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Correlation and Causation

@ Does chocolate consumption increase coronary heart disease risk?

@ Intuitively, chocolate — obesity.

@ But observational studies: No, it protects against CHD!
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Correlation and Causation

@ Observational studies can only detect correlation.
@ And correlation does not imply causation!

@ In particular, correlation can admit one of three explanations:

Other Factors

Chocolate —> CHD Chocolate<—— CHD
Chocolate  CHD

Causal Effect Confounding Reverse Causation

@ To distinguish between these, use causal inference.
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Causal Inf

Three main approaches for causal inference:

@ Clinical Trials

e "Gold standard” for causal inference when feasible.
o But often infeasible or unethical.
e E.g. randomization for chocolate consumption??

@ Adjustments in Observational Studies

o If all confounders are observed, add them to the model.
o But we cannot be sure that all confounders are observed.

© Instrumental Variables Analysis.
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Instrumental Variable Analysis

Confounder

Instrument Exposure Outcome

X

Idea: find a variable G that satisfies the assumptions:

e G~ X
e GU U|X.
e G Y|X,U.

G is called an instrumental variable and can be used to assess causality.

19-2-2021 7/45
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IV Analysis - Estimation

Most common approach: Two-Stage Least Squares (2SLS).

o 1st stage: model X ~ G. E.g. for linear regression
Xi = ax + G Bx + e

and compute fitted values X:.
@ 2nd stage: model Y ~ X

Y,':Oéy—i-)%,'9+62,'

o Intuition: X is the "component of X that is determined by G”, so
Y ~ X is unconfounded.

o Generalization: Two-Stage Residual Inclusion (2SRI).

Alternative approaches exist, e.g. express as a structural equation model
and use MLE.
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Mendelian Randomization

Mendelian randomization is the use of genetic variants as instrumental
variables to assess the existence of a causal relationship between exposure
X and outcome Y.

e Popularized by Davey Smith & Ebrahim (2003).

@ Genetic data are not affected by environmental confounders so are
ideal as instruments!

@ Random allocation of DNA at conception works in a similar way as
randomization in clinical trials.
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Genome-Wide Association Studies

GWAS: most common type of genetic studies.
@ Collect DNA samples from 1000s of individuals.
o lIdentify points in their DNA chain where differences exist (SNPs).
@ Gjj: how many copies of a base pair sequence individual i has at SNP
J(0/1/2).
e For each SNP G;, fit X ~ G; and assess which SNPs affect X.

MR typically uses data from existing GWAS. Complications:

o GWAS studies typically only report summary statistics Bj and
standard errors G; per SNP.

@ So MR has to rely only on these summary statistics.
@ This is very restrictive!!

@ Moreover, X and Y may not even be measured in the same GWAS.
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MR with Summary Data - Single SNP

@ Summary data can be estimated reliably because G — X and G — Y
are unconfounded.

@ Want to conduct MR analysis with summary data: ij,a'xj,ﬂ,\yj,a'yj.
@ With a single SNP G, the 2SLS estimate is

o) ~2 A2 A2
G=DY van(d) = 7 4+ DX
BX ﬂx /BX

which can be computed with summary statistics.
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MR with Summary Data - Multiple SNPs

e With P independent SNPs, G = (Gy, ..., Gp), use the Inverse
Variance Weighted (IVW) estimator:

é\ Z BYJ/BXJO-YJ
/VW_—A_
> Bxiov;

o With correlated SNPs:

Ovw = (BEQ718x) 1857 By, Var(Bww) = (BrQ 1 5x) ™!

s Var(OA,VW) == 5 ~_

where ij = 3yj&y;(pjk.
@ Intuition:

o Meta-analysis of SNP-specific estimates. . A
o As a Least Squares fit from the (weighted) regression fSy; ~ [x;.
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Violations of IV Assumptions

@ U — G should not happen.
o It can happen with population stratification but GWAS studies typically
account for this.
@ G — X can be controlled by selecting suitable SNPs from a GWAS.
e But if G — X is weak, we have weak instrument bias.
@ G— Uor G— Y isa concern.

o "Pleiotropy” or "exclusion restriction” .
e Formally untestable.
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Pleiotropy-Robust MR

Active area of research in recent years. Approaches for selecting valid
SNPs and obtaining unbiased causal effect estimates include:

@ Median-based estimation (MR-median).

Kernel density estimation (MR-MBE).

Outlier detection and deletion (MR-Presso).

L1-penalization (sisVIVE, MR-Lasso).

Robust regression (MR-robust, MR-Raps).

Bayesian variable selection (MR-Beside, JAM-MR, Berzuini et al).
Mixture models (ConMix, MR-Mix).

G-estimation (MR-Genius).

Etc
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Ongoing MR Research

Active areas of research:
e Multivariable MR: jointly model multiple (correlated) X;.
o Clustering in MR (MR-clust): identify SNPs with similar biological
functions.
@ Cis-MR: use SNPs from a single gene region, assess the suitability of
the gene as a drug target, inform clinical trials.

Genetic databases have started making individual-level data available: can
use IV methods for individual-level data?

@ Nonlinear MR.
@ Network analysis.

@ Machine learning?

19-2-2021 15 /45
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Back to Our Example

Does chocolate intake increase CHD risk?

Analysis using the MR-Base website:

method nsnp b

MR Egger 15 -0.8507
Weighted median 15 0.3138
Inverse variance weighted 15 0.2195
Weighted mode 15 0.3306

se

0.9024

0.2269

0.1702

0.4005

pval
0.363

0.1666

0.1971

0.4225

Effect is in the risk-increasing direction, but not statistically significant!
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© Seclection Bias in Mendelian Randomization
@ Structure of Bias
@ Magnitude of Bias - Simulations
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Selection Bias in MR

o Like most epidemiological studies, MR is susceptible to selection bias.
@ Examples:

@ Sample not representative of the study population.
@ Assessing the causal effect of exposures on disease progression.
© Survival bias in elderly populations.

@ Aim: quantify selection bias in Mendelian randomization.
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Collider Bias

@ Selection bias in MR arises as a result of collider bias.

@ Two random variables that are independent of each other will become
dependent when conditioning on a common effect (the collider).

o A, B marginally independent.

@ But A, B not independent conditional on C.
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Selection Bias In MR

o Let S € {0,1} denote selection into the study.
@ If X > SorY — S, then S is a collider (common effect) of G, U.

@ Even if G 1L U, we will have G L U | S, which violates one of the IV
assumptions.
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Simulation Model

@ We conducted a simulation study to assess the impact of selection
bias in MR.

@ Our initial simulation setting was:

Gi, Ui ~ N(0,1)

Xi=a¢ G+ ay U,'—I—\/l—OézG—Oé%JEXi
Yi=0X;+ Py Ui +1/1—- 02— 5 ey

Si ~ Bernoulli(m;) , logit(m;) = v0 + vxXi + yoUi + v Yi
exi, €vi ~ N(0,1)
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Simulation Model (Graph)

In the form of a causal diagram:

ag = v/0.02 (2% genetic variation in X).
ay = Bu = V05.

Bx =0 (no X — Y causal effect).

Initially, vy = vy = 0.

We varied the selection effect parameter vx.
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Simulation Results - Baseline Scenario

Selection Bias Type | Error
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Bias is summetric in vx and fairly weak for small and moderate values of
the selection effect.
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Further Simulations

We then varied in turn:

The proportion a¢ of genetic variation in X.
The confounder-exposure effect .

The confounder-outcome effect Sy.

The causal effect 6.

The structure of the causal diagram.
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Simulation Results - Instrument Strength

Instrument strength ac has no impact on causal effect estimates. It does,
however, affect Type | error rates: a stronger instrument yields smaller
standard errors.
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Simulation Results - Confounder-Exposure Association

The strength ay of the U — X association does impact the magnitude of
selection bias, with more confounding associated with larger biases.
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Simulation Results - Confounder-Outcome Association

The same applies to the U — Y association parameter 8. A strong
confounder effect is associated with larger selection bias.
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Simulation Results - Causal Effect

The magnitude of the true causal effect Sx does not affect selection bias
(at least not when X — S).
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Different Causal Diagrams |

Selection Bias Type | Error
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When the confounder also has a direct effect on selection, the bias is no
longer symmetric in x. Its direction depends on the relative strengths of
the U — S and U — X — S effects.
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t Causal Diagrams Il

Selection Bias Type | Error
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When selection depends on the outcome the magnitude of the causal
effect does have an impact on selection bias. In particular, if the true
X — Y causal effect is null, there is no bias.

Also, the bias does not affect case-control studies when cases and controls
are sampled at random from the respective populations.
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Inverse Probability Weighting

If individual-level data are available, Inverse Probability Weighting (IPW)
can be used to remove selection bias.

e Model P(S = 1|G, X, Y), possibly using data from a separate sample.
e Compute m; = P(S; = 1|G;, Xj, Y;) for individuals in the study.
o Weight individual i by 7% when computing causal effect estimates.

Can adjust for selection bias, provided that the selection model is correctly
specified.
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Simulation Results - IPW

With a correctly specified model, IPW eliminates bias as expected. Type |
error rates are improved, though not nominal.
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Simulation Results - IPW

When the IPW model is misspecified (here: have a X — U effect that is
not accounted for) IPW can behave worse than unadjusted estimates for
small selection effects.

Selection Bias Type | Error
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© Adjustments for Selection Bias
@ Instruments for Selection
@ MR Inference with Instruments for Selection
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Selection Bias and Missing Data

@ Selection bias can be viewed as a missing data problem.
@ E.g. consider an observational study of Y ~ X.
@ We fully observe X; but have missing data for Y;.

e IPW or imputation requires that P(S = 1) depends only on observed
data (data missing at random - MAR).
o Butife.g.
P(Si =1) = f(Xi, i)

we cannot use IPW, since we have missing data for Y (data missing
not at random - MNAR).

@ IV analysis can be used to adjust for selection bias with MNAR data
(Tchetgen Tchetgen & Wirth, 2017).
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Instrument for Selection

Idea: use an instrumental variable Z for the selection process S.

X

’

H

The instrument Z must be fully observed and must satisfy the following
conditions:

Q IV relevance: Z — S| X.
@ Exclusion restriction: Z 1L Y | X.

© Selection bias is homogeneous on the scale of the parameter of
interest.

Plus additional modelling assumptions.
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Homogeneity Assumption - Linear Regression

o Often, the estimand of interest is the mean effect E(Y|X) = u(X).
E.g. in linear regression

YIX = X"84¢ , e~ N(0,0?)
@ In this context, the quantity
E(Y|S=1,X,Z)-E(Y|S=0,X,2)

represents selection bias.

@ Homogeneity assumption (on an additive scale) implies that
E(Y|S =1,X,Z)—E(Y|S =0,X,Z) = 6(X)

(does not depend on Z).

@ Instrument affects missing status but not the magnitude of bias.
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Homogeneity Assumption - Linear Regression

@ Some algebra then yields:
E(YIX.Z,S=1) = u(X) + 6(X) [1— (X, 2)]

where w(X, Z) = P(S = 1| X, Z) is the propensity score
@ 1(X) cannot be estimated directly due to missing data, but
E(Y|X,Z,5 =1) can.
@ Under modelling assumptions for §, 7, can use MLE to estimate p(X).
o Eg if u(X)=XTpB,0(X)=XTn, logitm(X,Z) = (X Z)Ta, the
likelihood to be maximized is
(0) = > (Silog¢ (Vi — E(YilX;, Z;, S = 1);0,0%)

1

+S; log 71'(X,', Z; a) + (1 — 5,') |Og(1 — 7r(X,', Z;; a)))

which only depends on observed data.
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Homogeneity Assumption - Logistic Regression

o For logistic regression, the quantity of interest is the Odds Ratio
w(X) = logitP(Y = 1]X)

@ Homogeneity assumption in the Odds Ratio scale:

P(Y=1S=1,X,2) / P(Y=1S=0,X,2)\ _
| <IP(Y:O|S:1,X,Z) / P(Y:O|5:0,X,Z)>_“(X)

does not depend on Z.
@ The relationship between the full-data and observed-data regression is

logitP(Y = 1|X,Z,S=1) = —log (A(X, Z)e*®) 41— \(X, Z))
+u(X) + w(X)

where \(X,Z2) =P(S =1|X,Z,Y =0).
@ Once again, this can be fitted by MLE.
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Homogeneity Assumption - Poisson Regression

@ For Poisson regression, the estimand is
i(X) = log E(Y|X)
@ The homogeneity assumption states that

E(Y|S=1,X,Z)
E(Y|S=0,X,Z)

v(X)
does not depend on Z.
@ And the observed-data regression curve satisfies

bgE(Y|X,Z,5=1) = —log(v(X)m(X,Z)+1—n(X,Z))
+1(X) + log v(X)

which can be fitted by MLE.
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Extension to Mendelian Randomization

@ Same idea can be used in MR (with individual-level data).
@ Use one instrument (G) for inference and another (Z) for selection.

@ Z can be either genetic or non-genetic.
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Extension to Mendelian Randomization

MR with a single instrument for inference:

@ The causal effect is estimated using the ratio estimate

0 =

Q>‘Q>
X<

where BX is obtained from a X ~ G regression and ﬁAy fromaY ~G
regression.

@ Can implement the "IV for selection” method for each regression, get
selection-adjusted estimates (x, Oy.

@ The method’s assumptions extend directly.

@ Since X, Y are modelled separately, we can have missing values for
either X or Y (or both).
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Extension to Mendelian Randomization

MR with multiple Instruments for inference:

@ Can repeat the "single instrument” procedure for each SNP, get
selection-adjusted summary statistics, then use summary-statistics
methods such as IVW.

@ This would also allow the use of summary-level pleiotropy-robust
methods.

@ But can be slow for many SNPs, and summary-level methods require
a two-sample framework.

@ Combine with Two-Stage Least Squares: can implement the "IV for
selection” as part of either the 1st-stage or 2nd-stage regression.

o Causal effect estimation is fine.
@ But not clear how to adjust standard errors for 1st-stage uncertainty.

@ Bootstrap?
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Observational studies:
@ Assess the method's robustness to various assumptions.

@ When will the homogeneity assumption hold in practice? Can it be
replaced?

Mendelian randomization:

@ Simulations ongoing. Results suggest that the method can adjust for

selection bias but yields causal effect estimates with considerably
wider Cls.

@ Use of structural equation models to implement the method in the
2SLS framework.

Applications:

@ Selection bias in Covid-19 research.
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