1. The airplane ticket problem with cancellations

Introduction

We consider an airplane with N seats which departs after n days. The possible ticket prices are \(a_1 < \cdots < a_k \). On day t, a customer arrives at the booking system and buy a ticket with probability which has distribution \(X_i(t) \in \{0,1,\ldots\} \) if the ticket price is \(a \) with
\[
E[X_i(t)] = \cdots \geq E[X_{a_k}(t)].
\]
Customer may cancel his/her ticket on every day \(t \in \{2, \ldots, n\} \) and he/she receive a compensation \(c < a_1 \). The number of cancellations for day \(t \) if the number of empty seats is \(i \), is a random variable \(Y_i(t) \in \{0,1,\ldots,N-i\} \). We would like to determine the pricing policy which maximizes the expected total revenue for \(n \) days.

Stochastic model equations

\(a \)
\[
a) V(N) = \max_{a \in A} \left\{ a \cdot \mathbb{E}[\min(X_a(1),N)] + \mathbb{E}[N - \min(X_a(1), N), 2] \right\}. \\
b) V(i, t) = \max_{a \in A} \left\{ a \cdot \mathbb{E}[\min(X_a(t), i + Y_i(t)) + \mathbb{E}[V(i + Y_i(t) - \min(X_a(t), i + Y_i(t), t + 1))] - c \mathbb{E}[Y_i(t)], i = 0, \ldots, N, t = 2, \ldots, n - 1 \right\}. \\
c) V(i, n) = \max_{a \in A} \left\{ a \cdot \mathbb{E}[\min(X_a(t), i + Y_i(n))] - c \mathbb{E}[Y_i(t)], i = 0, \ldots, N \right\}.
\]

Stochastic model equations

If we set \(Y_i(t) = 0 \) and \(c = 0 \), then equations (b), (c) of section 1.1 take the following form:
\[
b) V(i, t) = \max_{a \in A} \left\{ a \cdot \sum_{x=0}^{i-1} [1 - F_{X_a}(x)] + \sum_{x=0}^{i-1} V(i - x, t + 1) \cdot P(X_a = x) \right\} \\
i = 0, \ldots, N, t = 1, \ldots, n - 1. \\
c) V(i, n) = \max_{a \in A} \left\{ a \cdot \sum_{x=0}^{i-1} [1 - F_{X_a}(x)] \right\}, i = 0, \ldots, N \]
The following Proposition is proved by induction:

Proposition 1: For \(t = 1, \ldots, n \), \(V(i, t) \) is non-decreasing in \(i \). Many various cases of distributions for \(X_a(t) \) have been examined in order to verify if the threshold-policy can be implemented.

Threshold-type policy means that the optimal prices satisfy the inequality: \(a_i(t) \geq a_{i+1}(t), t = 1, \ldots, n \), with \(a_i(t) \) the optimal price if on day \(t \), the number of empty seats are \(j \).

Although an analytical proof seems to be too difficult, various arithmetical results indicate that a threshold-type policy holds if \(X_a(t) \sim \text{Poisson}(\lambda(t)) \).

Arithmetical example 1

We set \(N = 250, n = 20, a_1 = 80, a_2 = 120, a_3 = 160, a_4 = 200, X_a(t) \sim \text{Poisson}(\lambda(t)), \lambda_1 = 10, \lambda_2 = 5, \lambda_3 = 3, \lambda_4 = 2. \)

The price \(a_i \) is optimal for \(i : I_i \leq I_i+1 \).
Counterexample:
For \(N=250, n=20, a_1=185, a_2=220, a_3=250, \)
\(X_{a_1}(t) \sim \text{Binomial}(250, p_{a_1}) \) with \(p_{a_2}=0.45, \)
\(p_{a_2}=0.32, p_{a_3}=0.25. \) We take for \(t=19 \) and \(i=171 \) that the optimal price is \(a_{171}(19)=220 \) and for \(t=19 \) and \(i=172 \) the optimal price is \(a_{172}(19)=250 > a_{171}(19), \)
thus the threshold-type policy cannot be implemented.

2.1 Optimal ticket price for a hotel room-finite time horizon

Introduction

We study the case of hotel with \(N \) rooms to be rent for a period of \(n \) days. Instead of days, another time unit can be used and apartments or warehouses can be used instead of hotel rooms. Customers book tickets with prices \(a_1 < \cdots < a_k \)
The demand of a room on day \(t \) is probabilistic and has distribution \(X_{a_i}(t) \in \{0,1,\ldots\} \) with \(E[X_{a_i}(t)] \geq \cdots \geq E[X_{a_k}(t)]. \) At the beginning of day \(t \) a customer decides if he/she stays at the hotel for another day with probability \(p_{a}(t) \) independently of the other customers. Our goal is to determine the optimal price for the hotel rooms every day \(t \), if the number of empty rooms is \(i \) in order to maximize the expected total revenue.

Stochastic model equations

i) \(V(i,n) = \max\{E(aY_i(n)) + E(\min(X_{a_i}, N - Y_i(n)))] \}, \) \(i = 0, \ldots, N \)
ii) \(V(i,t) = \max\{E(aY_i(t)) + E(\min(X_{a_i}, N - Y_i(t))] + E[V(N - Y_i(t) - \min(X_{a_i}, N - Y_i(t))), t+1]\}], \) \(i = 0, \ldots, N, t = 2, \ldots, n-1. \)
iii) \(V(N,1) = \max\{aE[\min(Y_i(N), X_{a_i})] + E[V(N - \min(X_{a_i}, 2)))] \}, \) \(i = 0, \ldots, N \)

where \(Y_i(t) \sim \text{Binomial}(N - i, p_{a}(t)) \): the number of customers who decided to stay at the hotel on day \(t. \)

Arithmetical example 2

We consider \(a_1=60, a_2=75, a_3=80, a_4=100, a_5=120, \)
\(X_{a_i}(t) \sim \text{Poisson}(\lambda_i), \lambda_1=14, \lambda_2=11, \lambda_3=10, \lambda_4=8, \lambda_5=7, \)
\(N=20, n=7, (p_{a_1}(r),r)=0.45, 0.4, 0.38, 0.30, 0.45, \)
\(0.38, 0.35, 0.35/0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.48, 0.45/0.4/0.6, 0.54, 0.5, 0.5, 0.5, 0.5, 0.4, 0.4, 0.4, 0.35/0.6, 0.31/0.28, 0.24, 0.2/0.4/0.2\) and the optimal price for every \(i(t), \)
i=0,\ldots,20, t=1,\ldots,7 \) is seen below:

Table 2.1: The optimal prices for the example 3

2.2 Optimal ticket price for a hotel room-infinite horizon case

In this section we study the case of the infinite time horizon. Here, \(p_{a}(t)=p_{a}, \) thus the probability for a customer to remain at the hotel if the price of the room is a doesn’t depend on \(t. \) Our goal is to determine the optimal pricing policy of the hotel room in order to maximize the total expected discounted revenue \(V(i,\gamma)=E[\sum_{n=0}^{\infty} R(X_i(n), a_n) \lambda^n | X_i= i] \)
where \(X_i \) be the number of empty rooms of the hotel at the beginning of the \(n \)-th day, \(n=1,2,\ldots, \) and \(0<\gamma<1 \) discount factor. Then, \(V(i,a) \) satisfies the optimality equation \(V(i)=\max\{R(i,a)+\gamma \cdot \sum_{j} p_{ij}(a) \cdot V(j)\}, \) \(i=0,\ldots,N \)
with \(R(i,a) = aE(Y^a_i) + \gamma E[\min(X_i, a - Y^a_i)] \) and \(p_{ij}(a) = P(X_{n+1}= j | X_i = i,a) = P(N - Y^a_i - \min(X_i, a - Y^a_i) = j) = \sum_{N-k}^{\infty} P(\min(X_i, N - k) = \sum_{k=0}^{N-i} P(Y^a_i = k) \cdot P(Y^a_i = k), \)
\(p_{i0}(a) = \sum_{k=0}^{N-i} [1 - F_{X_i}(N - k - 1)] P(Y^a_i = k), \)
\(p_{ij}(a) = \sum_{k=0}^{N-i} P(X_i = N - k - j) \cdot P(Y^a_i = k). \)

Another optimality criterion is the maximization of the total expected revenue per unit time: \(g(a)=\lim_{n \to \infty} \frac{V_n(a)}{n} \) where a one pricing policy. We implement the Policy Iteration algorithm, the Value Iteration algorithm, the Modified Policy Iteration Algorithm and the Value Iteration Algorithm with a relaxation factor. There is no statistical difference in computational times between the above algorithms for the infinite horizon case of the hotel room problem.

Arithmetical example 3

Suppose we rent \(N=20 \) rooms/apartments for a defined period of time. The possible prices for the apartments are \(a_1=600, a_2=700, a_3=800 \) and demand has Poisson distribution with \(\lambda_1=9, \)
\(\lambda_2=8.5, \lambda_3=8, \) where as \(p_{a_1}=0.6, p_{a_2}=0.55, p_{a_3}=0.5. \) The stochastic dynamic programming algorithms mentioned above were implemented and the optimal price of a room is described by the rule/policy \(a(t)=800 \) if the number of empty rooms is \(i=0,\ldots,8, a(i)=700 \) if \(i=9,\ldots,12 \) and \(a(i)=800 \) if \(i=13,\ldots,20. \) The maximum expected revenue per unit time is \(g=12077 \) (for the Value Iteration Algorithms we set \(\varepsilon=0.0001). \)

Bibliography

