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Recent advances in computational methods for intractable models have made network data increasingly amenable to statistical analysis. Exponer
graph models (ERGMs) emerged as one of the main families of models capable of capturing the complex dependence structure of network data ir
of applied contexts. The Bergm package for R has become a popular package to carry out Bayesian parameter inference, missing data imputatior
selection and goodness-of-fit diagnostics for ERGMs. Over the last few years, the package has been considerably improved in terms of efficiency
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Getting Bergm

Bergm: Bayesian Exponential Random Graph Models

Bayesian analysis for exponential random graph models using advanced computational algorithms. More information can be found at: <https://acaimo.github 10/ Bergm/>.

Version: 5.03

Depends erem. R (= 2.10)

Imports: network, coda, MCMCpack, Matrix, mvinorm. matrixcalc, statnet.common
Published 2021-06-15

Author: Alberto Caimo [aut, cre], Lampros Bouranis [avt], Robert Krause [aut] Nial Friel [cth]
Maintainer: Alberto Caimo <acaimo.stats at gmail com=

» Bergm version 5 of the package available on CRAN.

» Considerable improvement in terms of usability for practitioners and
performance since its early versions (Caimo and Friel, 2014).

» Type the following commands to obtain Bergm from CRAN and load it in R:

R> install.packages ("Bergm")
R> library ("Bergm")
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Motivation

» Statistical models with intractable likelihood functions abound:
® Image analysis.
m Spatial statistics.
m Statistical network analysis.

» We focus on ERGMs - widely used in statistical network analysis.

» Bayesian inference for ERGMs is challenging because of the intractability of
both the likelihood and the marginal likelihood.

» Advanced computational methods developed in the last decade have made
it computationally feasible to model increasingly large network data using
ERGMSs on several thousands of nodes.

» The development of user-friendly software has always represented an
essential aspect of the research activity in this area.
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Motivation

Bergm aims to provide a set of tools for both developers and end-users.

Several competing functions (based on different

. . . Statistical
statistical approaches) are included, for carry- Neowork | godel
. Analysis
ing out: ’

» Bayesian parameter inference. it rmere

Bayesian Parameter

Missing data imputation.

Exponential
Random

Model selection. Graphs

Model
Assessment

>
>
» Goodness-of-fit diagnostics.
>

Can be computationally intensive, but is easy to use and represents an

attractive way of analysing networks.

» Several applications of Bergm: neuroscience (Sinke et al., 2016),
organisation science (Caimo and Lomi, 2014; Tasselli and Caimo, 2019)
and political science (Henning et al., 2019).
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Network data - Lazega’s law firm

OFFICE PRACTICE

® Boston @ Litigation
® © Hartford ® o Corporate
O Providence E—

» Binary undirected collaborative relations between 36 partners in a
Northeastern US corporate law firm (Lazega, 2001).

» Member attributes available: seniority, formal status, office in which they
work, gender, law school attended, etc.

R> data(lazega)
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Network data - Faux Dixon High School

SEX RACE GRADE
o Male o Black o Grade 7
© Female © Hispanic o Grade 8

o Other o Grade 9

© White © Grade 10
e o Grade 11
o Grade 12

» Simulation of a binary directed in-school friendship network (Resnick et al.,
1997). See ?faux.dixon.high for the ERGM that was fit to the original data,
generating the network dataset.

» The network comprises 248 nodes representing students. Information on
the following nodal attribute variables is available: sex, race, grade.

R> data (faux.dixon.high)
R> dixon < faux.dixon.high
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The exponential random graph model (ERGM)

(@ Capture the complex dependence structure of an observed network.

@ Identify the relational effects that are supposed to describe the link creation process.

iy 0y U18) _ exp {87s(y)}
z(6) z(6)
» Random adjacency matrix y € 9 with n
nodes: y; = {0;1}.
> s(y)eRY,0€0 CRY

» z(0) is a normalising constant,

0= Y en{6Tsy)}

all possible graphs

> 2(2) possible undirected graphs of n nodes.
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Model specification: network statistics

» Probability of observing a given graph depends on certain "local” graph
configurations.

edge 2-star 3-star
©)

triangle
O O O

O

» Inclusion of covariate information x is allowed:

Xi+x;  :’main effect”,
(v:x) %J’u L{y—y) :’homophily effect’
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Bayesian exponential random graph models (BERGMSs)

» Allows for prior (expert-judgement) information, eg:

m Info from previous studies about network effects (e.g. estimates of ERGM
parameters).

m Network sparsity.
» Probabilistic treatment of uncertainty.
» Combination of prior and current information - included in the likelihood.
» Bayesian approach to ERGMs is difficult because of likelihood intractability!
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Bayesian exponential random graph models (BERGMSs)

» Challenging to sample from the doubly-intractable posterior distribution

wo]y)— [ 100P(®) _ _i(y|0)p(6)

n(y) Jof(y|6)p(6) a6

» Naive MH algorithm proposes the move 6 — 8’ with probability

fly|0)p
fly|0) p
p

. 010)
A©.8) =rmin{ 1 aa
GLUGRECY
©16)  2(0) )

» Estimating the model evidence t(y) is also a challenge...
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Exchange algorithm (Murray et al., 2006)

Samples from the augmented distribution
n(0.y',0|y) o< f(y | 0)p(8)h(®' |0)f(y'[6),

whose marginal distribution for 0 is the posterior of interest.
1. Gibbs update of (6',y):

(i) Draw 6" ~ h(- | 8).

(i) Draw y" ~ f(- | 6").
2. Propose move from 8 to 6 with probability:

{140/ o) p(8') (8| &) aly'16) 0200))
"oy [0) p(0) WO [0)a(y'| ) " 2(0)2(0) |
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Approximate exchange algorithm (Caimo and Friel,
2011)

» Crucially, the Exchange requires a draw from f(y’ | 8') at each iteration.
Perfect sampling is an obvious approach, if this is possible.

» Pragmatic solution: take a realisation from a long MCMC run (M transitions)
with stationary distribution f(y’ | ©’) as an approximate draw:
1. Gibbs update of (6',y'):
(iy Draw @' ~ h(- | 6).
(i) Draw y’ ~ RM(-| @) via MCMC [’tie-no-tie” (TNT) sampler].
2. Propose move from 0 to 8" with probability:

[, aly1)p(8) h(®16) aly'|6) _ 2(6)z(9)
e {1’ a(y [0) p(6) h(8'[8) a(y’ | &) ~ 2(6/)z(6) }
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Approximate exchange algorithm (Caimo and Friel,
2011)

> Intuitively we expect the number of auxiliary iterations, M, to be proportional
to the # of dyads of the graph, n?.

» Everitt (2012) showed that, under regularity conditions, the invariant
distribution of approximate exchange converges to the true target as # of
auxiliary iterations, M, increases.

v

Conservative approach: choose a large M...

» Bottleneck: exponentially long mixing time for auxiliary draw from the
likelihood - A computationally intensive procedure for larger graphs!
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Parallel adaptive direction sampler

» Computational challenge: Often, strong correlation between model
parameters & high posterior density region can be thin — slow mixing
(Caimo and Friel, 2011).

» Improving chain mixing and convergence: a parallel adaptive direction
sampler (ADS) for the Gibbs update of 8’ (Gilks et al., 1994):

m " iteration: a collection of H different chains interacting with one another.
m State space {01,...,04} with target distribution

75(61 |,V)®"'®TE(9H | y).

» Parallel ADS move for each chain h=1,... ' H [6;7 — 6#1 =0}l
1. Select at random hy and h» without . gha
replacement from {1,...,H}\ h. C
o
2. Sample € ~ Ny (0,%). toNe W
3. Propose 6}, = 6}, +7(6}, —6},) +¢. A
oy e
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Implementation

> Network statistics:
m Density effect captured by the number of edges (edges).

m Homophily effect between lawyers working in the same office
(nodematch(”Office”)) and in the same practice area (nodematch(”Practice”)).

m Transitivity effect captured by the geometrically weighted edgewise shared
partners statistic (GWESP) (Snijders et al., 2006).
# Define the model:

R> ml < lazega ~ edges + nodematch ("Office") +
+ nodematch ("Practice") + gwesp (0.5, fixed = TRUE)

# Prior assumptions (multivariate Normal distribution) :
R> M.prior ¢ c(-4, 0.5, 0.5, 1)
R> S.prior < diag (4, 4)

# Implement the parallel ADS procedure:

R> p.ml < bergm(ml, nchains = 8, aux.iters = 2500,
+ prior.mean = M.prior, prior.sigma = S.prior,
+ burn.in = 500, main.iters = 3000, gamma = 0.6)
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Posterior outputs
» CPU time: ~ 2.6 mins.

R> summary (p.ml)
Posterior Density Estimate for Model: y ~ edges +
nodematch ("Office") + nodematch ("Practice") +

gwesp (0.5, fixed = TRUE)

Mean SD Naive SE Time-series SE

thetal (edges) -5.110 0.450 0.003 0.0195
theta?2 (nodematch.Office) 0.925 0.181 0.001 0.0072
theta3 (nodematch.Practice) 0.645 0.186 0.001 0.0076
thetad4 (gwesp.fixed.0.5) 1.517 0.251 0.003 0.0105

2.5% 25% 50% 75% 97.5%
thetal (edges) -6.022 -5.417 -5.095 -4.799 -4.251
theta2 (nodematch.Office) 0.577 0.801 0.922 1.046 1.278
theta3 (nodematch.Practice) 0.276 0.521 0.644 0.770 1.006
thetad4 (gwesp.fixed.0.5) 1.041 1.345 1.511 1.689 2.027

Acceptance rate: 0.2
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Posterior outputs
R> plot(p.ml, lag = 100)
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Missing data augmentation (Krause et al., 2020)

» Missing network data types:

@ Actor non-response: all outgoing ties of an actor/node are missing.
‘Non-response’ implies that data is collected via self-reports of network actors
and stems from classical survey research.

@ Tie non-response: some, but not all ties of an actor/node are missing. Data
collection methods, like link tracing or snowball sampling, might lead more
often to tie non-response.

» Effect on descriptive network statistics depends on:
m The amount of missing data

m The network structure
m The descriptive statistic in question

m How the missing data are treated
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Missing data augmentation (Krause et al., 2020)

» Treatment — Multiple data imputation:

m Assumption 1: missing data is ignorable, i.e the probability for data to be
missing is independent from the missing values themselves and only
dependent on the observed data [’missing at random”].

m Assumption 2: limited to the setting where the set of unobserved tie variables
is known and fixed.

m Assumption 3: all covariates/nodal attributes are known and fixed.

m Missing network data imputed using draws from the posterior distribution of
the tie variable that is generated to obtain parameter estimates.

m Allows to retain the augmented networks, thus achieving proper multiple
imputations.

m Shown to provide reliable estimates of (6 | y) (Koskinen et al., 2010), and
low biases in descriptive statistics, even with high missing data rates.
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Missing data augmentation (Krause et al., 2020)

Convention: u represents the observed part of the data; v represents the
unobserved part of the data. The network can be re-assembled as y = (u, v).

Algorithm 1: Bergm with Multiple data imputation
1: Initialise s(y*) with s(u); Initialise ©.
2. fork=1,...,Kdo
3:  Generate 0’ using the ADS proposal procedure.
4
5

Draw y’ ~ RM(- | ") via MCMC ["tie-no-tie” (TNT) sampler].
Update 6 — 6’ with the log of the probability:

log ot = min <0,[9—6’]T[s(y') —s(y*)] +log [ﬁ;((%’))D .

6: if 8’ accepted then

Draw v* ~ f(- | ®',u) and generate a new y* = (u, v*).
7. end if
8: end for
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Implementation

» nlmp: retain a specified number of imputed networks y* from the estimation
procedure, after the burnin phase.

# Lazega’s data is fully observed; randomly set all
# outgoing ties of 4 nodes (11%) to missing:

R> set.seed (1)

R> missV ¢ sample (1:36, 4)

R> lazega[missV, ] ¢ lazega[, missV] ¢ NA

# Implement the parallel ADS procedure:
R> p.ml.M ¢« bergmM (ml, nchains = 8, aux.iters = 3000,

+ prior.mean = M.prior, prior.sigma = S.prior,
+ burn.in = 200, main.iters = 3000,
+ gamma = 0.6, nImp = 10)

# Obtain the imputed networks:
R> p.ml.MS$impNets
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Posterior summaries
» CPU time: =~ 10.4 mins.

R> summary (p.ml.M)
Posterior Density Estimate for Model: y ~ edges +
nodematch ("Office") + nodematch ("Practice") +

gwesp (0.5, fixed = TRUE)

Mean SD Naive SE Time-series SE

thetal (edges) -4.782 0.438 0.002 0.019
theta?2 (nodematch.Office) 0.860 0.188 0.001 0.008
theta3 (nodematch.Practice) 0.567 0.195 0.001 0.009
thetad4 (gwesp.fixed.0.5) 1.369 0.248 0.002 0.011

2.5% 25% 50% 75% 97.5%
thetal (edges) -5.722 -5.060 -4.767 -4.489 -3.953
theta2 (nodematch.Office) 0.485 0.736 0.864 0.979 1.235
theta3 (nodematch.Practice) 0.176 0.441 0.569 0.698 0.955
thetad4 (gwesp.fixed.0.5) 0.918 1.199 1.355 1.524 1.885

Acceptance rate: 0.19
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Goodness-of-fit diagnostics

» Bayesian goodness-of-fit (GOF) procedure — evaluate the model GOF in
terms of posterior predictive assessment (Caimo and Friel, 2011).

» Observed network is compared with a randomly simulated network sample
(sample size determined by sample.size) drawn from the estimated
posterior distribution using aux.iters iterations for the network simulation
step.

» High-level characteristics not modeled explicitly:

m Degree distributions (for degrees > 3);

m Minimum geodesic distance (the proportion of pairs of nodes whose shortest
connected path is of length / =1,2,...);

m # of edge-wise shared partners (# of edges in the network that share /
neighbours in common (I =1,2,...).

R> set.seed (1)
R> bgof (p.ml, aux.iters = 5000, sample.size = 100,
+ n.deg = 15, n.dist = 9, n.esp = 8)
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Goodness-of-fit diagnostics

» Red lines represent the observed network GOF statistic values; boxplots
represent the GOF statistics of the simulated networks.

» The structure of the observed graph can be considered as a possible
realisation of the posterior density.
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Bayesian model selection

Translates into the choice of which subset of network statistics should be included into the
model (Caimo and Friel, 2013).

» Model set M = { My, Mo, M3,...} fordata y € .
» Within each model:

70 |y M) = "V em;t?ﬁ);{(n?)m | Mor).

» Constant of proportionality ("Marginal likelihood”/”"Evidence”):

WY | M) = [ 17|00 M )p(B1n | M) 0B,

m
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Bayesian model selection

» Summarise pairwise comparison of models M, , M,y by:

T ly) _ wly| M) p(M)

(Mo |y) 7y | M)~ (M)
posterior odds = BF,, ,y X prior odds

» The Bergm package assumes a multivariate Normal prior NG, (tm, Xm) for
0, that leads to a marginal likelihood which is finite.
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Pseudo-likelihood adjustment for large networks

by 18)= [ pUily H PU; =11y 00"
Iy _U’ )
i#j U i<y l;éj /</ p(y’/_1 |y ifs )}y,, 1

where y_; denotes y\{y;}.

» Each factor in the product is a Bernoulli random variable (Strauss and
Ikeda, 1990).

» Estimation is equivalent to logistic regression - fast computation.

» Assumes the collection yj | y—; are mutually independent - problematic
inference.

» Pseudo-posterior: o (8 | y) o< fo (¥ | 0)p(8).
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Pseudo-likelihood adjustment for large networks

Type ™ Full adj. ®Mode-Curv. adj.™ Pseudo M True
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Pseudo-likelihood adjustment for large networks

<{€ . }
%ii}‘\ Estimate 7, (y | 6)
Curvature adjustment Mode adjustment
Magnitude adjustment Sample from 7t(6 | y) 'N's"j
Obtain f(y | 6) Estimate 7t(y) S
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Pseudo-likelihood adjustment for large networks

» Adjustments lead to the model-specific fully adjusted pseudo-likelihood
(Bouranis et al., 2018)

?m(y |8m) = Cm- fPL,m(y ’ éMPLE,m + Qm(6m — éMLE,m))-

» Approximate the true posterior distribution by

Y | 8m, Mn)p(0m | M)
w(y | Mn)
?(y | Om, Mim)p(Om | Mm)
Je, (v | 8m, Mn)P(81m | M) dOm

76|y, M) = ¢

» Approximate BF,,y by

&/(y | Mm) o f@m ?(y | em79\/[m)p(em ‘ Mm) do,,

é\I/:mm’ == - ~ :
Ry | Mor) ~ Jo, F(Y | Ot Mg )0(Or | M) A6,
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Evidence estimation techniques

» Evidence estimation: well studied problem in the last 30 years (Ardia et al.,
2012).

» Many techniques to estimate intractable multi-dimensional integrals, eg.:
m Chib and Jeliazkov’s one-block Metropolis-Hastings method (2001).

m Power posteriors (Friel and Pettitt, 2008).
» Most require a tractable likelihood.
» With our adjustments we can borrow methods from the Bayesian toolbox.

» In Bergm, the evidence() function estimates Tt(y | Mpy).
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Application

» Model HM; — almost identical to the model used to generate the simulated
data (see ?faux.dixon.high):

m density (edges), mutuality (mutual) and transitivity (gwesp) effects;
m homophily effects for race, sex and grade;

m # of nodes of in-degree 0 and 1 & # of nodes of out-degree 0 and 1.
R> ml < dixon ~ edges + mutual + absdiff ("grade") +

nodefactor ("race") +

nodefactor ("grade") +

nodefactor ("sex") +

nodematch ("race", diff = TRUE, levels = c("B","O","W")) +

nodematch ("grade", diff = TRUE) +
nodematch ("sex", diff = FALSE) +
idegree (0:1) + odegree(0:1) +
gwesp (0.1, fixed = TRUE)

+ + + + + + + +

R> M.priorl ¢ c (-5, rep(0, 26))
R> S.priorl ¢ diag (5, 27)
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Application

» evidence() function includes an additional feature that allows for estimation
of logT(y | Mp).

R> c¢jl < evidence (formula = ml, seed = 1,

+ prior.mean = M.priorl, prior.sigma = S.priorl,

+ burn.in = 5000, main.iters = 30000,

+ aux.iters = 2500, n.aux.draws = 50, aux.thin = 50,
+ ladder = 200, V.proposal = 0.5, estimate = "CD",

+ evidence.method = "CJ", num.samples = 25000)

R> cjl$log.evidence

R> summary (cjl)
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Application

R> plot (cjl)

R> bgof (cjl, sample.size = 100, aux.iters = 5000,
+ n.ideg = 20, n.odeg = 20, n.dist = 10, n.esp = T7)
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Application

» Model M, — assumes that the terms for mutuality and transitivity are
removed from 2.
R> m2 < dixon ~ edges + absdiff ("grade") +

nodefactor ("race") +

nodefactor ("grade") +

nodefactor ("sex") +

nodematch ("race", diff = TRUE, levels = c("B","O","Ww")) +

nodematch ("grade", diff = TRUE) +
nodematch ("sex", diff = FALSE) +
idegree (0:1) + odegree (0:1)

+ + + + + + +

R> M.prior2 < c (-5, rep(0, 24))
R> S.prior2 ¢ diag (5, 25)

R> ¢cj2 < evidence (formula = m2, seed = 1,

+ prior.mean = M.prior2, prior.sigma = S.prior2,

+ burn.in = 5000, main.iters = 30000,

+ aux.iters = 2500, n.aux.draws = 50, aux.thin = 50,
+ ladder = 200, V.proposal = 0.5, estimate = "CD",

+ evidence.method = "CJ", num.samples = 25000)
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Application

» The transitivity and mutuality effect are important connectivity features of
the observed network.

» The homophily effect of race, sex and grade can help explain the complexity
of the observed network data.

Model Log evidence estimate CPU (mins) BFi2
M, —38,064.65 2.93 3.68x10%®
Mo —38,199.50 1.13
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Concluding remarks

» Aim of this tutorial: a useful introduction to the main capabilities of the
package & some of the algorithms and methods behind it.

» Bergm aims to help researchers and practitioners in two ways:

m A simple, efficient and complete range of tools for conducting Bayesian
inference for ERGMs.

m A platform that can be easily customised, extended and adapted to address
different requirements.

» Bergm is under continual maintenance and periodic significant upgrading.
» Future developments:
m Treatment of missing nodal attributes like age & gender.

m Uncertainty quantification of the Monte Carlo estimates of the evidence.
m Extensions to weighted networks (Caimo and Gollini, 2020).

m Extentions to multiplex networks (Krause and Caimo, 2019).
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Chib and Jeliazkov’s method (2001)
» Following from Bayes formula:

=\ _ f(y[6)p(8)
W ey

» Estimate log@t(y) as
log7(y) = logf(y | 8*) +logp(6*) —logm(6* | y).
» One block Metropolis-Hastings approach:

M~y (6™, 6%)h(el™), %)

T e o)

» h(0,0') is the candidate generating density.
» {6(M} draws from (8 | y); {6()} draws from h(6*,8).
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Power posteriors (Friel and Pettitt, 2008)

» Define the power posterior at inverse temperature t by

70 y) =< F(y | 0)'p(0). e [0,1]
2(y16)= [ 7(y16)'p(©) ce.

» Key identity: d%log z(y | t) = Eg +log f(y | 0).
» Consequently:

log®i(y) = Iog{%} = /01 Eeyy.tlogf(y | 6) dt.

» Discretise the inverse temperatures 0 =l < i < ... <ty =1:
Friel and Pettitt (2008) recommend ¢ = (j/m)®, j=0,...m.
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Power posteriors - Reducing the error (Friel et al., 2014)

» Two sources of error:
m Sampling error (expensive): estimate Eg), ;. logf(y | ©), V.
m Discretisation error (cheap): approximate integral with numerical integration
(trapezium rule):

m [Egy70_1 log7(y | 6)+E9‘y7,jlog?(y | 6)]

log7i(y) = Z,(t/—ff—ﬂ 5

» Reducing discretisation error for the trapezium rule:

Ee|y,t,-_1 log7(y | 8) +Eg|y; log F(y | 9)]

m

log7(y Z i —ti_1)

_(f/—f/q)

12

2

Vo, 1097(y | 8) = Ve, 4logi(y [ 0)]
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Power posteriors - Control variates (Oates et al., 2016)

» Aim: improve efficiency (variance reduction) of evidence estimate by:

k(6) =logf(y | ©),
E[k(6)] = E[k(6) +h(6 | y,1)],
V[k(8)] < V[k(8)].

» ZV control variates:

u(®|y,t) =Veglogm,(8|y),
h(8 | y,t) = De[P( [ d(y, 1))+ Ve[P(B ] 0(y,1))]-u(® | y,t).

» Low order polynomials P (degree 2 here) with coefs 0(y, t).

» Controlled thermodynamic integral:
1 ~
007(y) = [ Eoy [logT(y |6) +h(8 |y.0] ot
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Pseudo-likelihood adjustment for large networks

» Invertible and differentiable mapping

g ©—+0
10— OupLe + Q6 — Bppie)

» Estimate the maxima of the likelihood and the pseudolikelihood:
Oue = argmaxlogf(y | 8), OupLe = argmaxlog oy (v | 6).
0 )
» Mode and curvature adjusted pseudolikelihood:

fo (v 1 9(8)) = for (v | OumpLe + QO —Buie)), Q€ M(RY).

» Fully adjusted pseudolikelihood:

f(y6)=C-fo(y | 9(8)).
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Pseudo-likelihood adjustment for large networks

> éMLE: estimate with MC-MLE (Geyer and Thompson, 1992).
m Available in R’s ergm package.
m Maximise the log-likelihood ratio

£(8) — £(85) = (e—eo)Ts(y)—log{ ((69))}

m Useful property:

2(6) -y q(y [6) 9y |80) _ [q(yle)]

2(00) S aly160) 2(8) ™ [a(y60)

® Unbiased IS estimate: simulate draws y;, ...,y ~ f(- | 69) and set

01 & a0hle)
2(80) Kk; a(yi 160)

> éMPLE: standard optimisation methods (BFGS).
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Pseudo-likelihood adjustment for large networks

Volog (y[0)l5,, . =QVeloale (v10)5,,, . I Vglog(y10)lg,, .=Q" V3loafe (v10)l5,, - Q I

» Estimate the first two moments on the basis of
m Gradient: Vglogf(y | 8) = s(y) —Ey e [s(y)],
m Hessian: V3logf(y |8) = —V s [s(y)],
using Monte Carlo draws from f(y | ).

» Moments of log fo (¥ | 8) in closed form.

» Cholesky decompositions (Ribatet et al., 2012):

5 _NT
~Vlogf(y | 0)lg,,. =N N} Q=M"N
2 r . |
—Vglogfo (¥ | e)|éMPLE =MM
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Pseudo-likelihood adjustment for large networks

q(y | bme) -z (Bune)
fo (v | 9(Bmie))

f(y | éMLE) =f(y| éMLE) & C=

» Aux.variable t €[0,1]: 0=f <t <...<t=1.

A

o*ti
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Pseudo-likelihood adjustment for large networks

» Consider: R
z(OmE) _ z(t,0mLE) 1'1311 2(ti110me)
z(0) Z(tbbwme) =0 z(tBme)
» Note that:

Z(ti+10mE) B

A 9y | ti+10mE)
Z(t0mLE) 1l | q(y; | 40mie))

» Unbiased IS estimate: simulate draws y/y., ..., yjc ~ f(- | tOmLe) and set

—

Z(ti410me) 1 K oa(y | tis10mE)
z(tOme)  Ki=t a(yi | 4Omie)

2(3), n : # of nodes (undirected graphs)

» Easytofind z(0) =
y (©) {2”, N : size of lattice.
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