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PREFACE

In this thesis we develop a theory of the generalized Waring Process which is relevant to

a wide variety of applications. In particular, we �rst de�ne the generalized Waring process

in real line as a stationary, but non-homogenous Markov process. An application in a web

access modelling context has been given and applied to real data. We then construct the

generalized Waring Process on a complete separable metric space. The Generalized Waring

process in Rd is de�ned. By deriving a number of its properties like additivity stationarity,

ergodicity and orderliness we demonstrate that the de�ned process is completely satisfactory

for statistical applications.
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CHAPTER 1

INTRODUCTION

The Poisson process is one of the most important random processes in probability

theory. It is widely used to model random "points" in time and space such as the accident

pattern in accident theory, the arrival times of customers at a service center, the times of

radioactive emissions, the incidence of coal-mining disasters , the positions of �aws in a

piece of material, in plant ecology position of plants of a particular species along a line

transect taken in a �eld, etc (see e.g. Cox and Lewis (1966) , Cox and Isham (1980), Snyder

and Miller (1991), Ross (1995), Ross (2007) etc.). It is a too simplistic model for real data

but it can be successfully used for constructing more �exible models such as Cox Processes

and Markov Point processes.

A Cox process is a natural extension of a Poisson process, obtained by considering the

intensity function of the Poisson process as a realisation of a random �eld. The mixed

Poisson processes are Cox processes in which the intensity function of the Poisson process

is considered as a realisation of a random variable (see e.g. Daley and Vere-Jones (1988),

Grandell (1997), Muller and Waagepetersen (2004)). They also have the Markovian prop-

erty. The processes of Negative Binomial form are important examples of the Mixed Poisson

processes.

Both, the Poisson processes and the processes of Negative Binomial form are associated

to the Poisson and the Negative Binomial distributions which have a wide spectrum of

applications in areas such as accident statistics, income analysis, environmental statistics,

etc. The univariate generalized Waring distribution is also a discrete distribution which

has been used as a model that better describes such practical situations as opposed to the

Poisson distribution or the Negative Binomial distribution. It was derived by Irwin (see

Irwin (1968), Irwin (1975)) as the distribution of the accidents of an �accident prone�pop-

ulation exposed to variable risk. For certain values of the parameters, the UGWD(a; k; �)
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can be very long - tailed and so it was shown (Irwin (1963), Irwin (1968)) to be a suitable

theoretical form for the description of biological distributions. An enormous number of

problems in areas such as biology, economics, accident theory, linguistics, reliability and

bibliographical analysis have been linked with the generalized Waring distribution (see e.g.

Xekalaki (1981), Xekalaki (1983a), Xekalaki (1983c), Xekalaki and Panaretos (1983)).

In her paper, Xekalaki (1981) presents a number of results concerning the genesis

schemata that give rise to the UGWD and suggests some new ones. Some important results

are the mixed models. In these models the UGWD has been obtained as a mixture of Neg-

ative Binomial, Poisson and generalised Poisson distributions. The Negative Binomial and

generalised Poisson distributions, can be derived as mixtures of the Poisson distribution

respectively with gamma and logarithmic series distributions. Two further derivations of

the UGWD in the context of accidents, which are based on a �contagion�hypothesis and a

�spells�hypothesis, respectively assuming that individuals are exposed to varying envorin-

mental risk have been considered by Xekalaki (1983b). She demonstrates there, that, while

the UGWD is a plausible model, if accident proneness is accepted as an established fact, a

satisfactory �t of this model is not be regarded as evidence for the validity of the proneness

hypothesis.

The UGWD was shown by Irwin (1968) and Irwin (1975) to provide useful accident

model which enables one to split the variance into three additive components due to ran-

domness, proneness and liability. The two non-random variance components, however, can

not be separately estimated. Xekalaki (1984) suggests a way to overcome this problem by

de�ning a bivariate extension of the generalized Waring distribution. A multivariate ver-

sion of the generalized Waring distribution has also been de�ned by Xekalaki (1986). The

structure of this multivariate distribution was studied and shown among other results that

it allows for the marginal distributions and their convolution to be UGW distributions.

The aim of this thesis is to de�ne the generalized Waring process as a process associated

to the generalized Waring distribution intending to have a model that better describes some

practical situations mentioned above as opposed to the Poisson and Negative Binomial

processes.
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As mentioned earlier, the Poisson and the Pólya processes have been used in accident

theory to describe the accident pattern. Under the hypotheses of pure chance, the Poisson

process with intensity � has been proposed as a model that can describe the number of

accidents sustained by an individual during several years. The Pólya process, which is of

negative binomial form, is de�ned by starting from a Poisson process, which then, is mixed

with a gamma distribution. It has been obtained as a model, which can describe the accident

pattern of a population of individuals during several years, under the hypotheses of �accident

proneness�, i.e. that individuals di¤er in their probabilities of having an accident, which

remain constant in time (Newbold (1927)). Both of these processes satisfy the Markovian

property as this is a property of the accident pattern, i.e. the number of accidents during

the �next�period (t; t+ h] depends only on the number of accidents at the present time t.

In what follows, we develop a theory of the generalized Waring Process which is relevant

to a wide variety of applications. We start by de�ning the generalized Waring process on

the real line as a stationary, but non-homogenous Markov process and then we construct

the generalized Waring Process on a complete separable metric space.

Most of the results have been obtained in the context of models that have been used

for the description of accident data but can be adjusted so as to be �t for other practical

frameworks with appropriate modi�cations of concepts and terminology.

The thesis is organized in six chapters. In particular, in chapter 2, the generalized

Waring process is de�ned and studied �rst in an accident theory context. The starting point

is a process of negative binomial form, but di¤erent from a Pólya process. This process is

then mixed with a beta distribution of the second type (beta II). Further, in section 2.5,

an alternative genesis scheme referring to Cresswell and Froggatt�s (1963) spells model is

proposed in the framework considered by Xekalaki (1983b). Moreover, it is demonstrated

how the above considerations formulate the framework for the de�nition of the generalized

Waring process as a stationary, but non-homogenous Markov process. Some inferential

aspects connected with the mixed negative binomial derivation of the generalized Waring

processare are also discussed in section 2.6. Further, an application in a web access modeling

context is provided and discussed in section 2.4. The results stem from Xekalaki and Zogra�
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(2008) and have been obtained in the context of models that have widely been considered for

the interpretation of accident data. However, the concepts and terminology used can easily

be modi�ed so that the obtained results can be applied in several other �elds ranging from

economics, inventory control and insurance through to demometry, biometry, psychometry

and web access modeling as the case is with the application discussed in section 2.4.

Focus is subsequently turned to the problem of modeling spatial data in cases these are

prone to exhibit overdispersion, however, it may be challenging to specify a point process

model that simultaneously features additivity, stationarity, ergodicity, and orderliness.

An early process with such properties (stationarity, ergodicity, and orderliness) was

introduced by Neyman & Scott (1958) as a statistical approach to problems of cosmology.

It is a stochastic process of clustering of the second order and, in particular, a special

case of a Poisson cluster process with daughter clusters assumed to be Poisson. However,

constructing point processes with �nite dimensional laws of the negative binomial form has

become a very popular modeling strategy because of its tractability, elegant closed form

and interpretability of its parameters in applied contexts, where factors other than pure

chance play a role in the happening of an event. Such processes are known as negative

binomial processes, and have been de�ned and studied on general state spaces (Gregoire

(1983)). Owing to their combination of �exibility and mathematical tractability, they have

been employed in many practical situations (see for example Bates (1955) , Boswell & Patil

(1977) , Cli¤ & Ord (1973), Ramakrishnan (1951) etc.). However, they have been shown to

fail in simultaneously accommodating the three properties listed above. As a matter of fact,

it has been conjectured by Diggle & Milne (1983), that additive, stationary, ergodic, orderly

spatial point processes with negative binomial �nite-dimensional distributions may not even

exist. In their words, it would seem that one is "unable to exhibit a negative binomial point

process that is statistically interesting according to the criteria we laid down" [these criteria

being additivity, stationarity, ergodicity, orderliness].

For this purpose, in chapter 3, using the GWD as a building block, we construct an ad-

ditive, stationary, ergodic, and orderly spatial point process, and study its basic properties.

We develop our results on a general separable metric state space, before focussing on the
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practically relevant case of Rd in chapter 4. The process is seen to satisfy several useful

closure properties (under projection, marginalization, and superposition) and to be easy to

simulate. We further show that, in the limit as certain parameters of the process diverge,

the Generalized Waring Point Process approximates a negative binomial process. In doing

so, we give an approximate positive solution to the task set out by Diggle and Milne (1983)

by demonstrating that a spatial non- negative binomial point process that is simultaneously

a stationary, ergodic and orderly spatial point process does exist and has one dimensional

distributions that can take a negative binomial form depending on parameter choice.

In section 3.1, we provide some background highlighting various frameworks giving rise

to the univariate and multivariate cases of the generalized Waring distributions in the

univariate and multivariate cases, the moments and some of their properties such as the

�nite and countable additivity that will be utilized in subsequent sections.

Then, the de�nition of the generalized Waring process in a complete separable metric

space is given in section 3.2 . It is shown that the �nite dimensional distributions of the

process de�ned are of the multivariate generalized Waring form and that the process de�ned

ful�lls the Kolmogorov consistency conditions for the �nite dimensional distributions and

the measure requirements given by the basic existence Theorem of a point process (see

Daley and Vere-Jones (1988)). The generalized Waring process in Rd with the Lebesgue

measure as parameter measure � (�) is then de�ned in section 4.1 and proved to be orderly,

stationary, ergodic and nth-order stationary.

Some limiting forms of the generalized Waring process are also obtained for various

limiting values of its parameters. In particular, it is shown that the generalized Waring

process can take the form of a negative binomial and a Poisson process.

Furthermore, the multivariate generalized Waring process is de�ned as a special case of

the generalized Waring process on the product space S � f1; 2; :::mg :

In chapter 5, the generalized Waring process on the Real Line is de�ned either as a special

case of the generalized Waring process in Rd or as a projection of the generalized Waring

process in R2 and is shown to be orderly (and a simple point process as well), stationary,

ergodic and nth-order stationary. The generalized Waring process on the postive half-line
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R+ is also examined and proved that it posesses the Markovian property.
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CHAPTER 2

THE GENERALIZED WARING PROCESS ON THE

REAL LINE AND ITS APPLICATIONS

The Poisson and the Pólya processes have been used in accident theory to describe the

accident pattern. Under the hypotheses of pure chance, the Poisson process with intensity

� has been proposed as a model that can describe the number of accidents sustained by an

individual during several years. The Pólya process,which is of negative binomial form, is

de�ned by starting from a Poisson process, which then, is mixed with a gamma distribution.

It has been obtained as a model, which can describe the accident pattern of a population

of individuals during several years, under the hypotheses of �accident proneness�, i.e. that

individuals di¤er in their probabilities of having an accident, which remain constant in

time (Newbold, 1927). Both of these processes satisfy the Markovian property as this is a

property of the accident pattern, i.e. the number of accidents during the �next�period(t; t+h]

depends only on the number of accidents at the present time t.

In this chapter, a new process is de�ned and studied (see Xekalaki and Zogra� (2008)).

This process is associated with a discrete distribution with a wide spectrum of applica-

tions known in the literature as the generalized Waring distribution (see, e.g. Irwin, 1975;

Xekalaki, 1983b). Analogously to the case of Poisson and Pólya process, this new process,

termed in the sequel as the generalized Waring process, is postulated to be a Markov process,

as shown in section 2.3. The starting point is a process of negative binomial form, but di¤er-

ent from a Pólya process. This process is then mixed with a beta distribution of the second

type (beta II). Further, an alternative genesis scheme referring to Cresswell and Froggatt�s

(1963) spells model is proposed in the framework considered by Xekalaki (1983b). Section

2.3 indicates how the above considerations formulate the framework for the de�nition of

the generalized Waring process as a stationary, but non-homogenous Markov process. Ex-

pressions for the �rst two moments of this process, as well as results on the intensity and
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the individual intensity of it, are also given in section 2.3 and its transition probabilities

are derived as well. An application in a web access modeling context is provided in section

2.4. Two further genesis schemes considered by Zogra� and Xekalaki (2001) are presented

in section 2.5. Finally, some inferential aspects connected with the mixed negative binomial

derivation of the generalized Waring process are discussed in section 2.6. The results ob-

tained are in the context of models that have widely been considered for the interpretation

of accident data. However, the concepts and the terminology used can easily be modi�ed

so that the obtained results can be applied in several other �elds ranging from economics,

inventory control and insurance through to demometry, biometry, psychometry and web

access modeling as the case is with the application discussed in section 2.4.

2.1 The Description of the Accident Pattern by a Cox Process

In this section, we consider �rst the assumptions of a Pólya process, developed by

Newbold (1927). This model considers several individuals exposed to the same external risk

(e.g. drivers all driving about the same distance within a similar tra¢ c environment) and

that there are intrinsic di¤erences among di¤erent individuals (e.g. di¤erences in accident

proneness). Supposing that, the number of accidents up to time t, for each individual,

conforms with a Poisson process with a �personal rate �� ( � stands for the respective

accident proneness), and regarding � as the outcome of a random variable �with a gamma

distribution with parameters k and �, the number of accidents N (t) at time t, t = 0; 1; 2;

::: de�nes the Pólya process with parameters k and � as follows:

(I) N (0) = 0,

(II) N(t) is a birth process,

(III)N (t+ h)�N (t) has a distribution de�ned by the probability function

P fN (t+ h)�N (t) = mg =

E

�
(�h)n

n!
e��h

��
k +m� 1

m

��
1

1 + �h

�k � �h

1 + �h

�m
;m = 0; 1; ::: (1)

where � is a random variable with density u given by

u(l) =
��k

�(k)
lk�1e�(l�

�1); l > 0
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It is clear that N(t) has a negative binomial distribution with parameters k and
1

1 + �t
,

i.e. N (t) s NB
�
k;

1

1 + �t

�
.

The distribution of the random variable � explains here the variation of the accident

proneness from individual to individual. As noted by Irwin (1968 ) and Xekalaki (1984), the

term accident proneness here refers to both, the external and the internal risk of accident.

It seems more natural to assume that this variation in an interval of time (t; t+ h] depends

on the length h of the interval, while, in two non-overlapping time periods, the respective

variations are independent. So, now, a personal �, in an interval of time (t; t+ h] , is

regarded as the outcome of a random variable � (h) with distribution U (h), which depends

on the interval length h. If U (h) is assumed to be � (k (h) ; 1=� (h)), where k (h) and � (h)

are in general some functions of h, then, clearly, the number of accidents N (t) forms a

stochastic process of a negative binomial form satisfying the assumptions (I) N (0) = 0

and (II) N (t+ h)�N (t) has the distribution:

P fN (t+ h)�N (t) = ng =
+1Z
0

(�h)n

n!
e��h

�(h)�k(h)

�(k(h))
�(k(h)�1)e(��=�(h))d�; (2)

n = 0; 1; :::

It can be shown that

P fN (t+ h)�N (t) = ng =
�
kh+ n� 1

n

��
1

1 + v(h)h

�k(h)� v(h)h

1 + v(h)h

�n
:

Then, using the �rst assumption, it follows that for any t, N (t) has a negative binomial

distribution with parameters k (t) and 1
1+�(t)t . Hence, one can verify that

P fN (t) = ng =
+1Z
0

(�t)n

n!
e��t

�(t)�k(t)

�(k(t))
�(k(t)�1)e��=�(t)d�;

n = 0; 1; :::

This tells us precisely that N (t) is a Cox Process (see e.g. Grandell (1997), p. 83).

Assume that the accident proneness varies from individual to individual with a mean that

does not depend on time. This is equivalent to considering a parameter pair (k (h) ; � (h))with

9



k (h) � � (h) =constant. So, letting � (h) = �=h, and k (h) = kh, i.e., allowing � (h)having

a gamma distribution that changes with time so that its expectation remains constantly

equal to �k, we obtain

P fN (t+ h)�N (t) = ng =
�
kh+ n� 1

n

��
1

1 + v

�kh� v

1 + v

�n
; (3)

n = 0; 1; :::

and that N (t) is NB
�
kt; 1

1+�

�
-distributed.

2.2 An Extension of Irwin�s Accident Model

This model considers a population which is not homogeneous with respect to personal

and environmental attributes that a¤ect the occurrence of accidents. In his model, Irwin

(1968) and Irwin (1975), used the term �accident proneness�� to refer to a person�s pre-

disposition to accidents, and the term �accident liability�(�j �; i.e. � for given �) to refer

to a person�s exposure to external risk of accident.

The conditional distribution of the random variable � given � describes di¤erences

in external risk factors among individuals. As before, liability �uctuations over a time

interval (t; t+ h) depend on the length h of the interval and are described by a � (kh; 1=�h)

distribution for �j�. Moreover, assuming independence in two non-overlapping time periods,

the number of accidents N (t) given � will be a stochastic process of a negative binomial

form with parameters kt and
1

1 + �
. This starts at 0 and has stationary increments with a

distribution given by 3. Let us further allow the parameter � of the negative binomial to

follow a beta distribution of the second kind with parameters a and �, i.e. � is a random

variable with density ' (�) given by

' (�) =
� (a+ �)

� (a) � (�)
v(a�1) (1 + v)�(a+�) a; � � 0

obtaining thus for the distribution of the number of accidents N (t):

N f(t+ h)�N (t) = ng =
�(kh)

(a+ �)(kh)

a(n) (kh)(n)

(a+ �+ kh)(n)

1

n!

10



and

P (N(t) = n) = Pn (t) =
�(kt)

(a+ �)(kt)

a(n) (kt)(n)

(a+ �+ kt)(n)

1

n!
;

n = 0; 1; :::

It is clear that N (t) is a generalized Waring process on positive half-line R+.

Remark 1 If we consider individuals of proneness � and liability �ij� i = 1; 2 respectively

in each of two non-overlapping intervals of time, it follows by the model�s assumptions that

the numbers N1; N2 of accidents incurred by these individuals are jointly distributed ac-

cording to a double Poisson distribution with parameter (�1j�; �2j�). Then, for individuals

with the same proneness but varying liabilities, the joint distribution of accidents over the

two intervals, is the double negative binomial with parameters
��
kh1;

1
1+�

�
;
�
kh2;

1
1+�

��
,

where h1; h2are the respective sizes of these intervals. If, further, the proneness parameter

� is allowed to follow a beta distribution of the second kind with parameters a and �, the

joint distribution of the numbers of accidents over the two intervals is a bivariate general-

ized Waring distribution with parameter ((a; kh1;�) ; (a; kh2;�))(see Xekalaki (1984)). Now,

it is clear that, if a number of non-overlapping intervals greater than two is considered, the

joint distribution of the numbers of accidents over those intervals, will follow a multivariate

generalized Waring distribution (see Xekalaki (1986)).

In the sequel, we use the above remark (Remark 1) to show that the generalized Waring

process resulting from the above generating scheme is a Markov process, i.e. that

P (N (t+ h) = n j N (t) = m; N (s) = ns ; 0 � s < t)

coincides with

P (N (t+ h) = n j N (t) = m)

for every non-negative integer n;m; ns 0 � s < t.

For a proof of this, observe that

P fN (t+ h) = n j N (t) = m;N (s) = ns; 0 � s < tg =

P fN (t+ h)�N (t) = n�m j N (t)�N (s) = m� n; N (s)�N (0) = ns; 0 � s < tg

11



and consider the random vector

(N (t+ h)�N (t) ; N (t)�N (s) ; N (s)�N (0)) ; 0 � s < t:

It follows from Remark 1 that this vector has a trivariate generalized Waring distribution

with parameters �; k; and �, where k = (kh; k (t� s) ; ks). This is a three dimensional spe-

cial case of Xekalaki�s (1986) multivariate generalized Waring distribution whose structural

properties imply that the random vector

(N (t+ h)�N (t) j N (t)�N (s) ; N (s)�N (0))

has a univariate generalized Waring distribution with parameters �+ n (t) ; kh and �+ kt,

where n (t) is the value of N (t). Hence,

P fN (t+ h)�N (t) = n�m j N (t)�N (s) = m� ns; N (s)�N (0) = nsg

=
(�+ kt)(a+m)

(�+ kt+ kh)(a+m)

(a+m)(n�m) (kh)(n�m)
(�+ kt+ kh+ a+m)(n�m)

1

(n�m)!

=
� (a+ n)

� (a+m)

(kh)(n�m)
(n�m)!

(�+ kt)(a+m)

(�+ kt+ kh)(a+n)
(4)

= P fN (t+ h)�N (t) = n�m j N (t)�N (0) = mg

= P [N (t+ h) = n j N (t) = m]

which proves that the generalized Waring process has the Markovian property, i.e. the

conditional distribution of the future state N (t+ h) given the present state N (t) and the

past state N (s), 0 � s � t, depends only on the present state.

2.3 The Spells Model

In the sequel, an alternative scheme generating a process of a generalized Waring form,

on positive half-line R+; is considered. This is a variant of Cresswell and Froggatt�s (1963)

12



spells model that has been considered in the paper of Xekalaki (1984). According to this

model, each person is liable to spells. For each person, no accidents can occur outside

spells. Let S (t) denote the number of spells up to a given moment t. It is assumed that

S (t) ; t = 0; 1; 2; :::is a homogeneous Poisson process with rate k=m, k > 0, the number

of accidents within a spell is a random variable with a given distribution F and that the

number of accidents arising out of di¤erent spells are independent and also independent

of the number of spells. So, the total number of accidents at time t is X(t) =
S(t)P
k=1

Xk;

where S (t) is a homogenous Poisson process with rate k=m and fXkg11 are identically and

independently distributed (i.i.d.) random variables from the distribution F .

When fXkg11 is a logarithmic series distribution with parameters (m; �), i.e.

P (Xi = 0) = 1�m log(1 + v)

and

P (Xi = n) =
m

n

�
v

1 + v

�n
; n � 1; m > 0; v > 0;

the random variableX (t), is a negative binomial random variable with parameters
�
kt; 1

1+�

�
for each t (Chat�eld and Theobald (1973)). Here � is regarded as the external risk para-

meter, too. Then, if the di¤erences in the external risk can be described by a beta (a; �)

distribution of the second kind, the resulting accident distribution is of a generalized Waring

form with parameters a; kt, and �.

Let us consider, now, the counting process fN(t); t � 0g with N (t) represented, for

t � 0, by
S(t)P
k=1

Xk;

�
0P
k=1

Xk = 0

�
; where S (t) is a homogenous Poisson process with rate

k=m, fXkg11 has a logarithmic series distribution with parameters (m; �) and is independent

of the process S (t), and � is a non-negative random variable with a Beta (a; �) distribution

of the second kind.

Theorem 1 For the process fN (t) ; t � 0g de�ned as above the following conditions hold:

(I) N (0) = 0 (II) fN (t) ; t � 0g possesses stationary increments (III) fN (t) ; t � 0g is a

Markov process.

The proof of (I) is straightforward.

13



To prove condition (II), denote by ' the probability distribution function (p.d.f.) of the

random variable �. Then we can write:

P (N (t+ h)�N (t) = n) =
+1Z
0

P (N (t+ h)�N (t) = n=v)' (v) dv

=

+1Z
0

P

0@S(t+h)X
k=S(t)

Xk = n

1A' (v) dv
=

+1Z
0

"
+1X
i=0

P

 
iX

k=1

Xk = n

!
p (S (t+ h)� S (t) = i)

#
' (v) dv

=

+1Z
0

"
+1X
i=0

P

 
iX

k=1

Xk = n

!
1

i!
exp

�
�kh
m

��
kh

m

�i#
' (v) dv

=
�(kh)

(�+ a)(kh)

a(n) (kh)(n)

(a+ �+ kh)(n)

1

n!
:

To prove the Markovian property, let N� (t) =
S(t)P
k=1

Xk for a given �. The process

N� = fN� (t) ; t � 0g is a compound Poisson process. Hence, it is a Markov process.

We now note that:

P (N (t+ h) = njN (t) = m;N (s) = ns for 0 � s � t) =

=

+1R
0

P� (N (t+ h) = n;N (t) = m;N (s) = ns for 0 � s � t)' (�) d�

+1R
0

P� (N (t) = m;N (s) = ns for 0 � s � t)' (�) d�
;

where P� (A) stands for the conditional probability of an event A given the value � of the

random variable �.

Then, P� (N (t+ h) = n; N (t) = m; N (s) = n (s) ; 0 � s � t) is equal to ph (m� n) �

pt�s (m� ns) � ps (n (s)) and P�( N (t) = m; N (s) = n (s) ; 0 � s � t ) is equal to

pt�s (m� ns) � ps (n (s)).

Therefore,

P (N (t+ h) = n; N (t) = m; N (s) = n (s) ; 0 � s � t)

14



=
� (a+ n)

� (a+m)

(kh)(n�m)
(n�m)!

(�+ kt)(a+m)

(�+ kt+ kh)(a+n)

The last result proves the Markovian property of the process and provides its tran-

sition probabilities.

2.4 An Application in the Context of Modeling Web Access
Patterns

As mentioned above, the concepts and terminology used in this thesis can easily be

modi�ed so that the obtained results can be implemented in several other �elds. As an

example, we present here an application of the generalized Waring process on positive half-

line R+ in the context of modeling web access patterns. The results are an adaptation of

those obtained by Xekalaki and Zogra� (2008) in the context of models that have widely

been used for the interpretation of accident occurrence with appropriate modi�cations of

concepts and terminology.

Consider in particular, modeling the whole counting process fN(s); s > 0g associated

with the access pattern of a web site, where, for any t > 0, the variable N (t) denotes the

number of visits that the web pages on this particular site get within the interval (0; t).

(Note that the generalized Waring distribution has been cited in Ajiferuke, Wolfram and

Xie (2004) as used by them to �t an observed website visitation frequency distribution for

a given period, i.e, to model counts N(t0) of web visits on a given �xed time interval (0; t0))

Except for chance, visits to a web site can be regarded as a¤ected by the intrinsic appeal

of the particular site to web users (corresponding to proneness) as well as by exogenous

factors (corresponding to external factors) such as, links provided by other sites to the

particular site, how well the site is advertised etc.

Let us denote by � the intrinsic factors and by �j�the exogenous factors. Assume

that N (t) j� follows a Poisson (� (t)) distribution, where � (t) = �t with �j� following a

Gamma
�
kt; 1�t

�
distribution.

Then, the conditional distribution of N (t) j� is a NB
�
kt;

�

1 + �

�
distribution with �

following a Beta (�; �) distribution of the second kind, while the unconditional distribution

of N (t) is the GWD (a; kt; �) distribution, i.e.fN (t) ; t � 0gis a generalized Waring process

15



Table 1
Visits made by a given IP address to an e-shop site per date and time

Date Day Hour Minute Second Visit duration (in days)
12/04/206:16:15:27 12 16 15 27 0
13/04/206:01:30:57 13 1 30 57 0.385763889
13/04/206:09:38:04 13 9 38 4 0.724039352
13/04/206:14:44:41 13 14 44 41 0.936967593
13/04/206:20:39:53 13 20 39 53 1.183634259
15/04/206:21:28:53 15 21 28 53 3.217662037
16/04/206:11:59:50 16 11 59 50 3.822388426
16/04/206:19:27:24 16 19 27 24 4.133298611
17/04/206:02:13:47 17 2 13 47 4.415509259
18/04/206:17:41:12 18 17 41 12 6.059548611
24/04/206:06:00:26 24 6 0 26 11.57290509
24/04/206:12:36:52 24 12 36 52 11.64959491
24/04/206:18:27:59 24 18 27 59 12.09203704
25/04/206:00:17:51 25 0 17 51 12.335
25/04/206:06:35:20 25 6 35 20 12.5971412
26/04/206:21:05:30 26 21 5 30 14.20142361
29/04/206:09:09:02 29 9 9 2 16.70387731
29/04/206:09:17:15 29 9 17 15 16.70958333
29/04/206:10:33:00 29 10 33 0 16.7621875

on R+.

The log �les representing the hits on an e-shop site for the period 31=03=2006�30=04=2006,

have been used to �t this model. A log �le typically contains information on the times of

visits per IP address per day. On the basis of such log �les, the visits per day made by each

of 468 IP addresses to the particular site have been enumerated for the above-mentioned

one-month period yielding the corresponding observed paths

fNi (tj) ; i = 1; 2; :::; 468; j = 1; 2; :::; 31g

of the numbers of visits Ni (tj) made by IP address i up to and including time tj . A sample

of one thus obtained path corresponding to one of the IP addresses considered is presented

in Table 1.

The observed paths were compared to the corresponding time series of simulated real-

izations of the generalized Waring process over the same time segment.
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Estimates of the parameters of the generalized Waring process have been obtained em-

ploying the centered reduced moment estimation procedure for spatial point process data

(see, e.g., Ripley (1988), Daley and Vere-Jones(1988), and Chetwynd and Diggle (1998)

among others) which do exist for the generalized Waring process. This procedure utilizes

the moment estimators

E (N (s)) = �̂1 = �̂ � s =
n � s
h
;

^
E
�
N2 (s)

�
= �̂2 =

X

n(2)

^
E
�
N3 (s)

�
= �̂3 =

Z �X
n(3)

with

X =

nX
i=1

X
i6=j

�2
s
(xi; xj) ;

Z =
nX
i=1

0@X
j 6=i

�s (xi; xj)

1A0@X
k 6=i

�s (xi; xk)

1A ;
where the quantities involved in the above equations represent weights de�ned, for each

value xi in the collection of points fxi : i = 1; 2; :::; ng of the process within a time interval

of length h, de�ned as follows:

For each xi in fxi : i = 1; 2; :::; ng and a given s > 0, consider the interval of center

xi and length s and assign to every point xj ; j 6= i in this interval the weight �s (xi; xj) =

! (xi; xj)
�1, where ! (xi; xj) is the number of other points fxk; k 6= i; k 6= jg of the process

that are included in the interval of length jxi � xj j and center xi. Within the setting of our

example, the set fxi : i = 1; 2; :::; ng represents, for each IP address, the visits made by the

particular IP address for the entire duration of the period of time h = xn � x1 considered,

n = 31, �̂ denotes an estimator of the process intensity �, i.e. of the expected number of

visits in an interval of unit length, while the value set for the constants s was s = 0; 5:

Using The Shedler �Lewis thinning technique for a point process with bounded con-

ditional intensity, described in the end of this section, for each of the IP addresses, one

hundred simulated realizations of the generalized Waring process with the above estimated

parameter values were obtained by using and each of the observed time series paths was
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Table 2
Centered reduced moment estimates for the parameters of the UGWD(a; kt; �)

IP address
^
�

^
k

^
�

1 5.6888256 0.594154 3.86463
2 4.139105 0.929841 3.521098
3 3.8695139 0.8293397 4.2061137

compared to the corresponding simulated ones. The comparison showed that, on average,

the realizations of a generalized Waring process with the obtained parameter values no-

tably �resembled�the observed paths of the observed time series, in the sense that they had

recognizable similar structural characteristics.

For illustration purposes, the paths of the observed time series associated with a sample

of three of the IP addresses are presented (Figures 1, 2). Each of these paths is superimposed

by a sample of three of the 100 corresponding simulated realizations of the generalized

Waring process with parameter estimates obtained as above and given in Table 2.

Inspection of the graphs depicted by Figures 1, 2 provides a visual appreciation of the

degree of similarity in the structural characteristics of the paths of the observed and the

realized time series.

2.4.1 Simulation Methods

2.4.1.1 Conditionally Bounded Property

The following Lemma proves that the conditional intensity function of a generalized Waring

process in R+ is conditionally bounded and suggests a limit function for the conditional

intensity which is used in the The Shedler �Lewis algorithm for simulating the points of

generalized Waring process in R+:

Lemma 1 The conditional intensity function of a generalized Waring process in R+ is

conditionally bounded.

Proof According to 29 the conditional intensity function is

�� (t) =

�
k [	 (�+ kt+ a)�	(�+ kt)] (0 < t � t1)

k [	 (�+ k (t+ tn�1) + a+ n� 1)�	(�+ k (t+ tn�1))] (tn�1 < t � tn; n � 2)
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Figure 1
Observed and simulated paths corresponding to IP address 1

Figure 2
Observed and simulated paths corresponding to IP address 2
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Knowing that 8x > 1
2 ; log

�
x� 1

2

�
� 	(x) � log (x)� 1

2x
(see Janardan, K. G. & Patil,

G. P. (1972)) we obtain for t >
1� �
2k

	(a+ �+ kt+ c) � log (a+ �+ kt+ c)� 1

2 (a+ �+ kt+ c)

�	(�+ kt) � � log
�
�+ kt� 1

2

�
hence if we denote 'a;�;c (t) = log (a+ �+ kt+ c)� log

�
�+ kt� 1

2

�
� 1

2 (a+ �+ kt+ c)

we obtain 	(a+ �+ kt+ c)�	(�+ kt) � 'a;�;c (t) : Let us consider

d'a;�;c (t)

dt
=

k

a+ �+ kt+ c
� k�

�+ kt� 1
2

� + 2k

4 (a+ �+ kt+ c)2

=
�k
�
4kt (a+ c+ 2) + 4� (a+ c) + 4 (a+ c+ 1)2 + 6

�
a+ c+ 1

2

��
4 (a+ �+ kt+ c)2

�
�+ kt� 1

2

�
Clearly,

d'a;�;c (t)

dt
< 0; which means that the function 'a;�;c (t) is monotonically decreasing.

Hence we can write 	(a+ �+ k (t+ u) + c)� 	(�+ k (t+ u)) < 'a;�;c (t+ u) < 'a;�;c (t)

(all u > 0) ; which proves the lemma.

2.4.1.2 Simulation of a point process with bounded conditional intensity

The Shedler �Lewis thinning technique

This technique can be carried over to the point process context when the conditional

intensity �� is known explicitly as a function of past variables. The thinning technique is

particularly useful when �� is conditionally bounded, by which we mean that for every n =

1; 2; ::: and all sequences with the hazard function satis�es hn (t+ ujt1; :::; tn�1) � M� (t)

(all u > 0) for some M� (t) = M� (t; t1; :::; tn�1) < 1. In case of the generalized Waring

process, as M� (t) can be used the function

M� (t) = k'a;�;ktn�1+a+n�1 (t)

= k

�
log (a+ �+ kt+ i� 1)� log

�
�+ kt� 1

2

�
� 1

2 (a+ �+ kt+ i� 1)

�
according to the above Lemma.
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Algorithm 1 The algorithm for simulating the points fti : i = 1; 2; :::g of such a process

on (0;1) is speci�ed as follows:

(1) set t = 0; i = 1;

(2) calculate M� (t) ;

(3) generate an exponential r.v. T with mean 1
M�(t) and a r.v. U uniformly distributed

on (0; 1) ;

(4) if
�� (t+ T )

M� (t)
> 0, replace t by t+ T and return to step (2);

while otherwise

(5) set ti = t+ T; advance i by 1; replace t by ti ; and return to step (2) :

2.5 Some Alternative Genesis Schemes

The generalized Waring process on positive half-line R+ has been de�ned as a non-

homogenous stationary Markov process arising as a beta mixture of the negative binomial

process in a �proneness�context. In this section, we consider two further genesis schemes

where the underlying mechanism is indicative of contagion rather than proneness in the

sense of Irwin (1941) and Xekalaki (1983b) .The contagion model assumes that, at time

t = 0, the individuals have had no accidents and that, during a time period (t; t+ dt], the

probability of a person having another accident depends on time t and on the number of

accidents x sustained by him/her by time t. So this probability is a function f� (x; t), with

� referring to the individual�s risk exposure.

The two di¤erent schemes assume di¤erent form for this function. in the �rst case the

resulting process is a birth process, but not of a generalized Waring form, while in the

second case, the increments of the process have a generalized Waring distribution but it is

not a Markov process.

1. Assuming that f� (x; t) =
k + x

(1=�) + t
= � � k + x

1 + �t
, the distribution of accidents for

each t ( � �xed) is negative binomial with parameters
�
k; 1

1+�t

�
(the accident pattern is

described in that case by a Pólya process). As shown by Xekalaki (1983b), the overall dis-

tribution is the generalized Waring with parameters (a; k; �), when � varies from individual

to individual, according to an exponential distribution, i.e., � s ae�a�; a > 0 for t = 1.
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Adopting a similar approach, one may obtain

Pn (t) = P (N = n) =

=
p()

(a+ p)()

a(n)(n)

(a+ p+ )(n)

(1=t)a

n!
1F2

�
a+ p; a+ n; a+ p+  + n; 1� 1

t

�
(5)

1F2(a; b; ; z) =

1X
m=0

a(m)b(m)

(m)

zm

m!
:

It can be shown that the counting process Y = fY (t) ; t > 0; Y (0) = 0g ; where Y (t) ;

for each t, has the distribution given by 5, is a birth process, but not of a generalized Waring

form. Also, calculating the values of the function
1

ta 1
F2( a+ p; a+ n; a+ p+  + n; 1�

1

t
)

and the respective probabilities is quite involved.

2. Assuming that f� (x; t) = � (k +mx), the distribution of accidents for each t is negative

binomial with parameters
�
� k
m
;

1

1� e��mt

�
, when � is �xed (see Irwin (1941)) and gen-

eralized Waring with parameters
�
k

m
; 1;

a

mt

�
, when � ae�a�; a > 0 (Xekalaki (1981)).

Further, following Irwin (1941), one may be verify in this case that the distribution of

the increment Yt(h) = N (t+ h) � N (t) at time t, given that N (t) = x, has a negative

binomial distribution with parameters
�
� k
m
+ x;

1

1� e��mt

�
when � is �xed, and a gen-

eralized Waring distribution with parameters
�
k

m
+ x; 1;

a

mt

�
, when � ae�a�; a > 0.

Hence, in this case,

Pi;j (s; t) = P (N (t+ s) = ijN (t) = j) = P (N (t+ s)�N (t) = i� jjN (t) = j)

=
(a=ms)(1)�

k
m + j +

a
ms

�
(1)

�
k
m + j

�
(i�j)�

k
m + j +

a
ms + 1

�
(i�j)

From the last relationship, one may easily �nd that

p2;i (s; �) � pj;2 (� ; t) + p3;i (s; �) � pj;3 (� ; t) 6= pj;i (s; t)

for some values of a;m; s; t; � ; i; j. This implies that this process does not satisfy the

Chapman-Kolmogorov equations and thus is not a Markov process.
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2.6 Inferential Aspects Connected to a Process of GW Form

In this section, we discuss some inferential aspects connected with the mixed negative

binomial derivation of the generalized Waring process.

Let M (t) be associated with a negative binomial process speci�ed by 1 and N (t) be

associated with a generalized Waring process as de�ned by the De�nition 3. The derivation

of the latter implies that regarding the parameter � in

P fM (t) = ng =
�
kt+ n� 1

n

��
1

� + 1

�kt� �

1 + �

�n
; n = 0:1; ::: (6)

as the outcome of a random variable having the beta (a; �)distribution of the second kind,

we can interpret fP (M (t) = n) ; n = 0; 1; :::g as the conditional distribution of N (t) given

the value �. Hence, the unconditional distribution of N (t) can be represented by

Pn (t) = P fN (t) = ng = E
"�
kt+ n� 1

n

��
1

� + 1

�kt� �

1 + �

�n#

=
�(kt)

(�+ a)(kt)

a(n) (kt)(n)

(�+ a+ kt)(n)

1

n!
n = 0; 1; ::: (7)

Using this interpretation of the generalized Waring distribution we can, for any event

B; regard the probability

UB (x) = P f� � xjN (s) 2 Bg =

xR
0

P (N (s) 2 Bj�) dU (�)

+1R
0

P (N (s) 2 Bj�) dU (�)
;

with U denoting the probability function of the random variable �, as the posterior distri-

bution of � given B or, more precisely, givenfN (s) 2 Bg, provided that

P fN (s) 2 Bg =
+1Z
0

P (N (s) 2 Bjl) dU (l) > 0:

Proposition 2 Let N (s) be de�ned as above. Then

P f� � xjN(s) = ng =

xR
0

�n+a�1 (1 + �)�(n+a+�+ks) d�

+1R
0

�n+a�1 (1 + �)�(n+a+�+ks) d�
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Proof

Using an argument similar to that used by Xekalaki (1983b) for the case of the generalized

Waring distribution, we obtain

P f� � xjN(s) = ng = P f� � x; N (s) = ng
P f N (s) = ng

=

xR
0

�(a+�)
�(a)�(�)�

a�1 (1 + �)�(a+�) d�
xR
0

(ls)n exp(�ls)
n!

(�=s)�ks

�(ks) l
ks�1 exp

�
� ls
�

�
dl:

+1R
0

�(a+�)
�(a)�(�)�

a�1 (1 + �)�(a+�) d�
+1R
0

(ls)n exp(�ls)
n!

(�=s)�ks

�(ks) l
ks�1 exp

�
� ls
�

�
dl:

=

�
ks+n�1

n

� xR
0

�n+a�1 (1 + �)�(a+n+�+ks) d�

�
ks+n�1

n

� +1R
0

�n+a�1 (1 + �)�(a+n+�+ks) d�

=

xR
0

�n+a�1 (1 + �)�(a+n+�+ks) d�

+1R
0

�n+a�1 (1 + �)�(a+n+�+ks) d�

This proposition implies that
�
�+ ks

a+ n

�
�j (N (s) = n) has the F distribution with

2 (a+ n) and 2 (�+ ks) degrees of freedom. Following Xekalaki (1983b), this result can be

used to construct con�dence intervals for �j (N (s) = n), �estimating�in this way a person�s

proneness on the basis of the incurred number of accidents. In particular, a 100(1 � �)%

interval for �j (N (t) = n) is
�
a+ n

�+ kt
F 1��

2
;
a+ n

�+ kt
F 1+�

2

�
, where F 1��

2
( 2 (a+ n) ; 2 (�+ kt)

) = F 1��
2
, F 1+�

2
( 2 (a+ n) ; 2 (�+ kt) ) = F 1+�

2
.

Corollary 1 If N (s) is de�ned as above, then

E f�jN(s) = ng =

+1R
0

�n+a (1 + �)�(n+a+�+ks) d�

+1R
0

�n+a�1 (1 + �)�(n+a+�+ks) d�

=
a+ n

�+ ks
:

Proof

Using the result of the proposition and the relation

E f�jN(s) = ng =
+1Z
0

xdP f� � xjN(s) = ng ;

we obtain

E f�jN(s) = ng =

+1R
0

�n+a (1 + �)�(n+a+�+ks) d�

+1R
0

�n+a�1 (1 + �)�(n+a+�+ks) d�
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=
� (n+ a+ 1)� (�+ ks� 1)

� (a+ n+ �+ ks)

� (a+ n+ �+ ks)

� (n+ a) � (�+ ks)
;

which leads to the result.
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CHAPTER 3

MODELING SPATIAL OVERDISPERSION WITH THE

GW PROCESS

The de�nition of an appropriate probability model for clustered spatial patterns typ-

ically requires the determination of an additive point process on the domain in question.

Additivity is a minimal requirement, requiring that when the region of observation changes,

or when non-overlapping regions are aggregated in a systematic manner, the corresponding

count distribution remains in the same family. Additional assumptions that are often made

for convenience include stationarity, ergodicity (allowing estimation of the model based on

a single realization) and orderliness (to avoid the apparition of coincident events).

However, point processes known as negative binomial processes have been employed in

many practical situations, they have been shown to fail in simultaneously accommodating

the three properties listed above. As a matter of fact, it has been conjectured by Diggle

& Milne (1983), that additive, stationary, ergodic, orderly spatial point processes with

negative binomial �nite-dimensional distributions may not even exist.

To elaborate, the construction of a negative binomial process N usually hinges on one of

two schemes. The �rst scheme is based on compounding Poisson processes by means of the

logarithmic distribution (see Feller (1968). Let B be a member of the family B of Borel sets

of R2 and let N(B) denote the number of xi in B. Then, N(B) =
M(B)P
k=1

Xk denotes the count

of points corresponding toM disjoint subsets of B, whereM is a stationary Poisson process

with mean (intensity) measure E (M(B)) = ��� (B), with � (B) denoting the area (Lebesgue

measure) of of B. Given M , the random variables Xi are taken to be independently and

identically distributed (i.i.d) according to the logarithmic series distribution with parameter

�, having probability generating function (p.g.f.)
� ln(1� �z

1+� )

ln(1 + �)
; � > 0. The resulting

process can be seen to be of negative binomial form with p.g.f. EfzN(B)g = f1 + �(1 �
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z)g
�� � � (B)
ln(1 + �) . This is a Poisson cluster scheme (e.g. Daley & Vere-Jones (1972, Example

2.4 B), Cox & Isham (1980), Fisher (1972, Example 5.6), Burnett & Wasan (1980)), and, as

remarked by Diggle & Milne (1983), is always stationary and ergodic (since any stationary

Poisson cluster process is known to be mixing and hence ergodic (Westcott (1971, p.300))),

but clearly non-orderly.

A second scheme is based on mixing Poisson processes, generating so-called Polya

processes (see e.g. Matern (1971), Daley & Vere-Jones (1972, Example 2.1 C), Fisher (1972,

p.500)). Here, one samples a gamma random variable � with parameters � and � > 0, and

conditionally speci�es N(B) to be Poisson given �, with intensity � � � (B). The resulting

process is again of the negative binomial type, with p.g.f. EfzN(B)g = f1+�(1�z)g����(B).

Polya processes on the real line are well-established in the literature on accident proneness

e.g. Cane (1972) . As mentioned again by Diggle & Milne (1983), they are stationary

by construction. However, the only stationary mixed Poisson processes which are ergodic

are those for which the mixing distribution is concentrated at a single point, thus giving

an (ordinary) Poisson process (e.g. Westcott (1972, p. 464)). It follows that non-trivial

processes of this type can be orderly but never ergodic.

In summary, the �rst approach yields ergodic but non-orderly processes, whereas the

second approach yields orderly but non-ergodic processes. In this thesis, therefore, rather

than make a new attempt at �nding a point process with precisely negative binomial one-

dimensional distributions (which may not even be possible), we change strategy, and con-

sider a di¤erent choice of over-disperse one-dimensional distributions. An established com-

petitor to the negative binomial distribution is the Generalized Waring Distribution (GWD;

see, e.g. Irwin (1975), Xekalaki (1983b, 1984)). This has long been used to �t overdisperse

count data, particularly in the �eld of accident studies, providing a more plausible model

for the interpretation of the data generating mechanism by allowing for the distinction of

the non-random factors that contribute to the occurrence of an event (e.g. an accident)

into intrinsic (inherent, endogenous) and extrinsic (external, exogenous) factors. Moreover,

it can approximate the negative binomial and the Poisson distribution as limiting cases.
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In this chapter, using the GWD as a building block, we construct an additive, stationary,

ergodic, and orderly spatial point process, and study its basic properties (see Zogra�, M. &

Xekalaki, E. (2019)). We develop our results on a general separable metric state space. The

process is seen to satisfy several useful closure properties (under projection, marginalization,

and superposition) and to be easy to simulate. We further show that, in the limit as certain

parameters of the process diverge, this Generalized Waring Point Process approximates a

negative binomial process. In doing so, we give an approximate positive solution to the

task set out by Diggle & Milne: while a stationary, ergodic and orderly point process

with one-dimensional negative binomial distributions may not exist, there exists a point

process that is stationary, ergodic and orderly and has one dimensional distributions that

are approximately negative binomial (depending on parameter choice).

The chapter is organised as follows. In section 3.1, we provide some necessary back-

ground notions related to the generalized Waring distribution, its moments, and properties

that will be used in subsequent chapters. Speci�cally, it is shown that the generalized

Waring distribution posesses the property of countable additivity, which is fundamental to

our later construction. The de�nition and existence of the generalized Waring process in a

complete separable metric space is given in section 3.2. In particular, the process is shown

to be orderly, and to be characterised by the property that N (A) follows a Univariate

Generalized Waring Distribution (UGWD) with parameters (a; k� (A) ; �) for all bounded

sets A in a dissecting ring A of the complete separable metric space. A conditional property

of the generalized Waring process is also shown enabling simulation of it, and exact expres-

sions for the corresponding intensity measure, factorial moment measures and the nth order

moment measures are provided.

3.1 The Generalized Waring Distribution and Additivity

In this section we provide some background on the generalized Waring distribution and

discuss some of its structural properties that will be essential in what follows. In particular,

we extend the previously established �nite additivity property to countable additivity, as a

�rst important step in the construction of the GW point process.
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3.1.1 The Univariate Case

A random variable X is said to have the generalized Waring distribution with parame-

ters a; k and �, denoted by GWD(a; k; �), if

P fX = ng = �n (a; k; �) =
�(k)

(�+ a)(k)

a(n)k(n)

(�+ a+ k)(n)

1

n!
n=0;1;::: (8)

where P (X = x) = 0; x 2 f0; 1; 2; :::gC and the symbol s(t) stands for
� (s+ t)

� (s)
for s > 0;

t 2 R (see e.g. Irwin (1975), Xekalaki (1981), Xekalaki (1983b)). Here a > 0; k > 0; � > 0

and k need not to be integers. The distribution is symmetric in a and k.

The probability generating function of the generalized Waring distribution is given by

E
�
zX
�
=

1X
n=0

zn�n (a; k; �) =
�(k)

(�+ a)(k)
2F1(a; k; �+ a+ k; z) (9)

where

2F1(a; �; ; z) =

1X
n=0

a(n)�(n)

(n)

zn

n!
:

The rth factorial moments are

�[r] =
a[r]k[r]

(�� 1) (�� 2) ::: (�� r) (10)

where x[r] = x (x+ 1) ::: (x+ r) for each x and r.

From (10), it follows immediately that all of the rth order moments, ordinary moments

about any origin, central moments as well as factorial moments are in�nite if � � r. Mo-

ments about any origin, including central moments, can be obtained from (10) by the usual

transformation formula (see Irwin (1975), PartI). In particular, the mean is given by

E (X) =
ak

�� 1 ; � > 1 (11)

while the variance is

�2 = �2 =
ka (�+ a� 1) (�+ k � 1)

(�� 1)2 (�� 2)
; � > 2: (12)
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It is worth noting that the variance is splittable into additive components associated

to the e¤ect of random factors (�2R) and to non-random factors further distinguished into

intrinsic factors (�2� ) and extrinsic factors (�
2
�).

�2 = �2� + k
2�2� + �

2
R

where �2� = ak (a+ 1) (�� 1)
�1 (�� 2)�1, �2� = a (a+ �� 1) (�� 1)

�2 (�� 2)�1 and �2R =

ak (�� 1)�1 :

3.1.2 The Multivariate Generalized Waring Distribution

The multivariate generalized Waring distribution with parameter vector (�; k1; :::;

ks; �), denoted by MGWD(a; k; �), is the probability distribution of a random vector

(Xi; i = 1; 2; :::; s) of nonnegative integer-valued components, with probability function

given by

Px1;:::;xs = P (Xi = xi; i = 1; 2; :::; s) =

�� sP
i=1
ki

�a� sP
i=1
xi

�
(�+ a)� sP

i=1
ki+

sP
i=1
xi

� sQ
i=1

ki(xi)

xi!
(13)

(see Xekalaki (1986)). The special case for s = 2 is known in the literature as the bivariate

generalized Waring distribution, denoted by BGWD(a; k1; k2; �) :

The probability generating function of the multivariate Generalized Waring distribution

can be expressed in terms of Lauricella�s hypergeometric function of type D as

G (z) =

�� sP
i=1
ki

�
(�+ a)� sP

i=1
ki

� FD(a; k1; k2; :::; ks; �+ a+
sX
i=1

ki; z)

where

FD(a; �1; �2; :::; �s; ; z) =
X

r1;r2;:::rs

a�P
ri

�
�P

ri

� sQ
i=1

(�i)(ri) (zi)
ri

ri!
;

z = (z1; z2; :::; zs)

The factorial moments of the MGWD(a; k; �) (see Xekalaki (1985a), Xekalaki (1986))
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are then given by

�(r1;r2;:::rl) = E
h
(X1)[r1] (X2)[r2] ::: (Xs)[rs]

i
(14)

=

a�P
ri

� sQ
i=1
(ki)(ri)

(�� 1) (�� 2) ::: (��
P
ri)
; ri = 0; 1; :::; i = 1; 2; :::; s (15)

and are �nite for � >
P
ri, the latter being a necessary condition for the series FD(a; k1 +

r1; k2+r2; :::; ks+rs; �+a+
sP
i=1
(ki + ri) ; 1) to converge. Moments of order n can be derived

from these factorial moments.

The marginal means and marginal variances are respectively given by

�Xi = E (Xi) =
aki
�� 1 ; � > 1 (16)

�2Xi =
kia (�+ a� 1) (�+ ki � 1)

(�� 1)2 (�� 2)
; � > 2 (17)

i = 1; 2; :::; s:(see Xekalaki (1986)).

The second moment and the pairwise covariances are

�XiXj = E (XiXj) =
a (a+ 1) kikj
(�� 1) (�� 2) ; i; j = 1; 2; :::; s; � > 2 (18)

�XiXj =
a (�+ a� 1) kikj
(�� 1)2 (�� 2)

; i; j = 1; 2; :::; s; � > 2 (19)

One of the most important features of the GWD is additivity. Speci�cally, if X and Y

are random variables with marginal distributions UGWD(a; k1; �) and UGWD(a; k2; �),

respectively, and with joint distribution BGWD(a; k1; k2; �), then X + Y is a UGWD(a;

k1 + k2; �) random variable. More generally, letting Xj be UGWD(a; kj ; �) or each j; j =

1; 2; :::; n and jointly distributed as MGWD(a; k1; k2; :::; kn; �), then, if we denote m =
nP
j=1
kj ; we have that S =

nP
j=1
Xj also has a UGWD(a; m; �) distribution.

These last two properties hint at the possibility of using the GWD as a basis for the

construction of overdisperse point processes. This requires extending additivity to countable

additivity, which we do in the form of the next theorem:
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3.1.3 Countable Additivity Theorem

Theorem 3 Let Xj be UGWD(a; kj ; �) variables for each j; j = 1; 2; ::: and for each

n � 3 let their joint distribution be the MGWD(a; k1; k2; :::; kn; �) : If m =
1P
j=1
kj converges,

then S =
1P
j=1
Xj converges with probability 1, and S has a UGWD(a;m; �) distribution. If

on the other hand,
1P
j=1

kj diverges, then S diverges with probability 1.

Proof By induction on n; the random variable Sn =
nP
j=0
Xj has a UGWD(a; mn; �)

distribution, where mn =
nP
j=1

kj :Thus, for any r,

P fSn � rg =
rX
i=0

�i (a;mn; �) (20)

The sequence fSn � rg is a decreasing sequence of events for �xed r, and their intersection

is fS � rg :Thus, using continuity from above,

P fS � rg = lim
n!1

P fSn � rg

= lim
n!1

rX
i=0

�i (a;mn; �) :

If mn converges to a �nite limit m; the continuity of �j implies that

P fS � rg =
rX
i=0

�i (a;m; �) (21)

leading to

P fS = rg = �r (a;m; �) : (22)

This in turn implies that S is �nite and distributed as generalized Waring with parameters

a;m; � (UGWD(a;m; �)).

On the other hand, if mn !1;
rX
i=0

�i (a;mn; �) =

rX
i=0

�(mn)

(�+ a)(mn)

a(i)mn(i)

(�+ a+mn)(i)

1

i!
=

"
�(a)

(�+mn)(a)

a(i)

i!

mn

(�+ a+mn)

(mn + 1)

(�+ a+mn + 1)
:::

(mn + i� 1)
(�+ a+mn + i� 1)

! 0

#
so that P fS > rg = 1: Since this holds for all r, S diverges with probability 1:
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3.2 The Generalized Waring Process in a Complete Separa-
ble Metric Space

We now proceed to the de�nition of the generalized Waring process on a complete

separable metric space and the investigation of some of its basic properties. The construction

starts from postulating the existence of a point process with �nite dimensional distributions

of the generalized Waring form (subsection 3.2.1), and then demonstrating the existence

and uniqueness of such a process (subsection 3.2.2). Basic features of the process such as a

conditional property useful for simulation, as well as its intensity measure, factorial moment

measures and nth order moment measures are then derived in subsection 3.2.3.

3.2.1 De�nition and Basic Properties

Let S be a complete separable metric space, A a semiring of bounded Borel sets generating

the Borel �-algebra BS of subsets of S (Appendix2. Lemma A2.I.III, Daley and Vere-

Jones (1988)) and � (�) a boundedly �nite Borel measure. The distribution of a random

measure is completely determined by its �nite dimensional (�di) distributions, i.e. the joint

distribution of arbitrary �nite families fAi; i = 1; :::; sg of disjont sets from A (Proposition

6.2.III, Daley & Vere-Jones (1988)). Now consider the space of all boundedly �nite, integer-

valued measures (
^
NS ; B

�
^
NS
�
) and let (
;F ;P) be some probability space.

De�nition 1 Let

N : (
;F ;P)!
�

^
NS ;B

�
^
NS
��

be a point process for whose �nite dimensional distributions over disjoint bounded Borel sets

fAi; i = 1; :::; l g are given by

P fN (Ai) = ni; i = 1; :::; lg =

� 
k

lP
i=1
�(Ai)

!a lP
i=1
ni

!
(�+ a) 

k
lP

i=1
�(Ai)+

lP
i=1
ni

! lQ
i=1

[k� (Ai)](ni)

ni!
: (23)

Then N is called a generalized Waring process with parameters a, �; k > 0 and parameter

measure � (�).
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In other words, for every �nite family of disjoint bounded Borel sets fAi; i = 1; :::;

lg the joint distribution of fN (Ai) = ni; i = 1; :::; lg is the MGWD(a; k� (A1) ; k� (A2) ;

:::; k� (Al) ; �): As usual, the process fN (A) ; A 2 BSg is to be thought of as a random

measure. In particular, for any A 2 BS , N (A) is a Zt�valued random variable, while for

any ! 2 
; N (!; �) is a discrete Radon measure.

We remark that, if such a process exists, it will necessarily be countably additive. To

see this, let fAi; i = 1; 2; :::g be disjoint and have union A. Using Theorem 1, and the

fact that � (A) =
1P
i=1
� (Ai) converges, we immediately obtain that N (A) =

1P
i=1
N (Ai) is

distributed as UGWD(a; k� (A) ; �). Furthermore, such a process will be orderly provided

the parameter measure is di¤use:

Theorem 4 A process as in De�nition 1 is an orderly point process if and only if its

parameter measure has no �xed atoms.

Proof A point process is orderly when given any bounded A 2 BS ; there is a dissecting

system T = fTng = f f Ani : i = 1; :::; kn g g such that inf
Tn

Pkn
i�1 P fN (Ani) > 2g =

0: (see Daley & Vere-Jones (1988)). Hence it is su¢ cient to examine when the ratio
PfN (A";x) > 1g
PfN (A";x) > 0g

tends to 0; where A";x is the open sphere of radius " and center x 2 A. In

the case of a GW process, N (A";x) has a generalized Waring distribution with parameters

a > 0, � > 0 and � (A";x) = �", so that

P fN (A";x) > 0g = 1� P fN (A";x) = 0g = 1�
�(k�")

(�+ a)(k�")
;

P fN (A";x) > 1g = 1�
�(k�")

(�+ a)(k�")
�

�(k�")

(�+ a)(k�")

a � k�"
(�+ a+ k�")

:

If x is a �xed atom of �, then �" ! �0 = � fxg > 0 as "! 0; while if x is not a �xed atom,

then � (A";x)! 0:

In the �rst case, the ratio
PfN (A";x) > 1g
PfN (A";x) > 0g

tends to the constant 1�
�(k�0) � a � k�0

(�+ a)(k�0+1) � �(k�0)
;

while in the second case it tends to 0, and the proof is complete.

From this point on, we will consider only orderly generalized Waring processes. Indeed,

any orderly point process with �nite dimensional distributions of the generalized Waring

type is necessarily a GWP with a non-atomic parameter measure:
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Theorem 5 Let N (�) be an orderly point process. For N (�) to be a generalized Waring

process with parameters a > 0, � > 0; k > 0 and parameter measure � (�), it is necessary

and su¢ cient that there exist a boundedly �nite nonatomic measure � on the Borel sets Bs

such that N (A) has generalized Waring distribution with parameters a; k� (A) ; � for each

bounded set A of a dissecting ring A of the complete separable metric space S.

Proof We begin with necessity. Let N (�) be a generalized Waring Process and A a

bounded set of a dissecting ring A (A is also a Borel set). Then, by de�nition, there exists

a boundedly �nite Borel measure � (�) such that for every �nite family of disjoint bounded

Borel sets fAi; i = 1; :::; sg; PfN (Ai) = ni; i = 1; :::; sg is given by 23. From this, it follows

that the distribution of N (A) is the GWD(a; k� (A) ; �) :

To prove su¢ ciency, suppose that there exists a boundedly �nite nonatomic measure �

on the Borel sets Bs such that N (A) has generalized Waring distribution with parameter

a; k� (A) ; � for each bounded set A of a dissecting ring. According to Theorem 7.3.II of

Daley & Vere-Jones (1988), the values of the avoidance function P0 (A) = P fN (A) = 0g

=
�(k�(A))

(�+ a)(k�(A))
on the bounded sets of a dissecting ring for the complete separable metric

space, determine the distribution of a simple point process N (�) on this space.

3.2.2 Existence Lemma

The following Lemma proves that the equation P0 (A) =
�(k�(A))

(�+ a)(k�(A))
has always

a solution. This result wil be used to prove the measure requirements in the Existence

Theorem of the generalized Waring process.

Lemma 2 For each a > 0, � > 0; 0 � P0 � 1; there exists one and only one root x > 0 of

the equation �(�+x+a)
�(�+x) =�(�+a)

P0�(�)

Proof It has been proved (see Bai-ni, Ying-jie and Feng[[2]] Theorem 3) that for y >

x � 1, � (y)
� (x)

>
yy�

xx�
ex�ywhere  is Euler-Mascheroni�s constant

Hence we can obtain

� (�+ x+ a)

� (�+ x)
>
1

ea
(�+ x+ a)�+x+a�

(�+ x)�+x�
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Let us consider the function

f (x) =
(�+ x+ a)�+x+a�

(�+ x)�+x�
e�a

We will show that it is an increasing function of x for x>1. To this aim, we need to

examine its derivative

f 0 (x) = e�a

h
ln (�+ x+ a) + 1� 

�+x+a

i
(�+ x+ a)�+x+a�

(�+ x)2(�+x�)

e�a
�
h
ln (�+ x) + 1� 

�+x

i
(�+ x)�+x�

(�+ x)2(�+x�)

Observe that the functions ' (x) =
�
1 + lnx� 

x

�
and ! (x) = xx are increasing for

x > 1, (since '0 (x) =
�
1
x +


x2

�
> 0 if x > �; !0 (x) = (1 + lnx)xx > 0 if x > 1). Hence

the function g (x) = ' (x)! (x) =
�
1 + lnx� 

x

�
xx increases for x > 1:

So,
�
ln (�+ x+ a) + 1� 

�+ x+ a

�
(�+ x+ a)�+x+a� �

�
ln (�+ x) + 1� 

�+ x

�
(�+ x)�+x� > 0 for x > 1 and the f 0 (x) > 0 which proves that the function f (x)

increases for x > 1.

So we can state that 8b 2 R; 9x > 1; such that f (x) > b:

Let us consider b =
� (�+ a)

P0� (�)
. For that value there exists an x > 0; such that f (x) > b.

Clearly for x = 0;
� (�+ x+ a)

� (�+ x)
=
� (�+ a)

� (�)
< b: The function

� (�+ x+ a)

� (�+ x)
is continuous

for x > 0 as a ratio of two continuous functions ( � (x) is continuous x > 0). So, using

Bolzano�s Theorem for the function
� (�+ x+ a)

� (�+ x)
� b; we obtain that 9x > 0 such that

� (�+ x+ a)

� (�+ x)
� b = 0:

On the other hand,

d

dx

�
� (�+ x+ a)

� (�+ x)

�
=
d

dx

�
exp

�
ln
� (�+ x+ a)

� (�+ x)

��

=
� (�+ x+ a)

� (�+ x)

d

dx
[ln � (�+ x+ a)� ln � (�+ x)]
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=
� (�+ x+ a)

� (�+ x)
[	 (�+ x+ a)�	(�+ x)]

and using the relation 	(t) = �+
1P
i=0

�
1

i+ 1
� 1

i+ t

�
where  is the Euler-Mascheroni

constant, we obtain

d

dx

�
� (�+ x+ a)

� (�+ x)

�
=

� (�+ x+ a)

� (�+ x)
1X
i=0

�
1

i+ �+ x
� 1

i+ �+ x+ a

�
> 0

This proves the Lemma.

3.2.3 Existence and Uniqueness

To prove that the point process stipulated in the previous section does indeed exist, it

is su¢ cient to establish that the �nite dimensional distributions given by (<ref>1a</ref>)

ful�ll Kolmogorov�s consistency conditions, combined with the measure requirements given

by the basic existence theorem for point processes (Theorem 7.I.XI Daley & Vere-Jones

(1988)).

Theorem 6 (Kolmogorov�s Consistency Conditions) A collection of �nite dimensional

distributions as de�ned via De�nition 2 satis�es Kolmogorov�s consistency conditions. That

is, for every �nite family of disjoint bounded Borel sets fAi; i = 1; :::; lg,

(I) for any permutation i1; :::; il of the indexes 1; :::; l

Pl (Ai1 ; :::; Ail ;ni1 ; :::; nil) = Pl (A1; :::; Al;n1; :::; nl) (24)

(II)
1P
r=0
Pl (A1; :::; Al; n1; :::; nl�1; r) = Pl�1 (A1; :::; Al�1; n1; :::; nl�1)

Proof To show (I), we notice that one can write
lP

j=1
� =

lP
j=1
� (Aj) ;

lP
j=1
nij =

lP
j=1
nj ;

lQ
j=1�

k�
�
Aij
���

nij

�
ni!

=
lQ

j=1

[k� (Aj)](nj)

nj !
which proves (24).
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To show (II), we write
1P
r=0

Pl( A1; :::; Al; n1; :::; nl�1; r ) = Pl�1( A1; :::; Al�1; n1; :::;

nl�1)
1P
r=0

�
�+ k

l�1P
i=1
� (Ai)

�
(k�(Ar))

�
a+

l�1P
i=1
ni

�
(r)�

�+ a+ k
l�1P
i=1
� (Ai) +

l�1P
i=1
ni

�
(k�(Ar)+r)

[k� (Ai)](r)

r!
= Pl�1( A1; :::; Al�1;n1; :::;

nl�1)

Theorem 7 (Measure Requirements) Suppose that

(I) N is bounded �nite a.s. and has no �xed atoms.

(II) N satis�es De�nition 2.

Then, there exists a boundedly �nite nonatomic Borel measure � (�) such that P0 (A) =

Pr fN (A) = 0g =
�(k�(A))

(�+ a)(k�(A))
for all bounded borel sets A and 8i; i = 1; :::; s � (Ai) = �i.

Proof Let A 2 Bs and let � (A) > 0 be the root of the equation P0 (A) =
�(k�(A))

(�+ a)(k�(A))

which does exist (see Lemma 2).

a) We �rst prove that � (�) is a measure. To show �nite additivity, we observe that

P0 (A) = Pr fN (A) = 0g =
�(k�(A))

(�+ a)(k�(A))
:

Hence for each family of bounded, disjoint, Borel sets fAi; i = 1; :::; sg, the joint distribution

of fN (Ai) = ni; i = 1; :::; sg is the MGWD( a; k� (A1) ; k� (A2) ; :::; k� (As) ; � ); and if A =
sP
i=1
Ai then N (A) =

sP
i=1
N (Ai) has distribution GWD(a; k� (A) ; �) : So � (A) =

sP
i=1
� (Ai)

which establishes �nite additivity of � (�) : To extend this to countable additivity, it su¢ ces

to prove that � (Ai)! 0 for any decreasing sequence fAig of bounded Borel sets for which

� (Ai) <1 and Ai #Ø. For Ai #Ø N (Ai)! 0 a.s. and thus P0 (Ai) = Pr fN (Ai) = 0g ! 1

a.s. hence � (Ai) =
� (1� P0 (Ai))
kP0 (Ai)

! 0 a.s.

b)To show that � (�) is non-atomic, we can consider by (I) that for every x that

Pr f N (fxg) > 0 g = (1� P0 (fxg)) = 0:So � (fxg) =
� (1� P0 (fxg))
kP0 (fxg)

= 0
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c)To show that � (�) is boundedly �nite it is enough to prove that P0 (A) > 0 for every

bounded borel set A: By supposing the contrary that for some set A, P0 (A) = 0; one,

following Daley & Vere-Jones (1988), Lemma 2.4.VI, can �nd that in this case there exists

a �xed atom of the process, contradicting (I) which proves that P0 (A) > 0 for every

bounded borel set A:

3.2.4 Conditional Property and Moment Measures

In this subsection, we prove a key structural property of the generalized Waring process,

that enables one to simulate segments of the process. The algorithm constructed for this

purpose, reveals that using the generalized Waring process one is enabled not only to obtain

a description of the counts, but also acquire knowledge of the exact locations where spatial

clustering occurs. Some simulation results are also provided. Exact expressions of the nth

order moment measures of the generalized Waring process that will be needed to establish

nth order stationarity in chapter 4, are also derived.

Theorem 8 (Conditional Property). Consider a Generalized Waring point process in 


with parameters a > 0; � > 0; k > 0 . Let W � 
 be any region with 0 < � (W ) < +1.

Given that N(W ) = n, the conditional distribution of N(B) for B �W is the beta-binomial

distribution with parameters � (B) ; � (W )� �(B) and n :

p (N (B) = k jN (W ) = n) =
�
n

k

�
(� (B))(k) (� (W )� �(B))(n�k)

(� (W ))(n)

Proof

p (N (B) = k jN (W ) = n) = p (N (B) = k;N (W �B) = n� k)
p (N (W ) = n)

=

�(a)

(�+ � (W ))(a)

a(n) (� (B))(k) (� (W �B))(n�k)
(�+ � (W ) + a)(n)

1

k!

1

(n� k)!
�(a)

(�+ � (W ))(a)

a(n) (� (W ))(n)

(�+ � (W ) + a)(n)

1

n!

=
n!

k! (n� k)!
(� (B))(k) (� (W )� �(B))(n�k)

(� (W ))(n)
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=

�
n

k

�
(� (B))(k) (� (W )� �(B))(n�k)

(� (W ))(n)

Furthermore, the conditional joint distribution of N(B1), :::, N(Bm) for any B1, :::,

Bm � W is the Multinomial Dirichlet distribution with parameters �(B1); :::; �(Bm);

�(W )�
mP
i=1
�(Bi) and n:

The following algorithm describes how a Generalized Waring process with parameters

a > 0; � > 0; k > 0 can be generated using the conditional property:

Algorithm 2 (Generalized Waring Process Generator in a Quadrat W using Multinomial

Dirichlet Distribution)

1. Generate a random variable M with a generalized Waring distribution with parame-

ters a; �; k � � (W ) where � (W ) = �:

2. Let B1, :::, Bs � W a partition of W in s equal areas, i.e. � (Bi) = �=s for i

in f1 : sg. We then draw a random vector (M1, :::, Ms) from a Multinomial Dirichlet

Distribution with parameters (
�

S
; :::;

�

S
;M):

3. For each i in (1; 2; :::; s); if Mi > 1 do the step 2 for the respective Bi; otherwise

stop.

Since E(Mi) =
M

s
the algorithm converges.

As is clear from the algorithm, no more than one point can occupy the same posi-

tion. This indicates that contrary to the negative binomial process, the generalized Waring

process can not only describe the observed counts, but can also pinpoint the exact locations

where spatial clustering occurs. Figure 3 depicts three di¤erent realizations of the algorithm

applied in a unit square for the same set of parameters.

We now turn our attention to determining the nth order moment measures of the process,

needed to establish nth order stationarity, as discussed in the next chapter.
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Figure 3
Realizations of a GWP (20,30,5) with mean=150 in the unit square

Let N be a generalized Waring process with parameters (a; k; �) and parameter measure

� (�). For A a Borel set, the distribution of N (A) is the GWD(a; k� (A) ; �) : Therefore, its

�rst moment measure is

� (A) = E (N (A)) =
ak� (A)

�� 1 ; � > 1

and its intensity rate is the Radon-Nikodym derivative

� (A) =
d�

d�
=

ak

�� 1 ; � > 1:

ForA; B two Borel sets the joint distribution of (N (A) ; N (B)) is the BGWD( a; k� (A) ; k� (B) ; �

); hence the second order moment measure of the process is

M2 (A�B) = E (N (A)N (B)) =
a (a+ 1) k2� (A)� (B)

(�� 1) (�� 2) ; � > 2 (25)

Given a �nite family of disjoint bounded Borel sets fAi; i = 1; :::; sg the joint distribution

of fN (Ai) = ni; i = 1; :::; sg is the MGWD( a; k� (A1) ; k� (A2) ; :::; k� (As) ; � ), hence the

factorial moment measure, E [N (A1)[r1] N (A2)[r2] ::: N (As)[rs]]; of the process is

�(r1;r2;:::rl) (A1 �A2 � :::�As) =
a�P

ri

�ks sQ
i=1
(� (Ai))(ri)

(�� 1) (�� 2) ::: (��
P
ri)
; (26)
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ri = 0; 1; :::; i = 1; 2; :::; s: The nth order moment measures can now be obtained from (26)

Mn (A1 �A2 � :::�An) = E
h
(N (A1))[1] (N (A2))[1] ::: (N (As))[1]

i
(27)

=

a(n)k
n
nQ
i=1
(� (Ai))(ri)

(�� 1) (�� 2) ::: (�� n) ; for � > n:

for � >
P
ri:
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CHAPTER 4

MODELING OVERDISPERSION IN Rd

In this chapter we develop a practically relevant case of generalized Waring process in

Rd.

The generalized Waring process in Rd with Lebesgue measure as parameter measure

� (�) is de�ned in section 4.1. It is shown to be orderly, ergodic and nth order stationary.

The existence of the nth order reduced moments of a generalized Waring process in Rd; if

� > n; useful for applications, is obtained as a corollary.

Multivariate extensions are considered in section 4.2, where we de�ne the multivariate

GWP as a special case of the GWP on the product space S � f1; 2; :::mg, and is shown to

satisfy several appealing closure properties with respect to marginalization. It is proved that

the Poisson and the Pólya processes are limiting cases of the generalized Waring process on

R+ and by utilizing this result, the moments and transition probabilities are obtained for

the Poisson and the Pólya processes.

4.1 The Generalized Waring Process in Rd

In what follows, we turn our focus to the generalized Waring process on the state-space

Rd, with Lebesgue measure as its parameter measure � (�). We show that this constitutes

an orderly, stationary, ergodic and nthorder stationary point process.

4.1.1 The Generalized Waring Process as a Simple Point Process

Let S = Rd and let � (�) be the Lebesgue measure on Rd. The Borel algebra BRd in Rd

is the smallest �- algebra on Rd which contains all the open rectangles of d�dimensions.

The generalized Waring process fN (A) ; A 2 BRdg can be de�ned by assuming that for

every �nite family of disjoint bounded Borel sets fAi; i = 1; :::; sg the joint distribution

of fN (Ai) = ni; i = 1; :::; sg is the MGWD(a; k� (A1) ; k� (A2) ; :::; k� (As) ; �) ; a > 0;
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� > 0; k > 0:

The Lebesgue measure in Rd has no atoms.Thus, the process is orderly.

Theorem 9 The generalized Waring Process is a simple point process

This follows directly from the Proposition 7.2.V, Daley & Vere-Jones (1988), since the

generalized Waring Process in Rd is orderly.

4.1.2 Stationarity, nth order Stationarity and Ergodicity

The Lebesgue measure in Rd is also invariant under translations, hence the following

results can be proved:

Theorem 10 Let N (�) be a generalized Waring process in Rd with parameters a > 0, � > 0;

k 2 N .Then N (�) is stationary.

Proof We need to prove that for each u 2 Rd and all bounded Borel sets A 2 BRd ; the

avoidance function P0 (�) of the generalized Waring process de�ned above satis�es P0 (A) =

P0 (A+ u) (see Daley & Vere-Jones (1988), Theorem 10.1.III).

From the invariance of the Lebesgue measure on Rd one can write

P0 (A) =
�(k�(A))

(�+ a)(k�(A))
=

�(k�(A+u))

(�+ a)(k�(A+u))
= P0 (A+ u)

which proves the theorem.

A stationary Point process for which the nth order moment measure exists is nth order

stationary (see Daley & Vere-Jones (1988)). Hence, using Diggle & Milne the following

theorem and its corollary are trivial.

Theorem 11 The generalized Waring process in Rd with parameters a > 0, � > n; k 2 N

is nth order stationary.

Theorem 12 The generalized Waring process in Rd is ergodic
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Proof A necessary and su¢ cient criteria for a stationary process to be ergodic is to

be metrically transitive. From Lemma 2, there exists one and only one root x > 0 of

the equation
� (�+ x+ a)

� (�+ x)
=b > 0: Let us consider A a set in Rd and let Sx be the shift

operator. If A is such that P (SxA \A) = P (A) then
�(k�(SxA\A))

(�+ a)(k�(SxA\A))
=

�(k�(A))

(�+ a)(k�(A))
:

Hence we obtain that
� (�+ k� (SxA \A) + a)
� (�+ k� (SxA \A))

=
� (�+ k� (A) + a)

� (�+ k� (A))
and from Lemma 2,

it follows that � (SxA \A) = � (A) : The last relation stands if A = ? or A = Rd, which

does mean that P (A) = 0 or 1:This proves the theorem.

4.2 Special Cases of the Generalized Waring Process

In what follows, we consider three instances of Genelarized Waring Processes that

may arise by multivariate extension, marginalization, projection, and limiting arguments.

Speci�cally, we de�ne the multivariate generalized Waring process as a special case of the

generalized Waring process on the product space S � f1; 2; :::mg and show that marginals

of a multivariate GWP, as well as their sums, are all GWP as well. We then show that

generalized Waring processes are closed under projection, and �nally demonstrate how

negative binomial and Poisson processes can be seen as special (limiting) cases of the GWP

as some parameters are allowed to suitably diverge.

4.2.1 The Multivariate Generalized Waring Process

Consider the product space S�f1; 2; :::mg and let BS�f1;2;:::mg be the associated product

Borel �-algebra. De�ne the function � : BS�f1;2;:::mg ! R+ such that for each B =
1P
i=1
Ai � Ci 2 BS�f1;2;:::mg(Ai 2 BS ; Ci 2 P (f1; 2; :::mg) ; � (B) =

1P
i=1
� (Ai) where BS is the

Borel �-algebra and � (�) some boundedly �nite Borel measure. It is clear that � (�) is a

boundedly �nite Borel measure on S � f1; 2; :::mg : This allows us to de�ne:

De�nition 2 The generalized Waring process with parameters a, k, � and parameter mea-

sure � (�) on S � f1; 2; :::mg is called the multivariate generalized Waring process with pa-

rameters a, k, � and parameter measure � (�) on S.
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The multivariate GWP satis�es a number of convenient closure properties:

Theorem 13 Let N (�) be a multivariate generalized Waring process with parameters a, k,

� and parameter measure � (�) on S: Then the following hold:

1. For every i 2 f1; 2; :::mg ; the marginal process Ni (�) = N (� � fig) is a GW process

with parameters a, k; � and parameter measure � (�) :

2.
lP

j=1
Nij (�) is a generalized Waring process with parameters a, � and parameter measure

kl� (�) :

3. For every �nite collection of distinct indices i1; i2; :::; il 2 f1; 2; :::mg, fNi1 (�) ; Ni2 (�) ;

:::; Nil (�)g is a multivariate generalized Waring process with parameters a; �; k and para-

meter measure � (�) :

4.

(
Ni (�) ;

P
j 6=i
Nj (�)

)
is a bivariate generalized Waring process with parameters a, �

and parameter measure k� (�) ; (m� 1) k� (�) :

Proof For each bounded Borel set A 2 Bs; the joint distribution of fN1 (A) ; N2 (A) ; :::;

Nm (A)g is the MGWD(a; k� (A1) ; k� (A2) ; :::; k� (Am) ; �). From the structural properties

of the multivariate generalized Waring distribution (see Xekalaki (1986)), one has:

1. The distribution of fNi (A)= xig, for i a given value on f1; 2; :::mg is the general-

ized Waring distribution with parameters a, k� (A) ; �: By Theorem 5, this is a su¢ cient

condition for the process Ni (�) to be a generalized Waring process.

2. The distribution of

(
lP

j=1
Nij (A)= xij

)
; is the generalized Waring distribution with

parameters a, kl� (A) ; �: By Theorem 5 this is a su¢ cient condition for the process
lP

j=1
Nij (�)

to be a generalized Waring process.

3. For every fAi1 ; Ai2 ; :::; Ail 2 BSg ; let us consider fB1; B2; :::; Bm 2 BSg where Bi =

B for i =2 i1; i2; :::; il and Bi = Aij for i = ij : The joint distribution of fN1 (B1) ; N2 (B2) ; :::;

Nm (Bm)g is the MGWD(a; k� (B1) ; k� (B2) ; :::; k� (Bm) ; �): From the structural prop-

erties of the multivariate generalized Waring distribution (see Xekalaki (1986)), it follows

that the joint distribution of fNi1 (Ai1) ; Ni2 (Ai2) ; :::; Nil (Ail) g is the MGWD(a; k� (Ai1) ;

k� (Ai2) ; :::; k� (Ail) ; �) which proves part 3.
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4. For every A;B 2 BS let us consider fB1; B2; :::; Bm 2 BSg where Bi = A and

Bj = B for j 6= i: The joint distribution of fN1 (B1) ; N2 (B2) ; :::; Nm (Bm)g is the

MGWD (a; k1� (B1) ; k2� (B2) ; :::; km� (Bm) ; �) :

From the structural properties of the multivariate generalized Waring distribution (see

Xekalaki (1986)), it follows that the joint distribution of fNi (A) ;
P
j 6=i
Nj (B)g is the BGWD(a;

k� (A) ; (m� 1) k� (B) ; �) which proves part 4.

4.2.2 Projections of Generalized Waring Processes

Consider a product measurable space (S1 � S2; BS1 
 BS2 ; �1 � �2) and let N (�)

be a GWP on that space, with parameteres a; k; �. De�ne NS1 (�) and NS2 (�) to be the

projections of N (�) onto (S1;BS1 ; �1) and (S2;BS2 ; �2), respectively, de�ned by NS1 (A) =

N (A� S1) and NS2 (B) = N (S2 �B) : These projections will also be generalized Waring

processes:

Theorem 14 The projections NS1 (�) an(d NS2 (�) of a GW process N (�)with parameteres

a; k; �; ; onto the product measurable space (S1 � S2; BS1 
 BS2 ; �1 � �2) are also GW

processes with parameteres a; b; � respectively onto (S1;BS1 ; �1) and (S2;BS2 ; �2) :

Proof Let fAi 2 BS1 ; i = 1; 2; :::; lg be �nite family of disjoint bounded Borel sets. The

family fAi � S1 2 BS1 
 BS2 ; i = 1; 2; :::; lg is also a �nite family of disjoint bounded

sets. Hence, the joint distribution of fNS1 (Ai) = ni; i = 1; :::; lg is the MGWD(a; k� (A1) ;

k� (A2) ; :::; k� (Al) ; �) which proves that the NS1 (�) is a GWP with parameteres a; k; �:

The same argument yields the result for NS2 (�) :

4.2.3 The Poisson and the NB Processes as Limiting Cases of the Generalized
Waring Process

We �nally turn to demonstrate how negative binomial processes can be obtained as lim-

iting cases of the GWP. Doing so establishes that, even though negative binomial processes

cannot be orderly and stationary/ergodic simultaneously, they can be approximated by a

process with these properties.
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Theorem 15 Let N (�) be a generalized Waring process with parameters a > 0, � > 0; and

k 2 N, and with parameter measure � (�) : Letting k ! 1 and setting � = c � k for c > 0 a

constant, the generalized Waring process converges weakly to a Negative Binomial process

with parameters a and c:

Proof Denote Nk(�), k > 0 the generalized Waring process indexed by the parameter

k and N (�) the Negative Binomial process with parameters a and c: In order to prove

that Nk(�) !
k!1

N (�) weakly, it is su¢ cient to prove (see e.g. Daley & Vere-Jones (1988),

Kallenberg (2002)):

(i). P (Nk (A) = 0) !
k!1

P (N (A) = 0) for all bounded A of a dissecting ring T of S:

(ii) That the generalized Waring process is uniformly tight.

In order to prove (i) we consider P (Nk (A) = 0) =
�(k�(A))

(�+ �)(k�(A))
:

We calculate:
�(k�(A))

(�+ �)(k�(A))
=

�(a)

(�+ k� (A))(a)
=

ck(a)

(ck + k� (A))(a)

� ck (ck + 1) � ::: � (ck + a� 1)
(ck + k� (A)) (ck + k� (A) + 1) � ::: � (ck + k� (A) + a� 1)

=
kac

�
c+ 1

k

�
� ::: �

�
c+ a�1

k

�
ka (c+ � (A))

�
c+ � (A) + 1

k

�
� ::: �

�
c+ � (A) + a�1

k

�
�!
k�!1

ca

(c+ � (A))a
= P (N (A) = 0)

To establish uniform tightness as required in (ii), we use two results concerning regular

and tight measures in a complete separable metric space S: A Borel measure is tight if and

only if it is compact regular (see e.g Lema A2.2.IV Daley & Vere-Jones (1988)). In turn, a

�nite, �nitely additive, and nonnegative set function de�ned on the Borel sets of a complete

separable metric space S is compact regular if and only if it is countably additive (see e.g

Corollary A2.2.VII Daley & Vere-Jones (1988)). Therefore (ii) follows from the countable

additivity theorem (Theorem 3), proven in earlier.

In turn, a Poisson process can be approximated by a negative binomial process, so that

it can also be approximated by a GWP:

Theorem 16 Let N (�) be the limit proces N (�) of the previous Theorem, i.e. a Negative
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Binomial process with parameters a and c: If c!1 and a = � �c where � > 0 is a constant,

N (�) converges weakly to a Poisson process with parameter �.

Proof Write fNc(�)g ; c > 0, to highlight that the negative binomial process in ques-

tion is indexed by c. We need to show that there exists a Poisson process M (�) such

that: Nc(�) !
c!1

M (�) weakly. Following Daley & Vere-Jones (1988), Lemma 9.I.IV, weak

convergence of the process and convergence of �nite dimensional (�di) distributions are

equivalent. So, in order to prove that Nc(�) !
c!1

M (�) weakly, it is su¢ cient to prove that

the �di distributions of Nc(�) converge weakly to those of M (�) :

For every fA1 ; A2; :::; An 2 BSg we consider the probability generating function Gc (A1;

A2; :::; An; z1; :::; zn) of Nc(�) and obtain

Gn (A1; A2; :::; An; z1; :::; zn) =
1

c

�
c+

nP
i=1
(1� zi)� (Ai))

����c
But

1

c

�
c+

nP
i=1
(1� zi)� (Ai))

����c
!
c!1

exp

�
��

nP
i=1
(1� zi)� (Ai))

�
; which is the prob-

ability generating function G (A1; A2; :::; An; z1; :::; zn) of the Poisson process with

parameter �:
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CHAPTER 5

THE GENERALIZED WARING PROCESS IN R

The generalized Waring process on the Real Line is de�ned in this chapter, both as a

special case of the generalized Waring process in Rd and as a projection of the generalized

Waring process in R2: It is shown to be orderly (and a simple point process as well),

stationary, ergodic and nth-order stationary. Further, it is demonstrated that for each

�nite union of �nite intervals A 2 R; the distribution of N (A) beeing the GWD( a; k� (A) ;

� ) is a necessary and su¢ cient condition for N (�) to be a generalized Waring process on

R; since it is a simple point process.

The generalized Waring process on the postive half-line R+ is examined as well. It is

proved that the generalized Waring process on the postive half-line R+ has the Markovian

property. The moments, the three additive components of the variance, the individual

intensity as well as the transition probabilities and the Chapman-Kolmogorov Equations of

this stationary Markov generalized Waring process de�ned on R+ are derived. Furthermore,

it is demonstrated that the generalized Waring process on R+ is a regular point process,

since the deriving Janossy densities for it, are absolutely continuous with respect to Lebesgue

measure. The conditional probabilities and the associated survivor functions, conditional

intensity, and the likelihood are derived as well. Finally, it is proved that the Poisson and

the Pólya processes can arise as limiting cases of the generalized Waring process on R+

and by utilizing this result, the moments and transition probabilities are obtained for the

Poisson and the Pólya processes.

5.1 De�niton of the Generalized Waring Process in R

Let R be the real line and let � (�) be the Lebesgue measure on the Real Line. The

Borel algebra BR on the Real Line is the smallest � � algebra on R which contains all the

intervals.

50



The generalized Waring process on the Real Line can be de�ned as a special case of the

generalized Waring process in Rd for d = 1 or as a projection of the generalized Waring

process in R2 since the Borel algebra BR2 in R2 is equal to BR 
 BR (see Theorem 14). In

both of the cases, the generalized Waring process on R can be de�ned as in the following:

De�nition 3 The generalized Waring process on the Real Line is a process fN (A) ; A 2

BRg for which, the joint distribution of fN (Ai) = ni; i = 1; :::; sg of every �nite family

of disjoint bounded Borel sets fAi 2 BR; i = 1; :::; sg is MGWD (a; k� (A1) ; k� (A2) ; :::;

k� (As) ; � ); a > 0; � > 0; k > 0:

Thus, the generalized Waring process on the Real Line is orderly (and a simple point

process as well), stationary, ergodic and nth-order stationary.

Theorem 17 Let N (�) be a simple point process on R. For N (�) to be a generalized Waring

process a > 0, � > 0; k > 0 it is necessary and su¢ cient that for each �nite union of �nite

intervals A the distribution of N (A) is the GWD (a; k� (A) ; � ) .

Proof Necessity Let N (�) be a generalized Waring process and A �nite union of �nite

intervals. Clearly, A 2 BR;then from the Theorem 5 the distribution of N (A) is the GWD

(a; k� (A) ; � ).

Su¢ ciency For each n 2 Z and i 2 f1; 2; :::; ng; we describe Ini = (xni; yni] where xni

= n �2�i; yni = (n +1) �2�i as i�interval and let us denote Tn = f Ini : i = 1; :::; ng the set

of i�intervals for a given n: Then T = fTn; n 2 Zg = f f Ini : i = 1; :::; n g; n 2 Zg forms

a dissection system of R: The dissecting ring generated by �nitely many intersections and

unions of elements of this dissecting system is the family of all �nite union of �nite intervals

in R: Hence from the Theorem 5 for N (�) to be a generalized Waring process is su¢ cient

that N (A) follows a generalized Waring distribution with parameters a > 0, � > 0; k > 0

for each A from this family:

Let us consider now the generalized Waring process on the postive half-line R+: The

Borel algebra BR+ is the smallest � � algebra which contains all the intervals (x; y] , x; y 2

51



R+: In this case, the process can be taken as modelling the occurrences of some phenomenon

at the time epoches ft; t 2 R+g : In this case we denote for any t > 0; N (0; t) = N (t) : and

then p(N (0) = 0) = 1; almost surely.

Theorem 18 The generalized Waring process on the postive half-line R+ has the Markov-

ian property.

Proof Let us consider the disjoint intervals f (t; t+ h); (s; t); (0; s); 0 � s < tg: The

joint distribution of f N(t; t+ h); N (s; t) ; N (0; s) g is the MGWD( a; kh; k (h� s) ; ks;

� ) while for the intervals f(t; t+ h); (0; t); the joint distribution of f N (t; t+ h) ; N (0; t)

g is the MGWD (a; kh; kt; �).

We refer now to the third structural property of the multivariate generalized Waring

distribution proved by Xekalaki (1986) (p.1054) and we �nd that (N (t; t+ h) j N (s; t) ;

N (s)) ~ UGWD (a+ n (t) ; kh; �+ kt) and (N (t; t+ h) j N (t) ~ UGWD (a+ n (t) ; kh;

�+ kt); where n(t) is the value of N(t); which proves that the generalized Waring process

has the Markovian property, i.e. the conditional distribution of the future N (t; t+h) given

the present state N (t) and the past N (s), 0 � s � t dependsonly on the present and is

independent of the past.

From the the de�niton of the generalized Waring process and the above theorem we can

conclude that a generalized Waring process with parameters (a; k; �), a > 0; k > 0; � > 0

on the postive half-line R+ is a Markov point process that starts at zero and has stationary

increments N (t+ h) �N (t) following GW (a; kh; �) distribution for each h > 0; t � 0.

These three conditions are underlined in the de�niton of the generalized Waring process

on R+ given by Zogra� and Xekalaki (2001) (see also, Xekalaki and Zogra� (2008)) as in

the following:

De�nition 4 The counting process fN(t); t � 0g is said to be a generalized Waring process

with parameters (a; k; �), a > 0; k > 0; � > 0 if (I) p fN (0) = 0g = 1, (II) N (t) is a Markov

process, (III) N (t+ h) �N (t) is GW (a; kh; �)-distributed for each h > 0; t � 0.
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5.2 The Moments, Intensity and Individual Intensity

Let N(t) de�ne a generalized Waring process with parameters (a; k; �). Then, for any

t,

E [N (t)] =
akt

�� 1 ;

V ar [N (t)] =
akt (�+ kt� 1) (�+ a� 1)

(�� 1)2 (�� 2)
:

Following Irwin (1975), one may show that the variance can be divided into three addi-

tive components, thus

V ar [N (t)] = �2�(t) + (kt)
2 �2� + �

2
R;

where

�2�(t) = akt (a+ 1) (�� 1)
�1 (�� 2)�1

is the component due to liability

�2� = a (a+ �� 1) (�� 1)
�2 (�� 2)�1

is the component due to proneness and

�2R = akt (�� 1)
�1

is the component due to randomness.

The generalized Waring process is a stationary process. For a stationary process N ,

E [N (t)] = � � t, where � is termed the intensity of N (see e.g. Grandell (1997), p.53 ). It

is clear that the intensity of the generalized Waring process is � =
ak

�� 1 . For this process
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(like for all stationary processes), there always exists, a random variable �N with E
�
�N
�
= �,

called the individual intensity, such that
N (t)

t

p�!
t!1

�N (see, e.g. Grandell (1997), p.53).

The intensity � is �nite. Hence, it follows that the individual intensity �N is �nite with

probability 1.

In order to �nd it we consider that if N (�) be a generalized Waring process then for each

t 2 R+, the conditional distribution of N (t) j� is a NB
�
kt ;

1

1 + �

�
distribution with �

following a Beta (�; �)distribution of the second kind (see e.g. Irwin (1975), Xekalaki (1981)

, Xekalaki (1983b)). for every t; while N (t) can be obtained in this case as a mixture of

NB

�
kt ;

1

1 + �

�
with �: In order to remark this fact we denote N (t) = ~N

�
kt;

1

1 + �

�
for each t: Then the following can be proved:

Theorem 19 Let N (�) be a generalized Waring process on positive half-line R+. Then,
1

t
N (t)

p�!
t!1

�k .

Proof

lim
t!1

1

t
N (t) = �k lim

t!1

N (t)

�kt
= �k lim

t!1

~N

�
kt;

1

1 + �

�
�kt

.

Taking into account that E
�
~N

�
kt;

1

1 + �

��
= �kt and var

8<:
~N
�
kt; 1

1+�

�
�kt

9=; =
1 + �

�kt
�!
t!1

0, and using Chebyshev�s inequality, we have that
~N
�
kt; 1

1+�

�
�kt

p�!
t!1

1, which implies that
1

t
N (t)

p�!
t!1

vk.

Corollary 2 The random variable �N = �k; where � is random variable following a Beta (�; �)

distribution of the second kind, is the individual intensity of the generalized Waring process

on R+ with parameters (a; k; �).

Proof Since � is betaII (a; �)-distributed, E (�) =
a

�� 1 i.e. E
�
�N
�
=

ak

�� 1 . Hence,

the random variable �N = �k is the individual intensity of the generalized Waring process.
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5.3 Transition Probabilities & the Chapman - Kolmogorov
Equations of the Generalized Waring Process

Since the generalized Waring process on R+ is a Markov process, the transition prob-

abilities can be derived:

pm;n (t; t+ h) = P fN (t+ h) = njN (t) = mg

= P fN (t+ h)�N (t) = n�mjN (t) = mg

=
(�+ kt)(kh)

(�+ kt+ a+m)(kh)

(a+m)(n) (kh)(n)

(�+ kt+ a+m+ kh)(n)

1

n!

The above probability pm;n (t; t+ h), represents the probability that a process presently

in state m will be in state n a later time h. This probability in this case depends on the

present time so the de�ned generalized Waring process on the Real line is a non-homogenous

Markov process.

It is clear that

p0;n (0; t) = P (N (t) = njN (0) = 0) = P (N (t) = n) = pn (t) :

The transition probabilities satisfy the Chapman-Kolmogorov equations, i.e.

pm;n (s; t) =

nX
i=m

pm;i (s; �) pi;n (� ; t) ; for s � � � t; m � n: (28)

Then, for the forward Kolmogorov di¤erential equations, starting from

pm; n (s; t+ h) =
nX
i=m

pm, i (s; �) pi; n (� ; t+ h)

for s � � � t; m � n; h � 0; we obtain

@

@T
pm; n (s; t) =

nX
i=m

pm; i (s; t) lim
h!0

pi; n (t; t+ h)

h
� lim
h!0

�
1� pnn (t; t+ h)

h

�
pm; n (s; t) ;

lim
h!0

pi; n (t; t+ h)

h
=

8><>:
qn�1; n (t) =

k(a+n�1)
(a+�+kt+n�1) , n� i = 1

qi; n (t)
�(a+n)
�(a+i)

k
(n�i)(n�i�1)

(�+kt)(a+i)
(�+kt)(a+n)

, n� i > 1

and

lim
h!0

�
1� pn; n (t; t+ h)

h

�
= �n (t) = k �

a+n�1X
i=0

1

�+ kt+ i
:
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Hence, the forward Chapman-Kolmogorov equations for the generalized Waring process

are:
@pn; n (s; t)

@t
= ��n (t) pn; n (s; t)

@pm; n (s; t)

@t
= ��n (t) pm; n (s; t) +

n�1X
i=m

qi; n (t) pm; i (s; t) ; m < n

The backward equations follow from the Chapman-Kolmogorov equations with � = s+h.

Then, the backward equations for the generalized Waring process are:

@pm; m (s; t)

@t
= �m (t) pm; m (s; t)

@pm; n (s; t)

@t
= �m (t) pm; n (s; t)�

nX
i=m+1

qm; i (t) pi; n (s; t) ; m < n;

where

qm; m+1 (s) =
k (a+m)

(a+ �+ ks+m)
;

qm;i (s) =
� (a+ i)

� (a+m)

k

(i�m) (i�m� 1)
(�+ ks)(a+m)

(�+ ks)(a+i)
i > m

and

vm (s) = k �
a+m�1X
i=0

1

�+ ks+ i
:

5.4 Conditional intensity and Likelihood of the Generalized
Waring Process on the Real Line

In this section, we derive the conditional intensitiy function and the Likelihood of

the generalized Waring process, needed for simulation as well as statistical analysis of the

di¤erent dataset tha can be modelled by a generalized Waring process on R+: In subsection

2.4.1, a prove that the generalized Waring process is conditionally bound (see Lemma 1 )

and a simulation algorithm that can be used in this case, are presented. We use these results

in the sequel, to simulate data from the generalized Waring process. These derivations are

based on the regularity property of the generalized Waring process. If this is the case, the

conditional intensity function is de�ned picewise by the hazard functions, i.e. from the
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conditional densities and the survival functions, while the Likelihood is nothing other than

a Janossy density.

As is known in literature (e.g. Daley and Vere-Jones (1988), Proposition 13.I.IV. ),

we can prove the regularity property of a point process on R+, if we prove that there

exists a uniquely determined family of conditional probabilities pn ( tj t1; t2; :::; tn�1) and

associated survivor functions Sn (t jt1; t2; :::; tn�1 ) = 1 �
R t
tn�1

pn (uj t1; t2; :::; tn�1) du;

(t > tn�1) de�ned on 0 < t1 < t2 < ::: < tn�1 < t; for it.

We start from the survivor functions. Denote � i = ti�ti�1; i � 1; and for the generalized

Waring process with parameters (a; k; �) on R+ we obtain:

S1 (t) = Pr (�1 > t) = p (N (t) = 0) =
�(a)

(�+ kt)(a)

and

Sn (t jt1; t2; :::; tn�1 ) = Pr(�n > t jt1; t2; :::; tn�1 )

= p(N (t+ tn�1) = 1 jN
�
ttn�1

�
= 1)

=
(�+ ktn�1)(a+n�1)

(�+ k (t+ tn�1))(a+n�1)
for each n � 2

and for the conditional probabilities

p1 (t) =
d

dt
S1 (t) =

k (�)(a)

(�+ kt)(a)
[	 (�+ kt+ a)�	(�)] ;

and

pn (t jt1; t2; :::; tn�1 ) =
d

dt
Sn(t jt1; t2; :::; tn�1 )

=
(�+ ktn�1)(a+n�1)

(�+ k (t+ tn�1))(a+n�1)

[	 (�+ k (t+ tn�1) + a+ n� 1)�	(�+ k (t+ tn�1))]

Deriving then, the hazard functions we obtain

h1 (t) =
p1 (t)

S1 (t)
= k[	 (�+ kt+ a)� 	(�+ kt)]

and

hn (t jt1; t2; :::; tn�1 ) =
pn (t jt1; t2; :::; tn�1 )
Sn (u jt1; t2; :::; tn�1 )

= k[	(�+ k (t+ tn�1) + a+ n� 1)�	(�+ k (t+ tn�1))]:
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Hence the conditional intensity function is

�� (t) =

8>>>>>>><>>>>>>>:

k [	 (�+ kt+ a)�	(�+ kt)]

(0 < t � t1)

k [	 (�+ k (t+ tn�1) + a+ n� 1)�	(�+ k (t+ tn�1))]

(tn�1 < t � tn; n � 2)

(29)

The same property suggests a method for evaluating the process likelihood by calculating

the local Janossy densities jn (t1; t2; :::; tn jT ) for all �nite intervals [0; T ] with T > 0,

which in the case of a regular point process exist and are absolutely continuous with respect

to Lebesgue measure. We use it to obtain

J0 (T ) = S1 (T ) =
�(a)

(�+ kT )(a)

and

jn (t1; t2; :::; tn jT ) =
(�+ ktn)(a+n)

(�+ k (T + tn))(a+n)
pn (tl jt1; t2; :::; tn�1 ) (30)

=
(�+ ktn)(a+n)

(�+ k (T + tn))(a+n)

(�+ ktn�1)(a+n�1)
(�+ k (tn + tn�1))(a+n�1)

[	 (�+ k (t+ tn�1) + a+ n� 1)�	(�+ k (t+ tn�1))]

n � 2:

The likelihood L of a realization t1; t2; :::; tn of a regular point process on R+ over the

interval [0; T ] for any0 < T <1 is the local Janossy density jn (t1; t2; :::; tn jT ) : Hence,

the likelihood L of the generalized Waring process with parameters (a; k; �) on R+ over

the interval [0; T ] is expressed by relationship (30).

5.5 Limiting Cases of the Generalized Waring Process on
the Real Line

In this section we provide two theorems which follows respectively by the Theorems

15 and 16 applied on the Real Line where the Lebesgue measure is the parameter measure
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which provide that the Poisson and the Pólya processes are limiting cases of the generalized

Waring process (in the sense of weak convergence).

Theorem 20 If � = c�k, where c > 0 is a constant, the generalized Waring process tends to

a Pólya process with parameters a and 1=c, i.e. fNk(t)g
d�!

k!1
fNc(t)g, where fNk(t); t � 0g

is the generalized Waring process indexed by the parameterk > 0 and fNc(t); t � 0g is the

Polya process indexed by the parameter c > 0 and with P fNc(t) = ng =
�
a+ n� 1

n

�
�

c

t+ c

�� � t

t+ c

�n
; n = 0; 1; :::

Theorem 21 Consider now the Pólya process fNc(t); t � 0g de�ned as in the previous

theorem. Then, if a = � � c, where � > 0 is a constant, fNc(t)g
d�!

c!1
fN(t)g, where

fN(t); t � 0g is a homogeneous Poisson process with P fN (t) = ng = (�t)n exp(��t)
n! , n =

0; 1; :::

The results of these theorems tell us that the the Pólya and the Poisson processes

are limiting forms of the generalized Waring process. Thus, utilizing the results hold-

ing for the generalized Waring process, one may obtain the following results for a Pólya

processfX(t); t � 0g with parameters (a; 1=c)and for a Poisson process fY (t); t � 0g with

parameter � de�ned as in Theorems 20 and 21, respectively.:

� For any t � 0, E [X (t)] = a
c t, V ar [X (t)] =

a
c t+

a
c2
t2 and E [Y (t)] = V ar [Y (t)] = t�

� The Pólya and the Poisson processes are both stationary Markov processes. Their

respective transition probabilities are:

P (X (t+ h) j X (t) = m) =

8>>>><>>>>:

�
c+t
c+t+h

�(a+n)
n = m

(a+m) h(c+t)(a+m)

(c+t+h)(a+n1)
n = m+ 1

�(a+n)
�(a+m)(n�m)!

h(n�m)(c+t)(a+m)

(c+t+h)(a+n)
n > m+ 1

and

P (Y (t+ h) j Y (t) = m) =

8>>>><>>>>:
exp (��h) n = m

�h exp (��h) n = m+ 1

(�h)(n�m)

(n�m)! exp (��h) n > m+ 1
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� The Pólya process is a stationary non-homogenous birth process with transition inten-

sities kn (t) = a+n
c+t and the Poisson process is a stationary homogenous birth process

with transition intensities kn (t) = �.
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CHAPTER 6

CONCLUSION

6.1 Discussion

In this thesis we developed a theory of the generazed Waring process starting with

de�ning it on the real line as a stationary, non-homogeneous Markov process. The mo-

ments, the three additive components of the variance, the individual intensity as well as the

transition probabilities and the Chapman-Kolmogorov Equations of this stationary Markov

generalized Waring process de�ned on R+ have been derived. It has also been demonstrated

that the generalized Waring process on R+ is a regular point process. In addition, the gen-

eralized Waring process has been de�ned and studied in an accident theory context. It has

been generated starting with a process of negative binomial form, but di¤erent from a Pólya

process, mixing it with a beta distribution of the second type (beta II). Further, an alter-

native genesis scheme referring to Cresswell and Froggatt�s (1963) spells model has been

proposed in the framework considered by Xekalaki (1983b). In addition, some inferential

aspects connected with the mixed negative binomial derivation of the generalized Waring

process have been discussed. An application in a web access modeling context has been

provided, too.

We then turned our attention to the case of spatial overdispersion, where point processes

models are required with �nite dimensional distributions that are overdispersed relative to

the Poisson distribution.

Fitting such models usually heavily relies on the properties of stationarity, ergodicity,

and orderliness and though processes based on negative binomial �nite dimensional distri-

butions have been widely considered, they typically fail to simultaneously satisfy the three

required properties for �tting. Indeed, as has been conjectured by Diggle & Milne (1983),

no negative binomial model can satisfy all three properties. In light of this, in the thesis,

we changed perspective, and constructed a new process based on a di¤erent overdisperse
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count model, the Generalized Waring Distribution. While comparably tractable and �exible

to negative binomial processes, the Generalized Waring process was shown to possess all

required properties, and additionally span the negative binomial and Poisson processes as

limiting cases. In this sense, the GW process provides an approximate resolution to Diggle

& Milne�s conundrum. In particular, we have been able to de�ne a new spatial point process

for phenomena characterised by over-dispersion, in great generality. It has been shown ,

speci�cally, that the notion of Generalized Waring (Point) Process generalizes naturally to

a point process de�ned over Rd and even more a metric space.

It was also shown that such a process exists, and is able to simultaneously satisfy the

properties that negative binomial processes fail to satisfy (orderliness, stationarity, and

ergodicity).

Moreover, we have demonstrated that the new process features appealing closure prop-

erties, in the sense that projection, marginalization, and superposition all yield processes

of the same GWD type, with easily determinable parameters. These properties o¤er ad-

vantages relative to existing competitors of the negative binomial type, both from the

theoretical and the practical viewpoints, especially in terms of �tting the process on the

basis of a single realization. In addition, they allow looking at overdispersion from a new

perspective compared to that of existing ones, which are not of negative binomial type and

have widely been used to model spatial clustering patterns (e.g. Neyman - Scott Processes)

as they o¤er a meaningful approach in terms of parameter interpretability to understanding

the mechanism underpinning the discrepancy between nominal and observed variance.

In addition, we have demonstrated how negative binomial and Poisson processes can be

obtained as limiting cases of the generalized Waring process, thus giving a positive resolution

to the quandary posed in the conclusion of the paper by Diggle and Milne: "Any view we

adopt seems to fall in a situation from which progress looks di¢ cult, and we conjecture

that no stationary, ergodic, orderly negative binomial processes exist." So, though negative

binomial processes may fail to simultaneously verify orderliness, stationarity and ergodicity,

they can be well approximated by �exible and tractable processes of the GWP class that

do verify these properties.
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Finally, by means of a key conditional property revealing the structure of the generalized

Waring process, the process was demonstrated straightforward to simulate. Interestingly,

as revealed by the algorithm, using the generalized Waring process one is enabled not only

to obtain a description of the counts, but also the exact locations where spatial clustering

occurs, in contrast to what is permitted by the use of the negative binomial process. Some

simulation results have been displayed as well. A further comparison of the generalized War-

ing process to the negative binomial and Poisson process on simulated data could possibly

provide a deeper insight into how spatial overdispersion could be best approached.

6.2 Scope for Further Research

Potential further advantages of the generalized Waring Process relative to negative

binomial processes may arise in the context of compounding (or clustering) and mixing

(or heterogeneity). In particular, Cane (1974,1977) has demonstrated that one cannot

distinguish between compounding and heterogeneity under a negative binomial distribution:

given a total of n events, the distribution of event times is the same, whether the model

arose out of mixing or compounding. In contrast, Xekalaki (1983b) demonstrated that

discriminating between clustering and mixing may well be possible in the context of the

Generalized Waring Distribution, by showing that the conditional distribution of the times

of events given their total number is di¤erent under compounding and under mixing (see

also Xekalaki (2006, 2014, 2015). This property can then be used in order to distinguish

clustering, which may otherwise be confounded with compounding.

Much of spatial statistical research to date, addresses the impact of spatial autocorrela-

tion (SA) on parameter estimates and autoregressive negative binomial models have been

successfully employed to handle these situations (see, for example, Benjamin, G. J. et al.

(2008)) and, as is known, these models can accommodate only negative autocorrelation.

Developing an equivalent auto Generalized Waring model to handle spatial autocorrelation

and a comparison with the modeling strategies based on the use of autoregressive negative

binomial models would potentially contribute to a better understanding of the mechanism

causing spatial overdispersion and could be the subject of future work.
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