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Introduction

Big data analysis

Computational power versus data volume

Data reduction - Keep the most informative data points

Random selection (Drineas et al., 2011)

Concept of optimal designs - IBOSS approach (Wang et al., 2019)

Orthogonal subsampling - OSS approach (Wang et al., 2021)

Orthogonal array (Ren and Zhao, 2021)
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Which data points should one select?

⋄ Covariates (p): 2
⋄ Full data (n): 50
⋄ Subdata size (k): 8 ●
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Figure 1: Full data between two covariates.
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Motivation example

⋄ Covariates (p): 2
⋄ Full data (n): 50
⋄ Subdata size (k): 8

Selection of data points with
large convex hull

↓

Selected data points can
have a large volume

↓

Maximize the determinant of
the information matrix
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Figure 2: An example for the different approaches.
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Theoretical considerations

⋄ Linear regression model: yi = β0 + xTi β1 + ϵi , i = 1, 2, . . . , n

⋄ Covariate vectors: xi = (xi1, xi2, . . . , xip)
T, i = 1, 2, . . . , n

⋄ Unknown parameters: β = (β0,β
T
1 )

T,β1 = (β1, β2, . . . , βp)
T

Under full data

β̂Full =
(∑n

i=1 ziz
T
i

)−1∑n
i=1 ziyi , zi = (1, xTi )

T

QFull =
1

σ2

∑n
i=1 ziz

T
i

Under subdata

β̂Sub =
(∑n

i=1 δiziz
T
i

)−1∑n
i=1 δiziyi

QSub =
1

σ2

∑n
i=1 δiziz

T
i

δi =

{
1, if (xi , yi ) is included

0, if (xi , yi ) is not included
,
∑n

i=1 δi = k
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Generalized variance

⋄ x∗j : jth covariate under the selected subdata

det (QSub) =
kp+1

σ2(p+1)
det




s2x∗1
sx∗1x∗2 · · · sx∗1x∗p

sx∗1x∗2 s2x∗2
· · · sx∗2x∗p

...
...

. . .
...

sx∗1x∗p sx∗2x∗p · · · s2x∗p




x̄∗j =

∑n
i=1 δixij
k

, s2x∗j
=

∑n
i=1 δi (xij − x̄∗j )

2

k
, sx∗j x

∗
t
=

∑n
i=1 δixijxit

k
− x̄∗j x̄

∗
t

↓

Cholesky decomposition

↓

Theorem 1. The generalized variance of covariates under the subdata is
maximized by the selection of data points for which s2x∗j

is maximized for any

j = 1, 2, . . . , p, and sx∗ox∗j = 0 for any j > o = 1, 2, . . . , j−1, simultaneously.
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Existing approaches

The information-based optimal subdata selection (IBOSS) approach
⋄ D-optimality
⋄ Selection of data points with the smallest and largest values of all
covariates sequentially

The orthogonal subsampling (OSS) approach
⋄ A two-level OA represents an optimal design for linear regression
⋄ D- and A-optimality
⋄ All covariates are scaled to [−1, 1]
⋄ Elimination algortihm based on a discrepancy function

↙ ↘
Extreme values: data points at
the corners of the data domain

Combinatorial orthogonality: data
points are as dissimilar as possible
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Existing approaches

The information-based optimal subdata selection (IBOSS) approach
⋄ D-optimality
⋄ Selection of data points with the smallest and largest values of all
covariates sequentially

The orthogonal subsampling (OSS) approach
⋄ A two-level OA represents an optimal design for linear regression
⋄ D- and A-optimality
⋄ All covariates are scaled to [−1, 1]
⋄ Elimination algortihm based on a discrepancy function

↙ ↘
Extreme values: data points at
the corners of the data domain

Combinatorial orthogonality: data
points are as dissimilar as possible

OA(4, 3, 2, 2)

0 0 0
0 1 1
1 0 1
1 1 0
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Alg1

Algorithm 1 Alg1

Input: subdata S = (si ), i = 1, 2, . . . , k of the OSS approach, initial full
data DFull, subdata size k , candidate data points K from each covariate

Output: new obtained subdata S
Step 1: Preperation
S = convert(S) ▷ convert subdata S to their initial values
V = det (QSub) ▷ generalized variance of S
D = DFull − S = (drj) ▷ remaining data points dr · = (dr1, . . . , drp) ̸∈ S
NF = nrow(D) ▷ number of data points dr · ∈ D
F = Ø ▷ initialize the index set of candidate data points
Step 2: Find candidate data points
for j in 1, . . . , p do

d·j = sort(d·j) ▷ sort d·j = (d1j , . . . , dNFj)
D = sort(D) ▷ sort D based on d·j
F = F ∪ d1· ∪ · · · ∪ dK/2·
F = F ∪ dNF−K/2+1· ∪ · · · ∪ dNF·

end for
F = unique(F) ▷ keep unique data points of F = (fw )
NF = nrow(F) ▷ number of data points fw ∈ F
Step 3: Main algorithm
for i in 1, . . . , k do

for w in 1, . . . ,NF do
si ↔ fw ▷ interchange data points si and fw
Vnew = det (QSub) ▷ generalized variance of new S
if Vnew > V then

V = Vnew

break
else

si ↔ fw
end if

end for
end for
return S
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VAlg1

⋄ Change as to which fw is interchanged with si

Algorithm 2 VAlg1
Steps 1 and 2: Same as in Alg1

Step 3: Main algorithm

for i in 1, . . . , k do
for w in 1, . . . ,NF do

si ↔ fw ▷ interchange data points si and fw
Vnew = det (QSub) ▷ generalized variance of new S
if Vnew > V then

V = Vnew

else
si ↔ fw

end if
end for

end for
return S
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Evaluation of algorithms (1)

⋄ xi ∼ N(0,Σ)
⋄ Covariance matrix: Σ = (Σij), i , j = 1, 2, . . . , p
⋄ Σij = 1, i = j and Σij = 0.5, i ̸= j
⋄ k = 100, K = 25, p = 10, β = (1, 1, . . . , 1)T, σ2 = 3
⋄ 1000 simulations
⋄ Alg1: 5 iterations - VAlg1: 1 iteration
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Evaluation of algorithms (2)

0.06

0.07

0.08

OSS IBOSS Alg1 VAlg1

D
−

ef
fic

ie
nc

y

0.05

0.06

0.07

0.08

0.09

OSS IBOSS Alg1 VAlg1

A
−

ef
fic

ie
nc

y

0

1

2

3

OSS IBOSS Alg1 VAlg1

M
S

E
 fo

r 
sl

op
e 

pa
ra

m
et

er
s

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

OSS IBOSS Alg1 VAlg1

M
S

E
 fo

r 
in

te
rc

ep
t

n=50000

0.05

0.06

0.07

0.08

OSS IBOSS Alg1 VAlg1

D
−

ef
fic

ie
nc

y

0.05

0.06

0.07

0.08

0.09

OSS IBOSS Alg1 VAlg1

A
−

ef
fic

ie
nc

y

0

1

2

3

OSS IBOSS Alg1 VAlg1

M
S

E
 fo

r 
sl

op
e 

pa
ra

m
et

er
s

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

OSS IBOSS Alg1 VAlg1

M
S

E
 fo

r 
in

te
rc

ep
t

n=500000

Figure 3: The MSEs, D- and A-efficiencies for the subdata selected by different
approaches.
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Execution time of Alg1

⋄ xi ∼ N(0,Σ)
⋄ Σ = (Σij), i , j = 1, 2, . . . , p, Σij = 1, i = j and Σij = 0.5, i ̸= j
⋄ n = 1000, p = 7, 500 simulations
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Figure 4: The mean execution time (in seconds) of Alg1.
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Execution time of VAlg1

⋄ xi ∼ N(0,Σ)
⋄ Σ = (Σij), i , j = 1, 2, . . . , p, Σij = 1, i = j and Σij = 0.5, i ̸= j
⋄ n = 1000, p = 7
⋄ 500 simulations
⋄ 1 iteration

k 28 28 28 42 42 42 56 56 56

K 20 40 60 20 40 60 20 40 60

Time 0.2244 0.39534 0.5611 0.3361 0.5989 0.8321 0.4593 0.8226 1.1368

Table 1: The mean execution time (in seconds) of VAlg1.
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About iterations of Alg1

⋄ xi ∼ N(0,Σ)
⋄ Σ = (Σij), i , j = 1, 2, . . . , p, Σij = 1, i = j and Σij = 0.5, i ̸= j
⋄ n = 1000, p = 7, 500 simulations
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Figure 5: The mean percent increase in the generalized variance by Alg1.
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Power consumption data (Salam and Hibaoui, 2018)

⋄ yi : power consumption of the 2nd zone of Tetouan city (north Morocco)
⋄ n = 52, 417 data points
⋄ p = 5: temperature, humidity, wind speed, diffuse flows and general
diffuse flows
⋄ 1000 bootstrap samples
⋄ K = 10, Alg1: 5 iterations - VAlg1: 1 iteration
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Figure 6: The bootstrap MSEs for estimating slope parameters by different
approaches.
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Chemical sensors data (Fonollosa et al., 2015)

⋄ yi : readings of a chemical sensor exposed to the mixture of Ethylene and
CO at varying concentrations in air
⋄ n = 4, 188, 261 data points
⋄ p = 14: readings of 14 chemical sensors exposed to the mixture of
Ethylene and CO at varying concentrations in air
⋄ k = 140, K = 10
⋄ Alg1: 5 iterations - VAlg1: 1 iteration
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Figure 7: The convex hulls between the 9th and the 3rd sensor, as well as between
the 14th and the 8th sensor, for the subdata selected by different approaches.
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Discussion

⋄ Which approach should one prefer?
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Thank you for your attention!
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