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High-level summaryHigh-level summary

Why this is a challenging problem:

Transition densities generally intractable.
Necessitates using a time-discretisation.
Resulting latent space very high-dimensional.
Strong dependencies between variables.

Task: infer the posterior on the parameters of a
diffusion given partial observations at  times.T
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Sketch of proposed approachSketch of proposed approach
1. Formulate generative model as a differentiable

map from latent variables to observations.
2. Recognise posterior as a distribution with known

density on an embedded manifold.
3. Apply constrained Hamiltonian Monte Carlo

method to sample from posterior.
4. Exploit Markovian structure of diffusions to

reduce  constrained HMC cost to .( )Õ T3 (T)Õ
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DiffusionsDiffusions
Model defined by stochastic differential equation
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DiffusionsDiffusions

Solutions define a family of Markov kernels 

Model defined by stochastic differential equation

d = a( , z) dτ + B( , z) d ∀τ ∈ T ,xτ xτ xτ wτ

-dimensional state process ,X xT

-dimensional Wiener noise process ,W wT

-dimensional parameters .Z z

κT

| ( = x, z = z) ∼ (x, z) ∀τ ∈ T .xτ x0 κτ

4



Example applicationsExample applications

Many real-world processes with noisy dynamics
can be modelled as diffusions, e.g.

5



Example applicationsExample applications

Many real-world processes with noisy dynamics
can be modelled as diffusions, e.g.

neuronal dynamics with stochastic ion channels,

5



Example applicationsExample applications

Many real-world processes with noisy dynamics
can be modelled as diffusions, e.g.

neuronal dynamics with stochastic ion channels,
biochemical reaction networks,

5



Example applicationsExample applications

Many real-world processes with noisy dynamics
can be modelled as diffusions, e.g.

neuronal dynamics with stochastic ion channels,
biochemical reaction networks,
electrical circuits subject to thermal noise.
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Parameter inferenceParameter inference

A common task is given partial observations  of
the process  at discrete times to infer the

posterior distribution of the model parameters .

y1:T

xT

z
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Parameter inferenceParameter inference

Concentrate on case where 
with  potentially non-linear and .

= h( ) ∀t ∈ 1:Tyt xΔt

h : →R
X

R
Y

Y < X
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Parameter inferenceParameter inference

Simple to extend to noisy observations. Manifold
MCMC methods particularly advantageous in small

noise regime (Au, Graham & Thiery, 2020).
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Prior generative modelPrior generative model

 ν 

  x 0   x Δ   x T Δ 

  y 1 

  x 2Δ 

  y 2   y T 

 μ 
 z 

 h  h  h 
  κ Δ   κ Δ   κ Δ 

Parameters  and initial state  given priorsz x0

z ∼ μ, ∼ ν(z).x0
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Prior generative modelPrior generative model

 ν 

  x 0   x Δ   x T Δ 

  y 1 

  x 2Δ 

  y 2   y T 

 μ 
 z 

 h  h  h 
  κ Δ   κ Δ   κ Δ 

State observed at  equispaced times T = tΔτt

∼ ( , z) ∀t ∈ 1:TxtΔ κΔ x(t−1)Δ
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Prior generative modelPrior generative model

 ν 

  x 0   x Δ   x T Δ 

  y 1 

  x 2Δ 

  y 2   y T 

 μ 
 z 

 h  h  h 
  κ Δ   κ Δ   κ Δ 

(dz, d , d ) =π̄0 x0 x(1:T)Δ

μ(dz)ν(d | z) (d | )x0 ∏
t=1

T

κδ xtΔ x(t−1)Δ
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Prior generative modelPrior generative model

 ν 

  x 0   x Δ   x T Δ 

  y 1 

  x 2Δ 

  y 2   y T 

 μ 
 z 

 h  h  h 
  κ Δ   κ Δ   κ Δ 

However typically we can neither exactly sample
from  nor evaluate its density.κΔ
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Data augmentationData augmentation  
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

We instead use a numerical integration scheme -
defines a kernel  for small time step .≈κ~δ κδ δ
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Data augmentationData augmentation  
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

Split each inter-observation interval into  steps 
 with approximation error  as .

S

δ = Δ
S

→ 0 S → ∞
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Data augmentationData augmentation  
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

For small  states and parameters highly correlated
 challenging for MCMC.

δ

⟹
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Data augmentationData augmentation  
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

Further  may not have a tractable density
function in some cases.

κ~δ
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Noise parameterisationNoise parameterisation  
(Chib, Pitt & Shepard, 2004)(Chib, Pitt & Shepard, 2004)

Typically  defined via a generative processκ~δ

v ∼ N (0, ),   x = (x, z, v) ⟹ x ∼ (x, z).IV fδ κ~δ

9 . 1



Noise parameterisationNoise parameterisation  
(Chib, Pitt & Shepard, 2004)(Chib, Pitt & Shepard, 2004)

For example for the Euler-Maruyama method
(x, z, v) = x + δa(x, z) + B(x, z)v.fδ δ

1
2
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Noise parameterisationNoise parameterisation  
(Chib, Pitt & Shepard, 2004)(Chib, Pitt & Shepard, 2004)

We can reparameterise the model in terms of the
random vectors  used to generate .v1:TS xδ

1:TS
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Non-centred reparametrisationNon-centred reparametrisation  
(Papaspiliopoulos, Roberts + Sköld, 2003)(Papaspiliopoulos, Roberts + Sköld, 2003)

Assume that  and  can also be reparametrised
in terms of standard normal vectors  and .

x0 z

v0 u
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Non-centred reparametrisationNon-centred reparametrisation  
(Papaspiliopoulos, Roberts + Sköld, 2003)(Papaspiliopoulos, Roberts + Sköld, 2003)

Prior distribution now product of independent
normal factors. However: how to form posterior?
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Differentiable generative modelDifferentiable generative model  
(Graham & Storkey, 2017)(Graham & Storkey, 2017)

Observations are computed as a deterministic
function of latent inputs with tractable prior density
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Differentiable generative modelDifferentiable generative model  
(Graham & Storkey, 2017)(Graham & Storkey, 2017)

Observations are computed as a deterministic
function of latent inputs with tractable prior density

 

Assume that  is differentiable and
has a surjective differential almost everywhere.

Q = Z + X + STV and = TY.Ȳ

: →gȳ R
Q

R
Ȳ

9 . 3
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Posterior on a manifold Posterior on a manifold (Diaconis+, 2011)(Diaconis+, 2011)

Posterior  on  supported on implicitly
defined manifold .

π q | =ȳ ȳ

( ) = {q ∈ : (q) = }g−1
ȳ ȳ R

Q gȳ ȳ
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Posterior  on  supported on implicitly
defined manifold .

π q | =ȳ ȳ

( ) = {q ∈ : (q) = }g−1
ȳ ȳ R

Q gȳ ȳ

 has zero Lebesgue measure  has no
density with respect to Lebesgue measure on .

( )g−1
ȳ ȳ ⟹ π

R
Q
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Posterior on a manifold Posterior on a manifold (Diaconis+, 2011)(Diaconis+, 2011)

Posterior  on  supported on implicitly
defined manifold .

π q | =ȳ ȳ

( ) = {q ∈ : (q) = }g−1
ȳ ȳ R

Q gȳ ȳ

However  has a density with respect to , the 
 dimensional Hausdorff measure on 
π ηD

Q

D = Q − Ȳ R
Q

(q) ∝ exp(−ϕ(q))𝟙 (q),
dπ

dηD
Q

( )g−1
ȳ

ȳ
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Posterior on a manifold Posterior on a manifold (Diaconis+, 2011)(Diaconis+, 2011)

Posterior  on  supported on implicitly
defined manifold .

π q | =ȳ ȳ

( ) = {q ∈ : (q) = }g−1
ȳ ȳ R

Q gȳ ȳ

However  has a density with respect to , the 
 dimensional Hausdorff measure on 
π ηD

Q

D = Q − Ȳ R
Q

(q) ∝ exp(−ϕ(q))𝟙 (q),
dπ

dηD
Q

( )g−1
ȳ

ȳ

ϕ(q) = q + log ∂ (q) ∂ (q .
1

2
qT 1

2
∣∣ gȳ gȳ )T∣∣
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Constrained Hamiltonian Monte CarloConstrained Hamiltonian Monte Carlo  
(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)
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Constrained Hamiltonian Monte CarloConstrained Hamiltonian Monte Carlo  
(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)

MCMC method based on simulating a constrained
Hamiltonian dynamic defined by DAEs

= p,   = − ∇ϕ(q + ∂ (q λ,   (q) = ,q̇ ṗ )T gȳ )T gȳ ȳ

Simulate using a constraint-preserving symplectic
integrator such as RATTLE (Andersen, 1983).
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Constrained Hamiltonian Monte CarloConstrained Hamiltonian Monte Carlo  
(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)(Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)

MCMC method based on simulating a constrained
Hamiltonian dynamic defined by DAEs

= p,   = − ∇ϕ(q + ∂ (q λ,   (q) = ,q̇ ṗ )T gȳ )T gȳ ȳ

To enforce constraints in each step solve  non-
linear equations to project  on to manifold and 

linear equations to project  on to cotangent
space.

Ȳ

q Ȳ

p
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Constrained HMC implementationConstrained HMC implementation
12



Constrained HMC implementationConstrained HMC implementation

Manifold MCMC methods in Python

Available on Github at  or

pip install mici
git.io/mici.py
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Constrained HMC computational costConstrained HMC computational cost
Dominant costs are evaluating 

Jacobian  and Gram matrix .
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∂ (q)gȳ ∂ (q) ∂ (qgȳ gȳ )T
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Constrained HMC computational costConstrained HMC computational cost

As  has limited sparsity, evaluating 
 is .

Dominant costs are evaluating 
Jacobian  and Gram matrix .

O(T) × O(ST)
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Blocking schemeBlocking scheme
However by exploiting Markovianity can reduce

complexity to linear in  and .S T
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Blocking schemeBlocking scheme
For adjacent pairs of observation times we

condition on the second full latent state of the pair.
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Blocking schemeBlocking scheme
Generalise by splitting into subsequences or blocks

of  observation times.R
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Blocking schemeBlocking scheme
Group the noise vectors and observations /

conditioned states in each block.
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Blocking schemeBlocking scheme
Each 'observation' block then only depends on the

correspond noise vector block and parameters.
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Blocking schemeBlocking scheme
For 'blocked' generator , evaluation of  is 

 and  is  cost.
gȳ:

∂ (q)gȳ:

O(RST) ∂ (q) ∂ (qgȳ:
gȳ:

)T O( ST)R2
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Blocking schemeBlocking scheme
Blocking strategy similar to that used in methods
using Gibbs updates, e.g. Golightly & Wilkinson (2006).
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Blocking schemeBlocking scheme
In practice need to alternate updates using two

blocking partitions for ergodicity.
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FitzHugh-Nagumo exampleFitzHugh-Nagumo example
Simplified neural model defined by hypoelliptic

system of stochastic differential equations

[ ] = [ ] dτ + [ ] dw.
dx0

dx1

( − − )ϵ−1 x1 x3
2 x2

γ − + βx1 x2

0

σ
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FitzHugh-Nagumo exampleFitzHugh-Nagumo example

Weakly informative priors on  & .

Simplified neural model defined by hypoelliptic
system of stochastic differential equations

[ ] = [ ] dτ + [ ] dw.
dx0

dx1

( − − )ϵ−1 x1 x3
2 x2

γ − + βx1 x2

0

σ

z = [σ;  ϵ;  γ;  β] x0
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FitzHugh-Nagumo exampleFitzHugh-Nagumo example

Observations  with .

Simplified neural model defined by hypoelliptic
system of stochastic differential equations

[ ] = [ ] dτ + [ ] dw.
dx0

dx1

( − − )ϵ−1 x1 x3
2 x2

γ − + βx1 x2

0

σ

Weakly informative priors on  & .z = [σ;  ϵ;  γ;  β] x0

=   ∀t ∈ 1:Tyt x0,Δt Δ = 0.5

14



FitzHugh-Nagumo exampleFitzHugh-Nagumo example

Observations  with .

Use strong-order 1.5 Taylor scheme for time-
discretisation  with .

Simplified neural model defined by hypoelliptic
system of stochastic differential equations

[ ] = [ ] dτ + [ ] dw.
dx0

dx1

( − − )ϵ−1 x1 x3
2 x2

γ − + βx1 x2

0

σ

Weakly informative priors on  & .z = [σ;  ϵ;  γ;  β] x0

=   ∀t ∈ 1:Tyt x0,Δt Δ = 0.5

xδ
1:ST

δ = Δ
S

14



Simulated data Simulated data  and  and TT == 400400 SS == 2525
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ExperimentsExperiments
Measure average wall-clock time per integrator

step  and per effective sample  for

1.  and fixed .
2.  and fixed .

τ̂ step τ̂ eff

S ∈ {25, 50, 100, 200, 400} T = 100
T ∈ {25, 50, 100, 200, 400} S = 25
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ExperimentsExperiments
Measure average wall-clock time per integrator

step  and per effective sample  for

1.  and fixed .
2.  and fixed .

In both cases use a fixed block size of .

τ̂ step τ̂ eff

S ∈ {25, 50, 100, 200, 400} T = 100
T ∈ {25, 50, 100, 200, 400} S = 25

R = 5
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Compute time per integrator stepCompute time per integrator step
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Compute time per integrator stepCompute time per integrator step

 

Matches with expected  scaling.O(ST)
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Compute time per effective sampleCompute time per effective sample
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Compute time per effective sampleCompute time per effective sample

 

Cf. optimal scaling of  for HMC in
dimension  i.i.d. targets as  (Beskos+, 2013).

O( )D1.25

D D → ∞
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Example posterior marginals Example posterior marginals TT == 100100
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ConclusionsConclusions
Framework for performing inference in partially
observed diffusions with minimal assumptions
required on model and discretisation scheme.
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ConclusionsConclusions

By exploiting Markovian nature of model remains
efficient for large numbers of observation times
and dense time discretisations.

Framework for performing inference in partially
observed diffusions with minimal assumptions
required on model and discretisation scheme.
Jointly updating both parameters and latent
process using a gradient-based constrained
HMC method leads to rapidly mixing chains.
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Thanks for listening!Thanks for listening!
Preprint   

Code   

Slides  

arxiv.org/abs/1912.02982

git.io/m-mcmc

matt-graham.github.io/slides/sde

21

https://arxiv.org/abs/1912.02982
https://git.io/m-mcmc
https://matt-graham.github.io/slides/sde
alexbeskos
Text Box



ReferencesReferences
H. C. Andersen. RATTLE: A 'velocity' version of the SHAKE algorithm for molecular dynamics calculations. Journal of Comp.
Physics, 1983.
G. O. Roberts and O. Stramer. On inference for partially observed non-linear diffusion models using the Metropolis-Hastings
algorithm. Biometrika, 2001.
O. Elerian, S. Chib and N. Shephard. Likelihood inference for discretely observed nonlinear diffusions. Econometrica, 2001.
O. Papaspiliopoulos, G. O. Roberts and M. Sköld. Non-centered parameterizations for hierarchical models and data
augmentation. Bayesian Statistics, 2003.
A. Beskos, N. Pillai, G. Roberts, J.M. Sanz-Serna and A. Stuart. Optimal tuning of the hybrid Monte Carlo algorithm. Bernoulli,
2013.
S. Chib, M. K. Pitt and N. Shephard. Likelihood based inference for diffusion driven models. Economic Papers - Nuffield
College, 2004.
C. Hartmann and C. Schutte. A constrained hybrid Monte Carlo algorithm and the problem of calculating the free energy in
several variables. ZAMM-Zeitschrift für Angewandte Mathematik, 2005.
A. Golightly and D. J. Wilkinson. Bayesian sequential inference for non-linear multivariate diffusions. Statistics and
Computing, 2006.
P. Diaconis, S. Holmes and M. Shahshahani. Sampling from a Manifold. Advances in Modern Statistical Theory and
Applications, 2013.
M. A. Brubaker, M. Saelzmann and R. Urtasun. A family of MCMC methods on implicitly defined manifolds. AISTATS, 2012.
M. M. Graham and A. J. Storkey. Asymptotically exact inference in differentiable generative models. Electronic Journal of
Statistics, 2017.
T. Lelièvre, M. Rousset and G. Stoltz. Hybrid Monte Carlo methods for sampling probability measures on submanifolds.
Numerische Mathematik, 2019.
K. X. Au, M. M. Graham and A. H. Thiery. Manifold lifting: scaling MCMC methods to the vanishing noise regime.
arXiv:2003.03950, 2020.

22




