Optimal dynamic pricing of airline tickets and hotel rooms

under random arrivals of customers

A.Balis, E.Kyriakidis

Department of Statistics, Athens University of Economic and Business

1. 1 The airplane ticket problem with cancellations

Introduction

We consider an airplane with N seats which departs after n days. The possible ticket prices are $a_1 < \cdots < a_k$. On day t, a customer arrives at the booking system and buy a ticket with probability which has distribution $X_a(t) \in \{0,1,\dots\}$ if the ticket price is α with

 $E[X_{a_1}(t)] \ge \cdots \ge E[X_{a_k}(t)]$. Customer may cancel his/her ticket on every day $t \in \{2, ..., n\}$ and he/she receive a compensation $c < a_1$. The number of cancellations for day t if the number of empty seats is i, is a random variable $Y_i(t) \in \{0,1,...,N-i\}$. We would like to determine the pricing policy which maximizes the expected total revenue for n days.

Stochastic model equations

$$\begin{split} a)V(N,l) &= \max_{a \in A} \{aE[\min(X_a(1),N)] + \\ &\quad E[N-\min(X_a(1),N),2)]. \\ b)V(i,t) &= \max_{a \in A} \{aE[\min(X_a(t),i+Y_i(t))] + \\ E[V(i+Y_i(t)-\min(X_a(t),i+Y_i(t)),t+1)]\} - \\ cE[Y_i(t)],i=0,...,N,t=2,...,n-1. \\ c)V(i,n) &= \max_{a \in A} \{aE[\min(X_a(t),i+Y_i(n))]\} - \\ cE[Y_i(t)],i=0,...,N. \end{split}$$

1, 2The airplane ticket problem with no cancellations

Stochastic model equations

If we set $Y_i(t)=0$ and c=0, then equations (b),(c) of section 1.1 take the following form:

$$\begin{aligned} b)V(i,t) &= \max_{a \in A} \left\{ a \sum_{x=0}^{i-1} [1 - F_{X_a}(x)] + \\ &\sum_{x=0}^{i-1} V(i-x,t+1) P(X_a = x) \right\} \\ i &= 0, \dots, N, t = 1, \dots, n-1. \\ c)V(i,n) &= \max_{a \in A} \left\{ a \sum_{x=0}^{i-1} [1 - F_{X_a}(x)] \right\}, i = 0, \dots, N \end{aligned}$$

The following Proposition is proved by induction:

Proposition 1: For t=1,...,n, V(i,t) is non-decreasing in i. Many various cases of distributions for $X_{a_i}(t)$ have been examined in order to verify if the threshold-policy can be implemented.

Threshold-type policy means that the optimal prices satisfy the inequality: $a_j(t) \ge a_{j+1}(t)$, t=1,...,n, j=0,...,N with $a_j(t)$ the optimal price if on day t, the number of empty seats are j.

Although an analytical proof seems to be too difficult, various arithmetical results indicate that a threshold-type policy holds if $X_{\alpha_i}(t) \sim Poisson(\lambda_i)$.

Arithmetical example 1

We set N=250, n=20, $\alpha_1=80$, $\alpha_2=120$, $\alpha_3=160$, $\alpha_4=200$, $X_{\alpha_i}(t) \sim Poisson(\lambda_i)$, $\lambda_1=10$, $\lambda_2=5$, $\lambda_3=3$, $\lambda_4=2$.

The price α_j is optimal for $i: I_j \le i < I_{j+1}$.

Table 1.2: The critical values for the example 2

t	$I_5(t)$	$I_d(t)$	$I_3(t)$	$I_2(t)$	$I_I(t)$
1	249	250	-	-	-
2	0	51	76	138	250
3	0	48	73	131	250
4	0	46	69	124	250
5	0	43	65	117	250
6	0	41	61	110	250
7	0	38	57	103	250
8	0	36	53	95	250
9	0	33	49	88	250
10	0	30	45	81	250
11	0	28	41	74	250
12	0	25	37	67	250
13	0	23	33	59	250
14	0	20	29	52	250
15	0	17	25	45	250
16	0	15	22	38	250
17	0	12	18	31	250
18	0	9	14	24	250
19	0	7	10	17	250
20	0	3	5	8	250

We study other cases for $X_{a_i}(t)$:

A)Modified discrete distribution demand: $X_{a_i}(t) \in \{0,...,N\}$ and $P(X_{a_i}(t) = j) = f_a$, j=1...,N, $P(X_{a_i}(t) = j) = 1 - Nf_a$, with

$$f_a \le \frac{1}{N}$$
 and $f_{a_1} \ge \cdots \ge f_{a_k}$.

Proposition 2: In the case of modified discrete uniform demand $X_{a_i}(t)$, the optimal policy is of the threshold-type.

B) Binomial distributed demand:

$$X_{a_i}(t) \sim Binomial(N, p_{a_i}(t))$$

with
$$p_{a_1}(t) \ge \cdots \ge p_{a_k}(t)$$
, $t=1,...,n$.

In the case of binomial distributed demand the threshold-type policy demand doesn't hold.

Counterexample:

For $N=250, n=20, \alpha_1=185, \alpha_2=220, \alpha_3=250, X_{\alpha_i}(t) \sim Binomial(250, p_{a_i})$ with $p_{a_1}=0.45,$

 p_{a_2} =0.32, p_{a_3} =0.25. We take for t=19 and i=171 that the optimal price is $a_{171}(19)$ = 220 and for t=19 and i=172 the optimal price is $a_{172}(19)$ =250 > $a_{171}(19)$, thus the threshold-type policy cannot not be implemented.

2.1Optimal ticket price for a hotel room-finite time horizon

Introduction

We study the case of hotel with N rooms to be rent for a period of n days. Instead of days, another time unit can be used and apartments or warehouses can be used instead of hotel rooms. Customers book tickets with prices $a_1 < \cdots < a_k$ The demand of a room on day t is probabilistic and has distribution $X_a(t) \in \{0,1,\dots\}$ with $E[X_{a_1}(t)] \ge \cdots \ge E[X_{a_k}(t)]$. At the beginning of day t a customer decides if he/she stays at the the hotel for another day with probability $p_a(t)$ independently of the other customers. Our goal is to determine the optimal price for the hotel rooms every day t, if the number of empty rooms is i in order to maximize the expected total revenue.

Stochastic model equations

i)
$$V(i,n) = \max_{a \in A} \{E(aY_i(n)) + E[a\min(X_a, N - Y_i(n))]\}, i = 0, ..., N$$

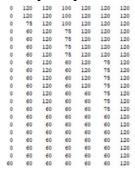
ii) $V(i,t) = \max_{a \in A} \{E(aY_i(t)) + E[a\min(X_a, N - Y_i(t))] + E[V(N - Y_i(t) - \min(X_a, N - Y_i(t)), t + 1)]\}, i = 0, ..., N, t = 2, ..., n - 1.$
iii) $V(N, 1) = \max_{a \in A} \{aE[\min(N, X_a)] + E[V(N - \min(N, X_a), 2)]\}, i = 0, ..., N$
where $Y_i(t) \sim Binomial(N - i, p_a(t))$: the number

of customers who decided to stay at the hotel on day t.

Arithmetical example 2

We consider α_1 =60, α_2 =75, α_3 =80, α_4 =100, α_5 =120, $X_{\alpha_i}(t) \sim Poisson(\lambda_i)$, λ_1 =14, λ_2 =11, λ_3 =10, λ_4 =8, λ_5 =7, N=20, n=7, $(P_a(t))_{7x5}$ =[0.45 0.4 0.4 0.38 0.3/0.45 0.4 0.38 0.35 0.35/0.5 0.5 0.5 0.5 0.5/0.55 0.5 0.48 0.45 0.4/0.6 0.54 0.5 0.5 0.5/0.5 0.5 0.4 0.4 0.35/0.6 0.31 0.28 0.24 0.2] and the optimal price for every (i,t), i=0,...,20,t=1,....7 is seen below:

Table 2.1:The optimal prices for the example 3



2.2Optimal ticket price for a hotel room-infinite horizon case

In this section we study the case of the infinite time horizon. Here, $p_t(a) = p_a$, thus the probability for a customer to remain at the hotel if the price of the room is a doesn't depend on t. Our goal is to determine the optimal pricing policy of the hotel room in order to maximize the total expected discounted revenue

V(i,
$$\underline{\mathbf{a}}$$
)=E[$\sum_{n=0}^{\infty} R(X_n, a_n) \lambda^n | X_0 = i$]

where X_n be the number of empty rooms of the hotel at the beginning of the n-th day, n=1,2,... and $0<\lambda<1$ discount factor. Then, V(i,a) satisfies the optimality equation $V(i)=\max_a\{R(i,a)+\lambda\cdot\sum_jP_{ij}(a)\cdot V(j)\},i=0,...,N$ with $R(i,a)=aE(Y_i^a)+aE[\min(X_a,N-Y_i^a)]$ and $p_{ij}(a)=P(X_{n+1}=j|X_n=i,a)=P(N-Y_i^a-\min(X_\alpha,N-Y_i^a)=j)=\sum_{k=0}^{N-i}P(\min(X_\alpha,N-k)=N-k-j)\cdot P(Y_i^a=k)$, $p_{i0}(a)=\sum_{k=0}^{N-i}[1-F_{X_a}(N-k-1)]P(Y_i^a=k)$, $p_{ij}(a)=\sum_{k=0}^{N-i}P(X_a=N-k-j)\cdot P(Y_i^a=k)$.

Another optimality criterion is the maximization of the total expected revenue per unit time: $g(\underline{a}) = \lim_{n \to \infty} \frac{V_n(i,a)}{n} \text{ where } \underline{a} \text{ one pricing policy. We implement the Policy Iteration Algorithm, the Value Iteration Algorithm, the Modified Policy Iteration Algorithm and the Value Iteration Algorithm with a relaxation factor. There is no statistical difference in computational times between the above algorithms for the infinite horizon case of the hotel room problem.$

Arithmetical example 3

Suppose we rent N=20 rooms/apartments for an defined period of time. The possible prices for the apartments are α_1 =600, α_2 =700, α_3 = 800 and demand has Poisson distribution with λ_1 =9, λ_2 =8.5, λ_3 = 8, where as p_{α_1} =0.6, p_{α_2} =0.55, p_{α_3} =0.5. The stochastic dynamic programming algorithms mentioned above were implemented and the optimal price of a room is described by the rule/policy \underline{a} : a(i)=800 if the number of empty rooms is i=0,...,8, a(i)=700 if i=9,...,12 and a(i)=800 if i=13,...,20. The maximum expected revenue per unit time is g=12077 (for the Value Iteration Algorithms we set ε =0.0001).

Bibliography

Talluri, K., & van Ryzin, G. (2004). Revenue management under a general dist=crete choice model of consumer behavior, 50(1),15-33.

Tijms H.C.(2003)A First Course in Stochastic Models, Wiley.

Talluri, K., & van Ryzin, G. (2004). Revenue management under a general dist=crete choice model of consumer behavior, 50(1), 15-33.

Puterman M. L(2005)Markov decision processes. Discrete stochastic dynamic programming, Wiley.

Zhang, D., & Cooper, W. L. (2005). Revenue management for parallel flights with customer-choice behavior. Operations Research, 53(3), 415-431.

Zhang, D., & Cooper, W. L. (2009). Pricing substitutable flights in airline revenue management. European Journal of Operational Research, 216(2), 4.