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Introduction

All systems are designed to perform their intended tasks in a given
environment. Some systems can perform their tasks with various
distinctive levels of efficiency usually referred to as performance rates.

A system that can have a finite number of performance rates is called a
multi-state system (MSS).

Figure 1: Multi state diagrams

The simplest example of such a situation
is the k-out-of-n system. It consists of n
identical binary units and can have
n+ 1 states depending on the number of
available units.

The entire set of possible system states
can be divided into two disjoint subsets
corresponding to acceptable and
unacceptable system functioning. The
system entrance into the subset of
unacceptable states constitutes a failure.

MSS reliability: The system’s ability to
remain in acceptable states during the
operation period.
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Semi-Markov Processes and MSS

Semi-Markov (SM) processes are typical tools for the modeling of technical
systems. Such classes of stochastic processes generalize typical Markov jump
processes by allowing general distributions for sojourn times (Limnios, N. and
Oprisan, G. (2001) and Barbu, V.S. and Limnios, N. (2008) ).
If (J, S) = (Jn, Sn)n∈N satisfies the relation

P(Jn+1 = j, Sn+1 − Sn ≤ t|J0, · · · , Jn;S1, · · · , Sn)

= P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn), j ∈ E, t ∈ R+
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X n + 1
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.  .  .
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s t a t e s
( X n  )  :  s o j o u r n  t i m e s
( J n   )  :  s t a t e s  o f  t h e  s y s t e m
( S n )   :   j u m p  t i m e s

Figure 2: A trajectory of a SM
process

(J, S) Markov renewal chain

Z = (Zt)t∈R+
− semi-Markov process

associated to (J, S)

Zt := JN(t) ⇔ Jn = ZSn

N(t) := max{n ∈ N | Sn ≤ t}, t ∈ R+.

Let also Xn = Sn − Sn−1, n ≥ 1,
be the sojourn times, with S0 := 0.
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The SM model is characterized by its initial distribution
α = {α1, . . . , αN}

αj = P(J0 = j), j ∈ E,

and by the semi-Markov kernel

Qij(t) = P(Jn = j,Xn ≤ t|Jn−1 = i).

Let us also consider the transition probabilities of the embedded Markov
Chain (Jn)n∈N

pij = P(Jn = j|Jn−1 = i) = lim
t→∞

Qij(t),

and the conditional sojourn time distribution

Wij(t) = P(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j)

= P(Xn ≤ t|Jn−1 = i, Jn = j).

Observe that

Qij(t) = pijWij(t). (1)
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Tij is the r.v. that can be seen as the ”potential” times.

The dynamic of the system: the next state to be visited after state i is the one
for which Til is the minimum. Thus, in our framework, the next state to be
visited, say j, is “chosen” through j = argminl∈E(Til) and minj∈E Tij
represents the sojourn time in state i before moving to the next state.

Thus, for our SM system, the SM kernel has the particular form

Qij(t) = P
(

min
k

Tik ≤ t, Tij ≤ Tik,∀k|Jn−1 = i

)
= P

(
min
k

Tik ≤ t|Jn−1 = i, Jn = j

)
× P (Tij ≤ Tik,∀k|Jn−1 = i)

= pijWi(t),

pij = P(Jn = j|Jn−1 = i) = P (Tij ≤ Tik,∀k|Jn−1 = i)

Wij(t) = P(Sn − Sn−1 ≤ t|Jn−1 = i, Jn = j)
= P(min

k
Tik ≤ t|Jn−1 = i, Jn = j) = Wi(t), independent of j.∑

j

Qij(t) = Wi(t).
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I.N.I.D. random variables

It is natural to assume in MSS that sojourn times between different states are
not necessarily identically distributed.

Indeed, if a system’s component fails it is expected that the transition rate
from this new state i to another state j will not necessarily be equal to the
transition rate that resulted in the transition to state i.

Consider the general family of distribution functions with parameter a:

F (t; a) = 1− (1− F (t; 1))
a
. (2)

f(t; a): its associated density w.r.t. the Lebesgue measure (assumed to exist).

Theorem 1

Let X1, . . . , XN be inid r.v. such that Xi ∼ F (x; ai) which belongs to class (2).
Then the distribution function F (1) of the minimum order statistic X(1) belongs
also to (2).

Examples: Geometric distribution, Exponential distribution, Weibull
distribution, Rayleigh distribution, Pareto distribution, Kumaraswamy
distribution 6 / 38



Based on Kumaraswamy distribution we create a generalized G-class of
distributions which is entirely WITHIN the class (2) of distributions

F (t; a) := 1− (1−G(t)c)a . (3)

F (t; 1) = G(t)c

G(·): a parent continuous distribution

for any function G we identify a new member of the new G-class
and all of them are inside the class (2)

Kumaraswamy is the baseline distribution of (3) obtained for a
special G(t):

Remark 1

If G(·) is the identity function, the baseline (Kumarasawmy) distribution
is obtained, i.e.

F (t; a) := 1− (1− tc)a , t ∈ (0, 1). (4)

7 / 38



Idea of generating family of distributions

Based on Gompertz distribution

G(t) =
(

1− ρe−λt
)α

, for t > λ−1 log ρ, where ρ, α, λ ≥ 0.

three distribution classes (”Exponentiated families”) have been created
(Lehmann 1953 and Nadarajah 2005):

F (t) = G(t)α (Exponentiated family of distributions)

F (t) = 1− (1−G(t))α (Lehmann alternative 2 family of
distributions)

F (t) = 1− (1−G(et))α (Nadarajah family of distributions)
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Reliability Parameter R

In order to evaluate the performance of the reliability system, let the
strength X which is subject to a stress Y .
The system fails as soon as the stress exceeds its strength. The
probability of exceedance is defined as

R = P (Y < X) = E[P (Y < X)|X]. (5)

Theorem 2

Let X,Y be independent random variables from the G-class of
distributions (3) with shape parameters α1 and α2 respectively and
common shape parameter c. Then, the reliability parameter R given in
(5), is a constant that depends only on the shape parameters α1 and α2,
namely

R =
a2

a1 + a2
.

9 / 38



More Reliability Indices

Reliability or Survival Function: R(t)

Availability (Instantaneous Reliability): A(t)

Maintainability: M(t)

Mean Time to Failure: MTTF
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The characteristics of our SM system

Qij(t; aik; k = 1, . . . , N) := Qij(t)

Qij(t) =
aij∑

k∈E
aik

[
1− (1−G(t)c)

∑
k∈E

aik
]
, (6)

By taking the limit, the transition probabilities are

pij = lim
t→∞

Qij(t) =
aij∑

k∈E
aik

.

The distribution of the minimum is

Wi(t) = 1− [1−G(t)c]

N∑
j=1

aij
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Inference with and without censoring
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Several sample paths, no censoring

Given
{
j

(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)

}
, l = 1, . . . , L, L sample paths of a

semi-Markov process, then the associated likelihood for L trajectories is

L =

L∏
l=1

α
(l)
j0
p
j
(l)
0 j

(l)
1

f
j
(l)
0

(x
(l)
1 ) . . . f

j
(l)

Nl(M)−1

(x
(l)

N l(M)
)

=

(∏
i∈E

α
Ni,0(L)
i

) ∏
i,j∈E

p

L∑
l=1

N
(l)
ij (M)

ij


×

 L∏
l=1

∏
i∈E

N
(l)
i (M)∏
k=1

fi(x
(l,k)
i )
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where,

Ni,0(L) =
L∑
l=1

1{J(l)
0 =i},

N
(l)
i (M): the number of exits from state i up to time M of the lth

trajectory, l = 1, . . . , L,

N
(l)
ij (M): the number of transitions from state i to state j up to time M

of the lth trajectory, l = 1, . . . , L,

Nij(L,M) =
L∑
l=1

N
(l)
ij (M),

N l(M): the number of jumps during the lth trajectory, l = 1, . . . , L.

x
(l,k)
i : the sojourn time in state i during the kth visit,

k = 1, . . . , N
(l)
i (M) of the lth trajectory, l = 1, . . . , L.
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Several censored sample paths at the end

Given
{
j

(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)
, u

(l)
M

}
, l = 1, . . . , L, L sample paths

of a semi-Markov process, then the associated likelihood with censoring
at time M is

L =

(∏
i∈E

α
Ni,0(L)
i

) ∏
i,j∈E

p

L∑
l=1

N
(l)
ij (M)

ij


×

 L∏
l=1

∏
i∈E

N
(l)
i (M)∏
k=1

fi(x
(l,k)
i )

∏
i∈E

N
e
i•(L)∏
k=1

(
1−Wi(u

(k)
i )
)
.
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where,

u
(l)
M := M − SN l(M) is the censored sojourn time in the last visited state

of the lth trajectory,

N
e
i•(L) =

∑
k

L∑
l=1

1{J(l)

Nl(M)
=i,X

(l)

j
(l)

Nl(M)

>k} is the number of trajectories

ending in state i with censored last sojourn time in state i greater than
k.

u
(k)
i is the censored sojourn time in state i as the last visited state,

during the kth visit, k = 1, . . . , Ni,M (L).

Note that, if the censoring time M in a certain trajectory l is a jump
time, then for the corresponding observed censored time we have

u
(l)
M = 0.
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Several censored sample paths at the beginning

Given
{
x
(l)
0 , j

(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)

}
, l = 1, . . . , L, L sample paths of a

semi-Markov process, then the associated likelihood with censoring at the
beginning is

L =

(∏
i∈E

α
Ni,0(L)
i

)∏
i∈E

N
b
i•(L)∏
k=1

W i•(x
(k)
i,0 )

 ∏
i,j∈E

p

L∑
l=1

N
(l)
ij (M)

ij

×
×

 L∏
l=1

∏
i∈E

N
(l)
i (M)∏
k=1

fi(x
(l,k)
i )

 , (7)

where

N
b

i•(L) =
∑
t

L∑
l=1

1{J(l)
0 =i,S

(l)
1 −S

(l)
0 >t,S

(l)
1 <M} is the number of trajectories

starting in state i with censored first sojourn time in state i greater than t,

x
(k)
i,0 is the censored sojourn time in state i as the first state, during the

kth visit, k = 1, . . . , N
b

i•(L).
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Several censored sample paths at the beginning and/or
at the end

Given

{
x
(l)δ

(l)
b

0 , j
(l)
0 , x

(l)
1 , j

(l)
1 , x

(l)
2 , . . . , j

(l)

N l(M)
, u

(l)δ
(l)
e

M

}
, l = 1, . . . , L,

where δ
(l)
b =

{
1, if the first sojourn time is considered to be censored,

0, if the first sojourn time is not considered to be censored.

and δ
(l)
e =

{
1, if the last sojourn time is considered to be censored,

0, if the last sojourn time is not considered to be censored.

The associated likelihood where some of the sojourn times are censored either
at the beginning and/or at the end is

L =

(∏
i∈E

α
Ni,0(L)
i

) ∏
i,j∈E

p

L∑
l=1

N
(l)
ij (M)

ij

 L∏
l=1

∏
i∈E

N
(l)
i (M)∏
k=1

fi(x
(l,k)
i )

×
×

∏
i∈E

N
b
i•(L)∏
k=1

W i•(x
(k)
i,0 )

∏
i∈E

N
e
i•(L)∏
k=1

W i•(u
(k)
i )

 . (8)
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Estimation - General G-Class of Distributions

Theorem 3 (Estimators - no censoring)

âij(L,M) = − Nij(L,M)
L∑
l=1

B
(l)
i (M)

, (9)

where,

Nij(L,M) =
L∑
l=1

N
(l)
ij (M),

B
(l)
i (M) =

N
(l)
i (M)∑
k=1

log
(

1−G
(
X

(l,k)
i

)c)
.

α̂i(L,M) =
Ni,0(L)

L
. (10)
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Theorem 4 (Estimators - censoring at the end)

âij(L,M) = − Nij(L,M)

L∑
l=1

B
(l)
i (M) +

Ni,M (L)∑
k=1

log
(

1−G
(
U

(k)
i

)c) . (11)

α̂i(L,M) =
Ni,0(L)

L
. (12)
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Estimation - Kumaraswamy Distribution (G(x) = x)

Theorem 5 (Estimators - no censoring)

âij(L,M) = −
Nij(L,M)

L∑
l=1

N
(l)
i

(M)∑
k=1

log
(
1−

(
X

(l,k)
i

)c) . (13)

Theorem 6 (Estimators - censoring at the end)

âij(L,M) = −
Nij(L,M)

L∑
l=1

N
(l)
i

(M)∑
k=1

log
(
1−

(
X

(l,k)
i

)c)
+
Ni,M (L)∑
k=1

log
(
1−

(
U

(k)
i

)c) . (14)

For the MLE of the parameter c, one should solve the following equation:

∂ logL
∂c

=
∑
l,i,j,k

− N
(l)
ij (M)

log
(
1−

(
X

(l,k)
i

)c) − 1

N(l)
i

(M)∑
k=1

−
(
x
(l,k)
i

)c
log x

(l,k)
i

1−
(
x
(l,k)
i

)c
+

+

∑
l,i,k

(
1 + c log x

(l,k)
i

)
c

= 0.
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Estimation of the SM process’ quantities in our
framework

p̂ij(L,M) =
âij(L,M)∑

k∈E
âik(L,M) .

Ŵi(t,M) =

[
1− (1−G(t)c)

∑
j∈E

âij(L,M)
]
.

Q̂ij(t,M) = p̂ij(t,M)Ŵi(t,M).

R̂ij =
âij(2)

âij(1)+âij(2)
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Reliability/survival analysis framework

Let the state space be partitioned as follows: E = U ∪D and E = U ∩D = ∅,
where we assume that U = {1, . . . , n} and D = {n+ 1, . . . , N}. Each
matrix/vector can be partitioned accordingly.

Q(t) =

U D[ ]
QUU (t) QUD(t) U

QDU (t) QDD(t) D
, W (t) =

U D[ ]
WU (t) 0 U

0 WD(t) D

For the matrices Ψ(t)

(
where Ψij(t) = Ei[Nj(t)]

)
and P (t)(

where Pij(t) = P(Zt = j|Z0 = i)

)
we consider their partitions induced by the

corresponding partitions of the semi-Markov kernel Q(t) :

PUU (t) = (ΨUU ? (In −WU )) (t)

and

ΨUU (t) = (In −QUU )(−1)(t).
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Reliability

Consider the reliability or survival function of the system at time t :

R(t) = P(TD > t) = P(Zs ∈ U, s ≤ t),
where TD := inf{t | Zt ∈ D} is the lifetime of the system. We know
(Ouhbi, Limnios; 1996) R(t) = αUPUU (t)1n.

Proposition 1

For a semi-Markov system, the estimator of the reliability at time t > 0
is

R̂(t,M) = α̂U (M)P̂UU (t,M)1n,

where α̂U (M) is an estimator of αU and P̂UU (t,M) is an estimator of
PUU (t), with

(QUU )ij(t) =
aij∑

k∈E
aik

[
1− (1−G(t)c)

∑
k∈E

aik
]
, i, j ∈ U.
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Failure rate

Remark 2

Using the estimator of the reliability, we immediately have an estimator
of the failure rate of the system, given by

λ̂(t,M) := −R̂
′(t,M)

R̂(t,M)
, t > 0.
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Availability, maintainability

Proposition 2

For a semi-Markov system, the estimators of the availability and
maintainability are given by:

Â(t,M) = α̂(M)P̂ (t,M)1N ;n,

M̂(t,M) = 1− α̂D(M)P̂DD(t,M)1N−n,

where 1N ;n = (1, · · · , 1︸ ︷︷ ︸
n

, 0, · · · , 0︸ ︷︷ ︸
N−n

)>.
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Mean time to failure

Let m := (m1, . . . ,mN )>, be the vector of the mean sojourn times,
where the mean sojourn time in state i is

mi := E(S1 | J0 = i) =

∫ ∞
0

(1−Wi(t)) dt =

∫ ∞
0

(1−G(t)c)

N∑
j=1

aij

 dt.

We assume that mi <∞, i ∈ E (it is the case for a regular and positive
recurrent MRP).

We consider the mean time to failure:

MTTF := E (TD) = αU (In − pUU )−1mU .
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We can estimate mi by:

m̂
(1)
i (M) :=

∫ ∞
0

(
1− Ŵi(t,M)

)
dt =

∫ ∞
0

(1−G(t)c)

N∑
j=1

âij(L,M)

 dt

and

m̂
(2)
i (M) :=

Ni(M)∑
k=1

X
(k)
i

Ni(M)
.
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Simulations

Assume L sample paths where the sojourn times are considered to
follow the Kumaraswamy distribution with parameter c = 2 and the
observation time M is set to be 1000.

Several sample paths, no censoring

Several censored sample paths at the end

Several censored sample paths at the beginning

Several censored sample paths at the beginning and/or at the end

Real values of aij and pij

aij 1 2 3

1 0 0.9 2.1
2 1.5 0 0.3
3 1.2 1.8 0

pij 1 2 3

1 0 0.3 0.7
2 0.833 0 0.167
3 0.4 0.6 0
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Several uncensored sample paths

i 1 2 3
α̂i(L,M) 0.319 0.355 0.326

PPPPPS.E.
L

5 10 100 1000

âij(L,M) 5.71× 10−3 1.05× 10−3 7× 10−4 4.35× 10−5

p̂ij(L,M) 2.6× 10−4 1.06× 10−4 1.47× 10−5 7.58× 10−7

PPPPPS.E.
t

0.1 0.2 0.5 0.9 0.99

P̂ij(t;L,M) 3.19× 10−8 4.58× 10−5 1.10× 10−4 1.85× 10−4 6.44× 10−4

the bigger the L, the smaller the S.E. of âij(L,M) and p̂ij(L,M)

the smaller the t the most accurate the P̂ij(t;L,M)
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Several censored sample paths at the beginning and/or
at the end

Censoring at the beginning: Using Uniform distribution choose the trajectories with
censored sojourn time in the first visited state. Randomly cut the interval (computed as the
first sojourn time) in two parts, the second part is the censored sojourn time in the first
visited state.

i 1 2 3
α̂i(L,M) 0.328 0.328 0.344

PPPPPS.E.
L

5 10 100 1000

âij(L,M) 1.13× 10−2 6.18× 10−3 2.79× 10−4 3.27× 10−5

p̂ij(L,M) 2× 10−4 9.24× 10−5 1.13× 10−5 6.91× 10−7

PPPPPS.E.
t

0.1 0.2 0.5 0.9

P̂ij(t;L,M) 1.69× 10−6 2.39× 10−5 3.91× 10−4 5.37× 10−4

âij(L,M) and p̂ij(L,M) approach the true value as L increases

P̂ij(t;L,M) is better as t approaches the upper limit, and even better, in terms of the
squared errors for small t
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Influence of taking into account the censoring

Case(i) censoring at the end (target case)
Case(ii) not taking into account the censoring part

PPPPPS.E.
M

10 25 50 75 100 1000

âij(L,M)) (i) 0.557899 0.110332 0.111098 0.073128 0.046231 0.007228
âij(L,M)) (ii) 0.630267 0.119098 0.118435 0.079926 0.042860 0.006892

Average length of trajectories: 8.2, 18.6, 38.9, 56, 73.6, 740.2.
When the censored part represents approximately 5− 12% of average length of trajectories,
target case gives better estimators.
When the censored part represents less than 2% of average length of trajectories,
contribution of censored part not significant.

PPPPPS.E.
M

10 50 100 1000

âij(M) (case (i)) 7.71 5.257648 0.775088 0.055301
âij(M) (case (ii)) 18.48546 5.450699 0.757394 0.054022

Length of trajectory: 8, 39, 70, 739.
When the censored part represents 10% of whole length of trajectory, target case gives better
estimators.
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Reliability Parameter for uncensored trajectories
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Reliability Parameter for censored trajectories
beginning and/or end
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