Modeling Multivariate Surveillance Data

Xanthi Pedeli and Dimitris Karlis Athens University of Economics & Business

January 15, 2021

Public health surveillance

- *Main purpose of public health surveillance systems:* effective and timely detection of disease outbreaks with the aim of rapidly taking control measures for the elimination of disease transmission.
- Increased availability of health surveillance data; in most cases several variables are monitored and events of different types are reported.
- Public health surveillance typically uses univariate data for monitoring disease occurrence at a local level → correlation between series is ignored.

Additional features of health surveillance data

- Health data are typically autocorrelated over time.
- Non-negative count data which are more likely Poisson or negative binomial rather than normally distributed.
- Only shifts in a positive direction are of interest.

Available statistical methods for multivariate surveillance

- Dimensionality reduction (principal components, sufficient reduction techniques)
- Parallel surveillance (each series is monitored separately)
- Joint modeling (with alarm functions based on the LR statistic)
- Scalar accumulation (Hotelling's T^2 charts)
- Vector accumulation methods (MCUSUM and MEWMA charts)

Motivation

So, we have a fairly wide range of statistical tools in our hands to handle multivariate surveillance data.

Why another one? Most of these approaches ignore the integer-valued property of the data and/ or its correlation structure.

Suggested approach: Based on a modification of the multivariate integer-valued autoregressive model (PK, 2013, CSDA)

Integer-valued autoregressive model: the general idea

- Introduced by McKenzie (1985) and Al-Osh and Alzaid (1987) as a convenient way to transfer the usual autoregressive structure to discrete valued time series.
- Main concept is the notion binomial thinning.

Suppose that *X* is a non-negative integer-valued random variable and let $\alpha \in [0, 1)$. The binomial thinning operator " \circ " is defined by (Steutel and van Harn, 1979)

$$lpha \circ X = \left\{ egin{array}{cc} \sum_{j=1}^X Y_j, & X > 0 \ 0, & ext{otherwise} \end{array}
ight.$$

where Y_j are i.i.d. Bernoulli random variables, independent of *X*, with $P(Y_j = 1) = 1 - P(Y_j = 0) = \alpha$.

The integer-valued autoregressive process of order one

INAR(1) process:

$$X_t = \alpha \circ X_{t-1} + \epsilon_t,$$

where $\alpha \in [0, 1)$ and $\{\varepsilon_t, t \in \mathbb{N}\}$ is a sequence of independent identically distributed non–negative integer–valued random variables with mean μ_{ε} and finite variance σ_{ε}^2 .

The multivariate INAR(1) process

MINAR(1) process (PK, 2013, CSDA):

$$\mathbf{X}_t = \mathbf{A} \circ \mathbf{X}_{t-1} + \mathbf{\epsilon}_t, \ t \in \mathbb{Z}$$

where,

X_{*t*}: random vector with values in \mathbb{N}^n **A**: $n \times n$ matrix with independent elements $\{\alpha_{i,j}\}_{i,j=1}^n$ **A** \circ **X**: *n*-dimensional random vector with *i*-th component $[\mathbf{A} \circ \mathbf{X}]_i = \sum_{j=1}^n \alpha_{ij} \circ X_j$, i = 1, ..., n, where the counting series in all $\alpha_{ij} \circ X_j$ are assumed to be independent.

 $\{ \boldsymbol{\varepsilon}_t \}_{t \in \mathbb{Z}}$: a sequence of non-negative integer-valued random vectors with mean $\boldsymbol{\mu}_{\boldsymbol{\varepsilon}}$ and variance-covariance matrix $\boldsymbol{\Sigma}_{\boldsymbol{\varepsilon}}$ independent of $\mathbf{A} \circ \mathbf{X}_{t-1}$.

The multivariate INAR(1) process

Conditional maximum likelihood estimator:

 $\hat{\boldsymbol{\theta}} = \operatorname{argmax}_{\boldsymbol{\theta}} \ell(\boldsymbol{\theta}),$

where

$$\ell(\boldsymbol{\theta}) = \sum_{t=2}^{T} \log f(\mathbf{x}_t | \mathbf{x}_{t-1}, \boldsymbol{\theta})$$

and $f(\mathbf{x}_t | \mathbf{x}_{t-1}, \theta)$ is the convolution of *n* sums of binomials and the joint distribution of ϵ_t , i.e.

$$f(\mathbf{x}_{t}|\mathbf{x}_{t-1}, \theta) = \sum_{k_{1}=0}^{m_{1}} \cdots \sum_{k_{n}=0}^{m_{n}} f_{1}(x_{1t} - k_{1}|\mathbf{x}_{t-1}) \cdots f_{n}(x_{nt} - k_{n}|\mathbf{x}_{t-1})g(k_{1}, \dots, k_{n}),$$

where $m_i = \min(x_{it}, x_{i;t-1}), i = 1, ..., n$.

Constrained multivariate INAR(1) process

- *Motivation*: the numerical difficulty of the maximum likelihood approach increases sharply with dimensional increase.
- PK (2013, SMij) consider a constrained multivariate INAR(1) model by assuming that **A** is a *n* × *n* diagonal matrix with independent elements α_i = [**A**]_{ii}, *i* = 1, ..., *n*.
- Estimation of the constrained model is performed through a composite (pairwise) likelihood approach that reduces the multivariate estimation problem to a set of bivariate problems.

Linking with the multivariate health surveillance problem

- Aim of statistical models for health surveillance data: to effectively capture the endemic and epidemic dynamics of disease risk.
- Endemic component: explains a baseline rate of cases with stable temporal pattern independent of the history of the epidemic process.
- Epidemic component: aims to introduce infectiousness, that is explicit dependence between events - driven by the observed past and identified with the autoregressive part of the model.

Motivation for a new model specification

- The additive decomposition of disease risk is well embodied in the multivariate INAR(1) model.
- But remember that inference becomes difficult as the dimension increase.
- The constrained version of the model,
 - 1. ignores the relationship with time lag between series that is typical in disease transmission;
 - 2. is estimated through a pairwise likelihood approach which is not appropriate for prediction purposes.

Suggested simplification

- Assume that the correlation matrix **A** is non-diagonal and relax the degree of complexity of the model by assuming that the innovation series ε_t, i.e. the endemic components, are uncorrelated.
- The resulting model admits a realistic epidemiological interpretation and is extremely advantageous in terms of practical implementation since the distribution of the innovations becomes a product of univariate mass functions.
- Overdispersion that is a typical characteristic of health surveillance data, can be easily accommodated even under the simplest parametric assumption of Poisson innovations.

Outbreak detection statistical process

- Assumption: the set-up phase is free or cleaned of outbreaks.
- Steps:
 - 1. Fit a multivariate INAR(1) model to the available series of data in the set-up phase (historical data) to obtain a parameter vector of maximum likelihood estimates $\hat{\theta}$.
 - 2. Use the model obtained from the set-up phase for successive monitoring of incoming observations in the operational phase (surveillance data).

Outbreak detection statistical process

Details on the second step:

- For each multivariate observation \mathbf{x}_{t+1} in the operational phase, we estimate the one-step-ahead predictive distribution $\hat{P}(\mathbf{X}_{t+1} = \mathbf{x}_{t+1} | \mathbf{x}_t, \hat{\theta}), \mathbf{x} \in \mathbb{N}_0^n$ and obtain the marginal predictive probabilities $\hat{P}(X_{i,t+1} = x_{i,t+1} | \mathbf{x}_t, \hat{\theta}), i = 1, ..., n.$
- For each observation $x_{i,t+1}$, we construct an $(1 \alpha)\%$ prediction interval with upper bound $x_{i,t+1}^{UB}$ equal to the (1α) -quantile of the corresponding marginal predictive distribution, where α is a prespecified significance level.
- The lower bound of the prediction interval is set equal to 0 since we are only interested in detecting positive deviations from the in-control model.

Outbreak detection statistical process

Details on the second step (cont.):

• Each series flags an alarm at time *t* + 1 if the corresponding observation lies outside the prediction interval, i.e. if

$$x_{i,t+1} > x_{i,t+1}^{UB}.$$

• For the overall alarm, a majority rule can be defined, i.e. flagging an alarm if a certain percentage of the series signals an alarm at the same point in time.

Set-up

- Time series data of length n = 200 simulated from a trivariate INAR(1) model with independent Poisson innovations.
- First 150 observations assumed to consist the set-up phase (that is a clean process without outbreaks) and the last 50 observations assumed to consist the monitoring phase.
- For each series *i*, *i* = 1, 2, 3, an outbreak of expected size κ_i at time *t* = 170 was simulated from a Poisson distribution with mean equal to κ_i.

Set-up (cont.) Model:

$$\begin{pmatrix} X_{1t} \\ X_{2t} \\ X_{3t} \end{pmatrix} = \begin{bmatrix} \alpha_{11} & \alpha_{12} & \alpha_{13} \\ \alpha_{21} & \alpha_{22} & \alpha_{23} \\ \alpha_{31} & \alpha_{32} & \alpha_{33} \end{bmatrix} \circ \begin{pmatrix} X_{1,t-1} \\ X_{2,t-1} \\ X_{3,t-1} \end{pmatrix} + \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{pmatrix},$$

where ϵ_{it} are independent Poisson random variables with mean $E(\epsilon_{it}) = \lambda_i + \kappa_i I(t = 170)$ and I(A) is an indicator function.

Set-up (cont.) True parameter values:

$$\left[egin{array}{cccc} lpha_{11} & lpha_{12} & lpha_{13} \ lpha_{21} & lpha_{22} & lpha_{23} \ lpha_{31} & lpha_{32} & lpha_{33} \end{array}
ight] = \left[egin{array}{cccc} 0.3 & 0.1 & 0.2 \ 0.2 & 0.4 & 0.2 \ 0.3 & 0.2 & 0.2 \end{array}
ight],$$

$$\lambda_1 = \lambda_2 = \lambda_3 = 1$$

 $\kappa_1 = \kappa_2 = \kappa_3 = \kappa$, where $\kappa = 5, 8$ or 10.

1000 simulation replicates per scenario (κ =5, 8 or 10).

Evaluation measures

- Detection rate and weekly false alarm rate based on a rule of 2/3 i.e. assuming that an alarm is triggered if at least two out of the three series flagged an alarm at the same point in time.
- Detection rate: proportion of the 1000 replicates in which an alarm was triggered at time t = 170.
- False alarm rate: number of cases in which an alarm was flagged at time $t \neq 170$ divided by 1000×49 .

Results: Detection rates (DR) and false alarm rates (FAR) for different outbreak sizes κ and different significance levels α . The reported numbers have been multiplied by 100.

	Outbreak size					
	$\kappa = 5$		$\kappa = 8$		$\kappa = 10$	
Sign. level	DR	FAR	DR	FAR	DR	FAR
$\alpha = 10\%$	89.0	1.33	99.4	1.30	99.8	1.44
lpha=5%	80.1	0.34	98.7	0.32	99.8	0.40
lpha=1%	55.1	0.01	93.4	0.01	98.5	0.03

Data

- Syndromic surveillance data collected during Athens 2004 Olympic Games.
- The full database consists of 11 different syndromes recorded since July 2002 in emergency departments of major hospitals in the Greater Athens area (drop-in syndromic surveillance).
- We consider 3 distinct syndromes recorded in a specific hospital that are significantly correlated to each other (cross-correlations ranging from 0.31 to 0.48): respiratory infection with fever, febrile illness with rash, other syndrome with potential interest for public health.

Monitoring phase & set-up phase

- Monitoring period: March 2, 2004 September 28, 2004
- Set-up phase: August 1, 2002 August 29, 2003 is considered as the set-up phase.
- During both periods syndromes were recorded every three days so that the historical and surveillance data consist of $t_0 = 127$ and $t_1 = 71$ observations respectively.

Time series plot of the data

January 15, 2021

Modeling Multivariate Surveillance Data

Plots of the autocorrelations of the historical data

January 15, 2021

Modeling Multivariate Surveillance Data

Statistical surveillance approach

A trivariate INAR(1) regression model with indepedent Poisson innovations fitted to the historical syndromic surveillance data: each marginal series is modeled as $X_{it} = \sum_{j=1}^{3} \alpha_{ij} \circ X_{j,t-1} + \epsilon_{it}, i = 1, 2, 3$, where ϵ_{it} are independent Poisson random variables with mean

$$egin{aligned} E(\epsilon_{it}) &=& \exp\left\{eta_{i0}+eta_{i1} ext{Weekday}+eta_{i2}\cos\left(rac{2\pi t}{122}
ight)
ight. \ &+& eta_{i3}\sin\left(rac{2\pi t}{122}
ight)
ight\} \end{aligned}$$

for $t = 1, ..., t_0$.

Statistical surveillance approach (cont.)

- A univariate surveillance approach based on fitting three indepedent INAR(1) regression models with Poisson innovations also employed for comparison purposes.
- We assume a type I error of $\alpha = 0.01$ and for the overall alarm we set a rule of 2/3 that is an alarm is triggered if at least two out of the three series flag an alarm at the same point in time.

Results: Maximum likelihood estimates (standard errors) of the correlation parameters obtained from fitting three independent Poisson INAR(1) or a trivariate INAR(1) regression model with independent Poisson innovations to the historical data.

correlation parameters	trivariate INAR(1)	independent INAR(1)
$\hat{\alpha}_{11}$	0.329 (0.044)	0.393 (0.039)
$\hat{\alpha}_{12}$	0.126 (0.043)	-
$\hat{\alpha}_{13}$	0.134 (0.054)	-
$\hat{\alpha}_{21}$	0.160 (0.040)	-
$\hat{\alpha}_{22}$	0.177 (0.045)	0.263 (0.041)
$\hat{\alpha}_{23}^{}$	0.141 (0.048)	-
$\hat{\alpha}_{31}$	0.062 (0.039)	-
$\hat{\alpha}_{32}$	0.108 (0.039)	-
$\hat{\alpha}_{33}$	0.131 (0.047)	0.179 (0.045)

Results: Maximum likelihood estimates (standard errors) of the regression parameters obtained from fitting three independent Poisson INAR(1) or a trivariate INAR(1) regression model with independent Poisson innovations to the historical data.

regression parameters	trivariate INAR(1)	indepedent INAR(1)
$\hat{\beta}_{10}$	1.190 (0.153)	1.506 (0.099)
$\hat{\beta}_{11}$	-0.255 (0.145)	-0.278 (0.110)
$\hat{\beta}_{12}$	-0.359 (0.118)	-0.222 (0.078)
$\hat{\beta}_{13}$	-0.218 (0.098)	-0.140 (0.073)
β ₂₀	1.197 (0.135)	1.496 (0.096)
$\hat{\beta}_{21}$	-0.267 (0.133)	-0.118 (0.102)
$\hat{\beta}_{22}$	0.411 (0.121)	0.156 (0.070)
β ₂₃	0.548 (0.110)	0.296 (0.068)
β ₃₀	0.990 (0.155)	1.246 (0.109)
$\hat{\beta}_{31}$	0.047 (0.142)	0.046 (0.113)
$\hat{\beta}_{32}$	-0.174 (0.099)	-0.112 (0.072)
β ₃₃	-0.198 (0.090)	-0.146 (0.071)

Results: Plots of the autocorrelations of the residuals obtained by the trivariate INAR(1) (left panel) and the independent INAR(1) (right panel) regression models.

Results: Surveillance plots. Statistical alarms (blue crosses) are raised when at least two series exceed the upper bounds of the corresponding 99% prediction intervals (red dashed lines).

Final remarks

- We suggest a multivariate INAR(1) approach suitable for joint modeling of multivariate surveillance data. The introduced model admits a realistic epidemiological interpretation and accounts for overdispersion that is typical with surveillance data.
- Emphasis has been put on the case of independent Poisson innovations but other discrete distributions, as e.g. the negative binomial, can also be considered instead.
- A series of interesting points should be further exploited, as e.g. updating the data basis for the model fit in a regular basis and keep the newest obs. only for building the model or downweight past outbreaks by suitable adjustments (Noufaily et al, 2013, SIM).