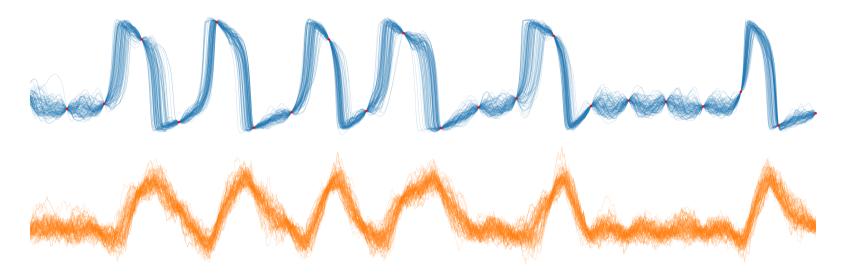
Manifold MCMC methods for inference in diffusion models



Alexandros Beskos, University College London

Joint work with Matt Graham (UCL) and Alexandre Thiery (NUS)

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

Why this is a challenging problem:

• Transition densities generally intractable.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

- Transition densities generally intractable.
- Necessitates using a time-discretisation.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

- Transition densities generally intractable.
- Necessitates using a time-discretisation.
- Resulting latent space very high-dimensional.

Task: infer the posterior on the parameters of a diffusion given partial observations at T times.

- Transition densities generally intractable.
- Necessitates using a time-discretisation.
- Resulting latent space very high-dimensional.
- Strong dependencies between variables.

1. Formulate generative model as a differentiable map from latent variables to observations.

- 1. Formulate generative model as a differentiable map from latent variables to observations.
- 2. Recognise posterior as a distribution with known density on an embedded manifold.

- 1. Formulate generative model as a differentiable map from latent variables to observations.
- 2. Recognise posterior as a distribution with known density on an embedded manifold.
- 3. Apply constrained Hamiltonian Monte Carlo method to sample from posterior.

- 1. Formulate generative model as a differentiable map from latent variables to observations.
- 2. Recognise posterior as a distribution with known density on an embedded manifold.
- 3. Apply constrained Hamiltonian Monte Carlo method to sample from posterior.
- 4. Exploit Markovian structure of diffusions to reduce $\widetilde{\mathcal{O}}(T^3)$ constrained HMC cost to $\widetilde{\mathcal{O}}(T)$.

Model defined by stochastic differential equation

$$\mathrm{d} \mathbf{x}_{\tau} = \boldsymbol{a}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d} \tau + \boldsymbol{B}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d} \mathbf{w}_{\tau} \quad \forall \tau \in \mathcal{T},$$

Model defined by stochastic differential equation

$$\mathrm{d} \mathbf{x}_{\tau} = \boldsymbol{a}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d} \tau + \boldsymbol{B}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d} \mathbf{w}_{\tau} \quad \forall \tau \in \mathcal{T},$$

• X-dimensional state process $\mathbf{x}_{\mathcal{T}}$,

Model defined by stochastic differential equation

$$\mathrm{d}\mathbf{x}_{\tau} = \boldsymbol{a}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\tau + \boldsymbol{B}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\mathbf{w}_{\tau} \quad \forall \tau \in \mathcal{T},$$

- X-dimensional state process $\mathbf{x}_{\mathcal{T}}$,
- W-dimensional Wiener noise process $\mathbf{w}_{\mathcal{T}}$,

Model defined by stochastic differential equation

$$\mathrm{d}\mathbf{x}_{\tau} = \boldsymbol{a}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\tau + \boldsymbol{B}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\mathbf{w}_{\tau} \quad \forall \tau \in \mathcal{T},$$

- X-dimensional state process $\mathbf{x}_{\mathcal{T}}$,
- W-dimensional Wiener noise process $\mathbf{w}_{\mathcal{T}}$,
- Z-dimensional parameters z.

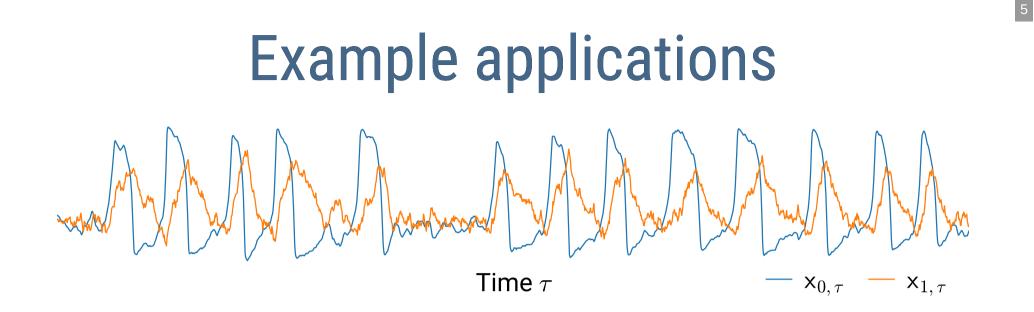
Model defined by stochastic differential equation

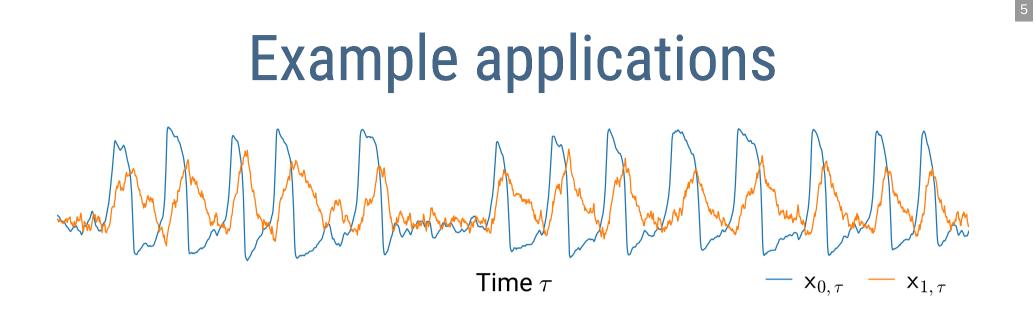
 $\mathrm{d}\mathbf{x}_{\tau} = \boldsymbol{a}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\tau + \boldsymbol{B}(\mathbf{x}_{\tau}, \mathbf{z}) \,\mathrm{d}\mathbf{w}_{\tau} \quad \forall \tau \in \mathcal{T},$

- X-dimensional state process $\mathbf{x}_{\mathcal{T}}$,
- W-dimensional Wiener noise process $w_{\mathcal{T}}$,
- Z-dimensional parameters z.

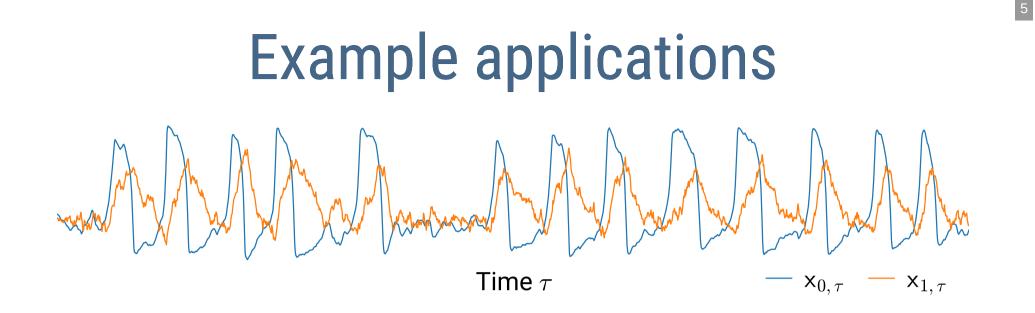
Solutions define a family of Markov kernels $\kappa_{\mathcal{T}}$

$$old {x}_{ au} \mid (old {x}_0 = oldsymbol{x}, old {z} = oldsymbol{z}) \sim \kappa_{ au}(oldsymbol{x}, oldsymbol{z}) \quad orall au \in \mathcal{T}.$$

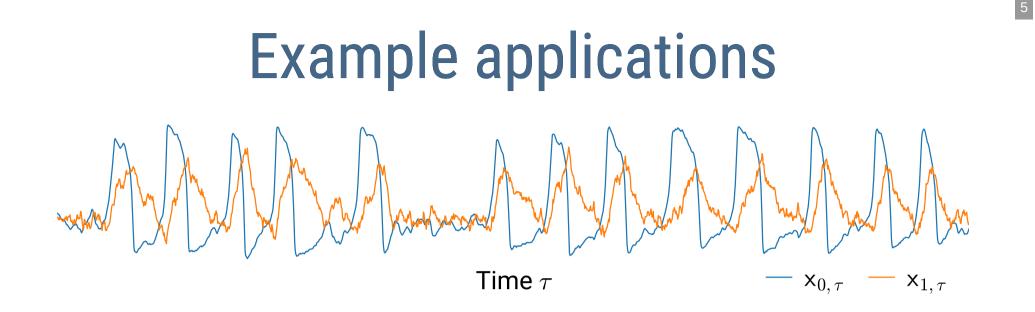




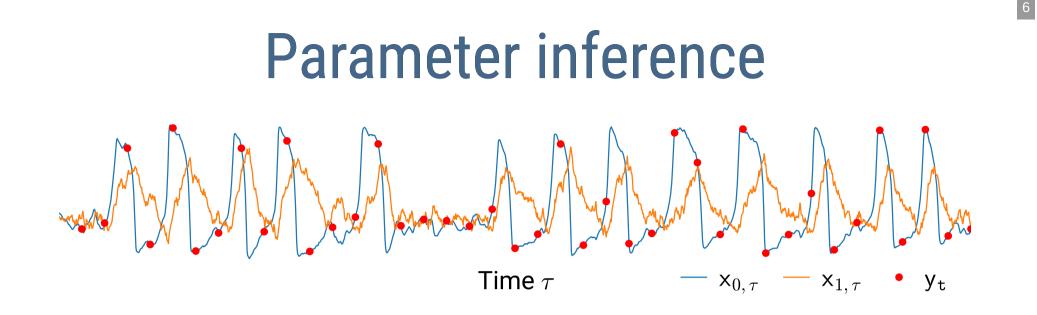
neuronal dynamics with stochastic ion channels,



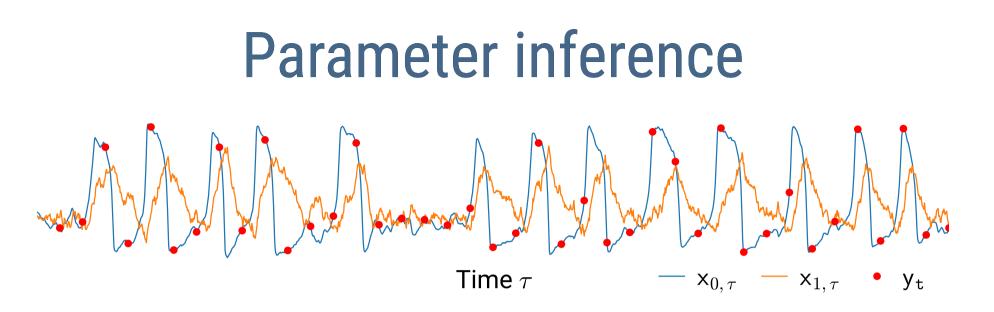
- neuronal dynamics with stochastic ion channels,
- biochemical reaction networks,



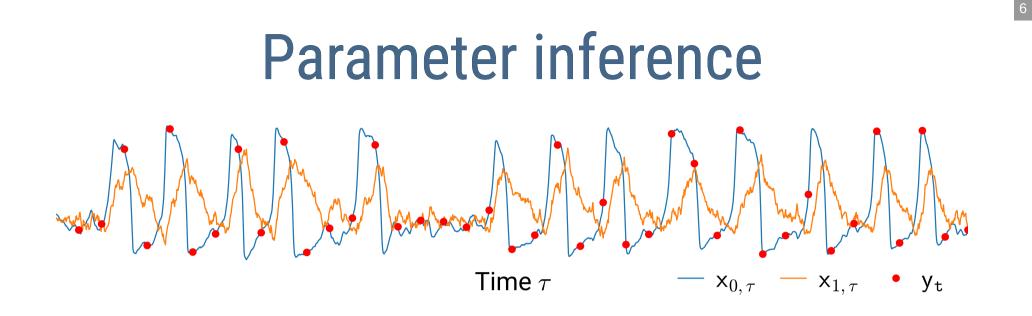
- neuronal dynamics with stochastic ion channels,
- biochemical reaction networks,
- electrical circuits subject to thermal noise.



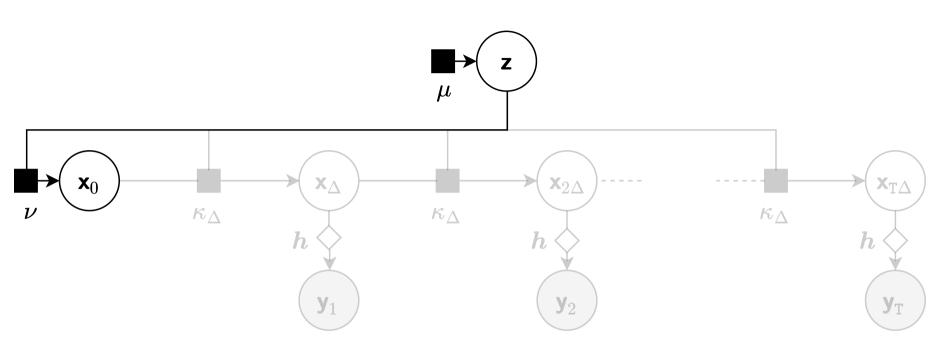
A common task is given partial observations $\mathbf{y}_{1:T}$ of the process $\mathbf{x}_{\mathcal{T}}$ at discrete times to infer the posterior distribution of the model parameters \mathbf{z} .



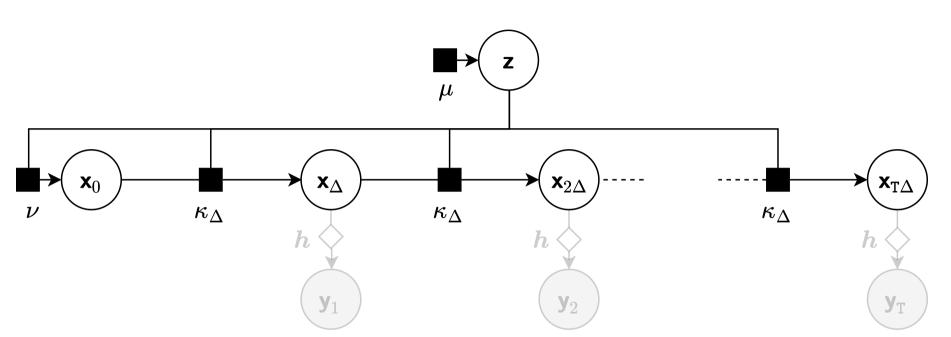
Concentrate on case where $\mathbf{y}_t = \mathbf{h}(\mathbf{x}_{\Delta t}) \ \forall t \in 1:T$ with $\mathbf{h} : \mathbb{R}^X \to \mathbb{R}^Y$ potentially non-linear and Y < X.



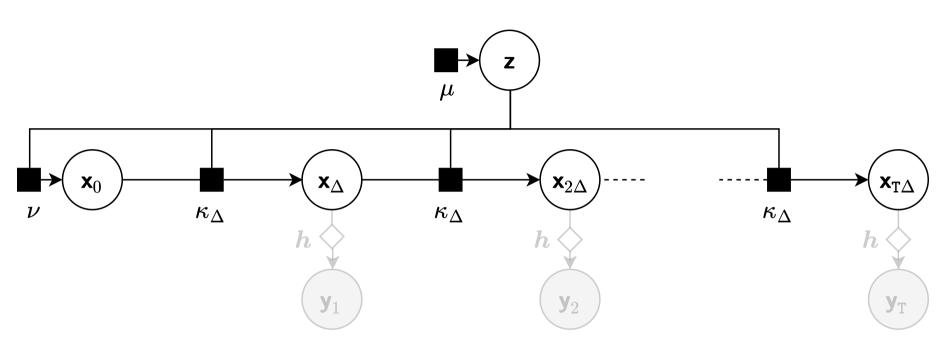
Simple to extend to noisy observations. Manifold MCMC methods particularly advantageous in small noise regime (Au, Graham & Thiery, 2020).



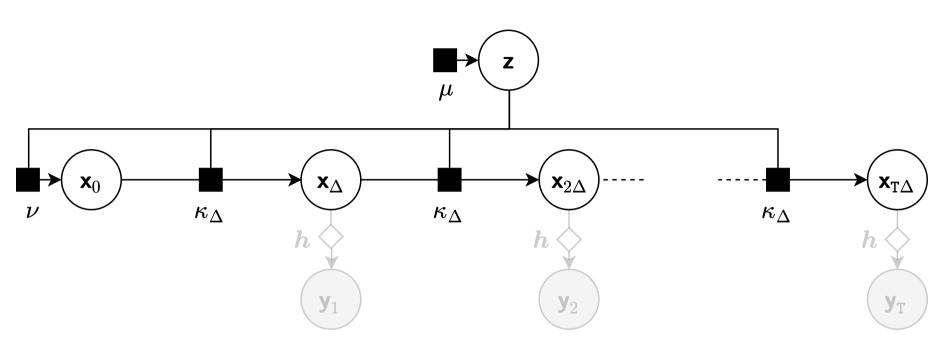
Parameters **z** and initial state \mathbf{x}_0 given priors $\mathbf{z} \sim \mu, \quad \mathbf{x}_0 \sim \nu(\mathbf{z}).$



 $\begin{array}{ll} \text{State observed at T equispaced times } \tau_{\texttt{t}} = \texttt{t}\Delta \\ \textbf{x}_{\texttt{t}\Delta} \sim \kappa_\Delta(\textbf{x}_{(\texttt{t}-1)\Delta}, \textbf{z}) & \forall \texttt{t} \in 1 \text{:T} \end{array}$



$$ar{\pi}_0(\mathrm{d}oldsymbol{z},\mathrm{d}oldsymbol{x}_0,\mathrm{d}oldsymbol{x}_{(1: extsf{T})\Delta}) = \ \mu(\mathrm{d}oldsymbol{z})
u(\mathrm{d}oldsymbol{x}_0 \,|\,oldsymbol{z}) \prod_{ extsf{t}=1}^{ extsf{T}} \kappa_\delta(\mathrm{d}oldsymbol{x}_{ extsf{t}\Delta} \,|\,oldsymbol{x}_{(extsf{t}-1)\Delta})$$



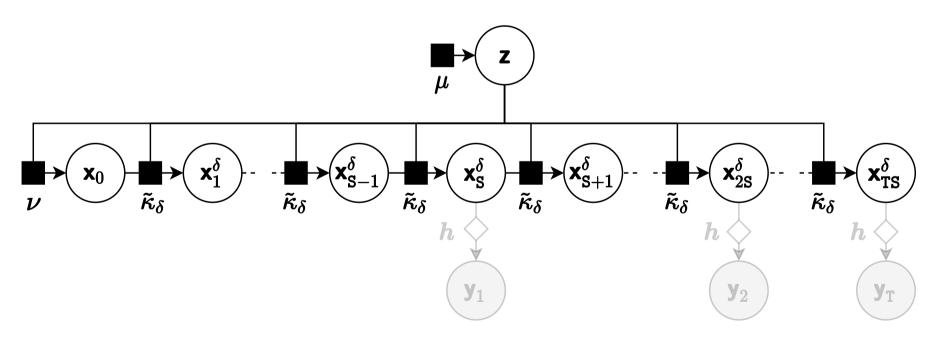
However typically we can neither exactly sample from κ_{Δ} nor evaluate its density.

(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

We instead use a numerical integration scheme - defines a kernel $\tilde{\kappa}_{\delta} \approx \kappa_{\delta}$ for small time step δ .

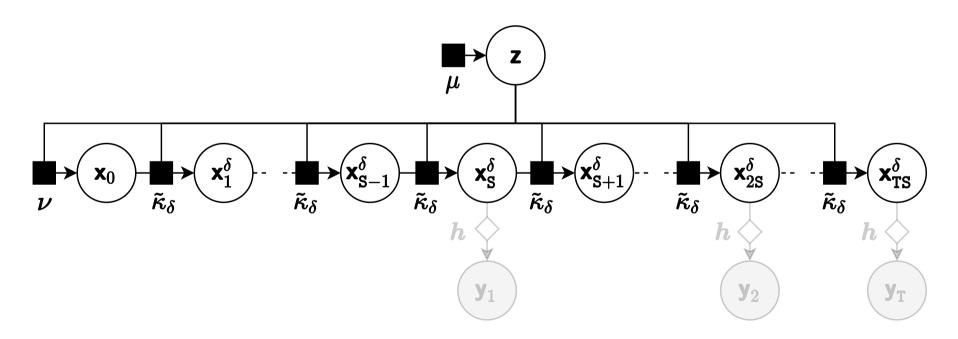
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

Split each inter-observation interval into S steps $\delta = \frac{\Delta}{s}$ with approximation error $\rightarrow 0$ as $S \rightarrow \infty$.



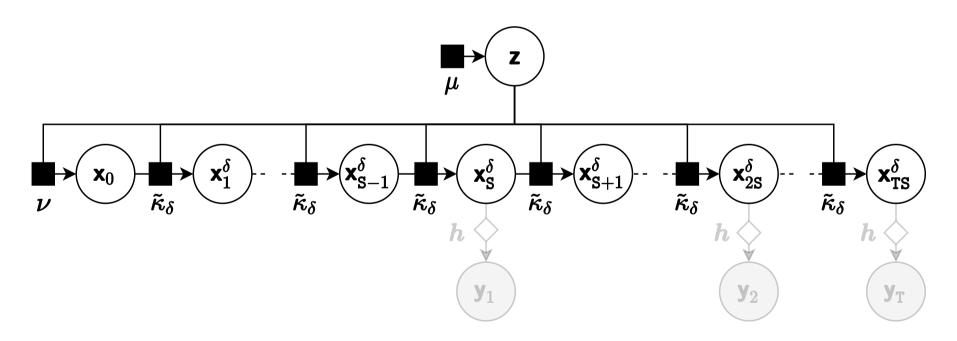
(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

For small δ states and parameters highly correlated \implies challenging for MCMC.



(Roberts & Stramer, 2001; Elerian, Chib + Shepard, 2001)

Further $\tilde{\kappa}_{\delta}$ may not have a tractable density function in some cases.



Noise parameterisation

(Chib, Pitt & Shepard, 2004)

Typically $\tilde{\kappa}_{\delta}$ defined via a generative process $\mathbf{v} \sim \mathcal{N}(\mathbf{0}, \mathbb{I}_{\mathbf{v}}), \ \mathbf{x} = \boldsymbol{f}_{\delta}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{v}) \implies \mathbf{x} \sim \tilde{\kappa}_{\delta}(\boldsymbol{x}, \boldsymbol{z}).$

Noise parameterisation

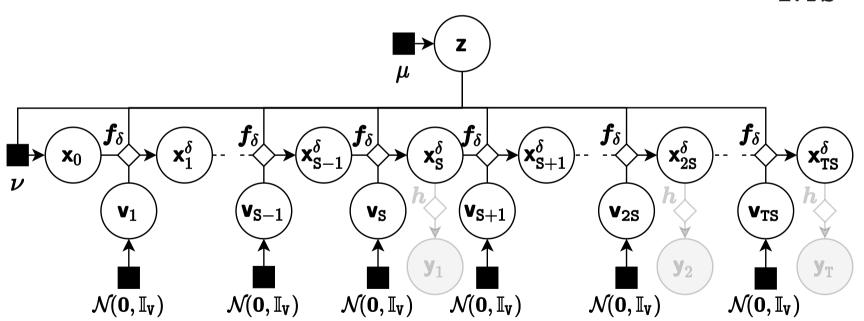
(Chib, Pitt & Shepard, 2004)

For example for the Euler-Maruyama method $oldsymbol{f}_{\delta}(oldsymbol{x},oldsymbol{z},oldsymbol{v}) = oldsymbol{x} + \delta oldsymbol{a}(oldsymbol{x},oldsymbol{z}) + \delta^{rac{1}{2}} oldsymbol{B}(oldsymbol{x},oldsymbol{z}) oldsymbol{v}.$

Noise parameterisation

(Chib, Pitt & Shepard, 2004)

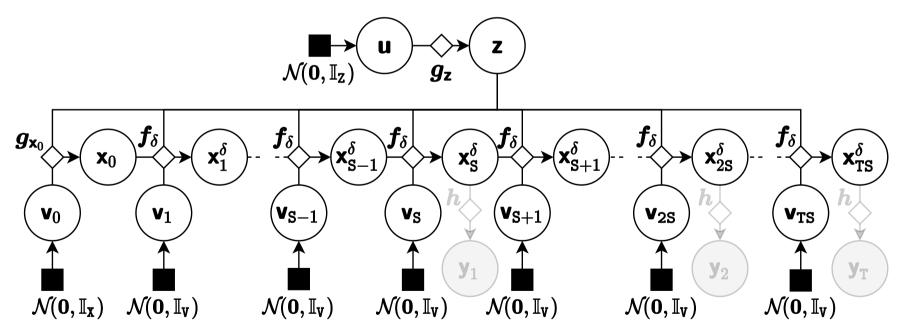
We can reparameterise the model in terms of the random vectors $\mathbf{v}_{1:TS}$ used to generate $\mathbf{x}_{1:TS}^{\delta}$.



Non-centred reparametrisation

(Papaspiliopoulos, Roberts + Sköld, 2003)

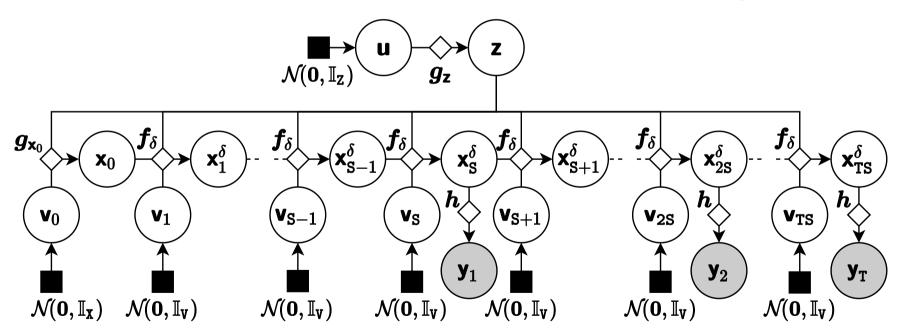
Assume that \mathbf{x}_0 and \mathbf{z} can also be reparametrised in terms of standard normal vectors \mathbf{v}_0 and \mathbf{u} .



Non-centred reparametrisation

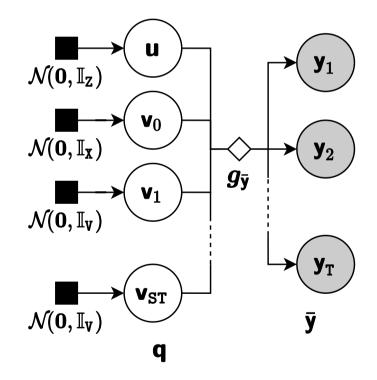
(Papaspiliopoulos, Roberts + Sköld, 2003)

Prior distribution now product of independent normal factors. *However*: how to form posterior?



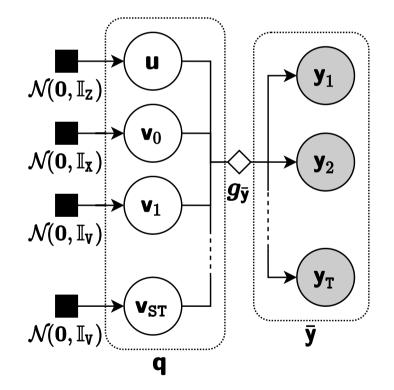
Differentiable generative model (Graham & Storkey, 2017)

Observations are computed as a deterministic function of latent inputs with tractable prior density



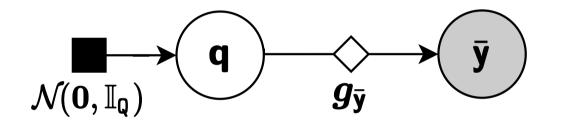
Differentiable generative model (Graham & Storkey, 2017)

Observations are computed as a deterministic function of latent inputs with tractable prior density



Differentiable generative model (Graham & Storkey, 2017)

Observations are computed as a deterministic function of latent inputs with tractable prior density



Q = Z + X + STV and $\overline{Y} = TY$.

Assume that $g_{\bar{y}} : \mathbb{R}^{\mathbb{Q}} \to \mathbb{R}^{\bar{Y}}$ is differentiable and has a surjective differential almost everywhere.

Posterior on a manifold (Diaconis+, 2011) Posterior π on $\mathbf{q} \mid \bar{\mathbf{y}} = \bar{\mathbf{y}}$ supported on implicitly defined manifold $g_{\bar{\mathbf{y}}}^{-1}(\bar{\mathbf{y}}) = \{\mathbf{q} \in \mathbb{R}^{\mathbb{Q}} : g_{\bar{\mathbf{y}}}(\mathbf{q}) = \bar{\mathbf{y}}\}.$

10

Posterior on a manifold (Diaconis+, 2011)

Posterior π on $\mathbf{q} | \bar{\mathbf{y}} = \bar{\mathbf{y}}$ supported on implicitly defined manifold $g_{\bar{\mathbf{y}}}^{-1}(\bar{\mathbf{y}}) = \{ \mathbf{q} \in \mathbb{R}^{\mathbb{Q}} : g_{\bar{\mathbf{y}}}(\mathbf{q}) = \bar{\mathbf{y}} \}.$

 $g_{\bar{\mathbf{y}}}^{-1}(\bar{\mathbf{y}})$ has zero Lebesgue measure $\implies \pi$ has no density with respect to Lebesgue measure on $\mathbb{R}^{\mathbb{Q}}$.

Posterior on a manifold (Diaconis+, 2011)

Posterior π on $\mathbf{q} \mid \bar{\mathbf{y}} = \bar{\mathbf{y}}$ supported on implicitly defined manifold $g_{\bar{\mathbf{y}}}^{-1}(\bar{\mathbf{y}}) = \{\mathbf{q} \in \mathbb{R}^{\mathsf{Q}} : g_{\bar{\mathbf{y}}}(\mathbf{q}) = \bar{\mathbf{y}}\}.$

However π has a density with respect to η_{Q}^{D} , the $D = Q - \overline{Y}$ dimensional Hausdorff measure on \mathbb{R}^{Q}

$$rac{\mathrm{d}\pi}{\mathrm{d}\eta_{\mathtt{Q}}^{\mathtt{D}}}(oldsymbol{q}) \propto \exp(-\phi(oldsymbol{q}))\,\mathbb{1}_{oldsymbol{g}_{oldsymbol{ar{y}}}^{-1}(oldsymbol{y})}(oldsymbol{q}),$$

Posterior on a manifold (Diaconis+, 2011)

Posterior π on $\mathbf{q} | \bar{\mathbf{y}} = \bar{\mathbf{y}}$ supported on implicitly defined manifold $g_{\bar{\mathbf{y}}}^{-1}(\bar{\mathbf{y}}) = \{ \mathbf{q} \in \mathbb{R}^{\mathbb{Q}} : g_{\bar{\mathbf{y}}}(\mathbf{q}) = \bar{\mathbf{y}} \}.$

However π has a density with respect to η_{Q}^{D} , the $D = Q - \overline{Y}$ dimensional Hausdorff measure on \mathbb{R}^{Q}

$$rac{\mathrm{d}\pi}{\mathrm{d}\eta^{ extsf{D}}_{ extsf{Q}}}(oldsymbol{q}) \propto \exp(-\phi(oldsymbol{q}))\,\mathbb{1}_{oldsymbol{g}_{oldsymbol{ar{y}}}^{-1}(oldsymbol{y})}(oldsymbol{q}), \ \phi(oldsymbol{q}) = rac{1}{2}oldsymbol{q}^{ extsf{T}}oldsymbol{q} + rac{1}{2}\mathrm{log}\,ig|\,\partialoldsymbol{g}_{oldsymbol{ar{y}}}(oldsymbol{q})\,\partialoldsymbol{g}_{oldsymbol{ar{y}}}(oldsymbol{q})^{ extsf{T}}ig|.$$

Constrained Hamiltonian Monte Carlo (Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)

11

Constrained Hamiltonian Monte Carlo (Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019)

MCMC method based on simulating a constrained Hamiltonian dynamic defined by DAEs

$\dot{\boldsymbol{q}} = \boldsymbol{p}, \ \dot{\boldsymbol{p}} = - \nabla \phi(\boldsymbol{q})^{\mathsf{T}} + \partial \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{\lambda}, \ \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q}) = \bar{\boldsymbol{y}},$

Constrained Hamiltonian Monte Carlo (Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019) MCMC method based on simulating a constrained Hamiltonian dynamic defined by DAEs 11

 $\dot{\boldsymbol{q}} = \boldsymbol{p}, \ \dot{\boldsymbol{p}} = -\nabla \phi(\boldsymbol{q})^{\mathsf{T}} + \partial \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{\lambda}, \ \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q}) = \bar{\boldsymbol{y}},$

Simulate using a constraint-preserving symplectic integrator such as RATTLE (Andersen, 1983).

Constrained Hamiltonian Monte Carlo (Hartmann & Schutte, 2005; Brubaker+, 2012; Lelièvre+, 2019) MCMC method based on simulating a constrained Hamiltonian dynamic defined by DAEs

 $\dot{\boldsymbol{q}} = \boldsymbol{p}, \ \dot{\boldsymbol{p}} = -\nabla \phi(\boldsymbol{q})^{\mathsf{T}} + \partial \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q})^{\mathsf{T}} \boldsymbol{\lambda}, \ \boldsymbol{g}_{\bar{\boldsymbol{y}}}(\boldsymbol{q}) = \bar{\boldsymbol{y}},$

To enforce constraints in each step solve \overline{Y} nonlinear equations to project q on to manifold and \overline{Y} linear equations to project p on to cotangent space.

Constrained HMC implementation

Constrained HMC implementation

Manifold MCMC methods in Python

Available on Github at git.io/mici.py or pip install mici

Dominant costs are evaluating $\mathcal{O}(\mathbf{T}) \times \mathcal{O}(\mathbf{ST})$ Jacobian $\partial g_{\bar{\mathbf{y}}}(\boldsymbol{q})$ and Gram matrix $\partial g_{\bar{\mathbf{y}}}(\boldsymbol{q}) \partial g_{\bar{\mathbf{y}}}(\boldsymbol{q})^{\mathsf{T}}$.

Dominant costs are evaluating $\mathcal{O}(\mathbf{T}) \times \mathcal{O}(\mathbf{ST})$ Jacobian $\partial g_{\bar{\mathbf{y}}}(\mathbf{q})$ and Gram matrix $\partial g_{\bar{\mathbf{y}}}(\mathbf{q}) \partial g_{\bar{\mathbf{y}}}(\mathbf{q})^{\mathsf{T}}$.

Using reverse-mode algorithmic differentiation evaluating $\partial g_{\bar{y}}(q)$ costs $\mathcal{O}(T)$ evaluations of $g_{\bar{y}}(q)$.

Dominant costs are evaluating $\mathcal{O}(\mathbf{T}) \times \mathcal{O}(\mathbf{ST})$ Jacobian $\partial g_{\bar{\mathbf{y}}}(\mathbf{q})$ and Gram matrix $\partial g_{\bar{\mathbf{y}}}(\mathbf{q}) \partial g_{\bar{\mathbf{y}}}(\mathbf{q})^{\mathsf{T}}$.

Using reverse-mode algorithmic differentiation evaluating $\partial g_{\bar{y}}(q)$ costs $\mathcal{O}(T)$ evaluations of $g_{\bar{y}}(q)$.

Cost of evaluating $g_{\bar{y}}(q)$ i.e. forward simulating from model is $\mathcal{O}(ST) : \partial g_{\bar{y}}(q)$ has $\mathcal{O}(ST^2)$ cost.

Dominant costs are evaluating $\mathcal{O}(\mathbf{T}) \times \mathcal{O}(\mathbf{ST})$ Jacobian $\partial g_{\bar{\mathbf{y}}}(\mathbf{q})$ and Gram matrix $\partial g_{\bar{\mathbf{y}}}(\mathbf{q}) \partial g_{\bar{\mathbf{y}}}(\mathbf{q})^{\mathsf{T}}$.

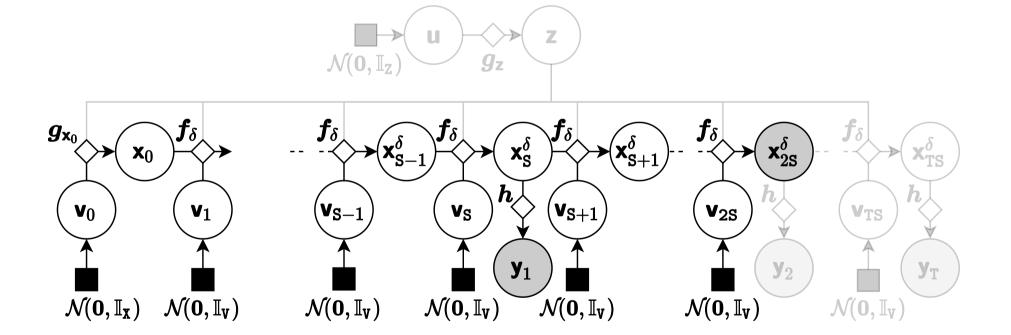
Using reverse-mode algorithmic differentiation evaluating $\partial g_{\bar{y}}(q)$ costs $\mathcal{O}(T)$ evaluations of $g_{\bar{y}}(q)$.

Cost of evaluating $g_{\bar{y}}(q)$ i.e. forward simulating from model is $\mathcal{O}(ST)$. $\partial g_{\bar{y}}(q)$ has $\mathcal{O}(ST^2)$ cost.

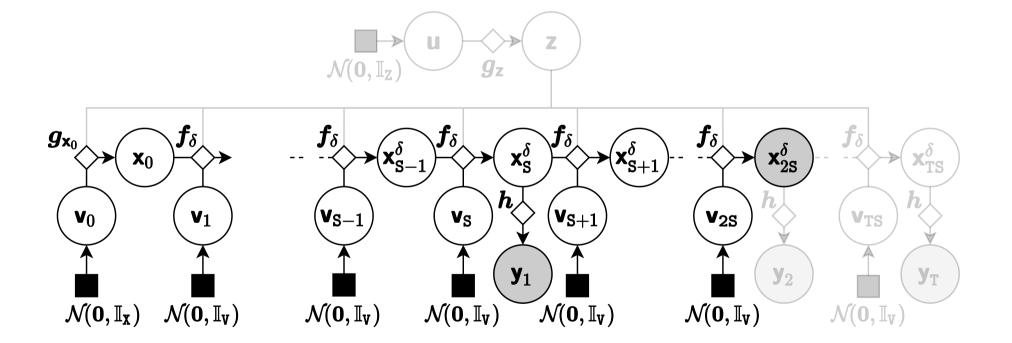
As $\partial g_{\bar{y}}(q)$ has limited sparsity, evaluating $\partial g_{\bar{y}}(q) \partial g_{\bar{y}}(q)^{\mathsf{T}}$ is $\mathcal{O}(ST^3)$.

However by exploiting Markovianity can reduce complexity to linear in S and T.

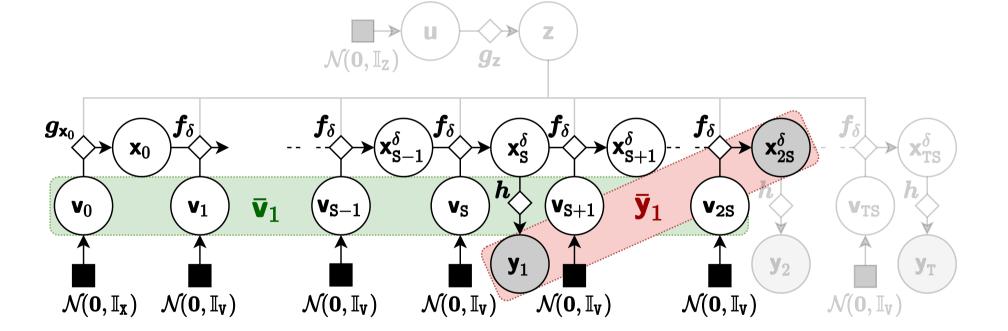
For adjacent pairs of observation times we condition on the second full latent state of the pair.



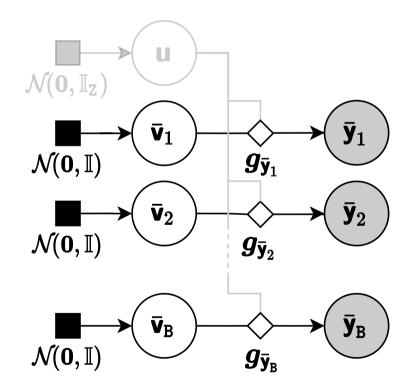
Generalise by splitting into subsequences or *blocks* of R observation times.



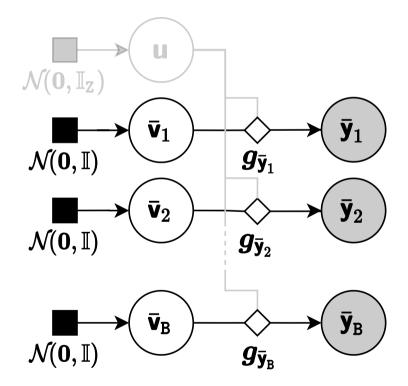
Group the noise vectors and observations / conditioned states in each block.



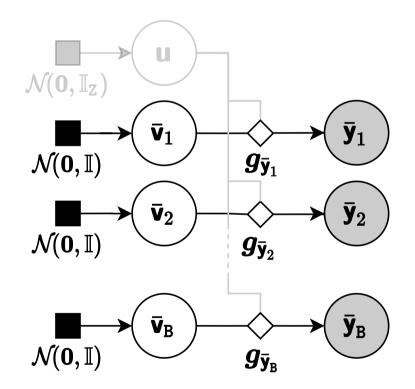
Each 'observation' block then only depends on the correspond noise vector block and parameters.



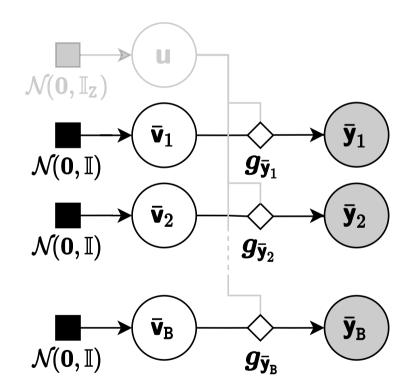
For 'blocked' generator $g_{\bar{y}_{:}}$, evaluation of $\partial g_{\bar{y}_{:}}(q)$ is $\mathcal{O}(RST)$ and $\partial g_{\bar{y}_{:}}(q) \partial g_{\bar{y}_{:}}(q)^{\mathsf{T}}$ is $\mathcal{O}(R^{2}ST)$ cost.



Blocking strategy similar to that used in methods using Gibbs updates, e.g. Golightly & Wilkinson (2006).



In practice need to alternate updates using two blocking partitions for ergodicity.



Simplified neural model defined by hypoelliptic system of stochastic differential equations

$$egin{bmatrix} \mathrm{d} \mathbf{x}_0 \ \mathrm{d} \mathbf{x}_1 \end{bmatrix} = egin{bmatrix} \epsilon^{-1}(\mathbf{x}_1 - \mathbf{x}_2^3 - \mathbf{x}_2) \ \gamma \mathbf{x}_1 - \mathbf{x}_2 + eta \end{bmatrix} \mathrm{d} au + egin{bmatrix} 0 \ \sigma \end{bmatrix} \mathrm{d} \mathbf{w}.$$

Simplified neural model defined by hypoelliptic system of stochastic differential equations

 $\begin{bmatrix} \mathrm{d} \mathsf{x}_0 \\ \mathrm{d} \mathsf{x}_1 \end{bmatrix} = \begin{bmatrix} \epsilon^{-1}(\mathsf{x}_1 - \mathsf{x}_2^3 - \mathsf{x}_2) \\ \gamma \mathsf{x}_1 - \mathsf{x}_2 + \beta \end{bmatrix} \mathrm{d} au + \begin{bmatrix} \mathsf{0} \\ \sigma \end{bmatrix} \mathrm{d} \mathsf{w}.$

Weakly informative priors on $\mathbf{z} = [\sigma; \ \epsilon; \ \gamma; \ \beta] \ \& \ \mathbf{x}_0.$

Simplified neural model defined by hypoelliptic system of stochastic differential equations

 $egin{bmatrix} \mathrm{d} \mathbf{x}_0 \ \mathrm{d} \mathbf{x}_1 \end{bmatrix} = egin{bmatrix} \epsilon^{-1}(\mathbf{x}_1 - \mathbf{x}_2^3 - \mathbf{x}_2) \ \gamma \mathbf{x}_1 - \mathbf{x}_2 + eta \end{bmatrix} \mathrm{d} au + egin{bmatrix} 0 \ \sigma \end{bmatrix} \mathrm{d} \mathbf{w}.$

Weakly informative priors on $\mathbf{z} = [\sigma; \epsilon; \gamma; \beta] \& \mathbf{x}_0$.

Observations $y_{t} = x_{0,\Delta t} ~ \forall t \in 1$:T with $\Delta = 0.5$.

Simplified neural model defined by hypoelliptic system of stochastic differential equations

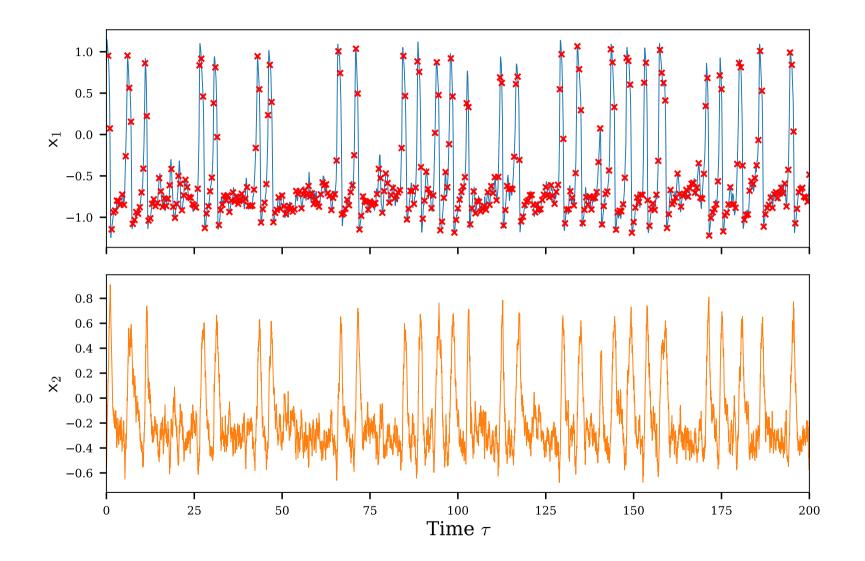
 $\begin{bmatrix} \mathrm{d} \mathsf{x}_0 \\ \mathrm{d} \mathsf{x}_1 \end{bmatrix} = \begin{bmatrix} \epsilon^{-1} (\mathsf{x}_1 - \mathsf{x}_2^3 - \mathsf{x}_2) \\ \gamma \mathsf{x}_1 - \mathsf{x}_2 + \beta \end{bmatrix} \mathrm{d} \tau + \begin{bmatrix} 0 \\ \sigma \end{bmatrix} \mathrm{d} \mathsf{w}.$

Weakly informative priors on $\mathbf{z} = [\sigma; \epsilon; \gamma; \beta] \& \mathbf{x}_0$.

Observations $y_t = x_{0,\Delta t} \ \forall t \in 1$:T with $\Delta = 0.5$.

Use strong-order 1.5 Taylor scheme for time-discretisation $\mathbf{x}_{1:ST}^{\delta}$ with $\delta = \frac{\Delta}{S}$.

Simulated data $\mathtt{T}=400$ and $\mathtt{S}=25$



Experiments

Measure average wall-clock time per integrator step $\hat{\tau}_{step}$ and per effective sample $\hat{\tau}_{eff}$ for

1. $S \in \{25, 50, 100, 200, 400\}$ and fixed T = 100. 2. $T \in \{25, 50, 100, 200, 400\}$ and fixed S = 25.

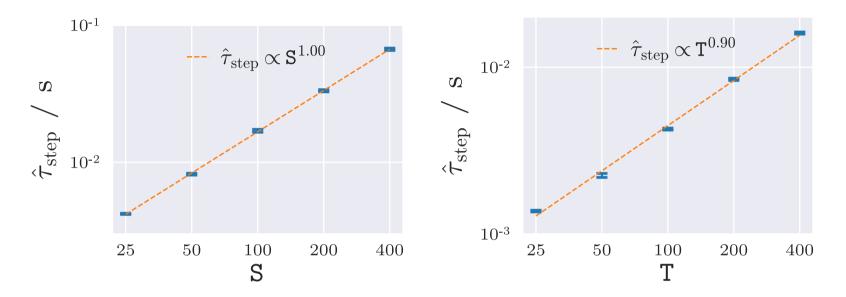
Experiments

Measure average wall-clock time per integrator step $\hat{\tau}_{step}$ and per effective sample $\hat{\tau}_{eff}$ for

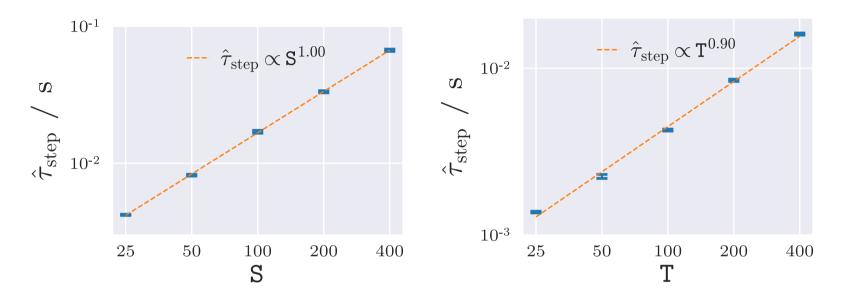
1. $S \in \{25, 50, 100, 200, 400\}$ and fixed T = 100. 2. $T \in \{25, 50, 100, 200, 400\}$ and fixed S = 25.

In both cases use a fixed block size of R = 5.

Compute time per integrator step

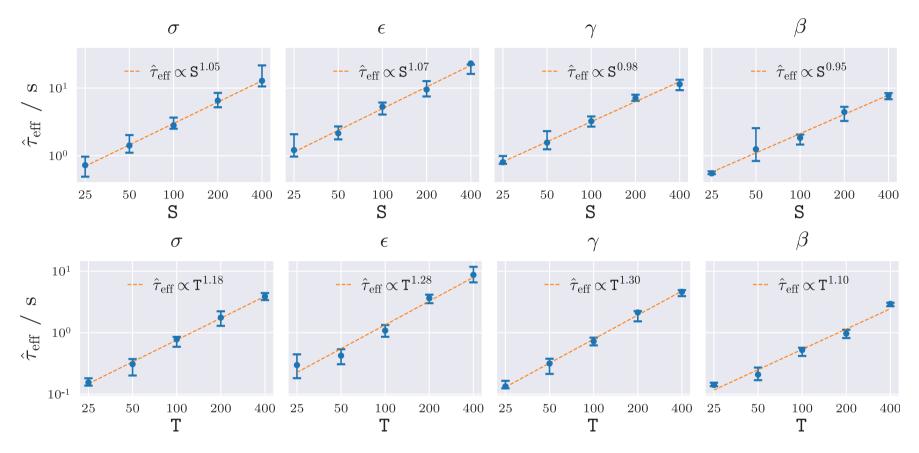


Compute time per integrator step

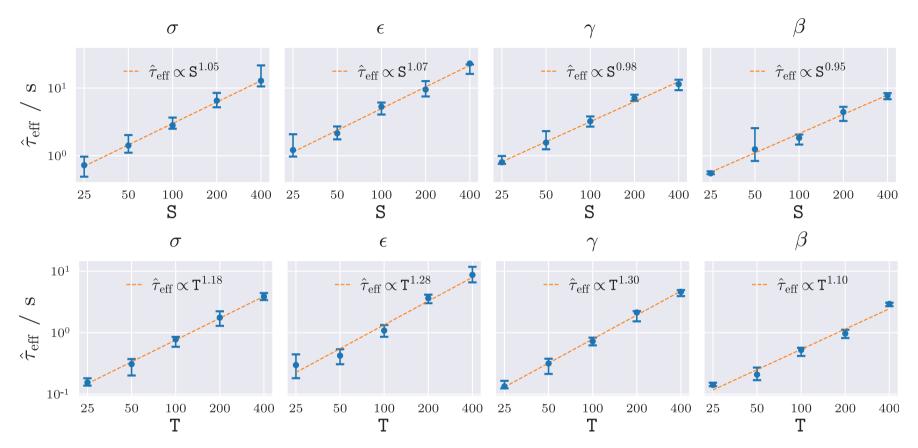


Matches with expected $\mathcal{O}(ST)$ scaling.

Compute time per effective sample

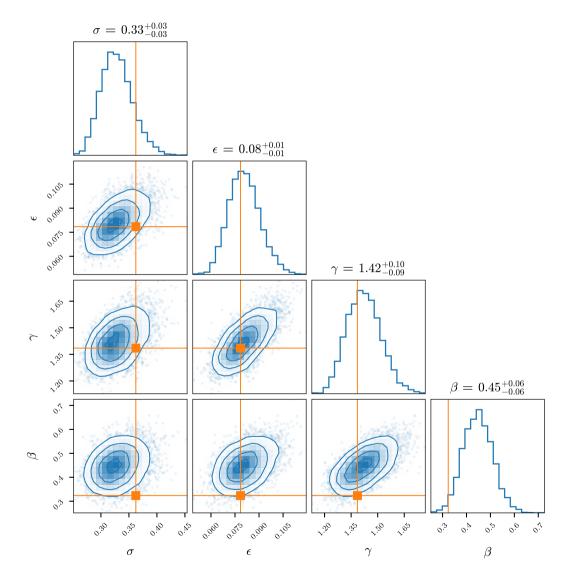


Compute time per effective sample



Cf. optimal scaling of $\mathcal{O}(D^{1.25})$ for HMC in dimension D i.i.d. targets as $D \to \infty$ (Beskos+, 2013).

Example posterior marginals T = 100



Conclusions

• Framework for performing inference in partially observed diffusions with minimal assumptions required on model and discretisation scheme.

Conclusions

- Framework for performing inference in partially observed diffusions with minimal assumptions required on model and discretisation scheme.
- Jointly updating both parameters and latent process using a gradient-based constrained HMC method leads to rapidly mixing chains.

Conclusions

- Framework for performing inference in partially observed diffusions with minimal assumptions required on model and discretisation scheme.
- Jointly updating both parameters and latent process using a gradient-based constrained HMC method leads to rapidly mixing chains.
- By exploiting Markovian nature of model remains efficient for large numbers of observation times and dense time discretisations.

Thanks for listening! Preprint 🖾 arxiv.org/abs/1912.02982 Code 🖓 git.io/m-mcmc

References

- H. C. Andersen. RATTLE: A 'velocity' version of the SHAKE algorithm for molecular dynamics calculations. *Journal of Comp. Physics*, 1983.
- G. O. Roberts and O. Stramer. On inference for partially observed non-linear diffusion models using the Metropolis-Hastings algorithm. *Biometrika*, 2001.
- O. Elerian, S. Chib and N. Shephard. Likelihood inference for discretely observed nonlinear diffusions. *Econometrica*, 2001.
- O. Papaspiliopoulos, G. O. Roberts and M. Sköld. Non-centered parameterizations for hierarchical models and data augmentation. *Bayesian Statistics*, 2003.
- A. Beskos, N. Pillai, G. Roberts, J.M. Sanz-Serna and A. Stuart. Optimal tuning of the hybrid Monte Carlo algorithm. *Bernoulli*, 2013.
- S. Chib, M. K. Pitt and N. Shephard. Likelihood based inference for diffusion driven models. *Economic Papers Nuffield College*, 2004.
- C. Hartmann and C. Schutte. A constrained hybrid Monte Carlo algorithm and the problem of calculating the free energy in several variables. *ZAMM-Zeitschrift für Angewandte Mathematik*, 2005.
- A. Golightly and D. J. Wilkinson. Bayesian sequential inference for non-linear multivariate diffusions. *Statistics and Computing*, 2006.
- P. Diaconis, S. Holmes and M. Shahshahani. Sampling from a Manifold. Advances in Modern Statistical Theory and Applications, 2013.
- M. A. Brubaker, M. Saelzmann and R. Urtasun. A family of MCMC methods on implicitly defined manifolds. AISTATS, 2012.
- M. M. Graham and A. J. Storkey. Asymptotically exact inference in differentiable generative models. *Electronic Journal of Statistics*, 2017.
- T. Lelièvre, M. Rousset and G. Stoltz. Hybrid Monte Carlo methods for sampling probability measures on submanifolds. *Numerische Mathematik*, 2019.
- K. X. Au, M. M. Graham and A. H. Thiery. Manifold lifting: scaling MCMC methods to the vanishing noise regime. *arXiv*:2003.03950, 2020.