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Introduction

Introduction
It is very common in surveys, to deal with datasets with large
number of items (ordinal variables) that are naturally divided into
subgroups, in such, each group of items has homogeneous
dependence.
Factor models are a unified tool for the analysis of such datasets
with dependence coming from a few latent variables/factors.
In the literature, two factor models have been considered:

I the bi-factor model (e.g., Gibbons and Hedeker 1992):
F It consists of a common factor that is linked to all items, and

non-overlapping group-specific factors.
F The items are assumed to be (conditionally) independent given the

group-specific and common factors.
I the second-order model (e.g., de la Torre and Song 2009):

F Items are indirectly mapped to an overall (second-order) factor via
non-overlapping group-specific (first-order) factors.

F The group specific (first-order) factors are linked to another
(second-order) factor via an 1-factor model.

Aristidis K. Nikoloulopoulos (UEA/CMP) Bi-factor and second-order copula models 30-9-2021 2 / 26



Introduction

Motivation
The existing models assume that the underlying continuous
random variables follow a multivariate normal (MVN) distribution,
thus, they can provide poor fit if

I Items have more probability in joint upper or lower tail than would
be expected with a (discretized) MVN;

I items can be thought of as discretization of latent random variables
that are maxima/minima or mixtures of means instead of means.

Solution: copula extensions for bi-factor and second-order
The bi-factor copula model uses bivariate copulas to link the items
to the common and group-specific factors.
The second-order copula model uses bivariate copulas to link the
first-order factors to the items and the second-order factor.
They are truncated vine copula models (Brechmann et al., 2012)
that involve both observed and latent variables.
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Bi-factor and second-order copula models

Notation

Let Y11, . . . ,Yd11︸ ︷︷ ︸
1

, . . . ,Y1g , . . . ,Ydgg︸ ︷︷ ︸
g

, . . . ,Y1G, . . . ,YdGG︸ ︷︷ ︸
G

denote the

item response variables classified into the G non-overlapping
groups.

There are dg items in group g; g = 1, . . . ,G, j = 1, . . . ,dg .

Collectively there are d =
∑G

g=1 dg items, which are all measured
on an ordinal scale; Yjg ∈ {0, . . . ,Kjg − 1}.

Let the cutpoints in the uniform U(0,1) scale for the jg’th item be
ajg,k , k = 1, . . . ,Kjg − 1, with ajg,0 = 0 and ajg,Kjg = 1.

These correspond to ajg,k = Φ(αjg,k ), where αjg,k are cutpoints in
the normal N(0,1) scale.
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Bi-factor and second-order copula models Bi-factor copula model

Bi-factor copula model

Consider a common factor X0 and G group-specific factors
X1, . . . ,XG, where X0,X1, . . . ,XG are independent and standard
uniformly distributed.
Y1g , . . . ,Ydgg are conditionally independent given X0 and Xg ,
and that Yjg in group g does not depend on Xg′ for g 6= g′.
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Bi-factor and second-order copula models Bi-factor copula model

Joint probability mass function
The joint probability mass function (pmf) is given by

π(y) = Pr(Yjg = yjg ; j = 1, . . . ,dg ,g = 1, . . . ,G)

=

∫
[0,1]G+1

G∏
g=1

dg∏
j=1

Pr(Yjg = yjg |X0 = x0,Xg = xg)dx1 · · · dxGdx0.

We specify Pr(Yjg = yjg |X0 = x0,Xg = xg) based on a set of
bivariate copulas that link observed to latent variables:

I According to Sklar’s (1959) theorem there exists a bivariate copula
CYjg ,X0 such that Pr(Yjg ≤ yjg ,X0 ≤ x0) = CYjg ,X0

(
FYjg (yjg), x0

)
, where

CYjg ,X0 is the copula that links observed variable with the common
factor X0.

I Then it follows that Pr(Yjg ≤ yjg |X0 = x0) = CYjg |X0

(
FYjg (yjg)|x0

)
.

I Then we let CYjg ,Xg |X0 be a bivariate copula that links the observed
variable Yjg with the group-specific factor Xg given X0.

Interestingly, the pmf reduces to an one-dimensional integral of a
function which is in turn a product of G one-dimensional integrals.
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Bi-factor and second-order copula models Second-order copula model

Second-order copula model

For a fixed g = 1, . . . ,G, the items Y1g , . . . ,Ydgg are conditionally
independent given the first-order factors
Xg ∼ U(0,1), g = 1, . . . ,G.
X1, · · · ,XG are conditionally independent given the second-order
factor X0 ∼ U(0,1).
That is the joint distribution of X = (X1, · · · ,XG) has an one-factor
structure.
Yjg in group g does not depend on Xg′ for g 6= g′.
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Bi-factor and second-order copula models Second-order copula model

Joint probability mass function
The joint pmf takes the form

π(y) =

∫
[0,1]G

{
G∏

g=1

dg∏
j=1

Pr(Yjg = yjg |Xg = xg)

}
cX(x1, . . . , xG)dx1 · · · dxG.

cX is the one-factor copula density (Krupskii and Joe, 2013) of
X = (X1, . . . ,XG), viz.

cX(x1, . . . , xG) =

∫ 1

0

G∏
g=1

cXg ,X0(xg , x0)dx0,

where cXg ,X0 is the bivariate copula density of the copula CXg ,X0

linking Xg and X0.
Once again, specifying Pr(Yjg = yjg |Xg = xg) based on a set of
bivariate copulas, the pmf reduces to an one-dimensional integral
of a function which is in turn a product of G one-dimensional
integrals.
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Bi-factor and second-order copula models Special cases

Bi-factor copula model

If CYjg ,X0(·; θjg) and CYjg ,Xg |X0
(·; δjg) are bivariate normal (BVN)

copulas, then the Gaussian bi-factor model is a special case.

The bi-factor copula model is the same as the Gaussian bi-factor
model with stochastic representation

Zjg = θjgZ0+γjgZg+
√

1− θ2
jg − γ2

jgεjg , g = 1, . . . ,G, j = 1, · · · ,dg ,

where γjg = δjg

√
1− θ2

jg and Z0,Zg , εjg are iid N(0,1) random
variables.

The parameter θjg of CYjg ,X0 is the correlation of Zjg and
Z0 = Φ−1(X0), and the parameter δjg of CYjg ,Xg |X0

is the partial
correlation between Zjg and Zg = Φ−1(Xg) given Z0.
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Bi-factor and second-order copula models Special cases

Second-order copula model

For the Gaussian second-order model let Z0,Z ′1, . . . ,Z
′
G be the

dependent latent N(0,1) variables, where Z0 is the second-order
factor and Z ′g = βgZ0 + (1− β2

g)Zg is the first-order factor for group
g.

For g = 1, . . . ,G and j = 1, · · · ,dg , the stochastic representation
is:

Zjg = βjgZ ′g +
√

1− β2
jgεjg Z ′g = βgZ0 +

√
1− β2

gZg ,

or
Zjg = βjgβgZ0 + βjg

√
1− β2

gZg +
√

1− β2
jgεjg .

Hence, this is a special case of the Gaussian bi-factor model
where θjg = βjgβg and γjg = βjg

√
1− β2

g .
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Estimation and computational details Estimation method

IFM estimation
With sample size n and data y1, . . . ,yn, the joint log-likelihood of
the bi-factor and second-order copula is

`(θ; y1, . . . ,yn) =
n∑

i=1

log π(yi ;θ).

We approach estimation using the two-step IFM method proposed
by Joe (2005) that can efficiently, in the sense of computing time
and asymptotic variance, estimate the model parameters.

1 The univariate cutpoints for the j th item in group g are estimated as
âjg,k =

∑k
y=0 pjg,y , where pjg,y , y = 0, . . . ,K − 1 for g = 1, . . . ,G

and j = 1, . . . ,dg are the univariate sample proportions.
2 The joint log-likelihood is maximized over the copula parameters

with the cutpoints fixed as estimated at the first step.
The estimated copula parameters can be obtained by using a
quasi-Newton (Nash, 1990) method applied to the logarithm of the
joint likelihood.
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Estimation and computational details Integration scheme

Bi-factor copula model
For the bi-factor copula model numerical evaluation of the joint
pmf can be achieved with the following steps:

1 Calculate Gauss-Legendre quadrature (Stroud and Secrest, 1966)
points {xq : q = 1, . . . ,nq} and weights {wq : q = 1, . . . ,nq} in
terms of standard uniform.

2 Numerically evaluate the joint pmf

∫ 1

0

G∏
g=1

{∫ 1

0

dg∏
j=1

fYjg |Xjg ;X0 (yjg |xg , x0)dxg

}
dx0

in a double sum

nq∑
q1=1

wq1

G∏
g=1

{ nq∑
q2=1

wq2

dg∏
j=1

fYjg |Xjg ;X0 (yjg |xq2 , xq1 )

}
.
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Estimation and computational details Integration scheme

Second-order copula model
For the second-order copula model numerical evaluation of the
joint pmf can be achieved with the following steps:

1 Calculate Gauss-Legendre quadrature points {xq : q = 1, . . . ,nq}
and weights {wq : q = 1, . . . ,nq} in terms of standard uniform.

2 Numerically evaluate the joint pmf

∫ 1

0

{
G∏

g=1

∫ 1

0

[ dg∏
j=1

fYjg |Xg (yjg |xg ; θjg)
]
cXg ,X0

(
xg , x0; δg

)
dxg

}
dx0

in a double sum
nq∑

q1=1

wq1

{
G∏

g=1

nq∑
q2=1

wq2

[ dg∏
j=1

fYjg |Xg (yjg |xq2|q1 ; θjg)
]}
,

where xq2|q1 = C−1
Yjg |Xg ;X0

(xq2 |xq1 ; δg).
Note that the independent quadrature points have converted to
dependent quadrature points that have an one-factor copula
distribution CX (·; δ).
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Bivariate copula selection

Bivariate copula selection
In line with Nikoloulopoulos and Joe (2015), we use bivariate
parametric copulas that can be used when considering latent
maxima, minima or mixtures of means, namely the Gumbel,
survival Gumbel (s.Gumbel) and Student tν copulas, respectively.
We describe simple diagnostics based on semi-correlations and
an heuristic method that automatically selects the bivariate
parametric copula families that build either the bi-factor or the
second-order copula model.
In the context of items that can be split into G non-overlapping
groups, such that there is homogeneous dependence within each
group, it is sufficient to

I summarize the average of the polychoric semi-correlations for all
pairs within each of the G groups and for all pairs of items.

I not mix bivariate copulas for a single factor; hence, for both the
bi-factor and second-order copula models we allow G + 1 different
copula families, one for each group specific factor Xg and one for
X0.
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Bivariate copula selection Simple diagnostics

Semi-correlations
Choices of copulas with upper or lower tail dependence are better
if the items have more probability in joint lower or upper tail than
would be expected with the BVN copula.
This can be shown with summaries of correlations in the upper
joint tail and lower joint tail.
Consider the underlying N(0,1) latent variables Zjg ’s of the ordinal
variables Yjg ’s.
The correlations ρ−N and ρ+N of Zjg ’s in the lower and upper tail,
hereafter semi-correlations, depend only on the copula C of(

Φ(Zj1g), Φ(Zj2g)
)

; see (Joe, 2014, page 71).

For the BVN and tν copulas ρ−N = ρ+N , while for the Gumbel and
s.Gumbel copulas ρ−N < ρ+N and ρ−N > ρ+N , respectively.
The sample versions of ρ+N , ρ

−
N for item response data are the

polychoric correlations in the joint lower and upper quadrants of
Yj1g and Yj2g (Kadhem and Nikoloulopoulos, 2021).
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Bivariate copula selection Heuristics

Heuristic algorithm
1 Fit the bi-factor or second-order copula model with BVN copulas.
2 Fit all the possible bi-factor or second-order copula models, iterating

over all the copula candidates that link all items Yjg ’s in group g or each
group-specific factor Xg , respectively, to X0.

3 Select the copula family that corresponds to the lowest Akaike
information criterion (AIC), that is,
AIC = −2× `+ 2×#copula parameters.

4 Fix the selected copula family that links the observed (bi-factor model) or
latent (second-order model) variables to X0.

5 For g = 1, . . . ,G:
1 Fit all the possible models, iterating over all the copula candidates

that link all the items in group g to the group-specific factor Xg .

2 Select the copula family that corresponds to the lowest AIC.

3 Fix the selected linking copula family for all the items in group g
with Xg .
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Goodness-of-fit

Goodness-of-fit
We will use the limited information M2 statistic proposed by
Maydeu-Olivares and Joe (2006) to evaluate the overall fit of the
proposed bi-factor and second-order copula models.
For our parametric models with parameter vector θ of dimension
q, let π2(θ) =

(
π̇1(θ)>, π̇2(θ)>

)> be the column vector of the
univariate and bivariate model-based marginal probabilities that
do not include category 0 with sample counterpart
p2 = (ṗ>1 , ṗ

>
2 )>.

The total number of the univariate and bivariate residuals(
p2 − π2(θ̂)

)> is

s = d(K − 1) +

(
d
2

)
(K − 1)2,

where d(K − 1) is the dimension of the univariate residuals and(d
2

)
(K − 1)2 is the dimension of the bivariate residuals excluding

category 0.
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Goodness-of-fit

With a sample size n, the limited-information M2 statistic is given
by

M2 = M2(θ̂) = n
(
p2 − π2(θ̂)

)>C2(θ̂)
(
p2 − π2

(
θ̂)
)
,

with

C2(θ) = Ξ−1
2 −Ξ−1

2 ∆2(∆>2 Ξ−1
2 ∆2)−1∆>2 Ξ−1

2 = ∆
(c)
2

(
[∆

(c)
2 ]>Ξ2∆

(c)
2

)−1
[∆

(c)
2 ]>,

where ∆2 = ∂π2(θ)/∂θ> is an s × q matrix with the first order
derivatives of the univariate and bivariate marginal probabilities
with respect to the estimated model parameters, ∆

(c)
2 is an

s × (s − q) orthogonal complement to ∆2, such that
[∆

(c)
2 ]>∆2 = 0, and Ξ2 is the asymptotic s× s covariance matrix of

√
n
(
p2 − π2(θ̂)

)>.
The limited information statistic M2 under the null hypothesis has
an asymptotic distribution that is χ2 with s − q degrees of freedom
when the estimate θ̂ is

√
n-consistent.
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Simulations

Simulations
An extensive simulation study is conducted to

1 gauge the small-sample efficiency of the IFM estimation method
and investigate the misspecification of the bivariate pair-copulas;

2 examine the reliability of using the heuristic algorithm to select the
true (simulated) bivariate linking copulas;

3 study the small-sample performance of the M2 statistic.

We randomly generate 1,000 datasets with samples of size
n = 500 or 1000 and d = 16 items, with K = 3 or K = 5 equally
weighted categories, that are equally separated into G = 4
non-overlapping groups from the bi-factor and second-order
copula model.
In each simulated model, we use different linking copulas to cover
different types of dependence.
For more details about the simulations see Kadhem and
Nikoloulopoulos (2021).
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Simulations

Conclusions from the simulations
IFM with the true bi-factor or second-order model is highly efficient
according to the simulated biases, SDs and RMSEs.

The IFM estimates of τ ’s are not robust under copula
misspecification and their biases increase when the assumed
bivariate copula has tail dependence of opposite direction from
the true bivariate copula.

The model selection algorithm performs extremely well for various
bi-factor and second-order copulas models with different choices
of linking copulas as the number of categories K increases.

For a small K dependence in the tails cannot be easily quantified.

The observed levels of M2 are close to the nominal α levels and
remain accurate even for extremely sparse tables (d = 16 and
K = 5).
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Application

Application
The Toronto Alexithymia Scale is composed of d = 20 items that
can be subdivided into G = 3 non-overlapping groups:

1 d1 = 7 items to assess difficulty identifying feelings (DIF).
2 d2 = 5 items to assess difficulty describing feelings (DDF).
3 d3 = 8 items to assess externally oriented thinking (EOT).

We use a dataset of 1925 university students from the
French-speaking region of Belgium (Briganti and Linkowski, 2020).
They were asked to respond to each item using one of K = 5
categories from “1 = completely disagree” to “5 = completely
agree".
For these items, a respondent might be thinking about the average
“sensation" of many past relevant events, leading to latent means.
Since the sample is a mixture (male and female students) we can
expect a priori that a bi-factor or second-order copula model with
tν copulas might be plausible, as in this case the items can be
considered as mixtures of discretized means.
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Application

Semi-correlations

We summarize the averages of polychoric semi-correlations for all
pairs within each group and for all pairs of items along with the
theoretical semi-correlations under different choices of copulas.

All items Items in group 1 Items in group 2 Items in group 3

ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N ρN ρ−N ρ+N

Observed 0.17 0.21 0.20 0.34 0.36 0.29 0.42 0.37 0.40 0.19 0.26 0.29
BVN 0.17 0.07 0.07 0.34 0.16 0.16 0.42 0.21 0.21 0.19 0.08 0.08
t5 0.17 0.23 0.23 0.34 0.31 0.31 0.42 0.35 0.35 0.19 0.24 0.24
Frank 0.17 0.04 0.04 0.34 0.10 0.10 0.42 0.13 0.13 0.19 0.05 0.05
Gumbel 0.17 0.05 0.22 0.34 0.11 0.37 0.42 0.14 0.43 0.19 0.05 0.24
s.Gumbel 0.17 0.22 0.05 0.34 0.37 0.11 0.42 0.43 0.14 0.19 0.24 0.05

For the first group of items there is more probability in the joint
lower tail suggesting s.Gumbel linking copulas to join each item in
this group with the DIF factor.
For the other groups of items or for the items overall there is more
probability in the joint lower and upper tail suggesting tν linking
copulas.
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Application

Comparing factor structures
We fit the bi-factor and second-order models with the copulas
selected by the heuristic algorithm.
For comparison, we also fit their special cases.
The fitted models are compared via the AIC and the Vuong’s test
to show if (a) the best fitted model according to the AICs provides
better fit than the other fitted models and (b) a model with the
selected copulas provides better fit than the one with BVN.

1-factor 2-factor Bi-factor Second-order

BVN Selected BVN Selected BVN Selected BVN Selected

AIC 107135.8 105504.0 106189.5 103893.5 105507.7 103200.9 105878.6 104133.7
Vuong’s 95% CI a (0.35,0.50) (0.53,0.69) (0.51,0.69) (0.38,0.52)
Vuong’s 95% CI b (0.93,1.13) (0.55,0.67) (0.69,0.88) (0.13,0.23) (0.51,0.69) (0.61,0.80) (0.21,0.29)
M2 14723.8 9865.0 9195.7 7383.7 11664.7 6381.5 13547.1 7341.2
df 3020 3020 3001 3000 3000 3000 3017 3017
p-value < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

The best fitted bi-factor copula model results when we use
s.Gumbel for the DIF factor, t3 for both the DDF and EOT factors
and t2 for the common factor (alexithymia).
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Application

Goodness-of-fit
It is not so clear from the goodness-of-fit p-values that the
response patterns are satisfactorily explained by using the linking
copulas selected by the heuristic algorithm.
This is not surprising since one should expect discrepancies
between the postulated parametric model and the population
probabilities, when the sample size or dimension is sufficiently
large (Maydeu-Olivares and Joe, 2014).
To further show that the fit has been improved we have calculated
the maximum deviations of observed and model-based counts for
each bivariate margin.

1-factor 2-factor Bi-factor Second-order

BVN Selected BVN Selected BVN Selected BVN Selected

Items in Group 1 71 63 71 60 69 55 70 61
Items in Group 2 112 98 113 83 77 48 84 55
Items in Group 3 87 74 81 52 80 45 82 53
All items 112 98 113 83 80 55 84 61

Overall, the maximum discrepancies have been sufficiently
reduced in the selected bi-factor model.
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Discussion

Discussion
For item response that can be split into non-overlapping groups,
we have proposed bi-factor and second-order copula models.
Our copula constructions include the Gaussian bi-factor and
second-order models as special cases.
They can provide a substantial improvement over the latter based
on AIC, Vuong’s and goodness-of-fit statistics.
Hence, superior statistical inference for the loading parameters of
interest can be achieved.
The improvement relies on the fact that there can be an
interpretation of latent variables that can be maxima/minima or
mixture of means instead of means.
Our models do not restrict to a latent structure that is additive.
The copula parameters are interpretable as dependence of an
observed variable with the common factor, or conditional
dependence of an item with the group-specific factor given the
common factor.
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