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ABSTRACT

Actuarial science is the discipline that deals with uncertain events where clearly the
concepts of probability and statistics provide for an indispensable instrument in the
measurement and management of risks in insurance and finance. An important aspect
of the business of insurance is the determination of the price, typically called
premium, to pay in exchange for the transfer of risks. It is the duty of the actuary to
evaluate a fair price given the nature of the risk. Actuarial literature research covers a
wide range of actuarial subjects among which is risk classification and experience
rating in motor third-party liability insurance, which are the driving forces of the
research presented in this thesis. This is an area of applied statistics that has been
borrowing tools from various kits of theoretical statistics, notably empirical Bayes,
regression, and generalized linear models, GLM, (Nelder and Wedderburn, 1972).
However, the complexity of the typical application, featuring unobservable risk
heterogeneity, imbalanced design, and nonparametric distributions, inspired
independent fundamental research under the label ‘credibility theory', now a
cornerstone in contemporary insurance mathematics. Our purpose in this thesis is to
make a contribution to the connection between risk classification and experience
rating with generalized additive models for location scale and shape, GAMLSS,
(Rigby and Stasinopoulos, 2005) and finite mixture models (Mclachlan and Peel,
2000). In Chapter 1, we present a literature review of statistical techniques that can be
practically implemented for pricing risks through ratemaking based on a priori risk
classification and experience rated or Bonus-Malus Systems. The idea behind a priori
risk classification is to divide an insurance portfolio into different classes that consist
of risks with a similar profile and to design a fair tariff for each of them. Recent
actuarial literature research assumes that the risks can be rated a priori using
generalized linear models GLM, (see, for example, Denuit et al., 2007 & Boucher et
al., 2007, 2008). Typical response variables involved in this process are the number of
claims (or the claim frequency) and its corresponding severity (i.e. the amount the
insurer paid out, given that a claim occurred). In Chapter 2, we extend this setup
following the GAMLSS approach of Rigby and Stasinopoulos (2005). The GAMLSS
models extend GLM framework allowing joint modeling of location and shape
parameters. Therefore both mean and variance may be assessed by choosing a



marginal distribution and building a predictive model using ratemaking factors as
independent variables. In the setup we consider, risk heterogeneity is modeled as the
distribution of frequency and cost of claims changes between clusters by a function of
the level of ratemaking factors underlying the analyzed clusters. GAMLSS modeling
is performed on all frequency and severity models. Specifically, we model the claim
frequency using the Poisson, Negative Binomial Type Il, Delaporte, Sichel and Zero-
Inflated Poisson GAMLSS and the claim severity using the Gamma, Weibull, Weibull
Type 11, Generalized Gamma and Generalized Pareto GAMLSS as these models have
not been studied in risk classification literature. The difference between these models
is analyzed through the mean and the variance of the annual number of claims and the
costs of claims of the insureds, who belong to different risk classes. The resulting a
priori premiums rates are calculated via the expected value and standard deviation
principles with independence between the claim frequency and severity components
assumed. However, in risk classification many important factors cannot be taken into
account a priori. Thus, despite the a priori rating system, tariff cells will not be
completely homogeneous and may generate a ratemaking structure that is unfair to the
policyholders. In order to reduce the gap between the individual's premium and risk
and to increase incentives for road safety, the individual's past record must taken into
consideration under an a posteriori model. Bonus-Malus Systems (BMSs) are a
posteriori rating systems that penalize insureds responsible for one or more accidents
by premium surcharges or maluses and reward claim-free policyholders by awarding
them discounts or bonuses. A basic interest of the actuarial literature is the
construction of an optimal or “ideal' BMS defined as a system obtained through
Bayesian analysis. A BMS is called optimal if it is financially balanced for the
insurer: the total amount of bonuses must be equal to the total amount of maluses and
if it is fair for the policyholder: the premium paid by each policyholder is proportional
to the risk that they impose on the pool. The study of such systems based on different
statistical models will be the main objective of this thesis. In Chapter 3, we extend the
current BMS literature using the Sichel distribution to model the claim frequency
distribution. This system is proposed as an alternative to the optimal BMS obtained by
the Negative Binomial model (see, Lemaire, 1995). We also consider the optimal
BMS provided by the Poisson-Inverse Gaussian distribution, which is a special case
of the Sichel distribution. Furthermore, we introduce a generalized BMS that takes

into account both the a priori and a posteriori characteristics of each policyholder,
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extending the framework developed by Dionne and Vanasse (1989, 1992). This is
achieved by employing GAMLSS modeling on all the frequency models considered
in this chapter, i.e. the Negative Binomial, Sichel and Poisson-Inverse Gaussian
models. In the above setup optimality is achieved by minimizing the insurer's risk.
The majority of optimal BMSs in force assign to each policyholder a premium based
on their number of claims disregarding their aggregate amount. In this way, a
policyholder who underwent an accident with a small size of loss will be unfairly
penalized in comparison to a policyholder who had an accident with a big size of loss.
Motivated by this, the first objective of Chapter 4 is the integration of claim severity
into the optimal BMSs based on the a posteriori criteria of Chapter 3. For this purpose
we consider that the losses are distributed according to a Pareto distribution,
following the setup used by Frangos and Vrontos (2001). The second objective of
Chapter 4 is the development of a generalized BMS with a frequency and a severity
component when both the a priori and the a posteriori rating variables are used. For
the frequency component we assume that the number of claims is distributed
according to the Negative Binomial Type I, Poisson Inverse Gaussian and Sichel
GAMLSS. For the severity component we consider that the losses are distributed
according to a Pareto GAMLSS. This system is derived as a function of the years that
the policyholder is in the portfolio, their number of accidents, the size of loss of each
of these accidents and of the statistically significant a priori rating variables for the
number of accidents and for the size of loss that each of these claims incurred.
Furthermore, we present a generalized form of the one obtained in Frangos and
Vrontos (2001). Finally, in Chapter 5 we give emphasis on both the analysis of the
claim frequency and severity components of an optimal BMS using finite mixtures of
distributions and regression models (see Mclachlan and Peel, 2000 & Rigby and
Stasinopoulos, 2009) as these methods, with the exception of Lemaire(1995), have not
been studied in the BMS literature. Specifically, for the frequency component we
employ a finite Poisson, Delaporte and Negative Binomial mixture, while for the
severity component we employ a finite Exponential, Gamma, Weibull and
Generalized Beta Type Il (GB2) mixture, updating the posterior probability. We also
consider the case of a finite Negative Binomial mixture and a finite Pareto mixture
updating the posterior mean. The generalized BMSs we propose adequately integrate
risk classification and experience rating by taking into account both the a priori and a

posteriori characteristics of each policyholder.
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HEPIAHYH

H avoloyiotikn emomun aocyoAieiton pe aféfoio yeyovota, oTo Omoio L CAPNVELD
o1 £VVoleC TOV TOAVOTHTOV Kol TNG GTOTIOTIKNG TAPEYOVY EVO AmOPaiTnTO €pYaALElo
Yy T pETPMON Kot TN doyeipton TV Kvdohvmv GToV TOREN TNG AGOAAONG KOl TNG
owovopiog. Mo ONUOVTIKY TTLUY TOL EMOYYEAUOTOS TNG Oo@dAong elval o
kaBopiopdg e TunG, mov cvvhiBwg ovoudleTal acEAMOTPO, 1| Omoio. TPEMEL Vo
mnpwbel o¢ avtdAraypo v ™ petafipaocn tov kwvdiveov. Elvar kabnkov tov
avaAoylot va aglohoynoet pio dtkoun T, dedopévng g vong tov kvovvov. H
BipAoypaeikn €pevva NG OVOAOYIOTIKNG EMCTAUNG KOAVTTEL €vol €vph QAGUQ
Oepdrov, petald tov onolwv givar n ta&vounon tov kwvddvev oe kAdoelg (risk
classification) kot m eumelpk TwoAdynon (experience rating) otnv ac@diion
aoTIKNG €vBOVNG EvavTl TpITOV GTOV KAAOO TOV OVTOKIVIT®V, OOV OTOTEAOVV TIG
KInTpleg OuvApelS g €peuvag mov mopovcotaletar o ovtn ) dwrpipr. Ta
aVOTEP® GLVIGTOVV U0 TEPLOYN TNG EPOPLOGUEVNG OTOTIOTIKNG 1 Omolo €xet
davelotel epyoreion amd SPOPETIKEG ePYAAEIOOKEG TG BE®PNTIKNG GTOTIGTIKNG,
Koplog eumelpkég pebodovg Bayes, moAvopoOUNON KOL YEVIKELUEVO YPOLUKE
povtéda, I'TM (Nelder ko Wedderburn, 1972). Qot6c0, 1 mOALDTAOKOTNTO TNG
TUTIKNG  €QAPUOYNG, CLUTEPIAAUPAVOLEVNG TNG WU TOPOTINPNOIUNG ETEPOYEVELNG
kwoovov (risk heterogeneity), g un coppomnuévng oyediaong kot TV un
TOPUUETPIKOV KOTAVOU®DV, EVEMVELGE L OVEEAPTNTY OEUEAIDON Epevva YVOOTH MG
«Bewpia a&lomotiac, (credibility theory), n onoia Bempeiton o axpoymviaiog AiBog
TOV GOYYPOVAOV OCPUAMCTIKOV HoOMUATIKOV. ZTOY0C TS TopoVsoS SOUKTOPIKNG
datpiPng givar n ovvelopopd otn obvdeon peta&d ¢ a priori ta&vounong v
Kwwdovev og kKhdoelg (a priori risk classification) kot tng epmelpikng tipoAdynong pe
T YEVIKELUEVA TPOGHETIKG povTéda Yo T B€om, TNV KMUOKO KoL TO GYTU0, YVOOTA
®¢ GAMLSS povtéda (PAéne Rigby kat Stasinopoulos, 2005), kot pe ta Tenepacuéva,
pnovtélo peiéng, (finite mixture models, PAéne Mclachlan katr Peel, 2000). Xto
Kepdrawo 1, mapovoidlovpe ) PPAOYPOOIKT 0vOQOPE TOV GTATICTIKOV TEXVIKMOV
TOV UITOPOLV VO EPOPLOGTOVY GTNV TPAEN Yo TV TIHOAGYN O™ TV KIvdOVeV pE Bdon
mv a priori tawounon 1ove oe KAACES KOOMG Kol TO GLOTHUOTO EUTEPIKNG
TILOAOYNOTG 1] GVoTHNAT EKTTOoE®V-enifapivoemy (Bonus-Malus systems, BMSSs).

H Wéa micw amd tv a priori tafivounon tov kwdiveov ce KAAoelg sivor o
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S ®PIoUOG VOGS ACPOAICTIKOD YOPTOPLANKIOV GE SLOPOPETIKEG TAEELS, Ol OTOLEC
amoptiovrar amd KwdbHvovg pe TapoOpolo TPoPik, KaOdG Kol 0 GYESGUOC Mo
dlkamg TtoAdynong yw kabe pio amd oavtéc. H  ovyypovn ovoAoyioTiKn
Biproypapikn Epevva Bewpel OtTL o1 kivdvvol givar dvvatd va ta&vounbovv a priori
pe v Pondelo TV YEVIKELUEVOV YPUUUIKOV HOVTEA®V (PAEme, Y mopdoetyua,
Denuit et al., 2007 & Boucher et al., 2007, 2008). Ot amavtntikég petafAntéc mov
eumiékovtal o€ avtn T Swdikooia gival o aptuog (1 GLYVOTNTO) TOV ATOLTHCEDV
(claims) tov ac@aiMlopévov Tpog TV AGPAACTIKN eTarpeios KobmG Kot 1 avtioToyn
oPOOPOTNTA TOVG (ONAAON TO TOGO MOV O ACPOAICTNG KaTéPaAe, dedouévon OTL pia
amaitmon €xet Koataypoeel). Xto Kepdlawo 2, emekteivovpe avty T Osdpnon
akoAovOdvTog TV Tpocéyyion twv GAMLSS povtédov tov Rigby kot Stasinopoulos
(2005). Ta GAMLSS povtéla enekteivovv 1o mAaicto tov I['TM emtpémovtag v
KOWN LOVIEAOTOINGT TOV TOPAUETPOV TNG BECTG KO TOV GYNUOTOS OGS KOTOVOUTS.
YVVENMG TOGO 1 HEOT TIUT OGO Kot 1 StokOHoVeT pumopohv va ekTiunfodv pécm g
EMAOYNG oG TEPODPOG KATOVOUNG Kot TNG Owodounong &vog mpoPAentikod
LOVTELOV YPNOIUOTOIMVTOS TOVE TopAyovTes TiuoAdynong (ratemaking factors) wc
aveapmteg petafAntés. 210 avoTép TANIGL0, 1 ETEPOYEVELN TOV KLVOUVOL
LLOVTEAOTOLEITOL G 1 KOTAVOUY] TNG OALNYNG TOV GLYVOTHT®V KOUN TOV KOGTOVS T®V
OTOLTICEWV TPOG TNV ACPUMOTIKY €Toupeinn PETAED TV OUPOPETIKOV OUAd®V
acQOALOUEV®VY, GE GLVAPTNOT LE TO EMMESO TOV TAPUYOVI®OV TILOAIYNONG GTOVG
omoiovg ompilovror or mpoavapepBeiceg opddes. H GAMLSS povtelomoinon
TPOYUATOTOEITOL GE OAOL TAL HOVTEAD 7OV OVOTOPIGTOLV TN GLYVOTNTO KOl THV
oPOOPOTNTO. TWV OTOLTNGE®V TOV OGPOMIOUEVOL TPOG TNV OCPAAIGTIKY] €TOPEiD
(claim frequency and severity models). XZvykekpiuévo, HOVIEAOTOOOUE TNV
oLuyvOTNTO TOV omoutnoe®v e Pacn to Poisson, Apvntikd Awwvopkd Tomov II,
Delaporte, Sichel kot Zero-Inflated Poisson GAMLSS kor ™ 6@odpoétro Ttov
amattnoemv pe Paon to Tappa, Weibull, Weibull Tomov 111, I'evikevpévo T'appo ko
I'evikevpévo Pareto GAMLS «kaBmg to povtélo avutd dev €govv peietnBel ot
Biproypapia g a priori ta&vounong tov kivduvev oe kKAdoels. H dtoupopd peta&d
QVTAOV TOV HOVIEA®V OVOAVETOL PEG® TNG MEONG TWNG Kol Tr OLUKOUOVONG TOV
€Toov aplBpod KaBDE Kol Tov KOGTOLG TWV OTULTHCEDV TV OCQUAGUEV®VY, Ol
omoiol aVNKOUV G€ OPOPETIKEG KAAGES KIvduvov. Ot TpokOTTOVcES TIHEG TOV a
priori ac@aAicTpwv vIoAoYilovTal HECH TOV apY®V TNG OVOUEVOLEVNG TIUNG KOL TNG

tomikn andkiong (expected value and standard deviation principles) pe faon v
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vndOeon g aveaptoiag HETOED TNG oLYVOTNTOC KOl TNG GPOOPOTNTOS TMOV
OTOUTICE®V TPOG TNV AGPOAMOTIKY etalpeia. Qot10c0, Kotd v Talvounorn tov
KIVOUVOV 6€ KAAGES TOAAOL onpavTiKol Tapdyovteg dev pmopovv va Anedodv voyn
€K TOV TPOTEP®V. LVVETMG, TOPE TO a priori GOGTNHO, Ol KAAGELS TILOADYNONG, OV
Ba elvar amoAvTmg opotoyevelg Ko pmopel va dnpovpyndel pia doun ToAdynong
7ov glval Aok Yy Tovg acPaAepévovs. Tlpokeiuévon va petwbet 1o yaopo peta&v
TOV OTOUIKOV OCQOAMOTPOL Kot TOL LTOPOCKOVTOG Kvovvoyu kot vo avEnbodv ta
Kivntpa Yoo TNV 001KN OGQAAELD, TO OTOMKO 16TOPIKO Cnuidv mpémel va Anedel
vIoyYn oto mloiclo evog a posteriori povtédov. To GUOTAUOTO EKTTOCEWV-
emPapvvoemv (BMSS) eivor cvotiupote a posteriori  tywoldynong ta  omoia
EMPAALOVY TIOWVES GTOVS ACPAAICUEVOLS TTOV Eival LTAHTIOL Yo val 1] TEPLOTOTEPA
atvynuate pécw TG emPoAng evog emacediotpov (malus) kai avtictoya
emPBpofedovy TOVG OOPAMGUEVOLS Ywpic atvypato pe ékntwon (bonus). Baoiko
evolapépov g Prproypagiog TG avOAOYIGTIKNG EMGTAUNG ONOTEAEL 1] KOTAOKELY|
eVOg PEATIOTOL 1] «1daviKos» cuoThiratog BMS to omoio opiletatl wg éva chotnpa to
onofo amoktOnke péow g Bayesian analysis. O Pacikdg 6TOX0G TG TOPOVGOS
dwtpPng etvar M pHEAETN OWTOV TOV GLOTNUATOV HECH TNG XPNONG OPOPOV
oTATIOTIKOV povtédmv. Zto Kepdiaio 3, emexteivovpe v tpéyovcsa PBiAtoypapio
vy BMSs ypnowonowdvtog v katovoun Sichel yio v povielomoinomn g
KOTOVOUNG TNG GLYVOTNTOG TMV  OMOTNCE®Y TOL  AcPAALONEVOL TPOC TNV
ac@aAloTikn etoupeia. To cvonua awTd TPOoTEIVETOL MG EVOAAAKTIKO TOL BEATIOTOV
BMS nov AapBdvetor and 1o Apvntikd Atwvopukd poviédo (BAEme, Lemaire, 1995).
[Mapovotalovpe emiong kot to Pértioto BMS mov mpoépyetor omd tnv Poisson-
Inverse Gaussian katavoun, n onoio propei va Oepnbel wg o 101k TepinTwon g
katavoung Sichel. EmmpocOétmg, mpoteivovpe éva yevikevpévo BMS mov Aappdavet
véyn To a priori kKol a posteriori YopoKINPLoTIKE TOov KAOE acPaMcupévov,
emekteivovtag 10 mlaiclo mov avamntdydnke amd tovg Dionne kot Vanasse (1989,
1992). Avtd emroyydveton pe v mpaypotonoinon GAMLSS povtelomoinong oe
OAOL TOL HOVTEAD TOV TPEYOVTOG KEPOAOIOVL 7OV AVATOPIGTOVV TN CLYVOTNTO TOV
OTTOLTICEWV TOV 0CPAMEOUEVOV TTPOG TNV ACPOUMOTIKTY ETOPELD, ONAadN Ta ApyNTiKO
Awwvopko, Sichel kol Poisson-Inverse Gaussian povtéla. Ztnv avotépo Bedpnon n
BeAtiotomoinomn kobiotator Pkt HECH TNG EANYLOTOMOINONG TOL KIVOUVOL TOL

acpoiot|. H mhewovotnto tov BMSS ce 1oyxd Paciletor oty cvyvotmto tov
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OTTOUTICEWV TOV ACPUALOUEVOL TPOS TNV OGPAAMOTIKY ETOUPELD Yoo TNV avaBeoT Tov
ACQAAIGTPOL KOl OYVOEL TO GLUVOMKO TOVG KOOTOC. LVVETMC, N EMPAAAOUEVN OV
o€ £V0. AGQUAGUEVO 0 0010 VTTEGTN OTOYNLA LKPOV KOGTOVG B etvar adikwe dpota
LE TNV Town oL eMPANONKE G€ £va AGPAAIGIEVO 0 OTTO10G VITEGTN OTOYNIA LEYOAOL
ko6otovg. Ilopaxkvovpevor amd avtd to yeyovdg, Bécape ®g TPM®TO 6TOYO TOV
Kepaiaiov 4 v eveoudTmon TS 6podpOTNTS TOV ATOLTICEDY TOV 0CPUALOUEVOL
TPOG TNV aoPAACTIKN gToupeia oto Pértioto. BMSs tov Kepoiaiov 3, to omoia
BaoiCovtarl ota a posteriori kpiripla ta&vounong Tov aoeoiouévey. o avtd tov
oKomoO, VIoBETOVUE OTL TO VYOG TV {NUIOV KOTAVEPETOL He PAOT TNV KOTOVOUN
Pareto, axoAovBmvtag v Bedpnon tov Frangos and Vrontos (2001). O dedrtepog
o100 tov Kepohaiov 4 eivar 1 dnuovpyio evog Péitiotov BMS 10 omoio
TEPLOUPAVEL L0, GLVIGTAOGE Y10 TH GLYVOTITO KOl [0l GUVIGTMOGA Y10, T GPOdPOTNTA
TV atuynudtov kot Pociletor oto a priori kot oTo a posteriori  Kprrmplo
KOTNYOPLOTOINoNS TV acQAALOUEVOV, KOOMG EVOOUOTMOVEL GTO 0PYKO GUGTILLO Kot
TIG a priori emeEnynuatikéc petafintég yuo kdbe acpolouévo. H ocvvietdoo g
ovyvottog poviehomoleiton vmoBétoviag OTL 0 aplBpds TOV OTOTNCE®Y TOV
AGQOAMCOUEVOL TTPOG TNV ACPAMCTIKY etarpeia katovépetar pe Paon to Apvntikd
Atovopkd Tomov 1, Poisson-Inverse Gaussian xat Sichel GAMLSS. H cuvictdoa
™G 0QOOPOTNTAG HovTEAOTOLEITON VITOBETOVTAG OTL TO VYOG TV (NUOV KOTAVEUETOL
ue Baon to Pareto GAMLSS. To cvotnuo ovtd TPOKLTTEL OC UKL CLVAPTNOT TOV
ETOV KOTA TO OTO10 0 ACPOUAGUEVOG PPICKETOL GTO YOAPTOPLAAKIO TNG ETAPELNG, TOV
aplBpov tov atuynudTov tov, Tov peyédovg g Cnuiog KaBevog amd ovtd To
OTUYNUOTO KOl TV GTOTIOTIKG CMUAVIIK®OV EXEENYNUATIKOV UETAPANTOV Yo TOV
aplpd tev otvynuatov Kot yuoo to péyeBog g {nuiag kabevdg amd avtd To
atvyfuoto. Emumiéov, mapovoidlovpe o mo yevikevpévn poper| and ekeivn mov
npotdOnke otovg Frangos and Vrontos (2001). Ev kataxieidl, oto Kepdrow 5
dtvovpe Enpaocm otnv avdAvon TG GLVIGTAOGOS TG GLYVOTNTAS KoL TNG CUVICTOGCOGC
™G o@odpodTTOag €vog PéAtiotov BMS ypnowonowdvioag memepacuéveg peilelg
KOTOVOL®MV Kot LovTEA®V maivopounong (BAéne Mclachlan ko Peel, 2000 kot Rigby
kot Stasinopoulos, 2009), kaOmhg or pébodor avtéc, pe e€aipeon tov Lemaire (1995),
dev €yovv peremBet oy Piloypagio yio BMSs. H cvuvictoca g cvyvottog
povtelomoteiton pe TN ypion g menepoouévne ueiEng Poisson, Apvntikdv
Aovopkov kot Delaporte katavopdv, evd M ouvioTOGO NG GEOIPOTNTOG

povteAomoteiton pe Tn ypion pog menepacpévng peiEéng Exbetucov, I'appo, Weibull
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kol [evikevpévov Bita Tomov 11 (GB2) xotavopmv. Iapovsialovpe emiong, v
TEPIMTMOON WG TEMEPAGUEVNG UEIENS APVNTIKOV AIOVUUIKOV KOTOVOU®MV KOl HL0G
nemepacpévng peiéng kotavoudmv Pareto, evmuepovovtag tov posterior péco. Ta
yevikevpéva BMS mov mpoteivovple eVoOOUOTOVOVY €TOPKOG TNV Tavounon tov
KWWOOVeV 68 KAAOELS, KOOMG Kol TNV EUNEIPIKN TIHOAOYNOT, AdpPdvovtag vmoyn

0G0 To a priori OGO Kol To @ POSteriori YoPAKTNPIOTIKA TOV KAOE 0GPAMGUEVOL.
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Chapter 1

Introduction

1.1 Motor Insurance

The history of the automobile dates back to 1769, with the creation of the first self-propelled
steam engined road vehicle capable of human transport. In 1806, the first cars powered by
an internal combustion engine running on fuel gas appeared, which led to the introduction in
1885 of the ubiquitous modern gasoline (or petrol) fueled internal combustion engine. Since
then, the number of motor vehicles has grown constantly. In 2010 the number of cars on
the world’s roads was estimated to exceed 1.015 billion as compared with a few thousand
at the end of the 19"century. Unfortunately, a result of this has been a great increase in
the rates of accidents and casualties, with hundreds of thousands killed and many times this
number injured each year. As a result, automobile third-party liability insurance is required
by law in most countries for a vehicle to be allowed on the public road network. Compulsory
third party coverage provides protection if the vehicle’s owner causes harm to another party,
who recovers their cost from the policyholder. In developed countries third party coverage
represents a considerable share of the yearly nonlife premium collection. This share becomes
more prominent when first party coverages are considered (i.e. medical benefits, uninsured or
underinsured motorist coverage, and collision and other than collision insurance). Moreover,
insurance companies maintain large data bases, recording policyholders’ characteristics as well
as claim histories. The economic importance and availability of detailed information have to
do with the fact that a large body of actuarial literature is devoted to this line of business.
Most actuaries worldwide are required to design tariff structures to spread the claim burden
among policyholders in a fair way. This is the objective of a ratemaking process. A prime
actuarial ratemaking principle is cost-based pricing of individual risks. An estimate of the
future costs related to the insurance coverage is the amount policyholders are required to
pay. The price of an insurance policy is defined by the pure premium approach as the ratio
of estimated costs of all future claims against the coverage that the insurance policy provides
while it is in effect to the risk exposure, plus expenses. The ratemaking of the property/casualty
is based both on a claim frequency distribution and a loss distribution. The claim frequency
is defined as the number of incurred claims per unit of earned exposure. The exposure is
measured in car-years for motor third party liability insurance, the rate manual lists rates per



car-year. The average payment per incurred claim is the average loss severity. Under mild
conditions, the pure premium equals the product of the average claim frequency multiplied by
the average loss severity. In liability insurance, several years are usually required for larger
claims to be settled. Therefore, much of the data available for recent accident years will be
incomplete, as the final claim cost will be unknown. In this case, a final cost estimate can be
obtained by loss development factors and the average loss severity is based on incurred loss
data. In contrast to paid loss data, which are purely objective, representing the company’s
actual payments, incurred loss data include subjective reserve estimates. Large claims have to
be analyzed carefully by the actuary due to the fact they represent a considerable share of the
insurer’s yearly expenses.

1.2 A Priori Risk Classification

Insurance companies must maintain cross subsidies between different risk categories in order
to remain competitive in the current market environment. Consequently, a constant challenge
within the actuarial profession is that of the construction of a fair tariff structure. In light
of the heterogeneity within a motor insurance portfolio, an insurance company should not
apply the same premium to all insured risks. Otherwise the solvability of the company may be
undermined by the concept known as adverse selection. ‘Good’ risks, i.e. those with low risk
profiles, will pay too much and leave the company, whereas ‘bad’ risks will be encouraged to be
insured there due to the favorable tariff. The idea behind risk classification is to partition all
policies into homogenous classes with all policyholders belonging to the same class paying the
same premium. Every time an additional rating factor is used by a competitor, the partition
must be adjusted so that the best drivers with respect to this factor will not be lost. Because
of this, we can understand that insurance companies use so many factors, not because it is
required by actuarial theory, but due to competition among insurers.

Moreover, in a free market insurance companies have to use a rating structure that matches
the premiums for the risks as closely as possible as the rating structures used by competitors.
This entails that virtually every available classification variable correlated to the risk must
be used. Failing to do so would mean sacrificing the chance to select against competitors and
incurring the risk of suffering adverse selection by them. Thus the competition between insurers
leads to more and more partitioned portfolios and not actuarial science. Social disasters are
also frequently caused by this trend towards more risk classification. For instance, drivers
categorized as ‘bad’ are tempted to drive without insurance as they do not find coverage for a
reasonable price. At this point we should mention that even if a correlation exists between the
rating factor and the risk covered by the insurer, there may be no causal relationship between
that factor and risk. Requiring that insurance companies establish such a causal relationship
to be allowed to use a rating factor is subject to debate.

Property and liability motor vehicle insurers use classification plans for the creation of risk
classes. The classification variables introduced to partition risks into cells are called a-priori
variables (as their values can be determined before the policyholder starts to drive). In motor
third-party liability insurance, they commonly include the age, gender, and occupation of the



policyholders the type and use of their car, and other personal data. Thus premiums for
motor liability coverage often vary according to these individual characteristics. If any of these
classification variables are misrepresented by the policyholders in their declaration, they can lose
the coverage when they are involved in an accident so a strong incentive for accurate reporting
of risk characteristics exists. Recent actuarial literature research assumes that the risks can then
be rated a priori using generalized linear models (GLM). Typical response variables involved
in this process are the claim frequency and its corresponding severity. The method can be
summarized as follows: As the base cell we choose one risk classification cell. Normally it has
the largest amount of exposure. The rate for the base cell is referred to as the base rate. A
variety of risk classification variables define other rate cells. For each risk classification variable,
there is a vector of differentials; with the base cell characteristics always assigned one hundred
per cent. References for a priori risk classification include, for example, Dionne and Vanasse
(1989, 1992), Dean, Lawless, and Willmot (1989), Denuit and Lang (2004), Gourieroux and
Jasiak (2004), Yip and Yau (2005), Denuit et al. (2007) and Boucher et al. (2007, 2008).

1.3 Bonus-Malus Systems

The trend towards more classification factors has led the supervising authorities to exclude
from the tariff structure certain risk factors, even though they were significantly correlated to
losses. Classifications based on items that are beyond the control of the insured such as gender
or age, were banned by many states. Moreover, many important factors cannot be taken into
account a priori when pricing motor third party liability insurance products. For instance,
reaction times, aggressive driving behavior or theoretical and practical driving experience are
difficult to integrate into a priori risk classification. As a result, heterogeneity is still observed
in tariff cells despite the use of many classification variables. Therefore, the idea to use the
past number of claims in order to correct the inadequacies resulting from an a priori rating
system. Experience rated or Bonus-Malus Systems, BMSs in short, are systems that impose
penalties on policyholders responsible for one or more accidents by premium surcharges or
maluses and reward policyholders with no claims by giving discounts or bonuses. Their prime
objective, apart from promoting careful driving amongst policyholders, is to assess individual
risks more accurately so that on a long term basis everyone will pay a premium corresponding
to their own claim frequency. The mathematical definition of a Bonus-Malus system was
introduced by Loimaranta (1972) and assumes that it can be modelled using conditional Markov
chains, provided they possess a certain “memory-less” property: the knowledge of the present
class and of the number of claims of the present year suffices to determine the class for the
next year. More precisely, the Markov property is satisfied by the Bonus-Malus systems as
follows: the future level of year ¢t + 1, depends on the present level of year ¢t and the number of
accidents reported during that year and does not depend on the past i.e. the claim frequency
history and the levels occupied during years 1,2, ...,¢ — 1. Thus, we can determine the optimal
relativities using an asymptotic criterion based on the stationary distribution or using transient
distributions. More details on these Bonus-Malus systems can be found in Norberg (1976)
and comprehensively in Lemaire (1995). Furthermore, these systems are fair since a priori
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ratemaking penalizes policyholders who may be considered as bad risks, even if they are actually
very good drivers and they will never cause an accident, whereas BMSs adjust the amount of
premium using the individual claim record. A balance between the likelihood of being a good
but unlucky driver who suffered a claim and the likelihood of being a truly bad driver, to
whom the insurance company should make an increase in the premium payable, is made by the
use of actuarial credibility models. Also, BMSs may be more acceptable to policyholders than
seemingly arbitrary a priori classifications as it is fair to correct the inadequacies of the a priori
system by using a more adequate system.

In the United Kingdom, discounts for claim-free driving were awarded much earlier, in
1910, but their initial intention was merely to encourage the renewal of a policy with the same
company rather than reward careful driving. Grenander (1957 a, b) through his pioneering
works was the first to provide theoretical treatments of Bonus-Malus systems. The first ASTIN
colloquium was held in France in 1959 and was exclusively devoted to no-claim discounts in
insurance, with particular reference to the motor business.

Many countries around the world use various Bonus-Malus systems. A typical form of no-
claim bonus in the United Kingdom is defined as follows: An extra year of bonus is earned by
drivers for each year they remain without claims at fault up to a maximum of four years, but
two years bonus is lost each time they report a claim at fault. In such a system, maximum bonus
is achieved in only a few years and the majority of mature drivers have maximum bonus. In
Continental Europe the Bonus-Malus systems that are used tend to be more elaborate. Bonus-
Malus scales consist of a finite number of levels, each with its own relativity or relative premium.
Then the amount of premium paid by a policyholder is the product of a base premium with
the relativity corresponding to the level occupied in the scale. New policyholders enter at a
specific level and the policy moves up or down according to transition rules of the Bonus-Malus
system at the beginning of the next year. If a Bonus-Malus system is in force, all policies in the
same tariff class are partitioned according to the level they occupy in the Bonus-Malus scale.
Hence, the Bonus-Malus systems can be considered as a refinement of a priori risk evaluation
as according to individual past claims histories, they split each risk class into a number of
subcategories.

During the 20th century, a uniform Bonus-Malus system was imposed on all the compa-
nies in most European countries. In 1994, the European Union directed that the mandatory
Bonus-Malus systems must be dropped by its entire member countries because they were in con-
tradiction to the total rating freedom implemented by the Third Directive and so competition
between insurers was reduced. Since then, Belgium for instance, has dropped its mandatory
system but the former uniform system is still operated by many companies there, with minor
modifications for the policyholders who occupy the lowest levels in the scale. However, in other
FEuropean countries, like Spain and Portugal, insurers compete on the basis of Bonus-Malus
systems. Nevertheless, the mandatory systems in France and Grand Duchy of Luxembourg
are still in force as in 2004 the European Court of Justice decided that both these mandatory
systems were not in violation of the rating freedom imposed by European legislation. Thus,
French law still imposes on insurers operating in France a unique Bonus-Malus system which
is not based on a scale but instead uses the concept of an increase-decrease coefficient: a malus
of 25 % per claim and a bonus of 5 % per claim-free year are implied, so a base premium is
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assigned to each policyholder and it is adapted according to the claims number reported to
the insurer, multiplying by 1.25 the premium each time a claim is reported, and by 0.95 per
claim-free year.

Another important issue is the actuarial and economic justifications for BMSs. As we have
already mentioned, BMSs match individual premium to risk and increase incentives for road
safety by taking into consideration the claims history record of each policyholder. They can be
justified by asymmetrical information between the insurance company and the policyholders.
Indeed, they encourage policyholders to drive carefully (i.e., they counteract moral hazard)
and respond to adverse selection in automobile insurance. In the context of compulsory motor
third party liability insurance, adverse selection occurs when the policyholders take advantage
of the information they have about their claim behavior, known to them but unknown to the
insurer. However, the problem of adverse selection is not as important as the problem of moral
hazard when insurance companies charge the same premium amount to every policyholder. In
a deregulated environment with companies using many risk classification factors the situation
deteriorates and adverse selection becomes unavoidable as very heterogeneous driving behaviors
are observed among policyholders who share the same a priori variables. Experience rating is
a response to both adverse selection and moral hazard, penalizing the more numerous claims
of those with more dangerous driving patterns. It is interesting to confront the approaches of
economists and actuaries to experience rating. In economic literature, discounts and penalties
are introduced mainly to counteract the inefficiency which arises from moral hazard. In actuarial
literature, the main purpose is to better assess individual risk so that everyone will pay, in the
long run, a premium corresponding to their own claim frequency. Since the penalty induced by
the Bonus-Malus system is in general independent of the claim amount, a crucial issue for the
policyholder is therefore to decide whether it is profitable or not to report small claims. Low
cost claims are likely to be defrayed by the policyholders themselves, and not reported to the
company. This phenomenon, known as the hunger for bonus, limits claim handling costs since
small claims are not reported to the insurer.

1.3.1 Optimal Bonus-Malus Systems

In the previous section the BMSs were defined as systems that are usually modeled in the
framework of homogeneous Markov chains. Under the aggressiveness and competitiveness of
the insurance markets, this assumption is not realistic. A basic interest of actuarial literature
is the construction of an optimal or ‘ideal’ BMS defined as a system obtained through Bayesian
analysis. A BMS is called optimal if it is:

1. Financially balanced for the insurer. That is the total amount of bonuses is equal to the
total amount of maluses.

2. Fair for the policyholder. That is each policyholder pays a premium proportional to the
risk that he imposes to the pool.

Furthermore, optimal BMSs can be divided into those based only on the a posteriori classi-
fication criteria and those based both on the a priori and the a posteriori classification criteria.



Typically, a posteriori classification criteria include the number and severity of individual claims,
while a priori classification criteria include variables such as characteristics of the policyholder
and automobile.

Lemaire (1995) developed the design of an optimal BMS based on the number of claims of
each policyholder, following the game-theoretic framework introduced by Bichsel (1964) and
Buhlmann (1964). Given that the premium is proportional to the unknown claim frequency
and an estimate has to be employed instead, the insurer faces a loss. Minimizing this loss gives
the optimal estimate of the policyholder’s claim frequency. In his system each policyholder
must pay a premium proportional to his unknown claim frequency. Tremblay (1992) designed
an optimal BMS using the quadratic error loss function, the zero-utility premium calculation
principle and the Poisson-Inverse Gaussian distribution to approximate the number of claims.
Coene and Doray (1996) developed a method of obtaining a financially balanced BMS by
minimizing a quadratic function of the difference between the premium for an optimal BMS
with an infinite number of classes, weighted by the stationary probability of being in a certain
class and by imposing various constraints on the system. Walhin and Paris (1997) obtained
an optimal BMS using as the claim frequency distribution the Hofmann’s distribution, which
encompasses the Negative Binomial and the Poisson-Inverse Gaussian, and also using as a claim
frequency distribution a finite Poisson mixture.

The models discussed above are functions of time and of past claim frequency and do not take
into consideration the characteristics of each individual. In this way the premiums do not vary
simultaneously with other variables that affect the claim frequency distribution. For instance,
let us suppose that the age variable has a negative effect on the expected number of claims.
This would imply that insurance premiums should decrease with age, even though premium
tables derived from BMS based only on the a posteriori criteria, do not allow for a variation of
the statistically significant variable of age. Dionne and Vanasse (1989, 1992) developed a BMS
that integrates a priori and a posteriori information on an individual basis. For this purpose
they used the Negative Binomial regression model for assessing claim frequency. The resulting
generalized system was derived as a function of the years that the policyholder is in the portfolio,
the number of accidents and the individual characteristics which are significant for the number
of accidents. Picech (1994) and Sigalotti (1994) constructed a BMS that incorporates the a
posteriori and the a priori classification variables, with the engine power as the single a priori
rating variable. Sigalotti developed a recursive procedure to compute the sequence of increasing
equilibrium premiums needed to balance out premiums income and expenditures compensating
for the premium decrease created by the BMS transition rules. Picech developed a heuristic
method to build a BMS that approximates the optimal merit-rating system. Taylor (1997)
designed the setting of a Bonus-Malus scale where some rating factors are used to recognize
the differentiation of underlying claim frequency by experience, but only to the extent that this
differentiation is not recognized within base premiums. Pinquet (1998) developed the design of
optimal BMS from different types of claims, such as claims at fault and claims not at fault.

The Bonus-Malus systems mentioned above, assign to each policyholder a premium based on
the number of their accidents but the size of loss that each accident incurred is not considered.
This is unfair, because a policyholder who underwent an accident with a small size of loss is
penalized in the same way with a policyholder who had an accident with a big size of loss.



Among the BMSs that take severity into consideration are those designed from Picard (1976),
Lemaire (1995), Pinquet (1997), Frangos and Vrontos (2001), Pitrebois et al. (2006) and
Mahmoudvand and Hassani (2009).

The Construction of an Optimal BMS in the Form of a Statistical Game

The Poisson distribution was discovered by Simeon-Denis Poisson (1781-1840). Typically, a
Poisson random variable is a count of the number of events that occur in a certain time interval
or spatial area. In motor third party liability insurance, the accident pattern of drivers conforms
to a Poisson distribution and we adopt the Poisson to model the claim frequency of individual
policyholders (see Lemaire, 1995).

Following the setup of Lemaire (1995), we present the construction of an optimal BMS,
based only on claim frequency, as a series of statistical games between the actuary and the
nature. Consider a policyholder who is observed for ¢ years and denote by k;, j = 1,...,t, the
number of claims in which they were at fault. So their claim frequency history will be in a form
of a vector (ki, ..., k;). We assume that the claim frequency doesn’t change over time and that
k; are the realizations of independent and identically (i.i.d ) random variables K distributed
according to a Poisson(A) distribution with probability density function (pdf) given by

P(K;=k) =<2 k=0,1,2,.

With each group of observations ki, ..., k;, we must designate a number ;1 (k1 ..., k), which
is the best estimate of the Poisson density A at ¢ + 1. The decision problem can be presented
as follows: Given a series of i.i.d random variables K, ..., Ky, ..., determine a set of functions
A1 = Mot (kpy o k), t =0, 1, ..., that estimate A optimally and sequentially.

The design of an optimal BMS can thus be presented as a series of statistical games between
the actuary and the nature, where the definition of each game is the following

Gt+1 - (A07 St+17 Rt+1) )
where

e Ay, the space of strategies of nature, is the interval [0, 00), in which the unknown para-
meter A belongs,

e S;.1, the space of strategies of the actuary at time ¢ + 1, is a class of decision functions
Air1 (K1, ..., ki), which associates a point Ay 1€Ag with each vector (kq, ..., k),

o R = Rii1(A11,A), the risk function of the actuary at ¢ + 1, is the expectation of the
loss L1 (Aig1, A) that the actuary incurs when they take a decision Ay (k1, ..., k) while
nature is in state A\. The loss function L;1 (A\;11,A) is a non-negative function of the
difference between \;,; and A\ so we have

Rt (er1s A) = E [Lisa e, V] = Y Liea (e, A) P (R, ey ke A)
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defining Z as the sum over all claim histories (ki,...,k;) and P (ki, ..., k/|\) as the the
t—dimensional distribution of the number of claims for a policyholder characterized by their
claim frequency .

Thus the set of the G, t = 1,2, 3, ... forms the statistical game

G: (A())S)R)a

where S = 57 X Sy X ... X Sy X ...x is the Cartesian product of the S;, and where

R R()\l,..., ty oe ZRt /\t7 iE Lt )\ta )
t=1

is the total expected loss of the actuary.
A series (A}, ..., A, ...) is called uniformly optimal if

RN A i A) S R (Mo Ay i A)

for each value of A and for all (Aq, ..., \).

However, in general, a uniformly optimal series does not exist since in a given heterogeneous
portfolio each driver is characterized by the value of their parameter A\. For instance, the
optimal BMS for a good risk policyholder, who has low claim frequency A, is very different
from the best system for a bad risk insured, who has high claim frequency A.

In light of unobserved heterogeneity in the portfolio we assume that A is the observed value
of a random variable A with density function u(A) called the structure function. The resulting
distribution of the number of claims k

P(szk):/%umw,k:o,m,...

is called a mixed Poisson distribution!.

minimize the average risk of the actuary

Based on this assumption, an alternative is to

RO\ /R My oo s A) w(A)dA.
0

A series (A}, ..., A}, ...) is defined as optimal if

ROG XN = df R ).

1Poisson mixtures are well-known counterparts to the simple Poisson distribution for the description of
heterogeneous populations.



Based on a theorem of Wald and Wolfowitz (1951), it can be shown that an optimal solution
of the above equality always exists.

The conditional distribution of M|k, ..., k; is called the posterior structure function of A,
and is denoted as u (A|ky, ..., k¢). It tells the insurer what the next year claim frequency might
be given the information contained in past claim frequency history and it is the relevant distri-
bution for risk analysis, management and decision making. Applying the Bayes theorem, one
can find that u (A&, ..., k) is equal to

Pkt kN u () P ke k) u (V)
P (ky, ...,k I ’
( ) /P(kl,...,kt\)\)u()\)d)\

0

u()\|k17 st kt) =

where P (ki,...,k;) is the distribution of claims during the ¢ years of observation in the
portfolio.
Thus, we must minimize

R(see i) = 3 [ 37 Livt Ot ) P (s ) )
t=0 0

=ZZ/MMmNHMMMWMmmM
t=0

0

Since the loss function L; 1 (A;11,A) > 0, the above expression has to be be minimized for
each t and for each (ky,..., k),

oo

/Lt+1 (Aer1, A) w(Alkr, ..oy ke )dA,

0

which is the a posteriori risk of A.

From the previous it is obvious that the Bayesian approach to this minimization problem
is to find a loss function L;. 1 (As+1,A) to measure the loss incurred by estimating the value of
the parameter A as \;y;.

The loss is an increasing function of the size of the actuary’s error. When A\;;; < A, the
insured is undercharged, and the insurer will make a loss, while when \,.; > A, the policyholder
is overcharged, and the insurer risks losing the policyholder from his portfolio. With the aim
of penalizing large mistakes more, it is assumed that the loss function is a non-negative convex
function of the error. The actuary estimates correctly the insured’s claim frequency and no
error is made when \;1; = ), i.e. the loss is zero and strictly positive in every other case.

Various loss functions are to be found in the statistical literature. The most classical choice
is the quadratic error loss function



Ly (/\t+1> )\) = ()‘t—i-l - >\)2-

In this case we must find the minimum of
/ M1 — A) u(A kg, .o, k) dA.
0

Thus, the optimal choice of \ at time ¢t + 1, S\tﬂ (k1, ..., k), for a policyholder who had a
claim frequency history k1, ..., k; is given by

Mgt (ky, oo k) = /AU(A\kl, k) d
0

This is the mean of the posterior structure function of A\, E(\|ky, ..., k;). Thus a policyholder
or a group of policyholders who underwent claims history (&, ..., k;) will have to pay a net
Bayesian credibility premium equal to their a posteriori claim frequency. By definition, a BMS
designed using Bayesian analysis is called an optimal BMS.

1.4 Generalized Linear Models

Generalized linear models (GLMs) were introduced by Nelder and Weddeburn (1972). The
history of GLMSs in actuarial statistics goes back to the actuarial illustrations in the standard
text presented by McCullagh and Nelder (1989). For an overview of the use of GLMs in typical
problems in actuarial statistics see, for example, Haberman and Renshaw (1996). References
for the use of GLM in a priori risk classification and experience rating include, for instance,
Dionne and Vanasse (1989, 1992), Frangos and Vrontos (2001), Pitrebois et al. (2006), Denuit
et al. (2007) and Boucher et al. (2008). Furthermore, with the exception of Jgrgensen and Paes
de Souza (1994), all actuarial analyses of the pure premium have examined claim frequencies
and costs separately.

In what follows we present a short summary of the main characteristics of GLMs. For a
broad introduction to GLMs we refer to McCullagh and Nelder (1989). The GLMs extend the
framework of linear models to the class of distributions from the exponential family. Firstly, the
normal distribution for the response variable Y is replaced by an exponential family distribution
(denoted EF in general). Secondly, they provide a way around the transformation of data.
Instead of a transformed data vector, a transformation of the mean is modelled as a linear
function of explanatory variables through a (possibly non-linear) link function. The EF is very
flexible and a considerable variety of possible outcome measures (such as continuous, count,
binary and skew data) can be modelled within this framework.

A GLM consists of the following components:
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1. The response variable Y has a distribution in the EF, with density function taking the
form : 0]
y— ¢
ro.0) e { [t 0) 0}, (1)
where 0 is called the natural parameter, ¢ is a dispersion parameter, £ (V) = u = p(0)
and V (Y) = ¢V (u), for a given variance function V' and a known bivariate function c.
The form of (1.1) includes many important distributions such as the Normal, Poisson,
Gamma, Inverse Gaussian and Negative distributions having variance functions V (u) =
1, p, 2, 1 and p+ £ respectively.

2. For a random sample (Y7, ...,Y},), the linear predictor is defined as
=X'8,i=1,..,n, (1.2)

for some vector of parameters 3 = (61, s Bp)T and covariate X; = (x;1, ..., xip)T associ-
ated to Y;.

3. A monotonic differentiable link function g describes how the expected response p; = E (Y;)
is related to the linear predictor n);.

9 () =npt=1,....,n. (1.3)

For an observed independent random sample (yi, ..., y,) the log-likelihood function [ of the
vector of parameters 3 is given by

1) =oe (2 (@) = - { [T )+ e (14

where L denotes the likelihood function.
The derivative of [ is equal to

) dps; ) dp; X7
7 7 7 (3 1.5
;du 19 Zqﬁvm X1 3 5
where
dp,  dg™ (XTB) 1 (16)
dX{g  dX{p g (u) '
Hence

XZ .
s i1 oV (1) g (s)
Note that if Y has a Normal distribution, then ¢’ (1;) =1 and V' (i;) = 1 for all i. Setting
dl(ﬁ B) — yields Z X; (yZ XTﬁ) = 0. However, in other EF cases a closed form solution to this

di (8) z":(.w—m) 1 or (1.7)

system of p equatlons does not exist. Instead, the maximum likelihood estimator is obtained
numerically, using iterative algorithms such as the Newton-Raphson or Fisher scoring methods
(for more details, see McCullagh and Nelder, 1989).
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1.5 Outline of the Thesis

The research projects we present in this dissertation deal with the important actuarial subjects
of risk classification and experience rating in motor third-party liability insurance. Due to the
quantitative nature of this area of applied statistics, the successful application of up-to-date
statistical techniques in the analysis of motor insurance data is indispensable in the palette
of actuarial skills. In this thesis, we apply concepts from both a priori risk classification and
Bonus-Malus systems and link our work with contributions in this area.

In Chapter 2 we extend recent actuarial literature research which uses generalized linear
models for pricing risks through ratemaking based on a priori risk classification (see, for ex-
ample, Denuit et al. 2007 & Boucher et al., 2007, 2008). For this purpose we consider the
generalized additive models for location scale and shape (GAMLSS). The GAMLSS models
were introduced by Rigby and Stasinopoulos (2005) and Akantziliotou, Rigby, and Stasinopou-
los (2002) as an alternative to the GLM framework. In the GAMLSS the systematic part of the
model is expanded to allow modeling of location and shape parameters. Therefore, both mean
and variance may be assessed by choosing a marginal distribution and building a predictive
model using ratemaking factors as independent variables. In light of a priori ratemaking the
GAMLSS are used to model the frequency and the severity of claims. Specifically, we assume
that the number of claims is distributed according to the Poisson, Negative Binomial Type II,
the Delaporte, Sichel and Zero-Inflated Poisson GAMLSS and that the losses are distributed
according to the Gamma, Weibull, Weibull Type III, Generalized Gamma and Generalized
Pareto GAMLSS as these models have not been studied in risk classification literature. Speci-
fication tests to select the optimal classification model for each case are considered. Differences
between these models are analyzed through the mean and the variance of the annual number
of claims and the costs of claims for the policyholders, who belong to different risk classes.
The resulting a priori premiums are calculated via the expected value and standard deviation
principles, assuming that the claim frequency and severity components are independent.

With Chapters 3, 4 and 5 we switch from a priori ratemaking techniques to experience rated
or Bonus-Malus Systems (BMSs). These systems are much in line with the concept of fairness:
a priori ratemaking penalizes policyholders who are characterized as bad drivers, even if they
are actually very good drivers and will never cause any accident, whereas experience rating
adjusts the amount of premium using the individual claim record. A basic interest of actuarial
literature is the construction of an optimal or ‘ideal’ BMS, defined in 1.3.2 as a system obtained
through Bayesian analysis. The study of such systems using different statistical models will be
the main objective of these chapters.

In Chapter 3 our first contribution is the development of an optimal BMS using the Sichel
distribution for assessing claim frequency. This system is proposed as an alternative to the
optimal BMS obtained by the Negative Binomial model (Lemaire, 1995). The Sichel distrib-
ution differs from the Negative Binomial one by using a Generalized Inverse Gaussian (GIG)
mixing distribution for the parameter of the Poisson density, i.e. the expected claim frequency,
instead of the Gamma one, which the derivation of the Negative Binomial distribution is based
on. An additional advantage of the Sichel model is that it can be considered as a candidate
model for highly dispersed count data. We also consider the optimal BMS provided by the
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Poisson-Inverse Gaussian (PIG) distribution, which is a special case of the Sichel distribution.
Our second contribution is the development of a generalized BMS that integrates the a priori
and the a posteriori information on an individual basis, extending the framework developed by
Dionne and Vanasse (1989, 1992). This is achieved by using the Sichel GAMLSS for assessing
claim frequency as an alternative to the Negative Binomial regression model of Dionne and
Vanasse (1989, 1992). Furthermore, we consider the PIG GAMLSS for assessing claim fre-
quency. With the aim of constructing an optimal BMS by updating the posterior mean claim
frequency, we adopt the parametric linear formulation of these models and we allow only their
mean parameter to be modelled as a function of the significant a priori rating variables for the
number of claims. In the resulting generalized system, the premium is a function of the years
that the policyholder is in the portfolio, the number of accidents and the significant a priori
rating variables for the number of accidents.

In Chapter 4 our first objective is the integration of claim severity into the optimal BMSs
based on the a posteriori criteria of Chapter 3. For this purpose we consider that the losses are
distributed according to a Pareto distribution, following the framework proposed by Frangos
and Vrontos (2001). The BMS resulting from the Sichel and Pareto models and that derived
form the PIG and Pareto models are compared to the system provided by the Negative Binomial
and Pareto models (Frangos and Vrontos, 2001). Our second objective is the development of a
generalized BMS with a frequency and a severity component when both the a priori and the a
posteriori rating variables are used. For the frequency component we assume that the number
of claims is distributed according to the Negative Binomial Type I, Poisson Inverse Gaussian
and Sichel GAMLSS. For the severity component we consider that the losses are distributed
according to a Pareto GAMLSS. This system is derived as a function of the years that the
policyholder was in the portfolio, their number of accidents, the size of loss of each of these
accidents and of the statistically significant a priori rating variables for the number of accidents
and for the size of loss that each of these claims incurred. Furthermore, we present a generalized
form of the system obtained in Frangos and Vrontos (2001).

In Chapter 5 we put focus on both the analysis of the claim frequency and severity com-
ponents of an optimal BMS using finite mixtures of distributions and regression models (see
Mclachlan and Peel, 2000, and Rigby and Stasinopoulos, 2009). Finite mixture models are a
popular statistical modelling technique given that they constitute a flexible and easily extensi-
ble model class for approximating general distribution functions in a semi-parametric way and
accounting for unobserved heterogeneity. Finite mixture models have been widely applied in
many areas, such as biology, biometrics, genetics, medicine and marketing. However, with the
exception of Lemaire(1995), they have not been extensively studied in BMS literature. Our first
contribution is the development of an optimal BMS based on the a posteriori frequency and
severity component using various finite mixtures of distributions. For the frequency component
we assume that the number of claims is distributed according to a finite Poisson, Delaporte
and Negative Binomial mixture, and for the severity component we consider that the losses are
distributed according to a finite Exponential, Gamma, Weibull and GB2 mixture. In this way
we expand the setup of Lemaire (1995), who designed an optimal BMS based on the two compo-
nent Poisson mixture distribution. Applying Bayes theorem we derive the posterior probability
of the policyholder’s classes of risk. Furthermore, we extend the setup of Frangos and Vrontos
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(2001) for Negative Binomial and Pareto mixtures and derive the posterior distribution of both
the mean claim frequency and the mean claim size, given the information we have about the
claim frequency history and the claim size history for each policyholder for the time period
they are in the portfolio. Our third contribution is the development of a generalized BMS that
integrates the a priori and the a posteriori information on a individual basis extending the
framework developed by Dionne and Vanasse (1989, 1992) and Frangos and Vrontos (2001).
This is achieved by using finite mixtures of regression models. In the setup we consider, the
heterogeneity in the data is accounted for in two ways. Firstly, the population heterogeneity
is explained by choosing a finite number of unobserved latent components, each of which may
be regarded as a sub-population. This is a discrete representation of heterogeneity in the data
since the mean claim frequency and severity are approximated by a finite number of support
points. Secondly, depending on the choice of the component distribution, heterogeneity can
also accommodated within each component by including the explanatory variables in the mean
rate function.
Concluding remarks and ideas for future research can be found in Chapter 6.
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Chapter 2

A Priori Risk Classification for Claim
Counts and Losses Using Generalized
Additive Models for Location, Scale
and Shape

2.1 Introduction

As we mentioned in Chapter 1, within the actuarial profession a major challenge is to design
a tariff structure that will fairly distribute the burden of claims among policyholders. In light
of the heterogeneity within a car insurance portfolio, an insurance company should not apply
the same premium to all insured risks. Otherwise the phenomenon of adverse selection will
undermine the solvability of the company. ‘Good’ risks, with low risk profiles, will pay too
much and leave the company, whereas ‘bad’ risks are attracted by the favorable tariff. Every
time an additional rating factor is used by a competitor, the actuary must adjust the partition
in order to avoid losing the best drivers with respect to this factor. Because of this, we can
understand why insurance companies use so many factors even though this is not required by
actuarial theory, but instead is required by competition among insurers. The idea behind a
priori risk classification is to split an insurance portfolio into classes that consist of risks with all
policyholders belonging to the same class paying the same premium. In view of the economic
importance of motor third party liability insurance in developed countries, actuaries have made
many attempts to find a probabilistic model for the distribution of the number and costs of
claims reported by policyholders.

Recent actuarial literature research assumes that the risks can be rated a priori using gener-
alized linear models, GLM (see Nelder and Wedderburn, 1972) and generalized additive models,
GAM (see Hastie and Tibshirani, 1990). For motor insurance, typical response variables in these
regression models are the number of claims (or claim frequency) and its corresponding severity.
References for a priori risk classification include, for example, Dionne and Vanasse (1989, 1992),
Dean, Lawless and Willmot (1989), Denuit and Lang (2004), Yip and Yau (2005), and Boucher
et al. (2007). Specifically, Dionne and Vanasse used a Negative Binomial Type I regression
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model, Dean, Lawless and Willmot used a Poisson-Inverse Gaussian regression model, Denuit
and Lang used generalized additive models, Yip and Yau presented several parametric Zero-
Inflated count distributions, and Boucher et al. presented a comparison of various Zero-Inflated
Mixed Poisson and Hurdle Models. Also, a review of actuarial models for risk classification and
insurance ratemaking can be found in Denuit et al. (2007).

In this Chapter, we extend this setup following the generalized additive models for location
scale and shape (GAMLSS) approach of Rigby and Stasinopoulos (2005) as these models have
not been studied in risk classification literature. In light of a priori ratemaking there is a
substantial benefit in the GAMLSS approach since the GLM and GAM frameworks are extended
by allowing all the parameters of the distribution of the claim frequency and severity response
variables to be modelled as linear/non-linear or smooth functions of the explanatory variables.
Therefore, both mean and variance may be assessed by choosing a marginal distribution and
building a predictive model using all the available ratemaking factors as independent variables.
A comprehensive actuarial application of GAMLSS can be found in Heller et al. (2007), where
GAMLLS have been used for the statistical analysis of the total amount of insurance paid out
on a policy. In the setup we consider, we adopt the parametric linear formulation of these
models and we model risk heterogeneity as the distribution of frequency and/or severity of
claims changes between clusters by a function of the level of ratemaking factors underlying
the analyzed clusters. Specifically, we model the claim frequency using the Poisson, Negative
Binomial Type II, Delaporte, Sichel and Zero-Inflated Poisson GAMLSS and the claim severity
using the Gamma, Weibull, Weibull Type III, Generalized Gamma and Generalized Pareto
GAMLSS. Our contribution puts focus on the comparison of these models through their variance
values. To the best of our knowledge it is the first time that the variance of the claim frequency
and severity is modelled in an actuarial context. Our analysis reveals that the differences in
the variance values alter significantly the premiums calculated through the standard deviation
principle. Furthermore, the variance of the claim frequency and severity is an important risk
measure. Thus, GAMLSS modelling is justified because it enables us to use all the available
information in the estimation of these values through the use of the important explanatory
variables for the claim frequency and severity respectively.

The rest of this chapter proceeds as follows. Section 2.2 briefly discusses the basic concepts
of the GAMLSS models and introduces the various claim frequency and severity distributions
we use within this family of models. Section 2.3 contains an application to a data set concerning
car-insurance claims at fault. Specifically, these classification models are compared on the basis
of a sample of the automobile portfolio of a major company operating in Greece employing the
Generalized Akaike Information Criterion (GAIC) which is valid for both nested or non-nested
model comparisons (as suggested by Rigby and Stasinopoulos, 2005 & 2009). Furthermore,
differences between these models are analyzed through the mean and the variance of the annual
number of claims and the costs of claims of the policyholders who belong to different risk classes,
which are formed by dividing the portfolio into clusters defined by the relevant ratemaking
factors. Finally, the resulting premiums rates are calculated via the expected value and standard
deviation principles with independence between the claim frequency and severity components
assumed.
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2.2 Generalized Additive Models for Location, Scale and
Shape

In what follows we provide a short summary of the main characteristics of the Generalized
additive models for location, scale and shape (GAMLSS). For a broad introduction to GAMLSS
models the readers can refer to Rigby and Stasinopoulos (2005) and Akantziliotou, Rigby, and
Stasinopoulos (2002).

The GAMLSS are semi-parametric regression type models. They are parametric, in the
sense that they require a parametric distribution assumption for the response variable, and
"semi" in the sense that the modelling of the parameters of the distribution, as functions of
explanatory variables, may involve using non-parametric smoothing functions. These models
were introduced as a flexible alternative to the popular generalized linear models, GLM (see
Chapter 1), and generalized additive models, GAM (see Hastie and Tibshirani, 1990). In the
GAMLSS the exponential family distribution assumption for the response variable Y is relaxed
and replaced by a general distribution family, including distributions based on Box-Cox trans-
formations (such as the Box-Cox t-distribution, Rigby and Stasinopoulos, 2004, or the Box-Cox
power exponential distribution, Righy and Stasinopoulos, 2006) and zero adjusted-distributions
(such as the zero adjusted Inverse Gaussian distribution, which is useful for insurance data, see
Heller et al., 2007). Another key feature of the GAMLSS is that the systematic part of the
model is expanded to allow modelling not only of the mean (or location) but other parame-
ters of Y as, linear and/or non-linear, parametric and/or additive non-parametric functions of
explanatory variables and/or random effects. Common distribution parameters are location,
scale, skewness and kurtosis but degrees of freedom (of a t-distribution) and zero inflation
probabilities can be modelled as well. Thus, in the GAMLSS approach, the full conditional
distribution of a multi-parameter model is related to a set of predictor variables of interest.

A GAMLSS model assumes independent observations y;, for ¢ = 1,...,n with probability
density function f (yi|0i) conditional on 0" = (01;, 0a;, 03, 045) = (1, 04, v, 7;) a vector of four
distribution parameters, each of which can be a function to the explanatory variables. The
Wi, 0;, Vi, T; are referred to as the distribution parameters. The first two parameters p,; and
o; defined as location and scale parameters, while the parameters v; and 7; are defined as
shape parameters, although the model may be applied more generally to the parameters of any
population distribution. Let y” = (y, ..., y,) be the vector of the response variable observations.
Also, for k = 1,2,3,4 let gi(.) be known monotonic link functions relating the k' parameter
0, to explanatory variables and random effects through an additive model given by

Ji
9k (O) = mp = Xy, + Z LY i (2.1)

J=1

ie.
J1
g (p) =m1 = XuB + Z Zj1j
j=1
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J3
gk (V) =m3 = X363 + Z 2373

J=1
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ge (1) =y = XuB, + Z Zj4'Yj4

J=1

where pu, o, v, T and m,, are vectors of length n, [3;‘: is a parameter vector of length Jl;, Xy is
a fixed known design matrix of order n x .J, Zj is a fixed known n X g;j, design matrix and -,
is a ;) dimensional random variable which is assumed to be distributed as v, ~ N, (0, G;kl),
where G;kl is the (generalized) inverse of a g, X g;; symmetric matrix G, = G (A;;) which
may depend on a vector of hyperparameters Ajz, and where if Gy is singular then v, is
understood to have an improper prior density function proportional to exp (—%’YJTijk’ij) .

The model in (2.1) allows us to model each distribution parameter as a linear function of
explanatory variables and/or as linear functions of random effects.

There are several important sub-models of the GAMLSS. First, let Z;;, = I,,, where I, is an
nx n identity matrix, and v, = hyx = hji (x;3) for all combinations of j and k in (2.1), then
the semi-parametric additive GAMLSS model is given by

Ji
9k (k) = M = XiBy + D> hyk (38) (2.2)
j=1

where 8, for k = 1,2, 3,4 is used to represent the distribution parameter vectors u, o, v and
7. The function A is an unknown function of the explanatory variable X;; and hj; = hjx (x5 ,
1,2,..., Ji, where x;;, are also vectors of length n.

If there are no additive terms in any of the distribution parameters, we can have the para-
metric linear GAMLSS model,

9k (Or) = my, = Xy By, (2.3)

In Eq. (2.2) and Eq. (2.3), replace X8, with hy (Xg, 3;), where hy for k = 1,2,3,4 are
non-linear functions and Xy, is a known design matrix of order n X J,:, then the (2.4) and
(2.5) are the non-linear semi-parametric additive and non-linear parametric GAMLSS models,
respectively.

9k (Or) = ny = Iy (X4, By,) + Z hji (Xjx) , (2.4)
gk (0r) = ny, = hi (Xi, By) (2.5)
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Once the GAMLSS model is determined, the parametric vectors 3, and the random effects
parameters 7, for j =1,2,..., J; and k = 1,2, 3,4 are estimated within the GAMLSS frame-
work (for fixed values of the smoothing hyper-parameters \;;,’s) by maximizing a penalized
likelihood function [, given by

1 ,
lp =1[— 5 Z Z Ajijijk’ija (2'6)

k=1 j=1

where [ = Z log f (y,|01) is the log-likelihood function of the data given 6 for i = 1,.

For parametrlc GAMLSS model (2.3) or (2.5), I, reduces to [, and the unknown parameters
B for k =1,2,3,4 are estimated by maximizing l. Two algorithms can be used to maximize
the likelihood function [, given by Eq. (2.6) . The first, the CG algorithm, is a generalization
of the Cole and Green (1992) algorithm. The second, the RS algorithm, is a generalization
of the algorithm used by Rigby and Stasinopoulos (1996 a,b) for fitting mean and dispersion
additive models. The algorithms require the first (and optionally exact or approximated ex-
pected second) derivatives of the log-likelihood with respect to the parameters p,o,v and 7
to be computable. The “CG” algorithm also needs the exact or approximated expected cross
derivatives. The algorithms are Fisher Scoring or quasi-Newton, depending on whether the
expected second (and cross) derivatives, or the negative squares (and cross products) of the
first derivatives are used. For more details about these two algorithms see Stasinopoulos and
Rigby (2005). In this thesis we select the parametric linear GAMLSS (Eq. (2.3)) and thus the
objective is to maximize the likelihood function I.

2.2.1 Claim Frequency Models

This section summarizes the characteristics of the various count models used in this chapter.
Specifically, we consider the Poisson, Negative Binomial Type II, Delaporte, Sichel and Zero-
Inflated Poisson GAMLSS for assessing claim frequency.

The Poisson Model

In insurance practice, the Poisson distribution has been widely used for modelling the number
of claims reported to an insurer by an insured driver in a given period. In Poisson regression,
we have a collection of independent Poisson counts whose means are modelled as non-negative
functions of covariates. Specifically, consider a policyholder i whose number of claims, de-
noted as K, are independent, for ¢ = 1,..,n. All the observable individual characteristics are

summarized into the 1 x J{ vector cy; <C1i,1, . We assume that K; follows the Poisson

yCq g/
14,J1
distribution with parameter u, the expected number of claims. We can allow the p parameter

to vary from one individual to another. Let 1, = e; exp (¢1;3;) , where e; denotes the exposure!
of policy 7, 0 < ¢; < 1, and ﬂf (5171, o By J/> is the 1 x J] vector of the coefficients. The
Jj

IExposure is the proportion of the period of observation for which the policy has been in force.
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exponential form ensures the non-negativity of u,;. Then, the probability that the policyholder
¢ has reported £ claims to the insurer is given by

—pi g R
P(K,=Fk) =2 k'“z, (2.7)
for k=0,1,2, ..., where
E(K;) =Var(K;) = p; = e;exp (c1:5;) - (2.8)

Equidispersion is a typical characteristic associated with the Poisson distribution, i.e. the
variance of the Poisson distribution is equal to its mean. The Poisson regression model has

been widely used by insurance practitioners for modelling claim count data (for example see
Renshaw, 1994).

Multiplicative Poisson Random Effect Models

The Poisson distribution has a descriptive adequacy as a model when only randomness is
present and the underlying population is homogeneous. Unfortunately, homogeneity is not a
realistic assumption to make in modelling many real insurance count (or frequency) response
data which often exhibit overdispersion, i.e., a situation where the variance of the response
variable exceeds the mean. Overdispersion is defined as the extra variation occurring in count
data modelling which is not explained by the Poisson model alone. The problem of unobserved
heterogeneity arises because of the differences in driving behavior among policyholders and it
is due to the fact that many important a priori rating variables are unknown to the insurance
company or cannot be incorporated in the regression relationship (for legal, moral or economic
reasons). Inappropriate imposition of the Poisson model may underestimate the standard errors
and overstate the Chi-square statistics, and consequently, give misleading inference about the
regression parameters. Equidispersion implied by the Poisson distribution is usually corrected
by the introduction of a random variable ¢; into the regression component. The random term ¢;
may reflect the omission of unobserved exogenous variables or purely random effects. According
to Gourieroux, Montfort and Trognon (1984 a), (1984 b) we can write

p; = eiexp (cuiffy + &) = ezexp (cuify) i, (2.9)

where e; is the corresponding risk exposure, cy; (cli’l, > is the 1 x J{ vector of the a

ey Cooo o)

? 718, J1

priori rating variables and 51 (61 1 By J/>is the 1 x J] vectors of the coefficients and where
) sJ1

u; = exp (g;), yielding a random p,. Therefore, heterogeneity is taken into account by assum-
ing that the number of claims K; conforms to the Poisson distribution with mean p,u;, where
i; = e;exp(cy;5;). At the portfolio level, the u;’s are assumed to be independent and iden-
tically distributed continuous random effect variables with probability density function v (u;)
defined on R*. The model can be considered as a multiplicative Poisson random effect model.
Depending on the chosen parametric form of u;, this general compound Poisson distribution will
lead to different models. The following are well-known results applied to the above situation
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(see Boyer et al., 1992, Lemaire, 1995 & Boucher et al., 2007, 2008). The mean of K; is given
by E (K;) = pE (u;) and the variance of K; is given by Var (K;) = u,E (u;) + p2Var (u;) . I
we let u; have a unit mean, then the mean and variance of K; are given by E (K;) = u,; and
Var (K;) = p; + p2Var (u;) respectively, so that any mixed Poisson model allows for overdis-
persion. Note that in general Var (u;) = h(o,v,7) is a function of the parameters o, and
7 of the mixing distribution v (u;). Recent actuarial literature research assumes that the pu,
parameter of the Poisson mixtures is modelled as a function of the explanatory variables while
the parameters o,v and 7 are constant. In the above setup the heterogeneity term w; has a
constant variance a and so the variance of Kj; is equal to Var (K;) = u; + u?a and exceeds the
mean ;. As we have already mentioned, in this chapter we extend this setup, following the
general GAMLSS approach of Rigby and Stasinopoulos (2005), where all the parameters of the
Poisson mixtures can be modelled as functions of explanatory variables with parametric linear
functional forms?. In this way we are able to use all the available information in the estimation
of the claim frequency distribution in order to group risks with similar risk characteristics and
to establish "fair" premium rates. For this purpose we assume that the individual number of
claims K; ,i = 1,..,n, are i.i.d mixed Poisson random variables and we specify the following
models on the ith element of the vector parameters u” (py, ..., it,) , 07 (01, .oy 00) , VT (V1 oy V)
and 77 (71, ..., Tp) :

p; = e;exp (cufy), ( )
o = g1 (caifs) (2.11)
vi =gy (c3:P3) (2.12)
Ti = g5 (caiBy) (2.13)

where ¢., z = 1,2,3 are known monotonic link functions chosen to ensure a valid range for

the distribution parameters o;,v; and 7;, where cj; (Cjiy]_, s € J/>are the 1 x J]{ vectors of
g

the a priori rating variables and where ﬂjr (6 ,Bj J/>are the are the 1 x J} vectors of the
;g

j717 cee
coefficients, for j = 1,2, 3,4. All models considered in this section belong to this category.

The Negative Binomial Type II Model

Let v have a Gamma distribution with probability density function given by

u” o exp (—ou)

' (o) ’

u > 0,0 > 0. Parameterization (2.14) ensures that F(u) = 1. Note also that Var(u) = 0. Then
it can be shown that the marginal distribution of K; is a Negative Binomial Type IT (NBII)

v (u) = (2.14)

?Note that the relationship between claim frequency and explanatory variables may not be limited to a
parametric linear functional form. If we want to explore more flexible functional forms, the semi-parametric
additive model, the non-linear semi-parametric additive model and the non-linear parametric model can also
be examined.
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distribution with probability density function given by
r (k: + 5) "
T (4T (k+1)[1 407

P(K, =Fk) = (2.15)

for p > 0 and o > 0. This parameterization was used by Evans (1953) as pointed out by Johnson
et al. (1994). The mean and variance of K; are given by F(K;) = p and Var(K;) = p(1+ o)
respectively. Clearly the variance exceeds the mean and the distribution allows for overdisper-
sion. Note that alternative variance mean relationships can be obtained by reparameterization.
For example, if o is reparameterized to o giving a Negative Binomial Type I distribution?
then Var(K;) = p+ oypu?. A priori ratemaking using the NBI distribution for K; with a linear
model in ¢y; for the log of mean parameter and a constant for the scale parameter has been
recommended by, for example, Boucher et al. (2007, 2008). More generally, a family of repara-
meterizations of the Negative Binomial Type I distribution can be obtained by reparameterizing
o to oy’ "2 giving Var(K;) = u + oyp”. This gives a three parameter model with parameters
1,01 and v. The model can be fitted by maximum likelihood estimation. Note that a family
of reparameterizations can be applied to any Poisson mixture model as defined in the previous
subsection.

Following the general GAMLSS approach, we assume that the ith element of the vector
parameters u (yy, ..., it,,) and ot (o4, ...,0,) is given by

p; = eiexp (c1iB) (2.16)
and
0 = €Xp (021‘52) ) (2-17)

where e; is the corresponding risk exposure. Then the mean and the variance of K; are given
by
E(KZ) = ¢; exp (Cliﬁl) (218)
and
Var(K;) = e;jexp (c1;01) [1 + exp (c2: 85)] - (2.19)

The Delaporte Model

Let u have a shifted Gamma distribution with probability density function given by
i_ u—v
(u—v)= 'exp [—ﬁ]
oF (1=v)7T (})
for u > v, where o; > 0 and 0 < v < 1. This parameterization ensures that £(u) = 1. Note also

that Var(u) = o (1 — v)®. Then K; follows a Delaporte distribution with probability density
function given by

(2.20)

v(u) =

3 A more general proof of Eq. (2.15) can be found in Chapter 5 where we consider the case of the n-component
mixture of Negative Binomial Type I (NBI) regression models, derived by updating the posterior mean claim
frequency. Specifically, the proof of Eq. (2.15) can be obtained by this reparameterization and by letting n = 1.
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P(Ki=k) = [1+po(1-v) 778, (2.21)

S = Z( ) pv km[u+ﬁ]_ml“<§+m). (2.22)

The mean and variance of K; are given by E(K;) = p and Var(K;) = pu + p2o (1 —v)°
respectively. This parameterization of Delaporte was given by Rigby and Stasinopoulos (2008)*.
The special case 0 = 1 in (2.21) gives the parameterization of a Poisson-Shifted Exponential
distribution since the mixing distribution reduces to a Shifted Exponential distribution.
Following the general GAMLSS approach, we assume that the ith element of the vector

where

parameters p? (uy, ..., pt,,), 0% (01, ...,0,) and vT (vq,...,v,) is given by
w; = e;exp (c1:fy) , (2.23)
g; = exp (Cgl'ﬁ2) (224)
and
exp (c3i33)

(2.25)

i =

1+ exp (c3;83)’
where e; is the corresponding risk exposure. Then the mean and variance of K; are given by

E(K;) = e;jexp (c1:5;) (2.26)

and

eXp(C?)iB?,)

Var(K;) = e;exp (cuif3y) + [es exp (cuiy)]” exp (caifly) |1 — T exp(cnBa)

(2.27)

The Sichel Model

Let u have a Generalized Inverse Gaussian (GIG) distribution with probability density function
given by

rur~ 1exp[ o+ (cu+ L]

v(u) = %, () , (2.28)

K
for u > 0, where ¢ > 0 and —oco0 < v < 0o and where ¢ =

o0

/x exp {——z <x + i)} da, (2.29)

0

l\DI»—t

4For information about the proof of Eq. (2.21) refer to Rigbhy and Stasinopoulos (2008) and the references
therein.
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is the modified Bessel function of the third kind of order v with argument z. Parameterization
(2.28) was given by Rigby and Stasinopoulos (2008). This parameterization ensures that £(u) =
1. Note also that Var(u) = Mjl) + c% — 1. The gamma and reciprocal gamma are limiting
distributions of (2.28), obtained by letting ¢ — oo for v > 0 and v < —1 respectively. Then
K; follows a Sichel distribution with probability density function® given by

(4)" Kt ()
K (ao)"™ K, (L)

g

P(K;,=k)= (2.30)
where a> = 072 + 2u(co)”". The mean and variance of K; are given by E(K;) = p and
Var(K;) = pu+ p? [ZJ(VH) + 3 1] respectively.

Following the general GAMLSS approach, we assume that the ith element of the vector
parameters p? (i, ..., p,), 0% (o1,...,0,) and vT (vy,...,v,) is given by

p; = e;exp (c1:64) , (2.31)
g; = exp (Cgi62) (232)

and
V;, = Cgiﬁg), (233)

where e; is the corresponding risk exposure. Then the mean and variance of K; are given by

E(K;) = e;jexp (c1:57) (2.34)

and

2exp (c2if35) [exp(czifBs) + 1] n 1 1} (2.35)

Var(K;) = e; exp (cui3y) + [ei exp (c1:6,)]” {

(=)

where ¢; = 21) and where o; and v; are given by Eq. (2.32) and Eq. (2.33) respectively.

The Zero-Inflated Poisson Model

Zero-inflated count models provide a parsimonious yet powerful way to handle data sets that
contain a large number of zeros. Such models assume that the data are a mixture of two
distributions: a degenerate distribution for the zero case and a standard count distribution (see
Lambert, 1992 and Greene, 1994). The Zero-Inflated Poisson (ZIP) distribution arises if we let
K; = 0 with probability = and K; ~ Po (u) with probability (1 — 7). The probability density
function of the ZIP distribution is defined as

T+ (1—m)e* ifk=0
P(K;,=k)= 2.
(K:=H) {(l—w)““ if k=1,2,3,. (2:36)

’The proof of Eq. (2.30) can be found in subsection 3.3.2 of Chapter 3.
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This parameterization was used by Johnson et al. (1994) and Lambert (1992). The mean and
variance of K; are given by E(K;) = pu(1 —x) and Var(K;) = E(K;) + E(K;) (u — E(K;))
respectively. The ZIP distribution thus allows for overdispersion as well. Note that the ZIP
model is a special case of a mixed Poisson distribution obtained with u equal to 0 or u (with
respective probabilities 7 and (1 — 7)). Note also that if overdispersion in the Poisson part
is still present then all the distributions seen in the previous subsection can be used since a
heterogeneity term may be incorporated in the model. For instance, see Yip and Yau (2005)
for an application to insurance claim count data.

Following Rigby and Stasinopoulos (2005), we assume that the ith element of the vector
parameters u? (yy, ..., p,) and ©t (o4, ..., 0,) is given by:

1; = eiexp (c1iBy) (2.37)

and
€xp (Czi B )

n 1 + exp (CQZ‘BQ) ’

(2.38)

%

where e; is the corresponding risk exposure, and where cj; <cji,1, ) are covariate vectors

ey C.. )

) jz,Jj

of length 1 x Ji, j = 1,2 for y1; and 7;, which may be different, the same, or may have some but

all not elements in common, and BJT (ﬂ JRTRE” Bj J/> are the corresponding parameter vectors of
Jj

length 1 x Ji, j = 1,2. Then the mean and the variance of K; are given by

E(K;) = e;jexp (c1;01) [1 — exp (c2i05)] (2.39)

and
Var(K;) = e;jexp (c1;01) [1 — exp (c2i05)] [1 4 €; exp (c1:5;) exp (¢2i55)] - (2.40)

2.2.2 Claim Severity Models

In this section, we need to consider the claim severities. Different models are used to describe the
behavior of the costs of claims as a function of the explanatory variables; including Gamma,
Weibull, Weibull Type III, Generalized Gamma, and Generalized Pareto GAMLSS. In this
thesis, we adopt the parametric linear formulation of these models®.

The Gamma Model

Here we use the parameterization of the two parameter Gamma distribution given by Rigby and
Stasinopoulos (2009), defined so that the mean m, i.e. the expected claim severity, is an explicit
parameter of the distribution and the parameter s is related to the variation coefficient. This
allows easier interpretation of regression type models for m and provides a more orthogonal

6Note that similarly to the case of the claim frequency models, the relationship between claim severity and
explanatory variables may not be limited to a parametric linear functional form. If we want to explore more
flexible functional forms, the semi-parametric additive model, the non-linear semi-parametric additive model
and the non-linear parametric model can also be examined.
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parameterization. Let X; ; be the cost of the kth claim reported by policyholder ¢, ¢ =1,...,n
and assume that the individual claim costs X; 1 X9, ..., X;, are i.i.d Gamma random variables.
The probability density function of the Gamma distribution is given by

1 e (o)
ECI (O

for x > 0, where m > 0 and s > 0. If X, has probability density function (2.41), then the
first two moments are given by F(X;;) = m and Var(X;;) = s*m?, so that the variance is
proportional to the square of the mean.

Following Rigby and Stasinopoulos (2009), we assume that the ith element of the vector

parameters m’ (myq, ...,m,) and s? (si, ..., s,) is given by

(2.41)

m; = exp (dy;7y;) (2.42)

and
s; = exp (d2iYs) (2.43)

where dj; (dji,l, - dji J/> are vectors of exogenous variables of length 1 x J]’-, 7 = 1,2 for m;
]
and s;, which may be different, the same, or may have some but all not elements in common,
and 7? (7]-71, s, J/) are the corresponding vectors of the coefficients of length 1 x J7, j = 1,2.
"

Then the mean and the variance of X, are given by
E(X; ) = exp (dii) (2.44)

and
Var(Xix) = lexp (daivs))? [exp (duiyy)])* - (2.45)

Note also that a priori ratemaking using the Gamma distribution for X;; with a linear
model only in dy; for the log of m and a constant for s can be found in, for example, Denuit et
al. (2007).

The Weibull Model

Next we fit a Weibull distribution to model the individual claim sizes X; ;. The specific para-

meterization of the two parameter Weibull distribution used here was that used by Johnson et
al. (1994) p 629 and is defined as

s—1

f(z) =

for X; > 0, where m > 0 and s > 0. The mean and variance of X, are given by E(X, ) =
mI' (2 +1) and Var(X;;) = m? {I‘ (2+1) - [P (t+ 1)]2} respectively. Although the para-

meter m is a scale parameter, it also affects the mean of X, ;. Note that the Weibull distribution
interpolates between the Exponential distribution (s = 1) and the Rayleigh distribution (s = 2).

e -(2)] 219
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We parallel here the treatment of the Gamma model. Following Rigby and Stasinopou-
los (2009), we assume that the ith element of the vector parameters m” (my,...,m,) and
st (s1, ..., 8,) is given by

m; = exp (d1;7;) (2.47)

and

s; = exp (days) , (2.48)

where dj; (djz}h o dj > are covariate vectors of length 1 x Jj'.7 j = 1,2 for m; and s;, which may

iJ!

(]

be different, the same, or may have some but all not elements in common, and %T (fyj’l, Y J/>
;]

are the corresponding parameter vectors of length 1 x Ji, j = 1,2. Then the mean and the
variance of X ; are given by

B(Xux) = exp (dyiy) T ( (2.49)

—_— + 1)
€xp (dzﬂz)
and

Var(Xi) = [exp (duiy, )2 {r (W + 1) - {r (m + 1)}2} O (250)

The Weibull Type III Model

This is a parameterization of the Weibull distribution where m is the mean of the distribution.
This probability density function of the Weibull Type III (WEI3) distribution is given by

R (N E2Y (| S Y (| S

for X > 0, where m > 0 and s > 0. The mean and variance of X, are given by E(X;;) =m
and Var(X; ;) = m? {I‘ (2+1)[T(2+1)] - 1} respectively.

Following Rigby and Stasinopoulos (2009), we assume that the ith element of the vector
parameters m’ (mq, ...,m,) and sT (sy, ..., s,) is given by

m; = exp (dy;7;) (2.52)

and
si = exp (dai72) » (2.53)
where d;; <dji71, o dji J/) are vectors of the a priori rating variables of length 1 x Ji, j = 1,2
for m; and s;, which may be different, the same, or may have some but all not elements in
common, and va (%1, Y J/> are the vectors of coefficients of length 1 x Ji, j = 1,2. Then
3

the mean and the variance of X, are given by
E(X;x) = exp (dum) (2.54)
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and

Var(Xsx) = [exp (du, )2 {r <m + 1) {r (m + 1)} c 1} o (@25)

The Generalized Gamma Model

Let us now fit the three-parameter Generalized Gamma (GG) distribution on the individual
claim sizes X ;. The parameterization of the Generalized Gamma distribution we use was that
used by Lopatatzidis and Green (2000), and is defined as

Il ()" exp [0 ()"
f (@) = o ,

for X, > 0, where m > 0 and s > 0, where —0o < n < oo and where § = —. The mean and
the variance of X, are given by

(2.56)

() = )

and

m{TOT (0+2) - [T (0+1)]°}
Var(X;;) = 5 5 )
0= [I' (6)]

Note that if we let s = % in Eq. (2.56), for n > 0, the GG distribution reduces to the
Weibull distribution, with pdf given by Eq. (2.46). Note also that if we let n = 1 in Eq. (2.56),
the GG distribution reduces to the Gamma distribution, with pdf given by Eq. (2.41).

Following Rigby and Stasinopoulos (2008), we assume that the ith element of the vector
parameters m’ (my,...,m,), s’ (s1, ..., s,) and n” (ny,...,n,) is given by

m; = exp (du%) ) (2-57)
s; = exp (da;ys) (2.58)

and
n; = dzi7s, (2.59)

where dj; (dji,l, ...,dj are covariate vectors of length 1 x Jj’, j =1,2,3 for m;, s; and n,,

iJ!

which may be different, the same, or may have some but all not elements in common, and

’y;r (*yj 1o Y J/) are the corresponding vectors of the coefficients of length 1 x J, j =1,2,3.
) 1

Then the mean and the variance of X, are given by

exp (dyy,) T (Qi + ﬁ)
. 1 (2.60)

07T (6;)

)
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and

S lexp (d1i71)] {P(Qi)F<fﬁ- M) B {F <9i * dm3>] }7 (2.61)
0,27 [T (6,))"

1

where 0; = 2 and where s; and n; are given by Eq. (2.58) and Eq. (2.59) respectively.

The Generalized Pareto Model

Finally, we consider the case of the three parameter Generalized Pareto distribution for assessing
claim sizes X . The probability density function of the Generalized Pareto distribution is given
by

C(n+t) miz"!
I'(n)T () (x4 m)"™"
for X;, > 0, where m > 0, n > 0 and ¢ > 0. The above parameterization of the Generalized

Pareto distribution can be found, for example, in Klugman et al. (2004). If X, ; has probability
density function (2.62), then the two first moments are given by E(X; ;) = 4 and Var(X;;) =

f(x) = (2.62)

2

% [%] respectively. Note that if we let n = 1 in Eq. (2.62), the Generalized Pareto
distribution reduces to the Pareto distribution.
Following Rigby and Stasinopoulos (2008), we assume that the ith element of the vector

parameters m’ (mq,...,m,), nT (ny,...,n,) and tT (t1,....t,) is given by

m; = exp (dyv,) , (2.63)
n; = exp (daivs) (2.64)

and
t; = exp (dzi7s) (2.65)

where dj; (dji,l, - dji J/) are vectors of exogenous variables of length 1 x J7, j = 1,2, 3 for m;, n;

and ¢; which may be different ,the same, or may have some but all not elements in common and

’y]T (’y]ﬂ, Y J/> are the corresponding vectors of the coefficients of length 1 x Ji, j = 1,2,3.
i

Then the mean and the variance of X, are given by

exp (di;71) exp (daiy,)
E(X;,) = 2.66
( ,k) exp <d3[}/3) 1 ( )
and
Var(Xi) = [exp (d1;71)]” exp (daiys) { exp (daiy,) + exp (dziyz) — 1 } (2.67)
exp (ds;y3) — 1 lexp (dziys) — 1] [exp (dzis) — 2]
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2.3 Application

Let us briefly present the data used to illustrate the techniques described in this chapter.
The data were kindly provided by a Greek insurance company and concern a motor third party
liability insurance portfolio observed during 3.5 years (from Aril 2008 up to October 2011). The
data set comprises 15641 policies. Both private cars and fleet vehicles have been considered in
this sample. Our interest lies in identifying the factors that affect the frequency and severity
of claims at fault, and specifically the factors that correspond to each policyholder and their
characteristics, including the characteristics of the car. For this purpose, the data consist of
the available exogenous variables for every policy as the Bonus-Malus category, the gender of
the driver, and the horsepower of the car, as well as the total number and the costs of claims
at fault that were reported within the 3.5 year period. Nevertheless, it is important to note
that gender has recently been ruled out by the European Court as a rating factor. This Bonus-
Malus System has 20 classes and the transition rules are described as follows: Each claim
free year is rewarded by one class discount and each claim in given year is penalized by one
class. Only policyholders with complete records, i.e. with availability of all the variables under
consideration were considered’.

Claim counts are modelled for all 15641 policies that have been in force for the entire
sampling period. The expected frequency of claims at fault is 0.4848 and the variance is
0.73086. Response variable is the total number of claims registered for each insured vehicle in
the data set and the following explanatory variables were available:

e Bonus-Malus category: The categories of neighboring classes of the current Greek BMS
(variable BM category; five categories: C1 = "drivers who belong to BM classes 1 and 2",
(C2 = "drivers who belong to BM classes 3-5", C3 = "drivers who belong to BM classes
6-9", C4 = "drivers who belong to BM class 10" and C5 = "drivers who belong to BM
classes 11-20").

e Horsepower: The horsepower of the car (variable HP; four categories: C1 = "drivers who
had a car with a hp between 0-33", C2 = "drivers who had a car with a hp between 34-66,
C3 = "drivers who had a car with a hp between 67-99" and C4 = "drivers who had a car
with a hp between 100-132").

e Gender: Policyholders gender (variable Gender; two categories: M= "male", F = "fe-
male").

Descriptive statistics for claim counts are presented in Table 2.1.

7All the characteristics we consider are observable.
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Table 2.1: Descriptive Statistics of Claim Counts

statistic value | BMCAT HPCAT Gender
# observations 15641 | C1: 11332 C1: 135 M: 9731
Minimum 0 C2: 1964 (C2: 2185 F: 5910
1st Quantile 0.0000 | C3: 1060 C3: 10098 -
Median 0.0000 | C4: 1266 C4: 3223 -
Mean 0.4848 | Cb: 19 - -
Standard Deviation 0.85490 - - -
3rd Quantile 1.0000 - - -
Maximum 9 - - -

Regarding the amount paid for each claim (this was the response variable), there were 5590
observations that met our criteria of selection, i.e. those with complete records. This sample
contains only policies that have been in force for the entire sampling period. Furthermore, the
claims that ended up at zero have been removed from the sample and the last reserve was used
for the claim amount. The expected claim severity is 328 euros and the variance is 41231.59.
The following explanatory variables were available:

e Bonus-Malus category: As previously, the categories of neighboring classes of the current
Greek BMS (variable BM category; five categories: Cl = "drivers who belong to BM
classes 1 and 2", C2 = "drivers who belong to BM classes 3-5", C3 = "drivers who belong
to BM classes 6-9", C4 = "drivers who belong to BM class 10" and C5 = "drivers who
belong to BM classes 11-20").

e Horsepower: In this case there were several subcategories of this variable in relation to
those for the claim counts (variable HP; eleven categories: C1 = "drivers who had a car
with a hp between 0-33", C2 = "drivers who had a car with a hp between 34-44", C3 =
"drivers who had a car with a hp between 45-55", C4 = "drivers who had a car with a hp
between 56-66", C5 = "drivers who had a car with a hp between 67-74", C6 = "drivers
who had a car with a hp between 75-82", C7 = "drivers who had a car with a hp between
83-90", C8 = "drivers who had a car with a hp between 91-99", C9 ="drivers who had
a car with a hp between 100-110", C10 = "drivers who had a car with a hp between
111-121" and C11 = "drivers who had a car with a hp between 122-132").

e Gender: In this case, data for fleet vehicles used by both male or female drivers in turn

were also available (variable Gender; three categories: M = "male", F = "female" and B
= "both")%.

Descriptive statistics for claim costs are depicted in Table 2.2.

8Note that records for fleet data were not availiable for the case of the claim counts.
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Table 2.2: Descriptive Statistics of Claim Costs

statistic value | BMCAT HPCAT Gender
# observations 5590 | C1: 3566 C1: 59 M: 3035
Minimum 7 C2: 1087 (C2: 278 F: 2165
1st Quantile 227 | C3: 623 (C3: 451 B: 390
Median 269 | C4: 295 C4: 793 -
Mean 328 [ Ch: 19 Ch: 1692 -
Standard Deviation 203.06 - C6: 1204 -
3rd Quantile 386 - Cr: 209 -
Maximum 4614 - C8: 291 -
- - - C9: 360 -
- - - C10: 191 -
- - - C11: 62 -

In our application we regrouped the levels of each explanatory variable presented in Tables
2.1 and 2.2 with respect to risk profiles with similar number and costs of claims reported to
the company over the 3.5 years of observation. This was done in this chapter only in order to
obtain a reasonable number of risk classes’.

Firstly, regarding the claim frequency modelled for all 15641 policies, the new levels of

explanatory variables we employ are:

e Bonus-Malus category: Four categories A, B, C and D, where: A = C1, i.e. drivers who
belong to BM classes 1 and 2, B = C2, i.e. drivers who belong to BM classes 3-5, C = C3
& C5, i.e. drivers who belong to BM classes 6-9 & 11-20 and D = C4, i.e. drivers who
belong to BM class 10.

e Horsepower: Three categories A, B and C, where: A = C1 & C4, i.e. drivers who had a
car with a hp between 0-33 & 100-132"), B = C2, i.e. drivers who had a car with a hp
between 34-66 and C = C3, i.e. drivers who had a car with a hp between 67-99

e Gender: The same two categories: M= "male", F = "female".

Secondly, regarding the claim severity modelled for 5590 policies with complete that met
our criteria of selection, the new levels of the explanatory variables we employ are:

e Bonus-Malus category: Three categories A, B and C, where: A = Cl1, i.e. drivers who
belong to BM classes 1 and 2, B = C2 & C3 & C5, i.e. drivers who belong to BM classes
3-5 & 6-9 & 11-20 and C = (4, i.e. drivers who belong to BM class 10.

e Horsepower: Four categories A, B, C and D, where: A = C9 & C10 & Cl11, i.e. drivers
who had a car with a hp between 100-110 & 111-121 & 122-132, B=C1 & C2 & C3 &
C4, i.e. drivers who had a car with a hp between 0-33 & 34-44 & 45-55 & 56-66, C = C5,

91n the other chapters this was not necessary.
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i.e. drivers who had a car with a hp between 67-74 and D= C6 & C7 & C8, i.e. drivers
who had a car with a hp between 75-82 & 83-90 & 91-99.

e Gender: The same three categories: M = "male", F = "female" and B = "both" for fleet
vehicles used by both male or female drivers.

2.3.1 Modelling Results

This subsection is divided into two parts. The first part describes the modelling results of
the GAMLSS models that have been applied to model claim frequency and the second part
provides those of the GAMLSS models that have been applied to claim severity analysis. As
mentioned previously, the GAMLSS are a general framework for univariate regression analysis
that allows joint modelling of the mean (or location), the scale and the shape parameters
of the distribution of the response variable as, linear and/or non-linear, parametric and/or
additive non-parametric functions of explanatory variables and/or random effects. In this
thesis, we adopted the parametric linear formulation for both the claim frequency and claim
severity models. An important aspect of insurance ratemaking with GAMLSS is the selection
of explanatory variables for the location, scale and shape parameter of each model. For this
purpose we used the function step.GAIC within the GAMLSS package in software R, which
performs the stepwise model selection using a Generalized Akaike information criterion (GAIC).
The final claim frequency and severity models we selected are those that yield the lowest Global
deviance (DEV), Akaike information criterion (AIC), and Bayesian information criterion (BIC)
values constrained to the statistical significance, at a 5% threshold, of every explanatory variable
they contain. In what follows, we present the estimated parameter values, the standard error
of the parameter estimates, and the t-values for the hypothesis that the associated coefficient
is zero together with the p-value of this test based on asymptotic normality.

Claim Frequency Models
We describe first the modelling results of the Poisson, Negative Binomial Type II (NBII), De-
laporte, Sichel and Zero-Inflated Poisson (ZIP) GAMLSS for assessing claim frequency. Based
on the variable selection technique we described above, the following final models were selected.
e Poisson GAMLSS:
log () =BM category + horsepower category + gender

e NBII GAMLSS:

log (1) = Bonus-Malus category + horsepower category + gender
log (o) = horsepower category + gender

e Delaporte GAMLSS:
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log (1) = Bonus-Malus category + horsepower category + gender

log (o

)
)

logit (¥) = constant

= horsepower category

e Sichel GAMLSS:

log (1) = Bonus-Malus category + horsepower category + gender
log (0) = horsepower category

logit (v) = constant
e ZIP GAMLSS:

log (1) = Bonus-Malus category + horsepower category + gender
log (0) = Bonus-Malus category + gender

The results obtained from the Poisson, NBII, Delaporte, Sichel and ZIP models are presented
in Tables 2.3, 2.4, 2.5, 2.6 and 2.7 respectively.

Table 2.3: Results of the Fitted Poisson GAMLSS
Variable p Estimate Std Error t-value/Wald 95% P-value

Intercept -0.8150  0.0268 -30.437 0.0000
Bonus-Malus
Category A 0 0 - -
Category B 0.6078  0.0296 20.565 0.0000
Category C ~ 0.8834  0.0336 26.284 0.0000
Category D -0.9423 0.0715 -13.184 0.0000
Horsepower
Category A 0 0 - -
Category B -0.2371 0.0419 -5.666 0.0000
Category C  -0.0725 0.0288 -2.513 0.0120
Gender
Male 0 0 - -
Female 0.0683  0.0240 2.845 0.0044
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Table 2.4: Results of the Fitted Negative Binomial Type I GAMLSS
Variable Estimate Std Error t-value/Wald 95% P-value

Intercept -0.8131  0.0322 -25.278 0.0000
Bonus-Malus

Category A 0 0 - -

Category B 0.6328  0.0349 18.124 0.0000

Category C ~ 0.8388  0.0368 22.784 0.0000

Category D -0.9736  0.0810 -12.023 0.0000
Horsepower

Category A 0 0 - -

Category B -0.2351 0.0477 -4.934 0.0000

Category C  -0.0730  0.0340 -2.147 0.0318
Gender

Male 0 0 - -

Female 0.0687  0.0269 2.551 0.0107
Variable o Estimate Std Error t-value/Wald 95% P-value
Intercept -0.3728 0.0724 -5.150 0.0000
Horsepower

Category A 0 0 - -

Category B -0.7777  0.1913 -4.065 0.0000

Category C  -0.6716  0.1022 -6.573 0.0000
Gender

Male 0 0 - -

Female -0.4313  0.1247 -3.458 0.0005
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Table 2.5: Results of the Fitted Delaporte GAMLSS

Variable Estimate Std Error t-value/Wald 95% P-value
Intercept -0.8221 0.0341 -24.115 0.0000
Bonus-Malus

Category A 0 0 - -

Category B 0.6429  0.0389 16.549 0.0000

Category C  0.8679  0.0427 20.349 0.0000

Category D -0.9561  0.0650 -14.712 0.0000
Horsepower

Category A 0 0 - -

Category B -0.2434  0.0499 -4.879 0.0000

Category C  -0.0742  0.0362 -2.051 0.0403
Gender

Male 0 0 - -

Female 0.0880  0.0284 3.100 0.0010
Variable o Estimate Std Error t-value/Wald 95% P-value
Intercept 1.5821 0.1034 15.301 0.0000
Horsepower

Category A 0 0 - -

Category B -0.9700  0.2151 -4.510 0.0000

Category C  -0.8971 0.1350 -6.644 0.0000
Variable v Estimate Std Error t-value/Wald 95% P-value
Intercept -0.2013 0.0653 -3.083 0.0021
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Table 2.6: Results of the Fitted Sichel GAMLSS

Variable p Estimate Std Error t-value/Wald 95% P-value

Intercept -0.8201  0.0340 -24.097 0.0000
Bonus-Malus

Category A 0 0 - -

Category B 0.6387  0.0388 16.478 0.0000

Category C  0.8694  0.0425 20.443 0.0000

Category D -0.9804  0.0696 -14.090 0.0000
Horsepower

Category A 0 0 - -

Category B -0.2458  0.0500 -4.915 0.0000

Category C  -0.0759  0.0361 -2.100 0.0357
Gender

Male 0 0 - -

Female 0.0908  0.0284 3.201 0.0013
Variable o Estimate Std Error t-value/Wald 95% P-value
Intercept 1.210 0.5015 2.413 0.0158
Horsepower

Category A 0 0 - -

Category B -1.664 0.5468 -3.043 0.0024

Category C  -1.598 0.5130 -3.116 0.0018
Variable v Estimate Std Error t-value/Wald 95% P-value
Intercept -2.104 0.1401 -15.02 0.0000
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Table 2.7: Results of the Fitted Zero-Inflated Poisson GAMLSS
Variable p Estimate Std Error t-value/Wald 95% P-value

Intercept -0.2210 0.0250 -8.850 0.0000
Bonus-Malus

Category A 0 0 - -

Category B 0.1571 0.0290 5.409 0.0000

Category C  0.7160  0.0321 22.316 0.0000

Category D -0.2085  0.0677 -3.078 0.0021
Horsepower

Category A 0 0 - -

Category B -0.2492 0.0420 -5.929 0.0000

Category C  -0.0939  0.0271 -3.467 0.0005
Gender

Male 0 0 - -

Female -0.1010  0.0250 -4.045 0.0000
Variable o Estimate Std Error t-value/Wald 95% P-value
Intercept -0.2036 0.0408 -4.989 0.0000
Bonus-Malus

Category A 0 0 - -

Category B -2.8671 0.3860 -7.427 0.0000

Category C  -0.4926  0.1055 -4.671 0.0000

Category D 1.2694  0.1108 11.452 0.0000
Gender

Male 0 0 - -

Female -0.5648  0.0725 -7.788 0.0000

From Tables 2.3, 2.4, 2.5, 2.6 and 2.7 we observe, for all models, that Bonus-Malus (BM)
categories B and C have a positive effect on p while BM category D has a negative effect on p.
Furthermore, we see that Horsepower (HP) categories B and C both have a negative effect on
1. Female drivers have a positive effect on u in the case of the Poisson, NBII, Delaporte and
Sichel models, while they have a negative effect in the case of the ZIP model. BM category
A, HP category A and male drivers are the reference categories of p. The positive values of
the coefficients indicate higher risk compared to the reference class, whereas negative values
demonstrate lower risk than the reference class. HP category appears in model equations for
both p and o in the case of the NBII, Delaporte and Sichel models (Tables 2.4, 2.5 and 2.6),
gender appears in model equations for both ; and ¢ in the the case of the NBII and ZIP models
(Tables 2.4 and 2.7), and BM category appears in the models equation for both x and ¢ in
the case of the ZIP model (Table 2.7). Of interest is whether these a priori rating variables
have a similar effect on  and o. From Tables 2.4, 2.5 and 2.6 we observe that HP categories
B and C also have a negative effect on ¢ in the case of the NBII, Sichel and Delaporte models.
However, from Tables 2.4 and 2.7 we see that female drivers have a negative effect on o in
the case of the NBII and ZIP models. From Table 2.7 we observe that BM category has the
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exact opposite effect on o, since BM categories B and C have a negative effect on o, while BM
category D has a positive effect on o in the case of the ZIP model. HP category A and male
drivers are the reference categories for o in the case of the NBII model, HP category A is the
reference category for ¢ in the case of the Delaporte and Sichel models, and BM category A
and male drivers are the reference categories for o in the case of the ZIP model. Furthermore,
it is important to note that even if some of the estimated coefficients between the models have
the same sign, their estimated values may differ significantly.

Claim Severity Models

Let us now describe the modelling results of the Gamma, Weibull, Weibull Type III, Generalized
Gamma and Generalized Pareto GAMLSS for assessing claim severity. Based on the variable
selection technique we described in 2.3.1, the following final models were selected.

e Gamma GAMLSS:

log (m) = Bonus-Malus category + horsepower category + gender
log (s) = Bonus-Malus category + horsepower category + gender

o Weibull GAMLSS:

log (m) = Bonus-Malus category + horsepower category + gender
log (s) = Bonus-Malus category + horsepower category + gender

e Weibull Type IIT GAMLSS:

log (m) = Bonus-Malus category + horsepower category + gender
log (s) = Bonus-Malus category + horsepower category + gender

o Generalized Gamma GAMLSS:

log (m) = Bonus-Malus category + horsepower category + gender
log (s) = Bonus-Malus category + horsepower category + gender
n = Bonus-Malus category + gender

o Generalized Pareto GAMLSS:

log (m) = Bonus-Malus category + horsepower category + gender

log (n) = Bonus-Malus category + horsepower category + gender

log (t) = Bonus-Malus category + horsepower category

The results obtained from the Gamma, Weibull, Weibull Type III, Generalized Gamma, and
Generalized Pareto models are displayed in Tables 2.8, 2.9, 2.10, 2.11 and 2.12 respectively.
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Table 2.8: Results of the Fitted Gamma GAMLSS

Variable m Estimate Std Error t-value/Wald 95% P-value
Intercept 6.3699 0.0351 181.76 0.0000
Bonus-Malus
Category A 0 0 - -
Category B -0.6786 0.0483 -14.037 0.0000
Category C  0.0294  0.0114 2.5670 0.0103
Horsepower
Category A 0 0 - -
Category B -0.6833 0.0250 -27.295 0.0000
Category C  -0.5807  0.0245 -23.676 0.0000
Category D -0.4082  0.0249  -16.404 0.0000
Gender
Both 0 0 - -

Male -0.1127 0.0304 -3.712 0.0002
Female -0.0711 0.0307 -2.315 0.0206
Variable s Estimate Std Error t-value/Wald 95% P-value
Intercept -0.4621 0.0415 -11.143 0.0000

Bonus-Malus
Category A 0 0 - -
Category B 0.5946 0.0403 14.751 0.0000
Category C  -0.0443  0.0205 -2.161 0.0308
Horsepower
Category A 0 0 - -
Category B -0.3130 0.0329 -9.526 0.0000
Category C  -0.3797  0.0322 -11.778 0.0000
Category D -0.2535 0.0322 -7.883 0.0000
Gender
Both 0 0 - -
Male -0.1589  0.0370 -4.295 0.0000
Female -0.1788 0.0383 -4.666 0.0000
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Table 2.9: Results of the Fitted Weibull GAMLSS

Variable m Estimate Std Error t-value/Wald 95% P-value
Intercept 6.4939  0.0407 159.505 0.0000
Bonus-Malus
Category A 0 0 - -
Category B -0.7118 0.0527 -13.516 0.0000
Category C 0.0307 0.0132 2.322 0.0203
Horsepower
Category A 0 0 - -
Category B -0.6838 0.0298 -22.941 0.0000
Category C  -0.5851  0.0295 -19.858 0.0000
Category D -0.4066 0.0299 -13.580 0.0000
Gender
Both 0 0 - -

Male -0.1166  0.0335 -3.478 0.0005
Female -0.0790 0.0340 -2.324 0.0202
Variable s Estimate Std Error t-value/Wald 95% P-value
Intercept 0.3899 0.0422 9.231 0.0000

Bonus-Malus
Category A 0 0 - -
Category B -0.5492  0.0466 -11.778 0.0000
Category C 0.0455 0.0198 2.297 0.0216
Horsepower
Category A 0 0 - -
Category B 0.4145 0.0322 12.868 0.0000
Category C 0.4199 0.0315 13.353 0.0000
Category D 0.2806 0.0313 8.976 0.0000
Gender
Both 0 0 - -
Male 0.0962  0.0390 2.470 0.0135
Female 0.0967 0.0399 2.427 0.0153
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Table 2.10: Results of the Fitted Weibull Type III GAMLSS

Variable m Estimate Std Error t-value/Wald 95% P-value
Intercept 6.3880  0.0397 161.059 0.0000
Bonus-Malus
Category A 0 0 - -
Category B -0.6649  0.0502 -13.242 0.0000
Category C 0.0312  0.0133 2.343 0.0192
Horsepower
Category A 0 0 - -
Category B -0.6968  0.0292 -23.849 0.0000
Category C  -0.5978  0.0289 -20.702 0.0000
Category D -0.4208  0.0293 -14.359 0.0000
Gender
Both 0 0 - -

Male -0.1184  0.0330 -3.586 0.0003
Female -0.0798  0.0335 -2.379 0.0174
Variable s Estimate Std Error t-value/Wald 95% P-value
Intercept 0.3883  0.0421 9.233 0.0000

Bonus-Malus
Category A 0 0 - -
Category B -0.5498  0.0462 -11.902 0.0000
Category C 0.0442 0.0199 2.226 0.0261
Horsepower
Category A 0 0 - -
Category B 0.4139  0.0322 12.865 0.0000
Category C  0.4197  0.0314 13.354 0.0000
Category D 0.2799  0.0312 8.963 0.0000
Gender
Both 0 0 - -
Male 0.0975  0.0389 2.504 0.0123
Female 0.1016  0.0399 2.547 0.0109
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Table 2.11: Results of the Fitted Generalized Gamma GAMLSS

Variable m Estimate Std Error t-value/Wald 95% P-value
Intercept 6.3277 0.0502 126.120 0.0000
Bonus-Malus
Category A 0 0 - -
Category B -1.2020  0.1038 -11.578 0.0000
Category C  0.0548  0.0138 3.982 0.0000
Horsepower
Category A 0 0 - -
Category B -0.6223  0.0247 -25.216 0.0000
Category C  -0.5142 0.0242 -21.284 0.0000
Category D -0.3608  0.0244  -14.808 0.0000
Gender
Both 0 0 - -

Male -0.1839  0.0465 -3.952 0.0000
Female -0.1602 0.0469 -3.417 0.0006
Variable s Estimate Std Error t-value/Wald 95% P-value
Intercept -0.4366 0.0435 -10.026 0.0000

Bonus-Malus
Category A 0 0 - -
Category B 0.5872  0.0548 10.722 0.0000
Category C -0.0520  0.0211  -2.4645 0.0224
Horsepower
Category A 0 0 - -
Category B -0.2622  0.0346 -7.573 0.0000
Category C  -0.3410 0.0337 -10.125 0.0000
Category D -0.2311 0.0336 -6.881 0.0000
Gender
Both 0 0 - -

Male -0.2133  0.0396 -5.382 0.0000
Female -0.2423 0.0408 -5.932 0.0000
Variable n Estimate Std Error t-value/Wald 95% P-value
Intercept 0.7189 0.1904 3.776 0.0001

Bonus-Malus
Category A 0 0 - -
Category B -0.9809 0.3079 -3.186 0.0014
Category C  0.2763  0.0998 2.770 0.0056
Gender
Both 0 0 - -
Male -0.3272 0.1456 -2.247 0.0246
Female -0.3516 0.1532 -2.295 0.0321
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Table 2.12: Results of the Fitted Generalized Pareto GAMLSS

Variable m Estimate Std Error t-value/Wald 95% P-value
Intercept 7.2849  0.0387 188.413 0.0000
Bonus-Malus
Category A 0 0 - -
Category B -1.8305 0.0521 -35.1209 0.0000
Category C 0.0734 0.0140 5.236 0.0000
Horsepower
Category A 0 0 - -
Category B -0.3370 0.0271 -12.459 0.0000
Category C  -0.2263  0.0265 -8.544 0.0000
Category D -0.1463 0.0266 -5.493 0.0000
Gender
Both 0 0 - -

Male -0.4307  0.0343 -12.572 0.0000
Female -0.4227 0.0348 -12.137 0.0006
Variable n Estimate Std Error t-value/Wald 95% P-value
Intercept 1.3215 0.0346 38.170 0.0000

Bonus-Malus
Category A 0 0 - -
Category B -0.7347 0.0431 -17.039 0.0000
Category C 0.0445  0.0130 3.4231 0.0024
Horsepower
Category A 0 0 - -
Category B 0.2362  0.0244 9.684 0.0000
Category C  0.2984  0.0239 12.486 0.0000
Category D 0.2250  0.0240 9.372 0.0000
Gender
Both 0 0 - -

Male 0.3062  0.0307 9.978 0.0000
Female 0.3400 0.0313 10.881 0.0000
Variable ¢ Estimate Std Error t-value/Wald 95% P-value
Intercept 2.3395 0.0222 105.455 0.0000

Bonus-Malus
Category A 0 0 - -
Category B -1.5622 0.0426 -36.6542 0.0000
Category C 0.0537 0.0132 4.066 0.0000
Horsepower
Category A 0 0 - -
Category B 0.5190 0.0246 21.113 0.0000
Category C ~ 0.5859  0.0242 24.191 0.0000
Category D 0.4332 0.0244 17.735 0.0000
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The results summarized in Tables 2.8, 2.9, 2.10 and 2.11 show that BM category, HP
category and gender appear in the model equations for both m and s in the case of the Gamma,
Weibull and Weibull Type III and Generalized Gamma models. BM category B has a negative
effect on m and a positive effect on s and BM category C has the exact opposite effect on m
and s in the case of the Gamma and Generalized Gamma models while BM category B has a
negative effect on both m and s and BM category C has a positive effect on m and s in the case
of the Weibull and Weibull Type III models. HP categories B, C and D and male and female
drivers have a negative effect on both m and s in the case of the Gamma and Generalized
Gamma models while HP categories B, C and D and male and female drivers have a negative
effect on m and a positive effect on s in the case of the Weibull and Weibull Type III models.
BM category A, HP category A and fleet vehicles used by both male or female drivers are
the reference categories for m and s in the case of Gamma, Weibull, Weibull Type III and
Generalized Gamma models. Furthermore, in the case of the Generalized Gamma model, BM
category and gender are also in the model equations for n. From Table 2.11 we see that BM
category B has a negative effect on n while BM category C has a positive effect on n, male
and female drivers have a negative effect on n and BM category A and fleet vehicles are the
reference categories for n. Finally, in the case of the Generalized Pareto model we observe that
BM category, HP category and gender appear in the model equations for both m and n, and
BM category and HP category are in the model equations for ¢. Table 2.12 shows that BM
category B has a negative effect on m, n and ¢, while BM category C has a positive effect on
m, n and t. HP categories B, C and D have a negative effect on m and a positive effect on both
n and t. Male and female drivers have a negative effect on m and a positive effect on n. Note
also that BM category A, HP category A and fleet vehicles are the reference categories for m
and n, and BM category A and HP category A are the reference categories for n.

2.3.2 Models Comparison

So far, we have several competing models for the claim frequency and claim severity components.
The differences between models produce different premiums. Consequently, to distinguish be-
tween these models, this section will purpose to compare them in order to select the optimal
one for each case. As suggested by Rigby and Stasinopoulos (2005, 2009) the models have been
calibrated with respect to Generalized Akaike Information Criterion (GAIC) which is valid for
both nested or non-nested model comparisons. In what follows we present the definition of
GAIC.

Let us present first the definition of the Global Deviance (DEV), Akaike Information Crite-
rion (AIC) and Schwartz Bayesian Criterion (SBC), which sometimes is referred to as Bayesian
Information Criterion, (BIC), goodness of fit indices. The Global Deviance is given by

D= —2log (L) , (2.68)

where L is the Likelihood which is defined as the probability of observing the sample. Also,
the AIC and the SBC are given by

AIC = D 42 x df (2.69)
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and

SBC = BIC = D + log (n) x df (2.70)

respectively, where n is the number of the independent observations assumed by a GAMLSS
model, df are the degrees of freedom, that is, the number of fitted parameters in the model
and D is the fitted global deviance defined above. Both criteria penalized the deviance by a
quantity # multiplied by the number of degrees of freedom used in the model (df). Despite their
apparent simplicity, the AIC and SBC criteria are based on explicit theoretical considerations,
and their aims are not the same. As shown by Kuha (2004), SBC proposes to identify the
model with the highest probability to be true, giving that one model under investigation is true
while AIC denies the existence of an identifiable true model and, for instance, minimizes the
distance or discrepancy between densities. Moreover, in model selection, it has been argued
that SBC penalizes large models too heavily.

Both criteria are a special case of the Generalized Akaike Information Criterion (GAIC),
defined as

GAIC = D + # x df (2.71)

If we let # = 2 we have the AIC, while if we let # = log (n) we have the SBC. Note that
the penalty is lot more severe for SBC, which means that model selection which is done using
SBC will result to a much simpler model'® than model selection done by AIC. The resulting
Global Deviance, AIC and SBC are given in Table 2.13 for the different claim frequency (Panel
A) and claim severity (Panel B) fitted models.

Table 2.13: Comparison of Models for the Greek Data Set
Panel A: Claim Frequency Models

Model df Global Deviance AIC SBC
Poisson 7 29115.29 29129.29 29182.90
NBII 11 28323.32 28345.32  28429.55
Delaporte 11 28357.99 28379.99 28464.23

Sichel 11 28348.97 28370.97 28455.20
Z1P 12 28503.22 28527.22 28619.11
Panel B: Claim Severity Models
Model df Global Deviance AIC SBC
Gamma 16 69665.05 69697.05 69803.11

WEI 16 70794.96 70826.96  70933.02
WEI3 16 70793.02 70825.02  70931.08
GG 21 69427.16 69469.16  69608.37
GP 22 69582.12 69526.12 69771.96

0By a simpler model here we mean a model with less degrees of freedom (less parameters).
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Overall, with respect to the Global Deviance, AIC and BIC indices, from Panel A we observe
the best fitted claim frequency model is the Negative Binomial Type II model, followed closely
by the Sichel and Delaporte models, while from the claim severity models in Panel B we see
that the best fitting performances are provided by the Generalized Gamma model followed by
the Generalized Pareto and Gamma models.
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2.3.3 A Priori Risk Classification for the Greek Data Set

In this subsection differences between the claim frequency and severity models are analyzed
through the mean and the variance of the number and costs of claims of the policyholders who
belong to different risk classes, which are determined by the availability of the relevant a priori
characteristics.

The final a priori ratemaking for the claim frequency models contains 24 classes (see Table
2.14). In Table 2.14 a ‘YES’ indicates the presence of the characteristic corresponding to the
column.

Table 2.14: Risk Classes-Claim Frequency Component
Risk Class BM Category HP Category Gender
A B C D A B C Male Female

1 YES NO NO NO YES NO NO YES NO
2 YES NO NO NO YES NO NO NO YES
3 YES NO NO NO NO YES NO YES NO
4 YES NO NO NO NO YES NO NO YES
5 YES NO NO NO NO NO YES YES NO
6 YES NO NO NO NO NO YES NO YES
7 NO YES NO NO YES NO NO YES NO
8 NO YES NO NO YES NO NO NO YES
9 NO YES NO NO NO YES NO YES NO
10 NO YES NO NO NO YES NO NO YES
11 NO YES NO NO NO NO YES YES NO
12 NO YES NO NO NO NO YES NO YES
13 NO NO YES NO YES NO NO YES NO
14 NO NO YES NO YES NO NO NO YES
15 NO NO YES NO NO YES NO YES NO
16 NO NO YES NO NO YES NO NO YES
17 NO NO YES NO NO NO YES YES NO
18 NO NO YES NO NO NO YES NO YES
19 NO NO NO YES YES NO NO YES NO
20 NO NO NO YES YES NO NO NO YES
21 NO NO NO YES NO YES NO YES NO
22 NO NO NO YES NO YES NO NO YES
23 NO NO NO YES NO NO YES YES NO
24 NO NO NO YES NO NO YES NO YES

As we have mentioned, all the policies were observed for 3.5 years. Thus the estimated
expected annual claim frequency and the variance for each risk class are obtained if we let
e =e= % in the Eqgs (2.8, 2.18, 2.26, 2.34 and 2.39) and the Eqgs (2.8, 2.19, 2.27, 2.35 and
2.40) for the case of the Poisson, Negative Binomial Type II (NBII), Delaporte (DEL), Sichel
and Zero-Inflated Poisson (ZIP) GAMLSS respectively. The results are summarized in Table
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2.15. As expected, the variance of the NBII, Delaporte, Sichel and ZIP GAMLSS exceeds the
mean and these models allow for overdispersion. Furthermore, we observe that the biggest
differences lie in the variance values of these models. For example, the variance of the expected
number of claims for a man who belongs to BM category A and has a car that belongs to
HP category A, i.e. for the reference class, is equal to 0.1264, 0.2140, 0.1868, 0.1884 and
0.1391 while the variance of the expected number of claims for a woman who shares common
characteristics is equal to 0.1354, 0.1964, 0.2100, 0.2128 and 0.1507 in the case of the Poisson,
NBII, Delaporte, Sichel and ZIP GAMLSS respectively.

Table 2.15: A Priori Risk Classification for the Greek Dataset, Claim Frequency Models

The final a priori ratemaking for the claim severity models contains 36 classes (see Table

2.16).

Risk
Class

Poisson
Mean Var

NBII
Mean Var

DEL
Mean Var

Sichel
Mean Var

yAIS
Mean Var

0.1264 0.1264
0.1354 0.1354
0.0997 0.0997
0.1068 0.1068
0.1176 0.1176
0.1259 0.1259
0.2323 0.2323
0.2486 0.2486
0.1832 0.1832
0.1961 0.1961
0.2160 0.2160
0.2312 0.2312
0.3059 0.3059
0.3276 0.3276
0.2413 0.2413
0.2584 0.2584
0.2845 0.2845
0.3047 0.3047
0.0493 0.0493
0.0527 0.0527
0.0388 0.0388
0.0416 0.0416
0.0458 0.0458
0.0490 0.0490

0.1267 0.2140
0.1357 0.1964
0.1001 0.1318
0.1072 0.1293
0.1178 0.1592
0.1261 0.1550
0.2385 0.4029
0.2555 0.3699
0.1885 0.2483
0.2020 0.2435
0.2217 0.2998
0.2375 0.2918
0.2931 0.4950
0.3140 0.4545
0.2317 0.3050
0.2482 0.2992
0.2725 0.3684
0.2919 0.3586
0.0478 0.0808
0.0512 0.0742
0.0378 0.0498
0.0405 0.0489
0.0444 0.0601
0.0476 0.0585

0.1255 0.1868
0.1371 0.2100
0.0984 0.1127
0.1075 0.1245
0.1165 0.1381
0.1273 0.1529
0.2388 0.4602
0.2608 0.5247
0.1872 0.2388
0.2044 0.2659
0.2217 0.2995
0.2422 0.3349
0.2991 0.6462
0.3266 0.7406
0.2344 0.3153
0.2560 0.3525
0.2777 0.3997
0.3032 0.4487
0.0482 0.0573
0.0527 0.0634
0.0378 0.0399
0.0413 0.0438
0.0448 0.0480
0.0489 0.0527

0.1258 0.1884
0.1377 0.2128
0.0984 0.1046
0.1078 0.1152
0.1166 0.1260
0.1277 0.1390
0.2383 0.4629
0.2610 0.5302
0.1863 0.2089
0.2040 0.2311
0.2208 0.2548
0.2418 0.2825
0.3001 0.6564
0.3286 0.7559
0.2347 0.2705
0.2571 0.2999
0.2782 0.3320
0.3047 0.3692
0.0486 0.0579
0.0532 0.0645
0.0380 0.0389
0.0417 0.0427
0.0450 0.0465
0.0493 0.0510

0.1261 0.1391
0.1414 0.1507
0.0983 0.1062
0.1102 0.1158
0.1148 0.1256
0.1288 0.1365
0.2742 0.2777
0.2527 0.2543
0.2136 0.2158
0.1969 0.1980
0.2496 0.2524
0.2300 0.2314
0.3127 0.3616
0.3301 0.3610
0.2438 0.2734
0.2573 0.2761
0.2847 0.3252
0.3005 0.3261
0.0476 0.0542
0.0634 0.0701
0.0371 0.0411
0.0494 0.0534
0.0433 0.0488
0.0577 0.0632
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Table 2.16: Risk Classes-Claim Severity Component

Risk Class BM Category HP Category Gender
A B C A B C D Both Male Female

YES NO NO YES NO NO NO YES NO NO
YES NO NO YES NO NO NO NO YES NO
YES NO NO YES NO NO NO NO NO YES
YES NO NO NO YES NO NO YES NO NO
YES NO NO NO YES NO NO NO YES NO
YES NO NO NO YES NO NO NO NO YES
YES NO NO NO NO YES NO YES NO NO
YES NO NO NO NO YES NO NO YES NO
YES NO NO NO NO YES NO NO NO YES
YES NO NO NO NO NO YES YES NO NO
YES NO NO NO NO NO YES NO YES NO
YES NO NO NO NO NO YES NO NO YES
NO YES NO YES NO NO NO YES NO NO
NO YES NO YES NO NO NO NO YES NO
NO YES NO YES NO NO NO NO NO YES
NO YES NO NO YES NO NO YES NO NO
NO YES NO NO YES NO NO NO YES NO
NO YES NO NO YES NO NO NO NO YES
NO YES NO NO NO YES NO YES NO NO
NO YES NO NO NO YES NO NO YES NO
NO YES NO NO NO YES NO NO NO YES
NO YES NO NO NO NO YES YES NO NO
NO YES NO NO NO NO YES NO YES NO
NO YES NO NO NO NO YES NO NO YES
NO NO YES YES NO NO NO YES NO NO
NO NO YES YES NO NO NO NO YES NO
NO NO YES YES NO NO NO NO NO YES
NO NO YES NO YES NO NO YES NO NO
NO NO YES NO YES NO NO NO YES NO
NO NO YES NO YES NO NO NO NO YES
NO NO YES NO NO YES NO YES NO NO
NO NO YES NO NO YES NO NO YES NO
NO NO YES NO NO YES NO NO NO YES
NO NO YES NO NO NO YES YES NO NO
NO NO YES NO NO NO YES NO YES NO
NO NO YES NO NO NO YES NO NO YES
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Table 2.17 gives the estimated expected claim severity and the variance for each risk class ob-
tained from the Gamma (GA), Weibull (WEI), Weibull Type III (WEI3), Generalized Gamma
(GG) and Generalized Pareto (GP) GAMLSS according to the Eqgs (2.44, 2.49, 2.54, 2.60 and
2.66) and the Egs (2.45, 2.50, 2.55, 2.61 and 2.67) respectively. As expected, similarly to the
case of the claim frequency models, we see that the biggest differences between the claim sever-
ity models lie in their variance values. For instance, the variance of the expected claim costs for
a fleet vehicle that belongs to HP category A, used by both a man and a woman, and belongs
to BM category A, i.e. for the reference class, is equal to 135347.30, 169637.36, 168267.90,
148196.45 and 142078.20, while the variance of the expected claim costs for a private car that
belongs to HP category A and is used by a man who belongs to BM category A is equal to
78621.46, 110315.30, 111018.27, 72875.39 and 89891.64 in the case of the Gamma, WEI, WEI3,
Generalized Gamma and Generalized Pareto GAMLSS.
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Table 2.17: A Priori Risk Classification for the Greek Dataset, Claim Severity Models

Risk
Class

GA
Mean Var

WEI
Mean Var

WEI3
Mean Var

GG
Mean Var

GP
Mean Var

|t e e S e T e e
O 0 T O T W m o © 00T 0tk W=
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584.00 135347.30
521.75 78621.46
543.92 82108.76
294.89 18453.33
263.46 10719.29
274.65 11194.75
326.75 19827.00
291.93 11517.24
304.32 12028.09
388.27 36033.34
346.88 20931.28
361.62 21859.70
296.28 114416.43
264.70 66462.96
275.95 69410.96
149.60 15599.59
133.66 9061.59
139.34 9463.52
165.77 16760.83
148.10 9736.14
154.39 10167.99
196.98 30460.93
175.98 17694.34
183.46 18479.18
601.42 131373.54
537.32 76313.11
560.14 79698.02
303.69 17911.53
271.32 10404.57
282.84 10866.07
336.50 19244.87
300.64 11179.09
313.40 11674.94
399.85 34975.39
357.23 20316.73
372.41 21217.89

997.96 169637.36
526.73 110315.30
046.89 118812.19
295.51 19539.26
263.36 13061.64
273.45 14069.47
326.18 23575.68
290.72 15762.85
301.85 16979.11
390.33 43363.58
346.96 28820.08
360.26 31043.01
352.27 172055.65
297.20 100325.75
308.51 107997.62
151.45 13989.85
132.51 8946.20
137.58 9634.51
166.98 16833.12
146.14 10772.70
151.73 11601.59
206.75 33670.27
179.31 21059.67
186.15 22677.63
613.31 164111.60
041.27 107216.06
561.99 115476.70
304.87 19167.52
271.88 12831.92
282.31 13822.11
336.52 23129.37
300.14 15486.68
311.64 16681.73
402.16 42412.94
357.83 28251.56
371.54 30430.94

594.66 168267.90
528.26 111018.27
549.06 119033.67
296.25 19714.32
263.17 13063.90
273.53 14009.16
327.07 23782.38
290.55 15759.88
301.99 16900.22
390.41 43561.39
346.82 28847.75
360.47 30934.51
305.85 130297.57
271.70 84002.18
282.39 89988.87
152.36 14234.31
135.36  9359.92
140.68 10034.46
168.23 17162.40
149.44 11287.22
155.32 12100.73
200.79 31936.98
178.37 20903.82
185.39 22406.46
613.51 165097.24
545.01 109018.66
566.45 116893.25
305.64 19385.37
271.51 12847.07
282.20 13776.66
337.44 23385.76
299.76 15498.33
311.56 16619.75
402.78 42819.65
357.81 28364.50
371.89 30416.57

591.62 148196.45
504.93 72875.39
516.38 72022.76
310.72 24073.97
262.37 11431.24
268.44 11300.70
344.55 25257.37
290.30 11905.58
297.05 11770.71
404.41 43421.71
341.83 20685.10
349.72 20448.12
265.02 129671.66
164.63 25281.89
165.62 23924.98
119.36 13878.38
83.06 3737.71
84.12  3595.64
127.92 13265.26
91.28 3837.95
92.58 3705.93
157.66 26065.04
108.54 6804.49
109.84 6535.28
591.91 131860.30
511.81 65142.30
524.41 64612.06
317.57 22467.66
270.40 10712.80
276.98 10614.65
353.80 23820.14
300.25 11270.97
307.55 11165.35
412.50 40339.87
351.74 19299.08
360.31 19124.05

583.03 142078.20
514.78 89891.64
536.75 95624.76
300.72 26138.91
265.51 16207.29
276.84 17199.88
333.03 29934.69
294.05 18551.62
306.59 19686.62
394.23 46566.35
348.08 29009.46
362.94 30803.37
250.44 178704.02
221.13 121573.35
230.56 130384.50
108.56 11957.62
95.85 7832.20
99.94 8364.86
118.52 12850.63
104.64 8402.63
109.11 8972.35
145.27 23671.24
128.26 15622.57
133.74 16699.22
618.24 151126.30
545.87 95523.00
569.17 101603.68
319.63 28068.18
282.22 17391.14
294.27 18454.66
354.06 32168.91
312.61 19922.38
325.96 21139.48
418.90 49941.43
369.87 31088.48
385.65 33007.98

Overall, from Tables 2.15 and 2.17 it can be seen that both the claim frequency and severity
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models are better compared through their variance values, and thus GAMLSS modelling is
justified because it enables us to use all the available information in the estimation of these
values through the use of the important a priori rating variables for the number and the costs
of claims respectively.

2.3.4 Calculation of the Premiums According to the Expected Value
and Standard Deviation Principles

Consider a policyholder ¢+ who belongs to a group of policyholders, whose number of claims,
denoted as K;, are independent, for ¢ = 1,..,n. Let X, ; be the cost of the kth claim reported by
the policyholder ¢ and assume that the individual claim costs X; 1 X, ..., X;,, are independent.
It is assumed that the number of claims of each policyholder that belongs to a certain group is
independent of the severity of each claim in order to deal with the frequency and the severity
components separately.

A premium principle is a rule for assigning a premium to an insurance risk. In this section
the premiums rates will be calculated via two well-known premium principles, the expected
value and the standard deviation premium principles.

e The premium rates calculated according to the expected value principle are given by

where w; > 0 and ws, > 0 are risk loads.

e The premium rates calculated according to the standard deviation principle are given by

P = [E(Ki) + Var(Ki)] {E(Xi,k) +wy Var(X@k)} , (2.73)
where w; > 0 and w, > 0 are risk loads.

In the following example (Table 2.18), six different groups of policyholders have been con-
sidered. In Table 2.18 a ‘YES’ indicates the presence of the characteristic corresponding to the
column.

Table 2.18: The Six Different Groups of Policyholders to Be Compared
Group BM Category A HP NO-33 HP 34-66 HP 100-132 Male Female

1 YES YES NO NO YES NO
2 YES YES NO NO NO  YES
3 YES NO YES NO YES NO
4 YES NO YES NO NO  YES
5 YES NO NO YES YES NO
6 YES NO NO YES NO  YES
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We will calculate the premiums P, and P, that must be paid by a specific group of poli-
cyholders based on the alternative models for assessing claim frequency and the various claim
severity models. We assume that wy, = ws = w; = wy = 1—10. The premiums P; and P, are
obtained in Table 2.19 by substituting into Eqs (2.72 and 2.73) the corresponding F(K;) and
Var(K;), and E(X; ) and Var(X; ) values to these six different groups of policyholders, which
were displayed in Tables 2.15 and 2.17 for the case of the Poisson, NBII, Delaporte, Sichel and
Z1P GAMLSS, and the Gamma, Weibull, Weibull Type III, Generalized Gamma and Gen-
eralized Pareto GAMLSS respectively. From Table 2.19 we observe, for all models, that the
premiums P; and P, do not differ much. For instance, consider a man who belongs to BM
category A and has a car with a HP between 34-66. In the case of the Poisson model and the
corresponding severity models, P; is equal to 31.78, 31.77, 31.75, 31.65 and 32.03 euros, while
P equals 35.95, 36.07, 36.05, 35.85 and 36.52 euros. In the case of the NBII model and the
corresponding severity models, P; is equal to 31.91, 31.90, 31.88, 31.78 and 32.16 euros, while
P equals 37.35, 37.48, 37.46, 37.25 and 37.95 euros. In the case of the Delaporte model and
the corresponding severity models, P; is equal to 31.37, 31.36, 31.33, 31.24 and 31.61 euros,
while P, equals 36.14, 36.27, 36.24, 36.04 and 36.72 euros. In the case of the Sichel model and
the corresponding severity models, P; is equal to 31.37, 31.36, 31.33, 31.24 and 31.61 euros,
while P, equals 35.80, 35.93, 35.90, 35.70 and 36.38 euros. In the case of the ZIP model and
the corresponding severity models, P; is equal to 36.62, 36.46, 36.47, 35.80 and 36.91 euros,
while P, equals 41.14, 41.15, 41.16, 40.25 and 41.82 euros.
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Table 2.19: Premium Rates Calculated Via the Expected Value and Standard Deviation Prin-

ciples

Group

PO-GA
Py %

PO-WEI
P Py

PO-WEI3
5! Py

PO-GG
P Py

PO-GP

P Py

U i W DN =

40.2946 44.3448
44.9970 49.1158
31.7830 35.9450
35.4925 39.7840
79.7985 89.0400
89.1126 98.5955

40.2793 44.5028
44.8004 49.1297
31.7710 36.0730
35.3374 39.7953
80.5602 90.6845
89.5992 100.1082

40.2503 44.4722
44.8135 49.1391
31.7480 36.0482
35.3477 39.8030
80.7942 90.9493
89.9547 100.4874

40.1279 44.2231
43.9796 48.0550
31.6515 35.8463
34.6900 38.9248
77.2260 86.1468
84.6006 93.5402

40.6082
45.3558
32.0303
35.7755

45.0619
49.9293
36.5261
40.4430
78.7325 88.2257
87.9379 97.7515

Group

NBII-GA
Py Py

NBII-WEI
5! Py

NBII-WEI3
P Py

NBII-GG
P Py

NBII-GP
P P,

U W N =

40.3903 47.3588
45.0967 51.3464
31.9105 37.3493
35.6254 40.8331
79.9880 95.0917
89.3100 103.0732

40.3750 47.5275
44.9000 51.3610
31.8984 37.4824
35.4700 40.8447
80.7514 96.8480
89.7977 104.6550

40.3458 47.4948
44.9128 51.3708
31.8754 37.4566
35.4801 40.8525
80.9860 97.1309
90.1540 105.0510

40.2232 47.2290
44.0770 50.2374
31.7785 37.2468
34.8200 39.9513
77.4093 92.0020
84.7881 97.7883

40.7045 48.1246
45.4563 52.1968
32.1588 37.9532
35.9095 41.5094
78.9194 94.2221
88.1327 102.1909

Group

DEL-GA
P Py

DEL-WEI
Py Py

DEL-WEI3
P Py

DEL-GG
P Py

DEL-GP
P Py

U W DN

40.0077 46.1980
45.5620 52.1760
31.3686 36.1354
35.7251 40.7265
79.2304 92.7607
90.2314 104.7387

39.9925 46.3625
45.3630 52.1908
31.3567 36.2641
35.5690 40.7381
79.9866 94.4740
90.7241 106.3456

39.9637 46.3306
45.3762 52.2008
31.3341 36.2392
35.5794 40.7459
80.2190 94.7500
91.0841 106.7484

39.8422 46.0711
44.5318 51.0492
31.2388 36.0362
34.9173 39.8470
76.6762 89.7467
85.6628 99.3684

40.3190 46.9449
45.9253 53.0402
31.6127 36.7197
36.0100 41.4011
78.1720 91.9124
89.0420 103.8421

Group

SI-GA
P P2

SI-WEI
P Py

SI-WEI3
P b

SI-GG
P Py

SI-GP
P P,

U W N =

40.1034 46.3306
45.7614 52.4340
31.3686 35.7989
35.8248 40.4289
79.4197 93.0272
90.6263 105.2565

40.0881 46.4957
45.5614 52.4489
31.3567 35.9264
35.6683 40.4404
80.1778 94.7453
91.1212 106.8714

40.0592 46.4637
45.5748 52.4590
31.3341 35.9017
35.6787 40.4481
80.4107 95.0221
91.4827 107.2762

39.9374 46.2034
44.7267 51.3016
31.2388 35.7006
35.0148 39.5558
76.8594 90.0045
86.0377 99.8600

40.4154 47.0800
46.1263 53.3025
31.6127 36.3777
36.1105 41.0985
78.3588 92.1765
89.4317 104.3555

Group

ZIP-GA
Py %

ZIP-WEI
Py P,

ZIP-WEI3
Py P,

ZIP-GG
Py Py

Z1P-GP
5! ¥

Sy UL W N~

40.1990 44.7401
46.9910 51.4043
31.3367 35.8390
36.6224 41.1386
79.6091 89.8335
93.0615 103.1895

40.1837 44.8994
46.7857 51.4189
31.3248 35.9666
36.4624 41.1503
80.3690 91.4926
93.5696 104.7726

40.1547 44.8685
46.7993 51.4287
31.3022 35.9420
36.4730 41.1582
80.6024 91.7600
93.9409 105.1700

40.0327 44.6172
45.9285 50.2941
31.2071 35.7406
35.7943 40.2502
77.0427 86.9146
88.3495 97.8986

40.5118 45.4635
47.3657 52.2557
31.5806 36.4185
36.9144 41.8200
78.5457 89.0120
91.8347 102.3061
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A framework has been provided for modelling count and loss data. Note that different
count and loss models can be fitted and the parameters of the distributions can be modelled
generally as linear, nonlinear and /or smoothing functions of explanatory variables. In this case

the problem of the choice between models becomes more acute and is an interesting topic of
further research.
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Chapter 3

The Design of Optimal Bonus-Malus
Systems Using Alternative Mixed
Poisson Distributions as Models of
Claim Counts

3.1 Introduction

In a priori risk classification, many important factors cannot be taken into account a priori when
pricing motor third party liability insurance products. For instance, reaction times, aggressive
driving behavior or theoretical and practical driving experience are difficult to integrate into a
priori risk classification. As a result, heterogeneity is still observed in tariff cells despite the use
of many classification variables. In order to reduce the gap between the individual’s premium
and risk and to increase incentives for road safety, the individual’s past record must taken
into consideration through the use of an a posteriori model. In motor insurance, credibility
techniques can be used to re-evaluate the annual expected claim frequency given the past claim
record. Bayesian statistics offer an intellectually acceptable approach to credibility theory.
One of the commercial simplifications of credibility theory is known as Bonus-Malus Systems
(BMSs).

As we mentioned in Chapter 1, a BMS penalizes policyholders responsible for one or more
claims by a premium surcharge (malus) and rewards the policyholders who had a claim-free
year by awarding discount of the premium (bonus). A basic interest of the actuarial literature
is the construction of an optimal or ‘ideal’ BMS defined as a system obtained through Bayesian
analysis. A BMS is called optimal if it is financially balanced for the insurer: the total amount
of bonuses must be equal to the total amount of maluses and if it is fair for the policyholder:
the premium paid for each policyholder is proportional to the risk that they impose on the pool.
Optimal BMSs can be broadly derived in two ways; based only on the a posteriori classification
criteria and based on both the a priori and the a posteriori classification criteria. Typically,
classification criteria such as the number of accidents of the policyholder and the severity of
each accident are considered as a posteriori, while variables such as the characteristics of the
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driver and the automobile are considered as a priori classification criteria. These systems,
besides encouraging policyholders to drive carefully (i.e. counteracting moral hazard), aim
to better assess individual risks. The amount of premium is adjusted each year on the basis
of the individual claims experience using techniques from credibility theory. Contributions
to the literature of BMS include, among others, Lemaire (1995), Dionne and Vanasse (1989,
1992), Frangos and Vrontos (2001), Pinquet et al. (2001), Brouhns et al. (2003), Pitrebois
et al. (2006) and Mahmoudvand and Hassani (2009) and the references therein. A review of
BMS, and actuarial models for risk classification and insurance ratemaking can be found in
Denuit et al. (2007). The literature more closely related to ours is Lemaire (1995) and Dionne
and Vanasse (1989, 1992). Lemaire (1995) considered, among other BMS, the optimal BMS
obtained using the quadratic error loss function and the expected value premium calculation
principle approximating the claim frequency distribution by the Negative Binomial. Dionne and
Vanasse (1989, 1992) developed a BMS that integrates a priori and a posteriori information
on an individual basis. For this purpose they used the Negative Binomial regression model for
assessing claim frequency.

Our first contribution is the development of an optimal BMS using the Sichel distribution
for assessing claim frequency. This system is proposed as an alternative to the optimal BMS
provided by the Negative Binomial distribution (Lemaire,1995). In fact the Sichel distribution
(Sichel, 1985) differs from the standard Negative Binomial one by using an Generalized Inverse
Gaussian (GIG) mixing distribution for the parameter of the Poisson density, i.e. the expected
claim frequency, instead of the Gamma one, which the derivation of the Negative Binomial dis-
tribution is based on. It is important to note that different parameterizations of the Generalized
Inverse Gaussian distribution may lead to other models. An additional advantage of the Sichel
model is that it can be considered as a candidate model for highly dispersed count data. We
also consider the optimal BMS obtained by the Poisson-Inverse Gaussian distribution (PIG),
which is a special case of the Sichel distribution. Our second contribution is the development
of a generalized BMS that integrates the a priori and the a posteriori information on an indi-
vidual basis, extending the framework developed by Dionne and Vanasse (1989, 1992). This is
achieved by using the generalized additive models for location, scale and shape (GAMLSS). As
mentioned in Chapter 2, in the GAMLSS, the exponential family distribution assumption for
the response variable is relaxed and replaced by a general distribution family, including highly
skewed continuous and discrete distributions. Thus, the GAMLSS are suited to model highly
dispersed count data. Within the framework of the GAMLSS we present the Sichel GAMLSS
for assessing claim frequency as an alternative to the Negative Binomial regression model of
Dionne and Vanasse (1989, 1992). Furthermore we consider the PIG GAMLSS for assessing
claim frequency. With the aim of constructing an optimal BMS by updating the posterior mean
claim frequency, we adopt the parametric linear formulation of these models and we allow only
their mean parameter to be modelled as a function of the significant a priori rating variables
for the number of claims. In the resulting generalized system, the premium is a function of the
years that the policyholder is in the portfolio, the number of accidents and the significant a
priori rating variables for the number of accidents.

This chapter is laid out as follows. In Section 3.2 we consider the design of an optimal
BMS based on the a posteriori criteria. The design presented in Section 3.3 is based on both
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the a posteriori and the a priori classification criteria. Finally, an application to the data set
presented in Chapter 2 can be found in Section 3.4.

3.2 The Design of an Optimal BMS Based on the a Pos-
teriori Criteria

This Section presents the development of an optimal BMS using the Sichel distribution for
assessing claim frequency. This system is proposed as an alternative to the optimal BMS pro-
vided by the Negative Binomial distribution (see Lemaire, 1995). In fact the Sichel distribution
works very well when the data is highly dispersed. In other situations, it works similar to the
Negative Binomial distribution. Furthermore, we consider the optimal BMS obtained by the
Poisson-Inverse Gaussian distribution, which is a special case of the Sichel distribution. In
the above setup optimality is achieved by minimizing the insurer’s risk, following the current
methodology as presented in Chapter 1.

3.2.1 The Negative Binomial Model

We consider first the design of an optimal BMS using the Negative Binomial distribution for
assessing claim frequency'. The portfolio is considered to be heterogeneous and all policyholders
have constant but unequal underlying risks of having an accident. We assume that the number
of claims k given the parameter \ is distributed as a Poisson(\),

e M\
k7
for k =0,1,2,3,... and A > 0, where the parameter \ is the mean claim frequency which
varies from individual to individual, denoting the different underlying risk of each policyholder
having an accident. Following the setup of Lemaire (1995), we consider that the structure
function follows a Gamma distribution which has a probability density function of the form

P(K|\) = (3.1)

ALY exp (=7 )
\) =
for A > 0, > 0,7 > 0, with mean E()\) = ¢ and variance Var(\) = 5. Then it can be proved

that the unconditional distribution of the number of claims k is a Negative Binomial (v, 7)
distribution with probability density function

P(k)—<k+z_1)p"‘q’“,p—(ler),q—(liT), (3.3)

for k =0,1,2,3,..., where A > 0,a > 0,7 > 0. The mean and the variance of k are given
by E(k) = p =2 and Var(k) = ¢ (1 + 1) respectively.

(3.2)

I'We use the same notation as in Frangos and Vrontos (2001).
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Posterior Structure Function

Consider a policyholder with claim history ki, ..., k; where k; is the number of claims that the
t

policyholder had in year j,j = 1, ..., t. Let us denote with K = Z k; the total number of claims
j=1

that the policyholder had in ¢ years. Applying Bayes theorem we obtain the posterior structure

function of A for a policyholder or a group of policyholders with claim history ki, ..., k;, denoted

as u (Alky, ..., k) and given by

(7_ + t)K+o¢ )\K+a—1€_(7+t))\

I'(a+ K) ’

w(Nk1,y .y k) = (3.4)

which is the probability density function of a gamma («a + K, 7 + t). For information about
the proof of Egs (3.3 and 3.4) refer to Lemaire (1995). Also, a more general proof of Eqgs (3.3
and 3.4) can be found in Chapter 5 where we consider the case of the n-component mixture of
Negative Binomial distributions derived by assuming that the number of claims k| is distrib-
uted according to a Poisson(A) and that the structure function follows an n-component mixture
of Gamma distributions.

Optimal Choice of S\IH

Consequently, by using the quadratic error loss function, the optimal choice of A at time ¢ + 1,
Ai11, for a policyholder with claim history ki, ..., &k, is the mean of the posterior structure
function given by Eq. (3.4), that is

_K+oz

Xt—i—l (kla "'7kt) T4t :

(3.5)

3.2.2 The Sichel Model

Let us consider now the construction of an optimal BMS using the Sichel distribution to model
the claim frequency distribution. The Sichel is a compound Poisson distribution and it can be
derived by assuming that the mixing distribution of the Poisson rate A is a Generalized Inverse
Gaussian distribution.

As previously, the portfolio is considered to be heterogeneous and all policyholders have
constant but unequal underlying risks of having an accident and k| is distributed according to
a Poisson(A). Let us now assume that the mean claim frequency A follows a Generalized Inverse
Gaussian distribution, denoted as GIG(u, o, v), with probability density function given by

) N Texp [~ 4 (A4 81
e )]

Koua(1)
K03

(3.6)

for A > 0, where > 0,0 > 0 and —o0 < v < 00, and where ¢ = , where
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K, (z)=

N | —

r 1 1

/x”l exp [——z (x + —)} dzx,
2 T

0

is the modified Bessel function of the third kind of order v with argument z. Eq. (3.6) is
obtained from a reparameterization of equation (2.2) of the GIG distribution of Jorgensen
(1982) or equation (15.74) from Johnson et al. (1994) p 284. The mean and the variance of A

are given by E()\) = p and Var(\) = p? [ﬁcﬂ) + 5 - 1] respectively. Note that the gamma
is a limiting distribution of Eq. (3.6) obtained by letting 0 — oo for v > 0.

Proposition 1 If we let v = —0.5 in (3.6) the Generalized Inverse Gaussian distribution can
be reduced to an Inverse Gaussian distribution with pdf given by

o [z 0]
u(\) = ——=exp |— A=), 3.7
V= Varont P T2 A Y -7
for A > 0 and o > 0, where E(\) = u and where Var()\) = p?o.
Proof. If we let v = —0.5 in (3.6), then we have

oy = el e

Making use of the relationships between the modified Bessel functions of different orders
(see Abramowitz and Stegun, 1974):

Texp(—2), Ky (2) = K, (2),
) and Ky (2) = K2 (2) (24 1)
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Proposition 2 Let k|\ be distributed according to a Poisson (\) and let the distribution of
the parameter A be the GIG(u,0,v) given by Eq. (3.6). The unconditional distribution of the
number of claims k is given by a Sichel (u,o0,v) distribution, which has a probability density
function of the form

(4)" Ky (a)
K (ao)" K, (L)

[

P (k) = (3.8)

fork=0,1,2,3, ..., where a®> = 02 + 2u (co) .

Note that the mean of k is equal to F(k) = p and the variance of k is equal to Var(k) =
o+ %’Ll) + C% — 1|. Like the Negative Binomial the variance of the Sichel exceeds its

mean, a desirable property which is common for all mixtures of Poisson distributions and allows

us to deal with data that present overdispersion.
Proof. Considering the assumptions of the model the unconditional distribution of the
number of claims &£ can be derived by solving the convolution integral

The integrand of the above expression is equal to 2K}, (a), where Ky, (a) is the modified
Bessel function of the third kind of order k + v with argument a.
Thus we have
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_ () i@
T Kl (ao) VK, %)

Proposition 3 The special case v = —0.5 in (3.8) gives the parameterization of the Poisson-
Inverse Gaussian (PIG) distribution used by Dean et al. (1989). The probability density func-

tion of the PIG is given by
2(1)é Mkegkaé (a)

(ac)" k!

P (k)

P (k) = ( , (3.9)

for k=0,1,2,3,..., where a* = 07* + 2£.

™

The PIG(p, o) can arise if we assume that the mixing distribution of the Poisson rate A is an
Inverse Gaussian distribution with probability density function given by Eq. (3.7). Note that
the mean and the variance of the PIG distribution are given by F(k) = y and Var(k) = p+p’c
respectively. Note also that the Poisson-gamma, i.e. Negative Binomial Type I is a limiting
case of (3.8) obtained by letting o — oo for v > 0.

Proof. If we let v = —0.5 in (3.8), then we have that

(4)" 5y @

(1)kl(ac) 3"

P (k) = —

1
for k=0,1,2,3,..., where ¢ = ?L(("l)) and where a? = 072 + 22, As we mentioned in the
—172\ 7

proof of (3.7), using the relationships between the modified Bessel functions of different order
one can find that

and hence

Another proof of Eq. (3.9) can be obtained in a similar way to the proof of Eq. (3.8) if we
let v = —0.5 and solve the convolution integral

o0

P (k) = /P (kN w (\) dA,

0

where k| follows a Poisson (A\) and \ follows the Inverse Gaussian with pdf given by (3.7).
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Posterior Structure Function

In what follows we present the design of an optimal BMS using the Sichel distribution for as-
sessing claim frequency. We also present the system provided by the PIG distribution. Consider
a policyholder observed during ¢ years and denote by k; the number of accidents in which they

were at fault in year j = 1,...,¢, so their claim frequency history will be in a form of a vector
t

(k1,..., k). Let us denote by K = Z k; the total number of claims that this insured had in
j=1
t years. Our goal is to calculate the posterior structure function of A for a policyholder or a

group of policyholders with claim history ki, ..., k; for the case of the Sichel and PIG models
respectively.

Proposition 4 Let k;|\, for j = 1,...,t, be distributed according to a Poisson (\) and let the
prior structure function of the parameter \ be the GIG(u,0,v) given by Eq. (3.6). The posterior
structure function of A for a policyholder or a group of policyholders with claim history kq, ..., ks ,
denoted as u (ANky, ..., ki), is a GIG (w1, wq, K + v) distribution with probability density function
of the form

K;»V
w1 K+v—-1
ks ) () ~ exp |~ [\ + wy (3.10)
u = X —— W Wo — .
D T S K e () L 2 T

1
for A >0, where wy = = + 2t and wy = 1, with 0 > 0,—00 < v < 00 and ¢ = K}"{TE‘]’} and
where Kk, (2) is the modified Bessel function of the third kind of order K + v with a{qument
z.

Proof. Considering the assumptions of the model, we have

P (ko kel A) = P (Ri|A) - oo P (Re|A) = S22 L2t = <28

By Bayes theorem and Eq. (3.6),

U ()\|k17 s kt) — P(kl,,ktp\)u()\) _ P(k‘l,,ktl)\)u()\)

P(k1,...,kt) o0

/P(kl,...,ktp\)u()\)d)\
0
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AE+v—1,—tX exp[_% (#M'%%)]
o0

/‘AK_’_y—let)\ exp[—%(ﬁk—i_ﬁ%)]d)\

0

S S(EEE)I)

— .
/‘)\KJ”’1exp[—;((acu+2t))\+c‘2/l\)]d)\
0

If we let w; = (ﬁ + Qt) and wy = £ then we have

el (i)

/AK'“’_l exp[—%(wlkﬁ-wz%)]d)\

0

u()\|/€1,

<y vt

wq %ﬂ K4+v—1 1 1
(21) ™ 3o el

) 4R oxp 3 (YA YT 1

e

Ji

wy K?-Hl K4v—1 1 1
o (w—2> A exp[—i(wl)\—}—wzx)]
- 0

K+u—1
/ ﬁ exp|:— Vwiws ( \/171/\):|
w2

0

Wﬁ

()

The integrand of the above expression is equal to 2K ., (« /w1w2), i.e. the modified Bessel
function of the third kind of order K + v with argument ,/w;ws.
Thus we have that

() e 1
w AR, s ki) = S5y P [ [und +wag]]
Proposition 5 In the special case when v = —0.5, i.e.

when the simple Inverse Gaussian,
given by Eq. (3.7), is the structure function of X\, the posterior structure function of \ for a
policyholder or a group of policyholders with claim history kq,...,k; is a GIG (hl,hg, K — %)
with pdf given by

(E)T A 1 1
w Nk, . k) = exp [—5 |:h1>\+ thH , (3.11)



for A\ > 0,0 > 0, where hy = U—lu + 2t and hy = £ and where KK_% (z) is the modified Bessel
function of the third kind of order K — % with argument z.

Proof. If let v = —0.5 in (3.10), then the proof can be obtained in a similar way to that of
Proposition 1.

Optimal Choice of j\fﬂ

Subsequently, by using the quadratic error loss function, the optimal choice of 5\t+1 for a poli-
cyholder with claim history ki, ..., k; is the mean of the GIG (w;, wq, K + 1), i.e. the posterior
structure function given by Eq. (3.10), that is

5\L‘Jrl (kla“'akt) = /Au()\’klaakt) dA
0

- () S o, -

. K, 1
where w; = = + 2t and wy = £, with 0 > 0,—00 < ¥ < o0 and ¢ = +15]
ol gc Kl,[]']

and where

o

K, (z) is the modified Bessel function of the third kind of order v with argument z.

In the special case when v = —0.5, using again the quadratic error loss function, the
optimal choice of S\tﬂ for a policyholder with claim history ki, ..., k; is the mean of the GIG
(hl, ho, K — %), i.e. the posterior structure function given by Eq. (3.11), that is

[e o]

5\t—i-l (kla"'7kt) - /Au()\v{:l?akt) dA
0

hy \ Ky (hahs)
- (\E) Ky (uha)’ (313

where hy = = + 2t and hy = £, where 0 > 0 and where K, (z) is the modified Bessel
function of the third kind of order v with argument z.

3.2.3 Calculation of the Premiums According to the Net Premium
Principle

We calculate the premium based on the net premium principle for the set of distributions
considered in the previous sections. Consider a policyholder or a group of policyholders who in
t years have produced K claims. The net premium that should be paid from that specific group
of policyholders is equal to their expected number of claims for period ¢ + 1, A\jy1(k1, ..., k¢),i-e.
is equal to
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Premium = eS\tH(kl, o ki), (3.14)

where e = % denotes the exposure to risk?, since, as mentioned in Chapter 2, all 15641

policyholders were observed for 3.5 years and where A1 (k1, ..., k) in (3.14) is given by the
Egs (3.5, 3.13 and 3.12) for the case of Negative Binomial, Poisson-Inverse Gaussian and Sichel
distributions respectively.

In order to find the premium that must be paid we have to know:

1. the maximum likelihood estimates of the parameters o and 7 of the Negative Binomial
distribution with pdf given by Eq. (3.3),

2. the maximum likelihood estimates of the parameters p and o of the Poisson-Inverse
Gaussian distribution with pdf given by Eq. (3.9),

3. the maximum likelihood estimates of the parameters i, 0 and v of the Sichel distribution
with pdf given by Eq. (3.8),

4. the number of years ¢ that the policyholder is under observation,

t
5. their total number of claims K = Z k;, where k; the number of accidents in which they
j=1
were at fault in year j =1, ..., ¢.

3.2.4 Properties of the Optimal BMS Based on the a Posteriori
Criteria

1. The system is fair, in a Bayesian sense. Every insured has to pay a premium proportional
to the estimate of their claim frequency taking into account, through the Bayes theorem,
all the information available gathered in the past.

2. The system is financially balanced. Every single year, the average premium per policy-
holder remains constant at the initial level thus

pP=c2 (3.15)

T

for the case of the Negative Binomial distribution and
P =epu, (3.16)

for the case of the Sichel and the Poisson-Inverse Gaussian distributions respectively. The
above are a direct consequence of the property of conditional expectation

Ex[A] = E[E [Nk, .. kl]]

2Exposure is the proportion of the period of observation for which the policy has been in force.
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3. In the beginning all the policyholders are paying the same premium, which is equal to
(3.15), when we consider the Negative Binomial distribution, and equal to (3.16), when
we consider the PIG or the Sichel distributions.

4. The Sichel distribution has a thicker tail than the Negative Binomial and the Poisson-
Inverse Gaussian distributions and offers the advantage of being able to model count data
with high dispersion.

3.3 The Design of an Optimal BMS Based Both on the
a Priori and the a Posteriori Criteria

In this section we develop a generalized BMS that integrates the a priori and the a posteriori in-
formation on an individual basis. For this purpose we consider the generalized additive models
for location, scale and shape (GAMLSS) in order to use all available information in the estima-
tion of the claim frequency distribution. As we have seen in Chapter 2, the GAMLSS basically
consist of four different formulations: the semi-parametric additive model, the parametric lin-
ear model, the non-linear semi-parametric additive model and the non-linear parametric model.
Within the framework of the GAMLSS we propose the Sichel GAMLSS for assessing claim fre-
quency as an alternative to the Negative Binomial regression model of Dionne and Vanasse
(1989, 1992). Furthermore, we consider the PIG GAMLSS for approximating the number of
claims. With the aim of constructing an optimal BMS by updating the posterior mean claim
frequency, we adopt the parametric linear formulation of these models and we allow only their
mean parameter to be modelled as a function of the significant a priori rating variables for the
number of claims. In this generalized BMS, the premium is a function of the years that the
policyholder is in the portfolio, the number of accidents and the explanatory variables for the
number of accidents.

3.3.1 The Negative Binomial Model

This generalized optimal BMS is developed according to the design of Dionne and Vanasse
(1989, 1992) and Frangos and Vrontos (2001). Consider a policyholder i with an experience of
t periods whose number of claims for period j, denoted as K are independent. If we assume
that Kij follows the Poisson distribution with parameter )\, the expected number of claims for
period j then the probability of having k£ accidents is

e (W)

k! ’

for k =0,1,2,3,... and M > 0, where E(Kf) =N and Var(Kg) = N . We can allow the N
parameter to vary from one individual to another. Let A} = exp (¢/3”) , where ¢ (¢} ,...,c] ) is
the 1 x h vector of h individual characteristics®, which represent different a priori rating variables

P (K =) =

3 All the characteristics we consider are observable.
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and # is the vector of the coefficients. The exponential form ensures the non-negativity of )\g .
The conditional to ¢} probability that policyholder i will be involved in k accidents during the
period j will become

o) [oxp (1))
A |

for k = 0,1,2,3,... and A} > 0, where E(K/|c!) = Var(K!|c]) = N = exp (c/#’). For the
determination of the expected number of claims in this model we assume that the h individual
characteristics provide enough information. However, if one assumes that the a priori rating
variables do not contain all the significant information for the expected number of claims
then a random variable ¢; has to be introduced into the regression component. According to
Gourieroux, Montfort and Trognon (1984 a), (1984 b) we can write

P(K! =k|) = (3.17)

A = exp (c{ﬂj +¢&;) =exp (c{ﬁj) u;,

where u; = exp (¢;) , yielding a random A{ . Assume that u,; follows a Gamma distribution with
probability density function

v (u;) = i 0“, 3.18
(1) e (318)

u; > 0, > 0, with mean F(u;) = 1 and variance Var(u;) = a. Under this assumption the

conditional distribution of K7|c] becomes

P (K] =k|d) = ( (3.19)

. 1
k Nk

ot o)

[1+aexp (8)]
which is a Negative Binomial Type I (NBI) distribution with parameters o and exp (C‘Z 4 )
It can be shown that the above parameterization does not affect the results if there is a con-
stant term in the regression. We choose F(u;) = 1 in order to have E(g;) = 0. Note that
E(K]|d) = pl = exp(c]f’) and Var(K/|c]) = exp (c]#’) [1 + aexp (¢/#’)] . More details
about the Negative Binomial regression can be found in Lawless (1987) and Hilbe (2011). Note
also that Eq. (3.19) gives the parametric linear GAMLSS where only the mean parameter of
the NBI response distribution is modelled as a function of the explanatory variables.

Posterior Structure Function

We are going to build an optimal BMS based on the number of past claims and on individual’s
characteristics in order to adjust that individual’s premiums over time. The problem is to
determine, at the renewal of the policy, the expected claim frequency of the policyholder ¢ for
the period t + 1 given the observation of the reported accidents in the preceding ¢ periods and
observable characteristics in the preceding t + 1 periods and the current period. Consider
a policyholder i with K}, ..., K! claim history and c},...,c.™* characteristics and denote as

- G
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t
K = Z Kij the total number of claims that they had. The mean claim frequency of the
j=1
individual i for period ¢ + 1 is A/ (cﬁ“, uz) , a function of both the vector of the individual’s
characteristics and a random factor w; with probability density function given by Eq. (3.18).
Based on the assumptions of the model one can find that the probability density function of
AF (et u;), denoted as f (M), is given by

[

P
2

’ 11 " o).
(%) ’

f) = (exp( (3.20)

for XZH > 0 and o > 0, which is a Gamma(a, exp (c’;“ﬁtﬂ)) distribution. The posterior
distribution of the mean claim frequency /\;f“ for an individual 7 observed over ¢t + 1 periods
with K}, ..., K! claim history and ¢}, ...,c/™ characteristics is obtained using Bayes theorem
and is given by a Gamma with updated parameters + + K and Sf , with pdf

[0}

1

(89 (A1) 4 exp [~ 89
I'(i+K) ’

(3.21)

RIS At}

fONFNKL Kl d) =

t

i-i—z exp(czﬁj)

where Sij = eX;:(; PG with )\f’l > 0 and a > 0. Let us consider, as a special case, the
situation in which the vector of the individual characteristics remains the same from one year
to the next, i.e. ¢! = c? = ... = ™ = ¢ and Bl = 32 = ... = . = B. Then the posterior

distribution of the mean claim frequency A" is simplified to

(Zij)KJré (/\§+1)K+§—1 exp [_le)\;&l]

MUK K ) = , 3.22
f(z | i i G cz) F(é"‘K) ( )
K+1
where Z; = [m + t] . For more information about the proof of Egs (3.19 and 3.21)

refer to Dionne and Vanasse (1989, 1992). Also, a more general proof can be found in Chapter
5 where we consider the case of the n-component Negative Binomial mixture regression model
derived by updating the posterior mean.
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Optimal Choice of S\IH

Using the quadratic loss function, in the general case, one can find that the optimal estimator
of A\;y1 is the mean of the posterior structure function, given by

3K

(3

Kt

2

Z"

C

- &

t+1)

/)\t—‘rl
0

exp (¢}

t+1

()\t+1|

Kt

t
14> K/
j=1

t+16t+1)

t
é + Zexp (6763
| =

[ 1,7‘

) d)\t+1

(3.23)

This estimator defines the premium and corresponds to the multiplicative tariff formula where

the base premium is the a priori frequency exp (

t+16t+1)

and where the Bonus-Malus factor

is represented by the expression in brackets. When the vector of the individual characteristics

. NS
remains the same from one year to the next A,

i

Lt+1
(

K}, .

Kt

1) 27'

i+

- &y

) = exp (c:f)

is simplified to

o1
When ¢ = 0, ); (¢}) = exp (c!3), which implies that only a priori rating is used in the first
period. Moreover, when the regression component is limited to a constant 3, one obtains

which corresponds to the ‘univariate’,without regression component, model.

)\tJrl (

K2 K1) = exp ()

3.3.2 The Sichel Model

Let us now consider the generalized BMS obtained by using the Sichel parametric linear

GAMLSS for assessing claim frequency.

t
RIS
j=1

o T texp (B)

The Sichel GAMLSS can be considered as a can-

didate model for highly dispersed claim count data when the observed high dispersion cannot
be efficiently handled by the Negative Binomial regression model.

Consider a policyholder ¢ with an experience of ¢ periods whose number of claims for period
J, denoted as K; J are independent. We assume again that K; J follows Poisson distribution with
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parameter X} = exp (cf /37), where c! (Cz,p e CZh) is the vector of h individual characteristics
and 3 is the vector of the coefficients. The conditional to CZ probability that policyholder i will
be involved in k accidents during the period j is given by Eq. (3.17). For the determination
of the expected number of claims in this model we assume that the h individual characteristics
provide enough information. Nevertheless, if one assumes that the a priori rating variables do
not contain all the significant information for the expected number of claims then a random
variable €; has to be introduced into the regression component, and for u; = exp (¢;) we have

)\g = exp (cfﬂj + 81-) = exp (c{ﬁj) U,

yielding a random )\f . Let u; have a Generalized Inverse Gaussian distribution GIG(1, o, v) with
probability density function given by

cul "t exp [—% (cui + T;)]
2K, () ’

Konn (1)

for u; > 0, where o > 0 and —oo < v < oo and where ¢ = (1)

1 1 1
K, (z)= é/x”_l exp {—52 <x + ;)} dx,
0

is the modified Bessel function of the third kind of order v with argument z. Eq. (3.24) is
obtained from Eq. (3.6) if we let u = 1. Parameterization (3.24) ensures that E(u;) = 1. Note
also that Var(u;) = w +%5 -1

(3.24)

v (u;) =

, where

Proposition 6 If we let v = —0.5 in (3.24) the Generalized Inverse Gaussian distribution can
be reduced to an Inverse Gaussian distribution with pdf given by

1 1 )

)= ———exp |- i~ 1?2, 3.25

() = e [~ w17 (3.25)
for u; > 0, where 0 > 0 and where K, (z) is the modified Bessel function of the third kind

of order v with argument z. Parameterization (3.25) also ensures that F(u;) = 1. Note also

that Var(u;) = o.

Proof. The proof of (3.25) follows from the proof of (3.7) if we let © = 1.

Proposition 7 Considering the assumptions of the model, i.e. Eq. (3.17) and Eq. (3.24), the
conditional distribution of K|c! will be a Sichel distribution with parameters exp (c]3’) o, v
and probability density function of the following form

[M ] ' Kyo (a)

Cc

P (K] =k|d) = (3.26)




fork=0,1,2,3,... and a*> = 072 + 2exp (cjﬂj) (co)™t.

The above parameterization of the Sichel distribution ensures that the location parameter
is the mean of K}|c!, given by

E(K|cl) = ] = exp (c]#7)
and the variance of K7|c! is given by

2 1 1
2 M+__1 .

c c?

Var(K/lel) = exp () + (exp (7))

Thus Eq. (3.26) gives the parametric linear GAMLSS where only the mean parameter of the
Sichel response distribution is modelled as a function of the significant a priori rating variables
for the number of claims.

Proof. The conditional distribution of Kij \c{ can be derived by solving the convolution
integral

o0

. ) eieXp(cgﬁj)ui exp(cd 87 u; g
P (K7 = k|d) :/ oLy ) du
0
_ e oyt et ol )],
—_ k! QKU(%) Ui
0

s k+v o
1 £ uFtvlexp | -1 ———— 4+ 2 7¢L~+—exp<cgﬁj)L du;
2 |selamy| 2 \\ew@ay T2) Ut e )| dus
0

If we let a = \/(exp(cﬁﬁj)g + 2> eXp(c‘jﬂj) _ \/0*2 +2exp (c/B7) (co)™", then we have

[e.e]

(Y’
© c k+v  k+v—
P(k) = k!KV(;)(aJ)k+V%/ (exp(cz,ﬁj)) (GO') ui+ 1,

0
c exp(cgﬁj)
- exp {—% ((W + 2) U; + C—Uu%)} du;




N[

. _ 2 co__ . cgl d c i
exp [ <CL eXP(CﬁBJ)Uz + exp(c‘zﬁj)ul>] (exp(czzﬁj)a(fu >
<EXP(C{BJ)>I€ 7 k+v—1
c 1 .
- Wi/ (eXp(cggj)@UUi) :

0

1 c 1 c
- eXp [—ECL (WCLUUM; + W)] d (WCLO'UZ‘> .

The integrand of the above expression is equal to 2K}, (a), where Ky, (a) is the modified
Bessel function of the third kind of order £ + v with argument a.
Thus we have

exp(cgﬁj) k

c

kl(ao)" VK, (1)

Ky1v(a)

p(k):{

Proposition 8 If we let v = —0.5 in (3.26) the Sichel distribution reduces to a Poisson-Inverse
Gaussian (PIG) distribution with probability density function given by

2_a) How @P) Ky @) (3.27)

" (KZ] N MCZ) N ( (aa)k k!

™

xp(cd BI
or k= 0.1.2,3, ... where a® = o—2 + 2°2*).
f g

The mean and the variance of the PIG distribution are given by E(k) = exp (c{ 3 ) and
Var(k) = exp (CZB]) + [exp (cgﬂj)]Qa respectively. Thus Eq. (3.27) gives the parametric
linear GAMLSS where only the mean parameter of the PIG response distribution is modelled
as a function of the significant a priori rating variables for the number of claims. Note also
that the Poisson-Inverse Gaussian distribution can arise if we let u; have an Inverse Gaussian
distribution with probability density function given by Eq. (3.25).

Proof. The proof of Eq. (3.27) follows from the proof of Eq. (3.9) if we let u = exp (CZﬁJ) .

Posterior Structure Function

Our goal is to build an optimal BMS which integrates a priori and a posteriori information on an
individual basis, using the Sichel parametric linear GAMLSS for assessing claim frequency. We
will also consider the system provided by the PIG parametric linear GAMLSS. These optimal
BMSs are based on the number of past claims and on individual’s characteristics in order to
adjust that individual’s premiums over time. Similarly to the case of the Negative Binomial
model, the problem is to determine at the renewal of the policy the expected claim frequency
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of the policyholder ¢ for the period ¢ 4+ 1 given the observation of the reported accidents in the

preceding ¢ periods and observable characteristics in the preceding ¢+ 1 periods and the current

period. Consider a policyholder i with claim history K}, ..., K! and c},...,ci™! characteristics
t

and denote by K = ZKZ the total number of claims that they had. The mean claim
j=1

frequency of the individual i for period ¢ + 1 is A/ ( f+1 uz) a function of both the vector of

individual’s characteristics and a random factor u; with pdf given by Eq. (3.24).

Using the following theorem, we are going to calculate first f(Ai™), which represents the pdf
of the mean claim frequency of the individual i for period ¢ 4 1 called the structure function,
and then applying the Bayes theorem we will find f ()\§+1|Ki1, o Kbiel l) i.e. the posterior
distribution of \:*! given the observation of K}, ..., K! and c},...,c! for the case of the Sichel
and PIG GAMLSS respectively.

Theorem 9 Let X have probability density function fx (x) and let Y = g(X), where g is a
monotone function. Let X and Y be defined by

X={z:fx()>0} andY ={y:y=g9g(x), v € X}.

Suppose that fx () is continuous on X and that ¢! (y) has a continuous derivative on Y.
Then the probability density function of Y is given by

fy () = fx (gl(y))'d%g )|,y €Y.

Lemma 10 Based on the above theorem one can find that /\§+1 (cf“, uz) 15 distributed according

to a GI G(exp (clfrl ﬁt“) , 0, V) with probability density function given by

12
() (47 e [_% (WA +(>)]
exp| ¢;

A =
P oK (0 |
(3.28)
1
for X' > 0,0 > 0 and —o00 < v < 0o, where ¢ = K}?—l[]’] and where K, (z) is the modified

Bessel function of the third kind of order v with argument z.

Proof. If we let g (u;) = exp (cﬁ“ﬁtﬂ) u;, then g is a strictly increasing function. Also, as

we have already mentioned, u; follows a continuous Generalized Inverse Gaussian distribution
with pdf given by Eq.(3.24).
Note that here the support sets:

X ={u:u(uw)>0}and Y = {A\ N =g (), v € X}

are both the interval (0, 00). From Eq.(3.24) we can easily see that the pdf of u; is continuous
on X. If we let AX!** = ¢ (u;), then:

16}



_ 1 AL — 1
) = gy and e (W) = Sy

1

and g~! is continuous on Y. Applying the above theorem, for A™! € (0, 00) , we get:

f ()\EH) — (9_1 ()\;&1)) ‘d)\’;%g_l ()\EH) _

v Al o 1 At 1
‘ ((M) P 720 | () T T
2K,,(%) exp(cﬁ“ﬁt“)

v
- c t‘+1 v—1 1 . t‘+1 L
<e"p(“§+clﬁt+l) > ()\l ) P { 2o (exp(czzﬁlﬁt«l*l) AT WAEH )]

26.(3)

Proposition 11 For v = —0.5 in (3.28) the Generalized Inverse Gaussian distribution can be
reduced to an Inverse Gaussian distribution with pdf given by

Yorp (715 !
2o )L oo (T

fFANT) = T (N —exp (cﬁ“ﬂt“))Q] . (3.29)

for \i*' > 0 and o > 0.
Proof. If we let v = —0.5 in (3.28) we have that

1
2

_3
<exp(cf+clﬁt+1)> ()\§+1) Fow |:_210 (exp(6§f16t+l) >\5+1+ ( t-&-cl,alt-&-l) /\ﬁl )]

exp| c;
£ ) = e | ~

,72

Making use of the relationships between the modified Bessel functions of different orders
one can obtain that

and hence
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1
-3 .
S Gl AN Pew|—n | —rram N e >]
f (z\ﬁ“) = <ex"(c§+15t“)> () eXp[ 2”§GXP(C§+15H1) i e
o

exP(C§+1Bt+1) 1 t+1 exp(cﬁ'“ﬁ“‘l) .
:WGXP T 20 W)\i +f?+2

o exp<c§+lﬂt+1) . - RPN
_WGXP T 2o exp(cF AN (M —exp (¢F187) 7|

Proposition 12 Considering the assumptions of the model, i.e. Eq. (3.17) and Eq. (3.28),the
posterior distribution of the mean claim frequency \;™ for an individual i observed over t+1 pe-
riods with K}, ..., K! claim history and c}, ..., ¢ characteristics is given by a GIG (wy, wy, K + 1)

distribution with probability density function of the following form

K+v

w1 2 )\;H'l K+v-1
) _ <w2> ( )

1 1
N K K el et exp |—= (wi AT + :
f( i | i c ¢ 2KK+V (\/m) Xp 2 Wi A Wa )\§+1

iy Gy ey &g

(3.30)
t
C+QUZeXp<Cgﬁj) t+1 gt+1
for X1 > 0, where w, = aex;?;“ﬁf“) and wy = exp(c5) with o > 0 and —oo < v < 00,
Ku+l[%]

and where K, (z) is the modified Bessel function of the third kind of order

K + v with argument z. When the vector of the individual characteristics remains the same
from one year to the next, i.e. ¢} =c?=..=ct =c¢, and B =p* = ... = ' =3, BEq. (3.30)
is simplified to

where ¢ = -
Ko [5]

o

K+v

(ﬂ) 2 ()\1.5+1)K+l/—1 . 1
_o\w2 7 1 " 1
) = 2Ky (Vir3) exp [ 5 <w1/\z + wo AEH)} . (3.31)

exp(cif)

oc

fONFHNKL Kl

19 71ty g

where w, = + 2t and where wy =

aexpc(ci,B)
Proof. In what follows we provide the proof of Eq. (3.30).

By Bayes rule

P(KY, o KUA ) £ ()

P(K}, . Kilcj, o cf)

fFONTIEL Kl d) = (3.32)
and where by definition

7



o0

P((K},...K}) |c},....c}) :/P (K}, KN ef, o ch) f (W) aait. (3.33)

’L7 i)

0

From (3.32) and (3.33) we have that

fFONKL K ct)

7,717 )

P (K}, .., K\t el i+l
_ (Ko KXl ) FNVT) (3.34)

/p (KD, o KUY L) f () dA
0

The probability of the sequence K}, ..., Kf given the frequency of accidents at ¢+ 1 and the
individual’s characteristics over the ¢ periods ¢}, ..., ¢!, will be a t-dimension Poisson distribution:

R

J

P (K}, .. KN, c) = - = (3.35)
[[x
j=1
If we let X = exp (01767) u; = )\Zuz, then from (3.28) we get:
(7)o |- (5 + 2 )
A1) — ' : 3.36
f ( 7 ) 2KV (%) ) ( )
1
for u; > 0,0 > 0 and —00 < v < oo and where ¢ = K;r[%] and K, (z) is the modified

Bessel function of the third kind of order v with argument z.
By substituting (3.35) and (3.36) into (3.34), we get:

fFOFKL LKl ) =

zaza ) &g
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The integrand of the above expression is of the same form as a Generalized Inverse Gaussian
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t
c+20 E )\Z
St+1
Jj=1

. — s
with parameters ——r—, “-— and K + v, thus we have
aA;

oc t .
0 c+20 E )\Z i1
A4
j=1 t+1 .
/ exp |—5 | A +

1 d/\t+1 -1
t+1 ; — L.
t ) 2 oN; >‘i v
0 c+20 E )\z
- ct41
j=1 A
2Kk v T+1 Zc

For )\f = exp (cfﬁj) we get

fOKL LKLl ) =

i1 Gy &g

(ﬂ)%()\tJrl)KJFV*I
— \m i 1 t+1 1
= 2K k10 (\Jw1w3) €xp [ 3 (wl)\i + w2)\§+1>] )

t

c+20 E exp(cz,ﬁj)
t1 gttl
t+1 _ 5=1 _ ewp(es)
for \;7" > 0, where w; = P AT and wy = — .

When the vector of the individual characteristics remains the same from one year to the
next, we have that exp (cilﬁi) = exp (¢,,;3.) and it can be easily verified that w; and w, are

simplified to w; = m + 2t and ws = expcgziﬁ) respectively.
Proposition 13 In the special case when v = —0.5, i.e. when the simple Inverse Gaussian,

given by Eq. (3.29), is the prior structure function of N\*', the posterior structure func-
tion of A\t for a policyholder with K}, ..., K! claim history and cl, ..., it
a GIG(hl, he, K — %) with pdf given by

characteristics s

)} C(337)
: exp(cttiptt!
for )\EH > 0, where hy = =1 and hy = op(c 16 105 )

where o > 0 and where
aexp(cf’lﬁHl) ’

Ky 1 (z) is the modified Bessel function of the third kind of order K — % with argument z.

K—

Dol

Z-32 K3
/ ()\'5.+1|K-1 Kbt c¢+1) = <Z_;> <)\§+1) exp |:_1 (h1/\7§+1 + hy !
% AR Rkt B It I AR I} QKK_% ( /_hlhg) 2 7 )\§+1

t

1420 Z exp(czgj)
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When the vector of the individual characteristics remains the same from one year to the next,
pe. cl=ct=..=c"=c and B' = p* = ... = B' = B, Eq. (3.87) is simplified to

K—
(2) " (At1)R-E 1 1
_\"2 7 1 t‘—H

+ 2t and ny = eXp((:fﬂ) with o >0 .

Nl

fOFNKEL K el A

77 z?"’ 7

for A\ITt > 0, where n, = m

Proof. As we have already mentioned, if we let v = —0.5 in (3.30) and (3.31) respectively,
then using the relationships between the modified Bessel functions of different order one can
obtain that ¢ = 1. Thus (3.37) and (3.38) can be easily proved.

Optimal Choice of S\;CH

Using the quadratic loss function, in the case of the Sichel model, one can find that the optimal

ct+l
estimator of )\i+ is the mean of the GIG (wq, wq, K + v), i.e. the posterior structure function
given by Eq. (3.30), that is

Nas 1 t t+1
. (Kl LK dT
o0

— /H—l t+1 ) ()\t+1| B Kt ] )d/\t-i-l

o

_ %) KK+V+1 (w1w2)

) 3.39
Ky (wywg) (3:39)

1

t

c+20 Z exp(cg /BJ')

py exp(cit18tH1)
for wy = e (T 5TT) and wy = — , where ¢ > 0 and —oco < v < oo and where
c= K;:E E ]] and K, (z) is the modified Bessel function of the third kind of order v with argument

z. When the vector of the individual characteristics remains the same from one year to the
CtHL D
next ), , given by Eq. (3.39), is simplified to

A (K. Kliel, o d) = ()22 Krcrve1 (wiws)
(3 7 7 Z’ P} wl KK+V (wlw2) )

for wy = m + 2t and wy = eXp(z“B When t = 0, )\ (c}) = exp (c¢}3), which implies that
only a priori rating is used in the first period. Moreover, when the regression component is
limited to a constant 3, one obtains

)\t+1 (KL K — wa\ Krpor1 (Wiws)
B w1 KK+V (w1w2) ’
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for wy = Uexp( ) + 2t and wq eXp(ﬂ exp(Bo) , which corresponds to the ‘univariate’, without regression
component, model.

In the special case when v = —0.5, i.e. when the Sichel distribution reduces to the PIG
distribution, using again the quadratic error loss function the optimal choice of 5\t+1 is the mean

of the GIG (hl, ho, K — ) i.e. the posterior structure function given by Eq. (3.37), that is
(KL LKl
= / MNP ua) fNTHKY, L K el ) AN
0
ha \ Kiypi1(hih
_ (P2 Brrvs (ha) (3.40)
1) Kxyw (hih)
1+QUZeXp(c{,3j) et
for )\f“ > 0, where h; = =1 and hy = M, where ¢ > 0 and where

oexp( H'lBt'H)

Ky 1 (z) is the modified Bessel function of the third kind of order K — 1 with argument z.
When the vector of the individual characteristics remains the same from one year to the next

(0 ) = ) Brsnm)
m) Ko (mns)

for n, = m + 2t and 7y, = M When t = 0, /\ (c}) = exp (c}f3), which implies that
only a priori rating is used in the ﬁrst period. Moreover, when the regression component is
limited to a constant 3, one obtains

AL KD = ( @) Ricvin U]
N Kx o (1172)

SEHL L
A, is simplified to

(3

for n, = — + 2t and 7, = 2P¥)  which corresponds to the ‘univariate’ ,without
p( o) o
regression component model.

3.3.3 Calculation of the Premiums of the Generalized BMS

Now we are able to compute the premiums of the optimal BMS based both on a priori and
the a posteriori criteria. Consider a policyholder or a group of policyholders who in ¢ years
have produced K claims. The net premium that should be paid from that specific group of
policyholders is equal to their expected number of claims for the period t + 1, i.e. is equal to

(K LK Ll (3.41)

2517 ) &g

Premium = e,

83



. . . L+l .
where e = Z: is the corresponding risk exposure and where X, (K}, ..,Klcl, ... ¢f™) in

(3.41) is given by the Eqgs (3.23, 3.40 and 3.39) for the case of the NBI, PIG and Sichel models
respectively.

In order to find the premiums that must be paid we have to know:

1. the estimates of the parameter a and the vector 3’ of the significant a priori rating
variables for the number of claims for the case of the NBI model given by Eq. (3.19),

2. the estimates of the parameter o and the vector 4’ for the case of the PIG model given
by Eq. (3.27),

3. the estimates of the parameters o and v and the vector 37 for the case of the Sichel model
given by Eq. (3.26),

4. the number of years ¢t that the policyholder is under observation,

t
5. the total number of claims K = Z K7, where K7 is the number of accidents in which

j=1
policyholder ¢ was at fault in year j =1, ..., 1.

3.3.4 Properties of the Optimal BMS Based Both on the a Priori
and the a Posteriori Criteria

1. It is fair since it takes into account the number of claims and the significant a priori rating
variables for the number of claims.

2. Tt is financially balanced for the insurer. Each year the average premium will be equal to
P =ceexp (CEHBHI) (3.42)
In order to prove Eq. (3.42) it is sufficient to show that

BN (0 Kbl )] = eexp (¢

7 R R R I}

3. In the beginning, all the policyholders with the same characteristics are paying the same
premium, which is equal to (3.42).

4. The premiums vary simultaneously with the variables that affect the distribution of the
number of claims.
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3.4 Application

We use the same data set we used in Chapter 2, the descriptive statistics of which can be found
in Table 2.1 of Chapter 2. As mentioned in that chapter, claim counts are modelled for all 15641
policies. The a priori rating variables we employ are the Bonus-Malus category, the horsepower
of the car and gender of the driver. Recall that this Bonus-Malus System has 20 classes and the
transition rules are described as follows: Each claim free year is rewarded by one class discount
and each claim in given year is penalized by one class. The Bonus-Malus category consists of
five categories of neighboring BM classes: C1 = "drivers who belong to BM classes 1 and 2",
(C2 = "drivers who belong to BM classes 3-5", C3 = "drivers who belong to BM classes 6-9",
C4 = "drivers who belong to BM class 10" and C5 = "drivers who belong to BM classes 11-20".
The horsepower of the car consists of four categories: C1 = "drivers who had a car with a hp
between 0-33", C2 = "drivers who had a car with a hp between 34-66", C3 = "drivers who
had a car with a hp between 67-99", C4 ="drivers who had a car with a hp between 100-132".
Finally, the gender consist of two categories: M = "male", F = "female". Nevertheless, as
we mentioned in Chapter 2, gender has recently been ruled out by the European Court as
a rating factor. Firstly, the Negative Binomial, Poisson-Inverse Gaussian (PIG) and Sichel
distributions were fitted on the number of claims. Secondly, the NBI, PIG and Sichel GAMLSS
were applied to model claim frequency. For the GAMLSS models we selected the parametric
linear formulation considering a linear model in the explanatory variables only for the log of
their mean parameter in order to derive optimal an optimal BMS by updating the posterior
mean. The log link function ensured that the mean number of insurance claims predicted from
the fitted models is positive. The distributions and the GAMLSS models were estimated using
the GAMLSS package in the software R. The likelihood functions were maximized iteratively
using the RS algorithm of Rigby and Stasinopoulos (2005). The ratio of Bessel functions of
the third kind whose orders are different was calculated using the HyperbolicDist package in
software R. Subsequently, we are able to compute the premiums determined by the optimal
BMS based on the a posteriori criteria and the premiums determined by the optimal BMS
based both on the a priori and the a posteriori criteria according to the current methodology
as presented in Sections 3.2 and 3.3.

3.4.1 Modelling Results

This subsection describes the modelling results of the distributions and the GAMLSS models
that have been applied to model claim frequency.

Firstly, the Negative Binomial, Poisson-Inverse Gaussian (PIG) and Sichel distributions have
been incorporated into the GAMLSS package in R and the following results were obtained:

e In the case of the Negative Binomial® distribution, with pdf given by Eq. (3.3), the

6Note that the GAMLSS package allow us to find the maximum likelihood estimators of the parameters of
the Negative Binomial Type I distribution (NBI). The pdf of the of the Negative Binomial(r, ) distribution

can be derived from a reparameterization of the pdf of the NBI(y, o) distribution if we let 4 = < and 0 = é
Thus%:ﬂ%andd:%.
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maximum likelihood estimators of the parameters are 7 = exp(—0.08603)?exp(—0.72 0y — 2.
2482 and & =

m = 1.0898. Note also that % = (0.4847

e In the case of the Poisson-Inverse Gaussian (PIG) distribution, with pdf given by Eq. (3.9)
the maximum likelihood estimators of the parameters are i = exp(—0.72412) = 0.4848
and o = 0.9890.

e In the case of the Sichel distribution, with pdf given by Eq. (3.8) the maximum likelihood
estimators of the parameters are i = exp(—0.72409) = 0.4848, 6 = 0.9905 and v =
—1.2440.

Secondly, the Negative Binomial Type I, PIG and Sichel GAMLSS have been implemented
in the GAMLSS package in R. We used the function step. GAIC, within the GAMLSS package,
which performs the stepwise model selection using a Generalized Akaike information criterion
in order to find the variables that are considered as better predictors. The models presented
below are the best fitted models. For each parameter in these models we present the estimated
parameter values, the standard error of the parameter estimates, and the t-values for the
hypothesis that the associated coefficient is zero together with the p-value of this test based on
asymptotic normality.

The results are summarized in Tables 3.1, 3.2 and 3.3 for the case of the NBI, PIG and
Sichel models respectively.

Table 3.1: Results of the Fitted Negative Binomial Type I GAMLSS

Variable Estimate Std Error t-value/Wald 95% P-value
Intercept -0.8366  0.1381 -6.0570 0.0000
Bonus-Malus
Category 1 0 0 - -
Category 2 0.6084  0.0356 17.0903 0.0000
Category 3 0.8467  0.0431 19.6328 0.0000
Category 4  -0.9402  0.0755 -12.4524 0.0000
Category 5 1.9670  0.0229 8.5590 0.0000
Horsepower
Category 1 0 0 - -
Category 2 -0.2235  0.1419 -1.5748 0.1153
Category 3 -0.0537  0.1379 -0.3891 0.6972
Category 4 0.0151 0.1403 0.1075 0.9144
Gender
Male 0 0 - -
Female 0.0794  0.0281 2.8260 0.0037
a -0.4222  0.0555 -7.5960 0.0000
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Table 3.2: Results of the Fitted Poisson-Inverse Gaussian GAMLSS

Variable Estimate Std Error t-value/Wald 95% P-value
Intercept -0.8551 0.1561 -5.4793 0.0000
Bonus-Malus
Category 1 0 0 - -
Category 2 0.6304  0.0578 10.9046 0.0000
Category 3 0.8483  0.0426 19.9098 0.0000
Category 4 -0.9435  0.0797 -11.8441 0.0000
Category 5 2.0822 0.2119 9.8251 0.0000
Horsepower
Category 1 0 0 - -
Category 2 -0.2079 0.1492 -1.3937 0.1634
Category 3 -0.0372 0.1505 -0.2475 0.8045
Category 4  0.0178  0.1460 0.1219 0.9030
Gender
Male 0 0 - -
Female 0.0858  0.0463 1.8521 0.0007
o -0.3209  0.0189 -16.9300 0.0000

Table 3.3: Results of the Fitted Sichel GAMLSS

Variable Estimate Std Error t-value/Wald 95% P-value
Intercept -0.8731 0.1308 -6.6743 0.0000
Bonus-Malus
Category 1 0 0 - -
Category 2 0.6487  0.0385 16.8401 0.0000
Category 3 0.8500 0.0429 19.8365 0.0000
Category 4  -0.9780 0.0697 -14.0254 0.0000
Category 5 2.0944  0.2602 8.0485 0.0000
Horsepower
Category 1 0 0 - -
Category 2 -0.1907  0.1352 -1.4105 0.1584
Category 3 -0.0179 0.1307 -0.1370 0.8910
Category 4  0.0146 0.1329 0.1101 0.9124
Gender
Male 0 0 - -
Female 0.0949  0.0280 3.3172 0.0008
o 0.8890 0.4234 2.0990 0.0298
v -1.2650 0.1210 -10.4546 0.0000

From Tables 3.1, 3.2 and 3.3 we observe that model selection using GAIC results in the same
set of significant explanatory variables (BM category, horsepower category and gender) for the
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location parameter ug of each model. Bonus-Malus categories 2, 3 and 5 have a positive effect
on the mean claim frequency ug while the Bonus-Malus category 4 has a negative effect on ug .
The horsepower categories are not so important for uf Note also that Bonus-Malus category
1, horsepower category 1 and male drivers are the reference categories. Also, as expected, the
coefficient values are almost equal in the case of the NBI, PIG and Sichel models respectively.
The positive values of the coefficients indicate higher risk compared to the reference class,
whereas negative values demonstrate lower risk than the reference class.

3.4.2 Models Comparison

In this subsection we compare the fit of the models for the observed claim frequencies in the
portfolio of 15641 policyholders analyzed earlier. These models are all non-nested. In order
to accept or reject some models, classical hypothesis/specification tests for non-nested models
can be used (see, Boucher et al., 2007, 2008). Firstly, we compare the non-nested distributions
presented in Section 2. In this case, information criteria like AIC or SBC are useful as well as
the Vuong test (Vuong, 1989 ). Table 3.4 (Panels A and B) reports our results with respect
to the aforementioned non-nested comparisons. Specifically, from Panel A and Panel B we
observe the superiority of the Poisson-Inverse Gaussian distribution vs the Negative Binomial
distribution. Overall, the best fit is given by the Sichel distribution.

Table 3.4: Comparison of Distributions for the Greek Data Set
Panel A: Based on AIC, BIC

Model df AIC SBC
Negative Binomial 2 29338.6 29353.9
PIG 2 29313.2 29328.5
Sichel 3 29311.9 29334.9
Panel B: Based on Vuong test
Model 1 Model 2 Vuong Test Statistic p-value Decision
Negative Binomial PIG -2.38 0.00 PIG
PIG Sichel -0.71 0.00 Sichel

Secondly, we compare the non-nested GAMLSS” models presented in Section 3 employing
Global Deviance, AIC, SBC (see, Rigby and Stasinopoulos, 2009) and the Vuong test. The
results are displayed in Table 3.5. Specifically, when the Global Deviance, AIC and BIC are
used (Table 3.5, Panel A)) our findings suggest that the PIG GAMLSS is superior to the
NBI GAMLSS. However, when the Vuong test is used, (Table 3.5, Panel B) we observe the
superiority of the NBI GAMLSS vs the PIG GAMLSS. Finally, with respect to the Global
Deviance, AIC, BIC and the Vuong test results, the Sichel GAMLSS provided the best fitting
performances.

"As we have already mentioned, we fitted the paramatric linear GAMLSS and we allowed only the mean
parameter to be modelled as a function of the significant a priori rating variables for the number of claims.
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Table 3.5: Comparison of GAMLSS Models for the Greek Data Set
Panel A: Based on Global Deviance, AIC, BIC

Model df Global Deviance AIC SBC

NBI 10 28417.9 28437.9 28514.5
PIG 10 28380.1 28380.1 28476.6
Sichel 11 28347.28 28369.3 28453.5

Panel B: Based on Vuong test

Model 1 Model 2 Vuong Test Statistic p-value Decision
NBI PIG 26.45 0.00 NBI
NBI Sichel -2.46 0.00 Sichel

Note that the same conclusions may not necessarily apply to another observed portfolio.

3.4.3 Optimal BMS Based on the a Posteriori Criteria

In this subsection we consider the premiums determined by the optimal BMS based on the a
posteriori classification criteria. As we have already mentioned, all the policies were in force for
3.5 years thus the expected claim frequencies must be multiplied by the exposure to risk e = 3—15
in order to compute the premiums. In the following examples, the premiums will be divided by
the premium when ¢ = 0, since we are not so much interested in the absolute premium values
as in the differences between various classes. We will present the results so that the premium

for a new policyholder is 100.

Let us consider a policyholder observed for 7 years whose number of claims range from 1 to 6.
In the following tables we compute this individual’s scaled premiums for the case of the Negative
Binomial, PIG and Sichel models respectively. We consider first the Negative Binomial model
with pdf given by Eq. (3.3), following Lemaire (1995). The maximum likelihood estimators of

the parameters are 7 = 7.868 and & = 1.089. Note also that fi = £ = 0.138. The optimal BMS

resulting from the Negative Binomial distribution will be defined by Eq. (3.5) and is presented
in Table 3.6.
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Table 3.6: Optimal BMS Based on the a Posteriori Classification Criteria, Negative Binomial
Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 88.72  170.14 251.55 332.95 414.37 495.77 577.19
2 79.73  152.89 226.05 299.21 372.40 445.54 518.70
3 72.40 138.82 205.25 271.68 338.11 404.55 471.00
4 66.29 127.13 187.96 248.79 309.63 370.46 431.30
5 61.14 117.25 173.35 229.46 285.56 341.67 397.80
6 56.73  108.79 160.85 212.91 265.00 317.04 369.09
7 52.92 101.48 150.03 198.60 247.15 295.71 344.27

Let us consider next the Poisson-Inverse Gaussian (PIG) distribution with pdf given by Eq.
(3.9). The maximum likelihood estimators of the parameters are i = 0.138 and 6 = 0.989. The
BMS derived by the PIG distribution will be defined by Eq. (3.13) and is presented in Table
3.7.

Table 3.7: Optimal BMS Based on the a Posteriori Classification Criteria, Poisson-Inverse
Gaussian Model

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 88.60  156.62 254.20 371.02 497.35 628.04 760.81
2 80.37 131.16 201.63 286.00 378.14 474.22 572.34
3 74.08 113.86 167.54 231.65 302.14 376.17 452.15
4 69.08 101.31 143.81 194.37 250.22 309.22 370.06
5 64.95 91.77 126.42 167.44 212.90 261.14 311.11
6 61.50 84.25 113.16 147.20 185.00 225.25 267.10
7 58.54 7817 102.72 131.50 163.45 197.61 233.24

Finally, we consider the Sichel distribution with pdf given by Eq. (3.8). The maximum
likelihood estimators of the parameters are j1 = 0.138, & = 0.990 and 7 = —1.244 . This system
provided by this model will be defined by Eq. (3.12) and is presented in Table 3.8.
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Table 3.8: Optimal BMS Based on the a Posteriori Classification Criteria, Sichel Model
Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 94.32  158.79 262.10 400.55 561.44 733.96 912.19
2 88.83  134.68 201.93 289.09 390.60 500.82 615.94
3 83.96 118.78 166.88 227.55 298.02 375.08 456.26
4 79.71  107.34 143.89 188.97 241.06 298.24 358.87
5 76.00 98.62 127.58 162.66 202.94 247.21 294.36
6 72.72  91.71 115.37 143.60 175.81 211.21 249.02
7 69.82 86.05 105.86 129.17 155.60 184.63 215.69

It is interesting to compare the optimal BMS provided by the Sichel distribution with
the systems obtained from the Poisson-Inverse Gaussian and Negative Binomial distributions
respectively. From Table 3.6, Table 3.7 and Table 3.8 we observe that these three systems
are fair since if the policyholder has a claim free year the premium is reduced, while if the
policyholder has one or more claims the premium is increased. Furthermore, we notice that
they can be considered generous with good risks and strict with bad risks. For example, the
bonuses given for the first claim free year are 11.28%, 11.4% and 5.68% of the basic premium in
the case of the Negative Binomial (Table 3.6), Poisson-Inverse Gaussian (Table 3.7) and Sichel
(Table 3.8) models respectively. On the contrary, policyholders who had one claim over the first
year of observation will have to pay a malus of 70.14%, 56.62% and 58.79% of the basic premium
in the case of the Negative Binomial, Poisson-Inverse Gaussian and Sichel models respectively.
Also, policyholders who had one claim over the second year of observation will have to pay
a malus of 51.55%, 54.20% and 62.10% in the case of the Negative Binomial, Poisson-Inverse
Gaussian model and Sichel models respectively.

3.4.4 Optimal BMS Based Both on the a Priori and the a Posteriori
Criteria

In this subsection we consider the premiums determined by the generalized optimal BMS that
integrates the a priori and the a posteriori information on an individual basis. The expected
claim frequencies are multiplied again by the exposure to risk e = % in order to derive the
premiums. The premiums are divided again by the premium when ¢ = 0, as it is interesting to
see the percentage change in the premiums after one or more claims.

Let us see an example in order to understand better how this BMS works. Consider a
group of policyholders who share the following common characteristics. The policyholder i is
a woman who has a car with horsepower between 0-33 and her Bonus-Malus (BM) class varies
over time, starting from BM class 1%. Implementing the NBI GAMLSS (Eq. (3.19)) we found

8Recall that BM class 1 corresponds to BM category 1 according to the grouping of the levels of the BM
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that & = 0.655 , implementing the PIG GAMLSS (Eq. (3.27)) we found that ¢ = 0.725, and
implementing the Sichel GAMLSS (Eq. (3.26)) we found that 6 = 0.889 and 7 = —3.023
. As we have already mentioned, the mean (or location) parameter of these models is given
by E(K!|c]) = ul = exp(c]p?), where c (c{l,,czh) is the 1 x h vector of h individual
characteristics, which represent different a priori rating variables and 3’ is the vector of the
coefficients. The estimation of the vector 3’ and therefore of the mean parameter for the NBI,
PIG and Sichel distributions respectively led to the following results presented in Table 3.9.

Table 3.9: Women, Horse Power 0-33

Bonus-Malus NBI PIG Sichel
Category ! ! !

1 0.1339 0.1323 0.1314

2 0.2459 0.2483 0.2514

3 0.3123 0.3088 0.3073

4 0.0523 0.0515 0.0490

5 0.9571 1.0610 1.0642

Based on the above estimates for this group of individuals we are now able to derive the
generalized optimal BMSs resulting from the Eqs (3.23, 3.40 and 3.39) for the case of the
NBI, PIG and Sichel models respectively. These BMSs are presented in Table 3.10. Note that
Bonus-Malus class varies substantially depending on the number of claims of policyholder ¢ for
period j. For this reason in Table 3.10 we specify the exact order of the claims history in order
to derive the scaled premiums that must be paid by this group of policyholders, based on the
transition rules of this system (see Chapter 2) and assuming that the age of the policy is up to
2 years.

class explanatory variable.
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Table 3.10: Women, Horse Power 0-33, Varying Bonus-Malus Class

Year Number of Claims k; | Optimal BMS | Optimal BMS | Optimal BMS

NBI PIG Sichel
t=0 ko =0 100 100 100

ki =0 91.93 91.60 98.31
t=1 k=1 279.57 247.92 297.21
ki =2 390.29 347.12 463.42
k1 =0,k =0 85.06 85.01 92.77
t=2 ki =0,ky =1 258.69 220.31 257.80
ki =0,ky =2 361.15 297.74 371.50
ki =1,ke=0 132.56 107.47 121.53
t=2 ki =1,k =1 339.90 265.83 318.49
k1 =1,ky=2 554.13 423.95 520.57
ki =2ky =0 339.90 265.83 318.49
t=2 ki =2 ko =1 554.13 423.95 520.57
ki =2,ky =2 676.59 527.64 672.74

Consider now another group of policyholders who share the following common characteris-
tics. The policyholder ¢ is now a man who has a car with horsepower between 0-33 and his BM
class varies over time, starting from BM class 1. The estimation of the vector 3’ and thus of
the mean parameter of the NBI, PIG and Sichel distributions respectively led to the following
results displayed in Table 3.11.

Table 3.11: Men, Horse Power 0-33

Bonus-Malus NBI PIG Sichel
Category ! ! !

1 0.1237 0.1215 0.1194

2 0.2272 0.2282 0.2286

3 0.2886 0.2837 0.2795

4 0.0483 0.0472 0.0446

5 0.8844 0.9745 0.9678

Based on the above estimates for this new group of policyholders we can derive the general-
ized optimal BMSs provided by the Eqgs (3.23, 3.40 and 3.39) for the case of the NBI, PIG and
Sichel models respectively. In Table 3.12 we specify again the exact order of the claims history
in order to compute the scaled premiums that must be paid by this new group of policyholders
assuming again that the age of the policy is up to 2 years. For example, consider again a
policyholder who at ¢ = 2 has a total number of claims K = 2. From Table 3.12 we can see
that if he has claim frequency history k; = 0, ks = 2 then his premium increases from 100 to
365.29, 304.69 and 384.82, in the case of the NBI, PIG and Sichel models respectively. On the

93



contrary, if he has claim frequency history k1 = 1, ko = 1 then his premium increases from 100
to 345.13, 273.55 and 331.80 in the case of the NBI, PIG and Sichel models respectively.

Table 3.12: Men, Horse Power 0-33, Varying Bonus-Malus Class

Year Number of Claims k; | Optimal BMS | Optimal BMS | Optimal BMS

NBI PIG Sichel
t=0 ko =0 100 100 100

k=0 92.49 92.21 98.85
t=1 k=1 281.29 250.58 301.71
ki =2 392.70 351.99 474.61
ki =0,ky =0 86.04 85.98 93.72
t=2 kiy=0,ky =1 261.66 224.27 263.82
k1 =0,ky =2 365.29 304.69 384.82
ki=1,ky=0 134.60 109.89 124.95
t=2 ki=1,k =1 345.13 273.55 331.80
ki =1,ky =2 562.66 438.37 548.06
ki =2,k =0 345.13 273.55 331.80
t=2 ki =2,ky=1 562.66 438.37 548.06
ki =2,k =2 687.00 547.37 713.46

Note that from Table 3.10 and Table 3.12 we observe that the premiums that should be paid
by a woman who has a car with horsepower between 0-33 and her BM class varies over time do
not differ much from those that should be paid by a man who shares common characteristics.
Note also that other combinations of a priori characteristics could be used and also different
claim frequency histories.

It is interesting to compare these BMSs with those obtained when only the a posteriori
classification criteria are used. Using these BMSs we saw from Table 3.6, Table 3.7 and Table
3.8 that a policyholder who at ¢ = 2 has two claims faces a malus of 126.05%, 101.63% and
101.93% of the basic premium in the case of the Negative Binomial, Poisson-Inverse Gaussian
and Sichel distributions respectively. Using the generalized optimal BMSs based both on the
a priori and the a posteriori classification criteria we consider first a woman, who has a car
with horsepower between 0-33 and her BM class varies over time. From Table 3.10 we saw
that if at ¢ = 2 she has claim frequency history k; = 0, ks = 2, she faces a malus of 261.15%,
197.74% and 271.50% of the basic premium in the case of the NBI, PIG and Sichel GAMLSS
respectively, while if she has k; = 1, ks = 1 claim frequency history then she faces a malus of
239.90%, 165.83% and 218.49% of the basic premium in the case of the NBI, PIG and Sichel
GAMLSS respectively. Consider also a man, who has a car with horsepower between 0-33 and
his BM class varies over time. From Table 3.12 we saw that if at ¢ = 2 he has claim frequency
history k; = 0, ko = 2, he faces a malus 265.29%, 204.69% and 284.82% of the basic premium,
in the case of the NBI, PIG and Sichel GAMLSS respectively, while if he has ky = 1,k = 1
claim frequency history then he faces a malus of 245.13%, 173.55% and 231.80% of the basic
premium in the case of the NBI, PIG and Sichel GAMLSS respectively. These systems are
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more fair since they consider all the important a priori and a posteriori information for the
number of claims of each policyholder in order to estimate their risk of having an accident and
thus they permit the differentiation of the premiums for various number of claims based on
the expected claim frequency of each policyholder as this is estimated both from the a priori
and the a posteriori classification criteria. The optimal BMSs obtained have all the attractive
properties of the BMS developed by Dionne and Vanasse (1989, 1992).

A possible line of future research is the use of different claim frequency models within the
framework of the GAMLSS.
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Chapter 4

Modelling Claim Losses in Optimal
Bonus-Malus Systems

4.1 Introduction

As noted in Chapters 1 and 3, a BMS is called optimal if it satisfies two conditions: firstly, it
must be financially balanced for the insurer, that is, the total amount of bonuses is equal to
the total amount of maluses, and secondly, it must be fair to the policyholders, that is, each
policyholder pays a premium proportionate to the risk that he brings to the pool. However, if
there is no difference in penalty between the policyholder having an accident with a small size
of loss and a policyholder with a big size of loss, a BMS can be said to be unfair. Therefore,
a system which takes both the frequency and the severity of claims into account must be used
to set the premium an insured will pay.

Among the BMSs that take severity into consideration are those designed from Picard
(1976), Lemaire (1995), Pinquet (1997), Frangos and Vrontos (2001), Pitrebois et al. (2006) and
Mahmoudvand and Hassani (2009). Picard (1976) generalized the traditional Negative Binomial
model in order to take into account the subdivision of claims into small and large losses. In order
to separate large from small losses, two options were used. The first option was to consider that
those losses under a threshold are regarded as small and the remainder as large. The second
option was to subdivide the accidents into those that caused property damage and those that
caused bodily injury, penalizing more severely the insureds who had a bodily injury accident.
Lemaire (1995) first applied Picard’s (1976) thought to Belgian data. Lemaire found that this
classification would lead to serious practical problems, since it is time consuming to access exact
amounts, and insureds who have claims just over the limit protest strongly. Hence, he proposed
an improved categorization where only two categories were analyzed. This first category was the
accidents with merely property damage and the second category was the accidents with bodily
injuries. He further assumed that the frequency of accidents with bodily injuries conformed
to a Beta distribution. It has been found that the malus that must be paid for one accident
with bodily injuries is as high as those for four accidents with only property damage. Pinquet
(1997) proposed the design of an optimal BMS which makes allowance for the severity of claims.
Starting from a rating model and based on the analysis of claim frequency and claim severity he
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added two heterogeneity components to represent unobserved factors that explain the severity
variables. The size of the claims was expected to follow gamma or lognormal distribution. The
rating factors, as well as the heterogeneity components were included in the scale parameter
of the distribution. Considering that the heterogeneity also follows a gamma or lognormal
distribution, a credibility expression was obtained to provide a predictor for the average claim
size for the following period. Frangos and Vrontos (2001) developed the design of an optimal
BMS with a frequency and a severity component expanding the setup that Lemaire (1995) used
to design an optimal BMS based on the number of claims. They assumed that the number of
claims was distributed according to the Negative Binomial distribution and that the losses of the
claims were distributed according to an Exponential-Inverse Gamma , the Pareto distribution.
Applying Bayes theorem they obtained the posterior distribution of the mean claim size given
the information they had about the claim size history for each policyholder for the time period
they were in the portfolio. Furthermore, Frangos and Vrontos proposed a generalized BMS that
integrates the a priori and the a posteriori information on a individual basis, expanding the
framework developed by Dionne and Vanasse (1989, 1992). Pitrebois et al. (2006) extended
the model proposed by Lemaire (1995) by making a more detailed classification. Four different
types of claims were studied: accident with or without bodily injury and those with or without
partial liability of the driver. Furthermore, they extended Lemaire’s Beta distribution to a
multivariate Beta distribution, the Dirichlet distribution. Finally, Mahmoudvand and Hassani
(2009) also considered a generalized BMS with a frequency and a severity component following
the setup proposed by Frangos and Vrontos.

The first objective of this chapter is the integration of claim severity into the optimal
BMS based on the a posteriori criteria, which was presented in Chapter 3 for the case of
the Negative Binomial, Poisson Inverse Gaussian and Sichel distributions respectively. For
this purpose we consider that the losses are distributed according to a Pareto distribution. The
optimal BMS resulting from the Sichel distribution for assessing claim frequency and the Pareto
distribution for assessing claim severity is proposed as an alternative to the system provided by
the Negative Binomial and Pareto models (see Frangos and Vrontos, 2001). Furthermore, we
consider the system obtained by the Poisson-Inverse Gaussian distribution (PIG) for assessing
claim frequency and the Pareto distribution for assessing claim severity, since the PIG is a
special case of the Sichel distribution. The second objective of this chapter is the development
of a generalized BMS with a frequency and a severity component when both the a priori and
the a posteriori rating variables are used. For the frequency component we assume that the
number of claims is distributed according to the Negative Binomial Type I, Poisson Inverse
Gaussian and Sichel GAMLSS respectively, based on the methodology presented in Chapter 3.
For the severity component we consider that the losses are distributed according to a Pareto
GAMLSS, extending the framework developed by Frangos and Vrontos (2001). With the aim
of constructing an optimal BMS by updating the posterior mean claim frequency and the
posterior mean claim severity we adopt the parametric linear formulation of these GAMLSS
models and we allow only their mean parameter to be modelled as a function of the explanatory
variables. The generalized system we propose will be derived as a function of the years that
the policyholder was in the portfolio, their number of accidents, the size of loss of each of these
accidents and of the statistically significant a priori rating variables for the number of accidents
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and for the size of loss that each of these claims incurred. Furthermore, we present a generalized
form of the BMS obtained by Frangos and Vrontos (2001).

Let us now detail the contents of this chapter. Section 4.2 describes the design of optimal
BMS with a frequency and a severity component based on the a posteriori criteria. The system
presented in Section 4.3 is based on both the a posteriori and the a priori classification criteria
and Section 4.4 contains an application to the data set presented in Chapter 1.

4.2 The Design of an Optimal BMS with a Severity
Component Based on the a Posteriori Criteria

The optimal BMS based on the a posteriori frequency component was presented in Chapter
3 for the case of Negative Binomial, Poisson-Inverse Gaussian (PIG) and Sichel distributions
respectively. We assume that the number of claims of each policyholder is independent! of the
severity of each claim in order to deal with the frequency and the severity component separately.

Similarly to the design of the optimal BMS based on the claim frequency component, the
design of the optimal BMS based on the claim severity component will be developed again
through Bayesian analysis. Each policyholder will have to pay a premium proportional to his
unknown claim severity and the loss of the insurer will derive from the use of the estimated
claim severity instead of the true unknown claim severity. The estimate of the policyholder’s
claim severity that minimizes the loss incurred will be the optimal one and the quadratic error
loss function will be used again for the penalization of the actuary’s errors. In this way the
estimate of the revised claim severity will be the a posteriori expectation. The resulting optimal
BMS will be constructed according to the expected value premium calculation principle and it is
fair to the policyholders and financially balanced for the insurance companies. In what follows
we present an optimal BMS obtained by the Pareto distribution for assessing claim severity.
Next we use the net premium principle for the calculation of the premiums determined by the
optimal BMS with a frequency and a severity component based on the a posteriori criteria for
the case of the Negative Binomial-Pareto, PIG-Pareto and Sichel-pareto models respectively,
and finally we discuss the properties of this system.

4.2.1 The Pareto Model

We consider a heterogeneous portfolio with respect to the mean claim size of each policyholder.
Let x be the claim size of each insured and consider that their mean claim size is denoted as y.
We assume that the conditional distribution of x|y is a one parameter Exponential distribution
with probability density function (pdf), given by

f(xly) = " (4.1)

IThis is at best an approximation, since for example city drivers have more but cheaper accidents than the
drivers in rural areas.
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for x > 0,y > 0, with mean F (z]y) = y and variance Var(z|y) = y*. Following the setup of
Frangos and Vrontos (2001), we consider that the structure function follows an Inverse Gamma
distribution, which has a pdf of the form

9(y) = T (4.2)

for y > 0,5 > 0,m > 0, with mean E(y) = ;™ and variance Var(y) = %, for s > 2.
Then it can be proved that the unconditional distribution of the claims severity = will be a
Pareto distribution, with pdf given by

—s—1

f(x) =sm®(z+m) , (4.3)

fory > 0,5 > 0,m > 0 where E(z) = ;™ and where Var(z) = % . In this way the rela-
tively tame exponential distribution gets transformed into the heavy-tailed Pareto distribution
which can be considered as a good candidate for modeling the claim severity. Also by taking y
distributed according to an Inverse Gamma, the heterogeneity that characterizes the severity
of the claims of different policyholders is incorporated in the model. Such a generation of the
Pareto distribution can be found in Herzog (1996) and in other actuarial papers, but Frangos

and Vrontos (2001) were the first who proposed it for the design of an optimal BMS.

Posterior Structure Function

Consider that a policyholder stays in the portfolio for ¢ years, the number of claims they had
in the year j is denoted by k; , the total number of claims that they had in ¢ years is denoted
t

by K = Z k; and by ), is denoted the claim amount for the £ claim. Then the information
j=1
we have for their claim size history will be in the form of a vector z1, ..., x; and the total claim

amount for that specific policyholder over the ¢ years that they are in the portfolio will be
K

equal to Z xr. Applying the Bayes theorem, we find that the posterior structure function
k=1
of the mean claim size y, given the policyholder’s claim size history x,...,7x, denoted as

g <y|$17 71:[() , is given by

K —
(m+zxk> R
k=1

= 4.4
g(y|x1’ 7'TK) yK+5+]_1—\ (K+S) ’ ( )
K
which is the pdf of a of Inverse Gamma <K +s,m+ Z xk> . For more information about the
k=1

derivation of Eqs (4.3 and 4.4) refer to Frangos and Vrontos (2001). Also a more general proof
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of Eqgs (4.3 and 4.4) can be found in Chapter 5, where we consider the case of the n-component
of Pareto mixture distribution derived by assuming that the severity of claims x is distributed
according to an Exponential(y), and that the structure function follows an n-component Inverse
Gamma distribution.

Optimal Choice of §}*!

Consequently, by using the quadratic error loss function the optimal choice of ¢;,; for a poli-
cyholder with claim size history x1, ..., zx is the mean of the posterior structure function given
by Eq. (4.4), that is

K
m + E T
k=1

- k= 4.5
K+s—1 ( )

gt+1 (xlv 7$K)

4.2.2 Calculation of the Premiums According to the Net Premium
Principle

Consider a policyholder or a group of policyholders who in ¢ years have produced K claims
K

with total claim amount equal to »_ x;. As mentioned in Chapter 3, their expected number of
k=1
claims for period ¢ + 1, A\yyq1(k1, ..., k¢), is given by the Eqs (3.5, 3.13 and 3.12) for the case of
Negative Binomial, Poisson-Inverse Gaussian (PIG) and Sichel distributions respectively and
as shown previously their expected claim severity, y:11(x1, . 2k) is given by Eq. (4.5). The net
premium that should be paid by that specific group of policyholders is given by the product of
their expected number of claims A1 (ky, ..., k), and their expected claim severity, y.1(z1,.. k),
for period t + 1, and is equal to

Premium = 65\t+1(k1, o k)1 (21, o TR, (4.6)

where e = % denotes the exposure to risk, since as mentioned in Chapters 2 and 3 all
policyholders were observed for 3.5 years.

e In the case of the Negative Binomial-Pareto model Eq. (4.6) becomes

Premium = e

where a > 0,7 > 0 and where s > 0,m > 0.
e In the case of the PIG-Pareto model Eq. (4.6) becomes
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K 1(hihs) K +s—1"

K
m+ka
Ky 1 (hih
Premium = e (\ / %) iy Unha) A= (4.8)
1

1
2

where h; = UL + 2t and hy = "ﬁ where o > 0 and where K, (z) is the modified Bessel function
of the third kind of order v with argument z and with s > 0,m > 0.

e In the case of the Sichel-Pareto model Eq. (4.6) becomes

K
m + Zxk
Premium — e < %) Ko (wlwz) k=1 (4 9)
w1 ) Kgyy(wiwy) K+s—1"7 ’
1
where w; = i + 2t and wy = ﬁ with 0 > 0,—00 < v < o0 and ¢ = K}”{*EH] and where

K, (z) is the modified Bessel function of the third kind of order v with argument z and with
s>0,m>0.

In order to find the premium that must be paid we have to know:

1. the maximum likelihood estimates of the parameters o and 7 of the Negative Binomial
distribution with pdf given by Eq. (3.3) in Chapter 3,

2. the maximum likelihood estimates of the parameters p and o of the Poisson-Inverse
Gaussian distribution with pdf given by Eq. (3.9) in Chapter 3,

3. the maximum likelihood estimates of the parameters i, 0 and v of the Sichel distribution
with pdf given by Eq. (3.8) in Chapter 3,

4. the maximum likelihood estimates of the parameters m and s of the Pareto distribution
with pdf given by Eq. (4.3),

5. the number of years ¢ that the policyholder is under observation,

t

6. their total number of claims K = Z k;, where k; the number of accidents in which they
j=1
K

were at fault in year j = 1,...,1 and their total claim amount Z Tk
k=1

102



4.2.3 Properties of the Optimal BMS with a Frequency and a Sever-
ity Component Based on the a Priori Criteria

The optimal Bonus-Malus System with a frequency and a severity component based on the a
posteriori criteria has several important properties (see Frangos and Vrontos, 2001).

1. The system is fair in a Bayesian sense. Each insured is informed of both the number and
the size of their claims while they are in the portfolio, and the premium they have to
pay at each renewal is proportional to the estimate of their claim frequency and claim
severity, taking into account, through the Bayes theorem, all the information gathered in
the past. We use the exact loss z; that is incurred from each claim in order to have a
differentiation in the premium for policyholders with the same number of claims, not just
a scaling with the average claim severity of the portfolio.

2. The system is financially balanced. Fach year,the average premium per policyholder
remains constant at the initial level

a m

P=ec— 4.10
Ts—1 (4.10)
for the case of the Negative Binomial-Pareto model and
m
P = 4.11
el (4.11)

for the case of the PIG-Pareto and Sichel-Pareto models respectively. The financial sta-
bility of the BMS is proved considering that the claim frequency and the claim severity
are independent components and that

Epn[A] = E[E [k, . k],
Ey Y] = E|[Ey|lz1,...,xKk]] -

3. In the beginning all policyholders are paying the same premium, which is equal to (4.10),
when we consider the NB-Pareto model, and equal to (4.11), when we consider the PIG-
Pareto and Sichel-Pareto models respectively.

4. The Bayesian credibility premium increases proportionally to the number and to the
severity of the claims and always decreases when no accidents are caused.

5. The phenomenon of bonus hunger will decrease and the estimate for the actual claim
frequency will be more accurate since the claims with small loss will be reported due to
the fact that the policyholders who had them will know that claim severity will be taken
into consideration.

6. The introduction of the severity component is more crucial than the number of claims
for the insurer since it determines the expenses of the insurer incurred by accidents, and
thus the premium that must be paid.
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7. The estimator of the mean of severity is not always robust and can be affected by variation.
So in practice a more robust estimator could be used. (i.e. cutting of the data, M-
estimator).

4.3 The Design of an Optimal BMS with a Severity
Component Based Both on the a Priori and the a
Posteriori Criteria

The objective of this section is the development of a generalized BMS with a frequency and a
severity component when both the a priori and the a posteriori rating variables are used. For
the frequency component we assume that the number of claims is distributed according to the
Negative Binomial Type I, Poisson Inverse Gaussian and Sichel GAMLSS respectively, based on
the methodology presented in Chapter 3. For the severity component we consider that the losses
are distributed according to a Pareto GAMLSS, extending the framework developed by Frangos
and Vrontos (2001). As mentioned in the previous chapters, the GAMLSS basically consist of
four different formulations: the semi-parametric additive model, the parametric linear model,
the non-linear semi-parametric additive model and the non-linear parametric model. With the
aim of constructing an optimal BMS by updating the posterior mean claim frequency and the
posterior mean claim severity, we adopt the parametric linear formulation of these models and
we allow only their mean parameter to be modelled as a function of the explanatory variables.
In the resulting generalized systems, the premium is a function of the years that the policyholder
was in the portfolio, their number of accidents, the size of loss of each of these accidents and
of the statistically significant a priori rating variables for the number of accidents and for the
size of loss that each of these claims incurred. Furthermore, we present a generalized form of
the system obtained by Frangos and Vrontos (2001).

The premiums of the generalized BMS we present will be derived using the following mul-
tiplicative tariff formula:

Premium = GBMp - GBMsg, (4.12)

where GBMp denotes the generalized BMS obtained for the frequency component where we
employ the NBI, PIG and Sichel GAMLSS respectively, and GBMg denotes the generalized
BMS obtained for the severity component where we employ the Pareto GAMLSS. The gener-
alized premiums obtained by the Eq. (4.12) vary simultaneously with the variables that affect
the distributions of the number of claims and the size of loss distribution.

4.3.1 The Pareto Model

The generalized Bonus-Malus factor for the severity component is derived according to the
structure proposed by Frangos and Vrontos (2001). Consider a policyholder ¢ with an experience
of ¢t periods. Assume that the number of claims of the individual i for period j are independent
and is denoted as Kf and by X f ;. is denoted the loss incurred from his claim k for the period j.
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We consider that XZ] . follows the Exponential distribution with mean claim severity for period
j, 7. Then the probability of the loss incurred from claim & for the period j is:

f(Xij,k :95) =

for X7, > 0 and y/ > 0.

Since policyholders have different mean claim severity, it is fair for each policyholder to pay a
premium proportional to the risk that they impose on the pool. We can allow the 3/ parameter
to vary from one individual to another. Let yf = exp (dgﬁj ), where @’ (dil, s d{)h) isthe 1 x h
vector of h individual’s characteristics, which represent different a priori rating variables and ~’
is the vector of the coefficients. The exponential form ensures the non-negativity of yg . Then,
the conditional to dg pdf of the claim size X f s for a claim £ of a policyholder 7 in period j will
become

— 'r_
exp(dg'yj)

exp (df Wj) 7
. . . . . . D) . 2

where E(X/,|d]) =y = exp (dj7?)and where Var(X; |d]) = (/)" = (exp (d/77))". For the

determination of the expected claim severity in this model we assume that the h individual

characteristics provide enough information. Nevertheless, if one assumes that the a priori

rating variables do not contain all the significant information for the mean claim severity then
a random variable £, has to be introduced into the regression component. Thus we can write

F(X]ldl) = (4.13)

yl = exp (A7) +¢&;) = exp (d77) wi,

where w; = exp (&), yielding a random yf . We will assume that w; follows an Inverse Gamma
distribution with probability density function

1 (s—1)
ﬁfl)exp <__ w; >
o\ s+1
()7 T(s)
w; > 0,5 >0 for =1,...,n,= 1 with mean E(w;) = 1 and variance Var (w;) = &5, for s > 2. It
can be shown that the above parameterization does not affect the results if there is a constant

term in the regression. We chose £(w;) = 1 in order to have E(&;) = 0. Under this assumption
the conditional distribution of X7, |d! becomes

(s = 1) exp (d7))’
(x4 (s—1)exp (cig”yﬂ'))SJrl7
which is a Pareto distribution with parameters s and (s — 1) exp (d‘z o ) . Note that (X f k|df ) =
m! = exp (dgvj) and Var (ka]df) = [(S_l)eXp(dZWj)r (i — L) . Note also that Eq. (4.15)

? s—1 s—2 s—1
gives the parametric linear GAMLSS where only the mean parameter of the distribution of

: (4.14)

w (w;) =

f (X)) =5 (4.15)
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the response variable, i.e. the Pareto distribution, is modelled as a function of the significant
explanatory variables for the size of claims.

Posterior Structure Function

Our goal is to construct a generalized optimal BMS based on the past claim size history and on
an individual’s characteristics in order to adjust that individual’s premiums over time. Thus
the problem is to determine, at the renewal of the policy, the expected claim severity of the
policyholder ¢ for the period t + 1 given the observation of the reported claim sizes in the
preceding t periods and observable characteristics in the preceding ¢ 4+ 1 periods and the
current period.

Consider a policyholder i with X}, X7, ..., X! ke claim size history in ¢ periods and dl, .. d"
characteristics. The total number of claims for this specific policyholder in the preceding ¢ pe-

t

riods will be denoted as K = Z K7 and the total claim amount produced by the accidents

j=1
¢ K] K

where they were at fault will be equal to Z ZXZ = ZX”“ The mean claim severity
j=1 k=1 k=1

of the policyholder i for period ¢ + 1 is ¢! (di™",w;) , a function of both the vector of an

individual’s characteristics and a random factor w; with pdf given by Eq. (4.14). Based on the

assumptions of the model, one can find that the probability density function of 3™ (df“, wi)

denoted as g (y/ ™), is given by

Y; Yi

yi"T (s) ’

s—1)exp(ditiyt+1) s 1) exp( ittt
(( Jexp(d;y )) eXp(_( Jexp(diy ))

gy (4.16)

for yi™!

7 > 0 and s > 0, which is an Inverse Gamma distribution with parameters s and
exp (d§+1’yt+1).
The posterior pdf of the mean claim severity y'™' for an individual i observed over ¢ + 1

periods, with X!, X2, ..., X! ., claim size history and d’, ..., d'™ characteristics is obtained by
) 1,1,“%4,2 VLK 7 at)

applying Bayes theorem and is an Inverse Gamma with updated parameters s + K and C’Z.j ,
with pdf given by

1 J
t+1 1 2 t 1 t+1 E eXP <_y_J)
g(yl |X7;,17X7:727”"Xi,Kf;di7'“7di ) =

yj ZK'—l—s—‘,—l ’
(L) re+E)

k3

(4.17)
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for y!™ > 0,5 > 0, where

exp (d1411) .

In the case that the vector of the individual characteristics remains constant, i.e. d} = d? = ... =

ditt = d; and 4* = 4% = ... = 4! = 7 the posterior pdf of the mean claim severity is simplified
to
()
g (y§“|X},1,X32, s X gty s s dﬁ“) = — = 1 : (4.18)
(%) (s + K)

t K

where D; = (s — 1) exp (d;y) + Z Z Xf .- For more information about the derivation of Eqgs
=1 k=1

(4.15, 4.17 and 4.18) refer to Mahmoudvand and Hassani (2009) and Frangos and Vrontos
(2001). A more general proof of Eqs (4.15, 4.17 and 4.18) can be found in Chapter 5 where we
consider the case of the n-component Pareto mixture regression model derived by updating the
posterior mean.

Optimal Choice of y}*!

~t+1

In the general case, using the quadratic error loss function, the optimal estimator of ¢;"" will

be the mean of the posterior structure function and is given by

G (X X2y X il i)

= /yf+1(d§+17wi)g (y§+1|Xi1,17Xi2,27 . XtK"J dl . '7d§+1> dytJrl
0

K7
2
(s—1) g
+ exp dJWJ

3+K—1

= exp (d?lvt“) (4.19)

This estimator defines the premium and corresponds to the multiplicative tariff formula where
the base premium is the a priori severity exp (df“v”l) and where the Bonus-Malus factor is
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represented by the expression in brackets. When the vector of the individual characteristics
remains the same for all years the optimal estimator is simplified to

t K]
(s —Dexp(diy) + Y > X/,

J=1 k=1
s+ K —1 ’

~t+1 1 2 t 1 t+1Y)
y’L (Xi,17XZ‘,27” X Kt’d . '7d’i ) ==

which coincides with the one obtained by Frangos and Vrontos (2001). When ¢ = 0, 4} (d}) =
exp (d}v) which implies that only a priori rating is used in the first period. Moreover, when
the regression component is limited to a constant v, one obtains

(s~ Dexp o) + 33 X7,

=1 k=1
K+s—1 ’

At+1 1 2 t _
(Kb X2y XLy ) =

which corresponds to the ‘univariate’, without regression component, model.

4.3.2 Calculation of the Premiums of the Generalized BMS

Now we are able to compute the premiums of the generalized optimal BMS based both on the

frequency and the severity component. As we said, the premiums of the generalized optimal

BMS will be given by the product of the generalized BMS based on the frequency component

and of the generalized BMS based on the severity component. Consider a policyholder or a

group of policyholders who in t years have produced K claims with total claim amount equal
K

to ZX”“ As mentioned in Chapter 3, their expected number of claims for period t + 1,
k=1

AHI (K}, ...,Klcl, ..., ™) is given by the Egs (3.23, 3.40 and 3.39) for the case of the NBI,

PIG and Slchel GAMLSS respectively and as shown previously their expected claim severity,

gt (XZ 1. Xi2y e Xixcy diy oo df“) is given by Eq.(4.19). The net premium that should be paid

by that Spe01ﬁc group of policyholders is equal to the product of their expected number of

claims and their expected claim severity for the period ¢ + 1 and is given by

Premium = GBMpr -GBMg

NaS
= e\ (K},...Klcl,...d™)-
G (Xin Xigy oo Xogcy iy oy dTH) (4.20)
where e = ﬁ is the corresponding exposure to risk.

e In the case of the Negative Binomial-Pareto model Eq. (4.20) becomes

108



)
i t T t ZXj
é_’_ZKZJ S_1+Zexpd]’yﬂ

=1

Premium = eexp (c’z‘f“ﬁt“) =1 exp (dz+17t+1)

5+K—1

) (4.21)
When the vectors of the individual characteristics remain the same from one year to the
next Eq. (4.21) is simplified to

t 7
LY KD | (s=Dexpldm) + )Y X,
= j=1 k=1

Premium = eexp (¢;0) exp (¢;3) s+ K -1 ’

which coincides with the one obtained by Frangos and Vrontos (2001).
e In the case of the PIG-Pareto model Eq. (4.20) becomes

]
Zx'
) 3—1 +Zexp

ha
ha

KK+V+1 (h1h2) t+1 _ t+1
exp (d! +
Krery (i) O ()

Premium = e < (4.22)

S—I—K—l ’

t

1+20 Z exp(cglﬁj)

where h; = j=1t+1ﬁt+1) and hy = eXP(

t+1[3t+1)

( , where ¢ > 0 and where K, 1 (z) is
oexp(c; 2

the modified Bessel function of the third kind of order K — I with argument z. When the
vector of the individual characteristics remains the same from one year to the next Eq. (4.22)
is simplified to

t Kl
(s = Dexp(dim) + > X,
p . N < 7]2) K1 (117m5) =1 k=1
remaiium = e s
m/) Ko (01702) s+ K -1
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exp(c;B) )
ag

for n; = g T 2t and 1, =

o exp(

e In the case of the Sichel-Pareto model Eq. (4.20) becomes

K7 7
I
(s —1) E
+ exp dJ 'yJ

) wy\ Kryui1 (wiws) t+1_ t+1
P — = dt 4.23
remium = e (, / w1) Kooy (wrn) exp ( i ) s+ K —1 - (42)

t

c+20 Z exp(cg/jj)

wn(cttlgtt
where w, = aex;(lfﬂgi“) and wy = w, where 0 > 0 and —o0 < v < oo and
where ¢ = K;;E H’ ] and K, (z) is the modified Bessel function of the third kind of order v with

argument z. When the vector of the individual characteristics remains the same from one year
to the next Eq. (4.23) is simplified to

t K
(s —1)exp (diy) + Z Zijk

A ( w2> Paoctits j=1 k=1
Premium = e ) 5
wi/) K (0iws) s+ K —1
for wy = oo T2t and wy = expa(ziﬁ)

In order to find the premiums that must be paid we have to know:

1. the estimates of the parameter o and the the vector 57 of the significant a priori rating
variables for the number of claims for the case of the NBI GAMLSS given by Eq. (3.19)
in Chapter 3,

2. the estimates of the parameter o and the the vector 5’ for the case of the PIG GAMLSS
given by Eq. (3.27) in Chapter 3,

3. the estimates of the parameters o and v and the the vector 5’ for the case of the Sichel
GAMLSS given by Eq. (3.26) in Chapter 3,

4. the estimates of the parameter s and the the vector v/ of the significant a priori rating
variables for the severity of claims for the case of the Pareto GAMLSS given by Eq. (4.15),

5. the number of years ¢ that the policyholder is under observation,
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t

6. their total number of claims K = Z k;, where k; the number of accidents in which they

i=1
K

were at fault in year ¢ = 1, ..., ¢ and their total claim amount Z Xik-
k=1

4.3.3 Properties of the Optimal BMS with a Frequency and a Sever-

ity Component Based Both on the a Priori and the a Posteriori
Criteria

In what follows we present the properties of the generalized optimal BMS with a frequency and
a severity component based both on the a priori and the a posteriori criteria (see Frangos and
Vrontos, 2001).

1.

It is fair since it takes into account the claim frequency, the claim severity, the significant
a priori rating variables for the claim frequency and the significant a priori rating variables
for the claim severity.

It is financially balanced for the insurer. Each year the average premium will be equal to
P =cexp (¢'8") exp (diA ) (4.24)

In order to prove Eq. (4.24) it is sufficient to show that

E [;\ZH (Kil, Kl ...,cf“)} = eexp (c§+16t+1)

and that
E [QZ'H_I (Xil,h Xi2,27 () X’Lt’[(fa dzla A d§+1>i| - exp (d§+17t+1) .

All the properties we mentioned for the optimal BMS without the a priori rating vari-
ables hold for this BMS as well. In the beginning all the policyholders with the same
characteristics are paying the same premium which is equal to (4.24).

The generalized premium increases proportionally to the number of claims and to the size
of loss that each claim incurred and always decreases when no accidents are caused.

This generalized BMS could lead to a decrease in the phenomenon of bonus hunger. The
policyholders who had an accident with a small loss will have one more reason to report
the claim as they will know that the size of the claim will be taken into consideration and
they will not have to pay the same premium as somebody who had a claim with a big
loss.

The claim severity, which is more crucial than the claim frequency for the insurer, is
introduced into the design of the generalized BMS.

The premiums vary simultaneously with the variables that affect the distributions of the
number of claims and the size of loss distribution.
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4.4 Application

We use the same data set we used in Chapter 2, the descriptive statistics of which can be
found in Table 2.2 of Chapter 2. As mentioned in that chapter, concerning the amount paid
for each claim, there were 5590 observations that met our criteria. Also, both private cars and
fleet vehicles have been considered in this sample and the available a priori rating variables
we employ are the Bonus Malus category, the horsepower of the car and gender of the driver.
Recall that this Bonus-Malus System has 20 classes and the transition rules are described as
follows: Each claim free year is rewarded by one class discount and each claim in given year
is penalized by one class. The Bonus-Malus category consists of five categories of neighboring
BM classes : C1 = "drivers who belong to BM classes 1 and 2", C2 = "drivers who belong
to BM classes 3-5", C3 = "drivers who belong to BM classes 6-9", C4 = "drivers who belong
to BM class 10" and C5 = "drivers who belong to BM classes 11-20". The horsepower of the
car consists of eleven categories: C1 = "drivers who had a car with a hp between 0-33", C2
= "drivers who had a car with a hp between 34-44", C3 = "drivers who had a car with a hp
between 45-55", C4 = "drivers who had a car with a hp between 56-66", C5 = "drivers who
had a car with a hp between 67-74", C6 = "drivers who had a car with a hp between 75-82",
C7 = "drivers who had a car with a hp between 83-90", C8 = "drivers who had a car with a hp
between 91-99", C9 ="drivers who had a car with a hp between 100-110", C10 = "drivers who
had a car with a hp between 111-121" and C11 = "drivers who had a car with a hp between
122-132". Finally, the gender consists of three categories: M = "male", F = "female" and B
= "both", since in this case, data for fleet vehicles used by either male or female drivers were
also available, i.e. shared use. Nevertheless, as we mentioned previously, gender has recently
been ruled out by the European Court as a rating factor. The expected claim severity is 328
euros and the variance is 41231.59. The Pareto distribution and GAMLSS were fitted in turn
on the costs of claims. For the Pareto GAMLSS we selected the parametric linear formulation
considering a linear model in the explanatory variables only for the log of their mean parameter
in order to derive an optimal BMS by updating the posterior mean. For this purpose we use the
RS algorithm in order to maximize the likelihood function employing the methods described in
Rigby and Stasinopoulos (2001, 2005, 2009).

4.4.1 Modelling Results

The modelling results for the claim frequency models were presented in Chapter 3. This sub-
section describes the modelling results for the Pareto distribution and the Pareto GAMLSS.
The heavy-tailed Pareto distribution is often a good candidate for modelling the claim severity,
as has been shown to be the case in many studies (see Klugman, Panjer & Willmot, 2004).

Firstly, we incorporated the Pareto distribution, with pdf given by Eq. (4.3), into the
GAMLSS package in R and we obtained the maximum likelihood estimates of the location and
shape parameters m and s respectively. It is m = 28001. and § = 85.798, thus E(x) = s% =
85?%3%1_1 = 330. 21 The Akaike information criterion (AIC) and the Schwartz Bayesian criterion
(SBC) of the estimated model are equal to 75989.3 and 76002.5 respectively.

Secondly, we examined the applicability of the Pareto regression model, given by Eq. (4.15),
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to the claim severity data in order to use all available information in the estimation of claim
severity distribution. Note that the GAMLSS package allows us to find the maximum likelihood
estimators of the parameters of the regression model where the distribution of the response
variable, i.e. the costs of claims, is the Pareto2o (m/, s’) distribution, with pdf given by f (x) =

s'm/* (x +m') 1 (see Eq. (4.3)). The Pareto(m, s) response distribution with pdf given
by Eq. (4.15) can be derived from a reparameterization of the pdf of the Pareto2o (m/,s’)
distribution with s’ = s and m' = (s’ — 1)m. Thus § = § and m = % Variable selection
techniques were applied in order to find the explanatory variables that are considered as better
predictors. For this purpose we used the function step.GAIC, within the GAMLSS package.
The model recorded in Table 4.1 is the best fitted model with Global Deviance equal to 75746.86,
AIC equal to 75782.86 and SBC equal to 75902.18.

Table 4.1: Results of the Fitted Pareto GAMLSS

Variable Estimate Std Error t-value/Wald P-value
Intercept 8.6786  0.1729 50.1922 0.0000
Bonus-Malus
Category 1 0 0 - -
Category 2 -0.0216  0.0359 -0.6032 0.5464
Category 3 0.1148  0.0494 2.5554 0.0106
Category 4 -0.7272  0.0679 -10.7184 0.0000
Category 5 0.4113  0.2370 1.7359 0.0826
Horsepower
Category 1 0 0 - -
Category 2 -0.2105  0.1480 -1.4225 0.1549
Category 3 -0.1975  0.1430 -1.3811 0.1673
Category 4 -0.0127  0.1392 -0.0909 0.9276
Category 5 0.0057  0.1367 0.0418 0.9667
Category 6 0.1392  0.1377 1.0116 0.3118
Category 7 0.1564  0.1522 1.0283 0.3039
Category 8 0.3354  0.1476 2.2728 0.0231
Category 9 0.4405  0.1449 3.0396 0.0024
Category 10  0.6463  0.1538 4.2013 0.0000
Category 11 1.0669  0.1885 5.6610 0.0000
Gender
Both 0 0 - -
Male -0.0807  0.0602 -1.3421 0.1796
Female -0.0259  0.0619 -0.4180 0.6760
s 2.9620  0.0945 31.330 0.0000

From Table 4.1, we observe that the Bonus-Malus categories 2 and 4 have a negative effect
on the expected claim severity, 3/, while the Bonus-Malus categories 3 and 5 have a positive
effect on y/. The horsepower categories 2 up to 4 have a negative effect on mean claim severity.
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This could be because policyholders who own cars with a very low horsepower are more likely
to have cheaper and slower cars which correspondingly cause less serious damage in an accident.
However, horsepower categories 2 up to 7 are not so important for the mean claim severity.
Finally, horsepower categories 8 up to 11 have a positive effect on the mean claim severity. The
gender has a negative effect on the mean claim severity. Bonus-Malus category 1, horsepower
category 1 and fleet vehicles used by both male and female drivers in turn are the reference
categories. The positive values of the coefficients indicate higher risk compared to the reference
class, whereas negative values demonstrate lower risk than the reference class.

4.4.2 Optimal BMS Based on the a Posteriori Criteria

The premiums determined by the optimal BMS based on the a posteriori frequency component
were reported in Chapter 3. In this subsection we consider the premiums determined by the
optimal BMS based on the a posteriori severity component and the premiums determined by
the optimal BMS based both on the a posteriori frequency and severity component. In the
following examples, the premiums will be divided by the premium when ¢ = 0, since we are
not so much interested in the absolute premium values as in the differences between various
classes. We will present the results so that the premium for a new policyholder is 100.

We consider first the optimal BMS based on the a posteriori severity component. In what
follows we calculate the premiums that must be paid by a policyholder who is observed for
the first year of their presence in the portfolio, has one accident and the claim amount of
their accident ranges from 150 to 7000 euros. The optimal BMS resulting from the Pareto
distribution will be defined by Eq. (4.5) and is presented in Table 4.2. We observe that for
claim sizes up to 325 euros the policyholder receives a bonus?. Also, as expected, the higher
the claim size the higher the premium. For example, for one claim size of 350 in the first year
the premium increases from 100 to 100.07 and for one claim of size 7000 in the first year the
premium increases from 100 to 123.54

2Note that the mean claim size is 328 euros.
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Table 4.2: Optimal BMS Based on the A Posteriori Severity Component, One Claim in the
First Year of Observation

Claim Size Optimal BMS | Claim Size Optimal BMS | Claim Size Optimal BMS
Pareto Pareto Pareto
150 99.36393 500 100.59931 2000 105.89380
175 99.45217 600 100.95227 2500 107.65863
200 99.54041 700 101.30524 3000 109.42346
225 99.62865 800 101.65821 3500 111.18829
250 99.71689 900 102.01117 4000 112.95312
275 99.80513 1000 102.36414 4500 114.71795
300 99.89337 1100 102.71710 5000 116.48278
325 99.98162 1200 103.07007 5500 118.24761
350 100.06986 1300 103.42304 6000 120.01244
375 100.15810 1400 103.77600 6500 121.77727
400 100.24634 1500 104.12897 7000 123.54210

Let us now consider the optimal BMS based both on the a posteriori frequency and severity
component. In Tables 3.6, 3.7 and 3.8 of Chapter 3 we reported the premiums resulting from the
Negative Binomial, Poisson-Inverse Gaussian and Sichel distributions respectively. We assume
that the number of claims of each policyholder is independent from the severity of each claim.
Subsequently, we are able to compute the premiums determined by the optimal BMS based
both on the frequency and the severity component. As we said, the premiums of this optimal
BMS will be given from the product of the BMS based on the frequency component and of
the BMS based on the severity component. Consider again that a policyholder is observed for
the first year of their presence in the portfolio, has one accident and the claim amount of their
accident ranges from 150 to 7000 euros. In Table 4.3 we report the scaled premiums for the
case of the Negative Binomial-Pareto (NB-PA), Poisson Inverse Gaussian-Pareto (PIG-PA) and
Sichel-Pareto (SI-PA) models respectively. We observe that these three systems do not differ
much. For example, a policyholder who had one claim with claim size 250 will have to pay a
malus of 69.65%, 56.17% and 58.34% of the basic premium in the case of the NB-PA, PIG-PA
and SI-PA models respectively, while a policyholder who had one claim with claim size 5000
will have to pay a malus of 98.18%, 82.43% and 84.96% of the basic premium in the case of
the NB-PA, PIG-PA and SI-PA models respectively. It is obvious that these optimal BMSs
allow the discrimination of the premiums with respect to the frequency and the severity of the
claims.

115



Table 4.3: Optimal BMS Based on the Alternative Distributions for Assessing Claim Frequency
Presented in Chapter 3 and the Pareto Distribution for Assessing Claim Severity, One Claim

in the First Year of Observation
Claim Size Optimal BMS Optimal BMS Optimal BMS

NB-PA PIG-PA SI-PA
150 169.0578 155.6238 157.7800
175 169.2079 155.7620 157.9201
200 169.3581 155.9002 158.0602
225 169.5082 156.0384 158.2003
250 169.6583 156.1766 158.3405
275 169.8085 156.3148 158.4806
300 169.9586 156.4530 158.6207
325 170.1087 156.5912 158.7608
350 170.2589 156.7294 158.9009
375 170.4090 156.8676 159.0410
400 170.5591 157.0058 159.1812
200 171.1597 157.5586 159.7416
600 171.7602 158.1115 160.3021
700 172.3607 158.6643 160.8626
800 172.9613 159.2171 161.4231
900 173.5618 159.7699 161.9835
1000 174.1623 160.3227 162.5440
1100 174.7629 160.8755 163.1045
1200 175.3634 161.4283 163.6650
1300 175.9640 161.9812 164.2254
1400 176.5645 162.5340 164.7859
1500 177.1650 163.0868 165.3464
2000 180.1677 165.8509 168.1488
2500 183.1704 168.6149 170.9511
3000 186.1731 171.3790 173.7535
3500 189.1758 174.1431 176.5559
4000 192.1784 176.9072 179.3583
4500 195.1811 179.6713 182.1606
5000 198.1838 182.4353 184.9630
5500 201.1865 185.1994 187.7654
6000 204.1892 187.9635 190.5678
6500 207.1919 190.7276 193.3701
7000 210.1945 193.4916 196.1725
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4.4.3 Optimal BMS Based Both on the a Priori and the a Posteriori
Criteria

The premiums determined by the generalized BMS with a frequency component were reported
in Chapter 3. In this subsection we consider the premiums determined by a generalized optimal
BMS with a severity component and the premiums determined by a generalized BMS based
both on the frequency and severity component when both the a priori and the a posteriori
rating variables are used. The premiums are divided again by the premium when ¢t = 0, in
order to observe the percentage change in the premiums after one or more claims.

We consider first the generalized optimal BMS based on the severity component. In the
following example we consider a group of policyholders who share the following common char-
acteristics. The policyholder 7 is a woman, who has a car with horsepower between 0-33 and
her Bonus-Malus class varies over time, starting from BM class 1°. Implementing the Pareto
GAMLSS (Eq. (4.15)) we found that 5 = exp (2.9620) = 19.337. As we have already mentioned,
the mean (or location) parameter of this model is given by E (X7, |d]) = m] = exp (d/47) , where
@’ (dil, e df h) is the 1 x h vector of h individual’s characteristics, which represent different a
priori rating variables and 47 is the vector of the coefficients. The estimation of the vector 4/,
and therefore of the mean parameter for the Pareto model, led to the following results presented
in Table 4.4.

Table 4.4: Women, Horse Power 0-33

Bonus-Malus Pareto
Category mg

1 312.3426

305.8518

350.0586

150.9729

471.1142

T W N

Based on the above estimates for this group of individuals we are now able to derive the
generalized optimal BMS for the severity component according to the Eq. (4.19). Consider that
the policyholder 7 is observed for the first year of her presence in the portfolio, has one accident
and the claim amount of her accident ranges from 150 to 7000 euros. The premiums resulting
from this system are displayed in Table 4.5. From Table 4.5 we observe that for claim sizes up
to 400 euros the policyholder 7 receives a bonus due to the fact that the cost of the claim that
the insurance company has to pay is not significant. Also, we observe that the higher the claim
size the higher the premium, revealing the appropriateness of the modelling technique. For
example, for one claim size of 900 in the first year her premium increases from 100 to 107.45
while for one claim size of 7000 her premium increases from 100 to 206.35.

3Recall that BM class 1 corresponds to BM category 1 according to the grouping of the levels of the BM
class explanatory variable.
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Table 4.5: Women, Horse Power 0-33, Varying Bonus-Malus Class, One Claim in the First Year
of Observation

Claim Size Optimal BMS | Claim Size Optimal BMS | Claim Size Optimal BMS
Pareto Pareto Pareto
150 95.28981 500 100.96442 2000 125.28420
175 95.69514 600 102.58574 2500 133.39079
200 96.10047 700 104.20706 3000 141.49739
225 96.50579 800 105.82838 3500 149.60398
250 96.91112 900 107.44970 4000 157.71057
275 97.31645 1000 109.07101 4500 165.81717
300 97.72178 1100 110.69233 5000 173.92376
325 98.12711 1200 112.31365 5500 182.03035
350 98.53244 1300 113.93497 6000 190.13695
375 98.93777 1400 115.55629 6500 198.24354
400 99.34310 1500 117.17761 7000 206.35013

Consider now another group of policyholders who share the following common characteris-
tics. The policyholder ¢ is now a man, who has a car with horsepower between 0-33 and his
Bonus-Malus class varies over time, starting from BM class 1. The estimation of the vector
and therefore of the mean parameter for the Pareto model led to the following results depicted
in Table 4.6.

Table 4.6: Men, Horse Power 0-33
Bonus-Malus Pareto
Category mg
1 295.9234
289.7738
331.6568
143.0366
446.3487

T W N

Based on the above estimates for this new group of policyholders we can derive the gen-
eralized optimal BMS according to the Eq. (4.19). Consider again that the policyholder i is
observed for the first year of his presence in the portfolio, has one accident and the claim amount
of his accident ranges from 150 to 1000 euros. The premiums resulting from this system are
reported in Table 4.7. We observe that for a claim with size up to 400 euros the policyholder
1 receives a bonus. However, for claim sizes higher than 400 euros we observe that the he has
to pay a malus. For instance, if the policyholder has one claim size of 800 in the first year then
he faces a malus of 6.54% of the basic premium and if he has one claim size of 7000 in the first
year then he faces a malus of 112.64% of the basic premium.
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Table 4.7: Men, Horse Power 0-33, Varying Bonus-Malus Class, One Claim in the First Year
of Qbservation

Claim Size Optimal BMS | Claim Size Optimal BMS | Claim Size Optimal BMS
Pareto Pareto Pareto
150 95.42474 500 101.41421 2000 127.08336
175 95.85256 600 103.12549 2500 135.63975
200 96.28038 700 104.83677 3000 144.19613
225 96.70820 800 106.54804 3500 152.75252
250 97.13602 900 108.25932 4000 161.30890
275 97.56384 1000 109.97060 4500 169.86529
300 97.99166 1100 111.68187 5000 178.42167
325 98.41948 1200 113.39315 5500 186.97805
350 98.84730 1300 115.10443 6000 195.53444
375 99.27512 1400 116.81570 6500 204.09082
400 99.70294 1500 118.52698 7000 212.64721

Note that from Tables 4.5 and 4.7 we observe that the premiums that should be paid by
a woman, who has a car with horsepower between 0-33 and whose Bonus-Malus class varies
over time do not differ much from those that should be paid by a man who shares the same
characteristics. Note also that other combinations of a priori characteristics could be used for
multiple claims and different claim severity histories. It is interesting to compare this BMS with
the one obtained when only the a posteriori classification criteria are used. Using this system
we saw from Table 4.2 that a policyholder with one accident with claim size of 3000 euros in
one year has to pay a malus of 9.42% of the basic premium. Using the generalized optimal BMS
with a severity component based both on the a priori and the a posteriori classification criteria,
a woman who has a car with horsepower between 0-33 and whose Bonus-Malus category varies
over time for one accident of claim size 3000 euros in one year will have to pay a malus of 41.49%
of the basic premium, while a man, who shares the same characteristics for one accident of claim
size 3000 euros in one year will have to pay a malus of 44.19% of the basic premium. This
system is more fair since it considers all the important a priori and a posteriori information
for each policyholder for the severity component in order to estimate their risk of having an
accident.

Let us now consider the premiums determined by the generalized BMS with a frequency and
a severity component based both on the a priori and the a posteriori classification criteria. The
generalized BMS with a frequency component was presented in Chapter 3. This system was
derived by adopting the parametric linear formulation of the Negative Binomial Type I (NBI),
Poisson-Inverse Gaussian (PIG) and Sichel GAMLSS and by allowing only the mean parameter
of these models to be modelled as a function of the significant explanatory variables for the
number of claims. We assume that the number of claims of each policyholder is independent
of the severity of each claim. Subsequently, we are able to derive the generalized BMS with
a frequency and a severity component by using the Pareto GAMLSS to integrate accident
severity into the BMSs presented in Chapter 3. In this generalized system, the premiums
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will be given from the product of the generalized BMS based on the frequency component,
and of the generalized BMS based on the severity component. Let us see an example in
order to understand better how this BMS works. Consider a group of policyholders who share
the following common characteristics. The policyholder 7 is a woman who has a car with
horsepower between 0-33 and her Bonus-Malus class varies over time, starting from BM class
1. The generalized premiums for the frequency component were presented in Table 3.10 of
Chapter 3 for the case of the NBI, PIG and Sichel GAMLSS respectively. We assume that the
policyholder 7 is observed for the first year of her presence in the portfolio, has one accident
and the claim amount of her accident ranges from 150 to 7000 euros. In Table 4.8 we report the
generalized premiums based on the frequency and the severity component for the case of the
Negative Binomial Type I-Pareto (NBI-PA), Poisson Inverse Gaussian-Pareto (PIG-PA) and
Sichel-Pareto (SI-PA) models respectively. From Table 4.8 we observe that these three systems
do not differ much. For example if the policyholder ¢ had one claim with claim size 1500 then
she will have to pay a malus of 227.59%, 190.51% and 248.26% of the basic premium in the
case of the NBI-PA, PIG-PA and SI-PA models respectively, while if she had one claim with
claim size 5000 then she will have to pay a malus of 386.24%, 331.19% and 416.92% of the basic
premium in the case of the NBI-PA, PIG-PA and SI-PA models respectively. These optimal
BMSs allow the discrimination of the premiums with respect to the a priori and the a posteriori
frequency and severity component.
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Table 4.8: Women, Horse Power 0-33, Varying Bonus-Malus Class, One Claim in the First Year
of Observation

Claim Size Optimal BMS Optimal BMS Optimal BMS

NBI-PA PIG-PA SI-PA
150 266.4017 236.2425 283.2108
175 267.5349 237.2474 284.4155
200 268.6681 238.2523 285.6202
225 269.8013 239.2572 286.8249
250 270.9344 240.2621 288.0296
275 272.0676 241.2670 289.2342
300 273.2008 242.2718 290.4389
325 274.3340 243.2767 291.6436
350 275.4672 244.2816 292.8483
375 276.6003 245.2865 294.0530
400 277.7335 246.2914 295.2576
500 282.2662 250.3110 300.0764
600 286.7990 254.3306 304.8951
700 291.3317 258.3501 309.7138
800 295.8644 262.3697 314.5325
900 300.3971 266.3893 319.3512
1000 304.9298 270.4089 324.1700
1100 309.4626 274.4284 328.9887
1200 313.9953 278.4480 333.8074
1300 318.5280 282.4676 338.6261
1400 323.0607 286.4872 343.4448
1500 327.5934 290.5067 348.2636
2000 350.2570 310.6046 372.3572
2500 372.9206 330.7025 396.4508
3000 395.5842 350.8003 420.5444
3500 418.2478 370.8982 444.6380
4000 440.9114 390.9961 468.7316
4500 463.5751 411.0939 492.8252
5000 486.2387 431.1918 516.9188
5500 508.9023 451.2896 541.0124
6000 531.5659 471.3875 565.1060
6500 554.2295 491.4854 589.1996
7000 576.8931 511.5832 613.2932

Consider now another group of policyholders who share the following common character-
istics. The policyholder ¢ is now a man who has a car with horsepower between 0-33 and his
Bonus-Malus class varies over time, starting from BM class 1. The generalized premiums are
displayed in Table 4.9 for the case of the Negative Binomial Type I-Pareto, Poisson Inverse
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Gaussian-Pareto and Sichel-Pareto models respectively.

Table 4.9: Men, Horse Power 0-33, Varying Bonus-Malus Class, One Claim in the First Year
of Observation

Claim Size Optimal BMS Optimal BMS Optimal BMS

NBI-PA PIG-PA SI-PA
150 268.4203 239.1153 287.9060
175 269.6237 240.1874 289.1968
200 270.8271 241.2594 290.4875
225 272.0305 242.3314 291.7783
250 273.2339 243.4034 293.0691
275 274.4373 244.4755 294.3599
300 275.6407 245.5475 295.6506
325 276.8441 246.6195 296.9414
350 278.0476 247.6916 298.2322
375 279.2510 248.7636 299.5230
400 280.4544 249.8356 300.8137
500 285.2680 254.1237 305.9768
600 290.0817 258.4119 311.1399
700 294.8953 262.7000 316.3030
800 299.7090 266.9881 321.4661
900 304.5226 271.2762 326.6292
1000 309.3363 275.5643 331.7923
1100 314.1499 279.8524 336.9554
1200 318.9636 284.1406 342.1185
1300 323.7772 288.4287 347.2816
1400 328.5909 292.7168 352.4447
1500 333.4045 297.0049 357.6078
2000 357.4728 318.4455 383.4232
2500 381.5410 339.8861 409.2387
3000 405.6093 361.3267 435.0542
3500 429.6776 382.7673 460.8696
4000 453.7458 404.2078 486.6851
4500 477.8141 425.6484 512.5006
5000 501.8823 447.0890 538.3160
5500 525.9506 468.5296 564.1315
6000 550.0188 489.9702 589.9470
6500 574.0871 511.4108 615.7624
7000 598.1553 532.8514 641.5779

From Tables 4.8 and 4.9 we observe that the premiums that should be paid by a woman,
who has a car with horsepower between 0-33 and her Bonus-Malus class varies over time do
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not differ much from those that should be paid by a man who shares common characteristics.
For example, if the policyholder ¢ is a woman who had one claim with claim size 4500 euros
then she will have to pay a malus of 363.57%, 311.09% and 392.82% of the basic premium
in the case of the NBI-PA, PIG-PA and SI-PA models respectively, while if the policyholder
is a man who had one claim with claim size 4500 euros then he will have to pay a malus of
377.81%, 325.65% and 412.50% of the basic premium in the case of the NBI-PA, PIG-PA and
SI-PA models respectively. Furthermore, it is interesting to compare these BMSs with those
obtained when only the a posteriori classification criteria are used. Using these BMS we saw
from Table 4.3 that a policyholder with one accident with claim size of 6500 euros in one year
has to pay a malus of 107.19%, 90.73% and 93.37% of the basic premium in the case of the
NB-PA, PIG-PA and SI-PA models respectively. Using the generalized optimal BMS with a
frequency and a severity component, a woman who has a car with horsepower between 0-33
and her Bonus-Malus class varies over time for one accident of claim size 6500 euros in one
year will have to pay a malus of 454.23%, 391.48% and 489.20% of the basic premium in the
case of the NBI-PA, PIG-PA and SI-PA models respectively, while a man, who shares common
characteristics for one accident of claim size 6500 euros in one year will have to pay a malus
of 474.08%, 411.41% and 515.76% of the basic premium in the case of the NBI-PA, PIG-PA
and SI-PA models respectively. As mentioned in Frangos and Vrontos (2001), these systems
are more fair since they consider all the important a priori and a posteriori information for
each policyholder, both for the frequency and the severity components, in order to estimate
their risk of having an accident and thus they permit the differentiation of the premiums for
various number of claims and for various claim sizes based on the expected claim frequency and
expected claim severity of each policyholder as these are estimated both from the a priori and
the a posteriori classification criteria.

In the following chapter we give more emphasis on the analysis of the claim severity com-
ponent using finite mixtures of distributions and regression, as these methods have not been
studied in the BMS literature, as opposed to the claim frequency component for which many
alternative models have been proposed, such as zero-inflated models, Hurdle models, and other
count data models.
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Chapter 5

The Design of Optimal Bonus-Malus
Systems Using Finite Mixture Models
for Assessing Claim Counts and Losses

5.1 Introduction

In Chapter 5 we put focus on both the analysis of the claim frequency and severity components
of an optimal BMS using finite mixtures of distributions and regression models. Finite mix-
ture models are a popular statistical modelling technique, given that they constitute a flexible
and easily extensible model class for approximating general distribution functions in a semi-
parametric way and accounting for unobserved heterogeneity. Finite mixture models have been
widely applied in many areas, such as biology, biometrics, genetics, medicine and marketing.
For a comprehensive list of the applications and numerical derivations of finite mixture mod-
els, readers are referred to Mclachlan and Peel (2000). However, these models have not been
extensively studied in BMS literature. Specifically, only Lemaire (1995) considered the good
risk/bad risk model, employing a finite Poisson mixture distribution with two components.
Our first contribution is the development of an optimal BMS that takes into account the
number of claims of each policyholder and the exact size of loss that these claims incurred,
using various finite mixtures of distributions. For the frequency component we assume that the
number of claims is distributed according to a finite Poisson, Negative Binomial and Delaporte
mixture, and for the severity component we consider that the losses are distributed according to
a finite Exponential, Gamma, Weibull and GB2 mixture. In this way we expand the setup that
Lemaire (1995) used to design an optimal BMS based on the number of claims. Applying Bayes
theorem we derive the posterior probability of the policyholder’s classes of risk. Furthermore,
we extend the setup of Frangos and Vrontos (2001) for Negative Binomial and Pareto mixtures
and derive the posterior distribution of both the mean claim frequency and the mean claim
size, given the information we have about the claim frequency history and the claim size history
for each policyholder for the time period he is in the portfolio. Our third contribution is the
development of a generalized BMS that integrates the a priori and the a posteriori information
on a individual basis extending the framework developed by Frangos and Vrontos (2001). This
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is achieved by using finite mixtures of regression models. In this generalized BMS, the premium
is a function of the years that the policyholder is in the portfolio, the number of accidents, the
size of loss that each of these accidents incurred, and the significant a priori rating variables
for the number of accidents and for their severity.

The layout of this chapter is as follows. Section 5.2 includes a short review of the basic
concepts of finite mixture models. Section 5.3 describes the design of optimal BMS with a
frequency and a severity component based on the a posteriori criteria. The design presented in
Section 5.4 is based on both the a posteriori and the a priori criteria and Section 5.5 contains an
application to the data set concerning car insurance claims which was presented in the previous
chapters.

5.2 Finite Mixture Models

In what follows we present a short summary of the main characteristics of finite mixture models.
Mclachlan and Peel (2000) provide a detailed introduction to finite mixture models. Assume
that a random variable Y comes from component z, having probability density function f,(y),
with probability 7., for z = 1,..,n, then the marginal density of Y is given by

fY(y> = Zﬂ—zfz(y)? (51)

where 0 < 7, < 1 is the prior (or mixing) probability of component z and where ZTI’Z =1,

z=1
z=1,.,n.

The simplest finite mixture models are finite mixtures of distributions which are used for
model-based clustering. In this case the model is given by a convex combination of a finite
number of different distributions where each of the distributions is referred to as a component.

An extension is to estimate finite mixture models assuming that the n components f.(y)
can be represented by GAMLSS models. In this setup the probability density function f,(y)
for component z depends on parameters 8., each of which can be a function to the explanatory
variables x,, i.e. f,(y) = f.(y|0.,x.) (see Chapter 2)!. Similarly, fy(y) depends on parameters
¥ = (0,7), where 0 = (0,,...,0,) and 77 = (m,...,m,) and explanatory variables x =
(X1, ..y Xp), 1.6, fy(y) = fy(y|e,x), and

ey, x) = 3w f.(y10..x.). (5.2)

Note that the prior probabilities may also depend on explanatory variables xy and parame-
ters through a multinomial logistic model (for more information, refer to Righy and Stasinopou-
los, 2009). In this thesis, we assume that all the component distributions, f,(y), arise from the
same parametric distribution family, the prior probabilities are included in the linear predictor

'Reacall that GAMLSS models have up to four distributional parameters p, o, v and 7.
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for only the mean parameters of f,(y). Using this formulation, the heterogeneity in the data
can be accounted for in two ways. Firstly, the population heterogeneity is accounted for by
choosing a finite number of unobserved latent components, each of which may be regarded as
a sub-population. This is a discrete representation of heterogeneity since the mean (of claim
frequency or severity) is approximated by a finite number of support points. Secondly, depend-
ing on the choice of the f,(y) distribution, heterogeneity can also accommodated within each
component by including the explanatory variables in the mean function.

For an observed independent random sample (y, ..., ¢, ) from finite mixture model (5.2), the
log-likelihood function [ is given by

where L denotes the likelihood function and where f,(v;) = f.(v:|0,%.;). The log-likelihood
function [ can be maximized with respect to 1, i.e. with respect to @ and 7, using the EM
algorithm (for more details see Rigby and Stasinopoulos, 2009).

5.3 The Design of an Optimal BMS Based on the a Pos-
teriori Criteria

We assume that the number of claims of each policyholder is independent of the severity of
each claim in order to deal with the frequency and the severity component separately.

5.3.1 Frequency Component Updating the Posterior Probability

The framework we consider is a generalization of the good risk/bad risk model proposed by
Lemaire (1995). Specifically, the portfolio is considered to be heterogeneous, consisting of n
categories of policyholders classified according to their driving skills. In this respect, we have
fractions of drivers 7, where the risk that each policyholder of category z is imposing on the
pool, with respect to their claim frequency, is denoted by A., z = 1,--- ,n. The distribution
of the number of claims k in each category is denoted by P, (k). Thus, the structure function
is an n-point discrete distribution and the distribution of the unconditional number of claims,
denoted by P (k) , is given by

P (k) =Y _7.P.(k),

k=0,1,...,m,>0,forz=1,--- ;nand ) 7, = 1. The expected value of the number of claims
z=1

is equal to E (k) = > m,A,.
=1

In what follows, we consider a policyholder with claims history ki, ...,k ,where k; is the
number of claims that the policyholder had in year j, j = 1,...,t. Let us denote with K =
22:1 k; the total number of claims that the policyholder had in ¢ years and with R; the
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risk, imposed on the insurance company, associated with the [th category of policyholders.
Moreover, the posterior probability of the policyholder belonging to the lth category is given
by m (k1,--+ , k). Applying the Bayes theorem, the posterior probability of the policyholder
belonging to the [th category is given by the following equation

P(k?l, ceey kt|RZ)7Tl

> Plky, k| R
z=1

i (kl, ceey /{Zt) =

In this way, we update the posterior probability of belonging in category [ given the infor-
mation we have for the claim frequency history of the policyholder. Under a quadratic error
loss function, the optimal choice of j\tﬂ for a policyholder with claim history kq, ..., k; is the
mean of the posterior structure function given by

Aeg1 (y, .o k sz ki, k) As (5.4)

The setup described is applied to finite Poisson, Negative Binomial and Delaporte mixture
distributions. Extensions to other finite mixture distributions can be obtained in a similar way
and is straightforward.

Finite Poisson Mixture

Poisson mixtures are counterparts to the simple Poisson distribution for the description of
heterogeneous populations. Of special interest are populations consisting of a finite number
of homogeneous sub-populations. In these cases the probability distribution of the population
can be regarded as a finite mixture of Poisson distributions. The finite Poisson mixture is a
generalization of the good risk/bad risk model proposed by Lemaire (1995). We have n fractions
of drivers w, with Poisson parameter )\, and the distribution of the unconditional number of
claims, k, is the following

sz Zk—0123 oA >0forz=1 0, Y m =1 (5.5)

Posterior Probability The posterior probability of the policyholder belonging to the [th
category of drivers is given by

by et ™

m (ko ) = ————1 (5.6)

K, _
E A, e e,
z=1

Proof. By means of the Bayes theorem, we have
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T (kyy o k) = P (Riky, .., k) = kel B) PR
> Phi kiR P(R)
z=1

€7>\l~)\k1 e7>‘l~)\kt
! l T
_ kq! Ey! l
e_)‘l-/\llcl e_>‘1-/\]ft eikl-kfl 7>‘l~)\§€t E—An,)\kl ef)\n,)\kt
T1+...+ T4+ B B-mp
! Tog! ! Tog! B! Tog!
A —t-A
I .e l
T T
k!
_ j=1
T \K AR K K
Al e—tA - b A e A Y N
1 . 1 1—-1. -1 . 1 I+1. I+1 e—tA
€ 14+ € “T_1+ € T+ e 'W+1+~~~+M'ﬂ'n
t t t t t
kj! kj! kj! kj! | | kj!
j=1 j=1 j=1 j=1 =1
__Mettum
n
E AEe—trarg,
z=1

Optimal Choice of S\:H Under a quadratic error loss function, the optimal choice of
Ait1 (K1, ..., k) for a policyholder with claim history kq,--- ,k; is the mean of the posterior
structure function and is given by substituting (5.6) into (5.4).

Finite Negative Binomial Type I Mixture

For the case of the finite Negative Binomial mixture, we assume that the portfolio consists of
fractions of drivers 7, where the number of claims k| R, follows a Negative Binomial(c., \, ).
Thus, the structure function is an n-point discrete distribution and the number of claims k,
given the parameters o, A,, is distributed according to

1
“N (k+ L — 1 = fah \F
P — Qz - .z = .
(k) Z_ ”Z< k )(H%AZ) (1+a2&> ’ 57)

for k=0,1,... where a,, A\, >0 for z=1,....,n and Zﬂ'z =1
z=1

2We use the parameterization of Negative Binomial Type I given by Rigby and Stasinopoulos (2009) and
Johnson et al (2005).
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Posterior Probability The [th category posterior probability is equal to

t

= K
(k'ﬂ%l—l) 1\ (e T
k; 1+ag N 1+ N l
L K
1 az az )z T
14+az A, 14+oz Az z

m:]&

;:1&

™ (]Ch ...,kt)

3

z=1j l

Proof. Applying the Bayes theorem, we have

m (kyy k) = P(Ry|ky, .. k) = nP(kl,..A,kt\Rl)P(Rl)
ZP(kl,...,kt|R2)P(Rz)
z=1

t

1 1 .
(kj+a—l71) 1 a7 (g k;ﬂ
k. 14+a;) JESIRY) l

J
j=1

1 .
)az ( azAz )kjﬂ.
1+az/\z 1+az Az #

Zl]l

t

1 1 .
(kj+ch_1> 1 a; TRV} k]ﬂ_
kj Tragn; Traga; l

j=1

1
k + 1 - )az( azAzy )kjﬂ.
1+ocz)\z 1+azXz z

zl]l

t

| t K
(kj+07l71) 1 a ar\; .
kj TtagN; T+og N L

j=1

- 1 &t
(53 () (225
k. 14+az Az 14+oazXAz Z

(5.8)

ct+1
Optimal Choice of )\?Jr As previously, under a quadratic error loss function, the optimal
choice of A1 (K1, ..., k) for a policyholder with claim history ki, --- , k; is the mean of the

posterior structure function and is given by substituting (5.8) into (5.4).

Finite Delaporte Mixture

The Delaporte distribution can be alternatively employed for modeling the number of claims
when we deal with overdispersed count data. Our portfolio consists of n categories of poli-
cyholders with probability of belonging in each category m, and parameters of the Delaporte
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distribution \,,o, and v,, for z = 1,--- ,n. Thus, the structure function is an n-point discrete
distribution and the number of claims k is distributed as follows

Pk) = zn;wr(l) (1+ Ao, (1—1v.) % 8,
o= () () rGem) e

for k=0,1,...and 7,,\,,0,>0,0<v,<land z=1,--- ,n,> 7, =1.

z=1

Posterior Probability = The posterior probability of the policyholder belonging to the [th
category is given by?

[[;(?;Sl]t (14 No (1 - Vl))ig% jl_[1 Sjvl] i

(k1o k) = - - (5.10)

—tAzv __t

e 22 (1+ Mo, (1—v,)) 7= Siz| T2
— [[F(olz)] ( ( )) jlj[l J ]
where
k; k; kj—m —m
ki (W)™ ()™ 1 1

= r{— 11
S mzo (m) b R ey o+ (5.11)

and S; , is given by (5.11) for [ = 2.
Proof. Applying the Bayes theorem, we have

7 (kyy k) = P(Ry|ky, .. k) = nP(kl,...,kt|Rl)P(Rl)
ZP(kl,...,kt|Rz)P(Rz)
z=1

J

t k
N _ 1 ) k., v k;—m —m
[| |1 S i) > () Q" (i) F(aﬂ““)]’”
j=

m=0

k.

t J
H F‘(L“) (tAn(1-v2)) 7 Z (bg) 2= (Ifﬁ)krm (Mo )_mr(;ﬁm)} T
g=1 7%

m=0

n

2

z=1

\
| —— |

31t should be noted that due to the existence of k;’s in Eq. (5.8) and Eq. (5.10), i.e. for the case of
the finite mixture of Negative Binomial and Delaporte distributions respectively, the explicit claim frequency
history determines the calculation of the posterior probabilities and thus of premium rates and not just the
total number of claims as in the case of the two component Poisson mixture.
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ct+1
Optimal Choice of )\i+ As previously, under a quadratic error loss function, the optimal
choice of A1 (kq, ..., k) for a policyholder with claim history ki, --- , k; is the mean of the
posterior structure function and is given by substituting (5.10) into (5.4).

5.3.2 Frequency Component Updating the Posterior Mean
Finite Negative Binomial Mixture

Generalizing the setup used by Lemaire (1995) and Frangos and Vrontos (2001), we consider a
structure function given by a mixture of Gamma distributions. As previously, the portfolio is
considered to be heterogeneous and all policyholders have constant but unequal underlying risks
of having an accident. We assume that the number of claims k| is distributed as a Poisson(\)
and that the structure function follows an n-component mixture of Gamma distributions, which
has a probability density function of the form

" AT exp (<70 0)
=) 7
I'(a.)

n

Ao, 7, > 0 for z = 1,...,n,27rz = 1, with mean F(A ZT{'Z Then the uncondi-
z=1

tional distribution of the number of claims % is an n-component mlxture of Negative Binomial

distributions with probability density function

B “ kE+a, =1\ . & B T, B 1

z=1

Proof. For p, = (lfr—jz), q: = (1 +sz> and defining (k+az ) as a generalized combinatorial

coefficient we have that:

P (k) = / P (kA u(\) dA = / R D mA e

0

132



o0
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Note that the Negative Binomial distribution with pdf given by Eq. (3.3) in Chapter 3 is
a special case of the finite Negative Binomial mixture for n = 1. Thus, if we let n = 1 in Eq.
(5.12) then the proof of Eq. (3.3) follows from the proof presented above.

Posterior Structure Function Consider a policyholder with claim history k1, ..., k; and let
t

us denote as K = Z k; the total number of claims that the policyholder had in ¢ years, where
j=1

k; is the number of claims that the policyholder had in year j,j =1, ...,t. Applying the Bayes

theorem, one can find that the posterior structure function, u (A|ky, ..., k), for a policyholder

or a group of policyholders with claim history ki, ..., k; is given by

> T, 4 1) el o= ()

Mk, .o k) = me : o TR (5.13)

z=1

which is the probability density function of a mixture of Gamma with n components.
Proof. Considering the previous assumptions, the claim frequencies ky, ..., k; are indepen-
dent, thus we have

e*/\)\kl e—/\>\kt o eft/\AK

kil T T kg t
]
j=1

P k1, .k A) = P (ky|A) - .- P (k| N) =

By Bayes theorem,

w(Aky, .. k) = Pk1,- k| A)u(n) OOP k,eke|A)u(N)

P(k1,...,kt)
/P(kl, ke A)u(A
0
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=1
kj! z 5 ﬂ.z)\K+o¢zflef(Tz+t))\
_ z=1

- e
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/ e—tA\K )\Otz 1,92 exp(—-rzA)d)\ E - /AK+azle(TZ+t))‘d/\
t T(az) #
z=1 z=1 0

(2 +t)K+az)\K+az—le(‘rz+t)/\ T.+1) K+04z/\K-ﬁ-az—le—(Tz"v‘t)A
E T: = § :Wz T(0z+K) :
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0

Note that if we let n» = 1 in Eq. (5.13) then the proof of Eq. (3.4) in Chapter 3 follows
from the proof presented above.

ct+1
Optimal Choice of )\:Jr Using the quadratic error loss function, the optimal choice of
At+1 (K1, ..., k) for a policyholder with claim history ky, ..., k; is the mean of the posterior struc-

ture function, that is

K+o¢z
Aevr (y, oo Ky sz (5.14)

5.3.3 Severity Component Updating the Posterior Probability

Let us consider now the severity component. Obviously, the setup for the severity component
will also be a generalization of the good risk/bad risk model, as was the case for the frequency
component. The portfolio is considered to be heterogeneous and we have fractions of drivers
p, where the risk (with respect to the mean claim size) that each policyholder of category z is
imposing on the pool, z = 1,--- n, is denoted by y,. The probability density function (pdf)
of the claim size = in each category is denoted by f, (z). Thus, the structure function is an
n-point discrete distribution and the distribution of the unconditional claim size, denoted by

f (z), is given by
= szfz (l’) i
z=1

k=0,1,....,p, >0, for z=1,--- ,nand > p, = 1. The expected value of the claim size is

z=1

equal to E (z) = Z 0.Yz-

We assume that a policyholder stays in the portfolio for ¢ years and that the number of
t

claims in year j is denoted by k; , the total number of claims in ¢ years is denoted by K = Z k;
j=1
and the claim amount for the &k claim is denoted by x;. In such a case, the information we have
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for their claim size history will be in the form of a vector x4, ..., xx and the total claim amount
K
over the t years that they stay in the portfolio is equal to Z 2. The risk that is imposed on the

pool by the policyholder who belongs to the [th categoryko% policyholders based on the severity
of their claims is denoted by ();. Then the posterior probability of the policyholder belonging
to the [th category is given by p, (z1, ..., 2k ). In order to design an optimal BMS that accounts
for each claim amount, we have to find the posterior probability of belonging in each risk class,
given the information we have about the claim size history for each policyholder for the time
period they stay in the portfolio. Applying the Bayes theorem, the posterior probability of the
policyholder belonging to the Ith category is given by the following equation

_ [ (@1, 2k|Q1) py '
S F (@1 2k|Q2) o,
z=1

o, (T, .., TK)

In this way we update the posterior probability of belonging in category [, given the information
we have for the claim size history of the policyholder. Using the quadratic error loss function,
the optimal choice of y;,; for a policyholder with claim size history zy, ..., xk,in t years is the
mean of the posterior structure function, that is

U1 (T1, oy Ti) = Zyzpz (1, o, The) - (5.15)
z=1

The mean claim size of each policyholder that belongs in the class [ is considered constant.
The setup described is applied to finite mixtures of Exponential, Weibull, Gamma and GB2
distributions. An extension to other finite mixture distributions can be obtained in a similar
way and is straightforward.

Finite Mixture of Exponential

Let x be the size of the claim of each insured. We assume that the portfolio is heterogeneous
and consists of n categories of policyholders, i.e. we have fractions of policyholders p, whose
claim sizes are distributed according to the Exponential distribution with parameter y,. The
parameter vy, denotes the risk that each policyholder of category z imposes on the pool, based
on its mean claim size, for z = 1,--- ,n. Thus, the structure function is an n-point discrete
distribution and the size of loss z is distributed according to

f(l’) :szelaxapmyz >0,z = 17 T and sz =1 (516)
Y z=1

z=1 z

Posterior Probability The [th category posterior probability is equal to
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Proof. Applying Bayes theorem, we have
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Optimal Choice of $i™ Using the quadratic error loss function, the optimal choice of
Ui+1 (21, ..., x ) for a policyholder with claim size history 1, ..., zx is the mean of the posterior
structure function and is given by substituting (5.17) into (5.15). We note that a mixture of
exponential distributions results in a more heavy tailed distribution than the relatively tame
exponential distribution.

Finite Mixture of Gamma

Similarly to the previous setup, we assume that the portfolio consists of n categories of pol-
icyholders, i.e. we have fractions of policyholders p, which their claims sizes are distributed
according to the Gamma distribution* with parameters v, 0., for z = 1, ...,n. Thus, the struc-
ture function is an n-point discrete distribution and the size of loss z is distributed according
to

f(x) = sz y 1% r (é)2 (5-18)

n

forx >0and p,,0,,y. >0,for z=1,--- nmand > p, =1.

z=1

Posterior Probability The posterior probability of the policyholder belonging to the [th
category is given by
K
zj
1

2
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(21, ) = — (5.19)

Proof. By means of the Bayes theorem, we have

P (‘Ila 7xk) =P (Ql‘xla ,ill'k) = ”P(xlvnjxk‘Ql)P(Ql)
P(xlv"ka‘QZ)P(QZ)

z=1

*j

K L1

LO07 L (0)%w
H ! T - Py
= ()@ ()

n K

[ L
:cj(GZ) e (02)%y:

T - 1 Pz
z=1 j=1 ((92)2yz)(92)2 ((Gz) )

4Using the reparameterization of Johnson et al (1994), obtained by setting 0? = é and y = af. One can see
for more Rigby and Stasinopoulos (2009).
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Optimal Choice of Sff“ Using the quadratic error loss function, one can find that the
optimal choice of ;1 (x1,...,xx) for a policyholder with claim size history zi,...,zx is the
mean of the posterior structure function, given by substituting (5.19) into (5.15).

Finite Mixture of Weibull Type III

We assume that the portfolio consists of n categories of policyholders, with probability belonging
in each category p,, and their claims sizes are distributed according to the Weibull distribution
with parameters y,,0,, for z = 1,....,n. Thus, the structure function is a n-point discrete
distribution and the size of loss z is distributed according to

fx) = ;Pzz—ir (9% + 1) L/EF <9i + 1)} o L))" (5.20)

z z

forx >0and p,,0,,y. >0,for z=1,--- ,n,> p, =1
z=1

Posterior Probability The posterior probability of the policyholder belonging to the [th
category is equal to

K0, K - Zip(Ly1)]”
PlelK [F<il/z+1)] ZH$§1_16 j=1 [yl (01+ >]
j=1

P (T1, ..., Tx) = — (5.21)
= r(L+1) Ko K N
Sopt (ML Tt 4
=1 =1

Proof. Applying the Bayes theorem, we have

P(x1,...,7|Q1) P(Q1)

o (1, .oy xr) = P(Qilz1, ooy 2k) = —
P(Ilv“'v'rk‘QZ)P(Qz)

z=1
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Optimal Choice of y;‘*l As previously, using the quadratic error loss function, one can find

that the optimal choice of ;1 (71, ..., 2x) for a policyholder with claim size history zi, ..., 2k
is the mean of the posterior structure function, given by substituting (5.21) into (5.15).

Finite Mixture of Generalized Beta Type II (GB2)

Finally, we consider the case of the finite GB2 mixture distribution. We assume that the
portfolio consists of n categories of policyholders with probability of belonging in each category
p, and parameters of GB2° distribution ¥.,0,,v.,s,, for z = 1,....n. Thus, the structure
function is an n-point discrete distribution and the unconditional distribution of the size of
claim z has a probability density function given by

n ooqvats: ) L
f@)=> plo.|a7=="" {yZZ”ZB(uz,sz) [1 + (3) } } , (5.22)
z=1

Y=

for z,p,,y.,v.,s, > 0and —oo < g, < oo ,for z=1,...,n and sz = 1. In this case the mean
z=1
is given by
“ B(VZ_FLaSz_L)
E = . 7z Tz
() ;pzy B

Vzvsz)

Posterior Probability The [th category posterior probability is equal to

®We use the parameterization of GB2 given by McDonald and Xu (1995), McDonald (1996), Rigby and
Stasinopoulos (2009).
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P (T1, .., Tg) =

n o] K [ K sl (K 2.\ = vetse -
> (5t=s) (T ITi+() ] P

J=1

Proof.
Applying the Bayes theorem, we have

P(z1,...,75|Q1) P(Q1)

o, (z1, ..., z) = P(Qi|x1,...xp) = —

(]

P(Ilv---azk‘Qz)P(Qz)

z=1

K
-1
-1 x;\ T VIS
[ Tiouar o moanso i+ (5)7] 7} o
o j=1
- n K
-1 TiN\NOz Vz+5z -1
> [ o-tag=r {uz== Bweso) [ (22)77] 7)o,

z=1 j=1

K K ov;—1 K o )
() () (LT}

. j=1 j=1
—  n K ozvz—1 ¢ g -1
loz]| >K || . || Tj\%z vz+sz
Z(ngDZB(Vz,Sz) T [1+(yz) ] Pz
2=1 j=1 j=1

Optimal Choice of Sfit+1 Under a quadratic error loss function, the optimal choice of

Usv1 (1, ..., x) for a policyholder with claim size history xi,...,xx is the mean of the pos-
terior structure function, given by

- B(Vz‘l'iasz_l)
) o) =S, (X1 ey TH) Y o: o) forz=1,--- n, 5.24
Upr1 (71 Tk) ;p (21 TE)Y Blv..s) or z n ( )

where p, (21, ..., xx) is given by (5.23).

5.3.4 Severity Component Updating the Posterior Mean
Finite Mixture of Pareto

Generalizing the structure proposed by Frangos and Vrontos (2001), we consider a heteroge-
neous portfolio with respect to the mean claim size of each policyholder. Assume that claim
severity given the mean claim severity, x|y, is distributed according to an exponential distri-
bution and that the structure function follows an n-component mixture of Inverse Gamma
distributions, with a pdf given by
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%exp(—%
D
= (%)

y>0,s, >0m, >0 for z =1,.. nz,oz—l with mean F(y sz

=1
unconditional distribution of the claim severity x will be an n—component mlxture of Pareto

distributions with pdf

. Then the

Sz

= psms (@ +m) (5.25)

z=1

Proof. Considering the assumptions of the model we have

x n 1 mz

e v mz P\
f(:c)—/f (xly) g (y) dy—/ . sz(y)szglr?@))dy

0 0 z=1 mz
n 7 (z+mz) (m4+mz) |52 H+1
Sy —S,— 1 exp
- sz (m2)™ (z +m.) / T sngl) = dy.
z=1

0

The integrand of the above expression is of the same form as an Inverse Gamma with
parameters s, + 1 and m, + z, therefore

e}

zmz x+my sz+1
[l ™y,

yl" (s2+1)
0

Thus we have

- Z p.s.mZ (z + mZ)isfl

z=1

Note that the Pareto distribution with pdf given by Eq. (4.3) in Chapter 4, is a special case
of the finite Pareto mixture for n = 1. Thus, if we let n = 1 in Eq. (5.25) then the proof of Eq.
(4.3) in Chapter 4 follows from the proof presented above.

Posterior Structure Function Consider that a policyholder stays in the portfolio for ¢

years, the number of claims they had in the year j is denoted by k; , the total number of claims
t

that they had in t years is denoted by K = Z k; and by zj, is denoted the claim amount for

j=1
the k claim. Then the information we have for their claim size history will be in the form of a
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vector x1, ..., i and the total claim amount for that specific policyholder over the ¢ years that
K

they are in the portfolio will be equal to Z z. Applying the Bayes theorem, we find that
k=1
the posterior structure function of the mean claim size y, given the policyholder’s claim size

history 1, ...,k denoted as g (y|z1, ..., Tx) is given by

-5

k=1

K K+s,
() o

g<y|$1, "'JIK) - sz =

z=1

5.26
yK+8z+1F (K + Sz) ’ ( )

which is the pdf of a mixture of Inverse Gamma with n components.
Proof. The claim sizes z1, ..., x; are independent and hence

K
T,

exp| — k:;

[y, mly) = f(@ly) - f (zly) = i

By Bayes theorem,

g (ylzy, ..., zp) = f(r;(,;l,filzl)j(y) _ Oof(wl,-..,wk\y)g(y)

/f(arh-..,ackly)g(y)dy
0




K+s,

K K
my+ E T my+ E T

k=1 k=1
exp| — 7

_K—s, 0o

K
1 \5z D'(K+sz)
§ :Pz(mz) mz+§ :‘”k F(s;)z/ YT (K +s2) dy
k=1

The integrand of the above expression is of the same form as an Inverse Gamma with
K

parameters K + s, and m, + Z 1}, therefore
k=1

K K K+sz
my+ E T my+ E T
k=1 k=1
exp| — v v
o0
=1.
yI (K +sz)
0

Thus we have
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K

mz+ E Tl
k=1
Y

1

K
n mz+z
e D e i

z=1

exp| —

% T'(K+s2)
mz+ 5 Tl
k=1
K
K K+sz (’”ﬁzzk)
k=1
n (szrE xk) e Y

k=1

= E P yK+= 71T (K 15,)

Note that if we let n = 1 in Eq. (5.26) then the proof of Eq. (4.4) in Chapter 4 follows
from the proof presented above.

Optimal Choice of yt+1 Consequently, by using the quadratic error loss function, the op-

timal choice of §;11 (21, ..., zx) for a policyholder with claim size history xy, ..., zx is the mean
of the posterior structure function, that is

K
mz—l—Zm

] 2
Yt+1 ('Ih y L sz K+SZ— 1 (5 7)

5.3.5 Calculation of the Premiums According to the Net Premium
Principle

We calculate the premiums based on the net premium principle for the set of the distributions

that were presented in the previous sections. Consider a policyholder or a group of policyholders
K

who in t years have produced K claims with total claim amount equal to ) zj. The net

k=1
premium that should be paid by that specific group of policyholders is equal to the product

of their annual expected number of claims at fault for period ¢ + 1, ;\t+1(k1, .., k) and their
expected claim severity, ¢;41(21, ..., Tk ).

e In the case where we update the posterior probability, the premium is given by

Premium = ey (1, oy k) iesr (21, .o Tx) = 6271‘2 (K1y ooy k) Ay sz (T1, s T) Y
= z=1
(5.28)
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where e = 3—15 denotes the exposure to risk, since as mentioned in the previous chapters all
policyholders were observed for 3.5 years and where 7, (kq,--- , k) in (5.28) is given by the
Egs (5.6, 5.8, 5.10) for the case of Poisson, Negative Binomial and Delaporte respectively and
p, (x1,...,x) is given by the Eqs (5.17, 5.21 and 5.19) for the case of Exponential, Weibull

n
B(Vz"!‘iysz_i)

and Gamma respectively. However, 4;11(21, ..., k) = sz (1, ooy TR) Y B Where

z=1
p, (z1,...,xx) is given by Eq. (5.23), for the case of the GB2.

e In the case where we update the posterior mean, using Eqs (5.14 and 5.27), the premium
is equal to

K

" mz—l—zl’k

_ . A K+ a; k=1

p — At ey k o TK) = e —=
remium = eAi1(kn, .., ki) e (21, 0, Tic) 6;” - >0 K+s. —1

- (5.29)

5.3.6 Properties of the Optimal BMS with a Frequency and a Sever-
ity Component

1. The system is fair as each insured pays a premium proportional to their claim frequency
and their claim severity, taking into account, through the Bayes theorem, all the infor-
mation available for the time that they are in our portfolio both for the number of their
claims and the loss that these claims incurred. We use the exact loss x; that is incurred
by each claim in order to have a differentiation in the premium for policyholders with the
same number of claims, not just a scaling with the average claim severity of the portfolio.

2. The system is financially balanced. Every single year,the average premium per policy-
holder remains constant and is equal to

P = eiwz)\zipzyz, (5.30)
z=1 z=1

where e is the corresponding exposure to risk. When we update the posterior mean, the
average of all premiums is again constant and is equal to

n

. < m,
P:ez_:ﬂzT—z_:pzsz_l (5.31)

The above is proved considering that the claim frequency and the claim severity are
independent components and that

Ey[A] = E[E [Nk, ... ki]]
Ey Y] = E[Ey|lzy, ..., xk]] -
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3. In the beginning, all the policyholders are paying the same premium which is equal to
(5.30), when we update the posterior probability, and equal to (5.31), when we update
the posterior mean.

4. Using finite mixture distributions we are able to deal with heterogeneous portfolios more
efficiently in comparison with simpler models.

5.4 The Design of an Optimal BMS Based Both on the
a Priori and the a Posteriori Criteria

As we mentioned in Chapter 3, Dionne and Vanasse (1989, 1992) presented a BMS that inte-
grates risk classification and experience rating based on the number of claims of each policy-
holder. This BMS is derived as a function of the years that the policyholder is in the portfolio,
the number of accidents and the statistically significant individual characteristics for the num-
ber of accidents. Furthermore, as we mentioned in Chapter 4, Frangos and Vrontos (2001)
extended this model by introducing a generalized BMS that integrates a priori and a posteriori
information on an individual basis based on both the frequency and the severity component.
This generalized BMS was derived as a function of the years that the policyholder is in the
portfolio, the number of accidents, the exact size of loss that each one of these accidents in-
curred, and the statistically significant individual characteristics for the number of accidents
and for the severity of the accidents.

We extend these models by considering three finite mixture regression models for the fre-
quency component; Poisson, Negative Binomial and Delaporte and four finite mixture regression
models for the severity component; Exponential, Weibull, Gamma and GB2. These models are
derived by updating the posterior probability of the policyholder belonging to a specific risk
category. Furthermore, we consider updating the posterior mean claim frequency by employing
a finite Negative Binomial regression model and the posterior mean claim severity by employing
a finite Pareto regression model.

5.4.1 Frequency Component Updating the Posterior Probability

Consider a policyholder ¢ with an experience of ¢ periods whose number of claims for period
7, denoted as Kf are independent. We assume that the portfolio consists of n categories of
policyholders classified with respect to the risk they impose on the pool and that the expected
number of claims of the individual ¢ who belongs to the zth category, for period j is denoted by
)\i .. Employing an n-point discrete finite mixture to model the number of claims K J produces

K i

fractions of policyholders 7., 2 = 1, ..., n, with mean claim frequency )\jzz The expected number

of claims, /\i,w is allowed to be a function of the vector ci,z (c;i’l, ,c;lh) of h individual’s
characteristics, which correspond to different a priori rating variables. To ensure non-negativity
of X, we assume that )\, = exp (Cizﬁi), for z = 1,...,n, with 8 denoting the vector of

coefficients.
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The distribution of the number of claims £ in each category is denoted by P, (k:; )\j“) As
previously, the structure function is an n-point discrete distribution and the distribution of the
unconditional number of claims is denoted by P (k) given by

P Kj—k Zﬂ'z A k: )\J ,k—O,l,...,wz>0, for z=1,---,n and szzl.

Note also that the mean of the number of claims is given by
= Z 71—2)‘2,1’ = Z T, exp (cilﬁi) )
z=1 z=1

Let us denote with K = Z Kj the total number of claims of policyholder ¢ in ¢ years

and R; the risk the pohcyholder imposes on the pool if we assume that they belong to the
lth category of policyholders. The insurer has to calculate the best estimator of the expected

number of accidents at period ¢ + 1, 5‘: (K . Klcl,, . 8, for 2 = 1,...,n categories
using the past information over ¢ periods of claim frequency and known individual characteristics
over t + 1 periods We apply the Bayes theorem in order to obtain the posterior probability

m (K}, ..., Kl;cly, ..., 1) that the policyholder belongs to the Ith category

P(K},...Klcl, . R
m (Kil,.. Kl c“,.. cffl): ( L [

ZP - 7,’ 217' ’Citzl|RZ)7TZ
Similarly to the case where only the a posteriori criteria are taken into account, using the
. . . . Nan .
quadratic error loss function the optimal choice of A, (Kil, Kl i c'fj’;l) is the mean of
the posterior structure function
ctFl u
A, (K. Kk, i) = sz (K Kl b exp (5180 (5.32)
z=1

When t = 0, )\ (ck i) = Z T, exXp ( o ), which implies that only a priori rating is used in the
z=1
first period.

Finite Poisson Mixture Regression Model

We fit an n-point discrete finite Poisson mixture to model the number of claims K7 and we have

fractions of drivers 7, with Poisson parameter /\JZ‘J.7 z =1,...,n. Consider that )\j“ is a function of
the vector c’ (c; i1 Chi ») of h individual’s characteristics, which represent different a priori
rating varlables. Specifically, assuming that )\]“ = exp (c;lﬁi), for z = 1,...,n , non-negativity

of )\Jzi is ensured from the exponential function and /3 is the vector of the coefficients. Thus,
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the probability specification will be a n—component Poisson regression mixture model of the
following form

P (K] =k) szeXp e (e 5;,)) o (52)] (5.33)

with £ =0,1,... and 7, /\il >0for z=1,...,nand > m, =1.

z=1

Posterior Probability The posterior probability of the policyholder belonging to the Ith
category of drivers is given by®

[exp(cj’i/p’j)]K ftexp(cj’zﬂj)
7y (KL oy Kl ey ) = — S (5.34)
3 [exp (,52)] " emtor( ),

z=1

Proof. Eq. (5.34) can be obtained by letting )\jm = exp (cilﬁjz) into Eq. (5.6).

ct+1
Optimal Choice of A, " Employing the quadratic error loss function, the optimal choice of
Nak)
)\ i (Kl o Kb el Coiroers ?;1) for z = 1,...,n categories, is the mean of the posterior structure
functlon given substituting (5.34) into (5.32).

Finite Negative Binomial Type I Mixture Regression Model

We fit an n-point discrete finite Negative Binomial mixture to model the number of clanns
K] and we have fractions of policyholders 7, with Negative Binomial parameters )\“, m,

for z = 1,...,n. Consider that X, is a function of the vector ¢, (Ci i1 c p h) of h individual’s
characterlstlcs which represent dlfferent a priori rating varlables Spec1ﬁcally, assuming that

/\] = exp( 53) for z = 1,. , non-negativity of )\“ is ensured from the exponential

function and 6Jz is the vector of the coefficients. Thus, the probability specification is an
n—component Negative Binomial regression mixture model of the following form

TR D (T 1 L alew (@) '
i = ‘s z k 1+ oz;i exp (Cizﬂi) 1+ a;i exp (C,jzzﬁjz) )

for k=0,1,2,3,... where oz;i > O,)\;i >(0forz=1,..,n and ZWZ = 1.

®Note that Eq. (5.34) cannot be obtained directly from Eq. (5.6), i.e. by letting )\;Z = exp (ciﬁi) into
(5.6).
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Posterior Probability The [th category posterior probability is equal to

1 t t+1
m (K o K zz,..,CZJ )
t K? + L -1 t ) S K
(" %- 1 el edaee(edf) )
- KJ 1"'0‘?,1' eXp(Cly,iBf) 1"'0‘{,1' eXp(Cl?,iBf)

1
t Jo 1 t v o K
Z H (K@ + an!i 1) ( ‘ 1 . . ) ai,i < ai’l: eXp( z’lﬁi> ) 7TZ
g et KZ 1+ajz’iexp(c;i6]z) 1+o¢i’i exp(c;lﬂi)
Proof. Eq. (5.36) can be obtained by letting )\jm = exp (cilﬁjz) into Eq. (5.8).

Optimal Choice of S\HI Employing the quadratic error loss function, the optimal choice of
)\Hl (Kl o K el Coir vors ?;1) for z = 1,...,n categories, is the mean of the posterior structure
function given by substituting (5.36) 1nto (5.32).

Finite Delaporte Mixture Regression Model

We fit an n-point discrete finite Delaporte mixture to model the number of claims k = K 7 and

we have fractions of drivers 7. with Delaporte parameters N 0LV forz=1,..n. Con51der

is a function of the vector c’ (C,jz,z,D' ,ciﬂ’h) of h individual’s Characteristics,

again that A

which represent different a priori ratlng Varlables. Specifically, assuming that )\J“ = exp (cilﬁjz),

for z = 1,...,n , non-negativity of X! . is ensured from the exponential function and (3’ is the

vector of the coefficients. Thus, the probablhty specification given the parameters )\1 i )‘i,i

will be an n—component Delaporte regression mixture model of the following form

b exp (07Z Jz))]C (yiz)k_m o . —m ,
i Z( > k! exp(é,iﬁiﬂm O +m

with k =0,1,..and m, X, > 0,0 <), <1,z=1,..,nand » m =1

Posterior Probability The posterior probability of the policyholder belonging to the [th
category of drivers is equal to
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1 . t+1
WZ(KZ-,.. K, c“, cll)

, B t
St exp (d,8) of, (L=vl)] 7 ] S| m
=1

= , (5.39)
Z texn(e] L)l 1+ exp (07 ) Uj;,i (1— Vi,i)]ioi’i HSJ»Z T,
5T
where
K : N ¢ VK —m -m
S (KN (exp (c8])) " (v,) o 1 1
5= () el i)+ ) Tl

and S; . is given for z = [. A o
Proof. Eq. (5.39) can be obtained by letting \ ; = exp (¢, ,67) into Eq. (5.10).

ctt1
Optimal Choice of )\t+ Employing again the quadratic error loss function, the optimal

. ctHl . .
choice of \; (Kz-l, LK . Hl) for z = 1,...,n categories, is the mean of the posterior

(3 227 °) Z’l

structure function given by substltutlng (5.39) mto (5.32).

5.4.2 Frequency Component Updating the Posterior Mean
Finite Negative Binomial Type I Mixture Regression Model

In this case, the generalized BMS obtained for the frequency component will be derived as
a generalization of the structure used by Dionne and Vanasse (1989, 1992). We consider a
policyholder ¢ with an experience of ¢ periods whose number of claims for period j, denoted as
KJ are independent. We assume that KJ follows Poisson distribution with parameter \’. We
consider a heterogeneous portfolio of n categories of policyholders, with expected number of
claims of the individual 7 who belongs to the zth category denoted as )\Z i 2 =1,...,n. We allow

Al vary from one individual to another. Let X, ; = exp (¢l ;87) , where ¢/ ; (], ....c,,,) is the
vector of h individual’s characteristics and 37 is the vector of the coefﬁments The conditional
to 07 ;, probability that policyholder 7 will be involved in k accidents during the period j will
become o
e () (exp (,87))"
k! ’
for k = 0,1,2,3,... and A} > 0 where E(Kf|cil) = Var(Kf|é7i) =\ =exp (cizﬁi) . For the
determination of the expected number of claims in this model we assume that the h individual

P(Kg = k‘ciz) =

150



characteristics provide enough information. However, if one assumes that the a priori rating
variables do not contain all the significant information for the expected number of claims
then a random variable ¢; has to be introduced into the regression component. According to
Gourieroux, Montfort and Trognon (1984 a), (1984 b) we can write

X =exp (8] +¢e;) = exp (cL;8)) u,

where u; = exp (g;), yielding a random /\z Assume that u; follows an n—component Gamma,
mixture distribution with probability density function

1 1
n oz ! ]' Qaz L .
U, exp = U
z

o)=Y m— ”‘ZP<1> , (5.40)

(e

u; > 0,0, > 0 for z = 1, ...,n,ZwZ = 1 with mean E(u;) = 1. Under this assumption the
z=1
conditional distribution of Kj|c,; becomes

; ; “ E+Lt—1 a,exp (B2
P(Kfzkldi)zzm( T ) [o: exp (c,82)] -, (5.41)
’ k ; j k“r?z
z=1 [1 + O, €XP (Ci,zﬁz)}
which is an n—component Negative Binomial mixture distribution with parameters «, and

exp (07 5]) with F K]| sz exp )

Proof. Considering the assumptlons of the model we have

[e o]

; ; eieXp( BZ) ex AYAL
P(Ki] = k|c,]zz) :/ ,g. p(cLi0)us) v (u) duy;
0
ooe_ exP< ZZBZ) ex c u; az ex Ly,
:/ p zszZ l Zﬂ-z i 1)p( ay Z)duz —
0 O‘Z

oo

= O‘Z exp(c’ ,B; r ; ; k+%71
= Zﬂ'z B k,Fp ) ) /exp [— (alz + exp (ciﬁi)) ul] u; ** du; =
0

o0
7\1%
z

L [ (& et ) ]

0

. [(i +exp< ) ] (e () w) -

= Z % fon( 8
k'F

+exp c ZB

N [N—
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n

1 a5 [exp(e 89)]F
Yo e (b ) -
kll"(%)[i—&-exp(cgiﬁ%)] Gz 2

z=1

_ z”: o Dta [osexn(cL o)) _
= ar
i T(k+1)r( 2 ) [1+az exp( e 753)]%&2

B e,

1+o¢z exp(ci’iﬁj )] +% .

Note that the NBI regression model given by Eq. (3.19) in Chapter 3, is a special case of
the finite Negative Binomial mixture regression model for n = 1. Thus, if we let n = 1 in Eq.
(5.41) then the proof of Eq. (3.19) in Chapter 3 follows from the proof presented above. Note
also that if a of the NBI model is reparameterized to % then the NBII model given by Eq.

(2.15) in Chapter 2 can be obtained.

Posterior Structure Function We are going to build a generalized optimal BMS based
on the number of past claims and on an individual’s characteristics in order to adjust that
individual’s premiums over time. The problem is to determine, at the renewal of the policy, the
expected claim frequency of the policyholder i for the period ¢ 4 1 given the observation of the
reported accidents in the preceding ¢ periods and observable characteristics in the preceding
t + 1 periods and the current period.

Consider a policyholder i with K}, ..., K! claim history and c},...,c/™" characteristics and

t

denote as K = Z K Z] the total number of claims that they had. The mean claim frequency of
j=1

the individual 7 for period ¢ +1 is Ai* (™, u;) a function of both the vector of the individual’s

characteristics and a random factor u; with pdf w(u;). The posterior distribution of the mean

claim frequency AF for an individual i observed over ¢+ 1 periods with K}, ..., K! claim history
and ¢} 2y ftl characteristics is obtained usmg Bayes theorem and is glven by an n-component

Gamma mixture with updated parameters a—z + K and &/, with pdf

1,27

n VKt (g Eras -t t+1
SE)T e (AT e Texp [ S AL ]
g (S
f ()\H_ | 17" Kf? zz"“?cf’z) = Zﬂ-z R - 1 nE 5 (542)
= r(L+x)
03 (e ) .
where S,fz = exp( GRETEY with A‘*" > 0,a, > 0 and z = 1,....,n and Zﬂ'z = 1. Let us
z=1
consider, as a special case, the situation in which the vector of the individual characteristics
remains the same from one year to the next, ie. ¢}, =2, = ... ="' = c,; and g} = 2 =

.. = 8% = f3,. Then the posterior distribution of the mean claim frequency AT is simplified to
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n ZJ K+£ )\t'+1 K+£—l —Zj )\t+1
f(A§+1|Ki1,...,Kf;cl-l,...,cg) :ZWZ( ) ( ) eXp[ nE }
z=1 F (alz —|— K>

9

1

Rtas . -
where Z; , = [+ + t] with /\§+1 >0,a,>0and z=1,...,n, Zﬂ'z =1.

exp(cz,iﬁz )042
=1

Proof. In the following we are going to provide the proof of Eq. (5.42)

First, using the Theorem 9 in Chapter 3 we are going to calculate f(A:™) which represents
the pdf of \:*! (cf“, ui), i.e. the mean claim frequency of the individual i for period ¢t + 1,
called the structure function. Based on this theorem, one can find that f ()\EH) is given by

1 At
A

- (W)az (>\§+1)i—1 Jr Gy
t+1\ _ : -

Qz

n
)\EH > 0,a, > 0 and z = 1, ...,n,ZwZ = 1, which is a n-component Gamma mixture
z=1
distribution with parameters a, and exp (cf“ﬁ”l). If we Let g (u;) = exp (cﬁ“ﬂt“) u;, then
g is a strictly increasing function. Also, as we have already mentioned, u; follows a n-point
continuous distribution the mixture of n Gamma, denoted as v (u;) whose pdf is given by (5.40).
Note that here the support sets:

X ={u;:v(u)>0}and Y = {A\"" : X*! = g (u;) for some z € X}

are both the interval (0,00). From Eq.(5.40) we can easily see that the pdf of u;, v (u;) is
continuous on X. If we let A" = g (u;), then:
_ 1 ALt d - 1
gt (/\;H— ) = exp(cT15) and d>\§+19 ! (>‘§+ ) = exp(czilbnhkl)

and ¢g~' is continuous on Y. Applying Theorem 9 in Chapter 3, for \™! € (0, 00) , we get:

f (/\;&1) — 0w (971 (XZ;H)) ‘d)\?*lgil (X;H)‘

1 A+ az 1 N1
L i) ()
n 1 tle 1 (le_1 )\$+1
B S G GRS ()%= e -
~ r(z;) '




Next, using Bayes theorem, we will prove that f (At+1| Lo KL . Z) is given by (5.42).

By Bayes rule

P (K} KN el d) F (0

t+1 t t\
f ()\ | 7 7 .. Kz? 79 -7ci) - P(K’Ll, ,,,’K,HCZ.?_”’ Z) (544)
and where by definition
P((KD, o K)o cl) = /p (KL o KN L) f (DY) AL (5.45)
0
From (5.44) and (5.45) we have that
FNTKL LK ,cg)
P Kl B Kt )\t+1 ) )\t+1

_ ( Nl ) FNT) (5.46)

/ P (K} KN el d) () ax!
0

The probability of the sequence K}, ..., Kf given the frequency of accidents at ¢+ 1 and the
individual’s characteristics over the ¢ periods c}, ..., ¢!, will be a t-dimension Poisson distribution:

R

J

P (K}, .. K]\ ¢, ) = = (5.47)
g
j=1
If we let A = exp (cizﬂi) u; = )\ZuZ then from (5.43) we get:
1 AL+
() oyt
£ Z s (5.48)

r(a) |
with u; > 0,a, >0 and z = 1,...,71,237?z =1.

z=1
By substituting (5.47) and (5.48) into (5.46), we get:
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f KD, o Ko l) =

o~

Jj=1 | | J oz 1 4 Nant
)\ n »t+11 (Az-ﬁ-l)az exp| — -til
j A A ay

T_
3
T )‘]u’ i ar 1 t+1
y z
1 ) K 1 t+1\ @y 1 A t+1
/ = | |>‘iui E 7rz<.t+1 > (AF) e exP(‘-til dA;
. A azy A azy
j=1 z=1
0
t
3J At
- P i\ K O as t+1
=T N 1 )\t+1 A
€ 11 Tz | TFF1 eXpP\ — 741
i Ap oz i Az
8_ z=1
- T
s >\t+1
- >‘7, +T 41 K " 1 ot
=1 i i 1 At+l 1 A d)\t+1
e T T2\ 731 exp I
A A ay A ay
z=1
0

K L i
Qy 1 N
1 1 E (At+1)K+@ -1 j=1 e
1 1 Tz ; exXp | — I+ 1 i
(At-+ ) (AH az> ¢ il ¢

(0] J
" é - 1\ Kt o -1 j=1 t+1 t+1
1 1 Az~ j=
T =S| E LE (Ai ) @ exp|— =S| A A
A A as - A;
—
0

, t
If we let )\Z = )\Z ~u; and K = ZKf
j=1
1
STf we let Xt =\, -y
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T
t K+g,-1 t t
00 1 3J 1 J 1 3J
n @ﬂLE A az+§ A @Jrg A
Jj=1 t+1 Jj=1 t+1 j=1 t+1
§ LER N B == wall Y exp|—| ——Fr— | N |4 | [N
Aq Aq Aq
z=1
0
t K+ ¢
1 3J 1 37
(TZ'*‘E i (TZ'*‘E i
t+1\K+ta; —1 j=1 j=1 t+1
()\i ) z ED exp | — N A
K2 K2
n
—_= 7TZ T
Z r(L+K)
z=1

1 E VY
@+ exp(cz’zﬂz)

t K+ ¢

— K+-L - =
exi)(cl'?rlﬁt"rl) (Afi+l) o P exlj:)(c]'-$+15t+1) /\$+1
n
=27
— # r(L+K)

- Zn: S R OV R Y
= - (P P(al +K) )
z=

t
LY (el L)
j=1
exp(ciﬁlﬁfrl)
When the vector of the individual characteristics remains the same from one year to the
next we have that exp (cilﬂi) = exp (c.,;3,) and it can be easily verified that 7, is simplified
K+-

1 az
[exp(cwﬁz)% + t] thus

n
where sz = with u; > 0,a, >0 and z =1,...,n and Z?TZ =1.
z=1

to Zi,z =

i ()\1Z§+1)K+a—1zfl exp[—Zj )\#Jrl]

F(L—FK) 4,27

az

R

- i\t
FOSPRL  ct) = 3 2
z=1

Note that if we let n = 1 in Eq. (5.42) then the proof of Eq. (3.21) in Chapter 3 follows
from the proof presented above.
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ctt1
Optimal Choice of }\i+ Using the quadratic loss function, in the general case, one can

. L+l . .
find that the optimal estimator of A, (K},...,Kl;cl,, .. .,c’;jgl) is the mean of the posterior
structure function given by

7 [ 1,27 ) Y,z

5 (Y o Kl ) = A ) f PR Kl ) A
0

t

1 J

. a2 K
J=1

— Zﬂzexp t+1ﬁt+1) -
D ex
i=1

(5.49)

This estimator defines the premium and corresponds to the multiplicative tariff formula where
the base premium is the a priori frequency exp ( t+16t2+1) and where the Bonus-Malus factor

is represented by the expression in brackets. When the vector of the individual characteristics

. N TU .
remains the same from one year to the next A, is simplified to

a K
N =1
N (K Kl 7. exp (Caq !
(Kbl = Ym0 | o
When ¢t = 0, )\ Z T, eXp Coi ) which implies that only a priori rating is used in the

first period. Moreover, When the regression component is limited to a constant 3, , one obtains

AR KD =Y mexp (B.)
z=1

which corresponds to the ‘univariate’ ,without regression component, model.

5.4.3 Severity Component Updating the Posterior Probability

Let us consider now the severity component. We will model the severity component using
a finite mixture of Exponential, Gamma, Weibull and GB2 regression models. Consider a
policyholder ¢ with an experience of ¢ periods where their number of claims for period j are
independent and are denoted as K. ZJ = k , their total number of claims over ¢ periods is denoted
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t
as K = ZKZ and by Xf .. is denoted the loss incurred from their claim % for the period
j=1
j. Then, the information we have for their claim size history will be in the form of a vector

Xi1,Xi2,...,X;k and the total claim amount for the specific policyholder over the ¢ periods
K

that they are in the portfolio will be equal to ZX““ We will assume that the portfolio

k=1
consists of n categories of drivers based on their claims severity and that the expected claim

severity of the individual ¢ who belongs to the zth category z = 1,...,n , for period j is denoted
by y7 ;. Furthermore, consider that the expected claim severity g ; is a function of the vector

diz (di’M, ...,d;ah) of h individual’s characteristics, which represent different a priori rating
variables. Specifically, assume that yiz = exp (di’ﬂg), for z = 1,...,n , non-negativity of yil
is implied from the exponential function and 7/ is the vector of the coeflicients. Let us denote
as (Q; the risk that it is imposed on the insurance company if we assume that the policyholder
belongs to the Ith category of drivers sorted by the amount of loss that their accidents produce.
Then the posterior probability of the policyholder belonging to the [th category is given by
o (Xin Xig, o, Xiks g -oes dﬁl) The portfolio is considered to be heterogeneous and we have
fractions of drivers p, where the risk that each policyholder of category z is imposing on the
pool, z = 1,--- ,n is denoted by y.. The pdf of the claim size Xf r = T in each category is
denoted by f, (). Thus, the structure function is a n-point discrete distribution and the pdf
of the unconditional claim size of the claim k of the policyholder 7 in period j is denoted by
f (z) and has a pdf of the following form

f(a:):szfz (:C;yg’i),kzo,l,...,pz >0, forz=1,---,n and szzl.
z=1 z=1

Note also that the expected value of the claim size is equal to

E(x)=> pyl;=> p.oxp(dnl).
z=1 z=1

In order to design an optimal BMS that will take into account the size of loss of each claim,
we have to find the posterior probability of belonging to each risk class given the information
we have about the claim size history for each policyholder for the time period they are in the
portfolio. Applying the Bayes theorem, the posterior probability of the policyholder belonging
to the [th category is given by the following equation

f (Xi,l,Xi,Qa ooy X K5 dllﬂ" e dff’@l) P

Z f (Xi,l,Xi,2> ey X K d;p e d?f‘@z) Pz
z=1

.l t+1\ _
Pr (Xi,l,Xi,Z; '--7Xi,K7 dl,i? s dl,z’ ) -

In this way, we update the posterior probability of belonging to category [ given the infor-
mation we have for the claim size history of the policyholder. Using the quadratic error loss
function the optimal choice of /™" (X; 1, X;2, ..., Xix; d2 diit) for z = 1,...,n categories,

2,00 0 Yz
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dt+1

ceey Z,i

given the observation of X, X9, ..., X; x and d;i, for z = 1,...,n ,will be the mean of

the posterior structure function

Qf“ (Xi,l,Xm, ey Xi,K; dl dtﬂ)

2,40 " Yz

= Y p. (XinXig, o, Xigrdl s, oo di5H) exp (AU (5.50)
z=1

When t = 0, ¢} (diz) = Z P, exXp (d;ﬂi), which implies that only a priori rating is used in
z=1

the first period.

Finite Exponential Mixture Regression Model

The finite exponential mixture regression model will be the first model we present in order to
deal with the generalized Bonus-Malus factor obtained with the use of the severity component.
We fit an n-point continuous finite Exponential mixture to model claim size X f . and we have

fractions of drivers p, with Exponential parameters yiz for z =1, ..., n. Furthermore, as we have
already mentioned, if we assume that yil = exp (dg'ﬂg;), for z = 1,...,n then the probability
specification of XZJ . Will be an n—component Exponential mixture regression model of the
following form

e
f(z)= p,———— (5.51)
2 exp (d 7%)
for ka >0,p, , yiz >0,z=1,...,nand sz =1.
z=1
Posterior Probability The [th category posterior probability is equal to

gl t+1\ __
pl (Xi,l,Xi,27 '--7Xi,K7 dl,i’ ceey dl,i ) =

K

= . (5.52)




Proof. Eq. (5.52) can be obtained by letting yil = exp (diﬂjz) into Eq. (5.17).

Optimal Choice of yt+1 Using the quadratic error loss function the optimal choice of

9 (Xia X2, ooy Xi i d dt“) given the observation of X;; X, ..., X; x and d} dttt

2,40 0 Yz 2,80 ") Yz

for z = 1,...,n categories, will be the mean of the posterior structure function and it is given
by substituting (5.52) into (5.50).

Finite Gamma Mixture Regression Model

In this case, we obtain the generalized Bonus-Malus factor by fitting an n-point continuous
finite Gamma mixture regression to model for assessing claim size ka We have fractions of
drivers p, with Gamma parameters ( y;i, Giz) for z =1, ...,n. Suppose that yil = exp (diﬂfyg),
for z = 1,...,n then the probability specification of Xf r Will be an n—component Gamma
regression mixture model of the following form

1 x

Tl e

- Z p 1 T (GJZ,'L) e (9;7() exp(djz,i»y%)
: y . . ;2

- [(‘)Qi)zexp (di,ﬂi)} (%) g <<eﬂ‘li)2)

for ng >0,p. yiz,eiz >0,z=1,...,n and sz =1.

(5.53)

Posterior Probability The posterior probability of the policyholder belonging to the [th
category is given by

P (Xm,Xi,z, ey Xi K dt dt+1) _

Z’L7' Yz

K

1 K 2 | () =
[[(9f,i)2exp (d{ﬂ?)} (9{9)2F( L )] (g )

@) (@) |7
[[ 91 exp (djzﬂﬂz)} 0
1

n

z=

—~
~—
’1
VRS
—~
=]
N
|
~_
| I
|
=
-~
[ : =
8
ol
S~
—~
>
N .
N
[
@
>
o}
=
ing
8
ol
S
N

| | (5.54)
Proof. Eq. (5.54) can be obtained by letting y/ ; = exp (&’ ;77) into Eq. (5.19).
Optimal Choice of §i™ Using the quadratic error loss function the optimal choice of
@f“ (XLLXLQ, ey Xi K5 di i ,ditl) given the observation of X1 X, o, ..., X; x and dm, ) ,ditl

for z = 1,...,n categories, will be the mean of the posterior structure functlon and it is given
by substituting (5.54) into (5.50).
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Finite Weibull Type III Mixture Regression Model

Next we fit an n-point continuous finite Weibull mixture to model X ZJ  and we have fractions of
drivers p, with Weibull parameters yil, Hiz for z =1, ..., n. If we assume that ygz = exp (d;ﬂg),
for z = 1, ..., n then the probability specification of X Zj  Will be a n—component Weibull mixture
regression model of the following form

(5.55)

for ijk >0,p, , ygl,%l >0,2z=1,...,n and sz =1

Posterior Probability The [th category posterior probability is given by
pl (X@LX@'Q? ceey Xi,K; dll,i, ceey d;:l)

( T Kg{,i

T 1_+1> .

- n . K 07

gl ) | e L o1 - ’

( l,z) exp(diﬂ{) xk [eXp <_ Z (#F <93 + 1)) )] P

1,i

— - 4 k=l k=1 : (5.56)

0%
1
Gj_’, + 1)) )] Pz

Proof. Eq. (5.56) can be obtained by letting yil = exp (dil’yjz) into Eq. (5.21).

ﬂ
L
NQH

_l’_
—

]
=
=

=
R‘NQ
“|
1
@
>
o

/\

MN
VRS
‘>3

=R
l

N
/_\
I8

K )
(02,) —exp(d}: 1) k=1

Optimal Choice of i+ 1 Using the quadratic error loss function the optimal choice of

9 (X, X2, oo Xixc dl i ,ditl) given the observation of X;1 X; s, ..., X; x and d. ;, . ,ditl

for z = 1,...,n categories, will be the mean of the posterior structure function and it is given
by substituting (5.56) into (5.50).

Finite Generalized Beta Type 11 Mixture Regression Model

Finally, we consider the case of the n-point continuous finite Generalized Beta type 2 mixture

regression model for assessing claim severity Xj We fit an n-point continuous finite GB2

J J J
z K3 Vz,z’ Sz,z’

mixture to model X/ ;% and have fractions of drivers p, with GB2 parameters y’ 0>
for z = 1,...,n. Suppose that yz i = €exp (di ﬁj) for z = 1,...,n then the probability specifica-
tion of X J & w1ll be a n—component GB2 mixture regression model of the following form
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= Yol et

j vl +sl .
. , ,

(eXp (dii’)/g))ai’iyiiiB(yivi’ Si,i) 1+ (m) (557)

forXf;k>O,pz>0,y;i>0,—oo<a < oo and >0forz=1,..,nand > p, =1.

Z’L’ ZZ

z=1
In this case the mean is
n B(Vi,i+ Jl asi,i_ Jl )
E(z) = exp (& .~ e 7 e
)= 2o () =50
Posterior Probability The [th category posterior probability is equal to
P1 (Xi,l,Xi,Qa Xz K)diw . adtz-i;l) -
" At ( x RN A
: - T 1+ |: iy :| P
[[expw,m] i »] (H ) I+ =
n ) K K Ui,i”i,i_l K ol ”i,i+5£,i !
| oLl { 2 }
2t T 1+ J P,
; [[exp(ﬂ,ﬂi)] U]z’iyjz’iB(Viz,sil)] (};[1 ]> 31;[1 [ eXp(di,ﬂQ ]
(5.58)

Proof. Eq. (5.58) can be obtained by letting yil = exp (dil'yjz) into Eq. (5.23).

Optimal Choice of §i™' Using the quadratic error loss function the optimal choice of
gf“ (XLLXLQ, ey Xi K5 d! i ,ditl) given the observation of X;1 X, o, ..., X; x and dm, i ,ditl
for z = 1, ..., n categories, will be the mean of the posterior structure functlon, given by
At+1 (X11X227-'- XzKadzza- 7di—’;1)
n i1 . . B(Vi,i+a+siz_a}_)
= Z p. (X1 Xigs o Xigsdl o dii) exp (d2 7)) — ’ (5.59)
=1 B(Vz,i’ Sz,i)

where p, (Xi1,X;2, ..., X; i3 d dt+1) is given by (5.58). When ¢ = 0,

217' A )

162



B 1 1 1 _ 1
gl (dl ) _ n ) oxp (dl ,yl) (Vz,z + O.;l’i ) S':,’L o-;i>’
A 2,0 E 2,0z
2=1 B(Vz,i7 Sz,i)

which implies that only a priori rating is used in the first period.

5.4.4 Severity Component Updating the Posterior Mean
Finite Pareto Mixture Regression Model

In this case, the generalized Bonus-Malus factor for the severity component is derived as a
generalization of the structure used by Frangos and Vrontos (2001). Consider a policyholder i
with an experience of ¢ periods. Assume that number of claims of the individual ¢ for period j

are independent and is denoted as Kf and by X ZJ . is denoted the loss incurred from their claim
k for the period j. We consider that X f ., follows the Exponential distribution with mean claim
severity for period j, y/. We allow the 3/ parameter to vary from one individual to another
assuming that the expected claim severity yiz is a function of the vector djzZ (di,i,h . d£7i7h) of
h individual’s characteristics. Since policyholders have different mean claim severity, it is fair
for each policyholder to pay a premium proportional to the risk that they impose on the pool.
Specifically, we assume that y! ; = exp (d 2), where & ; (&, ...,d’ ) is the 1 x h vector of
h individual’s characteristics, which represent different a priori rating variables and +7 is the
vector of the coefficients. Then, the conditional to dil pdf of the claim size X Zj ., for a claim k

of a policyholder ¢ in period j will become

“on(@ )
exp (d %)’
for ka > 0 and yf > 0 where E(ka|dil) = y{ = exp (djzﬂi) and Var(Xi];k|d;i) = (yf)2 =
(exp (dizfyjz))2 . For the determination of the expected claim severity in this model we assume
that the h individual characteristics provide enough information. Nevertheless, if one assumes
that the a priori rating variables do not contain all the significant information for the mean

claim severity, then a random variable £, has to be introduced into the regression component.
Thus we can write

F(XTildL) =

y! = exp (djzﬁjz +¢&;) = exp (diﬂi) i

where w; = exp (§;), yielding a random y{ . We will assume that w; follows an n-component
Inverse Gamma mixture distribution with probability density function

", Gop P (_(SH))
Sy—1 w;
w (wl) = sz ws S,+1
= ()7 i)
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w; > 0,8, >0forz=1,...,n, sz = 1 with mean F(w;) = 1. It can be shown that the above

z=1
parameterization does not affect the results if there is a constant term in the regression. We
chose E(w;) = 1 in order to have E(§;) = 0. Under this assumption the conditional distribution
of X, |d, becomes

—Dexp (al77))”
Kl = Do Lo 561)
( - 1) €xp (dz 172))
which is an n-component Pareto(sz, (s, — 1) exp (djzﬂi)) mixture distribution and has a mean

equal to F XJ Z p.exp ( nyj ).

Proof. Con81der1ng the assumptions of the model we have

exp(djz’i'yz)wi
0

f (ijk|diz) = /MU} (w;) dw;

o oz
- exp(djz.,ﬂjz.)wi Pz (L)SZJFII‘(SZ) Wi =

0 z=1 sz—1

[ x .
= /e e"p(d]z,ﬂ%)ﬁ’i ipz (e5) Texn (=) dw;
0

exp(di,ﬂ% w; -
z=

00 z+(9z—1)exp(dJ v%)) 1
o (# e T

eXp epd 'yj)w j w
= .- 1)° ) SN,
sz wiT (5 +1) & i

—s,—1

=> p.s: ((s: = Dexp (& 42))" (z + (5. — L) exp (& 17))
z=1

ooexp “*“z—“exp(d] ) [ (rezen(d 1))
o {d, 7t )i (7L i d

wil (s.4+1) W; .

0

The integrand of the above expression is of the same form as an Inverse Gamma with
parameters s, + 1 and (s, — 1) exp (. ;71) + 2 thus we have

00 B (a:+(sz—1) eXP(di,in)) (a:+(sz—1) eXP(di,in)) szl
/eXP eXP(d;iVJz.)wi exp(d;i"rjz.)’wi d

w;(sz+1)
0

wizl,
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and the probability specification becomes

Xj d (s exp(d] 'yz)): -
zk| sz (s exp(da 7Z)) z+

Note that the Pareto regression model given by Eq. (4.15) in Chapter 4 is a special case of
the finite Pareto mixture regression model for n = 1. Thus if we let n = 1 in Eq. (5.61) then
the proof of Eq. (4.15) in Chapter 4 follows from the proof presented above.

Posterior Structure Function Our goal is to construct a generalized optimal BMS based
on the past claim size history and on an individual’s characteristics in order to adjust that
individual’s premiums over time. Thus the problem is to determine, at the renewal of the policy,
the expected claim severity of the policyholder i for the period t+1 given the observation of the
reported claim sizes in the preceding ¢ periods and observable characteristics in the preceding
t+1 periods and the current period. Consider a policyholder 7 with X}, X7, ..., Xf, K claim size
dﬁ-&-l

history in ¢ periods and d, ..., characteristics. The total number of claims for this specific

t
policyholder in the preceding ¢ periods will be denoted as K = Z Kij and the total claim

j=1
¢ K]

amount that the accidents they were at fault produced will be equal to Z Z XZJ = Z Xik-
=1 k=1

The mean claim severity of the policyholder i for period ¢ + 1 is y/™* (d’;tl, ) a functlon of

both the vector of individual’s characteristics and a random factor w; with pdf w(w;). The
posterior pdf of the mean claim severity gfrl for an individual ¢ observed over t + 1 periods,
with Xz,LXZ% ey Xl.t + claim size history and d, ..., df“ characteristics, is obtained by applying

Bayes theorem and is an n-component Inverse Gamma mixture with updated parameters, given

by

J
n cg' CXp (_ ;iz)
g (yf+1|le,1,Xz22’ .. )(th,d1 . dt-i-l) — sz ’ : (5.62)

2,29 ) Lz P K+s,+1
z=1 (y_l) F(Sz _|_K)

for yi™' > 0,5, >0and 2 =1,. szzl,where
z=1

C’Z«];Z: . — 1) +Z k=l ) exp(dtJrl ?Ll).
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As previously, in the case that the individual characteristics remains constant, i.e. d},z =
d?,=..=d' =d.;and v =% = ... = 4L =, the posterior pdf of the mean claim severity
is simplified to

Dz,i
: XP (_ y! )

j K+sz+1 )
( ) T (s, + K)

Z’L

g<y§+1|Xz1,1,X1227" XtKivdzlza- 7d§+zl> sz

t i
where D, ; = (s, — 1)exp (d.;7,) + Z Zka
j=1 k=1

Proof. In the following we are going to provide the proof of (5.62).

First, using the Theorem 9 in Chapter 3 we are going to calculate g(y!™) which represents
the distribution of the mean claim severity for the individual ¢ for period ¢ + 1, called the
structure function. Based on this theorem one can find that ' has a pdf of the following
form:

(Sz—l)exp(dHl’YHl) * (sz—l)exp(dt+l’7§+1)
min exXp | — ST
t+1 i i
pz

yf-HF (s2) ,

(5.63)

yf >0,s,>0and z =1,...,n, Z p, = 1, which is an n-component Inverse Gamma mixture
z=1
distribution with parameters s, and exp (d.t'74). If we let w(w;) = exp (d25'74) w;, then w
is a strictly increasing function. Also, as we have already mentioned, w; follows a n-component
Gamma mixture distribution, denoted as w (w;) with the pdf given by (5.60).
The support sets:

X =X={w;:w(w)>0}and Y = {y/™ : ¢/ = w (w;) for some z € X}

are both the interval (0,00). From (4) we can easily see that the pdf of w;, w(w;) is
continuous on X. If we let y/™ = w (w;), then:

t+1
L) = ey e 080 = S

i Iz

W

1

and ¢! is continuous on Y. Applying Theorem 9, for ! € (0, 00), we get:

g (y) = w (W () |t (o)
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n 1 exp(— (sz—1) )
=1 T_t+1 1
B (sz—1) exp(—di-; Nl )yﬁ-ﬁ— (e (_dtJrl t+1))
- Pz 1 _t41) i1\ Szl Xp 2,0 Yz
CXP( a7 vz )yl
z=1 > F(Sz)

sz—1

Sz

(sz—1) SXP(ditlv?Ll) (sz—1) eXP(EXp(ditlv?Ll ) )

: exp| — :
yIT'H yi}+1

- Z P2 yit0(s2)
z=1

Then the conditional distribution g (yf“ | X XP0 s X! Kt di, ... df“) represents the pos-
terior distribution of the mean claim severity y/™* for an individual i observed over ¢+ 1 periods
with periods with X}, X7, ..., X/ i claim size history and d},...,d ™" characteristics. Applying
Bayes theorem, one can find that the pdf of the posterior distribution of the mean claim severity
is given by (5.62).

By Bayes rule

P (XX Xy il ) g ()

£ 1 2 t 1 t+1
T (X0 X o0 XLl )

g (v XL Xy Xl sl ) =
(5.64)

and where by definition

f (Xil,XiQ,% sy Xf’Kf|dz17 sy d§+1> - /f <Xz%1,X1'2,27 sy X:,Kf|yf+17 dzla sy d§+1> g (yf—‘rl) dy;'H_l‘
0

(5.65)
From (5.64), (5.65) we have that
g (v XL X o XLl dHY)
F (X8 X Xyt il ) g ()
- . (5.66)

/f (Xil,l,Xi2,27 e Xit,Kﬂny; d}, o d§+1> g (yfﬂ) dyfﬂ
0

The probability of the sequence X&LX 32, ..., X} o given the severity of accidents at ¢+1 and

t+1
) dz

the individual’s characteristics over the ¢ periods dll, , will be a t-dimension Exponential

distribution:
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J=1

F (Xi{LXi%Q, o Xyt dE d;;“) - _ . (5.67)

J
t Ki

II11v

=1 k=1

If we let yf = exp (dil’yé) w; = y{wi, then g (Zfrl

; ) becomes

t41\ Sz b1
s.—1)y; s.—1)y,
L ) exp (——( el )
K2

g (W) => p. ( Z : (5.68)
; yi T (s2)

with yf >0, s, >Oandz:1,...,n,2pzzl.
z=1

By substituting (5.67) and (5.68) into (5.66), we get:

g (v XL Xy X s )

gt
i, K}

. s .
" (sz—1)yi T\ (sz—1)yi Tt
4yz_+1 exp| — T+1

E p 4 Yi
J z y§+1l"(sz)

. S .
00 N (sz=Dt T\ 72 (sz-1)gt Tt
1 eXp| — 1 L
i ) d t+
¢ J sz vt IT(s2) vi
z z=1
0
111~
j=1 k=1
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K
2
J
t E :sz
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rIN K § Pz NEa! dy;
Yi —1 Yi
0 yﬁ“

t
9f we let v/ = ¢ - w; andK:ZKij

j=1
10Tf we let yf“ = yﬁ“ w;
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The integrand of the above expression is of the same form as an Inverse Gamma with

parameters s, + K and (s, — 1) + Z = ™ thus we have

- K+s2

E k= St E k= St
(s=—1)+ 711;3' i exp | —|(sz—1)+ 711./]‘ Yi ut}H

For 1) = exp (dj“’yjz) we get

cd
-
g(yf+1|X1 X790 X Kt,dllz,. ,df?) sz< ,” AN

j K+sz+1 )
CJZ > I(s:+K)

for yf > 0,s, >0, where z =1, ...,n and sz = 1, and where
z=1

K7
1
2 X

Cﬁ;z = —1)+ Z p— d] D) exp (dtJrl tzﬂ) )

When the vector of the individual characteristics remains the same from one year to the
next, we have that exp (d]“ﬁi) = exp (d.;3,) and it can be easily verified that C  is simplified

t i
to Dy = (s — 1)exp (dop7.) + ) Y X, thus,

=1 k=1

X 2/)
g (yf+1|le,1,X'L227 7X Kta dzlz) . de—‘;1> sz ]- K+sz+1 & .
( Yi > (s, +K)

zz

Note that if we let n = 1 in Eq. (5.62) then the proof of Eqs (4.17 and 4.18) in Chapter 4
follows from the proof presented above.
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Optimal Choice of §{*' 1In the general case, using the quadratic loss function the optimal

estimator of 9/ (X1, X;2, ..., Xix; d2 d2t') | given the observation of X; 1 X5, ..., X; x and

ZZ" Yz

d! i ,ditl for z =1, ...,n categories, will be the mean of the posterior structure function and
is given by

~t+1 1 t 1 t+1
Y; (X11X12?" XK“dzz" 7dzz)
00

= furrst g (5 X X sl i) g

Z'L7

0

szexp dt+1 o/AN) = (5.69)

This estimator defines the premium and corresponds to the multiplicative tariff formula where
the base premium is the a priori severity exp (dt+1 ’;*1) and where the Bonus-Malus factor is
represented by the expression in brackets. When the vector of the individual characteristics

remains the same for all years the optimal estimator is simplified to

t K
(s: = Dexp (dor.) + Y D X,

G (X1, X2, o XY dl dt“): J=L k=l
Y; ( 3,10 “*4,2) Kt’ 3,20 00 Wi 2 sz Sz—i—K—l

When ¢t = 0, g} (d}) = Z 0, exp z Z’yz) which implies that only a priori rating is used in the

first period. Moreover, When the regression component is limited to a constant v, , one obtains

¢ K]
(s: = 1) exp (1.0) + > Y X7,

n

A4l 1 2 t _ J=1 k=l

G (X X2y o X ) = Elpz e :
2=

which corresponds to the ‘univariate’ ,without regression component, model.

5.4.5 Calculation of the Premiums of the Generalized BMS

Now we are able to compute the premiums of the generalized optimal BMS based both on
the frequency and the severity component. As we said, the premiums of the generalized op-
timal BMS will be given from the product of the generalized BMS based on the frequency
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component and of the generalized BMS based on the severity component. Consider a poli-
cyholder 7 that belongs to a group of policyholders who in ¢ years have produced K claims
K

with total claim amount equal to ZX”‘“ The net premium that should be paid from that

k=1

specific group of policyholders is calculated via the product of their annual expected claim
N2 . . .

frequency for period t + 1, /\ ( S Kl Cois - .,cZ;l) and their expected claim severity,

t+1
2,00 " ’dzz )

At+1 (Xz 1, Xz )29 ver Xz K7d

e In the case where we update the posterior probability, the premium is given by

N .
Premium = e, (Kil, Kl Coir oo 0’221) s (XZ 1,542, oy XK diz, . ,ditl)
— eZﬂ'l co Kl sz Xin Xz, oo Xigei db gy oo diiY) (5.70)
where e = 5% is the corresponding risk exposure and where 7 (Kil, Kl P ciﬁl) in (5.70)

is given by the Egs (5.34,5.36,5.39) for the case of Poisson, Negative Binomial and Delaporte re-
spectively and where p, (XZ-717X,-72, o Xigsdl . . dih) is given by the Egs (5.52, 5.56 and 5.54)

for the case of Exponential, Weibull and Gamma respectively, when we update the posterior
probability. However,

9 (Xia Xi2, o X ds dzth)

ZZ" Yz

B(l/j. 1 j4_1.)

r2Y J Tz
) Jz,i )

= p. (Xin Xig, oo Xigydlyy oy di5Y) - exp (d 1)

B(Vg,iv S;i) 7
where p, (Xi1, Xz, .., Xix;diy, ... di') is given by Eq. (5.58), for the case of the GB2.

e In the case where we update the posterior mean, using Eqs (5.49 and 5.69) the premium
is equal to

att1
Premium = e, (

1 t. t+1\ ~t+1 1 2 t 1
KZ'7" K e, C_ )y’t (Xi,l,Xi,Q"’ X Kt,d

IR zz’ )’ 22,0

dt+1>

Z7,7' Tz,

]
| 2
a%:ijﬁKg _1+Zexpdjnz'

_ 6277,2 exp t+1 t+1)

: szexp dt+1 AR - +K_1
a%—l—Zexp c 3 :

(5.71)
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5.5 Application

We will use the same data set we used in Chapter 2 the descriptive statistics of which can be
found in Tables 2.1 and 2.2 of Chapter 2. The available a priori rating variables we employ
are the Bonus Malus (BM) category, the horsepower (HP) of the car and gender of the driver.
However, as mentioned in the previous chapters, it is important to note that gender has recently
been ruled out by the European Court as a rating factor and that records for fleet data were
not available for the case of the claim counts. Recall also that this Bonus-Malus System has
20 classes and the transition rules are described as follows: Fach claim free year is rewarded
by one class discount and each claim in given year is penalized by one class. Claim counts
are modelled for all 15641 policies. The Bonus-Malus category consists of five categories of
neighboring BM classes : C1 = "drivers who belong to BM classes 1 and 2", C2 = "drivers who
belong to BM classes 3-5", C3 = "drivers who belong to BM classes 6-9", C4 = "drivers who
belong to BM class 10" and C5 = "drivers who belong to BM classes 11-20". The horsepower
of the car consists of four categories: C1 = "drivers who had a car with a hp between 0-33",
C2 = "drivers who had a car with a hp between 34-66", C3 = "drivers who had a car with a
hp between 67-99", C4 ="drivers who had a car with a hp between 100-132". Regarding the
amount paid for each claim, there were 5590 observations that met our criteria. Also, both
private cars and fleet vehicles have been considered in this sample and the available a priori
rating variables we employ are the Bonus Malus class, the horsepower of the car and gender
of the driver. The Bonus-Malus category consists of five categories of neighboring BM classes:
C1 = "drivers who belong to BM classes 1 and 2", C2 = "drivers who belong to BM classes
3-5", C3 = "drivers who belong to BM classes 6-9", C4 = "drivers who belong to BM class
10" and C5 = "drivers who belong to BM classes 11-20". The horsepower of the car consists of
eleven categories: C1 = "drivers who had a car with a hp between 0-33", C2 = "drivers who
had a car with a hp between 34-44", C3 = "drivers who had a car with a hp between 45-55",
C4 = "drivers who had a car with a hp between 56-66", C5 = "drivers who had a car with a
hp between 67-74", C6 = "drivers who had a car with a hp between 75-82", C7 = "drivers who
had a car with a hp between 83-90", C8 = "drivers who had a car with a hp between 91-99",
C9 ="drivers who had a car with a hp between 100-110", C10 = "drivers who had a car with a
hp between 111-121" and C11 = "drivers who had a car with a hp between 122-132". Finally,
the gender consists of three categories: M = "male", F = "female" and B = "both", since in
this case, data for fleet vehicles used by either male or female drivers were also available, i.e.
shared use.

In our application we fit the Poisson and Negative Binomial and their two component
mixtures on the number of claims and the Exponential, Gamma, Weibull, GB2 and Pareto
and their two and three component mixtures on the claim sizes. Furthermore, we introduce
a regression component in the above models and we include risk classifying characteristics in
order to use all the available information in the estimation of the claim frequency and severity
distributions. We give emphasis on both the analysis of the claim frequency and severity using
two and/or three component mixtures of distributions and generalized linear models (glm) as
these methods have not been extensively studied in the BMS literature. The location and
weight of these components are estimated from the data employing the EM algorithm. The
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number of components was chosen based on the information we had from the frequency and
severity data respectively'!. Based on the current methodology as presented in Sections 5.3
and 5.4 we will find the premiums determined from the optimal BMS based on the a posteriori
frequency and severity component and the premiums determined from the optimal BMS with
a frequency and a severity component based both on the a priori and the a posteriori criteria.

5.5.1 Modelling Results

This subsection is divided into two parts. The first part describes the modelling results of the
models that have been applied to model claim frequency and the second part provides the results
of the claim severity analysis. Employing the methods described in Rigby and Stasinopoulos
(2001, 2005, 2009), we estimated the parameters of the above models'?. Variable selection
techniques were applied in order to find the variables that are considered as better predictors.
For this purpose we used the function step.GAIC within the GAMLSS package in software R,
which performs the stepwise model selection using a Generalized Akaike information criterion
(GAIC). The final claim frequency and severity models we selected were the best fitted models.

Claim Frequency Models

Firstly, the Poisson, the Negative Binomial Type I (NBI) and their two component mixture
distributions, given by Eqgs (5.5 and 5.7), for n = 1 and n = 2 respectively, were fitted on the
number of claims. The maximum likelihood estimators of the parameters for these models are
presented in Table 5.1.

Table 5.1: Results of the Fitted Claim Frequency Distributions

Poisson | Two Component Poisson | NBI | Two Component NBI
C1 C2 C1 C2
A 1 Uy A 1 Up)
0.4847 | 0.8666 0.1334 0.4847 | 0.5655 0.4345
- )\1 )\2 « )\1 )\2
- 0.3033 1.6693 0.9178 | 0.3891 0.5583
- - - - oy 2P
- - - - 0.3195 0.1519

Note that the two component Negative Binomial(7,, a,) mixture derived by updating the
posterior mean, with pdf given by Eq. (5.12), for n = 2, is given from a reparameterization
of the pdf of the NBI(\., o) distribution if we let A, = 2= and 0. = ai, for » = 1,2. Thus,
the maximum likelihood estimators of the parameters of “this model are w1 = 0.5655, 19 =

Tn principle one could use more components regarding the data set examined and then select the best
models.
20ne can see for more on generalized additive models de Jong and Heller (2008) and Heller et al (2007).
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3.1299
0.3891

= 8.0439 and 7, = &570 — 171,

— A 1
= 3.1299, Gy = 6.5740

04345, dl - L 0.1519

0.3195
7840.

Secondly, the Poisson, Negative Binomial Type I (NBI) and their two component mixture
regression models, given by Eqs(5.33, 5.35 and 5.41), for n = 1 and n = 2 respectively, have
been applied to our insurance data. The results are displayed in Table 5.2. For brevity, a * in
Table 5.2 indicates the estimated values which are statistically significant at a 5% threshold.

= 6.579,7 =

Table 5.2: Results of the Fitted Claim Frequency Regression Models

Poisson | Two Component Poisson NBI Two Component NBI
C1 C2 C1 C2
1 T 1 uy)
0.9007 0.0993 0.8907 0.1093
Variable
Intercept —0.8514* | —1.3593* 0.7364* —0.8366* | —1.2913* 0.5794*
Bonus-Malus
Category 1 0 0 0 0 0 0
Category 2 0.6081* 0.8116* 0.1242 0.6084* 0.8067*  —0.0026
Category 3 0.8488* 0.8979* 0.7251* 0.8467* 0.8936* 0.7089*
Category 4  —0.9420* | —1.3351 —0.5028* —0.9402* | —1.3588 —0.4427*
Category b 1.9628* 2.1803* 1.1903* 1.9670* 2.1865* 1.1194*
Horsepower
Category 1 0 0 0 0 0 0
Category 2 —0.2033 | —0.0634* —0.4403* —0.2235 | —0.0665*  —0.4794*
Category 3 —0.0367 0.1036* —0.2859* —0.0537 0.1106*  —0.3419*
Category b 0.0380 0.0455* 0.0201* 0.0151 0.0357* 0.0056*
Gender
Male 0 0 0 0 0 0
Female 0.0699* 0.1443* —0.1076* 0.0794* 0.1561*  —0.1429*
Parameter - - - « a1 Qg
- - - - 0.6556* 0.2068* 0.2496*

Claim Severity Models

Firstly, the Exponential, Gamma, Weibull, GB2 and Pareto'? and their two and three compo-
nent mixture distributions, given by Egs (5.16, 5.18, 5.20, 5.22 and 5.25), for n = 1, n = 2 and
n = 3 respectively, were fitted on the costs of claims. The maximum likelihood estimators of
the parameters for these models are presented in Tables 5.3 and 5.4 respectively.

-= for the the case of the finite mixture of Pareto distributions.

3Recall that E(y) = Z 0,
z=1
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Table 5.3: Results of the Fitted Finite Mixture of Severity Distributions With One, Two and

Three Components, Update of the Posterior Probability

EXP Two Component EXP Three Component EXP
C1 C2 C1 C2 C3
) P1 P2 P1 P2 P3
328.00 | 0.4720 0.5280 0.3292  0.3317 0.3391
- Y1 Y2 Y1 Yo Y3
- 328.00 328.00 328.00 328.00 328.00
Gamma | Two Component Gamma | Three Component Gamma
C1 C2 C1 C2 C3
Y P1 P2 P1 P2 P3
328.00 | 0.4560 0.5440 0.5268  0.1496  0.3236
0 Y1 Y2 Y1 Y2 Y3
1.9883 | 247.89 395.04 243.47  418.22  423.69
- 01 02 61 02 03
- 0.1497 0.5906 0.1615  0.9260 0.2967
Weibull | Two Component Weibull | Three Component Weibull
C1 C2 C1 C2 C3
Y P1 P2 P1 P2 P3
328.65 | 0.4721 0.5279 0.4753 03774  0.1473
0 Y1 Y2 Y1 Y2 Ys
1.7686 | 243.71 403.03 239.61  389.16  455.32
- 91 02 (91 92 03
- 2.0180 0.5294 2.0320 1.2030  0.1140
GB2 Two Component GB2 Three Component GB2
C1 C2 C1 C2 C3
Y P1 P2 P1 P2 P3
271.97 | 0.4926 0.5074 0.03663 0.63287 0.3305
o Y1 Y2 Y1 Yo Y3
5.2460 | 237.46 499.70 36.05  247.65 377.29
14 01 09 01 09 O3
0.7029 | 10.1600 4.752 3.862 9.475 5.623
S V1 1) 1241 1) Vs
0.6061 | 1.2058 0.3940 1.6093  0.9103  1.5923
- S1 52 51 52 S3
- 0.9461 0.9305 0.5728 1.0131 0.7191
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Table 5.4: Results of the Fitted Finite Pareto Mixture Distributions With One, Two and Three
Components, Update of the Posterior Mean

Pareto | Two Component Pareto Three Component Pareto
C1 C2 C1 C2 C3
m P1 P2 P1 P2 P3
28001.13 | 0.4948 0.5052 0.3502 0.3066 0.3432
S mq mo ma Mo ms
85.798 | 24834.77 25084.36 25084.36  25084.36 25084.36
- S1 52 S1 52 53
- 76.325 77.169 76.784 76.784 76.784
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Secondly, the Exponential, Gamma, Weibull, GB2, Pareto and the two and three component
Exponential, Gamma, Weibull, GB2 and Pareto'* mixture regression models have been applied
to claim severity analysis. The results are summarized in the Tables 5.5, 5.6, 5.7, 5.8 and
5.9 respectively. In these Tables, for brevity, a * indicates the estimated values which are
statistically significant at a 5% threshold.

Table 5.5: Results of the Fitted Finite Exponential Mixture Regression Models With One, Two
and Three Components, Update of the Posterior Probability

EXP Two Component EXP Three Component EXP
C1 C2 C1 C2 C3
P1 P2 P1 P2 Ps3
0.5093 0.4907 0.3093 0.3553 0.3354
Variable
Intercept 5.7458* | 5.7460* 5.7456* 5.7458* 5.7457* 5.7460*
Bonus-Malus
Category 1 0 0 0 0 0 0
Category 2 -0.0233 | -0.0233 -0.0233 -0.0233  -0.0233 -0.0232
Category 3 0.1128* 0.1128 0.1128 0.1128 0.1128 0.1128
Category 4 -0.7019* | -0.7028* -0.7010* | -0.7019* -0.7017*  -0.7021*
Category 5 0.4105 0.4105 0.4106 0.4105 0.4105 0.4105
Horsepower
Category 1 0 0 0 0 0 0
Category 2 -0.2101 | -0.2100 -0.2102 -0.2101  -0.2101 -0.2101
Category 3 -0.2012 -0.2012 -0.2013 -0.2012 -0.2012 -0.2012
Category 4 -0.0164 | -0.0162 -0.0165 -0.0163  -0.0164 -0.0164
Category 5 0.0028 0.0029 0.0028 0.0029 0.0028 0.0028
Category 6 0.1381 0.1382 0.1380 0.1381 0.1381 0.1381
Category 7 0.1574 0.1575 0.1574 0.1574 0.1574 0.1575
Category 8 0.3388* | 0.3389 0.3387* 0.3388 0.3387 0.3388
Category 9 0.4445* | 0.4445* 0.4444* 0.4444 0.4444 0.4445
Category 10 0.6563* | 0.6563* 0.6563* 0.6563*  0.6563* 0.6563*
Category 11 1.0899* | 1.0899* 1.0909* 1.0880*  1.0883* 1.0935*
Gender
Both 0 0 0 0 0 0
Male -0.0783* | -0.0786 -0.0779 -0.0782  -0.0781 -0.0785
Female -0.0233 | -0.0236 -0.0229 -0.0232  -0.0231 -0.0234

!4Note that the GAMLSS package allows us to find the maximum likelihood estimators of the parameters
of the regression model where the distribution of the response variable is the Pareto2 (m’,s’) distribution,

with pdf given by f(z) = ¢'m/s (z + m’)is " The Pareto(m, s) response distribution can be derived from a

reparameterization of the pdf of the Pareto2 (m/, s’) distribution with s’ = s and m’' = (s’ — 1)m. Thus § = §

!
and m = 22—,
§'—1
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Table 5.6: Results of the Fitted Finite Gamma Mixture Regression Models With One, Two
and Three Components, Update of the Posterior Probability

Gamma | Two Component Gamma Three Component Gamma
C1 C2 C1 C2 C3
P1 P2 P1 P2 P3
0.4861 0.5139 0.0123 0.4666 0.5211
Variable
Intercept 5.7458* 5.8652* 5.2486* 5.0943* 5.2467* 5.8900*
Bonus-Malus
Category 1 0 0 0 0 0 0
Category 2 -0.0233 -0.0533* 0.0725* 0.0946* 0.0694*  -0.0416*
Category 3 0.1128* 0.0705* 0.1852* 0.2090 0.1817* 0.0821
Category 4 -0.7019* | -0.5515* -1.6775* -1.6603* -1.6629*  -0.5460*
Category 5 0.4105* 0.3834* 0.3176* 0.2476 0.3341* 0.4137
Horsepower
Category 1 0 0 0 0 0 0
Category 2 -0.2101* | -0.1612 -0.0094 0.4797 -0.0197 -0.1486*
Category 3 -0.2012* | -0.1854* 0.0061 0.3914 -0.0050*  -0.1740*
Category 4 -0.0164 -0.0318 0.1713* 1.6349 0.1597*  -0.0200
Category b 0.0028 0.0018 0.2045* 1.7018 0.1920* 0.0119
Category 6 0.1381* 0.1637* 0.2780* 1.7060 0.2699* 0.1690
Category 7 0.1574* 0.1791* 0.3194* 0.4072 0.3069* 0.1830*
Category 8 0.3388* 0.3250* 0.3641* 3.0272 0.3519* 0.3277*
Category 9 0.4445* 0.4143* 0.4155* 0.3602* 0.4030* 0.4240*
Category 10 0.6563* 0.6261* 0.6094* 1.0707* 2.2276* 0.3562*
Category 11 1.0899* 1.0567* 0.6894* 0.7790* 0.6805* 1.0533*
Gender
Both 0 0 0 0 0 0
Male -0.0783* 0.0073 0.0032 -1.3113 0.0170*  -0.0300*
Female -0.0233 0.0645 0.0168 -1.3072 0.0310* 0.0193
Parameter 0 6)1 92 91 92 93
0.4268* 0.0958* 0.4568* 9.3062e-08*  0.0961* 0.4531*
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Table 5.7: Results of the Fitted Finite Weibull Mixture Regression Models With One, Two and
Three Components, Update of the Posterior Probability

Weibull | Two Component Weibull Three Component Weibull
C1 C2 C1 C2 C3
P1 P2 P1 P2 P3
0.4561 0.5439 0.3727 0.4957 0.1316
Variable
Intercept 5.7429* 6.5734* 5.6778 5.3201* 5.7228* 6.3215*
Bonus-Malus
Category 1 0 0 0 0 0 0
Category 2 -0.0411* 0.0731* -0.0528* 0.0710* -0.0491* 0.0703*
Category 3 0.0930* 0.1834* 0.0587* 0.1805* 0.0131 0.7435*
Category 4 -0.5021* -1.6594* -0.4330* 0.6471 -0.7017* -0.0328
Category 5 0.4053* 0.3033 0.4070* 0.2557 -0.9300 0.3192
Horsepower
Category 1 0 0 0 0 0 0
Category 2 -0.1990* 0.6084 -0.4225* 0.5130 -0.2831 -0.5771
Category 3 -0.2344* 0.0010 -0.2069* 0.5227 -0.3358* -0.5610
Category 4 -0.0425 0.1663 -0.0048* 0.2072 0.3042 -0.3585
Category b -0.0179 0.1964 0.0108* 0.1035 0.0791 0.2537
Category 6 0.1367* 0.2756* 0.1909* 0.2072* 0.3042 -0.3585
Category 7 0.1905* 0.3020* 0.2470* 0.2094* 0.1574 -0.0103
Category 8 0.3833* 0.3714* 0.3895* 0.3053* 0.3269* 0.0370
Category 9 0.4904* 0.4341* 0.4436* 0.3052 0.5155* 0.0370
Category 10 0.7596* 0.5963* 0.7526* 0.5412* 0.8680* 0.4232*
Category 11 1.3134* 1.5216* 1.0665* 0.5680* 1.4816* 0.3616*
Gender
Both 0 0 0 0 0 0
Male -0.0782* -1.3277 0.1527* 0.0183* -0.0116 -0.4919
Female -0.0264 -1.3126 0.2009* 0.0357* 0.0558 -0.5092
Parameter 0 81 02 81 492 03
2.2344* 12.4410* 2.2338* 12.3172* 2.1557* 14.3106*
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Table 5.8: Results of the Fitted Finite GB2 Mixture Regression Models With One, Two and
Three Components, Update of the Posterior Probability

GB2 Two Component GB2 Three Component GB2

C1 C2 C1 C2 C3

P1 P2 P1 P2 P3
0.6187 0.3813 0.6037 0.2016 0.1947

Variable
Intercept 5.4618* 5.2816* 5.9881* 5.2832* 5.7465* 6.4478*
Bonus-Malus
Category 1 0 0 0 0 0 0

Category 2 0.0204 0.0714~ -0.0499* 0.0676* 0.0594* -0.1503
Category 3 0.1486* 0.1834* 0.0886* 0.1815* 0.1978* -0.0742
Category 4 -1.2790* | -1.6719* -0.6281* -0.3594* -2.2511% -0.3700*
Category 5 0.4202* 0.3100* 0.3184* 0.3180* 0.2087* 0.6076*

Horsepower

Category 1 0 0 0 0 0 0
Category 2 -0.1850* -0.0240 -0.1346 -0.0242 0.0898 -0.3642*
Category 3 -0.1394* -0.0083 -0.1657* -0.0029 0.0865 -0.4538"
Category 4 0.0435 0.1586* -0.0001 0.1686* 0.2525* -0.2700*
Category 5 0.0576 0.1906* 0.0228 0.1977* 0.2625* -0.2204

Category 6 0.1604* 0.2666* 0.1782* 0.2765* 0.3100* 0.0841
Category 7 0.1973* 0.3039* 0.1661* 0.3137* 0.2982* 0.1044
Category 8 0.2951* 0.3533* 0.3141* 0.3592* 0.3500* 0.3176*

Category 9 0.3843* 0.4018* 0.3996 0.4160* 0.4077* 0.4160*
Category 10 0.5821* 0.6024* 0.5642 0.6310* 0.5246* 0.6743*
Category 11 0.8585* 0.6711* 0.8588 0.8002* 0.7676* 1.1760*
Gender
Both 0 0 0 0 0 0
Male -0.1087* 0.0012 0.0208 -0.0174 0.0403 -0.0639
Female -0.0668* 0.0151 0.0663* -0.0014 0.0230 0.0538
Parameter o o1 09 o1 09 03
6.155* 17.3500* 5.4240* 15.1000* 11.7900*  4.4820*
Parameter v vy Vs 2 Vs Vs
1.0063* 0.8781* 0.5224* 0.9317* 1.0896* 0.3979*
Parameter s S1 S S1 S S3

0.5112* 1.1364* 0.9354* 0.9936* 0.9150* 1.1457*
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Table 5.9: Results of the Fitted Finite Pareto Mixture Regression Models With One, Two and
Three Components, Update of the Posterior Mean

Pareto | Two Component Pareto Three Component Pareto
C1 C2 C1 C2 C3
P1 P2 P1 P2 P3
0.5261 0.4739 0.3625 0.3098 0.3277
Variable
Intercept 8.6786* 7.6775 7.6773" 7.6770* 7.6776 7.6772*
Bonus-Malus
Category 1 0 0 0 0 0 0
Category 2 -0.0216 -0.0195 -0.0195 -0.0195 -0.0194 -0.0195
Category 3 0.1148* 0.1172 0.1172 0.1173 0.1172 0.1172
Category 4 -0.7272* | -0.7653* -0.7649* -0.7642*  -0.7665* -0.7649*
Category 5 0.4113 0.4124 0.4124 0.4124 0.4124 0.4124
Horsepower
Category 1 0 0 0 0 0 0
Category 2 -0.2105 -0.2105 -0.2105 -0.2105 -0.2105 -0.2105
Category 3 -0.1975 -0.1919 -0.1919 -0.1920 -0.1918 -0.1919
Category 4 -0.0127 -0.0072 -0.0072 -0.0073 -0.0070 -0.0072
Category 5 0.0057 0.0101 0.0101 0.0100 0.0102 0.0101
Category 6 0.1392 0.1414 0.1413 0.1413 0.1415 0.1413
Category 7 0.1564 0.1564 0.1564 0.1564 0.1565 0.1564
Category 8 0.3354* 0.3314 0.3314 0.3313 0.3315 0.3314
Category 9 0.4405* 0.4354* 0.4354* 0.4353 0.4354 0.4353
Category 10 0.6463* 0.6334* 0.6336* 0.6335* 0.6334* 0.6335*
Category 11 1.0669* 1.0402* 1.0387* 1.0391* 1.0397* 1.0392*
Gender
Both 0 0 0 0 0 0
Male -0.0807 -0.0848 -0.0846 -0.0843 -0.0852 -0.0846
Female -0.0259 -0.0301 -0.0299 -0.0297 -0.0305 -0.0299
Parameter s sh sh s sh sh
2.9620* 2.0070* 2.0070* 2.0070* 2.0070* 2.0070*

5.5.2 Models Comparison

So far, we have several competing models for the claim frequency and claim severity component.
As seen in the previous chapters, the differences between models produce different premiums.
Consequently, to distinguish between these models, this section will purpose to compare them
in order to select the optimal one for each case.
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Claim Frequency Models

The models we have for the claim frequency component are all nested, i.e., Poisson is nested
to Negative Binomial model and to the mixture of Poisson with two components, Negative
Binomial is nested to the mixture of Negative Binomial model with two components, and
the mixture of Poisson with two components is nested to the mixture of Negative Binomial
model with two components. In order to accept or reject some models, classical hypothesis/
specification tests for nested models can be used (see, Boucher et al., 2007, 2008). The three
standard tests are the log-likelihood ratio (LR), Wald, and Score (or Lagrange Multiplier, LM)
tests, which are all asymptotically equivalent. One problem with standard specification tests
(Wald or LR tests) arises when the null hypothesis is on the boundary of the parameter space.
When a parameter is bounded by the Hy hypothesis, the estimate is also bounded, and the
asymptotic normality of the MLE no longer holds under H,. Consequently a correction must
be done, and a mixture of a probability mass of one half on the boundary and X7 ,, (rather
than X7 ,) should be used for the distribution of the LR statistic. Another standard method
of comparing nested models (and also non-nested models) is to use the information criteria,
such as the AIC or the SBC.

Firstly, we compare the non-nested claim frequency distributions presented in Section 5.3.
The results are depicted in Table 5.10 (Panels A and B). Our findings suggest that the best fit
is given by the two component Negative Binomial mixture distribution.

Table 5.10: Claim Frequency Distributions Comparison
Panel A: Based on Likelihood Ratio Test
Null Hypothesis Alternative Hypothesis Value Sig. Level Decision

Poisson NBI 1032.2 0.00 Reject
Poisson Poisson (C' = 2) 986.5 0.00 Reject
NBI NBI (C' = 2) 1043 000  Reject
Poisson (C'=2) NBI (C = 2) 1088.7  0.00 Reject
Panel B: Based on AIC, SBC

Model df AIC SBC

Poisson 1 30368.8 30376.4
NBI 2 29338.6 29353.9
Poisson (C=2) 3 29386.3 29409.3
NBI (C=2) ) 29307.3 29345.6

Secondly, we compare the non-nested claim frequency regression models presented in Section
5.4 employing the LR test and the Global Deviance, AIC and SBC criteria (as suggested by
Rigby and Stasinopoulos, 2009). Table 5.11 reports our results with respect to the aforemen-
tioned nested comparisons. Specifically, from Panel A and Panel B we observe the superiority
of mixture models with two components vs the models with one component and the superiority
of the Negative Binomial distribution vs the Poisson distribution. Overall, the best fit is given
by the Negative Binomial mixture regression model with two components as suggested by the
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LR test and the Global Deviance, AIC and SBC criteria.

Table 5.11: Claim Frequency Regression Models Comparison
Panel A: Based on Likelihood Ratio Test

Null Hypothesis Alternative Hypothesis Value Sig. Level Decision
Poisson NBI 649.2 0.00 Reject
Poisson Poisson (C = 2) 784.2 0.00 Reject
NBI NBI (C =2) 158.3 0.00 Reject
Poisson (C'=2) NBI (C =2) 23.3 0.00 Reject
Panel B: Based on Global Deviance, AIC, SBC
Model df Global Deviance AIC SBC
Poisson 9 29067.1 29085.1 29154.0
NBI 10 28417.9 28437.9  28514.5
Poisson (C=2) 19 28282.9 28320.9  28466.4
NBI (C=2) 21 28259.6 28301.6  28462.4

Claim Severity Models

The Exponential model is nested to Gamma, Weibull, and also to the finite mixtures of two or
three Exponential, Gamma and Weibull models. The Pareto model is nested to GB2 and also
to the finite mixtures of Pareto, GB2 models with two or three components. Also there are non-
nested model comparisons, such as Exp - GB2, Exp - Pareto, Gamma - Pareto, Gamma - GB2,
Weibull - Gamma , Weibull - GB2 and Weibull - Pareto for one, two and three components.

Firstly, we compare the claim severity distributions presented in Section 5.3. Our severity
distributions comparison is based on the likelihood ratio test (LR) for the nested distributions
and AIC, SBC for non-nested distributions. Moreover, for non-nested comparisons we employ
the Vuong test (Vuong, 1989). Table 5.12 reports our results with respect to the aforementioned
nested comparisons. We observe that there is a superiority of mixture distributions of Gamma,
Weibull and GB2 with two or three components vs Gamma, Weibull, and GB2 distributions
respectively, while for Exponential and Pareto distributions we do not reject the null hypothesis.
However, when we compare the Exponential distribution with one component vs the Gamma
distribution with two or three components, Weibull distribution with two or three components,
and GB2 distribution with two or three components, we can conclude that mixture distributions
are superior to the simple one. Also, the finite mixtures of GB2 distributions employing two
and three components provided better fitting performances compared to the Pareto distribution
with one component.
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Table 5.12: Nested Severity Distributions Comparison Based on Likelihood Ratio Test

Null Hypothesis Alternative Hypothesis  Value p-value Decision
Exponential Gamma (C' =1) 4004.4  0.00 Reject
Exponential Gamma (C' = 2) 5844.3  0.00 Reject
Exponential Gamma (C' = 3) 6340.8 0.00 Reject
Exponential Weibull (C'=1) 2803.4  0.00 Reject
Exponential Weibull (C' = 2) 5480.9 0.00 Reject
Exponential Weibull (C' = 3) 69784.8  0.00 Reject
Exponential Exponential (C' = 2) 0.00 1.00  No Reject
Exponential Exponential (C' = 3) 0.00 1.00  No Reject
Exponential (C' = Exponential (C' = 3) 0.00 1.00  No Reject
Gamma Gamma (C' = 2) 1839.9  0.00 Reject
Gamma Gamma (C' = 3) 2336.4  0.00 Reject
Gamma (C' = 2) Gamma (C' = 3) 496.5 0.00 Reject
Weibull Weibull (C' = 2) 3574 0.00 Reject
Weibull Weibull (C' = 3) 3282.3 0.00 Reject
Weibull (C' = 2) Weibull (C' = 3) 694.8 0.00 Reject
GB2 GB2 (C = 2) 10955  0.00  Reject
GB2 GB2 (C =3) 1350.5 0.00 Reject
GB2 (C =2) GB2 (C =3) 255 0.00 Reject
Pareto GB2 (C=1) 5158.1  0.00 Reject
Pareto GB2 (C =2) 6253.6  0.00 Reject
Pareto GB2 (C =3) 6508.6  0.00 Reject
Pareto Pareto (C' = 2) 4.9 0.17  No Reject
Pareto Pareto (C' = 3) 4.8 0.56  No Reject
Pareto (C' = 2) Pareto (C = 3) 0.1 0.99  No Reject

In Table 5.13 (Panels A and B) we compare the non-nested severity distributions. Overall,
the best distribution according to AIC, SBC and the Vuong test is the GB2 distribution when
one, two or three components are used.
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Table 5.13: Non - Nested Severity Distributions Comparison

Panel A: Based on AIC, BIC

Model df AIC SBC
Exponential 1 75946.5 75953.1
Gamma 2 71944.1 71957.3
Weibull 2 73055.1 73068.3
GB2 4 70835.2 70861.7
Pareto 2 75989.3 76002.5
Exp (C=2) 3 75950.5 75970.4
Gamma (C=2) 5 70110.2 70143.4
Weibull (C=2) 5 70473.6 70506.8
GB2 (C=2) 9 60749.7 69809.4
Pareto (C=2) 5 76000.2 76033.3
Exp (C=3) ) 75954.5 75987.6
Gamma (C=3) 8 69619.7 69672.7
Weibull (C=3) 8 69784.8 69837.8
GB2 (C=3) 14 69504.7 69597.5
Pareto (C=3) 8 76006.1 76059.2
Panel B: Based on Vuong test
Model 1 Model 2 Vuong Test Statistic p-value Decision
Exponential GB2 -33.81 0.00 GB2
Exponential Pareto 17.38 0.00 Exp
Gamma GB2 -9.05 0.00 GB2
Gamma Pareto 23.64 0.00 Gamma
Weibull Gamma -14.38 0.00  Gamma
Weibull GB2 -12.43 0.00 GB2
Weibull Pareto 14.73 0.00 Weibull
Exp (C=2) GB2 (C=2) “43.96 0.00  GB2
Exp (C=2) Pareto (C=2) 16.56 0.00  Exp
Gamma (C=2) GB2 (C=2) -8.29 0.00 GB2
Gamma (C=2) Pareto (C=2) 38.48 0.00  Gamma
Weibull (C=2) Gamma (C=2) -4.67 0.00 Gamma
Weibull (C=2) GB2 (C=2) 6.45 0.00  GB2
Weibull (C=2) Pareto (C=2) 32.39 0.00  Weibull
Exp (C=3) GB2 (C=3) “47.99 0.00  GB2
Exp (C=3) Pareto (C=3) 16.65 0.00 Exp
Gamma (C=3) GB2 (C=3) -33.84 0.00 GB2
Gamma (C=3) Pareto (C=3) 47.59 0.00 Gamma
Weibull (C=3) Gamma (C=3) -27.98 0.00 Gamma
Weibull (C=3) GB2 (C=3) 13.79 0.00  Weibull
Weibull (C=3) Pareto (C=3) 45.65 0.00  Weibull
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Secondly, we compare the claim severity regression models presented in Section 5.4, em-
ploying the LR test for nested models and Global Deviance, AIC, SBC and the Vuong test for
non-nested models. As we observe from Table 5.14, there is a superiority of Gamma mixture
models with two or three components vs the simple Gamma model, and the same holds for
Weibull and GB2 mixture models. When comparing the Exponential model with one compo-
nent vs the one with two or three components we cannot conclude that there is superiority of
mixture models versus the simple model. However, the Gamma, Weibull and GB2 models and
their finite mixtures employing two or three components provided better fitting performances
than the Exponential model with one component. The two and three component Pareto mix-
ture models are superior to the Pareto model with one component. Nevertheless, when we
compare the two component Pareto mixture model vs the one with three components we do
not reject the null hypothesis. Also, the two and three component GB2 mixture models are
superior to the Pareto model with one component.

Table 5.14: Nested Severity Regression Models Comparison Based on Likelihood Ratio Test

Null Hypothesis Alternative Hypothesis  Value p-value Decision
Exponential Gamma (C' = 1) 5544.9 0.00 Reject
Exponential Gamma (C' = 2) 9011.0 0.00 Reject
Exponential Gamma (C' = 3) 10283.5  0.00 Reject
Exponential Weibull (C' = 1) 4639.8  0.00 Reject
Exponential Weibull (C' = 2) 8215.6 0.00 Reject
Exponential Weibull (C' = 3) 7785.0  0.00 Reject
Exponential Exponential (C' = 2) 0.00 1.00  No Reject
Exponential Exponential (C' = 3) 0.00 1.00  No Reject
Exponential (C' = Exponential (C' = 3) 0.00 1.00  No Reject
Gamma Gamma (C' = 2) 3466.1  0.00 Reject
Gamma Gamma (C' = 3) 4738.6 0.00 Reject
Gamma (C' = Gamma (C' = 3) 1272.5  0.00 Reject
Weibull Weibull (C' = 2) 3575.8  0.00 Reject
Weibull Weibull (C' = 3) 3145.2  0.00 Reject
Weibull (C = Weibull (C' = 3) 430.6 0.00 Reject
GB2 GB2 (C =2) 2088 0.00 Reject
GB2 GB2 (C =3) 2807 0.00 Reject
GB2 (C =2) GB2 (C =3) 719 0.00 Reject
Pareto GB2 (C =1) 6925  0.00  Reject
Pareto GB2 (C =2) 9013 0.00 Reject
Pareto GB2 (C' =3) 9732 0.00 Reject
Pareto Pareto (C = 2) 367.2 0.00 Reject
Pareto Pareto (C' = 3) 232.3 0.00 Reject
Pareto (C' = 2) Pareto (C' = 3) 0.1 1.00  No Reject
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Next, we compare the non-nested severity regression models employing Global Deviance,
AIC, SBC (Table 5.15, Panel A) and the Vuong test (Table 5.15, Panel B). As mentioned
before, these are non-nested model comparisons, such as Exp - GB2, Exp - Pareto, Gamma, -
Pareto, Gamma - GB2, Weibull - Gamma , Weibull - GB2 and Weibull - Pareto for one, two
and three components. Our findings suggest that when one component is used, GB2 is superior
to the Exponential, Weibull, Gamma and Pareto distributions. However, when two or three
components are used, the Gamma mixture model is superior to the Exponential, Weibull, GB2
and Pareto mixture models. With respect to the Vuong test results, when one component is
employed the best model is GB2, while for mixtures with two components our findings suggest
that both Gamma and GB2 are superior to the other models. When comparing three component
mixtures, the Gamma mixture turns out to be superior to the remaining specifications.
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Table 5.15: Non - Nested Severity Regression Models Comparison

Panel A: Based on Global Deviance, AIC, BIC

Model df Global Deviance AIC SBC
Exponential 17 75520.6 75554.6  75667.3
Gamma 18 69975.7 70011.7 70131.0
Weibull 18 70880.8 70916.8 71036.1
GB2 20 68821.9 68861.9 68994.5
Pareto 18 75746.9 75782.9  75902.2
Exp (C=2) 35 75520.6 75590.6  75822.6
Gamma (C=2) 37 66509.6 66583.6 66828.8
Weibull (C=2) 37 67305.0 67379.0 67624.3
GB2 (C=2) 41 66733.9 66815.9 67087.7
Pareto (C=2) 37 76114.1 76188.1 76433.4
Exp (C=3) 53 75520.6 75626.6  75978.0
Gamma (C=3) 56 65237.1 65349.1 65720.3
Weibull (C=3) 56 67735.6 67847.6 68218.8
GB2 (C=3) 62 66014.9 66138.9 66549.9
Pareto (C=3) 56 76114.2 76226.2 76597.4
Panel B: Based on Vuong test
Model 1 Model 2 Vuong Test Statistic p-value Decision
Exponential GB2 -35.49 0.00 GB2
Exponential Pareto 99.87 0.00 Exp
Gamma GB2 -10.76 0.00 GB2
Gamma Pareto 36.79 0.00 Gamma
Weibull Gamma -10.71 0.00 Gamma
Weibull GB2 -11.80 0.00 GB2
Weibull Pareto 34.39 0.00 Weibull
Exp (C=2) GB2 (C=2) -47.35 0.00 GB2
Exp (C=2) Pareto (C=2) 110.19 0.00 Exp
Gamma (C=2) GB2 (C=2) -0.45 0.32 None
Gamma (C=2) Pareto (C=2) 51.19 0.00 Gamma
Weibull (C=2) Gamma (C=2) -6.00 0.00 Gamma
Weibull (C=2) GB2 (C=2) -6.42 0.00 GB2
Weibull (C=2) Pareto (C=2) 49.73 0.00  Weibull
Exp (C=3) GB2 (C=3) -37.31 0.00 GB2
Exp (C=3) Pareto (C=3) 110.12 0.00 Exp
Gamma (C=3) GB2 (C=3) 8.57 0.00 Gamma
Gamma (C=3) Pareto (C=3) 49.83 0.00 Gamma
Weibull (C=3) Gamma (C=3) -5.84 0.00 Gamma
Weibull (C=3) GB2 (C=3) -3.18 0.00 Weibull
Weibull (C=3) Pareto (C=3) 51.04 0.00  Weibull
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Note that the same conclusions for the claim frequency and severity models may not neces-
sarily apply to another observed portfolio.

5.5.3 Optimal BMS Based on the a Posteriori Criteria

In this subsection we consider the premiums determined by the optimal BMS with a frequency
and a severity component based on the a posteriori criteria. As we have already mentioned in the
previous chapters, all the policies were in force for 3.5 years thus the expected claim frequencies
must be multiplied by the exposure to risk e = % in order to calculate the premiums provided
by the claim frequency models. Also, the premiums resulting from both the claim frequency
and severity distributions will be divided by the premium when ¢ = 0, since we are not so much
interested in the absolute premium values as in the differences between various classes. We will

present the results so that the premium for a new policyholder is 100.

We consider first the optimal BMS based on the a posteriori frequency component. For
the two component Poisson mixture we assume that a policyholder who belongs to the first
category is a good risk while a policyholder who belongs to the second category is a bad risk.
The maximum likelihood estimation for this model led to a portfolio consisting of 7, = 86.66%
of good drivers with claim frequency = 3—15 -0.303 = 0.086 and 75 = 13.34% of bad risks

with claim frequency Ay = % -1.669 = 0.476. In the following example we consider that
the specific policyholder is a bad risk!>. We can now estimate the posterior probability of
the second component, 75 (ky, ..., k), i.e. that the policyholder is a bad risk, by substituting
the estimated parameters of the two component Poisson mixture distribution into (5.6), for
[ =n = 2. Note also that 7 (k1,..., k) = 1 — 7o (k1 ..., k) . The optimal BMS resulting from
this model is obtained by substituting Ai, As, 71 (k1, ..., k) and 7o (kq, ..., k) into equation Eq.
(5.4), for n = 2 . In Table 5.16 we present the posterior probability that the policyholder is
a bad risk and the scaled premiums that must be paid for various number of claims when the
age of the policy is up to ¢t = 7 years. From Table 5.16, (Panel A) we observe that if the
policyholder has a claim free year the probability of being a bad risk is reduced whereas if the
policyholder has one or more claims the probability of being a bad risk is increased. From Table
5.16, (Panel B) we see that if the policyholder has a claim free year the premium is reduced
while if the policyholder has one or more claims their premium is increased. For example, if
the policyholder has one claim in the first year, the posterior probability of being a bad risk
increases to 36.44% from 13.33% and they face a malus of 65% in their premium.

15The analogous procedure can be applied for a policyholder who belongs in the first category.

191



Table 5.16: Optimal BMS, Two Component Poisson Mixture Model
Panel A: Posterior Probability of the Second Component

Number of Claims
k

0 1 2 3 4 5 6

0.1333 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0943 0.3644 0.7593 0.9455 0.9896 0.9981 0.9997
0.0658 0.2796 0.6811 0.9216 0.9850 0.9972 0.9995
0.0455 0.2080 0.5911 0.8884 0.9777 0.9959 0.9993
0.0312 0.1509 0.4946 0.8434 0.9673 0.9939 0.9988
0.0214 0.1074 0.3984 0.7847 0.9525 0.9910 0.9983
0.0145 0.0753 0.3096 0.7116 0.9314 0.9870 0.9976
0.0099 0.0523 0.2328 0.6255 0.9018 0.9806 0.9964

Panel B: Optimal BMS
Number of Claims

5
&
=

N O Uk W N O T

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 89.02 165.00 276.11 328.50 340.90 343.28 343.72
2 81.00 141.13 254.10 321.76 339.53 343.03 343.67
3 75.28  121.00 228.78 312.41 337.53 342.65 343.61
4 71.27  104.94 201.62 299.76 334.63 342.10 343.50
5 68.49 92.69 174.57 283.25 330.46 341.29 343.35
6 66.57 83.66 149.56 262.68 324.52 340.10 343.13
7 65.26  77.17 127.97 238.45 316.21 338.36 342.81

As we have already mentioned, the two component Negative Binomial mixture can be
derived in two alternative (not equivalent) ways, either by updating the posterior probability
(given by Eq. (5.7), for n = 2) or by updating the posterior mean (given by Eq. (5.12), for
n = 2). Firstly, we consider the two component Negative Binomial mixture model derived by
updating the posterior probability. The maximum likelihood estimation for this model led to
a portfolio consisting of 7, = 56.55% of good drivers with A= % -0.389 =0.111, a7 = 0.319

and 7y = 43.45% of bad risks with Ay = % - 0.558 = 0.159, a5 = 0.152. The posterior
probability 75 (k1, ..., k) that the policyholder is a bad risk is calculated according to Eq.
§5.8), for | = n = 2. The premiums resulting from this model are calculated by substituting
A1, Ag, G, Gig, 7y (K1, ..., ki) and 7o (kq, ..., k) into equation Eq. (5.4), for n = 2. Note that due
to the existence of the k;-s in Eq. (5.8), the explicit claim frequency history determines the
calculation of the posterior probabilities and thus of premium rates and not just the total
number of claims as in the case of the two component Poisson mixture. For this reason, in
Table 5.17 we specify the exact order of the claims history in order to derive the posterior
probability of the second component and the premiums rates using different scenarios for the
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claim frequency history when the age of the policy is up to t = 2 years. For example, considering
a bad risk policyholder we observe that they have at ¢t = 2 claim frequency history k; = 0, ks = 2
(i.e. total number of claims K = 2 at ¢t = 2) then the posterior probability of being a bad risk
is increased from 43.45% to 56.16% and their premium increases from 100 to 104.64 while if
they have k; = 1, ks = 1 claim frequency history (i.e. total number of claims K = 2 at t = 2)
then the posterior probability of being a bad risk is increased from 43.45% to 59.47% and their
premium is increased from 100 to 105.85.

Table 5.17: Optimal BMS, Two Component Negative Binomial Mixture Model, Update of the
Posterior Probability

Year Number of Claims k; | Posterior Probability  Optimal BMS
of the 2nd component

t=0 ko= 0.4345 100
ki = 0.4227 99.56

t=1 k=1 0.5149 102.94
ki = 0.5734 105.08
ki1 =0,k = 0.4109 99.13

t=2 ki =0ky=1 0.5029 102.50
k1 =0,ky =2 0.5616 104.64
ki=1,ky=0 0.5029 102.50

t=2 ki=1ky = 0.5947 105.85
ki=1,ky = 0.6501 107.88
k1 =2,ky=0 0.5616 104.64

t=2 k=2k=1 0.6501 107.88
k1 =2,ky =2 0.7017 109.77

Secondly, we consider the two component Negative Binomial mixture derived by updating

the posterior mean. In this case, the maximum likelihood estimators of the parameters are 7, =

A A Al A 31209 _ ~ 65790 _
0.5655, T = 0.4345, &y = 3.1299, &y = 6.579, 71 = T 001 28.154 and 79 = 05583 41.

244. In the following example we assume that a policyholder belongs to a group of policyholders
observed for 7 years whose number of claims range from 1 to 6. The optimal BMS resulting
from this model will be defined by substituting the above values into Eq. (5.14), for n = 2
and is presented in Table 5.18. From Table 5.18 we observe that this system can be considered
generous with good drivers and strict with bad drivers. For instance, the bonuses given for the
first claim free year are 2.88% of the basic premium and drivers who have one accident over
the first year will have to pay a malus of 19.58% of the basic premium.
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Table 5.18: Optimal BMS, Two Component Negative Binomial Mixture Model, Update of the
Posterior Mean

Number of Claims

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 97.12 119.58 142.04 164.49 186.95 209.41 231.86
2 94.42 116.21 138.00 159.79 181.58 203.37 225.16
3 91.86 113.03 134.19 155.35 176.51 197.67 218.84
4 89.45 110.01 130.59 151.16 171.73 192.30 212.87
5 87.15 107.17 127.18 147.20 167.21 187.22 207.24
6 84.99 104.47 123.95 143.44 162.92 182.41 201.89
7 82.92 101.90 120.88 139.87 158.86 177.84 196.83

The BMSs presented in Tables 5.16, 5.17 and 5.18 are financially balanced and do not
differ much. Also, the system presented in Table 5.18 shows much less extreme premiums in
comparison with the one obtained from the traditional Negative Binomial distribution, which
was presented in Table 3.6 of Chapter 3. For example, the bonuses given for the first claim
free year are 11.28% and 2.88% of the basic premium in the case of the Negative Binomial
(Table 3.6, Chapter3) and the two component Negative Binomial mixture (Table 5.18) models
respectively. On the contrary, policyholders who had one claim over the first year of observation
will have to pay a malus of 70.14% and 19.58% of the basic premium in the case of the Negative
Binomial and the two component Negative Binomial models respectively.

In terms of the a posteriori claim severity component, we consider first the case of the
two and three component Exponential, Gamma, Weibull and GB2 mixture models derived by
updating the posterior probability. The estimation of the parameters of these models led to
the following results:

e In the case of the two component Exponential mixture, the resulting portfolio consists
of p; = 47.20% of good drivers with claim severity 7; = 327.99 and p, = 52.80% of bad
risks with claim severity g = 327.99.

e In the case of the two component Gamma mixture, the resulting portfolio consists of
p1 = 45.60% of good drivers with claim severity §; = 247.89, 6; = 0.1497 and p, = 54.40%
of bad risks with claim severity 7, = 395.04, 65 = 0.5906.

e In the case of the two component Weibull mixture, the resulting portfolio consists of
p1 = 47.21% of good drivers with claim severity g, = 243.71, 6; = 2.018and p, = 52.79%
of bad risks with claim severity 7, = 403.03, 05 = 0.5294.

e In the case of the two component GB2 mixture, the resulting portfolio consists of p; =
49.26% of good drivers with claim severity 7, = 237.46, 6, = 10.1600, v; = 1.2058,
§1 = 0.9461 and p, = 50.74% of bad risks with claim severity g = 499.70, 6o = 4.752,
V9 = 0.3940, 55 = 0.9305.
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e In the case of the three component Exponential mixture, the resulting portfolio consists
of p; = 32.92% of good risks with claim severity ¢; = 328.00, p, = 33.17% of average
risks with claim severity g, = 328.00 and p; = 33.91% of bad risks with claim severity
U3 = 328.00.

e In the case of the three component Gamma mixture, the resulting portfolio consists of
p1 = 52.68% of good risks with claim severity ; = 243.47, 0, = 0.1615, p, = 14.96% of
average risks with claim severity 7, = 418.22, 65 = 0.9260 and p3 = 32.36% of bad risks
with claim severity g3 = 423.69, 65 = 0.2967.

e In the case of the three component Weibull mixture, the resulting portfolio consists of
pp = 47.53% of good risks with claim severity ¢; = 239.61, 6, = 2.032, py = 37.74% of
average risks with claim severity 7, = 389.16 , f, = 1.203and ps = 14.73% of bad risks
with claim severity g3 = 455.32, 65 = 0.114.

e In the case of the three component GB2 mixture, the resulting portfolio consists of p; =
3.66% of good risks with claim severity ¢; = 36.05, 61 = 3.862, 1 = 1.6093, §; = 0.5728,
Py = 63.28% of average risks with claim severity g, = 247.65, 6o = 9.475, vy = 0.9103,
S5 = 1.0131 and p; = 33.06% of bad risks with claim severity g3 = 377.29, 63 = 5.623,
3 = 1.5923, 53 = 0.7191.

Based on the above estimates we are now able to derive the optimal BMSs resulting from
these models. Let us see an example in order to understand better how such systems work.
Consider that a policyholder is observed over the first year their presence in the portfolio, has
one claim, i.e. K = 1, and the claim amount, x1, of their accident ranges from 150 to 500 euros.
Firstly, we consider the case of the two component mixture models. The posterior probability
py (x1) that the policyholder is a bad risk is given by the Egs (5.17, 5.21, 5.19 and 5.23), for
[ = n = 2, for the case of the two component Exponential, Weibull, Gamma and GB2 mixtures
respectively!S. The results are displayed in Table 5.19.

6 Note that p; (71) = 1 — py (21) .
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Table 5.19: Posterior Probability of the Second Component, Two Component Mixture Models

for Assessing Claim Severity, One Claim in the First Year of Observation

Claim Size Exponential Gamma Weibull GB2

150 0.5280776 0.9291123 0.6072640 0.8272659
175 0.5280776 0.6120109 0.3866989 0.5091249
200 0.5280776 0.3098473 0.2391092 0.2487356
225 0.5280776 0.1978124 0.1695440 0.1538288
250 0.5280776 0.1853316 0.1662397 0.1581051
275 0.5280776 0.2420095 0.2736654 0.2369350
300 0.5280776 0.3878595 0.6741644 0.3887037
325 0.5280776 0.6271392 0.9839598 0.5776653
350 0.5280776 0.8511934 0.9999589 0.7419573
375 0.5280776 0.9601340 1.0000000 0.8519773
400 0.5280776 0.9918783 1.0000000 0.9159169
425 0.5280776 0.9986305 1.0000000 0.9512052
450 0.5280776 0.9998013 1.0000000 0.9706653
475 0.5280776 0.9999747 1.0000000 0.9816513
500 0.5280776 0.9999971 1.0000000 0.9880639

Secondly, we consider the case of the three component mixture models. The posterior
probability p, (1) that the policyholder is an average risk, i.e. they belong to the second
category of risks, is given by the Eqs (5.17, 5.21, 5.19 and 5.23), for [ = 2 and n = 3 and the
posterior probability p; (z1) that the policyholder is a bad risk, i.e. they belong to the third
category of risks, is given by the Egs (5.17, 5.21, 5.19 and 5.23), for [ = 3 and n = 3, for
the case of the three component Exponential, Weibull, Gamma and GB2 mixtures respectively,
using the same categories as before!”. The results are depicted in Table 5.20 (Panels A and B).

1"Note also that p; (71) = 1 — py (1) — p3 (21) .
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Table 5.20: Posterior Probability of the Second and the Third Component, Three Component
Mixture Models for Assessing Claim Severity, One Claim in the First Year of Observation

Panel A: Second component

Claim Size Exponential Gamma  Weibull GB2

150 0.3316923 0.5404953 0.2723886 0.9327530
175 0.3316923 0.1672704 0.1934542 0.9799350
200 0.3316923 0.0640814 0.1400271 0.9875993
225 0.3316923 0.0392743 0.1207626 0.9854583
250 0.3316923 0.0364328 0.1489229 0.9728115
275 0.3316923 0.0460964 0.3086360 0.9319897
300 0.3316923 0.0689915 0.7227783 0.8220258
325 0.3316923 0.1001418 0.8722634 0.6141273
350 0.3316923 0.1207824 0.8822294 0.3766626
375 0.3316923 0.1247956 0.8854009 0.2056107
400 0.3316923 0.1228099 0.8844872 0.1109158
425 0.3316923 0.1219009 0.8792389 0.0625614
450 0.3316923 0.1240281 0.8689408 0.0374914
475 0.3316923 0.1295363 0.8522981 0.0238178
500 0.3316923 0.1385600 0.8272656 0.0159125

Panel B: Third component

150 0.3391230 0.0704857 0.1927821 0.0063898
175 0.3391230 0.0575825 0.0948670 0.0073214
200 0.3391230 0.0471946 0.0503026 0.0088190
225 0.3391230 0.0527043 0.0333150 0.0130332
250 0.3391230 0.0784905 0.0329080 0.0261612
275 0.3391230 0.1439094 0.0568181 0.0669633
300 0.3391230 0.2868004 0.1151328 0.1766946
325 0.3391230 0.5163146 0.1248151 0.3843838
350 0.3391230 0.7270201 0.1177686 0.6218652
375 0.3391230 0.8324215 0.1145991 0.7930958
400 0.3391230 0.8674829 0.1155128 0.8879790
425 0.3391230 0.8761783 0.1207611 0.9364717
450 0.3391230 0.8756294 0.1310592 0.9616290
475 0.3391230 0.8704078 0.1477020 0.9753513
500 0.3391230 0.8614317 0.1727344 0.9832778

The results presented in Tables 5.19 and 5.20 indicate that the behavior of the posterior
probabilities is irregular for small claim sizes. Thus the behavior of the premium formulas is
also expected to be irregular. For this purpose we consider that for claim sizes smaller than
235 euros (for all models) the policyholder always pays the same premium calculated for an
accident of claim amount 235 euros. This value was chosen since for claim sizes up to 235 euros
both the posterior probabilities in the case of the two and three component mixture models
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indicate an irregular behavior. Furthermore, due to the irregular behavior of the posterior
probabilities in the case of the three component Weibull mixture, it was found that there was
a very small drop in the premium rates which range from 350 to 400 compared to the premium
rate of 325. For this reason, we assumed that these values are equal to that of 325 euros. The
premium rates resulting from the two component mixture models are derived by Eq. (5.15),
for n = 2, and those resulting from the three component mixtures are obtained by Eq. (5.15),
for n = 3. The results are displayed in Table 5.21 (Panels A and B). More specifically, in
Panel A we report the premiums for the two component mixture models for a bad risk, i.e.
belonging to the second category of risks and in Panel B we depict the premiums for the three
component mixture models for a bad risk, i.e. belonging to the third category of risks using the
same categories as before. From Table 5.21 we observe that the premium is equal to 100, the
basic premium, in the case of the two and three component Exponential mixture, revealing the
unnecessity of the two and three components. As expected, in the case of the two and three
component Gamma, Weibull and GB2 mixtures the premium values increase proportionally to
the claim severity. For instance, for one claim size of 325 in the first year the premium increases
from 100 to 103.73, 122.16, 103.19, in the two component mixture Gamma, Weibull and GB2
models, respectively. For the three component mixtures, we have to note that for one claim
size of 325 in the first year the premium increases from 100 to 107.96, 121.09 and 106.16, in the
case of the Gamma, Weibull and GB2 models, respectively. For claim sizes up to 275 euros all

models reward the policyholder with a bonus!®.

18Note that the mean claim size is 327.95 euros.
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Table 5.21: Optimal BMS, Two and Three Component Mixture Models for Assessing Claim
Severity, Update of the Posterior Probability, One Claim in the First Period of Observation

Panel A: Two component

Claim Size Exponential Gamma  Weibull GB2
150 100 83.85582  82.11809  83.63431
175 100 83.85582  82.11809  83.6343
200 100 83.85582  82.11809  83.6343
225 100 83.85582  82.11809  83.6343
250 100 83.90725  82.42309  84.1708
275 100 86.45047  87.64366  87.74360
300 100 92.99496  107.10672 94.62224
325 100 103.73179 122.16185 103.18658
350 100 113.78542 122.93936 110.63282
375 100 118.67374 122.94136 115.61927
400 100 120.09815 122.94136 118.51722
425 100 120.40114 122.94136 120.11659
450 100 120.45367 122.94136 120.99859
475 100 120.46145 122.94136 121.49651
500 100 120.46246 12294136 121.78715
Panel B: Three component
150 100 79.48091  80.81860  77.17606
175 100 79.48091  80.81860  77.17606
200 100 79.48091  80.81860  77.17606
225 100 79.48091  80.81860  77.17606
250 100 80.49958  82.04732  77.94160
275 100 84.60968  90.90667  81.15704
300 100 93.68239  113.63694 89.79472
325 100 107.95547 121.09342 106.15590
350 100 120.63485 121.09342 124.87792
375 100 126.64114 121.09342 138.38609
400 100 128.46215 121.09342 145.87617
425 100 128.89157 121.14488 149.70645
450 100 128.97476 121.35269 151.69440
475 100 128.98133 121.68854 152.77880
500 100 128.96888 122.19369 153.40482

Let us now consider the two and the three component Pareto mixture distributions for as-
sessing claim severity. These models were derived by updating the posterior mean claim severity
and the maximum likelihood estimates of their parameters can be found in the preceding. In
the following example, we calculate the premiums that must be paid by a policyholder who
is observed for the first year of her presence in the portfolio, has one accident and the claim
amount of her accident ranges from 150 to 1000 euros. The optimal BMSs resulting from the
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two and three component Pareto mixture distributions will be defined by Eq. (5.27), for n = 2
and n = 3 respectively, and are presented in Table 5.22. It is obvious that these optimal BMSs
as well allow the discrimination of the premium with respect to the severity of the claims. These
systems are financially balanced and do not differ much with the one obtained in Chapter 4
when the Pareto distribution was used (see Table 4.2, Chapter 4). For instance, for one claim
size of 500 in the first year the premium increases from 100 to 100.59, 100.67 and 100.66 in the
case of the Pareto, two component Pareto mixture and three component Pareto mixture models
respectively. Compared to the BMSs provided by the two and three component mixture models
derived by updating the posterior probability, (see Table 5.21), the two and three component
Pareto mixture models show much less extreme premiums. The systems presented in Tables
5.21 and 5.22 are fair because each insured pays a premium proportional to her claim severity
taking into account through the Bayes theorem all the information available for her claim size
history.
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Table 5.22: Optimal BMS, Two and Three Component Pareto Mixture Models for Assessing
Claim Severity, One Claim in the First Year of Observation

Claim Size Optimal BMS Optimal BMS
Two Component Pareto Three Component Pareto
150 99.29018 99.28784
175 99.38903 99.38621
200 99.48789 99.48458
225 99.58674 99.58294
250 99.68559 99.68131
275 99.78445 99.77967
300 99.88330 99.87804
325 99.98216 99.97640
350 100.08101 100.07477
375 100.17987 100.17314
400 100.27872 100.27150
425 100.37758 100.36987
450 100.47643 100.46823
475 100.57529 100.56660
500 100.67414 100.66496
525 100.77299 100.76333
550 100.87185 100.86170
575 100.97070 100.96006
600 101.06956 101.05843
625 101.16841 101.15679
650 101.26727 101.25516
675 101.36612 101.35352
700 101.46498 101.45189
725 101.56383 101.55026
750 101.66269 101.64862
775 101.76154 101.74699
800 101.86040 101.84535
825 101.95925 101.94372
850 102.05810 102.04208
875 102.15696 102.14045
900 102.25581 102.23882
925 102.35467 102.33718
950 102.45352 102.43555
975 102.55238 102.53391
1000 102.65123 102.63228
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Finally, in Tables 5.23 and 5.24 we present the optimal BMS based on the a posteriori
frequency and severity component. As we have mentioned before, the resulting premium rates
are calculated via the product of the expected claim frequency and the expected claim severity
with independence between the two components assumed. We observe that for one claim size
of 350 in the first year the premium increases from 100 to 165.00, 187.75, 202.85, 182.54,
165.13 in the two component Poisson mixture model and the corresponding two component
severity models (Table 5.23), to 102.94, 117.13, 126.55, 113.88, 103.02 in the two component
Negative Binomial mixture model (updating the posterior probability) and the corresponding
two component severity models (Table 5.24, Panel A), to 119.58, 136.07, 147.01, 132.30, 119.68
in the two component Negative Binomial mixture model (updating the posterior mean) and
the corresponding two component severity models (Table 5.24, Panel B).

Table 5.23: Optimal BMS Based on the Two Component Poisson Mixture Model for Assess-
ing Claim Frequency and the Various Two Component Mixture Models for Assessing Claim
Severity, One Claim in the First Year of Observation

Two Component Poisson Mixture Model

Claim Size POIS-EXP POIS-GA POIS-WEI POIS-GB2 POIS-PA

150 165.00 138.3621  135.4948 137.9966  163.8288
175 165.00 138.3621  135.4948 137.9966  163.9919
200 165.00 138.3621  135.4948 137.9966  164.1550
225 165.00 138.3621  135.4948 137.9966  164.3181
250 165.00 138.4469  135.9981 138.8818  164.4812
275 165.00 142.6433  144.6120 144.7769  164.6443
300 165.00 153.4418  176.7261 156.1266  164.8075
325 165.00 171.1578  201.5671 170.2579  164.9706
350 165.00 187.7459  202.8499 182.5441  165.1337
375 165.00 195.8117  202.8532 190.7718  165.2968
400 165.00 198.1620  202.8532 195.5534  165.4599
425 165.00 198.6619  202.8532 198.1924  165.6230
450 165.00 198.7486  202.8532 199.6477  165.7861
475 165.00 198.7614  202.8532 200.4692  165.9492
500 165.00 198.7631  202.8532 200.9488  166.1123
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Table 5.24: Optimal BMS Based on the Alternative Two Component Negative Binomial Mix-
ture Models for Assessing Claim Frequency and the Various Two Component Mixture Models
for Assessing Claim Severity, One Claim in the First Year of Observation

Panel A: Two Component Negative Binomial Mixture Model
(Update of the Posterior Probability)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

150 102.94  86.32118  84.53236  86.09316 102.2093
175 102.94  86.32118 84.53236  86.09316 102.3111
200 102.94  86.32118 84.53236  86.09316 102.4128
225 102.94  86.32118 84.53236  86.09316 102.5146
250 102.94  86.37412 84.84633  86.64540 102.6164
275 102.94  88.99211 90.22038  90.32327 102.7181
300 102.94  95.72901 110.25566 97.40414 102.8199
325 102.94  106.78150 125.75341 106.22027 102.9216
350 102.94  117.13071 126.55377 113.88542 103.0234
375 102.94 12216275 126.55583 119.01848 103.1252
400 102.94  123.62904 126.55583 122.00162 103.2269
425 102.94  123.94093 126.55583 123.64802 103.3287
450 102.94  123.99501 126.55583 124.55595 103.4304
475 102.94  124.00302 126.55583 125.06851 103.5322
500 102.94  124.00405 126.55583 125.36769 103.6340

Panel B: Two Component Negative Binomial Mixture Model
(Update of the Posterior Mean)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

150 119.58 100.2748  98.19681  100.0099 118.7312
175 119.58 100.2748  98.19681  100.0099 118.8494
200 119.58 100.2748  98.19681  100.0099 118.9676
225 119.58 100.2748  98.19681  100.0099 119.0858
250 119.58 100.3363  98.56153  100.6514 119.2040
275 119.58 103.3775 104.80429 104.9238 119.3222
300 119.58 111.2034 128.07821 113.1493 119.4405
325 119.58 124.0425 146.08114 123.3905 119.5587
350 119.58 136.0646 147.01088 132.2947 119.6769
375 119.58 141.9101 147.01327 138.2575 119.7951
400 119.58 143.6134 147.01327 141.7229 119.9133
425 119.58 143.9757 147.01327 143.6354 120.0315
450 119.58 144.0385 147.01327 144.6901 120.1497
475 119.58 144.0478 147.01327 145.2855 120.2679
500 119.58 144.0490 147.01327 145.6331 120.3861
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5.5.4 Optimal BMS Based Both on the a Priori and the a Posteriori
Criteria

In this subsection we consider the premiums determined by the generalized optimal BMS with a
frequency and a severity component when both the a priori and the a posteriori rating variables
are used. The expected claim frequencies are multiplied again by the exposure to risk e = 3—15
in order to derive the generalized premiums. The premiums determined by the claim frequency
and severity models are divided again by the premium when ¢ = 0, in order to observe the
percentage change in the premiums after one or more claims.

In terms of the claim frequency component we consider first the two component Poisson
mixture regression model for assessing claim frequency. In the following example Table 5.25
(Panels A and B), we examine a group of policyholders who share the following common
characteristics: The policyholder i is a woman, who belongs to the first Bonus-Malus cate-
gory and has a car with horsepower between 0-33. The estimation for this group led to a
portfolio consisting of 7; = 90.07% of good drivers with annual expected claim frequency

N, = eexp (c1:81) = 35 - exp (—1.359 +0.144) = 0.084 and 7 = 9.93% of bad risks with

claim frequency /A\;z = eexp (célﬁé) = o= - exp (0.736 + (—0.108)) = 0.535, where j represents
the age of the policy, We assume that the specific policyholder belongs to the second category
of risks, her number of claims range from 1 to 6 and that the age of the policy j is up to 7
years. The posterior probability 75 (K}, ..., K};c};, ... c55!) | i.e. that she is a bad risk, will
be estimated according to Eq. (5.34), for n = 2. Note also that 7, (Kil, Koy, ctljgl) =
1—7y (K}, ..., Kl; ¢35, ... ¢551) - The optimal BMS resulting from this model is obtained by sub-
stituting Ay ;, A, 711 (K}, ooy Kl b gy ooy 5 and #ta (K7, .. K b, ooy €551 into Eq. (5.32), for
n = 2. From Table 5.25, (Panel A) we observe that if the policyholder has a claim free year the
probability of being a bad risk is reduced whereas if the policyholder has one or more claims
the probability of being a bad risk is increased. From Table 5.25, (Panel B) we see that if the
policyholder has a claim free year her premium is reduced while if the policyholder has one or
more claims the premium is increased. For example, if the policyholder ¢ has one claim in the
first year, the posterior probability of being a bad risk increases to 30.73% from 9.92% and she
faces a malus of 72.44% in her premium. Furthermore, it is interesting to compare this BMS
with the one obtained when only the a posteriori frequency component is used. Using the two
component Poisson mixture we saw in Table 5.16 that a policyholder with one claim in the first
year faces a malus of 65% of the basic premium. Using the two component Poisson mixture
regression model, a woman who belongs to the first Bonus-Malus category, with a car with
horsepower 0-33 and one claim in the first year faces a malus of 72.44% in her premium. This
system is more fair since it considers all the important a priori and a posteriori information
for each policyholder in order to estimate her risk of having an accident and thus it permits
the differentiation of the premiums for various number of claims based on the expected claim
frequency of each policyholder as these are estimated both from the a priori and the a posteriori
classification criteria.
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Table 5.25: Optimal BMS, Two Component Poisson Mixture Regression Model
Panel A: Posterior Probability of the Second Component

Number of Claims
k

0 1 2 3 4 5 6

0.0992 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0655 0.3073 0.7371 0.9466 0.9915 0.9985 0.9997
0.0427 0.2203 0.6410 0.9186 0.9861 0.9977 0.9996
0.0276 0.1525 0.5322 0.8779 0.9784 0.9965 0.9994
0.0178 0.1028 0.4201 0.8207 0.9661 0.9945 0.9991
0.0114 0.0680 0.3157 0.7447 0.9485 0.9914 0.9986
0.0073 0.0444 0.2271 0.6501 0.9215 0.9867 0.9978
0.0046 0.0287 0.1577 0.5420 0.8820 0.9792 0.9966

Panel B: Optimal BMS
Number of Claims

5
&
=

N O Uk W N O T

Year k

t 0 1 2 3 4 5 6

0 100.00 0.00 0.00 0.00 0.00 0.00 0.00

1 88.27 17244 322.10 395.03 410.54 413.13 413.55
2 80.33  142.15 288.65 385.29 408.81 412.85 413.50
3 75.07 118.54 250.74 371.12 406.13 412.42 413.43
4 71.64 101.24 211.73 351.23 402.00 411.73 413.32
5 69.41 89.13 175.39 324.74 395.71 410.66 413.15
6 67.98 80.91 144.54 291.80 386.30 409.00 412.88
7 67.06 75.45 120.34 254.16 372.57 406.41 412.46

The two component Negative Binomial mixture regression model can be derived in two
alternative (not equivalent) ways, either by updating the posterior probability (given by Eq.
(5.35), for n = 2) or by updating the posterior mean (given by Eq. (5.41), for n = 2). In what
follows we present the optimal BMSs obtained by the two component Negative Binomial mixture
regression model for both cases, i.e. for the case of updating the posterior probability and for
the case of updating the posterior mean. Let us see an example in order to understand better
how these systems work. Firstly, we consider the case of the two component Negative Binomial
mixture regression model derived by updating the posterior probability. The estimation for the
same group of policyholders we described before led to a portfolio consisting of 7; = 89.07%

of good drivers with ;\iz = eexp (c{lﬁjl) = exp(—1.291 + 0.156) = 0.091, dju = 0.207 and p, =

10.93% of bad risks with Ay ; = e exp (¢} ;3) = 3% -exp (0.579 + (—0.143)) = 0.442, 4, = 0.250.
The posterior probability 75 (K}, ..., Kl;c;, ..., ¢55") will be estimated for a bad risk according
to Eq. (5.36), for n = 2. Secondly, we consider the case of the two component Negative
Binomial mixture regression model derived by updating the posterior mean. Consider now a

new group of policyholders who share the following common characteristics: The policyholder
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1 is a woman, who has a car with horsepower 0-33 and her Bonus-Malus class varies over

time, starting from BM class 1'%. The mean (or location) parameter of this model is given
1
3.5

2
by E(Kf|ciz) = esz exp (cizﬁjz), where e = -=. Due to the fact that the drivers were
z=1

divided into five categories according to their BM class, the estimation for this group led to the
following results presented in Table 5.26.

Table 5.26: Women, Horse Power 0-33
Bonus-Malus Category ‘ eexp (c],41) ‘ eexp (c,3)

1 0.091 0.442
2 0.206 0.440
3 0.224 0.898
4 0.023 0.284
3 0.818 1.353

Based on the above estimates for these two different groups of individuals we are now able
to calculate the premium rates according to Eqs (5.32 and 5.49), for n = 2, for the case of
updating the posterior probability and the case of updating the posterior mean respectively.
The results are displayed in Table 5.27. Note that in both cases the claim frequency history
plays an important role. For the case of updating the posterior probability, this follows from the
existence of the KJ's in Eq. (5.36) and for the case of updating the posterior mean this follows
from Eq. (5.49) due to the fact that Bonus-Malus class varies substantially from one period
to another depending on the number of claims K f of each policyholder ¢ for period j. For this
reason in Table 5.27 we specify the exact order of the claims history in order to calculate the
premiums that must be paid by these two different groups of policyholders. For instance, for the
case of updating the posterior probability and considering a bad risk policyholder, we observe
that if she has at ¢ = 2 claim frequency history k; = 0,ky = 2 (i.e. total number of claims
K = 2 at t = 2) then the posterior probability of being a bad risk is increased from 10.93%
to 56.26% and her premium increases from 100 to 222.03 while if she has k; = 1, ko = 1 claim
frequency history (i.e. total number of claims K = 2 at t = 2) then the posterior probability
of being a bad risk is increased from 10.93% to 55.40% and her premium is increased from 100
to 219.72. For the case of updating the posterior mean we see that if she has at ¢ = 2 claim
frequency history k; = 0, ks = 2 then her premium increases from 100 to 237.37, while if she
has k1 = 1, k3 = 1 claim frequency history her premium reaches 233.12.

Recall that BM class 1 corresponds to BM category 1 according to the grouping of the levels of the BM
class explanatory variable.
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Table 5.27: Optimal BMS, Two Component Negative Binomial Mixture Regression Model

Year Number of Claims k; | Posterior Probability Optimal BMS | Optimal BMS
of the 2nd component Posterior Prob. | Posterior Mean
t=0 ko=0 0.1093 100 100
ki =0 0.0811 92.43 95.14
t=1 k=1 0.2807 146.16 208.54
ki =2 0.6410 243.16 245.46
k1 =0,ky =0 0.0598 86.67 90.99
t=2 Kk =0,k=1 0.2194 129.65 201.72
ki1 =0,k =2 0.5626 222.03 237.37
ki=1,ky=0 0.2194 129.65 109.49
t=2 k=1k=1 0.5540 219.72 233.12
ki1=1,ky =2 0.8503 299.50 342.75
ki1 =2,ky=0 0.5626 222.03 233.12
t=2 ki =2k =1 0.8503 299.50 342.75
ki =2,ky =2 0.9629 329.81 388.13

The BMSs obtained by the two component Negative Binomial mixture regression model
(Table 5.27 ) for both cases do not differ much from the system provided by the two component
Poisson mixture regression model (Table 5.25). Nevertheless, for the case of updating the pos-
terior mean, the BMS determined by the two component Negative Binomial mixture regression
model differs from the one obtained by the Negative Binomial regression model, which was
presented in Table 3.10 of Chapter 3. For example, a woman who at ¢ = 2 has claim frequency
history k; = 0,ky = 2 faces a malus of 261.15% and 137.37% of the basic premium in the
case of the Negative Binomial (see Table 3.10, Chapter 3) and the two component Negative
Binomial mixture models respectively, while a woman who at t = 2 has claim frequency history
ki =1,ky = 1 faces a malus of 239.90%, 133.12% of the basic premium in the case of the Neg-
ative Binomial and two component Negative Binomial mixture regression models respectively.
Let us now compare the BMSs presented in Table 5.27 with the systems presented in Tables
5.17 and 5.18, when only the a posteriori classification criteria are used. Firstly, we consider
the case of updating the posterior probability. Using the two component Negative Binomial
mixture derived by updating the posterior probability, we saw from Table 5.17 that a bad risk
policyholder who at ¢ = 2 has claim frequency history k; = 0, ks = 2 faces a malus of 4.64%
of the basic premium while a policyholder who has k; = 1,k = 1 claim frequency history
faces a malus of 5.85% of the basic premium. Using the two component Negative Binomial
mixture regression model derived by updating the posterior probability and considering a bad
risk policyholder, we observe that if she has at t = 2 claim frequency history k; = 0, ky = 2 she
faces a malus of 122.03% of the basic premium, while if she has k; = 1, ky = 1 claim frequency
history then she has to pay a malus of 119.72% of the basic premium. Secondly, we consider
the case of updating the posterior mean. Using the two component Negative Binomial mixture
derived by updating the posterior mean, we saw from Table 5.18 that a policyholder who at
t = 2 has two claims faces a malus 34.36% of the basic premium. Using the two component
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Negative Binomial mixture regression model derived by updating the posterior mean, consider
a woman who has a car with horsepower between 0-33 and her Bonus-Malus class varies over
time. As mentioned before, if at ¢ = 2 she has claim frequency history k; = 0, ks = 2 she faces a
malus of 137.37% of the basic premium, while if she has k; = 1, ky = 1 claim frequency history
then she faces a malus of 133.12% of the basic premium.

Regarding the claim severity component, we consider first the two and three component
Exponential, Gamma, Weibull and GB2 mixture regression models derived by updating the
posterior probability. Let us see an example in order to understand better how the BMSs
resulting from these models work. Consider a group of policyholders who share the following
common characteristics: The policyholder 7 is a woman, she belongs to the first Bonus-Malus
category and her car has horsepower 0-33. The estimation for this group led to the following
results:

e In the case of the two component Exponential mixture regression model, the resulting
portfolio consists of p; = 50.93% of good drivers with claim severity Q{Z = exp (d{ﬂ{)
= exp(5.746034 +(—0.023606)) = 305.64 and p, = 49.07% of bad risks with claim severity
U3 = €xXp (d% 73) = exp( 5.745604 + (—0.022953)) = 305.71, where j represents the age
of the policy.

e In the case of the two component Gamma mixture regression model, the resulting port-
folio consists of p; = 48.61% of good drivers with claim severity ylZ = exp (d{ 171) =

exp(5.248615 + 0.01684) = 193.53, 0, , = 0.0958 and p, = 51.39% of bad risks with claim

severity 43, = exp (d3;7}) = exp(5.865226 + 0.064557) = 376.07, 0; = 0.4568, where j
represents the age of the policy.

e In the case of the two component Weibull mixture regression model, the resulting port-
folio comsists of p; = 45.61% of good drivers with claim severity yl = exp (djl ﬂl)

= exp(6.573425 + (—1.312589)) = 192.64, 6’111. = 12.4410 and p, = 54.39% of bad risks

with claim severity 3 ; = exp (d} ;v3) = exp(5.677825+0.200917) = 357.36, é;"i — 2.2338,
where j represents the age of the policy.

e In the case of the two component GB2 mixture regression model, the resulting portfo-
lio comsists of p; = 61.87% of good drivers with claim severity 7, = exp (d]lﬂjl) =
exp(5.13552 + 0.0522) = 179.06, 67, = 17.3500, 4, = 0.8781, §], = 1.1364 and p, =
38.13% of bad risks with claim severity @%Z = exp (déﬂé) = exp(6.25452 + (—0.01857)) =
510.79 02 .= 5.424, U} 4 =0.5224, 8, = 0.9354, where j represents the age of the policy.

e In the case of the three component Exponential mixture regression model, the resulting
portfolio consists of p; = 30.93% of good risks with claim severity g7, = exp (d]1 @71)
= exp(5.745773 + (—0.023272)) = 305.6684, p, = 35.53% of average risks with claim
severity ¢ ; = exp (d% ) = exp( 5.745709 4 (—0.023174)) = 305.68 and p; = 33.54% of
bad risks with claim severity g3 ; = exp (dé 273) = exp(5.745988 + (—0.023415)) = 305.69,
where j represents the age of the policy.
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e In the case of the three component Gamma mixture regression model, the resulting
portfolio consists of p; = 1.23% of good risks with claim severity 7, = exp (di,;7]) =

exp(5.09428 4+ (—1.30716)) = 44.13, @]1 = 9.3062¢ —08 , py = 46.67% of average risks with

claim severity g3 ; = exp (d},;73) = exp( 5. 246655 +0.030974) = 195.91, f,; = 0.0961 and
ps = 52.10% of bad risks with claim severity 3 ; = exp (d} ;7}) = exp(5.88956+0.01927) =

368.27, 937i = 0.4531, where j represents the age of the policy.

e In the case of the three component Weibull mixture regression model, the resulting port-
folio comsists of p; = 37.27% of good risks with claim severity ylZ = exp (d]l ﬂl) =

exp(5.3201 4 0.03568) = 211.83, 6, = i = 123172, py = 49.58% of average risks with claim

severity yzz = exp (d] z’yz) = exp( 5. 72276 + 0. 05575) = 323.27, 921 = 2.1557 and p; =
13.15% of bad risks with claim severity y3 ; = exp (dé 173) = exp(6.32151 + (-0, 5092)) =

334.39, 0371- = 14.3106, where j represents the age of the policy.

e In the case of the three component GB2 mixture regression model, the resulting portfolio
consists of p; = 60.37% of good risks with claim severity 7, = exp (d];7]) = exp(
5.28321 4 (—0.00138)) = 196.73, &{’i = 15.1000, ﬁ{z = 0.9317, 37“ = 0.9936, p, = 20.16%
of average risks with claim severity g]él = exp (d%lfy%) = exp(5.74645+0.02297) = 320.35,
&%, = 11.7900, 7, = 1.0896, 85, = 0.9150 and p; = 19.47% of bad risks with claim
severity 7 ; = exp (d} ;7}) = exp(6.44784+0.05378) = 666.22, 6%, = 4.4820, 7%} ; = 0.3979,
§fw = 1.1457, where j represents the age of the policy.

Based on the above results for this group of individuals, we are now able to derive the
premiums determined by the two and three component mixture regression models respectively.
In what follows we assume that the policyholder ¢ is observed for the first year of her presence
in the portfolio, has one accident, i.e. K =1 ,and the claim amount of her accident X, ; ranges
from 150 to 500 euros. Firstly, we consider the case of the two component mixture regression
models. The posterior probability p, (XM; dé?i, ey dgﬁl) that the policyholder is a bad risk is
given by the Eqs (5.52, 5.56, 5.54 and 5.58), for [ = n = 2, for the case of the two component
Exponential, Weibull, Gamma and GB2 mixture regression models respectively?’. The results
are summarized in Table 5.28.

»ONote that p; (Xi15d] ;; .., dfgl) =1-p, (X;1:d3,, ...,dgy) )
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Table 5.28: Posterior Probability of the Second Component, Two Component Mixture Regres-
sion Models for Assessing Claim Severity, One Claim in the First Year of Observation

Claim Size Exponential Gamma Weibull GB2

150 0.4906756 0.5511852 0.3853065 0.0469568
175 0.4906802 0.1097841 0.1368834 0.0183314
200 0.4906847 0.0957214 0.1209398 0.0734445
225 0.4906893 0.3187215 0.8847980 0.4688375
250 0.4906938 0.8827866 1.0000000 0.9008195
275 0.4906984 0.9971102 1.0000000 0.9870134
300 0.4907030 0.9999733 1.0000000 0.9980976
325 0.4907075 0.9999999 1.0000000 0.9996733
350 0.4907121 1.0000000 1.0000000 0.9999350
375 0.4907166 1.0000000 1.0000000 0.9999852
400 0.4907212 1.0000000 1.0000000 0.9999962
425 0.4907258 1.0000000 1.0000000 0.9999989
450 0.4907303 1.0000000 1.0000000 0.9999996
475 0.4907349 1.0000000 1.0000000 0.9999998
500 0.4907394 1.0000000 1.0000000 0.9999999

Secondly, we consider the case of the three component mixture regression models. The
posterior probability p, (Xm;d%ﬂ-, ...,dgﬁl) that the policyholder is an average risk is given
by the Eqgs (5.52, 5.56, 5.54 and 5.58), for [ = 2 and n = 3 and the posterior probability
ps (Xi1;ds,, ..., dst') that the policyholder is a bad risk is given by the Eqs (5.52, 5.56, 5.54
and 5.58), for [ = 3 and n = 3, for the case of the three component Exponential, Weibull,
Gamma and GB2 mixtures respectively, using the same categories as before?!. The results are
depicted in Table 5.29 (Panels A and B).

?'Note that py (Xi15di .., di5') =1 —py (Xiisdy .y d5h') — py (Xi;db 5, d55)
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Table 5.29: Posterior Probability of the Second and the Third Component, Three Component
Mixture Regression Models For Assessing Claim Severity, One Claim in the First Year of

Observation
Panel A: Second component

Claim Size Exponential Gamma Weibull GB2

150 0.3552789 0.3565165 0.7233854 0.0006681
175 0.3552788 0.8653749 0.3544217 0.0008067
200 0.3552788 0.8985533 0.1613521 0.0024792
225 0.3552787 0.7056917 0.2070387 0.0253259
250 0.3552786 0.1524158 0.8850081 0.2363544
275 0.3552786 0.0047511 0.7753841 0.6537234
300 0.3552785 5.375790e-05 0.5464771 0.8246564
325 0.3552785 2.946738e-07 0.3791533 0.8532723
350 0.3552784 8.747647e-10 0.4223180 0.8183945
375 0.3552783 1.530722e-12  0.8691040 0.7292184
400 0.3552783 1.690473e-15 0.9998387 0.5909865
425 0.3552782 1.245893e-18  1.0000000 0.4308295
450 0.3552781 6.418062e-22  1.0000000 0.2869196
475 0.3552781 2.402189e-25  1.0000000 0.1806378
500 0.3552780 6.750378e-29  1.0000000 0.1112596

Panel B: Third component

150 0.3353838 0.6434836 8.405750e-05  0.1260292
175 0.3353848 0.1346251 0.0002891 0.0276356
200 0.3353858 0.1014467 0.0007288 0.0194449
225 0.3353867 0.2943083 0.0043252 0.0549678
250 0.3353877 0.8475842 0.0738791 0.1709929
275 0.3353887 0.9952489 0.2246159 0.1996051
300 0.3353897 0.9999462 0.4535229 0.1493001
325 0.3353907 0.9999997 0.6208467 0.1402153
350 0.3353916 1.0000000 0.5776820 0.1791491
375 0.3353926 1.0000000 0.1308960 0.2695859
400 0.3353936 1.0000000 0.0001613 0.4083779
425 0.3353946 1.0000000 6.839931e-12  0.5688361
450 0.3353956 1.0000000 1.741381e-28  0.7129113
475 0.3353965 1.0000000 1.265132e-63  0.8192788
500 0.3353975 1.0000000 1.053979e-134  0.8886994

Based on the estimates of Tables 5.28 and 5.29 we can now derive the premiums according
to the Eq. (5.50) for n = 2 and n = 3 for the case two and three component mixture regression
models respectively. The results are displayed in Table 5.30 (Panels A and B). More specifically,
in Panel A we report the premiums for the two component mixture models for a bad risk, i.e.
belonging to the second category of risks and in Panel B we depict the premiums for the
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three component mixture models for a bad risk, i.e. belonging to the third category of risks
using the same categories as before. We consider that for claim sizes smaller than 200 euros
(for all models) the policyholder always pays the same premium calculated for claim sizes
equal to 200 euros, and receives a bonus due to the fact that the cost of the claims that the
insurance company has to pay is not significant, and also due to the irregular behavior of the
posterior probabilities and thus premium formulas for extremely small and large claim sizes.
This value was chosen since for claim sizes up to 200 euros both the posterior probabilities
in the case of the two and three component mixture models indicate an irregular behavior.
Furthermore, because of the irregular behavior of the posterior probabilities, in the case of the
three component Weibull mixture regression model, it was found that there was a very small
drop in the premium rates ranging from 350 to 400 compared to the premium rate of 325. For
this reason, we assumed that these values are equal to that of 325 euros. Form Table 5.30 we
observe that the premiums are equal in the case of Exponential, revealing the lack of necessity
of the two and three components. As expected, for the other models the higher the claim size
the higher the premium, revealing the appropriateness of the modelling technique. For example,
for one claim size of 325 in the first year, the premium increases from 100 to 130.88, 126.62,
161.20, in the two component mixture Gamma, Weibull and GB2 models, respectively. For the
three component mixtures, we have to note that for one claim size of 325 in the first year, the
premium increases from 100 to 129.74, 116.59 and 125.90, in the case of the Gamma, Weibull
and GB2 models, respectively. For small claim sizes (i.e. 150, 175, 200) all models reward the
policyholder with a bonus. Furthermore, for small differences in the claim sizes the premiums
are equal or almost equal.
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Table 5.30: Optimal BMS, Two and Three Component Mixture Regression Models for Assessing
Claim Severity, Update of the Posterior Probability, One Claim in the First Year of Observation

Panel A: Two component

Claim Size Exponential Gamma  Weibull GB2

150 100 73.43644  75.31598  69.52824
175 100 73.43644  75.31598  69.52824
200 100 73.43644  75.31598  69.52824
225 100 87.60332  119.89696 108.66376
250 100 123.43757 126.62049 151.42081
275 100 130.70039 126.62049 159.95219
300 100 130.88228 126.62049 161.04929
325 100 130.88397 126.62049 161.20526
350 100 130.88397 126.62049 161.23116
375 100 130.88397 126.62049 161.23613
400 100 130.88397 126.62049 161.23721
425 100 130.88397 126.62049 161.23748
450 100 130.88397 126.62049 161.23755
475 100 130.88397 126.62049 161.23758
500 100 130.88397 126.62049 161.23758

Panel B: Three component

150 100 75.18024  81.17901  72.36503
175 100 75.18024  81.17901  72.36503
200 100 75.18024  81.17901  72.36503
225 100 86.89235  83.13255  77.12034
250 100 120.49171 112.82262 99.24548
275 100 129.45910 115.03205 122.36008
300 100 129.74436  115.93033 125.45200
325 100 129.74761 116.58695 125.90145
350 100 129.74763 116.58695 128.21717
375 100 129.74763 116.58695 133.20173
400 100 129.74763 116.58695 140.78501
425 100 129.74763 116.58695 149.53536
450 100 129.74763 116.58695 157.38720
475 100 129.74763 116.58695 163.18229
500 100 129.74763 116.58695 166.96378
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Let us now consider the two and three component Pareto mixture regression models derived
by updating the posterior mean claim severity. In the following example we consider a group of
policyholders who share the following common characteristics: The policyholder i is a woman
who has a car with horsepower between 0-33 and her Bonus-Malus class varies over time, starting
from BM class 1. The mean (or location) parameter of the two and three component Pareto

mixture models are given by F k|d Z 0, exp " ﬂj for n = 2 and n = 3 respectively,

where d; (d]“ 1y ,dil h) is the 1 x h Vector of h individual’s characteristics, which represent
different a priori rating variables and 47 is the vector of the coefficients. The estimation of the
vector 7 led to the following results presented in Table 5.31.

Table 5.31: Women, Horse Power 0-33

Bonus-Malus | Two Component Pareto Three Component Pareto
Category | exp (di,71) exp (dy;73) | exp (di;71) exp (dy;7s)  exp (d)73)
1 325.4869 325.1616 325.4869 325.1616 325.4869
2 319.0418 318.7230 319.0418 319.0418 319.3610
3 365.8862 365.5205 365.8862 365.5205 365.8862
4 151.4601 151.3087 151.4601 151.1575 151.4601
5 491.4314 490.9402 491.4314 490.9402 491.4314

The generalized optimal BMSs obtained by the two and three component Pareto mixture
models will be defined by Eq. (5.69), for n = 2 and n = 3 respectively. Assume that the
policyholder 7 is observed for the first year of her presence in the portfolio, has one accident
and the claim amount of her accident ranges from 150 to 1000 euros. Table 5.32 demonstrates
the resulting premium rates for these models. These systems do not differ much from the one
obtained in Chapter 4 when the Pareto regression model was used (see Table 4.5, Chapter 4).
For instance, consider the same group of policyholders we described before. For one claim size
of 500 in the first year the premium increases from 100 to 100.96, 105.09 and 105.16 in the case
of the Pareto, two component Pareto mixture and three component Pareto mixture regression
models respectively.
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Table 5.32: Optimal BMS, Two and Three Component Pareto Mixture Regression Models for
Assessing Claim Severity, One Claim in the First Year of Observation

Claim Size Optimal BMS Optimal BMS
Two Component Pareto Three Component Pareto
150 90.92049 90.97747
175 91.93276 91.99022
200 92.94503 93.00297
225 93.95731 94.01572
250 94.96958 95.02848
275 95.98185 96.04123
300 96.99412 97.05398
325 98.00639 98.06673
350 99.01867 99.07948
375 100.03094 100.09223
400 101.04321 101.10499
425 102.05548 102.11774
450 103.06776 103.13049
475 104.08003 104.14324
500 105.09230 105.15599
525 106.10457 106.16874
550 107.11684 107.18150
575 108.12912 108.19425
600 109.14139 109.20700
625 110.15366 110.21975
650 111.16593 111.23250
675 112.17821 112.24525
700 113.19048 113.25801
725 114.20275 114.27076
750 115.21502 115.28351
775 116.22729 116.29626
800 117.23957 117.30901
825 118.25184 118.32176
850 119.26411 119.33452
875 120.27638 120.34727
900 121.28866 121.36002
925 122.30093 122.37277
950 123.31320 123.38552
975 124.32547 124.39827
1000 125.33774 125.41103

Compared to the BMSs provided by the two and three component Weibull, Gamma and GB2
mixture regression models derived by updating the posterior probability (see Table 5.30) the
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systems resulting from the two and three component Pareto mixture models are always much
cheaper. It interesting to compare the BMSs based both on the a priori and the a posteriori
severity component (see Tables 5.30 and 5.32) with those based only on the a posteriori severity
component, (see Tables 5.21 and 5.22). Firstly, we consider the case of updating the posterior
probability. Using the BMSs presented in Table 5.21 we observed that a bad risk policyholder
with one accident size of 500 euros in one year has to pay a malus of 20.46%, 22.94%, 21.78%
and 28.97%, 22.19%, 53.40% of the basic premium in the case of the two and three component
Gamma, Weibull and GB2 mixture distributions respectively. Using the systems depicted in
Table 5.30 we saw that a woman who belongs to the first Bonus-Malus category, her car has
horsepower 0-33 and is a bad risk, for one accident of 500 euros in one year, faces a malus of
30.88%, 26.62%, 61.23% and 29.74%, 14.15%, 66.96% of the basic premium in the case of the
two and three component Gamma, Weibull and GB2 mixture regression models respectively.
Secondly, we consider the case of updating the posterior mean. In this case we observed from
Table 5.22 that a policyholder with one accident size of 500 euros in one faces a malus 0.67%
and 0.66% of the basic premium in the case of the two and three component Pareto mixtures.
Using the generalized optimal BMSs with a severity component based both on the a priori and
the a posteriori classification criteria, we observed from Table 5.32 that a woman who has a car
with horsepower between 0-33 and her Bonus-Malus class varies over time, for one accident of
500 euros in one year, will have to pay a malus of 05.09% and 05.16% of the basic premium in
the case of the two and three component Pareto mixture regression models.
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Finally, we consider the generalized premiums based both on the a priori and the a posteriori
frequency and severity component. In Tables 5.33 and 5.34 we report these generalized premi-
ums. We observe that for one claim size of 250 in the first year the premium increases from
100 to 212.85, 218.34, 261.11, in the two component Poisson mixture regression model and the
corresponding two component severity models (Table 5.33), to 180.41, 185.06, 221.31 in the two
component Negative Binomial mixture regression model (updating the posterior probability)
and the corresponding two component severity models (Table 5.34, Panel A), to 208.54, 257.42,
264.06, 315.78 in the two component Negative Binomial mixture regression model (updating
the posterior mean) and the corresponding two component severity models (Table 5.34, Panel
B). The generalized BMSs are more fair than the systems based only on the a posteriori clas-
sification criteria (see Tables 5.23 and 5.24) since they consider all the important a priori and
a posteriori information for each policyholder for the frequency and the severity component in
order to estimate their risk of having an accident.

Table 5.33: Optimal BMS Based on the Two Component Poisson Mixture Regression Model
for Assessing Claim Frequency and the Various Two Component Mixture Regression Models
for Assessing Claim Severity, One Claim in the First Year of Observation

Two Component Poisson Mixture

Claim Size POIS-EXP POIS-GA POIS-WEI POIS-GB2 POIS-PA

150 172.44 126.6338  129.8749 119.8945  156.7833
175 172.44 126.6338  129.8749 119.8945  158.5289
200 172.44 126.6338  129.8749 119.8945  160.2744
225 172.44 151.0632  206.7503 187.3798  162.0200
250 172.44 212.8557  218.3444 261.1100  163.7655
275 172.44 225.3798  218.3444 275.8216  165.5111
300 172.44 225.6934  218.3444 277.7134  167.2567
325 172.44 225.6963  218.3444 277.9824  169.0022
350 172.44 225.6963  218.3444 278.0270  170.7478
375 172.44 225.6963  218.3444 278.0356  172.4934
400 172.44 225.6963  218.3444 278.0375  174.2389
425 172.44 225.6963  218.3444 278.0379  175.9845
450 172.44 225.6963  218.3444 278.0380  177.7300
475 172.44 225.6963  218.3444 278.0381  179.4756
500 172.44 225.6963  218.3444 278.0381  181.2212
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Table 5.34: Optimal BMS Based on the Alternative Two Component Negative Binomial Type
I Mixture Regression Models for Assessing Claim Frequency and the Various Two Compo-
nent Mixture Regression Models for Assessing Claim Severity, One Claim in the First Year of
Observation

Panel A: Two Component Negative Binomial Mixture
Regression Model (Update of the Posterior Probability)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

150 146.16  107.3347 110.0818 95.9020 156.7833
175 146.16  107.3347 110.0818 95.9020 158.5289
200 146.16  107.3347 110.0818 101.6224 160.2744
225 146.16  128.0410 175.2414 158.8229 162.0200
250 146.16  180.4164 185.0685 221.3166 163.7655
275 146.16  191.0317 185.0685 233.7861 165.5111
300 146.16  191.2975 185.0685 235.3896 167.2567
325 146.16  191.3000 185.0685 235.6176 169.0022
350 146.16  191.3000 185.0685 235.6555 170.7478
375 146.16  191.3000 185.0685 235.6627 172.4934
400 146.16  191.3000 185.0685 235.6643 174.2389
425 146.16  191.3000 185.0685 235.6647 175.9845
450 146.16  191.3000 185.0685 235.6648 177.7300
475 146.16  191.3000 185.0685 235.6648 179.4756
500 146.16  191.3000 185.0685 235.6649 181.2212

Panel B: Two Component Negative Binomial Mixture
Regression Model (Update of the Posterior Mean)

Claim Size NB-EXP NB-GA NB-WEI NB-GB2 NB-PA

150 208.54  153.1444 157.0639 144.9942 189.6056
175 208.54 153.1444 157.0639 144.9942 191.7166
200 208.54  153.1444 157.0639 144.9942 193.8276
225 208.54  182.6880 250.0331 226.6074 195.9386
250 208.54  257.4167 264.0544 315.7730 198.0496
275 208.54  272.5626 264.0544 333.5643 200.1605
300 208.54  272.9419 264.0544 335.8522 202.2715
325 208.54  272.9454 264.0544 336.1774 204.3825
350 208.54  272.9454 264.0544 336.2315 206.4935
375 208.54  272.9454 264.0544 336.2418 208.6045
400 208.54  272.9454 264.0544 336.2441 210.7155
425 208.54  272.9454 264.0544 336.2446 212.8265
450 208.54  272.9454 264.0544 336.2448 214.9375
475 208.54  272.9454 264.0544 336.2448 217.0485
500 208.54 2729454 264.0544 336.2449 219.1595
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Chapter 6

Conclusion

The research projects presented in this dissertation lie on the frontiers of actuarial science
and statistics. We deal with the important actuarial pillars of a priori risk classification and
experience rating in motor third-party liability insurance and link our work with contributions
in this area. The idea behind risk classification is to divide an insurance portfolio into different
classes that consist of risks with a similar profile and to design a fair tariff for each of them. For
the construction of a fair tariff structure actuaries apply risk classification based on regression
techniques. When the explanatory variables used as risk factors express measurable information
about the policyholder the system is an a priori classification scheme. However, many important
factors cannot be taken into account a priori when pricing motor third party liability insurance
products. For instance, swiftness of reflexes, aggressiveness behind the wheel or knowledge of
the highway code are difficult to integrate into a priori risk classification. Consequently, tariff
cells are still quite heterogeneous despite the use of many classification variables. Experience
rated or Bonus-Malus Systems (BMSs) re-evaluate the premiums by taking the history of claims
of the insured into account. A basic interest of actuarial literature is the construction of an
optimal or ‘ideal’ BMS defined as a system obtained through Bayesian analysis. An optimal
BMS is financially balanced for the insurer and fair for the policyholder. Optimal BMSs can
be broadly derived in two ways; based only on the a posteriori classification criteria and based
on both the a priori and the a posteriori classification criteria. In this thesis (Chapters 3, 4 and
5), we focus on the study of optimal BMSs based on different statistical models for assessing
claim frequency and claim severity.

In Chapter 1 we discussed a literature review of the statistical techniques that can be
practically implemented for pricing risks through ratemaking based on a priori risk classification
and Bonus-Malus Systems.

In Chapter 2 we extended recent actuarial literature research which uses generalized linear
models, GLM, for pricing risks through ratemaking based on a priori risk classification (see,
for instance, Denuit et al., 2007 & Boucher et al., 2007, 2008). This was achieved by using the
generalized additive models for location, scale and shape (GAMLSS). The (GAMLSS) were in-
troduced by Rigby and Stasinopoulos (2001, 2005) and Akantziliotou, Rigby, and Stasinopoulos
(2002) as a way of overcoming some of the limitations associated with the popular generalized
linear models, GLM, and generalized additive models, GAM. The GAMLSS can be seen as an
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extension to the conventional GLM and generalized additive models, GAM. In the GAMLSS
the distribution for the response variable can be selected from a very general family of distri-
butions including highly skew or kurtotic continuous and discrete distributions. Moreover, the
GAMLSS regress not only the expected mean but every distribution parameter (e.g. location,
scale and shape) to a set of covariates. Therefore, both mean and variance may be assessed
by choosing a marginal distribution and building a predictive model using ratemaking factors
as independent variables. In the setup we considered, risk heterogeneity was modeled as the
distribution of frequency and/or severity of claims changes between clusters by a function of
the level of ratemaking factors underlying the analyzed clusters. GAMLSS were used to model
the frequency and the severity of claims. Specifically, within the framework of the GAMLSS
we assumed that the number of claims was distributed according to the Poisson, Negative Bi-
nomial Type II, the Delaporte, Sichel and Zero-Inflated Poisson GAMLSS and that the losses
were distributed according to the Gamma, Weibull, Weibull Type III, Generalized Gamma
and Generalized Pareto GAMLSS respectively. These classification models were calibrated em-
ploying a Generalized Akaike Information Criterion (GAIC) which is valid for both nested or
non-nested model comparisons (as suggested by Righy and Stasinopoulos, 2005 & 2009). The
best fitted claim frequency model was the Negative Binomial Type II model, followed closely
by the Sichel and Delaporte models while regarding the claim severity models, the best fitting
performances were provided by the Generalized Gamma model followed by the Generalized
Pareto and Gamma models. Furthermore, the difference between these models was analyzed
through the mean and the variance of the annual number of claims and the severity of claims
of the policyholders, who belong to different risk classes. The resulting a priori premiums rates
were calculated via the expected value and standard deviation principles with independence
between the claim frequency and severity components assumed.

In Chapter 3 we developed the design of an optimal BMS assuming that the number of claims
was distributed according to a Sichel distribution. This system was proposed as an alternative
to the optimal BMS resulting from the traditional Negative Binomial distribution, which cannot
handle data with a long tail efficiently (see Lemaire, 1995). We also considered the optimal
BMS provided by the Poisson-Inverse Gaussian distribution (PIG), which is a special case of
the Sichel distribution. These systems were obtained by updating the posterior mean claim
frequency. Furthermore, we presented a generalized BMS that integrates the a priori and the
a posteriori information on a individual basis extending the framework developed by Dionne
and Vanasse (1989, 1992). This was achieved by using the Sichel GAMLSS to approximate
the number of claims as an alternative to the Negative Binomial regression model used by
Dionne and Vanasse (1989, 1992). The new model offers the advantage of being able to model
count data with high dispersion. We also considered the generalized system derived by PIG
GAMLSS for assessing claim frequency. With the aim of constructing an optimal BMS by
updating the posterior mean claim frequency, we adopted the parametric linear formulation of
these models and we allowed only their mean parameter to be modelled as a function of the
significant explanatory variables for the number of claims. The models were calibrated with
respect to Global Deviance, AIC, SBC information criteria and the Vuong test. The modeling
results showed that the Sichel distribution and the Sichel GAMLSS provided the best fitting
performances for the data set examined in this thesis. The optimal BMSs obtained had all the
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attractive properties of the BMSs developed by Lemaire (1995) and Dionne and Vanasse (1989,
1992).

In Chapter 4 we integrated claim severity into the optimal BMSs based on the a posteriori
criteria of Chapter 3. For this purpose we assumed that the losses were distributed according
to a Pareto distribution, following the framework proposed by Frangos and Vrontos (2001).
The BMS resulting from the Sichel and Pareto models and that derived from the PIG and
Pareto models were compared to the system provided by the Negative Binomial and Pareto
models (see Frangos and Vrontos, 2001). The basic advantage of the optimal BMSs based on
the a posteriori frequency and severity component, in comparison with those that take into
consideration only the frequency component, is the differentiation of the premiums according
to the severity of the claim. We also presented the development of a generalized BMS with a
frequency and a severity component based both on the a priori and the a posteriori criteria. For
the frequency component we considered that the number of claims was distributed according
to the Negative Binomial Type I, Poisson Inverse Gaussian and Sichel GAMLSS, following
the current methodology as presented in Chapter 3. For the severity component we assumed
that the costs of claims were distributed according to a Pareto GAMLSS. These systems were
derived as functions of the years that the policyholder was in the portfolio, their number of
accidents, the size of loss of each of these accidents and of the statistically significant a priori
rating variables for the number of accidents and for the size of loss that each of these claims
incurred. Furthermore, we presented a generalized form of the system obtained in Frangos and
Vrontos (2001).

In Chapter 5 we presented the development of an optimal BMS using finite mixtures of dis-
tributions and regression models (see Mclachlan and Peel, 2000, and Rigby and Stasinopoulos,
2009). The finite mixture models are a popular statistical modelling technique, given that they
constitute a flexible and easily extensible model class for approximating general distribution
functions in a semi-parametric way and accounting for unobserved heterogeneity. Finite mixture
models have been widely applied in many areas, such as biology, biometrics, genetics, medicine
and marketing. However, they have not been extensively studied in BMS literature, with the
exception of Lemaire(1995). The framework we considered focused on both the analysis of the
claim frequency and severity components. For the frequency component we assumed that the
number of claims was distributed according to a finite Poisson, Delaporte and Negative Bino-
mial mixture, and for the severity component we considered that the losses were distributed
according to a finite Exponential, Gamma, Weibull and GB2 mixture. These optimal BMS
were obtained by updating the posterior probability of the policyholder’s risk class. Further-
more, we extended the setup of Frangos and Vrontos (2001) for Negative Binomial and Pareto
mixtures and designed an optimal BMS based on posterior distribution of both the mean claim
frequency and the mean claim size, given the information we have about the claim frequency
history and the claim size history for each policyholder. We have also developed a generalized
BMS that integrates the a priori and the a posteriori information on an individual basis, ex-
tending the framework developed by Dionne and Vanasse (1989, 1992) and Frangos and Vrontos
(2001) using finite mixtures of regression models. In our application, there were both nested
and non-nested distributions/regression models comparisons. The models were calibrated with
respect to Global Deviance, AIC, SBC information criteria and the LR and Vuong tests. The
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modelling results showed that the mixture of distributions/regression models was extremely
important as it provided a superior fit. Using this formulation the heterogeneity in the data
was accounted for in two ways. Firstly, the population heterogeneity was accounted for by
choosing a finite number of unobserved latent components, each of which may be regarded as a
sub-population. This was a discrete representation of heterogeneity in the data since the mean
rate was approximated by a finite number of support points. Secondly, depending on the choice
of the component distribution, heterogeneity was also accommodated within each component
by including the explanatory variables in the mean rate function. The designs presented in
Chapters 2, 3, 4 and 5 can be employed by insurance companies which are free to set up their
own tariff structures and rating policies.

Challenges for future research are omnipresent in this thesis with several ideas for further
work presenting themselves. In Chapters 2, 3 and 4 different count and loss distributions within
the framework of GAMLSS models can be fitted. Moreover, these models are parametric and
it would also be useful to explore the semiparametric approach and go through the ratemaking
(a priori and a posteriori) exercise when functional forms other than the linear are included.
In this case the problem of the choice between models becomes more acute and should be the
topic of further research. In Chapter 5 another possible topic for further research is the design
of optimal BMS using different claim frequency and severity models within the framework of
finite mixtures of GAMLSS models and different premium calculation principles. Furthermore,
the application of all the models used throughout this thesis in health insurance as well as in
other fields of general insurance is the topic of ongoing research. In Chapters 2, 4 and 5, in
light of the importance of large claims in actuarial science, a combination of GAMLSS models,
Bayesian hierarchical regression models and finite mixtures of GAMLSS models with ideas from
extreme value analysis should receive more attention in the future. In Chapters 3, 4 and 5 an
important line of further research is to apply the same mixtures to all the contracts of the same
insured so a dependence between the contracts can be modelled. This kind of model is called
longitudinal data (see, for instance, Boucher, Denuit and Guillen, 2007). Another possible line
of future research is the implementation of the Generalized Linear Mixed Models, GLMMs, to
the data set used in this thesis, for a posteriori ratemaking (see Breslow and Clayton, 1993, and
Antonio and Beirlant, 2007 for an insurance application). For distributions from the exponential
family, GLMMs extend GLMs by including random effects in the linear predictor. The random
effects not only determine the correlation structure between observations on the same subject
(i.e. contracts), but also take heterogeneity among subjects, due to unobserved characteristics,
into account. The use of hierarchical generalized linear models (HGLMSs) in a posteriori risk
classification, which are GLMMs with random effects having non—normal distributions (see
Nelder, 1996, and Lee and Nelder, 2001) is another topic of ongoing research.

222



Bibliography

[1]

2]

[9]

[10]

[11]

Abramowitz, M., and Stegun, I.A. (1974). Handbook of Mathematical Functions.
Dover, New York.

Akantziliotou, C., Rigby, R.A., and Stasinopoulos, D.M. (2002). The R Im-
plementation of Generalized Additive Models for Location, Scale and Shape. In M.
Stasinopoulos and G. Touloumi (eds.), Statistical Modelling in Society: Proceedings of
the 17th International Workshop on Statistical Modelling, pp. 75-83. Chania, Greece.

Albrecht, P. (1980). On the Correct Use of the Chi-Square Goodness-of -Fit Test.
Scandinavian Actuarial Journal. 149-170. Comment in Scandinavian Actuarial Journal
1982\ 168-170.

Albrecht, P. (1982a). On Some Statistical Methods Connected With the Mixed Poisson
Distribution. Scandinavian Actuarial Journal. 1-14.

Albrecht, P. (1982b). Testing the Goodness of Fit of a Mixed Poisson Process. Insur-
ance: Mathematics and Economics. 1, 27-33.

Antonio, K., and Beirlant J, (2007). Actuarial statistics with generalized linear
mixed models. Insurance: Mathematics and Economics. 40(1):58-76.

Baxter, L.A., Coutts, S.M., and Ross G.A.F. (1979). Applications of Linear Mod-
els in Motor Insurance. 21st International Congress of Actuaries.

Beirlant, J., Derveaux, V., de Meyer, A.M, Goovaerts, M., Labie, E., and
Maenhout, B. (1991). Statistical Risk Evaluation Applied to (Belgian) Car Insurance.
Insurance: Mathematics and Economics. 10, 289-302.

Besson, J. L., and Partrat, C. (1992). Trend et systemes de bonus-maius. ASTIN
Bulletin. 22. 11-31.

Bichsel, F. (1960). Une methode pour calculer une ristoume adequate pour annees sans
sinistres. ASTIN Bulletin. 1, 106-112.

Bichsel, F. (1964). Erfahrung-Tarifierung in  der  Motorfahrzeug-
haftplichtversicherung.Mitteiluneen der Vereinigung Schweizerischer Versicherungs-
mathematiker. 119-129.

223



[12] Bolance, C. Guillen, M., and Pinquet, J. (2003). Time-varying credibility for
frequency risk models: Estimation and tests for autoregressive specification on the random
effect. Insurance: Mathematics and Economics 33, 273-282.

[13] Bonsdorff, H. (1992). On the Convergence Rate of Bonus-Malus Systems. ASTIN
Bulletin. 22, 217-223.

[14] Borgan, Hoem, 0. J., and Norberg, R. (1981). A Non Asymptotic Criterion for the
Evaluation of Automobile Bonus Systems. Scandinavian Actuarial Journal. 165-178.

[15] Boucher, J. P., and Denuit, M. (2006). Fixed Versus Random Effects in Poisson
Regression Models for Claim Counts: Case Study with Motor Insurance, ASTIN Bulletin
36, pp. 285-301.

[16] Boucher, J. P., Denuit, M., and Guillen, M. (2007). Risk Classification for Claim
Counts: A Comparative Analysis of Various Zero-Inflated Mixed Poisson and Hurdle
Models. North American Actuarial Journal, 11, 4, 110-131.

[17] Boucher, J. P., Denuit, M., and Guillen M. (2008). Models of Insurance Claim
Counts with Time Dependence Based on Generalization of Poisson and Negative Binomial
Distributions. Variance, 2, 1, 135-162.

[18] Boulanger, F. (1994). Systeme de Bonus-MaJus multi-garanties. ASTIN Colloquium,
Cannes.

[19] Boyer, M., Dionne G., and Vanasse, C. (1992). Econometric Models of Accident
Distribution. In Contributions to Insurance Economics, ed. G. Dionne, pp. xx—yy. Boston:
Kluwer.

[20] Breslow, N.E., and Clayton, D.G. (1993). Approximate Inference in Generalized
Linear Mixed Models. Journal of the American Statistical Association 88 (421): 9-25.
doi:10.2307/2290687. JSTOR, 2290687.

[21] Brockman, M.S., and Wright, TS. (1992). Statistical Motor Rating: Making Effec-
tive Use of Your Data. Journal of the Institute of Actuaries. 119 III.

[22] Brouhns, N., Guillen, M., Denuit, M., and Pinquet, J. (2003). Bonus-malus
scales in segmented tariffs with stochastic migration between segments. Journal of Risk
and Insurance, 70, 577-599.

[23] Buhlmann, H. (1964). Optimale Pramienstufensysteme. Mitteiluneen der Vereiniaung
Schweizerischer Versicherungsmathematiker. 193-213.

[24] Buhlmann, H. (1970). Mathematical Methods in Risk Theory. Berlin: Springer.

[25] Cebrian, A., Denuit, M., and Lambert, Ph. (2003). Generalized Pareto fit to the
society of Actuaries’ large claims database. North American Actuarial Journal 7, 18-36.

224



[26] Centeno, L. e Andrade e Silva, J. (2001). Bonus Systems in Open Portfolio. Insur-
ance Mathematics e Economics, pp. 341-350.

[27] Coene, G., and Doray, L.G. (1996). A Financially Balanced Bonus-Malus System.
ASTIN Bulletin 26, 107-115.

[28] Cole, T.J., and Green, P.J. (1992). Smoothing Reference Centile Curves: The LMS
Method and Penalized Likelihood. Statistics in Medicine, 11, 1305-1319.

[29] Consul, P.C. (1990). A Model for Distributions of Injuries in Auto Accidents. Mit-
teilungen der Vereinieung Schweizerischer Versicherungsmathematiker. 163-168.

[30] Corlier, F., Lemaire, J., and Muhokoio, D. (1979c). Simulation of an Automobile
Portfolio. Geneva Papers on Risk and Insurance. 40-46.

[31] Cousy, H., and Claassens, H. (1994). Ex Post Control of Insurance Policies in
Belgium. Geneva Papers on Risk and Insurance. 70, 46-59.

[32] Dean, C., Lawless, J.F., and Willmot, G.E. (1989). A mixed Poisson-inverse-
Gaussian regression model. Canadian Journal of Statistics 17 (2), 171-181.

[33] de Jong, P., and Heller, G. Z. (2008). Generalized linear models for insurance data.
Cambridge University Press.

[34] Delaporte, P. (1960). Un probleme de tarification de I’assurance accidents
d’automobiles examine par la statistique mathematique. Proceedings of the Sixteenth
International Congress of Actuaries, Bruxelles, 2, 121-135.

elaporte, P. . Tarification du risque individuel d’accidents automobiles par la
35| Del P. (1965). Tarification du ri individuel d’accid bil 1
prime modeiee sur le risque. ASTIN Bulletin, 3, 251-271.

[36] Delaporte, P. (1972a). Les mathematiques de I'assurance automobile. ASTIN Bulletin.
6, 185-190.

[37] Delaporte, P. (1972b). Construction d’un tarif d’assurance automobile base sur le
principe de Ja prime modeiee sur le risque. Mitteitungen der Vereinigung Schweizeriseher
Versicherungsmathematiker. 101-113.

[38] De Leve, G., and Weeda, P.J. (1968). Driving with Markov-Programming. ASTIN
Bulletin, 5, 62-86.

[39] Dellaert, N.P., Frenk, JBG, Kouwenhoven. A., and Van der Laan, B.S.. (1990).
Optimal Claim Behaviour for Third-Party Liability Insurances or to Claim or Not to
Claim: That Is the Question. Insurance: Mathematics and Economics, 9, 59-76.

[40] Dellaert, N.P., Frenk, JBG, and Voshol., E. (1991). Optimal Claim Behaviour for
Third-Party Liability Insurances with Perfect Information. Insurance: Mathematics and
Economics, 10, 145-151.

225



[41] Dempster, A., Laird, N., and Rubin, D. (1977). Maximum likelihood from incom-
plete data via EM algorithm (with discussion). J. R. Statist. Soc., 39: 1-38.

[42] Denuit, M., and Lang, S. (2004). Nonlife Ratemaking with Bayesian GAM’s. Insur-
ance: Mathematics and Economics 35: 627-47.

[43] Denuit, M., Marechal, X., Pitrebois, S., and Walhin, J. F. (2007). Actuarial
Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems.
Wiley.

[44] De Pril, N. (1978). The Efficiency of a Bonus-Malus System. ASTIN Bulletin, Vol. 10
Part 1, pp. 59-72.

[45] De Pril, N. (1979). Optimal Claim Decisions for a Bonus-Malus System: A Continuous
Approach. ASTIN Bulletin, 10, 215-222.

[46] De Pril, N., and M. Goovaerts. (1983). Bounds for the Optimal Critical Claim Size
of a Bonus System. Insurance: Mathematics and Economics. 2, 27-32.

[47] Dionne, G., and Vanasse, C. (1989). A Generalization of Automobile Insurance Rat-
ing Models: The Negative Binomial Distribution with a Regression Component. ASTIN
Bulletin. 19, 199-212.

[48] Dionne, G., and Vanasse, C. (1992). Automobile insurance ratemaking in the pres-
ence of asymmetrical information. Journal of Applied Econometrics 1, 149-165.

[49] Dionnne, G., Artis, M., and Guillen, M. (1996). Count Data Models for a Credit
Scoring System. Journal of Empirical Finance 3: 303-25.

[50] Dufresne, F. (1988). Distributions stationnaires d'un systeme bonus-malus et proba-
bility de ruine. ASTIN Bulletin. 18, 31-46.

[51] Dufresne, F. (1995). The Efficiency of the Swiss Bonus-Malus System. Bulletin of the
Swiss Actuaries, 1995(1) 29-41.

[52] Dureuil, G., and Geoffrey, C. (1994). Modelisation bivariee de frequences de sinistres
dependantes. ASTIN Colloquium, Cannes.

[53] Evans, D. A. (1953). Experimental evidence concerning contagious distributions in
ecology. Biometrika, 40: 186-211.

[54] Feller, W. (1971). An Introduction to Probability Theory and its Applications. New
York: Wiley.

[55] Ferreira, J. (1974). The Long-term Effect of Merit-Rating Plans on Individual Mo-
torists. Operations Research. 22, 954-978.

226



[56] Ferreira, J. (1977). Identifying Equitable Insurance Premiums for Risk Classes: An Al-
ternative to the Classical Approach. Twenty-third International Meeting of the Institute
of Management Sciences, Athens.

[57] Frangos, N., and Vrontos, S. (2001). Design of optimal bonus-malus systems with
a frequency and a severity component on an individual basis in automobile insurance.

ASTIN Bulletin, Vol. 31, No.1, pp. 1-22.

[58] Frangos, N., and Karlis, D. (2004). Modelling Losses using a Exponential-Inverse
Gaussian Distribution. Inusrance: Mathematics and Economics, 35, 53-67.

[59] Geller, H. (1979). An introduction Mathematical Risk Theory. University of Pennsyl-
vania.

[60] Gilde, V., and Sundt., B. (1989a). On Bonus Systems with Credibility Scales. Scan-
dinavian Actuarial Journal. 13-22.

[61] Goovaerts, M., De Vijlder, F., and Haezendonck, J. (1984). Insurance Premiums:
Theory and Applications. Amsterdam: North Holland.

[62] Gourieroux, C., Montfort, A., and Trongoton., A. (1984 a). Pseudo maximum
likelihood methods: theory. Econometrica, 52, 681-700.

[63] Gourieroux, C., Montfort, A., and Trongoton., A. (1984 b). Pseudo maximum
likelihood methods: application to Poisson models. Econometrica, 52, 701-720.

[64] Gourieroux, C., and Jasiak, J. (2004). Heterogeneous INAR(1) Model with Appli-
cation to Car Insurance. Insurance: Mathematics and Economics 34: 177-92.

[65] Green, P. J., and Silverman, B.W. (1994). Nonparametric Regression and Gener-
alized Linear Models. Chapman and Hall, London.

[66] Gregorius, F. (1982). Development of the Study. In New Motor Rating Structure in
the Netherlands. ASTIN Groep Nederland, 15-37.

[67) Grenander, U. (1957a). On the heterogeneity in non-life insurance. Scandinavian Ac-
tuarial Journal, 153-179.

[68] Grenander, U. (1957b). Some remarks on bonus systems in automobile insurance.
Scandinavian Actuarial Journal, 180-197.

[69] Guerreiro, G. R., and Mexia, J. T. (2004). An alternative approach to bonus-malus.
Discuss. Math. Probab. Stat.24, no.2.

[70] Gurtler, M. (1963). Bonus ou malus. ASTIN Bulletin. 3, 43-61.

[71] Haberman, and Renshaw, A.E. (1996). Generalized linear models and actuarial
science. The Statistician, 45(4):407-436.

227



[72] Hastie, T.J., and Tibshirani, R.J. (1990). Generalized Additive Models. Chapman
and Hall, London.

[73] Hausmann, J.A., Hall, B.H., and Griuches, Z. (1984). Econometric models for
count data with an application to the patents-R&D relationship. Econometrica, 46, 1251-
1271.

[74] Healy, M. (1986). Matrices for Statistics. Oxford Science Publications.
[75] Herzog, T. (1996). Introduction to Credibility Theory. Actex Publications, Winstead.

[76] Heller, G. Z., Stasinopoulos, D.M., Rigby, R.A, and de Jong P. (2007). Mean
and dispersion modeling for policy claims costs. Scandinavian Actuarial Journal, 4, 281-
292.

[77] Hilbe, J. M. (2011). Negative Binomial Regression Extensions. Cambridge University
Press.

[78] Hogg, R.V., and Klugman, S.A. (1984). Loss Distributions. John Wiley & Sons,
New York.

[79] Holtan, J. (1994). Bonus Made Easy. ASTIN Bulletin. 24, 61-74.

[80] Hulin, L. (1999). Modelisation de la survenance d’accidents.G.E.M.M.E, 9924, Univer-
site de Liege.

[81] Hurlimann, W. (1990). On Maximum Likelihood Estimation for Count Data Models.
Insurance Mathematics and Economics, 9 39-49.

[82] Islam, M.N., and Consul, P.C. (1992). A Probabilistic Model for Automobile Claims.
Mitteilungen der Vereinigung Schweizerischer Versicherungsmathematiker. 85-93.

[83] Johnson, N. L. (1949). Systems of frequency curves generated by methods of transla-
tion. Biometrika, 36: 149-176.

[84] Johnson, N. L., Kotz, S., and Balakrishnan, N. (1994). Continuous Univariate
Distributions, Volume I, 2nd edn. Wiley, New York.

[85] Johnson, N. L., Kotz, S., and Balakrishnan, N. (1995). Continuous Univariate
Distributions, Volume II, 2nd edn. Wiley, New York.

[86] Johnson, N. L., Kotz S., and Kemp A.W. (2005). Univariate Discrete Distribu-
tions. Wiley.

[87] Jones, M. C. (2005). In discussion of Rigby, R. A., and Stasinopoulos, D. M. (2005)
Generalized additive models for location, scale and shape,. Applied Statistics, 54: 507-
554.

228



[88] Jgrgensen, B. (1982). Statistical Properties of the Generalized Inverse Gaussian Dis-
tribution. In Lecture Notes in Statistics, 9. Springer-Verlag, New York.

[89] Jgrgensen, B. (1997). The Theory of Dispersion Models. Chapman and Hall, London.

[90] Jorgensen, B., and Paes de Souza, M.C. (1994). Fitting Tweedie’s compound
Poisson model to insurance claims data. Scandinavian Actuarial Journal, 69-93.

[91] Justens, D. (1996). Construction interpreted de distributions de probability a valeurs
dans les naturels. G.E.M.M.E, 9603, Universite de Liege.

[92] Kalb, G.R.J., Kofman, P., and Vorst, T.C.F. (1996). Mixtures of tails in clustered
automobile collision claims. Insurance, Mathematics and Economics, 18, pp 89-107.

[93] Karlis, D., and Xekalaki, E. (2006). The Polygonal Distribution. Paper presented
at the International Conference on Mathematical and Statistical Modeling in Honor of
Enrique Castillo, University of Castilla-La Mancha.

[94] Kestmont, R. M., and Paris, J. (1985). Sur la Ajustement du Nombre de Sinistres.
Bulletin of the Swiss Actuaries, 85 157-164.

[95] Klugman, S., Panjer, H., and Willmot, G. (2004). Loss Models: From Data to
Decisions. New York: Wiley.

[96] Kuha, J. (2004). AIC and BIC Comparisons of Assumptions and Performance. Socio-
logical Methods and Research 33: 188-229.

[97] Lambert, D. (1992). Zero-inflated Poisson Regression with an application to defects in
Manufacturing. Technometrics, 34: 1-14.

[98] Lawless, J.F. (1987). Negative Binomial Distribution and Mixed Poisson Regression.
Canadian Journal of Statistics, 15, 3, 209-225.

[99] Lemaire, J. (1975). Si les assures connaissaient la programmation dynamique. Bulletin
de la Association Rovale des Actuaires Beiges. 54-63.

[100] Lemaire, J. (1976). Driver Versus Company: Optimal Behaviour of the Policyholder.
Scandinavian Actuarial Journal. 209-219.

[101] Lemaire, J. (1977). Critique du tariff automobile responsablite civil belge. Association
Rovale des Actuaires Beiges, pp. 93-109.

[102] Lemaire, J. (1977a). Lasoif du bonus. ASTIN Bulletin. 9, 181-190.

[103] Lemaire, J. (1977b). Selection Procedures of Regression Analysis Applied to Automo-
bile Insurance. Mitteilungen der Vereinigunq Schweizerischer Versiefaerengsroatheroat-
iker. Part I. 1977, 143-160.

229



[104] Lemaire, J. (1977c). Critique du tarif automobile beige. Bulletin de i’Association
Rovale des Actuaires Beiges. 93-109.

[105] Lemaire, J. (1979a). Selection Procedures of Regression Analysis Applied to Automo-
bile Insurance. Mitteilungen der Vereinieung Schweizerischer Versieherungsmathematiker.
Part II, 1979, 65-72.

[106] Lemaire, J. (1979b). How to Define a Bonus-Malus System With an Exponential Utility
Function. ASTIN Bulletin. 10, 274-282.

[107] Lemaire, J. (1984). The Effect of Expense Loadings on the Fairness of a Tariff. ASTIN
Bulletin. 14, 165-171.

[108] Lemaire, J. (1984). Automobile insurance: Actuarial models. Kluwer-Nijhoff, Nether-
lands.

[109] Lemaire, J. (1988a). Construction of the New Belgian Motor Third Party Tariff Struc-
ture. ASTIN Bulletin. 18. 99-111.

[110] Lemaire, J. (1988b). A Comparative Analysis of Most European and Japanese Bonus-
Malus Systems. Journal of Risk and Insurance. 55, 660-681.

[111] Lemaire, J. (1992). Negative Binomial or Poisson-Inverse Gaussian. Proceedings of the
Twenty-fourth International Congress of Actuaries. Montreal.

[112] Lemaire, J. (1993). Selecting a Fitting Distribution for Taiwanese Automobile Losses.
Unpublished manuscript.

[113] Lemaire, J., and Zi., H. (1994a). High Deductibles Instead of Bonus-Malus: Can it
Work?ASTIN Bulletin. 24, 75-86.

[114] Lemaire, J., and Zi., H. (1994b). A Comparative Analysis of 30 Bonus-Malus Sys-
tems. ASTIN Bulletin. 24, 287-309.

[115] Lemaire, J. (1995). Bonus-Malus Systems in Automobile Insurance. Kluwer Academic
Publishers.

[116] Lindsay, B. (1995). Mixture Models Theory, Geometry and Applications. Pennsylvania
State University.

[117] Loimaranta, K. (1972). Some Asymptotic Properties of Bonus Systems. ASTIN Bul-
letin. 6, 233-245.

[118] Lopatatzidis, A., and Green, P. J. (2000). Nonparametric quantile regression using
the gamma distribution. submitted for publication.

[119] Mack, T. (1991). A Simple Parametric Model for Rating Automobile Insurance or
Estimating IBNR Claims Reserves. ASTIN Bulletin., vol. 21, no.l, pp. 93-109.

230



[120] Mahmoudvand, R., and Hassani, H. (2009). Generalized Bonus-Malus systems with
a frequency and a severity component on an individual basis in automobile insurance.

ASTIN Bulletin, 39, 307-315.

[121] Martin, D.B. (1960). Automobile Insurance: Canadian Accident-Free Classification
System. ASTIN Bulletin. 1, 123-133.

[122] Martin-Lof, A. (1973). A Method for Finding the Optimal Deductible Rule for a
Policyholder of an Insurance Company With a Bonus System. Scandinavian Actuarial
Journal. 23-29.

[123] McCullagh, P., and Nelder, J. A. (1989). Generalized Linear Models (2nd
ed.).London: Chapman and Hall.

[124] McDonald, J. B., and Xu, Y. J. (1995). A generalization of the beta distribution
with applications. Journal of Econometrics, 66, 133-152.

[125] McDonald, J. B. (1996). Probability Distributions for Financial Models. In Mad-
dala,G. S. and C. R.Rao (eds.). Handbook of Statistics, 14, 427-460. Elsevier.

[126] McLachlan, G., and Peel, D. (2000). Finite Mixture Models. John Wiley & Sons.

[127] Mert, M., and Saykan, Y. (2005). On a bonus-malus system where the claim fre-
quency distribution is Geometric and the claim severity distribution is Pareto. Hacettepe
Journal of Mathematics and Statistics Vol. 34, pp.75-81.

[128] Nelder, J.A., and Wedderburn, R.W.M. (1972). Generalized Linear Models. Jour-
nal of the Royal Statistical Society A, 135, 370-384.

[129] Neuhaus, W. (1988). A Bonus-Malus System in Automobile Insurance. Insurance:
Mathematics and Economics. 7, 103- 112.

[130] Nonnan, J.M., and Shearns, D.C.S. (1980). Optimal Claiming on Vehicle Insurance
Revisited. Journal of the Operational Research Society. 31, 181-186.

[131] Norberg, R. (1976). A Credibility Theory for Automobile Bonus Systems. Scandinavian
Actuarial Journal. 92-107.

[132] Ortiz, E. (1990). A Stochastic Model of the Distribution of Wars in Time. American
Statistical Association Annual Meeting. Los Angeles.

[133] Panjer, H.H. (1987). Models of Claim Frequency. In Advances in the Statistical Sci-
ences: Actuarial Science. VI, 115-125. LB. MacNeill and G J. Umphrey (eds.).

[134] Panjer, H.H., and Willmot, G.E. (1992). Insurance Risk Models. Schaumburg, III.:
Society of Actuaries.

231



[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

148]

[149]

[150]

Panjer, H.H., and Wtllmot, G.E. (1988a). Motivating Claims Frequency Models.
Proceedings of the T'wenty-third International Congress of Actuaries, Helsinki, 3, 269-284.

Partrat, C. (1993). Compound Poisson Models for Two Types of Claims. ASTIN Col-
loquium, Cambridge.

Picard, P. (1976). Generalisation de P etude sur la survenance des sinistres en assurance
automobile. Bulletin Trimestriel de Plnstitut des Actuaires Francais. 204-267.

Picech, L. (1994). The Merit-Rating Factor in a Multiplicative Rate-Making Model.
ASTIN Colloquium, Cannes.

Pinquet, J. (1997). Allowance for Costs of Claims in Bonus-Malus Systems. ASTIN
Bulletin, 27, 33-57.

Pinquet, J. (1998). Designing Optimal Bonus-Malus Systems From Different Types of
Claims. ASTIN Bulletin, 28, 205-220.

Pinquet, J., Guillen M., and Bolance, C. (2001). Long-range contagion in automo-
bile insurance data: estimation and implications for experience rating. ASTIN Bulletin,
31(2), 337-348.

Pitrebois, S., Denuit, M., and Walhin, J.F. (2003a). Fitting the Belgian Bonus-
Malus system. Belgian Actuarial Bulletin 3, 58-62.

Pitrebois, S., Denuit, M., and Walhin, JF. (2003b). Setting a bonus-malus scale in
the presence of other rating factors: Taylor’s work revisited. ASTIN Bulletin 33, 419-436.

Pitrebois, S., Denuit, M., and Walhin, JF. (2004). Bonus-malus scales in seg-
mented tariffs: Gilde & Sundt’s work revisited. Australian Actuarial Journal 10, 107-125.

Pitrebois, S., Denuit, M., and Walhin, JF. (2005). Bonus-malus systems with
varying deductibles. ASTIN Bulletin 35, 261-274.

Pitrebois, S., Denuit, M., and Walhin, JF. (2006a). Multi-event bonus-malus
scales. Journal of Risk and Insurance 73, 517-528.

Pitrebois, S., Denuit, M., and Walhin, JF. (2006b). An actuarial analysis of the
French bonus-malus system. Scandinavian Actuarial Journal, 247-264.

Pitrebois, S., Walhin, J.F., and Denuit, M. (2006c). How to transfer policyholders
from one bonus-malus scale to the other? German Actuarial Bulletin 27, 607-618.

Renshaw, A.E. (1994). Modelling The Claims Process in the Presence of Covariates.
ASTIN Bulletin, 24, 265-285.

Rigby, R.A., and Stasinopoulos, D.M. (1996a). A Semi-parametric Additive Model
for Variance Heterogeneity. Statistal Computing, 6, 57-65.

232



[151]

[152]

[153]

154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Rigby, R.A., and Stasinopoulos, D.M. (1996b). Mean and Dispersion Additive
Models. In W. Hardle and M.G. Schimek (eds.), Statistical Theory and Computational
Aspects of Smoothing, pp. 215-230. Physica, Heidelberg.

Rigby, R.A., and Stasinopoulos, D. M. (2001). The GAMLSS project: a flexible
approach to statistical modelling. In B. Klein and L. Korsholm (eds.), New Trends in
Statistical Modelling: Proceedings of the 16th International Workshop on Statistical
Modelling, 249256, Odense, Denmark.

Rigby, R.A., and Stasinopoulos, D.M. (2004). Smooth Centile Curves for Skew and
Kurtotic data Modelled Using the Box-Cox Power Exponential Distribution. Statistics in
Medicine, 23, 3053-3076.

Rigby, R. A., and Stasinopoulos, D. M (2005). Generalized additive models for
location, scale and shape, (with discussion).Applied Statistics, 54, 507-554.

Rigby, R.A., and Stasinopoulos, D.M. (2006). Using the Box-Cox t Distribution in
GAMLSS to Model Skewness and Kurtosis. Statistical Modelling, 6, 209-229.

Rigby, R.A., Stasinopoulos, D.M., and Akantziliotou, C. (2008). A framework
for modeling overdispersed count data, including the Poisson-shifted generalized inverse
Gaussian distribution. Computational Statistics and Data Analysis, 53, 381-393.

Rigby, R. A., and Stasinopoulos, D. M. (2009). A flexible regression approach
using GAMLSS in R.

Ruohonen, M. (1988). A Model for the Claim Number Process. ASTIN Bulletin. 18,
57-68.

Seneta, E. (1981). A Non-Negative Matrices and Markov Chains. Springer- Verlag.

Schiesinger, H. (1981). The Optimal Level of Deducibility in Insurance Contracts.
Journal of Risk and Insurance. 48, 465-481.

Sichel, H. (1985). A bibliometric distribution which really works. Journal of the Amer-
ican society for information science, 36(5), 314-321.

Sichel, H. (1971). On a Family of Discrete Distributions Particularly Suited to Repre-
sent Long-Tailed Frequency Data. Proceedings of the Third Symposium on Mathematical
Statistics, N. Loubsher (ed.), Pretoria.

Sigalotti, L. (1994). Equilibrium Premiums in a Bonus-Malus System. ASTIN Collo-
quium, Cannes.

Sharif, A.H., and Panjer, H.H. (1993). A Probabilistic Model for Automobile
Claims: A Comment on the Article by M.N. Islam and P.C. Consul. Mitteilungen der
Vereinigung Sehweizeriseher Versicherungsmathematiker. 279-292.

233



[165] Stasinopoulos, D. M. (2006). Contribution to the discussion of the paper by Lee and
Nelder, Double hierarchical generalized linear models. Appl. Statist., 55: 171-172.

[166] Stasinopoulos, D. M., Rigby, R. A., and Akantziliotou, C. (2007). Instructions
on how to use the GAMLSS package in R, Second Edition. Technical Report 01/08,
STORM Research Centre, London Metropolitan University, London.

[167] Stasinopoulos, D. M., Rigby, R. A., and Fahrmeir, L. (2000). Modelling rental
guide data using mean and dispersion additive models. Statistician, 49: 479-493.

[168] Stein, G. Z., Zucchini, W., and Juritz, J. M. (1987).Parameter Estimation of
the Sichel Distribution and its Multivariate Extension. Journal of American Statistical
Association, 82: 938-944.

[169] Stuart, C. (1983). Pareto-Optimal Deductibles in Property-Liability Insurance: The
Case of Homeowner Insurance in Sweden. Scandinavian Actuarial Journal. 227-238.

[170] Sundt, B. (1984). An Introduction to Non-Life Insurance Mathematics. Karlsruhe:
Verlag Versicherungswirtschaft.

[171] Sundt, B. (1989b). Bonus Hunger and Credibility Estimators with Geometric Weights.
Insurance: Mathematics and Economics. 8, 119-126.

[172] Sundt, B. and W. Jewell. (1981). Further Results on Recursive Evaluation of Compound
Distributions. ASTIN Bulletin. 12, 27-39.

[173] Taylor, G. (1997). Setting A Bonus-Malus Scale in the Presence of Other Rating Fac-
tors..ASTIN Bulletin. 27, 319-327.

[174] Tremblay, L. (1992). Using the Poisson Inverse Gaussian in Bonus-Malus Systems.
ASTIN Bulletin. 22. 97-106.

[175] Vandenbroek, M. (1993). Bonus-malus system or partial coverage to oppose moral
hazard problems., Insurance: Mathematics and Economics, 13, pp 1-5.

[176] Venezia, I., and Levy, H. (1980). Optimal Claims in Automobile Insurance. Review
of Economic Studies, 47, 539-549.

[177] Venezia, 1., and Levy, H. (1983). Optimal Multi-Period Insurance Contracts. Insur-
ance: Mathematics and Economics. 2, 199-208.

[178] Venter, G. (1990). Credibility. In Foundations of Casualty Actuarial Science, Wash-
ington, D.C.: Casualty Actuarial Society.

[179] Venter, G. (1991a). Effects of Variations from Gamma-Poisson Assumptions. Proceed-
ings of the Casualty Actuarial Society. 78, 41-55.

234



[180] Venter, G. (1991b). A Comparative Analysis of Most European and Japanese Bonus-
malus Systems: Extension. Journal of Risk and Insurance. 58, 542-547.

[181] Vepsafainen, S. (1972). Applications to a Theory of Bonus Systems. ASTIN Bulletin.
6, 212-221.

[182] Vuong, Q. (1989). Likelihood ratio tests for model selection and non-nested hypotheses.
Econometrica, 57, 307-333.

[183] Wald, A., and Wolfowitz, J. (1951). Bayes Solutions of Sequential Decision Problems.
Annals of Mathematical Statistics. 53, 82-99.

[184] Walhin, J. F., and Paris, J. (1997). Using mixed Poisson process in connection with
bonus-malus systems. ASTIN Bulletin, Vol 29, No I 1999, pp. 81-99.

[185] Walhin, J. F., and Paris, J. (2000). The true claim amount and frequency distribution
within a bonus-malus system. ASTIN Bulletin, Vol 30,2000, pp. 391-403.

[186] Wiilmot, G.E. (1990). AsymptoticTail Behaviour of Poisson Mixtures with Applica-
tions. Advances in Applied Probability. 22, 147-159.

[187] Wiilmot, G.E. (1993). On Recursive Evaluation of Mixed Poisson Probabilities and
Related Quantities. Scandinavian Actuarial Journal, 114-133.

[188] Willmot, G.E. (1986). Mixed Compound Poisson Distributions. ASTIN Bulletin. 16-S,
59-79.

[189] Willmot, G.E. (1987). The Poisson-Inverse Gaussian Distribution as an Alternative to
the Negative Binomial. Scandinavian Actuarial Journal. 113-127.

[190] Willmot, G.E. (1988b). Sundt and Jewell’s Family of Discrete Distributions. ASTIN
Bulletin. 18, 17-29.

[191] Yip, K., and Yau, K. (2005). On Modeling Claim Frequency Data in General Insur-
ance with Extra Zeros. Insurance: Mathematics and Economics 36: 153-63.

235






