Scalable Inference for Epidemic Models With Individual Level Data

Panayiota Touloupou1, Simon Spencer2 and Bärbel Finkenstädt2

1School of Mathematics, University of Birmingham
2Department of Statistics, University of Warwick
Introduction

Bayesian inference for epidemic models

Simulation studies

Epidemics with genetic typing data

Discussion
Introduction
Statistical epidemic modelling

- Insights into dynamics of infectious diseases
 - Prevention.
 - Control spread of the disease.

- Epidemiological data present several challenges
 - Missing data (typically high dimensional).
 - Diagnostic tests imperfect.

- **Statistical inference** for epidemic models is hard
 - Intractable likelihood - need to know missing times.
 - Usual solution: large scale data augmentation MCMC.

- What are the observed data?
- **Household data**: Individuals form groups (e.g. households).
Individual level data

- **Household data**: Individuals form groups (e.g. households).
- **Longitudinal** observations.

![Diagram showing the progression of infection status from Day 1 to Day T with non-infected (black) and infected (red) individuals.](image-url)
• **Household data**: Individuals form groups (e.g. households).

• **Longitudinal** observations.

![Diagram showing individual levels over time with symbols for non-infected and infected days.](diagram)
Individual level data

- **Household data**: Individuals form groups (e.g. households).
- **Longitudinal** observations.
Challenges!

- **GOAL**: Draw inference for the parameters given the model.

- Inference for disease outbreak data is **hard**
 - Missing data X typically very high dimensional.

- Intractable likelihood:
 \[
 \pi(Y | \theta) = \sum_X \pi(Y | X, \theta).
 \]

- Solution:
 - Include the hidden infection status of individuals as a model parameter.
 - Use **MCMC data augmentation**.
Diagram of the Markov discrete time epidemic model. Circles are hidden states and rectangles are observed data. Arrows represent dependencies.
Bayesian inference for epidemic models
Bayesian data augmentation

Initialise: Draw $\theta^{(0)} \sim \pi(\theta)$ and generate $X^{(0)} \sim \pi \left(X \mid \theta^{(0)} \right)$;

for $j = 1, 2, \ldots, J$ do
 Update $\theta^{(j)}$ according to $\pi \left(\theta \mid Y, X^{(j-1)} \right)$;
 Update $X^{(j)}$ according to $\pi \left(X \mid Y, \theta^{(j)} \right)$;
end
Bayesian data augmentation

MCMC Scheme

Initialise: Draw $\theta^{(0)} \sim \pi(\theta)$ and generate $X^{(0)} \sim \pi(X | \theta^{(0)})$;

for $j = 1, 2, \ldots, J$ do

 Update $\theta^{(j)}$ according to $\pi(\theta | Y, X^{(j-1)})$;

 Update $X^{(j)}$ according to $\pi(X | Y, \theta^{(j)})$;

end
Existing methods

- **Block Update Method**\(^a\):
 - Choose one **block of states** for each individual and propose one of 3 possible changes: **Add** or **Remove** a block of infection/clearance or **Move** an endpoint of such a block.

- **Single-Site Method**\(^b\):
 - Update each **single node** from its full conditional distribution.

- **Forward Filtering Backward Sampling (FFBS)**\(^c\):
 - Update the **whole hidden process** from its full conditional.
 - Computationally intensive.

\(^a\) S. E. F. Spencer et al. “‘Super’ or just ‘above average’? Supershedders and the transmission of *Escherichia coli* O157:H7 among feedlot cattle”. In: *Journal of The Royal Society Interface* 12 (2015).

Existing methods

- **Block Update Method:**
 - Choose one block of states for each individual and propose one of 3 possible changes: Add or Remove a block of infection/clearance or Move an endpoint of such a block.

- **Single-Site Method:**
 - Update each single node from its full conditional distribution.

- **Forward Filtering Backward Sampling (FFBS):**
 - Update the whole hidden process from its full conditional.
 - Computationally intensive.

Problem

Algorithms do not scale well to large populations.
Vanilla FFBS

Reformulate graph:

- $x_t^{[1:C]} = (x_t^{[1]}, x_t^{[2]}, \ldots, x_t^{[C]})$
- $\in X^C = \{1, 2, \ldots, N\}^C$.
- $|x_t^{[1:C]}| = N^C$.
- Update the whole hidden process X from its full conditional:
 \[X \sim \pi(X | Y, \theta) ; \]
- Computational complexity: $\mathcal{O}(TN^{2C})$.

$N = \text{number of infection states.}$
$C = \text{number of individuals.}$
$T = \text{number of time-points.}$
Proposed method: individual FFBS (iFFBS)

Reformulate graph:

- Modification of FFBS.
- Update one individual at a time by sampling from the full conditional:
 \[\pi \left(X_{1:T}^c \mid Y, X_{1:T}^{[-c]}, \theta \right). \]
- Computational complexity reduced to \(\mathcal{O}(TCN^3) \).

\[N = \text{number of infection states.} \]
\[C = \text{number of individuals.} \]
\[T = \text{number of time-points.} \]

Simulation studies
Application: SIS Markov model

- Stochastic SIS (Susceptible-Infected-Susceptible) transmission model in discrete time.

- \(X_{t}^{[c, p]} \) is the infection state of individual \(c \) in group \(p \) on day \(t \):
 - \(X_{t}^{[c, p]} = 0 \) - susceptible/uninfected.
 - \(X_{t}^{[c, p]} = 1 \) - infected/carrier.

- Susceptible individuals acquire infection via two routes:
 - Direct or indirect transmission from other infected individuals within the group.
 - External transmission; transmission from other environmental sources from outside the group.
The transition probabilities between the states are given by:

\[1 - e^{-\alpha - \beta \sum_{i=1}^{N} x_t^{[c,p]}} \]

\[e^{-\alpha - \beta \sum_{i=1}^{N} x_t^{[c,p]}} \]

where \(\alpha \) and \(\beta \) are the external and within-group transmission rates, respectively, and \(m \) is the mean infection period.

- Individuals are initially infected with probability \(\nu \).
- Tests are assumed to have perfect specificity but imperfect sensitivity.
Comparison of methods: Estimation

Number of infected individuals vs Day for True and Block, True and Single-site, True and fullFFBS, True and iFFBS.
Comparison of methods: Time and ACF

- Time (in seconds)
- ACF per iteration

Graphs:
- Individuals in group
- Lag

Legend:
- Green: Block
- Red: Single-site
- Cyan: fullFFBS
- Blue: iFFBS
Comparison of methods: Larger population

<table>
<thead>
<tr>
<th>Individuals in group</th>
<th>Method</th>
<th>Relative speed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Block</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-site</td>
<td></td>
</tr>
<tr>
<td></td>
<td>iFFBS</td>
<td></td>
</tr>
</tbody>
</table>
Epidemics with genetic typing data
Motivating example

- 160 cattle randomly assigned in 20 pens, 8 cattle per pen.

- Two test results for *E. coli* O157:H7:
 - Faecal sample,
 - Recto-Anal Mucosal Swab (RAMS).

- Individuals were sampled 27 times over a 99 day period.

- 12 isolates were randomly selected from each pen to be typed using PFGE.
Multi-strain data

Pen 1 (south)

Animal index

Pen 2 (south)

Pen 6 (north)

Pen 8 (north)

Time (days)

Test

Faecal (bottom row)

RAMS (top row)
48 different types (arbitrarily label according to the order in which they appeared in the PFGE typing).

- 24 appeared only once.
- 7 major types (at least 10 RAMS and/or faecal samples).
Multi-Strain epidemic model

- Stochastic multi-state model in discrete time.
- \(X_{t}^{[c,p]} \) unobserved carriage status for animal \(c \) in pen \(p \) on day \(t \).
 - \(X_{t}^{[c,p]} = 0 \): non-carrier.
 - \(X_{t}^{[c,p]} = s, \ s = 1, 2, \ldots, 7 \): carriage of one of the common genotypes.
 - \(X_{t}^{[c,p]} = 8 \): carriage of the remaining genotypes (pooled group).

- Imperfect test sensitivity:
 - Falsely recorded as non-carrier.
 - Misclassified as another genotype.

Transitions between the states

- Acquisition rate: \(\lambda_p^s(t) = \alpha_s + \beta_s \sum_{i=1}^{C} 1_{\{X_t^{c,p} = s\}} \)

- Clearance rate: \(\mu_s \)

- Relative colonisation rate in a carrier versus non-carrier: \(\delta \)

Example of an epidemic model with 3 competing types.
Comparing parameters between genetic types

<table>
<thead>
<tr>
<th>Genotype (s)</th>
<th>$\nu_s \times 100$</th>
<th>$\alpha_s \times 100$</th>
<th>$\beta_s \times 100$</th>
<th>$\mu_s \times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (1)</td>
<td>2.909</td>
<td>0.123</td>
<td>0.989</td>
<td>16.104</td>
</tr>
<tr>
<td></td>
<td>(0.314, 5.814)</td>
<td>(0.050, 0.204)</td>
<td>(0.367, 1.693)</td>
<td>(9.713, 23.002)</td>
</tr>
<tr>
<td>J (2)</td>
<td>0.556</td>
<td>0.080</td>
<td>1.222</td>
<td>17.164</td>
</tr>
<tr>
<td></td>
<td>(0.000, 2.455)</td>
<td>(0.024, 0.152)</td>
<td>(0.290, 2.411)</td>
<td>(8.574, 27.164)</td>
</tr>
<tr>
<td>X (3)</td>
<td>0.686</td>
<td>0.122</td>
<td>1.093</td>
<td>13.310</td>
</tr>
<tr>
<td></td>
<td>(0.000, 2.484)</td>
<td>(0.054, 0.203)</td>
<td>(0.473, 1.834)</td>
<td>(8.460, 18.431)</td>
</tr>
<tr>
<td>b (4)</td>
<td>0.261</td>
<td>0.058</td>
<td>0.620</td>
<td>9.789</td>
</tr>
<tr>
<td></td>
<td>(0.000, 1.492)</td>
<td>(0.011, 0.110)</td>
<td>(0.003, 1.259)</td>
<td>(3.268, 17.734)</td>
</tr>
<tr>
<td>d (5)</td>
<td>1.628</td>
<td>0.146</td>
<td>0.693</td>
<td>9.964</td>
</tr>
<tr>
<td></td>
<td>(0.000, 3.896)</td>
<td>(0.063, 0.231)</td>
<td>(0.276, 1.169)</td>
<td>(6.080, 14.202)</td>
</tr>
<tr>
<td>f (6)</td>
<td>0.314</td>
<td>0.059</td>
<td>0.347</td>
<td>6.853</td>
</tr>
<tr>
<td></td>
<td>(0.000, 1.667)</td>
<td>(0.013, 0.118)</td>
<td>(0.000, 0.845)</td>
<td>(0.743, 16.849)</td>
</tr>
<tr>
<td>l (7)</td>
<td>0.955</td>
<td>0.046</td>
<td>1.571</td>
<td>11.767</td>
</tr>
<tr>
<td></td>
<td>(0.000, 2.601)</td>
<td>(0.009, 0.094)</td>
<td>(0.901, 2.345)</td>
<td>(7.268, 17.091)</td>
</tr>
<tr>
<td>Pooled (8)</td>
<td>2.119</td>
<td>0.192</td>
<td>0.723</td>
<td>9.501</td>
</tr>
<tr>
<td></td>
<td>(0.000, 5.443)</td>
<td>(0.086, 0.314)</td>
<td>(0.274, 1.186)</td>
<td>(6.081, 13.002)</td>
</tr>
</tbody>
</table>
Comparing parameters between genetic types

<table>
<thead>
<tr>
<th>Genotype (s)</th>
<th>$\nu_s \times 100$</th>
<th>$\alpha_s \times 100$</th>
<th>$\beta_s \times 100$</th>
<th>$\mu_s \times 100$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D (1)</td>
<td>2.909 (0.314, 5.814)</td>
<td>0.123 (0.050, 0.204)</td>
<td>0.989 (0.367, 1.693)</td>
<td>16.104 (9.713, 23.002)</td>
</tr>
<tr>
<td>J (2)</td>
<td>0.556 (0.000, 2.455)</td>
<td>0.080 (0.024, 0.152)</td>
<td>1.222 (0.290, 2.411)</td>
<td>17.164 (8.574, 27.164)</td>
</tr>
<tr>
<td>X (3)</td>
<td>0.686 (0.000, 2.484)</td>
<td>0.122 (0.054, 0.203)</td>
<td>1.093 (0.473, 1.834)</td>
<td>13.310 (8.460, 18.431)</td>
</tr>
<tr>
<td>b (4)</td>
<td>0.261 (0.000, 1.492)</td>
<td>0.058 (0.011, 0.110)</td>
<td>0.620 (0.003, 1.259)</td>
<td>9.789 (3.268, 17.734)</td>
</tr>
<tr>
<td>d (5)</td>
<td>1.628 (0.000, 3.896)</td>
<td>0.146 (0.063, 0.231)</td>
<td>0.693 (0.276, 1.169)</td>
<td>9.964 (6.080, 14.202)</td>
</tr>
<tr>
<td>f (6)</td>
<td>0.314 (0.000, 1.667)</td>
<td>0.059 (0.013, 0.118)</td>
<td>0.347 (0.000, 0.845)</td>
<td>6.853 (0.743, 16.849)</td>
</tr>
<tr>
<td>l (7)</td>
<td>0.955 (0.000, 2.601)</td>
<td>0.046 (0.009, 0.094)</td>
<td>1.571 (0.901, 2.345)</td>
<td>11.767 (7.268, 17.091)</td>
</tr>
<tr>
<td>Pooled (8)</td>
<td>2.119 (0.000, 5.443)</td>
<td>0.192 (0.086, 0.314)</td>
<td>0.723 (0.274, 1.186)</td>
<td>9.501 (6.081, 13.002)</td>
</tr>
</tbody>
</table>
Rest of the parameters

- The median relative colonisation rate in a carrier versus non-carrier individual is 0.842.

- Test sensitivities:
 - RAMS test: 76%,
 - Faecal test: 46%.

- 81.6% of the common genotypes are correctly classified as the right type.

- 1.2% are misclassified as another common type.

- 17.2% are misclassified as type 8.

- 98% of the observed pooled genotypes 8 are correctly classified as 8.
Posterior probability of infection by type
Simulations: Reconstructing the untyped observations

Within-pen colonization rates

False Positive Rate

Within-pen colonization rates
Discussion
Discussion

- iFFBS algorithm exploits the dependence structure in epidemic data to achieve scalable inference.

- Allows much more complex models to be fitted, e.g. with genetic data (epiPOMS3 R package).

- Can reconstruct the genetic type of every infection from surprisingly few typed observations.

- Can be used as a Metropolis-Hastings proposal to fit semi-Markov epidemic models.

- Can be used for scalable model selection (Jake Carson and Simon Spencer).

Extension: Investigating transmission between neighbouring pens

Arrows represent potential transmission routes between infected and a given susceptible individual.
Future work

- Improve the computational efficiency of iFFBS even more (e.g., update subset of individuals).

- Extend the multi-genotype model, e.g.:
 - Co-infection: allow for colonisation by all pairwise combinations of single carriage states,
 - Semi-Markov infection period: Negative Binomial distribution.
THANK YOU!!! Any Questions?

Acknowledgement:

- Simon Spencer
- Bärbel Finkenstädt
- Nigel P. French
- Thomas E. Besser
References

Misclassification Matrices

For the case where a positive RAMS sample was not chosen to be genotyped we have that:

\[
E^{R+} = \begin{bmatrix}
0 & + \\
0 & 1 & 0 \\
& 1 - \theta_R & \theta_R \\
& \vdots & \vdots & \vdots \\
n_s & 1 - \theta_R & \theta_R \\
\end{bmatrix}
\]

where \(\theta_R \) is the sensitivity of the RAMS test and is denoted by

\[
\theta_R = P\left(R_t^{[c,p]} = + \mid X_t^{[c,p]} = r\right).
\]
Misclassification matrices

For a positive sample that was genotyped we introduce additional parameters θ_C, θ_S and θ_U:

$E^{R_s} =$

\[
\begin{bmatrix}
0 & 1 & \cdots & \cdots & \cdots & \cdots & n_s - 1 & n_s (\text{Type U}) \\
0 & 1 - \theta_R & \theta_C \theta_R & \frac{\theta_S \theta_R}{n_s - 2} & \cdots & \cdots & \frac{\theta_S \theta_R}{n_s - 2} & (1 - \theta_C - \theta_S) \theta_R \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
\vdots & \vdots & \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\
n_s - 1 & \frac{\theta_S \theta_R}{n_s - 2} & \frac{\theta_S \theta_R}{n_s - 2} & \cdots & \cdots & \theta_C \theta_R & \frac{\theta_S \theta_R}{n_s - 2} & (1 - \theta_C - \theta_S) \theta_R \\
n_s (\text{Type U}) & 1 - \theta_R & \theta_U \theta_R & \frac{\theta_U \theta_R}{n_s - 1} & \cdots & \cdots & \frac{\theta_U \theta_R}{n_s - 1} & (1 - \theta_U) \theta_R
\end{bmatrix}
\]

such that, for all $r \neq 0$, the probabilities

$e_{r,0}^{R_s} = \Pr(R_t^{[c, p]} = 0 \mid X_t^{[c, p]} = r) = 1 - \theta_R$ and $\sum_{s=1}^{n_s} e_{r,s}^{R_s} = \theta_R$.