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Common questions about finite mixture models

I Are mixtures, like tequila, inherently evil and should be avoided at all costs (Larry
Wasserman on his now defunct blog Normal Deviate)?

I Has the number of components, K , to be known, if I want to use finite mixtures
for clustering?

I If K is unknown, do I have to implement a complicated trans-dimensional MCMC
sampler?

I Are finite mixtures less flexible than BNP mixtures, e.g. a Dirichlet process mixture
(DPM)?
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Finite mixture models

I Observations y = (y1, · · · , yN) are an iid sample from a mixture distribution:

p(yi |ϑ) =
K∑

k=1
ηk fT (yi |θk),

I K is the number of components;
I the component densities fT (y|θk) arise from the same distribution T (θ);
I θ1, . . . ,θK vary over the components;
I η = (η1, . . . , ηK ) are the component weights,

∑K
k=1 ηk = 1, ηk ≥ 0.

I Usually, group membership of the observations is unknown.
I Latent allocation variables (S1, . . . , SN) with Si ∈ {1, . . . ,K} are introduced to

indicate the component from which each observation is drawn:

p(yi |Si = k) = fT (yi |θk), Pr(Si = k) = ηk .
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For more details see . . .

2006 2019
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Bayesian cluster analysis

I In cluster analysis, the aim is to partition the data into groups, where within groups
the observations are more “similar” than between groups.

I Clustering arises in a natural way in finite mixtures [Bensmail et al., 1997], recent
review: [Grün, 2019]

I Each observation yi has a (latent) indicator variable Si indicating the component
the observation belongs to:

yi |Si ∼ fT (yi |θSi ).

I yi and yj belong to the same cluster, iff Si = Sj .
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A stylized example

... with obviously two clusters
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A stylized example

Fitting a mixture with two components (K = 2) identifies the two clusters
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Induced partitions

I (S1, . . . , SN) define a partition C of the N data points,

C = {C1, . . . ,CK+},

which contains K+ = |C| clusters [Hartigan, 1990]
I With S = (S1, . . . , SN) being latent (random), we can look at the prior p(C) and

the posterior distribution p(C|y) [Casella et al., 2004], [Lau and Green, 2007]
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Components versus data clusters

I In mixture analysis it is important to distinguish between:
I K : the number of components in the mixture distribution.
I K+: the number of clusters in the data set

I In a finite sample the number of components K+ used to generate the data (i.e.
number of filled components) might be lower than K .
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A stylized example

Fitting a mixture with five components (K = 5): only components 3 and 4 are used for
clustering, the components 1, 2, and 5 remain “empty”
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A stylized example

Fitting a mixture with five components (K = 5): only components 2 and 4 are used for
clustering, the components 1, 3, and 5 remain “empty”
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K+ = K?

I Let Nk is the number of observations allocated to component k , k = 1, . . . ,K .
I Apriori, the occupation numbers are random:

(N1, . . . ,NK ) ∼ MulNom (N ; η1, . . . , ηK ).
I Depending on the weights η = (η1, . . . , ηK ) and N , multinomial sampling may lead

to partitions with empty groups with Nk = 0.
I In this case, fewer than K mixture components were used to cluster the data,

i.e. the resulting partition C = {C1, . . . ,CK+} contains K+ < K clusters:

K+ = K −
K∑

k=1
I{Nk = 0}.

where K+ is the number of nonempty components.
I K+ is a random variable and can take a priori values K+ < K with probability

depending on η,N ,K .
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The importance of the Dirichlet prior

I Consider a finite mixtures with K fixed
I Assume a symmetric Dirichlet prior η = (η1, . . . , ηK ) ∼ DK (γ) on the weight

distribution
I The hyperparameter γ exercises strong influence on prior of the weight distribution,

e.g. for K = 3:

left: γ = 4, middle: γ = 0.05, right: γ = 0.005
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Example: sparse finite mixtures

I (Static) Sparse finite mixtures choose a very small values of γ
[Malsiner Walli et al., 2016], [Malsiner Walli et al., 2017]
(overfitting mixture in the sense of [Rousseau and Mengersen, 2011])

I e.g. K = 10, N = 100:
γ = 4 γ = 0.05 γ = 0.005

8 9 10
K+

1 2 3 4 5 6 7 8
K+

1 2 3 4
K+

K is fix; K+ is random with an implicit prior p(K+|γ,N ,K ) concentrating on
K+ < K ;
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A fully Bayesian perspective

I In mixture analysis it is important to distinguish between:
I K : the number of components in the mixture distribution.
I K+: the number of clusters in the data set

I Both K and K+ are usually unknown and have to be estimated from the data.
I From a Bayesian perspective, the most natural approach is to treat them as

unknown parameters and put priors on them:
I Prior on K is explicitly defined.
I Prior on K+ is implicitly defined through priors on K and the weights and depends

on N.
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Generalized mixture of finite mixtures (MFM) model

I A fully Bayesian mixture model is defined in a hierarchical way:
K ∼ p(K ),

η1, . . . , ηK |K , γK ∼ DK (γK ),
Si |K , η1, . . . , ηK ∼M(1; η1, . . . , ηK ), independently for i = 1, . . . ,N ,

φ ∼ p(φ),
θk |φ ∼ p(θk |φ), independently for k = 1, . . . ,K ,

yi |K , Si = k ,θk ∼ fT (yi |θk), independently for i = 1, . . . ,N .

I Generic framework with no specific restrictions on
I fT (·|θk) (parametric family),
I observations yi can be univariate or multivariate, continuous, discrete-valued,

mixed-type, time series data, outcomes of a regression model, . . .
I the prior p(K ) (e.g., parametric pmf, δ{Kfix}, δ{∞}, . . . ),
I and ...
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Static versus dynamic MFMs

I ... the sequence {γK},K = 1, 2, . . .
I In a generalized MFM (SFS, Malsiner-Walli and Grün, 2021), the sequence {γK}

can either be fixed or assumed to depend on K .
I We consider two specific types of generalized MFMs:

I Static MFMs with hyperparameter γ
[Richardson and Green, 1997], [Miller and Harrison, 2018]:

γK ≡ γ.

I Dynamic MFMs with hyperparameter α
[McCullagh and Yang, 2008], [Guha et al., 2019]:

γK = α

K .
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The exchangeable probability partition function

I The prior on the partitions (EPPF) is well known for a static finite mixture:

p(C|N ,K , γ) =
(

K
K+

)
K+!

∫
p(S|ηK )p(ηK |K , γ)dηK

= K !
(K − K+)!

Γ(Kγ)
Γ(Kγ + N)

K+∏
k=1

Γ(Nk + γ)
Γ(γ) .

I EPPF for a generalized finite mixture with hyperparameter γK (K fixed):

p(C|N ,K , γK ) = K !
(K − K+)!

Γ(KγK )
Γ(KγK + N)

K+∏
k=1

Γ(Nk + γK )
Γ(γK ) .
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The EPPF of a generalized MFM

I EPPF for a generalized finite mixture with hyperparameter γK (K fixed):

p(C|N ,K , γK ) = V K ,γK
N,K+

K+∏
k=1

Γ(Nk + γK )
Γ(γK ) ,

V K ,γK
N,K+ = K !

(K − K+)!
Γ(KγK )

Γ(KγK + N) .

I Takes the form of a Gibbs-type prior [Gnedin and Pitman, 2006]
I EPPF for a generalized MFM with prior p(K ):

p(C|N , γK ) =
∞∑

K=K+

V K ,γK
N,K+

K+∏
k=1

Γ(Nk + γK )
Γ(γK ) p(K ).

I More general than a Gibbs-type prior, if γK depends on K .
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Derivation of p(K+|N ,γ)

I Prior on K+ obtained by summing over all partitions (challenging for large N):

p(K+ = k|N , γK ) =
∑
C:K+=k

p(C|N , γK ).

I We work with the prior on the labeled cluster sizes p(N1, . . . ,NK+|N ,K , γK ).
I Arrange the clusters in some exchangeable order (e.g. in order of appearance, see

[Pitman, 1996]).
I By summing over all N1, . . . ,NK+ with ∑K+

j=1 Nj = N , we obtain:

p(K+ = k|N ,γ) = N!
k!

∞∑
K=k

p(K )
V K ,γK
N,k

Γ(γK )k CK ,γK
N,k ,

where V K ,γK
N,k and CK ,γK

N,k (possibilities to split N objects into k clusters) are
determined recursively.

The generalized mixture of finite mixtures model 23 / 58



Examples for p(K+|N) versus p(K ) for N = 82

K − 1 ~ BNB(1, 4, 3) K − 1 ~ Geo(0.1) K ~ U{1, 30}
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Example: Prior expectations E(K+|γ,N)

Static
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K − 1 ~ BNB(1, 4, 3)

K − 1 ~ Poisson(4)

K − 1 ~ Geo(0.1)

DPM

Dynamic

0 2 4 6
α

Prior expectations E(K+|γ,N) for static MFMs (left) and E(K+|α,N) for dynamic MFMs
(right) as functions of γ and α for N = 100 under the priors K − 1 ∼ BNB (1, 4, 3),
K − 1 ∼ P (4), and K − 1 ∼ Geo (0.1) in comparison to a DPM. For each prior p(K ), the
prior expectation E(K ) is plotted as a horizontal dashed line.
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More about the implicit prior on the partitions

I [Greve et al., 2020]: “Spying on the indicators”
I R-package fipp
I functionals of the implicit prior distribution of K+;
I implicit prior distribution of symmetric functional of N1, . . . ,NK+ such as the

entropy
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Bayesian inference for generalized MFMs

I A trans-dimensional sampler is required.
I Traditional methods:

I Reversible Jump MCMC (RJMCMC) [Richardson and Green, 1997];
[Robert et al., 2000]

I Chinese Restaurant Process (CRP) based sampling schemes developed for BNP
analysis [Jain and Neal, 2004], [Jain and Neal, 2007],[Miller and Harrison, 2018];

I RJMCMC (developed for static MFMs) can be extended to dynamic MFMs.
I Telescoping Sampling:

I suggested in SFS, Malsiner-Walli and Grün (2021) for dynamic MFMs;
I easy to implement: generic sampler for arbitrary component densities;
I works also for static MFM with a “gap” between K and K+.

Telescoping sampler 28 / 58



The Telescoping Sampler

I Exploits the exchangeable probability partition function (EPPF) of a MFM (similar
to the CRP sampler)

I K is introduced as a latent variable (as in RJMCMC);
I Sample the number of components K given the partition C:

p(K |C, γγγ) ∝ p(C|γK ,K )p(K )

∝ K !
(K − K+)!

Γ(KγK )
Γ(KγK + N)

K+∏
k=1

Γ(Nk + γK )
Γ(1 + γK ) p(K ).

I Combined with any MCMC algorithm for any finite mixture with a fixed number of
components K , e.g. Gibbs sampling [Diebolt and Robert, 1994]
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The Telescoping Sampler

I A partially marginalized sampler which switches between
I sampling from the complete-data posterior distribution conditional on the latent

allocation variables S
I sampling C from the collapsed posterior which lives in the set partition space and is

marginalized over the empty components, the weight distribution and all allocations
S inducing C.
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MCMC scheme

1. Conditional on the parameters, update the partition C by sampling Si from
Pr(Si = k|ηK ,θ1, . . . ,θK , yi ,K ) ∝ ηk f (yi |θk);

I determine K+ =
∑K

k=1 I{Nk > 0}, where Nk = #{i |Si = k},
I relabel the components to have the first K+ components non-empty.

2. Conditional on C, update parameters of filled components and hyperparameters:
I Sample θk , for the components k = 1, . . . ,K+, from p(θk |S, y, φ).
I Sample the hyperparameter φ from p(φ|θ1, . . . ,θK+ ,K+).

3. Conditional on C, sample K from p(K |C, γγγ) ∝ p(K )p(C|γK ,K ,N).

4. Conditional on (K , φ, C), add empty/non-filled components and update the weights:
I If K > K+: add K − K+ empty components and sample θk |φ from the prior

p(θk |φ), k = K+ + 1, . . . ,K .
I Sample ηK |K , γK ,S ∼ D(e1, . . . , eK ), where ek = γK + Nk .
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Benchmarking the TS I

TS RJ JN
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I Simulated data, N = 1000;

I Static MFM with γK ≡ 0.1; priors on component parameters and K as in
[Richardson and Green, 1997];

I Trace plots of K (gray) and K+ (black) for the TS, RJ and JN sampler.
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Prior choices in applied mixture analysis

I Dynamic versus static: recommend to use the dynamic version with γK = α/K ;
I Assume that α is a random hyperparameter α ∼ F (6, 3) (instead of popular

Gamma distribution).
I Prior on K : translated BNB distribution, K − 1 ∼ BNB (αλ, aπ, bπ)

I translated Poisson distribution K − 1|λ ∼ P (λ);
I hierarchical Gamma prior λ|β ∼ G (αλ, β) leads to the translated negative-binomial

distribution, K − 1|β ∼ NegBin (αλ, β);
I for αλ = 1, this reduces to the translated geometric distribution K − 1|β ∼ Geo (π)

with success probability π = β/(1 + β);
I hierarchical Beta prior on π ∼ B (aπ, bπ) yields K − 1 ∼ BNB (αλ, aπ, bπ).

I In practice: K − 1 ∼ BNB (1, 4, 3)
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The beta-negative-binomial distribution

BNB prior
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K − 1 ~ BNB(9, 4, 3)
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Galaxy data I

I [Grün et al., 2021]: How many data clusters are in the Galaxy data set?

I Fit a univariate mixture of normals with K unknown

I Prior choices are very influential for this data set [Aitkin, 2001]

I The recommended prior (dynamic MFM, K − 1 ∼ BNB (1, 4, 3), α ∼ F (6, 3))
works very well.
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Galaxy data

K − 1 ~ BNB(1, 4, 3) K − 1 ~ Geo(0.1) K ~ U{1, 30}
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Changing the clustering kernel

I Thyroid data [Scrucca et al., 2016], N = 215
I five-dimensional laboratory test variables
I operation diagnosis observed (three potential groups)
I multivariate mixture of Gaussian with K unknown

I Fear data [Stern et al., 1994], N = 93
I three categorical features: motor activity (4 categories), fret/cry behavior (3

categories) and fear of unfamiliar events (3 categories)
I Psychological theory suggests two groups
I Latent class analysis with K unknown
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Changing the clustering kernel

Thyroid Fear
p(K ) p(K+|y) p(K |y) p(K+|y) p(K |y)

U [1, 30] 3 [3, 3] 3 [4, 19] 6 [5, 9] 30 [10, 24]
Geo (0.1) 3 [3, 3] 3 [3, 7] 4 [4, 7] 5 [5, 16]

BNB (1, 4, 3) 3 [3, 3] 3 [3, 4] 2 [2, 4] 2 [2, 5]

I Posterior inference for K and K+ for a dynamic MFM based on different priors p(K ) and
α ∼ F (6, 3).

I The posteriors of K+ and K are summarized by their modes, followed by the 1st and 3rd
quartiles.
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Mozambique data I

I Data from the Demographics and Health Survey (DHS) for Mozambique from
2003.

I The dataset includes information on N = 11, 922 women.
I 10 binary variables indicate which source / channel is used by women to get

information on HIV (radio, TV, newspapers/magazines, posters,
clinic/healthworker, church, school, community meetings, friends/relatives and
working place).

I Aim: cluster women into groups according to the information sources on HIV they
use.

I We apply the dynamic mixture of latent class analysis (LCA) models (γK = 1/K ,
K − 1 ∼ BNB(1, 4, 3), πk ∼ B (4, 4)).
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Mozambique data II

Prior (left) and posterior (middle) of K (blue) and K+ (red); trace plot of TS (right)
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Mozambique data III

church/comm TV friends modern
AIDSINFO-RADIO 0.51 0.98 0.76 0.95
AIDSINFO-TV 0.03 0.97 0.00 0.87
AIDSINFO-NEWS 0.03 0.23 0.00 0.99
AIDSINFO-POSTER 0.13 0.07 0.03 0.88
AIDSINFO-WKR 0.29 0.02 0.02 0.13
AIDSINFO-CHURCH 0.47 0.05 0.07 0.09
AIDSINFO-SCHOOL 0.17 0.20 0.06 0.26
AIDSINFO-COMM 0.76 0.05 0.15 0.06
AIDSINFO-FRND 0.01 0.45 0.58 0.37
AIDSINFO-WORK 0.08 0.02 0.01 0.11
Size 0.04 0.19 0.75 0.02
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BNP mixtures

I Random probability measure priors like the Dirichlet process GDP ∼ DP (α,G0)
[Ferguson, 1973, Ferguson, 1974] lead to infinite mixtures:

p(y) =
∫

fT (y|θ)GDP(dθ) =
∞∑
k=1

ηk fT (y|θk),

where ηk are random weights such that ∑∞k=1 ηk = 1 almost surely.
I The stick-breaking representation [Sethuraman, 1994] defines the weights in

terms of a sequence v1, v2, v3, . . . of independent random variables (the sticks):

η1 = v1, η2 = (1− v1)v2, ηk = vk
k−1∏
j=1

(1− vj).
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It’s all in the weights!

I Assume that the base measure G0 is the same as the prior p(θk) in a finite mixture.
I The “only” difference lies in the prior of the sticks v1, v2, v3, . . .:

I Finite mixtures: vk ∼ B (γK , (K − k)γK ) , k = 1, . . . ,K − 1, vK = 1
I Dirichlet process mixtures (DPM) with DP (α,G0): vk ∼ B (1, α)
I Pitman-Yor process mixtures with PY(β, α) with reinforcement parameter

β ∈ [0, 1), α > −β [Pitman and Yor, 1997]: vk ∼ B (1− β, α+ kβ) (reduces to
DPMs for β = 0);

I Pitman-Yor process mixtures, where β < 0 and α = K |β| with K ∈ N
[De Blasi et al., 2015]:
I In the corresponding stick-breaking representation vK = 1 a.s.
I Yields a mixture with infinitely many components, of which only K have non-zero

weights, with the symmetric Dirichlet distribution DK (|β|) acting as prior.
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Bridging generalized MFMs and PYP mixtures

I For finite mixtures with a fixed number of components K <∞, a dual PYP prior
with β < 0 exists which implies exactly the same EPPF
[Gnedin and Pitman, 2006]:
(a) For a static finite mixture with γ > 0, this is the PYP prior PY(−γ,Kγ).
(b) For a dynamic finite mixture with γK = α/K , this is the PYP prior PY(−α/K , α).

I While being finite mixtures with a prior p(K ) on K , MFMs are very flexible with
close connections to BNP mixture models:
(a) A static MFM with hyperparameter γ is related to a mixture of PYMs PY(−γ,Kγ)

which are mixed over the concentration parameter αK = Kγ with prior p(K ), while
the reinforcement parameter β = −γ is kept fixed [De Blasi et al., 2013]

(b) A dynamic MFM with hyperparameter α is related to a mixture of PYMs
PY(−α/K , α) which are mixed over the reinforcement parameter βK = −α/K with
prior p(K ), while the concentration parameter α is kept fixed.
Yields a model beyond the class of Gibbs-type priors. [SFS, Malsiner-Walli and
Grün, 2021].
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Relation of dynamic MFMs to DPMs

I (Dynamic) Sparse finite mixtures with γ = α
K , K fixed:

I converge to a DPM with GDP ∼ DP (α,G0) as K increases
[Green and Richardson, 2001].

I often used to approximate a DPM;
I putting a prior p(K ) on the “hyperparameter” K yields the dynamic MFM:

p(C|N , α) = pDP(C|N , α)×
∞∑

K=K+

p(K )RK ,α
K+ , lim

K→∞
RK ,α
K+ = 1.

I The EPPF converges to the Ewens distribution, as the prior puts increasing mass on
large values of K .

I With a proper prior p(K ), the dynamic MFM is a flexible natural generalization of
the DPM beyond Gibbs-type priors.
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A lot remains to be done . . .

I R-package bmbclust:
I A range of parametric component densities (uni- and multivariate Gaussians,

Poisson, latent class analysis)
I Semi-parametric component densities in the spirit of [Malsiner Walli et al., 2017]

I Posterior consistency for the number of clusters for generalized MFMs under
correctly specified and misspecified components [Guha et al., 2019]
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Concluding Q & A about finite mixtures

I Are mixtures, like tequila, inherently evil and should be avoided at all costs?
No, mixtures are really interesting and useful, but can be challenging.

I Has the number of components K to be known, if I want to use finite mixtures for
clustering?
No, put a prior on K and check implicit priors, e.g. p(K+|N), using the
fipp-package.

I If K is unknown, do I have to implement a complicated trans-dimensional MCMC
sampler?
No, you can use the telescoping sampler.

I Are finite mixtures less flexible than BNP mixtures such as Dirichlet process
mixtures (DPM)?
No, dynamic MFMs are more general than DPMs and are very closely related to
mixtures of Pitman-Yor process mixtures with a finite number of components
(clusters).
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