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Introduction

Introduction

Bayesian methodology requires the use of Markov Chain Monte Carlo
methods in order to derive the posterior density.

Famous statistical tools like BUGS (WinBUGS, OpenBUGS, JAGS)
and Stan will be compared.

BUGS implements the Gibbs Sampler and the Metropolis-Hastings
algorithms and Stan implements an advanced variant of Hamiltonian
Monte Carlo called No-U-Turn Sampler.
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Hamiltonian Monte Carlo

Hamiltonian Monte Carlo

1 Hamiltonian Monte Carlo (HMC) is a Markov chain Monte Carlo
(MCMC) method that uses the derivatives of the density function
being sampled to generate efficient transitions spanning the space of
the posterior,, by avoiding the random-walk behaviour that arises in
random-walk Gibbs samplers when there is correlation in the
posterior. (Betancourt and Girolami, 2013; Neal, 2011).

2 It uses an approximate Hamiltonian dynamics simulation based on
numerical integration which is then corrected by performing a
Metropolis acceptance step.

3 Stan uses the no-U-turn sampler (NUTS), which automatically selects
an appropriate number of leapfrog steps in each iteration in order to
allow the proposals to traverse the posterior without doing
unnecessary work, by avoiding the random-walk behaviour that arises
in random-walk Gibbs samplers when there is correlation in the
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Hamiltonian Monte Carlo

Momentum Variables

The goal of sampling is to draw from a density p(θ) for parameters θ.
This is typically a Bayesian posterior p(θ|y), given data y . HMC
introduces auxiliary momentum variables ρ independent of θ and
draws from a joint density. p(ρ, θ|y) = p(ρ|θ, y)p(θ|y)

ρ ∼ MultivariateNormal(0,Σ)

In Stan, this matrix may be set to the identity matrix or estimated from
warmup samples and optionally restricted to a diagonal matrix. The
inverse Σ−1 is known as the mass matrix, and will be a unit, diagonal, or
dense if Σ is.
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Hamiltonian Monte Carlo

The Hamiltonian

The joint density p(ρ, θ|y) defines a Hamiltonian

H(ρ, θ|y) = − log p(ρ, θ|y)

= − log p(ρ|θ, y)− log p(θ|y)

= T (ρ|θ, y) + V (θ|y)

,where the term T (ρ|θ, y) = − log p(ρ|θ, y) is called “kinetic energy” and
the term V (θ|y) = − log p(θ|y) is called “potential energy”. The potential
energy is specified by the Stan program through its definition of a log
density (Also, called target density). log p(θ|y) is the posterior up to a
normalizing constant.
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Hamiltonian Monte Carlo

Generating transitions

Starting from the current value of the parameters, a transition to a new
state is generated in two stages before being subjected to a Metropolis
accept step. First, a value for the momentum is drawn independently of
the current parameter values. Next, the joint system p(ρ, θ|y) made up of
the current parameter values θ and new momentum ρ is evolved via
Hamilton’s equations.

dθ

dt
= +

∂H

∂ρ
= +

∂T

∂ρ

dρ

dt
= −∂H

∂θ
= −∂V

∂θ

This two-state differential equation is solved in Stan, in agreement with
other packages, by using the leapfrog integrator.
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Hamiltonian Monte Carlo

Leapfrog Integrator

The leapfrog integrator takes discrete steps of some small time integral ε.
It begins by drawing a momentum value from the ρ density and the
alternate half-step updates of the momentum and full-step updates of the
position.

ρ← ρ− ε

2

∂V

∂θ

θ ← θ + εΣρ

ρ← ρ− ε

2

∂V

∂θ

After L leapfrog steps are applied, a total of Lε time is simulated. The
resulting state at the end of the simulation (L repetitions of the above
three steps) will be denoted (ρ∗, theta∗). At the end, a Metropolis
acceptance step is applied, where the probability of keeping the proposal is
min(1, exp(H(ρ, θ)− H(ρ∗, θ∗))).
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No-U-Turn Sampler

No-U-Turn Sampler

The selection of L leapfrog steps and step size ε can prove to be
extremely difficult for an uninitiated user.

Proper calibration requires many trial runs increasing the
computational cost, as well as deep knowledge and understanding of
the algorithm in order to interpret the results of these trial runs.

If ε is too large, the simulation will be inaccurate, on the other hand if
ε is to small, the computation will be wasted taking many small steps.

If L is too small, then successive samples will be too close resulting in
random walk behavior and slow mixing. If L is too large, then HMC
will generate trajectories that loop back and retrace the steps.

Stan uses the no-U-turn sampler (NUTS), which automatically selects
an appropriate number of leapfrog steps in each iteration in order to
allow the proposals to traverse the posterior without doing
unnecessary work, by avoiding the random-walk behaviour, resulting
at a much more user-friendly algorithm.
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Seeds: Random effect logistic regression

Seeds: Random effect logistic regression

This example is taken from Table 3 of Crowder (1978), and concerns the
proportion of seeds that germinated on each of 21 plates arranged
according to a 2 by 2 factorial layout by seed and type of root extract.
The model is essentially a random effects logistic, allowing for
over-dispersion. If pi is the probability of germination and ri and ni are the
number of germinated and the total number of seeds on the i th plate,
i = 1, ..., 21., we assume:

ri ∼ Binomial(pi , ni )

logit(pi ) = α0 + α1x1i + α2x2i + α12x1ix2i + bi

bi ∼ Normal(0, τ)

,where x1i , x2i are the seed type and root extract of the i th plate, and an
interaction term α12x1ix2i is included. α0, α1, α2, α12, τ are given
independent ”noninformative” priors.
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BUGS model

BUGS model
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Stan model

Stan model
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Stochastic Epidemic Model for COVID-19

Stochastic Epidemic Model - Construction of Likelihood

Daily number of deaths attributed to Covid-19 Dt

Dt ∼ Negative-Binomial (dt , φ1)

dt = ifradj ∗
t−1∑
τ=0

cτπt−τ

φ1 ∼ Cauchy (0, 5)

ifradj = ifrt ∗ ifrnoise

ifrnoise ∼ Normal (1, 0.01)

(1)

where ct is the predicted total cases at time t, πt is the infection to
death distribution, and ifradj is the adjusted infection-to-fatality ratio

ifrt =

{
ifr1 t < t∗

ifr2 t ≥ t∗

We consider lower ifr at the second wave, to denote the better means
the health systems has during the second wave. (more doctor
experience, better medicines).
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Stochastic Epidemic Model for COVID-19

Stochastic Epidemic Model - Data Augmentation

Daily predicted total cases of Covid-19 ct . The predicted generated
cases are generated by the following mechanism.

ct = St ∗ Rt ∗
t−1∑
τ=0

cτgt−τ

Rt = R0 ∗ exp(−
6∑

κ=1

effectκ ∗ Ik,t)

R0 ∼ Normal (3, 1)

effectκ ∼ Normal (0, 9)

(2)

,where St = 1−
∑t−1

s=1 cs
N the shrinkage of Rt due to the reduction of

susceptible individuals and Ik,t is an indicator function for each stochastic
changepoint.
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Stochastic Epidemic Model for COVID-19

Stochastic Epidemic Model - Stochastic changepoints

Stochastic Changepoints Tk

T1 ∼ Uniform (3,Ndays − 3)

Ti+1 = Ti + ei

ei ∼ Uniform (0, 100)

(3)

We use this formulation on the changepoints to counter the label
switching problem.
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Stochastic Epidemic Model for COVID-19 - Stan code

Stan model
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Interfaces to run Stan

Interfaces to run Stan

You can use Stan through R (Rstan), Python (Pystan) and more.

In both R and Python, diagnostics and plotting libraries are offered,
such as bayesplot and ARVIZ, respectivelly.

All interfaces run a c++ program. If you’ve got a complicated model,
running the sampler will dominate your processing time, no matter
which interface you use.

In all interfaces you can run the same exact stan model without
needing any adjustments in your model code.

Ultimately, the only differences between Rstan and Pystan are the
names of each functions and the manipulation and parsing of data for
each programming language.

For more information about the implementation of HMC and NUTS
in Stan, the Stan manual is a well-written and comprehensive
instructional book or you can join a very active community at the
Stan forum at https://discourse.mc-stan.org/.
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