

advantages of our proposed chart in Tables 6.7 and 6.8 several comparisons of ARL values for

the 2-WSR EWMA (without “continuousify”) and 2C-WSR EWMA (with “continuousify”

and h = 0.2) charts are reported as a function of the number of subintervals.

The two-sided case

Based on the results in Table 6.7 we draw the following conclusions:

• As this has been already shown in Figure 2.5, the ARL0 values obtained without

“continuousify” (i.e. the 2-WSR EWMA chart) strongly fluctuate depending on the

value of 2m + 1. Clearly, they do not exhibit any monotonic convergence when the

number of subintervals 2m+1 increases. For instance, when n = 5, the in control ARL

values obtained without “continuousify” fluctuate from 463.9 to 503.8.
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• On the contrary, for 2m+ 1 ≥ 100, the ARL values obtained with the “continuousify”

method (i.e. the 2C-WSR EWMA chart) exhibit a strong stability and they seem to

converge rapidly to a reliable value. Even for 2m + 1 = 101 the results obtained with

the “continuousify” approach are very reliable. For instance, using the same case when

n = 5, the ARL0 values obtained with “continuousify” converge rapidly to 496.1.

The upper-sided case

As expected, the advantages of the “continuousify”method are also present for the upper-

sided C-WSR EWMA control chart. From Table 6.8 it can be seen that no matter the value

of n the in-control pair of (ARL, SDRL) values are steady and converge quickly even for a

relative small number of subintervals ≈ 50. It should be noted that, these results are also

consistent for the out-of-control case (more informations are provided in the next Section

where an extensive sensitivity analysis will be performed). In particular:

• As this has been already shown in Figure 2.7, the ARL values obtained without “con-

tinuousify” (i.e. the WSR EWMA chart) when n = 15, vary from 293.4 to 535.5 and

the corresponding simulated value is 494.8. Similarly, when n = 20, the in-control ARL

values vary from 342.4 to 437.3 and the corresponding simulated value is 450.7. It is

worth stretching that, comparing with the two-sided case the differences are larger.

• On the contrary, for m ≥ 100, using the “continuousify” method (i.e. the C-WSR

EWMA chart) the corresponding ARL and SDRL values converge rapidly to a reliable

value. For instance, using the same cases n = 15, and n = 20 the ARL values obtained

with “continuousify” converge rapidly to 385.2 and 377.7 and respectively.

• As expected, the exact pattern occurs for the corresponding SDRL values which con-

verge rapidly giving steady results. Additionally, these finding are consistent with

the corresponding two-sided design of the EWMA chart based on the Sign statistic

presented in the previous chapter.
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Table 6.7: Comparison of in- and out-of-control pairs of (ARL, SDRL) values for the two-
sided 2-WSR EWMA (without “continuousify”) and two-sided 2C-WSR EWMA (with “con-
tinuousify” and h = 0.2) charts when λ = 0.2 and K = 2.85

(ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts)

(n = 5, p1 = 0.5) (n = 7, p1 = 0.5) (n = 11, p1 = 0.5) (n = 14, p1 = 0.5)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 503.8 499.9 435.2 446.4 405.5 409.7 397.5 397.6

61 491.2 494.1 444.7 449.7 405.2 410.9 406.6 402.0

71 492.8 495.3 454.8 448.3 408.8 411.2 400.1 399.4

81 493.8 493.6 458.0 449.2 409.5 410.4 396.1 397.3

91 495.9 494.4 436.9 441.8 411.6 411.2 384.3 397.9

101 485.2 496.0 440.0 447.4 412.4 412.3 405.9 400.1

111 468.9 494.2 452.6 448.2 415.0 412.2 394.7 400.3

121 506.8 495.8 448.0 448.0 409.7 412.4 416.1 413.1

131 507.8 495.8 439.7 447.7 412.5 412.4 401.5 399.9

141 490.3 495.8 451.0 448.9 411.7 412.5 399.0 400.1

151 501.7 495.9 450.9 448.8 412.0 412.6 407.2 400.2

161 491.7 496.0 447.4 448.9 413.8 412.9 403.8 400.4

171 500.2 496.0 454.1 448.8 404.2 408.7 400.1 400.3

181 487.2 496.0 438.1 448.5 413.0 412.6 401.7 400.6

191 497.6 496.1 445.9 448.8 411.5 412.6 399.9 400.4

201 509.0 496.1 447.9 448.9 414.0 412.7 399.7 400.4

sim 493.9 446.0 409.7 397.4

(SDRL values for the 2-WSR EWMA and 2C-WSR EWMA charts)

(n = 5, p1 = 0.5) (n = 7, p1 = 0.5) (n = 11, p1 = 0.5) (n = 14, p1 = 0.5)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 498.7 494.7 430.4 441.6 400.9 405.1 393.0 393.1

61 486.1 489.0 439.9 444.8 400.6 406.3 402.1 397.5

71 487.7 490.2 449.9 443.5 404.2 406.6 395.6 394.9

81 488.6 488.5 453.1 444.4 404.9 405.8 391.6 392.8

91 490.9 489.3 432.1 437.0 407.0 406.6 379.8 393.4

101 480.1 490.9 435.2 442.6 407.8 407.7 401.4 395.6

111 463.9 489.1 447.8 443.4 410.4 407.6 390.2 395.8

121 501.7 490.7 443.2 443.2 405.1 407.8 411.5 408.6

131 502.7 490.7 434.8 442.8 407.9 407.8 397.0 395.4

141 485.2 490.7 446.1 444.1 407.1 407.9 394.4 395.6

151 496.6 490.8 446.1 444.0 407.4 408.0 402.6 395.7

161 486.6 490.9 442.5 444.0 409.2 408.3 399.2 395.8

171 495.1 490.9 449.2 444.0 399.6 404.1 395.6 395.8

181 482.2 490.9 433.3 443.6 408.4 408.0 397.1 396.0

191 492.5 491.0 441.1 444.0 406.9 408.0 395.4 395.9

201 503.8 491.0 443.1 444.1 409.3 408.1 395.2 395.9

sim 490.8 441.6 405.8742 394.7
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Table 6.8: Comparison of in- and out-of-control pairs of (ARL, SDRL) values for the upper-
sided WSR EWMA (without “continuousify”) and upper-sided C-WSR EWMA (with “con-
tinuousify” and h = 0.2) charts when λ = 0.2 and K1 = 2.75

(ARL values for the WSR EWMA and C-WSR EWMA charts)

(n = 5, p1 = 0.5) (n = 10, p1 = 0.5) (n = 15, p1 = 0.5) (n = 20, p1 = 0.5)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA 2-WSR EWMA

50 462.9 455.7 400.5 400.2 384.4 384.5 347.0 378.2

60 456.0 456.4 390.7 400.6 303.4 384.6 395.1 377.6

70 454.8 456.5 400.9 400.4 417.7 385.3 383.1 377.6

80 468.3 456.6 402.5 401.3 530.0 387.1 348.7 377.7

90 453.5 456.7 392.4 400.9 360.1 385.0 360.7 377.8

100 459.3 456.7 400.9 401.0 385.2 385.1 378.5 376.4

110 464.2 456.7 400.4 401.0 393.6 385.1 382.9 377.6

120 462.1 456.8 400.2 401.0 535.5 385.2 402.7 377.8

130 455.0 456.8 400.5 401.1 432.5 384.6 386.6 377.6

140 459.0 456.8 400.9 401.1 509.6 385.2 432.8 377.7

150 464.8 456.8 401.3 401.2 347.2 385.2 383.1 377.7

160 462.9 456.8 401.5 401.2 458.5 385.4 433.3 377.7

170 449.8 456.8 401.5 401.2 293.4 385.2 342.4 377.7

180 455.6 456.8 390.7 401.1 313.8 385.2 432.5 377.7

190 460.3 456.9 401.4 401.2 301.0 385.2 436.0 377.7

200 460.2 456.9 401.5 401.2 418.1 385.2 437.3 377.8

sim 453.8 400. 382.6 374.8

(SDRL values for the WSR EWMA and C-WSR EWMA charts)

(n = 5, p1 = 0.5) (n = 10, p1 = 0.5) (n = 15, p1 = 0.5) (n = 20, p1 = 0.5)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA 2-WSR EWMA

50 462.9 450.1 400.5 395.0 384.4 379.6 347.0 373.3

60 456.0 450.9 390.7 395.4 303.4 379.6 395.1 372.7

70 454.8 451.0 400.9 395.3 417.7 380.3 383.1 372.6

80 468.3 451.1 402.5 396.1 530.0 382.1 348.7 372.7

90 453.5 451.1 392.4 395.7 360.1 380.0 360.7 372.8

100 459.3 451.2 400.9 395.9 385.2 380.1 378.5 371.5

110 464.2 451.2 400.4 395.9 393.6 380.2 382.9 372.7

120 462.1 451.3 400.2 395.9 535.5 380.2 402.7 372.9

130 455.0 451.3 400.5 396.0 432.5 379.6 386.6 372.7

140 459.0 451.3 400.9 396.0 509.6 380.2 432.8 372.7

150 464.8 451.3 401.3 396.0 347.2 380.2 383.1 372.8

160 462.9 451.3 401.5 396.0 458.5 380.4 433.3 372.8

170 449.8 451.3 401.5 396.0 293.4 380.2 342.4 372.8

180 455.6 451.3 390.7 396.0 313.8 380.2 432.5 372.8

190 460.3 451.3 401.4 396.1 301.0 380.3 436.0 372.8

200 460.2 451.3 401.5 396.1 418.1 380.2 437.3 372.9

sim 490.8 393.8 380.0 370.8
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6.2.3 Sensitivity analysis

Similarly with the “continuousified” EWMA control chart based on the Sign statistic

presented in Chapter 3, an extensive numerical analysis will be performed, regarding the

efficiency of the “continuousify” method, applied to the “continuousified” two- and upper-

sided WSR EWMA chart , focussing on the effect of the chart’s parameters (λ,K1, h) and

the Kernel density estimation method. The results that have been found are consistent

with the “continuousified” EWMA chart based on the Sign statistic. In particular for the

proposed modified WSR EWMA charts based on the “continuousify” method we may drawn

the following conclusions:

Effect of the design parameters λ,K, h and fixed value of ARL0

For both 2C-WSR EWMA (Table A6 in appendix) and C-WSR EWMA (Table A10

in appendix) charts using the “continuousify”method, the ARL values become steady and

remain unaffected by the number of subintervals, regardless the sample size and the desired

in-control ARL0 ∈ {200,370.4,500}. Additionally, the value of h does not have any impact to

the results (see Table A5 for the two-sided and Table A9 for the one-sided case in appendix).

In particular, when h is neither too small or too large the results are the same. Consequently,

similarly with the Sign EWMA chart, setting the value of h ≈ 0.2 is a reasonable choice to

be considered.

Effect of the shift magnitude p1

Regarding the out-of-control cases, for small shifts in the process location parameter

(p1 < 0.6) the corresponding out-of-control values are affected by the number of subintervals.

On the other hand, using the “continuousify”method the results become immediately stable

(Tables and A7 and A11). On the contrary, for large shifts (p1 < 0.6) minor differences exist

(Figure 6.1 for the two-sided, and Table A12, presented in appendix, for the upper-sided

case). Nevertheless, since we proved that for the in-control case the results are different,

practitioner may not be sure about the true out-of-control performance of the chart in term

of its RL properties.
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Figure 6.1: ARL1 values in function of the subintervals 2m + 1 for the two-sided WSR
EWMA chart under different combinations of n and p1

Effect of the Kernel density estimation

For both 2C-WSR EWMA (Table A8 in appendix) and C-WSR EWMA (Table A13 in

appendix) charts it can been observed that, regardless the values of the predefined ARL0

and sample size, corresponding in-control ARL values remain unaffected by the choice of the

Kernels defined in Section 3.2.4.3.

Effect of the in-control value of p0

As it has been stated in previous Sections, both 2C-WSR EWMA and C-WSR EWMA

charts, can be designed in order to monitor any percentile of interest. For instance, consid-

ering as an example that we interested in monitoring shifts in the 3rd quantile, the in-control

value of p0 will be equal to p0 = 0.75. By setting p0 = 0.75 in equations(2.24) (2.25) the in-

control mean and variance of SR+
t are equal to E0(SRt) = n(n+1)

4
and V0(SRt) = n(n+1)(2n+1)

8
.
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As a result, the charting statistic and control limits of the 2C-WSR EWMA chart will be

adjusted as:

Z∗t = λSR∗t + (1− λ)Z∗t−1, Z
∗
0 =

n(n+ 1)

4
,

with fixed asymptotic control limits:

UCL∗ =
n(n+ 1)

4
+K

√
λ

2− λ

(
n(n+ 1)(2n+ 1)

8
+ h2

)
.

LCL∗ =
n(n+ 1)

4
−K

√
λ

2− λ

(
n(n+ 1)(2n+ 1)

8
+ h2

)
.

Following the same procedure with the Sign EWMA chart, in order to examine the sta-

bility of the in-control ARL with and without the “continuousify” method, 3 cases regarding

the in-control value of p0 are considered (Tables A6 and A10 for the two-sided and upper-

sided cases respectively presented in appendix). In Figures 6.3 and 6.2 the corresponding

in-control ARL values for the two- and upper-sided case are plotted, for monitoring the

different percentiles of interest, p0 = {0.65, 0.75, 0.85}. From these figures we may conclude

that regardless the value of p0 the “continuousify” method is a great improvement for the

stability of the ARL0 values.
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Figure 6.2: ARL0 values in function of the subintervals for the WSR EWMA chart with (blue
plain lines) and without (red plain lines) the “continuousify” method for different percentiles
of interest using λ = 0.2, K1 = 2.5
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Figure 6.3: ARL0 values in function of the subintervals 2m+1 for the two-sided WSR EWMA
chart with (blue plain lines) and without (red plain lines) the “continuousify” method for
monitoring different percentiles of interest λ = 0.2, K = 3

6.2.4 Optimal design of the upper- and two-sided “continuousi-

fied” WSR EWMA chart

Since the superiority and efficiency of the “continuousify” method in the nonparametric

EWMA chart based on the Wilcoxon Signed Rank statistic was verified, the chart’s optimal

design parameters are given for different shift magnitudes and sample sizes. The optimization

method that has been utilised is the same as the one used for the Sign EWMA chart. In

Table 6.9 the optimal pairs of (λ∗, K∗) for the 2C-WSR EWMA and (λ∗, K∗1) for the C-WSR

EWMA charts are presented along with the corresponding ARL1 values for n ∈ {5, 6, . . . , 20}.
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Table 6.9: Optimal combinations of (λ∗, K∗) for the 2C-WSR EWMA and (λ∗, K∗1) for the
C-WSR EWMA charts along with the corresponding ARL1 values
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6.3 Conclusions

In this Chapter we investigated the design of two EWMA control charts based on the

Wilcoxon Signed rank statistic. For both schemes, our interest was mainly focused on pro-

viding methodologies for the exact determination of their RL properties. In particular, we

introduced the CEWMA WSR chart which is a modified EWMA-type scheme with a discrete

plotting statistic. Using a specific discrete Markov chain approach we were able to determine

its exact in- and out-of control performance. Additionally, we presented an application of

the “continuousify” method in the design of two- and upper sided EWMA charts (denoted

as 2C-WSR EWMA and C-WSR EWMA charts respectively) proving that “continuousified”

method lead to steady and reliable results for the chart’s performance.
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Chapter 7

Conclusions and Perspectives

7.1 Conclusions

The proper determination of the chart’s design parameters plays a vital role for its opti-

mal and robust performance. In “classical” (i.e. parametric) control charts, the assumptions

of Normality is a strong one even if it is commonly violated in practice. On the other hand,

the operation and design of non-parametric schemes does not requires the knowledge of the

samples’ underlying distribution. In this current thesis, we mainly focused on providing

robust methods which guarantee the optimal design of a univariate distribution-free EWMA

control chart. In particular, in Chapter 2, we proved that, there are might be cases that for

the determination of the RL properties of a nonparametric EWMA chart based on the Sign

or the Wilcoxon Signed Rank statistics, the conventional method of Brook and Evans (1972)

does not yield to robust results. Moreover, due to the discrete nature of the nonparametric

statistics being considered, practitioners may not be able to find a proper combination of

(λ,K) that corresponds to an in-control ARL value which will not be exactly equal to the

desired one. In order to tackle these problems, in Chapter 3, we use a simple method called as

the “the continuousify method” in which the discrete statistic to be monitored (i.e. the Sign

statistic) is transformed into a continuous one through Normal Kernels. After an extensive

sensitivity analysis we proved that the use of this approach yields to robust results for both

upper- and two-sided EWMA charts based on the sign statistic. Additionally, for different

combinations of n, p+1, we provided the corresponding optimal pairs of (λ,K) which give the

minimum ARL1. It should be noted that, even though the use of Normal Kernels was used

for the determination of the chart’s optimal design parameters, we proved that the choice of

Kernel type does not have any impact in the chart’s performance.

In general, sign-type statistics should be treated with caution when ties are present. For

instance, under the presence of ties, the distribution of the Sign statistic cannot longer be
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derived through the Binomial distribution. As a consequence, this may have a huge impact

in the smooth operation of a control chart when ties are present. It should be noted that,

theoretically, assuming that the sample follows a continuous distribution prevents the pres-

ence of ties. However, during the data collection, the presence of rounding-off errors might

lead to a tie between the observation and the in-control value of the location parameter to

be monitored (such as the median). In Chapter 4, we proved that under the presence of

ties the operation of a Sign EWMA chart is significantly affected. As a solution to this

drawback we proved that, when ties are present, using a Bernoulli-based approach called as

the “flip a coin” strategy will provide an approximately distribution-free performance for the

Sign EWMA chart. In particular, using this strategy we proved that the in-control perfor-

mance of the chart is no longer affected by the presence of ties with only some differences

for heavily-skewed attributions. However, even for these cases, we proved that choosing a

relative small sample size and a value for λ > 0.75 allows the chart to approximately main-

tains its distribution-free properties.

Additionally, in Chapter 5 a Sign-type EWMA chart (called as the D-SN-C EWMA chart) for

monitoring the process variability was introduced. More specifically, using a similar design

with the “continuousified” Sign EWMA chart for the process location presented in Chapter

3, in Chapter 5 a nonparametric “continuousified” EWMA chart was proposed based on the

inner-quantiles Sign-type statistic. Additionally, the chart’s in-and out-control performance

was investigated under different symmetric and asymmetric distributions and its optimal

performance was examined under several existing parametric and nonparametric schemes.

Based on our findings, our proposed chart has the best performance among its nonparametric

competitors and it can be also considered as an efficient alternative for monitoring Normal

data.

Moreover, in Chapter 6 two different distribution-free EWMA charts based on the Wilcoxon

Signed Rank statistic were proposed. In particular, An EWMA-Type control chart based on

Signed Ranks was firstly introduced (called as the CEWMA WSR chart) and its exact in-and

out-control properties were investigated. More specifically, for this particular scheme, the

plotting statistic being considered, in contrast with a conventional non-parametric EWMA

chart, is discrete. As a result, a proper Discrete-type Markov Chain method was proposed

in which the exact number of states was determined. Finally, its out-of-control performance

was compared with other schemes and our results shown that it can be considered as an

efficient alternative for moderate to large shift magnitudes. Finally, the “continuousify”

method, presented in Chapter 3, was used for the design of a EWMA chart based on the

Wilcoxon Signed Ranks statistic (called as the C-WSR EWMA chart). Our work was mainly
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focused on commenting the advantages of the “continuousify” approach in the design of an

EWMA chart based on Signed Ranks, rather than examining its out-of-control performance

comparing it with other schemes, since it is something that has been already investigated

into the literature. It is worth stretching that in both schemes, the general distribution of

the Wilcoxon Signed Rank statistic was properly defined not only for the in-control case

but also for the out-of-control one. As we proved in Chapter 2, even-though the Normal

approximation can be considered as an efficient alternative, is not reliable for the computa-

tion of the chart’s RL properties. On the other hand, using the p.g.f of the SR+
t the general

distribution of the Wilcoxon Signed Ranks statistic can be properly computed without any

approximation.

7.2 Perspectives

As a further work, there are several interesting research fields that could be considered

in combination with our contributions. For instance, for the schemes presented in this

thesis, the adaptive feature in their design parameters (such as the sample size, smoothing

parameter or sampling interval) can be considered and their out-of-control performance could

be investigated. In general, using adaptive sample sizes or sampling intervals significantly

improves the chart’s out-of-control performance. For instance it would be interesting design

schemes such as the CEWMA WSR or the D-SN-C EWMA charts using variable sample

sizes. In this current work, we focused on the design of distribution-free control schemes

under the univariate setting. As an extension of our work, the stability of the chart’s RL

properties could be investigated under the bivariate or the multivariate frameworks. For

instance, it would be interesting to consider the use of multivariate Kernels and test their

efficiency. Moreover, it would be challenging to investigate the performance of the Wilcoxon

Signed rank statistic under the presence of ties. Finally, an interesting extension of our work

would be to investigate the design of nonparametric Univariate or Multivariate schemes for

monitoring correlated samples. As a conclusion, it is our belief that, nonparametric control

chart is a powerful tool of SPC and practitioners are encouraged to work on this field of

research.
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Appendix

Table A1: ARL0 for small sample sizes when ties are present for the 2C-SN EWMA chart
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Table A2: ARL0 for moderate sample sizes when ties are present for the 2C-SN EWMA
chart
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Table A3: ARL0 for large sample sizes when ties are present for the 2C-SN EWMA chart

n=20

λ = 0.05 λ = 0.15 λ = 0.25 λ = 0.35 λ = 0.45

κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

#1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#7 370.1 366.1 349.5 311.4 370.3 368.1 359.1 336.5 370.3 368.8 362.6 346.6 370.3 369.2 364.6 352.4 370.3 369.5 365.8 356.1

#8 370.4 369.7 366.6 358.6 370.4 370.0 368.4 364.1 370.4 370.1 369.0 366.1 370.4 370.2 369.4 367.2 370.4 370.2 369.6 367.8

#9 370.3 369.9 368.2 363.8 370.4 370.1 369.2 366.9 370.4 370.2 369.6 368.0 370.4 370.3 369.8 368.6 370.4 370.3 369.9 369.0

#10 370.4 370.1 368.7 365.2 370.4 370.2 369.5 367.6 370.4 370.3 369.8 368.5 370.4 370.3 370.0 369.0 370.4 370.3 370.0 369.3

#11 370.4 370.1 368.9 365.7 370.4 370.2 369.6 367.9 370.4 370.3 369.8 368.7 370.4 370.3 370.0 369.1 370.4 370.3 370.1 369.4

#12 370.4 370.1 368.9 365.9 370.4 370.2 369.6 368.0 370.4 370.3 369.9 368.8 370.4 370.3 370.0 369.2 370.4 370.3 370.1 369.4

#13 369.7 360.4 325.4 258.5 370.0 365.1 345.1 300.5 370.2 366.7 352.7 319.6 370.2 367.7 357.1 331.3 370.3 368.3 359.9 339.0

#14 369.9 364.1 341.8 294.2 370.1 367.1 354.7 325.5 370.2 368.1 359.5 338.5 370.3 368.7 362.3 346.1 370.3 369.1 364.0 351.1

#15 370.2 367.0 354.1 324.5 370.3 368.6 361.6 344.5 370.3 369.2 364.4 352.3 370.3 369.5 365.9 356.8 370.4 369.7 366.8 359.6

#16 370.2 367.7 357.7 334.6 370.3 369.0 363.6 350.5 370.3 369.4 365.7 356.6 370.4 369.7 366.9 360.0 370.4 369.8 367.6 362.2

#17 370.2 368.0 358.9 338.4 370.3 369.1 364.3 352.7 370.3 369.5 366.2 358.2 370.4 369.7 367.3 361.2 370.4 369.9 367.9 363.1

λ = 0.55 λ = 0.65 λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

#1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#7 370.4 369.7 366.7 359.0 370.4 369.8 367.4 361.0 370.4 369.9 368.0 362.8 370.4 370.0 368.5 364.4 370.4 370.1 368.9 365.6

#8 370.4 370.3 369.8 368.4 370.4 370.3 369.9 368.7 370.4 370.3 370.0 369.1 370.4 370.3 370.1 369.3 370.4 370.3 370.1 369.6

#9 370.4 370.3 370.0 369.3 370.4 370.3 370.1 369.5 370.4 370.3 370.2 369.7 370.4 370.4 370.2 369.8 370.4 370.4 370.2 369.9

#10 370.4 370.3 370.1 369.5 370.4 370.4 370.2 369.7 370.4 370.4 370.2 369.8 370.4 370.4 370.3 369.9 370.4 370.4 370.3 370.0

#11 370.4 370.3 370.1 369.6 370.4 370.4 370.2 369.7 370.4 370.4 370.2 369.9 370.4 370.4 370.3 370.0 370.4 370.4 370.3 370.1

#12 370.4 370.4 370.2 369.6 370.4 370.4 370.2 369.8 370.4 370.4 370.2 369.9 370.4 370.4 370.3 370.0 370.4 370.4 370.3 370.1

#13 370.3 368.7 362.0 345.0 370.3 369.0 363.5 349.5 370.3 369.3 364.8 353.4 370.3 369.5 366.0 356.9 370.4 369.7 366.9 359.6

#14 370.3 369.3 365.3 354.9 370.3 369.5 366.2 357.7 370.3 369.7 367.0 360.1 370.4 369.8 367.7 362.2 370.4 370.0 368.3 363.9

#15 370.4 369.8 367.6 361.8 370.4 369.9 368.1 363.4 370.4 370.0 368.5 364.7 370.4 370.1 368.9 365.9 370.4 370.2 369.2 366.8

#16 370.4 370.0 368.2 363.9 370.4 370.0 368.6 365.1 370.4 370.1 369.0 366.1 370.4 370.2 369.3 367.0 370.4 370.2 369.5 367.7

#17 370.4 370.0 368.4 364.6 370.4 370.1 368.8 365.7 370.4 370.1 369.1 366.6 370.4 370.2 369.4 367.4 370.4 370.2 369.6 368.0

n=30

λ = 0.05 λ = 0.15 λ = 0.25 λ = 0.35 λ = 0.45

κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

#1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#7 370.0 364.0 340.0 288.6 370.2 367.0 353.6 321.7 370.2 368.1 358.8 335.8 370.3 368.6 361.7 343.9 370.3 369.0 363.5 349.4

#8 370.3 369.3 364.7 353.0 370.4 369.8 367.4 361.0 370.4 370.0 368.3 363.9 370.4 370.1 368.9 365.5 370.4 370.2 369.2 366.6

#9 370.3 369.6 367.0 360.6 370.4 370.0 368.6 365.1 370.4 370.1 369.2 366.8 370.4 370.2 369.5 367.7 370.4 370.2 369.7 368.3

#10 370.4 369.9 367.9 362.7 370.4 370.1 369.1 366.3 370.4 370.2 369.5 367.6 370.4 370.3 369.7 368.3 370.4 370.3 369.9 368.7

#11 370.4 369.9 368.1 363.3 370.4 370.2 369.2 366.6 370.4 370.2 369.6 367.8 370.4 370.3 369.8 368.5 370.4 370.3 369.9 368.9

#12 370.4 370.0 368.2 363.7 370.4 370.2 369.2 366.8 370.4 370.2 369.6 368.0 370.4 370.3 369.8 368.6 370.4 370.3 369.9 369.0

#13 369.4 355.7 306.8 224.9 369.9 362.5 333.6 274.3 370.0 365.0 344.5 299.0 370.1 366.3 350.7 314.3 370.2 367.2 354.8 325.1

#14 369.7 361.1 329.1 266.9 370.0 365.4 347.3 306.7 370.1 367.0 354.4 324.5 370.2 367.8 358.3 335.0 370.2 368.4 360.9 342.1

#15 370.1 365.4 346.5 305.6 370.2 367.7 357.4 332.8 370.3 368.6 361.4 344.0 370.3 369.0 363.6 350.3 370.3 369.3 365.1 354.5

#16 370.1 366.4 351.7 319.2 370.3 368.3 360.3 341.3 370.3 369.0 363.4 350.1 370.3 369.3 365.2 355.0 370.3 369.6 366.3 358.3

#17 370.2 366.8 353.5 324.4 370.3 368.5 361.3 344.5 370.3 369.1 364.1 352.4 370.3 369.4 365.7 356.7 370.3 369.6 366.7 359.6

λ = 0.55 λ = 0.65 λ = 0.75 λ = 0.85 λ = 0.95

κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2 κ = 0.05 κ = 0.1 κ = 0.15 κ = 0.2

#1 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#2 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#3 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#6 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

#7 370.3 369.3 364.9 353.5 370.3 369.5 365.9 356.5 370.4 369.7 366.8 359.0 370.4 369.8 367.4 361.0 370.4 369.9 367.7 361.9

# 8 370.4 370.2 369.4 367.4 370.4 370.2 369.6 367.9 370.4 370.3 369.8 368.4 370.4 370.3 369.9 368.7 370.4 370.3 369.9 368.9

#9 370.4 370.3 369.8 368.7 370.4 370.3 369.9 369.0 370.4 370.3 370.0 369.3 370.4 370.3 370.1 369.5 370.4 370.3 370.1 369.6

#10 370.4 370.3 370.0 369.1 370.4 370.3 370.1 369.3 370.4 370.3 370.1 369.5 370.4 370.4 370.2 369.7 370.4 370.4 370.2 369.7

#11 370.4 370.3 370.0 369.2 370.4 370.3 370.1 369.4 370.4 370.3 370.1 369.6 370.4 370.4 370.2 369.7 370.4 370.4 370.2 369.8

#12 370.4 370.3 370.0 369.3 370.4 370.3 370.1 369.5 370.4 370.4 370.2 369.6 370.4 370.4 370.2 369.8 370.4 370.4 370.2 369.8

#13 370.2 367.8 357.9 333.5 370.3 368.3 360.2 339.8 370.3 368.7 362.0 345.1 370.3 369.0 363.5 349.5 370.3 369.1 364.1 351.3

#14 370.3 368.8 362.8 347.5 370.3 369.1 364.2 351.6 370.3 369.3 365.3 355.0 370.3 369.5 366.2 357.7 370.3 369.6 366.6 358.8

#15 370.3 369.5 366.2 357.6 370.4 369.7 366.9 359.9 370.4 369.8 367.6 361.8 370.4 369.9 368.1 363.4 370.4 370.0 368.3 364.0

#16 370.4 369.7 367.1 360.7 370.4 369.9 367.7 362.4 370.4 370.0 368.2 363.9 370.4 370.0 368.6 365.1 370.4 370.1 368.8 365.5

#17 370.4 369.8 367.4 361.8 370.4 369.9 368.0 363.4 370.4 370.0 368.4 364.6 370.4 370.1 368.8 365.7 370.4 370.1 368.9 366.1

198



Table A4: Phase II samples of t = 1, 2, . . . 20 subgroups of size n = 5
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Table A5: ARL values of the two-sided 2C-WSR EWMA chart for fixed values of h =
{0.1, 0.15, . . . , 0.3} and different combinations of (n, λ,K).

(n, λ,K) = (5, 0.2, 2.763) (n, λ,K) = (7, 0.2, 2.799) (n, λ,K) = (11, 0.2, 2.814)

h h h

2m+ 1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

51 350.0 355.1 359.1 362.0 364.1 376.9 376.8 376.4 375.9 375.1 366.6 367.2 367.6 367.8 367.9

61 371.9 371.1 370.3 369.5 368.9 365.9 366.4 366.6 366.8 367.0 369.4 369.5 369.4 369.4 369.3

71 364.8 366.7 367.9 368.5 368.7 371.3 370.0 369.5 369.4 369.3 370.3 370.1 369.9 369.8 369.7

81 383.6 378.3 373.6 370.9 369.6 365.0 367.0 368.4 369.2 369.4 371.8 371.7 371.5 371.3 371.1

91 369.0 369.6 369.6 369.6 369.4 370.6 370.5 370.3 370.1 370.0 368.4 368.5 368.7 368.8 369.0

101 372.8 371.2 370.3 369.8 369.6 369.4 369.6 369.7 369.8 369.8 369.1 369.2 369.3 369.3 369.4

111 367.8 369.3 369.8 369.8 369.7 371.2 371.0 370.7 370.4 370.2 369.7 369.7 369.7 369.8 369.8

121 370.7 370.4 370.1 370.0 369.8 369.4 369.5 369.7 369.9 370.0 369.9 369.9 369.9 370.0 370.0

131 369.4 370.1 370.2 370.0 369.8 369.5 369.8 370.0 370.1 370.1 370.1 370.1 370.0 370.0 370.0

141 370.0 370.3 370.2 370.1 369.9 370.5 370.3 370.3 370.2 370.2 370.9 370.2 370.1 370.1 370.1

151 370.2 370.4 370.3 370.1 369.9 370.5 370.5 370.4 370.3 370.3 370.2 370.2 370.2 370.2 370.2

161 371.7 370.6 370.3 370.1 370.0 374.5 373.0 371.5 370.8 370.4 370.0 370.0 370.1 370.1 370.2

171 370.5 370.5 370.3 370.2 370.0 371.0 370.7 370.5 370.4 370.3 374.3 373.5 372.6 371.7 371.1

181 370.8 370.5 370.4 370.2 370.0 370.7 370.5 370.4 370.4 370.4 370.4 370.4 370.4 370.3 370.3

191 370.1 370.5 370.4 370.2 370.0 370.1 370.3 370.4 370.4 370.4 370.4 370.4 370.3 370.3 370.3

201 370.5 370.5 370.4 370.2 370.0 370.3 370.4 370.4 370.4 370.4 370.5 370.4 370.4 370.4 370.3

200



Table A6: Comparison of in control ARL values for the two-sided 2-WSR EWMA (without
“continuousify”) and two-sided 2C-WSR EWMA (with “continuousify” and h = 0.2) for
several desired ARL)0 values

(In-control ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts for desired ARL0 = 200)

(n, λ,K) = (5, 0.2, 2.568) (n, λ,K) = (7, 0.2, 2.586) (n, λ,K) = (9, 0.2, 2.597) (n, λ,K) = (11, 0.2, 2.604)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 190.2 192.3 200.6 200.2 195.0 199.1 199.7 199.7

61 205.2 200.2 199.4 200.5 198.0 199.0 200.1 199.5

71 197.0 200.0 196.3 199.6 199.8 199.9 200.4 199.5

81 197.4 199.4 192.0 195.7 199.0 199.6 197.5 198.2

91 191.7 199.6 200.8 199.7 199.1 199.7 199.2 199.8

101 202.0 200.0 196.7 199.8 199.5 200.0 200.0 199.9

111 196.7 199.8 202.2 200.1 199.9 200.0 200.2 199.9

121 194.8 199.9 200.6 199.8 200.1 199.7 199.4 200.0

131 201.5 199.9 198.5 199.9 200.9 199.9 200.3 200.0

141 201.8 199.9 200.8 199.9 199.7 199.9 200.3 200.0

151 198.1 199.9 200.5 199.9 202.1 200.0 200.4 200.1

161 204.5 200.0 205.4 200.1 196.7 200.0 200.2 199.8

171 202.8 200.0 199.9 200.0 200.4 200.0 199.8 199.9

181 199.2 200.0 201.9 200.0 199.5 199.9 199.7 200.0

191 199.8 200.0 198.9 200.0 199.3 200.0 200.4 200.0

201 204.0 200.0 201.4 200.0 200.3 200.0 200.4 200.0

211 199.1 200.0 199.1 200.0 199.5 200.0 200.1 200.0

(In-control ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts for desired ARL0 = 370.4)

(n, λ,K) = (5, 0.2, 2.76) (n, λ,K) = (7, 0.2, 2.790) (n, λ,K) = (9, 0.2, 2.805) (n, λ,K) = (11, 0.2, 2.814

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 338.5 359.1 379.1 363.7 370.6 368.4 366.6 367.6

61 382.4 370.3 363.0 366.1 372.2 381.2 370.5 369.4

71 359.0 367.9 373.2 367.0 370.8 369.9 368.9 369.9

81 389.3 373.6 362.3 367.3 371.0 368.6 370.1 371.5

91 362.2 369.6 371.3 373.3 370.8 369.2 368.4 368.7

101 376.7 370.3 370.7 370.2 371.0 369.8 369.9 369.3

111 354.6 369.8 369.9 370.1 369.6 369.5 369.4 369.7

121 369.6 370.1 371.0 370.4 368.4 369.9 369.2 369.9

131 363.3 370.2 372.5 371.5 369.6 369.8 369.3 370.0

141 365.4 370.2 372.8 370.3 374.6 370.1 369.8 370.1

151 363.5 370.3 371.5 370.3 370.4 370.1 370.1 370.2

161 377.8 370.3 376.2 370.4 370.2 370.3 370.8 370.1

171 359.1 370.3 368.3 370.4 374.8 370.2 369.8 372.6

181 371.9 370.4 367.1 370.3 369.8 370.3 371.8 370.4

191 354.2 370.4 369.8 370.4 370.4 370.4 368.3 370.3

201 369.0 370.4 370.4 370.4 371.1 370.4 370.2 370.4

211 364.1 370.4 372.4 370.4 366.5 370.3 371.8 370.4

(In-control ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts for desired ARL0 = 500)

(n, λ,K) = (5, 0.2, 2.85) (n, λ,K) = (7, 0.2, 2.882) ((n, λ,K) = (9, 0.2, 2.89) (n, λ,K) = (11, 0.2, 2.910)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 503.8 503.8 515.8 499.1 495.7 498.7 501.6 496.0

61 491.2 498.5 508.5 498.7 492.7 493.8 496.5 497.6

71 526.2 498.9 511.5 499.5 494.6 497.1 490.7 497.6

81 493.8 497.7 504.8 497.8 500.4 497.2 493.6 497.0

91 495.9 498.2 477.5 488.7 500.4 498.3 496.0 498.9

101 514.9 499.8 505.3 499.6 497.3 499.3 497.0 499.6

111 468.9 498.0 497.9 499.7 503.4 499.8 500.3 499.9

121 506.8 499.6 502.9 499.9 499.5 499.0 497.7 499.7

131 507.8 499.6 497.0 499.6 495.1 491.6 494.3 498.2

141 490.3 499.6 502.5 499.5 499.9 499.3 498.2 499.6

151 501.7 499.7 496.2 499.5 500.9 500.0 498.9 499.9

161 495.8 499.7 504.2 499.7 497.9 499.9 497.8 499.7

171 500.2 499.8 504.4 499.8 498.1 499.6 494.2 498.2

181 487.2 499.8 511.5 500.3 501.3 499.7 500.5 500.0

191 497.6 499.8 498.2 499.8 501.2 499.9 497.1 500.2

201 509.0 499.9 503.2 499.8 499.5 500.0 498.5 500.0

211 498.4 499.9 499.3 499.8 502.7 500.1 500.8 500.1

201



Table A7: Comparison of in control ARL values for the two-sided WSR EWMA (without
“continuousify”) and two-sided C-WSR EWMA (with “continuousify” and h = 0.2) using
(λ,K) = (0.2, 2.85) for different (n, p1) combinations.

(n, p1) = (5, 0.52) (n, p1) = (5, 0.53) (n, p1) = (5, 0.54) (n, p1) = (5, 0.55)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 406.8 403.9 326.0 324.1 253.2 251.9 195.0 194.1

61 397.3 399.7 319.0 321.0 248.1 249.7 191.3 192.6

71 399.1 400.5 320.7 321.6 249.8 250.1 192.7 192.8

81 399.3 399.2 320.5 320.5 249.3 249.3 192.2 192.2

91 401.1 399.8 322.0 321.0 250.5 249.6 193.1 192.4

101 392.7 401.0 315.5 321.8 245.6 250.2 189.5 192.9

111 380.6 399.6 306.6 320.8 239.3 249.5 185.0 192.3

121 409.1 400.8 327.9 321.7 254.6 250.1 196.0 192.8

131 409.9 400.8 328.5 321.6 255.1 250.1 196.4 192.7

141 396.7 400.8 318.6 321.6 247.9 250.1 191.2 192.7

151 405.1 400.9 324.8 321.7 252.3 250.1 194.2 192.8

161 397.7 400.9 319.2 321.7 248.3 250.1 191.4 192.8

171 404.0 400.9 324.0 321.7 251.7 250.2 193.9 192.8

181 394.2 400.9 316.6 321.7 246.4 250.2 190.1 192.8

191 402.0 401.0 322.5 321.8 250.6 250.2 193.1 192.8

201 410.6 401.0 328.9 321.8 255.3 250.2 196.4 192.8

211 398.3 401.0 319.6 321.8 248.6 250.2 191.6 192.8

(n, p1) = (7, 0.52) (n, p1) = (7, 0.53) (n, p1) = (7, 0.54) (n, p1) = (7, 0.55)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 333.0 341.1 255.5 261.3 190.9 195.0 142.5 145.3

61 339.9 343.5 260.5 263.1 194.4 196.3 145.0 146.2

71 346.9 342.6 265.5 262.5 197.8 195.9 147.3 146.0

81 349.3 343.1 267.2 262.8 199.1 196.1 148.2 146.1

91 334.5 337.9 256.7 259.1 191.8 193.5 143.2 144.3

101 336.7 341.9 258.3 261.9 192.9 195.5 143.9 145.7

111 345.4 342.4 264.5 262.3 197.2 195.7 146.9 145.8

121 342.2 342.2 262.1 262.2 195.5 195.6 145.7 145.8

131 336.4 342.0 258.1 262.0 192.8 195.5 143.9 145.7

141 344.3 342.9 263.6 262.6 196.5 195.9 146.4 146.0

151 344.2 342.8 263.6 262.6 196.5 195.9 146.4 145.9

161 341.6 342.8 261.7 262.6 195.2 195.9 145.5 145.9

171 346.5 342.8 265.2 262.6 197.6 195.9 147.2 145.9

181 335.1 342.5 257.0 262.4 192.0 195.7 143.2 145.8

191 340.6 342.8 261.0 262.6 194.7 195.8 145.1 145.9

201 342.0 342.8 262.0 262.6 195.4 195.9 145.6 145.9

211 343.6 342.8 263.2 262.6 196.3 195.9 146.2 145.9

(n, p1) = (9, 0.52) (n, p1) = (9, 0.53) (n, p1) = (9, 0.54) (n, p1) = (9, 0.55)

2m+ 1 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA 2-WSR EWMA 2C-WSR EWMA

51 302.3 306.4 222.9 225.5 161.0 162.7 117.1 118.2

61 312.9 313.1 230.0 230.1 165.7 165.7 120.2 120.2

71 308.2 305.9 226.6 225.1 163.2 162.3 118.5 117.9

81 310.6 307.3 228.1 226.0 164.2 162.9 119.0 118.2

91 303.6 307.4 223.5 226.1 161.2 162.9 117.1 118.3

101 306.8 307.5 225.7 226.1 162.7 162.9 118.1 118.3

111 308.6 307.8 226.9 226.3 163.5 163.1 118.6 118.4

121 308.6 307.8 226.9 226.3 163.4 163.1 118.6 118.4

131 313.4 310.3 230.1 228.0 165.5 164.2 120.0 119.1

141 309.1 308.0 227.2 226.5 163.7 163.2 118.8 118.5

151 307.4 308.1 226.1 226.5 162.9 163.2 118.3 118.5

161 309.8 308.1 227.7 226.6 164.0 163.3 119.0 118.5

171 305.0 308.0 224.4 226.5 161.8 163.2 117.6 118.5

181 308.1 308.2 226.5 226.5 163.2 163.2 118.5 118.5

191 313.8 309.1 230.3 227.2 165.7 163.7 120.1 118.8

201 307.9 308.1 226.3 226.5 163.1 163.2 118.4 118.5

211 307.9 308.1 226.4 226.5 163.1 163.2 118.4 118.5

202



Table A8: ARL values of the C-WSR EWMA chart for h = 0.2, n ∈ {5, 7, 9} for the
standardised kernels listed in Table 3.7

(In-control ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts for desired ARL0 = 370.4)

(n, λ,K) = (5, 0.2, 2.76) (n, λ,K) = (7, 0.2, 2.790) (n, λ,K) = (9, 0.2, 2.805)

2m+ 1 Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

51 360.8 360.3 360.6 360.0 359.1 363.6 363.7 363.6 363.7 363.7 368.9 368.7 368.9 368.6 368.4

61 370.2 370.3 370.2 370.3 370.3 365.9 365.9 365.9 366.0 366.1 381.0 381.0 381.0 381.1 381.2

71 368.4 368.2 368.4 368.2 367.9 367.1 367.1 367.1 367.1 367.0 369.9 369.9 369.9 369.9 369.9

81 370.7 371.6 370.9 372.1 373.6 367.6 367.5 367.6 367.5 367.3 368.5 368.6 368.5 368.6 368.6

91 369.6 369.6 369.6 369.7 369.6 372.9 373.0 372.9 373.0 373.3 369.2 369.2 369.2 369.2 369.2

101 369.6 369.8 369.7 369.9 370.3 370.2 370.2 370.2 370.2 370.2 369.8 369.8 369.9 369.8 369.8

111 370.3 370.2 370.3 370.1 369.8 369.9 370.0 369.9 370.0 370.1 369.5 369.6 369.5 369.6 369.5

121 370.1 370.1 370.1 370.1 370.1 370.2 370.3 370.2 370.3 370.4 370.0 370.0 370.0 369.9 369.9

131 370.4 370.3 370.3 370.2 370.2 370.6 370.8 370.6 370.9 371.5 369.8 369.8 369.8 369.8 369.8

141 370.3 370.3 370.3 370.2 370.2 370.2 370.2 370.2 370.2 370.3 370.1 370.1 370.1 370.1 370.1

151 370.3 370.3 370.3 370.3 370.3 370.2 370.3 370.2 370.3 370.3 370.1 370.1 370.1 370.1 370.1

161 370.4 370.4 370.4 370.3 370.3 370.3 370.3 370.3 370.3 370.4 370.3 370.3 370.3 370.3 370.3

171 370.3 370.3 370.3 370.3 370.3 370.3 370.3 370.3 370.3 370.4 370.2 370.2 370.2 370.2 370.2

181 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.3 370.3 370.3 370.3 370.3 370.3

191 370.3 370.3 370.3 370.4 370.4 370.5 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

201 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4 370.4

(In-control ARL values for the 2-WSR EWMA and 2C-WSR EWMA charts for desired ARL0 = 370.4)

(n, λ,K) = (5, 0.2, 2.85) (n, λ,K) = (7, 0.2, 2.882) (n, λ,K) = (9, 0.2, 2.89)

2m+ 1 Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

51 503.8 503.6 503.7 503.6 503.8 498.9 499.1 498.9 499.1 499.1 498.5 498.6 498.5 498.6 498.7

61 498.9 498.7 498.8 498.6 498.5 497.9 498.2 498.0 498.4 498.7 493.8 493.8 493.8 493.8 493.8

71 498.9 498.9 498.9 498.9 498.9 499.3 499.3 499.3 499.4 499.5 497.2 497.2 497.2 497.1 497.1

81 498.1 498.0 498.1 497.9 497.7 497.6 497.7 497.7 497.8 497.8 497.0 497.0 497.0 497.1 497.2

91 499.2 498.9 499.1 498.7 498.2 490.5 490.0 490.3 489.7 488.7 498.5 498.4 498.4 498.4 498.3

101 498.6 499.1 498.8 499.3 499.8 499.4 499.5 499.5 499.5 499.6 499.5 499.4 499.5 499.4 499.3

111 501.9 500.4 501.4 499.8 498.0 499.5 499.6 499.6 499.6 499.7 499.7 499.8 499.7 499.8 499.8

121 499.2 499.4 499.3 499.4 499.6 499.7 499.7 499.7 499.8 499.9 499.1 499.1 499.1 499.1 499.0

131 499.5 499.6 499.6 499.6 499.6 499.5 499.5 499.5 499.5 499.6 492.5 492.2 492.4 492.1 491.6

141 500.1 499.9 500.0 499.8 499.6 499.5 499.5 499.5 499.5 499.5 499.4 499.4 499.4 499.3 499.3

151 499.5 499.6 499.6 499.6 499.7 499.6 499.6 499.6 499.6 499.5 499.9 499.9 499.9 500.0 500.0

161 499.6 499.7 499.6 499.7 499.7 499.7 499.7 499.7 499.7 499.7 499.9 499.9 499.9 499.9 499.9

171 499.7 499.8 499.7 499.8 499.8 499.6 499.7 499.7 499.7 499.8 499.7 499.7 499.7 499.7 499.6

181 499.8 499.8 499.8 499.8 499.8 498.9 499.4 499.1 499.6 500.3 499.8 499.8 499.8 499.8 499.7

191 499.8 499.8 499.8 499.8 499.8 499.9 499.9 499.9 499.8 499.8 499.9 499.9 499.9 499.9 499.9

201 500.0 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.9 499.8 499.9 500.0 499.9 500.0 500.0
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Table A9: ARL0 values of the upper-sided C-WSR EWMA chart for λ = 0.2, K1 = 2.75 and
fixed values of h = {0.1, 0.15, . . . , 0.3} under different values of n.

n = 5 n = 8 n = 11

h h h

m 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

50 456.3 455.8 455.7 455.7 455.6 413.6 413.5 413.4 413.4 413.4 397.7 397.6 397.4 397.2 397.0

60 457.2 456.7 456.4 456.2 455.9 414.9 414.5 414.1 413.9 413.7 396.3 396.2 396.1 396.1 396.1

70 456.7 456.7 456.5 456.3 456.1 412.6 413.2 413.5 413.6 413.7 396.3 396.4 396.4 396.4 396.4

80 458.2 456.9 456.6 456.4 456.2 410.7 412.0 413.0 413.5 413.7 396.5 396.6 396.6 396.5 396.5

90 457.2 456.8 456.6 456.5 456.2 414.2 414.1 414.0 413.9 413.9 396.4 396.4 396.5 396.5 396.5

100 457.0 456.8 456.7 456.5 456.3 413.6 413.8 413.9 413.9 413.9 396.5 396.6 396.6 396.6 396.6

110 457.2 456.9 456.7 456.6 456.3 414.1 414.0 414.0 414.0 414.0 396.4 396.5 396.5 396.6 396.6

120 457.2 456.9 456.8 456.6 456.4 414.0 414.0 414.1 414.0 414.0 396.5 396.6 396.6 396.6 396.6

130 457.0 456.9 456.8 456.6 456.4 415.2 414.4 414.1 414.1 414.1 396.8 396.7 396.7 396.7 396.7

140 457.0 456.9 456.8 456.6 456.4 414.2 414.1 414.1 414.1 414.1 396.7 396.7 396.7 396.7 396.7

150 457.1 457.0 456.8 456.6 456.4 414.1 414.1 414.1 414.1 414.1 396.7 396.7 396.7 396.7 396.7

160 457.1 457.0 456.8 456.6 456.4 414.1 414.1 414.1 414.1 414.1 396.7 396.7 396.7 396.7 396.7

170 457.1 457.0 456.8 456.6 456.4 414.1 414.1 414.1 414.1 414.1 396.8 396.7 396.7 396.7 396.7

180 457.1 457.0 456.9 456.6 456.4 414.1 414.1 414.1 414.1 414.1 396.8 396.7 396.7 396.7 396.7

190 457.1 457.0 456.9 456.7 456.4 414.2 414.2 414.1 414.1 414.1 396.7 396.7 396.7 396.7 396.7

200 457.1 457.0 456.9 456.7 456.4 414.2 414.2 414.2 414.1 414.1 396.8 396.8 396.7 396.7 396.7

n = 13 n = 15 n = 20

h h h

m 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

50 389.6 389.6 389.6 389.6 389.6 384.6 384.6 384.6 384.5 384.6 378.3 378.3 378.2 378.1 378.0

60 389.2 389.2 389.2 389.2 389.3 384.6 384.6 384.6 384.6 384.6 377.6 377.6 377.6 377.6 377.5

70 389.0 389.5 389.7 389.8 389.8 385.3 385.3 385.3 385.2 385.2 377.6 377.6 377.6 377.5 377.5

80 389.7 389.7 389.7 389.7 389.7 387.7 387.4 387.1 386.8 386.6 377.7 377.7 377.7 377.6 377.6

90 389.8 389.8 389.8 389.8 389.8 385.0 385.0 385.0 385.0 385.0 377.8 377.8 377.8 377.8 377.7

100 389.9 389.9 389.9 389.8 389.8 385.2 385.1 385.1 385.1 385.1 376.2 376.3 376.4 376.6 376.8

110 390.0 389.9 389.9 389.9 389.9 385.1 385.1 385.1 385.1 385.1 377.6 377.6 377.6 377.6 377.6

120 389.9 389.9 389.9 389.9 389.9 385.2 385.2 385.2 385.2 385.1 377.8 377.8 377.8 377.8 377.8

130 390.7 390.5 390.3 390.2 390.1 384.3 384.4 384.6 384.8 384.9 377.6 377.6 377.6 377.6 377.6

140 389.9 389.9 389.9 389.9 389.9 385.2 385.2 385.2 385.2 385.2 377.6 377.6 377.6 377.7 377.7

150 389.8 389.9 389.9 389.9 389.9 385.2 385.2 385.2 385.2 385.2 377.7 377.7 377.7 377.7 377.7

160 389.9 389.9 389.9 389.9 389.9 385.7 385.5 385.4 385.3 385.3 377.7 377.7 377.7 377.7 377.7

170 389.9 389.9 389.9 389.9 389.9 385.2 385.2 385.2 385.2 385.2 377.7 377.7 377.7 377.7 377.7

180 389.9 389.9 389.9 389.9 389.9 385.2 385.2 385.2 385.2 385.2 377.7 377.7 377.7 377.7 377.7

190 389.9 389.9 389.9 389.9 389.9 385.4 385.3 385.2 385.2 385.2 377.7 377.7 377.7 377.7 377.7

200 390.0 390.0 390.0 390.0 390.0 385.2 385.2 385.2 385.2 385.2 377.9 377.9 377.8 377.8 377.8
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Table A10: Comparison of in control ARL values for the upper-sided WSR EWMA (without
“continuousify”) and upper-sided C-WSR EWMA (with “continuousify” and h = 0.2) for
several desired ARL0 values

(In-control ARL values for the WSR EWMA and C-WSR EWMA charts for desired ARL0 = 200)

(n, λ,K1) = (5, 0.2, 2.477) (n, λ,K1) = (8, 0.2, 2.491) (n, λ,K1) = (9, 0.2, 2.500) (n, λ,K1) = (11, 0.2, 2.505)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 200.4 199.9 299.8 200.1 201.1 199.7 193.7 199.8

60 199.3 199.9 275.8 199.2 199.7 199.9 221.6 199.8

70 202.6 199.9 294.2 199.6 200.8 200.4 189.8 200.0

80 202.8 200.0 281.1 200.0 200.1 200.0 204.4 200.0

90 197.6 200.0 186.5 199.8 201.2 200.0 206.8 200.0

100 200.9 200.0 192.7 200.0 199.9 200.0 191.1 200.0

110 199.8 200.0 199.5 200.0 199.8 200.0 214.4 200.0

120 201.8 200.0 164.9 200.0 199.9 200.0 210.5 200.1

130 200.9 200.0 187.2 200.0 200.1 200.0 187.5 200.0

140 201.2 200.0 250.7 200.0 202.0 200.1 189.3 200.2

150 199.6 200.0 296.6 200.0 201.6 200.0 177.3 200.1

160 198.9 200.0 229.5 200.0 199.8 200.0 196.9 200.1

170 198.7 200.0 167.9 200.0 200.7 200.0 209.9 200.1

180 200.7 200.0 295.4 200.0 199.8 200.0 207.5 200.1

190 199.3 200.0 212.0 200.0 200.6 200.0 217.4 200.1

200 202.7 200.0 243.5 200.0 200.1 200.1 203.4 200.1

(In-control ARL values for the WSR EWMA and C-WSR EWMA charts for desired ARL0 = 370.4)

(n, λ,K1) = (5, 0.2, 2.684) (n, λ,K1) = (8, 0.2, 2.713) (n, λ,K1) = (9, 0.2, 2.719) (n, λ,K1) = (11, 0.2, 2.727)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 375.2 369.9 366.6 367.8 370.8 370.5 289.3 372.2

60 369.9 370.1 294.9 369.8 373.9 372.0 371.2 370.1

70 368.7 370.2 286.2 370.5 369.5 370.6 404.8 370.2

80 377.2 370.3 391.8 370.3 370.1 370.3 417.8 371.1

90 370.5 370.4 1012.1 370.4 371.7 370.7 303.8 370.2

100 373.9 370.4 400.8 370.4 370.7 370.4 308.0 370.4

110 367.1 370.4 367.5 370.5 371.4 370.4 450.6 370.3

120 364.4 370.4 720.5 370.5 371.2 370.5 371.0 370.3

130 370.4 370.5 275.9 370.4 369.5 370.5 370.2 370.4

140 369.8 370.5 339.4 370.5 371.7 370.5 326.8 370.4

150 373.3 370.5 303.7 370.6 371.0 370.5 402.0 370.4

160 372.9 370.5 825.1 370.6 369.9 370.5 356.3 370.4

170 367.7 370.5 1220.6 370.6 369.2 370.5 469.8 370.4

180 368.8 370.5 634.7 370.6 370.2 370.5 435.5 370.4

190 367.9 370.5 275.2 370.6 369.5 370.5 421.9 370.4

200 369.0 370.5 1160.3 370.6 370.9 370.5 462.1 370.4

(In-control ARL values for the WSR EWMA and C-WSR EWMA charts for desired ARL0 = 500)

(n, λ,K1) = (5, 0.2, 2.778) (n, λ,K1) = (8, 0.2, 2.811) (n, λ,K1) = (9, 0.2, 2.818) (n, λ,K1) = (11, 0.2, 2.827)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 483.7 498.4 264.1 500.7 500.8 499.6 366.9 499.6

60 494.6 499.4 515.3 499.7 496.8 499.0 502.7 499.2

70 491.4 499.6 529.8 499.0 497.1 500.0 495.5 499.7

80 498.5 499.8 354.6 497.9 493.8 498.6 596.9 499.6

90 495.4 499.8 2391.4 499.7 501.0 500.0 659.0 500.1

100 498.0 499.9 322.9 500.2 501.3 500.0 431.3 500.0

110 476.1 499.9 408.1 499.9 500.3 500.2 444.2 500.0

120 490.8 499.9 1631.4 499.9 501.4 500.5 648.6 500.1

130 503.4 500.0 475.1 500.0 501.4 500.2 503.9 500.1

140 504.4 500.0 2002.3 500.0 499.2 500.3 370.5 500.1

150 504.1 500.0 469.1 500.0 500.5 500.2 555.4 500.2

160 506.5 500.0 838.1 500.0 503.1 500.3 593.3 500.0

170 503.3 500.0 397.4 500.0 499.2 500.3 580.4 500.0

180 503.6 500.0 369.8 500.0 499.8 500.3 395.2 500.2

190 501.1 500.0 329.9 500.1 506.7 500.3 498.8 500.2

200 500.2 500.0 363.0 500.1 500.1 500.3 472.9 500.2
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Table A11: Comparison of in control ARL values for the upper-sided WSR EWMA (without
“continuousify”) and upper-sided C-WSR EWMA (with “continuousify” and h = 0.2) using
λ = 0.2, K1 = 2.75 for different (n, p1) combinations when p1 < 0.6.

(n, p1) = (5, 0.52) (n, p1) = (5, 0.53) (n, p1) = (5, 0.54) (n, p1) = (5, 0.55)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 356.3 263.9 271.3 204.2 208.9 159.8 162.8 126.4

60 360.6 264.2 274.4 204.4 211.1 159.9 164.4 126.5

70 350.4 264.3 266.8 204.4 205.5 159.9 160.2 126.5

80 349.9 264.3 266.6 204.5 205.5 159.9 160.2 126.5

90 364.0 264.4 276.6 204.5 212.7 160.0 165.5 126.6

100 364.3 264.4 276.7 204.5 212.7 160.0 165.4 126.6

110 359.1 264.4 273.1 204.5 210.1 160.0 163.6 126.6

120 357.0 264.4 271.6 204.5 209.1 160.0 162.8 126.6

130 358.8 264.4 272.9 204.5 210.0 160.0 163.5 126.6

140 350.2 264.4 266.7 204.5 205.4 160.0 160.1 126.6

150 359.8 264.4 273.7 204.5 210.6 160.0 163.9 126.6

160 360.3 264.4 274.0 204.5 210.8 160.0 164.1 126.6

170 354.8 264.4 270.1 204.5 207.9 160.0 162.0 126.6

180 359.1 264.4 273.2 204.6 210.2 160.0 163.7 126.6

190 357.7 264.4 272.1 204.6 209.4 160.0 163.1 126.6

200 362.8 264.4 275.8 204.6 212.0 160.0 165.0 126.6

(n, p1) = (15, 0.52) (n, p1) = (15, 0.53) (n, p1) = (15, 0.54) (n, p1) = (15, 0.55)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 164.5 164.6 112.3 204.2 79.0 79.0 57.3 57.3

60 145.5 164.6 102.9 204.4 74.3 79.0 54.8 57.3

70 174.2 164.8 117.8 204.4 82.2 79.1 59.2 57.4

80 195.2 165.3 127.6 204.5 87.0 79.3 61.6 57.5

90 156.9 164.7 107.9 204.5 76.4 79.1 55.7 57.3

100 164.8 164.7 112.5 204.5 79.1 79.1 57.3 57.3

110 165.5 164.7 112.5 204.5 78.9 79.1 57.1 57.3

120 195.5 164.8 127.6 204.5 86.9 79.1 61.5 57.3

130 174.7 164.5 117.3 204.5 81.6 79.0 58.6 57.3

140 185.3 164.8 121.4 204.5 83.1 79.1 59.2 57.3

150 157.2 164.8 109.1 204.5 77.6 79.1 56.7 57.3

160 178.3 164.8 118.6 204.5 82.0 79.1 58.8 57.3

170 140.3 164.8 99.5 204.5 72.0 79.1 53.4 57.3

180 149.1 164.8 105.1 204.6 75.6 79.1 55.6 57.3

190 143.3 164.8 101.2 204.6 73.1 79.1 54.0 57.3

200 174.3 164.8 117.8 204.6 82.2 79.1 59.2 57.3

(n, p1) = (20, 0.52) (n, p1) = (20, 0.53) (n, p1) = (20, 0.54) (n, p1) = (20, 0.55)

m WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA WSR EWMA C-WSR EWMA

50 137.9 144.7 91.3 94.7 62.7 64.5 44.7 45.6

60 148.6 144.4 96.6 94.5 65.5 64.3 46.2 45.6

70 146.0 144.4 95.4 94.5 64.8 64.3 45.8 45.6

80 138.2 144.5 91.5 94.5 62.8 64.3 44.8 45.6

90 141.1 144.5 93.0 94.5 63.6 64.4 45.2 45.6

100 144.7 144.0 94.6 94.2 64.4 64.2 45.6 45.4

110 146.0 144.4 95.4 94.5 64.8 64.3 45.9 45.5

120 149.1 144.5 96.7 94.5 65.4 64.3 46.1 45.6

130 146.2 144.4 95.3 94.5 64.7 64.3 45.7 45.5

140 155.9 144.4 100.1 94.5 67.2 64.3 47.0 45.5

150 145.6 144.5 95.1 94.5 64.6 64.3 45.7 45.6

160 155.3 144.5 99.7 94.5 66.9 64.3 46.9 45.6

170 136.3 144.5 90.4 94.5 62.2 64.3 44.4 45.6

180 154.5 144.5 99.2 94.5 66.6 64.3 46.7 45.6

190 155.7 144.4 99.8 94.5 67.0 64.3 46.9 45.5

200 155.2 144.5 99.4 94.5 66.7 64.3 46.8 45.6
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Table A12: ARL values for the WSR EWMA chart for large shifts
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Table A13: ARL values of the C-WSR EWMA chart for h = 0.2, n ∈ {5, 8, 9} for the kernels
listed in Table 3.7

(In-control ARL values for the WSR EWMA and C-WSR EWMA charts for desired ARL0 = 370.4)

(n, λ,K1) = (5, 0.2, 2.686) (n, λ,K1) = (8, 0.2, 2.713) (n, λ,K1) = (9, 0.2, 2.719)

m Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

50 369.8 370.1 369.9 370.3 369.9 387.4 387.6 387.5 387.7 367.8 369.1 369.1 369.1 369.1 370.5

60 371.4 371.8 371.5 371.9 370.1 370.6 370.6 370.6 370.6 369.8 351.1 351.1 351.1 351.1 372.0

70 370.0 370.1 370.0 370.1 370.2 367.7 367.6 367.7 367.6 370.5 369.2 369.2 369.2 369.2 370.6

80 368.5 368.1 368.4 367.8 370.3 369.1 369.1 369.1 369.1 370.3 370.7 370.7 370.7 370.7 370.3

90 369.3 369.4 369.4 369.4 370.4 370.1 370.0 370.1 369.9 370.4 369.9 369.8 369.9 369.8 370.7

100 370.5 370.3 370.4 370.2 370.4 367.9 367.9 367.9 367.9 370.4 370.5 370.5 370.5 370.5 370.4

110 369.4 369.8 369.6 369.9 370.4 370.5 370.5 370.5 370.5 370.5 370.0 370.0 370.0 369.9 370.4

120 370.2 370.2 370.2 370.2 370.4 369.8 369.9 369.8 369.9 370.5 371.8 371.8 371.8 371.9 370.5

130 370.4 370.3 370.3 370.2 370.5 369.4 369.4 369.4 369.3 370.4 370.3 370.4 370.4 370.4 370.5

140 370.2 370.2 370.2 370.2 370.5 370.4 370.5 370.4 370.5 370.5 370.6 370.6 370.6 370.6 370.5

150 370.2 370.3 370.2 370.3 370.5 370.4 370.4 370.4 370.4 370.6 370.8 370.8 370.8 370.8 370.5

160 370.6 370.4 370.6 370.4 370.5 370.3 370.3 370.3 370.3 370.6 370.3 370.3 370.3 370.3 370.5

170 370.3 370.3 370.3 370.3 370.5 370.4 370.3 370.4 370.3 370.6 370.4 370.4 370.4 370.4 370.5

180 370.4 370.4 370.4 370.4 370.5 370.5 370.4 370.4 370.4 370.6 370.5 370.6 370.5 370.6 370.5

190 370.3 370.4 370.4 370.4 370.5 370.5 370.5 370.5 370.5 370.6 370.4 370.4 370.4 370.4 370.5

200 370.4 370.4 370.4 370.4 370.5 370.5 370.5 370.5 370.5 370.6 370.4 370.4 370.4 370.4 370.5

(In-control ARL values for the WSR EWMA and C-WSR EWMA charts for desired ARL0 = 500)

(n, λ,K1) = (5, 0.2, 2.778) (n, λ,K1) = (8, 0.2, 2.812) (n, λ,K1) = (9, 0.2, 2.827)

m Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal Parabolic Biweight Cosine Triweight Normal

50 495.7 495.8 495.7 495.9 498.4 488.5 488.4 488.5 488.4 500.7 496.8 496.7 496.8 496.7 499.6

60 494.7 494.8 494.8 494.8 499.4 495.4 495.5 495.4 495.5 499.7 507.9 508.0 507.9 508.0 499.0

70 496.3 496.3 496.3 496.4 499.6 494.5 494.4 494.4 494.4 499.0 496.7 496.7 496.7 496.7 500.0

80 498.7 498.5 498.7 498.3 499.8 498.9 499.0 498.9 499.1 497.9 501.9 501.9 501.9 501.8 498.6

90 498.8 499.0 498.9 499.2 499.8 499.4 499.2 499.3 499.2 499.7 498.7 498.7 498.7 498.6 500.0

100 499.6 499.2 499.5 499.0 499.9 500.5 500.5 500.5 500.6 500.2 499.5 499.6 499.5 499.6 500.0

110 496.6 498.2 497.1 498.9 499.9 498.4 498.4 498.4 498.3 499.9 499.7 499.7 499.7 499.7 500.2

120 499.9 499.7 499.8 499.6 499.9 499.5 499.7 499.6 499.7 499.9 499.0 499.0 499.0 499.0 500.5

130 499.3 499.4 499.3 499.5 500.0 499.8 499.8 499.8 499.8 500.0 499.4 499.4 499.4 499.4 500.2

140 500.1 499.9 500.0 499.8 500.0 499.2 499.1 499.1 499.1 500.0 500.0 500.0 500.0 500.0 500.3

150 499.7 499.7 499.7 499.7 500.0 499.4 499.4 499.4 499.3 500.0 500.3 500.3 500.3 500.3 500.2

160 499.7 499.7 499.7 499.8 500.0 499.4 498.9 499.3 498.6 500.0 499.0 498.9 498.9 498.8 500.3

170 500.1 499.9 500.0 499.9 500.0 499.8 499.7 499.7 499.7 500.0 500.0 500.0 500.0 500.0 500.3

180 499.8 499.8 499.8 499.8 500.0 499.8 499.8 499.8 499.8 500.0 500.0 500.0 500.0 500.0 500.3

190 500.1 499.9 500.1 499.9 500.0 499.8 499.8 499.8 499.8 500.1 499.4 499.0 499.3 498.9 500.3

200 499.9 499.9 499.9 499.9 500.0 499.9 499.9 499.9 500.0 500.1 500.1 500.1 500.1 500.0 500.3
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