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Introduction

It was late 1940s when researchers studying the statistical aspects of
the effectiveness of cancer treatments realized that a non negligible
proportion of patients, after undergoing an appropriate treatment,
were not faced any recurrence of the disease, no matter how long
they have been followed up (Boag, 1949).

The estimation of this proportion became of great importance while
the existed estimation approaches which were based on the num-
ber of patients who remained symptoms free for few years (typically,
three to five years), proved to be ineffective due to, for example, the
long delay, the high average age of patients, etc.
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Introduction

The aim of cure rate models is the study of survival times or gener-
ally, the times till the occurrence of an event.

This event may be:

• the failure of a unit;

• the occurrence/recurrence of a specific problem in a system;

• the occurrence/recurrence of a disease;

• to find the first job after graduation.

Using the models found in traditional survival/reliability/event his-
tory analysis, every item will experience the event of interest, at some
point.

However, cure rate models allow for a proportion of items which will
never experience the event of interest.
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Introduction

Therefore, in cure rate modeling, the population survival function
SP(t) tends to level off at a value greater than zero, as time t goes to
infinity.

Equivalently, the corresponding population cumulative hazard func-
tion HP(t) is bounded, i.e. limt→∞ HP(t) = θ ∈ (0,∞).

Hence,

SP(t) = e−HP(t) = e−θ(1−S(t)),

for some (proper) survival function S(t). Note: limt→∞ SP(t) = exp(−θ).

Known as: or

.

e.g. Cantor and Shuster (1992, SIM), Yakovlev, Cantor and Shus-
ter (1994, SIM), Tsodikov (1998a, BM), and Tsodikov, Ibrahim and
Yakovlev (2003, JASA).
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Introduction

Biological motivation of the BCH model:

• let M denote the number of carcinogenic cells (clonogens;
competing causes) left active after a treatment;

• assume that M follows a Poisson distribution with mean θ;

• let Wi, i = 1,2, . . . denote the time for the ith clonogen to
produce a detectable cancer mass;

• assume that Wi ∼ S(t), are i.i.d. and independent of M ;

• then, letting T = min{W0,W1, . . . ,WM } (convention: W0 =∞
a.s.) be the population time-to-event, we have

T ∼ SP(t) = e−θ(1−S(t)).

The probability someone to be cured is defined as the probability of
the event M = 0, i.e. no clonogens have survived by the end of the
treatment.

6 / 39
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Introduction

The BCH model can easily be generalized by letting M follow any
discrete random variable with support {0,1, . . .} and p.g.f. ϕ(z).

In such a case, the distribution of T = min{W0,W1, . . . ,WM } is given
by

SP(t) =ϕ(S(t)).
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In such a case, the distribution of T = min{W0,W1, . . . ,WM } is given
by

SP(t) =ϕ(S(t)).

M may follow a negative binomial (Castro, Cancho and Ro-
drigues, 2009, BMJ; Ortega et al., 2014, JDS), geometric (Gu,
Sinha and Banerjee, 2011, LDA), COM-Poisson (Rodrigues,
de Castro, et al., 2009, JSPI; Balakrishnan and Pal, 2013, AR-
ERA), weighted Poisson (Rodrigues et al., 2011, LDA).
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In such a case, the distribution of T = min{W0,W1, . . . ,WM } is given
by

SP(t) =ϕ(S(t)).

If M is a Bernoulli r.v. with p = P(M = 0), then

SP(t) = p+ (1−p)S(t) : standard/mixture cure rate model

which can be traced back at least to the works of Boag
(1948a,b, 1949, JRSS) and Berkson and Gage (1952, JASA).
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SP(t) = p+ (1−p)S(t) : standard/mixture cure rate model

In sociology mixture cure rate model is also referred to as
split population model (Schmidt and Witte, 1988, Ch. 5). In
engineering, is known as limited-failure population model
(Meeker, 1987; Meeker and LuValle, 1995).
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In such a case, the distribution of T = min{W0,W1, . . . ,WM } is given
by

SP(t) =ϕ(S(t)).

If M is a Bernoulli r.v. with p = P(M = 0), then

SP(t) = p+ (1−p)S(t) : standard/mixture cure rate model

Motivated by the existence of a zero-inflated distribution on
the number of causes, we get (Balakrishnan and Milienos,
2020, BMJ) a generalization, given by,

SP(t) = p+ (1−p)ϕ(S(t)) : zero-inflated mixture model
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Introduction

Zeng, Yin and Ibrahim (2006, JASA) followed a frailty approach as-
suming that M follows a Poisson distribution with mean Ξθ (where
Ξ is a positive r.v.; W ′

i s assumed i.i.d. given M and Ξ), and then

SP(t) = EΞ
[
exp(−θΞF(t))

]
, with F(t) = 1−S(t).

If Ξ follows a gamma distribution with mean 1, then

SP(t) = (1+γθF(t))−1/γ,γ≥ 0,θ> 0,

where γ is the scale parameter of gamma distribution .

8 / 39
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Introduction

Koutras and Milienos (2017, SIM) motivated by the previous biolog-
ical application, introduced a more flexible transformation cure rate
model.

Assume that the jth metastasis-competent tumor cell pro-
duces a detectable tumor mass only when λ distinct biologi-
cal latent factors affect the cell.

Under this scenario, the promotion time Wj can be viewed as a max-
imum of λ random variables, say Wjk,k = 1, . . . ,λ, with Wjk ∼ F(t).
Then, the population survival function reads

SP(t) = (1+γθF(t)λ)−1/γ,γ≥ 0,θ> 0.

This motivation is similar to the last-activation scheme discussed in
Cooner, Banerjee, Carlin and Sinha (2007, JASA), wherein the event
occurs only when a number of latent factors have been activated.
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Introduction

The last model admits two other interesting alternative interpreta-
tions:

a) let M , the number of competing causes, under the same motiva-
tion with the BCH model, follow the generalized Linnik distribution
with probability generating function

ϕ(z) = (1+θγ(1−z)λ)−1/γ, with λ ∈ (0,1),γ≥ 0,θ> 0.

b) let M follow a Poisson distribution with random parameter Ξ =
Y 1/λV , where Y ,V are independent random variables with Y follow-
ing a Gamma distribution with scale and shape parameter equal to
γ > 0, and V being a positive random variable with Laplace trans-
form e−θzλ .

10 / 39
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Introduction

Yin and Ibrahim (2005, CJS), by imposing a Box-Cox transformation
on the population survival function, studied a model of the same na-
ture with that of Zeng et al. (2006) and Koutras and Milienos (2017);
in their work, the population survival function was given by

SP(t) = (
1+γθF(t)

)−1/γ ,γ ∈ [−1,0],

where
θ= θ(γ;X ) = exp(β′X )/(1−γexp(β′X )),

with β denoting the vector of regression coefficients and X is the vec-
tor of covariates.

11 / 39
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The new model

Yin and Ibrahim’s model,

SP(t) = (
1+γθF(t)

)−1/γ ,γ ∈ [−1,0],

has a nice property: the mixture model is one of its special cases
(for γ=−1 and θ= exp(β′X ) /(1−γexp(β′X ))).

Note that the most well studied cure rate models are also special
cases of

SP(t) = (1+γθF(t)λ)−1/γ,γ≥ 0

but not the mixture model.

Using the above θ, could we also include the interval [−1,0] to the
parameter space of γ, and getting the binary model as a special case?

No, because θ (and Sp(t)) could be negative when γ is positive.

In this work, in order to solve this issue, we propose a re-parametrization
the last model.

12 / 39
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The new model

Firstly, note that the model

SP(t) = (1+γθF(t)λ)−1/γ,γ≥ 0,θ,λ> 0

can be equivalently written as

SP(t) = (1+γF(t)λ)−θ/γ,γ≥ 0,θ,λ> 0.

Problem: find a function g(γ) such that the parameter space
of γ could be extended to the whole real line

SP(t) = (1+g(γ)F(t)λ)−θ/γ,γ ∈ℜ,λ,θ> 0

13 / 39
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The new model

Specifically, we study re-parametrization of the form g(γ) = γcγ, i.e.

SP(t) = (1+γcγF(t)λ)−θ/γ,γ ∈ℜ,

with θ> 0 and λ> 0.

The constant c must be chosen such that the function g(γ) = γcγ has
the following two properties:

(a) g(γ) is positive and surjective, for γ≥ 0;

(b) g(γ) is surjective and g(γ) ∈ [−1,0], for γ< 0.

14 / 39
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The new model

Why this form of re-parametrization?

The motivation comes from the function g(x) = xex, which has all the
required properties but −g(x) is not surjective on [0,1], when γ< 0.
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The new model

Suppose that γ ≥ 0: then, the condition (a) is satisfied for every c >
1; this is true since g(γ) is continuous, with g(0) = 0, g ′(γ) > 0, and
limγ→∞ g(γ) =∞.

Suppose that γ < 0: it can be seen that the condition (b) is satisfied
when c is such that g(− ln(c)−1) = 1; the solution of this equation is
c = ee−1

.
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limγ→∞ g(γ) =∞.

Suppose that γ < 0: it can be seen that the condition (b) is satisfied
when c is such that g(− ln(c)−1) = 1; the solution of this equation is
c = ee−1

.
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Special cases

Therefore, the model we are going to study is given by

SP(t) = (1+γeγe−1
F(t)λ)−θ/γ,γ ∈ℜ,

with θ> 0 and λ> 0.

Some well known special cases of the proposed model are the:

• binary cure rate model: γ=−θ and λ= 1;

• BCH model: γ→ 0 and λ= 1;

• negative binomial cure rate model: γ> 0 and λ= 1;

• geometric cure rate model: γ= λ= 1;

• some well studied destructive cure rate models, such as the
geometric and negative binomial destructive cure rate model;

• the discrete stable, the Mittag-Leffler cure rate models and
others.
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Identifiability

The model introduced by Zeng, Yin and Ibrahim (2006, JASA) had
some identifiability issues (this was also the case for the model stud-
ied by Koutras and Milienos, 2017, SIM).

Assuming that the parameters are independent of any set of covari-
ates and γ0 6= γ1, then we can always find θ0 6= θ1 such that (1 +
θ0g(γ0))−1/γ0 = (1+θ1g(γ1))−1/γ1 .

However, assuming the existence of a continuous covariate with nonzero
effect on θ (i.e. θ= θ(X ) = exp(β′X )), it can be proved that the param-
eters β, γ and λ are identifiable.

The proof is carried out by following similar steps with Zeng, Yin and
Ibrahim (2006, JASA).
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Estimation

In this work, we consider the scenario wherein the time-to-event is
subject to non-informative random right censoring.

We adopted a profile likelihood approach for γ since this method
turned out to be quite effective even for small sample sizes; specif-
ically, we fix a set of distinct (admissible) values of γ, and for each
case we estimate (by a direct maximization of the log-likelihood func-
tion) the rest of model parameters.

Finally, our estimates are those which return the maximum value of
the likelihood function.

19 / 39



CURE RATE MODELS THE NEW MODEL INFERENCE NUMERICAL STUDY CONCLUSIONS REFERENCES

Estimation

In this work, we consider the scenario wherein the time-to-event is
subject to non-informative random right censoring.

We adopted a profile likelihood approach for γ since this method
turned out to be quite effective even for small sample sizes; specif-
ically, we fix a set of distinct (admissible) values of γ, and for each
case we estimate (by a direct maximization of the log-likelihood func-
tion) the rest of model parameters.

Finally, our estimates are those which return the maximum value of
the likelihood function.

19 / 39



CURE RATE MODELS THE NEW MODEL INFERENCE NUMERICAL STUDY CONCLUSIONS REFERENCES

Data and Estimation

Denoting with Ci and Ti the censoring time and lifetime of the ith
individual, respectively, we then observe

Yi = min{Ti,Ci}

and δi = I(Ti ≤ Ci), i.e.

δi =
{

1, if Yi is a time-to-event

0, if Yi is a censoring time,
, i = 1,2, . . . ,n.
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Data and Estimation: likelihood function

From n pairs of times and censoring indicators (y1,δ1), . . . , (yn,δn),
the likelihood function can be written as

L = L(ϕ;x,y,δ) ∝
n∏

i=1
fP(yi,xi;ϕ)δi SP(yi,xi;ϕ)1−δi ,

where xi is the vector of covariates for the ith individual, x = (x1, . . . ,xn),
y = (y1, . . . ,yn), δ= (δ1, . . . ,δn) andϕ is the set of model parameters.
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Data and Estimation: likelihood function

Thus, the likelihood becomes

L(ϕ;x,y,δ) ∝
n∏

i=1
(1−p0(xi;ϕ))δi fU (yi,xi;ϕ)δi [p0(xi;ϕ)+ (1−p0(xi;ϕ))SU (yi,xi;ϕ)]1−δi ,

where p0(xi;ϕ) is the probability someone to be cured, i.e.

p0(xi;ϕ) = (1+γeγe−1
)−exp(β′xi)/γ

and θ = exp(β′xi), with β denoting the vector of regression coeffi-
cients

SU (yi,xi;ϕ) = SP(yi,xi;ϕ)−p0(xi;ϕ)

1−p0(xi;ϕ)
, fU (yi,xi;ϕ) = fP(yi,xi;ϕ)

1−p0(xi;ϕ)

are the survival and probability density functions of the susceptibles,
respectively.
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Simulation

We assume that:

• Wi follows an exponential distribution with µ= 1 (for every i);

• we have two covariates: X1 being a symmetric Bernoulli r.v. and
X2 being a continuous uniformly distributed r.v. on [0,1];

• we have two sets of data of size 400 and 600;

The number of replications used was r = 200.
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Simulation

We present results for some well known special cases of our model,
i.e. the BCH (Poisson), the binary, the geometric, the negative bino-
mial and the Mittag- Leffler cure rate model.

The (unobserved) cured proportion of our data-set ranges from 10%
to 22%, while the (unobserved) censored proportion among the non-
cured items ranges from 2% to 12%
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BCH model

β0 β1 β2 λ µ γ

true 1 -0.3 -0.3 1 1 0
n = 400 est 1.001 -0.295 -0.324 1.007 1.019 -0.024

s.e. 0.133 0.120 0.216 0.076 0.151 0.273
RMSE 0.018 0.014 0.047 0.006 0.023 0.075

cp 0.950 0.940 0.930 0.895 0.905 -
n = 600 est 1.002 -0.304 -0.311 1.004 1.016 -0.031

s.e. 0.115 0.095 0.164 0.061 0.131 0.268
RMSE 0.013 0.009 0.027 0.004 0.017 0.072

cp 0.960 0.935 0.955 0.895 0.870 -

• Grid search area: from -1 to 1 (step=0.2), 200 replications

• Overall (unobserved) sample cured proportion equals: 14%;

• Overall (unobserved) sample censored proportion among non-cured items equals: 10%.
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Binary cure rate model

β0 β1 β2 λ µ γ

true 0.1 0.1 0.1 1 1 -1
n = 400 est 0.166 0.085 0.096 1.019 1.015 -1.122

s.e. 0.196 0.122 0.178 0.094 0.142 0.299
RMSE 0.043 0.015 0.032 0.009 0.020 0.104

cp 0.875 0.930 0.945 0.900 0.885 -
n = 600 est 0.147 0.092 0.105 1.018 0.994 -1.135

s.e. 0.165 0.097 0.152 0.072 0.121 0.278
RMSE 0.029 0.009 0.023 0.006 0.015 0.095

cp 0.905 0.925 0.960 0.915 0.900 -

• Grid search area: from -2 to 0 (step=0.2), 200 replications;

• Overall (unobserved) sample cured proportion equals: 22%;

• Overall (unobserved) sample censored proportion among non-cured items equals: 5%.
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Geometric cure rate model

β0 β1 β2 λ µ γ

true 0.5 0.5 0.5 1. 1. 1.
n = 400 est 0.492 0.506 0.497 1.004 1.042 0.935

s.e. 0.138 0.109 0.188 0.057 0.154 0.426
RMSE 0.019 0.012 0.035 0.003 0.025 0.185

cp 0.935 0.945 0.940 0.950 0.930 -
n = 600 est 0.493 0.508 0.494 0.999 1.028 0.932

s.e. 0.118 0.095 0.154 0.052 0.132 0.424
RMSE 0.014 0.009 0.024 0.003 0.018 0.184

cp 0.925 0.935 0.945 0.900 0.870 -

• Grid search area: from 0 to 2 (step=0.2), 200 replications;

• Overall (unobserved) sample cured proportion equals: 10%;

• Overall (unobserved) sample censored proportion among non-cured items equals: 2%.
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Negative binomial cure rate model

β0 β1 β2 λ µ γ

true 0.5 0.5 0.5 1. 1. 2.
n = 400 est 0.497 0.485 0.516 1.010 1.037 1.990

s.e. 0.133 0.114 0.201 0.063 0.159 0.454
RMSE 0.018 0.013 0.040 0.004 0.027 0.205

cp 0.950 0.945 0.945 0.890 0.935 -
n = 600 est 0.488 0.488 0.530 1.007 1.026 2.000

s.e. 0.106 0.094 0.154 0.057 0.137 0.446
RMSE 0.011 0.009 0.025 0.003 0.019 0.198

cp 0.950 0.930 0.970 0.835 0.905 -

• Grid search area: from 1 to 3 (step=0.2), 200 replications;

• Overall (unobserved) sample cured proportion equals: 12%;

• Overall (unobserved) sample censored proportion among non-cured items equals: 2%.
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Mittag-Leffler cure rate model

β0 β1 β2 λ µ γ

true 0.1 0.4 0.6 3. 1. 1.
n = 400 est 0.081 0.401 0.639 3.032 1.004 0.995

s.e. 0.138 0.122 0.198 0.251 0.097 0.459
RMSE 0.019 0.015 0.041 0.064 0.009 0.210

cp 0.945 0.950 0.950 0.945 0.910 -
n = 600 est 0.082 0.396 0.628 3.026 1.013 0.958

s.e. 0.121 0.102 0.167 0.191 0.087 0.453
RMSE 0.015 0.010 0.029 0.037 0.008 0.206

cp 0.940 0.925 0.950 0.950 0.895 -

• Grid search area: from 0 to 2 (step=0.2), 200 replications;

• Overall (unobserved) sample cured proportion equals: 20%;

• Overall (unobserved) sample censored proportion among non-cured items equals: 6%.
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Recidivism for Offenders Released from Prison

The proposed model is illustrated by a data-set on Recidivism for Of-
fenders Released from Prison. The data-set is provided by Iowa De-
partment of Corrections, available for public use (https://data.iowa.gov/).

Every person was followed for three years (as studies have shown if
an offender relapses into criminal behavior it is most likely to hap-
pen within three years of being released).

A small part of this data-set of size n = 3000 was analyzed.
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Recidivism for Offenders Released from Prison

0 200 400 600 800 1000

0.6

0.7

0.8

0.9

1.0

Figure: KM estimator of the survival function (data-set on recidivism)
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Recidivism for Offenders Released from Prison

The covariates included in our analysis were:

• gender: male (87%), female (13%);

• age (with 5 categories): <25(18%), [25,34] (36%),[35,44]
(24%),[45,54] (17%),≥ 55 (5%)

A Weibull distribution was assumed for W ′
i s.
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Recidivism for Offenders Released from Prison

parameter estimate s.e.
Intercept 4.069 0.009
Gender -0.248 0.011
Age -0.153 0.001
λ 3.181 0.010
γ -11.5 -
α0 (scale) 0.003 0.0001
α1 (shape) 0.636 0.0004

The grid search: γ on [-12, -10] (with step 0.025); several initial values for the maxi-

mization problem were taken into account and the results were quite robust.
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The time beyond which an in-

dividual may be considered as

cured (not relapsed into crimi-

nal behavior) with specific prob-

ability.
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Conclusions

• A re-parametrization of a recently studied family of cure rate
models was introduced.

• The new model has also as a special case the binary cure rate
model, among many other well known models (the Poisson,
the geometric, the negative binomial model, and the models
studied by Zeng, Yin and Ibrahim, 2006, Yin and Ibrahim, 2005
and a class of models studied by Tsodikov, 2002).

• It can also handle the existence of a destructive mechanism on
the initial number of clonogens.

• The suggested inferential method (profile likelihood), exhibits
a high accuracy.
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Conclusions

• Although not presented here, the first results for the model
discrimination (based on the likelihood ratio test) are
promising; EM-algorithm works quite well also.

• Interval censored data, non-parametric estimation and
asymptotic properties of the estimators, are among the future
directions of this study.
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