
ATHENS UNIVERSITY

OF ECONOMICS AND BUSINESS

DEPARTMENT OF STATISTICS

POSTGRADUATE PROGRAM

EFFICIENT

BAYESIAN MARGINAL LIKELIHOOD ESTIMATION

IN GENERALISED LINEAR LATENT TRAIT MODELS

By

Silia Vitoratou

A THESIS

Submitted to the Department of Statistics

of the Athens University of Economics and Business

in partial fulfillment of the requirements for

the degree of Doctor of Philosophy in Statistics

Athens, Greece

2013



ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΘΗΝΑΣ

ΤΜΗΜΑ ΣΤΑΤΙΣΤΙΚΗΣ

ΑΠΟΤΕΛΕΣΜΑΤΙΚΗ ΕΚΤΙΜΗΣΗ

ΠΕΡΙΘΩΡΕΙΑΣ ΠΙΘΑΝΟΦΑΝΕΙΑΣ ΚΑΤΑ BAYES

ΣΕ ΓΕΝΙΚΕΥΜΕΝΑ ΓΡΑΜΜΙΚΑ ΜΟΝΤΕΛΑ

ΛΑΝΘΑΝΟΥΣΩΝ ΜΕΤΑΒΛΗΤΩΝ

Σίλια Βιτωράτου

ΔΙΑΤΡΙΒΗ

Που υποβλήθηκε στο Τμήμα Στατιστικής

του Οικονομικού Πανεπιστημίου Αθήνας

ως μέρος των απαιτήσεων για την απόκτηση

Διδακτορικού Διπλώματος στη Στατιστική

Αθήνα, Ελλάδα

2013



to all volunteers, students and families of the education solidarity network

#tutorpool and to my nephews Spyros and Andreas, with all my love.

I



II



Synopsis

The term latent variable model (LVM) refers to a broad family of models which are used to

capture abstract concepts (unobserved / latent variables or factors) by means of multiple

indicators (observed variables or items). The key idea is that all dependencies among p

observed variables are attributed to k unobserved ones, where k << p. That is, the LVM

methodology is a multivariate analysis technique which aims to reduce the dimensional-

ity, with as little loss of information as possible. Most importantly, the LVMs account

for constructs that are not directly measurable, as for instance individuals’ emotions,

traits, attitudes and perceptions. In the current thesis, the LVMs are studied within the

Bayesian paradigm, where model evaluation is conducted on the basis of posterior model

probabilities. A key role in this comparison is played by the models’ marginal likelihood,

which is often a high dimensional integral, not available in closed form. The proper-

ties of the LVMs are implemented here in order to efficiently approximate the marginal

likelihood.

In particular, Chapter 1 presents the origins and the basic ideas of the different types

of latent variables models. The key aspects of the Bayesian analysis were outlined and the

recent literature with respect to the LVMs is reviewed. Chapter 2 focuses on LVMs with

binary data and describes the steps required in the Bayesian model assessment (prior

specification, sampling from the posterior and Bayesian model comparison). In Chapter

3 two different formulations of the LVM marginal likelihood are presented. The variance

components associated with each approach are specified and the factors that influence

the corresponding errors are outlined. Additionally, the effect of the sample covariation

on the estimators is explained and an index of the sample’s divergence from independence

is introduced, as a multivariate extension of covariance. Chapter 4 illustrates how the

properties of the LVMs can be used to simplify often used estimators in the literature

and to reduce the computational time required. Chapter 5 draws a link between Bayesian

statistics and ideas initially presented in thermodynamics. It is shown that probability

distribution divergences can be estimated via thermodynamic integration, while new ther-

modynamic marginal likelihood estimators are introduced. In Chapter 6, the methods

discussed throughout in this thesis are illustrated in simulated and real life datasets. The

thesis closes with a brief discussion on the current findings which prompt future research.
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Σύνοψη

Ο όρος μοντέλα λανθανουσών μεταβλητών (ΜΛΜ) αναφέρεται σε μία ευρεία οικογένεια

μοντέλων τα οποία χρησιμοποιούνται για να μετρήσουν αφηρημένες έννοιες (μη παρατη-

ρούμενες / λανθάνουσες μεταβλητές ή παράγοντες) χρησιμοποιώντας πολλαπλούς δείκτες

(παρατηρούμενες μεταβλητές ή λήμματα). Η κεντρική ιδέα είναι ότι οι εξαρτήσεις μεταξύ

των p παρατηρούμενων μεταβλητών μπορούν να αποδοθούν σε k μή παρατηρούμενες μετα-

βλητές, όπου k << p. Κατά συνέπεια, η ΜΛΜ μεθοδολογία συνιστά μία πολυμεταβλητή

ανάλυση που στόχο έχει να μειώσει τις διαστάσεις, με όσο το δυνατόν λιγότερη απώλεια

πληροφορίας. Ακόμα σημαντικότερο είναι το γεγονός ότι τα ΜΛΜ μπορούν να μετρήσουν

ποσότητες που δεν είναι άμεσα μετρήσιμες, όπως για παράδειγμα συναισθήματα, τάσεις,

στάσεις και αντιλήψεις ατόμων.

Στην παρούσα διατριβή, τα ΜΛΜ μελετούνται σύμφωνα με τη στατιστική κατά Bayes,

όπου η αξιολόγηση των μοντέλων γίνεται μέσω της εκ των υστέρων πιθανότητας. Βασικό

ρόλο σε αυτό διαδραματίζει η περιθώρεια πιθανοφάνεια του εκάστοτε μοντέλου, η οποία

συχνά είναι ένα πολυδιάστατο ολοκλήρωμα το οποίο δεν υπολο΄γιζεται σε κλειστή μορφή.

Σε αυτή την εργασία χρησιμοποιούνται οι ιδιότητες των ΜΛΜ προκειμένου να εκτιμηθεί

αποτελεσματικά η περιθώρεια πιθανοφάνεια.

Συγκεκριμένα, στο Κεφάλαιο 1 παρουσιάζονται οι απαρχές και οι βασικές ιδέες των δια-

φορετικών τύπων ΜΛΜ. Παρουσιάζονται επίσης τα βασικά σημεία της ανάλυσης κατά Bayes

και γίνεται αναδρομή στη σύχρονη βιβλιογραφία. Το Κεφάλαιο 2 εστιάζει στα ΜΛΜ με δί-

τιμες μεταβλητές και περιγράφει τα βασικά σημεία της ανάλυσης κατά Bayes (επιλογή της εκ

των προτέρων κατανομής, δειγματοληψία από την εκ των υστέρων κατανομή και αξιολόγηση

του μοντέλου). Στο κεφάλαιο 3 παρουσιάζονται δύο εναλλακτικές μορφές της περιθώρειας

πιθανοφάνειας. Υπολογίζονται οι συνιστώσες μεταβλητότας που αφορούν την κάθε μία από

τις δύο προσεγγίσεις καθώς και οι παράγοντες που τις επηρεάζουν. Επιπλέον, εξηγείται

ο ρόλος της δειγματικής συνδιασποράς και παρουσιάζεται ένας δείκτης απόκλισης από την

ανεξαρτησία, ως πολυδιάστατο ανάλογο της συνδιασποράς. Στο Κεφάλαιο 4 οι ιδιότες των

ΜΛΜ χρησιμοποιούνται για να απλοποιήσουν γνωστούς εκτιμητές της περιθώρειας πιθανο-

φάνειας, μειώνοντας έτσι το χρόνο που χρειάζεται για τον υπολογισμό τους. Στο Κεφάλαιο

5 παρουσιάζεται η στενή σχέση της στατιστικής κατά Bayes με τις ιδέες που έχουν αναπτυ-

χθεί στο χώρο της Θερμοδυναμικής. Αποδεικνύεται ότι οι αποκλίσεις μεταξύ κατανομών
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πιθανοτήτων μπορούν να εκτιμηθούν μέσω της Θερμοδυναμικής ολοκλήρωσης, ενώ παρου-

σιάζονται νέοι εκτιμητές της περιθώρειας πιθανοφάνειας. Στο Κεφάλαιο 6, οι μέθοδοι που

παρουσιάζονται σε αυτή την εργασία, εφαρμόζονται και συγκρίνονται σε προσομοιωμένα και

σε πραγματικά δεδομένα. Η διατριβή ολοκληρώνεται με μία σύντομη συζήτηση των σημείων

που χρήζουν μελλοντικής έρευνας.
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Notation

N number of individuals

p number of observed items

k number of latent variables

Y observed data matrix

yij response of the i-th individual (i = 1, ..., N) to the j-th observed variable (j = 1, ..., p)

Z column vector of the latent variables Zℓ (ℓ = 1, ..., k)

f f(·|·) denotes the conditional density of the data dependent on the parameter vector(s)

π(·) denotes a prior density

f(Y) marginal (integrated) likelihood

g(ϑ) importance (or reference) function based on the posterior output

ηj linear predictor for each Yj

υj(·) link function for each Yj

µj (Z) mean value of the item j, conditional on the latent variables, that is, E(Yj|Z)

α difficulty parameter

β discrimination parameter

ϑ vector of the item parameters {α,β}
X sufficient statistic

cΦ Gaussian copula

K(·|·) denotes the kernel of the M-H algorithm

a(·|·) the M-H acceptance probability

q(·|·) proposal density

θ\j the parameter vector θ without θj

A(·) bridge function

q(θ′| θ) proposal density

a(θ| θ) acceptance probability

Σ covariance matrix

I(b) information matrix

I(k×k) identity matrix

KL(p1 ‖ p0) Kullback - Leibler divergence
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J(p1, p0) Kullback - Leibler divergence

cH(p1 ‖ p0) cross entropy

H(p1) differential entropy

KLt functional KL-divergence of order t
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Chapter 1

Latent variable models: classical and

Bayesian approaches

‘‘Two variable organs are said to be co-related when the variation of

the one is accompanied on the average by more or less variation of the

other, and in the same direction. [...] co-relation must be the consequence

of the variations of the two organs being partly due to common causes.

If they were wholly due to common causes, the co-relation would be perfect,

as is approximately the case with the symmetrically disposed parts of

the body."

Francis Galton, 1888.∗

∗Francis Galton (1822-1911), among other things, was an anthropologist, geographer, inventor, mete-

orologist, proto-geneticist, psychometrician, and statistician. Bartholomew, 2011 states that this quote

was brought to his attention by J.Aldrich (University of Southampton) and is the oldest one reported,

that describes the core idea behind latent variable models.
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1.1 Origins of the latent variable models

Depending on the nature of the observed data and on the type assumed for the latent

variables, the LVMs are classified in four basic categories. The most popular and often

used model is the normal linear factor model (NLFM). Factor analysis refers to metrical

data and it also assumes metrical (continuous or discrete) latent variables. If, instead, the

data at hand are categorical, the corresponding model is the latent trait model (LTM),

which is often referred to as factor analysis model with binary/ordinal/polytomous or

ranked data. However, the latent variables can be categorical as well; if the data are

metrical, the latent profile model (LPM) is implemented, otherwise the suitable model

is the latent class model (LCM). The four types of LVMs were motivated by different

problems and therefore their origins vary. A thorough historical review can be found in

Bartholomew et al. (2011) while some of interesting points are briefly reported below.

The idea of “common causes of variability” in a set of variables dates back to Galton

(1888), as shown on his quote on the top of this chapter. It was Spearman however,

who in his path-breaking paper (Spearman, 1904) first conceptualized the idea that the

score of an individual in a test, can be partially attributed to a common factor (ability)

that underlies the manifest items, and to a specific factor which represents error. Spear-

man’s work inspired Thurstone and his colleagues in the early ’30s, where the idea of

psychometrics began to gain increased interest in psychology. Thurstone (1931, 1947)

generalized Spearman’s model to allow for more than one common factors and his work

is considered as a milestone in factor analysis. Motivated also by problems that occur in

psychometrics, Jöreskog (1970) generalized the factor analysis model within the context

of the srtuctural equation model (SEM), which allows for linear relationships among the

latent variables, namely the linear structural relations models (LISREL). In SEM’s ter-

minology, the latent variables are called endogenous variables, as opposed to the manifest

items that are considered exogenous.

Beyond psychometrics, researchers on educational testing (for instance Birnbaum

1968), developed also very important techniques in order to measure a responder’s ability

on a topic of interest (for a historical review see Hambleton et al. 1991). As opposed to

the psychometricians’ point of view, in educational testing the interest lays mostly on

each individual’s position on the latent scale rather than the factor structure itself. The

data are typically binary (“right” or “wrong”) as for instance in the case of the Rasch

model (Rasch, 1960), known for its simplicity and appealing statistical properties (see also

Andersen, 1980). A more advanced class of models in educational testing is based on the

item response theory (IRT). The origins of the IRT are traced back to Binet et al.’s (1916)

and the early readings Richardson (1936), Lord (1952) and Lord and Novick (1968). An

inclusive literature review on the IRT models can be found in Bock (1997).

Significant contribution on the LVMs was held also by researchers in Sociology. In this
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case the models developed assumed categorical latent variables and until recently were

considered entirely separate from factor analysis (Bartholomew et al., 2011). The work

of Lazarsfeld and Henry (1968) put the foundations on the latent class and latent profile

models, followed by the work Everitt (1984), Langeheine and Rost (1988) and Heinen

(1996), among others. The idea of a latent variable is present also in the literature of other

areas of statistics, often under alternative names. Lee and Nelder (2009) list the terms

random effects, latent processes, factor, missing data among others. Bartholomew (2011)

highlights the resemblance of the LVMs with the mixture models, the hidden variables

(implemented in discrete time series) and even the so-called unobserved heterogeneity in

econometrics.

Nowadays, the LVMs are broadly used in most social sciences, in econometrics, in

educational testing and generally whenever a theoretical construct lacks of direct mea-

surement. Due to the advances in computing, a plethora of sophisticated methods have

been developed in the recent years and the LVMs’ use became a common practise in

applied research of various scientific fields. The basic aspects of the LVM framework of

all types are presented in the next section.

1.2 Basic aspects and key ideas

A latent variable model uses the information available from the observed data to extract

information for the unobserved construct of interest. To rephrase this formally, the joint

distribution of the manifest variables is implemented in order to assess the distribution

of the latent ones. Even in the classical approach, this is achieved via the Bayes theorem

π(Z|Y) =
f(Y|Z) π(Z)

f(Y)
, (1.1)

where YN× p (for simplicity Y) denotes a data matrix whose elements yij correspond to

the response of the i-th individual (i = 1, ...,N) to the j-th observed variable (j = 1, ...,p).

In principle, the LVMs of all types assume that the dependencies among the Yj s are due

to the existence of k latent variables, denoted hereafter with Z= (Z1, ..., Zk). As only the

items Yj s can be observed, any inference must be based on their joint distribution whose

density may be expressed as

f(Y) =

∫
f(Y|Z) π(Z) dZ, (1.2)

where π(Z) is the prior distribution of the latent variables and f(Y|Z) is the conditional

distribution of the observed variables given the latent. These two distributions are the

core features of a latent variable model and completely determine its type. They are

considered as two distinct parts, each playing an important role, as discussed below.
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To begin with, the prior distribution of the latent variables reflects whether they are

assumed to be metrical (FA and LTM) or categorical (LCM and LPM). For the factor

analysis and latent trait models, the choice of the prior π(Z) is arbitrary and a matter

of convention and convenience. In most cases, it is assumed to be the standard normal

distribution and any shifts in the location and/or the scale are considered to be absorbed

by the model (see Heinen 1996, p. 105 for a counter example). When categorical latent

variables are assumed, the prior is not completely arbitrary since it consists of probability

masses, located at each category of the latent variable(s), whose sum is unit. Either way,

π(Z) affects the derived estimators but it does not affect the dimensionality reduction

endorsed by the LVM, as will be shown in the next section.

The second part of a LVM, namely the conditional distribution of the manifest vari-

ables f(Y|Z), reflects the nature of the data. For instance, in models with binary data

a Bernoulli distribution is considered and in the case of polytomous data a Multinomial

distribution is the natural choice. It turns out that the members of the exponential family

are particulary useful in order to describe the f(Y|Z) at each of the four types of LVMs.

Beyond the type of data, the LVMs assume that given the latent variables, the observed

ones are independent and therefore the conditional distribution is given by

f(Y|Z) =

p∏

j=1

f(Yj|Z), (1.3)

since all data dependencies are attributed to the existence of the latent variables. This

assumption is fundamental in the LVMs and is often refer to as the local independence

assumption or the axiom of the conditional independence. The local independence as-

sumption rises the question whether f(Y) admits the presentation

f(Y) =

∫
π(Z)

p∏

j=1

f(Yj|Z) dZ. (1.4)

In other words, if the hypothesised k latent vectors are sufficient to explain all depen-

dencies among the p manifest variables, which is practically a question of dimensionality

reduction. If so, then the information on the latent variables available from the data at

hand, is assessed via their posterior distribution

π(Z|Y) =

π(Z)
p∏

j=1

f(Yj|Z)

f(Y)
, (1.5)

according to the Bayes theorem and (1.3).

The basic question imposed in the LVMs is whether the k latent variables assumed are

sufficient to explain the observed dependencies among the p observed items. In the next

section a general model that unifies the different types of LVM and addresses successfully

this question is presented.
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1.3 Generalised linear latent variable models

Bartholomew and Knott (1999) described a broad model setting that unifies the LVMs,

based on the framework of the generalized linear model (GLM). The model is called the

generalized linear latent variable model (GLLVM) and it includes the four categories of

the LVMs discussed in the previous section as special cases (see also Skrondal and Rabe-

Hesketh, 2004). As in the case of the GLM (McCullagh and Nelder, 1989), the GLLVM

assumes that the response variables are linear combinations of the latent ones and it

consists of three components:

(a) the multivariate random component : where each observed variable Yj, (j = 1, ..., p)

has a distribution from the exponential family (Bernoulli, Poisson, Multinomial,

Normal, Gamma),

(b) the systematic component : where the latent variables Zℓ, ℓ = 1, ..., k, produce the

linear predictor ηj for each Yj

ηj = αj +

k∑

ℓ =1

βℓj Zℓ and

(c) the link function υj(·), that connects the previous two components

υj

{
µj (Z )

}
= ηj , for j = 1, . . . p and µj (Z) = E(Yj |Z).

As opposed to the GLMs, the random component in (a) is always multivariate and the

regressors in the systematic component (b) are unobserved. The link function in (c)

can be any monotonic differentiable function and may be different for each of the Yj s,

implying that the GLLVM includes models with mixed type data. Hereafter, the term

item parameters will be used for the parameter vector ϑ={α, β}. The parameters αj and

βj are often referred to as the difficulty and the discrimination parameters (respectively)

of the item j, names that are inherited by the educational testing literature. In factor

analysis, the model parameters are referred to as the loadings of the observed items on

the latent factors and they reflect the contribution of each item in the construction of a

particular factor.

As an example, consider the case of a latent trait model with p binary items and

k latent variables. The conditionals f(Yj|Z) in (1.3) are in this case Bernoulli(µj(Z)),

where µj(Z) is the conditional probability of a positive response to the observed item j.

The logistic model is used for the response probabilities

logit{µj (Z)} = αj +

k∑

ℓ =1

βℓj Zℓ, (j = 1, . . . p). (1.6)
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In the special case where k = 1 (one factor is assumed), (1.6) corresponds to the two-

parameter model (2-PL) which is presumably the most well studied model in IRT. This

model is referred to as the item characteristic curve (ICC) or item response function

(IRF) in the psychometric literature. If additionally the loadings βj are considered equal

(β1 = β2 = ... = βp) then (1.6) coincides with the one-parameter model (1-PL) in IRT,

that is, the Rasch model (Rasch, 1960).

It turns out that the latent trait models with binary data that were mentioned in

Section 1.2 are easily derived from (1.6). With regard to the other types of LVMs, their

derivation from the GLLVM model can be found in Bartholomew et al. (2011). For the

case of the generalised latent trait models (GLTM) in particular, which account for several

types of categorical data, a complete study can be found in Moustaki and Knott (2000).

Additionally, models with mixed types of data (Moustaki, 1996) can be also handled

within the framework of the GLLVM (Bartholomew et al., 2011) as well as models with

non-linear terms (Rizopoulos and Moustaki, 2008).

1.3.1 Sufficient statistics and component scores

In order to reduce the dimensionality of the observed variables, the objective is to find k

functions of Y, say (X1, X2, ..., Xk) = X, such that the conditional distributions of the

observed variables given X not to be dependent on Z. Then X is a sufficient statistic (for

necessary and sufficient conditions, subject to weak regularity conditions, see Barankin

and Maitra, 1963, Theorems 5.1, 5.2 and 5.3). Bartholomew et al. (2011) illustrate that

this is the case in the GLLVM, where each Yj follows a distribution from the exponential

family and therefore the conditional distributions (1.3) are written as follows

f(Yj|Z) = Fj(Yj)Gj(nj) exp
{
nj hj(Yj)

}
, (1.7)

where nj is a linear combination the latent vectors. Substituting (1.7) in (1.5) yields

π(Z|Y) =

π(Z)
{ p∏
j=1

Fj(Yj)Gj(nj)
}

exp
{ p∑
j=1

nj hi(Yj)
}

∫ { p∏
j=1

Fj(Yj)Gj(nj)
}

exp
{ p∑
j=1

nj hj(Yj)
}
dZ

∝ π(Z)

p∏

j=1

Gj(nj) exp
k∑

ℓ=1

ZℓXℓ,

where

Xℓ =

p∑

j=1

βℓjhj(Yj), ℓ = 1, ..., k. (1.8)

As Bartholomew et al. (2011) denote, the first important thing to notice here is that the

posterior distribution of the latent variables depends on Y only through the k-dimensional
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vector X. Hence, the latter is a Bayesian sufficient statistic that represents the dimen-

sionality reduction effected by the GLLVM. In principle however, a sufficient statistic

does not include the model parameters, as opposed to (1.8). In fact, this is true only

in the case of the Rasch model mentioned previously, where all information regarding

the latent variables is included in the total score (sum-score) of the observed variables

(Andersen 1973,1977). However, Bartholomew et al. (2011, chapter 2, page 20) clarify

that in the construction of the components Xℓ, (ℓ = 1, ..., k), the model parameters are

considered fixed and they explain that the term “sufficient” has exactly the meaning we

wish to convey and so we will use it in this extended sense. The second important thing to

notice in (1.8) is that the prior distribution of the latent variables does not play role in the

dimensionality reduction. Hence, the arbitrariness in the selection of the prior, especially

in the case where metrical latent variables are considered, does not affect the information

we derive a-posteriori with regard to the number of the latent variables involved.

The GLLVM framework makes it therefore possible to avoid the calculation of the

posterior mean of the latent variables, and thus the numerical integrations involved, by

using instead the component scores. That is particularly useful in applied research where

the score of each individual is used in subsequent analyses.

Returning to the example of the LTMs with binary data (1.6), the Bernoulli distri-

bution may be written in the form (1.7) by setting Fj(Yj) = 1, Gj(nj) = 1 − µj (Z),

hj(Yj) = Yj and nj = logit[µj (Z)] and therefore

Xℓ =

p∑

j=1

βℓjYj, (ℓ = 1, ..., k).

Hence, the components are weighted sums of the manifest variables, in proportion to

the latter’s contribution to the common factor(s). The expression (1.9) holds only for

the logit link function but not for the probit. When the probit link is used instead,

the corresponding model is often referred to as the normal ogive model (NOM) and is

a special case of the underlying variable (approach) (UVA), which is alternative to the

GLLVM for categorical data.

1.3.2 Rotation

The GLLVM presented in Section 1.3 can be described in a matrix form as follows

υ{µ(Z)} = A + BZ

The matrix representation implies that the model does not have a unique solution. In

particular, for any orthogonal matrix U such as U×U′ = I (1.9) becomes

υ{µ(Z)} = A + BUU′Z.
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Hence, there are infinite possible solutions with respect to the model’s slope parameters,

B∗ = B×U. Steiger (1979) provides a historical review from the early 20th century with

respect to factor analysis and factor indeterminacy per ce. It occurs that at the early

years the factor indeterminacy was not actually addressed as an issue. Wilson (1928) first

illustrated that different sets of factor scores could fit the model for the same data. Ever

since, a number of different approaches (geometrical or numerical) have been followed in

order to describe, interpret and solve factor indeterminacy, leading even to publications

against factor analysis (see for example Guttman, 1955).

The problem is addressed with constraints, which are imposed to the model to ensure

a unique solution. One of the first readings is Anderson and Rubin (1956) who give

sufficient or necessary conditions to stop rotation. Ever since, there have been proposed

solutions that are based on imposing zero or non-zero constraints on the loadings matrix

(see for instance Lawley and Maxwell, 1963; Jöreskog, 1969, Dunn, 1973; Algina, 1980

among others).

The indeterminacy of the latent variable models has no affect on the dimensionality

reduction, that is, the determination of the number of the latent variables. Moreover,

the infinite solutions become a feature of the model, rather than a drawback, when it

comes to interpretation. It gives the advantage to be able to choose the solution that

is more meaningful, for the problem at hand. For that purpose, orthogonal and oblique

rotation techniques have been developed in the literature (for details see Bartholomew

et al., 2011, Section 2.11). For further readings on identifiability, for either oblique or

orthogonal solutions, see among others Williams (1978), Elffers et al. (1978), Bekker

(1986), Sato (1991), Browne (2001) and references within.

1.3.3 Parameter estimation and goodness of fit

In principle, all models can be fitted using the maximum likelihood method (ML). For the

general case, the joint distribution of the data (1.4) using the notation of the exponential

family (1.7) becomes

f(Y) =

∫ { p∏

j=1

Fj(Yj)Gj(nj)
}

exp
{ p∑

j=1

nj hj(Yj)
}
dZ,

according to which, the marginal distribution for each Yj is then given by

f(Yj) = Fj(Yj)Enj

[
Gj(nj) exp

{ p∑

j=1

nj hj(Yj)

}]
.

The direct maximization of the marginal likelihood is possible yet rigorous (Bartholomew

et al., 2011). Instead, Dempster et al.’s (1977) expectation-maximization algorithm (EM)

is implemented in most cases in order to carry out the parameter estimation. The EM
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was first employed in the IRT context by Bock and Aitkin (1981) and in factor analysis by

Rubin and Thayer (1982). A version suitable for the latent class model was also given by

Goodman (1978). The algorithm refers to incomplete data and in the case of the LVMs

the latent variables are treated as such. Initially, the formulation of the joint likelihood

f(Y,Z) is required. At the E-step the log likelihood is replaced by its expected value

conditional on the latent variables, using initial values for the model parameters θ. At

the M-step the log likelihood is maximised to give new values for the parameters and the

whole procedure iterated until convergence. It should be noted that the Newton-Raphson

algorithm (NR) can be also used for direct maximisation. The NR can be faster than the

EM yet more sensitive to the initial values. A combination of the two approaches often

provides the best solution. The parameter estimation procedure is described in detail in

Bartholomew et al. (2011) as it applies in the different categories of LVMs.

With respect to the goodness of fit, chi-square based tests have been developed in

the literature of the LVMs (Bartholomew et al., 2008). In the case of the factor model

a plethora of fit indices can be found in commercial software that may or not assume

normality of the observed variables. The covariance of the correlation matrix of the

metrical observed variables is implemented and compared with the one suggested by the

model. In the case of categorical data, on the other hand, the goodness of fit indices are

focused on the differences between the frequencies of the observed response patterns as

compared to the ones implied by the model. An additional difficulty occurs with respect

to the sparseness of the data. For instance, for p binary items there are 2p possible

response patterns and therefore often occur empty cells in the corresponding contingency

tables. This phenomenon is even more intense in the case of polytomous data. To address

these difficulties, tests that employ two and three way margins have been developed in

order to evaluate the goodness of fit.

1.4 The Bayesian approach

The Bayesian and classical approaches address statistical challenges by completely dif-

ferent perspectives. Extended bibliography exists that outlines their differences both in

philosophy and practise, which cannot be summarized in a few pages. Intuition is bene-

fited however by historical reviews on the statistical thinking, which include the milestone

ideas for both approaches such as Fienberg (2006). Chronicles on the Bayesian statistics

are also provided by Stigler (1983) and Dale (1999) which colorfully describe the method-

ological paths followed during the past century until the so-called Bayesian explosion, at

the early 90s. Gelman and Shalizi (2013) moreover, review the two schools of thinking

from a purely philosophical point of view.

While a number of methodological and philosophical differences exist between the
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two approaches, at the end of the day they can be summarized in the way each approach

views the data and the unknown parameters. That is, while the classical approach aims

to describe the variability of the data for fixed parameters, the Bayesian approach aims

to the exact opposite: it describes the variability of the parameters, considering the data

as fixed. That quite explains the term “inverse probability” that was used to describe

the Bayesian framework in the early years.

In Bayesian statistics, the parameters are stochastic and distributed according to the

prior, π(·). The prior reflects the researcher’s subjective opinion or previously obtained

knowledge for the parameters. In the absence of such information, the prior can be non-

informative (vague). Once the data have been observed, the objective of the Bayesian

approach is to update the prior knowledge conditional on the data at hand, which is

literally the posterior distribution (Bayesian learning). The Markov chains Monte Carlo

(MCMC) revolution combined with the modern achievements in computer science, made

this transition from the prior to the posterior knowledge feasible where used to be rigorous.

The posterior output is then implemented in order to describe the parameters, as well as

to evaluate the imposed model. The three steps of the Bayesian assessment, namely the

prior specification, the derivation of the posterior output and finally the model assessment

are discussed in this section, focused on applications in the various types of LVMs.

1.4.1 Latent variable models and the Bayesian paradigm

In Section 1.2 it was denoted that the Bayes theorem is used in the LVMs’ framework in

order to assess the latent variables. Clearly, the latent variables are handled in a Bayesian

manner, starting from a prior density and concluding to their posterior. Hence, one could

argue that there is no purely classical approach for the LVMs and in that sense, the LVMs

are actually seen in either a semi or a fully Bayesian perspective. The difference lies on the

way the item parameters ϑ are treated. Specifically, a fully Bayesian approach requires ϑ

to be also stochastic, associated with a prior probability. That approach gained increased

interest the last decades in the LVM field. In the following sections, the main features

of the Bayesian approach are discussed and recent literature is reviewed with regard to

their implementation in latent variable models.

1.4.1.1 On prior specification

According to the Bayes theorem, the posterior knowledge is by definition given, up to

a constant, by prior times the likelihood. Hence, any inference is based on the relative

proportion of the information provided by the prior and the data. The prior can be

informative (subjective) to represent existing knowledge with regard to the parameters

or, otherwise, non-informative (vague). Large literature is available, concerned with
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sensitivity of the posterior quantities related to the prior specification of a model (see for

instance Gustafson, 1996; Berger, 1996 and references within). With regard to the non

informative priors, flat or diffuse distributions are used, with large variances that reflect

our uncertainty for the parameters. In such cases, the influence of the data becomes

relatively stronger, meaning that the likelihood contributes more in the formation of the

posterior that the prior and the derived estimates tend to be closer to the maximum-

likelihood ones. For example, if the parameters are equally likely then a uniform prior is

preferred (principle of insufficient reason). If the parameter space is continuous then a

generalization is obtained by a flat prior.

Several families of priors can be found in the Bayesian literature, each employing

certain strategies to account for the prior uncertainty. Kass and Wasserman (1996) use

the term reference prior to describe Jeffreys’s (1961) idea on using a standard of reference,

in analogy with other scientific fields. Rather than representing our ignorance, reference

priors are chosen by convention under some objective rules for a particular situation.

Berger et al. (2009) recently provided a formal definition of reference priors (see also

references within). Berger and Pericchi (1996) explore the idea of training samples, in

order to overcome the arbitrariness arising when an informative prior is improper (non-

integrable). According to the authors, the initial data set may be divided in two subsets

and use the first as a training sample in order to convert the improper non-informative

prior into a proper one. Then the second dataset is implemented in the main analysis with

the posterior playing the role of the prior. Priors that emerge under this methodology

are called intrinsic priors. The training sample is said to be proper if the corresponding

integrated likelihood under the compiling models is finite and minimal if it is the smallest

possible subset with this property. This can be expanded by implementing imaginary

data (Spiegelhalter and Smith 1982) instead of a subset of the data at hand. Closely

related to the concept of training samples are also the expected posterior priors Perez

and Berger (2002). The method is based on the concept that a prior can be an average

of previously assessed posteriors, over a suitable measure m. Finally, historical data are

implemented in the case of the power priors, introduced by Ibrahim and Chen (2000)

and Chen et al. (2000). The prior elicitation is based on the availability of historical

data and a scalar quantity quantifying the uncertainty. As Neuenschwander et al. (2009)

describe in a recent note, the power prior raises the likelihood of the historical data to

the power parameter (scalar) which quantifies the discounting of the historical data due

to heterogeneity between trials.

For the LVMs, the prior plays yet another important role: it is implemented in order

to ensure a unique solution. Constant or truncated priors are assigned to selected item

parameters, in a similar manner that constrains are imposed in the case of the classical

approach in order to stop the rotation. With regard to the latent variables, the choice of
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independent standard normal distributions is also global when it comes for the metrical

case. Such restrictions in the prior are always present in the corresponding literature and

therefore no explicit mention will be made hereafter.

In factor analysis models, normal prior distributions are typically employed for the

model parameters (loadings) and inverse gamma prior distributions for the residual vari-

ances (Lopes and West, 2004; Lee and Song, 2001). These choices are quite popular since

they lead to conditionally-conjugate forms. Other options are recently discussed, as for

instance in Aguilar and West (2000) who explore the use of reference priors on Bayesian

dynamic factor modelling, in Polasek (2000) who implements Wishart priors on the co-

variance matrix and in Lopes (2003) who comments on the use of the expected posterior

priors. Ghosh and Dunson (2009) denote that the posterior distribution is improper (in

the limiting case) as the prior variance for the normal and inverse-gamma components

increases and they suggest the use of heavily tailed default priors. Related to the choice

of the prior is also the recent work of Frühwirth-Schnatter and Lopes (2010, see also

references within) where the issues of the model identifiability and label switching are

also investigated.

In the more general area of the SEM, the conjugate choice is also the typical one

(Scheines et al., 1999;Lee and Song, 2003; Dunson et al., 2005 and Mutheén and As-

parouhov (2012) among others), avoiding however high variance priors. The interested

reader may also refer to a fairly recent book by Lee (2007) and the references within. In

LVMs with categorical latent variables, Bayesian approaches can be found for the latent

class models. Evans et al. (1988) consists an early reading on the field were Dirichlet

priors are considered for the model parameters. Weakly informative prior distributions

(normal and gamma priors for the class means and precision parameters respectively) are

considered in Ghosh et al. (2011).

In the literature of the IRT and the more general LTMs, there are two schools. The

first implements the probit response (1-PNO, 2-PNO and 3-PNO models; for instance

Mislevy, 1986) and the second implements the logistic one (1-PL, 2-PL and 3-PL models,

for instance Patz and Junker, 1999a,b). For the first approach a conjugate choice exists

that facilitates the implementation. In particular, normal priors are used for the difficulty

parameters, truncated normal priors for the discrimination parameters (restricted to be

positive) and finally beta priors are implemented for the guessing parameter (see for

instance Sahu, 2002). Similar priors are used in models with a multilevel structure either

on the ability parameters (Fox and Glas, 2001) or on the item parameters (Janssen et al.,

2000), on person fit analysis IRT models (Glas and Meijer, 2003), on multidimensional

IRT models (Beguin and Glas, 2001) and on hierarchical multidimensional IRT (Sheng,

2008). Beguin and Glas (2001) also examine the effects of different prior distributions

on parameter recovery. In the case of the logistic IRT models, there are no priors that
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lead to conjugate forms. Typically, N(0, σ2
αj

) priors are implemented for the α parameter

and LN(0, σ2
βj

) for the β parameter with close choices for the prior variances (Kang and

Cohen, 2007; Kim and Bolt, 2007; Patz and Junker, 1999a,b; Sinharay, 2005, 2006 among

others). The effect of priors on the parameter estimation of the logistic IRT models is

assessed in Gifford and Swaminathan (1990).

In the next section the MCMC techniques that are employed in order to sample from

the posterior are briefly reviewed.

1.4.1.2 Sampling from the posterior

Any Bayesian inference is based solely on the posterior distribution of the model parame-

ters. The posterior however is rarely known in closed form, as for instance in the conjugate

case. The term was first appeared in Räıffa and Schlaifer (1961) to indicate that the prior

and the posterior belong to the same family (for instance when they are both Gaussian)

and the posterior is available analytically. Most often we refer to the conjugate priors,

that is, priors that lead to closed form posteriors. In the majority of the cases however,

the posterior is known up to a constant, that is, f(θ|Y) = f(Y| θ)π(θ)/z ∝ f(Y| θ)π(θ).

In order to obtain posterior samples, Markov chain Monte Carlo (MCMC) are nowadays

employed.

The MCMC date back to the onset of computers and the literature on the topic is

extensive (see for instance Carlin and Chib, 1995, Brooks, 1998 and references within).

The key idea is attributed to Metropolis et al. (1953) who proposed to construct an

aperiodic and irreducible Markov chain, whose stationary (or invariant) distribution is

the distribution of interest (target distribution). If the chain is run for sufficiently long

time, then the derived simulated values belong to the target distribution (see Meyn and

Tweedie, 2009 for details on regularity conditions).

A number of MCMC samplers have been developed to account for more or less general

problems. In a sense, they can all be considered as special cases or extensions of the initial

Metropolis algorithm, briefly reviewed here. In principle we assume that the process starts

at a value θ and we wish to sample values in a way that eventually will lead us to the

posterior distribution. According to the Metropolis algorithm, a candidate value θ′ is

sampled from a symmetrical proposal density q, such as q(θ′| θ)=q(θ| θ′) and is accepted

with probability

a(θ| θ) =

{
1,
f(θ′|Y)

f(θ|Y)

}
=

{
1,
f(Y| θ′) π(θ′)

f(Y| θ) π(θ)

}
.

The acceptance probability does not include the unknown normalizing constant z, since

it cancels out. It is therefore possible to sample from the posterior, even though it is

not analytically available. A special case of the Metropolis algorithm is the random walk
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Metropolis, where the proposal is of the form q(θ| θ′) = r(θ − θ′), for some arbitrary

density r.

The Metropolis algorithm became more widely known with the work of Hastings

(1970), who generalised the algorithm by allowing for non symmetrical proposal densities

(for a detailed review see Chib and Greenberg, 1995). This generally applicable method is

the Metropolis-Hastings algorithm (MH) and the corresponding probability of acceptance

is now given by

a(θ, θ′) =

{
1,
f(Y| θ′) π(θ′) q(θ′, θ)

f(Y| θ) π(θ) q(θ, θ′)

}
.

In other applications, the posterior distribution is not available but we can sample

from the conditional posterior distribution of each parameter component θj given the

rest of the parameters θ\j. The conditional densities f(θj |Y, θ\j), are often called the

full conditionals and this case is referred to as the conditional conjugate case, to denote

that, under certain priors, the full conditionals are analytically available. The sampling

algorithm is the celebrated Gibbs sampler which was popularised by Geman and Geman

(1984). In Gibbs sampling, the candidate points are sampled from the full conditionals

instead of using a proposal density. In a sense, the Gibbs sampler is a special case of the

MH, where the acceptance probability is always 1 (see also Casella and George, 1992).

Finally, another important special case is when the full conditionals are known only

up to a constant. In that case, the sampler is often called the Metropolis-within-Gibbs

algorithm (MG). Here, the candidate values for each θj , are sampled from a proposal

density (symmetrical or not) and the acceptance probability is given by

a(θj, θ
′
j) = min

{
1,
f(Yj| θ′

j) π(θ′
j) q(θ

′
j, θj)

f(Yj| θj) π(θj) q(θj, θ
′
j)

}

To summarize, the posterior sample is directly available in the conjugate case. If the

posterior is not available but the full conditionals are, the Gibbs algorithm is employed.

If in turn the full conditionals are available only up to a constant, the Metropolis-within-

Gibbs algorithm is used to sample from the posterior. In any other case, the more general

Metropolis-Hastings algorithm can be used, which in the special case of symmetrical

proposals coincides with the Metropolis MCMC algorithm.

Within the GLLVM, the conditional conjugate case is the most frequent, as already

noted in Section 1.4.1.1. One exception is in the case of the logistic (1-PL, 2-PL and

3-PL) models. In that case, the Metropolis-within-Gibbs algorithm is used and it will be

described in detail in the following chapter.

1.4.1.3 Bayesian model assessment

Bayesian model assessment can be conducted in a variety of ways. For instance, one

may implement measures of surprise which quantify the degree of disagreement between
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the data and a hypothesised model, without specifying alternative models; for details

see Bayarri and Berger (1997) and references within. Such measures of surprise are the

traditional p-values, which within the Bayesian paradigm can be formed using several

modifications, namely prior predictive p-values, posterior predictive p-values, conditional

predictive p-values and partial posterior predictive p-values, all discussed in detail in

Bayarri and Berger (1999). With regard to prediction within the Bayesian framework,

future observables are considered either by using the prior predictive distribution

f(Y) =

∫
f(Y| θ) π(θ) dθ, (1.9)

which is the likelihood averaged over the prior, or via the posterior predictive distribution

(or marginal likelihood)

f(Y′|Y) =

∫
f(Y′| θ) f(θ|Y) dθ, (1.10)

which is the likelihood of the future data, averaged over the posterior distribution (see

for details Ntzoufras, 2011, chapters 10 and 11). In the LTM literature, model assess-

ment is mostly conducted using the posterior predictive checks. Hoijtink and Molenaar

(1997) and Hoijtink (1998) focus on the posterior predictive checks for LCM. Bayesian

model selection for LCM is additionally discussed in van Onna (2002), Dean and Raftery

(2010) and Ghosh et al. (2011). Sinharay (2005) and Sinharay et al. (2006) provide good

illustrations of ways in which posterior predictive checks can be used with latent variable

models for categorical responses (item response models). Glas and Meijer (2003) also im-

plement posterior predictive checks to Person Fit Analysis and Beguin and Glas (2001)

to estimate the three-parameter normal ogive model. Stone (2000) describes a fit statistic

that closely approximates a scaled chi-squared random variable.Kang and Cohen (2007)

compared model selection results, using the likelihood ratio test and information criteria.

Bayesian model comparison via the prior predictive distribution (1.9) is implemented

for instance in Hoijtink (2001). Bolt and Lall (2003) also use (1.9) to compare compen-

satory versus non-compensatory modeling of the data. Sahu (2002) further proposes a

predictive approach and compares it with another decision theoretic method which min-

imizes an expected loss function on the predictive space. Finally, Lopes and West (2004)

looked at the problem of estimating the number of factors in the classical factor analysis

model using reversible jump MCMC algorithms (Green, 1995). A recent review of the

techniques used so far within LVM context can be also found in Kim and Bolt (2007).

In this thesis, the prior predictive distribution is implemented in order to compute

the Bayes Factor (BF) which was initially mentioned in Jeffreys (1961) and popularised

by Kass and Raftery (1995). The BF is defined as the ratio of the posterior odds of two

competing models (say m1 and m2) multiplied by their corresponding prior odds, that is

BF10 =
f(Y|m1)

f(Y|m0)

π(m1)

π(m0)
=
f(m1|Y)

f(m0|Y)
. (1.11)
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Kass and Raftery (1995) state threshold values for the BF. Specifically, values larger than

one provide evidence in favor of m1, while values higher than two are considered decisive.

When both models have an equal prior likelihood, the BF is defined as the ratio of the

corresponding prior predictive distributions (1.9). In this context, (1.9) is often referred

to as the marginal or intergraded likelihood (integrating over all model parameters) of the

data matrix Y under each model. The integrated likelihood is the normalizing constant

of the posterior probability of each model and thus requires the computation of multiple

integrals. Therefore, in order to compute the BF, the challenging step is to assess the

integrated likelihood.

1.5 Discussion

The introductory chapter of this thesis intended primarily to present the origins and the

basic concepts of the different kinds of latent variables models. Moreover, the unifying

GLLVM approach was described in detail. In addition, the key aspects of the Bayesian

analysis were outlined and the recent literature with respect to the Bayesian implemen-

tation of the LVMs was reviewed.
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Chapter 2

Fully Bayesian latent trait models

with binary responses

"He remarks that, while the individual man is an insoluble puzzle, in

the aggregate he becomes a mathematical certainty. You can, for example,

never foretell what any one man will do, but you can say with precision

what an average number will be up to. Individuals vary, but percentages

remain constant. So says the statistician"

Sherlock Holmes quotes Winwood Reade ∗

∗The quote is from the book The Sign of the Four (1890) by Arthur Conan Doyle. William Winwood

Reade (1838 - 1875) was a British historian, explorer, and philosopher. His two best-known books are

The Martyrdom of Man (1872) and The Outcast (1875).
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2.1 Introduction

The majority of the theoretical findings presented in this thesis, apply to the general

family of GLLVM models. However, the simulated examples presented hereafter involve

in particular multidimensional latent trait models with binary data. In this chapter,

a general prior is proposed for these models (Section 2.2), which also accounts for the

model identification (see Section 1.3.2 for details). In order to sample from the posterior,

a Metropolis-within-Gibbs is presented in detail (Section 2.3), which extends, for the

multivariate case, the algorithm presented in Patz and Junker (1999b). Finally, Bayesian

model comparison is considered here using the prior predictive distribution (1.9). Details

on the estimation of (1.9) are presented at the end of the chapter (Section 2.4).

2.2 Prior specification and identification

A latent trait model with N individuals, p items and k factors, entails (N + p) × k + p

parameters. All parameters are considered a-priori independent leading to a prior with

the general structure

π(ϑ,Z) =
N∏

i=1

k∏

ℓ=1

π(Ziℓ) ×
p∏

j=1

π(αj) ×
p∏

j =1

k∏

ℓ=1

π(βjℓ). (2.1)

The latent variables are assumed to be a-priori distributed as independent standard

normal distributions, that is

π(Ziℓ) = N(0, 1), (2.2)

in accordance with the arguments made in Section 1.2. With regard to the choice of the

prior for the item parameters, non informative priors are employed (see Section 1.4.1.1).

In particular, normal priors are assigned to the difficulty parameters (α) and log normal

to the discrimination parameters (β). The prior means are typically set equal to zero

while there is no consensus with regards to the prior variances. Here, four criteria were

considered in the construction of the item priors. In particular, the item priors should

a) be non informative, in analogy with the literature on the field,

b) impose constraints in order to achieve unique solution,

c) be suitable for Bayesian model comparison and

d) be potentially generalised to other members of the GLLVM.

Non informative priors were consider here with the additional restriction to be proper,

in order to be able to compute the Bayes factor (1.11). With regard to the identifica-

tion problem, the positivity constrain which is often imposed on the IRT discrimination
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parameters (see Section 1.4.1.1), was partially relaxed. This constrain is suitable for

the univariate case, where the rotation occurs as a change of item parameters’ sign. In

the multivariate case considered here, in order to achieve a unique solution, the loadings

matrix was constrained to be a full rank lower triangular matrix (see also Geweke and

Zhou, 1996, Aguilar and West, 2000, and Lopes and West, 2004), by setting βjℓ = 0 for

all j < ℓ and βjj > 0. Hence, positive loadings with log normal priors were considered

only for the diagonal elements. For the unconstrained discrimination parameter as well

as for the difficulty parameters normal priors were considered.

The final step was to choose the prior means and variances. The former is reasonable

to be zero, in order to reflect the prior ignorance. The choice of the prior variances, on

the other hand, is less trivial. In particular, non informative priors are associated with

large variances yet, within the Bayesian model comparison framework, large variances

increase the posterior probabilities of the simpler models (see for instance Kass and

Raftery, 1995; Sinharay and Stern, 2002 and references within). To address this issue,

the ideas presented in Ntzoufras et al. (2000) and further explored in the context of

GLMs by Fouskakis et al. (2009, equation 6) were implemented. Specifically, consider a

model m that belongs to the GLM family, with k independent variables represented by

X = (Xiℓ; i = 1, ..., N ; ℓ = 1, ..., k). For the model parameter vector b = {b0, b1, .., bk}′
Fouskakis et al. (2009) suggest a normal prior distribution of the general form

π(b) = N(0,Σ), (2.3)

where Σ= N [I(b)]−1 is the prior covariance matrix, N is the total sample size and I(b)

is the information matrix

I(b) = X′WX.

The matrix W is diagonal and its form depends on the link function. In the special case

of binary responses where the probability of correct response is given by pi, the matrix W

takes the form W = diag{pi(1 − pi)} (McCullagh and Nelder, 1989). In that case, (2.3)

coincides with the unit information prior introduced by Kass and Wasserman (1996),

which corresponds to adding one data point to the data. Fouskakis et al. (2009) state

that in the absence of prior information, the probability of correct response can be set

a-priori equal to 1/2. With this choice (2.3) becomes

π(b) = N(0, 4N [X′X]−1). (2.4)

For a generalized linear latent trait model (GLLTM) with binary data, Xℓ = Zℓ =

{Z1ℓ, ..., ZNℓ}′, ℓ = 1, ..., k and
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Z ′ Z =




Z′
1

Z′
2

...

Z′
k




(
Z1 Z2 · · · Zk

)
=




Z′
1Z1 · · · Z′

1Zk

...
. . .

...

Z′
kZ1 · · · Z′

kZk


 = N I(k×k),

where I(k×k) is the identity matrix, which occurs due to the fact that the latent vectors

are considered a-priori independent. Hence, according to (2.4), the prior variance for

the unconstrained discrimination parameters equals 4. For the positive discrimination

parameters, the prior variance of the log-transformed loadings was set equal to one which

corresponds to a variance close to 4 for the initial parameters while it is in accordance

with the corresponding literature (for instance see Patz and Junker, 1999b and references

within).

The prior for the discrimination parameters is summarised as follows:

π(βjℓ) =





1 if j < ℓ (constrained elements βj ℓ = 0)

LN(0, 1) if j = ℓ

N(0, 4) if j > ℓ

(2.5)

where X ∼ LN(µ, σ2) is the log-normal distribution with the mean and the variance of

logX being equal to µ and σ2, respectively. For diagonal elements βjj, the LN(0, 1) was

selected as a prior in order to approximately match the prior standard deviation used

for the rest of the parameters. Moreover, this is one of the default prior choices for such

parameters in the relevant literature; see for example in Kang and Cohen (2007) and

references therein. Similarly, the prior for the difficulty parameters is as follows

π(αj) = N(0, 4), j = 1, ..., p. (2.6)

The priors (2.2), (2.5) and (2.6) are used in (2.1) and this completes the prior specification

and identification of the model.

2.3 Metropolis within Gibbs algorithm

In this thesis, the parameter estimation is implemented following the work of Patz and

Junker (1999b). In particular, a Metropolis-within-Gibbs algorithm with stationary dis-

tribution f(ϑ,Z|Y) is constructed. Before presenting the algorithm in detail, we may

first outline some points of interest.

In order to achieve an efficient algorithm that converges quickly, the model parameters

can be grouped in blocks. This strategy is typical in high dimensional problems and

minimizes the computational time required (for details see Chib and Greenberg, 1995).
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In the construction of blocks, the general rule is to group together parameters that are

expected to be a posteriori dependent. Hence, Patz and Junker (1999b) create one

block for each item and one for each individual. For a k-factor model, the parameter

components that are updated (accepted or rejected) simultaneously are the p components

ϑj = {αj,βj} = {αj , βj1, ..., βjk} and the N components Zi = {Zi1, ..., Zik}.

The second important aspect of the algorithm is the choice of the proposal density.

Patz and Junker (1999b) generate future (candidate) points from distributions centered

at the current state. In particular, they use normal proposal distributions for the latent

variables:

q(Z′
i|Zi) =

k∏

ℓ=1

q(Z ′
iℓ|Ziℓ), where q(Z ′

iℓ|Ziℓ) = N(Ziℓ, c
2
Z

), i = 1, ..., N, (2.7)

and for the item difficulties:

q(α′
j |αj) = N(αj , c

2
ϑ), j = 1, ..., p. (2.8)

Log-normal proposal distributions are used finally for the item discriminations in random

walk steps. In the multivariate case considered here (k > 1), log-normal proposals are

assigned to the diagonal elements of the loadings matrix and normal proposal distributions

for the unconstrained elements, that is:

q(β′
j |βj) =

k∏

ℓ=1

q(β ′
jℓ| βjℓ), where q(β ′

jℓ| βjℓ) =

{
LN(log βjℓ, c

2
ϑ) if j = ℓ,

N(log βjℓ, c
2
ϑ) if j > ℓ.

(2.9)

The variance of the proposal density is often called the tuning parameter since it affects

the acceptance rate of the MCMC algorithm. Gelman et al. (1996) recommend acceptance

rates of about 50% for univariate parameter draws and of about 25% for higher dimen-

sional blocks. The variances c2
Z

and c2ϑ were therefore properly tuned at each example

presented in this thesis, in order to achieve these rates.

Finally, one convenient aspect of the GLLTMs is that due to the prior and local

independence assumptions, the acceptance probabilities are simplified in a direct way. In

the case of the item parameters, the acceptance probability is given by

a
(
ϑj,ϑ

′
j |Y,ϑ\j ,Z

)
= min

{
1,
f(Y|ϑ\j ,ϑ

′
j ,Z) π(ϑ\j ,ϑ

′
j|Z) π(Z) q(ϑ′

j |ϑj)

f(Y|ϑ\j ,ϑj ,Z) π(ϑ\j ,ϑj|Z) π(Z) q(ϑj |ϑ′
j)

}

= min

{
1,
f(Yj|ϑ′

j ,Z) π(ϑ′
j) q(ϑ

′
j,ϑj)

f(Yj|ϑj ,Z, ) π(ϑj) q(ϑj,ϑ
′
j)

}
,

where q(ϑ′
j,ϑj) = q(α′

j|αj)q(β
′
j|βj). In addition, the normal densities are symmetrical

and the proposal term cancels out for the unconstrained item parameters. In the case of

23



the diagonal loadings, where the log normal distribution was employed, the proposals are

substituted by a factor βℓℓ/β
′
ℓℓ. Therefore, the acceptance probability simplifies to

a
(
ϑj,ϑ

′
j|Y,Z

)
= min





1,

βℓℓ π(ϑ′
j)

N∏
i=1

f(yij|ϑj ,Zi)

β ′
ℓℓ π(ϑj)

N∏
i=1

f(yij|ϑj ,Zi)




. (2.10)

With similar arguments, the acceptance probability for each Z′
i is given by

a
(
Zi,Z

′
i|Y,ϑ

)
= min





1,

π(Z′
i)

p∏
j=1

f(yij|Z′
i,ϑj)

π(Zi)
p∏

j=1

f(yij|Zi,ϑj)




. (2.11)

Based on the remarks made in this section, the MCMC algorithm is summarised as

follows:

1. For j = 1, . . . , p, attempt to sample ϑ′
j from f(ϑj |Y,Z).

(a) When ϑj = {αj, βj} is the current parameter value, propose each component for

ϑ′
j from the proposals (2.6) and (2.5).

(b) Accept the proposed move with probability a
(
ϑj,ϑ

′
j|Y,Z

)
, according to (2.10).

2. For i = 1, . . . , N , attempt to sample Z ′
i from f(Zi|Y,ϑ).

(a) When Zi is the current parameter value, propose Z ′
i from the proposal (2.7).

(b) Accept the proposed move with probability a
(
Zi,Z

′
i|Y,ϑ

)
, according to (2.11).

2.4 Estimating the Bayesian Marginal likelihood

Within the Bayesian framework, model comparisons via the Bayes factor, posterior model

probabilities and odds (Kass and Raftery, 1995) require the computation of the integrated

(marginal) likelihood

f(Y|m) =

∫
f(Y| θ, m) π(θ|m) dθ, (2.12)

where Y denotes the observed data, m stands for the hypothesized model and π(θ|m) is

the prior density of the model specific parameter vector θ (m will be dropped hereafter

for simplicity). The term Bayesian marginal likelihood (BML) will be used hereafter for

(2.12) in order to avoid confusion with the same term occurring in the literature of the

LVMs under the classical approach, used to describe the model likelihood when the latent

variables have been marginalized out and the item parameters are considered fixed.
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The BML often involves high dimensional integrals making the analytic computation

infeasible, as in the case of the GLLVMs. A plethora of approximation methods have been

developed the last decades for the efficient estimation of the Bayesian marginal likelihood.

In this work (2.12) is assessed for latent trait models with binary items by implementing

some of the most often used methods. In particular, the estimators considered here can be

classified in three general categories (families), namely a) point-based estimators (PBE),

b) bridge sampling estimators (BSE) and c) path sampling estimators (PSE).

The PBE and BSE are presented in detail in the current section. With regard to the

PSE, existing and newly derived identities are discussed in detail in Chapter 5. However,

the basic features of the PSE are presented briefly below as well, for completeness.

2.4.1 Point based estimators

The point-based estimators are derived via the candidate’s identity (Besag, 1989)

f(Y) =
f(Y| θ) π(θ)

π(θ|Y)
(2.13)

Based on (2.13), the problem of estimating the BML is relocated at the assessment of

the posterior density. However, (2.13) holds for every point in the parameter space and

therefore the posterior density can be estimated using a specific point θ∗, which justifies

the term point-based estimators used herein. The corresponding identity for the BML in

log scale is

log f(Y) = log f(Y| θ∗) + log π(θ∗) − log π(θ∗|Y). (2.14)

The different PBE differ in the methodology implemented for the assessment of π(θ∗|Y).

In this work, three methods are considered, namely a) the Laplace-Metropolis (LM)

estimator proposed by Lewis and Raftery (1997), b) the Gaussian copula (GC) estimator

proposed by Nott et al. (2008) and c) the Chib and Jeliazkov (CJ) estimator proposed

by Chib and Jeliazkov (2001). The corresponding identities are described in detail below.

a) The Laplace-Metropolis method

The LM method is a MCMC variant of the Laplace approximation (Tierney and Kadane,

1986). It applies to integrals of the form I =
∫
eh(u) du, by using a Taylor series expansion

of h(u) round the p-dimensional vector u (Lewis and Raftery, 1997). In particular, the

approximation is given by

I ≈ (2π)
p
2 |H∗|1/2eh(u∗), (2.15)

where u∗ is the value where h attains its maximum and H∗ is minus the inverse Hessian

of h evaluated at u∗. The Laplace approximation can be directly used to derive the BML

(2.12), by substituting the unnormalised posterior in the place of h, which yields the

25



identity

log f(Y) =
p

2
log{2π} +

1

2
log |H∗| + log π(θ∗) + log f(Y| θ∗). (2.16)

The identity (2.16) implies that log π(θ∗|Y) in this case is approximated by the term

−p
2

log{2π}− 1
2

log |H∗|. If θ∗ and H∗ can be found analytically, then the approximation is

straightforward. Otherwise, the Metropolis output can be used for that purpose (Raftery,

1996; Lewis and Raftery, 1997). In the latter case, reasonable choices for θ∗ are the

argmax of the unnormalised posterior and the componentwise posterior mean or median.

On the other hand, the Hessian is asymptotically equal to the posterior variance matrix,

and can be estimated by the sample covariance matrix of the Metropolis output. However,

Lewis and Raftery (1997) suggest to use instead a weighted variance matrix estimate with

weights based on the minimum volume ellipsoid estimate of Rousseeuw and van Zomeren

(1990).

The LM method is theoretically restricted to real valued functions h which are

smooth, bounded and unimodal with a single dominant mode at u∗, as in the case of

the classical Laplace (Tierney and Kadane, 1986). However, Lewis and Raftery (1997)

state that the method works well in practice even if these conditions are not fully satisfied.

b) The Gaussian copula method

The GC identity is closely related to the LM . Nott et al. (2008) consider their method

as a generalization of the Laplace approximation where π(θ∗|Y) is now assessed by a

Gaussian copula (Joe, 1997). In particular, let θ = {θ1, ..., θp}′ be a p-dimensional

vector constructed by the marginals Fj(θj) (j = 1, ..., p) and L ∼ Np(0,Γ), where Γ is a

correlation matrix. It holds that Φ(Lj) is uniform and therefore θj = F−1
j {Φ(Lj)}. The

corresponding p-dimensional Gaussian copula (cΦ) is given by

cΦ

(
Φ−1{F (θ)} |Γ

)
= |Γ|−1/2 exp

{
1

2
q(θ)′(Ip − Γ−1) q(θ)

}
, (2.17)

according to Song (2000), where Ip is the identity matrix, q(θ) = (q1, q2, ..., qp)
′ is the

vector of the normal scores qj = Φ−1{Fj(θj)} (j = 1, ..., p) and Γ denotes the correlation

matrix of the normal scores. Nott et al. (2008) implement (2.17) to derive the GC identity

for the BML at a point θ∗ as follows

f(Y) =

cΦ

(
Φ−1{F (θ∗)} |Γ

)

p∏
j=1

fj(θj)

π(θ∗) log f(Y| θ∗), (2.18)

where fj is the marginal density that corresponds to the distribution Fj . In the special

case where θ∗ is the median, the normal scores become zero and (2.18) is simplified.

Specifically, at the median the log BML becomes
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log f(Y) = −1

2
log |Γ| +

p∑

j=1

log fj(θ
∗
j ) + log π(θ∗) + log f(Y| θ∗). (2.19)

The identity (2.19) is implemented in the current work, where θ∗ is the componentwise

median derived by the posterior output. The identity (2.19) implies that log π(θ∗|Y) in

this case is approximated by the term 1
2

log |Γ| −
p∑

j=1

log fj(θ
∗
j ). The posterior output

is implemented in order to estimate the quantities needed to approximate the posterior

at θ∗. Initially, the marginals fj are approximated by kernel density estimators based

on the posterior output. With regard to the covariance matrix Γ, the authors suggest

the following procedure. Let us suppose that R points θ(r) = {θ(r)1 , ....θ
(r)
p } are available

from the posterior output and rjr is the rank of the r-th draw for the parameter θj ,

(j − 1, ..., p). Each variable Lj is then constructed as Lj = Φ−1( rir−0.5
R

) and Γ̂ is derived

as their estimated correlation matrix by Rousseeuw and van Zomeren’s (1990) ellipsoid

method.

Density estimation using the Gaussian copulaes is sensible in the cases where we

expect that the posterior distribution is close to normal. Hence, the GC method is more

restricted than the LM and identical results may occur only in the case where cΦ is a

multivariate normal density.

c) The Chib and Jeliazkov method

As opposed to the former two point-based estimators (LM and GC) the CJ method is

generally applicable without imposing distributional assumptions. The method is pre-

sented by Chib and Jeliazkov (2001) and extends Chib’s (1995) initial method, to deal

with cases where the full conditional posterior distributions are not available and, there-

fore, a Metropolis–Hastings (M-H) algorithm is used to generate posterior samples. Both

methods employ (2.13) at θ∗. Assuming that the parameter space is divided into p blocks,

the posterior at θ∗ can be decomposed to

π(θ∗|Y) = π(θ∗1, θ
∗
2, · · · , θ∗

p|Y) = π(θ∗
1|Y)π(θ∗

2|Y, θ∗
1) · · ·π(θ∗

p|Y, θ∗
1, θ

∗
2, · · · , θ∗

p−1).

(2.20)

The marginal likelihood is calculated in a straightforward manner when (2.20) is analyt-

ically available. If the full conditionals are known, Chib (1995) presented an algorithm

that uses the output from the Gibbs sampler to estimate them by Rao-Blackwellization.

Otherwise, Chib and Jeliazkov (2001) implement for that purpose the kernel of the M-H

algorithm, K(·|·), which denotes the transition probability of sampling θ∗
j given that θj

has been already generated, given by:

K(θj , θ
∗
j |Y, θ\j) = a(θj, θ

∗
j |Y, θ\j) q(θj, θ

∗
j |Y, θ\j), j = 1, · · · , p, (2.21)
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where θ\j is the parameter vector θ exclunding θj, a(·|·) is the M-H acceptance probability

and q(·|·) is the proposal density. Employing the local reversibility condition (Chib and

Jeliazkov, 2001), each of the posterior ordinates appearing in (2.20) can be written as

π(θ∗
j |Y, θ∗

1, · · · , θ∗
j−1) =

E1

{
a
(
θj , θ

∗
j |Y, ψ∗

j−1, ψ
j+1
)
q
(
θj , θ

∗
j |Y, ψ∗

j−1, ψ
j+1
)}

E2

{
a
(
θ∗
j , θj |Y, ψ∗

j−1, ψ
j+1
)} , (2.22)

where ψj−1 = (θ1, · · · , θj−1) and ψj+1 = (θj+1, · · · , θp) for j = 1, . . . , p with ψ0 and ψp+1

referring to the empty sets. The expectations in the numerator and the denominator are

with respect to π
(
θj , ψ

j+1|Y, ψ∗
j−1

)
and π

(
ψj+1|Y, ψ∗

j

)
q
(
θj , θ

∗
j |ψ∗

j−1, ψ
j+1
)

accordingly.

Chib and Jeliazkov (2001) use (2.22) in order to estimate each posterior ordinate in

(2.20). Therefore, in high dimensional models, such as the LVMs, the implementation

of the CJ method becomes infeasible. In Chapter 4 it is shown that in the presence of

local independence, the posterior ordinates of the p-blocks in (2.20) can be derived with

a single MCMC run. The modified estimator is referred to hereafter as the independence

Chib and Jeliazkov (CJI) estimator.

2.4.2 Bridge sampling estimators

Meng and Wong (1996) initially presented the method of bridge sampling in order to

approximate ratios of normalizing constants z1 and z0. Specifically, let p1 and p0 denote

two densities with supports Ω1 and Ω0 such as

pi(θ) =
qi(θ)

zi
, θ ∈ Ωm, m = 0, 1.

The bridge sampling identity for the ratio z1/z0 requires the existence of an arbitrary

function A(·) defined on Ω1 ∩ Ω0, such as

0 <

∣∣∣∣
∫

Ω1∩Ω0

A(θ)p1(θ)p0(θ)dθ

∣∣∣∣ <∞. (2.23)

Such a function exists if and only if
∫

Ω1∩Ω0

p1(θ)p0(θ)dθ > 0, (2.24)

implying that the common support of p1 and p0 is non-trivial (Meng and Wong, 1996).

For any function A(θ) where (2.23) and (2.24) hold, we have

∫
Ω0

A(θ)q1(θ)p0(θ)dθ∫
Ω1

A(θ)q0(θ)p1(θ)dθ
=
z1
z0

×
∫
Ω1∩Ω0

A(θ)p1(θ)p0(θ)dθ∫
Ω1∩Ω0

A(θ)p1(θ)p0(θ)dθ
, (2.25)
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which yields the bridge sampling identity

z1
z0

=
Ep0{q1(θ)A(θ)}
Ep1{q0(θ)A(θ)} . (2.26)

Directly from (2.26) we may derive the general bridge sampling identity for the Bayesian

marginal likelihood, as follows

f(Y) =

∫
f(Y|θ)π(θ)A(θ)g(θ)dθ∫
f(θ|Y)A(θ)g(θ)dθ

, (2.27)

where p1(θ) = f(θ|Y), q1(θ) = f(Y|θ)π(θ), z1 = f(Y) and q0(θ) = g(θ) and g(·)
is a proper density (z0 = 1). The general BMI identity (2.27) can be used to derive

specific BML identities, for different choices of the bridge function A(·). Many of these

identities pre-existed in the literature while others are considered in Meng and Wong

(1996), Gelman and Meng (1998) and Meng and Schilling (2002). The identities employed

in the current thesis are shown in detail below.

a) The arithmetic and the harmonic mean

The simplest identity for the BML occurs from (2.26) by taking A(θ) = g(θ), namely

f(Y) =

∫
f(Y| θ) π(θ) dθ, (2.28)

which is actually the definition (2.12). The identity (2.28) corresponds to the default

(naive) BML estimator that occurs as the average of the model likelihood over parameter

values drawn from the prior. Since Markov chains are not implemented in (2.28), the cor-

responding estimator is often referred to as the Monte Carlo estimator or the arithmetic

mean estimator (AM). The AM was introduced in the early ’90s by Raftery and Banleld

(1991) and further explored by McCulloch and Rossi (1992). However, it was quickly

abandoned since sophisticated MCMC methods began to appear in the literature at the

same period. The main problem with the arithmetic mean is that simulated points θ(r)

with large likelihood can dominate the estimator (Kass and Raftery, 1995). Additionally,

the prior is overdispersed with respect to the likelihood and thus requiring millions of

iterations for the estimator to converge (see, for instance, Lewis, 1994).

Several years later, Newton and Raftery (1994) presented the harmonic mean esti-

mator (HM), which they derived using simple algebraic manipulations in (2.28). The

harmonic mean identity can be considered as a member of the bridge family, since it

occurs from (2.26) by taking A(θ) = g(θ)/f(Y| θ), leading to the identity:

f(Y) =

{∫
1

f(Y| θ)
f(θ|Y) dθ

}−1

. (2.29)
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The HM is presumably the most popular MCMC identity among practitioners in many

scientific fields, due to its simplicity. However, the corresponding estimator suffers

methodologically by weak points. In particular, as opposed to the AM , the HM es-

timator can be dominated by simulated points θ(r) with small likelihood. Similarly, it

can be associated with infinite variance that in many cases can remain undetected (see

Raftery et al., 2007, in discussion by Robert and Chopin). A third weak point occurs

due to the fact that the identity (2.29) does not include the prior. According to Neal

(Newton and Raftery, 1994, in discussion) ”if the posterior is insensitive to the priors”,

then the HA will fail to distinguish between the different priors and it will not provide

distinct estimates for the BML. Raftery et al. (2007) suggest potential solutions, among

which is the stabilized harmonic mean which occurs by marginalizing out a subset of the

parameters.

b) The reciprocal mean

Gelfand and Dey (1994) independently proposed a generalised version of the HM (see

also DiCiccio et al., 1997), namely the reciprocal mean estimator (RM). The RM identity

may be derived from (2.26) by taking A(θ) = {f(Y| θ) π(θ)}−1, that is

f(Y) =

{∫
g(θ)

f(Y| θ) π(θ)
f(θ|Y) dθ

}−1

. (2.30)

The RM requires to define g(ϑ) which in this context is often called the importance or

reference function. The objective and recommendation of many authors (DiCiccio et al.,

1997; Gelman and Meng, 1998; Meng and Schilling, 2002; Meng and Wong, 1996), is to

choose a density similar to the target distribution (here the posterior). In most cases

the importance function is constructed from the posterior moments available from the

MCMC output.

c) The bridge harmonic and geometric means

The four bridge sampling identities for the BML that were presented so far, pre-dated

the method of Meng and Wong (1996). On the contrary, the bridge harmonic estimator

(BH) and the bridge geometric estimator (BG) considered in this section, are identities

proposed by Meng and Wong (1996). The BH occurs by implementing in (2.26) the

bridge function A(θ) = {f(Y| θ) π(θ) g(θ)}−1, yielding the identity

f(Y) =

∫
g(θ)−1g(θ)dθ∫

{f(Y| θ) π(θ)}−1 f(θ|Y) dθ
. (2.31)

For the BG, the bridge function is A(θ) = {f(Y| θ) π(θ) g(θ)}−1/2, leading to the iden-

tity:

f(Y) =

∫
{f(Y| θ) π(θ)/g(θ)}1/2 g(θ) dθ

∫
{f(Y| θ) π(θ)/g(θ)}−1/2 f(θ|Y) dθ

. (2.32)
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The two identities also require to construct an importance function. If that is feasible,

then the two identities correspond to very efficient estimators.

2.4.3 Path sampling estimators

The path sampling (Gelman and Meng, 1998) method is based on the construction of a

continuous and differentiable path qt(θ) = h(q1, q0, t) that links the unnormalised identi-

ties (2.23). The ratio of the corresponding normalizing constants λ = z1/z0 is estimated

by implementing the thermodynamic integration (TI) identity

log λ =

∫ 1

0

∫

θ

d log qt(θ)

dt
pt(θ) dθ dt =

∫ 1

0

Ept

{
U(θ)

}
dt, (2.33)

where U(θ) = d log qt(θ)
dt

and Ept

{
U(θ)

}
stands for the expectation over the sampling

distribution pt(θ). The scalar t ∈ [0, 1] is often referred to as the temperature parameter,

since the TI has its origins in thermodynamics and specifically in the calculation of the

difference in free energy of a system; for details see in Neal (1993, Section 6.2). A closely

related approach is the stepping-stone sampling (Fan et al., 2011; Xie et al., 2011), where

the ratio of interest is estimated by implementing the identity

λ =
n−1∏

i=0

∫

θ

{
q1(θ)

q0(θ)

}∆(ti)

p ti(θ) dθ (2.34)

where ∆t = ti+1− ti. The path and stepping-stone sampling methods have been recently

implemented in the literature, in order to estimate the Bayesian marginal likelihood and

the BF. In particular, for the BML the developed identities are:

a) the power posteriors method (Friel and Pettitt, 2008; Lartillot and Philippe, 2006)

log f(Y) =

∫ 1

0

Ept

[
log f(Y| θ)

]
dt, (2.35)

b) the stepping stone method Xie et al.’s (2011)

f(Y) =
n∏

i=1

Ept

[
f(Y| θ)∆t

]
and (2.36)

c) the generalised stepping stone method Fan et al.’s (2011)

f(Y) =
n∏

i=1

Ept

[{
f(Y| θ) π(θ)

g(θ)

}∆t
]
. (2.37)

All methods are discussed in detail in Chapter 5.
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2.5 Discussion

The purpose of this chapter was to describe the three steps (prior specification, sampling

from the posterior and Bayesian model comparison) that are required in the Bayesian

model assessment, for latent trait models with binary items. With regard to the prior

information, in this chapter a non-informative prior was proposed that is suitable for

Bayesian model comparison. The prior proposed here can be generalised to account for

other types of LVMs, in accordance with the ideas presented in Ntzoufras et al. (2000).

Regarding the posterior samples, the Metropolis algorithm proposed by Patz and Junker

(1999b) was expanded to account for multivariate IRT models. Finally, an introduction

to the methods of estimating the Bayesian marginal likelihood was presented.
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Chapter 3

The behavior of joint and marginal

Monte Carlo estimators in

multi-parameter latent variable

models

"Had some data ready to inspect,

I modeled the relation as a random effect,

The number of parameters just grew and grew,

I had to get some help from you-know-who!

Run run -- Markov chain run,

Programming you was fun,

but I’ll be happy when you’re done

I knew that my algorithm was no joke,

When my computer started spewing smoke.

My plan wasn’t working so I had to sub,

I drowned my MC sorrows at the local pub."

Gareth Roberts and Jeffrey S. Rosenthal ∗

∗Part of the lyrics of the song ”An MCMC Saga”, written by Roberts and Rosenthal, for the Valencia

International Meeting on Bayesian Statistics 7.
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3.1 Introduction

From the early readings the methods applied for the parameter estimation of model

settings with latent variables relied either on the joint (Lord and Novick, 1968; Lord,

1980)

f(Y|ϑ,Z) =
N∏

i=1

f(Yi|ϑ,Zi) (3.1)

or the marginal likelihood (Bock and Lieberman, 1970; Bock and Aitkin, 1981; Moustaki

and Knott, 2000)

f(Y|ϑ) =

N∏

i=1

∫
f(Yi|ϑ,Zi) π(Zi) dZi, (3.2)

where ϑ = (α,β) and Yi = (Yi1, Yi2, .., Yip). In analogy with (3.1) and (3.2), under the

local independence assumption there are two equivalent formulations of the BML, namely

f(Y) =

∫ N∏

i=1

f(Yi|ϑ,Zi) π(ϑ,Z) d(ϑ,Z) (3.3)

and

f(Y) =

∫
f(Y|ϑ) π(ϑ) dϑ =

∫ [ N∏

i=1

∫
f(Yi|ϑ,Zi) π(Zi) dZi

]
π(ϑ) dϑ . (3.4)

Hereafter we refer to (3.3) with the term joint approach and to (3.4) with the term

marginal approach for the BML and we compare them within the Bayesian framework.

The former suggests to estimate the observed and latent variable scores simultaneously

while the latter to marginalize out the latent variables prior to the model parameter

estimation. Similarly, counterpart approaches have been developed within the Bayesian

context (for instance Mislevy, 1986; Gifford and Swaminathan, 1990; Kim et al., 1994;

Patz and Junker, 1999b).

Sophisticated Monte Carlo techniques have been developed throughout the years, such

as the bridge sampling (Meng and Wong, 1996) and the Laplace-Metropolis estimator

(Lewis and Raftery, 1997), among others. Despite of the method implemented however,

the BML can be estimated by considering either the joint or the marginal likelihood

expressions.

Intuitively, one expects the joint approach to be less efficient especially as the number

of dimensions increases. In this chapter, are provided exact expressions for the variance

components associated with each approach and the factors that influence the associated

Monte Carlo error (MCE) are considered. In particular, it is illustrated graphically and
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mathematically that even though the MCE is not by definition associated directly with the

dimensionality of a model, the latter plays a key role through the variance components.

In turn, the variance components are directly influenced by the number of the variables

involved and their variability. Additionally, the effect of the sample covariation on the

Monte Carlo estimates is outlined, which is considerably understated in the literature.

In particular, for independent random variables the sample covariance is typically near

but not zero. It is shown here that in high dimensions even small sample covariances

reduce convergence and produce biased Monte Carlo estimates. This bias can remain

undetected, due to the fact that the sample covariation causes also underestimation of

the MCE.

Concerns arise also with respect to convergence, since the extensive use of simulation

methods nowadays is not always followed by the necessary precautions to ensure accurate

estimation of the quantity of interest. For instance, Koehler et al. (2009) reported that in

a large number of articles with simulation studies, only a tiny proportion provided either

a formal justification of the number of replications implemented or the actual estimate of

the Monte Carlo error (MCE). That is, integral approximations are based on an arbitrary

number of replications, that are considered to be “large enough” to accurately estimate

the quantity of interest. Nevertheless, in complex high dimensional problems, where the

rate of convergence can be extremely low, millions of iterations may be required to achieve

a desirable level of precision for the MC estimate of interest. Hence, in many cases the

simulations are practically stopped “when patience runs out”, as Jones et al. (2006) flu-

ently describe. The remarks that are made in this chapter facilitate the understanding

of the error and bias mechanism of Monte Carlo methods under independence and con-

ditional independence and hopefully will assist the researchers to avoid being trapped in

high dimensions.

The structure of this chapter is as follows. Section 3.2 presents a motivating example

with regard to the estimation of the BML in a model with latent variables. Three popular

Markov Chain Monte Carlo (MCMC) methods are implemented, under both joint and

marginal approaches. Key observations are made based on the comparison of the derived

estimated values which motivate further research. Section 3.3 reviews the Monte Carlo

integration under the joint and marginal settings, with emphasis on high dimensional

integrals where independence can be assumed for the integrand. The exact MCEs under

both approaches are derived in Section 3.3.1 while the factors that affect the error are

considered in Section 3.3.2. For illustration purposes a simple example is provided, that

is, estimating the mean of the product of independent and identically distributed (i.i.d)

Beta random variables. In Section 3.3.3, the variance reduction in the case of conditional

independence is discussed. In Section 3.3.4 the total covariation of N variables is defined

as a multivariate counterpart of covariance. A corresponding index that measures the
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sample’s divergence from independence is developed and employed to amplify the factors

that influence the total sample covariation. Finally, it is shown that in finite settings

where the sample covariation is non zero, the MCE associated with the joint approach is

underestimated.

3.2 A motivating example: BML estimation in gen-

eralised linear latent trait models

Here, we focus on models with binary responses and k latent variables, which belong to

the family of generalized latent trait models discussed in Moustaki and Knott (2000).

The logistic model is used for the response probabilities (1.6). For the BML formulations

in (3.3) and (3.4), three BML estimators are employed namely: the reciprocal mean

estimator (2.30), the bridge harmonic estimator (2.31) and the bridge geometric estimator

(2.31). In order to construct the estimators using the joint approach, the parameter vector

is augmented to include the latent variables, that is θ = {ϑ,Z} = {α,β,Z}, while for

the marginal approach it holds θ = ϑ = {α,β}.

The estimators require also an importance function g(θ). In the current example,

an approximation based on the posterior moments for each parameter was implemented,

with structure g(θ) = g(α)g(βe) where

g(α) ∼MN(m̃α, Σ̃α) and g(βe) ∼ MN(m̃βe
, Σ̃βe), βe = βjℓ, i ≥ ℓ

and βe refers to the non-zero components of B with elements log βjj for j = 1, . . . , p

and βjℓ for j > ℓ. The MN(m̃, Σ̃) denotes a multivariate normal distribution whose

parameters (m̃, Σ̃) are the posterior mean and variance-covariance matrix estimated from

the MCMC output. For the joint approach, the g(ϑ) is simply augmented for the latent

vector

g(ϑ) = g(α)g(βe)

k∏

ℓ=1

N∏

i=1

g(Ziℓ),

where g(Ziℓ) ∼ N(m̃Ziℓ
, s̃2Ziℓ

), with parameters estimated from the MCMC output used

to approximate the posterior π(Ziℓ|Y ).

A simulated data set with p = 6 items, N = 600 cases and k = 2 factors was

considered. The model parameters were selected randomly from a uniform distribution

U(-2,2). Using a Metropolis within Gibbs algorithm, 50,000 posterior observations were

obtained after discarding a period of 10,000 iterations and considering a thinning interval

of 10 iterations to diminish autocorrelations. The posterior moments involved in the

construction of the importance function were estimated from the final output and an

additional sample of equal size was generated from g(ϑ). The MCMC estimators were

computed in two versions, joint and marginal, using the entire MCMC output of 50,000
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iterations. In a second step, the simulated sample was divided into 50 batches (of 1,000

iterations) and the integrated log-likelihood was estimated at each batch. The standard

deviation of the log-BML estimators over the different batches is considered here as its

MCE estimate (Schmeiser 1982, Bratley et al. 1987, Carlin and Louis 2000).

In this example, the BML (3.4) was calculated by approximating the inner integrals

with fixed Gauss-Hermite quadrature points. This way, the computational burden is

considerably reduced without compromising the accuracy, since such approximations are

fairly precise in low dimensions. Other approximations can be alternatively used, such

as the adaptive quadrature points (Rabe-Hesketh et al. 2005, Schilling and Bock 2005)

or Laplace approximations (Huber et al., 2004).

3.2.1 Estimations and key observations

The first observation derived from the current example refers to the variability differ-

ences between the estimators and between their joint and marginal counterparts. For

illustration purposes we focus on the two bridge sampling estimators. The joint bridge

harmonic (BHJ) and bridge geometric (BGJ) estimators are depicted in Figure 3.1(a)

over the 50 batches. The variability differences between them is striking, implying that

the geometric estimator is a variance reduction technique as opposed to the harmonic.

The next step in our investigation was to compare the less variant estimator with its

marginal counterpart. Figure 3.1(b) illustrates that further variance reduction can be

achieved by implementing the marginal rather than the joint geometric estimator. It

becomes apparent that even the efficient bridge geometric estimator was considerably

improved by employing the marginal approach. That fact is typical in high dimensional

models and often expected intuitively.

The second observation was less imaginable and it refers to the estimated values per

se. In particular, Figure 3.1(c) illustrates that the BHJ , BGJ and BGM estimators vary

around a common estimated value for the BML and the divergencies present in Table 3.1

are within the margins of their corresponding errors. However this is not true in the case

of the reciprocal estimator. As opposed to the bridge estimators, Figure 3.2(a) illustrates

that substantially distant estimations were derived by the joint (RMJ) and marginal

(RMM) reciprocal estimators. The difference in the estimated values is about 10 units

in log-scale, meaning that it far exceeds the corresponding MCEs and hence cannot be

explained solely by variability. In addition, it is interesting to notice that the RMJ occurs

to be much more divergent than the BHJ , even though the latter is associated with 5

times higher error (Table 3.1). The three joint estimators are depicted in Figure 3.2(b)

and their marginal counterparts are illustrated in Figure 3.2(c).

Several concerns arise therefore with regard to the convergence of the estimators in

finite settings, listed below:
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a) What is the mechanism which produces these differences?

c) Can the differences in the error be ameliorated to some extend by increasing the

simulated sample size in finite settings?

d) By increasing the number of the simulated points, do the discrepancies in the esti-

mated values reduce? Where is this type of bias coming from?

Regarding the mechanism, we state here that is related to the model assumptions.

Specifically, consider the model parameters ϑ fixed in the BML expressions (3.3) and

(3.4). It occurs that the joint expression implements the mean of the product of the inde-

pendent variables fϑ(Yi|Zi) while the marginal expression employs the product of their

means. The former is a generally applicable approach while the latter occurs explicitly

under independence. We conclude that the joint approach makes subtle use of the local

independence assumption. This fact has direct implications on the estimated value and

the associated error which are thoroughly examined in the following section.
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Table 3.1: BML estimates (log scale) for the GLLTM example

Approach Estimator Estimation Batch mean MĈE

RM -2062.3 -2053.9 3.46

Joint BH -2068.8 -2065.5 17.92

BG -2073.3 -2072.8 2.21

RM -2071.3 -2071.2 0.28

Marginal BH -2069.6 -2069.3 2.11

BG -2071.6 -2071.6 0.07

The estimated BML of a GLLTM model with p = 6 items, N = 600 cases

and k = 2 factors. Each estimation was computed over a sample of 50,000

simulated points while the batch mean and the associated error were computed

over 50 batches of 1,000 points each. RM: Reciprocal mean estimator, BH: Bridge

harmonic estimator and BG: Bridge geometric estimator.
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Figure 3.1: The joint bridge harmonic estimator BH
J
(dotted line), the joint bridge geometric esti-

mator BG
J
(gray solid line) and the marginal bridge geometric estimator BG

M
(black solid line), for

the BML (log scale), implementing a simulated data set with p = 6 binary items, N = 600 cases and

k = 2 factors, over 50 batches.
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Figure 3.2: Joint and marginal approaches for the reciprocal (RM), generalized harmonic (BH) and

geometric (BG) estimators of the BML (log scale), implementing a simulated data set with p = 6 binary

items, N = 600 cases and k = 2 factors, over 50 batches.
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3.3 Joint and marginal Monte Carlo estimators un-

der independence assumptions

The Monte Carlo integration techniques are reviewed here in a general framework, since

the subsequent theoretical findings extend beyond models with latent variables. In par-

ticular, we consider any multi-dimensional integral of the form

I =

∫
φ(Y)h(Y) dY, where Y = (Y1, Y2, ..., YN).

The MC approximation of the integral (3.5) corresponds to the expected value of φ(Y )

over h(Y ). Specifically, if yR =
{
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

}R
r=1

is a random sample of points drawn

from h, then the estimator Î = φ = 1
R

∑R
r=1 φ

(
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

)
will approach (3.5) for

sufficiently large sample size R. The degree of accuracy associated with the Monte Carlo

estimator is directly related to the size of the simulated sample R. The standard deviation

of φ is the MCE of the estimator. The MCE is therefore defined as the standard deviation

of the estimator across simulations of the same number of replications R and is given by:

MCE =

√
Var(φ ) =

σ√
R
,

while an obvious estimator of MCE is given by M̂CE = σ̂/
√
R, provided that an esti-

mator of the integrand’s variance σ̂2 is available. From (3.5), it occurs that the MCE

directly depends on σ and R.

Here we focus on the estimation of the expected value of φ(Y ) =
N∏
i=1

φi(Yi) given by

I = Eh[φ(Y)] = Eh

[
N∏

i=1

φi(Yi)

]
=

∫ N∏

i=1

φi(Yi)h(Y1, Y2, ..., YN) d(Y1, Y2, ..., YN) (3.5)

assuming that the Yis are independent random variables. Under this assumption, we can

rewrite (3.5) as

I =

N∏

i=1

Eh [φi(Yi)] =

N∏

i=1

∫
φi(Yi)hi(Yi)dYi . (3.6)

The expressions (3.5) and (3.6) can be used to construct two unbiased Monte Carlo

estimators of I, described in Definitions 3.3.1 and 3.3.2 that follow.

Definition 3.3.1 Joint estimator of I. For any random sample
{
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

}R
r=1

from h, the joint estimator of I is defined as

ÎJ = φ =
1

R

R∑

r=1

φ
(
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

)
=

1

R

R∑

r=1

[
N∏

i=1

φi

(
y
(r)
i

)]
. (3.7)
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Definition 3.3.2 Marginal estimator of I. For any random sample
{
y
(r)
1 , y

(r)
2 , ..., y

(r)
N

}R
r=1

from h, the marginal estimator of I is defined as

ÎM =
N∏

i=1

[
1

R

R∑

r=1

φi

(
y
(r)
i

)]
=

N∏

i=1

φi. (3.8)

The two estimators ÎJ and ÎM are asymptotically equivalent, according to the central limit

theorem. In the remaining of the chapter we examine the divergencies between the two

estimators in finite settings, as a result of disregarding the assumption of independence.

3.3.1 Monte Carlo errors

The exact MCEs for the joint and marginal estimators are expressed in terms of their

variances. In particular, the variance of the joint estimator (3.7) is directly linked to the

variance of the product of N independent variables since

V ar(ÎJ) = V ar

[
1

R

R∑

r=1

{ N∏

i=1

φi

(
y
(r)
i

)}]
=
V ar

[∏N
i=1 φi(Yi)

]

R
. (3.9)

On the other hand, the variance of the marginal estimator (3.8) is given by the variance

of the product of N univariate MC estimators, that is

V ar(ÎM) = V ar

[
N∏

i=1

φi

]
. (3.10)

The difference between (3.9) and (3.10) becomes apparent if the early findings of Good-

man (1962) are reviewed within the framework of Monte Carlo integration. Goodman

(1962, eq. 1 and 2) provides the variance σ2 of the product of N independent variables Yi,

(i = 1, ..., N) with probability or density functions hi(Yi). For our purposes, we expand

it to the case of functions φi(Yi) of the original independent random variables, leading to

V ar

(
N∏

i=1

φi(Yi)

)
=

N∑

i=1

Vi

N∏

i ′ 6=i

E2
i ′ +

N∑

i1< i2

Vi1Vi2

N∏

i ′ 6=i1, i2

E2
i ′ + ...+ V1V2 · · · VN ,(3.11)

where Ei ′ = E[φi ′(Yi ′)] and Vi = V ar[φi(Yi)], (i, i ′ ∈ {1, ..., N}), with all moments being

calculated over the corresponding densities hi(Yi).

Equation (3.11) can be written as

V ar

(
N∏

i=1

φi(Yi)

)
=

N∑

k=1

∑

C∈(N

k )


∏

i∈C

Vi
∏

j∈N\C

E2
j


 , (3.12)
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where
(
N
k

)
is the set of all possible combinations of k elements of N = {1, 2, . . . , N} and

any product over the empty set is specified to be equal to one.

The variances of the two Monte Carlo estimators in (3.9) and (3.10) may now be

expressed in terms of (3.11). Specifically, the variance of the joint estimator is directly

obtained by dividing the integrand’s variance in (3.11) with the simulated sample size

R. For the marginal estimator, the variance (3.10) can be obtained by substituting Vi by

Vi/R in (3.12). The variance components that correspond to the MCEs in each case are

presented in the following lemma.

Lemma 3.3.1 The variances of the joint (3.7) and marginal estimators (3.8) are given

by

V ar(ÎJ) =
1

R

∑

i∈N

Vi
∏

j∈N\{i}

E2
j +

N∑

k=2


 1

R

∑

C∈(Nk )

∏

i∈C

Vi
∏

j∈N\C

E2
j


 ,

and

V ar(ÎM) =
1

R

∑

i∈N

Vi

N∏

j∈N\{i}

E2
j +

N∑

k=2




1

Rk

∑

C∈(N

k )

∏

i∈C

Vi
∏

j∈N\C

E2
j


 ,

In each case, the associated MCE equals the square root of the corresponding variance

in Lemma 3.3.1. The variances (and therefore the MCEs) are asymptotically equivalent,

since both converge to zero with rate of order O(R−1). However, with the exception of

the first term in V ar(ÎM), the rest of the components in the summation converge faster

to zero with rates O(R−k) for any k ≥ 2. Hence, in finite settings the joint estimator will

always have larger error. The factors that influence the magnitude of this difference are

discussed in the next section.

3.3.2 Determinants of Monte Carlo error difference

In this section, we study the difference in the errors associated with the joint and marginal

estimators. We illustrate how it depends on the dimensionality of the problem at hand

(N), the variation of the variables involved and the simulated sample’s size (R).

To begin with, if both estimators ÎJ and ÎM are applied with the same finite R, then

according to Lemma 3.3.1, the difference in their variances is given by

V ar(ÎJ) − V ar(ÎM) =
1

R

N∑

k=2



(

1 − 1

Rk−1

) ∑

C∈(N

k )

∏

i∈C

Vi
∏

j∈N\C

E2
j


 ,

As the number of the variables increases, more positive terms are added to (3.13) and

this explains the indirect effect of the dimensionality. The effect of the moments Ei and
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Vi, i = 1 . . . N , can be expressed in terms of the corresponding coefficients of variation

(CV2
i ), according to the following lemma.

Lemma 3.3.2 Without loss of generality, let {Yi, i ∈ N0} be the sub-set of {Y1, Y2, . . . , YN}
random variable with zero expectations. The variances of the joint (3.7) and marginal

(3.8) estimators are given by:

V ar(ÎJ) =
1

R
×
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(CV 2
i + 1) − I(N0 = ∅)




and

V ar(ÎM) =
1

RN0
×
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i

R
+ 1

)
− I(N0 = ∅)




where N0 ⊆ N = {0, 1, ..., N}, N 0 = N \ N0 is the index of variables Yi with non-zero

expectations,
∏
i∈∅

Qi = 1 for any Qi and I(N0 = ∅) is equal to one if Ei 6= 0 for all i ∈ N
and zero otherwise.

⊲ The proof of Lemma 3.3.2 is given at the Appendix. ✷

Based on Lemma 3.3.2, the difference in the variances of the estimators becomes larger

as the variability of the Yis increases. The maximum difference occurs when all variables

involved have zero means, in which case V ar(ÎJ) = RN V ar(ÎM). On the contrary, when

all means are non zero, the difference mainly depends on the coefficients of variation.

Based on Lemma 3.3.2, we may also consider the case where the two estimators have

the same variance, that is V ar(ÎJ) = V ar(ÎM), which can be achieved under different

number of replications, RJ and RM . The number of replications that the joint estimator

requires, in order to archive the same error with the marginal estimator, is defined at the

following corollary.

Corollary 3.3.1 The joint (3.7) and marginal (3.8) estimators achieve the same accu-

racy when

RJ = R
N0
M × ω(N,N0, CV)

with

ω(N,N0, CV) =





RN−N0
M if N0 = N
N∏
i=1

(CV 2
i +1)−1

N∏
i=1

(CV 2
i /RM+1)−1

if N0 = ∅

∏
i∈N 0

CV 2
i +1

CV 2
i /RM+1

otherwise
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where N0 = |N0| denotes the number of the zero mean variables, CV = {CVi : i ∈ N 0} and

RJ , RM are the number of iterations for the joint and marginal estimators, respectively.

Corollary 3.3.1 states that the joint estimator achieves the same MCE when its number of

iterations RJ is equal to the number of iterations of the marginal estimator RM raised to

the number of variables with zero expectations and multiplied by a factor ω(N,N0, CV) >

1 for RM > 1. Hence, in order to achieve the same precision for the two estimations, the

joint estimator will always require more iterations RJ than the marginal one RM . The

multiplicative factor ω heavily depends on the number of variable with zero expectations

and on the variability of the Yis (through CVs) for the non-zero variables. In the special

case where all expectations Ei are zero, the required number of iterations is RJ=RN
M .

Lemma 3.3.2 and Corollary 3.3.1 indicate that the error of the joint estimator may not

be always manageable. That is, if the number of variables is large or if their variability is

high, then the joint estimator requires simulated samples that can be unreasonably large.

For illustration purposes, we implement a toy example of N independent and iden-

tically distributed (i.i.d) Beta random variables Yi ∼ Beta(λ1, λ2) (i = 1, ..., N). The

mean of their product is given by:

E

(
N∏

i=1

Yi

)
=

(
λ1

λ1 + λ2

)N

.

Fifty samples with size ranging from 5 to 250 thousands simulated points, were generated

from N = 10 Beta(1, 2) distributions. The two estimators were computed and depicted

in Figure 3.3(a). The same procedure was repeated for N = 50 and N = 150 and is

graphically represented in Figures 3.3(b) and 3.3(c).

In the low dimensional case (N = 10), the error of the joint estimator (ÎJ : light grey

line) is rather comparable with the error of marginal (ÎM : dark grey line). When R

reaches 250 thousands, both estimators reach the true mean (IT : dashed line). However,

if the number of variables is increased to N = 50 and N = 150, the variability differences

between the two approaches remain large even for R = 250, 000; see Table 3.2.

The exercise was also replicated for N = 10, 50 and 150 i.i.d. Beta(0.1, 0.2) variables.

The true mean is the same with the previous setting (equal to 1/3), but the coefficient of

variation (CV) is now approximately 77% higher. For the same R and N , the difference in

the errors of the two estimators is even larger (Figures 3.3(d) to 3.3(e)), indicating the role

of the variability of the variables involved. The estimated values and the corresponding

errors are summarized in Table 3.2. Although, this example is simple assuming i.i.d

random variables, the same picture can be reproduced for non identically distributed

random variables.
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Figure 3.3: The joint estimator ÎJ (light grey solid line) and the marginal estimator ÎM (dark grey solid

line) compared with the true mean (dashed black line) of the product of N i.i.d Beta(λ1, λ2) variables,

as the size of simulated the samples increases from 5000 to 250000 and for N = 20, 50, and 150.
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Table 3.2: Estimated mean of the product of i.i.d Beta variables (log scale)

Distribution N IT ÎM MĈEM ÎJ MĈEJ

Beta(1, 2)

10 -10.99 -10.98 0.02 -10.97 0.07

50 -54.93 -54.93 0.06 -52.01 2.03

150 -164.79 -164.79 0.09 -176.94 3.37

Beta(0.1, 0.2)

10 -10.99 -10.98 0.04 -11.05 1.07

50 -54.93 -54.90 0.10 -113.81 13.77

150 -164.79 -164.80 0.17 -595.13 28.50

N : Number of i.i.d variables; IT : true mean; Î(J orM): the estimated value via the joint or the

marginal approach respectively, over R =250,000 iterations; Î(M or J) and MĈE(M or J): batch

mean error over 25 batches of 10,000 points each (obtained as the standard deviation of the log

estimates).

3.3.3 Variance reduction under conditional independence

In this section, we demonstrate how we can extend the previous results in the case of

conditional independence which is more realistic in practice and it frequently met in

hierarchical models with latent variables.

Specifically, let us substitute Y by (U ,V ). In analogy with the previous setting,

let U i (with i = 1, 2, . . . , N) be conditionally independent random variables when V are

given with densities denoted by h(ui|v). We are interested in estimating the integral

I =

∫ [ N∏

i=1

ϕi(u i, v)
]
h(u , v) d(u , v), (3.13)

that now corresponds to the expected value of ϕ(u , v) =
∏N

i=1 ϕi(u i, v) over h(u , v).

This can be directly estimated by the joint estimator

ÎJ =
1

R

R∑

r=1

[
N∏

i=1

ϕi

(
u

(r)
i , v (r)

)
]

(3.14)

assuming that we can generate a random sample
{
u(r), v(r)

}R
r=1

from h(u, v).

If we use the conditional independence assumption, (3.13) can be written as

I =

∫ { N∏

i=1

[ ∫
ϕi(u i, v)h(u i|v) duj

]}
h(v) dv =

∫ N∏

i=1

E
(
ϕi

∣∣v
)
h(v) dv, (3.15)

where E
(
ϕi

∣∣v
)

is the conditional expectation of ϕi(ui, v) with respect to h(ui|v). From
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(3.15) we can directly obtain the corresponding marginal estimator by

ÎM =
1

R1

R1∑

r1=1

[ N∏

i=1

ϕ
(r1)
i

]
with ϕ

(r1)
i =

1

R2

R2∑

r2=1

ϕi

(
u
(r2)
i , v(r1)

)
, (3.16)

calculated by a nested Monte Carlo experiment; where
{
v(r1)

}R1

r1=1
is a sample from h(v)

and
{
u
(r2)
i

}R2

r2=1
is a sample obtained by the conditional distribution h

(
ui|v = v(r1)

)
.

Lemma 3.3.3 The variances of the joint (3.14) and marginal estimators (3.16) under

the assumption of conditional independence are given by

V ar(ÎJ) =
1

R
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R

N∑

k=1

∑

C∈(N

k )

Ev

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

and

V ar(ÎM) =
1

R1

V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R1

N∑

k=1

1

Rk
2

∑

C∈(N

k )

Ev

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

where Ev

[
g(v)

]
and V arv

[
g(v)

]
denote the expectation and the variance of g(v) with re-

spect to h(v) and V
(
ϕi

∣∣v
)
is, in analogy to E

(
ϕi

∣∣v
)
, the conditional variance of ϕi(ui, v)

with respect to h(ui|v).

⊲ The proof of Lemma 3.3.3 is given at the Appendix. ✷

Lemma 3.3.3 is an extension of Lemma 3.3.1 for the case of conditional independence.

For this reason, similar statements about the behaviour and the error of the joint and

the marginal estimators also hold for the case of conditional independence. The main

difference is the first term of variances of the estimators which is common and it is due

to the additional variability of v which is of order O(R−1). Moreover, for R1 = R and

any R2 > 1 the marginal estimator is better since V ar(ÎM) < V ar(ÎJ). It would be

interesting to examine the case of using the exactly the same computation effort in terms

of Monte Carlo iterations. Nevertheless, setting R = R1R2, then no clear conclusion

can be drawn since the first common term will be of different order. For example, if we

consider R1 = R2 = r and R = r2 then the two variances are given by

V ar(ÎJ) =
1

r2
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

r2

N∑

i=1

Ev

[
V
(
ϕi

∣∣v
) ∏

j∈N\{i}

E
(
ϕj

∣∣v
)2]

+ O(r−2)

and

V ar(ÎM) =
1

r
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

r2

N∑

i=1

Ev

[
V
(
ϕi

∣∣v
) ∏

j∈N\{i}

E
(
ϕj

∣∣v
)2]

+ O(r−3)
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Finally, in the case that instead of nested Monte Carlo, we use a numerical method which

approximates very well the expectations E(ϕi|v) then the second term of the the variance

of the corresponding marginal estimator will be zero making the method considerably

more accurate and faster to converge than the joint estimator.

Due to the fact that Lemma 3.3.3 also incorporates similar expressions as in Lemma

3.3.2, the remarks made on the error differences with regard to the sample size, the

number of variables and their variability apply also in the case of conditional independence

assumption. We may now explain the different behaviour of the three BML estimators at

the GLLVM example (Section 3.2), where ui = Zi are the latent variables and v = (α,β)

are the model parameters. The error differences observed in Figure 3.1(a) between the

BHJ and BGJ estimators (for the same N and R) can be now attributed to the different

coefficients of variation of the averaged quantities involved. For both estimators, the

expectation in the nominator is taken over g(α,β,Z) = g(α)g(β)
∏N

i=1(Zi). However,

the N averaged variables differ according to bridge harmonic (2.31) and geometric (2.32)

estimators. Specifically for i = 1, . . . , N the averaged variables were:

(a) ϕi(·) =
[
g(α)1/Ng(β)1/Ng(Zi)

]−1

, in the case of BHJ and

(b) ϕ′
i(·) =

{
f(Yi|α,β,Zi)π(Zi)

g(Zi)

[
π(α)π(β)
g(α)g(β)

]1/N}1/2

, in the case of BGJ .

Moreover, none of the conditional expectations will be equal to zero since φi and φ′
i are

both positive. Therefore, following Lemma 3.3.2 we may rewrite the variances of the

estimators as functions of the corresponding coefficients of variation

V ar(ÎJ) =
1

R
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R
Ev

[
N∏

i=1

E
(
ϕi

∣∣v
)2
{

N∏

i=1

[
CV (ϕi|v)2 + 1

]
− 1

}]

and

V ar(ÎM) =
1

R1
V arv

[ N∏

i=1

E
(
ϕi

∣∣v
)]

+
1

R1
Ev

[
N∏

i=1

E
(
ϕi

∣∣v
)2
{

N∏

i=1

[
CV (ϕi|v)

2

R2
+ 1
]
− 1

}]

From the above equations, it is obvious that the variances of the estimators will explode

for large N in the (a) case since we expect values of ϕi > 1 demanding a large number of

iterations to reach a required precision level. The effect will be more evident in the joint

estimator, since the marginal estimator some of these effects will be eliminated for large

R2 (or using well behaved numerical methods). For case (b), the situation seems much

better, since (assuming that g is a good proxy for the posterior) the expectation in the

first term (which is common in both approaches) will estimate the normalizing constant

of f(α,β|y) for given values of α and β. These values are usually small and therefore

will not to greatly influenced by N . Therefore this term will be eliminated for reasonably
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small R and R1. If this is the case, the second term will behave as in described in previous

sections and therefore any action of marginalizing will greatly improve the Monte Carlo

errors.

To verify this, we used the last 5000 iterations to calculate the corresponding CV s.

For the bridge harmonic estimator, the CV s of the N quantities in (a) varied in log scale

from 0.20 to 0.52 (median CV=0.27). In the case of the bridge geometric estimator, the

CV s of the corresponding variables in (b) were substantially lower, varying from 0.01 to

0.10 (median CV=0.02). Similar results occurred for the denominators of the two bridge

sampling estimators (harmonic: CV from 0.2 to 0.9 /geometric: CV less than 0.006).

The conditional independence setting considered here, applies to a plethora of high

dimensional models involving latent vectors and it provides formally the rational behind

choosing to marginalize out the latent variables. In such settings, the rate of convergence

is extremely slow and millions of iterations may be required to achieve a desirable level

of precision for the joint estimator. However, convergence is not only a matter of the

associated MCE, as will be explained in the next section.

3.3.4 The role of the sample covariation

Up to this point, we have studied the variability differences between the two approaches

under consideration. In this section, we focus on the estimators themselves and how they

are influenced by sample covariation which are expected to be close (but not exactly)

equal to zero. These differences appear in the simulated example of Section 3.2 (see

Tables 3.1 and 3.2) and cannot be attributed to the associated Monte Carlo errors of the

two estimators. In the bivariate case, the difference between the mean of the product

of two variables and the product of their means is by definition their covariance. Let

us refer to a multivariate analogue of covariance with the general term total covariation

defined as:

TCI(Y ) = E
( N∏

i=1

Yi

)
−

N∏

i=1

E(Yi), (3.17)

which is actually the difference between the expectations under the joint and marginal

approaches in their simplest forms. For instance, it coincides with the difference between

the expressions in (3.5) and (3.6) if in (3.17) we use the random variables φi(Yi), i =

1, ..., N (for simplicity in the notation hereafter we proceed with the original variables

without loss of generality). The identity (3.17) is not useful into gaining insight on the

factors that affect that difference. Here, we provide an alternative expression which

assesses the total covariation among N random variables, in terms of their expected
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means E(Yi), i = 1, ..., N and covariances of the form:

Cov(k)(Y ) = Cov
(k−1∏

i=1

Yi, Yk

)
. (3.18)

Lemma 3.3.4 The total covariation among N variables, is given by:

TCI(Y ) = Cov(N)(Y ) +

N−2∑

k=1

[(
N∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]
, (3.19)

where N ≥ 3 and E(YN+1) = 1.

⊲ The proof of Lemma 3.3.4 is given at the Appendix. ✷

The total sample covariation among the N random variables is therefore assessed

through a weighted sum of N -1 covariance terms. The means of the variables serve as

weights that adjust the contribution to the total covariation for each additional variable.

In finite settings, the difference between the estimated means provided by ÎJ and ÎM

reflects the total sample covariation between the N variables.

When N random variables are simulated independently, even the smallest dependen-

cies between the variables will result in non zero total sample covariation. That is, even

though the N variables were sampled independently, the covariance induced by the sim-

ulation procedure cannot be ignored even for samples of several hundreds of thousands

points. Therefore, if the total sample covariation is non zero, it can be considered as an

index of the sample’s divergence from independence. It should be noted that zero values

do not ensure independence (that is, the reverse statement does not hold). By definition,

the total sample covariation is accountable for and completely explains the estimation

differences that were illustrated in the our examples.

Equation (3.19) implies that any divergence from the independence assumption in

finite settings is also affected by the number of variables N , their expectations, their

covariation and the simulated sample size R, as already illustrated graphically in Figures

3.3(a) to 3.3(f). In the case of independent variables, the sample covariation converges

to zero as R goes to infinity. The Cauchy-Schwartz inequality provides an upper bound

for the sample covariation, according to the following lemma.

Corollary 3.3.2 An upper bound for the absolute value of TCI(Y ) is given by:

|TCI(Y )| ≤
N−2∑

k=0



(

N+1∏

i=N+1−k

|E(Yi)|
)√√√√V ar

(
N−k−1∏

j=1

Yi

)
V ar(YN−k)


 .
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⊲ Corollary 3.3.2 immediately follows from Lemma 3.3.4 by further implementing the

Cauchy-Schwartz inequality. ✷

Corollary 3.3.2 provides an upper end to the total covariation therefore we cannot

infer regarding the its magnitude as the various parameters increase. However, in a vise

versa point of view, Lemma 3.3.2 suggests that:

– The lower the expected means of the variables (in absolute value) are, the lower

the index is expected to be (due to the lower bound).

– The lower the variances of the variables are, the lower the index is expected to be

(due to the lower bound).

– Less variables (smaller N) correspond to lower number of positive terms added to

the right part of the inequality and therefore to lower total covariation.

The total sample covariation affects also the estimated variance of the joint estima-

tor. Let us denote with R0, the number of iterations required to overcome the sample

covariation effect. For simulated samples less that R0, the variance of the joint estimator

is underestimated by a factor of TCI(Y )2, according to the following lemma.

Lemma 3.3.5 The variance of the product of N variables, equals their variance under

assumed independence minus the square of their total covariation,

V ar

(
N∏

i=1

Yi

)
= V ar

(
N∏

i=1

Yi

∣∣∣Independence
)

− TCI(Y )2 , (3.20)

where V ar
(∏N

i=1 Yi

∣∣∣Independence
)
is the variance of the product under the assumption

of independence.

⊲ The proof of Lemma 3.3.5 is given at the Appendix. ✷

According to Lemma 3.3.5, in the presence of sample total covariation, the joint approach

leads in practice to a false sense of accuracy. Once the simulated sample is large enough

(larger than R0), the covariation effect vanishes (TCI(Y )2 ≃ 0), yet the variance of the

joint estimator is always larger than the one associated with the marginal estimator,

according to (3.13).

Based on the sample total covariation of Φ =
(
φ1(Y1), . . . , φN(YN)

)
, it is now possible

to explain why at the GLLVM example (Section 3.2) MCMC estimators associated with

low MCE lead to biased estimations and vice versa. In particular, the sample covariation

does not seem to affect the bridge harmonic (BHJ ) estimator while it is clearly present in

the case of the reciprocal (RMJ) estimator (see Table 3.1 ). To explain this phenomenon,
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we need first to underline that the bridge harmonic estimator is a ratio. Based on the

last 5,000 draws, the sample total covariation between the averaged variables at the nom-

inator of BHJ was -723.8 and -730.5 at the denominator. These values are substantially

larger than the sample covariation among the averaged variables in the case of the recip-

rocal estimator (equal to -23.0). However, since BHJ is a ratio the sample covariations

estimated at the nominator and the denominator cancel out, which is not the case for

the reciprocal estimator. Similarly, the sample covariation effect also cancels out in the

case of the bridge geometric estimator.

3.4 Discussion

In the presence of independence assumptions, the mean product of N variables can be

either estimated by implementing the joint or the marginal approaches, as described in the

current work. In finite settings the difference may be considerable, making the selection

of one of the approaches crucial for the accurate estimation of specific quantities. It

might seem appealing to adopt the joint approach in order to simplify the estimator and

minimize the computational burden and the corresponding time required. In fact, such a

gain is not obtained in practice, since the joint approach is associated with increased error

and divergence from the true mean. As discussed in Section 3.3 and illustrated at the

examples, the number of iterations required for the joint estimator to obtain values close

to the true mean is considerably higher than the one required for the marginal estimator.

In complex settings, the number of iterations might be so large, that lack of convergence

may remain undetected.
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Appendix

Proof of Lemma 3.3.2

According to Goodman (1962), the variance of the product of N variables is given by

V ar

(
N∏

i=1

φi(Yi)

)
=

N∏

i=1

(
Vi + E2

i

)
−

N∏

i=1

E2
i . (3.21)

Hence we can write

V ar

(
N∏

i=1

φi(Yi)

)
=

∏

i∈N0

(
Vi + E2

i

) ∏

i∈N 0

(
Vi + E2

i

)
−
∏

i∈N0

E2
i

∏

i∈N 0

E2
i .

=
∏

i∈N0

Vi
∏

i∈N 0

[
E2

i

(
CV 2

i + 1
) ]

−
∏

i∈N0

E2
i

∏

i∈N 0

E2
i .

=
∏

i∈N 0

E2
i ×


∏

i∈N0

Vi
∏

i∈N 0

(
CV 2

i + 1
)
−
∏

i∈N0

E2
i


 .

Note that
∏

i∈N0

E2
i will be the value of one if N0 = ∅ and zero otherwise. Therefore we

can write
∏

i∈N0

E2
i =

∏
i∈N0

E2
i ×

∏
i∈N0

V 2
i resulting in

V ar

(
N∏

i=1

φi(Yi)

)
=

∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i + 1
)
−
∏

i∈N0

E2
i


 .

=
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×


∏

i∈N 0

(
CV 2

i + 1
)
− I(N0 = ∅)


 ,

which gives

V ar

(
N∏

i=1

φi(Yi)

)
=

=





N∏
i=1

Vi if N0 = N (all expectations are zero)

N∏
i=1

E2
i ×

[ N∏
i=1

(
CV 2

i + 1
)
− 1
]

if N0 = ∅ (all expectations are non-zero)
∏

i∈N0

Vi ×
∏

i∈N 0

E2
i ×

∏
i∈N 0

(CV 2
i + 1) otherwise

The proof is completed by placing the general expression for the integrand’s variance in

(3.9) and (3.10) respectively. �
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Proof of Lemma 3.3.3

V ar(ÎJ) = V ar(u,v)

{
1

R

R∑

r=1

[
N∏

i=1

ϕi

(
u

(r)
i , v (r)

)
]}

=
1

R
V ar(u,v)

[
N∏

i=1

ϕi

(
u i, v

)
]

=
1

R
V arv

{
Eu|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]}

+
1

R
Ev

{
V aru|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]}

(3.22)

Due to conditional independence we have that

Eu|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]

=

N∏

i=1

Eu|v

[
ϕi

(
u i, v

) ∣∣∣v
]

=

N∏

i=1

E
(
ϕi

∣∣v
)
. (3.23)

Moreover, from (3.12) we have that

V aru|v

[
N∏

i=1

ϕi

(
u i, v

) ∣∣∣v
]

=
N∑

k=1

∑

C∈(N

k )

[∏

i∈C

V
(
ϕi

∣∣v
) ∏

j∈N\C

E
(
ϕj

∣∣v
)2]

(3.24)

By substituting (3.23) and (3.24) in (3.22), we obtain the variance of the joint estimator

of Lemma 3.3.3.

Similarly, for the marginal estimator we have

V ar
(
ÎM

)
= V ar(u,v)

[
1

R1

R1∑

r1=1

N∏

i=1

ϕ
(r1)
i

]
=

1

R1
V ar(u,v)

[
N∏

i=1

ϕi

]

=
1

R1
V arv

{
Eu|v

[ N∏

i=1

ϕi

∣∣∣v
]}

+
1

R1
Ev

{
V aru|v

[ N∏

i=1

ϕi

∣∣∣v
]}

(3.25)

Due to conditional independence we have that

Eu|v

[ N∏

i=1

ϕi

∣∣∣v
]

=
N∏

i=1

Eu|v

[
ϕi

∣∣∣v
]

=
N∏

i=1

E
(
ϕi

∣∣v
)
. (3.26)

Moreover, from Lemma 3.3.1 we have that

V aru|v

[ N∏

i=1

ϕi

∣∣∣v
]

=

N∑

k=1




1

Rk
2

∑

C∈(N

k )

∏

i∈C

Vi
∏

j∈N\C

E2
j


 , (3.27)

Substituting (3.26) and (3.27) in (3.25) gives the expression of the variance of the

marginal estimator of Lemma 3.3.3.
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Proof of Lemma 3.3.4

The proof of Lemma 3.3.4 can be obtained by induction. The statement of the Lemma

holds for N = 3 with Y 3 = (Y1, Y2, Y3) since

Cov(3)(Y ) +

1∑

k=1

[(
3∏

i=4−k

E(Yi)

)
Cov(3−k)(Y )

]
= Cov(3)(Y ) +

(
3∏

i=3

E(Yi)

)
Cov(2)(Y )

= Cov(Y1Y2, Y3) + E(Y3)Cov(Y1, Y2)

= E(Y1Y2Y3) − E(Y1Y2)E(Y3) + E(Y3)[E(Y1Y2) − E(Y1)E(Y2)]

= TCI(Y 3) .

which is true by the definition of TCI (see equation 3.17) for vectors Y of length equal

to three.

Let us now assume that (3.19) it is true for any vector Y N of length N > 3. Then,

for Y N+1 = (Y N , YN+1) = (Y1, . . . , YN , YN+1) the equation

TCI(Y N+1) = Cov(N+1)(Y ) +

N−1∑

k=1

[(
N+1∏

i=N−k+2

E(Yi)

)
Cov(N+1−k)(Y )

]
, (3.28)

is also true since

TCI(Y N+1) =E

([
N∏

i=1

Yi

]
× YN+1

)
−
[

N∏

i=1

E(Yi)

]
E(YN+1)

= Cov(N+1)(Y ) + E

(
N∏

i=1

Yi

)
E(YN+1)−

[
N∏

i=1

E(Yi)

]
E(YN+1)

= Cov(N+1)(Y ) + TCI(Y N )E(YN+1)

= Cov(N+1)(Y ) +

{
Cov(N)(Y ) +

N−2∑

k=1

[(
N∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]}
E(YN+1)

(from eq. 3.19)

= Cov(N+1)(Y ) + Cov(N)(Y )E(YN+1) +

N−2∑

k=1

[(
N+1∏

i=N−k+1

E(Yi)

)
Cov(N−k)(Y )

]

= Cov(N+1)(Y ) + Cov(N)(Y )E(YN+1) +
N−1∑

k′=2

[(
N+1∏

i=N−k′+2

E(Yi)

)
Cov(N−k′+1)(Y )

]

( we set k′ = k + 1 )

= Cov(N+1)(Y ) +
N−1∑

k′=1

[(
N+1∏

i=N−k′+2

E(Yi)

)
Cov(N−k′+1)(Y )

]

[for k = 1, the term in the summation of (3.28) is equal to Cov(N)(Y )E(YN+1)].
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Proof of Lemma 3.3.5

V ar
( N∏

i=1

Yi

)
= E

[
N∏

i=1

Yi − E
( N∏

i=1

Yi

)]2

= E

[(
N∏

i=1

Yi −
N∏

i=1

E(Yi)

)
− TCI(Y )

]2

= E

[
N∏

i=1

Yi −
N∏

i=1

E(Yi)

]2
+ TCI(Y )2 − 2E

{
TCI(Y )

[ N∏

i=1

Yi −
N∏

i=1

E(Yi)
]}

= E

[
N∏

i=1

Yi −
N∏

i=1

E(Yi)

]2
= V ar

(
N∏

i=1

Yi

∣∣∣Independence
)

− TCI(Y )2.

since E
{
TCI(Y )

[∏N
i=1 Yi −

∏N
i=1E(Yi)

]}
= TCI(Y )E

[∏N
i=1 Yi −

∏N
i=1E(Yi)

]
= 0. �

57



58



Chapter 4

Bayesian marginal likelihood

estimation using the Metropolis

kernel in multi-parameter latent

variable models

"Everything must be made as simple as possible. But not simpler."

Albert Einstein ∗

∗Albert Einstein (1879 - 1955) was a theoretical physicist and humanist. Simple as that, yet not

simple at all.
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4.1 Introduction

One popular estimator for the Bayesian marginal likelihood is the one proposed by Chib

and Jeliazkov (2001), which extends Chib’s (1995) original estimator, by allowing in-

tractable full conditional densities (denoted hereafter as the CJ estimator). The CJ

estimator evaluates the posterior at a high density point θ∗, using output from sequen-

tial Metropolis-Hastings algorithms (see Section 1.4.1.2), one for each element of θ. The

sequential MCMC runs, appear to be computationally demanding when the parameter

space is large (see Section 2.4.1 for details). However, the method is favored by the fact

that the posterior is directly obtained by the MH kernel, used to produce the posterior

output, while no additional assumptions are imposed during the marginal likelihood es-

timation. For instance, the estimators of the importance (Newton and Raftery, 1994),

or bridge family (Meng and Wong, 1996), even though very efficient, require to sample

from a carefully constructed and well tuned envelope function. Quick approximation

techniques, such as the Laplace Metropolis (Lewis and Raftery, 1997) or Gaussian copula

(Nott et al., 2008) estimators, can be also used but they impose distributional restrictions

for the posterior, such as normality or symmetry. On the contrary, Chib and Jeliazkov’s

(2001) approach is based on the MH kernel per ce, without any additional restrictions or

assumptions.

In this chapter, the local independence assumption is employed in the construction

of a multi-block MG that allows to compute the CJ estimator in a single MCMC run,

regardless of the dimensionality of the parameter space. This is achieved simultaneously

by marginalizing out the latent vector directly from the M-G kernel and estimating the

posterior ordinate via the CJ method. The alternative one-block algorithm is also con-

sidered here, by pointing out the difference between the two approaches. In the absence

of reduced MCMC runs, the CJ estimator is considerably simplified, minimizing the com-

putational burden. Regarding the models where local independence is not assumed, it is

described how the latent variables can be marginalized out, when none of the conditional

posterior ordinates is fully available and therefore Rao-Blackwellization is not applicable

(Chib and Jeliazkov, 2001, Tanner and Wong, 1987).

The rest of the chapter is organized as follows. Section 4.2 gives a general model

framework for fitting models with latent variables, where the GLLVM are derived as

special case. Section 4.3 presents the CJ (Chib and Jeliazkov, 2001) estimator. Section

4.4 explains how the method can be simplified using the local independence assumption

of the likelihood and compares it with other single-run versions of the method. The

section closes with a discussion on how the estimator can be implemented when none of

the conditional posterior ordinates is analytically available. Section 4.5.3 describes the

implementation in GLLTM examples, including illustrations on simulated and real data

sets. Concluding remarks are provided at the discussion section of this chapter.
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4.2 Framework and model formulation

Let us first define a general model structure and the corresponding notation. Here, we

study models which can be defined with a likelihood of the following structure

f
(
Y|Θ = (θ0, θ1, . . . , θp),L

)
= f

(
Y| θ = (θ1, . . . , θp),Z = (θ0,L)

)
, (4.1)

where

– Y = (Y1, . . . ,Yp) is a N ×p data array of N observations and p observed variables

(items),

– Yj is the N × 1 vector with the data values for item j,

– L is the k ×N matrix of the latent variables,

– Θ is the whole parameters (k + 1) × p vector,

– θ0 is the set of parameters which is common across different items,

– θj for j = 1, . . . , p are the item specific parameters (linked to Yj only).

The above setting includes a variety of models, such as random effect models and the

the GLLVM (Bartholomew et al., 2011). Note that in the model formulation in (4.1),

the pair of parameters and the latent variables (Θ,L) correspond to the pair (ϑ,Z) with

ϑ being the item specific parameters and Z being the set of parameters and/or latent

variables which are common and shared across different items. In GLLVMs, parameters

shared across different items do not exist unless equality constraints are imposed. Hence

L solely refers to latent variables Z.

4.3 The Chib and Jeliazkov marginal likelihood esti-

mator

Both Chib’s Chib (1995) and Chib and Jeliazkov Chib and Jeliazkov (2001) estimators,

are based on the candidate’s identity (Besag, 1989) presented in section 2.4.1. Follow-

ing Chib (1995), let us suppose that the parameter space is divided into p blocks of

parameters. Then the posterior ordinate can be decomposed to

f(θ∗|Y) = f(θ∗
1, θ

∗
2, · · · , θ∗

p|Y) = f(θ∗
1|Y)f(θ∗

2|Y, θ∗
1) · · ·f(θ∗

p|Y, θ∗
1, θ

∗
2, · · · , θ∗

p−1).

(4.2)

The marginal likelihood is calculated in a straightforward manner when (4.2) is analyti-

cally available. In the case when the full conditionals are known, Chib (1995) presented
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an algorithm that uses the output from the Gibbs sampler to estimate them by Rao-

Blackwellization. In addition, Chib and Jeliazkov (2001) extended the method to deal

with cases where the full conditional posterior distributions are not available and, there-

fore, a Metropolis–Hastings (MH) algorithm is used to generate posterior samples. The

authors implement for that purpose the kernel of the MH algorithm, which denotes the

transition probability of sampling θ∗
j given that θj has been already generated

K(θj, θ
∗
j |Y, θ\j) = a(θj , θ

∗
j |Y, θ\j) q(θj , θ

∗
j |Y, θ\j), j = 1, · · · , p, (4.3)

where θ\j is the parameter vector θ without θj, a(θj, θ
∗
j |Y, θ\j) is the MH acceptance

probability and q(θj , θ
∗
j |Y, θ\j) is the proposal density. Employing the local reversibility

condition, each of the posterior ordinate appearing in (4.2) can be written as

f(θ∗
j |Y, θ∗

1, · · · , θ∗
j−1) =

E1

{
a
(
θj, θ

∗
j |Y, ψ∗

j−1, ψ
j+1
)
q
(
θj, θ

∗
j |Y, ψ∗

j−1, ψ
j+1
)}

E2

{
a
(
θ∗
j , θj |Y, ψ∗

j−1, ψ
j+1
)} , (4.4)

where ψj−1 = (θ1, · · · , θj−1) and ψj+1 = (θj+1, · · · , θp) for j = 1, . . . , p with ψ0 and ψp+1

referring to the empty sets. The expectations in the numerator and the denominator are

with respect to f
(
θj, ψ

j+1|Y, ψ∗
j−1

)
and f

(
ψj+1|Y, ψ∗

j

)
q
(
θj, θ

∗
j |ψ∗

j−1, ψ
j+1
)

accordingly.

A Monte Carlo estimator for each ordinate can be obtained by replacing the expecta-

tions in (4.4) with their corresponding sample means from simulated samples. The final

posterior estimator (ĈJ) is given by multiplying the estimators for each block. Since the

expectations in (4.4) are conditional on specific parameter points ψ∗
j−1 = (θ∗

1, · · · , θ∗
j−1),

the corresponding Monte Carlo estimates cannot be obtained by the initial (full) MCMC

run. Hence, for a parameter space that consists of p blocks, p − 1 reduced runs are

needed to compute the CJ estimator. For models with latent variables, whose number

of parameters when including the latent variables exceeds several hundreds, estimating

the posterior ordinate requires a marginalization step.

In particular, for the GLLVM, the posterior ordinate required to calculate the marginal

likelihood includes all parameters, that is f(ϑ∗,Z∗|Y). Usually, the number of blocks

employed for ϑ∗ is reasonable creating no problem in the computation of CJ . On the

contrary, the latent vector Z is highly dimensional and direct application of the CJ

method requires a large number of reduced MCMC runs. Chib and Jeliazkov (2001)

address the issue of multiple latent variable blocks and suggest to overcome the problem

by marginalizing out the latent vector. Specifically, the first p − 1 ordinates are esti-

mated via (4.4), while the last one is calculated via a Rao-Blackwellization step as the

average of f(ϑ∗
p|Y, ψ∗

p−1,Z) with respect to f(Z|Y, ψ∗
p−1). This straightforward solution

occurs when at least one conditional density is analytically available. The procedure is

discussed in detail in Chib and Jeliazkov (2001), along with examples, as well as within

the longitudinal data setting considered in Chib and Jeliazkov (2006).
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In the next section we describe how the Metropolis kernel can be used to marginalize

out the latent vector, when the Rao-Blackwellization step is not applicable. Different

scenarios are considered for models under the setting given in equation (4.1).

4.4 Efficient estimation of the posterior ordinate in

latent variable models

Within the framework given in equation (4.1), a multi-block CJ estimator using a single-

run of the Metropolis algorithm is described, based on local independence properties

of models with latent vectors. The one-block approach that also leads to single-run

CJ estimators is discussed along with practical solutions when the local independence

assumptions are not met.

4.4.1 Models with local independence

As mentioned in Section 4.2, the GLLVM framework embraces the within subjects inde-

pendence that is typical also in various models with latent vector and/or random effects.

This property is met in the literature as the local (conditional) independence assumption.

Definition 4.4.1 The local independence refers to the independence of the data (Y)

conditional on the latent vector (within subjects independence). That is, under the as-

sumption of local independence, it holds that

f(Y| θ,L) =

p∏

j=1

f(Yj | θj ,L) , (4.5)

The local independence implies also that the association among the observed vari-

ables for the ith individual is induced solely by the individual’s latent position Li, i ∈
{1, 2, ..., n}.

The key observation here is that the local independence can be extended to the pos-

terior distribution of the parameters provided that prior local independence exists, that

is introduced in Definition 4.4.2 which follows.

Definition 4.4.2 For any model with likelihood given by equation (4.1), a set of param-

eters θ is defined as a-priori locally independent if they are a-priori independent

conditionally on L. Therefore, the prior will satisfy the following equation

π(θ|L) =

p∏

j=1

π(θj|L) . (4.6)
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Similarly we can introduce the posterior local independence using Definition 4.4.3.

Definition 4.4.3 For any model with likelihood (4.1), a set of parameters θ is defined as

a-posteriori locally independent if they are a-posteriori independent conditionally on

L. Therefore the posterior distribution will satisfy the following equation

f(θ|Y,L) =

p∏

j=1

f(θj |Yj,L) . (4.7)

For any model where the assumptions of local and prior local independence hold, it

is trivial to show that the posterior local independence holds as well. These properties

naturally affect the acceptance probability of the sampling algorithm and consequently

the implementation of the CJ estimator in either multi-block or one-block designs.

4.4.1.1 CJ estimator from a single run using multi-block MCMC

In this section we introduce a simplification of the original CJ estimator that occurs

in models with local (conditional) independence, denoted hereafter as the independence

CJ estimator (ĈJ I). The estimator occurs under the Metropolis-within-Gibbs algorithm

described by the following steps:

1. Sample L from f(L|Y, θ) using any sampling scheme.

2. for j = 1, . . . , p

(a) When θj is the current parameter value, propose θ′
j from a proposal with density

q(θj , θ
′
j|Y,L).

(b) Accept the proposed move with probability

a
(
θj ,θ

′
j |Y,θ\j ,L

)
= min

{
1,

f(Y|θ\j ,θ
′
j ,L)π(θ\j ,θ

′
j|L)π(L) q(θ′

j,θj|Y,L)
f(Y|θ\j ,θj ,L)π(θ\j ,θj|L)π(L) q(θj,θ

′
j|Y,L)

}

= min

{
1,

f(Yj|θ′
j,L)π(θ

′
j |L) q(θ′

j ,θj |Y,L)
f(Yj|θj,L)π(θj |L) q(θj ,θ

′
j |Y,L)

}
= a(θj ,θ

′
j |Y,L),

(4.8)

due to local and prior local independence defined in (4.5) and (4.6). Therefore the

acceptance rate given in (4.8) depends only on the current and new (proposed) values of

component θj and the latent vector L. This assumption is common when implementing

Metropolis-within-Gibbs algorithms, with the simpler case described by a simple random

walk algorithm. Moreover, since the components of θ are independent for given values

of L it is reasonable to adopt proposals that take into account only the current status of

θj .
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The simplification of the acceptance probability achieved due to the local indepen-

dence directly affects the Metropolis kernel given in (4.3). Following similar arguments

as in Chib and Jeliazkov (2001), we can exploit the the local reversibility condition at

any point θ∗
j :

K(θj, θ
∗
j |Y,L, θ\j) f(θj|Y,L, θ\j) = K(θ∗

j , θj |Y,L, θ\j) f(θ∗
j |Y,L, θ\j),

taking under consideration the posterior local independence given in equation (4.7)

K(θj , θ
∗
j |Y,L) f(θj |Y,L) = K(θ∗

j , θj |Y,L) f(θ∗
j |Y,L).

By integrating both sides of the equation over θj, we obtain
∫
K(θj , θ

∗
j |Y,L) f(θj |Y,L) dθj =

∫
K(θ∗

j , θj|Y,L) f(θ∗
j |Y,L) dθj ,

resulting in

CJI
j = f(θ∗

j |Y,L) =

∫
K(θj , θ

∗
j |Y,L) f(θj |Y,L) dθj∫

K(θ∗
j , θj|Y,L) dθj

, (4.9)

if we solve with respect to f(θ∗
j |Y,L).

The expression for the posterior f(θ|Y) is then given by multiplying CJI
j over all p

blocks and integrate out the latent variables directly from the kernel. Therefore, we have

that

f(θ∗|Y) =

∫ p∏

j=1

f(θ∗
j |Yj ,L)f(L|Y) dL

=

∫ p∏

j=1

[∫
K(θj , θ

∗
j |Y,L) f(θj |Y,L) dθj∫

K(θ∗
j , θj|Y,L) dθj

]
f(L|Y) dL

=

∫



p∏
j=1

K(θj, θ
∗
j |Y,L)

p∏
j=1

∫
K(θ∗

j , θj|Y,L) dθj


 f(θ,L|Y) d(θ,L)

= Eθ,L|Y




p∏
j=1

a
(
θj , θ

∗
j |Y,L

)
q
(
θj , θ

∗
j |Y,L

)

p∏
j=1

Eqj

[
a
(
θ∗
j , θj |Y,L

) ]


 , (4.10)

where Eθ,L|Y is the posterior mean and Eqj are the expectations with respect to each of

the proposal densities q(θ∗
j , θj |Y,L). Hence, equation (4.10) can be estimated from:

ĈJI =
1

R

R∑

r=1




p∏
j=1

a
(
θ
(r)
j , θ∗

j |Y,L(r)
)
q
(
θ
(r)
j , θ∗

j |Y,L(r)
)

p∏
j=1

[
1
M

M∑
m=1

a
(
θ∗
j , θ

(m)
j |Y,L(r)

)]


 . (4.11)
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The sample
{
θ
(r)
1 , θ

(r)
2 , · · · , θ(r)

p ,L(r)
}R
r=1

comes from the joint posterior of (θ,L) which

is available from a full MCMC run. For each sampled set of latent and parameter values(
θ(r),L(r)

)
, r = 1, ..., R, additional points {θ(m)

j }Mm=1 are generated from each proposal

density q(θ∗
j , θj|Y,L, θ). These values are used to compute the expectation in the de-

nominator of (4.10). From (4.11), it is straightforward to see that a single MCMC run

from the posterior of the model under study is required to compute the independence

estimator ĈJ I.

To sum up, ĈJ I is based on the local independence assumption. The prior local

independence (4.6), on its turn, is a reasonable assumption for such models. The above

properties lead to the posterior local independence which actually ensures the one run

procedure. Most importantly, the ĈJ I is based solely on the generation of a posterior

sample using a multi-block Metropolis-within-Gibbs algorithm and is applicable when

none of the posterior ordinates are analytically available, since the marginalization is

directly implemented in the corresponding kernel.

4.4.1.2 An alternative one-block CJ estimator

An alternative way to obtain a single-run CJ estimator is to consider all parameters θ

as one block jointly proposed by q(θ, θ′|Y,L). For models with structure described by

(4.1), under local and prior local independence assumptions, the acceptance probability

under the one-block design is given by

a(θ, θ′|Y,L) = min





1,

p∏
j=1

[
f(Yj | θ′

j ,L) π(θ′
j |L)

]
q(θ′, θ|Y,L)

p∏
j=1

[
f(Yj | θj ,L) π(θj |L)

]
q(θ, θ′|Y,L)




. (4.12)

Even though the properties of the local and prior local independence were also used

here, the expression in (4.12) cannot be simplified further, since it requires the entire pa-

rameter vector θ, unlike the acceptance probabilities in (4.8). This is the major difference

between the two sampling schemes and is directly reflected to the corresponding posterior

ordinate expressions, under the CJ method. As opposed to (4.10), the expression of the

posterior ordinate under the one-block design is given by

f(θ∗|Y) = Eθ,L|Y



a (θ, θ∗|Y,L) q(θ∗, θ|Y,L)

Eq

[
a (θ∗, θ|Y,L)

]


 , (4.13)

with draws coming from the posterior f(θ,L|Y) for the nominator and from the proposal

density q(θ∗, θ|Y,L) for the denominator. The difference between the expressions in
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(4.13) and (4.10) becomes more evident if we assume q(θ′, θ|Y,L) =
∏p

j=1 q(θ
′
j, θj |Y,L)

that is reasonable due to the local and prior local independence. By defining the quantity

Aj as

Aj =
f(Yj| θ∗

j ,L) π(θ∗
j |L) q(θ∗

j , θj|Y,L)

f(Yj | θj ,L) π(θj|L) q(θj, θ
∗
j |Y,L)

,

the acceptance probabilities involved in the posterior ordinate expressions (4.13) and

(4.10) are given by min
{

1,
p∏

j=1

Aj

}
in the case of the one-block design, and by

p∏
j=1

min {1, Aj}
under a multi-block design, respectively.

Using one-block MCMC for θ may be beneficial in terms of mixing only when pa-

rameters are a-posteriori depended (Gilks et al., 1996, see Section 1.4.2) which is not the

case for the models here where local and prior local independence is assumed. Therefore,

the single-run multi-block estimator (4.11) is expected to be more efficient and accurate

than the alternative one-block, for the same number of iterations.

4.4.2 Models without local independence

When local independence cannot be assumed, one of the posterior ordinates in (4.2) can

be exploited in order to marginalize out the latent vector L. Chib and Jeliazkov Chib and

Jeliazkov (2001) suggest to add a Rao-Blackwellization step at the end of the procedure

for this purpose, provided that f(θ∗
p|Y,L, ψ∗

p−1) is analytically available. Here, we further

describe that if there is not such a conditional ordinate analytically available, then we

estimate it by integrating out L from (4.4) and them implement the same strategy as in

the CJ method. That is achieved directly from the local reversibility condition of the

corresponding sub-kernel:

f(θ∗
p|Y,L, ψ∗

p−1) =

∫
K(θp , θ

∗
p|Y,L, ψ∗

p−1)f(θp|Y,L, ψ∗
p−1) dθp∫

K(θ∗
p , θp|Y,L, ψ∗

p−1) dθp

.

The latent vector is then integrated out directly from the kernel

f(θ∗
p|Y, ψ∗

p−1) =

∫ [∫
K(θp , θ

∗
p|Y,L, ψ∗

p−1)f(θp|Y,L, ψ∗
p−1) dθp∫

K(θ∗
p , θp|Y,L, ψ∗

p−1) dθp

]
f(L|Y, ψ∗

j−1) dL

=

∫
K(θp , θ

∗
p|Y,L, ψ∗

p−1)∫
K(θ∗

p , θp|Y,L, ψ∗
p−1) dθp

f(θp ,L|Y, ψ∗
p−1) d(θp ,L) . (4.14)

The corresponding estimator of (4.14) is identical with (4.11), for p = 1 and condition-

ing upon {Y,L, ψ∗
p−1}. Naturally, the first p−1 ordinates in (4.2) are estimated via (4.4),

while the last ordinate is used to marginalize out the latent variables. The MH output

required for the marginalization is already available from the reduced run implemented
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to assess the denominator of the previous ordinate. Finally, a single-run estimator can

be obtained, in a straightforward manner, by sampling all parameters in θ one block as

described in Section 4.4.1.2.

4.5 Applications on GLLTM

In this section we illustrate the estimators discussed in Section 4.4 in simulated and

real datasets. Emphasis is given in the estimation of the marginal likelihood and in the

computation of the Bayes factor as means of comparing models with different number of

factors. All examples are for binary observed variables but the methodology, as already

discussed, can be applied in all GLLVMs.

4.5.1 CJ I estimator for GLLTMs

The estimate of the log-BML based on the CJI is given by

L̂CJI = log f(Y|ϑ∗) + log f(ϑ∗) − log ĈJI . (4.15)

For the GLLTMs discussed here, the observed likelihood f(Y|ϑ) was obtained by (3.4),

that is, by marginalizing out the latent variables first, in accordance with the findings

presented in Chapter 3. The model specification and prior identification, was conducted

as presented in Chapter 2.

The Laplace-Metropolis estimator (2.15) proposed by Lewis and Raftery (1997) was

used as benchmark method. The Laplace-Metropolis method was implemented on the

posterior f(ϑ|Y), therefore, the vector of the latent variables Z was also marginalized

out. The normal approximation used in the Laplace method was applied to the original

parameters for all αj and βjℓ, with j < ℓ, and on the log βjj for j = 1, . . . , k for the

diagonal loadings. For the latter, we have used the logarithms instead of the original

parameters in order to avoid asymmetries caused by their positivity constraint and, by

this way, to achieve a well behaved approximation of the marginal likelihood.

4.5.2 Tuning M and R

A dataset generated from a one-factor model with 4 binary items and 400 individuals

(p = 4, N = 400 and k = 1 respectively, corresponding to 408 unknown parameters)

was initially used. This rather restricted example was preferred in order to examine the

convergence of the estimator as a function of the number of M and R values generated

from the proposal and the posterior densities, respectively. Specifically, 300,000 posterior

observations were generated after discarding additional 10,000 iterations as a burn in

period from a Metropolis-Hastings, within a Gibbs, algorithm. A thinning interval of

68



10 iterations was additionally considered in order to diminish autocorrelations, leaving

a total of 30,000 values available for posterior analysis. All simulations were conducted

using R version 2.12 on a quad core i5 Central Processor Unit (CPU), at 3.2GHz and

with 4GB of RAM.

Before dividing the simulated sample into batches, the convergence of the estimator

was graphically examined by changing

a) M , that is, the number of points generated from the proposal density q(ϑ,ϑ∗|Y,Z)

used for the estimation of the denominator in (4.11),

b) R, that is, the number of points generated from the posterior f(ϑ,Z|Y) that are

required for the computation of L̂CJI within each batch.

For (a), M ranged from 100 to 2000, and R was kept fixed at 1000 iterations. Figure 1(a)

illustrates that all versions of L̂CJI were stabilized up to a decimal point, even for M ≥ 40.

Time increased linearly, with M varying from 0.5 to 4.7 mins, which is approximately

one minute increment per 25 generated values.

Regarding (b), the ergodic estimator was computed with R taking values from 100 to

2000 and M = 50, which seem more than sufficient according to Figure 1(a). The ergodic

estimators of all versions of L̂CJI for each selected R are depicted in Figure 1(b). The

estimates were close and stable for R ≥ 500. The CPU time was also increased linearly

from 0.5 to 9 mins at the cost of half a minute per 100 additional iterations.

Based on Figure 1, thirty batches of size R = 1000 and M = 50 where used, to

ensure convergence of the estimates. The log-BML was estimated via (4.15) at each

batch. The mean over all batches, denoted by LCJI , is referred to as the batch mean

estimator, while the the standard deviation of the log-BML estimator over the different

batches is considered as its MCE estimate. The same procedure was repeated using three

alternative measures of central location of the posterior distribution (the componentwise

posterior mean, median and mode) as ϑ∗.

Figure 2 presents the Bayesian marginal likelihood estimates based on CJ (L̂CJI ) and

LM (L̂LM) using the posterior mean, median and mode as points of central location.

When using the posterior mean, L̂LM was found equal to -977.76, while L̂CJI was equal

to -977.73, with estimated MCE =0.026. The estimators were quite robust, regardless of

the choice of the posterior point of central location. Specifically, the L̂LM was -977.65 at

the median and -977.71 at the mode. Similarly, the L̂CJI was -977.77 at the median and

-977.75 at the mode, with equivalent MCEs (0.020 and 0.022 respectively).

In the next section we proceed with more realistic illustrations, using both simulated

and real data sets. In all examples that follow, the same tuning procedure was followed

but it is not reported for brevity.
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(a) Sensitivity of L̂CJI on different M with R = 1000.
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(b) Sensitivity of L̂CJI on different R with M = 50.

Figure 4.1: Ergodic L̂CJI using three posterior measures of central location (mean, median and mode)

for different M (number of values generated from the proposal) and for different R (number of MCMC

iterations); p=4 items, N = 400 individuals and k=1 latent factor.
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Figure 4.2: The Bayesian marginal likelihood (log scale) estimated via CJI (dotted line) over 30

batches of size R=1000 compared with the corresponding Laplace-Metropolis estimate (solid line) using

MCMC output of 30,000 iterations and the posterior median, mean or mode as measures of central

location; p=4 items, N = 400 individuals and k = 1 factor.

4.5.3 Computation of Bayes Factor: simulated examples

Here we demonstrate the performance of the CJ estimator using the output from a single

run of a multi-block Metropolis-within-Gibbs algorithm, in three simulated datasets of

larger size, allowing, in addition, for the models to be fitted with multiple factors of

higher dimension. We consider the datasets with the following settings:

a) N = 600 observations with p = 6 items generated from a k = 1 factor model

b) N = 600 observations with p = 6 items generated from a k = 2 factor model

c) N = 800 observations with p = 7 items generated from a k = 3 factor model

All model parameters were selected randomly from a uniform distribution, U(−2, 2). The

number of unknown parameters for the posterior ordinate in (4.11) is equal to k(p+N)+

p, corresponding to 606, 1218 and 2428 parameters, respectively, for each of the three

situations described above. Models that either overestimate or underestimate k were

also considered, this time evaluating the Bayes factor in favour of the true generating

model. Using the same procedure as in Section 4.5.2, we have concluded that it is

sufficient to select 30 batches of 1000, 2000 and 3000 iterations for the one, two and

three-factor models, respectively. All estimators were evaluated at the componentwise

posterior median (that is, ϑ∗=posterior median).

The LM estimate of the marginal likelihood is reported as a gold standard using an

MCMC output of 30,000 iterations, while the L̂CJI refers to the estimate of the first

batch (of 1,000 iterations). The results in Table 4.1 suggest that estimates based on
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the independence CJ method, proposed in Section 4.4.1.1, are similar to the ones of the

benchmark method, even from the first batch. Moreover, the Monte Carlo error of L̂CJI

is fairly small but naturally gets higher as the number of unknown parameters in the

posterior ordinate increase for a fixed number of iterations. Nevertheless, this Monte

Carlo error can be efficiently reduced by increasing the number of MCMC iterations.

In addition, the one-block (OB) MH approach described in Section 4.4.1.2 was imple-

mented for the second data set (b). The batch mean and the corresponding error were

computed over 30 batches, as in the case of the multi-block design. In the case where

one factor was assumed, the batch mean was -2200.68, with MCE = 1.98. In the case

where two factors were assumed, the batch mean was -2066.23, with MCE = 3.11. In

both cases the estimated log-marginal is far away from the corresponding ones reported

in Table 4.1 using the LM and the independence CJ estimator. Moreover, under the

one-block design, the estimated MCE was 60 and 47 times as high as the corresponding

values under the more efficient multi-block design, presented in Table 4.1. It is therefore

verified that between the two single-run approaches, the independence CJ estimator is

more efficient and accurate than the one-block CJ estimator.

Table 4.1: Simulated results: BML (log-scale) estimates

Dataset p N ktrue kmodel L̂LM L̂CJI LCJI MCE(L̂CJI )

(a) 6 600 1 1 -2175.3 -2175.2 -2175.1 0.016

2 -2178.2 -2178.2 -2178.2 0.253

(b) 6 600 2 1 -2187.2 -2187.6 -2187.5 0.033

2 -2070.8 -2071.3 -2071.2 0.066

(c) 7 800 3 1 -3422.4 -3422.3 -3422.5 0.029

2 -3374.4 -3374.1 -3375.2 0.133

3 -3341.3 -3339.1 -3339.3 0.332

p: number of items; N : number of individuals; ktrue and kmodel: number of factors in

the true and evaluated model, respectively; L̂LM and L̂CJI : Laplace-Metropolis and Chib

and Jeliazkov estimates of the marginal likelihood; LCJI : Batch mean estimator of the log-

marginal likelihood; MCE(L̂CJI ): Monte Carlo error of the L̂CJI obtained as the standard

deviation of 30 batches of equal size.

With regards to the BF, the estimates (in log scale) reported in Table 4.2 are based on

the marginal likelihood estimates presented in Table 4.1. In all three simulated datasets,

the estimated Bayes factors (B̂F ) indicated the true model. Moreover, when the indepen-

72



Table 4.2: Simulated results: Bayes Factor estimates

Dataset details Comparison log B̂F Batch summaries of log B̂F

# p N ktrue k1 vs. k2 LM CJI Mean S.D. 1stQ 3rdQ

(a) 6 600 1 1 − 2 3.1 3.0 3.1 0.25 2.5 3.3

(b) 6 600 2 2 − 1 116.3 116.3 116.3 0.08 116.0 116.5

(c) 7 800 3 3 − 1 81.1 83.3 83.2 0.33 81.5 84.5

3 − 2 33.3 35.0 35.9 0.35 34.3 37.7

p: number of items; N : number of individuals; ktrue: number of factors in the true model; k1 vs. k2:

the Bayes factor comparing the k1 versus the k2-factor model is estimated; B̂F : Estimated Bayes factors

based on Laplace-Metropolis (LM) and Chib and Jeliazkov (CJ) estimates of the marginal likelihood;

Batch summaries of B̂F : Summaries based on 30 batches of B̂F (mean=Batch mean estimate, S.D.=

standard deviation - provides an estimate for the Monte Carlo Error, 1stQ and 3rdQ: first and third

quartiles).

dence CJ was used, the true model was suggested by the BF estimator at every batch.

Bayes factors for the second and the third dataset clearly indicate the true model, with

values ranging from e33 to e116. Only in the first dataset is the Bayes factor much lower

and equal to e3 ≈ 20. In the latter case, or in more extreme cases where two competing

models have Bayes factors close to one, the Monte Carlo error should be small enough in

order to be able to identify which model is a-posteriori supported. Here we estimated an

error equal to 0.25, with 95% of the estimates ranging between e2.5 = 12.2 and e3.3 = 27.1.

Hence, the independence CJ method infers safely in favor of the true generating mecha-

nism, providing BF estimates similar to the ones obtained from the gold standard LM ,

in all cases.

4.5.4 Illustration on real data

We proceed with two real-data examples also analyzed in Bartholomew et al. (2008, chap-

ter 8). In all examples the marginal likelihood was estimated via CJI and LM methods at

the median point, over samples of 10 thousand iterations (after discarding 1000 iterations

as a burn in period and keeping 1 every 10 iterations to reduce autocorrelations).

The first data set is originally provided by Bock and Lieberman (1970) and is part of

the Law School Admission Test (LSAT) completed by N = 1005 individuals. The test

consists of five items and was designed to measure one latent factor which is also supported
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Table 4.3: Marginal Likelihood and Bayes Factor for the real data: LSAT and WIRS

L̂LM L̂CJI

Dataset 1-factor 2-factor log B̂F 21 1-factor 2-factor log B̂F 21

1. LSAT -2494.8 -2496.2 -1.4 -2495.1 -2496.6 -1.5

2. WIRS-6 items -3456.1 -3387.1 69.0 3456.2 -3387.3 68.9

3. WIRS-5 items -2786.6 -2782.8 3.8 -2786.8 -2783.1 3.7

L̂LM and L̂CJI : Laplace-Metropolis and Chib and Jeliazkov estimates of the marginal likelihood;

1-factor and 2-factor columns: estimates of the log-marginal likelihood for the 1-factor and 2-factor

models, respectively; B̂F 21 : Estimated Bayes factors of 2-factor versus 1-factor model.

by the computed Bayes factor (≈ 0.22 and 0.24 for the LM and CJI based estimators,

respectively; posterior weight of one-factor model 0.802 and 0.817 respectively) reported

in the first row of Table 4.3. In particular, the BF of the one-factor versus the two-factor

model was less than 0.5 and therefore according to Kass and Raftery (1995) the evidence

against the unidimensional model “do not worth more than a bare mention”.

The second data set is part of the 1990 Workplace Industrial Relations Survey (WIRS,

Airey et al. (1992)). The Bayes factor of the two versus the one-factor model clearly

supports the latter (logBF21 ≈ 69); see second line of Table 4.3. As further analysis,

Bartholomew et al. (2008) suggested to omit the most poorly fitted item (here item 1) of

the scale in order to improve the fit of the one-factor model. The analysis was replicated

for the remaining 5 items to suggest again the two-factor model as the preferred model

(BF21 = 40, that corresponds to “decisive evidence” against the one-factor model, Kass

and Raftery (1995)). To summarize, simulations and real-data analysis suggest that the

independence CJ estimator succeeds to detect the true model, provides similar estimates

to the benchmark method (LM) and has an acceptable MCMC error.

4.6 Discussion

This chapter focused on the CJ (Chib and Jeliazkov, 2001) marginal likelihood estimator

for latent variable models. In the popular case where the likelihood expression embodies

local independence, conditional on the latent vector, it was illustrated that the CJ es-

timator can be computed in a single run of a Metropolis-within-Gibbs algorithm. This

approach drastically reduces the computational effort required for the marginal likeli-

hood estimate. Under conditional independence, the dimensionality of the model is no

longer an aspect of the CJ (Chib and Jeliazkov, 2001) estimator. Hence, this strategy
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can be implemented to reduce the computational time even in models with no latent

variables. That is in models where the likelihood can be augmented using auxiliary vari-

ables (Tanner and Wong, 1987; van Dyk and Meng, 2001) to introduce likelihood local

independence.

Two more additional points are discussed: (a) the differences of the proposed sim-

plified CJ estimator from the (trivial) single-run CJ estimator obtained from one-block

Metropolis-Hastings samplers and (b) how we can use the Metropolis kernel to integrate

out the latent variables when no posterior ordinate is analytically available.

The points outlined in this article simplify the implementation of the CJ method on

specific cases making a method, which is accurate and already established in bibliography,

easier to use and more efficient in practice.
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Chapter 5

Thermodynamic assessment of

probability distribution divergencies

and Bayesian model comparison

"You should call it entropy, for two reasons. In the first place your

uncertainty function has been used in statistical mechanics under that

name, so it already has a name. In the second place, and more important,

nobody knows what entropy really is, so in a debate you will always have

the advantage"

discussion between Von Neumann and Shannon ∗

∗Claude Shannon introduced the very general concept of information entropy, used in information the-

ory, in 1948. Initially it seems that Shannon was not particularly aware of the close similarity between his

new quantity and the earlier work in thermodynamics; but the mathematician John von Neumann cer-

tainly was. The quotation first appears in: M. Tribus, E.C. McIrvine, Energy and information, Scientific

American, 224, 1971. Reprint from http : //en.wikipedia.org/wiki/Talk%3AHistory of entropy.

77



5.1 Introduction

The idea of using tempered transitions has gained increased attention in Bayesian statis-

tics as a method to improve the efficiency of the MCMC algorithms in terms of exploring

the target posterior distribution. Sophisticated methods such as the Metropolis-coupled

MCMC (Geyer, 1991), the simulated tempering (Marinari and Parisi, 1992; Geyer and

Thompson, 1995) and the annealed sampling (Neal, 1996, 2001) incorporate transitions to

overcome the slow mixing of the MCMC algorithms in multi-modal densities; see Behrens

et al. (2012) for an insightful review.

Here, we focus on the ideas of path sampling (Gelman and Meng, 1994, 1998) where

tempered transitions are employed in order to estimate the ratio of two intractable nor-

malizing constants. In particular, let q0(θ) and q1(θ) be two unnormalized densities and

z0, z1 be their normalizing constants leading to

pt(θ) =
qt(θ)

zt
, where zt =

∫

θ

qt(θ) dθ, for t = 0, 1. (5.1)

Gelman and Meng’s (1998) method is based on the construction of a continuous and

differentiable path qt(θ) = h(q1, q0, t) which is used to estimate the ratio of normalizing

constants λ = z1/z0 via the thermodynamic integration (TI) identity

log λ =

∫ 1

0

∫

θ

d log qt(θ)

dt
pt(θ) dθ dt =

∫ 1

0

Ept

{
U(θ)

}
dt, (5.2)

where U(θ) = d log qt(θ)
dt

and Ept

{
U(θ)

}
stands for the expectation over the sampling

distribution pt(θ). The scalar t ∈ [0, 1] is often referred to as the temperature parameter,

since the TI has its origins in thermodynamics and specifically in the calculation of the

difference in free energy of a system; for details see in Neal (1993, Section 6.2). It

occurs that the ideas of the thermodynamics have important applications on a variety

of scientific fields, such as statistics, physics, chemistry, biology and computer science

(machine learning, pattern recognition) among others. As Gelman and Meng (1998)

denote, methods related to the TI have been developed by researchers from different

disciplines working independently and in parallel; see, for instance, in Frenkel (1986),

Binder (1986) and Ogata (1989).

A straightforward application of the path sampling refers to Bayesian model compar-

ison. In particular, expressions for the Bayes factor (BF, Kass and Raftery, 1995) and

the Bayesian marginal likelihood that employ tempered transitions have been developed

by Lartillot and Philippe (2006), Friel and Pettitt (2008), Xie et al. (2011) and Fan et al.

(2011). Additionally, Friel and Pettitt (2008), Calderhead and Girolami (2009), Lefebvre

et al. (2010) and Behrens et al. (2012), under different motivations and scopes, outline

the close relationship between the thermodynamic integration and the relative entropy,
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best known in statistics as the Kullback-Leibler divergence (KL; Kullback and Leibler,

1951).

All these studies, are based on specific geometric paths (Neal, 1993) of the form

qt(θ) = q1(θ)tq0(θ)1−t, (5.3)

for specific choices of q0(θ) and q1(θ). For example, Friel and Pettitt (2008) have used

qt(θ) = f(y|θ)tf(θ) and therefore setting the unnormalized posterior as q1 and the prior

as q0. Here, we focus on the general case of geometric paths (5.3) for any choice of q1 and

q0. For any geometric path, (5.2) is written as

log λ =

∫ 1

0

∫

θ

log
q1(θ)

q0(θ)
pt(θ) dθ dt. (5.4)

since U(θ) = log q1(θ) − log q0(θ) .

The identity (5.4) is implemented in order to study the connection between path

sampling and entropy measures. In particular, in this thesis it is examined what happens

for specific values of t ∈ (0, 1) as well as the mechanism which eventually produces the

relative entropy at the initial (t = 1) and at the final (t = 0) state, as originally discussed

by Friel and Pettitt (2008) and Lefebvre et al. (2010). It is demonstrated that (5.4)

can be used to compute the Chernoff information (Chernoff, 1952) as a byproduct of

the path sampling procedure, which is, otherwise, a rigorous and troublesome procedure

especially in multidimensional problems. Other entropy measures can be subsequently

derived, such as the Bhattacharyya distance (Bhattacharyya, 1943) and Rényi’s relative

entropy (Rényi, 1961).

Based on the findings with regard to the uncertainty at the intermediated points, here

the structure of the thermodynamic integration is further examined and geometrically

represented . This assists us to understand the path sampling estimators in terms of error.

In particular, can identify when high path-related uncertainty or large discretisation error

appears and reduce it by either adopting a more efficient (in terms of error) path or

tempering schedule.

Finally, attention is restricted in this chapter on the most popular implementation of

TI estimation: Bayesian model evaluation. An alternative approach is considered, based

on the stepping-stone identity introduced by Xie et al. (2011) and Fan et al. (2011).

Existing Bayesian marginal likelihood estimators are overviewed, based on the two alter-

native approaches (thermodynamic and stepping-stone) by presenting recently developed

TI based Bayesian marginal likelihood estimators (Friel and Pettitt, 2008; Lartillot and

Philippe, 2006; Lefebvre et al., 2010) and their corresponding stepping-stone ones (Fan

et al., 2011; Xie et al., 2011), based on same paths. Any blanks in the list of previously

reported estimators based on the two different approaches are filled in by introducing new
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estimators using a identity-path selection rationality. The implementation of the two al-

ternative approaches in the direct Bayes factor estimation is also discussed and compound

paths are introduced, which can be used to efficiently switch between competing models

of different dimension located at the endpoints of the path. The chapter closes with an

illustration of our methods and estimators in a common regression example (previously

used by Friel and Pettitt, 2008 and Lefebvre et al., 2010 for Bayesian marginal likelihood

estimation) and in a latent-trait model implementation using a simulated dataset.

5.2 Entropy measures and path sampling

In Statistics, entropy is used as a measure of uncertainty which, unlike the variance, does

not depend on the actual values of a random variable θ, but only on their associated

probabilities. Here, we use the term entropy measures in a broad definition to refer to

measures of divergence between probability distributions that belong to the family of

f -divergencies (Ali and Silvey, 1966; Csiszár, 1963). Such measures are widely used in

statistics (Liese and Vajda, 2006), information theory (Cover and Thomas, 1991) and

thermodynamics (Crooks and Sivak, 2011).

The most commonly used f−divergence is the Kullback - Leibler (Kullback and

Leibler, 1951)

KL(p1 ‖ p0) =

∫

θ

p1(θ) log
p1(θ)

p0(θ)
dθ (5.5)

=

∫

θ

p1(θ) log p1(θ) dθ −
∫

θ

p1(θ) log p0(θ) dθ

= −H(p1) + cH(p1 ‖ p0),

with cH(p1 ‖ p0) being the cross entropy and H(p1) the differential entropy ; see for

details in Cover and Thomas (1991). The KL-divergence is always non-negative but it

is not a distance or a metric with the strict mathematical definition, since neither the

symmetry nor the triangle inequality conditions are satisfied. In information theory, it is

mostly referred to as the relative entropy and is a measure of the information lost when

p0(θ) is used as an approximation of p1(θ). Subsequently, a symmetric version of KL

can naturally be defined as

J(p1, p0) = KL(p1 ‖ p0) +KL(p0 ‖ p1),

which dates back to Jeffreys’ investigations of invariant priors (Jeffreys, 1946) and is often

called as the symmetrized KL-divergence or J-divergence; see also in Lefebvre et al. (2010)

for details.

The relationship between the KL-divergence and the thermodynamic integral was

described by Friel and Pettitt (2008) and further studied by Lefebvre et al. (2010). In
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particular, the KL-divergencies between p1(θ) and p0(θ) can be derived by the endpoints

of the expectation of Ept

{
U(θ)} appearing thermodynamic equation (5.4) since

KL(p1 ‖ p0) = Ep1

{
U(θ)

}
− log λ and KL(p0 ‖ p1) = −Ep0

{
U(θ)

}
+ log λ .

The findings presented by Friel et al. (2012) and Lefebvre et al. (2010) refer therefore to

the endpoints of a geometric path.

The question which naturally arises here is which is the role of entropy at the inter-

mediate points for t ∈ (0, 1). In the following, we address this issue and we illustrate

how other f−divergencies are related to the thermodynamic integral (5.4) and how can

be estimated as path sampling byproducts.

5.2.1 The normalised thermodynamic integral and f−divergencies

In this section, we draw attention to the normalized thermodynamic integral (NTI) given

by

NTI =

∫ 1

0

∫

θ

pt(θ) log
p1(θ)

p0(θ)
dθ dt. (5.6)

The NTI is zero for any choices of p0, p1 and any geometric path pt and it can be expressed

via the thermodynamic integral using the identity

NTI =

∫ 1

0

∫

θ

pt(θ) log
q1(θ)

q0(θ)
dθ dt− log λ .

This identity will be used to link the thermodynamic integrals with f−divergencies at

any t ∈ (0, 1), generalizing the findings of Friel et al. (2012) and Lefebvre et al. (2010)

which associate the endpoints of the TI with KL divergencies. To do so, we need to

rewrite (5.6) as NTI =
∫ 1

0
KLt dt, where KLt is the functional KL-divergence of order t

defined as

KLt =

∫

θ

pt(θ) log
p1(θ)

p0(θ)
dθ = Ept

{
U(θ)

}
− log λ . (5.7)

Then, we can express KLt as the difference between the KL divergencies of pt with the

two endpoint densities p1 and p0 since

KLt = −cH(pt ‖ p1) + cH(pt ‖ p0) = KL(pt ‖ p1) −KL(pt ‖ p0).

This reduces to KL0 = −KL(p0 ‖ p1) and to KL1 = KL(p1 ‖ p0) at the endpoints of

the geometric path, which is in accordance with the findings of Friel et al. (2012) and

Lefebvre et al. (2010).

The divergence KLt can be interpreted as a measure of relative location of a density

pt relative to p1 and p0. Hence, for any t ∈ [0, 1], KLt indicates whether pt is closer to
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p0 (negative values) or to p1 (positive values). The solution of the equation KLt∗ = 0

defines the point t∗ where pt∗ is equidistant (in the KL sense) from the endpoint densities.

Moreover, from (5.7) it is obvious that Ept∗

{
U(θ)

}
is equal to log λ. Therefore, in the

case that t∗ is known, the ratio of the normalizing constants λ can be estimated in a single

MCMC run (with t = t∗), rather than employing the entire path using multiple simula-

tions. However this is rarely the case and, using the inverse logic, t∗ can be estimated by

path sampling. Having t∗ estimated, then the Chernoff information can be computed in

straightforward manner (Parzen, 1992, Johnson and Sinanovic, 2000, Nielsen, 2011).

Following Parzen (1992), the Chernoff t-divergence (Chernoff, 1952) is given by

Ct(p1 ‖ p0) = − log

∫

θ

p1(θ)tp0(θ)1−tdθ = − log µ(t), (5.8)

where µ(t) is the Chernoff coefficient (Chernoff, 1952); also see Kakizawa et al. (1998)

and Rauber et al. (2008). The key observation here is that when adopting geometric

paths, the sampling distribution pt(θ) embodies the Chernoff coefficient since

pt(θ) =

{
z1p1(θ)

}t{
z0p0(θ)

}1−t

∫
θ
q1(θ)tq0(θ)1−tdθ

=
p1(θ)tp0(θ)1−t

µ(t)
, (5.9)

for any t ∈ [0, 1], which is the Boltzmann-Gibbs distribution pertaining to the Hamilto-

nian (energy function) Ht(θ) = −t log p1(θ)− (1− t) log p0(θ); see, for details, in Merhav

(2010, chapter 3). In view of (5.9) the NTI becomes

∫ 1

0

∫

θ

p1(θ)tp0(θ)1−t

µ(t)
log

p1(θ)

p0(θ)
dθ dt =

∫ 1

0

d logµ(t)

dt
dt =

[
log µ(t)

]1

0

= 0, (5.10)

since
d logµ(t)

dt
=

1

µ(t)

∫
d{ p1(θ)tp0(θ)1−t}

dt
dt.

From (5.10) it is straightforward to see that the NTI up to any point t ∈ (0, 1) is directly

related to the Chernoff t-divergence, as described in detail in the following lemma.

Lemma 5.2.1 The normalised thermodynamic integral (5.6) up to any point t ∈ (0, 1)

given by

NTI(t) =

∫ t

0

∫

θ

pt(θ) log
p1(θ)

p0(θ)
dθ (5.11)

is equal to minus the Chernoff t-divergence of the endpoint densities, that is

NTI(t) = logµ(t) = −Ct(p1 ‖ p0). (5.12)

The proof of Lemma 5.2.1 is obtained in straightforward manner as (5.10). �

Another interesting result can be obtained for t = t∗, the solution of the equation

KLt = 0, and it is described in Lemma 5.2.2 which follows.
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Lemma 5.2.2 The Chernoff information, defined as

C(p1 ‖ p0) = max
t∈[0,1]

Ct(p1 ‖ p0)

is equal to NTI(t∗) with t∗ being the solution of equation KLt = 0, i.e.

C(p1 ‖ p0) = NTI(t∗) with t∗ ∈ [0, 1] : KLt∗ = 0.

Proof : Consider the continuous and differentiable function g(t) = NTI(t) = log µ(t).

Then g′(t) = d logµ(t)/dt = KLt and g′′(t) = Vpt

{
log p1(θ)

p0(θ)

}
> 0; where Vpt

{
log p1(θ)

p0(θ)

}

is the variance of log p1(θ)
p0(θ)

with respect to pt(θ). Since g′(t∗) = KLt∗ = 0 and g′′(t∗) > 0,

then g(t∗) = mint∈[0,1] log µ(t). Hence, from (5.12) we have that

C(p1 ‖ p0) = max
t∈[0,1]

Ct(p1 ‖ p0) = min
t∈[0,1]

NTI(t) = NTI(t∗).

�

The Chernoff information is often used to identify an upped bound of the probability

of error of the Bayes rule in classification problems with two possible decisions including

hypothesis testing; see Nussbaum,M and Szko la, A. (2009) and Cover and Thomas (1991)

for details. It has been also used in a variety of scientific fields, primarily as a measure

of similarity between two distributions, as for example in cryptography (Baignères et al.,

2010). The estimation of the Chernoff information is straightforward and it has been

treated sporadically in problem-specific cases; see for example in Nielsen (2011) for com-

putation in exponential families, or in Julier (2006) for Gaussian mixture models. The

result of Lemma 5.2.2 can be used to construct a general algorithm for the estimation

of the Chernoff information for any choice of p1 and p0 which is described in detail in

Section 5.2.2.1.

Before proceeding any further, we may first outline the balance property of the NTI,

which is based on the anti-symmetry property Ct(p1 ‖ p0) = C1−t(p0 ‖ p1), considered in

Crooks and Sivak (2011).

The balance property: For any intermediate point t ∈ (0, 1) it holds that

NTI(t) = −NTI(t) with NTI(t) =

∫ 1

t

∫

θ

pt(θ) log
p1(θ)

p0(θ)
dθ (5.13)

and therefore the maximum absolute value occurs at t∗ and it is equal to NTI(t∗).

Based on Lemmas 5.2.1 and 5.2.2 and the balance property, it occurs that the Chernoff

t−divergences (either from p1 to p0 or in the opposite direction) can be directly computed

from the NTI. Subsequently, a number of other divergencies related to Chernoff can be
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obtained from NTI. The Bhattacharyya distance (Bhattacharyya, 1943) occurs at t = 0.5,

that is

Bh(p1, p0) = C0.5(p1 ‖ p0) = − log

∫

θ

√
p1(θ)p0(θ)dθ = − log ρB.

The Bhattacharyya coefficient ρB can be implemented in turn to derive the Bhattacharyya-

Hellinger distance (Bhattacharyya, 1943; Hellinger, 1909) since He(p1, p0) =
√

1 − ρB.

Based on the Chernoff t-divergence we may also derive the Rényi t-divergence

Rt(p1 ‖ p0 =
1

t− 1
log

∫

θ

p1(θ)tp0(θ)1−tdθ = Ct(p1 ‖ p0)/(1 − t)

(Rényi, 1961) and the Tsallis t-relative entropy

Tt(p1 ‖ p0 =
1

t− 1

{∫

θ

p1(θ)tp0(θ)1−tdθ − 1

}
=
[

exp
{
− Ct(p1 ‖ p0)

}
− 1
]
/(1 − t).

A graphical representation of the NTI is given in Figure 5.1. The cross entropy

differences between pt and the endpoint distributions (p0 and p1) are depicted on the

vertical axis. The KL-divergencies between p0 and p1 are located at the endpoints of

[0, 1]. Their difference represents the J−divergence. From Lemma 5.2.1, the Chernoff

t−divergence for any ti ∈ [0, 1] is given by the area between the curve and the t-axis

from t = 0 to t = ti. The Chernoff information is given by the corresponding area up to

t = t∗ while the Bhattacharyya distance is given by the corresponding area from zero up

to t = 0.5.

To sum up, in this section it was illustrated how entropy measures are directly associ-

ated with the NTI. For this reason, all these measures can be derived using path sampling.

Hence, the NTI given in (5.6) can offer another link between Bayesian inference, infor-

mation theory and thermodynamics (or statistical mechanics). For instance, under the

Hamiltonian Ht(θ), Merhav (2010, Section 3.3) discuss the excess or dissipated work in

thermodynamics and its relation to the data processing theorem in information theory,

with the NTI emerging in the case of reversible processes. In a more general framework,

Crooks and Sivak (2011) consider conjugate trajectories, that is forward (from t = 0 to

t = 1) and backward processes (from t = 1 to t = 0), to derive the physical signifi-

cance of the f−divergencies considered here, in terms of non-equilibrium dynamics. Note

also that the balance property (5.13) satisfies the (recently derived) equality of Jarzynski

(1997) and confirms Crooks’s (1999) theorem; see, for details, in Merhav (2010) and

Crooks and Sivak (2011). Further parallelism between the NTI and statistical mechanics

is not attempted here, leaving this part to the experts on the field. In the next section we

focus on the study of the MCMC estimators of log λ constructed using TI and geometric

paths. We further study and analyse how the f−divergencies can be estimated as path

sampling byproducts.
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Figure 5.1: Graphical representation of the NTI: the plot of KLt(θ) over t.

5.2.2 MCMC path sampling estimators

Numerical approaches are typically used to compute the external integral of (5.2), such

as the trapezoidal or Simpson’s rule (Ogata, 1989; Neal, 1993; Gelman and Meng, 1998,

among others). The numerical approaches require the formulation of an n-point discreti-

sation T = {t0, t1, . . . , tn} of [0, 1], such that 0 = t0 < ... < tn−1 < tn = 1, which is called

temperature schedule. A separate MCMC run is performed at each ti with target distribu-

tion the corresponding p(θ| ti), i = 0, ..., n. The MCMC output is then used to estimate

Et = Ept{U(θ)} by the sample mean Êt of the simulated values {θ(r)}Rr=1 generated from

pt for each t ∈ T . The final estimator is derived by

log λ̂ =
n−1∑

i=0

(ti+1 − ti)
Êti+1

+ Êti
2

; (5.14)

see also in Friel and Pettitt (2008).

At a second step, the posterior output at each ti and log λ̂ can be employed to estimate

t∗ and the Chernoff information. Here we provide an algorithm for that purpose, which

yields also the estimated Chernoff t−divergencies for any t ∈ (0, 1) and subsequently the

f−divergencies described in Section 5.2.1.
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5.2.2.1 Estimation of the Chernoff t− divergencies and information

Estimating the Chernoff information is generally a non-trivial and cumbersome proce-

dure. For instance, Nielsen (2011) describe a geodesic bisection optimization algorithm

that approximates C(p1 ‖ p0) for multidimensional distributions which belong to the ex-

ponential family, based on Bregman divergences (named after Bregman, who introduced

the concept in Bregman, 1967). Julier (2006) provides also an approximation for Gaus-

sian mixture models. Here we introduce a TI based MCMC method for the estimation

of Chernoff information which can be used for any choice of p0 and p1 distributions.

Following Lemma 5.2.2, the Chernoff information is given by NTI(t∗). Therefore, in

order to compute the Chernoff information we need first to estimate t∗ for which KLt∗

is zero. The computation of t∗ can be achieved by adding a number of steps in the path

sampling procedure according to the following algorithm.

Step 1 Perform n MCMC runs to obtain Êt for all t ∈ T and log λ̂ from (5.14).

Step 2 Calculate K̂Lt = Êt − log λ̂ for all t ∈ T .

Step 3 Identify interval
(
t−i∗ , t

+
i∗+1

)
where the sign of KLt changes; where

t−i = max
(
t ∈ T : K̂Lt < 0

)
and t+i = min

(
t ∈ T : K̂Lt > 0

)
.

Note, that KLt will be negative for any t < t∗ and positive otherwise since since
dKLt

dt
= Vpt

{
log p1(θ)

p0(θ)

}
> 0 and therefore KLt it is an increasing function of t.

Step 4 Perform extra MCMC cycles by further discretising
(
t−i∗ , t

+
i∗+1

)
until the required

precision is achieved.

Step 5 Update T and n to account for the new points ti ∈
(
t−i∗ , t

+
i∗+1

)
used in Step 5.

Step 6 Once the t∗ is estimated, the MCMC output already available from the runs in

Steps 1 and 4 can be used to estimate the Chernoff information. In particular, it

is estimated as described in (5.14) having substituted Êt by K̂Lt for all t ∈ T and

only accounting for ti ≤ t∗ in the summation. Therefore, the Chernoff information

is estimated by N̂T I(t∗) given by

log N̂T I(t∗) =
∑

i∈I: ti+1≤ t∗

(ti+1 − ti)
K̂Lti+1

+ K̂Lti

2

=
∑

i∈I: ti+1≤ t∗

(ti+1 − ti)
Êti+1

+ Êti
2

− t∗ log λ̂ , (5.15)

where the I = {0, 1, . . . , n} and n = |T |.

86



In the special case where the path sampling is combined with output from MCMC al-

gorithms which involve tempered transitions (see Calderhead and Girolami, 2009 for

details), the estimation of the Chernoff information comes with low computational cost.

This approach can be attractive and useful in the case of multi-modal densities. The same

algorithm can be also implemented to compute the rest of the f-divergencies measures

discussed in Section 5.2.1. In fact, their estimation is less demanding since it requires

one additional MCMC run, in order to derive the estimated KLti at the point of interest;

for instance at ti=0.5 we derive the Bh(p1, p0) and He(p1, p0) divergencies.

5.2.3 Error, temperature schedule and geometric perspective

In this section we study two important sources of error for path sampling estimators: the

path-related variance and the discretisation error. The path-related variance is the error

related to the choice of the path which, for geometric ones, is restricted to the selection

of the endpoint densities. On the other hand, for any given path, the discretisation error

is related to the choice of the temperature schedule T and is derived from the numerical

approximation of the integral over [0, 1]. In order to examine these two error sources,

we provide a geometric representation of TI (eq. 5.4) and NTI (eq. 5.6) identities. This

leads us to a better understanding of the behaviour of the path sampling estimators.

5.2.3.1 Path-related variance

The total variance of log λ̂ has been reported by Gelman and Meng (1998) in the case of

stochastic t with an appropriate prior distribution attached to it. Further results were

also presented by Lefebvre et al. (2010) for geometric paths. They have showed that the

total variance is associated with the J−divergence of the endpoint densities and therefore

with the choice of the path. Here we focus on the t-specific variances Vt = Vpt{U(θ)} > 0

of U(θ) (hereafter local variance) which are the components of the total variance.

Figure 5.2 is a graphical representation of TI. To be more specific, the curve represents

the Et values for each t ∈ [0, 1] while the area between the t-axis and the curve gives the

thermodynamic integral (5.2). In this figure, the error of the TI estimators is depicted

by the steepness of the curve of Et. This result is based on the fact that the partition

function zt is the cumulant generating function of U(θ) (Merhav, 2010, section 2.4) and

therefore the first derivative of Et is given by the local variance Vt, that is E ′
t = Vt. It

follows that the slope of the tangent of the curve at each t equals to Vt. Therefore, the

graphical representation of two competing paths can provide valuable information about

the associated variances of their corresponding estimators.

In the case of geometric paths particularly, J(p1, p0) coincides with the slope of the

secant defined at the endpoints of the curve and lays below the curve of the strictly
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Figure 5.2: Graphical representation of the TI: the plot of the curve Et = Ept
{U(θ)} over t, based

on two paths qt (black line) and q′t (grey line). For each path, the J−distance between the endpoints

coincides with the slope of the corresponding secant, sec(0, 1). The slope of the tangent tan(ti) equals

the local variance Vti .

increasing (in terms of t) function Et. Therefore, it can be used as an indicator of the

slope of the curve and the result of Lefebvre et al. (2010) has a direct visual realisation.

The result can be generalised for any other pair of successive points, say (ti, Eti) and

(ti+1, Eti+1
), with the corresponding slope (or gradient) of the secant sec(ti, ti+1) given by

∇sec(ti, ti+1) =
Eti+1

− Eti+1

ti+1 − ti
=

KLti+1
−KLti

ti+1 − ti
. (5.16)

The latter is derived from (5.7) and it reflects the fact that the slopes of the curves

depicted in Figures 5.1 and 5.2 are identical. Additionally, KLt can be written in terms

of the KL-divergence between the successive sampling densities pti and pti+1
since, from

(5.9) we obtain

KL(pti ‖ pti+1
) =

∫

θ

pti(θ) log
{
p1(θ)ti−ti+1p0(θ)ti+1−ti

}
dθ + log

µ(ti+1)

µ(ti)

= −(ti+1 − ti)KLti + log
µ(ti+1)

µ(ti)
. (5.17)
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Using (5.16) and (5.17), we can associate the J−divergence between two successive points

with the slope of the secant sec(ti, ti+1) since

∇sec(ti, ti+1) =
J(pti , pti+1

)

(ti+1 − ti)2
(5.18)

generalizing the result of Lefebvre et al. (2010) for the endpoints of the graph where

the slope of the sec(0, 1) is given by J(p1, p0). For successive points closely placed to

each other (that is, for ∆(ti) = ti+1 − ti → 0) the slope of the secant approximates the

corresponding slope of the tangent of the curve and therefore the local variance. Hence,

the J−divergence between any two successive points is indicative of the slope of the curve

and consequently of the associated variance. For example, in Figure 5.2 for values of t

close to zero the slope of curve is very steep indicating high local variability.

The local variances of the path sampling estimators discussed here depend on the

selection of the path. In the next section, we proceed with the study of the discretisation

error and its effect on the path sampling estimators based on both the TI and NTI

identities for any fixed geometric path.

5.2.3.2 Discretisation error

Calderhead and Girolami (2009) expressed the discretisation error in terms of differences

of relative entropies of successive (in terms of t) sampling distributions. The result of

Calderhead and Girolami (2009) can be written for any geometric path as follows

log λ̂ =

n−1∑

i=0

ẑti+1

ẑti
=

1

2

n−1∑

i=0

(ti+1 − ti)
{
Êti+1

+ Êti
}

(5.19)

+
1

2

n−1∑

i=0

{
K̂L(pti ‖ pti+1

) − K̂L(pti+1
‖ pti)

}
,

Calderhead and Girolami (2009) consider the case for ∆(ti) → 0 in (5.19) and outline that

the first summation is equivalent to the trapezium rule used for numerical integration with

the associated error expressed in terms of the asymmetries between the KL divergencies

defined between pti and pti+1
. In view of (5.17), expression 5.19 becomes

log λ̂ =
1

2

n−1∑

i=0

∆(ti)
{
Êti+1

+ Êti
}
− 1

2

n−1∑

i=0

∆(ti)(K̂Lti + K̂Lti+1
), (5.20)

since
∑n−1

i=0 log µ(ti)
µ(ti+1)

= 0. The second term in the left side of (5.20) is the approximation

of the NTI (using the trapezoidal rule), which indeed it should be zero. According to the

discussion in Section 5.2.3.1, the relative entropies in (5.19), as well as the areas above and

below the t-axis which represent the Chernoff divergencies, are not expected to be zero.

They both represent the path-related variance which is independent (and pre-existing)
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of the discretisation error. The discretisation error consists of the asymmetries that

occur under any particular tempering schedule either in the TI or in NTI. The symmetry

is a feature of the thermodynamic integration and it represents the trade-off between

uncertainty in the forward and backward trajectories. Therefore, the error manifests

as lack of symmetry in the assessment of the uncertainty due to the discretisation, as

explained below.

While the path-related variance is independent from the discretisation error, the re-

verse argument does not hold. In fact, the discretisation error is highly influenced and de-

pendent upon the path-related variance. Consider two pairs of successive points, located

close to the zero and unit endpoints in Figure 5.1, say t
(0)
i , t

(0)
i+1 and t

(1)
j , t

(1)
j+1 respectively,

for i, j = 1, ..., n. Further assume that the distances between the points within each pair

are equal, say δ > 0. For the first pair, the corresponding KLts on the vertical axis

are distant due to the steepness of the curve. On the contrary, for the second pair the

corresponding KLts are very close, due to the fact that the slope of the curve is almost

horizontal. Therefore, using the trapezoidal rule, for equally spaced pairs of points we

approximate a large part of the curve towards the zero end and a small part of the curve

towards the unit end. In order to achieve the same degree of accuracy at both ends, the

second pair of points need to be closer. In conclusion, the temperature schedule should

place more points towards the end of the path where the uncertainty (slope) is higher.

For instance, the powered fraction (PF) schedule (Friel and Pettitt, 2008)

TPF = {ti}ni=1 such as ti = (1/n)C, C = 1/a > 1, (5.21)

places more points towards the zero endpoint of the path. Xie et al. (2011) proposed a

closely related geometric schedule where the tis are chosen according to evenly spaced

quartiles of a Beta(a, 1) distribution. Recently, Friel et al. (2012) proposed an adaptive

algorithm for the temperature schedule that takes under consideration the local variances

in order to locate the high uncertainty points. The algorithm traces the points on the

curve and assigns more tis close to their regions. The gain in the error is then achieved

with a small computational price.

5.3 Bayesian model comparison using tempered tran-

sitions

The Bayesian marginal likelihood is simply the normalizing constant of the posterior

distribution f(θ|y, mi) and can be estimated by path sampling. Recently, such meth-

ods have been considered for Bayesian marginal likelihood estimation by Lartillot and

Philippe (2006), Friel and Pettitt (2008) and Lefebvre et al. (2010).

90



5.3.1 The stepping-stone identity

In this section we consider an alternative approach that is based on the stepping-stone

sampling, presented by Xie et al. (2011) and Fan et al. (2011) for the estimation of the

Bayesian marginal likelihood. Closely related ideas are also discussed in the context of

the free energy estimation in Neal (1993, see section 6.2 and references within). The

stepping-stone sampling considers finite values ti ∈ T , that are placed according to a

temperature schedule as the ones discussed in Section 5.2.3. The ratio of the normalizing

constants can be expressed as

λ =
z1
z0

=
ztn
ztn−1

ztn−1

ztn−2

. . .
zt1
zt0

=
n−1∏

i=0

zti+1

zti
.

Hence, the ratio of the normalizing constants can be estimated using zti+1
/zti as an

intermediate step that can be estimated from t specific MCMC samples based on the

identity

zti+1

zti
=

∫

θ

qti+1
(θ)

qti(θ)
p ti(θ) dθ;

see Xie et al. (2011) for details. For geometric paths, the stepping-stone identity for λ is

then given by

λ =

n−1∏

i=0

∫

θ

{
q1(θ)

q0(θ)

}∆(ti)

p ti(θ) dθ. (5.22)

Xie et al. (2011) presented the stepping-stone sampling specifically for estimating the

Bayesian marginal likelihood (under a certain geometric path) while Fan et al. (2011)

modified the initial Bayesian marginal likelihood estimator in order to improve its prop-

erties (both estimators are addressed later on in this section). However, as outlined

here, the stepping-stone sampling can be considered as a general method, alternative to

path sampling, that can be applied for the estimation of ratios of unknown normalized

constants.

Hence, identities (5.4) and (5.22), are two closely related alternative tempered tran-

sition methods for the estimation of normalizing constants using geometric paths. Any

estimator developed via thermodynamic integration has its corresponding stepping-stone

estimator and vise versa. In the next section, we present existing methods classified by

the tempered method that has been originated and the adopted path. This method-path

approach allows us to further introduce new estimators based on the counterpart existing

ones.

91



5.3.2 Bayesian marginal likelihood estimators

In order to avoid confusion, hereafter we will name each estimator based on the method

(thermodynamic or stepping-stone) and on the path implemented for its derivation.

The power posteriors (Lartillot and Philippe, 2006, Friel and Pettitt, 2008) and the

the stepping stone (Xie et al., 2011) Bayesian marginal likelihood estimators are using

the same geometric path but they are based on different identities, approaching the same

problem using a different perspective. Both methods implement the geometric prior-

posterior path, namely

qPPt (θ) = {f(y| θ)π(θ)}t π(θ)1−t = f(y| θ)tπ(θ), (5.23)

where q0(θ) = π(θ) is a proper prior for the model parameters and q1(θ) = f(θ|y) π(θ)

is the corresponding unnormalized posterior density. Setting the prior-posterior in (5.4)

and (5.22), yields the thermodynamic and the stepping-stone prior-posterior identities

(PPT and PPS respectively) for the Bayesian marginal likelihood

log f(y) =

∫ 1

0

EpPP
t

{log f(y| θ)} dt and f(y) =
n−1∏

i=0

∫

θ

{log f(y| θ)}∆(ti) pPPti (θ) dθ

where pPPt (θ|y) is the density normalized version of (5.23).

Fan et al. (2011) modified the estimator of Xie et al. (2011) using instead the importance-

posterior path

qIPt (θ) = {f(y| θ) π(θ)}t g(θ)1−t.

The importance posterior path was one of the paths that Lefebvre et al. (2010) considered

for the estimation of the Bayesian marginal likelihood. It should be noted that the density

g(θ) is required to be proper so that z0 = 1. It can be constructed by implementing the

posterior moments available from the MCMC output at t = 1. The thermodynamic

and stepping-stone importance-posteriors (IPT and IPS respectively) are derived by the

identities

log f(y) =

∫ 1

0

EIP
pt

[
log

f(y| θ) π(θ)

g(θ)

]
dt and (5.24)

f(y) =
n−1∏

i=0

∫

θ

{
f(y| θ) π(θ)

g(θ)

}∆(ti)

pIPti (θ) dθ,

where pIPt (θ) is the density normalized version of qIPt (θ).

The TI identity appearing in (5.24) has the attractive feature of sampling from g(θ),

rather than the prior, for t = 0. It also retains the stability ensured by averaging in log

scale according to the thermodynamic approach. Therefore, in specific model settings,
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the estimators based on the thermodynamic importance posteriors can perform more

efficiently than estimators based on the other expressions, provided that an importance

function can be formulated. It is our belief that beyond the four expressions reviewed

here, others may be developed within this broad framework, by choosing the appropriate

path for particular models, coming with thermodynamic and stepping-stone variants.

5.3.3 Bayes factor direct estimators

The BF is by definition a ratio of normalized constants. Therefore, (5.4) and (5.22) can

be implemented to construct direct BF estimators, rather than applying the methods to

each model separately. Lartillot and Philippe (2006) implemented the thermodynamic

integration, in order to link two competing (not necessary nested) models, instead of

densities. That was achieved by choosing the appropriate path, in a way that eventually

produces directly a BF estimator. Lartillot and Philippe (2006) were motivated by the

fact that lack of precision on each Bayesian marginal likelihood estimation, may alter the

BF interpretation. They argue, that a simultaneous estimation of the two constants can

ameliorate that to some extend. The idea is to employ a bidirectional melting-annealing

sampling scheme, based on the model-switch path:

qMS
t (θ) = {f(y| θ, m1) π(θ|m1)}t {f(y| θ, m0) π(θ|m0)}1−t .

Lartillot and Philippe’s (2006) thermodynamic model-switch (MST ) identity for the BF

and its stepping-stone counterpart (MSS) are as follows

logBF10 =

∫ 1

0

EpMS
t

[
log

{
f(y| θ, m1) π(θ|m1)

f(y| θ, m0) π(θ|m0)

}]
dt

and

BF10 =

n−1∏

i=0

∫

θ

{
f(y| θ, m1) π(θ|m1)

f(y| θ, m0) π(θ|m0)

}∆(ti)

pMS
ti

(θ|y) dθ,

where the expectation is taken over pMS
t (θ|y) which is the density obtained after normal-

izing the model-switch path qMS
t (θ). In case where θ is common between the two models

(for instance if the method is used to compare paths under different endpoints, see Lar-

tillot and Philippe, 2006 for an example) the method is directly applicable. Otherwise,

if θ = (θm1 , θm0), pseudo-priors need to be assigned at the endpoints of the path.

Having in mind the direct estimation of Bayes factors, more complicated estimators

may be derived using compound geometric paths. With the term compound paths we

refer to paths that consist of a hyper geometric path, Qt(θ) = Q1(θ)tQ0(θ)1−t, used to

link two competing models and a nested path qt(θ, i) for each endpoint function Qi, for

i = 0, 1. The two intersecting paths form a quadrivial, (Q ◦ q)t(θ) with t ∈ [0, 1] that can

be defined as

(Q ◦ q)t(θ) =
[
q1(θ, 1)tq0(θ, 1)1−t

]t [
q1(θ, 0)tq0(θ, 0)1−t

]1−t
.
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The multivariate extension is discussed in detail in Gelman and Meng (1998). The end-

point target densities are given by qi(θ, i) for t = 0 and t = 1 respectively estimating the

ratio z1/z0 =
∫
q1(θ, 1)dθ×

[∫
q0(θ, 0)dθ

]−1
. The densities qi(θ, j) for i, j = 0, 1 and i 6= j

serve as linking densities within each nested path. Therefore, following the importance-

sampling logic, they should play the role of approximating (importance) functions for

each qi(θ, i).

For the specific case of the Bayes factor estimation, the objective is to retrieve the

Bayesian marginal likelihoods at the endpoints and therefore it is reasonable to consider

as nested paths the prior-posterior and the importance-posterior paths, discussed in the

previous section. The importance-posterior BF quadrivial, for instance, is as follows

(Q ◦ q)IPt (θ) =
[{
f(y| θ, m1)π(θ|m1)

}t
g(θ|m1)

1−t
]t

×
[{
f(y| θ, m0)π(θ|m0)

}1−t
g(θ|m0)

t
]1−t

leading to the thermodynamic (QIPT
) and stepping-stone (QIPS

) expressions

logBF10 =

∫ 1

0

EPt

[
log

{
f(y| θ, m1) π(θ|m1)/g(θ|m1)

}2t
g(θ|m1){

f(y| θ, m0) π(θ|m0)/g(θ|m0)
}2(1−t)

g(θ|m0)

]
dt

and

BF10 =

n−1∏

i=0

∫

θ

log

{
f(y| θ, m1) π(θ|m1)/g(θ|m1)

}2Tig(θ|m1){
f(y| θ, m0) π(θ|m0)/g(θ|m0)

}2(1−Ti)g(θ|m0)
Pti(θ) dθ,

where Pt(θ) = (Q ◦ q)IPt (θ) = /Zt, Zt =
∫
θ
(Q ◦ q)IPt dθ, t ∈ [0, 1]. In the thermodynamic

expression, t is the melting temperature and 1 − t the annealing one, assuming that the

procedure starts at t = 0 and gradually increases to t = 1. The hyper-path ensures

that while the model m1 is melting, the model m0 is annealing. At the same time,

the importance-posterior path serving as the nested one, links the posterior with the

importance at each model separately. In the stepping-stone counterpart expression the

melting and annealing temperatures are given by Ti = (ti+1+ti)/2 for any i = 0, 1, . . . , n−
1.

From the expressions QIPT
and QIPS

we may derive the analogue ones for the prior-

posterior quadrivial (QPPT
and QPPS

) by substituting the importance densities g(θ|mi)

with the corresponding priors π(θ|mi), (i = 0, 1). The quadrivial expressions, univari-

ate and multivariate, are under ongoing research and it is not yet clear to the authors

which applications could benefit from their complected structure. The optimal tempering

scheme is also an open issue. In the next section, all estimators discussed here are applied

in simulated examples.
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5.4 Illustrative Examples

5.4.1 Regression modelling in the pine dataset

For the illustration of the estimators discussed in Section 5.3 we implement the Pine data

set, which has been studied by Friel and Pettitt (2008) and Lefebvre et al. (2010) in the

context of path sampling. The dataset consists of measurements taken on 42 specimens

of Pinus radiata. A linear regression model was fitted for the specimen’s maximum

compressive strength (y), using their density (x) as independent variable, that is

yi = α + β(xi − x̄) + ǫi, ǫi ∼ N(0, σ2), i = 1, ..., 42. (5.25)

The objective in this example is to illustrate how each method and path combination

responds to prior uncertainty. To do so, we use three different prior schemes, namely:

Π1 : (α, β)′ ∼ N {(3000, 185)′, (106, 104)′}, σ2 ∼ IG(3, 1.8 × 105) ,

Π2 : (α, β)′ ∼ N {(3000, 0)′, (105, 103)′}, σ2 ∼ IG(3, 1.8 × 104) ,

Π3 : (α, β)′ ∼ N {(3000, 0)′, (105, 103)′}, σ2 ∼ IG(0.3, 1.8 × 104),

where IG(a, b) denotes the inverse gamma distribution with shape a and rate b. The

Bayesian marginal likelihoods were estimated over n1 = 50 and n2 = 100 evenly spaced

temperatures. At each temperature, a Gibbs algorithm was implemented and 30,000

posterior observations were generated; after discarding 5,000 as a burn-in period. The

posterior output was divided into 30 batches (of equal size of Rb=1,000 points) and all

estimators were computed within each batch. The mean over all batches was used as the

final estimate, denoted by log λ̂i for each prior Πi, i = 1, 2, 3. In order the estimators

to be directly comparable in terms of error, the batch means method (Schmeiser, 1982,

Bratley et al., 1987) was preferred. In particular, the standard deviation of the log λ̂

over the 30 batches was considered as the estimated error, denoted hereafter by M̂CE.

Lefebvre et al. (2010) used n = 1001 equally spaced points to compute the gold standard

for log λ̂1 = −309.9. Following the same approach we derived log λ̂2 = −323.3 and

log λ̂3 = −328.2. These values are considered as benchmarks in the current study. Finally,

the importance functions for each model were constructed from the posterior means and

variances at t = 1.

The estimations for the marginal likelihoods are presented in Table 5.1. The values

that were obtained based on the importance-posterior path, reached the gold standards

even when n = 50. The thermodynamic (IPT ) and the stepping–stone (IPS) counterparts

performed equally well and were associated with similar errors. On the contrary, the

estimators that are based on the prior-posterior path yielded different values depending

on the method. In particular, the stepping–stone estimator (PPS) was fairly close to
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Table 5.1: Marginal likelihood estimates - Pine data

n Path/Method log λ̂1 log λ̂2 log λ̂3

PPT -312.9 (0.21) -324.7 (0.19) -352.4 (0.57)

PPS -310.2 (0.06) -322.6 (0.05) -328.5 (0.03)

50 IPT -310.0 (0.02) -323.4 (0.03) -328.2 (0.03)

IPS -310.0 (0.02) -323.4 (0.03) -328.2 (0.03)

100 PPT -311.3 (0.11) -323.7 (0.14) -339.0 (0.03)

PPS -310.1 (0.06) -323.5 (0.03) -328.5 (0.03)

IPT -309.9 (0.02) -323.4 (0.02) -328.2 (0.03)

IPS -309.9 (0.02) -323.4 (0.02) -328.2 (0.03)

PP denotes the prior-posterior path and IP the importance posterior path. The

indices T and S imply the thermodynamic and stepping–stone analogues.

the gold standards with low error, for all prior schemes. The thermodynamic estimator

(PPT ) on the other hand, underestimated the Bayesian marginal likelihood and exhibited

higher errors than all other methods. Logarithms of the ratios of the estimated Bayesian

marginal likelihoods along with the estimated BF values directly derived by the model-

switch methods are further presented in Table 5.2. The thermodynamic and stepping-

stone analogues of MS, QPP and QIP , yielded estimates with similar values and errors.

In this example, we have used a uniform temperature schedule, moderate number

of points n and non informative priors. It was therefore reasonable to expect that the

prior-based methods would be associated with higher error. The interesting result here

was that the stepping–stone estimator addressed the prior uncertainty more successfully.

In fact, the thermodynamic and stepping–stone approaches coincided only when the gold

standard was reached, which means that the discretisation error (5.19) was minimized.

The next step in our analysis was to employ a temperature schedule that places more

points towards the prior in order to reduce the uncertainty. The powered fraction (5.21)

schedule (Friel and Pettitt, 2008) was used with C = 5. For n = 100, the PPT yielded the

benchmark values for the Bayesian marginal likelihoods, namely log λ̂1 = 310.0 (0.01),

log λ̂2 = 323.5 (0.01) and log λ̂2 = 328.3 (0.02). The results were almost identical for the

PPS .

Once the thermodynamic procedure yielded the benchmark values, we proceeded with

the estimation of the entropy measures (see Section 5.2.1) presented in Table 5.3. The

precision for the point t∗ was set to the third decimal point and the extra MCMC runs

costed less than a minute of computational time. The Bhattacharyya and Bhattacharyya-
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Table 5.2: Estimated log ratio of the Bayesian marginal likelihoods

n = 50 n = 100

Path/Method log
(
λ̂2/λ̂1

)
log
(
λ̂3/λ̂1

)
log
(
λ̂2/λ̂1

)
log
(
λ̂3/λ̂1

)

PPT -11.8 (0.21) -39.5 (0.57) -12.4 (0.14) -26.0 (0.38)

PPS -12.5 (0.06) -18.4 (0.73) -12.5 (0.06) -18.5 (0.34)

IPT -13.4 (0.04) -18.2 (0.04) -13.4 (0.03) -18.2 (0.04)

IPS -13.4 (0.04) -18.2 (0.04) -13.4 (0.03) -18.2 (0.01)

MST -13.5 (0.01) -18.2 (0.01) -13.5 (0.01) -18.2 (0.01)

MSS -13.5 (0.01) -18.2 (0.01) -13.5 (0.01) -18.2 (0.01)

QPPT
-13.5 (0.01) -18.2 (0.01) -13.5 (0.01) -18.2 (0.01)

QPPS
-13.5 (0.01) -18.2 (0.02) -13.5 (0.01) -18.2 (0.01)

QIPT
-13.5 (0.01) -18.2 (0.01) -13.5 (0.01) -18.2 (0.01)

QIPS
-13.5 (0.01) -18.2 (0.01) -13.5 (0.01) -18.2 (0.01)

PP denotes the prior-posterior path and IP the importance posterior path. MS and Q stand

for the model-switch and quadrivial (bidirectional) methods. The indices T and S imply the

thermodynamic and stepping–stone analogues.

Hellinger values indicate that the priors Π1, Π2 and Π3 where very distant from the corre-

sponding posteriors. On the contrary, the importance functions were close approximations

of their matching posterior densities. This fact completely explains the differences in the

estimation, reflecting the increased local variances encountered by the PPT as opposed

to IPT .

5.4.2 Bayesian marginal likelihood for latent trait models in a

simulated dataset

According to the current results, the uncertainty in the pine data example was manageable

under a suitable tempering schedule. This will not always be the case, especially in high

dimensional problems. Here we consider also a factor analysis model with binary items.

The dataset consists of N = 400 responses, p = 4 observed items and k = 1 latent variable

and was previously considered in Chapter 4, within the context of Bayesian marginal

likelihood estimation. Under the non informative prior for the 404 model parameters (see

Section 2.2) the Bayesian marginal likelihood was estimated close to -977.8, based on the

CJJ estimator and the LM estimator. Using the same prior and importance functions

as in Chapter 4, the PP and the IP paths were computed in order to derive the estimated

Bayesian marginal likelihood. Due to the dimensionality of the model, n = 200 runs were

used and 30,000 posterior observations from a Metropolis-within-Gibbs algorithm were
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Table 5.3: Estimated f−divergencies

Π1 Π2 Π3

f−divergency PPT IPT PPT IPT PPT IPT

KL (p1 ‖ p0) 5.6 (<0.01) 0.03 (<0.01) 16.3 (<0.01) 0.10 (<0.01) 24.8 (<0.01) 0.10 (<0.01)

KL (p0 ‖ p1) 414.8 (4.61) 0.06 (<0.01) 304.1 (5.71) 0.09 (<0.01) 3061.0 (53.1) 0.09 (<0.01)

J (p0, p1) 420.5 (4.62) 0.09 (<0.01) 320.4 (5.63) 0.20 (<0.01) 3085.0 (53.4) 0.02 (<0.01)

Bh (p0, p1) 2.53 (<0.01) 0.01 (<0.01) 6.68 (<0.01) 0.03 (<0.01) 11.4 (<0.01) 0.07 (<0.01)

He (p0, p1) 0.96 (<0.01) 0.11 (<0.01) 0.99 (<0.01) 0.17 (<0.01) 0.99 (<0.01) 0.26 (<0.01)

Ct∗ (p0 ‖ p1) 3.38 (<0.01) 0.01 (<0.01) 7.24 (<0.01) 0.03 (<0.01) 15.0 (<0.01) 0.03 (<0.01)

Rt∗ (p0 ‖ p1) 2.76 (<0.01) 0.01 (<0.01) 4.61 (<0.01) 0.02 (<0.01) 12.1 (<0.01) 0.02 (<0.01)

Tt∗ (p0 ‖ p1) 1.19 (<0.01) 0.02 (<0.01) 1.57 (<0.01) 0.06 (<0.01) 1.24 (<0.01) 0.06 (<0.01)

t∗ 0.183 0.552 0.445 0.363 0.192 0.437

KL(· ‖ ·): Kullback-Leibler relative entropy, J(·, ·): Jeffreys’ divergence, Bh(·, ·): Bhattacharyya distance, He(·, ·): Bhattacharyya-

Hellinger distance. Estimated at t∗: C(· ‖ ·): Chernoff information, R(· ‖ ·): Rényi relative entropy, T (· ‖ ·): Tsallis relative entropy. PP

denotes the prior-posterior path and IP the importance posterior path. The indices T and S imply the thermodynamic and stepping–stone

analogues.

derived at each temperature point (burn in period: 10,000 iterations, thinned by 10).

The batch means for the thermodynamic and stepping-stone importance posteriors

were −978.1 and −977.9 respectively, with associated MCE errors 0.018 and 0.013. The

corresponding values under the prior posterior path were −995.4 and −995.1 with as-

sociated MCE errors 0.032 and 0.027 respectively. The low MCEs indicated that the

error was not stochastic but rather due to the temperature placement. Even though the

powered fraction (5.21) schedule was used to place more values close to the prior (C = 5),

the uncertainty was not successfully addressed. The estimators did not improve when

the process was replicated for n = 500. This example indicates that in high dimensional

models with non informative priors, the PPT and PPS estimators can be deteriorated by

discretisation error even for large n.

In all examples presented here, R was used along with the OpenBUGS software (version

3.2.2; Lunn and Best, 2009). Specifically, the R2WinBUGS package (Sturtz et al., 2005)

was used to obtain posterior samples at each temperature ti via the OpenBUGS, which

subsequently were employed in R in order to compute the final estimators.
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5.5 Discussion

In this chapter the quest started from general thermodynamic approaches using geometric

paths, was continued from the normalized thermodynamic integration to f-divergencies,

and, finally, concluded to the BML and BF estimators.

The study through these topics offers a direct connection between thermodynamic

integration and divergence measures such as Kullback-Leibler and Chernoff divergencies,

Chernoff information and other divergencies emerging as special cases or functions of

them. By this way, we were able to offer an efficient MCMC based thermodynamic

algorithm for the estimation of the Chernoff information for a general framework which

was not available in the past.

Moreover, the study of the thermodynamic identities and integrals has lead us to an

understanding of the error sources of the TI estimators. All these are accompanied with

detailed graphical and geometric representation and interpretation offering insight to the

thermodynamic approach of estimating ratios of normalizing constants.

Finally, attention was focused on the most popular implementation of thermodynamic

integration in Bayesian statistics: the estimation of the Bayesian marginal likelihood

and the Bayes factors. An alternative thermodynamic approachwas presented, based

on the stepping-stone identity introduced in biology by Xie et al. (2011) and Fan et al.

(2011). By this way, we were able to present in parallel the available in the literature

estimators under the two different approaches (thermodynamic and stepping-stone) and

further introduce new appropriate estimators (based on equivalent paths) filling in the

blanks in the list of the Bayesian marginal likelihood and Bayes factors estimators. The

quadrivial Bayes factor estimators were also introduced, which are based on nested, more

complex, paths which seem to perform efficiently when estimating directly Bayes factors

instead of Bayesian marginal likelihoods.

The unified framework in thermodynamic integration presented in this article offers

new highways for research and further investigation. Here we discussed only some of the

possible future research directions.

The first one is the identification of a possible link between the deviance information

criterion, DIC, (Spiegelhalter et al., 2002) and thermodynamic integration. It is well-

known that in mixture models there are problems in estimating the number of efficient

parameters. A possible connection between TI and DIC may offer alternative ways of

estimating it in cases with multimodal posterior densities. The connection between TI

and KL as well as the connection between AIC, DIC and KL leave promises that such a

connection can be achieved.

A second research direction is the development of a stochastic TI approach where the

temperature will be treated as a unknown parameter. In this case, a suitable prior should

be elicitated in order to a-priori support points where higher uncertainty of Êt is located.
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Such a stochastic approach will eliminate the discretisation error which is an important

source of variability for TI estimators.

Finally, MCMC samplers used for Bayesian variable selection is another interesting

area of implementation of the TI approach. In such cases, interest may lie on the estima-

tion of the normalizing constants over the whole model space and the direct estimation

of posterior inclusion probabilities of each covariate. This might be extremely useful in

large spaces with high number of covariates where the full exploration of the model space

is infeasible due to its size and due to the existence of multiple neighborhoods of local

maxima placed around well-fitted models.
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Chapter 6

Implementation in simulated and

real life datasets

"Figures don’t lie, but liars do figure"

Mark Twain ∗

∗Mark Twain or Samuel Clemens (1835–1910) was an American author (and humorist), best known

by his books The Adventures of Tom Sawyer (1876) and Adventures of Huckleberry Finn (1885).
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6.1 Introduction

In this chapter, the Bayesian marginal likelihood estimators discussed previously in this

thesis are illustrated in simulated and real datasets. Emphasis is given on the estimation

of the Bayesian marginal likelihood and the computation of the Bayes factor, as means

of comparing models with different number of latent variables. In particular, Section 6.2

briefly summarizes the points made in the previous chapters with regard to the efficient

estimation of the Bayesian marginal likelihood in GLLTM models. The simulation scheme

is fully described and method-specific details are given when necessary. In Section 6.3, the

Bayesian marginal likelihood is estimated in an IRT (2-PL) model. In Section 6.4, latent

trait models with binary data are considered in simulated (Section 6.4.1) and real life

(Section 6.4.2) examples and the Bayes factors between competing models are computed.

The results are discussed in Section 6.5 where the estimators are compared in terms of

efficiency and computational expense.

6.2 Simulation scheme

In this section, the steps followed through out the simulation procedure are described and

the findings of previous chapters are summarised. To begin with, the prior specification

in all examples was held in accordance with Section 2.2 which is summarised as follows:

π(ϑ, Z) =
N∏

i=1

k∏

ℓ=1

π(Ziℓ) ×
p∏

j=1

π(αj) ×
p∏

j=1

k∏

ℓ=1

π(βjℓ),

where

π(·) =





N(0, 1) for all Ziℓ

LN(0, 1) for βjℓ where j = ℓ,

N(0, 4) for βjℓ where j > ℓ and for all αj .

In order to sample from the posterior, the Metropolis-within-Gibbs algorithm, de-

scribed in Section 2.3, was employed in all cases. For each simulated example, 300,000

posterior observations were generated after discarding additional 10,000 iterations as a

burn in period. A thinning interval of 10 iterations was considered in order to diminish

autocorrelations, leaving a total of 30,000 values available for posterior analysis. The

posterior output was divided into 30 batches (with equal sizes Rb=1,000 points) and all

estimators were computed within each batch. The mean over all batches, often referred to

as the batch mean (Schmeiser, 1982, Bratley et al., 1987), was used as the final marginal

likelihood estimate, denoted hereafter by log f̂(Y). In order the various estimators to be

directly comparable in terms of error, the batch means method was implemented in all
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cases. In particular, the standard deviation of the log-marginal likelihood estimates over

the 30 batches was considered as the estimated error of the log f̂(Y), denoted by M̂CEf .

The same procedure was used for the estimated values of the Bayes factor (denoted by

log B̂F 12 with regard to the competing models m1 and m2) and its associated error M̂CE.

The BSE and PBE (see Section 2.4.1) identities presented in this chapter are sum-

marised in Tables 6.1 and 6.2 respectively. All estimators were implemented on the

posterior f(ϑ|Y). That is, in accordance with the findings presented in Chapter 3, the

vector of the latent variables Z was marginalized out, according to (3.4), before applying

each of the identities presented in Section 2.4. The marginalization was held via fixed

Gauss-Hermite quadrature points (see also Rabe-Hesketh et al. 2005, Schilling and Bock

2005), in order to reduce the computational burden using fairly precise approximations.

Method-specific strategies were also followed in order to increase the efficiency of the

corresponding estimators. With regard to the point-based estimators LM , GC and CJI ,

the componentwise posterior median was used as ϑ∗, based on the findings presented in

Chapter 4. Additionally, the normal approximations used in the ML and GC methods

were applied to the original parameters for all αj and βjℓ, with j < ℓ and on the log βjj.

The log scale was preferred for the diagonal elements in order to avoid the asymme-

tries introduced by the positivity constraint and, by this way, to achieve a well behaved

approximation of the marginal likelihood.

Finally, the output sampled from the posterior f(ϑ|Y) was also used in order to

construct the importance distribution g(ϑ), involved in the computation of the RM ,

BH and BG estimators. In each case, an approximation was constructed based on the

posterior moments the parameters, with structure g(ϑ) = g(α)g(βe), where

g(α) ∼MN(m̃α, Σ̃α) and g(βe) ∼MN(m̃βe
, Σ̃βe), βe = βjℓ, j ≥ ℓ.

The MN(m̃, Σ̃) denotes a multivariate normal distribution whose parameters (m̃, Σ̃) are

the posterior mean and variance-covariance matrix estimated from the MCMC output.

All simulations that are presented in this chapter were held on a quad core i5

Central Processor Unit (CPU), at 3.2GHz and with 4GB of RAM. The Metropolis-

within-GIbbs algorithm (see Section for 2.3 details) was conducted using a custom routine

in R (version 3.0.1; R Core Team, 2013). The time required in order to extract the pos-

terior outputs was approximately 1 minute per 1000 iterations for the one factor models,

3 minutes per 1000 iterations for the two factor models and 5 minutes per 1000 iterations

the three factor models. Custom routines written in R language were used for the bridge

sampling and for the point-based estimators.
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Table 6.1: Bridge sampling Bayesian marginal likelihood identities

Method BML identity Bridge function A(ϑ)

Arithmetic mean
∫
f(Y|ϑ) π(ϑ) dϑ g(ϑ)

Harmonic mean
{∫

1
f(Y|ϑ)

f(ϑ|Y) dϑ
}−1

g(ϑ)/f(Y|ϑ)

Reciprocal mean
{∫ g(ϑ)

f(Y|ϑ)π(ϑ)
f(ϑ|Y) dϑ

}−1

{f(Y|ϑ) π(ϑ)}−1

Bridge harmonic
∫
g(ϑ)−1g(ϑ)dϑ∫

{f(Y|ϑ)π(ϑ)}−1f(ϑ|Y) dϑ
{f(Y|ϑ) π(ϑ) g(ϑ)}−1

Bridge geometric
∫
{f(Y|ϑ)π(ϑ)/g(ϑ)}1/2g(ϑ) dϑ

∫
{f(Y|ϑ)π(ϑ)/g(ϑ)}−1/2f(ϑ|Y) dϑ

. {f(Y|ϑ) π(ϑ) g(ϑ)}−1/2

Table 6.2: Point-based Bayesian marginal likelihood identities.

Method BML identity (log scale)

Laplace Metropolis p
2

log{2π} + 1
2

log |H∗| + log π(ϑ∗) + log f(Y|ϑ∗)

Gaussian copula −1
2

log |Γ| +
p∑

j=1

log fj(ϑ
∗
j) + log π(ϑ∗) + log f(Y|ϑ∗)

Independence CJ − log




Eϑ,Z|Y




p∏
j=1

a(ϑj ,ϑ
∗
j |Y,Z) q(ϑj ,ϑ

∗
j |Y,Z)

p∏
j=1

Eqj

[
a(ϑ∗

j ,ϑj |Y,Z)

]








+ log π(ϑ∗) + log f(Y|ϑ∗)

6.3 Marginal likelihood estimation in an IRT model

The first dataset considered here was generated from a one-factor model with 4 binary

items and 400 individuals. Hence, it is classified under the category of the 2-PL IRT
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models (see for instance Patz and Junker, 1999b). The dataset has been presented also

in Chapter 4, in order to evaluate the CJI estimator.

The estimated values that correspond to each method are presented in Table 6.3.

The three point-based estimators (GC, LM and CJI ) yielded similar values for the

Bayesian marginal likelihood with fairly small errors (0.12-0.16). The smallest error

however occurred in the case of the BG estimator (0.05). With regard the other bridge

estimators, the RM estimator yielded also close values, with slightly higher error (0.19).

On the contrary, the BH estimator was associated with more than 8 times higher error

(1.64) and the estimated BML was lower by one unit, in log scale. Finally, the HM

overestimated the BML by 12 units in log scale. The estimated values over the 30

batches are presented graphically in Figures 6.1 and 6.2, for the point-based and bridge

families respectively.

In Table 6.3, it is shown also that the log f̂(Y) value obtained by the AM estimator,

far exceeded the ones provided by the other estimators, with very high associated MĈEf .

This result was expected yet the AM was included in this example in order to facilitate

the understanding of the path sampling estimators. In particular, at t = 0 the PPS

estimator coincides with the AM while the PPT implements also points drawn solely from

the prior. The estimated values (-995.4 and -995.5 respectively) lay in between the AM

value and the values obtained by the rest of the estimators (Table 6.3). It occurs that the

divergencies between the successive sampling distributions towards the zero end were not

adequately reduced, under the current sampling scheme (see Section 6.2 for details). On

the contrary, the two path sampling estimators that implement the importance function

g(θ) rather than the prior, yielded well acceptable results (see also Figure 6.3). However,

the time elapsed for the computation of the path sampling estimators was approximately

15 hours. This is due to the fact that the time-consuming MG algorithm was implemented

n times instead of one, that is, one for each temperature included in the schedule. Hence,

in the following sections where higher dimensional models that are presented, the path

sampling estimators were discarded along with the AM estimator.
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Figure 6.1: BML estimates (per batch): Point-based estimators (p = 4, N = 400, k = 1).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.2: BML estimates (per batch): Bridge sampling estimators (p = 4, N = 400, k = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).
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Figure 6.3: BML estimates (per batch): BSE, PBE and PSE (p = 4, N = 400, k = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and bridge geometric

(BG). Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI) and Laplace Metropolis

(LM). Path sampling estimators: thermodynamic and stepping-stone power posteriors (PPT and PPS respectively),

thermodynamic and stepping-stone importance posteriors (IPT and IPS respectively).
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Table 6.3: Marginal likelihood estimates for an IRT model (N = 400, p = 4 & k = 1)

Method Estimator log f̂(Y) MĈEf

Bridge

sampling

AM -1030.1 39.43

HM -965.9 0.90

BH -976.5 1.64

RM -977.4 0.19

BG -977.5 0.05

Point

based

LM -977.7 0.13

CJI -977.8 0.12

GC -977.9 0.16

Path

sampling

PPT -995.4 0.02

PPS -995.5 0.03

IPT -977.9 0.02

IPS -977.9 0.01

Bridge sampling estimators: arithmetic mean (AM), har-

monic mean (HM), reciprocal mean (RM), bridge harmonic

(BH) and bridge geometric (BG). Point-based estimators:

Gaussian copula (GC), independence Chib & Jeliazkov (CJI )

and Laplace Metropolis (LM). Path sampling estimators:

thermodynamic and stepping-stone power posteriors (PPT

and PPS respectively), thermodynamic and stepping-stone

importance posteriors (IPT and IPS respectively).

6.4 Implementation in latent trait models with bi-

nary data

In this section, simulated and real data sets of larger size are implemented that allow for

fitted models with higher dimensions. Hence, the Bayes factor can be computed in order

to evaluate the competing models.

6.4.1 Simulated data examples

Three simulated datasets are considered here, namely:

Dataset A: N = 600 observations with p = 6 items generated from a k = 1 model.

Dataset B: N = 600 observations with p = 6 items generated from a k = 2 model.
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Dataset C: N = 800 observations with p = 7 items generated from a k = 3 model.

All model parameters were selected randomly from a uniform distribution, U(−2, 2).

The number of unknown parameters is equal to k(p+N) + p, corresponding to 606, 1218

and 2428 parameters, respectively, for each of the three situations described above.

6.4.1.1 Dataset A (N = 600, p = 6 & k = 1)

Dataset A was generated from a single factor model. In Table 6.4 are presented the

estimated values for the BML, under the true model (k = 1) and under a model that

overestimates the number of latent variables (k = 2). As in the case of the IRT model,

the HM estimator overestimated the BML, in both models. With regard to the other

estimators, their values were fairly close in the case of the true model (Figure 6.4), but

discrepancies were observed when two latent variables were assumed (Figure 6.5).

Table 6.4: Marginal likelihood estimates for Dataset A (N = 600, p = 6 & k = 1)

k = 1 k = 2

Estimator log f̂(Y) MĈEf log f̂(Y) MĈEf

HM -2153.4 1.14 -2154.0 1.78

RM -2174.7 0.11 -2175.5 0.81

BH -2174.0 1.83 -2170.0 2.37

BG -2174.7 0.03 -2177.2 0.29

LM -2175.2 0.16 -2178.7 0.86

CJI -2175.1 0.10 -2178.2 1.39

GC -2175.3 0.22 -2180.3 0.47

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM),

bridge harmonic (BH) and bridge geometric (BG). Point-based estimators:

Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace

Metropolis (LM).

6.4.1.2 Dataset B (N = 600, p = 6 & k = 2)

The second dataset (Dataset B) was generated from a two-factor model. Table 6.5

presents the estimated Bayesian marginal likelihoods under the true model (k = 2) and
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Figure 6.4: Dataset A: Bridge sampling and Point-based BML estimators (p = 6, N = 600, ktrue = 1

/kmodel = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.5: Dataset A: Bridge sampling and Point-based BML estimators (p = 6, N = 600, ktrue = 1

/kmodel = 2).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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under a model which now underestimates the number of latent variables (k = 1). Hence,

the scenario of the previous example has been reversed here. As previously, under the

bivariate (in terms of latent factors) true model, all estimators yielded similar results

(Figure 6.7), with the exception of the HA estimator. Under the hypothesised univariate

model, the estimated valuees were similar within each family of estimators (BSE and

PBE) but not between the families. That is, the estimated values derived via the PBE

were smaller by approximately 4 units in log scale (see also Figure 6.6).

Table 6.5: Marginal likelihood estimates for Dataset B (N = 600, p = 6 & k = 2)

k = 1 k = 2

Estimator log f̂(Y) MĈEf log f̂(Y) MĈEf

HM -2161.5 1.26 -2043.9 2.14

BH -2182.5 2.48 -2070.2 1.99

RM -2183.7 0.23 -2071.2 0.39

BG -2183.9 0.06 -2071.5 0.10

LM -2187.3 0.16 -2071.2 0.27

CJI -2187.5 0.18 -2071.2 0.36

GC -2187.5 0.21 -2071.6 0.29

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM),

bridge harmonic (BH) and bridge geometric (BG). Point-based estimators:

Gaussian copula (GC), independence Chib & Jeliazkov (CJI) and Laplace

Metropolis (LM).
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Figure 6.6: Dataset B: Bridge sampling and Point-based BML estimators (p = 6, N = 600, ktrue = 2

/kmodel = 2).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.7: Dataset B: Bridge sampling and Point-based BML estimators (p = 6, N = 600, ktrue = 2

/kmodel = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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6.4.1.3 Data set C (N = 800, p = 7 & k = 3)

The third dataset corresponds to a high dimensional model generated form a three-factor

model. In Table 6.6 are presented the estimated marginal likelihoods under the true

model (k = 3) and under two models that overestimate the number of latent variables

(k = 1 and k = 2). The estimated BML values were fairly close in all cases, despite the

high dimensionality of the model (see also Figures 6.8 to 6.10).

Table 6.6: Marginal likelihood estimates for Dataset C (N = 800, p = 7 & k = 3)

k = 1 k = 2 k = 3

Estimator log f̂(Y) MĈEf log f̂(Y) MĈEf log f̂(Y) MĈEf

HM -3395.1 1.38 -3338.8 2.14 -3302.6 2.10

BH -3420.9 1.74 -3373.1 2.37 -3337.4 2.83

RM -3421.6 0.19 -3375.3 0.42 -3341.5 0.61

BG -3421.7 0.05 -3376.3 0.16 -3343.3 0.27

LM -3422.4 0.18 -3374.7 0.29 -3341.3 0.35

CJI -3422.5 0.16 -3375.2 0.69 -3339.3 1.82

GC -3422.7 0.22 -3375.5 0.23 -3343.1 0.30

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and

bridge geometric (BG). Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov

(CJI) and Laplace Metropolis (LM).

6.4.1.4 Bayes factor estimates

The estimated Bayes factors which correspond to Datasets A to C (Tables 6.4 to 6.6) are

presented in Table 6.7 and depicted in Figures 6.11 to 6.14. The discrepancies observed in

the estimation of the BLM via the HM estimator, resulted in substantially different BF

estimated values, that at least in one case indicated the wrong model. In particular, the

HM-based BF that corresponds to Dataset A was -4 (MCE=2.6), strongly suggesting the

2-factor model (Kass and Raftery, 1995) instead of the true IRT model. The rest of the

estimators, resulted to non-decisive BF values (0.5 - 0.8) or suggested the correct model

(BF: 2.4 to 5.0). For the other two datasets, the correct model was strongly suggested

by the estimated BF, in all cases.
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Figure 6.8: Dataset C: Bridge sampling and Point-based BML estimators (p = 7, N = 800, ktrue = 3

/kmodel = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.9: Dataset C: Bridge sampling and Point-based BML estimators (p = 7, N = 800, ktrue = 3

/kmodel = 2).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.10: Dataset C: Bridge sampling and Point-based BML estimators (p = 7, N = 800, ktrue = 3

/kmodel = 3).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Table 6.7: Estimated Bayes factors (log scale)

Dataset A Dataset B Dataset C

Estimator log B̂F 12 (MĈE) log B̂F 21 (MĈE) log B̂F 31 (MĈE) log B̂F 32 (MĈE)

HM 0.5 (2.0) 117.6 (2.5) 92.5 (2.7) 36.2 (3.1)

BH -4.0 (2.6) 112.3 (3.1) 83.4 (3.4) 35.7 (3.8)

RM 0.8 (0.8) 112.5 (0.4) 80.1 (0.6) 33.8 (0.7)

BG 2.4 (0.3) 112.3 (0.1) 78.4 (0.3) 33.1 (0.3)

LM 3.5 (0.9) 116.1 (0.3) 81.1 (0.3) 33.4 (0.5)

CJI 3.1 (1.4) 116.3 (0.4) 83.2 (1.8) 35.9 (1.7)

GC 5.0 (0.5) 115.9 (0.4) 79.5 (0.4) 32.4 (0.4)

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and bridge geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI) and Laplace Metropolis (LM).

6.4.2 Applications in real data

We proceed with the two real-data examples, analyzed also in Chapter 4 and in (Bartholomew

et al., 2008, chapter 8). In all examples the Bayesian marginal likelihood was estimated

over samples of 10 thousand iterations (after discarding 1000 iterations as a burn in period

and keeping 1 every 10 iterations to reduce autocorrelations).

6.4.2.1 Law School Admission Test (LSAT)

With regard to the the LSAT data (see Section 4.5.4 for details), most estimators did

not support the 2-factor model, yielding BF estimators less than 2. Only exception was

the GC estimator, which yielded log B̂F 12 = −3, strongly supporting the 1-factor model

(Table 6.8).
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Figure 6.11: Dataset A: Bayes factor, all estimators (p = 6, N = 600, ktrue = 1 vs k = 2).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).

120



11
0

11
5

12
0

E
st
im

at
ed

B
F
-

lo
g
B̂
F

Bridge sampling and Point-based estimators

CJI LMGC HMBHBG RM

Figure 6.12: Dataset B: Bayes factor, all estimators (p = 6, N = 600, ktrue = 2 vs k = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.13: Dataset C: Bayes factor, all estimators (p = 7, N = 800, ktrue = 3 vs k = 1).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Figure 6.14: Dataset C: Bayes factor, all estimators (p = 7, N = 800, ktrue = 3 vs k = 2).

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and geometric (BG).

Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis (LM).
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Table 6.8: Marginal likelihood estimates for LSAT data (N = 1000, p = 5 & k = 2)

Estimator log f̂(Y)k=1 log f̂(Y)k=2 log B̂F 12

HM -2476.5 -2476.4 0.1

BH -2492.7 -2491.9 0.8

RM -2494.4 -2495.9 -1.5

BG -2494.4 -2496.3 -1.8

LM -2494.9 -2496.8 -1.9

CJI -2495.1 -2496.1 -1.0

GC -2495.2 -2498.3 -3.2

Bridge sampling estimators: harmonic mean (HM), reciprocal mean

(RM), bridge harmonic (BH) and bridge geometric (BG). Point-

based estimators: Gaussian copula (GC), independence Chib & Jeli-

azkov (CJI ) and Laplace Metropolis (LM).

6.4.2.2 Workplace Industrial Relations Survey (WIRS)

With regard to the the WIRS data (see Section 4.5.4 for details), all estimators yielded

”decisive evidence” against the one-factor model, for the 5-item and 6-item scales (Table

6.9).

6.5 Discussion and concluding remarks

The examples presented in Section 6.3 to 6.4.2 indicate that there are repeatable patterns

with regard to the estimated BML values and the associated MCE based on the BSE

and PBE methods. In particular, the bridge geometric estimator is associated with the

smallest error almost in all examples while the estimated BML value was well comparable

with the ones derived by the majority of the methods. On the contrary, the harmonic

mean estimator overestimated the likelihood in all examples. However, the largest MCE

was present in the case of the bridge harmonic estimator. In fact the MCE associated with

the BH was at least two times as large as the errors of the other estimators. However,

unlike the HM , the estimated BML value was well comparable with the rest of the

estimators. Finally, the RM estimator yielded BLM values close to the ones derived

by BG, with well comparable errors. It occurs that the existence of the importance

(reference) function g(ϑ) stabilises the BML estimators, even for high dimensional models
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Table 6.9: Marginal likelihood estimates for WIRS data (N = 1005, p = 5(6) & k = 2)

Five items Six items

Estimator log f̂(Y)k=1 log f̂(Y)k=2 log B̂F 21 log f̂(Y)k=1 log f̂(Y)k=2 log B̂F 21

HM -2772.9 -2762.2 10.7 -3431.1 -3357.8 73.3

BH -2789.6 -2773.4 16.2 -3453.2 -3385.6 67.6

RM -2785.6 -2782.5 3.1 -3454.2 -3387.6 66.6

BG -2785.9 -2783.6 2.3 -3454.3 -3388.2 66.1

LM -2786.7 -2783.0 3.7 -3456.3 -3387.1 69.2

CJI -2786.8 -2782.6 3.8 -3456.2 -3387.3 68.9

GC -2786.8 -2784.3 2.5 -3456.6 -3388.2 68.5

Bridge sampling estimators: harmonic mean (HM), reciprocal mean (RM), bridge harmonic (BH) and bridge geometric

(BG). Point-based estimators: Gaussian copula (GC), independence Chib & Jeliazkov (CJI ) and Laplace Metropolis

(LM).

(note that this was also true in the case of the importance posteriors). Finally, the four

bridge sampling estimators are not computationally demanding (less than 20 seconds per

1000 additional iterations for the 3-factor model).

Regarding the point based methods, the three estimators yielded similar BML values

in most cases, with close MCEs. It should be noted that the GC method yielded the

smallest estimated BML, in all examples. Moreover, the error of the CJI estimator

was increased (as compared to the LM and GC) in the case of the three factor model.

This result is related to the fact that the CJI uses nested MG runs that, in the case

of the three factor model, account for more than 2800 parameters. Even though the

MCE can be reduced by increasing the number of iterations R, the CJI estimator is

computationally demanding (ten minutes per 1000 additional iterations for the 3-factor

model). However, the method is favored by the fact that the posterior ordinate is directly

obtained by the Metropolis kernel, while no additional assumptions are imposed during

the marginal likelihood estimation. On the contrary, the LM and the GC estimators are

quick approximation techniques (less than a minute per per 1000 additional iterations for

the 3-factor model) but they impose distributional restrictions for the posterior, such as

normality or symmetry.

In conclusion, the bridge geometric estimator is favored in terms of stability of the es-
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timated values, MCE and computational time required. It is recommended as a generally

applicable method, provided that an efficient importance function can be constructed.

For multi-modal posteriors the importance posteriors (PSE) can be also considered. The

LM method is also highly efficient and quick and is appropriate if the posterior is not

expected to be highly skewed. The CJI method on the other hand, even though it is time

consuming, is recommended as a benchmark method since it is directly connected to the

Metropolis sampler (for instance it reveals MCMC issues such as the well known label

switching). These results are well comparable with previously reported ones referring to

other type of models, such as Han and Carlin (2000), Bos (2002), Lopes and West (2004),

Ardia et al. (2009), Marin and Robert (2009), Fiorentini et al. (2012) and Friel and Wyse

(2012) among others.
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Chapter 7

Discussion and future research

‘‘Science never solves a problem without creating ten more "

George Bernard Shaw∗

∗George Bernard Shaw (1856-1950): the only person who has been awarded both a Nobel Prize in

Literature (1925) and an Oscar (1938).
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The wide use of the LVMs in a variety of scientific fields nowadays, prompts for the

development of quicker and more efficient methods for latent variable modelling. Applied

research requires models that are easy to use but at the same time able to account for

increasingly complicated theoretical constructs. The LVMs ought to provide solutions

in fields where the arbitrariness of the problem at hand needs to be confronted with

robust mathematical and statistical tools. By nature, the LVMs are strongly related to

the ideas of Bayesian statistics. However, due to the dimensionality of models and the

corresponding computational burden, the LVMs are most often addressed in a semi rather

than a fully Bayesian perspective. Beyond the advances in computing, the basic features

and properties of the LVMs can be implemented in order to improve model estimation

and evaluation. This thesis was motivated within this context and hopefully the findings

presented here can be used to facilitate the research on the field. Shaw’s quote however

reminds us that the problems that need to be solved outnumber our solutions.

One of the most important features in Bayesian statistics is the prior information,

which determines to a great degree the imposed model. Up to this day, the standard

normal distribution is typically selected for the prior of the latent variables. Within the

fully Bayesian approach this choice can be challenged in a straightforward manner in order

to apply the latent variables methodology to different types of theoretical problems. With

regard to the model parameters, on the other hand, different choices have been proposed

in the literature. In the example presented here, a prior originally initiated within the

GLMs methodology, was used for the case of binary data (see Section 2.2). This prior

embodies a number of desired properties and can be expanded to other types of data.

Moreover, the priors of the latent and item parameters, need to address also the issue

of the identifiability in the case of the LVMs. The identifiability problem along with the

so-called model switching problem is an open issue, quite rigorous to address, especially

in the continuous case (latent trait models).

At this thesis the local independence assumption of the LVMs was used to reduce

the error of the MCMC estimators (Chapter 3) and to simplify the CJ estimator in

particular (Chapter 4). In a similar manner, the specific characteristics of the LVMs

can be used to modify and improve the sampling algorithms employed to draw samples

from the posterior. For instance, the Metropolis-within-Gibbs algorithm presented in

this thesis can be modified based on the local independence assumption in order to

reduce the computational time required, following for instance the ideas presented in the

computation of the CJI estimator.

In the last chapter of this thesis, the close relationship between thermodynamics

and Bayesian statistics was illustrated. Within the path sampling or the stepping stone

sampling methodologies it becomes apparent that the laws of thermodynamics find a

direct application in several aspects of statistics. Here, the Boltzmann-Gibbs distribution
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pertaining to different Hamiltonians was implemented to derive tempered transitions

along paths, linking the distributions of interest at the endpoints. Existing marginal

likelihood and Bayes factor estimators were reviewed along with their stepping-stone

sampling analogues. New estimators were presented and the use of compound paths was

introduced. The unified framework in thermodynamic integration offers new highways

for research and further investigation. Here we discussed only some of the possible future

research directions (Chapter 5). The thermodynamic integration can be proven a valuable

tool in statistics, not only in order to facilitate new methods for model evaluation, but

also in order to provide new intuition concepts such as the marginal likelihood, the prior

and the posterior distributions and their divergencies, the Bayes factor and others.

Thank you for reading this thesis,

Silia Vitoratou
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