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Introduction

Econometric time series models of changing variance and covariance have attracted a
lot of attention in modern economic theory. These models, which we call time-varying
volatility models, can capture the stylized facts which are observed in the squares or
absolute values of financial time series. The estimation of time-varying variances and
covariances is crucial for asset pricing, risk management and portfolio analysis. In this
thesis, we study and analyze existing univariate and multivariate time-varying volatility
models and we propose a new class of multivariate models. A complete analysis of the
models under consideration is presented by using Bayesian techniques. In particular,
we use Markov Chain Monte Carlo (MCMC) method, a powerful computer-intensive
statistical tool, which has been used extensively in a great variety of applications.

The thesis is organized in seven chapters. In the first chapter, we present Bayesian
inference by using MCMC methods. We discuss how MCMC algorithms can be con-
structed to produce Markov chains with the desired stationary distribution, and present
alternative updating schemes that have been proposed in the literature. We also dis-
cuss the Bayesian approach to model selection problem by using the Bayes Factor, and
present Bayesian model averaging that accounts for model uncertainty. In chapter two,
we propose a new diagnostic that can be used to detect when convergence of the MCMC
algorithms is achieved. This convergence diagnostic is based on the subsampling method-
ology, and on the construction of (1 — a) 100% confidence regions for the mean and for
the 90 — th percentile of the first marginal distribution of the Markov chain.

In the third chapter, we present some well known univariate and multivariate time-



varying volatility models, and discuss their properties. In chapter four, a full Bayesian
analysis of univariate GARCH and EGARCH models is proposed. We estimate the
model parameters by using MCMC methods, provide posterior model probabilities for
the analyzed models, and present a way to predict the future volatility via Bayesian
model averaging. We provide implementation details and illustrations using the General
index of the Athens stock exchange. An analysis of a multivariate class of ARCH and
GARCH models is presented in chapter five. Bayesian and classical techniques are used
for the estimation of the parameters of the models, and model comparisons are addressed
via predictive distributions. We provide implementation details and illustrations using
daily exchange rates of the Athens exchange market.

A new multivariate time series model with time-varying conditional variances and co-
variances is introduced and analyzed in chapter six. A complete analysis of the proposed
model is presented consisting of parameter estimation, model selection and volatility
prediction. Classical and Bayesian techniques are used for the estimation of the model
parameters. It turns out that the construction of our proposed model allows easy maxi-
mum likelihood estimates and construction of well-mixing MCMC algorithms. Bayesian
model selection is addressed using Markov chain Monte Carlo model composition. The
problem of accounting for model uncertainty is considered using Bayesian model averag-
ing. We provide implementation details and illustrations using daily rates of return on
eight stocks of the US market. Chapter 7 concludes the thesis and discusses some points

for future research.



Chapter 1

Bayesian Inference

1.1 Introduction

Bayesian inference is the process of fitting a probability model to a set of data and sum-
marizing the result by a probability distribution on the parameters of the model and on
unobserved quantities of interest. Using a Bayesian framework, observables and model
parameters are considered random quantities. However, the Bayesian paradigm requires
the calculation of various, usually intractable, multivariate integrals. The purpose of this
chapter is to present Markov Chain Monte Carlo methods, that have been suggested to
deal with this problem. We present more complex ideas, and discuss some implementa-
tional issues associated with MCMC methods. We present the Bayes Factor, which is
used for inference about the model selection problem, and discuss some model selection
strategies based on MCMC methods. We present and discuss ideas that have been mainly
used in our analysis of the time varying volatility models, and we do not provide a review

on these topics.



1.2 Bayesian Inference for a given model

1.2.1 The problem

Bayesian inference for parametric statistical models is based on the posterior distribution.
Given data y = (y1,¥2, ..., yr) from a distribution with likelihood function I (y|@) and a
prior density p (@) for the parameter vector @ = (04,65, ...,0,), @ € R", Bayes’ theorem

can be applied to obtain the joint posterior density

_ 1(yl9)p(6)
p(Oly) = TTy16)p(8) 86" (1.1)

The posterior density can be thought as a description of what is known about 6 from
the prior information p (@) and the data [ (y|@). The integral [ (y|@)p(8) 90 does not

depend on @ and the posterior can be written as

p(Bly) =c(y)l(yl@)p(0),

where ¢(y) = 1/ [1(y|@)p(0)06. Therefore, the posterior can be written up to a

constant of proportionality as

p(Bly) o<l (y|0)p(6).

The posterior density p(0|y) provides the basis for inference about 6. Marginal
posterior distributions for a parameter of interest, say ;, can be obtained by integrating

over the parameter vector @ except the ¢ — th element. That is,

p(bily) = / p(6ly) 06,

where 6\; is the (n — 1) x 1 parameter vector which contains all the elements except the

1 — th.



Posterior expectations such as means, variances, covariances, predictive distributions
etc., can be derived via p (8]y). For example, the posterior expectation of a function of

interest f (@) can be written in the form

Elf(0)]y] = / £(8)p(6ly) o6 (1.2)
(8)1(y]6) () 6
flyl@ 006

These quantities of interest (normalizing constant, marginal posterior distributions,
posterior expectations) require the computation of high dimensional integrals which make
the Bayesian inference difficult, from the computational point of view. In most applica-
tions, analytic evaluation of these quantities is impossible, especially in high dimensions.
Different computational strategies have been suggested to deal with the calculation of in-
tegrals required: numerical integration techniques (see, for example, Naylor and Smith,
1982, Smith et al., 1985, Dellaportas and Wright, 1991a, 1991b, 1992), analytical ap-
proximations (Tierney and Kadane, 1986, Tierney, Kass and Kadane, 1989a, 1989b,
Kass, Tierney and Kadane, 1988), Monte Carlo methods (Stewart, 1983, 1987, Stewart
and Davis, 1986, Geweke, 1988, 1989a), Sampling - Resampling, Markov Chain Monte
Carlo methods. A description of these strategies is given, for example, in Bernardo
and Smith (1994), Smith (1991), Evans and Swartz (1995), Dellaportas (1996). We de-
scribe sampling-based methods, such as Monte Carlo integration, Sampling-Resampling,
Markov Chain Monte Carlo methods, because of their conceptual simplicity and ease of
implementation in high dimensional problems. We present in detail Markov Chain Monte

Carlo methods which are the main tools in our analysis.

1.2.2 Monte Carlo Integration

Monte Carlo methods provide a systematic approach that can be applied in order to
evaluate the expectation of a function of interest f (€), given in equation (1.2). The main

idea is simple. Let {61,0,...,60,,} be an iid sequence of n-dimensional random vectors



having common probability density I (@). Then, the Monte Carlo approach estimates
the expectation in (1.2) by

m

- >, f(8:)w(6:)

&
=
=
<

I

where, w (0;) = [(y|0,)p(0;) /1(6;). The density I (0) is called importance sampling
density and the process of generating 8;, i = 1, ..., m according to I is called importance
sampling. The efficiency of the method depends on the choice of a suitable importance
sampling density /. Importance sampling densities are usually derived from multivariate
normal or Student t distributions. Monte Carlo methods have been extensively used in
Bayesian inference in Econometric models. See, for example, Kloek and van Dijk (1978),
van Dijk and Kloek (1983, 1985), van Dijk, Hop and Louter (1987), Geweke (1988, 1989a,
1991).

1.2.3 Sampling-Resampling approach

According to (1.1) the inference process is done by updating the prior density p (8) to the
posterior density p (6|y) through the likelihood function I (y|@). Sampling - Resampling
approach focuses on Bayes’ theorem from a sampling perspective. That is, having a
sample from the prior p(0) we form a sample from the posterior p(0|y) through the
likelihood function [ (y|@). This can be done by using the Rejection method for generating
random variates (see, for example, Ripley, 1987) or the weighted Bootstrap, which is a
variant of the Bootstrap resampling procedure (Efron, 1982).

According to the rejection method, each € generated from the prior density p (8), is
accepted as a sample point from the posterior p (8|y) with probability

[(yl®)p(0) 1(yl|0)

L(y18)p(6) 1(vl6)



otherwise @ is rejected. [ <y|§> is the value of the likelihood function at the maximum
6. That is, these @ in the prior sample having high likelihood are more likely to be taken
in the posterior sample.

According to weighted bootstrap, if 8;, ¢ = 1, ..., m is a sample from the prior density

p(0), we can take a sample from the posterior p (6|y) as follows: calculate

w; = 1(y|0,)p(0:) /p(0:) =1(y]6,)

and then
% = Wi _ l(ywi)

;wi ;l(ywi)

Draw 6" from the points {64, ...,60,,} with probability ¢;, ¢ = 1,...,m. Then, 8" are
approximately distributed according to p(@|y). See, for details, Smith and Gelfand
(1992).

1.2.4 Markov Chain Monte Carlo methods

Markov Chain Monte Carlo methodology is the main computational tool in Bayesian
Statistics, because it provides an idealized way to extract any posterior summary of
interest such as functions of parameters. The idea of MCMC was first introduced by
Metropolis et al. (1953) and was extended by Hastings (1970) for statistical problems.
The basic idea of MCMC is similar of Monte Carlo but instead of drawing samplers from
the posterior distribution via an importance sampling density, MCMC draws samples by
running a cleverly constructed Markov chain for a long time.

The general formulation is as follows: suppose that, for a given parameter vector
0 € R" and data y, we want to generate a sample from the posterior distribution p (6|y),
known up to a constant of proportionality. The idea is based on the construction of
an irreducible and aperiodic Markov chain, which is easily simulated, with realizations

0 9 .. 60U .. in the parameter space, equilibrium distribution p (Bly) and a transi-



tion probability K (0”, 9’) —p (9““) —9"|0® = 9’), where 6 and 8" are the realized
states at time ¢ and ¢ + 1 respectively. Under appropriate regularity conditions, asymp-
totic results guarantee that as t — oo, 8% tends in distribution to a random variable
with density p (8]y), and the ergodic average of an integrable function of @ is a consistent

estimator of the (posterior) mean of the function. That is,
60" — 0 ~ p(Bly), in distribution

and
1o .
7 Z f (0(’)) =% FEgpy [f (8)] almost surely.
i=1

For more details about theory and application of MCMC methods, see, for example,
Smith and Roberts (1993), Besag, Green, Higdon and Mengersen (1995), Gilks, Richard-
son and Spiegelhalter (1996).

In the MCMC methods the target distribution (the distribution from which we want
to generate a sample) is known, and the transition probability or transition kernel K
is unknown. There are many possible choices for the transition kernel K, each leading
to different sampling schemes. There are two main ideas used for the construction of
sampling schemes. The first idea proceeds by splitting the parameter space into a number
of components and updating each in turn by using conditional distributions. It is the
basis for the Gibbs Sampler. The second idea proceeds by using proposal distributions
for the components of the parameter space and is the basis for the Metropolis-Hastings
algorithm. A combination of these two sampling schemes is called Metropolis-within-

Gibbs. A detailed description of these sampling schemes follows.

The Gibbs Sampler

The Gibbs Sampler was introduced by Geman and Geman (1984). Investigation of the
applicability of the Gibbs sampler approach to Bayesian statistical problems was given by
Gelfand and Smith (1990). The Gibbs sampler is a technique for generating samples from



the joint posterior distribution p (8]y), via iterated sampling from the full conditional
distributions p (91-]9\2-, y), i=1,2,...,n (i.e. the distribution of each individual element
of @ conditional on specified values of the data y and all the other elements of ). It

is an iterative sampling scheme that proceeds as follows: given arbitrary starting values

09 — <9§0),9§0), . 99) for the parameters, draw

61" from p (91 105,657, ...,0, y)
6" from p (02|9§”, o0, .0, y>

o8 from p (04101, 68", 6”0, y )

o from p (6,65, 6", ... 60y )

This completes one iteration from 8© to @Y. After ¢ iterations the chain will be at
0 = (9@, Hg), - 69). This sampling scheme produces a sequence 0 oW .. 6", ..
which is a realization of a Markov chain with transition probability from 8% to 8¢+
given by

K (0“*1), 0“’) - ﬁp <9§t+1)|9§.”,j >, 60 j <, y) .

i=1
If we replicate independently m times the above sampling scheme, we will take m repli-
cates of the sampled vector 8%). Then as ¢t — oo, the replicates 9?),99, ...,9,(7? are
approximately a random sample from the posterior p (8]y). For more details and applica-
tions about Gibbs sampling, see, for example, Gelfand and Smith (1990), Gelfand, Hills,
Racine-Poon and Smith (1990), Casella and George (1992), Besag and Green (1993),
Dellaportas and Smith (1993), Gilks, Thomas and Spiegelhalter (1994), Spiegelhalter,

Thomas, Best and Gilks (1995a, 1995b) among several others.



The Metropolis-Hastings algorithm

The Metropolis-Hastings (M-H) algorithm was introduced by Metropolis et al. (1953)
and extended by Hastings (1970). It is a clever method that can be used by itself or in
conjuction with the Gibbs sampler to simulate intractable full conditional distributions.
That is, when the full conditional distributions can be specified and are of known form
the Gibbs sampler is used. In the cases where the full conditional distributions are not of
known form (non standard distributions) or the full conditional distributions are complex
enough, we use the Metropolis-Hastings algorithm.

Suppose that the parameter vector of interest is @ = (61,65, ...,6,) and we want to
generate a sample from the posterior distribution p (8|y) by using the n full conditional
distributions p (Qi\O\i,y), i = 1,2,...,n, which are not of known form (non standard
distributions). The update of the parameter vector 0 = (99, 99), oy 99) at time ¢, to

i 6(t+1)> at time t + 1, is done by updating all the components

61@, 1 = 1,...,n one by one. We refer to it as a single component update M-H. That
is, an iteration of the single component update M-H is consisted of n updating steps.
We describe one updating step of the algorithm and the other steps are done with an

analogous way. For step ¢ of iteration ¢ + 1, 81@ is updated to take 85”1) using the

Metropolis-Hastings algorithm as follows:

e a candidate 9; is generated from a proposal distribution ¢; (9@, 9;) Thus ¢ (.,.)

1

generates a candidate only for the ¢ — th component of the parameter vector 6.

e calculate the probability of acceptance

p (9;\0\z~, y) g (9;, 92@)
p (9?) 60\, y) i (9@@, 9;)

a <9@ 9/-) =min ¢ 1,

[}

where p <9;]0\i,y> is the full conditional distribution of the ¢ component of 6
evaluated at 0, 6,; = (9?*”, SR N N 95?) .

10



e update HEHI) — ¢’ with probability a (0@ 8/->, otherwise QZ(HD = 82@.

[ )

Gibbs sampler is a special case of the single component update M-H algorithm since,
when the proposal density ¢; (81@, 8;) equals to the full conditional distribution of the i —
th component p (9;\0\@ y> , the probability of acceptance a (91@, 9;) is one and therefore
we always accept the proposed move for the ¢ — th component.

Another alternative is to use a simultaneous component update M-H algorithm, where
all the components of the parameter vector @ updated simultaneously, by using a mul-
tivariate proposal distribution. In this case, the update of the parameter vector 8 =
(Qgt), Hgt), e 89) at time ¢, to @4V = <0§t+1), QgtH), e HSH)) at time t 4 1, is done by

using the following step:

e a candidate parameter vector 0 is generated from a multivariate proposal distrib-

ution ¢ (O(t), 0') .

e calculate the probability of acceptance

a<0<t>,0'):min 1,p<¢9/‘y>q(el"9(w> , (1.3)

07)a(070)

where p <0'\y) is the posterior distribution evaluated at 0.
e update 8TV = @' with probability a <9(t), 91), otherwise 81 = ),

The proposal distribution q <0(t), 0'> can have any form and the stationary distri-
bution of the chain will be p(0]y). The transition kernel for this Metropolis-Hastings
algorithm is given by

K (69,69) = q(69,6')a (69,6')+ {1 - / 1(09,6')a (0.6 ae’] 1(6%0 —60),

where [ (.) denotes the indicator function, taking the value of 1 when the argument is true

and 0 otherwise. Note that, the calculation of a (0(t), 0'> does not require knowledge

11



of the normalizing constant of p (8|y) because it appears both in the numerator and
denominator.

An important implementation issue about Metropolis-Hastings algorithm is the choice
of the proposal distribution ¢ (.,.). In the case where the candidate generating density is
symmetric, i.e. q (O(t), 0’) =q <9/, O(t)), then the probability of acceptance (1.3) reduces
to

a <0(t), 01> =min< 1, M
p (9(” |Y>
That is, if p (0'|y> >p (B(t) |y), the chain moves to 8, otherwise, it moves with proba-
bility p (9'@ /p (O(t)!y)

If the candidate 8 is drawn according to 0 = 09 + z, where z ~ f, the algo-
rithm is called random walk M-H. Possible choices for f are the multivariate normal or
multivariate-t distributions. In this case, it is that ¢ <0(t), 0'> =f (BI — B(t)).

Another kind of candidate generating densities has the form ¢ (O(t), 0’) = f (9/).
That is, the candidate values 0 are drawn independently of the current values 0M. 1t is

the independence M-H algorithm, and the probability of acceptance is given by

where w (0') =p <0'|y> /f (0'> is the importance weight function that could be used
in importance sampling if observations generated by f. More details about theory and
applications of the Metropolis-Hastings algorithm are given by Smith and Roberts (1993),
Tierney (1994), Chib and Greenberg (1995), Gilks, Richardson and Spiegelhalter (1996).

Metropolis-within-Gibbs

It is common, in practice, to use a combination of different strategies (combination of

different transition kernels) to improve convergence of the MCMC algorithm. One simple

12



example is the combination of Metropolis-Hastings algorithm with the Gibbs sampler.
Components of the parameter vector whose full conditional distributions are of known
form are updated directly by using Gibbs sampling, while those with non standard con-
ditional distributions are updated by using Metropolis-Hastings steps. This scheme is

known as Metropolis-within-Gibbs.

1.2.5 Convergence of the MCMC simulation

The main problem that turns up is to gauge when convergence is achieved; that is, to
assess at what point the chain gets in the target distribution, and to figure out how many
points will have to be taken from this distribution in order to estimate, with the desired
accuracy, the parameters of interest. The first part of the problem is that of determining
the length of the required burn-in period or the point in which the Markov chain has
‘forgotten’ its starting point; parameter values within an initial transient phase are dis-
carded, in order to reduce the bias caused by the effect of starting values. The second
part is that of determining the number of sample points which adequately represent the
posterior distribution and on which inference will be based.

To solve the problem of convergence, a number of different approaches have been
proposed in the literature. From a theoretical point of view, there is an attempt to
predetermine the number of iterations that will ensure convergence; see, for example,
Schervish and Carlin (1992), Rosenthal (1993), Polson (1996). Due to the difficulty
of this approach in practice, almost all of the applied works are based on the output
produced by running Markov Chain Monte Carlo algorithms. Such techniques are known
as convergence diagnostics and described in the review papers of Cowles and Carlin
(1996), Robert and Mengersen (1998), and of Brooks and Roberts (1999). Some of
the proposed methods try to assess convergence, while others attempt to ‘measure’ the
performance of any particular sampler. The choice of diagnostic depends on the problem
at hand. The theoretical background, the assumptions, the assessment of convergence

of the joint or the marginal density of an MCMC output, the number of chains that are

13



needed, the range of the samplers to which the diagnostic is applied, the computational
expense and the interpretability are some of the criteria for the choice of the diagnostic.
Some well known convergence diagnostics are that of Gelman and Rubin (1992), Raftery
and Lewis (1992), Geweke (1992) and of Heidelberger and Welch (1983) because they are
easily implemented.

Cowles and Carlin (1996) proposed to use a combination of strategies aimed at eval-
uating and accelerating the convergence of the MCMC algorithms, including applying
diagnostic procedures to a small number of parallel chains, monitoring autocorrelations
and cross-correlations, and modifying parameterizations or sampling algorithms appro-
priately. Implementation issues such as the reparameterization of the target distribution,
the introduction of auxiliary variables and the use of alternative updating schemes can
improve convergence. A comprehensive review of MCMC methods and other related im-
plementation issues is given by Brooks (1998) and a discussion of these issues is provided
by Kass, Carlin, Gelman and Neal (1998). Although it is never possible to say with
certainty that an MCMC output converges to its stationary distribution, convergence

diagnostics provide a helpful tool in exploring the algorithm’s performance.

1.2.6 Alternative Updating Schemes

Alternative updating schemes have been proposed to overcome problems associated with

slow mixing Markov chains.

Metropolis-coupled Markov Chain Monte Carlo and Simulated Tempering

Metropolis-coupled MCMC (Geyer, 1991) and Simulated tempering (Marinari and Parisi,
1992, Geyer and Thompson, 1995) are MCMC methods which simulate a family of m
distributions specified by the unnormalized densities h; (0), i = 1,...,m, on the same
parameter space. The index i is called ‘temperature’, ranging from the ‘cold’ distribution
hy (0), which is usually the distribution of interest, to the ‘hot’ distribution h,, (@), which
is easily simulated. Geyer and Thompson (1995) suggested taking h; (8) = [h (0)]1/ ‘

14



¢t = 1,...,m, where h,, correspond to a uniform distribution over the entire parameter
space. h (@) can be the posterior distribution of interest p (6|y).

Simulated tempering works as follows. Suppose that for each 7,7 = 1, ..., m, there is a
method (Metropolis-Hasting algorithm or Gibbs sampling) for updating @ that has h; (0)
as a stationary distribution. The state of simulated tempering is the pair (8, ), where 0
takes values in the common parameter space for all h; (8) and ¢ is the temperature. One

iteration of the simulated tempering algorithm is given by the following steps:

e starting from temperature ¢, update 8 using Metropolis-Hasting algorithm or Gibbs

sampling.

e propose a move from temperature ¢ to temperature j (j = £1) according to prob-

abilities g; ;, where q12 = ¢mm-—1 =1 and ¢ i+1 = g1 = % ifl<i<m.

e accept the transition from i to j with probability

- : h; (B)W(j)%z}
a(t,j) =min<q 1, ————=—=— % 1.4

63) =min {1, 3T )
where 7 (i) and 7 (j) are appropriate normalization constants for the densities h;

and h;, respectively.

From the resulting Markov chain, we base our inference on all observations which
were drawn from the ‘cold’ distribution, i.e. from the density h;. The advantage of this
method is that improves the mixing of the chain by using the ‘hot’ distributions. These
distributions mix more rapidly than the ‘cold’ distribution. The main drawback of this
method is the estimation of the normalization constants = (i), i = 1, ..., m, appearing in
equation (1.4).

Metropolis-coupled MCMC is based on a similar idea, but instead of running one
chain we run m chains {6}, ¢ = 1, ..., m, where updates in chain ¢ are based on h;. One

iteration of Metropolis-coupled MCMC algorithm proceeds as follows:

15



e update each chain i, ¢ = 1,...,m, using Metropolis-Hasting algorithm or Gibbs

sampling.

e select two chains and attempt to swap the states of these chains. Suppose, that, at

time t, we select chains ¢, j and propose the swap 9;- = 9§-t) and 9;- = 02@.
e accept the proposed swap with probability

) ni (6:) hs (6))
ni (67) ns (8)

We base our inference only on the sample taken from the chain with stationary dis-

min

tribution hj, that is the ‘cold’ distribution. The advantage of this algorithm is that
the mixing of the ‘cold’ chain is improved by allowing the chains to swap states. The

disadvantage is that we run m chains while we actually need only one for inference.

Delayed Rejection Algorithm

The idea of Delayed rejection algorithm was proposed by Tierney and Mira (1999). This
strategy improves the Metropolis-Hastings algorithm in the Peskun sense (Peskun, 1973)
that the resulting estimates have smaller asymptotic variance on a sweep by sweep basis.
When a Markov chain remains at the same state over successive iterations, the au-
tocorrelation of the realized chain increases and thus the variance of the estimates. In
a Metropolis-Hastings algorithm this happens when the proposed parameter value is
rejected. Tierney and Mira (1999) improved the Metropolis-Hastings algorithm by re-
ducing the probability of remaining at the current state using the following idea: when
a candidate value is rejected, instead of staying at the current value, propose a new can-
didate from a different proposal distribution, and accept or reject that candidate using
an adjusted acceptance probability in order to preserve the stationary distribution.
Suppose that we want to generate a sample from the posterior p (8|y) and that the

chain at time ¢ is at Y. According to the delayed rejection algorithm a candidate 0'1 is

16



generated from a proposal distribution ¢; (B(t), 0;) and accepted with probability

p (9'1\}’) @ (0'1, 9(”)
p (9(”|Y) @ (6’“), 91)

ap (9(”,0’1) =min< 1,

If the candidate 0'1 is rejected, a new candidate 0'2 is generated from a new proposal
Q2 <0(t), 9/1, 9'2) at the second stage. Tierney and Mira (1999) derived the probability of
acceptance for this candidate by imposing detailed balance at the second stage in order

to preserve the stationary distribution. The probability of acceptance is given by

p (9'2|Y> ¢ (9'2, 91) Q2 (9'2, 0. 9(”) [1 —a (9'2, 9'1)]
(078) a0 (070) (070, ) [~ (070

ag (9@),0’1,9’2) —mind 1,

If the candidate 0’2 is rejected the algorithm can either stay at the current state 09, or
move on the third stage, and so on. In order to maintain the stationary distribution, the
probability of acceptance of new candidates is calculated by imposing detailed balance
separately at each stage. The probability of acceptance for the candidate at stage i is
presented by Mira (1999).

The symmetric delayed rejection algorithm is a special case of the above algorithm,
where the proposal distribution is symmetric and depends only on the last rejected can-

didate. In this case the probability of acceptance at the first stage is

, _ p(64ly
ay (0@),01) = min 1,%

as in the regular Metropolis algorithm. If 8] is rejected, a new candidate 6, is generated

17



from ¢ (0'1, 0;) and accept it with probability

as (9(t), 9’1, 912) =min< 1, e {O, {p (9;\y) B pl<9’1\y>] }
p(691y) - p(6ily)

Generally, the ¢ — th stage of the symmetric delayed algorithm works as follows: if the
0;_1 is rejected, generate a candidate 0;- from g; <0;_1, 0;), and accept it with probability

) o0 0)r o))

p(6V1y) —p (6.ly)

where p (0;]y> =arg max p (9;\y> For more details about delayed rejection algorithm,
j<i
see, Mira (1999).

1.3 Model Selection Strategies

1.3.1 Bayesian Model Comparison

Assume that we have a countable set M of competing models for a given set of data
y = (Y1, Y2, .., yr). Let model m € M have a vector 8,, € ©,, of unknown parameters,
the dimension of which may vary from model to model. The posterior probability of

model m is given by

~ p(m)p(ylm)
Pimly) = 5~ p () (15)

meM
where p (m) is the prior probability for model m, and p (y|m) is the marginal likelihood

of the data for model m. According to (1.5) for models m; and m; we have that

p (mily) Db (mq) p (ylmi)

p(myly)  p(my)p(ylm;)

18



That is, the ratio of prior probabilities transformed to the ratio of posterior probabilities
through consideration of the data.
Inference about the model selection problem may be done using the Bayes Factor

(BF') of model m; against model m; given by

p(ylmi)  p(msly) p(my)
p(ylm;)  p(myly) p(ms)

The density p (y|m;) is obtained by integrating over the parameter space, so that

p(ylms) = / P (v18,, 1) p (Br, [m:) B, (L.7)

Om

i

where 0,,, is the parameter vector for model m;, p (y[@mi, mi) is the likelihood given the
model m; and the parameter vector 6,,., p (0,,,|m;) is the prior for the parameter vector
0,,, given the model m;. Therefore, the Bayes Factor of model m; against model m; (1.6)
can be written, using (1.7) as

Om,

BF = .
f p (yyemja mj) b (emj ‘m]) demj
®mj

(1.8)

Note that, all constants appearing in the likelihoods p (y|0mi,mz~) and p <y|0mj,mj>
must be retained when computing Bayes Factor in equation (1.8).

According to Kass and Raftery (1995), “the Bayes Factor is a summary of the evidence
provided by the data in favor of one scientific theory, represented by a statistical model,
as opposed to another”. Possible interpretations of Bayes Factor are given by Tables 1.1
and 1.2 provided by Kass and Raftery (1995). The logarithm of the marginal likelihood
of the data may also be viewed as a predictive score. In this case, the interpretation of

the Bayes Factor does not depend on viewing one of the models as ‘true’.
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logio (Bij) Bi; Evidence against m;

0to 0.5 1to 3.2 Not worth more than a bare mention
0.5btol 3.2to10 Substantial
1to2 10 to 100 Strong
>2 >100 Decisive

Table 1.1: Bayes Factor interpretation (log;o scale).

2log. (Bij) B;; Evidence against m,
0 to 2 1to3 Not worth more than a bare mention
2t06 3 to 20 Positive
6 to 10 20 to 150 Strong
>10 >150 Very strong

Table 1.2: Bayes Factor interpretation (natural logarithm).

1.3.2 Calculation of the Bayes Factor

Bayes factor requires evaluation of the integrals in the numerator and denominator of
(1.8) which are the marginal densities p (y|m;) and p(y|m;). These integrals are in
general difficult to calculate; Kass and Raftery (1995) provide an extensive description
and comparison of available numerical strategies. Here, we describe Laplace’s method
(see, for example, Tierney and Kadane, 1986, Tierney, Kass and Kadane, 1989a, Erkanli,
1994, Raftery, 1996) and variants of Laplace’s method, which are used in the multivariate
latent GARCH model we introduce in chapter 6.

The Laplace’s method of approximation of (1.7) is given by
(ylmy) = 0™/ [S1Y2p (310, m:) p (@0 | 1.9
p(y|m;) = (2) 1Z[7p (¥[€m:,mi ) p (O ) (1.9)

where d,,,, is the dimension of the parameter vector 6,, of model m;, p (y\émi,mi>
and p <§m

I - 1
mode 6,,,, ¥ = [—D2l (Omi)] , D?1(0,,,) is the Hessian matrix of second derivatives

mi> are the likelihood and the prior, respectively, evaluated at the posterior

of 1(8,,,), where [ (0,,,) = log (2 (¥10,,,,m:) P (Om,Imi)]. According to Kass and Raftery

(1995), when Laplace’s method is applied to both the numerator and denominator of
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(1.8), the resulting approximation has relative error of order O (T 1).

An important variant of (1.9) is

—

DT = )" 5172 (y1B ) p (B (110

where ¥ is the inverse of the negative Hessian matrix of the log-likelihood evaluated at the
maximum likelihood estimator G,,,, p (y|§mi, mz-) and p (ém |mz> are the likelihood and
the prior, respectively, evaluated at @m This approximation is easily computed from
any statistical package that reports the maximum likelihood estimator, the observed
information matrix, and the value of the maximized likelihood. The relative error of
this approximation is again of order O (T !). Another alternative is to use the inverse
of the expected information matrix in place of S in equation (1.10). The resulting
approximation has a larger asymptotic relative error of order O (T_l/ 2), but (see, Kass
and Raftery, 1995) it remains sufficiently accurate to be of use in many problems.

Other methods can be used for the calculation of Bayes Factor such as simple Monte
Carlo, Importance Sampling and Gaussian Quadrature, and methods for simulating from
the posterior; see, for example, Kass and Raftery (1995), DiCiccio, Kass, Raftery and
Wasserman (1997).

1.3.3 Bayesian Model Averaging

Assume that we have a countable set M of competing models my, mao, ..., my, for a given
set of data y. Each model is compared in turn with m, yielding Bayes factors By, Bsi,
..., Bayn- Then, Bayes factors provide the posterior model probabilities. The posterior
probability of model m; is

a; B;
p(mily) = ——, (1.11)

> a;Bj
j=1

where a; = p(m;) /p(mq) is the prior odds for model m; against mq, i = 1,..., M, and

Bll = 1.
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Having been able to calculate the posterior probabilities of each model, it seems nat-
ural to account for model uncertainty in our predictive inferences. Rather than choosing
a single “best” model and then making inferences as if the selected model was the true
model, we can use the following model averaging approach, which provides composite
predictions. Suppose that we are interested in a quantity A. For example, in time
varying volatility models we analyze in the following sections, this quantity may be the
volatility at a future time period. Then, its posterior distribution given data y is given

by

p(Aly) = ZP(A|mi;Y)p(mz’|Y)7 (1.12)

which is an average of the posterior predictive distribution under each model weighted
by their posterior model probabilities. Note that, the posterior predictive distribution of

A given a particular model m; is found by integrating out the model parameters 6,,,:

O,

We can also use the maximum likelihood approximation:
p (A‘mm Y) =p (A’mu y70m¢> )

where éml, is the maximum likelihood estimator of the parameter vector 6,,, of model
m;. See, for example, Volinsky, Madigan, Raftery and Kronmal (1997). For discussion of
the above approach as well as evidence that accounting for model uncertainty improves
predictive performance see Kass and Raftery (1995), Draper (1995), Madigan, Gavrin
and Raftery (1995), Raftery, Madigan and Hoeting (1997), Volinsky, Madigan, Raftery
and Kronmal (1997) and Raftery, Madigan and Volinsky (1994).
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The posterior mean and standard deviation of A are given by

EAly] = Z E[Alm;, y]p (mily)

and
M

VIAly] =) (V[Almi,y] + (B [Almi,y])*) p (mily) — E[Aly]*.

i=1

Note that, equation (1.12) shows that choosing a single model and proceeding condi-
tionally on it may be reasonable if one of the p (m;|y) is close to unity or if the sum is
dominated by models for which the values of p (A|m;,y) are similar. If this is not the
case, the analysis will not take account for model uncertainty; see, for example, Kass and

Raftery (1995).

1.3.4 MCMC model search methods

Implementation of Bayesian model averaging (BMA) is difficult for two reasons. First,
the Bayes factor can be hard to compute, and second, the number of terms in equation
(1.12) can be enormous. An ad hoc procedure for accounting for model uncertainty is
the Occam’s window algorithm of Madigan and Raftery (1994). We will not describe this
algorithm; see, for example, Madigan and Raftery (1994), Raftery, Madigan and Hoeting
(1997) among several others. In this section we describe some Markov chain Monte Carlo
methods that provide posterior model probabilities and therefore can account for model

uncertainty using Bayesian model averaging.

Markov chain Monte Carlo model Composition (MC?)

Markov chain Monte Carlo model Composition (MC?) was introduced by Madigan and
York (1995). MC? generates a stochastic process that moves through the class of models
under consideration. They constructed a Markov chain {m (¢), ¢t =1,2,...} with state

space the model space and equilibrium distribution p (m;|y). If this Markov chain is

23



simulated for ¢ = 1,..., N, then under certain regularity conditions, for any function

f (m;) defined on the model space, the average

F=3Y 0 m@)

is a consistent estimate of the E [f (m)]; see, for example, Smith and Roberts (1993). To
compute (1.12) in this way set f (m) = p(A|m,y).

To construct the Markov chain they defined a neighbourhood nbd (m) for each model
m. They also defined a transition matrix ¢ by setting ¢ (m — m’) = 0 for allm’ ¢ nbd (m)
and ¢ (m — m’') constant for all m’ € nbd (m). If the current state of the chain is model

m then m’ is drawn from ¢ (m — m') and accepted with probability

. {1 Inbd(m)lp(m'|y)},

min ¢ 1, ;
[nbd (m/)| p (mly)

where |nbd (m)| is the number of models that belong in the neighbourhood of model m.

Otherwise, the chain stays in state m. Note that, if [nbd (m)| = |nbd (m’)| and all models

are equally likely a priori then the probability of acceptance is given by

m/
min < 1, ]M .
p(ylm)
This process is very flexible and runs of 10000 iterations or less are typically adequate.
Model averaging by the Occam’s window and MC? provide better predictions than using

a single “best” model. The MC? method has better predictive performance than Occam’s

window, but is more computational expensive.

Reversible Jump MCMC

Green (1995) introduced a reversible jump MCMC strategy for generating from the joint
posterior p (m, 0,,]y), based on the standard Metropolis Hastings approach. During re-
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versible jump MCMC sampling, the constructed Markov chain moves within and between
models so that the limiting proportion of visits to a given model is the required p (m|y)
in (1.5). The reversible jump MCMC has been applied by Richardson and Green (1997)
for an analysis of univariate normal mixtures, Nobile and Green (1997) for factorial ex-
periments using mixture modelling, Troughton and Godsill (1997) for autoregressive time
series, Dellaportas, Karlis and Xekalaki (1997) for an analysis of finite poisson mixtures,
Dellaportas and Forster (1999) for analysis of contingency tables and Vrontos, Dellapor-
tas and Politis (2000) for analysis of univariate GARCH and EGARCH models.

In general, suppose that the current state of the Markov chain at time ¢ is (m, 8,,),
where 6,, has dimension d,,, and a move is proposed at time ¢ + 1 to a new model
m’ with probability j (m, m') and corresponding parameter vector Blmf of dimension d,/.

Then, a vector u is generated from a specified proposal density g (u]Om, m, m') and we set
-1

]
m,m

(B;nl , u’) = G’ (Om, 1) for a specified invertible function g,, ./ such that g,/ ., = g
Note that d,,+d (u) = d,,+d (u'). Green (1995) showed that if the new move is accepted
as the next realization of the Markov chain with probability a = min {1, r} where

D (y|m', B;n/> D (9’m/|m'> D (m') j (m', m) q <u1|9’m/,m',m>

LT T D (ym, 00) p(Om]m) p (m) j (m, ) q (u]B,,, m,m) 71, (1.13)

with J = 9 (O;nl,u'> /0 (0,,,u) denoting the Jacobian of the transformation, then the
chain satisfies the condition of detailed balance and has the required limiting distribution
p(m,0,,]y). The condition of detailed balance requires that the equilibrium probability
of moving from a state (m, 6,,) to (m', 0;7,/) equals to that of moving from <m', 9;7,/) to
(m, 0,,); see, for details, Green (1995). To implement the reversible jump MCMC we need
to specify the probability j (m, m') for every proposed move, the proposal distributions
q(ul@,, , m, m), q (u’\OZn/,m',m> and the function g, /. These choices do not affect
the results but may be crucial for the convergence rate of the Markov chain.

Another strategy, which does not require a function g but requires proposal densities ¢

of higher dimension is as follows. First, we suggest that all the parameters of the proposed
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model are generated from a proposal distribution. Consequently, (0;n,,u'> = (u,0,,)

with d,, = d (u'), d=d(u),qul8, ,m m)=q (u|m'), q <u'|0'm,,m',m> =q (u'|m)

and the Jacobian term in (1.13) is one. In this case, the probability of acceptance of the

new move as the next realization of the Markov chain is given by @ = min{1,r} , where
P (y\m', O;n/> D (OIm/]m') D (m') j (m', m) q (u’\m)

L T P, 0,) p (Omlm) p (m) j (mym) g () (1.14)

The proposal densities q (u|m') and ¢ (u'|m) can be chosen by investigation of a “pilot
run”: we start a Markov chain for each model from the best available starting values (for
example the maximum likelihood estimates if they exist) and simulate the “within model”
Markov chain a large number of times, in order to obtain approximate marginal posterior
means and covariance matrices for each model parameter vector. These estimates are
then used to construct proposal densities ¢ (u\m') and ¢ (u’\m) taken as multivariate
normal densities. To complete specification of our reversible jump MCMC algorithm,
we need to specify the probabilities j (m,m’). We have used j (m,m’) = (|M|— 1!
for all m,m’ € M, which is the simplest choice, where |M| is the number of different
models which are used in the reversible jump MCMC algorithm. The assessment of the
convergence of Reversible Jump MCMC simulations is addressed by Brooks and Guidici

(1998). Different Bayesian model selection strategies using MCMC are presented in
Ntzoufras (1999).

1.3.5 Model Determination using Predictive distributions

Predictive distributions can be used to address the issues of model adequacy and model
selection. This seems natural since one of the most important practical use of models
is to construct predictions. According to Box (1980) the posterior distribution is used
for the estimation of the model parameters while the predictive distribution enables the
comparison of the models.

Suppose that y is a vector of T observations, @ is a n-dimensional vector of the
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parameters of interest and Yr,; is an unknown observable. The distribution of Y, is

the posterior predictive distribution and is given by

p(Yraaly) = / p (Yr10) p (Oy) dO,

where p (0]y) is the posterior distribution of 8. p (Yry1]y) is an average of conditional
predictions over the posterior distribution of 8. The predictive distributions p (Y741]y)
are to be checked against the real value yr,; in the sense that, if the model holds, y; 4
may be viewed as a random value from p (Y71]y). We assess the comparative validity of
models under consideration by using the estimate of the predictive densities p (yr11|y).
The MCMC methods, described in previews sections, produce observations from the
joint posterior p (@]y). Hence, the outputted 65, s = 1,..., B can be used to carry out

computations needed for model comparison. The estimate of the predictive density is

B
P(yraly) = B™' ) p(yral6s,y).

s=1

To estimate P one-step-ahead predictive densities p (yr41|y) we use the previous T, T +
T+P—1
1,...,T+ P —1 data points. The quantity [][ D (y:11]y) is used for model comparison.
=T
T+P-1
The model with the largest value of [[ p(y:41]y) may be viewed as the most preferable.
=T

Equivalently, between two models m; and m; , we choose model m; if

(mi ) ~
log [H(m,)f(ytHW)] >0,
H ! p(ywlb’)

where [T B (ys41]y) is the product of all p (y41]y), t = T, ..., T+P—1 under model m; .
This criterion is described in more detail in Gelfand, Dey and Chang (1992), but their
approach is a cross validation one. Vrontos, Dellaportas and Politis (1999) have used this
criterion for the comparison of a class of multivariate ARCH and GARCH models, and

Vrontos, Giakoumatos, Dellaportas and Politis (2000) have used it for the comparison of

27



multivariate GARCH and Stochastic volatility models. Similar diagnostic measures are
presented by Pitt and Shephard (1999) in order to compare stochastic volatility models.
Other criteria based on predictive densities are presented, for example, by Laud and

Ibrahim (1995).
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Chapter 2

Using the Subsampling methodology

2.1 Introduction

In this chapter we introduce a new convergence diagnostic method which assesses the
convergence of both marginal and joint posterior densities. It can be applied to any
MCMC sampler and uses the output from a single chain to gauge convergence. General-
ization for multiple chains is straightforward, and the diagnostic can be very useful when
there is suspicion of very influential starting points; see Gelman (1996). The diagnostic
can be used to detect MCMC convergence in great generality and does not need to be
combined with other methods in order to be effectively implemented. The subsampling
method for statistical inference as developed by Politis and Romano (1994) and Politis,
Romano and Wolf (1997) is used in this diagnostic. The diagnostic is based on obtaining
(via subsampling) (1—«)100% confidence regions for the posterior mean and for the 90th
percentile of the first marginal distribution of the Markov chain at hand; the assessment
of convergence can be done by using the coefficient of determination of a weighted linear
regression. An alternative diagnostic is also proposed that uses the asymptotic normal
distribution together with a subsampling estimate of the asymptotic variance-covariance
matrix. A recent approach, which also looks with different perspective at the use of

confidence intervals as a means of convergence diagnosis, is given by Brooks and Gelman
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(1998). The authors generalize the method of Gelman and Rubin (1992) and they use
the (squared) ratio of the lengths of the empirical estimated confidence intervals for the
parameters of interest as an alternative interpretation of the R diagnostic (Gelman and
Rubin, 1992), which is defined as the ratio of the between and within variance of the
MCMC sequences. This alternative calculation of R is simpler than the original ratio of

variances and is free from the assumption of normality.

2.2 The Subsampling methodology

The basic ideas of subsampling methodology for time series (Politis and Romano, 1994
and Politis, Romano and Wolf, 1997) are described. Let (y1,y2,....,yn) be an observed
stretch of a multivariate time series {ys, s = 1,2, ...}; each y is assumed to be a (p x 1)
vector. The time series is also assumed to be strong mixing, and asymptotically station-
ary.

The assumption of strong mixing is an assumption of “asymptotic independence”: for
any positive integers ¢ and m, the two sets of random variables (yi, Yictr - Yi +m) and
(yHerk, Vitmaktls ...,yi+2m+,€) should be approximately independent if % is large enough;
see, for example, Rosenblatt (1956), Doukhan (1994), Politis, Romano and Wolf (1997)
for a precise definition. The notion of asymptotic stationarity means that the sequence
(yk, Vil ) is approximately stationary in the strict sense (Brockwell and Davis, 1991)
if k is large enough.

The basic idea of subsampling is to approximate the sampling distribution of a statistic
based on the values of the same statistic recomputed over smaller subsets of the data
that retain the dependence structure of the observations. If we are willing to consider
subsets of size b(< N), where b is a positive integer that in general may depend on N,
then we are led to consider the B = N — b+ 1 “blocks” of consecutive observations of
the type (yi,yiH, ...,yi+b_1) ,fore=1,...,B.

Let Ty be a statistic of interest that is a function of the data sequence (y1,¥4, ..., Y n)-
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The statistic Ty is generally a vector (say g-dimensional), and is employed as an esti-
mator of an unknown parameter 6. In general, @ can be a parameter of the whole
(infinite-dimensional) joint distribution of {ys, s = 1,2, ...}; however, in the MCMC case
considered in the next sections, @ will almost always be a parameter of the invariant
distribution of the Markov chain, i.e., the “asymptotic” first marginal of the sequence
{ys,s=1,2,...}.

We will assume that Ty is consistent for @ as the sample size N — oo. More
specifically, we will assume that the statistic T, suitably centered and normalized,
possesses a nondegenerate large-sample distribution. To be more precise, let {7,,n =
1,2,...} be an increasing sequence that diverges to oo as n — oo, let || - || denote a norm
on space R?, and let

JN (y) :PTOb[TNHTN—OH S y] .

The assumption required is that there exists some nondegenerate continuous distribution

function J(-) such that
I (y) = J(y) (2.1)

for all y as N — oo.
Let T, be our statistic of interest computed from block (yi,yi 41 Yi +b_1) , with
all other data temporarily ignored, and construct an “empirical” distribution of the

“subsample values” {T;;,i =1,..., B} by

B
1
Ly (y) = E;l{TbHTi,b — Tnll <y}.
If the series {ys,s = 1,2,...} is strong mixing and asymptotically stationary, and
if our statistic possesses a nondegenerate large-sample distribution (i.e., equation (2.1)
holds), then Ly (-) is a consistent estimator of the limit distribution J(-), provided b is
chosen in a way that: b — oo as N — oo, but /N — 0 and 7, /75 — 0; see, for example,

Politis, Romano and Wolf (1997). Perhaps more important is that consistent estimation
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of the quantiles of J(-) can be achieved by looking at the quantiles of Ly (-); in other
words, for any ¢ € (0,1),
Ly (t) — J7H(1) (2.2)

in probability as N — oo, where Ly'(t) = inf{y : Ly(y) > ¢} and J~}(t) = inf{y :
J(y) > t} are the ¢t quantiles of Ly (-) and J(-) respectively.

Using the quantiles of Ly (-) we can now construct confidence regions for 8 with a
prescribed coverage level (to be attained in large samples). Relation (2.2) implies that
the set {6 : 7y||Ty — 6] < Ly' (1 — )} is a confidence region for @ with asymptotic
coverage probability equal to the nominal 1 — a.

Note that our choice of norm || - || will dictate the shape of those confidence regions.
If || - || is the Euclidean norm, then the confidence regions for € will be spheres centered
at Ty. Notably, the choice of sup-norm for ||-|| (i.e., the [, norm which is nothing other
than the maximum absolute coordinatewise deviation) results in confidence regions for
0 that have the shape of hypercubes with edges that are perpendicular to the axis; the
sup-norm will be our choice in what follows as confidence regions that are hypercubes
have the useful alternative interpretation as confidence intervals for the coordinates of @
with simultaneous coverage equal to the coverage level of the whole confidence region.

Note that if the variances of different coordinates of the multivariate statistic T are
of different orders of magnitude it may be inefficient to construct a hypercube for a con-
fidence region for p; rather, a “hyper-parallelepiped” should be constructed instead. To
achieve this, the subsampling methodology must be applied to a “studentized” version of
our statistic T as discussed in Politis and Romano (1994). In other words, a new “stu-
dentized” multivariate statistic Ty is defined with the property that the coordinates of
Ty have all approximately equal variances; for example, we can define Tﬁf ) = T](\;f ) / S'TI(VIC),
where S';J(Vk) is a consistent estimate of the variance of T](\;f ), and thus ensure that all
coordinates of Ty have approximately variance equal to one. Notably, ﬁ;](f) may even
be a subsampling estimate of variance so that an “iterated” subsampling takes effect.

However, for practical purposes, even a rough preliminary variance estimate can be used
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in this type of studentization with good ensuing results.

2.3 The MCMC Subsampling diagnostic

In this section, the proposed method for assessing convergence of the MCMC output is
presented. Let (y1,ys,...,yy) be the multivariate output of an MCMC simulation; as
before, each y; is assumed to be a (p x 1) vector with k — th coordinate denoted by ygk).

Notably, both assumptions required for subsampling to work (i.e., strong mixing and
asymptotic stationarity) hold true in the MCMC case that interests us where the sequence
{ys,s = 1,2,...} is a Markov chain that possesses a unique invariant (i.e., stationary)
distribution but the starting value y; may follow a different distribution; see, for example,
Meyn and Tweedie (1993).

Letyy =N! Zf\il y; denote the sample mean of the observed sequence (y1,ys, .-,y n);
)

¥ is of course a (p x 1) vector as well, and its k — th coordinate will be denoted by y%’“ .

For t € (0,1), let qg\t,) be a (p x 1) vector with k — th coordinate denoted by q](\lf’t), where

qj(\l;’t) is the empirical t-quantile of the k — th coordinate data sequence <y§k),y§k), ...,y](\lf));
in other words, if <y((’f)) < yg)) << yEﬁ%) are the order statistics of the k£ — th coor-

dinate data sequence <y§k),y§k), ...,y](\’;)>, then q](\’;’t) = yE@)N +1))» Where |.| is the integer
part.

Using the subsampling methodology presented in section 2.2, and choosing for our
statistic T either ¥, or qg\t,) (with some choice of ¢ that is of interest, e.g. ¢ = 0.90), we
can construct confidence regions for the mean and the ¢ quantile of the “asymptotic” first
marginal, i.e., the unique invariant distribution of the Markov chain {ys,s = 1,2,...}.
Note that in either case (Y, or qgf,)) we have in general that 7y = N2, ie., v/ N-
convergent statistics. Thus, we can choose the block size b proportional to N? (for
some constant v € (0,1)), and thus ensure that the conditions for (2.2) —on which the
construction of confidence regions is based— are fulfilled.

As mentioned before, the sup-norm is recommended for use, i.e., | Tx| = sup ]Tﬁf ) ,

k=1,...,q
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(k)

where Ty is the k — th coordinate of vector Ty; therefore, the confidence regions are

hypercubes in R?. Note also that in both cases (¥, and qg\t,)) the “observation” dimension

p coincides with the “parameter” dimension gq.

Since our confidence regions are hypercubes in R?, we can define the “range” of such

a confidence region as the gth root of its volume. The proposed diagnostic can now be

viewed as a consequence of the following fact:

e The “range” of a (1—«a)100% confidence region for either the mean or the ¢ quantile

of the “asymptotic” first marginal is (asymptotically) proportional to 1/v/N.

Based on the above fact, our diagnostic can be formulated as follows:

(A)

Estimation of “burn-in” time. As the simulation is running and N increases,
construct (1 — a)100% confidence regions for the ¢ quantile based on different (in-
creasing) values of N; we used o = 0.05 and ¢t = 0.90 but other choices are possible
as well. Now plot the “range” of the confidence region versus 1/v/N. We would
estimate the “burn-in” time to be N* if the plot of “range” versus 1/ VN is ap-
proximately linear for N > N*. Linearity can be checked by visual inspection
of the plot, but we also recommend to use a plot of the coefficient of determina-
tion of a weighted linear regression between the dependent variable “range” and
1/ V/N. Having estimated the “burn-in” time to be N*, observations (¥1,---,YN*)

are discarded from the simulation as they could introduce undesired bias.

Figuring out when to stop the simulation. Again as the simulation is running
and N increases, construct (1 — a)100% confidence regions for the mean p of the
“asymptotic” first marginal of the Markov chain {ys}. Since the main objective
of the simulation is to estimate g by Monte Carlo, and since the error in this
estimation can be quantified by the range of a (1 — a)100% confidence region for
p, we would then propose to stop the MCMC simulation when the range of this
(1 — @)100% confidence region (with a = 0.05, say) is appropriately small, smaller
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than some prespecified absolute or relative measure of accuracy; for example, we
could stop when the range becomes smaller than 0.001 (say), thus obeying an
absolute measure, or when it is smaller than 0.001 ||y || which is then a relative

measure (relative to ||p|| which is estimated by |[¥]])-

The proposed diagnostic is simple and easy to use, and has the significant advantage
of being valid in asymptotically stationary settings such as the MCMC case of interest;
see, for example, Yue and Chan (1996). Notably, other diagnostics are shown to be
valid only under the assumption of stationarity, thus neglecting the fact that the MCMC
output is not exactly stationary.

The reason that the ¢ quantile (with a large ¢, say ¢ = 0.90) is considered in part A
of the diagnostic as opposed to a similar graphical plot of the confidence range of other
statistics (e.g. the sample mean) is based on the notion that stabilization of estimates
of the invariant distribution of the Markov chain (especially in the tails) is a reliable
indicator of the target distribution having been achieved.

Other statistics are also possible even in part B of the diagnostic. For example, in a
simulated annealing setting where the posterior mode is the objective, our statistic Ty
could have as k — th coordinate the sample mode of the k — th coordinate data sequence
(y§k),yék), ...,y](\lf)); for concreteness however, we will focus in the sequel on the sample
mean and ¢ quantile of an MCMC output.

Given the burn-in sample of the MCMC chain and the sample size needed to esti-
mate the parameters of interest with the desired accuracy, we can estimate the variance
covariance matrix of these parameters using the whole sample (excluding the burn-in)
with a subsampling estimate. For example, we could use the blocked sample variance as
introduced by Politis and Romano (1993) and its formula is presented in the next section.

This treatment could be beneficial as indicated by MacEachern and Berliner (1994).

35



2.4 An alternative diagnostic

In cases where the asymptotic distribution of our statistic Ty is known to be normal,
then an alternative method that combines subsampling with the information regarding
asymptotic normality may be used. Note that, the sample mean and sample 0.90 quantile,
which are chosen as statistics of interest, are both asymptotically normal under standard
regularity conditions; see, for example, Brockwell and Davis (1991). To elaborate, let
(¥1,¥2, ---,¥yn) be the multivariate output of an MCMC simulation; as before, each y; is

)

assumed to be a (p x 1) vector with k — th coordinate denoted by ygk . The assumptions

that are required for subsampling (i.e., strong mixing and asymptotic stationarity) still
are assumed to hold together with the additional assumption that v/N (Ty — ) L
N (0, X)), for some nonnegative definite matrix 3.

The problem that now turns up is the estimation of the unknown asymptotic variance-
covariance matrix ... Subsampling can be used for this purpose as well, under some
additional regularity conditions. Carlstein (1986) proposed the subsampling estimators
of variance based on nonoverlapping blocks from a stationary sequence, while Kiinsch
(1989) addressed the case of overlapping blocks. Recently, Fukuchi (1997) demonstrated
the asymptotic consistency of the subsampling estimator of variance in the case of as-
ymptotically stationary time series considered in this paper.

Thus, as an estimator of 3., we may use the blocked sample variance matrix Vb/N,

where b is the block size as in the previous section. The blocked sampled variance is

given from the following formula (Politis and Romano, 1993):

[ 11 .12 ~lp |
OpN Ob/N """ OpN
221 A922 ~2p
o — Op/N Oo/N """ OpN
b/N =
~pl S
| 9o/n TN 9y/N |

where

36



N—b+1
Ub]/N = N — b—|— 1 Z |:T7(n,,)b B T](V)] |:T7(rf,)b - TJS]])] y U] = 1727 Y4

Since V,, /N is an asymptotically consistent estimator of X it follows that we can ap-

proximate the probability law of

H\/N(TN —B)H = sup |\/N(TJ$) —H(k)> |,
k=1,...,q

by the probability law of sup,_; _,|Z®*|, where the multivariate random variable Z has
the N (O,Vb/N) distribution. Although the latter is difficult to evaluate analytically,
it is nevertheless very easy to approximate by Monte Carlo. For this purpose we let
Z1,7s,...,Z; be iid random variables having distribution N <0, vV, /N> , where M is large.

Now we have

M

Prob| sup [VN (T4 =09) | <yl = MY 1{ sup 20| <y} = Dn(y), (23)

k:17“'7q m=1 k:177q

where we define u

Ly(y) = lim M~ ) 1{ sup ZD] < ks
m=1 F=henl

note that the approximations ” ~ ” in equation (2.3) occur with high probability for
large M and N, i.e. they are justified as convergences in probability. The bootstrap
‘rule-of-thumb’ is to take M of the order of a few thousands.

The alternative subsampling diagnostic proceeds the same way (parts A and B) as our
first subsampling diagnostic, the only difference being that now our confidence regions
for the mean and t-quantile are based on the quantiles of the distribution L ~(+), and not
on the quantiles of the subsampling distribution Ly (-). In cases where the assumption

of asymptotic normality is valid then the alternative method is expected to work better

than the subsampling diagnostic of section 2.3 as it uses this additional information (on
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the asymptotic normality). On the other hand, if the assumption of normality does not

hold then the subsampling diagnostic of section 2.3 must be used.

2.5 Implementation and numerical simulations

2.5.1 Description of the simulations

Using the MCMC algorithm, we recursively create the Markov sequence (y1,¥s, ...,¥N),
where each y; is a (p x 1) vector; p denotes the number of parameters and N is the
number of iterates (the total sample size). As before the quantity of interest is a function
of the data sequence (y1,ys,...,yn) which we denote by the (¢ x 1) vector Ty; in our
case we will consider y,, or qg\t,) for our Ty statistic, and therefore ¢ = p.

To fix ideas, let N; = jN/100, for j = 1,...,100. The simulation algorithm is now
precisely described; for 7 =1, ..., 100 do the following:

1) As discussed in section 2.2, identify the B; = N; — b; + 1 subsamples (y;, ¥it1, .-,
Yitb,—1), for i = 1,..., B;; note that the subsample size b; depends on IN;. We used the
simple choice b; = \/ﬁj , although other choices are possible as well; see Hall, Horowitz
and Jing (1995), Politis, Romano and Wolf (1997).

2) From the sequence <y1,y2, ey Nj), calculate the quantity of interest Ty, (sample
mean or ¢ quantile with ¢ = 0.90).

3) From each subsample (yi,yi St Yi +bj71) , recalculate the quantity of interest

Ty, where i =1,2,..., B;.

4) Let TZ(IZJ) and TJS,IZ_ ) denote the k — th coordinates of the vectors Tip, and Ty,

respectively. For ¢ = 1,2, ..., B;, compute the “maximum deviation” (i.e. sup-norm)

from block 7 as

k k
T}, - TJ(VJ')‘ and Dy; = \/b;dy,

d; ; = max
17] k:17"'7q

5) In order to find the estimated quantile L;,]l,(l — a) (with @ = 0.05), we sort D, ;,
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i = 1,2,..., B; in ascending order to come up with the order statistics D(; jy < D(a ;) <

< D(s,,j), and then let

Ly, (1 = a) = D(a-a)B;+1),9)

where |.] is the integer part.

6) As discussed before, the confidence region at “time” N is a hypercube in g dimen-
sions that is centered at the value Ty, and has “sides” that are perpendicular to the
coordinate axes. The length of each “edge” of the hypercube is identical to the “range”

R; of the hypercube region which is given by

A different way of describing this situation is to say that the ¢ confidence intervals of the

type

for k =1, ..., q, have stmultaneous coverage 1 — « for the g respective coordinate para-
meters, provided of course the sample size N; is large.

7) Finally plot R; versus 1/ \/FJ and take appropriate action based on the plot
(quantile case), or just the magnitude of the range for the largest N; considered (sample
mean case).

The implementation of the alternative diagnostic is exactly like the implementation of
the subsampling diagnostic above, the only difference being that the quantile I);,jl_(l —a)

is put instead of L;,]l,(l — ) in all occurrences of the latter.
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2.5.2 Estimation of the ‘burn-in’ period using the coefficient of

determination

Although linearity can be visually assessed by inspecting the graph, a more objec-
tive/automatic method might be desirable. One way to automatically check the linearity
between the range of the confidence region and the 1,/ \/ﬁ] , in order to estimate the
burn-in, is the coefficient of determination (R?) between these two variables. In detail,

the assumed linear relation is given by the linear model
Y;:j+c—1 = ﬂx;:j-i-c—l tE€

where y7,. . 1, Xj .1 denote the vectors (y;f, e Ui +C_1) , (x;‘, ey T} +C_1) respectively
and € represents a mean-zero error term. Each element of the y7j ;. . ; is the estimated
range of the confidence region of the 0.90 quantile (or of the mean) using N; iterations
and each element of x};,. ; is the corresponding 1,/ \/ﬁj The quantity c is chosen

by the practitioner and represents the window of our regression, that is, the number of

*

elements (y}‘, xj) in the vectors yj.; . 1, Xj.j1.—1 that we use to calculate the coefficient
of determination. For each pair of vectors (y}‘-‘: e 10XG, +e_1) we calculate the R?, using
the weighted least squares method with weights w; = \/E /N;. We use weighted linear
regression because the dependent variable is not homoscedastic and its standard deviation
is proportional to the ratio \/E /N see, for example, Politis and Romano (1993) where
the variance of the subsampling estimate of variance is calculated. We choose ¢ = 20
and therefore there are (100 — ¢ + 1) = 81 different y} ;.. ,, X}.;,., Vvectors; for each of
them we calculate the RZ, for k =1,2,...,100 — ¢+ 1. If R? > d for all k > k* and some
prespecified threshold d we discard the first Ny« ; iterations as burn-in. Typical values

of d we use are 0.998 or 0.999.
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2.5.3 Examples and simulations

To illustrate how the proposed diagnostic performs in practice, the following three ex-
amples are presented. The first example concerns a trivariate normal distribution with
high correlation, the second deals with a bimodal mixture of trivariate normals and the
third refers to the stochastic search variable selection (SSVS) MCMC output introduced
by George and McCulloch (1993).

Example 1

This example is taken from the MCMC diagnostics review paper of Cowles and Carlin
(1996). We assume that we deal with a three parameter joint posterior density which is a

zero-mean trivariate normal with correlations 0.90, 0.90 and 0.98 and covariance matrix

1.0 45 9.0
45 250 49.0
9.0 49.0 100.0

We initialize the Gibbs Sampler with #; = 10, 3 = —10. The algorithm then proceeds

by sampling from the full conditional densities, which generally are given by:
61|0] ~ N (:U’z + 21]2;11 (0] — /,l,]> 3 2“ — 2”2;]12]1) 3 1= 1,2,3

where, 0, is the ¢ —th element of the vector of parameters, 8, is the vector of all the other
parameters except the i —th, i, is the i —th element of the mean vector, p; is the vector
of all the other elements except the i — th, and 3;;, 3;;, 3;;, X; are the corresponding
partitions of the variance-covariance matrix.

To illustrate our diagnostic test, we generate N = 30000 values from the above
iterative Gibbs sampling scheme. A studentization of the values of the parameters has
been made using the simple variance estimator. We estimate the range of the confidence

interval for the 0.90 quantile for N; = jN/100, j = 1,...,100, samples. The weighted
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Iterations
6000 12000 18000 24000 30000
f; 0.2783 0.2251 0.1824 0.1624 0.1481
0, 1.4894 1.2206 0.9867 0.8746 0.8023
05 2.9927 2.4593 1.9854 1.7529 1.6083

Table 2.1: Accuracy of the posterior mean of the model parameters.

linear regression of the range versus 1/ \/ﬁ] is our burn-in indicator. Adopting d = 0.999
as a threshold for R?, we discard as burn-in the first 4800 iterations because after that
R? > d; see Figure 2-1(a), where the values of R? are presented across iterations. The
results of the alternative method are also illustrated in Figure 2-1(a) and are similar with
the results of our subsampling diagnostic.

The second part of the problem is to estimate how many points are needed to estimate
the parameters of interest with the desired accuracy. This can be done by using the range
of the confidence interval for the mean. The accuracy of the parameters is the difference
of the upper and lower limit of the confidence interval of the mean. Table 2.1 gives the
accuracy of the posterior mean of these parameters for some iterations.

A diagnostic which is similar in spirit with ours is the one suggested by Raftery
and Lewis (1992). To compare the two methodologies, we run the Raftery and Lewis
diagnostic requiring the precision achieved by our diagnostic for the 0.90 quantile after
30000 iterations. The input values were ¢ = 0.90, the 0.90 quantile, » = +0.085, the
precision of the 0.90 quantile and s = 0.95, the probability of estimating the 0.90 quantile
within +0.085 for the parameter #;. The precision of the 0.90 quantile for parameters
05 and 03 was +0.458 and 4+0.924 respectively. The required burn-in and sample size
results were 104 and 1105 iterations. It is evident that our diagnostic is much more
conservative than the one by Raftery and Lewis; this is in part due to our high choice
(0.999) as a linearity threshold in our R? criterion. Cowles and Carlin (1996) argued
that the Raftery and Lewis’ method is less conservative because more iterations are
required for estimating quantiles near the median than extreme quantiles. Nevertheless,

in this example, the Raftery and Lewis diagnostic seems to underestimate the sample size
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required to get the claimed accuracy. To elaborate, after 1105 iterations and excluding
the burn-in of 104 iterations the estimated 0.90 quantiles turn out to be 1.65, 9.02 and
17.78 for the parameters 0,6, and 03 respectively, whereas after 30000 iterations the
0.90 quantiles are estimated to be 1.31, 6.69, and 13.34 respectively, within the desired
accuracy of the true 0.90 quantiles 1.28, 6.40, and 12.81. Note that in both the Raftery
and Lewis diagnostic and our subsampling diagnostic, convergence detection is related to
precision required. By demanding smaller accuracy in the posterior quantity of interest,
one needs more iterations for convergence.

We ran the subsampling and the alternative method on a Sun Ultra-2, Sparcstation.
The computational time for the subsampling diagnostic we propose is around 3180 sec-
onds, while the alternative method needs 3306 seconds. For both methods the above
times were used to calculate confidence intervals for both the mean and the 0.90 quantile
of the joint density. The Raftery and Lewis diagnostic required only a fraction of this
time (7 seconds) being one of the cheapest diagnostic available; see Brooks and Roberts

(1999).

Example 2

This example is also taken from Cowles and Carlin (1996) and refers to a bimodal target
density consisting of a mixture of two trivariate normals with equal probability. These

two normals have a common covariance matrix

1 1.3 1.5
1.3 2 2 )
15 2 4

which produces correlations 0.919, 0.75, 0.707, and mean vectors (0 0 0) and (-6 -8.49
-12). We generate an MCMC output using a random walk Metropolis Hastings algorithm
consisting of 8000 values.

Two independent chains with starting values (6, = 5, 62 = 15, 5 = 10) and (6; =
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Figure 2-1: Coefficient of determination. Solid line: threshold d=0.999, dashed line:
subsampling method, dotted line: alternative method. (a) Example 1, (b) Example 2,
first chain, (c¢) Example 2, second chain, (d) Example 3, problem 1, (e) Example 3,
problem 2.
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—15, 65 = —20, 3 = —25) were used to illustrate our diagnostic. The Metropolis
proposal density was chosen so that the two chains remain in the area of one mixture
component and therefore the chain does not visit the whole parameter space. Figures
2-1(b) and 2-1(c) depict the resulting R? for both our suggested diagnostics for the
two chains respectively. Although clearly the Markov chain has not converged to its
stationary distribution, in Figure 2-1(b) we receive the wrong signal of “getting in” the
target distribution, after 3040 iterations using the subsampling and after 1840 iterations
using the alternative method. On the other hand, in Figure 2-1(c) we correctly detect
that more iterations are needed because R? is not continuously higher than the threshold
0.999. The estimated accuracy of the mean of the parameters 6., 05, 03 is 0.3188, 0.4422,
0.6571, respectively for the first chain and 0.3387, 0.4802, 0.5613, for the second chain
after 8000 iterations. Also, the estimated accuracy of the 0.90 quantile of the parameters
01, 05, 03 is 0.3873, 0.5161 and 0.7270 respectively for the first chain, and 0.3935, 0.5106
and 0.7073 for the second chain after 8000 iterations, which clearly suggests that only a

crude estimate is available.

Example 3

There are cases in which the posterior summary of interest may be only the posterior
mean with a corresponding confidence interval. These cases are particularly suited to our
methodology. For example, take the usual model choice or variable selection approaches
dealt with the MCMC algorithm; see for example Green (1995), George and McCulloch
(1993). In these models the MCMC output contains a variable, say -, which expresses
the probability of a model or the probability that a variable is included in the model.
This variable is a string of 0 or 1, and in stationarity, the mean and confidence intervals
of v are the desired posterior summaries of interest.

A major problem in the linear model theory is the choice of the appropriate set of
regressors which explain satisfactory the variability of the dependent variable. Recently

George and McCulloch (1993) developed the Stochastic Search Variable Selection which
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Problem 1 Problem 2

Model Prob Accuracy Model Prob Accuracy
X0, X5} 023 0010311  {Xg, X5} 0.10 0.010450
{X5} 0.16  0.008893 {X3, X4} 0.09 0.009580
{Xs5, X4, X5} 0.09 0.006071 {X4} 0.08 0.007388
{Xs, X5} 0.06  0.005508 {X5} 0.07 0.007678
{X,4} 0.06  0.005530 {X3} 0.06 0.006669

{X3, X4, X5} 0.05 0.009486

Table 2.2: Posterior model probabilities and their accuracies.

enables the calculation of the posterior probability of inclusion of a regressor.

To illustrate our methodology, we use the example 4.1 of George and McCulloch
(1993). There are five regressors Xy, ..., X5 YN (0,1) of size n = 60 which are used
in two variable selection problems. In Problem 1, the dependent variable is generated

according to the model

Y :X4+1.2X5+€,

where € ~ Ny (0,0%I) with ¢ = 2.5. Problem 2 is identical to Problem 1, apart from
the regressor X3 which is replaced by X3 = X, + 0.15Z where Z ~ N (0,1), yielding
corr (X3, X;5) = 0.99.

For each of the potential models of the above problems we can construct, using the
SSVS method, a variable which takes values 1 or 0, depending on whether the particular
model is chosen or not in the current iteration. To obtain a sample from these posterior
model probabilities we construct an MCMC chain that converges to the posterior dis-
tribution of interest. For more details of the above methodology and the example, see
George and McCulloch (1993).

We focus our analysis on the models that have more than 0.05 posterior probability.
Using an MCMC chain of 50000 iterations and choosing as threshold value d = 0.999, we
estimate the burn-in period. This comes out to be 4500 and 6000 iterations for Problems
1 and 2 respectively (see Figures 2-1(d) and 2-1(e)). The resulting model probabilities

and corresponding accuracies after 50000 iterations are presented in Table 2.2. The
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Problem 1 Problem 2

Model Iterations Model Iterations
{X4, X5} 252286 {X4, X5} 1150652
{X;5} 345571 {X3, X4} 1125107
{Xy, X4, X5} 521015 {X4} 883304
{Xy, X5} 817300 {X5} 1107036
{X4} 855504 {X3} 1359638

(X5, X4, X5} 3941288

Table 2.3: Iterations for specific accuracy.

variables in the curly brackets are contained in the resulting models.

Assume that, in a hypothetical scenario, one needs to obtain posterior model probabil-
ities with required accuracy of 2% of their estimated value. The results of our diagnostic
can guide the MCMC to run for a number of iterations such that the above requirement
is satisfied. In detail, discarding the burn-in period for each model, there is a strong lin-
ear relation between the range of the confidence region and the 1,/ \/ﬁj as indicated in
previous sections. Therefore, a weighted regression between the range, as dependent vari-
able, and 1 \/ﬁ] , could give an estimate for the required iterations that are needed to
estimate the posterior model probabilities with the desired accuracy. Table 2.3 contains
the estimated iterations that an MCMC needs in order to estimate the model probabili-
ties for Problems 1 and 2 with accuracy of 2% of their estimated value. Note that if our
desired accuracy was produced in less than 50000 iterations, this could be a significant
drawback of our diagnostic: we produced unnecessary iterations to estimate that only a

portion of them is needed!

2.6 Discussion

We have presented an MCMC convergence strategy which is based on subsampling from
the MCMC output chain. The methodology we suggest is based on results that hold in
asymptotically stationary settings such as the MCMC output.

We have demonstrated the use of our methodology for both single and multiple
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MCMC chains. Naturally, combining information from many output chains can produce
a safer diagnostic. For example, confidence intervals for parameters should approximately
“coincide” in each MCMC chain. We believe that such extensions are straightforward so

we have not pursued this issue further.
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Chapter 3

Time-varying volatility models

3.1 Introduction

Univariate and multivariate ARCH-type time-varying volatility models are presented in
this chapter. Research into time series models of changing variance and covariance has
exploded in the last twenty years. The main reason for this activity is that uncertainty
is central to much of modern finance theory. In option pricing the uncertainty asso-
ciated with the future price of the underling asset is the most important determinant
in the pricing formula. Many issues in asset pricing, portfolio allocation decisions, and
risk management can only be meaningfully analyzed in a multivariate framework, where
modelling of variances and covariances is crucial.

Empirical research on the statistical properties of asset returns dates back to the work
of Mandelbrot (1963) and Fama (1965). Asset returns tend to be leptokurtic. This leads
on modelling asset returns as iid draws from thick tailed distributions. Asset returns
tend to exhibit nonnormal unconditional sampling distribution, in the form of skewness
but more pronounced in the form of excess kurtosis. The assumption of conditional
normality captures some degree of excess kurtosis, but typically less than adequate to
fully account for the fat tailed properties of the data. Therefore, conditional distributions

with fatter tails than normal distribution should be adopted. Some of these distributions
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are the Student-t (see, for example, Bollerslev, 1987; Baillie and Bollerslev, 1989; Sharma,
Mougoue and Kamath, 1996) and the Generalized error distribution (see, for example,
Nelson, 1991) among others.

An empirical characteristic of asset returns is volatility clustering. The autocorrela-
tions of squares and absolute returns have more significant values than the autocorrela-
tions of returns. This is evidence that large (small) price changes tend to be followed by
large (small) changes, of either sign, and this phenomenon is more marked for higher fre-
quency series. Generally, the distribution of the next absolute or squared return depends
not only on the current return but also on several previous returns.

In asset return series, there is a tendency that current returns are negatively corre-
lated with future volatility. This characteristic is called “leverage effect”. According to
“leverage effect” a reduction in the asset value would raise the risk and would increase
the future volatility. That is, volatility tends to rise in response to “bad news” (returns
are lower than expected) and tend to fall in response to “good news” (returns are higher
than expected).

It has been observed that there is a lot of commonality in volatility changes across
assets. For example, when stock volatilities change, they all tend to change in the same
direction. The fact that the volatilities move together indicates that a few common factors
may explain much of the temporal variation in the conditional variances and covariances
of asset returns. Co-movements in volatilities are the basis for the factor models.

The importance of risk and uncertainty in modern economic theory and the empirical
evidence of the above characteristics of asset returns have necessitated the development
of new econometric time series techniques that allow for modelling time-varying variances
and covariances. Two classes of models, called ARCH-GARCH and Stochastic volatility
models, have been developed. In ARCH-type models the information set is a function of
lagged values of the process of interest. Reviews of the literature on this topic are given
by Bollerslev, Chou and Kroner (1992), Bera and Higgins (1993), Bollerslev, Engle and
Nelson (1994), Diebold and Lopez (1995), Gourieroux (1997), Hafner (1998), and a collec-
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tion of ARCH papers is in Engle (1995). In Stochastic volatility models the information
set is a function of some unobserved or latent components. Previous work and review
on Stochastic volatility models has been reported by Harvey, Ruiz and Shephard (1994),
Jacquier, Polson and Rossi (1994), Shephard (1996), Pitt and Shephard (1999), Chib,
Nardari and Shephard (1999), Giakoumatos, Dellaportas and Politis (1999), Aguilar and
West (2000) among others. In this study the analysis is concentrated in ARCH-type mod-
els. We present and discuss some of the most important ideas, focusing on the simplest
forms of the techniques and models used in the literature. Univariate and multivariate

models are presented in the next sections.

3.2 Univariate ARCH-type models

Traditional econometric models assume a constant one step ahead forecast variance.
A new class of models called autoregressive conditional heteroscedastic (ARCH) have
been introduced by Engle (1982) to relax this assumption. Let {e;} be a real valued
discrete-time stochastic process, which is the innovation in the mean for some observable

stochastic process {y;}, where

Y=g (iﬂt—l, N) + €,

and g (z; 1;p) is a function of exogenous variable z and of parameter vector p. For
simplicity, we assume that the mean equation is of the form 3, = ¢;, and therefore the

innovation process {;} is itself observable.

3.2.1 ARCH model

The ARCH(p) model (Engle, 1982) is given by the following two-stage formulation:

Et = Z10¢ (31)

ol



p
ol =g+ ZO&Z'&E?_Z-, t=1,..T, (3.2)
i—1

where z; are iid with F (z;) = 0 and Var (2;) = 1; o7 is the variance of the {;} process at
time ¢ conditional on information available at time ¢ — 1, p is integer with p > 0, ag > 0,
a; > 0,4=1,...,p. These restrictions ensure a positive variance. Stationarity conditions

P
impose that ) «; < 1, and the stationary variance is given by
i=1

ang(Ef) = g/ [1—20@] ,

p
see, for details, Engle (1982). Solving with respect to ag, we obtain ag = o2 [1 - ai] .
i=1

Substituting this expression into (3.2), the conditional variance is given by:

p

2 _ 2

o; = 0. 1—E o
i=1

p
§ 2
i=1

Therefore, the conditional variance is a weighted average of the “global” variance o2 and
the “local” variances €2 ;, i = 1, ..., p.

Under conditional normality, an equivalent representation of the ARCH model is
et|®; 1 ~ N (0,0%), where ®, ; is the information set up to time ¢t — 1, and o7 is given

by (3.2). Clearly the model can be written as a non-Gaussian AR model in terms of 2:

e = o;+ (5f — o})

P
2
= oo+ E ;€ ; + Uy,

i=1

where v, = €2 — 02 =02 (22 — 1), and E (v|®, 1) = 0.
Engle (1982) presents conditions for the existence of the moments of the ARCH(1)
model under conditional normality. All odd moments are zero under a symmetric condi-

tional distribution. The condition for the variance to be finite is oy < 1, while to have a
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finite fourth moment it is also required that 3a? < 1. These moments are, respectively,

a2 1-aof
(1—ay)*1—3a}

FE [Sﬂ = ] foal, FE [Sﬂ =

This implies that the kurtosis £ of the unconditional distribution of &,

Bl _,1-0

k = - )
(Ee))”  1-3ad

is always larger than 3, which is the value of kurtosis of the normal distribution. There-
fore, under conditional normality for the e, process, the unconditional distribution of
¢ has fatter tails than the normal distribution and the ARCH model capture the “fat
tails” property of the data. With financial data, ARCH(p) model captures the volatility
clustering phenomenon, i.e. large (small) changes are followed by large (small) changes
in the price of returns, but of unpredictable sign. This happens because ARCH models
allow conditional variance to change over time as a function of past innovations &;_;,
1=1,...,p.

Assuming that z; are normally distributed, the parameter vector to be estimated in
(3.1) and (3.2) is, for p > 0, 8 = (o, a1, ..., ap). The likelihood for a sample of T

observations y = (y1, ..., y7) can be written as

T 2

v (10) = e TT{(o1) o (55 ) |

where ¢, is given from the corresponding mean equation, and o2 is expressed via (3.2).
Although the likelihood function is highly nonlinear in the parameters, maximum
likelihood estimates are derived using a scoring algorithm or any optimization routine.
Under certain regularity conditions (see, for example, White, 1982; Gourieroux, Mon-
fort and Trognon, 1984) the maximum likelihood estimates are strongly consistent and
asymptotically normal. If the conditional distribution is correctly specified, then the

asymptotic covariance matrix of the ML estimates is given by the inverse of the infor-
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mation matrix. If the true conditional distribution is not normal, then Quasi MLE is
still consistent (Weiss, 1986) but the asymptotic covariance matrix must be corrected.
The small sample properties of ARCH estimators and tests have been analyzed by Engle,
Hendry and Trumble (1985). ARCH-type models can also be estimated with General-
ized Method of Moments; see, for example, Mark (1988), Bodurtha and Mark (1991).
Bayesian inference procedures for ARCH models have been developed by Geweke (1989a,
b), who used Monte Carlo methods to determine the exact posterior distribution, Polasek
and Muller (1995) and Vrontos (1997), who used Markov Chain Monte Carlo methods.
A problem with ARCH models is that large lag orders are required in some applica-
tions, so that many parameters must be estimated under inequality restrictions. Engle

(1982, 1983) used a linearly declining set of weights according to the formula

p
2 _ 2
oy = Qo+ o Wi€i_;,
i=1

with
2(p+1—1)
p(p+1)

so that only two parameters must be estimated.

i — )

3.2.2 GARCH model

The extension of the ARCH model to the Generalized Autoregressive Conditional Het-
eroscedastic (GARCH) model resembles to the extension of the standard time series AR
process to the general ARMA process. The GARCH(p,q) model (Bollerslev, 1986; Taylor,
1986) is given by the following formulation:

&t = %0, tZO,,T (33)
p q

ol =00+ Y el + Y Bor g t=1..T, (3.4)
i=1 j=1
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where z; are iid with E (z) = 0 and Var(z) = 1; o? is the (conditional) variance
of the {e;} process at time ¢, p, g are integers with p > 0, ¢ > 0, oy > 0, a; > 0,
i=1,..,p,and 3; >0, j =1,..,q. In (3.4) it is assumed that &, = o, = 0 for £ < 0.
These restrictions ensure a positive variance. However, Nelson and Cao (1992) showed
that weaker sufficient conditions can be found. For example, in a GARCH(2,1) process,
ag >0, a1 >0, 3, >0 and a108; + az > 0 are sufficient to guarantee that o? > 0.
They presented general results for GARCH(p,1) and GARCH (p,2), but a derivation for
GARCH(p,q) with ¢ > 3 is difficult. For ¢ = 0, the process reduces to the ARCH(p)
process, and for p = ¢ = 0, &; is white noise.

In ARCH models the conditional variance is specified as a linear function of past
innovations (g;—;). GARCH models allow the conditional variance to change over time
as a function of past innovations (g;,_;) and of past variances (o7 ;). This family of
models achieves more flexible lag structure than ARCH models and capture the volatility
clustering phenomenon. In empirical applications of ARCH models a relatively long lag
in the conditional variance equation is called for, and a large number of parameters must
be estimated. GARCH models, due to the fact that include lagged conditional variance
terms in the conditional variance equation, achieve a more parsimonious representation
of higher order ARCH models.

Under conditional normality, an equivalent representation of the GARCH model
is &|®; 1 ~ N(0,07), where ®; ; is the information set up to time ¢ — 1, and o7
is given by (3.4). The GARCH(p,q) model can be written as a non-Gaussian linear
ARMA (max(p,q),q) model in the squares £2:

E? = Uf + (8? —a?)

p q
§ 2 § 2

= 050 + Oé'igt—'i + /8]'0-15—]' + Ut
i=1 j=1

p q
E 2 E 2

— ao —|— a,l'gt_z- + /8] (gt—‘] - /Ut—]) + /Ut
i=1 j=1
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p q q
= a0+ Y gt + Y Bl — ) B+,
i=1 j=1 j=1
where v; = €2 — 02 =02 (22 — 1), and E (v|®, 1) = 0.

The unconditional moments of the GARCH process characterize the properties of
the model. The derivation of the unconditional moments of the ARCH and GARCH
processes is possible through extensive use of the Law of Iterated Expectations. The
unconditional mean of a GARCH(p,q) error process e; with conditional variance (3.4) is
given by F (g¢) = E [E (e|®;—1)]. The GARCH model specifies that F (g;|®;_;) = 0 for
all realizations of ®; ;, and therefore, the GARCH process has mean zero: E (g;) = 0.
The unconditional variance of the GARCH(p,q) model is given by

o2 =E (g}) = ap/

£

p q
1= ai- Zﬂj] ,
i=1 j=1

P
and the necessary and sufficient condition for the existence of the variance is ) «; +
i=1

J
on the information set ®; ; changes over time, unconditionally the GARCH process is

q
B; < 1; see, for details, Bollerslev (1986). Although the variance of ¢; conditional
-1

homoscedastic. In many applications with high frequency financial data the estimate for

i o; + i f3; turns out to be very close to unity. This provides an empirical motivation

Zf?)llr the ijnztlegrated GARCH(p,q) or IGARCH(p,q) model (Engle and Bollerslev, 1986).
Bollerslev (1986) present the conditions for the existence of the moments of the

GARCH(1,1) model under conditional normality. If a1 +3, < 1 and 3a?+2a18,+ 37 < 1,

then the second and fourth order moment exist and are given by

E [5?

} a E[4]:( 322 (1+ai+ )

= g .
1l—ag —f4 ¢ 1—041—51)(1—304%—204151—5%)
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Therefore, the kurtosis of the unconditional distribution of €; is given by

o EE L, 6o3
Bl T T30~ 208, -

which is larger than 3, indicating that ¢; is leptokurtic. The condition on the parameters
of the general GARCH(p,q) model for the existence of the fourth moment of ¢; is given
by Karanasos (1999).

The autocovariances of the GARCH(p,q) process, for k > 1, are given by

E (€t5t—k) = F [E (5t5t—k|q)t—1)]

= FElg_F (e|®i-1)] = 0.

Since the GARCH process is serially uncorrelated, With constant mean zero, the process
is weakly stationary if the variance exist, that is if Z a; + Z B; < 1.

An attractive characteristic of ARCH and GARCH modells is that even though the
conditional distribution of the errors is normal, the unconditional distribution is nonnor-
mal with thicker tails than the normal distribution. In spite of this property, empirical
work with ARCH and GARCH models indicated that the implied unconditional dis-
tribution of estimated ARCH and GARCH models were not sufficiently leptokurtic to
represent the distribution of returns. Bollerslev (1987) used the conditional Student-
t distribution, which allows for heavier tails than the normal distribution and, as the
degrees of freedom goes to infinity, includes the normal distribution as a limiting case.

Maximum likelihood estimates for the parameters of GARCH model are obtained by
the Berndt, Hall, Hall and Hausman (1974) algorithm; see, for example, Bollerslev (1986),
Bollerslev (1987), Baillie and Bollerslev (1989) among several others. Fiorentini, Calzo-
lari and Panattoni (1996) used analytic first and second derivatives of the log-likelihood
for the estimation of the parameters of the GARCH model. They also made a compar-
ison of various gradient algorithms that are used for the maximization of the GARCH

Gaussian likelihood. The properties of the quasi-maximum likelihood estimator for dy-
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namic models with time varying covariances and GARCH models have been investigated
by Bollerslev and Wooldridge (1992) and Lee and Hansen (1994). The wide acceptance
and the extended applicability of GARCH models is based on the fact that these models
can accommodate many features of financial time series; see, for example, Akgiray (1989),
Bera and Higgins (1997) among several others. A Bayesian analysis of GARCH models
was proposed by Bauwens and Lubrano (1998), Muller and Pole (1999), Bos, Mahieu and
van Dijk (1999), Vrontos, Dellaportas and Politis (2000) who used MCMC methods to
extract the posterior distribution of the model parameters. Bauwens, Bos and van Dijk
(1999) used Adaptive Polar Sampling within a Bayesian analysis of a GARCH-mixture

model for the evaluation of the value-at-Risk of the return of the Dow Jones stock index.

3.2.3 EGARCH model

ARCH and GARCH models capture the volatility clustering phenomenon. This feature
of GARCH models accounts for both their theoretical appeal and their empirical success.
On the other hand, their functional forms impose important limitations. GARCH models
assume that only the magnitude and not the sign (positivity or negativity) of the error
process determines future o?. That is, the conditional variance o? is symmetric in the
lagged e;’s. A symmetric conditional variance function may be inappropriate for modeling
the volatility of returns of stocks because it cannot capture the “leverage effect”, which is
the negative correlation between returns and future volatility. In other words, volatility
tend to rise in response to “bad news” and to fall in response to “good news”. Other
possible limitations of GARCH models concern the interpretation of the persistence of
shocks to conditional variance and the nonnegativity constraints on the parameters of
the model, which are imposed to ensure that o2 remains positive. These constraints can
create difficulties in the estimation procedure.

Nelson (1991) introduced the Exponential GARCH (EGARCH) model, that relax the

above limitations, and used the Generalized Error Distribution (Box and Tiao, 1973),

which account for the fat tails property of financial data. The density of a Generalized
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Error Distribution (GED) random variate with mean 0 and variance 1, is given by

— Lz
p(z) = vep [ [% ], —00 < 2 < +o0, v>0

2090 (4)
N [2(—2/v>r (%)] 1/2,

I

where T'(.) is the gamma function, and v is a tail-thickness parameter. If v = 2 we
obtain the normal distribution, and for v < 2 and v > 2 the distribution of z; has thicker
and thinner tails than the normal distribution respectively. The EGARCH(p,q) model

is given by the following formulation
Et = %0y, t= O, ...,T,

q p
In (07) :ozo—i—Zﬂj In (07 ;) ; +Z Orzt & + Vi (|2zek| — Ezek])], (3.5)
j— k=1

where z; are iid and follow GED with mean 0 and variance 1, o2 is the conditional
variance of the {&;} process at time ¢, o, = z; = 0 for ¢ < 0. Under the assumption of

generalized error distribution for z;, E |z, | is given by

Elz-r| = (g)]l/z'
If the coefficients §;, j = 1, ..., q are equal to zero then the model is called Exponential
ARCH (EARCH), since the conditional variance equation contains only past standardized
observations.

Modeling the logarithm of the conditional variance according to (3.5) solves the lim-
itations of GARCH models. The EGARCH models capture the “leverage effect”. To
accommodate the asymmetric relation between stock returns and future volatility, a

function of both the magnitude and the sign of z; is used. This function is the linear
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combination of z; j and of |z, |, and is given by

9 (ze) = Onzer + i (|2ek| — E2e4]) -

Assume, for example, that 6, = 0 and ~y, > 0. Then, the innovation in In(c?) is positive
(negative) when the absolute value of z,_j is larger (smaller) than its expected value,
in other words, when |z;_x| — F |z_g| is positive (negative). This term represents the
magnitude effect. Assume now that 6, < 0 and 7, = 0. The innovation in conditional
variance is now positive (negative) when returns z; , are negative (positive). The term
Oz k represents the sign effect. The specification (3.5) allows the conditional variance
to be positive, and therefore, there are no restrictions on the model parameters. Details
for the properties and the stationarity of the Exponential ARCH model are presented in
Nelson (1991).

The EGARCH model allows lagged shocks to have an asymmetric effect on the condi-
tional volatility. The performance of this model has been studied by Pagan and Schwert
(1990) using U.S. monthly stock returns. Engle and Ng (1993) measured how new infor-
mation is incorporated into volatility estimates using daily Japanese stock return data,
and a comparative study of different volatility models was presented by Taylor (1994)
using daily exchange rates. The EGARCH model has been used by Poon and Taylor
(1992), Day and Lewis (1992), Kuwahara and Marsh (1992), and a Bayesian analysis of
EGARCH models is in Vrontos, Dellaportas and Politis (2000).

3.2.4 Extensions of the ARCH-GARCH model

In this section we present some alternative functional forms for the conditional variance
that have been proposed in the literature. Engle (1982) considered that the conditional
variance function was linear in the squared errors and that the conditional distribution
was normal. However, he mentioned that “it is likely that other formulations of the

variance model may be more appropriate for particular applications”. He suggested that
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two alternative formulations are the exponential and the absolute value models:

0?2 = exp [ao + alsf_l] and 07 = ag + a1 |es1] -

In the absolute model the parameters must be positive, while in the exponential model
no inequality restrictions are required for the «;’s to ensure that the conditional variance
is strictly positive. Taylor (1986) suggested that the conditional standard deviation o
can be modeled by

p
or=an+ > aile .
i=1

Geweke (1986) and Pantula (1986) suggested the log ARCH model

p
In (07) = ap + Z a;In (e7_;), (3.6)
i=1
which ensures that the conditional variance is positive for all values of o;, i = 0,1, ..., p,
but there is problem when the value of €;_;, i = 0,1, ..., p is zero.
Higgins and Bera (1992) proposed a general class of models, called nonlinear ARCH
(NARCH), which is given by

7= o0 () 40 ()" + by (e2,)] 87

P
where 02 > 0, ¢; > 0,7 =0,1,...,p, § > 0, and the ¢, are such that Y ¢, = 1. The
i=0

conditional variance (3.7) has p + 3 parameters, but the restriction Zp: ¢; = 1 reduces
the number of parameters by one. This model includes the linear AREPOI (3.2) model as
a special case when 6 = 1, and the log ARCH model (3.6) as a limiting case. See, for
details, Higgins and Bera (1992). The above models can be extended to GARCH models.

Glosten, Jagannathan and Runkle (1993) used the following formulation
of = o+ B107_, +are; | +aser I (1 >0), (3.8)
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where [ is the indicator function and thus the impact of €2_; on the conditional varinace
o? is different when ; ; is positive than when &, ; is negative. This model can capture
the asymmetric or “leverage effect”, in which good news and bad news have different
predictability for future volatility. The asymmetric GARCH model has been analyzed
by Bauwens and Lubrano (1999) using Bayesian methodology. Zakoian (1994) adopted
a different approach. He specified the conditional standard deviation based on a result
of Davidian and Carroll (1987) that in the case of nonnormal distributions, absolute

residuals yield more efficient variance estimates than squared residuals. He called his

model Threshold GARCH(p,q) model which is given by

p q
_ + o+ — -
oy =og + g o el —ao; e+ E BT,
i=1 j=1

where € = max(g;,0) and & = min(e;,0), a9 > 0, o > 0, af > 0,1 = 1,...,p,
and §; > 0, j = 1,...,q. This formulation is known as threshold GARCH because the
coefficient of €; ; changes when ¢, ; crosses the threshold of zero. For of = a; = a; for

all i =1, ..., p, the conditional standard deviation is given by

p q
Ot = Qg + ZO&Z' |5t—z'| + Zﬂjat_j.
i=1 j=1

Instead of modeling the conditional variance using a piecewise linear function, Gourier-
oux and Monfort (1992) used a piecewise constant function over a partition of the set

of values of the data. They introduced the qualitative threshold ARCH, or QTARCH,

model which is given by

J J
Et = ZO&jI (5,571 S AJ) + Zﬂj[ (51571 € AJ) 2ty
= j=1

where ¢, is the series of interest, A;, 7 = 1,...,J is a partition over the support of the

data, I (.) is the indicator function, i.e. is 1 if e,y € A;, a; and 3, j = 1,...,J are
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parameters, and z; is iid with mean 0 and variance 1. The «; parameters govern the
mean and the 3, parameters govern the variance of the {&;} process.

Engle and Ng (1993) provided a summary of asymmetric models and proposed some
new formulations. They defined the news impact curve which measures how new infor-

mation is incorporated into volatility estimates. The proposed parametric models are
2 _ 2 2
o =ap+oq (g1 +7) + Bior,

of = g+ 07, + a1 (01 + 701 1)°
2 _ 2 2
o; =ap+ B10;_1 + o (ero1 /o1 +7)°.

They also proposed a partially nonparametric model (PNP), which is similar in spirit
with the model of Gourieroux and Monfort (1992), but they specified the variance func-
tion using a piecewise linear function. They divided the range of {e;} into m intervals,
where the boundaries of the interval are {7,,-,...,7_1,0, 71, ..., Tpp+ }, m~ is the number
of intervals in the range where ;_; is negative, m™ is the number of intervals in the range

where &;_1 is positive, and m = m~ + m™. The variance function is given by

mt m-
o} = a0+ B0}, + Z 0iPit—1 (€11 — T4) + Z 6ilNig—1 (€4-1 — T—i) , (3.9)
i=0 1=0

where Py;_; is 1 if ,_1 > 7; and 0 otherwise, and N;_; is 1 if ¢,_; < 7_; and 0 otherwise.
ag, By, 0i, i =0,1,...,m", 8,4 =0,1,...,m  are constant parameters. From (3.9) o2 is
linear with a different slope over each interval. For example, between 0 and 7, the slope
is 0y, between 7, and 7, the slope is 6y + 01, generally between 7; and 7;,1 the slope is
01 + ... + 0;. Engle and Ng (1993) chose the 7;’s to be multiples of the unconditional
standard deviation of the dependent variable. The statistical properties of a family of
GARCH models is presented in He and Terasvirta (1999).

Engle, Lilien and Robins (1987) introduced the ARCH-M model which extends the

ARCH model and allows the conditional mean return to be a function of volatility. In a
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simple form the model can be written as

Y = a+bf(0f) +vx +e
5t|q)t—1 ~ N(0,0’?)

p
2 _ 2
o, = ao—l—g OGEF 4,
i=1

where v, is the observation process, f () is a function of the conditional variance, x; is
a vector of exogenous or lagged dependent variables, €; is the innovation process, ®;_; is
the information set up to time ¢ — 1, o is the conditional variance of the process which
follows a linear ARCH(p) model, and a, b, v, ag, oy, i = 1,...,p are parameters to be
estimated. Any other formulation can be used to model the conditional variance. This
model is useful in financial applications since it relates the returns of a stock and volatility.
Empirical studies on this relationship have been done, for example, by French, Schwert
and Stambaugh (1987), Nelson (1991), Poon and Taylor (1992), Glosten, Jagannathan
and Runkle (1993) among several others.

3.3 Multivariate ARCH-type models

The extension of univariate ARCH-type models to a multivariate framework and the
estimation of time-varying covariances between asset returns is crucial for asset pricing,
portfolio analysis, and risk management. The development of multivariate models, with
a view to modelling the covariance pattern in volatility, is lagging significantly behind the
development of univariate time-varying volatility models. Two major problems related
with multivariate ARCH and GARCH models are the large number of parameters to be
estimated, and the difficulty of the estimation due to the positive definiteness restrictions

of the covariance matrix. We consider having observed data of the form

Y, t= 1, ...,T,
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where each y; = (y14, ..., yns) is @ N X 1 vector. Suppose that the mean equation and the

conditional distribution of the innovation process are given by the following equations:

Y = K+ &,

Et’q)tfl ~ Ny (0; Et);

where p is a N x 1 vector of constants, €; is a N x 1 innovation vector, ®; ; is the
information set up to time ¢ — 1, 3, is N x N covariance matrix with elements ait and
oijt, t = 1,..,N, j =1+ 1,...,N, where U?J is the variance of the ¢ — th variable at
time ¢, and 0, is the covariance between ¢ — th and j — th variable at time ¢. Different

time-varying covariance models impose different restrictions on how past shocks affect

the forecasted covariance matrix. In this section we present some well known multivariate

ARCH-GARCH models that have been proposed in the literature.

3.3.1 Multivariate ARCH model

Kraft and Engle (1982) introduced the multivariate ARCH(p) model which allows the
elements of the conditional covariance matrix to change over time. The model can be

written as:

vech () = C + ij Ajvech <st_2~€;_i) : (3.10)
i=1

where 3; is N x N covariance matrix, vech (.) denotes the column stacking operator of

x 1 vector, A;, i = 1,...,p are

the lower portion of a symmetric matrix, C is a —N(]\;H)

N(N+1) \ N(N+1
2

2
5 ) matrices. This model involves a total of wjtp < w> parameters

in the covariance equation. Representation (3.10) is called ‘vech representation’ of a

multivariate ARCH model. For N =2 and p = 1, equation (3.10) can be written as:

vech (%) = C 4+ Ajvech (st_ls;_1>
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or

2 2
01,4 €11 air a2 Qi3 €11
O21¢t | — | €21 + | an azx ass €1,t—1€2t—-1 | - (3-11)
o3 c a a a 2

2.t 22 31 (32 as33 2,1—1

The covariance matrix 3; must be positive definite for all realizations of €;_;. The
positive definiteness of 3J; places restrictions on the elements of vector C and on the rows
and columns of A;. Kraft and Engle (1982) showed that the necessary conditions for the
positive definiteness of ¥, in the bivariate ARCH model (3.11) are

2
ci1 > 0, 2 >0, i — 5 >0,

1
2
an > 0, a13 >0, anja;z — Zam >0,
1,
az1 > 0, azz > 0, azjass — 1%:2 >0,
2 2 2
ajlags —az > 0, ajjaz; —ay > 0, ajzazz — azz > 0.

For multivariate systems of larger dimension, analogous constraints on the rows and
columns of matrix A; must be imposed. The derivation of these restrictions is given
in Theorem 1 of Kraft and Engle (1982). Note, that in (3.11) and (3.10) each o7, and
0, depends on lagged squared residuals and cross-products of all the variables in the
system. A simple assumption is to specify that the variances depend only on its own past
squared residuals and that the covariances depend only on past cross products. In this

case the matrices A;, i = 1,...,p in (3.10) are diagonal. Then the number of parameters

is(p+1) w For N =2 and p = 1, the covariance equation can be written as
O'it C11 a1 0 O E%,t—l
ooig | = | ca | |0 axn O €1,0-1€24-1 | - (3.12)
O'%t C29 0 0 ass 8%7,5_1
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Positive definiteness of 3, in (3.12) requires that

2
cit > 0, c2 >0, cr102 — ¢35 >0,

2
air > 0, az3 >0, aasz —az > 0.

This ‘diagonal representation” was used by Engle, Granger and Kraft (1984) for their
analysis of the problem of combining competing inflation forecasts using time varying

weights. Estimates of the model parameters was obtained by using the method of scoring.

3.3.2 Multivariate GARCH model

Bollerslev, Engle and Wooldridge (1988) introduced the multivariate GARCH(p,q) model.

A version of this model can be written using the ‘vech representation’ as:

p q
vech (%) = C + Z A, vech (st,is;,l) + Z Bjvech (%;_;), (3.13)

i=1 j=1

where 3; is N x N covariance matrix, vech (.) denotes the column stacking operator of

the lower portion of a symmetric matrix, C is a —N(]\;H)

2
B,,j=1,...,qare N(A;H) X N(A;H) matrices. This model has X8+ 4 (p+q) (W)

x 1 vector, A;, i = 1,...,p and

2

parameters to be estimated. For N = 2 and p = ¢ = 1, equation (3.13) can be written

as:
7
vech (2;) = C + Ajvech (Et71€t71> + Byvech (£;4) (3.14)
or
2 2 2
014 C11 a1 a2 a3 E1t-1 B B Pis O1,t-1
021t = | co || az ax ax €1,6-1€2¢t—1 + 521 522 523 021,t—1
2 2 2
03¢ Co2 az1 A3z a33 €911 B31 Bz PBas O2.¢t-1

Model (3.13) allows each element of the conditional covariance matrix to depend on

lagged values of the squares and cross-products of all the variables in the system, as well
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as lagged values of the elements of the covariance matrix. This model is very general
and has a large number of parameters. A natural simplification is to assume that the
variances depend only on its own past squared residuals and past variances and that
the covariances depend only on past cross products and past covariances. Therefore, the
matrices A;, i =1,...,p and B, j = 1,...,¢ in (3.13) are diagonal. Then the number of

N(N+1)
2

parameters is (p+ ¢+ 1) . For N =2 and p = ¢ = 1, the covariance equation can

be written as

2 2 2
014 ‘1 an 0 0 €1t-1 B 0 0 0141
oo | = | ca |T| 0 ax O E1-1€2¢-1 || 0 By O 021,41
2 2 2
054 C22 0 0 ass €911 0 0 B3 0241

Engle and Kroner (1995) presented the necessary and sufficient conditions for the
covariance stationarity of the multivariate GARCH model (3.13). They proved that {e;}
is covariance stationary if and only if the eigenvalues of Zp: A+ Zq: B, are less than one
in modulus. Focusing on the bivariate GARCH(1,1) nllzoldel (3]1:41), {&} is covariance

stationary if and only if the eigenvalues of A; + B; are less than one in modulus, and

the unconditional covariance matrix in a ‘vech representation’ is given by
E [vech (etsg)} —[[-A -B]C.

The ‘diagonal representation’ was used by Bollerslev, Engle and Wooldridge (1988),
Baillie and Myers (1991), Bera, Garcia and Roh (1991), Kroner and Lastrapes (1993).
Maximum likelihood estimates for the parameters of multivariate GARCH model (3.13)
are obtained by the Berndt, Hall, Hall and Hausman (1974) algorithm along with numer-
ical first order derivatives. Bollerslev and Engle (1993) extended the idea of Integrated
GARCH model to a multivariate framework. In the IGARCH models shocks to the
conditional variance are persistent, in the sense that they are important for forecasts of

all horizons. According to Bollerslev and Engle (1993), although many financial time
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series may exhibit persistence in their conditional variances, a linear combination of such
variables may have no persistence in variance. In this case the variables are defined co-
persistent in variance, and the co-persistent linear combination may be interpreted as a
long-run relationship.

The covariance matrix 3; must be positive definite for all values of ;. In the ‘vech
representation’, and even in the ‘diagonal representation’; this restriction is not easy to

check and also difficult to impose at the estimation procedure.

3.3.3 The BEKK model

Engle and Kroner (1995) proposed a new parameterization of multivariate GARCH

model, known as ‘BEKK representation’. It is characterized by the following equation:

K p K q
T =CiCi+ > ) Aneieg, AL+ > Y ByE_Bj, (3.15)

k=1 i=1 k=1 i=1

where 3, is N x N covariance matrix, Cjj, A}, B}, are N x N parameter matrices with
Cj triangular, and the generality of the process is determined by K. To illustrate the
BEKK model, consider the simple GARCH(1,1) model, with K = 1:

¥, = CyCy+ Ale, 16, | AI, +BI X, B, (3.16)

In the bivariate case the model becomes

2 * * 2 * *
01 O12¢ o ;. Gy €141 €1,t-1€2,t-1 ayp Qg
* * * *
0216 Ogy Qg1 Qo9 €2,4-1€1,¢-1 €91 g1 Qg9
* * 2 * *
B Bia O1t-1 012;t-1 B Bia
+ ) (3.17)
* * * *
B B2 O021,t-1 0241 B B2

The BEKK model provides a solution to the positive definiteness problem. Due to
the fact that the second and third term of the right hand side of equation (3.16) or

69



(3.17) are expressed in quadratic forms, the positive definiteness of the covariance matrix
is guaranteed, provided that Cj C} is positive definite. The number of parameters to
be estimated in model (3.16) is w + 2N?. Engle and Kroner (1995) presented the
relation between the BEKK model and the multivariate vector/diagonal GARCH model.
They also developed necessary and sufficient conditions for the covariance stationarity of
the BEKK model (3.15). {e;} is covariance stationary if and only if the eigenvalues of
i i (A, ® AL) + i i (B;, ® B, are less than one in modulus. In the case of the
l]?]f%gll{ model (3.16) észiilgl(}ARCH(l,l) and K =1, {&;} is covariance stationary if and

only if the eigenvalues of (A}, ® A3,) + (Bi, ® BY,) are less than one in modulus, and

the unconditional covariance matrix in a ‘vec representation’ is given by

E [vec (€t€;>] = [I — (A} ® Afl)’ - (B}; ® Bfl)/] vec (CSICS> ,

where vec (.) is the vector operator that stacks the columns of a matrix. The estimation
of the model parameters is addressed by using the Berndt, Hall, Hall and Hausman (1974)

algorithm.

3.3.4 Multivariate GARCH model with constant conditional

correlations

Bollerslev (1990) proposed a simple multivariate conditional heteroscedastic time series
model. This model has time-varying conditional variances and covariances, but constant

conditional correlations. He expressed the conditional covariance matrix 3J; as
Et - DtRDt, (318)

where R is the N x N time invariant correlation matrix with elements p,;, 1 = 1,..., N,
j=1+1,...,N,i# j,and D, is the N x N diagonal matrix with elements 0;¢,7 =1, ..., N.

The individual variances are assumed to be standard univariate GARCH(p,q) models
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given by

p q
ol =ao+ Y ayer, ;+ Y Byot, 5 i=1,..,N. (3.19)
j=1 j=1

The covariance matrix ¥; will be positive definite for all ¢ if and only if the constant
conditional correlation matrix is positive definite and the conditional variances are well
defined. These restrictions are very easy to impose, compared to other parameterizations
for the varying covariance matrix. The number of parameters in the covariance equation
of this multivariate GARCH model is the w + N (1 +p + q), constructed by the p,;,
agi, aij, and 3. To illustrate the multivariate GARCH model (3.18) and (3.19) with
constant conditional correlations consider the simple case with N = 2, and p = ¢ = 1.

The elements of the conditional covariance matrix 3; are given by:
2 2 2 .
Oip = Q0i T Qi1€54 1 + ﬂﬂgz’,tqa i=1,2

2 2 \1/2
012t = P12 (‘71,t‘72,t) , —1<py <L

For positive definiteness of 3, in this bivariate case, we need ag; > 0, a;; > 0, 5,; > 0,
i = 1,2 and —1 < p;, < 1. For finite variance and stationarity, it is also necessary to
impose that a; + 8;; < 1 for ¢ = 1,2. Many applications of multivariate models use
the above representation; see, for example, Giovannini and Jorion (1989), Baillie and
Bollerslev (1990), Schwert and Seguin (1990), Kroner and Claessens (1991), Kroner and
Sultan (1991), Ng (1991), Bekaert and Hodrick (1993), Turtle, Buse and Korkie (1994)
among others.

Jeantheau (1998) allowed the conditional variances to depend on lagged values of the
squares of the error process of all variables in the system, as well as lagged values of its
own variance and on lagged values of the other variances. He expressed the conditional

covariance matrix ¥, as in (3.18), where the elements o;,, i = 1,...,N of the N x N
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diagonal matrix Dy satisfy, for all i, the following relation:

O-%,t » €1t q U%,t—j
=Ag+ ) Al +) B | : (3.20)
=1

2 2 2
ONt ENt—i ONt—j

where Ay is a N x 1 vector of constants, A;,7=1,..,pand B;, j =1,...,g are N x N
parameter matrices, whose elements are positive. The number of parameters in the
covariance equation of this multivariate GARCH model is the w +N (1+ Np+ Ng),
constructed by the p;;, Ao, A;, and B;. To illustrate the multivariate GARCH model
(3.20) with constant conditional correlations consider the simple case with N = 2, and

p = q = 1. The elements of the conditional covariance matrix 3; are given by:
2 2 2 2 2
014 = Q10 +a11€74_1 + Q12851 + 5110741 + B120541

2 _ 2 2 2 2
0% = G20 + A2167 41 + Q22541 + B2107 41 + Bo2054 1
_ 2 2 \1/2
012t = P12 (Ul,tUQ,t) , —1<py, <L

For positive definiteness of 3; in this bivariate case, we need ag; > 0, a;; > 0, 3;; > 0,
1,7 =1,2and —1 < p;y < 1.

The assumption of constant conditional correlation is found to be reasonable for
some empirical studies. However, this assumption may seem restrictive since the time
variation of the conditional correlations of asset returns is a well established stylized fact.
For example, correlations between stock markets tend to increase during periods of high
volatility, while some economic variables such as dividend yields and interest rates may
contribute to the information set about correlations. Christodoulakis and Satchell (1998)
proposed a new bivariate model with time varying conditional variances and correlations,
the evolution of which is generated by a discrete time stochastic process. Their model can

be considered as an expansion of the constant conditional correlation model of Bollerslev
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(1990). According to their model the conditional covariance matrix is given by (3.18),
where the conditional variances are assumed to follow univariate ARCH processes (of any
type), and the element of correlation matrix p;,, evolves over time. In order to ensure
that the conditional correlation |p12’t‘ is always less than one, they adopted the Fisher-z

transformation of correlation coeflicient

1 L+ proy
212, (P12,t) = 5 In 1_,_. P
12,t

which implies that
exp (2z124) — 1
exp (2z19¢) + 1

P12t (z12.¢) =

They change 212 over time according to a linear function of the available information

set. That is
p
2124 = Qo+ Z ®;Et—is
i=1

where g, = (€1,4624) / (01,4024). This model was called Correlated ARCH (CorrARCH)
of order p. An expansion to Correlated GARCH model is obvious. They estimated the
model parameters using maximum likelihood techniques, under alternatives distributional

assumptions of conditional normality and of bivariate-t distribution.

3.3.5 Latent Factor ARCH Model

Diebold and Nerlove (1989) proposed a multivariate Latent Factor ARCH model for
the analysis of exchange rates. The motivation for this model is that the ARCH ef-
fects capture the volatility clustering phenomenon and the factor structure captures the
commonality in volatility movements across exchange rates. The model can be written
as

g = BF, + vy

E|®_ ~ N (0,07)
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12
ol =ag +92(13 — i) F2,,

i=1
where €; is a N x 1 innovation vector, 3 is a N x 1 parameter vector, F' is a common
factor which influences all the time series of interest, v; is a N x 1 vector of ‘unique
factors” which reflect the specific shocks, ®; ; is the information set up to time ¢ — 1,
which contains the values of the common factor F' at previous times ¢t — 1, t — 2, ..., o2
is the variance of the common factor at time ¢, which is given by an ARCH(12) model.
Other ARCH-type specifications can be used for modeling the variance of common factor.
In addition E (F;|®;1) = E (vj|®;—1) =0, for all j and ¢, E (F,Fy|®,_1) =0, for t # t,
E(Ftvjt:|(I)t_1) = 0, for all j, ¢, t, E(vz-tvjt/|<1>t_1) = ifi =g, t# t', and zero,

otherwise. Therefore, the conditional covariance matrix is given by
=008 +T,

where I' = cov (v;), is a N x N diagonal matrix with elements v;, j = 1,..., N. For

example, the j — th conditional variance at time ¢ is given by

12
0 = Bio7 +7; = Bao+7; + 670 (13 —4) FY,
=1

and the jk — th conditional covariance is given by

12
e = B;840 = B;Bka0 + 8;8,0 Y (13 — i) FL;.

i=1
The number of parameters to be estimated in this latent factor model is 2N 4 2, which is
a very small number in comparison with that of alternative multivariate models. In this
model all the conditional variances and covariances are influenced by the common factor
F. The impact of the common factor on the j — th time series is given by the value of
B;. The impact of the ‘unique factors’ on the j — th conditional variance is represented

by the value of ;. The estimation of the model parameters is done by using either a
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two-stage procedure or a simultaneous parameter estimation using Kalman filter. See for

details Diebold and Nerlove (1989).

3.3.6 Factor GARCH model

King, Sentana and Wadhwani (1994) proposed a multivariate Factor model in which the
time-varying volatility of returns is induced by changing the volatility of the underlying
factors. This allows a parsimonious representation of the conditional covariance matrix of
returns as a function of the variances of a small number of factors. They used ‘observable’
and ‘unobservable’ factors, whose conditional variances vary over time according to a

univariate GARCH model. The model can be formulated as

Yt = My + Exy

where y; is a N x 1 vector containing the returns, g, = F (y¢|®;-1) is a N x 1 parameter
vector of conditional means or risk premia, &; is a /N x 1 innovation vector or unanticipated
returns, ®;_; is the information set up to time ¢t — 1. Using a dynamic model for asset
risk premia in terms of changing volatility of factors p, = BA;7, and a conditional factor

model for the innovation returns £, = BF; 4+ v;, the model can be written as:

Yt = BAtT + BFt + Vi, (321)

where B is a N x k matrix of factor loadings which measure the sensitivity of the assets
to the common factors, A; is a k x k diagonal positive definite matrix of factor variances
which change over time, 7 is a k X 1 parameter vector which can be interpreted as the
price of risk for each factor, F, is a k x 1 vector of common factors which affect all assets,
v; is a N x 1 vector of idiosyncratic terms which reflect unsystematic risk. To guarantee
E (4|®;—1) = 0 they assume that E (Fj|®;_1) =0, and E (v;|®;_1) = 0, for all 7 and ¢.
They also assume that E (F; Fj;|®,—1) = 0, for i # j, that is the factors are orthogonal,

and that they have time varying conditional variances \;; > 0,7 =1, ..., k. Let also €2, is
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a IN x N positive definite covariance matrix of the idiosyncratic terms, v;. Given that the
common factor and the idiosyncratic terms are conditionally orthogonal, the conditional
covariance matrix 3; of y; is:

¥, = BAB +Q,. (3.22)

King, Sentana and Wadhwani (1994) divided the & common factors into k; ‘observable’
factors F1;, which attempt to capture the correlation of the unanticipated innovations of
some economic variables with stock returns, and ks ‘unobservable’ factors Fy;, which are
correlated only with the return process. Using the orthogonality of the factors we can

write equations (3.21) and (3.22) as:
Yt = BlAltTl+B2A2tTQ+B1F1t+B2F2t —+ vy (323)

and

¥, = BiA; B + ByAy B, + Q. (3.24)

Equation (3.24) express the covariance of asset returns into three components related to
‘observable’ factors, ‘unobservable’ factors, and idiosyncratic terms. The above model
formulation given by (3.23) and (3.24) contains the models of Engle, Ng and Rothscild
(1990) and Ng, Engle and Rothschild (1992) who used only ‘unobservable’ factors (k1 = 0)
and constant idiosyncratic variances (Q2; = ), and of Diebold and Nerlove (1989) who
used only one ‘unobservable’ factor and a zero risk premium (k; = 0, ks = 1, 71 = 0,
79 = 0).

A set of economic variables is used by King, Sentana and Wadhwani (1994) in order
to generate the ‘observable’ factors. They estimated a vector autoregressive process for
the economic variables, and extracted common observable factors from the innovations

of these processes. Their model is completed by using the following equations

p
Xy = E Ath_j+et
Jj=1
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e, = CiFy+ wy,

where x; is a M X 1 vector of economic variables, A; is a M x M matrix of coefficients,
e; is a M x 1 innovation vector, C; is a M x k; matrix of factor loadings for the economic
variables, and w; is a M X 1 innovation vector of idiosyncratic error terms. It is also
that E (w|®_1) =0, E (F1,w;|®_1) =0, E (Wyv;|®—1) =0, and E (wywy|®_1) =T,
a positive semidefinite diagonal matrix.

To complete the model, the conditional variances of the common factors and of idio-
syncratic terms are given by univariate GARCH(1,1) models. For example, the diagonal

elements of Ay, €2, are given by:
it = Qo + i E (Fit_lutq) +badig 1, i=1,..,k

Wit = G0 + G E (v?,t_l\thl) +opwiz-1, 1=1,..., N

and an analogous formula is given for the elements of I';. In the above formulations
Ji—1 is the available information set, and for the variances \;; of the common factors an
unconditional variance equal to unity is imposing by ;o = 1 —ay1 —b;;. Details about the
specification of these variance equations is given in King, Sentana and Wadhwani (1994).
The number of parameters in this model is Nk + Nko+ki +ko+ Mk +2 (k1 + ko) +3N +
3M corresponding to By, By, 71, 72, C1, and the GARCH parameters of the diagonal
elements of Ay, Ay, ©; and I'y. This number is very small comparing to that of other
multivariate GARCH models especially when the dimensionality of the problem is large.

Different algorithms have been proposed in the literature for the estimation of factor
models. Watson and Engle (1983) used the method of scoring and the EM algorithm for
the estimation of dynamic factor, mimic and varying coefficient regression models. They
suggested, for practical methods, a mixed EM and scoring algorithm, and the use of
scoring algorithm for inference. Lin (1992) proposed four estimators for factor GARCH

models and examined their finite sample properties. Demos and Sentana (1998) presented
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an EM algorithm for conditionally heteroscedastic factor models and proposed a quasi-
newton algorithm at last iterations. The study of Engle and Susmel (1993) investigates if
some international stock markets share the same volatility process. Generally speaking,
different factor models have been proposed in the literature, and have been analyzed by
many researchers either using ARCH - GARCH framework (see, for example, Diebold
and Nerlove, 1989, Laux and Ng, 1993, Engle, Ng and Rothschild, 1990, King, Sentana
and Wadhwani, 1994 among several others) or using Stochastic Volatility framework (see,
for example, Chib, Nardari and Shephard, 1999, Giakoumatos, Dellaportas and Politis,
1999, Aguilar and West, 2000) for the specification of the variances of the factors.

3.3.7 Asymmetric models of time-varying covariance matrix

It appears that volatility in asset return series is asymmetric: current returns are nega-
tively correlated with future volatility. This is known as “leverage effect” or “asymmetric
volatility effect”. A negative return shock (unexpected price drop) will lead to a higher
future volatility than a positive return shock (unexpected price increase) of the same
magnitude. A number of sophisticated univariate models have been developed to ac-
commodate asymmetric volatility; see, for example, Nelson (1991), Engle and Ng (1993),
Glosten, Jagannathan and Runkle (1993), Hentschel (1995) among several others. In a
multivariate framework, Kroner and Ng (1998) proposed a general asymmetric dynamic
covariance matrix model which allows covariance asymmetry in stock returns on portfo-
lios of small and large firms. This model encompasses various asymmetric extensions of
some well known multivariate models. Their proposed multivariate model can be written
as:

Et = DtRDt + @ o} ®t; (325)

where D; is a N x N diagonal matrix with elements the square root of the variance
functions, that is d;;; = /0 foralli =1,.... N, d;;; =0, for all i # j, R is the N x N

time invariant correlation matrix with elements p;;, 7,7 = 1,..., N, p; = 1 for all ¢, ® is
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a N X N symmetric matrix with elements ¢;;, ¢;; = 0 for all e =1,..., N, and ¢,; # 0 for

i # 7, ©;is a N x N matrix with elements 6,;, which are given by
Oij = wij + b Ze 1b; + A 16,18, + &1 M, 18, (3.26)

where &; 1 is a N x 1 innovation vector, n,_; is a N X 1 vector with elements n;, ; =
max [0, —€;¢1], a;, b;, and g;, i = 1,..., N are N x 1 vectors of parameters, and p,;, ¢;;,
and w;j, 4,7 = 1,..., N are parameters.

The asymmetric covariance matrix model (3.25) has two components: the first com-
ponent, D;RDy, is like the multivariate GARCH model with constant conditional corre-
lation, but the variance function is specified as in the BEKK model. The second term,
® 0Oy, has zero diagonal elements, and non zero off-diagonal elements which are given by

the BEKK model, scaled by the ¢,; parameters. Note that in (3.26) the term gM_ 1M 18,

allows for asymmetric effects in the conditional variances and covariances. This asym-

NN-1) | NN-1) g NOVED | g2

metric covariance matrix model (3.25) and (3.26) has
parameters to be estimated corresponding to R, ®, w;;, a;, b;, and g;, ¢+ = 1,..., N.
This model is very general and under restrictions on the parameters other well known
multivariate models can be derived; see for details Kroner and Ng (1998).

To illustrate the model consider the following bivariate case:

ait = Oiy, fori=1,2

o1 = P1aV O\ 0221 + P10012,4

7 ! 7 7 7
Oije = wij+b;Xi b +ae 18, 18, +&;1m_1M; 18,

i

where b; = [bi1,bi], a;, = [a:,an], g = [gi1, 9], i = 1,2. Note that the parameter
¢, allows asymmetry in the covariance o2, that is not driven by the asymmetry in
the variances. Kroner and Ng (1998) illustrated the above bivariate asymmetric model
in stock return on portfolios of small and large firms, while an extensive study on the

relation of volatility and risk in equity markets using an asymmetric BEKK model is
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presented by Bekaert and Wu (2000).

3.3.8 Alternative multivariate ARCH-type models

Except for these well known multivariate models, alternative formulations have been
proposed in the literature. For example, a bivariate version of the EGARCH model has
been introduced by Braun, Nelson and Sunier (1995) in order to model the “leverage
effect”. Sentana (1995) introduced the univariate and multivariate Quadratic ARCH
models. These multivariate models can capture the dynamic asymmetries of financial
time series data. Tsay (1987) proposed the conditional heteroscedastic autoregressive
moving-average model which includes both the random coefficient autoregressive (RCA)
models (see for example, Nicholls and Quinn, 1982) and the autoregressive conditional
heteroscedastic (ARCH) models as special cases. A multivariate conditional heteroscedas-
tic autoregressive moving average model is presented and analyzed by Wong and Li
(1997). Alexander (2000) introduced the Orthogonal GARCH model, which is a gener-
alization of the factor GARCH model proposed by Engle, Ng and Rothschild (1990) to
a multifactor model with orthogonal factors. A number of principal components is used
to explain a large part of the variation in the system, and a GARCH(1,1) model is used
to estimate the variances of the principal components. Engle (2000) introduced the dy-
namic conditional correlation (DCC) model to capture the stylized fact of time-varying
conditional correlation of financial time series. This class of multivariate models can be
estimated using a two step estimation strategy. The first is a series of univariate GARCH

estimates and the second step is the correlation estimates.

3.3.9 Stationarity conditions and asymptotic properties

The problem of establishing stationarity conditions in univariate ARCH-type models
has been considered by many researchers. Engle (1982) and Bollerslev (1986) presented
the weakly stationarity conditions for ARCH and GARCH models, respectively, using

the assumption that the process starts indefinitely far in the past with finite variance.
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Nelson (1990) demonstrated that GARCH(1,1) may be strongly stationary, under weak
conditions on the existence of moments, without being weakly stationary. Bougerol
and Picard (1992) extended Nelson’s result to the GARCH(p,q) process and reported
necessary and sufficient condition for strong stationarity. That the GARCH process
may be strong stationary without being weakly stationary comes from the fact that
weak stationarity requires the mean, variance and autocovariances to be finite and time
invariant. Strong stationarity requires the distribution function of any finite set of ¢; to
be invariant under time translations, but finite moments are not required to exist. That
is the unconditional variance may be infinite and yet the GARCH process may still be
strongly stationary. The empirical studies suggest that some financial time series (for
example exchange rates and interest rates) seem to be characterized by such a process.
From a theoretical point of view, a related problem is that of statistical inference for
these models. Weiss (1986) proved the consistency and asymptotic normality of the
maximum likelihood estimator for the univariate ARCH model under strong conditions
on the existence of the moments of the error term. Lumsdaine (1991), Lee and Hansen
(1994), and Elie and Jeantheau (1995) present the asymptotic theory for GARCH models
under weaker assumptions.

Stationarity conditions for multivariate ARCH and GARCH models are more com-
plex, and results are only available for a few special cases. For example, Bollerslev and
Engle (1993) and Engle and Kroner (1995) presented necessary and sufficient condi-
tions for covariance stationary for the multivariate GARCH model, following an analo-
gous way as in the univariate models. However, much more work remains establishing
the conditions for strong stationarity and ergodicity for the multivariate GARCH(p,q)
model. Jeantheau (1998) studied the problem of statistical inference for multivariate
heteroscedastic models. He dealt with the asymptotic properties of quasi maximum like-
lihood of the multivariate GARCH model with constant conditional correlation and gave

weak conditions under which strong consistency can be obtained.
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Chapter 4

Bayesian inference for GARCH and
EGARCH models

4.1 Introduction

In this chapter, we consider the general problem of Bayesian inference, prediction and
model criticism of univariate ARCH-type models. We demonstrate that adoption of
the Bayesian framework can be advantageous on grounds of generality, accuracy and
flexibility. Moreover, the MCMC sampling-based approach provides an idealized way
to extract any posterior summary of interest such as functions of parameters, and in
addition to construct predictive densities which take into account model uncertainty.
Two of the most useful ARCH parameterizations are the generalized ARCH (GARCH)
model and the exponential GARCH (EGARCH) model. Although the list of other pro-
posed ARCH parameterizations is long (see, for example, the description of univariate
time-varying volatility models in chapter 3), in our analysis in this chapter we focus on
GARCH and EGARCH models, without restricting the methodological potential of our
suggested procedures. GARCH models are chosen because of their extended applicability
to many financial data and EGARCH models because of both their good performance

in a series of comparative studies (see Pagan and Schwert, 1990, Engle and Ng, 1993,
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and Shephard, 1996), as well as their complexity which can be viewed as a challenge
for our methodology. In ARCH-type models the estimation of the parameters can be
done by using maximum likelihood, quasi-maximum likelihood or generalized method of
moments; see, for details, the review paper of Bollerslev, Chou and Kroner (1992).

The key steps in our proposed framework are as follows. First, within a certain
GARCH/EGARCH model, we construct a Markov chain which has as a stationary dis-
tribution the posterior distribution of the model parameters. Simulation of this Markov
chain provides, after some burn-in period and adequately many iterations, samples from
the posterior distribution of interest; see, for details, Smith and Roberts (1993) or Besag,
Green, Higdon and Mengersen (1995). Second, for a given set of competing models, we
propose modeling each GARCH or EGARCH model jointly and base our inference about
the models on their posterior probabilities or Bayes factors. Thus, we avoid the usual
approach which considers the models separately and chooses the best model via signifi-
cance tests. We believe that the joint estimation of parameters and model probabilities
not only provides a probabilistically sound way to overcome the awkward model selec-
tion problem in GARCH/EGARCH models, but also introduces a new way to predict
the future volatility via “model averaging”. To obtain a sample of the joint posterior
density of models and model parameters, we extend the MCMC strategy so that the
sampler jumps between parameter subspaces of different dimensionality corresponding
to different models. This idea is based on reversible jump MCMC introduced by Green
(1995).

A Bayesian strategy similar to the one we propose for the parameter estimation of our
models is described in Muller and Pole (1999). It is an MCMC strategy which handles
successfully a GARCH model with covariates by using Metropolis-Hasting steps with a
sophisticated choice of proposal distributions. A pioneer Bayesian implementation strat-
egy for such models is due to Geweke (1989b) who proposed a Monte Carlo strategy to
derive the desired posterior summaries of interest. Finally, in a similar context, Jacquier,

Polson and Rossi (1994) proposed a Metropolis-Hastings algorithm to derive posterior
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distributions of the parameters of stochastic volatility models.

4.2 The analyzed models

Let {e;} be a real valued discrete-time stochastic process, which is the error process.
Assume that the mean equation is of the form 13, = e;, where y; is the observation

process. The GARCH(p,q) model (Bollerslev, 1986) is given by the following two-stage

formulation
&t = %0, tZO,,T (4].)
P q
ol =00+ Y aiEr i+ Bor t=1,..T, (4.2)
i=1 j=1

where z; are iid with F (z;) = 0 and Var () = 1; o2 is the (conditional) variance of the
{e:} process at time t, p,q are integers with p >0, ¢ >0, g >0, a; > 0,7 =1,...,p,
and 3, >0, j =1,...,q. In (4.2) it is assumed that ¢, = oy = 0 for t < 0.

Assuming that z; are normally distributed, the parameter vector to be estimated in
(4.1) and (4.2) is, for ¢ > 0, @ = (ag, o, ..., ap, By,..., By 0f). The likelihood for a

sample of T'+ 1 observations y = (o, ..., yr) can be written as
Pt 1/2 g2
- 2\~ t
v (10) = e [[{ (e (557 ) |

where ¢, is given from the corresponding mean equation, and o7 is expressed via (4.2).
Under the assumption of a Student-t distribution (Bollerslev, 1987, Baillie and Bollerslev,
1989) for the error process {e;}, the likelihood for a sample of T'+ 1 observations y can

be written as

i r(2) @ VT
7 (y|0) —tll{r(@ [(n_Q)Utg]l/z (1-1- (n_Q)O'%) } ;

where n > 2 denotes the degrees of freedom of the Student-t distribution, ¢, is given from
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the corresponding mean equation, o? is expressed via (4.2), and the parameter vector to

be estimated is @ = (g, a1, ..., p, B4, ..., By, 05, ).

A modification of GARCH models is the EGARCH models introduced by Nelson
(1991). They are defined by assuming that z; in (4.1) follows a generalized error distri-
bution with mean 0, variance 1 and parameter v, so that if v = 2 we obtain the normal
distribution, and for v < 2 and v > 2 the distribution of z; has thicker and thinner tails
than the normal distribution respectively. Moreover, the EGARCH formulation in the

second stage equation (4.2) is given by

hS]

In (07) = a0 + Zﬂ] In(07_;) + Y [Orzir + 75 (2=t — E |21-1])] (4.3)

j=1 k=1

where o, = 2z, = 0 for t < 0 and F |z k| is given, under the assumption of generalized

error distribution for z;, by

E|Zt_k| =

172
()]
The EGARCH(p,q) formulation above has parameters 8 = (ag, 3y, ..., B, 01, s Op, 71,

s Yp» U, 03) and the likelihood function is given by

T+1 T

L(ylo) = LQ—F()] [[{) oo (5

&t

O't>\

t=0

) . (1.4

Under the usual assumption that the past variance oy is specified in advance, then the
EGARCH(p,q) model has a parameter vector 8 = 6\ {¢2} and the likelihood for a

sample of 7"+ 1 observations can be written as

R e I (GRS C T
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4.3 Bayesian formulation and implementation

4.3.1 Inferences for a given model

Bayesian inferences about the parameter vector @ = (64, ..., 6,,) conditional on data y are
made via the posterior density p (8]y). Using Bayes theorem, this density takes the form
p(OBly) = c l(y|@) p(0) for some normalizing constant ¢, likelihood function I (y|@) and
prior density p ().

For many realistic problems, evaluation of p (@]y) is analytically intractable so nu-
merical or asymptotic methods are necessary to obtain posterior summaries of interest;
see Evans and Swartz (1995) for a recent review of possible avenues. In this study, we
adopt the MCMC sampling strategies as our tool for this purpose. A simple strategy is
to use n independent Metropolis steps (Tierney, 1994, Chib and Greenberg, 1995) for all
0;, 1 =1,2,...,n, and a usual approach is to adopt a random walk chain with an incre-

2 is appropriately chosen so that the

ment normal density N (0, 0?%), where the variance o
convergence of the MCMC sampler is as fast as possible. Metropolis steps are probably
not the best choice for constructing the required Markov chain, but if the full conditional
posterior densities are not of known form, or if they do not have exploitable properties
such as log-concavity of known maximum, Metropolis steps give the easiest black-box
sampling strategy yielding the required realizations of p (0]y).

Despite the fact that we propose this simple sampling scheme, where we update the
elements of the parameter vector one at a time (single component update), we emphasize
in the application section that other alternatives may drastically improve the efficiency
of the algorithm. For example, our empirical data analysis indicated that simultaneous
sampling of a carefully chosen subvector of 6, after a possible transformation to a subvec-
tor taking values on (—oo, c0), may be extremely appealing. To do that, we update the
highly correlated elements of the parameter vector simultaneously (simultaneous compo-

nent update), and take a sample from this subvector of € using multivariate Metropolis

steps as follows. We first estimate the sample covariance matrix 3 related to this sub-
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vector from an initial exploratory run of the Markov chain. Then, the update from time
t to time ¢ + 1 is achieved by using a multivariate normal proposal density N (u!, X)),
with p! denoting the vector at time ¢ and ¢ a constant to tune the acceptance rate.
Muller and Pole (1999) deal with the correlation problem in estimating the parame-
ters of a GARCH(1,1) model in another way. They choose their proposal distribution to
mimic the true full conditional posterior distribution by using related results from regres-
sion problems. An extra cost is an additional rejection step which is needed to maintain
the joint posterior density as the stationary distribution of the simulated Markov chain.
The authors report problems in the above methodology when the proposal distribution
is significantly thinner than the true full conditional, and they propose a rather sophis-

ticated periodic change of the shape of the proposal density.

4.3.2 Inferences under model uncertainty

Assume that we have a countable set M of competing models for a given set of data y.
Let model m € M have a vector 8,, € ©,, of unknown parameters, the dimension of

which may vary from model to model. The posterior probability of model m is given by

p(m)ef p (y|m,0.,) p (0,,/m)db,,
Pmly) = S T im0 p (@) a0 (45)

meM Oy,

where p (y|m, 0,,) is the likelihood given the model m, and the parameter vector 6,,,
p(m) is the prior probability for model m, and p(6,,/m) is the prior of the parameter
vector 8, given the model m. Inference about the model selection problem may be done
using the Bayes Factor (BF') of model m; against model m; given by

f b (y,mh Omi)p (Omz ‘mz) demz
O,

- / (y]mj, Omj) p (Omj ‘mj) A0, .

O,

BF
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Kass and Raftery (1995) gave a series of arguments that make Bayes factors appealing
when compared with other model selection strategies such as AIC or BIC. However,
Bayes factors require evaluation of the integrals in the numerator and denominator of
(4.6) which are the marginal densities p (y|m;) and p (y|m;). Green (1995) introduced
a reversible jump MCMC strategy for generating from the joint posterior p (m, 6,,|y),
based on the standard Metropolis Hastings approach. During reversible jump MCMC
sampling, the constructed Markov chain moves within and between models so that the
limiting proportion of visits to a given model is the required p (m|y) in (4.5).

We presented a detailed description of the Reversible Jump MCMC methodology in
the first chapter. Using the same notation and in order to illustrate the algorithm we
present, in this section, an example using GARCH and EGARCH models. Suppose we
deal with only two models; a GARCH(1,1) model, denoted by m,, with parameter vector
0, = (a0, B4, 03, a1) and an EGARCH(1,1) model, denoted by ms, with parameter
vector 0, = (qy, 51, 5(2), 0, 71, V). We shall illustrate in turn two reversible jump
strategies. For convenience assume that j (mq,mg) = j(mo,my) = 1, i.e. we always
propose to move from one model to the other. For the first strategy, we need a 3-
dimensional invertible function g which transforms the “common” elements of @; and

0,:
e To move from GARCH(1,1) to EGARCH(1,1)
1. set u= (51, 1, 5) and u = o [So d(u)+dn, =d (u') +dp, = 7]
2. choose proposal densities g(u|@,,m;, m2) and ¢ (u']02, mo, ml)
3. generate u from ¢(u|@,, m;, ms)
4. set 8, = (g (ao, 4,,02) ,u) for some invertible function g

5. set 65 = 0, and move to model 2 with probability @ = min {1,r} where r is given

by (1.13)
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e To move from EGARCH(1,1) to GARCH(1,1)

1. set u= (a;) and u' = (51, V1 5) [sod(u) + dm, =d (0) + dp, =T]
2. choose proposal densities g(u|8.,ms, m1) and ¢ (u'|01, ma, mg)

3. generate u from ¢(u|@,, ms, m;)

4. set 0 = (g_1 (&0,51,5?}) ,u>

5. set @; = 0, and move to model 1 with probability @ = min {1, 7} where r is given

by (1.13).

The second strategy, which we propose in such problems, does not require a function

g but requires proposal densities g of higher dimension:

e To move from GARCH(1,1) to EGARCH(1,1)

1. set u= (&0, Bl, 5(2), 51, V1, 5) and u = (o, By, 02, ay)

[so d(u) + dm, = dp, +d (u') = 10]
2. choose proposal densities ¢(u|ms) and ¢ (u' ]ml)
3. generate u from ¢(u|ms)
4. set 6, = u

5. set @, = 0, and move to model 2 with probability a = min {1, 7} where r is given

by (1.14)
e To move from EGARCH(1,1) to GARCH(1,1)

1. set u = (ap, By, 02, a;) and u' = <&0, B, 5% 61, 74, 2~)>
[so d(u) + dmy = dpy +d (u') = 10]
2. choose proposal densities ¢(u|m;) and ¢ (u' ]mg)
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3. generate u from g(u|m,)
4. set 0'1 =u

5. set §; = @, and move to model 1 with probability @ = min {1,} where r is given

by (1.14).

4.3.3 Bayesian model averaging for volatility prediction

In time-varying volatility models such as GARCH and EGARCH, prediction of the future
volatility is of particular interest. Having been able to calculate the posterior probabilities
of each model, it seems natural to account for this uncertainty in our predictive inferences.
Rather than choosing a single “best” model and then make inferences as if the selected
model was the true model, we can use the following model averaging approach which
provides composite predictions. Suppose that we are interested in o2 +1, the predictive

volatility at time 7"+ 1. Then, its posterior distribution given data y is given by

p(05ly) = > p(ohulm,y) p(mly) (4.7)
meM
which is an average of the posterior predictive distribution under each model weighted
by their posterior model probabilities.

Computation of (4.7) is straightforward after the reversible jump MCMC sampling
algorithm has been implemented. First, given a model m, a posterior sample of p(o7. 4 |m,
y) is just obtained by calculating, for each sampled point in 8, the variances 03, 03, ..., 0%,
in (4.2) or (4.3). Then (4.7) suggests that in order to obtain a sample of p(o%.,,|y), each
sampled point under model m should be taken with probability p (m|y). Thus, the de-
rived sample of p(o7.,,|y) is obtained by weighting all samples of p(c7.,,|m, y) by the
corresponding p (m|y). We emphasize that we advocate the above procedure when the

model selection goal is prediction rather than the understanding of the data generation

mechanism. Moreover, all probability calculations are conditioned on a set of possible
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models, M, and therefore, p(m|y) should be interpreted with care. In fact, we just
average, using appropriate weights, over different available mechanisms which generate

predictive distributions.

4.4 A simulation study

In this section we perform a simulation study to illustrate the relative merits of Bayesian
versus classical approaches. We focus on one of the most important practical issues
related to heteroscedastic models, the construction of volatility predictions. We first

simulate data yi, ¥, ..., Y1025 from a GARCH(1,1) model of the form
o7 =0.0005 + 0.25¢;_, + 0.707_,, o = 0.0003, & ~ N (0,07)

and from an EGARCH(1,1) model of the form

Et—1
Ot—1

Et—1
Ot—1

- F

In (07) = —0.3+0.7In (67_,) + 0.1(‘211 +0.5 (

)

0% =0.003, &, ~ GED, (0,0?),

where GED, denotes the Generalized Error distribution with mean 0, variance o2 and
tail-thickness parameter v = 2. Our simulation hypothetical scenario consists of compar-
isons on a daily basis, of the last 25 “true” volatilities with the classical and Bayesian
volatility predictions. Thus the predictions 8? 1 for £ = 1000, ...,1024 are based on the
previous ¢ points.

A first simple criterion to compare the two prediction approaches is to use some point
estimates o+ 1 and construct the mean absolute percentage error
1025 ‘ 9 A2

MAPE:i Z 196 — 9]

where o? is the “true” volatility obtained from the simulated data. Table 4.1 provides the
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GARCH FEGARCH
Classical 0.0332 0.0468
Posterior mean 0.0318 0.0593
Posterior median  0.0308 0.0581

Table 4.1: Mean absolute percentage error for GARCH and EGARCH models.

values of M APE for both GARCH and EGARCH models and for both posterior mean
and medians taken as Bayesian point estimators. The classical estimators are based on
the function garch() of Splus. It is evident that the differences between the 2 predictive
approaches are in general minimal.

A Dbetter insight into the performance of the estimators can be achieved by a graphical
inspection of the true and the predicted volatilities. Moreover, this exercise reveals
the comparative merits of the classical and Bayesian approaches. On the one hand,
construction of 95% posterior credible intervals is straightforward by just calculating the
0.025 and 0.975 quantiles of the predictive density sample. On the other hand, classical
estimates of the dispersion of G- 1 seem to be unavailable in the literature. In any case, it
is reassuring that the 95% Bayesian credible intervals for the predictive volatility contain
the “true” volatilities for both GARCH and EGARCH models and for all time periods;
see Figures 4-1 and 4-2 respectively.

The above promising aspect of Bayesian inference provides a further advantage for real
financial applications, for example, the value of a call option C' on a nondividend-paying

stock is given (see Dubofsky, 1992) by
C =S (dy) — ke "'® (dy)

where

_ln(S/k)+(r+U2/2)/T —d s
dy = T , dy=d; — VT,

® (.) is the cumulative standard normal distribution function, S is the price of the un-

derlying asset, k is the strike price of the call option, r is the risk-free rate, T" is the time
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Figure 4-1: GARCH(1,1) model
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Figure 4-2: EGARCH(1,1) model
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to expiration, o is the standard deviation of the underlying asset’s return at time to ex-
piration. The volatility o2 of the stock is an important determinant of an option’s value
and is the only determinant of the value of the call option that is not directly observable.
The prediction obtained from an ARCH-type model may be used as an estimate for o
(Noh, Engle and Kane, 1994). It is immediately evident that we can utilize the predictive
density of o2, using GARCH models, and construct the posterior density of C. Moreover,
if the shape of p (o2|y) is not normal-like then this feature will be realistically represented

in the distribution of C.

4.5 An application: The Athens stock exchange in-
dex

We illustrate our proposed methodology using T' = 490 weekly rates of the General Index
of the Athens stock exchange over the period 1986-1996. If G; is the value of the General

Index at time ¢, then we model the weekly rate y, = In (G?il)’ t=1,..,T.

First, we apply GARCH(1,1) and EGARCH(p, q), p,q = 1,2 models to the Athens
stock exchange data. For our illustration we chose non-informative priors for all model pa-
rameters. For the parameters of the GARCH model, we used p () = ag* , p(02) = 0y
and U (0,1) priors for a; and ;. Under the Student-t distribution the degree of freedom
n (n > 2) is a parameter to be estimated, and we used as a prior the non-informative
p(n) = (n—2)"'. Stationarity conditions impose that a4 8, < 1 for the GARCH(1,1)
model; this was taken into account by just rejecting, in the MCMC algorithm, all pairs of
(a1, 8,) which did not obey the above restriction; see, for example, Gelfand, Smith and
Lee (1992). For the parameters of the EGARCH models, we used U (—1,1) priors for
B;, j = 1,2 and normal or lognormal noninformative priors for the other parameters of
the model taken as, N (0,10) for v, 0;, v;, i = 1,2, LN (1.04 - 10%,2.93 - 1087) for v and
LN (4.72 - 10*®,6.008 - 10%%) for o2, where LN (u,0?) denotes the lognormal distribution

with mean p and variance 0. The priors for both models turned out to be practically
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Model a0 a B4 o3 n

Garchy(1,1) 1.22 0.15 =047  0.93 —
Garchr(1,1) —1.56 —0.24 0.67  0.58 —0.003

Model Qg B4 0, Y1 v By 0 Vo o3
Egarch (1,1) 0.23 0.19 0.15 —-0.94 —1.180 — — — 1.42
Egarch (1,2) 0.06 —-0.33 —-0.13 1.02 —1.670 0.35 — — —0.11
Egarch (2,1) 1.07 0.99 —-0.25 -1.04 -0.607 — —0.36 0.06 —0.47
Egarch (2,2) 0.69 —-0.03 0.67 0.10 1.180 0.11 —-1.00 -0.41 —-1.35

Model a o3 0, Y v [ 62 Yo
Egarch* (1, 1.64 1.60 —-1.14 —-1.33 0.214 — —

1,1) —

(1,2) —0.03 —098 1.07 —1.59 —0.806 0.90 - -
Egarch*(2,1) 146 142 —160 020 —1750 — 017 —1.33

(2,2) 009 —065 026 —065 —0711 075 —012  1.47

Table 4.2: Geweke’s convergence z-scores for the parameters of the GARCH and
EGARCH models.

noninformative as their effective range is from 2.5 to 70 times larger than the effective
range of the resulting posterior densities. Stationarity conditions also were taken into
account as in the GARCH model. We use two EGARCH specifications: The first, de-
noted by EGARCH(p,q) is the model formulation given by (4.4). The second, denoted
by EGARCH*(p,q), is an EGARCH model with o2 estimated from the unconditional
variance of the sample data.

The output sample of every MCMC run was constructed as follows. First a large
sample was taken and an initial (burn-in) part of it was discarded after a visual inspection
of the time series plots of each parameter. Then the autocorrelation function of each
parameter was investigated and a decision was made about the lag intervals with which
the sample should be collected, in order to achieve a nearly non-correlated sample. And
finally, the resulting samples were checked for convergence by using the tests proposed
by Geweke (1992) and Heidelberger and Welch (1983). Table 4.2 presents the z-scores
from the former diagnostic. These z-scores indicate that the convergence of the Markov
chain has been achieved. Estimated posterior means and standard deviations for the
parameters of each model we considered are illustrated in Table 4.3. We present in

Figures 4-3 and 4-4 the convergence diagrams and the histograms of the posterior sample
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Figure 4-3: Convergence diagrams and histograms of the posterior sample of the para-

meters of the GARCH(1,1) model.
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Model aol0™ oy B, 02107% n
Garchy(1,1) 0.13 0.31 0.66 0.32 —
0.06 0.08 0.08 0.51 —
Garchr(1,1) 010 026 0.71 045 6.5
0.06 0.07 0.08 0.63 2.14

Model Qo By 01 71 v Ba 02 V2 i
Egarch(1,1) —0.46 0.93 0.08 041 140 - — — 0.01
024 0.04 004 010 012 - — — 0.04

Egarch(1,2) —0.54 0.55 0.12 052 1.43 0.37 - - 0.02
023 0.19 0.05 010 0.13 0.18 — — 0.07

Egarch(2,1) —-029 0.96 0.27 051 149 - —-021 -0.16 0.01

0.14 002 008 011 014 - 0.08 0.10 0.01
Egarch(2,2) —-0.33 0.89 026 051 148 0.06 —0.20 —0.12 0.01
019 021 0.08 011 014 0.19 0.14 0.14 0.03
Model Qg By 01 71 v Ba 02 V2
Egarch*(1,1) —1.03 0.84 0.13 057 137 -— — —
037 0.05 0.06 011 0.12 - — —
Egarch*(1,2) —0.92 046 0.15 061 142 0.40 — —
028 015 0.06 0.09 0.12 0.16 — —
Egarch*(2,1) —-0.73 0.89 028 058 144 — —-0.20 -0.08
0.30 0.04 0.08 011 013 - 0.08 0.11
Egarch*(2,2) —099 043 021 057 143 042 -0.08 0.14
040 026 0.10 0.11 0.13 0.23 0.12 0.16

Table 4.3: Estimated posterior means and standard deviations for the parameters of the
GARCH and EGARCH models.

of the parameters of GARCH(1,1) and EGARCH*(1,1) model respectively. The shapes
of the posterior distribution of all the GARCH(1,1) parameters (Figure 4-3) and of the
ap and [, parameters in EGARCH*(1,1) model (Figure 4-4) indicate deviation from
normality.

The above strategy enabled us to investigate more deeply the MCMC behavior of
GARCH/EGARCH models. Indeed, it soon became evident that, in some models, pairs
of parameters exhibit strong posterior correlation. As it is well known (Hills and Smith,
1992) this phenomenon reduces the performance of MCMC algorithm. To deal with this,
we used (for the highly correlated parameters) the Metropolis multivariate step described

in section 4.3.1. As an example, we report that for the EGARCH(2,2) model we used the
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above strategy for the parameters g, (51, B9, V1, V2, With ¢ = 0.90, and we achieved a
reduction in the required number of iterations of at least 30%. In Figure 4-5, we illustrate
the MCMC output of the parameters «vy, 3;, B4, V1, 72 of the EGARCH(2,2) model using
a single component update (Figure 4-5, first column) and a simultaneous component
update (Figure 4-5, second column). The results are based on 3500 iterations taken
with lag 200 and illustrate the improvement achieved with the multivariate Metropolis
algorithm.

Our model selection exercise consists of specifying the order of an EGARCH model
as well as testing whether the (usual) prespecification of o2 affects the inferences made.
For the 8 competing models we applied the reversible jump MCMC algorithm and the
posterior probabilities in each model are illustrated in Table 4.4, together with the Bayes
factors of all models against the (least probable) model EGARCH*(2,1). Based on these
results , the “best” model for the Athens Stock market is the EGARCH(2,1) model with
posterior probability 0.4772. Proposal densities ¢ (u|m'), q (u'|m) for each parameter
were constructed by using the MCMC output of separate model runs described earlier.
These proposals are taken as multivariate normal densities with mean vector consisting
of the sample mean values, and covariance matrix equal to the corresponding sample
covariance matrix of the parameters in each model. The behavior of the MCMC chain
was good with rapid convergence of the probabilities p (m|y). We ran the reversible jump
MCMC algorithm for 1000000 iterations and in Figure 4-6, we illustrate the probabilities
of the 8 different EGARCH models across the sweeps calculated ergodically every 10000
iterations. Due to the large number of models the time for 1000000 iterations was around
8000 minutes in a Pentium II 300 MHz with 128 MB RAM. However, note that this is
an extremely conservative run; Figure 4-6 illustrates that a tenth or a fifth of the runs
would provide essentially the same results. In the reversible jump MCMC algorithm we
used the non-informative priors we suggested for the estimation of the parameters of the
EGARCH models.

In order to get some assessment of the robustness of the empirical results we tried five
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Models Posterior probability Bayes Factor

Egarch (2,1) 0.4772 210.5118
Egarch (1,2) 0.1786 78.7814
Egarch (1,1) 0.1579 69.6343
Egarch (2,2) 0.1066 47.0078
Egarch* (1,2) 0.0620 27.3466
Egarch* (1,1) 0.0128 5.6520
Egarch* (2,2) 0.0026 1.1508
Egarch* (2,1) 0.0023 1.0000

Table 4.4: Posterior probabilities and Bayes Factors of 8 competing EGARCH models.

different Cauchy (i, o%) prior specifications for the model selection of the 4 EGARCH*(p,q)
models. The Cauchy(u,o?) prior is preferred by Jeffreys (1961) and the normal analogue
of the Cauchy(ju, 0%) density is a N (u, 70 /2) density according to Berger and Delampady
(1987). Therefore, the analogue of the priors we used in the previous analysisis U (—1, 1)
for 3,, By, Cauchy(0,6.4) for ag, 0;, 7;, i = 1,2 and Cauchy(0.7,6.4) for v = In (v). We
used Cauchy/(u, 30), Cauchy(u, 50), Cauchy(u, 100), Cauchy(u, 500) and Cauchy(u, 5000)
priors. We ran the reversible jump MCMC algorithm for 1000000 iterations and in Table
4.5 we illustrate the posterior model probabilities using these alternative prior specifica-
tions. The time needed was 2310 minutes in a Pentium II 300 MHz with 128 MB RAM.
Based on the results of Table 4.5, we gather that the results are robust to alternative
prior specifications and in all cases the most probable model is EGARCH*(1,2). The
reversible jump MCMC algorithm supports the simplest model EGARCH*(1,1) as the
priors become more flat. This characteristic is well known in the Bayesian model selec-
tion literature; see Lindley (1957), Bartlett (1957), Kass and Raftery (1995), Berger and
Delampady (1987) among others.

Some models are not visited very often in the reversible jump MCMC algorithm; for
example, just the 4 top models are visited with probability more than 0.92. Had we
required to obtain parameter estimates such as those in Table 4.3 together with posterior
model probabilities, we should have tuned the reversible jump MCMC accordingly. For

example, it is straightforward to tune the Markov chain so that only a subset of models
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Models Cauchy(u,6.4)  Cauchy(p,30)  Cauchy(p, 50)

Egarch* (1,1) 0.16080 0.16304 0.16393
Egarch* (1,2) 0.77801 0.71327 0.68659
Egarch*(2,1)  0.02845 0.05381 0.05634
Egarch*(2,2)  0.03274 0.06988 0.09315
Models Cauchy(u,100)  Cauchy(p,500)  Cauchy(u, 5000)
Egarch* (1,1) 0.17238 0.18670 0.22080
Egarch* (1,2)  0.67388 0.61706 0.60558
Egarch* (2,1)  0.05751 0.04471 0.04057
Egarch* (2,2) 0.09624 0.15154 0.13306

Table 4.5: Posterior probabilities of the 4 EGARCH* models using alternative prior
specifications.

is visited by just changing the probabilities j (m, m').

Having obtained estimates of the posterior probabilities of each model, we can apply
a Bayesian model averaging procedure to derive estimates of the composite posterior
predictive volatility o7 ,. In our illustration we calculated the predictive density o7,
based on the 8 EGARCH models. To achieve this, we constructed all predictive densities
P (U?p 1m, y) under each model, for each sampled point in @, and then we weighted
all samples of p (02T m, y) by the corresponding posterior model probabilities taken
from the reversible jump MCMC algorithm. This curve, constructed by using the Splus
kernel density estimation command density(), is depicted in Figure 4-7 together with the
corresponding estimates obtained by the three most probable models.

Finally, note that the need to impose stationarity conditions in a Bayesian context is
not well understood and not broadly accepted. In our data application, we relaxed these
conditions for our most probable model EGARCH(2,1) and we constructed the poste-
rior predicted volatility o2, +1- The posterior sample of the parameters gives probability
(0.0033) to non-stationarity (i.e. 0.0033 of the sampled points of 3, are equal or greater
than 1). The density of predicted volatility 0%, is also illustrated in Figure 4-7 and
is almost identical with the density of EGARCH(2,1) model when we use stationarity

conditions.
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Figure 4-6: Convergence Behaviour of the EGARCH models
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Figure 4-7: Posterior density of Predictive volatility using Bayesian model av-
eraging (BMA), EGARCH(1,1) model with stationarity conditions, EGARCH(1,2)
model with stationarity conditions, EGARCH(2,1) model with stationarity conditions,
EGARCH(2,1)* model without stationarity conditions.
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4.6 Discussion

In this chapter two important issues are considered. The first is related to the Bayesian
inference of time-varying volatility models which, we believe, offers some advantages com-
pared to the classical approaches. For example, local maxima do not present a problem
and posterior densities of functions of the parameters are easily available. The second
is related to the model selection problem, which is usually done via BIC or AIC. These
approaches provide no direct information on the reliability of the estimates, and they do
not allow prior input for model choice; moreover, their definitions and/or calibrations
rely on asymptotic considerations. Our proposed strategy is to use the reversible jump
MCMC algorithm to calculate the posterior probability of every proposed model; subse-
quently, we allow for richer inferences through model averaging. Finally, we note that
although we only analyzed the methodology by using GARCH and EGARCH models,

our analysis can be extended to variants of these models in a straightforward way.
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Chapter 5

Analysis of a class of multivariate

ARCH and GARCH models

5.1 Introduction

Univariate and multivariate ARCH-type models were described briefly in chapter three.
The multivariate time-varying volatility models have attracted a lot of attention in the
statistics/econometrics community. An analysis of a class of multivariate ARCH and
GARCH models is proposed consisting of parameter estimation and model comparison.
We study the multivariate ARCH model (Kraft and Engle, 1982), the GARCH model with
constant conditional correlation (Bollerslev, 1990) which has attracted a lot of practical
interest, a generalization of that model (Jeantheau, 1998), and some models that are
special cases of model of Jeantheau (1998). Bayesian and classical techniques are used
for the estimation of the parameters of the models analyzed, and model comparisons are
addressed via predictive distributions. We use a bivariate example to apply the models
and provide implementation details and illustrations using daily exchange rates of the

Athens exchange market.
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5.2 The analyzed models

We consider having observed data of the form

where y; = (y1s, y2t),'

Y, t= ]-7 "'7T7

5.2.1 Bivariate ARCH model

The multivariate ARCH(p) model was introduced by Kraft and Engle (1982). In our

study we analyze the first order bivariate diagonal ARCH model, which can be written

as

y:

Et‘q)tfl

>

B+ &
N2 (07 Et)
Uit 012t

(5.1)

2
021t Oa4

2
Co1 + G22€1 ¢t 1€2¢1

2
Coo + 3394 1,

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®;_; is the

information set up to time ¢t — 1, X; is 2 X 2 covariance matrix with elements ait, 1=1,2,

where o2, is the variance of the i — th variable at time ¢, and 012, is the covariance of

the first with the second variable at time ¢. Positive definiteness of X; requires that

2
cit > 0, 22 >0, 1092 — 3 >0,

2
air > 0, azz >0, ajjazz —azy > 0.
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{e.} is covariance stationary if and only if the eigenvalues of A; in (3.12) are less than
one in modulus. That is, if and only if the parameters aq1, aso, and ass are less than one
in modulus. The parameter vector to be estimated in (5.1) is @ =(py, 19, C11, Co1, Coo,
aj1, g, asz). Under the assumption of conditional normality for the error process, the

likelihood for model (5.1) for a sample of T" observations y can be written as
1 1 )
L(y10) = m) " TT {1z fexp {—5 S v = (v - m} . (52)
t=1 t=1
5.2.2 Bivariate GARCH model with constant conditional cor-
relation

The bivariate Generalized ARCH model with constant conditional correlation (Bollerslev,

1990) can be written as

Yo = pté&
€t|q)t—1 ~ NQ(O;Zt)

>, = Uit 0122,t
021t Ogy
Uit = ag1 + allgit—1 + ﬁllait—l
Ug,t = ap2+ CL215§,t—1 + ﬁ210§,t—1 (5.3)
012t = P12 (Uitag,t>l/2 )

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®; ; is the
information set up to time ¢t — 1, 3, is 2 x 2 covariance matrix where U?yt is the variance
of the 7 — th variable at time ¢, 012, is the covariance of the first with the second variable
at time ¢, p,, is the correlation of the first to the second variable which is constant over

time. For positive definiteness of ¥;, we need ag; > 0, a;; > 0, 5,; > 0,7 = 1,2 and

—1 < py5 < 1. For finite variance and stationarity, it is also necessary to impose that

111



a;1+B; < 1fori = 1,2. The parameter vector to be estimated for model (5.3) is @ = (4,

o, Qo1, G2, Q11, @21, B11, Bors 012)-

5.2.3 Other bivariate ARCH and GARCH models

The bivariate version of the multivariate GARCH model of Jeantheau (1998) is also
analyzed. The model is a generalization of the previous GARCH model and can be

written as

Yo = H+é&
€t|q)t—1 ~ NQ(O;Zt)

2
01t 0124
>, = , (5.4)
2
021t Ogy
2 _ 2 2 2 2
01y = Q0+ ani,q + 1285, + 11011 + 5120241
2 _ 2 2 2 2
O = Q20 1+ a21€7; ¢ + A22€5; ¢ + ﬁngl,t—l + 52202,t—1
_ 2 2 \1/2
0126t — P12 (01,t‘72,t> )

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®;_; is the
information set up to time ¢t — 1, 3, is 2 x 2 covariance matrix where 0'227,5 is the variance
of the 7 — th variable at time ¢, 012, is the covariance of the first with the second variable
at time ¢, p,, is the correlation of the first to the second variable which is constant over
time. The covariance matrix is positive definite if a;o > 0, a;;, 8;; > 0, for 4,7 = 1,2 and
—1 < py5 < 1. The parameter vector is 0 = (uq, ts, @10, A11, @12, P11, B, G20, A21, G2,
Bars Bazs P12)-

Some special cases of the above model are also analyzed: an ARCH model with

diagonal covariance matrix, an ARCH model with constant conditional correlation, and

a GARCH model with diagonal covariance matrix. That is, we analyze the following
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bivariate ARCH model

Y

€t|q)t—1

X

Mt &

N2 (O,Zt)
o2, 0
0 a%t

2 2
&10 + a/11€17t_1 + a12€2,t—1

2 2
Q90 + CL21817t_1 + CL22827t_1,

(5.5)

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®;_; is the

information set up to time ¢t — 1, 3; is 2 x 2 covariance matrix where o2, is the variance

of the ¢ — th variable at time t, a9 > 0, asg > 0, a11 > 0, a1 > 0, as; > 0, age > 0. Under

these restrictions the variances are well defined and the covariance matrix is positive

definite. The parameter vector to be estimated in (5.5) is @ = (uy, o, a10, @11, a12, G20,

a1, aszg). The likelihood under conditional normality for the error process €; for a sample

of T observations y for model (5.5) is again given by formula (5.2).

To capture the time varying conditional covariance we also analyze the following

constant conditional correlation ARCH model:

M+ E

N, (0,%)
Uit 0121t
021t a%,t

2 2
ag + CL11817t_1 + a12827t_1

2 2
Q90 + CL21817t_1 + a22827t_1

2 2 )1/2

P12 (‘71t‘72t )

(5.6)

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®; ; is the
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information set up to time ¢ — 1, 3, is 2 X 2 covariance matrix where a?yt is the variance
of the 7 — th variable at time ¢, 012, is the covariance of the first with the second variable
at time t, p;, is the correlation of the first to the second variable which is constant over
time. The conditions for positive definiteness of the matrix 3; are a9 > 0, ayg > 0,
ay; >0, a12 >0, as; >0, age > 0 and —1 < p;, < 1. The parameter vector of this model

(5.6) is @ = (1, po, G10, G11, Q12, G20, (21, G22, P13)-

We also consider a bivariate GARCH model of the form

Yt = HT+E&
€t|q)t71 ~ N2(072t)

o1 O
®, = 7 (5.7)
2
0 054
2 2 2 2 2
Oly = Qi+ a11€7 ;1 + 1265 1 + 511‘71,15—1 + 51202,t—1
2 2 2 2 2
0% = Q20+ A€y, |+ sy |+ 0071+ Br0os 4,

where p is a 2 X 1 vector of constants, €; is a 2 x 1 innovation vector, ®; ; is the
information set up to time ¢t — 1, 3, is 2 x 2 covariance matrix where U?yt is the variance
of the ¢ — th variable at time t. The covariance matrix is positive definite if a;o > 0,
aij, B;; > 0, for i, j = 1,2. The parameter vector is 6 = (i, jy, a10, a11, @12, By, Bra;

ag0, Go1, A2, Ba1, B92). The likelihood under conditional normality for the error process

e, for a sample of T observations y for model (5.7) is given by formula (5.2).

5.3 Inference and model determination

5.3.1 Bayesian inference

We adopt Bayesian methodology by constructing MCMC algorithms. These algorithms
allow us to simulate from the joint posterior distribution of the parameters of the above

models. We use Metropolis-Hastings algorithm; see, for example, Chib and Greenberg
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(1995). We update simultaneously the elements of the parameter vector 8 using a multi-
variate normal proposal based on pilot run estimates. That is, we estimate from an initial
explanatory run of the Markov chain (based on univariate random walk metropolis) the
sample covariance matrix 3 related to these parameters. Then, the update from time ¢
to time t + 1 is achieved by using a multivariate normal proposal density N <p,t, cf]),

with u! denoting the vector at time ¢ and ¢ a constant to tune the acceptance rate.

5.3.2 Classical inference

We also consider the estimation of the parameters of the multivariate ARCH and GARCH
models by using classical approaches. By using different computational methods we check
the results of the models we analyzed and compare the estimates under the different
approaches. Maximum likelihood estimates are taken by using numerical optimization
algorithms such as Newton-Raphson, Fisher scoring, and the method proposed by Mak
(1993) and developed further by Mak, Wong and Li (1997) for nonlinear time series with

conditional heteroscedastic variances.

5.3.3 Model determination

Our implementation is also concerned with model comparison by using predictive distri-
butions of the time-varying volatilities. This is sensible both because of the predictive
nature of the applicability of the models and because volatilities are of primary inter-
est. We choose to work with a criterion suggested by Gelfand, Dey and Chang (1992).
Similar diagnostic measures are presented by Pitt and Shephard (1999) in order to com-
pare stochastic volatility models. The MCMC techniques produce a sample from the
joint posterior p (@]y). Hence, the outputted 65, s = 1,..., B can be used to carry out
computations needed for model comparison. The estimate of the predictive density is
P (yraly) = B f: p(yr+1|6s,y). To estimate P one-step-ahead predictive densities
P (yr+1ly) we use E}:lé previous T,T + 1,....,T + P — 1 data points. Between two models
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Model “Burn-in” Total No.  No. of iterations

period  of iterations to keep
ARCH (5.1) (sc) 1000 5000 4000
ARCH (5.1) (wsc) 2150 5000 2850
ARCH (5.5) (sc) 1800 5000 3200
ARCH (5.5) (wsc) 750 5000 4250
ARCH (5.6) (sc 650 5000 4350
ARCH (5.6) (wsc) 900 5000 4100
GARCH (5.7) (sc) 2250 5000 2750
GARCH (5.7) (wsc) 450 5000 4550
GARCH (5.3) (sc 1050 5000 3950
GARCH (5.3) (wsc) 1050 5000 3950
GARCH (5.4) (sc 300 5000 4700
GARCH (5.4) (wsc) 800 5000 4200

Table 5.1: Estimated burn-in period using the subsampling diagnostic. sc: imposing sta-
tionarity conditions in the MCMC algorithms, wsc: without using stationarity conditions
in the MCMC algorithms.

m; and m; , we choose model m,; if

(m; ) ~
log [H(m,)f(ytHW)] >0,
H ! p(yt+1|Y)

where [[™) p (yi41]y) is the product of all p (ys1]y), t =T, ...,T + P — 1 under model

m; . A more detailed description of the criterion is presented in section 1.3.5.

5.4 An application to the Athens Exchange Market

We illustrate the multivariate models under consideration using daily exchange rates of
the USA dollar and German marc with respect to the Greek drachma over the 15/12/1993
- 24/2/1997 period. If z; is the value of one exchange return at time ¢, then we model
the daily exchange rate y; = In (x¢/x; 1), t=1,...,T, T = 800. In Figure 5-1, we present

the analyzed exchange rates.
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Figure 5-1: The analyzed exchange rates
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Figure 5-2: Coefficient of determination in the subsampling convergence diagnostic: a:
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Parameter Bayesian approach Classical approach

SC WSC
™ 15-107(2-100%) 16-10%2(2-10%) 1.3-10% (2-107%)
s 1.2-1074 (6-107°)  1.2-1074(6-107%)  1.2-1074 (5-1079)
c11 24-1075(1-107%)  24-107° (1-107%)  2.4-107° (1-10°F)
Ca1 ~32-10% (4-10°7) —3.2-1076 (4-10"7) —3.1-107% (3-1077)
Con 2.5-1076 (2-10°7)  2.5-107¢ (2-1077)  2.4-107¢ (9-107%)
a1 1.4-1071 (4-1072)  1.4-107' (4-1072)  1.3-107! (3-1072)
ass 1.9-1071 (6-1072)  1.9-107' (5-1072)  2.0-107' (5-1072)
ass 62-10"1 (1-107Y)  6.2-10°1 (1-10"!) 5.8-10"! (5-1072)

Table 5.2: Estimates and standard deviation (in brackets) for the parameters of bivariate
ARCH model (5.1). sc: imposing stationarity conditions, wsc: without using stationarity
conditions.

5.4.1 Bayesian approach

For our illustration we chose non-informative priors for all model parameters. For the
parameters of the bivariate ARCH model (5.1) we used non-informative priors p (a1;) =
arlt, plass) = azs, plen) = o, p(ew) = oy P (g, Ho, Co1, azz) = 1. In the other
bivariate ARCH and GARCH models, we transformed the positive parameters to “near
normality” using the logarithmic transformation. These transformations improved the
behavior of our MCMC algorithm. Then, we applied a constant prior to the transformed
parameters. For the parameter p;, of these models we used uniform U (—1, 1) prior. The
need to impose stationarity conditions in a Bayesian context is not broadly accepted.
For this reason, in our study, we estimated the model parameters using stationarity
conditions by rejecting, in the MCMC algorithm, the parameters which did not obey
these restrictions (see, for example, Gelfand, Smith and Lee, 1992), but we also estimate
the model parameters without imposing stationarity conditions.

For our data set we ran the algorithms for 500000 iterations, and we kept one value
every 100 iterations (to save computer space). The resulting samples of 5000 values were
checked for convergence by using the subsampling diagnostic proposed by Giakoumatos,
Vrontos, Dellaportas and Politis (1999). The method is based on the use of subsampling

for the construction of confidence regions for the t-quantile (¢ = 0.90) of the unique
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Parameter Bayesian approach Classical approach

SC WSC
14y 1.6-107%2(2-107%) 1.6-107* (2-107%) 1.6-107% (2-107%)
[y 1.4- 10 4(6-107°) 1.4-107*(6-107°) 1.4-107* (6-107°)
ao 2.3-107°(2-107%) 23-107°(2-107%) 24-107° (2-1079)
an 1.6-10°1(5-1072) 1.5-101(5-1072) 1.5-107! (5-1072)
ars 1.7-107' (1-107Y) 1.7-107* (1-107Y) 3.9-1072 (1-1071)
a0 2.3-107%(2-1077) 2.3-107%(2-1077) 24-107% (2-1077)
s 51-107% (4-107%) 5.0-1072 (4-1073) 2.8-1073 (4-1073)
a2 6.4-1071 (1-107Y) 6.4-1071 (1-107Y) 6.3-1071 (9-1072)

Table 5.3: Estimates and standard deviation (in brackets) for the parameters of bivariate
ARCH model (5.5). sc: imposing stationarity conditions, wsc: without using stationarity
conditions.

invariant distribution of the Markov chain. We construct the (1 — a) 100% confidence re-
gions for the 0.90 quantile (a = 0.05) based on different (increasing) values N; = jN/100,
j =1,2,...,100. We estimate the “burn-in” to be N* if the “range” of the confidence
regions versus 1/ \/ﬁ] is approximately linear for N > N*. Linearity is checked by using
the coefficient of determination of the weighted linear regression between the dependent
variable “range” and 1/ \/ﬁj, j = 1,2,...,100. The reason that the t-quantile (with a
large t, say t = 0.90) is considered, is based on the notion that stabilization of estimates
of the invariant distribution of the Markov chain (especially in the tails) is a reliable
indicator of the target distribution having been achieved. We stop the MCMC simula-
tion when the range of this (1 — a) 100% confidence region for the mean is appropriately
small. Using the MCMC chains of N = 5000 iterations and choosing as threshold value
d = 0.998 for the coefficient of determination in the subsampling convergence diagnostic
we estimate the burn-in period. A detailed description of the subsampling diagnostic is
presented in chapter two. The “burn-in” period of the MCMC algorithms of the analyzed
models is presented in Table 5.1, and in Figure 5-2 the coefficient of determination of
the subsampling diagnostic is illustrated for all the analyzed models. Estimated poste-
rior means and standard deviations, after we have discarded the “burn-in” period, for

the parameters of the models under consideration are presented in Tables 5.2 to 5.7,
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Parameter Bayesian approach Classical approach

SC WSC
™ 14-107(2-100%) 14-10%(2-10%) 1.4-10%(2-107%)
s 1.2-1074 (6-107°)  1.3-1074(6-107%)  1.2-104 (6-1075)
ao 2.3-1075 (1-107%)  2.3-107° (2-10%)  2.3-10° (1-10°F)
a1 14101 (5-1072)  1.4-1071(5-1072)  1.3-107! (4-1072)
a1 2.9-1071 (2-1071)  2.9.107! (2-107Y)  1.9-107! (2-107Y)
aso 2.2-1076 (2-1077)  2.2-107¢ (2-1077)  2.2-107¢ (2-1077)
as1 43-1073 (3-1073)  4.1-107% (3-107%)  2.1-1073 (3-107%)
ass 72-1071 (1-1071)  7.3-10°1 (1-107Y)  7.2-107! (1-107Y)
P1a —36-10"1 (3-1072) —3.6-10"! (3-102) —3.6-10"* (3-1072)

Table 5.4: Estimates and standard deviation (in brackets) for the parameters of bivari-
ate ARCH model with constant conditional correlation (5.6). sc: imposing stationarity
conditions, wsc: without using stationarity conditions.

while the convergence diagrams and the histograms of the posterior sample of the model

parameters are illustrated in Figures 5-3 to 5-8.

5.4.2 Classical approach

In this section we describe the way we estimate the parameters of the multivariate ARCH
and GARCH models by using maximum likelihood methods. For the bivariate ARCH
model (5.1), we estimate the model parameters by using the function mgarch() of the
Splus program. The parameter values of this model and their standard deviations are
presented in Table 5.2. As we can see, from Table 5.2, there is no difference in the
estimation of the parameters of bivariate ARCH model (5.1) using Bayesian and classical
techniques.

The parameters of the bivariate ARCH model (5.5) are estimated by using Newton-
Raphson method, Fisher scoring algorithm, the method proposed by Mak (1993), and
by using the subroutine dfpmin() of numerical recipes (Press, Teukolsky, Vetterling and
Flannery, 1992). Our general impression is that the subroutine dfpmin() is more robust
to the choice of initial values, and the routines of Fisher scoring and of Mak (1993)

are in general faster than Newton-Raphson if the initial values are good enough. The
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Parameter Bayesian approach Classical approach

SC WSC
I 70-107° (2-100%) 5.7-107° (2-107%) 8.1-107° (2-107%)
s 1.5 10 1(5-10°) 1.7-104(5-10°°) 1.7-1074 (4-10°9)
ao 12:106(4-107) 1.2-10%(4-10°7) 85-107 (3-10°7)
a1 7.4.102 (2- ) 75-102(2-10%) 6.2-10°2(2-102)
a1 2.4-1072(2-1072) 2.4-1072(2-1072) 7.2-1073 (6-1072)
aso 1.0-1077 (4 - 0—8) 41-1078 (2-1078) 3.8-107% (4-107%)
as 2.3-1074 (2-107%) 1.9-107* (2-107) 3.8-107% (8-107%)
ass 2.2-1071 (3-1072) 2.7-1071 (3-1072) 2.6-10"! (3-1072)
81, 88-1071 (3-1072) 88-1071(3-1072) 9.1-107* (2-1072)
B1s 28-1072 (2-1072) 231072 (2-1072) 3.1-1073 (5-1072)
Boy 53-107* (5-107%) 4.2-107* (4-107%) 8.1-107¢ (2-107?)
Bos 7.8-107' (3-1072) 7.9-107' (2-1072) 8.0-107! (2-1072)

Table 5.5: Estimates and standard deviation (in brackets) for the parameters of bivariate
GARCH model (5.7). sc: imposing stationarity conditions, wsc: without using station-
arity conditions.

parameters converge to the same values using these methods, and are presented in Table
5.3. Comparing the Bayesian and the classical estimates we notice a difference on the
parameters a;o and ag; of the bivariate ARCH model (5.5). This is clearly explained
by noting that the shape of the posterior distribution for these parameters is far from
normality; see, Figure 5-4.

The parameters of bivariate ARCH model (5.6) with constant conditional correlation
are estimated by using the subroutine dfpmin() and are presented in Table 5.4. Com-
paring the Bayesian and the classical estimates we notice a difference on a5 and ag;
parameters. This can be explained by noting the shape of the posterior distribution of
these parameters (Figure 5-5).

In Tables 5.5 and 5.7 we present the estimated parameter values of bivariate GARCH
model (5.7) and bivariate GARCH model (5.4), respectively, obtained by using the sub-
routine dfpmin() of numerical recipes. The maximum likelihood estimates and the corre-
sponding standard deviations for some parameters of these models are different from the

estimates taken from Bayesian techniques, and this can be again explained by looking
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Parameter Bayesian approach Classical approach

SC WSC
14y 34-107° (2-107%)  1.7-107° (2-107%) 22-107° (2-107%)
[y 1.5-107* (4-107°)  1.8-107*(4-107°) 1.8-107* (4-107?)
o1 1.2-10%(4-1007)  1.2-10%(4-100")  9.8-107(3-10°7)
an 78-1072(2-107?)  81-1072(2-107%) 7.1-1072(2-107?)
By 88-1071(2-1072)  88-107!(2-1072)  9.0-107! (2-1072)
o2 9.5-107% (3-107%)  3.6-107% (2-107%)  2.9-107% (1-107%)
a1 22-1071(2-107?)  2.9-107! (3-107%) 2.8-107' (3-107?)
Boy 78-1071(2-107?)  7.8-1071(2-107%) 7.9-107' (2-107?)
P12 ~3.8-1071(3-1072) —4.1-107% (3-107%) —4.1-107! (3-107?)

Table 5.6: Estimates and standard deviation (in brackets) for the parameters of bivariate
GARCH model with constant conditional correlation (5.3). sc: imposing stationarity
conditions, wsc: without using stationarity conditions.

the histograms of the posterior sample of the model parameters (Figures 5-6, 5-8). Due
to the fact that the posterior distribution for some parameters is far from normality,
the estimates of the parameters and the corresponding standard deviations taken from
classical approach should be interpreted carefully, but we present them for completeness.

For the bivariate GARCH model (5.3) with constant conditional correlations, we
estimate the model parameters by using the subroutine dfpmin() of numerical recipes.
From Table 5.6 we see that the classical and Bayesian parameter estimates are almost
similar.

As a final implementation remark, we note here that classical estimates are very hard
to be evaluated under stationarity conditions. Therefore, all our maximum likelihood
estimates were produced by ignoring parameter constraints. As a result of this, bivariate
GARCH model (5.3) with constant conditional correlations and bivariate GARCH models
(5.7) and (5.4) produced estimates which do not satisfy the stationarity conditions and

are naturally compared with the corresponding Bayesian estimates.
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Parameter Bayesian approach Classical approach

SC WSC
™ 3.0-107° (2-10%) 7.0-10° (2-10%) 1.9-107 (2- 1079
s 15-104 (5-107°)  1.9-1074(4-107%) 1.8-1074 (4-1079)
ao 1.2-106 (4-1077)  1.2-10°9(4-1077)  9.1-107 (3-1077)
a1 8.0-1072(2-1072)  82-1072(2-1072) 6.7-10°2 (2-1072)
a1 44-1072 (3-1072)  5.0-107% (4-1072)  5.2-102 (5-1072)
aso 8.7-107%(3-1078)  2.8-1078 (2-107%)  2.7-107% (3-107%)
as1 1.9-107* (2-107%)  1.7-107%(2-107%)  6.1-107° (1-1079)
ass 22-1071(2-1072)  29-10"! (3-1072)  2.8-10"! (3-1072)
By 87-101(3-102) 87-101(3-102) 89-10!(2-102)
B1s 38-1072 (3-1072)  3.1-1072(3-1072)  1.2-10* (4-1072)
Boy 41-1074 (4-10™%)  3.4-107* (3-107%)  2.1-107% (6- 1074
Bos 7.7-1071 (2-1072)  7.8-107! (2-1072)  7.9-107! (2-1072)
P1s ~38-1071 (3-1072) —4.2-10"! (3-1072) —4.1-10! (3-1072)

Table 5.7: Estimates and standard deviation (in brackets) for the parameters of bivariate
GARCH model with constant conditional correlation (5.4). sc: imposing stationarity
conditions, wsc: without using stationarity conditions.

5.4.3 Model comparison via predictive distributions

We have analyzed six multivariate ARCH and GARCH models using 800 daily exchange
rates. In order to compare these models we used Bayesian analysis by obtaining predictive
distributions p (yr11|y) under each model we considered. In this implementation we
used 835 real data points, and calculate P = 35 one-step-ahead predictive distributions
p (yr+1|y) based on the previous 7' = 801, ..., 835 data points. For each one of these 35
time periods we estimate the predictive densities p (y741]y) at the real data point yr,1,
denoted by D (yri1]y), under each model, and running the MCMC method, described
in section 5.3.1. Therefore, the algorithm can be constructed as follows. For each time

period (based on the previous 7' = 801, ..., 835 data points) and for each model

e run the MCMC algorithm and obtain a sample of @,, s = 1,..., B from the joint
posterior p (6|y)

e obtain a sample of size B of the covariance matrix 3,1, by using the outputted

0,,s=1,....B
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e calculate, for each of the B outputted values of ¥, 1, the densities p (yri1|6s,y)
B

e cstimate the predictive density p (yr41]y) = % >0 (yr11]0s,y).
s=1

We use the quantity [[p (yri1]y) for assessing comparative validity of the models
analyzed. In particular, we compare the multivariate ARCH and GARCH models under

consideration using

T 5 (yr11ly)
1" 5 (yraly)

D:log[

or

(M;) (M;)
D=> """ log[plyrly)] =) log[p(yrily)l,
and we choose the model M; (M;) if D > 0 (D < 0). The quantity

835

Z log [P (yr-+1]y)]

801

is estimated for all the models under consideration and the results are 130.42, 131.14,
130.32, 131.57, 130.85, and 130.81 for the bivariate ARCH models (5.1), (5.5), (5.6), and
bivariate GARCH models (5.7), (5.3), and (5.4), respectively. Figure 5-9 (a, b) presents
the estimates of the log [p (yr41|y)] for the period under consideration for the analyzed
ARCH and GARCH models. According to these results the multivariate GARCH model

(5.7) seems to be preferable for the one step ahead predictions for the analyzed dataset.

5.5 Discussion

An analysis of a class of multivariate ARCH and GARCH models was performed. The pa-
rameters of these models have been estimated by using Bayesian and classical approaches.
In the parameters where the posterior distribution is far from normality the parameter
values turned out to be different. In particular, although the maximum likelihood op-
timization algorithms can be used for maximizing the conditional likelihood, we believe

that their implementation is not without problems in practice. Predictive distributions
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are used to address model comparison. For the data set we analyzed, the multivariate
GARCH model (5.7) appears preferable for one-step-ahead prediction as compared to

the other analyzed multivariate models.
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Chapter 6

A multivariate latent GARCH

model

6.1 Introduction

Two major problems related with multivariate ARCH and GARCH models are the large
number of parameters to be estimated, and the difficulty of the estimation due to the pos-
itive definiteness restrictions of the covariance matrix. Factor ARCH - GARCH models
have been introduced to solve these problems providing a parsimonious parameterization
and a positive definite covariance matrix. The motivation for the factor models is the
commonality in the conditional variance movements. Although, in some cases, financial
and economic theories suggest such a characteristic, the restrictions imposed by the factor
ARCH - GARCH models on the dynamic behavior of the covariances and the correlations
are strong enough, and may depend on the number of factors. For example, in a two
factor model, one would expect more dynamics in the covariances and in the correlations
than in a one factor model; see, for details, Kroner and Ng (1998).

In this chapter, a multivariate time series model with time-varying conditional vari-
ances and covariances is presented and analyzed. In the proposed multivariate latent

GARCH model the covariance matrix is always positive definite, the number of para-

135



meters is relatively small, and the model can be applied very easily to high dimensional
time series data. A complete analysis of the proposed model is presented consisting of
parameter estimation, model selection and volatility prediction. Classical and Bayesian
techniques are used for the estimation of the model parameters. Maximum likelihood
estimation is implemented by using Fisher scoring algorithm. According to the Bayesian
approach, a Markov chain which has as a stationary distribution the posterior distri-
bution of the model parameters is constructed using a blocking sampling scheme in
the Metropolis-Hastings algorithm. Bayesian model selection is addressed using Markov
chain Monte Carlo model composition (MC?) method of Madigan and York (1995) to-
gether with the delayed rejection algorithm of Tierney and Mira (1999). The problem of
accounting for model uncertainty is considered using Bayesian model averaging. We pro-
vide implementation details and illustrations using daily rates of return on eight stocks

of the US market.

6.2 The proposed multivariate latent GARCH model

6.2.1 Description and properties of the model

We consider having observed data of the form
Y, = 17 "'5T7

where each y;, = (Y14, ..., Yn,) is @ NV x 1 vector. The multivariate latent GARCH model

is given by the following equations:

Y =M+ €&

gy = WXt (6].)

Xt‘q)tfl ~ Ny (07 Et)
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where p is a N x 1 vector of constants, &; is a N x 1 innovation vector, W is N x N
parameter matrix, ®; ; is the information set up to time t — 1, X; is a N x 1 vector
of “latent” variables with elements x;;, ¢ = 1, ..., N and ¥; is N x N diagonal variance

covariance matrix, which is given by %, = diag (03, ..., 0%,) with

U?yt =o; + bmit_l +gait_1, 1=1,...N, t=1,..,T
and ait, i = 1,...,N is the variance of the i — th “latent” variable at time t, a; > 0,

¢ =1,.,N,b >0, g > 0. In other words the “latent” variables x;;, « = 1,..., N

are GARCH(1,1) processes. According to the above model, the vector &; is a linear
combination of the “latent” variables x;, i = 1,..., N.
Assuming that the vector X; follows a conditional multivariate Normal distribution,

Xy|®; 1 ~ N (0,3;), then the vector /P, 1 ~ N (0, Hy), where

H = Ws,W =ws!/*s!*w’ (6.2)
= (W) (wsl?) =11

Equation (6.2) presents the conditional covariance matrix H; of the vector &;. Etl /2 s
the diagonal matrix with elements oy, 02y, ..., oy It is well known (Dhrymes, 1984,
pp. 68-69) that the decomposition of a positive definite matrix into the product of a
triangular matrix and its transpose always exists, and this decomposition is unique if
the diagonal elements are restricted to be positive. So we can take W triangular with
elements w;; = 0 for 5 > 7 and w;; > 0 for i = 1,..., N. In order to reduce the number of
parameters in our model, a natural restriction is to assume that w;; = 1, fori =1, ..., N.
Note that, similar constraints have adopted by Geweke and Zhou (1996), Chib, Nardari
and Shephard (1999), and Aguilar and West (2000) among others for the factor model.

Under the assumption that the matrix W is triangular with diagonal elements equal to
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unity, the conditional covariance matrix H; can be written as

hiie  hiay  hizy - hing
hoie  hooy  hozy -+ hany
7
H = WZ,W = h31,t h32,t h33,t ce h3N,t (6-3)
hnie hnog hnsg -+ hawg
[ 2 2 2 2 i
01t W2107 4 W3107 4 WN107,
2 2 2 2 2 2 2 2
W21071 4 >, W05 ¢ >, W2 W3i0;5 = > W2 WNiT ;¢
=1 7=1 =1
2 2 2 > 2 2 > 2
= W3107 4 > W3iW2i0; ¢ > W3,05 ¢ XD W3iWNiO; ¢
i=1 i=1 i=1
2 2 2 > 2 ol 2 2
WN107 ¢ > WNiW2407; ¢ > WN W30 - > WO it
L i=1 i=1 i=1 i

From the construction of the model, the variance covariance matrix H; is always positive
definite if the variances ait, t =1,..., N of the “latent” variables are well defined. Note
also that the “latent” variables z;;, ¢ = 1,..., N are not parameters to be estimated but
are given by X; = Wle,. Therefore, for N = 1 the model reduces to the GARCH(1,1)
model.

Under the assumption of multivariate Normal distribution for the vector X, the
likelihood for model (6.1) for a sample of T observations y = (y1,¥y2,...,yr) can be
written as

T !

T
TN 1
L(yl0) = (2m) 2 []1H| = (ye—m) H ' (y: -
(v6) = (2m) t:1| dTexp | =5 ) (ye— ) He (ye—p)

t=1

and the number of parameters to be estimated for a N dimensional problem is 2N + 2 +

N(N-1 . .
%. That is, the parameter vector is @ = (fy, [y, -y fiy, Q1, Qo, ..oy AN, by g, Wor,

i
W31, W32y +ovy WN1y «ooy wN,N—l) .

Bollerslev (1986) presents the necessary and sufficient condition for the existence of
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the 2m — th moment of the GARCH(1,1) model and the conditions for the wide-sense
stationarity of the GARCH model (see theorems 1 and 2). We can take advantage from
these results for the multivariate latent GARCH model we propose. First note that
H, = WE,W' and vec (Hy) = vec (WE,W') = (W @ W) vec (), where vec (.) denotes
the vector operator that stacks the columns of the matrix. That is, the variances and the
covariances in our model are linear combinations of the variances af,t, t=1,..., N of the
“latent” variables. But according to our model the “latent” variables x;; , i = 1,..., N
are independent GARCH(1,1) processes. Therefore, the unconditional variances and
covariances of the multivariate latent GARCH model are linear combinations of the
unconditional variances of the GARCH(1,1) processes x;¢, ¢ = 1,...,N. Define w; =
vech (H;), where vech (.) denotes the column stacking operator of the lower portion of a
symmetric matrix. That is, w; = vech (Hy) = (hi14, ho1e, haoy, Rare, haoe, Rast, - s P,
hnoty hnst s hNN,t)' isa N(N+1)/2x 1 vector. After straightforward calculations

and based on the results of Bollerslev (1986) the unconditional variances and covariances
2 2 3

. _ 1 2 2
are given by E (w;) = = (o1, worry, Y Wh0, W1Qry, Y WaiWaeiCliy Y Wailiy wevy WN1OT,
i=1 i=1 i=1
2 3 N ,
Z WN;Wo; Oy, Z WN;W3; gy ney Z wNz-Oéz') .
i=1 i=1 i=1

6.2.2 Some comments on the model

The proposed model can be considered as a latent factor model. Different factor models
have been proposed in the literature, and have been analyzed by many researchers either
using ARCH - GARCH framework (see, for example, Diebold and Nerlove, 1989, Engle,
Ng and Rothschild, 1990, King, Sentana and Wadhwani, 1994, Alexander, 2000 among
several others) or using Stochastic Volatility framework (see, for example, Chib, Nardari
and Shephard, 1999, Aguilar and West, 2000) for the specification of the variances of the
factors.

The structure of our model and especially the matrix W resembles with that of Aguilar

and West (2000) and of Chib, Nardari and Shephard (1999). However, unlike the previous
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authors, we use a full factor representation and zero idiosyncratic variance terms. Such a
representation produces a more dynamic behavior for the variances and especially for the
covariances and the correlations than a k factor model (k < N). The “latent” variables
are not entered in the estimation procedure but are given by X; = Wle,. For the
specification of the variances of the “latent” variables a GARCH(1,1) model is used.
The structure of the conditional covariance matrix Hy, in equation (6.3), implies that
the order of the univariate time series in the y; vector affects the conditional variances
and covariances. The ordering has an impact in model fitting and assessment; see, for
example, Aguilar and West (2000). We solve this important practical issue using the
Markov chain Monte Carlo model composition (MC?) method that generates a process
that moves through model space and the Delayed rejection algorithm (DRA). Moreover,
these methods provide an idealized way to extract posterior model probabilities and in

addition to construct predictive densities that take into account model uncertainty.

6.3 Inference for a given model

In this section we consider classical and Bayesian techniques for the estimation of the

parameters of the multivariate latent GARCH model.

6.3.1 Classical approach

Maximum likelihood estimates, for heteroscedastic models, are usually taken by using
numerical optimization algorithms such as scoring algorithm, the method proposed by
Mak (1993) and developed further by Mak, Wong and Li (1997) and by Berndt, Hall,
Hall and Hausman (1974) algorithm. We compute the maximum likelihood estimates by
using the Fisher scoring algorithm. The k — th iteration of the algorithm takes the form

~k ake1 9Ly 1) 'Ly
6 =60 +<-F - —_— 6.4
{ {0080 ] } 00 (64)
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~k—1
where @ is the estimate of the parameter vector obtained after k£ — 1 iterations, Ly is

the log-likelihood function, — F [gzglﬂ is the expected Information matrix I computed

at @k ' , and aLT is the gradient computed at @k_l. One of the great advantages of our
model is, we believe, the fact that the algorithm (6.4) can be computed analytically,
that is the gradient and the estimated information matrix are available in closed forms.
This is not surprising since by construction, our model consists of a linear combination
of univariate GARCH models in which such a property exists. The motivation for using
the fisher scoring algorithm in our multivariate latent GARCH model comes from the
experimental results of researchers to GARCH models and to factor GARCH models.
For example, Fiorentini, Calzolari, and Panattoni (1996) computed the analytic first and
second derivatives of the log-likelihood for the GARCH(p,q) model, and constructed a
mixed-gradient algorithm in order to accelerate the convergence of the parameters of
the GARCH model. According to their results, the superiority of gradient algorithms,
which use the estimated information matrix, is clear in early iterations. Watson and
Engle (1983) used the method of scoring and the EM algorithm for the estimation of
dynamic factor, mimic and varying coefficient regression models. They suggest, for prac-
tical methods, a mixed EM and scoring algorithm, and the use of scoring algorithm for
inference. Similar are the results of the experiments of Demos and Sentana (1998), who
present an EM algorithm for conditionally heteroscedastic factor models and propose a
quasi-newton algorithm at last iterations.

For the multivariate latent GARCH model (6.1) the log likelihood function is given
by

T
TN :
T(Y‘O):_Tln (2) _—Zln‘Ht ——Z( —p) H ' (ye — )
t=1
TN / AN
= — () ——Zln‘WZt ‘—— —u) (WEW) (v n)
TN
= ——In(2n) ——Zln|2t|——ZX2 'X;, where Xy = W' (y; — p)
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T T
TN 1 1 /
= ——h@m) -3 > In [H ait] -5 > OXE X,
t—1 i=1 —1
TN 1 | 1 N ora2,
- Do -3y [y men] -3 [ 2]
=1 =1 =1 |i=1 L%t
where 0 = (1, flg, -y iy, Q1, Q2 ooy QN by G, Wal, W31, W32y ey WNT, vy wN,N,l)', and

a; >0,9=1,...N,b >0, g > 0. In order to avoid these positivity restrictions, we
transform the positive parameters using the logarithmic transformation, that is, o =
In(a;), bf = In(b;), and g7 = In(g;). We also divide the parameter vector into three
blocks. The first block contains the parameters of the mean equation, that is @1= (1, o,
coey [ N)', the second block contains the transformed parameters of the variance equation,
that is, O,= (of, o3, ..., oy, b, g*)', and the third block contains the parameters in
matrix W, that is, @3= (wa1, w31, w32, ..., WN1, .-, wNVN,l)'. The information matrix

is block diagonal (see Bollerslev, 1986) and the three diagonal blocks are estimated by

. oLy B oLy . 2Ly . .
E {80160,1 ], E {80280;] and —F {80380,3]. After the transformation of the positive

parameters, the variances o7, of the of “latent” variables z;¢, i = 1,..., N, are given by

2 _ ar g b*2 g2 —
o=etelwy, +el oy, g, i=1. ,Nt=1,.,T.

Some assumptions are also required for the initial values of the variances o?, and the

squared “latent” variables x7,, as the variance equation of GARCH(1,1) model is dy-
namic. For t < 0, o, are zero, while the z7,, for t < 0, are calculated by using a

sufficient number of observations from the sample.

Differentiating with respect to the mean parameters 8,= (p, fi, ..., fty) yields
OLp - i i 1 ao_zz,t mzz,t 1 Tit 0%y
601 B - 2012t 601 O'?t O'?t 801
t=1 Li=1 ; : :
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and the Information matrix for the first block is given by

2
I, = —E [a_LT,}
00,00,
— Z i 1 60—22,15 80'227t + Lal'i’t aiELt
t=1 i=1 2 (O-zz,t)Q 801 0911 Uzz,t 091 80’1
where ) 2
doy, . OTi¢1 L00F,
= = 26"y — oWl =1, N
90, * "1 pe, ¢ Tog,

and the derivatives of x;, i = 1, ..., N, with respect to the mean parameters 8, are given

by the rows of —W ! matrix. That is, the ‘?gf is given by the first row of —W ! matrix,

O . . _ .
the Z5* is given by the second row of —WW~" matrix, and so on.

Differentiating with respect to the variance parameters 8,= (af, of, ..., oy, b*, g*)'
yields
0Ly _ i i 1 %Z,t 1 aazz,t
802 X 20'2 0'2 802
t=1 i=1 2,t 2,t

while the Information matrix for the second block is given by

I,=—-F {W—LTI] — - i 1 _ 8012,15 aag;t
00,00, — |4 2 (g?,t) 902 06,

=1

where

Oo? do?

it g* inwt—1 .
=ci+e ——,i=1,..,N
00, 00, T
. . *
and the vectors ¢;;, i = 1,..., N, can be calculated very easily. For example, ¢;, = (e*1,
b* .2 2y _ o b* .2 2y _

0, ..., 0, € i, 1,7 01, 1), Coe=(0,e,0,..,0, " x5, 4,e" 05, 1), ..., cne = (0, ...,

ol bt 02 * 2 ’
0, e, e Ty 15 €7 UN,t—l) :

Differentiating with respect to the parameters in matrix W, that is, with respect to

0;= (w21, W31, W32y -y WN1y -+ wNNfl)l yields
aLT o i N 1 80-12775 {Eit B 1 B :Ei,t axi,t
005 =1 =1 QU?J 003 Uzz,t U?,t 003
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and the Information matrix for the third block is given by

2
I, = -F [a—LT,}

. Z i 1 60?,:: aazz,t_'_ia%,t 0T, 4
- 2 (02,)" 005 065 o7, 005 06,

t=1 i=1

where
it * i,t—1 Jt— .
L= 9eb Tit—1 +e) ——— i=1,...,N.

003

The “latent” variables z;, i = 1,..., N, are given by X; = W 'e;. Because X; = W g,

_W—l W—l

8wij

0X, ow .
611)2']' !
and therefore, the derivatives of x;;, ¢ = 1,..., N, with respect to w;; are given by the
t — th element of the vector [—W’l%W’l] ;. For example, the derivative of z; ; with
respect to parameter wy is given by the first element of the vector [—I/V_la—WVV_1 Et,

811)1\]1

and so on.

Having calculated the three blocks —F [ Lt }, i = 1,2,3 of the block diagonal

OLp

information matrix I, and the gradients Sor

¢t = 1,2,3, one can find the maximum
likelihood estimates by applying the fisher scoring algorithm of equation (6.4). From our
experience to different datasets, the estimates taken from the fisher scoring algorithm
(6.4) are robust to different initial values for the model parameters, and the inverse of the
information matrix provides estimates of the covariance matrix of the parameters. The
above strategy enables us to investigate more deeply the behavior of covariance matrix
estimators. For example, we can very easily evaluate the covariance estimate proposed

for dynamic and conditional heteroscedastic models by Bollerslev and Wooldridge (1992).

This covariance estimate (BW) can be given by

BW = (I"Y)(OP)(I) (6.5)
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where 7! is the inverse of the information matrix, and OP is the matrix of outer products
of the first derivatives of the log-likelihood, which can be constructed by

or=3 %] [%]

t=1

OLy

-4 1s the derivative of the log-likelihood with respect to the parameter vector 6

where
at time ¢. Under misspesification of the conditional density of the process (non Gau-
sian distribution) the estimate of the variance covariance matrix given by Bollerslev and
Wooldridge (1992) is more robust and superior with respect to other covariance estima-

tors; see, for example, Fiorentini, Calzolari, and Panattoni (1996).

6.3.2 Bayesian approach

This section presents the Bayesian approach for estimating the parameters of the pro-
posed multivariate latent GARCH model by using Markov chain Monte Carlo (MCMC)
methods. A detailed description of MCMC methods is presented in section 1.2.4. We
adopt the Metropolis Hastings algorithm to obtain a sample from the posterior distri-
bution of interest. In our proposed model, the convergence of the MCMC algorithm is
accelerated by reparametrizing the positive parameters to “near normality” and by using
a blocking sampling scheme as in Vrontos, Dellaportas and Politis (2000). We use (as in
the maximum likelihood approach) three blocks consisting of the mean parameters, the
variance parameters and the parameters in matrix W. In this blocking sampling scheme,
we use the results from the classical approach. That is, we start from the maximum
likelihood estimates and update the parameters in each block from time ¢ to time ¢ + 1
by using three multivariate Normal proposal densities N (02, Cigi), i =1,2,3 with 6!
denoting the vector of parameters in block ¢ with values at time ¢, c is a constant to tune
the acceptance rate, and ﬁgi is the variance covariance estimate of the parameters in
block ¢ taken from fisher scoring algorithm or taken from the method proposed for dy-

namic and conditional heteroscedastic models by Bollerslev and Wooldridge (1992). We
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found that for the first two blocks the algorithm works very well with either proposals,
whereas for the third block the latter proposal density performed better. This occurred
because Fisher scoring produced many zero values in the off-diagonal elements of the

covariance matrix of 0.

6.4 Inference under model uncertainty

6.4.1 Bayesian model comparison and model averaging

As described in section 6.2.2, the order of the univariate time series in the y; vector has
an impact in model fitting. We consider the problem of finding the “best” ordering of
the individual time series under the proposed model. That is, the ordering becomes a
modelling decision to be made on the basis of model fit. Given the N observed univariate
time series in the y; vector, the number of all possible models (all possible different
orderings) is N!. Let M = {my,...,mg} to be the set of all models, so K = N!. A
typical approach is to carry out a model selection exercise leading to a single “best”
model (“best” ordering) and then make inferences as if the selected model was the true
model. However, this ignores the uncertainty involved in model selection.

A Bayesian solution to this problem involves the calculation of the posterior proba-
bilities of all the competing models. Inference about the model selection problem may

be done using the Bayes Factor (BF') of model m; against model m; given by
BF = M, (6.6)

where p (y|m;) is the marginal likelihood of model m,;. We calculate the Bayes Fac-
tor by applying to both the numerator and denominator of (6.6) a variant of Laplace

approximation:
p (ylmi) = @0y S1Y2p (918, ) p (O l:) (6.7)
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where 3 is the inverse of the negative Hessian matrix of the log-likelihood evaluated at
the maximum likelihood estimator émi, D (y[@mi, mi> and p (@ml ]ml> are the likelihood
and the prior, respectively, evaluated at Em In our analysis, we use the inverse of the
expected information matrix in place of S in equation (6.7).

We account for model uncertainty in our predictive inference for a quantity of interest

A by using its posterior distribution given data y

K

p(Aly) =) p(Almi,y)p(mily), (6.8)

i=1

where

p(Alms,y) = / D (DB 11, y) p (O [ y) dO,

Om,

or using a maximum likelihood approximation

p(Almg,y) ~p (A!mi,yﬁmJ : (6.9)

where @mi is the maximum likelihood estimator of the parameter vector 6,,, of model

m,. For details about these issues see section 1.3.

6.4.2 MCMC model search methods

In the application section we use two Markov chain Monte Carlo methods that pro-
vide posterior model probabilities and therefore can account for model uncertainty using

Bayesian model averaging.

Markov chain Monte Carlo model Composition (MC?)

Markov chain Monte Carlo model Composition (MC?) was presented in section 1.3.4.
MC? generates a stochastic process that moves through model space. To construct the

Markov chain we define a neighbourhood nbd (m) for each model m. We also define a
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transition matrix g by setting ¢ (m — m’) = 0 for all m" ¢ nbd (m) and q (m — m')
constant for all m" € nbd (m). If the current state of the chain is model m then m' is

drawn from ¢ (m — m') and accepted with probability

min 4 1. 7bdm)|p (m'ly)
{1’ Inbd (m")| p (mly) } : (6.10)

where |nbd (m)| is the number of models that belong in the neighbourhood of model m.

Otherwise, the chain stays in state m. Note that, if [nbd (m)| = |nbd (m)| and all models

are equally likely a priori then the probability of acceptance is given by

min{l,p(y—‘m/)} . (6.11)

p(y|lm)

In the application of the MC? algorithm in section 6.5 we take |nbd (m)| = |nbd (m’)

and assume that all models are equally likely a priori, and therefore the probability of
acceptance is given by (6.11).

Different models come from the particular ordering of the univariate time series in
the y; vector. After extensive searching for proposal densities or, equivalently, neighbour
definitions, that provide an MCMC algorithm with good mixing in a series of problems,
we found that multimodalities in model space is a very frequent phenomenon, so we
suggest the following neighbourhood definitions. Assume that we are looking for the
neighbours of model m = {my, ..., m;, ..., mj, ..., my }. Let us define nbd3 (m) all models of
the form {my,...,m;,...,my, ..., my} where m; and m; are at the most 3 positions apart.
To ensure reversibility, using a cyclic fashion we can also swap m; with my or mg_; or
mg_s, and so on for i < 3 and j > k — 3. Moreover, define nbds (m) as all models of the

form

{mb sy T2 TNy TN 15, M4 1, - mk} U

U{ma, ..., mi_1, Mip1, My, Myyo, ..., mi } U
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U{m17"'7mi737miami727m1'717mi+1,"'7m/€} U
U{ma, ..., M1, M1, Mo, My, My 3, ... My} U
UM, oy My, My, Mg, My, M, Mg,y M} U

U{ma, oo, My, M1, Mo, Mty My, Mysd, oo MU

Caring with an obvious cyclic fashion for the cases ¢ < 3 and ¢ > k — 3. The superscripts
in nbd? (m) and nbd; (m) denote that the neighbourhoods are based of distances of length
3. In our example with 8 time series we chose a neighbourhood as nbd* = nbd} U nbds,
proposing each model within nbd*, and taking care to have |nbd* (m)| = |nbd (m')| in
(6.10).

The neighbourhood nbd (m) of model m consists of the set of models with either a
change in the position of two univariate time series or a move of time series to a different
position. We change a randomly chosen time series one or two or three or four positions
to the left or to the right, and we move a randomly chosen time series two or three or four
positions to the left or to the right. As an example, suppose that there are 8 stocks in the
y: vector, and that a model m is given by the following ordering of the univariate time
series 12345678. That is, the first stock is at position 1, the second stock is at position 2,
and so on. A change in the position of two univariate time series could be, for example,
12375648, where we alter the positions of time series 4 and 7. A move of time series to
a different position is, for example, 2341567, where we move the time series of position
1 three positions to the right and the time series of positions 2, 3 and 4 one position to

the left.

Delayed Rejection Algorithm

The idea of Delayed rejection algorithm was proposed by Tierney and Mira (1999). This
strategy improves the Metropolis-Hastings algorithm in the sense (Peskun, 1973) that
the resulting estimates have smaller asymptotic variance on a sweep by sweep basis. In

our case, it is also useful as it increases the probability of moving between local modes of
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the posterior density. We want to construct a Markov chain that moves through model
space. In order to avoid cases where the chain remains at the same model over successive
iterations, due to multimodalities of the model space, we can use the delayed rejection
algorithm. Suppose that the current state of the chain is model m. Then, at the first

stage, model m' is drawn from g (m — m') and accepted with probability

If the candidate model m is rejected, a new candidate model m" is proposed from
q (m' — m") at the second stage. That is, the new candidate model m" depends only
on the last rejected candidate m’. This is the symmetric delayed rejection algorithm.
Note that the neighbourhood of models m and m’, and the transitions from model m to
m’, and from m’ to m" are defined as in the previous section. All models are assumed
equally likely a priori. Tierney and Mira (1999) and Mira (2000) derived the probability
of acceptance for this candidate by imposing detailed balance at each stage in order to
preserve the stationary distribution. The probability of acceptance at this stage is given

by

m(ylm) — = (y|m’)

- {1, o {0, [ (vl") = (y)] } } |

This is a two stage symmetric delayed rejection algorithm. For the general formulation

see Mira (2000).

6.5 Application to eight stocks from the US market

We illustrate the proposed multivariate latent GARCH model using 2350 daily data of
eight stocks from the US stock market over the 1/1/1990 -1/1/1999 period. If S; is
the value of the stock at time ¢, then we model the rates of return y;, = In (%),
t = 1,...,T = 2349. In Table 6.1, we present the summary statistics for the rates of

return of the analyzed stocks, together with the Ljung-Box statistic computed for the
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Summary Statistics
Rates of return v, || y?

Order Stocks  Mean  Stdev  Kurtosis LB(50) LB(50) LB(50)
1 ATT  0.000374 0.01523 5.462 60.650 636.265  301.920
AXP 0.000514 0.01976 3.101 70.564 1107.453 1035.969
C 0.001000 0.02165 4.118 63.102 599.633  484.489
GE  0.000785 0.01355 2.536 82.068 928.415  877.401
JPM 0.000371 0.01650 3.279 80.431 1935.176 1893.695
PG 0.000702 0.01455 2.390 74.112 731.037  T08.877
RAL 0.000443 0.01477 6.017 99.135 527.327  289.006
WMT 0.000844 0.01785 2.034 69.490 541.026  498.996

O O Ol W N

Table 6.1: Summary statistics for the rates of return of the analysed stocks.

rates of return ¥, for the absolute rates and for the squares of the rates. The Ljung-Box
statistic is computed using 50 lags and show high level of autocorrelation in the squares
values of rates of return and mainly in the absolute values. In Figure 6-1, we present
the analyzed rates of return for the eight stocks. We also present, in Figure 6-2 the
autocorrelations of the squares and of the absolute values of the rates of return. The
autocorrelations for the cross product of the analyzed series are illustrated in Figure 6-3.
These Figures (6-2 and 6-3) indicate that a multivariate model for time varying variances
and covariances should be used.

The key steps in our analysis are as follows. First, we run the M C? algorithm without
delayed rejection proposals (MC? without DRA) and the two stage symmetric delayed
rejection algorithm (MC? with DRA) to find the “best” ordering of the individual time
series and the posterior model probabilities. Second, we estimate the parameters of the
“best” model using classical and Bayesian approach. Finally, we consider the problem
of accounting for model uncertainty in the proposed time varying volatility model. We
make inferences about quantities of interest such as future variances and covariances by
using only the “best” model, using a set of most probable models and using Bayesian

model averaging over all possible models.
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Figure 6-1: The analysed rates of return for the eight stocks of US market
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Figure 6-2: Autocorrelations of the squares and of the absolute values of the rates of

return
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Figure 6-3: Autocorrelation of the cross product of the rates of return
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6.5.1 MOCMC model search and convergence assessment

We apply the MC? algorithm without and with DRA for 50000 iterations in order to
find the posterior model probabilities. The subsampling methodology proposed by Gi-
akoumatos, Vrontos, Dellaportas and Politis (1999) is used to check the convergence of
the MCMC output taken from the above algorithms. The method is based on the use of
subsampling for the construction of confidence regions for the mean (in our case) of the
unique invariant distribution of the Markov chain. We construct the (1 — a) 100% confi-
dence regions for the mean (a = 0.05) based on different (increasing) values N; = jN/100,
j=1,2,...,100, and N = 50000 iterations. We estimate the “burn-in” to be N* if the
“range” of the confidence regions versus 1/ \/ﬁ] is approximately linear for N > N*.
Linearity can be checked by using the coefficient of determination of a weighted linear
regression between the dependent variable “range” and 1/ \/ﬁj, j=1,2,..,100. Ac-
cording to the subsampling convergence diagnostic, we stop the MCMC simulation when
the range of this (1 —a)100% confidence region for the mean is appropriately small,
smaller than some prespecified absolute or relative measure of accuracy; see, for details,
Giakoumatos, Vrontos, Dellaportas and Politis (1999). We focus our analysis on the 10
most probable models. Using the MCMC chains of N = 50000 iterations and choos-
ing as threshold value d = 0.999 for the coefficient of determination in the subsampling
convergence diagnostic we estimate the burn-in period. This comes out to be 17500 it-
erations for both the MC? without and with DRA (see Figure 6-4). Note however that
the accuracy, that is the range of the 95% confidence region for the mean, is 0.0727 and
0.0640 for the MC? without and with DRA, respectively. These findings confirm that
the MC? with DRA improves the Metropolis-Hastings algorithm in the sense that the
resulting estimates have smaller asymptotic variance (smaller accuracy) on a sweep by
sweep basis.

The resulting posterior model probabilities of the M C? without and with DRA are
presented in Table 6.2. The posterior model probabilities are calculated by using 32500

iterations; that is, we have discarded the burn-in period of 17500 iterations. The accuracy
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Model MC? without DRA MC? with DRA

14652873 0.34 (7) 0.35 (6)
14652738 0.10 (3) 0.10 (3)
14652387 0.09 (3) 0.08 (2)
14653287 0.06 (2) 0.08 (3)
14652837 0.06 (2) 0.06 (2)
14657328 0.05 (3) 0.07 (3)
14652783 0.05 (2) 0.05 (2)
14562873 0.04 (3) 0.03 (2)
14657238 0.03 (2) 0.03 (2)
14657283 0.02 (1) 0.03 (2)

Table 6.2: Posterior model probabilities of the 10 most probable models using the MC?
algorithm without and with DRA. The order of time series is given in Table 6.1. Figures
in brackets are accuracyx100. Accuracy is the range of the 95% confidence region for
the mean.

is the range of the 95% confidence region of the mean. They are calculated by running
the subsampling diagnostic for each model using the MCMC output of 50000 iterations.
The “best” model (ordering) is 14652873 with posterior probability 0.336 and 0.349 for
the MC? without and with DRA, respectively. In total, 85 and 73 different models were
visited during 50000 iterations of MC? without and with DRA, respectively.

For these estimates to be useful, we need to be confident that the reason we are
only observing a small fraction of possible models in M, 85 and 73 out of 40320, is that
other models have negligible posterior probability. To reassure our results we run the
M(C? algorithm starting from 50 different randomly chosen models. We also run the two
stage symmetric delayed rejection algorithm (MC?® with DRA) starting from the same
50 models. The results of these two approaches are presented in Table 6.3. We present
the starting models and the number of iterations needed for the MC? without and with
DRA to reach the most probable model 14652873.

Both methods seem to be very flexible since the algorithms arrive at the “best”
ordering very fast. There was no evidence of the existence of any other regions of model
space of high probability. While this is no guarantee that such regions do not exist,

it does provide some reassurance. MC? with DRA seems to be significantly better
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Initial Iterations Initial Iterations Initial Iterations

model MC® DRA model MC® DRA model MC? DRA
36187425 134 75 73846512 556 183 21637458 555 81
74165283 317 179 76352814 317 232 87261435 154 233
64852713 220 178 57264183 221 343 76531284 316 178
12367854 252 178 28671534 317 75 72861534 319 252
31725648 221 234 26538471 320 256 51378624 48 348
81567243 319 125 34856712 222 144 18576423 220 176
15246837 53 228 15638274 220 75 58374162 131 229
82637541 209 256 78612453 220 64 87351426 251 255
25381764 212 231 64135278 333 231 51732846 351 40
72431586 250 70 62574183 132 392 47235816 220 145
51746823 251 397 83142756 208 43 85623714 88 231
81356742 319 85 72145386 350 181 27814563 252 394
15364872 317 228 71852463 317 257 14827563 316 178
47186352 351 229 24563178 316 144 73461285 221 394
47238165 130 396 47813256 34 43 25741386 221 30
63745218 212 180 38426751 251 231 43518762 89 68
26178345 208 63 65748123 249 230

Table 6.3: Number of iterations needed for the MC? without and with DRA to reach
the most probable model 14652873.

than MC? without DRA. The mean values of the number of iterations needed for
the MC® without DRA and for MC? with DRA to reach the most probable model
14652873 are approximately 246 and 194 iterations, respectively, and their corresponding
standard deviations are approximately 105 and 104. Having in mind that multimodalities
in model space is a very frequent phenomenon, MC? with DRA is useful as it increases

the probability of moving between local modes of the posterior density.

6.5.2 Inference for a given model

Having been able to find the “best” ordering we present the estimates for the parame-
ters of matrix W and the corresponding standard errors in Table 6.4. These standard
errors (in brackets) are given by the square root of the diagonal elements of the inverse

of the information matrix. The robust estimates of the covariance matrix (6.5) are also
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calculated and the standard error are presented in Table 6.4 (in square brackets). We
also estimate the parameters of the multivariate model for the “best” ordering by us-
ing Bayesian analysis and MCMC methods. We transform the positive parameters to
“near normality” using the logarithmic transformation. These transformations improve
the behavior of our MCMC algorithm. For our illustration we choose non-informative
(constant) priors for all the parameters. The blocking sampling scheme was used in order
to update the model parameters. We ran the algorithm for 260000 iterations, and we
kept one value every 100 iterations (to save computer space). The resulting samples of
2600 values were checked for convergence by using the subsampling diagnostic proposed
by Giakoumatos, Vrontos, Dellaportas and Politis (1999). The method is based on the
use of subsampling for the construction of confidence regions for the t-quantile (¢ = 0.90)
of the unique invariant distribution of the Markov chain. We construct the (1 — a) 100%
confidence regions for the 0.90 quantile (a = 0.05) based on different (increasing) values
N; = jN/100, j = 1,2,...,100, and N = 2600 iterations. We estimate the “burn-in” to
be N* if the “range” of the confidence regions versus 1/ \/ﬁ] is approximately linear for
N > N*. Linearity is checked by using the coefficient of determination of the weighted
linear regression between the dependent variable “range” and 1/ \/Fj, 7 =1,2,...,100.
The reason that the t-quantile (with a large t, say ¢ = 0.90) is considered, is based
on the notion that stabilization of estimates of the invariant distribution of the Markov
chain (especially in the tails) is a reliable indicator of the target distribution having been
achieved. We stop the MCMC simulation when the range of this (1 — a) 100% confidence
region for the mean is appropriately small. Using the MCMC chains of N = 2600 iter-
ations and choosing as threshold value d = 0.999 for the coefficient of determination in
the subsampling convergence diagnostic we estimate the burn-in period. This comes out
to be 780 iterations. The accuracy, that is the range of the 95% confidence region for the
mean, is 0.013. The convergence of the parameters was also checked by using the tests
proposed by Heidelberger and Welch (1983) and Raftery and Lewis (1992). The first

diagnostic indicates that the convergence has been achieved after a burn-in period of 780
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Classical Bayesian Classical Bayesian

wy;  0.30(0.02) [0.02] 0.30(0.02) wes 0.10(0.02) [0.02] 0.10(0.02
ws;  0.25(0.02) [0.03) 0.25(0.02) w7 0.19(0.02) [0.02) 0.19(0.02
wse  0.42(0.02) [0.02] 0.42(0.02) wze 0.33(0.02)[0.02] 0.33(0.02
wy;  0.27(0.02) [0.03) 0.27(0.02) w7 0.22(0.02)[0.02] 0.22(0.02
wye  0.40 (0.02) [0.03] 0.41(0.02) wqe 0.09(0.02)[0.02] 0.09 (0.02
wyz  0.14(0.02) [0.02] 0.14(0.02) w5 0.05(0.02) [0.02) 0.05(0.02

( ) ) ( ) )
(0.02) [0.03] (0.02) (0.02) [0.02] (0.02)
(0.02) [0.02] (0.02) (0.02)[0.02] (0.02)
(0.02) [0.03] (0.02) (0.02)[0.02] (0.02)
(0.02) [0.03] (0.02) (0.02)[0.02] (0.02)
(0.02)[0.02] (0.02) (0.02) [0.02] (0.02)
wsr 0.27(0.02) [0.03]  0.27(0.02) wrs  0.08(0.02)[0.02] 0.08(0.02)
wsy  0.47(0.03) [0.03] 0.48(0.03) ws 0.36(0.03)[0.04] 0.36 (0.03)
(0.03) [0.03] (0.03) (0.03) [0.03] (0.03)
(0.02) [0.02] (0.02) (0.03) [0.03] (0.03)
(0.02) [0.03] (0.02) (0.02) [0.04] (0.03)
(0.02) [0.03] (0.03) (0.02) [0.02] (0.02)
(0.02) 0.03] (0.02) (0.02) [0.03] (0.02)
(0.02) [0.02] (0.02) (0.03) [0.03] (0.03)

wsz  0.20(0.03) [0.03] 0.21(0.03) ws2 0.57(0.03)[0.03] 0.57(0.03
wsg  0.35(0.02) [0.02] 0.35(0.02) wsz 0.30(0.03) [0.03] 0.30(0.03
wer  0.30(0.02) [0.03] 0.30(0.02) wsq 0.42(0.02)|0.04] 0.42(0.03
wgz  0.50(0.02) [0.03] 0.50(0.03) wss 0.21(0.02)|0.02) 0.21(0.02
wes  0.21(0.02) [0.03] 0.21(0.02) wss 0.07(0.02) |0.03] 0.07(0.02
wes  0.15(0.02) [0.02] 0.15(0.02) wsy 0.07(0.03)[0.03] 0.07(0.03

Table 6.4: Estimates for the parameters in matrix W of multivariate latent GARCH
model. Classical: estimates using Fisher scoring, figures in brackets are standard de-
viations taken using Fisher scoring, figures in square brackets are standard deviations
proposed by Bollerslev and Wooldridge (1992); Bayesian: posterior means and posterior
standard deviations (in brackets).

iterations, where the latter diagnostic gives values for the dependent factor around one.
Estimated posterior means and standard deviations for the parameters of matrix W of
the latent GARCH model (6.1) are illustrated in Table 6.4. Note that, all the parameters
of matrix W are significant. We also present in Figures 6-5 and 6-6 the convergence
diagrams of the posterior sample of the parameters of the multivariate latent GARCH

model.

6.5.3 Model uncertainty and prediction

In multivariate financial models, prediction of the future covariance matrix is of particular
interest. Having been able to calculate the posterior model probabilities, it seems natural
to account for model uncertainty in our predictive inferences. Suppose that we are

interested in Hr,q, the predictive covariance matrix at time 7"+ 1. Then, its posterior
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distribution given data y is given by

K

p(Hrialy) =Y p (Hrgalmi, y) p (mily), (6.12)
i=1

which is an average of the posterior predictive distribution under each model weighted
by their posterior model probabilities. Computation of (6.12) is straightforward after the
implementation of MC? or of delayed rejection algorithm. First, given a model m;, a
posterior sample of p (Hr1|m;,y) is just obtained by calculating, for each sampled point
in 0, the covariance matrices Hy, Ho, ..., Hpy1. Then (6.12) suggests that in order to
obtain a sample of p (Hyy1]y), each sampled point under model m; should be taken with
probability p (m;]y). Thus, the derived sample of p (Hr,1|y) is obtained by weighting all
samples of p (Hry1|m;,y) by the corresponding p (m;|y).

We made inference about the predictive covariance matrix at time 7"+ 1 using the
“best” ordering, Bayesian model averaging based on the 4 most probable models and
Bayesian model average based on all possible models using equations (6.8) and (6.9). In
our predictive exercise, we ran the algorithms for 50000 iterations, we discarded the first
10000 iterations as burn-in, and for the rest 40000 iterations we kept one value every 10
iterations, obtaining a sample of 4000 iterations. A posterior sample of p (Hry1|m,y) is
obtained using the “best” model by calculating, for each one of the 4000 sampled points
in @, the covariance matrix Hp,;. Then, we calculated the predictive density of Hyp 4
based on the four most probable models. To achieve this, we constructed all predictive
densities p (Hri1|mi,y), ¢ = 1, ..., 4, under each model, for each one of the 4000 sampled
points in @, and then we weighted all samples of p (Hp1|m;,y) by the corresponding nor-
malized posterior model probabilities. Finally, we calculated the predictive covariance
matrix using Bayesian model averaging over all models that have been visited during
50000 iterations of MC? algorithm. For each one of these models we estimated their
parameters, evaluated the predictive covariance matrix Hpy; based on the maximum

likelihood estimates, and then we weighted these values using the posterior model prob-
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abilities p (m;]y). We present in Figure 6-7 the posterior boxplots of the one step-ahead
forecasts for the volatility of the eight stocks (diagonal part of the graph), for the covari-
ances of the eight stocks (lower diagonal part of the graph), and for the correlations of
the stocks (upper diagonal part of the graph). The first posterior boxplot in each box
of the graph is based on the “best” model, while the second posterior boxplot is based
on Bayesian model average of the 4 most probable models. All the predictive values
for the volatilities and the covariances have been multiplied by 10000. The predictive
distribution of the elements of the covariance matrix based on Bayesian model averaging
is narrower than the corresponding predictive distribution based on the “best” model,
since BMA accounts for model uncertainty. The ‘line’ in Figure 6-7 illustrates the one
step-ahead forecast for the volatility and the covariances of the analyzed stocks based on

Bayesian model averaging over all models that M C? algorithm has visited.

6.6 Discussion

In this chapter, we propose a new multivariate GARCH model, where the covariance
matrix is always positive definite and the number of parameters is relatively small with
respect to other multivariate models. The model can be thought as a factor model with
full factor representation. This allows a dynamic behavior of the covariances and the
correlations.

The estimation of the parameters of the multivariate model is done by using classical
and Bayesian techniques. Maximum likelihood estimation is implemented by using the
method of Fisher scoring, while the MCMC algorithm is based on a blocking sampling
scheme which accelerates the convergence of the model parameters. Due to the fact that
the covariance matrix is guaranted to be positive definite, and that the estimation of the
parameters is easily implemented, we believe that the model can be applied very easily
to high dimensional problems.

We address the problem of model selection among different models (orderings) of
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the analyzed time series. We apply a Markov chain Monte Carlo model composition
(MC?®) method without and with a second delayed rejection stage. This improves the
Metropolis-Hastings algorithm in the sense that the resulting estimates have smaller
asymptotic variance (smaller accuracy) on a sweep by sweep basis. We believe that this
algorithm is very flexible and useful as it increases the probability of moving between
local modes of the posterior density.

We also consider the problem of accounting for model uncertainty in the proposed
multivariate GARCH model. Conditioning on a single selected model ignores model
uncertainty. We make inferences about quantities of interest such as prediction of future
variances and covariances using Bayesian model averaging over a set or over all possible

models.

166



Chapter 7

Future research

The thesis presents aspects of univariate and multivariate ARCH-type time-varying
volatility models. We deal with the general problem of inference, prediction and model
comparison of ARCH-type models by using Bayesian techniques and in particular Markov
Chain Monte Carlo methods. We demonstrate that the MCMC methods provide an ideal-
ized way to extract any posterior summary of interest such as functions of parameters, to
address the problem of model selection, and in addition to construct predictive densities
that take into account model uncertainty by using Bayesian model averaging.

In the analyzed ARCH-type models estimates of the model parameters are obtained
by using the Metropolis-Hastings algorithm. The efficiency of the algorithm is improved
by using a simultaneous vector update or a blocking sampling scheme. Further inves-
tigation is needed in order to construct alternative sampling schemes which are faster
mixing or easier to simulate. For example, the Auxiliary variable (AV) sampling tech-
niques (Swendsen and Wang, 1987, Edwards and Sokal, 1988, Besag and Green, 1993,
Higdon, 1998, Damien, Wakefield and Walker, 1999) could be adopted. The basic idea
of AV sampling is that the parameter space of the posterior density can be increased by
including extra latent variables which make the resulting posterior density more tractable
by sampling methods. Properties of AV sampling has been examined by Mira and Tier-
ney (1998), Roberts and Rosenthal (1997), while Giakoumatos, Dellaportas and Politis
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(1998) has used these techniques in the analysis of the unobserved ARCh model.

The model selection problem in univariate and multivariate ARCH-type models is
considered by using the Bayes Factor. MCMC methods such as the Reversible Jump
and the MC? together with the delayed rejection algorithm were used in order to obtain
posterior model probabilities in univariate (chapter four) and multivariate (chapter six)
models. Model determination for multivariate ARCH-type models (chapter five) was also
addressed by using predictive distributions. However, other methods (see for example,
Chib, 1995, Chib and Jeliazkov, 1999) can be used for estimating the marginal likelihood.
In particular, the approach of Chib and Jeliazkov (1999) which is based on the output of
Metropolis-Hastings algorithm, seems a very promising alternative in the time-varying
volatility models we analyzed.

In chapter six, a multivariate time series model with time-varying conditional vari-
ances and covariances was introduced and analyzed. For the specification of the variances
of the “latent” variables a GARCH(1,1) model was used. The model can be extended to
a general asymmetric multivariate model by allowing the variances of the “latent” vari-
ables to follow a “leverage” or “asymmetric” model, in which good news and bad news
have different predictability for future variance. Such formulations are, for example, the
EGARCH model of Nelson (1991) or the model of Glosten, Jagannathan and Runkle
(1993).
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