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Getting Bergm

I Bergm version 5 of the package available on CRAN.

I Considerable improvement in terms of usability for practitioners and
performance since its early versions (Caimo and Friel, 2014).

I Type the following commands to obtain Bergm from CRAN and load it in R:

R> install.packages("Bergm")
R> library("Bergm")
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Motivation

I Statistical models with intractable likelihood functions abound:
� Image analysis.

� Spatial statistics.

� Statistical network analysis.

I We focus on ERGMs - widely used in statistical network analysis.

I Bayesian inference for ERGMs is challenging because of the intractability of
both the likelihood and the marginal likelihood.

I Advanced computational methods developed in the last decade have made
it computationally feasible to model increasingly large network data using
ERGMs on several thousands of nodes.

I The development of user-friendly software has always represented an
essential aspect of the research activity in this area.
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Motivation

Bergm aims to provide a set of tools for both developers and end-users.

Several competing functions (based on different
statistical approaches) are included, for carry-
ing out:

I Bayesian parameter inference.

I Missing data imputation.

I Model selection.

I Goodness-of-fit diagnostics.

I Can be computationally intensive, but is easy to use and represents an
attractive way of analysing networks.

I Several applications of Bergm: neuroscience (Sinke et al., 2016),
organisation science (Caimo and Lomi, 2014; Tasselli and Caimo, 2019)
and political science (Henning et al., 2019).
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Network data - Lazega’s law firm

OFFICE

Boston
Hartford
Providence

PRACTICE

Litigation
Corporate

I Binary undirected collaborative relations between 36 partners in a
Northeastern US corporate law firm (Lazega, 2001).

I Member attributes available: seniority, formal status, office in which they
work, gender, law school attended, etc.

R> data(lazega)
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Network data - Faux Dixon High School
SEX

Male
Female

RACE

Black
Hispanic
Other
White

GRADE

Grade 7
Grade 8
Grade 9
Grade 10
Grade 11
Grade 12

I Simulation of a binary directed in-school friendship network (Resnick et al.,
1997). See ?faux.dixon.high for the ERGM that was fit to the original data,
generating the network dataset.

I The network comprises 248 nodes representing students. Information on
the following nodal attribute variables is available: sex, race, grade.

R> data(faux.dixon.high)
R> dixon ← faux.dixon.high
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The exponential random graph model (ERGM)

Purpose of ERGMs
1 Capture the complex dependence structure of an observed network.

2 Identify the relational effects that are supposed to describe the link creation process.

f (y | θ) =
q(y | θ)

z(θ)
=

exp
{

θ>s(y)
}

z(θ)

I Random adjacency matrix y ∈ Y with n
nodes: yij = {0;1}.

I s(y) ∈ Rd
+, θ ∈Θ⊆ Rd .

I z(θ) is a normalising constant,

z(θ) = ∑
all possible graphs

exp
{

θ
>s(y)

}
I 2(n

2) possible undirected graphs of n nodes.
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Model specification: network statistics

I Probability of observing a given graph depends on certain ”local” graph
configurations.

edge 2-star 3-star triangle

(b)

I Inclusion of covariate information x is allowed:

s(y ,x) = ∑
i 6=j

yij ×

{
xi + xj : ”main effect”,

1{xi =xj} : ”homophily effect”.
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Bayesian exponential random graph models (BERGMs)

I Allows for prior (expert-judgement) information, eg:
� Info from previous studies about network effects (e.g. estimates of ERGM

parameters).

� Network sparsity.

I Probabilistic treatment of uncertainty.

I Combination of prior and current information - included in the likelihood.

I Bayesian approach to ERGMs is difficult because of likelihood intractability!
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Bayesian exponential random graph models (BERGMs)

I Challenging to sample from the doubly-intractable posterior distribution

π(θ | y) =
f (y | θ)p(θ)

π(y)
=

f (y | θ)p(θ)∫
Θ f (y | θ)p(θ) dθ

.

I Naive MH algorithm proposes the move θ→ θ′ with probability

A(θ,θ′) = min

{
1,

f (y | θ′)
f (y | θ)

p(θ′)

p(θ)

h(θ | θ′)
h(θ′ | θ)

}
= min

{
1,

q(y | θ′)
q(y | θ)

p(θ′)

p(θ)

h(θ | θ′)
h(θ′ | θ)

× z(θ)

z(θ′)

}
.

I Estimating the model evidence π(y) is also a challenge...
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Exchange algorithm (Murray et al., 2006)

Samples from the augmented distribution

π(θ
′,y ′,θ | y) ∝ f (y | θ)p(θ)h(θ

′ | θ)f (y ′ | θ′),

whose marginal distribution for θ is the posterior of interest.
1. Gibbs update of (θ′,y ′):

(i) Draw θ′ ∼ h(· | θ).
(ii) Draw y ′ ∼ f (· | θ′).

2. Propose move from θ to θ′ with probability:

min

{
1,

q(y | θ′)
q(y | θ)

p(θ′)

p(θ)

h(θ | θ′)
h(θ′ | θ)

q(y ′ | θ)

q(y ′ | θ′)
× z(θ)z(θ′)

z(θ′)z(θ)

}
.
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Approximate exchange algorithm (Caimo and Friel,
2011)

I Crucially, the Exchange requires a draw from f (y ′ | θ′) at each iteration.
Perfect sampling is an obvious approach, if this is possible.

I Pragmatic solution: take a realisation from a long MCMC run (M transitions)
with stationary distribution f (y ′ | θ′) as an approximate draw:

1. Gibbs update of (θ′,y ′):
(i) Draw θ′ ∼ h(· | θ).
(ii) Draw y ′ ∼ RM(· | θ′) via MCMC [”tie-no-tie” (TNT) sampler].

2. Propose move from θ to θ′ with probability:

min

{
1,

q(y | θ′)
q(y | θ)

p(θ′)
p(θ)

h(θ | θ′)
h(θ′ | θ)

q(y ′ | θ)
q(y ′ | θ′)

× z(θ)z(θ′)
z(θ′)z(θ)

}
.
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Approximate exchange algorithm (Caimo and Friel,
2011)

I Intuitively we expect the number of auxiliary iterations, M, to be proportional
to the # of dyads of the graph, n2.

I Everitt (2012) showed that, under regularity conditions, the invariant
distribution of approximate exchange converges to the true target as # of
auxiliary iterations, M, increases.

I Conservative approach: choose a large M...

I Bottleneck: exponentially long mixing time for auxiliary draw from the
likelihood - A computationally intensive procedure for larger graphs!
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Parallel adaptive direction sampler

I Computational challenge: Often, strong correlation between model
parameters & high posterior density region can be thin→ slow mixing
(Caimo and Friel, 2011).

I Improving chain mixing and convergence: a parallel adaptive direction
sampler (ADS) for the Gibbs update of θ′ (Gilks et al., 1994):
� i th iteration: a collection of H different chains interacting with one another.

� State space {θ1, . . . ,θH} with target distribution

π(θ1 | y)⊗·· ·⊗π(θH | y).

I Parallel ADS move for each chain h = 1, . . . ,H [θi
h → θ

i+1
h = θ′h]:

1. Select at random h1 and h2 without
replacement from {1, . . . ,H}\h.

2. Sample ε∼Nd (0,Σ).

3. Propose θ′h = θi
h + γ

(
θi

h1
−θi

h2

)
+ ε.
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Implementation
I Network statistics:

� Density effect captured by the number of edges (edges).

� Homophily effect between lawyers working in the same office
(nodematch(”Office”)) and in the same practice area (nodematch(”Practice”)).

� Transitivity effect captured by the geometrically weighted edgewise shared
partners statistic (GWESP) (Snijders et al., 2006).

# Define the model:
R> m1 ← lazega ∼ edges + nodematch("Office") +
+ nodematch("Practice") + gwesp(0.5, fixed = TRUE)

# Prior assumptions (multivariate Normal distribution):
R> M.prior ← c(-4, 0.5, 0.5, 1)
R> S.prior ← diag(4, 4)

# Implement the parallel ADS procedure:
R> p.m1 ← bergm(m1, nchains = 8, aux.iters = 2500,
+ prior.mean = M.prior , prior.sigma = S.prior ,
+ burn.in = 500, main.iters = 3000, gamma = 0.6)
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Posterior outputs
I CPU time: ≈ 2.6 mins.

R> summary(p.m1)

Posterior Density Estimate for Model: y ∼ edges +
nodematch("Office") + nodematch("Practice") +
gwesp(0.5, fixed = TRUE)

Mean SD Naive SE Time -series SE
theta1 (edges) -5.110 0.450 0.003 0.0195
theta2 (nodematch.Office) 0.925 0.181 0.001 0.0072
theta3 (nodematch.Practice) 0.645 0.186 0.001 0.0076
theta4 (gwesp.fixed.0.5) 1.517 0.251 0.003 0.0105

2.5% 25% 50% 75% 97.5%
theta1 (edges) -6.022 -5.417 -5.095 -4.799 -4.251
theta2 (nodematch.Office) 0.577 0.801 0.922 1.046 1.278
theta3 (nodematch.Practice) 0.276 0.521 0.644 0.770 1.006
theta4 (gwesp.fixed.0.5) 1.041 1.345 1.511 1.689 2.027

Acceptance rate: 0.2
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Posterior outputs
R> plot(p.m1, lag = 100)

θ1 (edges)
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MCMC output for Model: y ~ edges + nodematch("Office") + nodematch("Practice") + gwesp(0.5, fixed = TRUE)
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Missing data augmentation (Krause et al., 2020)

I Missing network data types:
1 Actor non-response: all outgoing ties of an actor/node are missing.

’Non-response’ implies that data is collected via self-reports of network actors
and stems from classical survey research.

2 Tie non-response: some, but not all ties of an actor/node are missing. Data
collection methods, like link tracing or snowball sampling, might lead more
often to tie non-response.

I Effect on descriptive network statistics depends on:
� The amount of missing data

� The network structure

� The descriptive statistic in question

� How the missing data are treated

Lampros Bouranis 20/39



Missing data augmentation (Krause et al., 2020)

I Treatment – Multiple data imputation:
� Assumption 1: missing data is ignorable, i.e the probability for data to be

missing is independent from the missing values themselves and only
dependent on the observed data [”missing at random”].

� Assumption 2: limited to the setting where the set of unobserved tie variables
is known and fixed.

� Assumption 3: all covariates/nodal attributes are known and fixed.

� Missing network data imputed using draws from the posterior distribution of
the tie variable that is generated to obtain parameter estimates.

� Allows to retain the augmented networks, thus achieving proper multiple
imputations.

� Shown to provide reliable estimates of π(θ | y) (Koskinen et al., 2010), and
low biases in descriptive statistics, even with high missing data rates.
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Missing data augmentation (Krause et al., 2020)

Convention: u represents the observed part of the data; v represents the
unobserved part of the data. The network can be re-assembled as y = (u,v).

Algorithm 1: Bergm with Multiple data imputation
1: Initialise s(y∗) with s(u); Initialise θ.
2: for k = 1, . . . ,K do
3: Generate θ′ using the ADS proposal procedure.
4: Draw y ′ ∼ RM(· | θ′) via MCMC [”tie-no-tie” (TNT) sampler].
5: Update θ→ θ′ with the log of the probability:

logα = min

(
0, [θ−θ

′]>[s(y ′)− s(y∗)] + log

[
p(θ′)

p(θ)

])
.

6: if θ′ accepted then
Draw v∗ ∼ f (· | θ′,u) and generate a new y∗ = (u,v∗).

7: end if
8: end for
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Implementation

I nImp: retain a specified number of imputed networks y∗ from the estimation
procedure, after the burnin phase.

# Lazega’s data is fully observed; randomly set all
# outgoing ties of 4 nodes (11%) to missing:
R> set.seed(1)
R> missV ← sample(1:36, 4)
R> lazega[missV , ] ← lazega[, missV] ← NA

# Implement the parallel ADS procedure:
R> p.m1.M ← bergmM(m1, nchains = 8, aux.iters = 3000,
+ prior.mean = M.prior , prior.sigma = S.prior ,
+ burn.in = 200, main.iters = 3000,
+ gamma = 0.6, nImp = 10)

# Obtain the imputed networks:
R> p.m1.M$impNets
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Posterior summaries
I CPU time: ≈ 10.4 mins.

R> summary(p.m1.M)

Posterior Density Estimate for Model: y ∼ edges +
nodematch("Office") + nodematch("Practice") +
gwesp(0.5, fixed = TRUE)

Mean SD Naive SE Time -series SE
theta1 (edges) -4.782 0.438 0.002 0.019
theta2 (nodematch.Office) 0.860 0.188 0.001 0.008
theta3 (nodematch.Practice) 0.567 0.195 0.001 0.009
theta4 (gwesp.fixed.0.5) 1.369 0.248 0.002 0.011

2.5% 25% 50% 75% 97.5%
theta1 (edges) -5.722 -5.060 -4.767 -4.489 -3.953
theta2 (nodematch.Office) 0.485 0.736 0.864 0.979 1.235
theta3 (nodematch.Practice) 0.176 0.441 0.569 0.698 0.955
theta4 (gwesp.fixed.0.5) 0.918 1.199 1.355 1.524 1.885

Acceptance rate: 0.19
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Goodness-of-fit diagnostics

I Bayesian goodness-of-fit (GOF) procedure – evaluate the model GOF in
terms of posterior predictive assessment (Caimo and Friel, 2011).

I Observed network is compared with a randomly simulated network sample
(sample size determined by sample.size) drawn from the estimated
posterior distribution using aux.iters iterations for the network simulation
step.

I High-level characteristics not modeled explicitly:
� Degree distributions (for degrees > 3);

� Minimum geodesic distance (the proportion of pairs of nodes whose shortest
connected path is of length l = 1,2, . . .);

� # of edge-wise shared partners (# of edges in the network that share l
neighbours in common (l = 1,2, . . .).

R> set.seed(1)
R> bgof(p.m1, aux.iters = 5000, sample.size = 100,
+ n.deg = 15, n.dist = 9, n.esp = 8)
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Goodness-of-fit diagnostics

I Red lines represent the observed network GOF statistic values; boxplots
represent the GOF statistics of the simulated networks.

I The structure of the observed graph can be considered as a possible
realisation of the posterior density.
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Bayesian model selection

Model selection - ERGM context
Translates into the choice of which subset of network statistics should be included into the
model (Caimo and Friel, 2013).

I Model set M = {M1,M2,M3, . . .} for data y ∈ Y .
I Within each model:

π(θm | y ,Mm) =
f (y | θm,Mm)p(θm |Mm)

π(y |Mm)
.

I Constant of proportionality (”Marginal likelihood”/”Evidence”):

π(y |Mm) =
∫

Θm

f (y | θm,Mm)p(θm |Mm) dθm.
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Bayesian model selection

I Summarise pairwise comparison of models Mm ,Mm′ by:

π(Mm | y)

π(Mm′ | y)
=

π(y |Mm)

π(y |Mm′)
× p(Mm)

p(Mm′)

posterior odds = BFm,m′×prior odds

I The Bergm package assumes a multivariate Normal prior Ndm (µm,Σm) for
θm, that leads to a marginal likelihood which is finite.
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Pseudo-likelihood adjustment for large networks

fPL(y | θ) = ∏
i 6=j ∪ i<j

p(yij | y−ij ,θ) = ∏
i 6=j ∪ i<j

p(yij = 1 | y−ij ,θ)yij

{1−p(yij = 1 | y−ij ,θ)}yij−1 ,

where y−ij denotes y\{yij}.
I Each factor in the product is a Bernoulli random variable (Strauss and

Ikeda, 1990).

I Estimation is equivalent to logistic regression - fast computation.

I Assumes the collection yij | y−ij are mutually independent - problematic
inference.

I Pseudo-posterior: πPL(θ | y) ∝ fPL(y | θ)p(θ).
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Pseudo-likelihood adjustment for large networks
Type Full adj. Mode−Curv. adj. Pseudo True
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Pseudo-likelihood adjustment for large networks

Estimate fPL(y | θ)

Mode adjustmentCurvature adjustment

Magnitude adjustment
Obtain f̃ (y | θ)

Sample from π̃(θ | y)
Estimate π̃(y)
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Pseudo-likelihood adjustment for large networks
I Adjustments lead to the model-specific fully adjusted pseudo-likelihood

(Bouranis et al., 2018)

f̃m(y | θm) = Cm · fPL,m(y | θ̂MPLE ,m + Qm(θm− θ̂MLE ,m)). Details

I Approximate the true posterior distribution by

π̃(θ | y ,Mm) =
f̃ (y | θm,Mm)p(θm |Mm)

π̃(y |Mm)

=
f̃ (y | θm,Mm)p(θm |Mm)∫

Θm
f̃ (y | θm,Mm)p(θm |Mm) dθm

.

I Approximate BFmm′ by

B̃F mm′ =
π̃(y |Mm)

π̃(y |Mm′)
=

∫
Θm

f̃ (y | θm,Mm)p(θm |Mm) dθm∫
Θm′

f̃ (y | θm′,Mm′)p(θm′ |Mm′) dθm′
.
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Evidence estimation techniques

I Evidence estimation: well studied problem in the last 30 years (Ardia et al.,
2012).

I Many techniques to estimate intractable multi-dimensional integrals, eg.:
� Chib and Jeliazkov’s one-block Metropolis-Hastings method (2001).

� Power posteriors (Friel and Pettitt, 2008).

I Most require a tractable likelihood.

I With our adjustments we can borrow methods from the Bayesian toolbox.

I In Bergm, the evidence() function estimates π̃(y |Mm).
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Application

I Model M1 – almost identical to the model used to generate the simulated
data (see ?faux.dixon.high):
� density (edges), mutuality (mutual) and transitivity (gwesp) effects;

� homophily effects for race, sex and grade;

� # of nodes of in-degree 0 and 1 & # of nodes of out-degree 0 and 1.

R> m1 ← dixon ∼ edges + mutual + absdiff("grade") +
+ nodefactor("race") +
+ nodefactor("grade") +
+ nodefactor("sex") +
+ nodematch("race", diff = TRUE , levels = c("B","O","W")) +
+ nodematch("grade", diff = TRUE) +
+ nodematch("sex", diff = FALSE) +
+ idegree (0:1) + odegree(0:1) +
+ gwesp(0.1,fixed = TRUE)

R> M.prior1 ← c(-5, rep(0, 26))
R> S.prior1 ← diag(5, 27)
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Application

I evidence() function includes an additional feature that allows for estimation
of log π̃(y |Mm).

R> cj1 ← evidence(formula = m1, seed = 1,
+ prior.mean = M.prior1 , prior.sigma = S.prior1 ,
+ burn.in = 5000, main.iters = 30000,
+ aux.iters = 2500, n.aux.draws = 50, aux.thin = 50,
+ ladder = 200, V.proposal = 0.5, estimate = "CD",
+ evidence.method = "CJ", num.samples = 25000)

R> cj1$log.evidence

R> summary(cj1)
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Application

R> plot(cj1)

R> bgof(cj1, sample.size = 100, aux.iters = 5000,
+ n.ideg = 20, n.odeg = 20, n.dist = 10, n.esp = 7)

θ1 (edges)

−10 −8 −6 −4 −2 0

0.
00

0.
15

0 5000 15000 25000

−8
−4

0

Iterations

0 50 100 150 200
−1

.0
0.

0
1.

0

Lag

Au
to

co
rre

la
tio

n

θ2 (mutual)

−2 0 2 4 6

0.
00

0.
15

0.
30

0 5000 15000 25000

−2
0

2
4

Iterations

0 50 100 150 200

−1
.0

0.
0

1.
0

Lag

Au
to

co
rre

la
tio

n

θ3 (absdiff.grade)

−2.0 −1.0 0.0 1.0

0.
0

0.
4

0.
8

0 5000 15000 25000

−1
.5

−0
.5

0.
5

Iterations

0 50 100 150 200

−1
.0

0.
0

1.
0

Lag

Au
to

co
rre

la
tio

n

θ4 (nodefactor.race.H)

−4 −2 0 2 4 6

0.
00

0.
15

0.
30

0 5000 15000 25000

−4
0

2
4

6

Iterations

0 50 100 150 200

−1
.0

0.
0

1.
0

Lag

Au
to

co
rre

la
tio

n

MCMC output for Model: y ~ edges + mutual + absdiff("grade") + nodefactor("race") + nodefactor("grade") + nodefactor("sex") + nodematch("race", diff = TRUE, levels = c("B", "O", "W")) + nodematch("grade", diff = TRUE) + nodematch("sex", diff = FALSE) + idegree(0:1) + odegree(0:1) + gwesp(0.1, fixed = TRUE)
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Application
I Model M2 – assumes that the terms for mutuality and transitivity are

removed from M1.
R> m2 ← dixon ∼ edges + absdiff("grade") +
+ nodefactor("race") +
+ nodefactor("grade") +
+ nodefactor("sex") +
+ nodematch("race", diff = TRUE , levels = c("B","O","W")) +
+ nodematch("grade", diff = TRUE) +
+ nodematch("sex", diff = FALSE) +
+ idegree (0:1) + odegree(0:1)

R> M.prior2 ← c(-5, rep(0, 24))
R> S.prior2 ← diag(5, 25)

R> cj2 ← evidence(formula = m2, seed = 1,
+ prior.mean = M.prior2 , prior.sigma = S.prior2 ,
+ burn.in = 5000, main.iters = 30000,
+ aux.iters = 2500, n.aux.draws = 50, aux.thin = 50,
+ ladder = 200, V.proposal = 0.5, estimate = "CD",
+ evidence.method = "CJ", num.samples = 25000)
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Application

I The transitivity and mutuality effect are important connectivity features of
the observed network.

I The homophily effect of race, sex and grade can help explain the complexity
of the observed network data.

Model Log evidence estimate CPU (mins) BF12

M1 −38,064.65 2.93 3.68×1058

M2 −38,199.50 1.13
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Concluding remarks

I Aim of this tutorial: a useful introduction to the main capabilities of the
package & some of the algorithms and methods behind it.

I Bergm aims to help researchers and practitioners in two ways:
� A simple, efficient and complete range of tools for conducting Bayesian

inference for ERGMs.

� A platform that can be easily customised, extended and adapted to address
different requirements.

I Bergm is under continual maintenance and periodic significant upgrading.

I Future developments:
� Treatment of missing nodal attributes like age & gender.

� Uncertainty quantification of the Monte Carlo estimates of the evidence.

� Extensions to weighted networks (Caimo and Gollini, 2020).

� Extentions to multiplex networks (Krause and Caimo, 2019).
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Chib and Jeliazkov’s method (2001)

I Following from Bayes formula:

π̃(y) =
f̃ (y | θ)p(θ)

π̃(θ | y)
.

I Estimate log π̃(y) as

log π̃(y) = log f̃ (y | θ∗) + logp(θ
∗)− log ˆ̃π(θ

∗ | y).

I One block Metropolis-Hastings approach:

ˆ̃π(θ
∗ | y) =

M−1
∑

M
m=1 α̃(θ(m),θ∗)h(θ(m),θ∗)

L−1 ∑
L
l=1 α̃(θ∗,θ(l))

.

I h(θ,θ′) is the candidate generating density.

I {θ(m)} draws from π̃(θ | y); {θ(l)} draws from h(θ∗,θ).
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Power posteriors (Friel and Pettitt, 2008)

I Define the power posterior at inverse temperature t by

π̃t(θ | y) ∝ f̃ (y | θ)tp(θ), t ∈ [0,1]

z(y | t) =
∫

θ

f̃ (y | θ)tp(θ) dθ.

I Key identity: d
dt logz(y | t) = Eθ|y ,t log f̃ (y | θ).

I Consequently:

log π̃(y) = log

{
z(y | t = 1)

z(y | t = 0)

}
=

∫ 1

0
Eθ|y ,t log f̃ (y | θ) dt.

I Discretise the inverse temperatures 0 = t0 < t1 < .. . < tm = 1:
Friel and Pettitt (2008) recommend tj = (j/m)5, j = 0, . . .m.
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Power posteriors - Reducing the error (Friel et al., 2014)

I Two sources of error:
� Sampling error (expensive): estimate Eθ|y ,tj log f̃ (y | θ), ∀tj .
� Discretisation error (cheap): approximate integral with numerical integration

(trapezium rule):

log π̃(y) =
m

∑
j=1

(tj − tj−1)

[
Eθ|y ,tj−1 log f̃ (y | θ)+Eθ|y ,tj log f̃ (y | θ)

2

]
.

I Reducing discretisation error for the trapezium rule:

log π̃(y) =
m

∑
j=1

(tj − tj−1)

[
Eθ|y ,tj−1 log f̃ (y | θ) +Eθ|y ,tj log f̃ (y | θ)

2

]

−(tj − tj−1)2

12

[
Vθ|y ,tj−1 log f̃ (y | θ)−Vθ|y ,tj log f̃ (y | θ)

]
.
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Power posteriors - Control variates (Oates et al., 2016)
I Aim: improve efficiency (variance reduction) of evidence estimate by:

k(θ) = log f̃ (y | θ),

E[k̃(θ)] = E[k(θ) + h(θ | y , t)],

V[k̃(θ)] < V[k(θ)].

I ZV control variates:

u(θ | y , t) = ∇θ log π̃t(θ | y),

h(θ | y , t) = ∆θ[P(θ | φ(y , t))] + ∇θ[P(θ | φ(y , t))] ·u(θ | y , t).

I Low order polynomials P (degree 2 here) with coefs φ(y , t).

I Controlled thermodynamic integral:

log π̃(y) =
∫ 1

0
Eθ|y ,t

[
log f̃ (y | θ) + h(θ | y , t)

]
dt.
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Pseudo-likelihood adjustment for large networks

I Invertible and differentiable mapping

g :

{
Θ→Θ

θ 7→ θ̂MPLE + Q(θ− θ̂MLE ) General

I Estimate the maxima of the likelihood and the pseudolikelihood:

θ̂MLE = argmax
θ

log f (y | θ), θ̂MPLE = argmax
θ

log fPL(y | θ).

I Mode and curvature adjusted pseudolikelihood:

fPL(y | g(θ)) = fPL(y | θ̂MPLE + Q(θ− θ̂MLE )), Q ∈M (Rd ).

I Fully adjusted pseudolikelihood:

f̃ (y | θ) = C · fPL(y | g(θ)).
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Pseudo-likelihood adjustment for large networks
I θ̂MLE : estimate with MC-MLE (Geyer and Thompson, 1992).

� Available in R’s ergm package.
� Maximise the log-likelihood ratio

`(θ)− `(θ0) = (θ−θ0)
>s(y)− log

{
z(θ)
z(θ0)

}
.

� Useful property:

z(θ)
z(θ0)

= ∑
y∈Y

q(y | θ)
q(y | θ0)

q(y | θ0)

z(θ0)
= Ey |θ0

[
q(y | θ)
q(y | θ0)

]
.

� Unbiased IS estimate: simulate draws y ′1, . . . ,y
′
K ∼ f (· | θ0) and set

ẑ(θ)
z(θ0)

=
1
K

K

∑
k=1

q(y ′k | θ)
q(y ′k | θ0)

.

I θ̂MPLE : standard optimisation methods (BFGS).
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Pseudo-likelihood adjustment for large networks

Mode adjustment
∇θ log f (y |θ)|

θ̂MLE
=Q∇θ log fPL(y |θ)|θ̂MPLE

Curvature adjustment
∇2

θ
log f (y |θ)|

θ̂MLE
=QT ∇2

θ
log fPL(y |θ)|θ̂MPLE

Q

I Estimate the first two moments on the basis of
� Gradient: ∇θ log f (y | θ) = s(y)−Ey |θ [s(y)],

� Hessian: ∇2
θ

log f (y | θ) =−Vy |θ [s(y)],

using Monte Carlo draws from f (y | θ).

I Moments of log fPL(y | θ) in closed form.

I Cholesky decompositions (Ribatet et al., 2012):

−∇
2
θ log f (y | θ)|

θ̂MLE
= NT N

−∇
2
θ log fPL(y | θ)|

θ̂MPLE
= MT M

}
⇒ Q = M−1N.
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Pseudo-likelihood adjustment for large networks
Magnitude adjustment

f̃ (y | θ̂MLE) = f (y | θ̂MLE)⇔ C =
q(y | θ̂MLE) · z−1(θ̂MLE)

fPL(y | g(θ̂MLE))

I Aux. variable t ∈ [0,1] : 0 = t0 < t1 < .. . < tL = 1.

��

�

����
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Pseudo-likelihood adjustment for large networks

I Consider:
z(θ̂MLE )

z(0)
=

z(tLθ̂MLE )

z(t0θ̂MLE )
=

L−1

∏
j=0

z(tj+1θ̂MLE )

z(tj θ̂MLE )
.

I Note that:
z(tj+1θ̂MLE )

z(tj θ̂MLE )
= E

yj |tj θ̂MLE

[
q(yj | tj+1θ̂MLE )

q(yj | tj θ̂MLE ))

]
.

I Unbiased IS estimate: simulate draws y ′j1, . . . ,y
′
jK ∼ f (· | tj θ̂MLE ) and set

̂z(tj+1θ̂MLE )

z(tj θ̂MLE )
=

1
K

K

∑
k=1

q(y ′jk | tj+1θ̂MLE )

q(y ′jk | tj θ̂MLE )
.

I Easy to find z(0) =

{
2(n

2), n : # of nodes (undirected graphs)

2N , N : size of lattice.
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