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Public health surveillance

Main purpose of public health surveillance systems:
effective and timely detection of disease outbreaks
with the aim of rapidly taking control measures
for the elimination of disease transmission.

Increased availability of health surveillance data;
in most cases several variables are monitored and
events of different types are reported.

Public health surveillance typically uses univariate
data for monitoring disease occurrence at a local
level −→ correlation between series is ignored.
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Additional features of health surveillance data

Health data are typically autocorrelated over time.

Non-negative count data which are more likely
Poisson or negative binomial rather than normally
distributed.

Only shifts in a positive direction are of interest.
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Available statistical methods for multivariate
surveillance

Dimensionality reduction (principal components,
sufficient reduction techniques)

Parallel surveillance (each series is monitored
separately)

Joint modeling (with alarm functions based on the
LR statistic)

Scalar accumulation (Hotelling’s T2 charts)

Vector accumulation methods (MCUSUM and
MEWMA charts)
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Motivation

So, we have a fairly wide range of statistical tools in
our hands to handle multivariate surveillance data.

Why another one?
Most of these approaches ignore the integer-valued
property of the data and/ or its correlation structure.

Suggested approach:
Based on a modification of the multivariate
integer-valued autoregressive model (PK, 2013, CSDA)
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Integer-valued autoregressive model: the
general idea

Introduced by McKenzie (1985) and Al-Osh and
Alzaid (1987) as a convenient way to transfer the
usual autoregressive structure to discrete valued
time series.

Main concept is the notion binomial thinning.
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Binomial thinning

Suppose that X is a non-negative integer-valued
random variable and let α ∈ [0, 1). The binomial
thinning operator “◦” is defined by (Steutel and van
Harn, 1979)

α ◦ X =

{ ∑X
j=1 Yj, X > 0

0, otherwise

where Yj are i.i.d. Bernoulli random variables,
independent of X , with P(Yj = 1) = 1 − P(Yj = 0) = α.
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The integer-valued autoregressive process of
order one

INAR(1) process:

Xt = α ◦ Xt−1 + εt ,

where α ∈ [0, 1) and {εt , t ∈ N} is a sequence of
independent identically distributed non–negative
integer–valued random variables with mean µε and
finite variance σ2

ε .
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The multivariate INAR(1) process

MINAR(1) process (PK, 2013, CSDA):

Xt = A ◦Xt−1 + εt , t ∈ Z

where,
Xt : random vector with values in Nn

A: n × n matrix with independent elements {αi,j}
n
i,j=1

A ◦X: n-dimensional random vector with i-th
component [A ◦X]i =

∑n
j=1 αij ◦ Xj, i = 1, . . . , n, where

the counting series in all αij ◦ Xj are assumed to be
independent.
{εt }t∈Z: a sequence of non-negative integer-valued
random vectors with mean µε and variance-covariance
matrix Σε independent of A ◦Xt−1.
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The multivariate INAR(1) process

Conditional maximum likelihood estimator:

θ̂ = argmaxθ`(θ),

where

`(θ) =

T∑
t=2

log f (xt |xt−1,θ)

and f (xt |xt−1,θ) is the convolution of n sums of
binomials and the joint distribution of εt , i.e.

f (xt |xt−1,θ) =

m1∑
k1=0

· · ·
mn∑

kn=0

f1(x1t − k1|xt−1) · · ·

fn(xnt − kn |xt−1)g(k1, . . . , kn),

where mi = min(xit , xi;t−1), i = 1, . . . , n.
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Constrained multivariate INAR(1) process

Motivation: the numerical difficulty of the
maximum likelihood approach increases sharply
with dimensional increase.

PK (2013, SMij) consider a constrained
multivariate INAR(1) model by assuming that A is
a n × n diagonal matrix with independent
elements αi = [A]ii , i = 1, . . . , n.

Estimation of the constrained model is performed
through a composite (pairwise) likelihood
approach that reduces the multivariate estimation
problem to a set of bivariate problems.
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Linking with the multivariate health
surveillance problem

Aim of statistical models for health surveillance
data: to effectively capture the endemic and
epidemic dynamics of disease risk.

Endemic component: explains a baseline rate of
cases with stable temporal pattern - independent
of the history of the epidemic process.

Epidemic component: aims to introduce
infectiousness, that is explicit dependence
between events - driven by the observed past and
identified with the autoregressive part of the
model.
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Motivation for a new model specification

The additive decomposition of disease risk is well
embodied in the multivariate INAR(1) model.

But remember that inference becomes difficult as
the dimension increase.
The constrained version of the model,

1. ignores the relationship with time lag between
series that is typical in disease transmission;

2. is estimated through a pairwise likelihood
approach which is not appropriate for prediction
purposes.
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Suggested simplification

Assume that the correlation matrix A is
non-diagonal and relax the degree of complexity of
the model by assuming that the innovation series
εt , i.e. the endemic components, are uncorrelated.

The resulting model admits a realistic
epidemiological interpretation and is extremely
advantageous in terms of practical
implementation since the distribution of the
innovations becomes a product of univariate mass
functions.

Overdispersion that is a typical characteristic of
health surveillance data, can be easily
accommodated even under the simplest
parametric assumption of Poisson innovations.
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Outbreak detection statistical process

Assumption: the set-up phase is free or cleaned of
outbreaks.
Steps:

1. Fit a multivariate INAR(1) model to the available
series of data in the set-up phase (historical data)
to obtain a parameter vector of maximum
likelihood estimates θ̂.

2. Use the model obtained from the set-up phase for
successive monitoring of incoming observations in
the operational phase (surveillance data).
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Outbreak detection statistical process

Details on the second step:

For each multivariate observation xt+1 in the
operational phase, we estimate the one-step-ahead
predictive distribution P̂(Xt+1 = xt+1|xt , θ̂), x ∈ Nn

0
and obtain the marginal predictive probabilities
P̂(Xi,t+1 = xi,t+1|xt , θ̂), i = 1, . . . , n.

For each observation xi,t+1, we construct an
(1 − α)% prediction interval with upper bound
xUB

i,t+1 equal to the (1 − α)-quantile of the
corresponding marginal predictive distribution,
where α is a prespecified significance level.

The lower bound of the prediction interval is set
equal to 0 since we are only interested in detecting
positive deviations from the in-control model.
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Outbreak detection statistical process

Details on the second step (cont.):

Each series flags an alarm at time t + 1 if the
corresponding observation lies outside the
prediction interval, i.e. if

xi,t+1 > xUB
i,t+1.

For the overall alarm, a majority rule can be
defined, i.e. flagging an alarm if a certain
percentage of the series signals an alarm at the
same point in time.
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Simulation study

Set-up

Time series data of length n = 200 simulated from
a trivariate INAR(1) model with independent
Poisson innovations.

First 150 observations assumed to consist the
set-up phase (that is a clean process without
outbreaks) and the last 50 observations assumed
to consist the monitoring phase.

For each series i, i = 1, 2, 3, an outbreak of
expected size κi at time t = 170 was simulated
from a Poisson distribution with mean equal to κi .
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Simulation study

Set-up (cont.)
Model:

 X1t
X2t
X3t

 =

 α11 α12 α13
α21 α22 α23
α31 α32 α33

 ◦
 X1,t−1

X2,t−1
X3,t−1

+

 ε1t
ε2t
ε3t

 ,

where εit are independent Poisson random variables
with mean E(εit) = λi + κi I(t = 170) and I(A) is an
indicator function.
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Simulation study

Set-up (cont.)
True parameter values: α11 α12 α13

α21 α22 α23
α31 α32 α33

 =

 0.3 0.1 0.2
0.2 0.4 0.2
0.3 0.2 0.2

 ,

λ1 = λ2 = λ3 = 1
κ1 = κ2 = κ3 = κ, where κ =5, 8 or 10.

1000 simulation replicates per scenario (κ =5, 8 or 10).
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Simulation study

Evaluation measures

Detection rate and weekly false alarm rate based
on a rule of 2/3 i.e. assuming that an alarm is
triggered if at least two out of the three series
flagged an alarm at the same point in time.

Detection rate: proportion of the 1000 replicates
in which an alarm was triggered at time t = 170.

False alarm rate: number of cases in which an
alarm was flagged at time t 6= 170 divided by
1000× 49.
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Simulation study

Results: Detection rates (DR) and false alarm rates
(FAR) for different outbreak sizes κ and different
significance levels α. The reported numbers have been
multiplied by 100.

Outbreak size
κ = 5 κ = 8 κ = 10

Sign. level DR FAR DR FAR DR FAR
α = 10% 89.0 1.33 99.4 1.30 99.8 1.44
α = 5% 80.1 0.34 98.7 0.32 99.8 0.40
α = 1% 55.1 0.01 93.4 0.01 98.5 0.03
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Application

Data

Syndromic surveillance data collected during
Athens 2004 Olympic Games.

The full database consists of 11 different
syndromes recorded since July 2002 in emergency
departments of major hospitals in the Greater
Athens area (drop-in syndromic surveillance).

We consider 3 distinct syndromes recorded in a
specific hospital that are significantly correlated to
each other (cross-correlations ranging from 0.31
to 0.48): respiratory infection with fever, febrile
illness with rash, other syndrome with potential
interest for public health.
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Application

Monitoring phase & set-up phase

Monitoring period: March 2, 2004 - September 28,
2004

Set-up phase: August 1, 2002 - August 29, 2003
is considered as the set-up phase.

During both periods syndromes were recorded
every three days so that the historical and
surveillance data consist of t0 = 127 and t1 = 71
observations respectively.
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Application

Time series plot of the data
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Application

Plots of the autocorrelations of the historical data
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Application

Statistical surveillance approach
A trivariate INAR(1) regression model with indepedent
Poisson innovations fitted to the historical syndromic
surveillance data: each marginal series is modeled as
Xit =

∑3
j=1 αij ◦ Xj,t−1 + εit , i = 1, 2, 3, where εit are

independent Poisson random variables with mean

E(εit) = exp
{
βi0 + βi1Weekday + βi2 cos

(
2πt
122

)
+ βi3 sin

(
2πt
122

)}
for t = 1, . . . , t0.
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Application

Statistical surveillance approach (cont.)

A univariate surveillance approach based on
fitting three indepedent INAR(1) regression models
with Poisson innovations also employed for
comparison purposes.

We assume a type I error of α = 0.01 and for the
overall alarm we set a rule of 2/3 that is an alarm
is triggered if at least two out of the three series
flag an alarm at the same point in time.
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Application

Results: Maximum likelihood estimates (standard
errors) of the correlation parameters obtained from
fitting three independent Poisson INAR(1) or a
trivariate INAR(1) regression model with independent
Poisson innovations to the historical data.

correlation parameters trivariate INAR(1) independent INAR(1)
α̂11 0.329 (0.044) 0.393 (0.039)
α̂12 0.126 (0.043) -
α̂13 0.134 (0.054) -
α̂21 0.160 (0.040) -
α̂22 0.177 (0.045) 0.263 (0.041)
α̂23 0.141 (0.048) -
α̂31 0.062 (0.039) -
α̂32 0.108 (0.039) -
α̂33 0.131 (0.047) 0.179 (0.045)
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Application

Results: Maximum likelihood estimates (standard
errors) of the regression parameters obtained from
fitting three independent Poisson INAR(1) or a
trivariate INAR(1) regression model with independent
Poisson innovations to the historical data.

regression parameters trivariate INAR(1) indepedent INAR(1)
β̂10 1.190 (0.153) 1.506 (0.099)
β̂11 -0.255 (0.145) -0.278 (0.110)
β̂12 -0.359 (0.118) -0.222 (0.078)
β̂13 -0.218 (0.098) -0.140 (0.073)
β̂20 1.197 (0.135) 1.496 (0.096)
β̂21 -0.267 (0.133) -0.118 (0.102)
β̂22 0.411 (0.121) 0.156 (0.070)
β̂23 0.548 (0.110) 0.296 (0.068)
β̂30 0.990 (0.155) 1.246 (0.109)
β̂31 0.047 (0.142) 0.046 (0.113)
β̂32 -0.174 (0.099) -0.112 (0.072)
β̂33 -0.198 (0.090) -0.146 (0.071)
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Application

Results: Plots of the autocorrelations of the residuals
obtained by the trivariate INAR(1) (left panel) and the
independent INAR(1) (right panel) regression models.
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Application

Results: Surveillance plots. Statistical alarms (blue
crosses) are raised when at least two series exceed the
upper bounds of the corresponding 99% prediction
intervals (red dashed lines).
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Final remarks

We suggest a multivariate INAR(1) approach
suitable for joint modeling of multivariate
surveillance data. The introduced model admits a
realistic epidemiological interpretation and
accounts for overdispersion that is typical with
surveillance data.
Emphasis has been put on the case of
independent Poisson innovations but other
discrete distributions, as e.g. the negative
binomial, can also be considered instead.
A series of interesting points should be further
exploited, as e.g. updating the data basis for the
model fit in a regular basis and keep the newest
obs. only for building the model or downweight
past outbreaks by suitable adjustments (Noufaily
et al, 2013, SIM).
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