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Abstract 

 
 
Spyridon D. Vrontos 
 
On Some Applications of   
Fractional Brownian motion  
to insurance and finance 
 
                                                                  February 2005 

 
    In this thesis we deal with some problems arising in the interplay 

of insurance and finance considering fractional Brownian motion to be 
the driving stochastic process.  

We consider the problem of calculating the probability of ruin at a 
given time point when the claims are driven by fractional Brownian 
motion. We show that the probability of ruin of the firm can be expressed 
as the solution of a linear parabolic partial differential equation and we 
solve this partial differential equation analytically.     

We formulate a simple problem of insurance control for liabilities 
of diffusion type driven by fractional Brownian motion. The problem 
reduces to a version of the fractional linear quadratic regulator. We prove 
that the solution to the control problem is given by the solution of a 
system of ordinary differential equations. 

    We study the valuation of a reinsurance policy as an option both 
for excess of loss and for proportional reinsurance when the liabilities of 
the insurance business are driven by fractional Brownian motion. 

   We consider the problem of reinsurance control when the 
liabilities of an insurance business are driven by fractional Brownian 
motion. We find the optimal reinsurance strategy that the insurance 
company must follow for a number of time periods in order to reach a 
desired capital target by minimizing a reasonable functional of the 
reinsurance cost and of the final capital target.  

    We examine how one can use derivatives for asset allocation and 
how a pension fund can use derivatives in its asset allocation both for the 
case of a defined benefit pension scheme and a targeted money purchase 
scheme, when the stock price process is geometric fractional Brownian 
motion. A comparison with the case of Brownian motion is provided. 

    We review the methods that have been developed for the 
estimation of Hurst parameter and the detection of long range dependence 
and we apply these methods in data concerning stocks listed in the Athens 
Stock Exchange.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Περίληψη 
 
 

Σπυρίδων ∆. Βρόντος 
 
Εφαρµογές της κλασµατικής 
κίνησης Brown στα ασφαλιστικά  
και στα χρηµατοοικονοµικά 
 

Φεβρουάριος 2005 
 

Σε αυτήν την διατριβή εξετάζουµε προβλήµατα που άπτονται των 
ασφαλιστικών και των χρηµατοοικονοµικών θεωρώντας την κλασµατική 
κίνηση Brown ως τον βασικό άξονα στον οποίο στηρίζεται η 
µοντελοποίηση.  Τα προβλήµατα αυτά θεωρούµε ότι έχουν ενδιαφέρον 
τόσο από θεωρητικής όσο και από πρακτικής απόψεως.  

Εξετάζουµε το πρόβληµα της πιθανότητας καταστροφής σε µία 
δεδοµένη στιγµή της ασφαλιστικής εταιρείας όταν οι υποχρεώσεις της 
εταιρείας µοντελοποιούνται µε τη χρήση της κλασµατικής κίνησης 
Brown. ∆είχνουµε ότι η πιθανότητα της καταστροφής της εταιρίας 
µπορεί να εκφραστεί ως λύση µιας γραµµικής παραβολικής µερικής 
διαφορικής εξίσωσης και λύνουµε αυτήν την µερική διαφορική εξίσωση 
αναλυτικά.      

∆ιατυπώνουµε ένα πρόβληµα ασφαλιστικού ελέγχου για την 
περίπτωση που οι υποχρεώσεις της εταιρείας µοντελοποιούνται µε τη 
χρήση της κλασµατικής κίνησης Brown. Βρίσκουµε τη βέλτιστη 
στρατηγική ελέγχου που η ασφαλιστική εταιρεία πρέπει να ακολουθήσει 
προκειµένου να επιτευχθεί ένας επιθυµητός οικονοµικός στόχος και 
αποδεικνύουµε ότι η λύση στο πρόβληµα ελέγχου δίνεται από τη λύση 
ενός συστήµατος των συνηθισµένων διαφορικών εξισώσεων.  

Μελετάµε την τιµολόγηση ενός συµβολαίου αντασφάλισης τόσο 
στην περίπτωση της υπέρβασης ζηµιάς καθώς και για την κατά αναλογία 
αντασφάλιση όταν οι υποχρεώσεις της εταιρείας µοντελοποιούνται µε τη 
χρήση της κλασµατικής κίνησης Brown χρησιµοποιώντας τεχνικές 
αποτίµησης παραγώγων χρηµατοοικονοµικών προϊόντων. 

Εξετάζουµε το πρόβληµα του αντασφαλιστικού ελέγχου όταν οι 
υποχρεώσεις της εταιρείας µοντελοποιούνται µε τη χρήση της 
κλασµατικής κίνησης Brown.  Βρίσκουµε τη βέλτιστη στρατηγική 
αντασφάλισης που η ασφαλιστική εταιρεία πρέπει να ακολουθήσει σε 
συγκεκριµένα χρονικά διαστήµατα προκειµένου να επιτευχθεί ένας 
επιθυµητός οικονοµικός στόχος. 

Εξετάζουµε πώς κάποιος επενδυτής µπορεί να χρησιµοποιήσει τα 
παράγωγα στη διαχείριση χαρτοφυλακίου και επίσης πώς ένα 



συνταξιοδοτικό ταµείο µπορεί να χρησιµοποιήσει τα παράγωγα στη 
διαχείριση του χαρτοφυλακίου του,  όταν οι τιµές των µετοχών 
ακολουθούν την γεωµετρική κλασµατική κίνηση Brown.  

Παραθέτουµε τις µεθόδους που έχουν αναπτυχθεί για την εκτίµηση 
της παραµέτρου Η του Hurst και εφαρµόζουµε αυτές τις µεθόδους σε 
δεδοµένα από το Χρηµατιστήριο Αξιών Αθηνών.  
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Introduction

In this thesis we deal with some problems arising in the interplay of insurance and finance.

We consider fractional Brownian motion to be the driving stochastic process. In chapter

one we give some of the main results that have been obtained for fractional Brownian

motion. We discuss its definition, the most important properties it has, and some of the

methods that have been developed for stochastic calculus for fractional Brownian motion.

In chapter two we consider the problem of calculating the probability of ruin at a

given time point when the claims are driven by fractional Brownian motion. We propose

a model for an insurance business facing liabilities presenting long term correlations. The

long term correlations are modelled with the use of a fractional brownian motion with

Hurst exponent H. The insurance firm invests in an interest account which is assumed

to be deterministic. It is shown that the cash balance process of the firm satisfies an

Ornstein-Uhlenbeck stochastic differential equation driven by fractional Brownian mo-

tion. Using the recently developed tools of fractional stochastic calculus we show that

the probability of ruin of the firm can be expressed as the solution of a linear parabolic

partial differential equation. We solve this partial differential equation analytically and

we provide an exact expression for the ruin probability in terms of error functions, valid

for all times. Using this exact expression one may derive asymptotc results using stan-

dard techniques. Finally, the partial differential equation allows an efficient numerical

treatment of the problem which may be used as an alternative to Monte-Carlo type

simulations.

In chapter three we formulate a simple problem of insurance control for liabilities of

1



diffusion type driven by fractional Brownian motion. The problem reduces to a version

of the fractional linear quadratic regulator. We consider the same model for an insurance

firm as we did in the previous chapter but now we assume that the firm may control its

cash balance process by asking its customers for an input having the meaning of extra

premium. The input is considered as a control parameter which allows the firm to reach a

desired capital target at a specified time. The cash balance equation is then a controlled

fractional Ornstein-Uhlenbeck equation. The control is chosen in such a manner as to

minimize a reasonable functional of the final capital target and of a weight function of

the cost of the input. We use the method of completion of the squares and the method

of maximum principle. We prove that the solution to the control problem is given by the

solution of a system of ordinary differential equations.

In chapter four we study the valuation of a reinsurance policy both for excess of loss

and for proportional reinsurance when the liabilities of the insurance business are driven

by fractional Brownian motion.

In chapter five we consider the problem of reinsurance when the liabilities of an insur-

ance business are driven by fractional Brownian motion. We assume that the insurance

company uses a proportional reinsurance scheme. We find the optimal reinsurance strat-

egy that the insurance company must follow for a number of time periods in order to

reach a desired capital target by minimizing a reasonable functional of the reinsurance

cost and of the final capital target. We show that in the case of linear reinsurance cost the

minimization problem reduces to a quadratic programming problem. We also examine

the case of non linear reinsurance cost.

In chapter six we examine how a pension fund can use derivatives in its asset allocation

both for the case of a defined benefit pension scheme and a targeted money purchase

scheme, when the stock price process is exponential fractional Brownian motion. A

comparison with the case of Brownian motion is provided.

In chapter seven we review the methods that have been developed for the estimation

of Hurst parameter and the detection of long range dependence and we apply these

2



methods in data concerning stocks listed in the Athens Stock Exchange.
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Chapter 1

Fractional Brownian Motion

1.1 Preliminaries

In this chapter we give the definition of fractional Brownian motion, some of its most

important properties, some of the representations of fractional Brownian motion that

have appeared in the literature and some of the approaches that have been used for

stochastic calculus with respect to fractional Brownian motion.

Definition 1 A continuous centered Gaussian process {Wt, t ≥ 0}, W0 = 0 , is a frac-

tional Brownian motion with Hurst parameter H ∈ (0, 1) if its covariance function is

given by

E[WH
t WH

s ] =
1

2
V ar(WH

1 )(t
2H + s2H − |t− s |2H),

for all t, s ≥ 0.

We will consider the normalised version of this process by taking V ar(WH
1 ) = 1.

For H = 1/2, from fractional Brownian motion we take the standard Brownian mo-

tion. Fractional Brownian motion was introduced by Kolmogorov (1940) within a Hilbert

space framework. Following Kolmogorov, Mandelbrot and Van Ness (1968) studied frac-

tional Brownian motion and they established the folowing stochastic integral represen-
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tation of fractional Brownian motion in terms of a Brownian motion on the whole real

line:

WH
t =

1

C1(H)

Z
R

[((t− s)+)H−
1
2 − ((−s)+)H− 1

2 ]dWs, (1.1)

where {W (A), A Borel subset of R} , is a Brownian measure on R and

C1(H) = (

∞Z
0

((1 + s)H−
1
2 − sH−

1
2 )ds+

1

2H
)
1
2 .

It is clear from the covariance function of fractional Brownian motion that

E{[WH
t ]

2} = 1

2
(t2H + t2H − |t− t |2H) = t2H .

Fractional Brownian motion has the following self-similarity property: For any constant

α > 0, the processes {WH
at } and {αHWH

t } have the same distribution. This property is a

direct consequence of the fact that the covariance function of fractional Brownian motion

is homogeneous of order 2. This is obvious by taking:

E[WH
atW

H
as ] =

1

2
{(at)2H + (as)2H − |at− as |2H} =

= a2HE[WH
t WH

s ]

= E[(aHWH
t )(a

HWH
s )].

Since all processes are centered Gaussian, this equality in covariance implies that {WH
at }

d
=

{aHWH
t }. The variance of the increment of the process in an interval [s, t] can be found

to be
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E[|WH
t −WH

s |2]

= E[(WH
t )

2] + E[(WH
s )

2]− 2E[WH
t WH

s ]

= t2H + s2H − t2H − s2H + |t− s|2H

= |t− s|2H .

This implies that fractional Brownian motion has stationary increments. One can also

show that

E[(WH
t+h −WH

h )(W
H
s+h −WH

h )]

= E[WH
t+hW

H
s+h]− E[WH

t+hW
H
h ]−E[WH

h WH
s+h] + E[WH

h WH
h ]

=
1

2
{[(t+ h)2H + (s+ h)2H − |t− s|2H ]−

[(t+ h)2H + h2H − t2H ]

−[h2H + (s+ h)2H − s2H ] + h2H

= E[WH
t WH

s ],

concluding that

{WH
t+h −WH

h }
d
= {WH

t }.

FBM is characterized by the Hurst exponent H which determines the sign of the

covariance of the past and the future increments. When H > 1
2
the covariance is positive

and when H < 1
2
the covariance is negative. This is derived from the convexity/concavity

of the power functions. For H = 1
2
, the covariance can be written as E[W

1
2
t W

1
2
s ] = t ∧ s,

and the process as we have already said is reduced to a standard fractional Brownian

motion. In this case the increments of the process in disjoint intervals are independent.

However for H 6= 1
2
the increments are not independent. The covariance between two
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increments WH
t+h −WH

t and WH
s+h −WH

s , where s+ h ≤ t, and t− s = nh is

ρH(n) =
1

2
h2H((n+ 1)2H + (n− 1)2H − 2n2H)

≈ h2HH(2H − 1)n2H−2 → 0

as n→∞. Therefore:

i) if H > 1
2
, ρH(n) > 0 and

∞P
n=1

ρH(n) =∞.

ii) if H < 1
2
, ρH(n) < 0 and

∞P
n=1

|ρH(n)| <∞.

In case i) two increments of the form WH
t+h −WH

t and WH
t+2h −WH

t+h are positively

correlated and the process presents aggregation behavior. In case ii) these increments

are negatively correlated and we say that there is intermittency.

For more details on fractional Brownian motion and self-similar processes we refer to

Embrechts and Maejima (2003), Nualart (2003), and Samorodnitsky and Taqqu (1994).

1.1.1 Construction of fractional Brownian Motion

We have already seen the Mandelbrot - Van Ness representation of fractional Brownian

motion (1.1). We mention here and some other representations of fractional Brownian

motion that have appeared in the literature.

We will see first a representation that uses fractional integrals and fractional deriv-

atives following Bender (2003). Let (Ω,F , P ) be a probability space that carries a two-

sided Brownian motion B. For a, b ∈ R define the indicator function as

1(a,b)(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if a 6 t 6 b,

−1 if b 6 t 6 a

0 otherwise

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.2)

Furthermore let

7



KH := Γ(H +
1

2
)

⎛⎝ ∞Z
0

((1 + s)H−
1
2 − sH−

1
2 )ds+

1

2H

⎞⎠−1
2

,

and define the operator

MH
± f :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
KHD

−(H− 1
2
)

± f, 0 < H < 1
2
,

f, H = 1
2

KHI
H−1

2
± f 1

2
< H < 1.

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (1.3)

Here Iα±, 0 < α < 1, is the fractional integral of Weyl’s type, defined by:

(Ia−f)(x) :=
1

Γ(a)

∞Z
x

f(t)(t− x)a−1dt =
1

Γ(a)

∞Z
0

f(x+ t)ta−1dt, (1.4)

(Ia−f)(x) :=
1

Γ(a)

xZ
−∞

f(t)(x− t)a−1dt =
1

Γ(a)

∞Z
0

f(x− t)ta−1dt, (1.5)

if the integrals exist for all x ∈ R. For α ∈ (0, 1) and ∈> 0, define

(Da
±,εf)(x) =

1

Γ(1− α)

∞Z
ε

f(x)− f(x∓ t)

tα+1
dt.

Then the fractional derivatives of Marchaud’s type are given by

(Da
±f) := lim

ε→0
(Da

±,εf),

if the limit exists in Lp(R) fo some p.With these definitions we have the following theorem.

Theorem 2 (Bender 2003). For 0 < H < 1, let operators MH
± be defined by 1.3.

Then MH
− 1(0, t) ∈ L2(R) and a fractional Brownian motion BH is given by a continuous

version of the Wiener integral

Z
R

(MH
− (0, t))(s)dBs. (1.6)
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It is possible also to establish a spectral representation of fractional Brownian motion,

see for more Samorodnitsky and Taqqu (1994):

WH
t =

1

C2(H)

Z
R

eits − 1
is

|s| 12−Hd
∼
W s, (1.7)

where
∼
W = W 1 + iW 2 is a complex Gaussian measure on R such that W 1(A) =

W 1(−A),W 2(A) = −W 2(A), and E(W 1(A)2) = |A|
2
and

C2(H) = (
π

HΓ(2H) sin(Hπ)
)
1
2 .

Norros, Valkeila and Virtamo (1999) have proved the following integral representation

of fractional Brownian motion in terms of Brownian motion.

WH
t =

tZ
0

z(t, s)dWs

where

z(t, s) = cH

⎡⎣µ t

s

¶H− 1
2

(t− s)H−
1
2 −

µ
H − 1

2

¶
s
1
2
−H

tZ
s

uH−
3
2 (u− s)H−

1
2 du

⎤⎦ , (1.8)

and

cH =

s
2HΓ

¡
3
2
−H

¢
Γ(H + 1

2
)Γ(2− 2H)

1.1.2 Sample Path Properties

We say that a stochastic process {X(t), 0 ≤ t ≤ T} is Holder continuous of order γ ∈ (0, 1)

if
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P{ω ∈ Ω : sup

0 < t− s < h(ω)

s, t ∈ [0, T ]

|X(t, ω)−X(s, ω)|
|t− s|γ ≤ δ} = 1

where h is an almost surely positive random variable and δ > 0 is an appropriate constant.

Theorem 3 (Embrechts and Maejima, 2003) Fractional Brownian motion
©
WH

t , t ≥ 0
ª
,

0 < H < 1, has a modification, the sample paths of which are Holder continuous of order

β ∈ [0, H).

Theorem 4 (Vervaat, 1985) Supposse {X(t)} is H self-similar with stationary incre-

ments. If H ≤ 1 and P{X(t) = tX(1)} = 0,then the sample paths of {X(t)} have infinite

variation almost surely, on all compact intervals.

Corollary 5 (Embrechts and Maejima, 2003) Sample paths of fractional Brownian mo-

tion have nowhere bounded variation.

Since fractional Brownian motion is H self-similar with stationary increments, 0 <

H < 1, it has nowhere bounded variation from the theorem of Vervaat (1985).

Let us assume that H > 1
2
and consider the partition of [0, t], t0 = 0 < t1 < ... < tn =

t. A partition will be identified with the set of pairs of consecutive dividing points, i.e.

∆ = {(t0, t1) , (t1, t2) , ..., (tn−1, tn) |t0 = 0 < t1 < ... < tn = t}

Define

|∆n| := max {|tj − tj−1|, 1 ≤ j ≤ n} ,

and consider sequences of partitions ∆n with limn→∞ |∆n|→ 0.
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Theorem 6 (Lin 1995). The quadratic variation of WH is a zero process. Namely,

X
µ,ν∈∆n

(WH
ν −WH

µ )
2 → 0

in probability as n→∞.

Lemma 7 (Rogers 1997). Fix p > 0. Then Vn,p ≡
P

tj∈∆n

|WH
tj+1
−WH

tj
|p →

⎧⎨⎩ 0, if pH>1

+∞, if pH<1

⎫⎬⎭
in the sense of convergence in probability.

Theorem 8 (Lin 1995). Fractional Brownian motion is not a semimartingale.

Proof:Following Lin (1995) we have the following. If WH were a semimartingale we

would have a Doob-Meyer decomposition and thus

WH
t =Mt + Vt

where M is a continuous local martingale and V is a finite variation process with M0 =

V0 = 0. Denoting by [Z,Z] the quadratic variation of a semimartingale Z we would have

that

0 =
£
WH ,WH

¤
t
= [M + V,M + V ]t =

= [M,M ]t + 2 [M,V ]t + [V, V ]t

= [M,M ]t

By the Burkholder-Gundy-Davis inequality, M is itself a zero process and hence WH =

V has finite variation. This is impossible since almost all sample paths of WH have

Hausdorff dimension 2 − H > 1. A proof of this theorem appears also in Liptser and

Shiryaev (1989) and furthermore in Rogers (1997).

Let us also note here that fractional Brownian motion is not a Markov process.
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1.2 Stochastic calculus with respect to FBM

In this section we review some fundamental results of fractional stochastic calculus. As we

have said fractional Brownian motion is not a semimartingale. This presents problems in

the definition of a stochastic integral and a stochastic calculus with respect to fractional

Brownian motion, as we may not apply the standard theory of stochastic integration over

a semimartingale to define a stochastic integral over fractional Brownian motion. More

precisely we cannot obtain a fully satisfactory theory when integrating over all predictable

processes (predictable with respect to the filtration generated by fractional Brownian

motion), as a consequence of the Bichteler - Dellacherie theorem, see for example Bichteler

(1981), Protter (1990), and Dellacherie and Meyer (1982). Several approaches to this

subject has been proposed, we will mention here briefly the approaches of Lin (1995),

Shiryaev (1998), Duncan, Hu and Pasik-Duncan (2000), Elliott and van der Hoek (2003)

and Bender (2003).

1.2.1 Lin (1995)

Denote by Et the step functions from [0, t] to R. For any

φ(s) =
nX
i=1

αi1(ti,ti+1](s)

φ(s) ∈ Et, we define
tZ
0

φ(s)dWH
s =

nX
i=1

αi(W
H
ti+1
−WH

ti
)

The stochastic integral is defined in terms of the L2 limit of the above sum.
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1.2.2 Shiryaev (1998)

Shiryaev (1998) considers the stochastic integral

tZ
0

f(WH
u )dW

H
u

in the case of H ∈
¡
1
2
, 1
¢
, and takes f = f(x), x ∈ R, to be a function that belongs to

the class C1. For

F (x) = F (0) +

xZ
0

f(y)dy

by Taylor’s formula with remainder in the integral form it is

F (x) = F (y) + f(y)(x− y) +

xZ
y

f
0
(u)(x− u)du.

Then for each sequence Tn ≡ {tnm,m ≥ 1}, n ≥ 1, of times tnm, (0 = tn1 ,≤ tn2 ≤ ...) it is

F (WH
t )− F (WH

0 ) =
X
m

h
F (WH

t∧tnm+1)− F (WH
t∧tnm)

i
= (1.9)

=
X
m

f(WH
t∧tnm+1)(W

H
t∧tnm+1 −WH

t∧tnm) +Rn
t , (1.10)

where

Rn
t =

X
m

WH
t∧tnm+1Z

WH
t∧tnm

f
0
(u)(WH

t∧tnm+1 − u)du.

Clearly

P ( sup
0≤u≤t

|f 0(WH
u )| <∞) = 1
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and because for H ∈
¡
1
2
, 1
¢
P − lim

n

X
m

|WH
t∧tnm+1 −WH

t∧tnm|
2 = 0,

one can obtain

|Rn
t | ≤

1

2
sup
0≤u≤t

|f 0(WH
u )| ·

X
m

|WH
t∧tnm+1 −WH

t∧tnm|
2 P→ 0.

The left-hand side of (1.9) is independent of n and Rn
t

P→ 0. So

P − lim
n

X
m

f
0
(WH

t∧tnm)
³
WH

t∧tnm+1 −WH
t∧tnm

´
exists and it is denoted by

tZ
0

f(WH
u )dW

H
u

and called as the stochastic integral with respect to the fractional Brownian motion

WH =
©
WH

u

ª
u≤t , H ∈

¡
1
2
, 1
¢
, f ∈ C1. The arguments given also prove that (P-a.s.)

F (WH
t )− F (WH

0 ) =

tZ
0

f(WH
u )dW

H
u

which as mentioned by Shiryaev (1998) can be regarded as an analogue of Ito’s formula,

for a fractional Brownian motion. Note that this formula leads to

E

⎡⎣ tZ
0

f(WH
u )dW

H
u

⎤⎦ 6= 0
in contrast with the corresponding Ito integral for the case of Brownian motion where

the above expectation is zero. Shiryaev (1998) used this type of integral to construct a

fractional Black-Scholes market and he showed that it admits arbitrage opportunities.
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1.2.3 Duncan, Hu and Pasik-Duncan (2000)

In the paper of Duncan, Hu and Pasik-Duncan (2000) a stochastic integral over frac-

tional Brownian motion of Hurst exponent 1/2 < H < 1 has been defined, having some

properties that have similarities with the corresponding properties of the Ito stochastic

integral over Brownian motion.

We summarize here the basic results they have derived. The stochastic integralR t
0
fsdW

H
s over deterministic functions f is defined to provide a zero mean, Gaussian

random variable with variance

Z ∞

0

Z ∞

0

fsftφ(s, t)dsdt

where

φ(s, t) = H(2H − 1) | s− t |2H−2 .

The stochastic integral
R t
0
FsdW

H
s can be defined over stochastic processes F as the

limit Z t

0

FsdW
H
s = lim

∆→0

n−1X
i=0

Fti ¦ (WH
ti+1
−WH

ti
)

where {ti} is some partition of the interval (0, t), ∆ = supi | ti+1 − ti |. By ¦ we denote

the Wick product which is defined by

ε(f) ¦ ε(g) = ε(f + g)

where

ε(f) := exp

½Z ∞

0

ftdW
H
t −

1

2

Z ∞

0

Z ∞

0

fsftφ(s, t)dsdt

¾
is the stochastic exponential of the deterministic function f which is such that

|
Z ∞

0

Z ∞

0

fsftφ(s, t)dsdt |<∞.

The Wick product was introduced in Wick (1950) as a tool to renormalize certain
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infinite quantities in quantum field theory. In stochastic analysis it was first introduced

by Hida and Ikeda (1965). A systematic, general account of the traditions of both math-

ematical physics and probability theory regarding this subject was given in Dobrushin

and Minlos (1977). Today the Wick product is also important in the study of stochastic,

ordinary and partial, differential equations. For more on this subject one can see Holden,

Oksendal, Uboe and Zhang (1996) and Janson (1997).

Duncan et al provide the following generalization of Itô ’s lemma in the case of

fractional Brownian motion. For a proof of this result and generalizations to more com-

plicated integrands, we refer to Duncan et al.

Theorem 9 (Duncan, Hu and Pasik-Duncan 2000)

Let f : R→ R , and f ∈ C1,2, then

f(WH
T )− f(WH

0 ) =

Z T

0

f
0
(WH

s )dW
H
s +H

Z T

0

s2H−1f
00
(WH

s )ds, a.s.

It is interesting to see that the above formula implies the usual Ito formula for Brownian

motion when H = 1
2
.

Proposition 10 (Duncan, Hu and Pasik-Duncan 2000)

Let

ηt =

Z t

0

asdW
H
s

where at is some deterministic function such that

|
Z ∞

0

Z ∞

0

asatφ(s, t)dsdt |<∞.

Let f ∈ C1,2 and assume that ∂f
∂x
(s, ηs)as ∈ L(0, T ). Then,

f(t, ηt) = f(0, 0) +

Z t

0

∂f

∂s
(s, ηs)ds+

Z t

0

∂f

∂x
(s, ηs)asdW

H
s

+

Z t

0

∂2f

∂x2
(s, ηs)as

Z s

0

φ(s, v)avdvds, a.s.
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1.2.4 Fractional Brownian Motion and Fractional White Noise

Theory

The integration theory based on the Wick product that was introduced by Duncan, Hu

and Pasik-Duncan (2000) for 1
2
< H < 1 was extended using a fractional white noise

calculus setup and was applied to finance by Hu and Oksendal (2003), still for the case

of 1
2
< H < 1. Then Elliot and Van der Hoek (2003) extended this theory and applied

it to finance for 0 < H < 1. We will review briefly the approach of Elliot and Van der

Hoek (2003).

Fix H,0 < H < 1. The main idea is to relate fractional Brownian motion WH
t to the

classical Brownian motion through the following operator M :

Definition 11 The operator M =M (H) is defined on functions f ∈ S(R) by

∧
Mf(y) = |y| 12−H

∧
f(y); y ∈ R

where
∧
g(y) :=

Z
R

e−ixyg(x)dx

denotes the Fourier transform.

This can be restated as follows:

For 0 < H < 1
2
we have

Mf(x) = CH

Z
R

f(x− t)− f(x)

|t| 32−H
dt,

where

CH =

∙
2Γ(H − 1

2
) cos(

π

2
(H − 1

2
))

¸−1
[Γ (2H + 1) sin(πH)]

1
2

with Γ(.) denoting the Γ−function.
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For H = 1
2
we have

Mf(x) = f(x).

For 1
2
< H < 1 we have that

Mf(x) = CH

Z
R

f(t)

|t− x| 32−H
dt.

The operator M extends in a natural way from S(R) to the space

L2H(R) : = {f : R→ R (deterministic); |y| 12−H
∧
f(y) ∈ L2(R)}

= {f : R→ R;Mf(x) ∈ L2(R)}

= {f : R→ R; ||y||L2H(R) <∞},

where

||f ||L2H(R) = ||Mf ||L2H(R).

The inner product on this space is

(f, g)L2H(R)
= (Mf,Mg)L2(R) .

In particular the indicator funtion χ[0,t](.) is easily seen to belong to this space, for

fixed t ∈ R, and we write

Mχ[0,t](x) =M [0, t] (x).
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Note that if f, g ∈ L2(R) ∩ L2H(R) then

(f,Mg)L2(R) =

µ
∧
f,

∧
Mg

¶
L2(R)

=

Z
R

|y| 12−H
∧
f(y)

∧
g(y)dy =

=

µ
∧

Mf,
∧
g

¶
L2(R)

= (Mf, g)L2(R) .

We now define for t ∈ R

˜

B
(H)

(t) :=
˜

B
(H)

(t, ω) :=< ω,M [0, t] (.) >

Then
˜

B
(H)

(t) is Gaussian,
˜

B
(H)

(0) = E

"
˜

B
(H)

(t)

#
= 0 for all t ∈ R and

E

"
˜

B
(H)

(s)
˜

B
(H)

(t)

#
=

Z
R

M [0, s] (x)M [0, t] (x)dx

=

Z
R

∧
M [0, s] (y)

∧
M [0, t] (y)dy

=

Z
R

|y|1−2H ∧χ [0, s] (y)∧χ [0, t] (y)dy

=
1

2

£
|t|2H + |s|2H − |s− t|2H

¤

Therefore the continuous version B(H)(t) of
˜

B
(H)

(t) is a fractional Brownian motion.

Note that the underlying probability measure is the same as for B(t). Then following

Elliott and Van der Hoek (2003) we have that

Z
R

f(t)dB(H)(t) =

Z
R

Mf(t)dB(t), f ∈ L2H(R).
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Denoting by {ξk}∞k=1 the Hermite functions, it can be shown for the fractional white

noise that it can then be defined using the expansion

W (H)(t) =
∞X
k=1

Mξk(t)Hε(k)(ω).

Then it can be shown that

dB(H)(t)

dt
=W (H)(t) in (S)∗.

Definition 12 (The fractional Wick/Ito Integral)

Let Y : R→ (S)∗ be such that Y (t) ¦W (H)(t) is dt-integrable in (S)∗. We say that Y

is dB(H)-integrable and we define the integral of Y (t) = Y (t, ω) with respect to B(H)(t)

by Z
R

Y (t, ω)dB(H)(t) =

Z
R

Y (t) ¦W (H)(t)dt.

Theorem 13 (A fractional Ito formula).

Let f(s, x) : R×R→ R belong to C1,2(R×R) and assume that the random variables

f(t, B(H)(t)),

Z t

0

∂f

∂s
(s,B(H)(s))ds and

Z t

0

∂2f

∂x2
(s,B(H)(s))s2H−1ds

all belong to L2(µ). Then

f(t, B(H)(t)) = f(0, 0) +

Z t

0

∂f

∂s
(s,B(H)(s))ds+

Z t

0

∂f

∂x
(s,B(H)(s))asdB

H
s

+

Z t

0

∂2f

∂x2
(s,B(H)(s))s2H−1ds.

For a proof of this Ito formula one can see Elliot and Van der Hoek (2003) and Biagini,

Oksendal, Sulem, Wallner (2003). One can see also Lindstom (1993), for representations

of fractional Brownian fields as integrals of white noise.
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1.2.5 Pathwise Approach to Stochastic Itegration

A different approach to all above was taken by Dudley and Norvaisa (1999) and Zahle

(1998) who used specific path properties of fractional Brownian motion, p-variation in

Dudley and Norvaisa (1999) and Holder continuity in Zahle (1998).

We begin with some preliminaries for p-variation. Let a < b be two real numbers.

A real-valued function f on [a, b] is called regulated if it has a left limit at each point

of (a, b] and a right limit at each point of [a, b). We write then that f ∈ < = <([a, b]).

Define also the following functions on [a, b]:

f+b (x) = f+(x) = f(x+) = lim
y↓x

f(y), a 6 x < b, f+b (b) = f(b)

and

f−a (x) = f−(x) = f(x−) = lim
y↑x

f(y), a < x 6 b, f−a (a) = f(a).

Let τ ⊂ [a, b], a non-degenerate interval, open or closed at either end. Let us define

∆−τ f on τ by ∆−τ f(x) = f(x)− f(x−) for each x ∈ τ which is not the left end-point on

τ and ∆−τ f(x) = 0 at the left end point x whenever τ is left closed.

Similarly define ∆+
τ f on τ by ∆

+
τ f(x) = f(x+)−f(x) for each x ∈ τ which is not the

right end-point on τ and ∆+
τ f(x) = 0 at the right end point x whenever τ is right closed.

Definition 14 The p-variation, 0 < p < ∞, of a real valued function f on [a, b] is

defined as

υp(f) = υp(f ; [a, b]) = sup
κ

nX
i=1

|f(xi)− f(xi−1)|p,

where the supremum is taken over all subdivisions κ of [a,b]:

κ : a = x0 < ... < xn = b, n > 1.

If υp(f) <∞, f is said to have bounded variation on [α, b]. All functions of bounded

p-variation constitute the set
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Wp =Wp([a, b]) = {f : [a, b]→ R with υp(f) <∞}.

Note that Wq ⊂ Wp for 0 < p < q < ∞ and every function of bounded p-variation is

regulated, i.e. Wp ⊂ <.

Let us now review the classical Riemann-Stieltes integral and some of its extensions.

If f, h are two real valued functions on [a, b], a Riemann-Stieltjes sum is defined by

S(f, h, κ, σ) =
nX
i=1

f(yi)[h(xi)− h(xi−1)].

Here κ is a subdivision of [α, b], and σ in an intermediate subdivision of κ, i.e. xi−1 6
yi 6 xi , for i = 1, ..., n. The function f is Riemann-Stieltjes integrable with respect to h

on [a, b] if there exists a number I satisfying the following property: given ε > 0 one can

find a δ > 0 such that

|S(f, h, κ, σ)− I| < ε

for all subdivisions κ with mesh max(xi−xi−1) < δ and for all intermediate subdivisions

σ of κ. The number I, if it exists is unique and is denoted by

(RS)

bZ
a

fdh.

If f is Riemann-Stieltjes integrable with respect to h then f and h cannot have a jump at

the same point. The Moore - Pollard -Stieljtes integral requires less restrictive conditions

at jump points. Its definition is the same as above with one exception: the convergence

of the Riemman-Stieltjes sums as the mesh tends to zero is replaced by their convergence

under refinements of subdivisions. More precisely we say that κ is a refinement of a

subdivision λ if k ⊃ λ. Then the function h is Moore-Pollard-Stieltjes integrable, or MPS

integrable with respect to h on [a,b], if there exists a number I satisfying the following
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property: given ε > 0 one canfind a subdivision λ such that |S(f, h, κ, σ)− I| < ε holds

for all refinements κ of λ and for all intermediate subdivisions σ of κ. The number I , if

it exists is unique and will be denoted by

(MPS)

bZ
a

fdh.

It is well known that the RS-integral and the MPS-integral above exist if h is of bounded

variation and f is continuous. However both integrals may exist when none of the two

functions have bounded variation. This was proved by L. C. Young (1936):

Theorem 15 (L.C. Young, 1936). Assume h ∈ Wp and f ∈ Wq for some p,q >0 with
1
p
+ 1

q
> 1.Then the following statements hold:

i) (RS)
bR
a

fdh if f and h do not have a common discontinuity at the same point.

ii) (MPS)
bR
a

fdh if f and h do not have a common discontinuity on the same side at

the same point.

Moreover, there exists a finite constant K = K(p, q) such that, for any y ∈ [a, b],the

inequality

|
bZ

a

fdh− f(y)[h(b)− h(a)]| ≤ KVp(h)Vq(f)

holds for both kinds of integral, provided it is defined.

If the sample paths of the stochastic process are only known to be regulated, the same

results hold for if the MPS integral is replaced by another extension of the Riemann-

Stieltjes integral. The following variants of the integral introduced by Young (1936) were

proposed by Dudley and Norvaisa (1999).
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Definition 16 Assume f, h ∈ <. Define the left Young integral by

(LY )

bZ
a

fdh = (MPS)

bZ
a

f−a dh
+
b + [f(∆

+h)](a) +
X
(a,b)

∆−f∆+h

whenever the (MPS) exists and the sum converges absolutely. Define the right Young

integral by

(RY )

bZ
a

fdh = (MPS)

bZ
a

f+b dh
−
a + [f(∆

−h)](b)−
X
(a,b)

∆+f∆−h

whenever the (MPS) exists and the sum converges absolutely. We say that f is LY in-

tegrable (or RY integrable) with respect to h on [a,b] provided the above integrals are

defined.

The left and right Young integrals have the usual properties of integrals. For example

they are bilinear and additive on adjacent intervals.

In stochastic analysis the Lebesgue-Stieltjes integral is used to integrate with respect

to stochastic processes that have sample paths of bounded variation. In this case the

values of the above extensions of the Riemann-Stieltjes integrals agree with the corre-

sponding values of the Lebesgue-Stieltjes integral (or LS integral) as stated next:

Proposition 17 If h is a right-continuous function of bounded variation and f is a reg-

ulated function on [a,b] then the following three integrals exist and are equal:

(LY )

bZ
a

fdh = (MPS)

bZ
a

f−a dh = (LS)

bZ
a

f−a dh

Theorem 18 Assume h∈ Wp and f∈Wq for some p,q>0 with 1
p
+ 1

q
> 1.Then both, the

right Young and the left Young integrals, exist.
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Lemma 19 Let h∈ Wp and f∈ Wq for some p,q>0 with 1
p
+ 1

q
> 1 and assume h is

continuous. Then the integrals (RS)
bR
a

f−a dh and (RS)
bR
a

fdh exist and are equal.

It is clear from the above that the p-variation of the sample paths of a stochastic

process is an indicator of its extended Riemman-Stieltjes integrability. We will state now

a chain rule obtained by Mikosh and Norvaisa (2000).

Theorem 20 Mikosh and Norvaisa (2000). Let h = (h1, ..., hd) : [a, b]→ Rd, where for

every l = 1, ..., d, hl ∈Wp , for some p∈ (0, 2). Let g : Rd → R be a differentiable function

with locally Lipschitz partial derivatives g
0
l , l = 1, ..., d. Then the integrals (LY )

bR
a

(g
0
loh)dhl

exist and satisfy the relation

(goh)(b)− (goh)(a) =
dX
l=1

(LY )

bZ
a

(g
0
loh)dhl +

X
(a,b)

[∆+(goh)−
dX
l=1

(g
0
loh)∆

+hl]

+
X
(a,b)

[∆−(goh)−
dX
l=1

(g
0
loh)

−∆−hl]

where the two sums converge absolutely. Similarly, the integrals (RY )
bR
a

(g
0
loh)dhl exist

and satisfy the relation

(goh)(b)− (goh)(a) =
dX
l=1

(RY )

bZ
a

(g
0
loh)dhl +

X
(a,b)

[∆+(goh)−
dX
l=1

(g
0
loh)∆

+hl]

+
X
(a,b)

[∆−(goh)−
dX
l=1

(g
0
loh)

−∆−hl]

where the two sums converge absolutely.

The results of the paper of Mikosch and Norvaisa (2000) are applicable to sample paths

of stochastic processes having bounded p-variation with p ∈ (0, 2). It is well known that

standard Brownian motion does not satisfy this condition.The sample paths of Brownian

motion have unbounded p-variation for p = 2 and bounded p-variation for every p > 2.
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For the exact result, see Taylor (1972) . For fractional Brownian motion Mikosh and

Norvaisa (2000) showed the folowing result:

Proposition 21 (Mikosch and Norvaisa, 2000). Let WH be fractional Brownian mo-

tion with index H ∈ (0, 1) and p ∈ (H−1,∞). Then almost all sample paths of BH

are continuous and υp(BH) <∞ with probability 1.

The above claim is a combination of the results in Fernique (1964) and Kawada and

Kono (1973).

1.2.6 Use of fractional Brownian motion as a modelling tool

Fractional Brownian motion is used to model a wide variety of stochastic data arising in

enigineering and physics as well as in financial mathematics and telecommunications. For

example fractional Brownian motion has been used to model the log returns of the stock

prices see e.g. Shiryaev (1999), Hu and Oksendal (2003), Elliot and Van der Hoek (2003),

Norvaisa (2000), the electricity price in a liberated electricity market, see e.g. Simonsen

(2003), foreign exhange rates, see e.g. Los and Karuppiah (1997) and weather deriva-

tives, see for example Brody, Syroka and Zervos (2002) and references therein. The use

of fractional Brownian motion in finance can be divided in two categories. The first one

is when the pathwise type of integral, or the integral defined by Lin (1995) or Shiryaev

(1998) is used, which creates arbitrage opportunities when it is used for option pricing.

The second one is the Wick-Ito type of integral or the integral based to the white noise

calculus for fractional Brownian motion which, does not create arbitrage opportunities

when it is used for option pricing. For the first category one can see for example Norvaisa

(2000) who is using a real analysis approach to stock price modelling. It shows that clas-

sical calculus is applicable to market analysis whenever the local 2-variation of the return

is zero, or is determined by jumps if the process is discontinuous. Fractional Brownian

motion with H ∈ (1
2
, 1) can be treated in his setup using pathwise type of integration.

Salopek (1998) constructs an arbitrage opportunity in a frictionless stock market when
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price process have continuous sample paths of bounded p-variation and Salopek (2002)

shows the existence of arbitrage for stop-loss start-gain trading strategies when the stock

price process is geometric fractional Brownian motion and the stochastic integral with

respect to fractional Brownian motion is defined in the pathwise sense. Cheridito (2001)

considers the construction of arbitrage for models based on fractional Brownian motion

and shows how arbitrage can be ruled out by putting restrictions on the trading strate-

gies. Cheridito is also showing how arbitrage can be excluded from fractional Brownian

motion models regularizing the local path behaviour of fractional Brownian motion. He is

introducing two different ways of regularizing fractional Brownian motion and he is con-

sidering the pricing of a European call option using the regularized fractional Brownian

motion. Regularization in the first way is excluded by a change in the convolution kernel

of the fractional Brownian motion. This yields a Gaussian semimartingale with a dis-

tribution similar to the one of fractional Brownian motion. Cheridito (2001) shows that

the sum of a Brownian motion and a non-trivial multiple of an independent fractional

Brownian motion withH ∈ (3
4
, 1) is equivalent to Brownian motion. As an application he

obtains the price for a European call option on an asset driven by a linear combination of

a Brownian motion and an independent fractional Brownian motion. Furthermore Das-

gupta (1997), Dasgupta and Kallianpur (2000), Dasgupta and Kallianpur (1999), Rogers

(1997) and Shiryaev (1998) show that when the pathwise type of integral is applied to

option pricing leads to arbitrage. Aldabe, Barone-Adesi and Elliott (1998) consider also

the problem of option pricing with regulated fractional Brownian motion.

For the second category one can see for example Hu and Oksendal (2003) and El-

liot and Van der Hoek (2003) who are using a fractional white noise approach and they

obtain a fractional Black-Scholes formula which does not create arbitrage opportuni-

ties. Furthermore Brody, Syroka and Zervos (2002) consider the case of pricing weather

derivatives using the Wick - Ito type of integral developed by Duncan, Hu and Pasik-

Duncan. One can see also Sottinnen and Valkeila (2003) who examine option pricing in a

fractional Black-Scholes market using both cases of Wick-Ito and Riemann Stiltjes inte-
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grals. Besides Hu, Oksendal and Salopek (2001) derive a Meyer Tanaka formula involving

weighted local time for fractional Brownian motion and geometric fractional Brownian

motion. They use the results obtained to the study of the start-gain stop-loss portfolio

and a fractional version of the Carr-Jarrow decomposition of the European call and put

option into their intrinsic and time values. Benth (2003) also considers the valuation

of pricing of weather derivatives both of European and of Asian type in an arbitrage

free framework. Besides the integral approach developed by Bender in a series of papers

allowed him to obtain option pricing formulas that exclude arbitrage opportunities, one

can see Bender(2003a, 2003b).

Fractional Brownian motion has also been used as the driving stochastic process in

highly-aggregated traffic in communication networks. Traditionally one assumed either

the absence of any significant correlation between consecutive packet arrivals (‘renewal

input’ for instance a Poisson process), or just a mild form of dependence (for instance,

Markov modulated Poisson processes). The discovery of significant correlations on a

broad range of time scales, as exhibited in many measurement studies during the 1990’s,

led to the examination of different classes of traffic models. Many models have been

proposed to model this long - range dependence and one of them is fractional Brownian

motion. One can see for more on these Debicki and Mandies (2004), Norros(1994), Norros

(1995), Norros (1999), Taqqu, Teverovsky and Willinger (1997), Duncan, Yan and Yan

(2001), Addie, Mannersalo and Norros (2002), Narayan (1998), Belly and Decreusefond

(1997), Daley and Vesilo (1997) , O’Connell and Procissi (1998).

Furthermore, fractional Brownian motion (as a special case of self similar process) has

been used to model the claims of an insurance business, see for example Michna (1998),

Michna (1999) and there is also recent work on the extremes of fractional Brownian

motion, probability of ruin and generalised Pickands constant, see for example Debicki

(2002). Besides Husler and Piterbarg (2004), and Husler and Piterbarg (1999) consider

respectively the probability of ruin for physical fractional Brownian motion and certain

classes of Gaussian processes. The study of the ruin problem when the driving process
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is fractional Brownian motion is the subject of chapter 2 which follows.
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Chapter 2

Fractional Brownian Motion and

Probability of Ruin at a Given Date

The calculation of probability of ruin of an insurance company has been the subject of

extended research. One can see for example Asmussen (2000), Rolski, Schmidli, Schmidt

and Teugels (1998), Kalashnikov (1997) and Grandell (1991) and the references there in.

An insurer is exposed not only to the traditional liability risk related to the insurance

portfolio, but also to asset risk related to the investment portfolio. The probability of ruin

has been investigated in models with both kinds of risks by several authors. Schnieper

(1983) combines the classical Poisson claims process with a force of interest that changes

in accordance with a discrete Markov chain at Poisson times. Paulsen (1993) works with

a quite general semimartingale setup with claims and interest driven by Poisson processes

and Brownian motions. Dickson and Hipp (2003) studied a risk process in which claim

inter-arrival times have an Erlang(2) distribution. Gerber (1971) and Harisson (1977)

were among the first to incorporate in their studies of ruin the financial side of risk

business in the form of non-stochastic interest. For more on ruin problem one can see for

example Nyrhinen (2001), Nyrhinen (1999), Nyrhinen (1998), Paulsen (1993), Paulsen

(1998a), Paulsen (1998b), Shimura (1983), Ramsay (1986), Ramsey and Usabel (1997),

Kalashnikov and Norberg (2002), Norberg (1995), Kluppelberg and Stadtmuller (1998),
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Kluppelberg (1993), Embrechts and Villasenor (1988), Furrer (1998), Promislow (1991),

Muller and Pflug (2001), Hoglund (1990), Dufresne and Gerber (1988), Gerber (1988),

Garrido (1988), Delbaen and Haezendonck (1985), Delbaen and Haezendonck (1987),

Moller (1995), Schmidli (1995), Furrer and Schmidli (1994), and Gjessing and Paulsen

(1997).

In this chapter we model the liabilities of an insurance business assuming that they are

driven by fractional Brownian motion and we study the ruin probability of the insurance

company under the influence of interest force.This problem is interesting from the point

of view of applications but presents also considerable theoretical interest. There is recent

work on this problem by several authors as fractional Brownian motion has been used

recently to model the claims an insurance business may face, one can see for example

Michna (1998a), Michna (1998b), Michna (1999), and there is also recent work on the

extremes of fractional Brownian motion, see for example Debicki (2002), Husler and

Piterbarg (1999). Some of these works, deal with the asymptotic properties of ruin

probability using probabilistic techniques and some provide upper and lower bounds for

the ruin probability in certain limiting situations. Michna (1998,1999) investigates ruin

probabilities and first passage times for self-similar prcesses. He proposes self-similar

processes as a risk model with claims appearing in good and bad periods. Then, in

particular, he gets the fractional Brownian motion with drift as a limit risk process. Some

bounds and asymptotics for ruin probability on a finite interval for fractional Brownian

motion are derived. A method of simulation of ruin probability over infinite horizon

for fractional Brownian motion is presented. The moments of the first passage time of

fractional Brownian motion are studied. As an application of his method he numerically

computes the Pickands constant for fractional Brownian motion. An asymptotic behavior

of the supremum of a Gaussian process X over infinite horizon is studied. In particular

X can be a fractional Brownian motion, a nonlinearly scaled Brownian motion or an

integrated stationary Gaussian processes.

Husler and Piterbarg (1999) considered the extreme values of fractional Brownian
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motions, self-similar Gaussian processes and more general Gaussian processes which have

a trend−ctβ for some constants c, β > 0 and a variance t2H . They derive the tail behaviour

of these extremes and show that they occur in the neighborhood of the unique point t0

where the related boundary function (u+ ctβ)/tH is minimal. They consider the case of

H < β. Specifically they derive the following results:

Let X(t), t ≥ 0, be a self-similar Gaussian process with index H, 0 < H < 1, and c, β

positive constants with H < β. Assume that the process X(t) is locally stationary with

0 < a ≤ 2 and some positive constant D. Then for u→∞

i) if a < 2 :

P{X(t) ≥ u+ cβt for some t ≥ 0}

∼
Hα

√
πD

1
α

√
B2

1
a
−0.5A

2
a
−0.5u(1−

H
β
)( 2
a
−1)Ψ(Au1−

H
β )

ii) a = 2 :

P{X(t) ≥ u+ cβt for some t ≥ 0}

∼
r

AD +B

B
Ψ(Au1−

H
β )

where

A :=

µ
H

c(β −H)

¶−H
β β

b−H

and

B :=

µ
H

c(β −H)

¶−(H+2)
β

Hβ,

and Ha, a ≤ 2 is the constant defined by

Ha = lim
T→∞

1

T
E(exp[ max

0≤t≤T
χ(t)]),

where χ(t) is a fractional Brownian motion with drift E(χ(t)) = −t−α and covariance
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function

Cov(χ(s), χ(t)) = tα + sα − |t− s|α.

The assumption of local stationarity is specified as follows: if we consider the standardized

process

Y (t) = X(t)t−H

in a neighborhood of a point s0,for some a > 0 it is assumed that

lim
s→s0.s

0→s0

E(Y (s)− Y (s0))2

|s− s0|α = D > 0.

Now let X(t),be a fractional Brownian motion with index H, 0 < H < 1. Then we

get

P{X(t) ≥ u+ cβt for some t ≥ 0}

∼
H2H

√
πD

1
2HA

2−H
2H

√
B2

1−H
2H

u(1−
H
β
)(1−H)/HΨ(Au1−

H
β )

Let X(t) be a Gaussian process with mean zero and variance t2H and c, β > 0 with

H < β. Assume the conditions (i), (ii) written below and with 0 < α < 2, then for

u→∞ :

P{sup
t>0

X(t)− cβt > u for some t ≥ 0}

∼
(
√
Dυ(s0))

2Ha2
−1/αe−(1/2)A

2u2−2H/β

√
ABυ(s0)K−1(u−1+H/β)u2−2H/β

Condition (i), If G, γ, s, s0 positive

lim
u
supE(X(u)(s)−X(u)(s0))2 ≤ G|s− s0|γ
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Condition (ii).

lim
u→∞

E[X(u)(s)υ(s)−X(u)(s0)υ(s0)]2

K2(|s− s0|) = D,

where K2(.) is a regular varying function (at zero).

Debicki (2002) considered the important role that Pickand constants play in the exact

asymptotic of extreme values for Gaussian stochastic processes. The generalized Pickands

constant Hn, defined as

Hn = lim
T→∞

Hn(T )

T
,

where

Hn(T ) = E[exp(max
t∈[0,T ]

√
2η(t)− σ2η(t))]

and η(t) is a centered Gaussian process with stationary increments and variance function

σ2η(t). Under some mild conditions on σ
2
η(t) Debicki proves that Hn is well defined and he

gives a comparison criterion for the generalised Pickand constants. Moreover he proves

a theorem that extends the result of Pickands for certain stationary Gaussian processes.

As an application he obtain the asymptotic behavior of ψ(u) = P (supt≥0 ζ(t)− ct > u)

as u → ∞, where ζ(x) =
xR
0

Z(s)ds and Z(s) is a stationary Gaussian process with

covariance function R(t) fulfilling some integrability conditions. For some bounds and

estimators of Ha one can see Shao (1996).

The approach we adopt here for the treatment of ruin probabilities in models where

the claims may present long range dependence is very different from the approach adopted

in the above works. In this paper we propose a model for an insurance business facing

liabilities presenting long term correlations. The long term correlations are modelled

with the use of a fractional brownian motion with Hurst exponent H. The insurance

firm invests in an interest account which is assumed to be deterministic. It is shown that

the cash balance process of the firm satisfies an Ornstein-Uhlenbeck stochastic differential

equation driven by fractional Brownian motion. Using the recently developed tools of

fractional stochastic calculus we show that the probability of ruin of the firm can be
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expressed as the solution of a linear parabolic partial differential equation. We have

solved this partial differential equation analytically and we provide an exact expression

for the ruin probability in terms of error functions, valid for all times. Using this exact

expression one may derive asymptotic results using standard techniques. Finally, the

partial differential equation allows an efficient numerical treatment of the problem which

may be used as an alternative to Monte-Carlo type simulations. Our model and treatment

is inspired by a very interesting model proposed by Norberg (1999) for the study of

ruin probability in a model with diffusive type liabilities (Brownian motion type), with

the use of partial differential equations. In some sense our treatment is an extension

of Norberg’s model to the case of fractional Brownian motion type liabilities. This

extension is by no means trivial since the inclusion of fractional Brownian motion in

the model presents difficulties which need different mathematical techniques in order

to be overcome. More specifically Norberg (1999) studied ruin and related problems

for a risk business with compounding assets when the cash flow and the cumulative

interest rate are diffusion processes with coefficients depending on the time and on the

current cash balance. Differential equations were obtained for the probabilities or ruin

at a given date, in finite time, and in infinite time. Relationships between crossing

probabilities and transition probabilities are considered and, in particular, existing results

on the probability distribution of the running maximum of a Brownian motion and on

the relationship between the probability of ruin and on the probability distribution of

the discount total payments were generalized. The proofs of Norberg are based on a

martingale technique. It is clear however that this technique cannot be applied in the

case of fractional Brownian motion.

2.1 The model

Following the spirit of the original model proposed for liabilities of the Brownian motion

type by Norberg (1999) let us consider the following model for an insurance firm: The
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firm is characterized by its value at time t, which is assumed to be a stochastic process

Xt. The firm invests its value Xt to an interest account with logarithmic interest force

δt. The interest is assumed to be a deterministic function of time. This assumption is

not unreasonable for models valid for short times. The firm has to face liabilities Bt.

Assuming an insurance portfolio that is made up of a large number of individual risks,

none of which is large enough to affect the total result significantly we approximate the

liabilities or the payment function Bt by a fractional Brownian motion with drift

dBt = −btdt− σtdW
H
t (2.1)

where bt represents the expected gain per time unit due to a safety loading in the premium,

and σt is the standard deviation of the liabilities per time unit and is thus a measure of the

size of the liability risk. In the above WH
t is a fractional Brownian motion with Hurst

exponent H and bt, σt are deterministic functions of time. Allowing bt,σt to be given

functions of time we allow for seasonality in the claims. This seasonality is relevant in a

number of models, for instance road accidents are more likely to happen during holiday

periods, fires which may lead to property damage are more likely to happen during the

hot months of the summer etc. The introduction of the fractional Brownian motion

allows for the modeling of correlations in the claims. We consider only the case where

H > 1/2 which corresponds to positive correlation between the claims. Such models may

be relevant in models of claims related to health, disability insurance, accident or whole

life insurance. The case H < 1/2 will correspond to negative correlation between claims.

An example of a risk process with long range dependence was developed by Michna (1998

a, b) , who constructed a risk model in which claims appear in good and bad periods

(e.g. good weather and bad weather), and under the assumption that the claims in bad

periods are bigger than the claims of the good periods.

Following Norberg (1999) the cash balance equation for the firm at time t has the
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following form

Xt = e∆t(X0 −
Z t

0

e−∆sdBs) (2.2)

where

∆t =

Z t

0

δsds

The cash-balance process is the solution of a stochastic differential equation, driven

by fractional Brownian motion. We have the following proposition:

Proposition 22 The cash-balance process Xt given by the book-keeping equation (2.2)

is the solution of the fractional Ornstein-Uhlenbeck equation

dXt = (δtXt + bt) dt+ σdWH
t

X0 = x.

Proof:Define the process Kt = exp(
R t
0
δsds). Then we may rewrite (2.2) as

Xt = xKt +Kt

Z t

0

K−1
s bsds+Kt

Z t

0

K−1
s σsdW

H
s

Let us further define the stochastic process

ηs =

Z t

0

σsK
−1
s dWH

s

and the function

f(t, η) = xKt +Kt

Z t

0

K−1
s bsds+Ktη

We see that f(t, ηt) = Xt. We now apply the fractional Itô lemma on the function f(t, η).

We have that
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∂f

∂t
(t, η) = δtf(t, η) + bt

∂f

∂η
(t, η) = Kt

∂2f

∂η2
(t, η) = 0

A straightforward application of fractional Itô’s lemma yields

f(t, ηt) = f(0, 0) +

Z t

0

(δsf(s, ηs) + bs)ds+

Z t

0

σsdW
H
s

or equivalently

Xt = x+

Z t

0

(δsXs + bs)ds+

Z t

0

σsdW
H
s .

This concludes the proof.

We may also state the following:

Proposition 23 The cash-balance process is a Gaussian process with mean

mt = xKt +Kt

Z t

0

bsK
−1
s ds

and variance

Vt = K2
t

Z t

0

Z s

0

σuσsK
−1
u K−1

s φ(u, s)duds

where

Kt = exp(

Z t

0

δsds)

and

φ(u, s) = H(2H − 1) | u− s |2H−2 .

Proof: The proof follows using the properties of the stochastic integral over fractional

Brownian motion.
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The mean and the variance can be computed using special functions for the particular

case of constant parameters, δs = δ, bs = b.

2.2 A partial differential equation for the ruin prob-

ability at a given date

We are interested in the derivation of the ruin probability at a given date P (Xt ≤ 0 |

X0 = x). We will show in this section that this ruin probability can be determined by

the solution of a linear parabolic partial differential equation. The analysis follows the

lines of Brody, Syroka and Zervos (2002) where the value of a weather derivative whose

underlying (the temperature) is modelled by a fractional Brownian motion is expressed

through the use of a partial differential equation. We have the following proposition:

Proposition 24 Assume that H > 0.5 and σs has no singularities. The ruin probability

at a given date

u(t, x) := P (Xt ≤ 0 | X0 = x)

satisfies the following parabolic partial differential equation (Cauchy problem)

−∂u
∂τ
+ (δt−τx+ bt−τ)

∂u

∂x
+Kt−τσt−τ

µZ t−τ

0

φ(s, t− τ)σsK
−1
s ds

¶
∂2u

∂x2
= 0 (2.3)

u(0, x) = 1{x≤0}

Remark 1 It is useful to make a comment on the meaning and use of the above equation.

Since the equation depends on the parameter t, the solution of the equation is a function

u(τ , x) = u(τ , x; t). The ruin probability at time t, given that the initial capital is x is

the solution of this equation calculated at τ = t, i.e u(t, x) = u(t, x; t). That means that

fixing t we have to solve the equation for u(τ , x) = u(τ , x; t) and then take the limit as

τ → t.
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Proof : Consider the function

g(τ 0, η; t) = w(t− τ 0, f(τ 0, η))

where

f(τ 0, η) = xKτ0 +Kτ0

Z τ0

0

K−1
s βsds+Kτ0η.

We now apply the fractional Itô formula to g(τ 0, ητ0; t) for τ 0 taking values between

τ 0 = 0 and τ = t. Note that t is considered as a fixed parameter while τ 0, ητ0 are

considered as variables.

Since

∂g

∂τ 0
= −∂w

∂τ
+ (δτ0f(τ 0, η) + bτ0)

∂w

∂x
∂g

∂η
=

∂w

∂x
Kτ0

∂2g

∂η2
=

∂2w

∂x2
K2

τ0
,

where we consider w = w(τ , x), with τ = t− τ 0, we see that

g(t, ηt) = g(0, 0) +

Z t

0

∂g

∂τ 0
(τ 0, ητ0)dτ 0 +

Z t

0

∂g

∂η
(τ 0, ητ0)στ0K

−1
τ0 dW

H
τ0

+

Z t

0

∂2g

∂η2
(τ 0, ητ0)στ0K

−1
τ0

µZ τ0

0

φ(s, τ 0)σsK
−1
s ds

¶
dτ 0 (2.4)

where

φ(s, t) = H(2H − 1) | s− t |2H−2 .

We observe that

g(t, ηt) = w(0,Xt), g(0, x) = w(t, x)
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Thus, equation (2.4) assumes the form

w(0, Xt) = w(t, x) +

Z t

0

µ
−∂w
∂τ

+ (δτ0f + bτ0)
∂w

∂x
+Kτ0στ0

µZ τ0

0

φ(s, τ 0)σsK
−1
s ds

¶
∂2w

∂x2

¶
dτ 0

+

Z t

0

∂w

∂x
dWH

τ0

We now take expectations and use the properties of the stochastic integral to obtain

E[w(0, Xt)] = w(t, x)

+E[

Z t

0

µ
−∂w
∂τ

+ (δτ0f + bτ0)
∂w

∂x
+Kτ0στ0

µZ τ0

0

φ(s, τ 0)σsK
−1
s ds

¶
∂2w

∂x2

¶
dτ 0] (2.5)

We rephrase the ruin probability as

P (Xt ≤ 0 | x) = u(t, x) = E[1{Xt≤0}]

and add this to equation (2.5) to obtain

E[w(0,Xt)] + u(t, x) = w(t, x) +E[1{Xt≤0}] +

E[

Z t

0

µ
−∂w
∂τ

+ (δτ0f + bτ0)
∂w

∂x
+Kτ0στ0

µZ τ0

0

φ(s, τ 0)σsK
−1
s ds

¶
∂2w

∂x2

¶
dτ 0] (2.6)

where inside the integrals w := w(t − τ 0, Xτ0) = w(τ ,Xτ0). If we choose w to be the

solution of the PDE

−∂w
∂τ

+ (δτ0f + bτ0)
∂w

∂x
+Kτ0στ0

µZ τ0

0

φ(s, τ 0)σsK
−1
s ds

¶
∂2w

∂x2
= 0

with w(0, x) = 1{x≤0} we see that u(t, x) = w(t, x). Observing that the coefficients of the

equation are calculated in τ 0 whereas w is calculated in τ := t− τ 0 we may redefine time
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so as to express this equation in the equivalent form

−∂w
∂τ

+ (δt−τx+ bt−τ )
∂w

∂x
+Kt−τσt−τ

µZ t−τ

0

φ(s, t− τ)σsK
−1
s ds

¶
∂2w

∂x2
= 0

w(0, x) = 1{x≤0}

This concludes the proof of the proposition. ¤
We may further obtain a PDE for the computation of the ruin probability at a given

date

u(t, y; s, x) := P (Xt ≤ y | Xs = x).

We have the following proposition:

Proposition 25 The ruin probability at a given date

u(t, x; s, y) := P (Xt ≤ y | Xs = x)

satisfies the following parabolic partial differential equation (Cauchy problem)

−∂w
∂τ

+ (δt+s−τx+ bt+s−τ)
∂w

∂x
+Kt+s−τσt+s−τ

µZ t+s−τ

s

φ(s
0
, t+ s− τ)σs0K

−1
s0
ds

0
¶
∂2w

∂x2

(2.7)

= 0

w(s, x) = 1{x≤y}

in the sense that

u(t, x; s, y) = w(t, x).

Proof: We may show that

Xt = K̄s,tx+Kt

∙Z t

s

K−1
s0
bs0ds

0
+

Z t

s

K−1
s0
σs0dW

H
s
0

¸
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where

K̄s,t = exp(

Z t

s

δs0ds
0
).

We now apply the fractional Itô formula to the function

g(τ , ητ) = w(t+ s− τ , f(τ , ητ)

where

f(τ , η) = xK̄s,τ +Kτ

Z t

s

K−1
s0
bs0ds

0
+Kτητ

ητ =

Z t

s

K−1
s0
σs0dW

H
s0

The rest follows as in the proof of the previous proposition.

Remark 2 The quantity P [infs∈[0,T ]Xs < 0 | X0 = x] is proposed in the literature as a

measure for the ruin probability. The ruin probability at a given date we calculate in our

model may serve as a lower bound for this quantity and may thus serve as an alert to

the regulating authority of the company. In Norberg (1999) a partial differential equation

was obtained for this quantity as well using the Markovian property of the Brownian

motion driving the liabilities. However, in the model with fractional Brownian motion,

the Markovian property is no longer valid and we do not expect similar results to hold.

We content here to perform a numerical evaluation of

P [ inf
s∈[0,T ]

Xs < 0 | X0 = x]

using Monte-Carlo simulation.

2.3 Solution of the PDE

We now deal with the solution of the PDE for the ruin probability at a given date.
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2.3.1 An analytical solution

The PDE for the ruin probability at a given date can be solved analytically in its most

general form. This facilitates immensely the calculation of the ruin probability at a given

date.

We start our presentation of the analytical solution of the PDE for the ruin probability

at a given date in the case where the coefficients δt, σt and bt are constants. This

facilitates the arguments. Then we provide the solution for the general case of time

dependent coefficients.

In the case of constant coefficients the time dependent factor multiplying the second

derivative term becomes

f(t) = eδtσ2H(2H − 1)
Z t

0

| t− s |2H−2 e−δsds

= σ2H(2H − 1)
Z t

0

s2H−2eδsds

= σ2H(2H − 1)
∞X
n=0

δn

n!

t2H−1+n

2H − 1 + n

= σ2H(2H − 1)(−1)2H−1δ1−2Hγ(2H − 1,−δt) (2.8)

where γ(z, a) is the incomplete gamma function, see for instance Lebedev (1972). In this

case we may obtain an expression for the ruin probability in terms of the complementary

error function. We have the following proposition.

Proposition 26 In the case where δt, σt, bt are constants the ruin probability may be

expressed as

P (Xt ≤ 0 | X0 = x) =
1√
π
erfc(k(t, x))

where

k(t, x) =
eδt(δx+ b)− bp

2T (t)
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with

T (t) = 2δ2
Z t

0

f(t− t
0
1)e

2δt
0
1dt

0
1.

Proof: We proceed to the solution of the PDE

−∂w
∂t1

+ (δx+ b)
∂w

∂x
+ f(t− t1)

∂2w

∂x2
= 0

with initial conditionw(0, x) = 1{x≤0}. We will use the change of variables (t, x)→ (T,X)

where ⎧⎨⎩ X = eδt1(δx+ b)

T = t1

Since

∂

∂x
= δeδt

∂

∂X
= δeδT

∂

∂X
,

∂2

∂x2
= δ2e2δt

∂2

∂X2
= δ2e2δT

∂2

∂X2
,

∂

∂t1
= δeδt(δx+ b)

∂

∂X
+

∂

∂T
= δX

∂

∂X
+

∂

∂T

the PDE becomes in the new variables

−∂w
∂T

+ δ2f(T )e2δT
∂2w

∂X2
= 0

By further defining the new set of variables⎧⎨⎩ X
0
= X

T
0
= 2δ2

R T
0
e2δtf(t− t1)dt1

we see that the PDE assumes the form of the heat equation

− ∂w

∂T 0 +
1

2

∂2w

∂X 02
= 0
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with initial condition w(0,X
0
) = 1{X0≤b}. This can be solved using the Green’s function

(heat kernel) for the diffusion equation G(X
0 − Y, T

0
). The solution is given by the

integral formula

w(T
0
,X

0
) =

Z ∞

−∞
G(X

0 − Y, T
0
)w(0, Y )dY

where

G(X
0 − Y, T

0
) =

1√
2πT 0

exp

µ
−(X

0 − Y )2

2T 0

¶
and w(0, Y ) = 1{Y≤b}. Using the integral formula

w(T
0
,X

0
) =

Z b

−∞

1√
2πT 0

exp

µ
−(X

0 − Y )2

2T 0

¶
dY

The last integral may be expressed in terms of the complementary error function as

follows

w(T
0
,X

0
) =

1√
π
erfc(

X
0 − b√
2T 0

)

and returning to the original variables we may find that

w(t1, x) =
1√
π
erfc(k(t1, x),

k(t1, x) =
eδt1(δx+ b)− b√

2T 0

T
0
= 2δ2

Z t1

0

f(t− t
0
1)e

2δt
0
1dt

0
1

The ruin probability is obtained setting t1 = t in the above expression. This completes

the proof. ¤

Proposition 27 Remark 3 The new variable T 0
may be expressed as a function of t1

in the form of series using the expression

T
0
= 2δ2σ2H(2H − 1)

∞X
n,m=0

2mδn+m

m!n!(n+ 2H − 1)t
n+m+2HBt1/t(m+ 1, n+ 2H)
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where by Bx(α, β) we denote the incomplete Beta function

Bx(α, β) =

Z x

0

sα−1(1− s)β−1ds

Setting t = t1 in the above series we may obtain a series expression for T (t) of the form

T (t) = 2δ2σ2H(2H − 1)
∞X

n,m=0

2mδn+m

m!n!(n+ 2H − 1)t
n+m+2HB(m+ 1, n+ 2H)

where by B(α, β) we denote the complete Beta function

B(α, β) =

Z 1

0

sα−1(1− s)β−1ds.

We now give the solution of the ruin probability PDE in the general case of time

dependent coefficients:

Proposition 28 The solution of the ruin probability PDE in the general case is given

in the form

u(t, x) =

Z 0

−∞

1√
2T 0

exp

µ
−(X

0 − Y )2

2T 0

¶
dY =

1√
π
erfc

µ
X

0

√
2T 0

¶

where

X
0
= exp

µZ t

0

δt−sds

¶
x+

Z t

0

bt−sexp(

Z s

0

δt−s0ds
0
)ds

T
0
=

Z t

0

exp

µZ t1

0

2δt−sds

¶
f(t− t1)dt1

f(t− t1) = Kt−t1σt−t1

µZ t−t1

0

φ(s, t− t1)σsK
−1
s ds

¶
(2.9)

Proof: As before we seek for a new set of variables in which the PDE assumes the
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form of the heat equation. To this end we try the new set of variables⎧⎨⎩ X = f1(t1)x+ f2(t1)

T = t1

where f1 and f2 are functions to be specified. Choosing f1 and f2 to be the solutions of

the differential equations

−df1
dt1
(t1) + δt−t1f1(t1) = 0

−df2
dt1

+ bt−t1f1(t1) = 0

we see that in the new coordinates the equation becomes

− ∂u

∂T
+ f1(t1)

2f(t− t1)
∂2u

∂X2
= 0 (2.10)

where f1 and f2 can be readily found from the solution of the above ODEs as

f1(t1) = exp(

Z t1

0

δt−sds)

f2(t1) =

Z t1

0

bt−sexp(

Z s

0

δt−s0ds
0
)ds

Equation (2.10) can be reduced to a diffusion equation of the form

− ∂u

∂T 0 +
1

2

∂2u

∂X 02
= 0

through a further change of variables⎧⎨⎩ X
0
= X

T
0
= 2

R T
0
f1(t1)

2 f(t− t1) dt1

The solution of this equation can be given in terms of the Green’s function (heat kernel)
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for the diffusion equation in a way analogous to the constant coefficient case. ¤

Remark: Note that we use Lebedev’s (1972) convention for the complementary error

function

erfc(x) =

Z ∞

x

e−z
2

dz

To avoid confusion note that software packages such as e.g. Mathematica or Matlab use

a slightly different definition. These two are related by a simple scaling factor of 2√
π
.

2.3.2 Asymptotics

Using the well known asymptotic expansions for the error function (see e.g. Lebedev,

1972) we may obtain asymptotics for the probability of ruin for various limiting cases of

interest.

One particularly interesting case is the limit of large initial capital x → ∞. In the

constant coefficients case for example we have

P (Xt ≤ 0 | X0 = x) ' 1√
π
exp(−k(t, x)2)

∙
1

2k(t, x)
− 1

22k(t, x)3
+ ...

¸

From that we see that the ruin probability decreases as exp(−λx2) for large x, for some

properly chosen constant λ. This is in accordance with the results obtained in Norberg

(1999) for the Brownian motion case.

Of interest are also the large time asymptotics. The case of general H is complicated

to handle (due to the complicated form of the integral defining T
0
), but some insight can

be obtained by studying the special cases H = 1/2 and H = 1 (see next section).

Finally of interest is the asymptotic formulae for the ruin probability as the interest

force tends to 0 (δ → 0). When 1
2
< H < 1 and δ → 0 we have from the asymptotics of

the general solution that

lim
δ→0

u(t, x) =
1

2

∙
1− Φ

µ
tb+ x

tHσ
√
2

¶¸
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2.3.3 Two special cases

We now provide results for two special values for the Hurst parameter H. We will only

consider the constant coefficient case.

The case of Brownian motion (H = 1/2)

In the case H = 1/2 the only term in the series (2.8) that survives is the term corre-

sponding to n = 0. This gives f(t) = σ2

2
which is a constant.

Then the PDE for the ruin probability becomes

−∂w
∂t1

+ (δx+ b)
∂w

∂x
+

σ2

2

∂2w

∂x2
= 0

w(0, x) = 1{x≤0}

The ruin probability u(t, x) = w(t, x). This is the same equation as the one derived by

Norberg (1999) for the case of Brownian motion driven liabilities.

Using the consecutive transformations⎧⎨⎩ X = eδt1(δx+ b)

T = t1

and ⎧⎨⎩ X
0
= X

T
0
=
R T
0
δ2σ2e2δtdt = δσ2

2
(e2δT − 1)

we see that the equation transforms to

− ∂w

∂T 0 +
1

2

∂2w

∂X 02
= 0
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The initial condition is

w(t1 = 0, x) = 1{x≤0}

which translates to

w(T
0
= 0,

X − b

δ
) = 1{X−b

δ
≤0} = 1{X≤b}

The general solution to this equation is

w(X
0
, T

0
) =

Z ∞

−∞

1√
2πT 0

exp

µ
−(X

0 − Y )2

2T 0

¶
1{Y≤b}dY

=
1√
π

Z ∞

k

exp(−z2)dz = 1√
π
erfc(k)

where

k = k(T
0
, X

0
) =

X − b√
2T 0

or in terms of the original coordinates

k = k(x, t) =
1√
δσ

eδt(δx+ b)− b√
e2δt − 1

It is interesting to look at the limiting behaviour of the above formula.

t→ 0 In this case

k(x, t) ' x

σ
√
t

and

u(x, t) ' 1√
π
erfc

µ
x

σ
√
t

¶
The limiting behaviour is different depending on whether x is posiitve or negative.
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t→∞. In this case

k(x, t) '
√
2

σ
√
δ
(δx+ b− be−2δt)

so that

u(x, t) ' 1√
π
erfc

Ã √
2

σ
√
δ
(δx+ b− be−2δt)

!

The case H = 1

In the case H = 1 we have

f(t) = eδtσ2
Z t

0

e−δsds =
σ2

δ
(eδt − 1)

The equation for the ruin probability becomes

−∂w
∂t1

+ (δx+ b)
∂w

∂x
+

σ2

δ
(eδ(t−t1) − 1)∂

2w

∂x2

and the ruin probability is u(t, x) = w(t1 = t, x).

We perform the consecutive change of variables

X = eδt1(δx+ b)

T = t1

and

X
0
= X

T
0
= 2δσ2

Z T

0

(eδ(t−T ) − 1)e2δTdT = 2σ2
½
(eδT − 1)eδt − e2δT − 1

2

¾

In the new variables the equation becomes

− ∂w

∂T 0 +
1

2

∂2w

∂X 02
= 0
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with initial condition w(t1 = 0, x) = 1{x≤0}, or in the new variables

w(T
0
= 0, X

0
) = 1

{X
0−b
δ
≤0}

= 1{X0≤b}.

Using the integral formula for the solution of the diffusion equation we find that

w(T
0
, X

0
) =

1√
2T 0

Z b

−∞
exp

µ
−(X − Y )2

2T 0

¶
dY =

1√
π

Z ∞

X
0−b√
2T
0

exp(−z2)dz

or in terms of the original variables

w(t1, x) =
1√
π

Z ∞

k(t1,x)

exp(−z2)dz = 1√
π
erfc(k(t1, x))

k(t1, x) =
eδt1(δx+ b)− b

2σ
q
(eδt1 − 1)eδt − (e2δt1−1)

2

The ruin probability u(t, x) = w(t, x) is obtained by setting t1 = t in the above formula.

We thus find

u(t, x) =
1√
π
erfc

⎛⎝ eδt(δx+ b)− b

2σ
q

1
2
e2δt − eδt + 1

2

⎞⎠ =
1√
π
erfc

µ
eδt(δx+ b)− b

σ
√
2(eδt − 1)

¶

Two limiting cases are interesting.

t→ 0. Then

k(t, x) ' x√
2σt

and

u(t, x) ' 1√
π
erfc

µ
x√
2σt

¶
t→∞. Then

k(t, x) =
1√
2σ
(δx+ b− be−δt)
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and

u(t, x) ' 1√
π
erfc

µ
1√
2σ
(δx+ b− be−δt)

¶
Finally we present the asymptotics for zero interest force in the H = 1 case. When

H = 1 and δ → 0 we have from the asymptotics of the general solution that

lim
δ→0

u(t, x) =
1

2

∙
1− Φ

µ
tb+ x

tσ
√
2

¶¸

2.4 Numerical treatment of the problem

In this section we propose some possible approaches to the numerical study of ruin

probabilities for our insurance business model.

2.4.1 Monte Carlo Method

As an alternative to the pde approach one can use the Monte Carlo method in order to

find the probability of ruin w(x, t). Furthermore since the Monte Carlo method attacks

the problem from a quite different point of view it can be used as an independent test of

the validity of the pde approach proposed here.

As we have seen the cash-balance process Xt is given by the solution of equations (2)

and (3). In order to implement the Monte Carlo method we simulate a large number M

of paths of Xt in the time interval [0, T ].We use for each path N = 2L, number of points.

Then the probability of ruin can be found as:

w(x0, T ) =
number of XT ≤ 0

M
.

In order to simulate the paths of fractional Brownian motion, we have used the

method of Wood and Chan (1994). Some other methods that could be used are the

methods described in Abry and Sellan (1996) and Norros, Mannersalo and Wang (1999),

and the references therein.
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2.4.2 Finite Difference Methods

As we have seen we have derived an analytical solution of the pde that governs the

ruin probability. Instead of using the analytical solution we could alternatively use the

finite difference method for the numerical solution of the pde. We have implemented the

full implicit finite difference method and the Crank-Nicolson finite difference method.

For the numerical solution of pdes using finite difference methods one can see Wilmott,

Dewynne and Howison (1993), Wilmott (1998), Smith (1985), Tavella and Randal (2000)

and Richtmyer and Morton (1967).

2.4.3 Numerical Results

In the following tables we present some numerical results using the analytic expressions,

the Monte Carlo method and the finite difference method. We consider the following

values for the parameters of the model. For the interest force we have assumed that

δ = 0.05, for the volatility in claims liabilities we assume that σ = 0.20, for the expected

gain per time unit due to a safety loading in the premium we assume that b = 0.10. The

parameters used for the implementation of the various numerical schemes are included

in the Appendix.

As an indication of the results obtained for the ruin probability using the various

methods proposed we present tables comparing the estimates for the ruin probability at

time T for different values of the initial capital X0 = 0, 0.5,−0.5.
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Table 2.1. Probability of Ruin for Initial Capital X0 = 0,at T = 100

H Exact MonteCarlo Implicit Crank −Nicolson

0.5 0.00084174 0.000867 0.00084170 0.00084169

0.6 0.0132523 0.0131667 0.01310549 0.01319379

0.7 0.060585 0.0605333 0.06097709 0.06110057

0.8 0.141854 0.145800 0.14438584 0.14459275

0.9 0.231166 0.234100 0.23129410 0.23160310

1 0.308538 0.309100 0.30000028 0.30017402

Table 2.2. Probability of Ruin for Initial Capital X0 = 0.5,at T = 100

H Exact Monte Carlo Implicit Crank −Nicolson

0.5 0.000042186 0.00003333 0.00004218 0.000042178

0.6 0.00274159 0.00316667 0.00270194 0.00272269

0.7 0.026191 0.02706667 0.02636487 0.02639296

0.8 0.0898221 0.09073300 0.09051296 0.09062079

0.9 0.178783 0.17716600 0.17352670 0.17379322

1 0.265707 0.26480000 0.24598212 0.24616236

Table 2.3. Probability of Ruin for Initial Capital X0 = −0.5,at T = 100

H Exact Monte Carlo Implicit Crank −Nicolson

0.5 0.00937525 0.009133 0.00937540 0.00937526

0.6 0.048428 0.04943333 0.04807283 0.04830152

0.7 0.123069 0.12323333 0.12391473 0.12414554

0.8 0.211218 0.20900000 0.21659835 0.21685958

0.9 0.291155 0.29193330 0.29843905 0.29873668

1 0.354146 0.35490000 0.35870696 0.35885493
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The following observation is of interest. For H = 1 and x = 0 the Monte-Carlo

approach gives the following results for the ruin probability as a function of time:

Table 2.4. The probability of ruin for H = 1 at x = 0 for different times.

T Exact Monte Carlo

1 0.308538 0.3094333

10 0.308538 0.3106333

100 0.308538 0.309100

It is interesting to see that this behaviour, i.e. the fact that the ruin probability

is independent with respect to variations in time is predicted by the exact analytical

solution for H = 1. The case H = 1 is a limiting situation for which the results of this

work are questionable since the theory of stochastic integration with respect to fractional

Brownian motion used here is strictly valid for values of the Hurst index in the interval

(0, 1). However, the fact that this behaviour is reproduced by the Monte Carlo simulation

poses questions on the validity of the theory in the limit H = 1. This is a point which

probably deserves further attention.

For the Monte Carlo we have used M=30000 paths and L=14. For the Implicit

method for H=0.5 we took initial capital steps = 5000, time steps = 50000, X_min=-

10,X_max=10, and for the Crank - Nicolson, for H = 0.5, we took initial capital steps

= 5000, time steps = 10000, Xmin = −10, Xmax = 10. For the Implicit method for H ∈

(0.5, 1) we took initial capital steps = 1000, time steps = 1000, Xmin = −10, Xmax = 10.

For the Crank - Nicolson method for H=0.5, we used initial capital steps=5000, time

steps=10000, Xmin=-10, Xmax=10. For the Implicit method for H ∈ (0.5, 1) we used

initial capital steps=1000, time steps=1000, Xmin=-10, Xmax=10.

For the Crank - Nicolson method for H ∈ (0.5, 1), we have some some singularities

because of the discontinuity of the probability of ruin at x=0, and thus we used for the

first five steps the implicit finite difference method and for the rest steps the Crank -

Nicolson method. We have used initial capital steps=1000, time steps=1000, Xmin=-10,
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Xmax=10. For the Implicit method for H = 1 we used initial capital steps=2000, time

steps=2000, Xmin=-10, Xmax=10. For the Crank - Nicolson method for H = 1,we used

for the first five steps the implicit finite difference method and for the rest steps the

Crank - Nicolson method. We have used initial capital steps=1000, time steps=1000,

Xmin=-10, Xmax=10.

We now present graphically the dependence of probability of ruin with the Hurst

index, the initial capital and time.

In figure 2-1 we present the variation of the ruin probability at x = 0 and time T = 100

with the Hurst exponent. We see that as H is taking bigger values the probability of ruin

is also growing. This result indicates the effect of long time correlations in the probability

of ruin for the insurance business.

In figure 2-2 we present the variation of the probability of ruin at time T = 100 as

a function of the initial capital The probability of ruin decreases as the initial capital

increases as is expected. The Hurst index is taken to be H = 0.7.

In figure 2-3 we present the variation of the probability of ruin with time for initial

capital equal to x = 0 and H = 0.7. As time increases the probability of ruin decreases.

In all the above figures we have taken δ = 0.05, σ = 0.20, b = 0.10.

As a final application of the simulation approach we present the calculation of a

slightly different form of the ruin probability P ∗ = P [infs∈[0,T ]Xs < 0 | X0 = x]. We

have taken 10000 paths and 214 points in each path, for initial capital X0 = 0, 0.25, 0.5.

The results are shown in Table 5. We observe that for initial capital zero as H increases

the probability of ruin in a finite time decreases. For initial capital 0.25, 0.50 we see that

as H increases the probability of ruin in a finite time is also increasing in general.Using

Monte Carlo simulation we have calculated the P [infs∈[0,T ]Xs < 0|X0 = x]. We have

taken 10000 paths and 214 points in each path, for initial capital X0 = 0, 0.25, 0.5. We

see that for initial capital zero as H increases the probability of ruin in a finite time

decreases. For initial capital 0.25, 0.50 we see that as H increases the probability of ruin

in a finite time is also increasing in general.
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Table 2.5. The probability of ruin P ∗x = P [infs∈[0,T ]Xs < 0 | X0 = x] for different

values of H and x.
H P ∗0 P ∗0.25] P ∗0.5

0.5 0.941 0.228 0.047

0.6 0.915 0.232 0.078

0.7 0.871 0.263 0.126

0.8 0.798 0.292 0.189

0.9 0.671 0.314 0.244

1 0.310 0.285 0.287

2.4.4 Conclusions and extensions

In this chapter we have derived a linear parabolic partial differential equation for the ruin

probability of an insurance firm with long correlated claims, modelled by a fractional

Brownian motion with Hurst exponent 1/2 < H < 1. The equation has been solved

and an explicit expression for the ruin probability has been derived in terms of error

functions. Alternatively, this viewpoint offers a convenient way of calculating the ruin
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probability using standard finite difference schemes for the solution of partial differential

equations.

The derivation of a differential equation is interesting in its own right for the follow-

ing reason. If in the model the liability was driven by a Brownian motion then using

the martingale properties and the Markov properties of Brownan motion the celebrated

Feynman-Kac representation of the solution of partial differential equations can be ob-

tained (see e.g. Mao (1997)). Through the use of the Feynman-Kac formula one may

derive a PDE for the ruin probability. This was the original approach of Norberg (1999).

However, in the case where liabilities are driven by a fractional Brownian motion the va-

lidity of a Feynman-Kac representation is no longer straighforward, since the fractional

Brownian motion is neither a semimartingale, nor a Markov process.

The model may be generalized along the following directions:

An obvious generalization would be to include stochasticity in the interest force as

well. This would lead to a more complicated linear stochastic differential equation driven

by fractional Brownian motions. In this case the derivation of an equation for the ruin

probability is possible but its form will be different and most probably it will not be

expressible in local form. Also, since the fractional Brownian motions driving the liabili-

ties and the interest force will, in principle, have different Hurst exponents the fractional

stochastic calculus set up proposed by Duncan et al may be insufficient and we may have

to resort to the theory of stochastic integration on fractional Brownian motion proposed

by Elliot and Van der Hoek (2003), where mixtures of fractional Brwonian motions of

different Hurst exponents may be used. Another interesting direction towards the gener-

alization of the model is the inclusion of Poisson jumps in the liability process. This will

turn the partial differential equation for the ruin probability into a partial integrodiffer-

ential equation which may be treated using standard techniques for such problems.

61



Chapter 3

Stochastic Control and Insurance

In this chapter we formulate a simple problem of insurance control for liabilities of diffu-

sion type, driven by fractional Brownian motion. More specifically we propose a model

of insurance control for an insurance business facing liabilities presenting long term cor-

relations. The long term correlations are modelled with the use of a fractional Brownian

motion with Hurst exponent H. The insurance firm invests in an interest account which

is assumed to be deterministic. The problem reduces to a version of the fractional linear

quadratic regulator for which analytic solutions have recently been obtained.

Let us mention a few applications of stochastic control in insurance. Hipp and Taksar

(1999) consider an insurance portfolio, where investment in new business is used to min-

imize the probability of ruin for the total position. This is a stochastic control problem

for which solutions can be characterized and computed when the risk processes for old

and new business are modelled by compound Poisson processes. Hipp and Plum (2000)

also consider a risk process modelled as compound Poisson process. The ruin probability

of the risk process is minimized by the choice of a suitable investment strategy for a

capital market index. The optimal strategy is computed using the Bellman equation.

They proved the existence of a smooth solution and a verification theorem, and give

expicit solutions in some cases with exponential claim size distribution, as well as numer-

ical results in a case with Pareto claim size, where the optimal amount invested is not
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bounded. Hipp and Vogt (2001) also consider a risk process modelled as a compound

Poisson process. They found the optimal dynamic excess of loss reinsurance strategy to

minimize infinite time ruin probability, and proved the existence of a smooth solution of

the corresponding Hamilton-Jacobi-Bellman equation as well as a verification theorem.

They also gave numerical examples with exponential, shifted exponential, and pareto

claims. One can see also Schmidli (2004a), and Schmidli (2004b) for related work. Usu-

ally the functional that is chosen to be minimized in the above works is the probability

of ruin of the insurance firm. We choose to minimize the distance of the (final) capital

target of the insurance firm from a prespecified capital target. One can see for more on

applications of optimal control in finance the classical papers of Merton (1969), Merton

(1971), and Merton (1990). One can see also Karatzas, Lehoczky and Shreve (1987)

and Korn and Korn (2000). For optimal trading under constraints and its relation to

derivatives pricing one can see Cvitavic (1997). For more on forward backward stochas-

tic differential equations and applications in finance and specifically on an alternative

derivation of the Black-Scholes option pricing formula one can see also Ma and Yong

(1999).

Before proceeding to the control problem let us introduce here the notion of the

fundamental martingale from Norros, Valkeila and Virtamo (1999). The fundamental

martingale associated with fractional Brownian motion, denoted with MH
t , is the sto-

chastic process defined by

MH
t =

Z t

0

kH(t, s)dB
H
s (3.1)

where

kH(t, s0 = k−1H s1/2−H(t− s)1/2−H ;

kH = 2HΓ(3/2−H)Γ(H + 1/2)

and it is a Gaussian martingale. The quadratic variation process of this martingale is
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given by

< MH >t= wH(t)

wH(t) = λ−1H t2−2H ; λH =
2HΓ(3− 2H)Γ(H + 1/2)

Γ(3/2−H)

Furthermore, for a suitably defined deterministic function c(t) the following equation

holds Z t

0

c(s)dBH
s =

Z t

0

Kc
H(t, s)dM

H
s

where

Kc
H(t, s) = H(2H − 1)

Z t

s

c(r)rH−1/2(r − s)H−3/2dr, 0 ≤ s ≤ t

The above formula can also be ‘inverted’, in the sense that for a suitably regular deter-

ministic function f(t) Z t

0

f(s)dMH
s =

Z t

0

Lf
H(t, s)dB

H
s

where

Lf
H(t, s) = −k−1H s1/2−H

d

ds

Z t

s

(r − s)1/2−Hf(r)dr

3.1 The model

Let us consider the same model for an insurance firm as we did in the previous chapter:

The firm is characterized by its value at time t, which is assumed to be a stochastic

process Xt. The firm invests its value Xt to an interest account with logarithmic interest

force δt. The interest is assumed to be a deterministic function of time. This assumption

is not unreasonable for models valid for short times. The firm has to face liabilities Bt

which are taken to be of the form

dBt = −btdt− σt dW
H
t
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where WH
t is a fractional Brownian motion with Hurst exponent H and bt, σt are de-

terministic functions of time. The cash balance equation for the firm at time t has the

following form

Xt = e∆t(X0 −
Z t

0

e−∆tdBt)

where

∆t =

Z t

0

δsds

The cash-balance process is the solution of a stochastic differential equation, driven

by fractional Brownian motion. The following proposition has been proved in chapter 2.

The cash-balance processXt is the solution of the fractional Ornstein-Uhlenbeck equation

dXt = (δtXt + bt)dt+ σ dWH
t , (3.2)

X0 = x (3.3)

We now assume that the firm may control its cash balance process by asking its

customers for input utin the time interval (t, t+ dt). This input ut may be considered as

a control parameter which allows the firm to reach a desired target A at a specified time

T . This input will modify the liabilities equation to

dBt = −btdt− utdt+ σt dW
H
t

Then the cash-balance equation is equivalent to the controlled fractional Ornstein-Uhlenbeck

equation

dXt = (δtXt + bt + ut)dt+ σ dWH
t , (3.4)

X0 = x (3.5)

The control ut will have to be chosen in such a manner as to minimize some functional.
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A reasonable choice for such a functional will be

J(u) =
1

2
E

∙
qT (XT −A)2 +

Z T

0

r(t)u2tdt

¸

This choice for the functional ensures the minimization of the distance from the final

target A but at the same time this has to be done in such a way as to keep the total cost

over the interval [0, T ] as low as possible. The function r(t) is some deterministic weight

function assigning some time dependent weight on the costs of the input. One reasonable

choice could be r(t) = e∆t, i.e. we wish to minimize the discounted cost of the input.

Therefore, our model takes the following form

minJ(u) :=
1

2
E

∙
qT (XT −A)2 +

Z T

0

r(t)u2tdt

¸
subject to (Problem A)

dXt = (δtXt + bt + ut)dt+ σ dWH
t ,

X0 = x

Other choices of the cost functional may be reasonable. For instance one may assume

that the objective of the firm could be to keep as close as possible to some prescribed

target path At. Such a situation would require the modification of the cost functional to

minJ(u) :=
1

2
E

∙
qT (XT −AT )

2 +

Z T

0

qt(Xt −At)
2dt+

Z T

0

r(t)u2tdt

¸

where qt is some deterministic function modelling the cost of deviation from the desired

target path at different times. The associated model would now take the form

minJ(u) :=
1

2
E

∙
qT (XT −A)2 +

Z T

0

qt(Xt −At)
2dt+

Z T

0

r(t)u2tdt

¸
subject to (Problem B)

dXt = (δtXt + bt + ut)dt+ σ dWH
t ,

X0 = x
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3.2 Solution of the control problem

We now present an analytic solution of the control problem. The problem is treated in

two ways. One way is through a completion of squares method, inspired from the recent

work of Kleptsyna, Le Breton and Viot (2002) on the linear-quadratic regulator problem

under a fractional Brownian motion. The second method is through the application of a

stochastic maximum principle for fractional brownian motion. This method was proposed

for general control problems by Biagini, Hu, Oksendal and Sulem (2002). Both methods

use the method of fractional forward backward stochastic differential equations for the

determination of the control policy.

3.2.1 The completion of squares method

We first show that the optimal policy can be given by the solution of a forward backward

stochastic differential equation driven by fractional Brownian motion.

Proposition 29 The control that minimizes J(u) over UH is given by ut = −1rPt where

Pt is given by the solution of the forward-backward stochastic differential equation

dXt = (δtXt + bt −
1

r
Pt)dt+ σ dWH

t ,

dPt = {−δtPt − qt(Xt −At)}dt+ βtdM
H
t

X0 = x

PT = qT (XT −AT )

where MH
t is the fundamental martingale associated with fractional Brownian motion

and βt is some stochastic process.
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Proof: Assume that we look for a solution of the form ut = −f1,t
rt
Pt where Pt solves

the backward stochastic differential equation

dPt = (−g1,tPt + g2,tXt + g3,t)dt+ βtdM
H
t (3.6)

PT = ΛTXT +RT

where f1,t, gi,t, i = 1, 2, 3 are to be specified and ΛT , RT are random variables to be

specified. Let u∗ be any control and u be the assumed control. Then

J(u∗)− J(u) =
1

2
E{qT [(X∗

T −AT )
2 − (XT −AT )

2]

+

Z T

0

(qt[(X
∗
t −At)

2 − (Xt −At)
2] + rt[u

∗2
t − u2t ])dt}

Following Kleptsyna, Le Breton and Viot (2002) we use the equality

y∗2 − y2 = (y∗ − y)2 + 2(y∗ − y)y

to write

(X∗
T −AT )

2 − (XT −AT )
2 = (X∗

T −XT )
2 + 2(X∗

T −XT )(XT −AT ),

(X∗
t −At)

2 − (Xt −At)
2 = (X∗

t −Xt)
2 + 2(X∗

t −Xt)(Xt −At),

u∗t
2 − ut

2 = (u∗t − ut)
2 + 2(u∗t − ut)ut

and thus J(u∗)− J(u) = I1 + I2 where

I1 =
1

2
E

½
qT (X

∗
T −XT )

2 +

Z T

0

[qt(X
∗
t −Xt)

2 + rt(u
∗
t − ut)

2]dt

¾
> 0

I2 = E

½
qT (XT −AT )(X

∗
T −XT ) +

Z T

0

[qt(Xt −At)(X
∗
t −Xt)− f1,tPt(u

∗
t − ut)]dt

¾
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where we have used the ansatz ut = −f1,t
rt
Pt. Let us rewrite the integrand in I2 as

I
0
2 = (X

∗
t −Xt)[qt(Xt −At) + g1,tPt]− Pt[g1,t(X

∗
t −Xt) + f1,t(u

∗
t − ut)]

Taking into account that Pt solves the BSDE (3.6) and Xt solves the forward equation

dXt = (δtXt + bt + ut)dt+ σ dWH
t ,

X0 = x

and that

dX∗
t = (δtX

∗
t + bt + u∗t )dt+ σ dWH

t ,

X∗
0 = X0 = x

we see that

d(X∗
t −Xt) = dX∗

t − dXt = [δt (X
∗
t −Xt) + (u

∗
t − ut)] dt

and if we take g1,t = δt, f1,t = 1 it is

I
0
2 = (X

∗
t −Xt)[qt(Xt −At) + δtPt]− Ptd(X

∗
t −Xt)

1

dt

Our aim is to turn this expression into a perfect differential. To this end we have to

choose

−dPt = {qt(Xt −At) + δtPt}dt− βtdM
H
t

PT = ΛTXT +RT
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that is we have to take g2,t = −qt,g3,t = qtAt. With this choice

I
0
2dt = −(X∗

t −Xt)dPt − Ptd(X
∗
t −Xt) + βt(X

∗
t −Xt)dM

H
t

= −d((X∗
t −Xt)Pt) + βt(X

∗
t −Xt)dM

H
t

We now perform the integrations to get

TZ
0

I
0
2dt =

TZ
0

−d((X∗
t −Xt)Pt) +

TZ
0

βt(X
∗
t −Xt)dM

H
t

and

E

⎡⎣ TZ
0

I
0
2dt

⎤⎦ = E − [(X∗
T −XT ) (ΛTXT +RT )]

where we have used the fact that the expectation of the stochastic integral over a mar-

tingale is zero. We now observe that for the choice

ΛT = qT , RT = −AT qT

we get

I2 = E [qT (X
∗
T −XT )(XT −AT )− (X∗

T −XT ) (ΛTXT +RT )]

I2 = E [(X∗
T −XT )(qTXT − qTAT − ΛTXT −RT )] = 0

Thus if u is of the specified form where (Xt, Pt, βt) solves the given FBSDE we have that

J(u∗)− J(u) > 0 for any control u∗. This completes the proof. ¤
We now give the solution of the FBSDE which provides the optimal strategy.

Proposition 30 The solution of the FBSDE can be given in the the form:
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Pt = π(t)Xt − π(t)

Z t

0

σsdW
H
s +

Z t

0

γ(t, s)dMH
s + vt − qTAT (3.7)

βt = γ̄(t) = γ(t, t)

where the deterministic functions π(t), γ(t, s), vtsolve the ODEs

π̇ + 2δtπ −
π2

rt
+ qt = 0 (3.8)

γ̇ +

µ
δ − π

rt

¶
γ +

µ
δπ − 2π

2

rt
+ qt

¶
Kσ

H = 0

v̇t +

µ
δt −

π

rt

¶
vt +

µ
bt +

qTAT

rt

¶
π − qtAt − qTAT δt = 0

with final conditions:

π(T ) = qT

γ(T, s) = π(T )Kσ
H(T, s)

νT = 0

where

Kσ
H(T, s) = H(2H − 1)

TZ
s

σrH−
1
2 (r − s)H−

3
2dr, 0 6 s 6 T.

Proof: Assume that qT , AT are deterministic. The associated BSDE is
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dPt =
.
π(t)Xtdt+ π(t)dXt −

.
π(t)dt

tZ
0

σsdW
H
s

−π(t)σtdWH
t +

⎛⎝ tZ
0

.
γ(t, s)dMH

s

⎞⎠ dt+
−
γ(t)dMH

t +
.
υtdt

We substitute the ansatz for Pt in the FBSDEs and we have that

dPt = {−δtPt − qt(Xt −At)}dt+ βtdM
H
t

and if we substitute Ptwe have

dPt = {−δt

⎡⎣π(t)Xt − π(t)

tZ
0

σsdW
H
s +

tZ
0

γ(t, s)dMH
s + υt − qTAT

⎤⎦
−qt(Xt −At)}dt+ βtdM

H
t

and that

dXt = (δtXt + bt −
1

rt⎡⎣π(t)Xt − π(t)

tZ
0

σsdW
H
s +

tZ
0

γ(t, s)dMH
s + υt − qTAT

⎤⎦)dt
+σ dWH

t

and then
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dPt =
.
π(t)Xtdt+ π(t)dXt −

.
π(t)dt

tZ
0

σsdW
H
s

−π(t)σtdWH
t +

⎛⎝ tZ
0

.
γ(t, s)dMH

s

⎞⎠ dt+
−
γ(t)dMH

t +
.
υtdt

=
.
π(t)Xtdt+ π(t)δtXtdt+ btπ(t)dt

− 1
rt
π(t)

⎡⎣π(t)X(t)− π(t)

tZ
0

σsdW
H
s +

tZ
0

γ(t, s)dMH
s + υt − qTAT

⎤⎦ dt
+σtπ(t)dW

H
t −

.
π(t)dt

tZ
0

σsdW
H
s − π(t)σtdW

H
t

+

⎛⎝ tZ
0

.
γ(t, s)dMH

s

⎞⎠ dt+
−
γ(t)dMH

t +
.
υtdt

From

dPt = {−δt

⎡⎣π(t)Xt − π(t)

tZ
0

σsdW
H
s +

tZ
0

γ(t, s)dMH
s + υt − qTAT

⎤⎦
−qt(Xt −At)}dt+ βtdM

H
t

if we write it analytically we have that

dPt = −δtπ(t)Xtdt+ π(t)δt

tZ
0

σsdW
H
s dt− δt

tZ
0

γ(t, s)dMH
s dt− δtυtdt

+δtqTATdt− qtXtdt+ qtAtdt+ βtdM
H
t

and thus by taking the coefficients of Xtdt we have
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−π(t)δt − qt =
.
π(t) + δtπ(t)−

1

rt
π2(t)

.
π(t) + 2δtπ(t)−

π2(t)

rt
+ qt = 0

By taking the coefficients of dMH
t we have

βt =
_
γ(t) = γ(t, t)

From the terms with dt we have

−δtυ(t) + δtqTAT + qtAt = btπ(t)−
1

rt
π(t)υ(t) +

1

rt
π(t)qTAT +

.
υ(t)

.
υ(t) + υ(t)

µ
δt −

π(t)

rt

¶
= −

µ
qTAT

rt
+ bt

¶
π(t) + δtqTAT + qtAt

If we write the
tZ
0

σsdW
H
s =

tZ
0

Kσ
H(t, s)dM

H
s

and from the terms with the integral with respect to the fundamental martingale we have

δtγ(t, s) +
1

rt
π2(t)Kσ

H(t, s)−
1

rt
π(t)γ(t, s)− .

π(t)Kσ
H(t, s) +

.
γ(t, s)− π(t)δtK

σ
H(t, s) = 0

.
γ(t, s) +

µ
δt −

π(t)

rt

¶
γ(t, s) +

µ
π2(t)

rt
− .
π(t)− π(t)δt

¶
Kσ

H(t, s) = 0

Using the
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2δtπ(t)−
π2(t)

rt
+ qt = −

.
π(t)

we have that

.
γ(t, s) +

µ
δt −

π(t)

rt

¶
γ(t, s) +

µ
π2(t)

rt
+ 2δtπ(t)−

π2(t)

rt
+ qt − π(t)δt

¶
Kσ

H(t, s) = 0

.
γ(t, s) +

µ
δt −

π(t)

rt

¶
γ(t, s) + (δtπ(t) + qt)K

σ
H(t, s) = 0

Thus we have found

.
π(t) + 2δtπ(t)−

π2(t)

rt
+ qt = 0

.
υ(t) + υ(t)

µ
δt −

π(t)

rt

¶
+

µ
qTAT

rt
+ bt

¶
π(t)− δtqTAT + qtAt = 0

.
γ(t, s) +

µ
δt −

π(t)

rt

¶
γ(t, s) + (δtπ(t) + qt)K

σ
H(t, s) = 0

We assume that qt = 0 for t < T, δ is constant and rt = e−λt. In this case the equations

become

.

π(t) + 2δtπ(t)−
π2(t)

rt
= 0

.
γ(t, s) + (δt −

π(t)

rt
)γ(t, s) + δπ(t)Kσ

H(t, s) = 0

.
υ(t) + υ(t)

µ
δt −

π(t)

rt

¶
+

µ
qTAT

rt
+ bt

¶
π(t)− δtqTAT = 0

and for these equations we have the following final conditions that:

75



π(T ) = qT

γ(T, s) = π(T )Kσ
H(T, s)

υT = 0

Derivation of Final Conditions

The final conditions for the last two equations are obtained in the following way. At time

t = T, we have that

PT = π(T )X(T )− π(T )

TZ
0

σsdW
H
s +

TZ
0

γ(T, s)dMH
s + υT − qTAT

and also that PT = ΛTXT + RT , π(T ) = qT , ΛT = qT and RT = −AT qT . Thus the

following must hold:

−π(T )
TZ
0

σsdW
H
s +

TZ
0

γ(T, s)dMH
s + υT = 0,

and for this we must have that υT = 0 and

−π(T )
TZ
0

σsdW
H
s +

TZ
0

γ(T, s)dMH
s = 0

which becomes

76



−π(T )
TZ
0

Kσ
H(T, s)dM

H
s +

TZ
0

γ(T, s)dMH
s = 0

TZ
0

[−π(T )Kσ
H(T, s) + γ(T, s)] dMH

s = 0

−π(T )Kσ
H(T, s) + γ(T, s) = 0

and thus the final condition for γ is that

γ(T, s) = π(T )Kσ
H(T, s).

3.2.2 The maximum principle

We now provide a treatment of the problem with the use of the maximum principle.

According to Biagini, Hu, Oksendal and Sulem (2002) the key quantity in the study of

the problem is the Hamiltonian

H(t, x, u, p, q) = f(t, x, u) + b(t, x, u)p+ σ

Z T

0

Q(s)φH(s, t)ds

= −1
2
qt(x−At)

2 − 1
2
rtu

2
t + (δtx+ bt + u)p+ σ

Z T

0

Q(s)φH(s, t)ds

The adjoint process p satisfies the fractional backward SDE

dpt = −Hx(t, xt, ut, pt, qt)dt+QtdB
H
t

pT = gx(xT )

where g(xT ) is the terminal time part of the functional which is to be minimized ( in our

case g(xT ) = −12qT (xT − A)2). The maximum principle states that the optimal process
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(x̂, p̂, Q̂, û)is such that

H(t, x̂, û, p̂, Q̂) = max
v∈U

H(t, x̂, v, p̂, Q̂)

The maximization of the Hamiltonian is given by the solution of the equation ∂H
∂v
= 0

i.e. for v = p
rt
. For this choice we get

H(t, x̂, û, p̂, Q̂) = −1
2
qt(x−At)

2 +
1

2

p2

rt
+ (δtx+ bt)p+ σ

Z T

0

QsφH(s, t)ds

and the optimal process is the solution of the following fractional forward backward

stochastic differential equation

dxt =

µ
δtxt +

pt
rt
+ bt

¶
dt+ σdBH

t (3.9)

dpt = (qt(xt −At)− δtpt) +QtdB
H
t

x0 = x

pT = −qT (xT −A)

The optimal control is

û =
pt
rt

The above FBSDE is slightly different from the one derived in the previous subsec-

tion. The main difference comes from fact that the backward equation derived by the

maximum principle is driven by the fractional Brownian motion itself rather than by the

fundamental martingale. However, it can be shown quite easily that these two forms are

equivalent. Indeed, let us first define p = −P . In terms of the new variables (x, P, q)the
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FBSDE becomes

dxt =

µ
δtxt −

Pt

rt
+ bt

¶
dt+ σdBH

t

dpt = (−qt(xt −At)− δtPt)−QtdB
H
t (3.10)

x0 = x

PT = qT (xT −A)

and the optimal control will be

û = −Pt

rt

The above FBSDE is of the same form as the FBSDE derived by the completion of

squares technique with the slight difference that it is driven by the fractional Brownian

motion rather than the fundamental martingale. We will now show the equivalence

between these two forms.

Proposition 31 The solution (xt, pt, βt) of the FBSDE (3.9) can be used to derive a

solution (Xt, Pt, Qt) of FBSDE (3.10) by the relations

Xt = xt,

Pt = pt,

Qt = k−1H t1/2−H
d

dt

Z T

(r − t)1/2−Hβrdr

Alternatively, the solution (Xt, Pt, Qt) of the FBSDE (3.10) can be used to derive a so-

lution (xt, pt, βt) of the FBSDE (3.9) by the relations

xt = Xt,

pt = Pt,

βt = −H(2H − 1)
Z T

t

Qrr
H−1/2(r − t)H−3/2dr
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Proof: Using the integral form of the FBSDEs we see that in order to connect the

solutions of the (3.9) and (3.10) we need to find relations between the integrands such

that

−
Z T

t

QsdB
H
s =

Z T

t

βsdM
H
s

To make the connection we will use the property of the fundamental martingale rewritten

over the whole interval (0, T )with the use of characteristic functions. That is

Z T

t

csdB
H
s =

Z T

0

cs1[t,T ](s)dB
H
s

= H(2H − 1)
Z T

0

Z T

0

cr1[t,T ](r)r
H−1/2(r − s)H−3/21[s,T ](r)drdM

H
s

= H(2H − 1)
Z T

t

∙Z T

s

crr
H−1/2(r − s)H−3/2dr

¸
dMH

s

from which the claim follows. The other relations are proved using the property of the

fundamental martingale. ¤

3.3 Properties of the solution

We now provide a discussion on the qualitative properties of the solution. Our first result

concerns the solution of the Riccati equation

π̇ + 2δtπ −
1

rt
π2 + qt = 0 (3.11)

π(T ) = qT ≥ 0

Proposition 32 The solution of the Ricatti equation (3.11) satisfies the property π(t) ≥

0, ∀t.
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Proof : We will use the following iterative scheme for the derivation of the solution:

π̇i+1(t) + Âiπi+1(t) + Q̂i = 0

πi+1(T ) = qT ≥ 0

where

Âi = 2

µ
δt −

1

rt
ψi

¶
Q̂i =

ψ2i
rt
+ qt

where we will take ψi = πi. A fixed point of this iterative scheme is clearly a function π(t)

which is a solution of the Riccati equation. Observe also that Q̂i > 0. As the starting

point of the iteration we will take π0(t) = qT .

By the positivity of Q̂i we have that πi+1 ≥ 0 for all i and all t. Therefore, all iterates

of the scheme remain positive.

We will now show that the scheme is monotone: To this end define ∆i = πi − πi+1

and Λi = ψi − ψi−1. Using the scheme we see that

−∆̇i = ṗii+1 − π̇i = Âi∆i + (Âi−1 − Âi)πi + Q̂i−1 − Q̂i

= Âi∆i +
2

rt
Λiπi +

1

rt
(ψi−1 − ψi)(ψi−1 + ψi)

= Âi∆i +
Λi

rt
(2πi − ψi−1 − ψi)

= Âi∆i +
Λi

rt
(πi − πi−1 = Âi∆i +

Λ2i
rt

where we have used the fact that ψi = πi. Rearranging we get

−(∆̇i + Âi∆i) =
Λ2i
rt
≥ 0
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with final condition∆(T ) = 0. Integrating (backwards in time) this differential inequality

we get that ∆i(t) ≥ 0, ∀t which leads to

πi(t) ≥ πi+1(t), ∀t

Since this is a monotone scheme with πi(t) ≥ 0, it converges to a limit π ≥ 0. ¤

Theorem 33 Let π(t) be the solution of the linear equation

π̇(t) + Â(t)π(t) + Q̂(t) = 0

π(T ) = G ≥ 0

where Q(t) ≥ 0. Then π(t) ≥ 0 for all t.

Proof: The proof follows by straightforward integration of the linear equation. ¤

Remark 4 The proof of the positivity of the solution of the Riccati equation is based on

the proof of similar results in Yong and Zhou (1999)

The above result helps us characterize the type of optimal control needed. Since

u = − 1
rt
Pt and

Pt = π(t)Xt − π(t)

Z t

0

σsdW
H
s +

Z t

0

γ(t, s)dMH
s + vt − qTAT

we see that for some t ≤ tcr the sign of u will be negative. This means that the control

may be treated as a divident control. This tcr will depend on x and the stochastic terms.

For t ≥ tcr the control may no longer be treated as purely divident control and since u

may take positive values, it may be thought as if the control corresponds to input from

the customers to the firm.
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3.4 Application

In this section we will give some numerical results for the insurance control problem. We

have seen that the optimal control is given by the solution of the three ordinary differen-

tial equations (3.7) and (3.8). For the first equation with respect to π(t) we have that it

is a Ricatti ordinary differential equation and the other two equations for γ(t, s) and υ(t)

are non homogeneous first order linear differential equations. We assume that qT = 1,

δ = 0.05, β = 0.01, λ = 0.05, σ = 0.30, T = 1, and that the initial capital is X0 = 0, 0.1

and the final target is AT = 0.1, 0.2, 0.3, 0.4, 0.5. For the Hurst parameter we assume

that H = 0.6, 0.7, 0.8, 0.9. As we can see from Table 1 and Table 2, the higher the Hurst

exponent the higher the probability of ruin. Furthermore the higher the final capital

target the smaller the probability of ruin, and the controlled process has a significantly

smaller probability of ruin in comparison with the uncontrolled process, which for the

parameters given is 0.4867 for X0 = 0 and 0.3538 for X0 = 0.1.

Table 3.1 Probability of Ruin, X0 = 0.0

H AT = 0.1 AT = 0.2 AT = 0.3 AT = 0.4 AT = 0.5

0.6 0.301 0.160 0.065 0.023 0.003

0.7 0.319 0.187 0.081 0.035 0.012

0.8 0.325 0.217 0.087 0.040 0.016

0.9 0.330 0.220 0.103 0.043 0.016

Table 3.2 Probability of Ruin, X0 = 0.1
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H AT = 0.2 AT = 0.3 AT = 0.4 AT = 0.5

0.6 0.099 0.046 0.017 0.004

0.7 0.116 0.047 0.020 0.005

0.8 0.130 0.063 0.021 0.008

0.9 0.131 0.066 0.029 0.011
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Chapter 4

Reinsurance Pricing

Reinsurance is, broadly speaking, the insurance of insurance companies. If an individual

risk is too big for an insurance company or the loss potential of its entire portfolio is too

heavy - then the insurance company either decides, or is forced to by legal restrictions,

to buy reinsurance protection. Often the reinsurance company does the same, i.e. it

retrocedes part of risk or parts of its portfolio to a third company. By passing on parts

of risks, large risks particularly are finally split up into a number of portions placed with

many different carriers. Some of the most common types of reinsurance are proportional

and excess of loss reinsurance. A proportional reinsurance treaty means that the ceding

company cedes to the reinsurer a fixed percentage of each risk of the covered portfolio,

the reinsurer in return pays the same percentage of each claim and receives the same

percentage of the underlying gross premiums. In an excess of loss treaty, of each claim

exceeding the retention of the ceding company the reinsurer pays the exceeding amount

subject to a maximum. For more on reinsurance one can see for example Buhlmann

(1970) and Straub (1997).

In this chapter we model the liabilities of an insurance business driven by a fractional

Brownian motion and we study the valuation of a reinsurance policy both for excess of

loss and for proportional reinsurance.
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4.0.1 Excess of loss reinsurance

Let us assume that the claims process is in the form

dCt = btdt+ σtdB
H
t

C0 = c

where with Ct we denote the claims at time t and with bt we denote the expectations

of the claims which may model seasonalities. The term BH
t is a fractional Brownian

motion with Hurst exponent H which is used to model the long range dependence often

present in insurance claims. Here we assume that H ∈
¡
1
2
, 1
¢
. We furthermore assume

that σt ∈ L2φ, tσt ∈ L2φ.

Consider first the case of excess of loss reinsurance, i.e consider a reinsurance policy

according to which if the total claim amount until time T is less than K the reinsurance

company pays nothing whereas if the total claim amount is higher that K it pays the

excess of K. This reinsurance scheme is an Asian type contigent claim and if we denote

IT := C0 +

TZ
0

Ctdt

its payoff is given by

max (0, IT −K) = (IT −K)+ =

⎛⎝ TZ
0

Ctdt−K

⎞⎠+

.

Thus we have that:
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dIt = Ct =

tZ
0

bsds+

tZ
0

σsdB
H
s

I0 = C0 = c

Integrating we have that

IT = I0 +

TZ
0

tZ
0

bsdsdt+

TZ
0

tZ
0

σsdB
H
s dt

I0 = C0 = c

Then using the stochastic Fubini theorem we have that

TZ
0

tZ
0

σsψ(s, t)dB
H
s dt =

TZ
0

tZ
0

σsψ(s, t)1[0,t](s) ¦ dWH
s dt =

=

TZ
0

tZ
0

1[0,t](s)ψ(s, t)dtσs ¦ dWH
s ds =

=

TZ
0

⎡⎣ TZ
s

ψ(s, t)dt

⎤⎦σsdBH
s =

and for ψ(s, t) = 1
TZ
0

tZ
0

σsψ(s, t)dB
H
s dt =

TZ
0

(T − s)σsdB
H
s

Thus if we denote as Θt =
tR
0

bsds and Σ(T, s) = (T − s)σs and we integrate we take that
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IT = I0 +

TZ
0

Θtdt+

TZ
0

Σ(T, s)dBH
s .

The price for the reinsurance policy will be equal to the expected value of the discounted

payoff, i.e:

υ(I0, T ) = E
¡
e−δT (IT −K)+

¢
.

Consider a function of three variables f(t, x, y), x = Ct, y = It

f(T,CT , IT ) = f(T,

TZ
0

btdt+

TZ
0

σtdB
H
t , I0 +

TZ
0

Θtdt+ T

TZ
0

σtdB
H
t −

TZ
0

tσtdB
H
t ) =

= f(T,

TZ
0

btdt+XT , I0 +

TZ
0

Θtdt+ TXT − YT )

where

X(T ) : =

TZ
0

σsdB
H
s ,

Y (T ) : =

TZ
0

sσsdB
H
s .

We will use the following corollary.

Corollary 34 (Benth, 2003). Assume Xt =
tR
0

a(s)dBH
s and Yt =

tR
0

b(s)dBH
s where

a, b ∈ L2φ(R). For a function f ∈ C1,2(R+ ×R2) with bounded derivatives we have
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f(T,X(T ), Y (T )) = f(0, 0, 0) +

TZ
0

ft(s,X(s), Y (s))ds+

+

TZ
0

[fx(s,X(s), Y (s))a(s) + fy(s,X(s), Y (s))b(s)] dB
H
s +

+

TZ
0

fxx(s,X(s), Y (s))

⎡⎣a(s) sZ
0

φ(s, u)a(u)du

⎤⎦ ds+
+

TZ
0

fyy(s,X(s), Y (s))

⎡⎣b(s) sZ
0

φ(s, u)b(u)du

⎤⎦ ds+
+

TZ
0

fxy(s,X(s), Y (s))

⎡⎣a(s) sZ
0

φ(s, u)b(u)du+ b(s)

sZ
0

φ(s, u)a(u)ds

⎤⎦
If we apply Itô ’s lemma on

f(t,Xt, Yt) = e−δtw

⎛⎝T − t,

tZ
0

bsds+Xt, I0 +

tZ
0

Θsds+ tXt − Yt

⎞⎠
we have that

ft = e−δt(−δw − w1 + btw2 + Ctw3)

fx = e−δt (w2 + tw3)

fy = −e−δtw3

fxx = e−δt
¡
w22 + 2tw23 + t2w33

¢
fxy = −e−δtw33

fyy = e−δt (−w23 − tw33) .
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Thus

e−δTw (0, CT , IT ) = w (T,C0,I0) +

TZ
0

e−δs (−δw − w1 + bsw2 + Csw3) ds+

+

TZ
0

e−δs [(w2 + sw3)σ(s)− w3sσ(s)] dB
H
s

+

TZ
0

e−δs
£
w22 + 2sw23 + s2w33

¤
σs

⎛⎝ sZ
0

φ(s, u)σ(u)du

⎞⎠ ds+

TZ
0

e−δsw33sσ(s)

⎡⎣ sZ
0

φ(s, u)σ(u)udu

⎤⎦ ds+
+

TZ
0

e−δs(−w23 − sw33)

⎛⎝σs

sZ
0

φ(s, u)σ(u)udu+ sσs

sZ
0

φ(s, u)σ(u)du

⎞⎠ ds

Let

As =

sZ
0

φ(s, u)σ(u)du

Bs =

sZ
0

φ(s, u)uσ(u)du.

We have
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e−δTw (0, CT , IT ) = w (T,C0,I0) +

TZ
0

e−δs (−δw − w1 + bsw2 + Csw3) ds+

+

TZ
0

e−δs [(w2 + sw3)σ(s)− w3sσ(s)] dB
H
s

+

TZ
0

e−δs (σsAsw22 + (2sAsσs − σsBs − sσsAs)w23) ds

Note: Term w33 cancels out. Taking expectations we have:

E
£
e−δtw(0, CT , IT )

¤
= w (T,C0, I0) +E

⎡⎣ TZ
0

e−δs [−δw − w1 + bsw2 + Csw3] ds

⎤⎦+
E

⎡⎣ TZ
0

e−δs [σsAsw22 + (2sAsσs − σsBs − sσsAs)w23] ds

⎤⎦
We add

u(T,C0, I0) = E
£
e−δT (IT − k)+

¤
to the above and we have that

u(T,C0, I0) +E
£
e−δtw(0, CT , IT )

¤
= w (T,C0, I0) +E

£
e−δT (IT − k)+

¤
+

E

∙
TR
0

e−δs [−δw − w1 + bsw2 + Csw3 + σsAsw22 + (sAsσs − σsBs)w23] ds

¸
We choose w to be the solution of the equation

−δw − w1 + bsw2 + Csw3 + σsAsw22 + (sAsσs − σsBs)w23 = 0

w = w(T − t, C, I)

with initial condition w(0, C0, I) = (I −K)+.Then w(T,C0, I0) will be the price of the

reinsurance policy.
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Let us look for a similarity solution. Assume without loss of generality that bt =

b, σt = σ.

We have

w = w(t, x, y)

−δw − wt + bwx + xwy + σAwxx + (sAσ − σB)wxy = 0

Look for

w(t, x, y) = u(t, c1 + c2x+ c3y) = u(t, z)

z = c1 + c2x+ c3y

taking the derivatives we have

wt = ut + uz(c
0
1 + c02x+ c03y)

wx = uzc2

wy = uzc3

wxx = uzzc
2
2

wxy = c2c3uzz

and the pde becomes

−δu− ut − uz(c
0
1 + c02x+ c03y) + bc2uz + xc3uz + σAc22uzz + (sσA− σB)c2c3uzz = 0

or
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−δu− ut + uz(−c01 − c02x− c03y + bc2 + xc3) + uzz(σAc
2
2 + sσAc2c3 − σBc2c3) = 0

Take

R1 +R2z = R1 +R2C1 +R2C2x+R2C3y

−c01 + bc2 = R1 +R2c1

−c02 + c3 = R2c2

c3 = −R2c3

thus taking R1 = 0, R2 = 0, c3 = const = 1, c2 = t, c01 = bt, c1 = b t
2

2

we have

−δu− ut + uzz(2t
2σA− σBt) = 0

−δu− ut + uzz∆(t) = 0

∆(t) = 2t2σA− σBt

Let

u = e−δt
˜
u

ut = −δe−δt ˜u+ e−δt
˜
ut

uz = e−δt
˜
uz

uzz = e−δt
˜
uz

and the pde becomes
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˜
ut = ∆(t)

˜
uzz

let
˜
t such that

∂
˜
t

∂t
= 2∆(t)

˜
t = 2

tZ
0

∆(s)ds

and

∂
˜
u

∂t
=

∂
˜
u

∂
˜
t

∂
˜
t

∂t

and
∂
˜
u

∂
˜
t
=
1

2

∂2
˜
u

∂z2

We had for w(T − t, C, I) that the initial condition was given by

w(0, C, I) = (I − k)+

w(t, x, y) → u(t, z),

z = c1 + c2x+ c3y

c1(0) = 0

c2(0) = 0

c3(0) = 1

→ (z − k)+

Thus the price of the reinsurance policy will be given by:
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˜
u

µ
˜
t, z

¶
=

+∞Z
−∞

1q
2π

˜
t

exp

Ã
−
¡
z − z

0¢2
2
˜
t

!³
z
0 − k

´+
dz

0
=

=

=

q
˜
t√
2π
exp

µ
−k

2
1

2

¶
+

∙
z√
2π
− k

¸
[1− Φ(k1)] ,

k1 =
k − zq

˜
t

4.0.2 Proportional Reinsurance

In this type of reinsurance the company pays a percentage equal to α of total claims up

to time T. The payoff is given by

αIT = α

TZ
0

Ctdt.

The proportional reinsurance contract is an Asian type option with final payoff αI.

It solves the same equation with different initial condition

∂
˜
u

∂
˜
t
=
1

2

∂2
˜
u

∂z2

u(0, I) = αI

Thus we have that the solution will be given by

˜
u

µ
˜
t, z

¶
=

+∞Z
−∞

1q
2π

˜
t

exp

Ã
−
¡
z − z

0¢2
2
˜
t

!
az0dz

0
= αz.
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Chapter 5

Reinsurance Control

Stochastic control in reinsurance has been addresssed by various researchers, such as

Schmidli (2001), Schmidli (2002a), Schmidli (2002b), Schmidli (2001), Hald and Schmidli

(2004), Hipp and Plum (2000) and Waters (1983), where among other problems they con-

sider the problem of minimizing the probability of ruin by reinsurance and by investment,

the maximization of the adjustment coefficient under proportional reinsurance and also

the optimal distribution of dividends. The functional they use is usually the probabil-

ity of ruin of the insurance company which they want to minimize. In this chapter we

study the problem of reinsurance control in a model with liabilities exhibiting long range

dependence and we choose to minimize the distance of the (final) capital target of the

insurance firm from a prespecified capital target.

5.1 The model

Let us assume that an insurance firm uses a proportional reinsurance scheme according

to which it is reinsured for a percentage 1 − pt of claims where pt ∈ [0, 1]. Let us also

assume that the cost for reinsurance is some function of the expected claims and the

percentage pt which we will denote hereafter by c(pt). We will provide concrete forms for

this quantity later on in the paper. It suffices to note here that in principle c(pt) can be

96



calculated using some sort of premium calculation scheme.

5.1.1 The cash balance equation

Let us assume that the claims process is in the form

dCt = btdt+ σtdB
H
t

where in bt the expectations of the claims which may model seasonalities. The term BH
t

is a fractional Brownian motion with Hurst exponent H which is used to model the long

range dependence often present in insurance claims.

The cash balance equation for the firm, assuming deterministic interest force δt is of

the form

dXt = (δtXt + rt + ptbt − c(pt))dt+ ptσtdB
H
t

X0 = x

The pt enters in the equation since this is the percentage of the claims that the firm is

covering whereas the (1− pt) of the claims is covered by the reinsurance firm. By rt we

denote the payments into the insurance firm in the form of premia for the contracts the

firm issues.

5.1.2 The control problem

We will now assume that pt is a control parameter which is chosen in such a way as

to minimize some cost functional. One possible choice would be to minimize the ruin

probability of the firm. In this paper we choose a different type of functional which may

be of more relevance to practical applications. The functional we choose is a combination

of the distance of the cash balance process from some predetermined target and the cost
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of reinsurance policy. A simple choice for such a functional is

J(p) = E

∙
Q(XT −AT )

2 +

Z T

0

q(t)(Xt −At)
2dt+

Z T

0

R(t)F (c(pt))dt

¸

where Q, q(t), R(t) > 0 and play the rôle of weights for the various quantities in the cost

functional, AT and At is the predetermined target the firm wishes for the cash balance

process and F is some utility function for the cost of reinsurance. As a measure for the

distance from the predefined target we choose the L2 distance.

The choice of reinsurance policy thus takes the form of the following optimal control

problem:

min
pt∈U

J(p),

subject to

dXt = (δtXt + rt + ptbt − c(pt))dt+ ptσtdB
H
t

where U is the set of admissible reinsurance policies.

5.1.3 The set of admissible reinsurance policies

A company will enter into a reinsurance policy which will be updated at specified (de-

terministic time instants). The policy can only change at the beginning of these time

intervals. That means that a plausible form for the insurance policy will be a piecewise

constant strategy of the form

pt =
n−1X
i=0

pi1[ti,ti+1)(t)

where {ti} is a partition of the time interval [0, T ] such that t0 = 0 and tn = T and

pi ∈ [0, 1] are constants. We will consider as the set of admissible reinsurance policies U

the set of the functions pt of the above form.
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The fact that pt is a deterministic function models the situation where the manager

of the firm chooses the reinsurance policy at the beginning of the period [0, T ] by using

her/his expectations of the customers claims.

5.2 Solution of the control problem

Due to the special class of reinsurance policies we are interested in we may provide a

simple solution to the control problem in the form of algebraic equations. In this section

we present the solution procedure.

5.2.1 Evaluation of the functional J(b)

Since pt is a deterministic reinsurance policy, in the sense described above, we may obtain

a solution for the cash balance equation in the form

Xt = xKt +Kt

Z t

0

K−1
s (rs + psbs − c(ps))ds+Kt

Z t

0

K−1
s psσsdB

H
s

Kt = exp

µZ t

0

δsds

¶
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Using this exact solution we may calculate the value of the functional J(p) for a given

reinsurance plan pt. We find that

J(pt) = x2K2
T +K2

T

∙Z T

0

K−1
s (rs + psbs − c(ps))ds

¸2
+ K2

T

Z T

0

Z T

0

K−1
s psσsK

−1
s0
ps0σs0φs,s0dsds

0

+ 2xK2
T

Z T

0

K−1
s (rs + psbs − c(ps))ds

+ A2T − 2ATxKT − 2ATKT

Z T

0

K−1
s (rs + psbs − c(ps))ds

+

Z T

0

q(t)x2K2
t dt+

Z T

0

q(t)K2
t

∙Z t

0

K−1
s (rs + psbs − c(ps))ds

¸2
dt

+

Z T

0

q(t)K2
t

∙Z t

0

Z t

0

K−1
s psσsK

−1
s0
ps0σs0φ(s, s

0
)dsds

0
¸
dt

+

Z T

0

2q(t)xK2
t

∙Z t

0

K−1
s (rs + psbs − c(ps))ds

¸
dt−

Z T

0

2q(t)AtxKtdt

−
Z T

0

2q(t)AtKt

Z t

0

K−1
s (rs + psbs − c(ps))dsdt

+

Z T

0

q(t)A2tdt+

Z T

0

R(t)F (c(pt))dt

where without loss of generality we have chosen Q = 1. In the above

φ(s, s
0
) = 2H(2H − 1) | s− s

0 |2H−1 .

This is a functional of the deterministic function pt which may be minimized using

techniques from the calculus of variation. This problem is challenging since the functional

to be minimized is non-local in time. The non locality arises because of the terms

involving the kernel ψ(s, s
0
) which in turn arises because of the long range dependence

in the claim process.
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5.2.2 Restriction to the class U

We now restrict to the class of controls U which is the class of piecewise constant functions.

By restricting within this class we may explicitly evaluate all the integrals used in the

definition of the functional J(p). For instance:

Z T

0

K−1
s (rs + psbs − c(ps))ds =

N−1X
i=0

Z ti+1

ti

(rs + pibs − c(pi))ds

= G+
N−1X
i=0

Cipi −
N−1X
i=0

Dic(pi)

where

Ci :=

Z ti+1

ti

K−1
s bsds, Di :=

Z ti+1

ti

K−1
s ds, G :=

Z T

0

K−1
s rsds

Similarly for the non-local terms

Z T

0

Z T

0

K−1
s psσsK

−1
s0
ps0σs0φ(s, s

0
)dsds

0

=
N−1X
i=0

N−1X
j=0

pipj

Z t

0

Z T

0

K−1
s σsK

−1
s0
σs0φ(s, s

0
)1[ti,ti+1)(s)1[tj ,tj+1)(s

0
)dsds

0

= :
N−1X
i=0

N−1X
j=0

Eijpipj

where

Eij :=

Z ti+1

ti

Z tj+1

tj

K−1
s σsK

−1
s0
σs0φ(s, s

0
)dsds

0

Thus the cost functional becomes (assuming without loss of generality that q(t) = 0,

that is that the manager of the insurance firm is interested in the final target rather than
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intermediate targets)

J(pt) = J(p0, · · · , pN−1) = x2K2
T +K2

T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#2

+ K2
T

N−1X
i=0

N−1X
j=0

Eijpipj + 2xK
2
T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#

+ A2T − 2ATxKT − 2ATKT

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#
+

N−1X
i=0

Fi(c(pi))

where

Fi(c(pi)) =

Z ti+1

ti

R(t)F (c(pi))dt := RiF (c(pi))

with

Ri =

Z ti+1

ti

R(t)dt.

Thus the reinsurance control problem is reduced to the minimization of a nonlinear

algebraic function of N variables in the compact domain [0, 1]N .

5.3 Linear Reinsurance: Reduction to a Quadratic

Programming Problem

We will show that in the case of linear reinsurance cost, i.e. c(pi) = aipi + βi, that the

functional J(pt) can be written in a quadratic form. Let us assume that

Fi(c(pi)) = γip
2
i + εipi + ζi,

then we have
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J(pt) = J(p0, · · · , pN−1) = x2K2
T +K2

T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#2

+ K2
T

N−1X
i=0

N−1X
j=0

Eijpipj + 2xK
2
T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#

+ A2T − 2ATxKT − 2ATKT

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#
+

N−1X
i=0

Fi(c(pi)) =

= x2K2
T +K2

T

"
G+

N−1X
i=0

(Cipi −Diaipi −Diβi)

#2

+K2
T

N−1X
i=0

N−1X
j=0

Eijpipj + 2xK
2
T

"
G+

N−1X
i=0

(Cipi −Diaipi −Diβi)

#

+A2T − 2ATxKT − 2ATKT

"
G+

N−1X
i=0

(Cipi −Diaipi −Diβi)

#

+
N−1X
i=0

(γip
2
i + εipi + ζi)

Consider

I : =

"
G+

N−1X
i=0

(Cipi −Diaipi −Diβi)

#2
=

= G2 + 2G
N−1X
i=0

(Cipi −Diaipi −Diβi) +

+
N−1X
i=0

N−1X
j=0

(Cipi −Diaipi −Diβi)(Cjpj −Djajpj −Djβj)
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= G2 + 2G
N−1X
i=0

(Cipi −Diaipi −Diβi) +

+
N−1X
i=0

N−1X
j=0

(CiCjpipj −DiCjaipipj −DiCjβipj

−CiDjajpipj +DiDjaiajpipj +DiDjajβipj +

−CiDjβjpi +DiDjβjαipi +DiDjβiβj)

= G2 + 2G
N−1X
i=0

(Ci −Diai)pi − 2G
N−1X
i=0

Diβi +

N−1X
i=0

N−1X
j=0

(CiCj −DiCjai − CiDjaj +DiDjaiaj)pipj

+
N−1X
i=0

{−
Ã

N−1X
j=0

Djβj

!
Ci +

Ã
N−1X
j=0

Djβj

!
Diai −

Ã
N−1X
j=0

Djβj

!
Ci

+

Ã
N−1X
j=0

Djβj

!
Diai}pi +

N−1X
i=0

N−1X
j=0

DiDjβiβj

Thus we have that

I := A1 +
N−1X
i=0

N−1X
j=0

˜

Eijpipj +
N−1X
i=0

A2ipi

where

A1 = G2 − 2G
N−1X
i=0

Diβi +
N−1X
i=0

N−1X
j=0

DiDjβiβj,

˜

Eij = CiCj −DiCjai − CiDjaj +DiDjaiaj,
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A2i = 2G(Ci −Diai) +

{−
Ã

N−1X
j=0

Djβj

!
Ci +

Ã
N−1X
j=0

Djβj

!
Diai −

Ã
N−1X
j=0

Djβj

!
Ci

+

Ã
N−1X
j=0

Djβj

!
Diai}

= 2G(Ci −Diai) + 2

Ã
N−1X
j=0

Djβj

!
(Diai − Ci)

= (Ci −Diai)[2G− 2
Ã

N−1X
j=0

Djβj

!
]

= 2(Ci −Diai)[G−
Ã

N−1X
j=0

Djβj

!
]

And the equation becomes

J(pt) = x2K2
T +K2

T

"
A1 +

N−1X
i=0

N−1X
j=0

˜

Eijpipj +
N−1X
i=0

A2ipi

#

+ K2
T

N−1X
i=0

N−1X
j=0

Eijpipj + 2xK
2
TG+ 2xK

2
T

N−1X
i=0

(Ci −Diai)pi

−2xK2
T

N−1X
i=0

Diβi +A2T − 2ATxKT − 2ATKTG

−2ATKT

N−1X
i=0

(Ci −Diai)pi + 2ATKT

N−1X
i=0

Diβi
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+
N−1X
i=0

γip
2
i +

N−1X
i=0

εipi +
N−1X
i=0

ζi

= M +
N−1X
i=0

Nipi +
N−1X
i=0

Lip
2
i +

N−1X
i=0

N−1X
j=0

ˆ

Lipipj

where

M : = x2K2
T +K2

TA1 + 2xK
2
TG

−2xK2
T

N−1X
i=0

Diβi +A2T − 2ATxKT − 2ATKTG

+2ATKT

N−1X
i=0

Diβi +
N−1X
i=0

ζi

and

Ni := K2
TA2i + 2xK

2
T (Ci −Diai)− 2ATKT (Ci −Diai) + εi

and

Lii := K2
T

˜

Eii +K2
TEii + γi, for i = j

and

ˆ

Lij := K2
T

˜

Eij +K2
TEij, for i 6= j

Thus the equation can be written as

J(pt) =M + pTL1p+NTp,

where L1 is a matrix with elements equal to
ˆ

Lijfor i 6= j and Lii for i = j.We want to

minimize J(pt) subject to pt ∈ [0, 1], thus we have
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minM + pTL1p+NTp

subject to Ap ≤ b, p ≥ 0

where A = I, and b has one everywhere. The above problem can be written as

min
1

2
pTL∗1p+NTp

subject to Ap ≤ b

since M is constant and L∗1 = 2L1. We then define

L∗∗1 =
L∗1 + L∗T1

2

and thus the above problem can be written as

minM +
1

2
pTL∗∗1 p+NTp

subject to Ap ≤ b, p ≥ 0

and thus we have written the initial problem in a quadratic form which can solved using

standard numerical procedures. We have used quadprog from MatLab. One can see for

more Coleman and Li (1996), Gill, Murray and Wright (1981) and Bazaraa, Sherali and

Shetty (1993). The above problem can be written as

min
1

2
pTL∗∗1 p+NTp

subject to Ap ≤ b, p ≥ 0.
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Denoting the Langrangian multiplier vectors of the constraints by u and v and the vector

of slack variables by y,the Karush - Kuhn - Tucker conditions can be written as

Ap+ y = b

−L∗∗1 p−Atu+ v = N

ptv = 0

uty = 0

p, y, u, v ≥ 0.

Now letting

M =

⎡⎣ 0 −A

At L∗∗1

⎤⎦ ,
q =

⎡⎣ b

N

⎤⎦ , w =
⎡⎣ y

v

⎤⎦ , z =
⎡⎣ u

p

⎤⎦
we can rewrite the KKT conditions as the linear complementarity problem

w −Mz = q,

wtz = 0

w, z ≥ 0.

Then by the theorem 11.2.4 of Bazaraa et al, the above problem can be solved using the

complementary pivoting algorithm that stops in a finite number of iterations with a KKT

point under any of the following assumptions:1. L∗∗1 is positive semidefinite and N = 0,

2. L∗∗1 is positive semidefinite, 3. L∗∗1 has nonegative elements with positive diagonal

elements.
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5.4 Non Linear Reinsurance Cost

Let us examine also the case of nonlinear reinsurance cost. We will assume that the

reinsurance cost has the form c(pi) = tanh(pi). Then the functional J(pt)

J(pt) = J(p0, · · · , pN−1) = x2K2
T +K2

T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#2

+ K2
T

N−1X
i=0

N−1X
j=0

Eijpipj + 2xK
2
T

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#

+ A2T − 2ATxKT − 2ATKT

"
G+

N−1X
i=0

(Cipi −Dic(pi))

#
+

N−1X
i=0

Fi(c(pi))

where

Fi(c(pi)) = c(pi)
2

and

Fi(c(pi)) = γip
2
i + εipi + ζi,

We want to

min imize J(pt)

subject to p ∈ (0, 1)

A very useful transformation which can be applied is the Kruzkov transformation. We

consider
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p∗ = log(
p

1− p
)⇒

p =
ep
∗

1 + ep∗

and we have to minimize J(p∗t ). Using this transformation we make sure that p ∈ (0, 1)

and we can then use some of the standard numerical procedures in order to minimize

J(p∗t ). Please note that the Kruzkov transformation could have been also applied to the

case of linear reinsurance cost.

5.5 Application

Let us give a few numerical examples in order to illustrate the model developed in the

previous sections. We give some examples using the control problem of choosing pt so as

to be as close as possible to a final target AT .We assume that we have N = 5 periods in

which we want to calculate the optimal percent of proportional reinsurance. We consider

that the initial capital of the company is equal to X0 = 20, the volatility of the liabilities

is assumed to be constant and equal to σ = 0.30, the operating period of the insurance

company is T = 5, the final target is AT = 26, 28, 30, the Hurst parameter H ∈ (0.5, 1),

here in the examples we let H = 0.6, 0.7, 0.8, 0.9, the parameter bt take for the next five

periods the values bt = −1.20,−1.21,−1.22,−1.21,−1.20 in order to incorporate some

sort of seasonality and time variability in bt and in general E[b] = −1.0867.We use for the

next five periods higher value for bt than E[b] in order to make sure that the insurance

company will need the reinsurance. For the deterministic interest force we assume that

it is constant and equal to δ = 0.05.
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Using Expected Value Principle

For the premia that the insurance company receives we assume in the first case that

r = −(1 + ηI)E[b], where ηI is the safety loading imposed by the insurer. We also have

that in the case of linear reinsurance cost with c(pt) = apt+β,and the parameters a and β

are constants and are chosen in such a way in order to have that c(pt) = (1−p)(1+ηR)r,

where the parameter ηR will denote the safety loading imposed by the reinsurer. In

this case the parameters α, β are given by α = −r(1 + ηR), β = r(1 + ηR). For the

cost functional of the cost of reinsurance arising in the functional J(pt) we assume that

F [C(pt)] = [C(pt)]
2. This functional can be written in the form of F [C(pt)] = γp2t+εpt+ζ,

where γ = α2, ε = 2αβ and ζ = β2. We would like to mention that the matrix L∗∗1 is,

for the parameters we have chosen, positive definite, and thus the KKT conditions imply

that a solution to this minimization problem will always exist.

We first examine the effect that the safety loading of the reinsurer has in the determi-

nation of the reinsurance strategy of the insurance company. We use H = 0.6, X0 = 20,

AT = 26, ηI = 0.05 and σ = 0.25. As we see from Table 5.1 the higher the reinsurance

safety loading, the higher the percent of the claims that the insurer pays himself and

this is logical since higher values of reinsurance safety loading make the reinsurance cost

higher driving the insurer to pay higher percent of the claims by himself .

Table 5.1. Reinsurance strategy for ηR=0.01,..0.05

p0 p1 p2 p3 p4 ηR

0,300 0,197 0,105 0,274 0,427 0,01

0,467 0,358 0,260 0,419 0,563 0,02

0,629 0,514 0,411 0,560 0,696 0,03

0,787 0,667 0,558 0,698 0,825 0,04

0,940 0,815 0,701 0,832 0,950 0,05
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We also examine the effect of the insurer safety loading ηI .We use H = 0.6, X0 = 20,

AT = 26, σ = 0.25, ηR = 0.01. As we see from Table 5.2 the higher the insurer safety

loading, the higher the percent of the claims that the insurer pays himself and this is

logical since higher values of insurer safety loading make the insurance company stronger

financially and thus the insurer has the ability to pay higher percent of the claims by

himself .

Table 5.2. Reinsurance strategy for ηI=0.05,..0.10

p0 p1 p2 p3 p4 ηI

0,300 0,197 0,105 0,274 0,427 0,05

0,458 0,348 0,250 0,410 0,556 0,06

0,613 0,498 0,394 0,545 0,683 0,07

0,766 0,645 0,535 0,678 0,808 0,08

0,916 0,789 0,674 0,809 0,930 0,09

1,000 0,931 0,811 0,937 1,000 0,1

We then examine the effect of the volatility of the claims σ.We use H = 0.6, X0 = 20,

AT = 26, σ = 0.25, ηI = 0.05 and ηR = 0.01. As we see from Table 5.3 the higher the

claims volatility, the lower the percent of the claims that the insurer pays himself and

this is also logical since higher values of claims volatility make the insurance company

exposed in higher risk and thus the insurer selects to be reinsured more.

Table 5.3. Reinsurance strategy for σ = 0.25, 0.35, 0.45

p0 p1 p2 p3 p4 σ

0,300 0,197 0,105 0,274 0,427 0,25

0,290 0,188 0,097 0,266 0,420 0,35

0,278 0,177 0,086 0,256 0,410 0,45
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We also examine the effect of the final capital target AT . We use H = 0.6, X0 = 20,

σ = 0.25, ηI = 0.05 and ηR = 0.01, 0.05. As we see from Table 5.4, if the reinsurance is

not expensive enough, ηR = 0.01, the higher the final target, the lower the percent of the

claims that the insurer pays himself, but for higher reinsurance safety loading, ηR = 0.05

the percent of the claims that the insurer is paying himself is having a small decrease in

comparison with ηR = 0.01.

Table 5.4. Reinsurance strategy for AT = 26, 28, 30, ηR = 0.01, 0.05

p0 p1 p2 p3 p4 AT ηR

0,300 0,197 0,105 0,274 0,427 26 0,01

0,216 0,099 0,000 0,185 0,358 28 0,01

0,130 0,000 0,000 0,095 0,288 30 0,01

0,940 0,815 0,701 0,832 0,950 26 0,05

0,937 0,796 0,667 0,815 0,948 28 0,05

0,934 0,776 0,633 0,797 0,945 30 0,05

Finally we examine the effect of the Hurst parameter H. We use X0 = 20, AT = 26,

ηI = 0.05, ηR = 0.05. As we see from Table 5.5, the higher the value of H the lower

the percent of the claims that the insurer pays himself. This means that for higher H

the insurer has to deal with larger risk and thus he is reinsured more. The fact that for

larger H the insurer is facing more risk has been studied extensively in the first chapter

whre the probability of ruin at a given time for insurance claims driven by fractional

Brownian motion has been studied and it was found that larger values of H give higher

probabilities of ruin.

Table 5.5. Reinsurance strategy for H = 0.6, ..., 0.9
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p0 p1 p2 p3 p4 H

0,940 0,815 0,701 0,832 0,950 0,6

0,890 0,774 0,663 0,794 0,907 0,7

0,819 0,722 0,616 0,743 0,844 0,8

0,723 0,659 0,564 0,684 0,760 0,9

Using Zero Utility Principle

As a second case we assume that the insurer has an exponential utility function given by

U(W ) = −e−a1W , a1 > 0. In this case the premia that the insurance company receives

will be given by r = −b+ 0.5σ2T 2H−1a1. We also have that c(pt) = apt + β,and the

parameters a and β are constants and are chosen in such a way in order to have that

c(pt) = (1−p)(1+ηR)r and the parameters α, β are given by α = −r(1+ηR), β = r(1+ηR).

We first examine the effect that the safety loading of the reinsurer has in the determi-

nation of the reinsurance strategy of the insurance company. We use H = 0.6, X0 = 20,

AT = 26, a1 = 1.3 and σ = 0.25. As we see from Table 5.6 the higher the reinsurance

safety loading, the higher the percent of the claims that the insurer pays himself.

Table 5.6. Reinsurance strategy for ηR=0.01,..0.05

p0 p1 p2 p3 p4 ηR

0.325 0.221 0.128 0.296 0.448 0.01

0.491 0.381 0.283 0.440 0.583 0.02

0.653 0.538 0.434 0.582 0.716 0.03

0.811 0.690 0.581 0.719 0.845 0.04

0.964 0.838 0.723 0.853 0.969 0.05

We also examine the effect of the parameter α1 that appears in the exponential utility
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function and the premiums that are paid to the insurance company. We use H = 0.6,

X0 = 20, AT = 26, σ = 0.25, ηR = 0.01. As we see from Table 5.7 the higher the

parameter a1 the higher the percent of the claims that the insurer pays himself and this

is logical since higher values a1 make the insurance company stronger financially, as it

receive higher premiums, and thus the insurer has the ability to pay higher percent of

the claims by himself .

Table 5.7. Reinsurance strategy for a1 = 1, ..., 1.5

p0 p1 p2 p3 p4 r a1

0.136 0.039 0.000 0.131 0.293 1.12978 1.0

0.200 0.100 0.013 0.186 0.345 1.13409 1.1

0.263 0.161 0.071 0.241 0.397 1.13841 1.2

0.325 0.221 0.128 0.296 0.448 1.14272 1.3

0.388 0.281 0.186 0.350 0.499 1.14703 1.4

0.450 0.341 0.243 0.404 0.550 1.15134 1.5

We then examine the effect of the volatility of the claims σ.We use H = 0.6, X0 = 20,

AT = 26, σ = 0.25, a1 = 1.3 and ηR = 0.01. As we see from Table 5.8 the higher the

claims volatility, the higher the premium the insurer receives and thus he is able to pay

a higher percent of the claims. We see also that as r > bt the insurer is able to pay the

claims by himself without the need for insurance.

Table 5.8. Reinsurance strategy for σ = 0.25, ..., 0.50
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p0 p1 p2 p3 p4 r H X0 AT sigma au etaR

0.325 0.221 0.128 0.296 0.448 1.14272 0.6 20 26 0.25 1.3 0.01

0.668 0.551 0.445 0.594 0.728 1.16738 0.6 20 26 0.30 1.3 0.01

1.000 0.916 0.796 0.923 1.000 1.19653 0.6 20 26 0.35 1.3 0.01

1.000 1.000 1.000 1.000 1.000 1.23016 0.6 20 26 0.40 1.3 0.01

1.000 1.000 1.000 1.000 1.000 1.26827 0.6 20 26 0.45 1.3 0.01

1.000 1.000 1.000 1.000 1.000 1.31087 0.6 20 26 0.50 1.3 0.01

We also examine the effect of the final capital target AT . We use H = 0.6, X0 = 20,

σ = 0.25, a1 = 1.3 and ηR = 0.01, 0.05. As we see from Table 5.9, we have analogous

results with the expected value principle. If the reinsurance is not expensive enough,

ηR = 0.01, the higher the final target, the lower the percent of the claims that the insurer

pays himself, but for higher reinsurance safety loading, ηR = 0.05 the percent of the

claims that the insurer is paying himself is having a small decrease.

Table 5.9. Reinsurance strategy for AT = 26, 28, 30, ηR = 0.01, 0.05

p0 p1 p2 p3 p4 AT ηR

0.325 0.221 0.128 0.296 0.448 26 0.01

0.244 0.126 0.021 0.209 0.381 28 0.01

0.162 0.030 0.000 0.123 0.314 30 0.01

0.964 0.838 0.723 0.853 0.969 26 0.05

0.964 0.822 0.692 0.838 0.970 28 0.05

0.964 0.805 0.661 0.823 0.970 30 0.05

Finally we examine the effect of the Hurst parameter H. We use X0 = 20, AT = 26,

σ = 0.25, a1 = 1.3, ηR = 0.01. As we see from Table 4.10, the higher the value of H the
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higher the percent of the claims that the insurer pays himself. This happens because the

premium that the insurer receives is a function of H and the higher the H the higher the

premium as is shown in table 5.10.

Table 5.10. Reinsurance strategy for H = 0.6, ..., 0.9

p0 p1 p2 p3 p4 r H

0.325 0.221 0.128 0.296 0.448 1.14272 0.6

0.596 0.486 0.384 0.535 0.669 1.164 0.7

0.905 0.804 0.693 0.817 0.913 1.19337 0.8

1.000 1.000 1.000 1.000 1.000 1.23389 0.9
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Chapter 6

Asset Allocation with Derivatives

It is well known that options and other derivatives securities can be replicated by dy-

namic trading strategies involving simpler securities (i.e. stocks and bonds), such as the

delta-hedging strategy. Haugh and Lo (2001) had considered the reverse implications of

this correspondence by constructing an optimal buy and hold portfolio of stocks, bonds

and options which can mimic the properties of a dynamic trading strategy over a pe-

riod of time. Specifically given an investor’s optimal dynamic investment policy for two

assets, stocks and bonds, they constructed a buy and hold portfolio of stocks, bonds

and options at the start of the investment horizon that will come closest to the optimal

dynamic investment policy. Closest is defined in three distinct ways: expected utility,

mean-squared error of terminal weath and utility weighted mean-squared error of ter-

minal weatlh. Haugh and Lo (2001) considered three leading cases for the stock price

process: geometric Brownian motion, the trending Ornstein-Uhlenbeck process and a bi-

variate linear difussion process with a stochastic mean reverting drift. In this chapter we

generalize the above results for the case of geometric fractional Brownian motion. The

stock price modelling under fractional Brownian motion has been considered by many

reseachers recently such as Elliott and Van der Hoek (2003), Hu and Oksendal (2003),

Brody, Syroka and Zervos (2002) and others. In the sequel we will take a look at Mer-

ton’s asset allocation problem and the calculation of optimal terminal wealth and the
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derivation of Haugh and Lo of the optimal buy and hold portfolio that comes closest to

the optimal terminal wealth. Then we will deal with the construction of such a portfolio

when the stock price procecess presents long memory and we will show how to use such

an allocation in asset - liability management. Useful comparisons will be made between

the case of Brownian motion and fractional Brownian motion.

6.1 The optimal buy and hold portfolio

6.1.1 The Asset Allocation Problem

The asset allocation problem, see for more on the case of Brownian motion, Merton

(1969), Samuelson (1969) and for the case of fractional Brownian motion, Hu, Oksendal

and Sulem (1999) can be stated as follows: An investor wants to maximize the expected

utility E[u(ZT )] of the end-of-period wealth ZT by allocating his wealth between two

assets, a stock and a bond over [0, T ].

The bond with price A(t) yields a riskless instantaneous rate of return of rdt and

with an initial market price of $1, the bond price at any date t is simply exp(rt), and its

dynamics are given by

dAt = rAtdt, A0 = 1

where r > 0 is constant.

The stock has price St given by

dSt = µStdt+ σStdB
(H)
t ,

where S0 = s > 0, and µ, σ are constants.

A portfolio θt = (ξt, ηt) is an F
(H)
t −adapted 2-dimensional process giving the number

of units ξt held at time t of the bond and the number of units ηt held at time t of the

stock. The corresponding value process, or the wealth of the investor Zt is given by
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Zt = ξtAt + ηtSt

and we assume that the portfolio is self-financing meaning that

dZt = ξtdAt + ηtdSt

and that in addition θ is admissible, meaning that Zθ
t is nonnegative. We let Θ denote

the set of admissible portfolios. With a given initial value z, the standard asset allocation

problem or the optimal portfolio problem then is to find V (z) and θ∗ ∈ Θ such that

V (z) = VH(z) = sup
θ∈Υ

Ez[u(Zθ
T )],

where T > 0 is a given constant, Ez denotes expectation w.r.t µH when Zθ
0 = 0 and

u : (0,∞)→ R is a given utility function, assumed to be nondecreasing and concave. An

example of such a utility function is

u(x) =
xγ

γ
,

where γ ∈ (0, 1) is constant. The constant 1 − γ is interpreted as the risk aversion.

Hu, Oksendal and Sulem (1999) have used an adaptation of the martingale approach,

introduced by Cox and Huang (1989, 1991) to solve this problem. The following theorem

was proved by Hu, Oksendal and Sulem (1999).

Theorem 35 (Hu, Oksendal and Sulem, 1999). The value function V (z) of the optimal

portfolio problem is given by

V (z) = VH(z) =
1

γ
zγ exp

µ
rγT +

γ

2(1− γ)
(
µ− r

σ
)2ΛHT

2−2H
¶
.

The corresponding optimal terminal value Zθ∗
T is given by:
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Zθ∗

T = z exp

⎛⎝ 1

1− γ

TZ
0

K(s)dBH
s + rT +

1− 2γ
2(1− γ)2

(
µ− r

σ
)2ΛHT

2−2H

⎞⎠
where

ΛH =
Γ2(3

2
−H)

2H(2− 2H)Γ(2H)Γ(2− 2H) cos(π(H − 1
2
))

and K(s) =

In order to find the optimal portfolio θ∗ = (ξ∗, η∗) Hu, Oksendal an Sulem (1999) are

using the Clark-Ocone formula developed in Hu and Oksendal (2003) and they find that

Theorem 36 (Hu, Oksendal and Sulem, 1999).The optimal portfolio θ∗ = (ξ∗, η∗) is

given by

η∗t = exp(r(t− T ))σ−1S−1t
K(t)

1− γ
·

exp{ 1

1− γ

TZ
0

K(s)d
ˆ

B
H

s −
(µ− r)2T 2−2H

2(1− γ)2σ2
[γΛH + ρH(

t

T
) + rT ]}

and

ξ∗t = A−1t (Z
θ∗

t − η∗tSt)

where

exp(−rt)Zθ∗

t = z +

TZ
0

exp(−rs)ση∗tStd
ˆ

B
H

s .

Remark 5 In order to apply the Clark-Ocone following Bender and Elliott (2002) we

assume that the FH
T −measurable F (ω) ≥ 0 that can be achieved as the terminal value

of Zθ(T, ω) belongs to the space |D1,2
H |. |D

1,2
H | consists of the random variables F ∈ (L2H)

with fractional chaos decomposition such that
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∞X
n=1

nn!

Z
Rn

(MH,n(|fn|)(t))2dt <∞

Hu, Oksendal and Sulem (1999) provide also results for the case that the utility

function is given by u(x) = log x, x > 0.

6.1.2 Asset Allocation with Derivatives

How close can we come to the above optimal policy θ
∗

t with a buy-and-hold portfolio of

stocks, bonds and options? We measure closeness in three ways: maximizing expected

utility, minimizing mean-square error, and minimizing weigted mean-square error. In all

cases we describe it is assummed that a large number N > n of options is specified, we

solve the above problem for the
³
N
n
´
possible combinations of options and we select the

best combination.

Maximizing Expected Utility

Suppose we allow the investor to include up to n European call options in his portfolio at

date 0 which expire at date T, and we do not allow him to trade after setting his initial

portfolio of stocks, bonds and options. Specifically denote by Di, the date-T payoff of a

European call option with strike price ki, hence

Di = (ST − ki)
+.

Then the buy-and-hold asset allocation problem for the investor is given by

max
{a,b,c,ki}

E[U(VT )]

subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,
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W0 = exp(−rT )EQ[VT ]

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. Note that the

second constraint is under the equivalent martingale measure. Option pricing formulas

are implicit in this second constraint. Option pricing theory for European call option

when the stock price process is modelled using a geometric fractional Brownian motion

has been developed, among others, from Eliott and Van der Hoek (2003) and Hu and

Oksendal (2003), and we refer to them for the corresponding fornmulas. Under the

CRRA utility function one needs addditional constraints to ensure non-negative wealth,

thus the folloing constraints must be imposed along with the budget constraint.

α exp(rT ) ≥ 0

α exp(rT ) + bk1 ≥ 0

α exp(rT ) + (b+ c1)k2 − c1k1 ≥ 0

.

.

.

α exp(rT ) + (b+ c1 + ...+ cn−1)kn ≥ 0

b+ c1 + c2 + ...+ cn ≥ 0

k1 ≤ k2 ≤ ... ≤ kn

In order to solve the above problem, i.e. to maximize the concave objective function

subject to the linear constraints the karush-Kuhn-Tucker conditions are sufficient for an

optimal solution. One can see for more on this Bertsekas (1999).
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Minimizing Mean-Square Error

In situations where the computational demands of the buy and hold asset allocation

problem under the maximization of the expected utility are too great or when the dynamic

investment policies are not derived by maximization of expected utility but by other

treatments a mean squared error objective function may be more appropriate. In this

case the buy and hold portfolio problem becomes:

min
{a,b,c,ki}

E[(W ∗
T − VT )

2]

subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,

W0 = exp(−rT )EQ[VT ]

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. If we do not

impose any additional constraints beyond the budget constraint then the correspond-

ing subproblems can be solved using the first order conditions which are necesarry and

sufficient and merely amount to the solution of a system of linear equations.

Minimizing Weighted Mean-Square Error

The third method is to maximize expected utility, but using an approximation for the

utility function. This yields a weighted mean-squared error objective function where the

weighting function is the second derivative of the utility function evaluated at the optimal

end-of-period wealth W ∗
T .

min
{a,b,c,ki}

E[−U 00
(W ∗

T )(W
∗
T − VT )

2]
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subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,

W0 = exp(−rT )EQ[VT ]

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. For CRRA

utility, we still need to impose certain non-negative weatlh conditions.

6.2 Use for Asset Allocation for Insurance Products

6.2.1 The Case of a Defined Benefit Pension Scheme

The objectives of the sponsors of such a scheme is to manage the pensions assets over

time so as to be able to pay an amount equal to the liabilities at time T, denoted as

LT . Instead of creating a dynamic asset allocation strategy in bonds and stocks, that

is instead of creating a portfolio of assets that is perfectly correlated with the liabilities,

using the above method we create an optimal buy-and-hold portfolio of bonds, stocks and

options which gives as an accumulated return at time T an amount as close as possible

to LT , using the measures of closeness described above. In this way we create a perfect

or almost perfect hedge (99%, or 97.5%) in a single moment and and we do not have

to worry about the big transaction costs of replicating portfolios. This is an alternative

version of the standard liability immunising portfolio. Using more complex options, one

can adjust for early exercise of the contract. Furthermore using such a portfolio a better

measure of risk of the portfolio can be provided.

In the case of a defined benefit pension scheme, using the approach of minimizing

mean-square error the objective of the sponsor is to minimize the following objective

function:
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min
{a,b,c,ki}

E[(L− VT )
2]

subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,

W0 = exp(−rT )EQ[VT ]

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. Addition-

ally one can input some solvency constraints to the above optimization problem which

guarantee that Vt will not be less from Lt for t in [0, T ],such as

Vt − Lt ≥ 0

or

Vt ≥ 0.99Lt.

The liabilities Lt can be found from factors such as the final salary, the length of the

pensionable service and the age of the member. For example a typical UK scheme

provides a pension equal to 1.67% of final salary for each year of pensionable service,

up to a maximum of 40 years, thus the maximum pension is the two-thirds of the final

salary. One can see for more on such a scheme Blake (1998).

6.2.2 The Case of a Targeted Money Purchase Pension Scheme

In the case of a Targeted Money Purchase pension scheme the aim is to use a defined

contribution pension scheme to target a particular pension at retirement (which may be

the same as that resulting from a final salary scheme) but which also benefits from any

upside potential in the value of the fund assets above that required to deliver this target
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level. In other words the TMP scheme aims to provide a minimum pension but not a

maximum pension. The optimization problem in this case can be formulated using the

maximization of expected utility measure of closeness. The buy-and-hold asset allocation

problem for the sponsor is given by

max
{a,b,c,ki}

E[U(VT )]

subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,

W0 = exp(−rT )EQ[VT ]

VT ≥ LT

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. Note that the

second constraint is under the equivalent martingale measure. Option pricing formulas

are implicit in this second constraint. Under some utility functions one needs addditional

constraints to ensure non-negative wealth.

6.2.3 The Case of a Defined Contribution Pension Scheme

Adefined contribution pension scheme uses the full value of the funds assets to determine

the amount of pension which depending on the success of the fund manager might be

high or low. In the case of a defined contribution pension scheme, the approach of

maximizing the expected utility of terminal wealth is natural and the sponsor has the

following buy-and-hold asset allocation problem

max
{a,b,c,ki}

E[U(VT )]
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subject to

VT ≡ α exp(rT ) + bST + c1D1 + c2D2 + ...+ cnDn,

W0 = exp(−rT )EQ[VT ]

where α and b denote the investor’s position in bonds and stock and c1,c2, ..., cn denotes

the number of options with strike prices k1,..., kn included in the portfolio. Note that the

second constraint is under the equivalent martingale measure. Option pricing formulas

are implicit in this second constraint. Under some utility functions one needs addditional

constraints to ensure non-negative wealth.

6.2.4 Application

Let us consider here an application of the models presented above. Consider that the

investor wants to construct an optimal buy and hold portfolio containing stocks, bonds

and a maximum of two options, assuming that there are only three possible options

to choose from with the following strikes: k1 = 368, k2 = 673, k3 = 1231. We set

W0 = $100000, T = 20 years, S0 = 50, r = 0.05, µ = 0.15 and σ = 0.20. We discretise

the support of ST using its probability mass and we use a grid of 50000 points.

We will consider first the case of maximizing the expected utility. We also set γ = −4

and H = 0.5. In the following table we see the optimal positions of the investor and the

corresponding certainty equivalent of the optimal terminal wealth.

Table 6.1. Optimal Positions, γ = −4, H = 0.5

Options Used % in Bonds % in Stocks % in Option % in Option CE(V ∗T )

1 and 2 45.744 58.077 -4.010 0.189 442166.56

1 and 3 45.977 57.670 -3.642 -0.005 442098.75

2 and 3 49.135 52.213 -1.473 0.124 438591.29
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It is clear from the above that the optimal buy - and - hold strategy is to use the

options with strikes k1 = 368 and k2 = 673.With only two options, the optimal buy-and-

hold portfolio yields an estimated certainty equivalent which is 98.66% of the certainty

equivalent of the optimal dynamic asset allocation strategy, a strategy that requires

contiunuous trading over a 20-year period.

Let us examine now the case of γ = −3,−4, 0.5 and H = 0.5. In the following table

we see the certainty equivalent of the optimal terminal wealth for the possible choice of

strike prices.

Table 6.2. Certainty Equivalent, γ = −3,−4, 0.5, H = 0.5

Options Used CE(V ∗T ), γ = −3 CE(V ∗T ), γ = −4 CE(V ∗T ), γ = 0.5

1 and 2 503304.18 442166.56 13344115

1 and 3 503268.01 442098.75 20419533

2 and 3 500184.43 438591.29 20320550

It is clear from the above that the optimal buy - and - hold strategy for γ = −3,−4

is to use the options with strikes k1 = 368 and k2 = 673, but for γ = 0.5 the optimal

strategy is to use the options with strikes k1 = 368 and k3 = 1231. The optimal positions

for each choice of γ are presented in the following table.

Table 6.3. Optimal Positions, γ = −3,−4, 0.5, H = 0.5

γ % in Bonds % in Stocks % in Option % in Option

-3 (options 1, 2) 32.541 71.306 -4.001 0.153

-4 (options 1, 2) 45.744 58.077 -4.010 0.189

0.5 (options 1, 3) 0.0000 0.2193 10.604 89.176

It is well known that the lower the value of γ the higher the risk aversion coefficient of

the investor. For γ = −4 the investor has a risk aversion coefficient of 1−γ = 5. This fact

is verified from table 3 where we see that for γ = −3 the investor invest a higher portion
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of his wealth in stocks in comparison with the investor with γ = −4 simply because the

first investor is less risk averse than the second. The opposite is happening for the bonds.

We see that in these two cases the investor is shorting the call with the lower strike price

in order to create a hedged position. We would like to mention here that usually one sees

in textbooks that γ ∈ (0, 1). However as mentioned by Haugh and Lo (2001) and as is

verified also by the present study, and other empirical and experimental accounts, these

are very low levels of risk aversion, and examples of investors with such preferences are

proprietary traders and hedge fund managers. We see that for γ = 0.5 the investor is

using the options in order to increase its risk exposure and he is investing a small amount

of his capital in bonds and stocks.

Let us examine now the case of geometric fractional Brownian motion. We assume

H = 0.6. In the following table we see the certainty equivalent of the optimal terminal

wealth for the three positions he may take.

Table 6.4. Certainty Equivalent, γ = −3,−4, 0.5, H = 0.6

Options Used CE(V ∗T ), γ = −3 CE(V ∗T ), γ = −4 CE(V ∗T ), γ = 0.5

1 and 2 375504.89 350692.22 3190833.82

1 and 3 375383.34 350557.74 3578647.88

2 and 3 371460.86 347149.43 3487202.39

Table 6.5. Optimal Positions, γ = −3,−4, 0.5, H = 0.6

γ % in Bonds % in Stocks % in Option % in Option

-3 (options 1,2) 58.88 50.38 -10.08 0.815

-4 (options 1,2) 67.50 40.21 -8.45 0.745

0.5 (options 1,3) 0 4.819 26.09 69.08

If we compare the optimal strategies for H = 0.5 and for H = 0.6 we see that in both
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cases the options with the same strike prices are chosen. However in the case of a risk

averse investor γ = −4,−3 and in the case of long range dependence H = 0.6 we see

that smaller proportions of the wealth are invested in the stocks and higher in bonds. In

the the case of a risk taker investor γ = 0.5 and in the case of long range dependence

H = 0.6 we see that higher proportions of the wealth are invested in the stocks and the

wealth invested in options is more balanced.
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Chapter 7

Detection of Long-Range

Dependence

Long - range dependence can provide an elegant explanation of the empirical law that is

often reffered to as the Hurst effect or Hurst’s law, discovered by a British climatologist

Hurst who spent many years in Egypt as a participant of the Nile hydrology projects,

studing the fluctuations of yearly run-offs of Nile and several other rivers, see Hurst

(1951). Suppose we have a set of observations Xi, i > 1, the partial sum is

Y (n) =
nX
1=1

Xi

and the sample variance is

S2(n) = n−1
nX
1=1

(Xi − n−1Y (n))2, n ≥ 1.

Then the rescaled adjusted range statistic or R/S statistic is defined by:

R

S
(n) =

1

S(n)
[max
0≤t≤n

(Y (t)− t

n
Y (n))− min

0≤t≤n
(Y (t)− t

n
Y (n))], n ≥ 1.
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Hurst found that many naturally occuring empirical records appear to be well represented

by the relation

E[
R

S
(n)]˜c1n

H ,

as n → ∞, with typical values of the H in the interval (0.5,1). If observations Xi come

from a short-range dependent model, then it is known from Feller (1951) and Ammis and

Lloyd (1976) that

E[
R

S
(n)]˜c2n

0.5,

as n→∞, where c2 is independent of n, and finite and positive. The discrepancy between

these two relations is generally referred to as the Hurst effect.

7.0.5 Long - Range Dependence and its Implications in Finance

Self-similar processes such as fractional Brownian motion are stochastic processes that

are invariant in distribution under suitable scaling of time. These processes can typically

be used to model random phenomena with long - range dependence. Naturally these

processes are closely related to the notion of renormalization in statistical and high

energy physics and they are of increasing importance in many fields of applications such

as economics and finance.

Thus a way to incorporate dependence between returns is with the use of fractional

Brownian motion, see for example Mandelbrot (1997), Shiryaev (1999) and Rogers(1997)

.

The detection and measurement of index H, is of major significance since it can be

considered as a measure of the intensity of long-range dependence, when H ∈ (1
2
, 1). One

can see for more Samordnitsky and Taqqu (1994).

The presence of long memory in stock price returns has important implications for

many of the paradigms used in modern financial economics. It is inconsistent with the ef-

ficient market hypothesis, (a security market is efficient if every price reflects all available

and relevant information, newly arrived information is promtly arbitraged away), capi-
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tal asset pricing model and arbitrage pricing theory, while optimal consumption/savings

and portfolio decisions may become extremely sensitive if stock returns are long-range

dependent. Furthermore the pricing of derivative securities such as options and futures

with martingale methods and the classical Black-Scholes model or its extensions, Black

and Scholes (1973), is then problematic since the class of continuous time stochastic

processes most commonly employed is inconsistent with long-range dependence. Specifi-

cally the Black-Scholes model assumes the dynamics of the stock prices is well described

by geometric Brownian motion, which makes the assumption that stock returns have

independent increments in disjoint time intervals. While it is commonly accepted that

normality is a mathematical convenience that is not consistent with empirical stock price

returns see for example Mandelbrot (1960), Fama (1963) and Mittnik and Rachev (1993),

for the dependence structure of stock price returns there were various results. To men-

tion some of them, Fama (1965) concluded that we can assume that succesive returns

are independent, Lo and Makinlay (1988) found substantial short-range dependence in

the data and strongly rejected the hypothesis of i.i.d. asset returns, and Mandelbrot

(1967), Greene and Fielitz (1977) have found presence of long-range dependence in asset

returns. For all the above reasons the detection and the measurement of the intensity of

long-range dependence when it exists is of major importance.

Let us see what are the implications of H for financial series. For 1
2
< H < 1

the process is said to have long - range dependence, for H = 1
2
, the observations are

uncorrelated and for 0 < H < 1
2
, the process has short range dependence and the

correlations sum up to zero. When H > 1
2
, a high value of H shows less noise, more

persistence, and clearer trend than do lower values. As Peters (1991) mentions the Hurst

exponent measures the impact of information on the series. H = 0.50 implies a random

walk, confirming the Efficient Market Hypothesis. Yesterday’s events do not impact

today. Today’s events do not impact tomorrow. The events are uncorrelated, old news

have already been absorbed and discounted by the market. If H>0.50 the impact of

information does not decay quicly. This means that today’s events do impact tomorrow,
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information received today continues to be discounted by the market after it has been

received, in contradiction with the EMH and the quantitative models derived from it.

As Beran (1994) is showing slowly decaying correlations make the estimation more

difficult, the opposite is true for predictions of future observations. It is important to

note that the more dependence there is between a future observation and past values,

the better the future observation can be predicted provided that the existing dependence

structure is exploited appropriately, and an appropriately model is used.

7.1 Estimation of the self - similarity parameter

The methods that can be used for this purpose are many. Some of them are the method

of aggregated variance, of absolute moments, of the periodogram, of the modified pe-

riodogram, of the variance of residuals, the R/S method, Whittle’s approximate MLE

method , local Whittle, the ratio of variance of residuals and a method using wavelets.

For more on these methods one can see for example Taqqu, Teverovsky and Willinger

(1995), Taqqu and Teverovsky (1996), Lo (1991), or in the monograph of Beran (1994).

We will discuss here the following methods: the R/S method, Lo’s modified R/S method,

the periodogram method, the modified periodogram method and the Whittle’s method.

7.1.1 The R/S method and Lo’s modified R/S Method

The R/S method is one of the oldest methods for estimating H. The method divides

the time series of N observations into K blocks, each of size N/K. Then for each lag n,

n ≤ N, estimates of R(km, n)/S(km, n) of the R/S statistic are computed by starting at

the points, km = (m − 1)N/K + 1, m = 1, 2, ..., K, and such that km + n ≤ N. Thus

for any given m all the data points before km = mN/K + 1 are ignored. For values

of n smaller than N/K, there are K different estimates of R(n)/S(n). The graphical

R/S approach consists then of calculating the estimates of R(n)/S(n) for logarithmically

spaced values of n and plotting logR(km,n)/S(km,n) vs log(n), for all starting points km.
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This results in the rescaled adjusted range plot, also known as the pox plot of R/S. One

can see for more Mandelbrot and Wallis (1969), and also Mandelbrot and Taqqu (1979).

In contrast Lo (1991), focuses only on the lag n=N, and instead of using the sample

standard deviation S, to normalize R, he uses a weigted sum of autocovariances, defined

as:

Sq(N) = (
1

N

NX
j=1

(Xj −
_

XN)
2 +

2

N

qX
j=1

ωj(q)[
NX

i=j+1

(Xi −
_

XN)(Xi−j −
_

XN)])
1
2 ,

where
_

XN denotes the sample mean and the weights ωj(q) are given by

ωj(q) = 1−
j

q + 1
, q < N.

Lo then defines the modified R/S statistic, Vq(N), by setting

Vq(N) = N− 1
2R(N)/Sq(N),

where R(N) is defined above. Since

lim
N→∞

P{Vq(N) ∈ [0.809, 1.862]} = 0.95,

Lo uses the interval as the 95% asymptotic acceptance region for testing the null hypoth-

esis

H0 = {no long - range dependence, i.e. H = 0.5}

vs the composite alternative

H1 = {there is long - range dependence,

i.e. 0.5 < H < 1}.
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Lo’s method compensates for the presence of any ’extra’ short - range dependence in the

data, it indicates only if long - range dependence is present or not, but it does not give an

estimate of H, the right values of q are not always obvious, and it has a strong preference

in accepting the null hypothesis of no long range dependence, especially for large values

of q. Thus as Willinger Taqqu and Teverovsky (1999) conclude it should not be used as

the sole technique for testing for long memory in the data.

7.1.2 The Periodogram Method

Following Taqqu et al (1995), Taqqu et al (1996) , suppose that λ is the frequency, N is

the number of terms in the series, and Xj are the data. The periodogram is defined by

I(λ) =
1

2πN
|

NX
j=1

Xje
ijλ|2.

A series with long - range dependence has a spectral density proportional to |λ|1−2H

close to the origin. Since I(λ) is an estimator of the spectal density, a regression of the

logarithm of the periodogram on the logarithm of the frequency λ should give a coefficient

of 1-2H. This provides an approximation to the parameter H. In practice we use only

the lowest 10% of the frequencies for the calculation, since this behavior holds only for

frequencies close to zero. This method was first introduced by Geweke and Porter-Hudak

(1983) in a slightly different version which is referred to as the GPH estimator. Their

estimator regresses on log |2 sin(λ/2)| instead of log|λ|. One can see for more Taqqu and

Teverovsky (1996) and the references therein.

7.1.3 The Modified Periodogram Method

One could use also the modified periodogram method. This method compensates for the

fact that on a log-log plot most of the frequencies fall on the far right, thus exerting a

very strong influence on the least-squared line fitted to the periodogram. The frequency

axis is divided into logarithmically equally spaced boxes and the periodogram values
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corresponding to the frequencies inside the box are averaged. Several of the values at

the very low frequencies are left untouched since there are so few of them to begin with.

Another alternative would be also the cumulative periodogram method.

7.1.4 Whittle Estimator

The Whittle estimator assumes that the parametric form of the spectral density is known

and is also based on the periodogram. It involves the function

Q(n) =

πZ
−π

I(λ)

f(λ; η)
dλ,

where I(λ) is the periodogram and f(λ; η) is the spectral density at frequency λ, and

where η denotes the vector of unknown parameters. The Whittle estimator is the value

of ηwhich minimizes the function Q. When dealing with fractional Gaussian noise or

fractional ARIMA, η is simply the parameter H. This estimator takes more time to

obtain but one also confidence intervals. For details see Fox and Taqqu (1989) and Beran

(1994).

7.2 Application - Estimation of H in ASE

The ASE is the only stock exchange in Greece and it has about 367 companies listed.

Previous studies for ASE include among others Papaioannou (1982), Papaioannou (1984),

which reports price dependencies in stock returns for a period of six days. Niarchos and

Georgakopoulos (1986) test for market efficiency with respect to information contained

in corporate profit reports and find that the market is not efficient with respect to this

information set since investors react slowly and gradually to new information. Panas

(1990), examining the stock returns of ten large Greek firms, provides evidence of the

weak - form efficiency. Barkoulas and Travlos (1998) investigate the existence of deter-

ministic nonlinear structure in Greek stock returns, and found that there is very weak,
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at best, evidence for such a structure. More recently Panas (1999), find evidence of the

presence of long memory on daily returns based on the Hurst exponent, by using the es-

timated characteristic α of the Levy - stable probability density function (α = 1/H), and

also using the spectral regression method and specifically the GPH estimator. Barkoulas,

Baum and Traulos (2000), test for the presence of long -memory on weekly data using

the spectral regression method finds evidence of long memory. Using a number of stocks

listed on the Athens Stock Exchange (ASE) and daily returns we apply the modified Lo’s

method, the periodogram method, the modified periodogram method and the Whittle’s

method and we examine if stock prices from ASE exhibit long memory.

The stocks we examine are listed below, in the second parenthesis there is the code

of the stock: Alfa-Beta Vassilopoulos (CR), (ABK), AEGEK (CR), (AEGEK), Nex-

ans Hellas S.A. (CR), (ALKAT), Bank of Attica (CR), (ATT), EEEK Coca-Cola (CB),

(EEEK), Ethniki S.A. General Insurance (CR), (EEGA), Hellas Can (C), (ELASK), Bank

of Greece (CR), (ELL), Eltrak (C), (ELTRAK), Commercial Bank of Greece (EMP),

National Bank of Greece (CR) (ETE), Fourlis (CB) (FRLK), N.B.G. Real Estate De-

velopment Co. (GENAK), General Hellenic Bank, Heracles General Cement Co. (CR)

(HRAK), Athens Medical C.S.A. (CR) (IATR), A. Kalpinis-N.Simos Steel Service Cen-

ter (C) (KALSK), Katselis Sons S.A. Bread Ind. (C) (KATSK), Keranis Holding S.A.

(CB) (KERK), Michaniki S.A. (CR) (MHXK), Michaniki S.A. (PR) (MHXK), D. Mouza-

kis (CB) (MOYZK), Papastratos Cigarette Co. (C) (PAPAK), Bank of Piraeus (CR)

(PEIR), Petzetakis S.A. (CB) PETZK, Alpha Bank (CR) (PIST), The Greek Progress

Fund S.A. (CB) (PROOD), Arcadia Metal Ind. C. Rokas S.A. (CR) (ROKKA), Shel-

man (C) (SELMK), Sportsman S.A. (CB) (SPKAN), Titan Cement Co. (CR) (TITK),

Zampa S.A. (C) (ZAMPA).

The data we have are for each stock from the periods listed in Table 7.1. In Table 7.2,

we see the estimates of the periodogram and the modified periodogram method. Using

the periodogram method we see that out of 33 stocks, 24 of them have H higher than

0.5 and 12 of them have H higher than 0.55. These are AEGEK, Bank of Attica, El-
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trak, Commercial Bank of Greece, Fourlis, N.B.G. Real Estate Development Co., Athens

Medical, Michaniki, D. Mouzakis, Bank of Piraeus, Alpha Bank and Shelman.

Using the modified periodogram method we see that out of 33 stocks, 23 of them have

H higher than 0.5 and 12 of them have H higher than 0.55. These are Bank of Attica,

Ethniki S.A. General Insurance, Bank of Greece, Eltrak,Fourlis, General Hellenic Bank,

Athens Medical, Keranis Holding, Michaniki (PR), Bank of Piraeus,Arcadia Metal Ind.

C. Rokas and Shelman.

In table 7.3 we display the results of the Whittle’s method which also provides a 95%

confidence interval. It is assumed that the underlying model of the stock price returns is

Fractional Gaussian noise. Almost all stocks seem to present long memory, and not only

the estimate of H but the Whittle’s 95% confidence interval is higher than 0.5. Only for

six stocks we do not find to have (strong) evidence of long - range dependence and these

are Alfa -Beta Vassilopoulos, Hellas Can, Athens Medical, Papastratos Cigarette, The

Greek Progress Fund and Sportsman.

In table 7.4 we display the results of the Lo’s modified R/S method for values of

q, q=10, 20, 30, 40. Willinger et al for a series of N=6400 uses q= 90, 180, 270, 360

and considers them as large, thus since we have N to vary from 1505 to 3708 we use

the above values of q. We are writing here the result of the test and not the values of

Vq(N). According to this method Alfa -Beta Vassilopoulos, Commercial Bank of Greece,

Ergasias Bank, Fourlis, Katselis Sons Bread, Alpha Bank, Shelman and Zampas seem

to present long memory, that is 9 out of 33. This can be explained due to the strong

preference that Lo’s method has to accept the null hypothesis.

A partial explanation of why we have long - range dependence could be given from

the fact that as Niarchos and Georgakopoulos (1986) find, the market is not efficient with

respect to information contained in corporate profit reports since investors react slowly

and gradually to new information.
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7.3 Conclusions

As we see using the Whittle’ method the vast majority (87.9%) of the stocks present

long-range dependence supporting the Fractional Gaussian noise model for the stock price

returns. Using the periodogram and the modified periodogram we see that also many

stocks present evidence of long-range dependence and using the modified R/S method of

Lo we see that 9 out of 33 of the series present long memory, but this, as Willinger et al

(1999) write, could be because this method shows a strong preference for the acceptance

of the null hypothesis. We conclude that there is evidence of long -range dependence

in some of the ASE stock returns but in order one to be more certain has to apply

more methods and in a larger scale. Since the series realizations are not independent

over time, realizations from the past can help predict future returns, giving rise to the

probability of consistent speculative profits. Furthermore the more dependence there is

between a future observation and past values, the better the future observation can be

predicted provided that the existing dependence structure is exploited appropriately, and

an appropriate model is used.

141



Table 7.1. Stocks Used in Application

STOCK Start End Length

ABK 11/26/90 12/03/99 2256

AEGEK 11/29/93 12/03/99 1505

ALKAT 03/12/90 12/03/99 2418

ATT 01/02/85 11/26/99 3704

EEEK 07/15/91 11/26/99 2095

EEGA 01/02/85 11/26/99 3704

ELASK 01/07/92 12/03/99 1983

ELL 01/02/85 11/26/99 3704

ELTK 08/20/91 12/03/99 2076

EMP 01/02/85 11/26/99 3704

ERGA 01/02/85 11/26/99 3704

ETE 01/02/85 11/26/99 3704

FRLK 04/21/88 12/03/99 2893

GENAK 01/02/85 12/03/99 3709

GTE 01/02/85 11/26/99 3704

HRAK 12/31/87 11/26/99 2692

ZAMPA 01/02/85 12/03/99 3708

STOCK Start End Length

IATR 08/29/91 11/26/99 2064

KALSK 08/30/90 12/03/99 2307

KATSK 11/19/90 12/03/99 2261

KERK 01/02/90 12/03/99 2466

MHXK 07/19/90 12/03/99 2331

MHXP 04/13/92 12/03/99 1916

MOYZK 03/29/91 12/03/99 2172

PAPAK 01/02/85 12/03/99 3170

PEIR 01/02/85 11/26/99 3704

PETZK 01/02/85 12/03/99 3709

PIST 01/02/85 11/26/99 3704

PROOD 08/23/90 12/03/99 2312

ROKKA 08/27/90 12/03/99 2311

SELMK 03/28/88 12/03/99 2909

SPKAN 12/10/90 12/03/99 2246

TITK 01/02/85 11/26/99 3704
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Table 7.2. Estimation of H using the periodogram and modified periodogram method

Stock Periodogram Mod. Periodogram

ABK 0.39 0.48

AEGEK 0.59 0.48

ALKAT 0.52 0.54

ATT 0.58 0.60

EEEK 0.53 0.53

EEGA 0.49 0.58

ELASK 0.47 0.52

ELL 0.51 0.59

ELTK 0.60 0.58

EMP 0.58 0.53

ERGA 0.52 0.51

ETE 0.54 0.50

FRLK 0.57 0.57

GENAK 0.62 0.53

GTE 0.54 0.59

HRAK 0.53 0.52

IATR 0.56 0.56

Stock Periodogram Mod. Periodogram

KALSK 0.55 0.41

KATSK 0.49 0.49

KERK 0.50 0.66

MHXK 0.57 0.53

MHXP 0.52 0.60

MOYZK 0.57 0.53

PAPAK 0.53 0.49

PEIR 0.71 0.60

PETZK 0.40 0.48

PIST 0.59 0.51

PROOD 0.51 0.54

ROKKA 0.49 0.61

SELMK 0.66 0.59

SPKAN 0.51 0.49

TITK 0.49 0.44

ZAMPA 0.50 0.55
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Table 7.3 Estimation of H using Whittle’s method

Stock Whittle Wh. LL Wh.UL

ABK 0.49 0.46 0.52

AEGEK 0.63 0.60 0.67

ALKAT 0.57 0.55 0.60

ATT 0.59 0.57 0.61

EEEK 0.53 0.51 0.56

EEGA 0.59 0.57 0.61

ELASK 0.51 0.49 0.54

ELL 0.61 0.59 0.63

ELTK 0.54 0.51 0.56

EMP 0.55 0.53 0.57

ERGA 0.57 0.55 0.59

ETE 0.55 0.53 0.57

FRLK 0.55 0.53 0.58

GENAK 0.57 0.55 0.59

GTE 0.61 0.58 0.63

HRAK 0.53 0.50 0.55

IATR 0.51 0.48 0.53

Stock Whittle Wh. LL Wh.UL

KALSK 0.56 0.53 0.59

KATSK 0.53 0.50 0.55

KERK 0.66 0.63 0.68

MHXK 0.63 0.60 0.66

MHXP 0.67 0.64 0.70

MOYZK 0.58 0.55 0.60

PAPAK 0.47 0.45 0.49

PEIR 0.63 0.61 0.65

PETZK 0.53 0.51 0.55

PIST 0.56 0.54 0.58

PROOD 0.52 0.49 0.54

ROKKA 0.57 0.54 0.59

SELMK 0.55 0.53 0.58

SPKAN 0.52 0.49 0.54

TITK 0.60 0.58 0.62

ZAMPA 0.62 0.60 0.64
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Table 7.4. Lo’s Modified R/S Method

Stock q=10 q=20 q=30 q=40

ABK LRD LRD LRD LRD

AEGEK LRD - - -

ALKAT - - - -

ATT - - - -

EEEK - - - -

EEGA - - - -

ELASK - - - -

ELL - - - -

ELTK - - - -

EMP LRD - - -

ERGA LRD LRD LRD LRD

ETE - - - -

FRLK LRD LRD LRD LRD

GENAK - - - -

GTE - - - -

HRAK - - - -

IATR - - - -

Stock q=10 q=20 q=30 q=40

KALSK - - - -

KATSK LRD - - -

KERK - - - -

MHXK - - - -

MHXP - - - -

MOYZK - - - -

PAPAK - - - -

PEIR - - - -

PETZK - - - -

PIST LRD LRD LRD LRD

PROOD - - - -

ROKKA - - - -

SELMK LRD LRD LRD LRD

SPKAN - - - -

TITK - - - -

ZAMPA LRD LRD LRD LRD
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