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Introduction



Statistical epidemic modelling

Insights into dynamics of infectious diseases

> Prevention.
> Control spread of the disease.

Epidemiological data present several challenges
> Missing data (typically high dimensional).
> Diagnostic tests imperfect.

Statistical inference for epidemic models is hard

> Intractable likelihood - need to know missing times.
> Usual solution: large scale data augmentation MCMC.

What are the observed data?



Individual level data

e Household data: Individuals form groups (e.g. households).
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Individual level data

e Household data: Individuals form groups (e.g. households).

e Longitudinal observations.
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Challenges!

e GOAL: Draw inference for the parameters given the model.

Inference for disease outbreak data is hard

> Missing data X typically very high dimensional.

Intractable likelihood:

m(Y6)=> =(Y|X,0).

X

Solution:

> |nclude the hidden infection status of individuals as a model
parameter.
> Use MCMC data augmentation.



raphical representation

Diagram of the Markov discrete time epidemic model. Circles are hidden
states and rectangles are observed data. Arrows represent dependencies.




Bayesian inference for epidemic
models



Bayesian data augmentation

( MCMC Scheme \

Initialise: Draw 8 ~ () and generate X® ~ 7 (X | 9(0)>;

forj=1,2 ..., Jdo

Update 8Y) according to = (0 Y, XU_l));
Update XY according to = (X | Y,HU));

end




Bayesian data augmentation

( MCMC Scheme \

Update XY according to = (X Y, 0(1));




Existing methods

e Block Update Method?:

> Choose one block of states for each individual and propose one of 3
possible changes: Add or Remove a block of infection/ clearance or

Move an endpoint of such a block.
e Single-Site Method®:

> Update each single node from its full conditional distribution.

e Forward Filtering Backward Sampling (FFBS)<:

> Update the whole hidden process from its full conditional.
> Computationally intensive.

?S. E. F. Spencer et al. *“*Super’ or just ‘above average'? Supershedders and the
transmission of Escherichia coli O157:H7 among feedlot cattle”. In: Journal of The
Royal Society Interface 12 (2015).
bW. Dong, A. Pentland, and K. A. Heller. “Graph-coupled HMMs for modeling the
spread of infection”. In: arXiv preprint arXiv:1210.4864 (2012).
€C. K. Carter and R. Kohn. “On Gibbs Sampling for State Space Models". In:
Biometrika 3 (1994).
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e Block Update Method:

> Choose one block of states for each individual and propose one of 3
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Move an endpoint of such a block.

e Single-Site Method:

> Update each single node from its full conditional distribution.
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| |

Algorithms do not scale well to large populations.




Vanilla FFBS

Reformulate graph:

o X[ = (XL X
5"}""9 €X¢={1,2,...,N}€.
. ‘XE:C]‘ — NC.
e Update the whole hidden process
X from its full conditional:
X~7n(X|Y,0);
e Computational complexity:

O(TN2C).

N = number of infection states.

C = number of individuals.

T = number of time-points.
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Reformulate graph:

e Modification of FFBS.

Sample

e Update one individual at a
time by sampling from the full
conditional:

m (X v xHe).

e Computational complexity
reduced to O(TCN?3).

N = number of infection states.

C = number of individuals.

B3] T = number of time-points.

Yt

1P. Touloupou, B. Finkenstadt, and S. E. F. Spencer. “Scalable Bayesian inference

for coupled hidden Markov and semi-Markov models”.

and Graphical Statistics 29 (2020).

In: Journal of Computational
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Simulation studies




Application: SIS Markov model

e Stochastic SIS (Susceptible-Infected-Susceptible) transmission model
in discrete time.

o Xt[C"p] is the infection state of individual ¢ in group p on day t:

> xlePl =0 susceptible/uninfected.
> xler =g infected /carrier.

e Susceptible individuals acquire infection via two routes:
e Direct or indirect transmission from other infected individuals within
the group.
e External transmission; transmission from other environmental sources
from outside the group.
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Application: SIS Markov model

e The transition probabilities between the states are given by:

N s
1—e o BXin XEC g

efafﬁzllvzlxt[c’p] m—1

3=

where « and (8 are the external and within-group transmission rates,
respectively, and m is the mean infection period.

e Individuals are initially infected with probability v.
e Tests are assumed to have perfect specificity but imperfect

sensitivity.
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Comparison
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Comparison of methods: Time and ACF
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Comparison of methods: Larger population
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Epidemics with genetic typing
data




Motivating example

e 160 cattle randomly Ter Tt
assigned in 20 pens, 8 —
North Pen 6
cattle per pen. Pt T
Pen Size Pen 8
. Bmx17m
e Two test results for E. coli T
O157:H7: _
Pen 16
> Faecal sample, .
> Recto-Anal Mucosal Te T
Swab (RAMS). —
Pen 20
Supplement and Premix Storage
e Individuals were sampled 27 e
. . | RS Trom scalo Pon 1
times over a 99 day period. I towe howse
L Pen 11 South Pen 2
Pen 12 Ei‘t’ Pen 3
e 12 isolates were randomly fen pon e fnd
Pen 5
selected from each pen to

be typed using PFGE.
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Multi-strain data
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Multi-strain data: Summ

e 48 different types (arbitrarily label according to the order in which
they appeared in the PFGE typing).
> 24 appeared only once.
> 7 major types (at least 10 RAMS and/or faecal samples).

1 5 Test

. Faecal
B ravs

30-

20-

-

Number of samples
Do

8

, Bam .lI.I a— N
N
ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuy

Genotype
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Multi-Strain epidemic model?

e Stochastic multi-state model in discrete time.

o X!“P unobserved carriage status for animal c in pen p on day t.
> Xt[c’p] = 0: non-carrier.
> Xt[c’p] =s,s=1,2,...,7: carriage of one of the common genotypes.

> Xt[c’p] = 8: carriage of the remaining genotypes (pooled group).

e Imperfect test sensitivity:

> Falsely recorder as non-carrier.
> Misclassified as another genotype.

2P. Touloupou et al. “Bayesian inference for multi-strain epidemics with application
to Escherichia coli O157:H7 in feedlot cattle”. In: The Annals of Applied Statistics
(in press).
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Transitions between the states
Non-
e Acquisition rate: A\P(t) = carrier

as + fBs Z,Czl 1{Xt[6‘p]:s}

X(t) X(1)

e Clearance rate: pis Carrier rier
of type 1 of type 3
yr 6)\’33(t) yr

e Relative colonisation rate in  5)%(¢)

525(1)
a carrier versus non-carrier:

5} Carrier
of type 2

Example of an epidemic model with 3
competing types.
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Comparing parameters between genetic types

Transmission model parameter

Genotype (s)| 100 as X 100 Bs x 100 115 X 100
D (1) 2.909 0.123 0.989 16.104
(0.314, 5.814) (0.050, 0.204) (0.367, 1.693) (9.713, 23.002)
J(2) 0.556 0.080 1.222 17.164
(0.000, 2.455) (0.024, 0.152) (0.290, 2.411) (8.574, 27.164)
X (3) 0.686 0.122 1.003 13.310
(0.000, 2.484) (0.054, 0.203) (0.473, 1.834) (8.460, 18.431)
b (4) 0.261 0.058 0.620 9.789
(0.000, 1.492) (0.011, 0.110) (0.003, 1.259) (3.268, 17.734)
d (5) 1.628 0.146 0.693 9.964
(0.000, 3.896) (0.063, 0.231) (0.276, 1.169) (6.080, 14.202)
f (6) 0.314 0.059 0.347 6.853
(0.000, 1.667) (0.013, 0.118) (0.000, 0.845) (0.743, 16.849)
1(7) 0.955 0.046 1.571 11.767
(0.000, 2.601) (0.009, 0.094) (0.901, 2.345) (7.268, 17.091)
Pooled (8) 2.119 0.192 0.723 9.501
(0.000, 5.443) (0.086, 0.314) (0.274, 1.186) (6.081, 13.002)
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Rest of the parameters

e The median relative colonisation rate in a carrier versus non-carrier
individual is 0.842.

e Test sensitivities:

o RAMS test: 76%,
o Feacal test: 46%.

e 81.6% of the common genotypes are correctly classified as the right
type.

e 1.2% are misclassified as another common type.
e 17.2% are misclassified as type 8.

e 98% of the observed pooled genotypes 8 are correctly classified as 8.
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Posterior probability of infection by type
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Simulations: Reconstructing the untyped observations
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Discussion




Discussion

e iFFBS algorithm exploits the dependence structure in epidemic data
to achieve scalable inference.

e Allows much more complex models to be fitted, e.g. with genetic
data (epiPOMS3 R package).

e Can reconstruct the genetic type of every infection from surprisingly
few typed observations.

e Can be used as a Metropolis-Hastings proposal to fit semi-Markov
epidemic models.

e Can be used for scalable model selection (Jake Carson and Simon
Spencer).

3Panayiota Touloupou and Simon E. F. Spencer. epiPOMS: Bayesian Inference for
Partially Observed Multi-Strain Epidemics. R package, version 0.1.0. 2020.
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Extension: Investigating transmission between neighbouring pens

‘: Infected O: Susceptible
Neighbour Household Neighbour
o O c & O o O O O
o o |o o ik o| |o o
n n

‘a

Arrows represent potential transmission routes between infected and a
given susceptible individual.
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e Improve the computational efficiency of iFFBS even more (e.g.

update subset of individuals).

e Extend the multi-genotype model, e.g:
e Co-infection: allow for colonisation by all pairwise combinations of

single carriage states,
e Semi-Markov infection period: Negative Binomial distribution.
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THANK YOU!!! Any Questions?
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Misclassification Matrices

For the case where a positive RAMS sample was not chosen to be
genotyped we have that:

0 +
0 1 0
ER = 1 1-6g 0g

s l 1—-6p [ J

where 0 is the sensitivity of the RAMS test and is denoted by
Or =P (RO =+ | X7 = 1),



Misclassification matrices

For a positive sample that was genotyped we introduce additional
parameters 6¢, Os and 0y:

0 1 - mg—1 ng(TypeU)
0 [ 1 0 0 T
1 L— 6 ooy s0R Lo U0 g b5)0m
ng — 2 ng — 2
s Or 0s0r 0sOr
00 On
ER: — ng — 2 ng — 2 ng — 2
9503 HSQR 00 959}2
ng—2 ng—2 OB 9
fs 6 0s6
ne—1 SR 2R o0 (1-60—05)0R
ng — 2 neg — 2
ng (Type U) 1—6gr Ou r fu br (1—0y)0r
ng—1 ng—1

such that, for all r £ 0, the probabilities
eﬁo—P(R[C Pl = O\Xt[c’p] )*l—@R and Z"SIeRs:QR.

r1
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