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Latent variables and measurement

Using statistical models to understand constructs better: a question of
measurement

• Many theories in behavioral and social sciences are formulated in
terms of theoretical constructs that are not directly observed

attitudes, opinions, abilities, motivations, etc.

• The measurement of a construct is achieved through one or more
observable indicators (questionnaire items, tests).

• The purpose of a measurement model is to describe how well the
observed indicators serve as a measurement instrument for the
constructs, also known as latent variables.

• Measurement models often suggest ways in which the observed
measurements can be improved.
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Latent variables and substantive theories

Using statistical models to understand relationships between constructs
and covariates and to test theories about those relationships.

• Often measurement by multiple indicators may involve more than one
latent variable.

• Subject-matter theories and research questions usually concern
relationships among the latent variables, and perhaps also observed
explanatory variables.

• Latent variables can be used as predictors for distal outcomes or as
dependent variables explained by covariates.

• These are captured by statistical models for those variables:
structural models.
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Motivation

Motivation of our work

• Cheating and leaked items are a high stake issue in testing.

• Latent differential item functioning.

• Other areas of application.
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Notation

Notation

• Let Y′ = (Y1,Y2, . . . ,Yp) be the vector of items/manifest/observed
variables.

• Let θ′ = (θ1, θ2, . . . , θq) be the vector of continuous latent variables.

• Let ξ and η be discrete latent variables with a number of classes each.

• Let x′ = (x1, x2, . . . , xk) be the vector of observed covariates.

•  1 0 1 ... 1
0 0 1 ... 0
...

...
...

...


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Detection of Cheating and Compromised Items

Detection of Cheating and Compromised Items
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Detection of Cheating and Compromised Items Introduction

1 Many tests are of high-stake.

2 Test fairness is a concern.

3 People cheat (e.g., US college
cheating scandal)
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Detection of Cheating and Compromised Items Introduction

Motivating Example: Sensitive Decisions
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Detection of Cheating and Compromised Items Introduction

Motivation: Fairness in Tests

• Recycling test questions remains a major problem. Questions used in
previous tests are available either because they were unofficially
acquired by ’test prep’ firms, or reconstructed and shared by
test-takers on sites.

• The failures to secure the test questions threaten the validity of exam
scores.
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Detection of Cheating and Compromised Items Introduction

Motivation: Fairness in Tests

• Compromised items: leaked test questions

• Cheaters in this context: test-takers who have prior access to
compromised questions
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Detection of Cheating and Compromised Items Introduction

Questions of interest

• Who may have cheated? How strong is the evidence?

• Which items may have been leaked? How strong is the evidence?

• Which items should we remove from the item pool? Which test
takers should we flag in the database?

Many problems have a similar structure, e.g., detection of fake reviews in
online-shopping /video-sharing/movie-rating websites.
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Detection of Cheating and Compromised Items Introduction

Data-driven and Model-based Cheating Detection

Probabilities that test takers (y-axis) correctly answer questions (x-axis)
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Detection of Cheating and Compromised Items Data Preview

Data Preview: Real Data Example

• A benchmark dataset from the book Handbook of Detecting Cheating
on Tests: 1636 test takers’ responses to 170 scored items in a
standardized test.

• There are approximately 50 candidates, who were flagged by the
testing company as likely cheaters. Candidates were flagged through
a combination of statistical analysis and a careful investigative
process which brought in other pieces of information.

• Based on both data forensics and a careful investigation, the testing
program believes that 64 items were leaked.
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Detection of Cheating and Compromised Items Data Preview

Descriptive Analysis: Total Score and Item Correct Rates
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Figure : Panel (a): Histogram of test takers’ total scores by the testing program’s
cheating labels. Panel (b): Histogram of items’ correct rates by the testing
program’s compromisation labels.
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Detection of Cheating and Compromised Items Data Preview

Descriptive Analysis: Mean Log-Time

0

100

200

3.6 4.0 4.4 4.8

Mean Log Response Time

co
un

t Cheater

N

Y

0

5

10

15

20

3.0 3.5 4.0 4.5 5.0

Mean Log Response Time
co

un
t Compromised

N

Y

Figure : Panel (a): Histogram of test takers’ mean log-time by the testing
program’s cheating labels. Panel (b): Histogram of items’ mean log-time by the
testing program’s compromisation labels.
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Detection of Cheating and Compromised Items Data Preview

Descriptive Analysis: Credentialing dataset.

• Summary statistics do not have much information about the labels of
the test takers and items.

• The area under the curves (AUC) of the corresponding ROC curves
are 55.2% and 71.7% for the in-sample prediction of the cheating
labels based on total score and mean log-time, respectively.

• Similarly, the corresponding AUCs for the classification of items are
52.4% and 60.6%, respectively.

• The proposed models are expected to substantially improve upon
these benchmarks.
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Cheating Detection Models

Cheating Detection based on Item Responses and Time
information

• Data: Yij : individual i ’s responses to item j , i = 1, ...,N, j = 1, ..., p.
• Data: Tij : individual i ’s response time to item j , i = 1, ...,N,
j = 1, ..., p.

• We introduce two discrete binary latent variables: ξi to classify test
takers to cheaters/non-cheaters and ηj to classify items to
leaked/non-leaked.

• Some remarks:

• Item response behavior on a well-designed test is usually explained well
by a single-factor model (i.e., unidimensionality).

• Cheaters are more likely to answer correctly on leaked items.

• The proportion of cheaters and leaked items should not dominate the
analysis.
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Cheating Detection Models Baseline Model

Models for Cheating
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Cheating Detection Models Baseline Model

Baseline Model

• Rasch model (Rasch, 1960):

• Item Response Probability:

P(Yij = 1|θi , βj) =
exp(θi − βj)

1 + exp(θi − βj)

• θi : an individual-specific latent ability (i.e. test taker’s ability).

• βj : an item-specific parameter (i.e. item’s difficulty level).

• Assumption of Conditional Independence: : Yijs are all independent,
given θ1, ..., θN , b1, ..., bJ .

• Other IRT models such as the 2PL can be used as the baseline model.
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Cheating Detection Models Proposed Model

Proposed Model: response items

A double mixture Rasch model (or IRT model in general):

• Two types of test takers indicated by a latent variable ξi :
ξi = 1 if the test taker cheats and ξi = 0 otherwise.

• Two types of items indicated by a latent variable ηj :
ηj = 1 if the item is leaked and ηj = 0 otherwise.

• Item response probability with an additional component δ capturing
the effect of cheating:

P(Yij = 1|θi , βj , ξi , θj , δ) =
exp(θi − βj + ξiηjδ)

1 + exp(θi − βj + ξiηjδ)
,

where δ > 0.
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Cheating Detection Models Proposed Model

Cheating Detection Model

• The cheating detection model assumes that normal test takers
(ξi = 0) follow a standard Rasch model for all test items:

P(Yij = 1|θi , bj , ξi = 0, ηj , δ) =
exp(θi − bj)

1 + exp(θi − bj)
,

• It also assumes that cheaters follow a standard Rasch model for
non-leaked items:

P(Yij = 1|θi , bj , ξi = 1, ηj = 0, δ) =
exp(θi − bj)

1 + exp(θi − bj)
,

• Cheaters follow a Rasch model with reduced difficulty on leaked item:

P(Yij = 1|θi , bj , ξi = 1, ηj = 1, δ) =
exp(θi − (bj − δ))

1 + exp(θi − (bj − δ))
.
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Cheating Detection Models Proposed Model

Cheating Detection Model

Hierarchical modeling assumption:

• (θi , ξi ), i = 1, ...,N, are i.i.d. random vectors from a certain
distribution with unknown parameters, denoted by f1(θ, ξ|ν1)

• (bj , ηj , δ), j = 1, ..., J, are i.i.d. random vectors from another
distribution with unknown parameters, denoted by f2(b, η, δ|ν2).

• ν1 and ν2 are the only unknown parameters in the model (to be
estimated from data).
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Cheating Detection Models Bayesian Inference

Bayesian Inference

• Parallel Tempering also known as Metropolis-coupled MCMC is used.
Parallel Tempering simulates multiple MCMC chains simultaneously and
improves the mixing of the low-tempered MCMC chains.

• Parallel Tempering (Geyer, 2011) provides a powerful took for exploring
distributions with many local modes.

• A Metropolis-Hasting sampler is used from the MCMC sampling within a
chain.

Figure : Graphical
representation of the
proposed model. The
boxes are plates
representing replicates.
The two outer plates
represent test-takers and
items, respectively, and
the inner plate presents
an item responses.
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Cheating Detection Models Introducing time information

Adding a Response Time Model to the Baseline Model

• Let Tij denote the amount of time test taker i spends to answer item
j , i = 1, ...,N, j = 1, ..., p.

• The baseline model now specifies the distribution of (Yij ,Tij) when
there is no cheating.

• We assume that the distribution of Yij only depends on the
parameters in the IRT model.

• The log-normal model is assumed as the baseline response time
model,

log(Tij)|τi , αj , κ ∼ N (αj − τi , κ) , (1)

where τi as a person-specific speed factor, αj captures the mean time
for completing the item in log-scale and κ captures the variation in
the response time across test takers.
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Cheating Detection Models Introducing time information

Proposed Response Time Model, e.g. van der Linden
(2007)

• The proposed item response model introduces the sub-model for
response time:

log(Tij)|τi , ξi , αj , ηj , γ ∼ N (αj − τi − ξiηjγ, κ) , (2)

where ξi and ηj are the cheating indicators for test takers and items,
respectively, and γ is a positive drift parameter, characterizing the
reduction in time due to item pre-knowledge.

• The marginal dependence between Yij and Tij will be introduced by
the dependence between the ability and speed factors θi and τi , and
the dependence between the item characteristics βj and αj
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Cheating Detection Models Introducing time information

Item Responses and Time Information

Figure : Graphical representation of the response time model
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Cheating Detection Models Bayesian Decision for Cheating Detection

Bayesian Decision for Cheating Detection

• Assume Z = (Y,T)
• Which test takers may have cheated? How strong is the evidence?

• Based on the posterior probabilities P(ξi = 1|z), i = . . . ,N

• Which items may have been leaked? How strong is the evidence?

• Based on the posterior probabilities P(ηj = 1|z), j = 1, . . . , p

• Denote with Di = 1 when test-taker i is flagged as a cheater and
Di = 0 otherwise.

• Under the proposed model, let Di = 1 if Pr(ξi = 1 | z) > ζ.

• Where ζ is a relative cost of a false positive error, ζ ∈ (0, 1).

• Bayes risk:

R(Di ) = ζ P(Di = 1, ξi = 0)︸ ︷︷ ︸
FP

+(1− ζ)P(Di = 0, ξi = 1)︸ ︷︷ ︸
FN
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: General remarks

• How should a test company determine (ζ) the threshold for flagging
test takers as potential cheaters?

• What threshold is big enough?

• Trade-off: We would like to detect as many cheaters as possible, but
do not want to make many mistakes (flagging innocent test takers as
cheaters).

• Possible solution: Compound decision theory (Robbins, 1950)– Using
information from all test takers to make individual decisions.

• Solving N decision problems simultaneously.
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FDR Control for Persons (1)

I Results can be classified as follows:

Not flagged as cheater Flagged as cheater Total

Non-cheater N00 (TN) N01 (FP) N0·
Cheater N10 (FN) N11 (TP) N1·
Total N·0 N·1 N

Table : A summary of the outcomes of detecting cheaters.

We focus on two quantities:

• The false discovery proportion: N01/max{N.1, 1} - (FDP, the proportion of
innocent test takers among the detected ones) estimated by the posterior
probability E (FDP | Y,T) and is known as local False Discovery Rate
(FDR).

• The false non-discovery proportion: N10/max{N.0, 1} - (FNP, proportion of
cheaters among the non-detected ones) estimated by E (FNP | Y,T) and is
known as local False Non-Discovery Rate (FNP).
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FDR Control for Persons (2)

• Given data and a threshold ζ we can compute both measures.

• The smaller the threshold ζ, the more detections we make, the larger
the local FDR.
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FDR Control for Persons (3)

• For detecting cheaters, the consequences of false positives (i.e.
flagging an innocent test-taker as a cheater) is more serious than that
of false negatives (i.e. failing to flag a cheater).

• A sensible decision rule is to minimise the local FNR while controlling
the local FDR to be below a pre-specified threshold ρ.

• Intuition: Control the proportion of innocent test-takers misclassified
as cheaters.
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FDR Control for Persons (2)

• Given a relative cost ζ, the decision on each test taker i is given by
Di (ζ) = 1{P(ξi=1|z)>ζ}.

• The local FDR

fdrζ(z) =

∑N
i=1Di (ζ)P(ξi = 0 | z)

max {
∑N

i=1Di (ζ), 1}
,

which depends only on P(ξi = 0|z).

• The local False Nondiscovery Rate (FNR), which is defined as the
posterior mean of N10/N·0, can be obtained similarly

fnrζ(z) =

∑N
i=1(1− Di (ζ))P(ξi = 1|z)

max {
∑N

i=1(1− Di (ζ)), 1}
.
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FDR Control for Persons (3)

The optimization problem: Control the local FDR to be lower than a
pre-specified level ρ (e.g. 1%, 5%, 10%), while minimising the local FNR:

min
ζ

fnrζ(z), subject to. fdrζ(z) ≤ ρ.

• The local FNR fnrζ(z) is non-decreasing in ζ. Then the optimal
threshold

ζ∗(z; ρ) = inf{ζ : fdrζ(z) ≤ ρ}

• ρ is easier to specify than the relative cost.
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Cheating Detection Models Compound Decision for Cheating Detection

Compound Decision: Local FNR Control for Items

• For detecting compromised items, false negatives (i.e. failing to flag a
compromised item) is typically worse than false positives (i.e. a
non-compromised items flagged as compromised).

• Intuition: Control the quality of the remaining items, while not
removing too many items.

• The optimization problem: Control the local FNR to be below a
pre-specified level ρ (e.g. 1%, 5%, 10%) and in the meantime
minimise the local FDR.
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Real Data

Real Data Example

• A benchmark dataset from the book Handbook of Detecting Cheating
on Tests: 1636 test takers’ responses to 170 scored items in a
standardized test.

• We removed 12 test takers who had zero response times in regard to
one or more items. 5 out of 12 people with a response time of zero
were flagged as cheaters and the rest 7 were labelled as non-cheaters
according to the test company.

• The remaining 1624 test takers’ item responses were used. 41 out of
1624 examinees were flagged as potential cheaters (2.52%), and 64 of
170 items were suspected to get leaked (37.6%).
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Real Data

Bayesian Inference

• Compare models M1 (only for item responses and a cheating
component) and M0

1 (only item responses) by DIC.

• The DIC values for the two models are 138,282.6 and 218,308.4
respectively.

• Item pre-knowledge is likely to exist among test takers.
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Real Data

ModelM1: Posterior Means, response items only

Figure : Boxplots of the posterior means of (a) ξi for the cheating and
non-cheating groups and (b) ηj for the compromised and non-compromised items
(defined by the testing program)
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Real Data

ModelM1, response items only

AUC = 0.868

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.000.10 0.25 0.50 0.75 0.901.00
FPR

T
P

R
(a)

AUC = 0.836

0.00

0.10

0.25

0.50

0.75

0.90

1.00

0.000.10 0.25 0.50 0.75 0.901.00
FPR

T
P

R

(b)

Figure : Prediction of cheaters and compromised items by the posterior means of
ξi and ηj respectively (labeled by the testing program).
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Real Data

M1: Local FDR and local FNR plots for (a) individuals
and (b) items

The number of detections increases, the local FDR increases and the local
FNR decreases.
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Figure : The local FDR and the local FNR as functions of the number of
detections.
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Real Data

M1: Number of detections

Table : The first row shows the numbers of detections for test takers, when
controlling the corresponding local FDR at 1%, 5%, and 10% levels, respectively.
The second row shows the numbers of detections for items, when controlling the
corresponding local FNR at 1%, 5%, and 10% levels, respectively.

1% 5% 10%

Test takers 25 46 61
Items 100 91 71
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Real Data

ModelM1: posterior means of parameters, item responsed
only

Table : The row labelled “EAP” shows the posterior means of the global
parameters, where EAP represents for Expected A Posteriori, and the row labelled
“95% CI” provides the corresponding 95% credible intervals.

σ11 π1 π2 ω11 µ1 δ
EAP 0.285 0.028 0.401 0.685 -1.004 0.895
95% CI (0.261, 0.319) (0.020, 0.036) (0.387, 0.433) (0669, 0.854) (-1.237, -0.912) (0.758, 0.959)

• Test Company Results: 2.8% examinees were flagged as potential
cheaters and 40.1% of items were suspected to get leaked.

• δ̂ = 0.895. The odds ratio of correctly answering a compromised item
is about exp(0.895) = 2.447 when comparing a cheater and a
non-cheater with the same ability level.
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Real Data

ModelM2: Detection based on Item Responses and
Response Times

• DIC for three models: We compare model M2 (response time is
included) and model M0

2 where only cheating is taken into account.
The corresponding DIC values are M2 =176,935.2 and
M0

2=214,201.3.

• The ROC curves based on the posterior means of ξi and ηj have AUC
0.892 and 0.867, respectively, where the AUC values are slighter
higher than from M1.

• More detections tend to be made under the model M2, especially at
the lower thresholds 1% and 5%. This is likely due to that the
posterior distributions tend to be more concentrated under model M2

as it utilizes more information.
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Real Data

Table : Applying model M2 to credentialing dataset. The first row shows the
numbers of detections for test takers, when controlling the corresponding local
FDR at 1%, 5%, and 10% levels, respectively. The second row shows the
numbers of detections for items, when controlling the corresponding local FNR at
1%, 5%, and 10% levels, respectively.

1% 5% 10%

Test takers 26 47 65
Items 101 89 74
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Real Data

Posterior means and 95% credible intervals for the global
parameters of modelM2

• The estimated correlation between the ability and speed factors is as
high as 0.410. This result indicates that test takers with higher ability
tend to answer the items faster.

• The correlation between the two item-specific parameters is 0.237.
This positive correlation suggests that solving more difficult items
tends to take more time, which is consistent with our intuition.

σ11 π1 π2 ω11 µ1 δ
EAP 0.289 0.027 0.410 0.699 -0.867 0.807
95% CI (0.259, 0.298) (0.022,0.036) (0.365, 0.432) (0.626, 0.789) (-0.993, -0.795) (0.732, 0.852)

σ22 σ12 ω22 ω12 µ2 γ
EAP 0.248 0.110 0.397 0.125 -0.472 0.620
95% CI (0.213,0.285) (0.0986, 0.139) (0.334, 0.427) (0.082, 0.132) (-0.879, -0.291) (0.451, 0.907)

κ
EAP 0.802
95% CI (0.589, 1.037)
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Real Data

Remarks and Extensions

• The model is robust to certain model mis-specifications (linear
predictor, (θi , ξi ) being correlated, different drift δ for items).

• The model applies to one type of cheating behavior (preknowledge
due to item leakage).

• Add covariates.

• Apply to other data from education as well from psychological
measurement.

• Explore other types of estimation.

• Model fit and model selection.

• Relax some of the assumptions.
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Thank you for your attention
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