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Introduction

Many chronic diseases evolve through multiple clinical states
(multistate disease processes)

There is a variety of methods to evaluate the overall effectiveness of
treatments on multistate disease processes:

(i) Aalen–Johansen estimator1

(ii) Simultaneous confidence bands by Bluhmki et al. (2018)2

(iii) Two-sample tests by Bakoyannis (2020)3

No methods for estimating optimal patient-tailored treatment rules
for multistate disease processes

1
Aalen, O.O. and Johansen, S., 1978. An empirical transition matrix for non-homogeneous Markov chains based on

censored observations. Scandinavian Journal of Statistics 5, 141–150
2
Bluhmki, T., Schmoor, C., Dobler, D., Pauly, M., Finke, J., Schumacher, M. and Beyersmann, J., 2018. A wild bootstrap

approach for the Aalen–Johansen estimator. Biometrics 74, 977–985
3
Bakoyannis, G., 2020. Nonparametric tests for transition probabilities in nonhomogeneous Markov processes. Journal of

Nonparametric Statistics 32, 131–156
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Examples of multistate processes under treatment

B.

Infection Death

Infection suppression

C.

On treatment Death

Off treatment

A.

Initial state Progression/death

Response
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Example A: Probability of being in response
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The probability of being in response (non-monotonic function of
time) provides a more direct insight into treatment effect compared
to crude events such as overall survival or progression-free survival

Response is an outcome which is endorsed by the FDA for drug
evaluation in cancer trials
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Metastatic squamous-cell carcinoma trial

Randomized controlled trial on metastatic squamous-cell carcinoma of
the head and neck

Clinical trial with two interventions:

(i) Chemotherapy alone
(ii) Chemotherapy + panitumumab

Multistate disease process:
Cancer Progression/death

Response

The main outcome in this analysis is response to treatment

243 patients where randomized assigned in the chemotherapy alone
group and 236 in the chemotherapy + panitumumab group
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Event probabilities and 95% confidence bands

Cancer
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Probability of response by treatment group
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p-value = 0.176

Chemotherapy alone
Chemotherapy + panitumumab
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3
Bakoyannis, G., 2020. Nonparametric tests for transition probabilities in nonhomogeneous Markov processes. Journal of

Nonparametric Statistics 32, 131–156 7 / 39



Individualized treatment rules

Are these results discouraging regarding the potential of
chemotherapy + panitumumab?

Classical two-sample comparisons do not take into account patient
heterogeneity.

However, a treatment option that works for one individual may not
work for another.

There is a possibility to achieve better health outcomes by providing
treatments that are tailored to the individual patient.
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Traditional paradigm: One size fits all

Everyone receives treatment #1 Everyone receives treatment #2

VS
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Modern paradigm: Patient-tailored treatments

Patient-tailored treatment Everyone receives treatment #1

VS

Patient-tailored treatment

VS

Everyone receives treatment #2

VS

10 / 39



Estimating optimal individualized treatment rules

Estimating optimal individualized treatment rules (ITRs) is
challenging because of:

(i) Complex nonlinear associations between different variables and the
disease of interest

(ii) Complex nonlinear and high order interactions between treatment and
other variables

Modern machine learning methods that tackle the above challenges
have been employed for the estimation of optimal ITRs with simple
outcomes (e.g. continuous, binary, survival)

In this work I develop the first method for complex multistate
disease processes

The method utilizes support vector machines
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Multistate processes

Consider a continuous time non-homogeneous multistate process
{X(t) : t ∈ [0, τ ]}, for τ ∈ (0,∞), with a finite state space
S = {1, . . . , S}

The marginal behavior of the process can be described by the state
occupation probabilities

P0,j(t) ≡ P (X(t) = j), j ∈ S, t ∈ [0, τ ]

Inference about P0,j(t) does not require Markov assumptions4

If the state j ∈ S corresponds to the response state, then we define
the response process

Y (t) ≡ I{X(t) = j}, t ∈ [0, τ ]

4
Datta, S. and Satten, G.A., 2001. Validity of the Aalen–Johansen estimators of stage occupation probabilities and

Nelson–Aalen estimators of integrated transition hazards for non-Markov models. Statistics & Probability Letters 55, 403–411.
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Definitions

Let

- Z ∈ Z ⊂ Rp be a vector of variables that are potentially useful for
tailoring treatment to the individual patient

- A ∈ {−1, 1} be the treatment variable
- T be the time to entering an absorbing state (e.g., death)
- C be the (random) right censoring time (e.g., loss-to-follow-up time)

The outcome of interest is time spent at the response state by
time τ , i.e. ∫ τ

0
Y (t)dm(t),

where m(t) = t induces the lebesgue measure on the Borel σ-algebra
on [0, τ ]
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Can we just use methods for survival data?

Let C̃ be the minimum of the random right censoring time and the
maximum follow-up time, i.e. C̃ = C ∧ τ , where a ∧ b = min(a, b)

Survival analysis methods are applicable to situations where the
observed time is the minimum between the (uncensored) time of
interest and the the right censoring time, i.e.

T̃ = T ∧ C̃

Under right censoring, the observed time spent at the response state
by time τ is ∫ τ

0
Y (t)I(C ≥ T ∧ t)dm(t)

If C < T ∧ τ ,
∫ C

0 Y (t)dm(t) < C, and
∫ τ
C Y (t)dm(t) > 0, then

0 ≤
∫ τ

0
Y (t)I(C ≥ T ∧ t)dm(t) <

∫ τ

0
Y (t)dm(t) ∧ C̃,

and thus survival analysis methods are not applicable here
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Individualized treatment rules

An ITR d is a map
d : Z 7→ {−1, 1}

Define the sign function

sgn(x) =

{
1, if x ≥ 0

−1, otherwise

and let WBC stand for white blood cell count

ITR example #15

If age + 8.7× log(WBC)− 60 ≥ 0 then give treatment 1, otherwise
give treatment -1:

d(z) = sgn{age + 8.7× log(WBC)− 60}
5Tsiatis, A.A., Davidian, M., Holloway, S.T. and Laber, E.B., 2019. Dynamic

Treatment Regimes: Statistical Methods for Precision Medicine. CRC press.
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Individualized treatment rules (cont.)

ITR example #25

If age < 50 & WBC < 10 then give treatment 1, otherwise give
treatment -1:

d(z) = 2× I(age < 50 & WBC < 10)− 1

Any binary classification rule can be expressed as

d(z) = sgn{f(z)}

for some measurable function f : Z 7→ R

The goal is to estimate the optimal decision function f

How do we define optimality?
Find f such that d(z) = sgn{f(z)} maximizes some benefit
function for any z ∈ Z
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Definitions (cont.)

Let π0 = P (A = 1)

- In randomized clinical trials π0 = 0.5

Estimating optimal ITRs is a causal inference problem

- We seek the best ITR in an effort to cause the best possible health
outcome

Need to utilize the potential outcomes approach

Let Y ∗(t; a) be the response status at time t ∈ [0, τ ] if the patient
received treatment a ∈ {−1, 1} (regardless of the actual treatment
received)
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Basic causal assumptions

Causal assumptions

A1. Stable unit treatment value assumption:
Y (·) = Y ∗(·; 1)I(A = 1) + Y ∗(·;−1)I(A = −1)

A2. {Y ∗(·; 1), Y ∗(·;−1)} ⊥⊥ A
A3. Positivity assumption: π0 ∈ [c1, c2], with 0 < c1 < c2 < 1

In a randomized clinical trial, assumptions A2 and A3 and are
automatically satisfied
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Value functions (i.e. benefit functions)

For a given ITR d, let

Y ∗(t; d) = Y ∗(t; 1)I{d(Z) = 1}+ Y ∗(t;−1)I{d(Z) = −1}

be the potential response status at time t ∈ [0, τ ] if the patient
received treatment according to d (regardless of the actual treatment
received)

Define the value function (i.e. benefit function)

V(d) = E

{∫ τ

0
Y ∗(t; d)dm(t)

}

* V(d) is the potential expected time spent in the response state
under ITR d by time τ
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Optimal ITRs

An optimal ITR d∗ is a maximizer of the value function, i.e.

d∗ ∈ arg max
d
V(d).

Under assumptions A1–A3 and the independent right censoring
assumption, the value function can be expressed in terms of the
observable data as

V(d) = E

[∫ τ

0

Y1(t)I(C1 > T1 ∧ t)I(A1 = d(Z1))

exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}
dm(t)

]
,

where Λ0(t) is the cumulative hazard function of the right censoring
variable C at time t and T̃ = T ∧ C ∧ τ
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Optimal ITRs (cont.)

Any ITR of the form d : Z 7→ {−1, 1} can be expressed as
d(z) = sgn{f(z)}

It is easy to see that

V(d) = E

[∫ τ

0

Y1(t)I(C1 > T1 ∧ t)
exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}

dm(t)

]
−E

([∫ τ

0

Y1(t)I(C1 > T1 ∧ t)
exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}

dm(t)

]
I(A1 6= d(Z1))

)

Then the optimal ITR is the minimizer of the risk function

R(f) = E

([∫ τ

0

Y1(t)I(C1 > T1 ∧ t)
exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}

dm(t)

]
I(A1 6= sgn(f(Z1))

)
= E

([∫ τ

0

Y1(t)I(C1 > T1 ∧ t)
exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}

dm(t)

]
×

I(A1f(Z1) < 0)

)
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Discontinuity and nonconvexity of the risk function

Minimizing the empirical version of R(f) is challenging
computationally as it involves a discontinuous and nonconvex
function of f

To alleviate, we follow the paradigm of outcome weighting learning6

and support vector machines, and utilize the hinge loss
φ(x) = max(0, 1− x) which leads to the surrogate risk

Rφ(f) = E

([∫ τ

0

Y1(t)I(C1 > T1 ∧ t)
exp{−Λ0(T̃1 ∧ t)}{A1π0 + (1−A1)/2}

dm(t)

]
φ(A1f(Z1))

)
,

6Zhao, Y., Zeng, D., Rush, A.J. and Kosorok, M.R., 2012. Estimating individualized
treatment rules using outcome weighted learning. Journal of the American Statistical
Association 107, 1106–1118.
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Hinge loss vs discontinuous loss*
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*Note that I(x < 0) ≤ φ(x), x ∈ R
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Estimation of optimal ITR

The surrogate loss Rφ can be estimated as

R̂φ(f) =
1

n

n∑
i=1

[∫ τ

0

Yi(t)I(Ci > Ti ∧ t)
exp{−Λ̂n(T̃i ∧ t)}{Aiπ̂n + (1−Ai)/2}

dm(t)

]
φ(Aif(Zi))

where

Λ̂n(t) =

∫ t

0

∑n
i=1 dNi(u)∑n
i=1 Yi(u)

, t ∈ [0, τ ],

with Ni(t) = (1−∆i)I(T̃i ≤ t) and Yi(t) = I(T̃i ≥ t), and
π̂n = n−1

∑n
i=1 I(Ai = 1)

R̂φ(f) is a continuous and convex function of f
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Estimation of optimal ITR (cont.)

The optimal decision function within a class of functions F can be
estimated as

f̂n = arg min
f∈F

{
R̂φ(f) + λn‖f‖2

}
,

where λn is a penalty term depending on n and ‖ · ‖ is a norm on F

Mininimization of over the class of all measurable functions is
infeasible

Therefore, we need to use a restricted class F
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Estimation of optimal ITR (cont.)

In this work we use either of the following restricted classes
I Class of linear functions {f(·) = β0 + 〈β, ·〉 : β0 ∈ R, β ∈ Rp}, where
〈β, z〉 = β′z is the inner product on the Euclidean space

I Reproducing kernel Hilbert space (RKHS) with kernel k, which is the
completion of the spacef(·) =

m∑
j=1

αjk(·, zj) + β0 : m ∈ N, zj ∈ Z, αj ∈ R, β0 ∈ R

 .

Here we consider the RKHS with the Gaussian kernel,
k(z1, z2) = exp(−‖z1 − z2‖2/σ2), z1, z2 ∈ Z.

Then the estimated optimal ITR is

d̂n(z) = sgn{f̂n(z)}, z ∈ Z
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Regularity conditions

C1. The potential right censoring time C is independent of the response
process {Y (t) : t ∈ [0, τ ]} and the time T to the absorbing state

C2. The response process has a square-integrable total variation, i.e.
E{
∫ τ

0 |dY (t)|}2 <∞

C3. The covariate space Z is a compact subset of Rp

C4. The true state occupation probability of response EY (t) is a
continuous function on [0, τ ]

C5. The true cumulative baseline hazard Λ0(t) of the right censoring
distribution is a continuous function on [0, τ ]
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Fisher consistency

Theorem 1 (Fisher consistency)

If f∗ minimizes Rφ, then d∗(z) = sgn{f∗(z)} for all z ∈ Z.

Theorem 1 justifies the use of the surrogate risk Rφ instead of the original
risk R
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Consistency of the estimated ITR

Theorem 2

Suppose that assumptions A1–A3 and conditions C1–C5 hold. Then, for
λn > 0 with λn → 0 and nλn →∞,∣∣∣∣Rφ(f̂n)− inf

f∈F
Rφ(f)

∣∣∣∣ p→ 0,

as n→∞, for any distribution P of the data D. Moreover, if (i) F is the
space of linear functions and f∗ ∈ F or (ii) F is the RKHS with the
Gaussian kernel and the marginal distribution µ of Z is regular, then∣∣∣V(d̂n)− V(d∗)

∣∣∣ p→ 0,

as n→∞.
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No free lunch...

Remarkably, when F is the RKHS with the Gaussian kernel, the value
of estimated ITR V(d̂n) converges to the optimal value V(d∗)

However, the so-called no-free-lunch theorem7 implies that the
corresponding rate of convergence can be extremely slow for at least
some distributions of the data D

This means that an extremely large sample size may be required in
real-life settings in order to obtain an ITR d̂n with a value reasonably
close to the optimal value

7
Steinwart, I. and Christmann, A., 2008. Support Vector Machines. Springer Science & Business Media.
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Choose space of linear functions

Due to the no-free-lunch theorem, We will restrict our attention to
the case where F is the space of linear functions for the remainder of
the presentation

If f∗ /∈ F , V(d̂n) converges to a value lower than the optimal value
V(d∗)

Nevertheless, the limit of V(d̂n) can be seen as an approximation to
the optimal value V(d∗) because

R(f∗) ≤ R(f) ≤ Rφ(f) f ∈ F

The performance can be improved by considering an enlarged
covariate space Z̃ that includes polynomial terms and/or two-way
interaction terms between the original covariates Z

31 / 39



Asymptotic normality

Theorem 3

Suppose that F is the space of linear functions. Then, under assumptions
A1–A3 and conditions C1–C5, we have

√
n
{
V̂n(sgn(f))− V(sgn(f))

}
=

1√
n

n∑
i=1

ψi(f) + ε(f), f ∈ F

with supf∈F |ε(f)| = op(1). Moreover, the class of influence functions
{ψ(f) : f ∈ F} is P -Donsker.
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Asymptotic normality (cont.)

Theorem 4

Suppose that F is the space of linear functions and let

f̃ = arg min
f∈F

Rφ(f).

Then, under assumptions A1–A3 and conditions C1–C5, the additional
assumption that P (f̃(Z) = 0) = 0, and for λn > 0 with λn → 0 and
nλn →∞, we have∣∣∣√n [V̂n(sgn(f̂n))− V(sgn(f̂n))

]
−
√
n
[
V̂n(sgn(f̃))− V(sgn(f̃))

]∣∣∣ = op(1)

Note that Theorem 4 does not assume that f∗ ∈ F
Theorem 4 is very important for conducting rigorous inference about
the benefit of the estimated optimal ITR V(d̂n)
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Simulation study

Simulations under an illness-death model:
State 1 State 3

State 2

Two tailoring variables were simulated Z1, Z2 ∼ U(−1, 1)

Data were simulated under the true optimal ITR
d∗(Z) = sgn(Z1 − Z2)

Right censoring times were simulated from Exp(θ), with
θ ∈ {e−1.6, e−1, e0.4}

1,000 simulated data sets for each scenario
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Simulation results regarding d̂n

Censoring n V(d∗) V(d̂n) V̂n(d̂n) MCSD MR

29% 200 1.271 1.214 1.294 0.148 0.191
400 1.271 1.245 1.285 0.107 0.125
800 1.271 1.259 1.278 0.077 0.087

45% 200 1.271 1.205 1.310 0.165 0.206
400 1.271 1.238 1.289 0.117 0.141
800 1.271 1.255 1.281 0.085 0.098

62% 200 1.271 1.180 1.322 0.198 0.251
400 1.271 1.219 1.289 0.140 0.179
800 1.271 1.246 1.282 0.102 0.124

MCSD: Monte Carlo standard deviation

MR: Misclassification rate
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Normal Q-Q plots of V̂n(d̂n)
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Should we be discouraged about the chemoterhapy +
panitumumab option?

The methodology was used to estimate an optimal ITR in an effort to
extend the expected time spent in response within the first 18 months

The tailoring variables were age, gender, disease stage, and exposure
to prior treatment

Results regarding the (estimated) expected duration of response:

(i) Optimal ITR: 2.81 months

(ii) Chemotherapy + panitumumab: 2.46 months
p-value vs optimal ITR: 0.156

(iii) Chemotherapy alone: 1.71 months
p-value vs optimal ITR: 0.031

37 / 39



Concluding remarks

Estimation of optimal individualized interventions is crucial in
heterogeneous chronic diseases (e.g., cancer)

The proposed approach is nonparametric and relies on weak
assumptions

The validity of our estimation approach for multistate disease
processes was justified both theoretically and via simulation
experiments

Next steps:

(i) Observational studies (violation of assumption A2)
(ii) Multiple decision points
(iii) Patient preferences and financial constraints
(iv) Missing values in tailoring variables
(v) Interval censoring issue
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