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Introduction: Reinforcement Learning Concepts

AGENT ENVIRONMENT
-State s €S

- Take action a € .A
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-Getreward T
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Recent advancements

10! AlphaGo

gl

Figure: AlphaGo: Beat the world Go champion Lee Sedol

Figure: Able to beat top human players at StarCraft |l

Both systems based heavily on the use of Reinforcement Learning



Reinforcement Learning Paradigms:
» - model-based : build a model of the environment and use it
to acquire a good policy

» - model-free : learn good policies based entirely on observed
actions, transitions and rewards



Markov Decision Process

Definition (Markov Decision Process)

A Markov Decision process is a tuple: (S, A, p,r(s,a,s’),7)
where:

S, the state space;

A, the set of actions;

p, a transition tensor of size |S| x |S| x | A]
r:SxAxS8 — R, the reward function;

v € (0,1), a discount factor.

A policy 7 is a function 7 : S — [0,1]* That represents a rule
describing the probability of taking an action - so 7(s) is the
distribution over actions to be taken.



Markov Decision Process: Examples

Figure: Practical Example: Airline Pricing
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Bellman Equation

'Value' of a state:

VW(So) = Ep

nytr(st, at,5t+1)] (1)
t=0

where a; is chosen according to the policy .
We use a recursion known as the Bellman equation:

v(s) = r?f}pr [r(s,a,s") +yv(s)] (2)

This recursion can be iterated to get the optimal value function
and policy!



Problem

The method described requires knowledge of p.
We can use some data to estimate it: Assume we have n episodes
of T transitions each.

D= {{St, at, I't, 5t+1}t:0}7:1

Problem: poor estimates of the transition tensor can lead to bad
performance! (Mannor et al., 2007)



Dealing with poor estimates

Introduce two extensions:
Robust Markov Decision Process: (S, A, P, r(s, a,s’),7)

where:
S, the state space;
A, the set of actions;
P, a set of potential transition models;
r:SxAxS8 — R, the reward function.
~v € (0,1), a discount factor.

Distributionally Robust Markov Decision Process: (S, A, F, r(s,a,s’),7)

where:
S, the state space;
A, the set of actions;
F, a set of distributions over transition models;
r:SxAxS8 — R, the reward function.
~ € (0,1), a discount factor.



Robust MDP

Centring
transition
model

- ™

Figure: Representation of Robust Ambiguity Set



Distributionally Robust MDP

Centring
distribution
on the simplex, 4

Figure: Representation of Distributionally Robust Ambiguity Set

Classic example of distribution on the simplex: Dirichlet



Bellman Equations

The Bellman equations become:
Robust MDP

— H E / /
v(s) min maxE, [r(s,a,8") +yv(s)]

Distributionally Robust MDP

_ . E N ! /
v(s) min maxEpr [r(s,a,s") +yv(s)]



Distributionally Robust MDP

Two ways to describe F:
» moment-matching: choose distributions whose moments have
some useful property
> statistical distance: F is a set of distributions a given
statistical distance from a centring distribution - usually the
empirical distribution
The latter commonly based on the use of the Wasserstein distance
in the literature - this is not usually available analytically



Contribution

Our Bayesian setup allows for use of KL-Divergence to describe F
We define the ambiguity set we use:

F = ®{f : DKL [f||gs,a] < 5}

s,a
where:
g = f(q|D) x L(Dlq) &(q) (6)
with
q : a potential transition tensor (7)
g : a prior distribution over transition models (8)
g : the Bayesian posterior 9)



Can we be sure that there is an optimal policy?

There are theorems for Robust MDPs that ensure that there exists
a robust policy, i.e. one that maximises the robust value function.
Two steps to show there is an optimal policy for our setup:

» Show that the value function only depends on the expected
value of the distribution over transition models

» Show that there is a Robust MDP with the ambiguity set
consisting of the expected values of the distributions in F.



Can we be sure that there is an optimal policy?

First step: comes from the linearity of the expectation operator in
the Bellman equation

Second step: we show that, for a given ambiguity set of a
Distributionally Robust MDP:

F ={f: Dx.[f|8] < B} (10)
there is an ambiguity set of a Robust MDP:
P ={p: Dkclplldl <5’}

q: expectation of posterior g,
where: p: expectation of functions f € F,

B < B.



Can we be sure that there is an optimal policy?

Let f(v),g(v) represent the densities of distributions on the
simplex (v € A®), with p = E¢[v], and g = Ez [v]. Then:

Dy [pllg] < Dk [fl|g] (11)

We show this using calculus of variations and the Bhatia-Davis
inequality.

Combining these two steps we see that there is a corresponding
Robust MDP with the same optimal policy, built from an
ambiguity set P made up of the expectations of the elements of
the ambiguity set F.



Practical Implementation

We can implement the setup by having F made up of Dirichlet
distributions. Then we have:

F= ®{f\ ::g —Hb(ao)(ao—dg)—i—zw(a;)(d;—a;)gﬁ}

i=0

With:
ag: Y, o, sum of parameters o of the given distribution fs ,

dg: Y4 Gk, sum of parameters & of the posterior gs ,
1. the Digamma function
B the Beta function



Practical Implementation

We can also extend to Dirichlet mixtures to make F richer:
F=Q {f | D [FlIg] < B.F =Y W,-h,.}
52 i=1

h;: a Dirichlet distribution

With: w;j:  Mixing probability for mixture component i



Practical Implementation: Extension to mixtures

However: Mixture KL-divergence not usually available - so we can
use an upper bound.

D [F118] < 35 wi [ Dxe(hill8) + In [52; wy exp {~D(hil|1y)} ]|

This estimate is based on the work in (Kolchinsky and Tracey,
2017)



Continuous State Model-Based RL (WIP)

Can we extend to continuous environments?
» value iteration for each state is not viable

> need way to represent continuous state transition model



Continuous State Model-Based RL (WIP)

Continuous state, Model-based RL techniques are usually based on
Gaussian Processes as transition models

A Gaussian Process is a stochastic process GP = {X;} so that any
finite set of values of the process are joint-normally distributed.

With appropriate choice of covariance function K, we can use
them to model prior belief over functions.

Best Examples: PILCO (Deisenroth and Rasmussen, 2011), PDDP
(Pan and Theodorou, 2014)



Continuous State Model-Based RL (WIP)

Stage 1:
Assume a function describing dynamics:

St+1 :f(St, at)
= At Ef(st, at) — St

and then describe prior belief over A:

P(5t+1 - 5t|5t7 at) :N(07 Zt) (12)
or P(5t+1|5t7 at) :N(/’Lta Zt) (13)
where:

e = se+Ef[Ay]
¥;: = Vars[A¢] (the variance implied by the Gaussian process)



Continuous State Model-Based RL (WIP)

This is a Gaussian process prior over A;. We train it using the
transitions {s;11 — ¢, a¢}, from D as before (e.g., data from a
sequence of airline’s pricing decisions and observables).

Stage 2:

Use the learnt dynamics model to build a local value function
estimate around a nominal trajectory - follows the technique in
(Pan and Theodorou, 2014)



Continuous State Model-Based RL (WIP)

Stage 3:

Minimise this value function estimate w.r.t the dynamics model
within a given KL-divergence of our learnt dynamics model.

Problem: we want to evaluate

T
( ]Eng'P [Z r\St, dt, St+1 ] (14)
t=0



Continuous State Model-Based RL (WIP)

With Gaussian Process dynamics model,

p(st+1lse; ar) = N (pe, 2¢)

But
p(5t+i|5ta at) #N (Mn Zt)
where i = 2,3,4, ...

(15)

(16)



Continuous State Model-Based RL (WIP)

To see why, note the following diagram (from (Deisenroth and
Rasmussen, 2011))

0
Xy y)

Figure: Gaussian process propagation



Continuous State Model-Based RL (WIP)

How to solve this?

» Assume a moment-matched Gaussian (technique used by (Pan
and Theodorou, 2014; Deisenroth and Rasmussen, 2011) )

» OR perhaps estimate this density another way?

Current working idea: use Hermite functions to estimate the
density to get good value function estimates



Continuous State Model-Based RL (WIP)

Thank you very much for your time!
Happy to discuss any of the ideas herein with you - you may email
me at william.greenall.19@ucl.ac.uk
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