Quantitative Stability of the Iterative Fitting Procedure

George Deligiannidis

Joint with V. de Bortoli and A. Doucet

Department of Statistics, Oxford University

AUEB Statistics Seminar, Oct 29 2021

Optimal Transport

• Coupling: A coupling of two probability measures μ, ν , on spaces $X, Y \subset \mathbb{R}^d$ respectively, a coupling is a joint distribution π , with μ, ν as its marginals,

$$\int \! f(x) \pi(\mathsf{d} x, \mathsf{d} y) = \int \! f(x) \mu(\mathsf{d} x), \quad \int g(y) \pi(\mathsf{d} x, \mathsf{d} y) = \int g(y) \nu(\mathsf{d} y).$$

- We write $C(\mu, \nu)$ for the collection of couplings of μ, ν .
- Optimal Transport: the basic problem of Optimal Transport is to find a coupling $\pi \in \mathcal{C}(\mu, \nu)$ that minimizes

$$\inf_{\pi \in \mathcal{C}(\mu,\nu)} \int \pi(\mathrm{d}x,\mathrm{d}y) c(x,y); \qquad \mathrm{OT}(\mu,\nu)$$

where $c: X \times Y \to \mathbb{R}$ is any cost function.

Optimal Transport

$$\inf_{\pi \in \mathcal{C}(\mu,\nu)} \int \pi(\mathrm{d}x,\mathrm{d}y) c(x,y);$$

- this formulation goes back to Kantorovich;
- the earlier formulation due Monge focuses on mappings y = T(x), that is $\pi(dx, dy) = \mu(dx)\delta_{T(x)}(dy)$ and results in non-convex optimisation.
- Brenier 1987: Assuming $c(x,y) = |x-y|^2$, μ, ν have finite second moments and μ gives measure 0 to all sets of Hausdorff dimension $\leq d-1$, there exists a convex mapping $\varphi: \mathcal{X} \mapsto \mathcal{Y}$ such that optimal coupling takes the form of an optimal transport map $\mu(\mathrm{d}x)\delta_{\nabla\varphi(x)}(\mathrm{d}y)$
- When μ is discrete, π is a proper coupling.
- For discrete measures with N atoms, worst case computational cost is $O(N^{5/2})$ for assignment problem, using Hungarian (auction) algorithm, see e.g. Mérigot and Oudet 2016.
- This can be improved by considering the entropy regularised version.

Entropy Regularised Optimal Transport

Cuturi 2013 realised that the entropy regularised problem

$$\inf_{\pi \in \mathcal{C}(\mu\nu)} \int \pi(\mathrm{d}x,\mathrm{d}y) \|x-y\|^2 + \epsilon \, \mathsf{KL}(\pi|\mu \otimes \nu); \qquad \mathrm{OT}_{\epsilon}(\mu,\nu)$$

can be solved efficiently using the Iterative Proportional Fitting Procedure (IPFP), aka Sinkhorn's algorithm.

- the computational cost is roughly $O(N^2)$, see Altschuler, Weed, and Rigollet 2017.
- Equivalent to (static) Schrödinger bridge problem

$$\inf_{\pi \in \mathcal{C}(\mu,\nu)} \mathsf{KL}\left(\pi|\Gamma_{\epsilon}\right), \quad \Gamma_{\epsilon}(\mathsf{d} x,\mathsf{d} y) = \exp[-c(x,y)/\epsilon]\mu(\mathsf{d} x)\nu(\mathsf{d} y).$$

Recent applications of Schrödinger bridges

- Idea is to use solution π_{ϵ}^* of OT_{ϵ} and treat it as an approximation to the solution π^* of OT.
- A lot of recent progress quantifying $\pi_{\epsilon}^* o \pi^*$.
- In recent applications, the Schrödinger bridge is used for its own benefits rather than as a computationally feasible approximation to the standard optimal transport problem.

Differentiable Particle Filtering

- Corenflos et al. 2021 used the solution to Schrödinger bridge to build a particle filtering scheme.
- Suppose $\widehat{\pi}_t = N^{-1} \sum_{i=1}^N \delta_{X_i^t}$ is particle approximation of π_t ;
- Let

$$\widetilde{X}_{j}^{t+1} \sim q_{t+1}(\cdot|X_{j}^{t}), \quad j \in [N];$$
 (1)

$$\omega_{j}^{t+1} = \frac{f_{\theta}(\widetilde{X}_{j}^{t+1}|X_{j}^{t})g_{\theta}(Y^{t+1}|\widetilde{X}_{j}^{t+1})}{q_{t+1}(\widetilde{X}_{j}^{t+1}|X_{j}^{t})}$$
(2)

$$\mathbb{P}(l_j^{t+1} = k) = \frac{\omega_k^{t+1}}{\sum_{j=1}^N \omega_j^{t+1}},\tag{3}$$

$$X_j^{t+1} \stackrel{\text{iid}}{\sim} \sum_{k=1}^N \frac{\omega_k^{t+1}}{\sum_{j=1}^N \omega_j^{t+1}} \delta_{\widetilde{X}_k^{t+1}}$$
 (4)

- A standard issue is that the resampling step means any estimators produced are not differentiable wrt θ .
- There are approximate ways to bypass this.

Differentiable Particle Filtering

• Corenflos et al. 2021 solves the ϵ -entropy regularised OT problem between

$$oldsymbol{lpha_N^{(t)}} = rac{1}{N} \sum_{i=1}^N oldsymbol{\delta_{\widetilde{X}_t^l}}, \quad oldsymbol{eta_N^{(t)}} = \sum_i w_t^i oldsymbol{\delta_{\widetilde{X}_t^l}}$$

to obtain a matrix P_{ϵ} ;

- instead of resampling we use P_{ϵ} to produce an ensemble transform; $X_t = P_{\epsilon} \tilde{X}_t$
- the mapping $\phi \mapsto \mathbf{P}_{\epsilon}$ can be differentiated so we can get end to end differentiable estimators.
- In analysing the consistency of the differentiable particle filter we can either compare with the solution of the unregularised OT problem,
- OR we can compare the solution of $OT_{\epsilon}(\alpha_N, \beta_N)$ with that of $OT_{\epsilon}(\alpha_N, \beta_N)$ where $\alpha = \lim_{N \to \infty} \alpha_N, \beta = \lim_N \beta_N$.

Stability of OT

This brings us to the following question

- Question: suppose $\alpha_n \to \alpha$ and $\beta_n \to \beta$ (say weakly);
- Does the solution of $OT(\alpha_n, \beta_n)$ converges in some sense to that of $OT(\alpha, \beta)$?
- In the realm of Brenier's theorem, we could talk about convergence of the transport maps.
- In classical Optimal Transport there is a classical, qualitative solution.

Stability of OT

Theorem (5.20 in Villani 2009)

Let \mathcal{X}, \mathcal{Y} be Polish spaces and let $c: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ be a a continuous, lower bounded cont function. Let $(\mu_k), (\nu_k)$ be sequences of probability measures on \mathcal{X}, \mathcal{Y} respectively, such that $\mu_k \to \mu$ and $\nu_k \to \nu$ weakly. For each k, let π_k be an optimal transference plan between μ_k and ν_k .

If for all $k \in \mathbb{N}$, $\int cd\pi_k < +\infty$, then up to extraction of a subsequence, π_k converges weakly to some c-cyclically monotone transference plan $\pi \in \mathcal{C}(\mu, \nu)$.

If moreover $\liminf_k \int c d\pi_k < \infty$, then the optimal transport cost between μ, ν is finite and π is an optimal transport plan.

Stability of OT

- If the optimal transport plan between μ and ν is unique then there is no need to extract a subsequence.
- If plan is given by map, maps converge in probability (Corollary 5.23 Villani 2009).
- Proof is based on compactness and characterization of optimal transport plans in terms of c-cyclical monotonicity: a set $\Gamma \subset X \times Y$ is called c-cyclically monotone if for all collections $(x_1, y_1), \ldots, (x_N, y_N) \subset \Gamma$ we have

$$\sum_{i=1}^{N} c(x_i, y_i) \leq \sum_{i=1}^{N} c(x_i, y_{i+1}), \quad y_{N+1} := y_1.$$

a transport plan is called c-cyclically monotone if its support is.

Quantitative Stability of OT

- Quantitative results have recently appeared in the literature, see Li and Nochetto 2021 and Mérigot, Delalande, and Chazal 2020.
- Li and Nochetto 2021 proves the following: suppose μ_h, ν_h are approximations of μ, ν respectively, $\gamma_h \in \arg\min \mathsf{OT}(\mu_h, \nu_h)$, and $T = \nabla \phi$ is the unique optimal transport map between μ, ν . Then

$$\left(\int_{X\times Y} |T(x)-y|^2 d\gamma_h(x,y)\right)^{1/2} \tag{5}$$

$$\leq 2\lambda^{1/2}\Delta_h^{1/2} \left[\mathbf{W}_2(\mu,\nu) + \Delta_h \right]^{1/2} + (\lambda \vee 1)\Delta_h, \tag{6}$$

where

$$\Delta_h := \mathbf{W}_2(\mu, \mu_h) + \mathbf{W}_2(\nu, \nu_h),$$

and λ is the Lipschitz constant of $\nabla \varphi$.

Proof essentially exploits convexity.

Quantitative Stability of OT

Mérigot, Delalande, and Chazal 2020 prove the following:

- let ρ, μ, ν be three probability measures and suppose T_{μ}, T_{ν} are Brenier maps sending ρ to μ, ν respectively.
- Then

$$\mathbf{W}_{2}(\mu,\nu) \leq \|T_{\mu} - T_{\nu}\|_{L^{2}(\rho)} \leq C\mathbf{W}_{\rho}(\mu,\nu)^{2/15},$$

for any $p \ge 1$, where C depends on the dimension and the sets X.Y.

- If T_{μ} is K-Lipschitz then the exponent can be improved to 1/2.
- They also show that the Monge embedding $\mu \mapsto T_{\mu}$ is in general not better than 1/2-Holder.

Stability of Regularised OT

- Until recently less was known on stability of regularised OT.
- The standard approach via compactness does not trivially extend.
- Also until recently, there was no equivalent of cyclical monotonicity to uniquely identify the optimal coupling.
- This was recently done in Ghosal, Nutz, and Bernton 2021 who proved the qualitative stability of Schödinger bridges (no compactness required).

Stability of Regularised OT

- For compact state spaces, Luise et al. 2019, prove stability of the potentials in total variation;
- $\Pi_{\epsilon}^{\mu,\nu}$ to $\overline{\mathsf{OT}_{\epsilon}(\mu,\nu)}$ can be written in the form $\Pi_{\epsilon}^{\mu,\nu}(\mathsf{d}x,\mathsf{d}y) = \exp(\varphi_{\epsilon}^{\mu,\nu}(x) + \psi_{\epsilon}^{\mu,\nu}(y) c(x,y)/\epsilon)\mu(\mathsf{d}x)\nu(\mathsf{d}y),$
- $\varphi_{\epsilon}^{\mu,\nu}, \psi_{\epsilon}^{\mu,\nu}$ are the potentials.
- Luise et al. 2019 prove that

$$\|\phi_{\epsilon}^{\mu,\nu} - \phi_{\epsilon}^{\mu',\nu'}\|_{\infty} \leq C(d,\epsilon,\mathsf{X},\mathsf{Y}) \left\{ \|\mu - \mu'\|_{\mathsf{TV}} + \|\nu - \nu'\|_{\mathsf{TV}} \right\}.$$

NOTE: TV is too strong to capture convergence of empirical measures.

• For smooth costs, $c \in C^{s+1}$, s > d/2, and ν_n an empirical version of ν they establish that

$$\|\varphi_{\epsilon}^{\mu,\nu}-\varphi_{\epsilon}^{\mu,\nu_n}\|_{\infty}\leq C(d,\epsilon,\mathsf{X},\mathsf{Y})\log(3/\tau)n^{-1/2},$$

w.prob $> 1 - \tau$.

 This is obtained by considering MMD type metrics which do capture convergence in distribution, but they require smoothness of the metric.

Stability of Regularised OT

- We are interested in the full coupling $\Pi_{\epsilon}^{\mu\nu}$ rather than just the potentials.
- There the sample complexity will necessarily depend on the dimension;
- Say μ_n , ν_n are empirical versions of μ , ν . Then trivially we have that

$$\begin{split} & \boldsymbol{\mathsf{W}}_{1}\left(\Pi_{\epsilon}^{\mu_{n},\nu_{n}},\Pi_{\epsilon}^{\mu,\nu}\right) \\ &= \sup\left\{\int\!f(x,y)\left[\Pi_{\epsilon}^{\mu_{n},\nu_{n}} - \Pi_{\epsilon}^{\mu,\nu}\right]\left(\mathsf{d}x,\mathsf{d}y\right): f \in \mathsf{Lip}\left(\mathsf{X}\times\mathsf{Y}\right)\right\} \\ &\geq \sup\left\{\int\!f(x)\left[\Pi_{\epsilon}^{\mu_{n},\nu_{n}} - \Pi_{\epsilon}^{\mu,\nu}\right]\left(\mathsf{d}x,\mathsf{d}y\right): f \in \mathsf{Lip}(\mathsf{X})\right\} \\ &=: \boldsymbol{\mathsf{W}}_{1}\left(\mu_{n},\mu\right), \end{split}$$

and we know this scales like $n^{1/d}$, see e.g. Fournier and Guillin 2015.

The Iterative Proportional Fitting Procedure (IPFP)

- Before stating our main results let us introduce the IPFP, also known as Sinkhorn's algorithm.
- Given two probability measures μ, ν and $\epsilon > 0$ the IPFP iteratively learns the potentials $\phi_{\epsilon}^{\mu,\nu}, \psi_{\epsilon}^{\mu,\nu}$; We simply write ϕ, ψ to ease notation.
- Initialise $\varphi^{(0)}$, $\psi^{(0)} \equiv 0$.
- Given $\varphi^{(t)}, \psi^{(t)}, \ t \geq 0$ set

$$\Rightarrow \varphi^{(t+1)}(x) := -\log \int \exp\{\psi^{(t)}(y) - \epsilon(x,y)/\epsilon\} \nu(dy)$$

$$\Rightarrow \psi^{(t+1)}(y) := -\log \int \exp\{\phi^{(t+1)}(x) - c(x,y)/\epsilon\} \mu(\mathrm{d}x)$$

 \Rightarrow For any $c \in \mathbb{R}$, $(\varphi^{(t)} - c, \psi^{(t)} + c)$ defines the same measure; we fix this choice following Carlier 2021, so that $\mu[\varphi^{(t+1)}] = 0$.

Main results

Theorem 1

Suppose that X,Y are compact metric spaces and $c \in Lip(X \times Y)$. For any $\pi_0, \widehat{\pi}_0 \in \mathscr{P}(X)$, $\pi_1, \widehat{\pi}_1 \in \mathscr{P}(Y)$ let $(\mathbb{P}^n)_{n \in \mathbb{N}}$ and $(\widehat{\mathbb{P}}^n)_{n \in \mathbb{N}}$ the IPFP sequence with marginals (π_0, π_1) respectively $(\widehat{\pi}_0, \widehat{\pi}_1)$. Then any $n \in \mathbb{N}$ we have

$$\mathbf{W}_{1}(\mathbb{P}^{n},\widehat{\mathbb{P}}^{n}) \leq C\left\{\mathbf{W}_{1}(\pi_{0},\widehat{\pi}_{0}) + \mathbf{W}_{1}(\pi_{1},\widehat{\pi}_{1})\right\},\tag{7}$$

with

$$C = e^{10\|c\|_{\infty}} \{ 1 + (2Lip(c) + 10)(diam(X) + diam(Y)) \}.$$
 (8)

Main results (ctd)

As an immediate consequence of Theorem 1 and the fact that the IPFP sequence converges, we obtain the quantitative stability of Schrödinger bridge.

Corollary 2

For any $\pi_0, \widehat{\pi}_0 \in \mathscr{P}(X)$, $\pi_1, \widehat{\pi}_1 \in \mathscr{P}(Y)$ let \mathbb{P}^* , respectively $\widehat{\mathbb{P}}^*$, be the Schrödinger bridge with marginals (π_0, π_1) , respectively $(\widehat{\pi}_0, \widehat{\pi}_1)$. Then we have

$$\mathbf{W}_{1}(\mathbb{P}^{*},\widehat{\mathbb{P}}^{*}) \leq C\left\{\mathbf{W}_{1}(\pi_{0},\widehat{\pi}_{0}) + \mathbf{W}_{1}(\pi_{1},\widehat{\pi}_{1})\right\},\tag{9}$$

with C as in Theorem 1.

Background on Hilbert projective metric I

Will now sketch the main idea for the Schrödinger bridge, rather than IPFP as it is a little clearer.

- In compact spaces we can employ the machinery of the Birkhoff-Hopf contraction theorem;
- suppose E is a real vector space, K is a cone, that is K is convex, $K \cap (-K) = \{0\}$ and $\lambda K \subset K$ for all $\lambda \geq 0$.
- K induces a partial ordering on E: that is we write $x \ge y$ if $x y \in K$;
- Let C be a part of the cone, that is for any $x,y \in C$ there exist $\alpha, \beta \geq 0$ such that $\alpha x y \in K$ and $\beta y x \in K$, C is convex and $\lambda C \subset C$ for all $\lambda > 0$.
- For any $x, y \in C$ we write

$$M(x,y) := \inf\{\beta \ge 0 : \beta y - x \in K\}$$
 (10)

$$m(x,y) := \sup\{\alpha \ge 0 : x - \alpha y \in K\}. \tag{11}$$

Background on Hilbert projective metric II

• The Hilbert metric is defined for any $x, y \in C$ as

$$d_H(x,y) = \log M(x,y)/m(x,y).$$

• It is a projective metric in the sense that it measures distances between rays $\{\lambda x : \lambda \ge 0\}$ rather than points.

We are now ready to state the Birkhoff contraction theorem.

Background on Hilbert projective metric III

Theorem (Birhoff Contraction Theorem)

Let $(V, \|\cdot\|)$, $(V', \|\cdot\|')$ be two normed real vector spaces, $K \subset V, K' \subset V'$ two cones and $C' \subset K', C \subset K$ two convex parts, and write d_H, d'_H for the Hilbert metric on C, C' respectively. Let $T: V \to V'$ be a linear mapping such that $T(C) \subset C'$. Then

$$\kappa(T) := \sup_{x,y \in \mathcal{C}} \frac{d'_H(T(x), T(y))}{d_H(x,y)} \le \tanh(\Delta(T)/4), \tag{12}$$

where the projective diameter $\Delta(T)$ of T is defined by

$$\Delta(T) := \sup \left\{ d_H(T(x), T(y)) : x, y \in C, \|x\| = \|y\| = 1 \right\}.$$

Since $\Delta(T)$ is finite $\kappa(T) < 1$.

Sketch of proof I

In our context

$$C = \mathscr{C}(X; (0, \infty)), \quad C' = \mathscr{C}(Y; (0, \infty)).$$

• In this setting

$$M(f,g) = \sup f/g, \quad m(f,g) = \inf f/g,$$

• so the Hilbert-Birkhoff metric measures the oscillations on the log-scale

$$d_H(f,q) = \|\log(f/q)\|_{\operatorname{osc}} := \sup \log(f/q) - \inf \log(f/q).$$

• Letting $\mu \in \mathscr{P}(X), \nu \in \mathscr{P}(Y)$ define two linear maps of interest through

$$(\mathcal{E}_{\mu}f)(y) := \int f(x)K(x,y)\mu(dx); \quad \mathcal{E}_{\mu} : C \to C'$$

$$(13)$$

$$(\mathcal{E}_{\nu}g)(x) := \int g(y)K(x,y)\nu(dy); \quad \mathcal{E}_{\nu} : C' \to C.$$

$$(14)$$

Sketch of proof II

- Let also $\mathscr{I}: f \mapsto f^{-1}$, where we overload the operator to act on both C and C'.
- As pointed out in Chen, Georgiou, and Pavon 2016 it is easy to show that \mathscr{I} is an isometry w.r.t. the Hilbert metric;
- Also we can bound the projective diameter of \mathcal{E}_{μ} , \mathcal{E}_{ν} .
- In this notation the IPFP iteration that takes $e^{\varphi^{(t)}} \to e^{\varphi^{(t+1)}}$ can be written as

$$\mathscr{S}_{\mu,\nu} \exp[\boldsymbol{\varphi}^{(t)}] := \left[\mathscr{I} \circ \mathcal{E}_{\nu} \circ \mathscr{I} \circ \mathcal{E}_{\mu} \right] [\exp \boldsymbol{\varphi}^{(t)}],$$
 (15)

$$\mathscr{S}_{\mu,\nu}^{\dagger} \exp[\psi^{(t)}] := \left[\mathscr{I} \circ \mathcal{E}_{\mu} \circ \mathscr{I} \circ \mathcal{E}_{\nu} \right] \exp[\psi^{(t)}]. \tag{16}$$

- The Birkhoff contraction theorem show that both of these maps are contractions in the Hilbert metric.
- The pairs of potentials $(\varphi_{\epsilon}, \psi_{\epsilon}), (\widehat{\varphi}_{\epsilon}, \widehat{\psi}_{\epsilon})$ defining the Schrödinger bridges for $(\mu, \nu), (\widehat{\mu}, \widehat{\nu})$ respectively will then be fixed points of $(\mathscr{S}_{\mu,\nu}, \mathscr{S}^{\dagger}_{\mu,\nu})$ and $(\mathscr{S}_{\widehat{\mu}\widehat{\nu}}, \mathscr{S}^{\dagger}_{\widehat{u}\widehat{\nu}})$ resp.

Sketch of proof:main ideas I

For $h \in Lip(X \times Y)$, writing

$$F_{\epsilon}(x,y) = \exp\{\varphi_{\epsilon}(x) + \psi_{\epsilon}(y)\}, \quad \widehat{F}_{\epsilon}(x,y) = \exp\{\widehat{\varphi}_{\epsilon}(x) + \widehat{\psi}_{\epsilon}(y)\}$$

we want to write

$$\begin{split} &\int h(x,y) \left[\Pi_{\epsilon}^{\mu\nu} (\mathrm{d}x,\mathrm{d}y) - \Pi_{\epsilon}^{\widehat{\mu}\widehat{\nu}} (\mathrm{d}x,\mathrm{d}y) \right] \\ &= \int h(x,y) F_{\epsilon}(x,y) K_{\epsilon}(x,y) \mu(\mathrm{d}x) \nu(\mathrm{d}y) s - \int h(x,y) \widehat{F}_{\epsilon}(x,y) K_{\epsilon}(x,y) \widehat{\mu}(\mathrm{d}x) \widehat{\nu}(\mathrm{d}y) \\ &= \int h \left[F_{\epsilon} - \widehat{F}_{\epsilon} \right] K_{\epsilon}(x,y) \mu(\mathrm{d}x) \nu(\mathrm{d}y) + \int h \widehat{F}_{\epsilon} K_{\epsilon}(x,y) \left[\mu \otimes \nu - \widehat{\mu} \otimes \widehat{\nu} \right]. \end{split}$$

- The second term looks like it can be controlled by $\mathbf{W}_1(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu})$.
- Issue is that in general $\widehat{\varphi}_{\epsilon}, \widehat{\psi}_{\epsilon}$ are only defined on the supports of $\widehat{\mu}, \widehat{\nu}$.
- How can \hat{F}_{ϵ} be Lipschitz?

Sketch of proof:main ideas II

• Here we use the fact that $\widehat{\varphi}_{\epsilon}, \widehat{\psi}_{\epsilon}$ are fixed points of the Sinkhorn iteration, that is

$$\widehat{\varphi}_{\epsilon}(x) = -\log \int \exp\{\psi_{\epsilon}(y) - c(x,y)/\epsilon\}\widehat{\nu}(dy)$$
 (17)

$$\widehat{\psi}_{\epsilon}(x) = -\log \int \exp\{\varphi_{\epsilon}(x) - c(x,y)/\epsilon\}\widehat{\mu}(dx).$$
 (18)

- Using the above we can extend $\widehat{\varphi}_{\epsilon}, \widehat{\psi}_{\epsilon}$ to Lipschitz continuous functions on all of X,Y (compactness is used heavily here), see also Luise et al. 2019,
- So indeed

$$\begin{split} &\int h(x,y) \left[\Pi_{\epsilon}^{\mu,\nu}(\mathrm{d}x,\mathrm{d}y) - \Pi_{\epsilon}^{\widehat{\mu},\widehat{\nu}}(\mathrm{d}x,\mathrm{d}y) \right] \\ &\leq \int h \left[F_{\epsilon} - \widehat{F}_{\epsilon} \right] K_{\epsilon}(x,y) \mu(\mathrm{d}x) \nu(\mathrm{d}y) + \mathbf{W}_{1}(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu}). \end{split}$$

Sketch of proof:main ideas I

- Next we use the fact that $F_{\epsilon}, \widehat{F}_{\epsilon}$ are fixed points of Sinkhorn iterations to control $F_{\epsilon} \widehat{F}_{\epsilon}$.
- Idea here is

$$\begin{split} d_{H}(F_{\epsilon},\widehat{F}_{\epsilon}) &= d_{H}\left(\mathscr{S}_{\mu,\nu}F_{\epsilon},\mathscr{S}_{\widehat{\mu},\widehat{\nu}}\widehat{F}_{\epsilon}\right) \\ &= \underbrace{d_{H}\left(\mathscr{S}_{\mu,\nu}F_{\epsilon},\mathscr{S}_{\mu,\nu}\widehat{F}_{\epsilon}\right)}_{\text{contraction of Sinkhorn}} + \underbrace{d_{H}\left(\mathscr{S}_{\mu,\nu}\widehat{F}_{\epsilon},\mathscr{S}_{\widehat{\mu},\widehat{\nu}}\widehat{F}_{\epsilon}\right)}_{\leq \mathbf{W}_{1}(\mu\otimes\nu,\widehat{\mu}\otimes\widehat{\nu})} \\ &= \kappa d_{H}\left(F_{\epsilon},\widehat{F}_{\epsilon}\right) + C\mathbf{W}_{1}\left(\mu\otimes\nu,\widehat{\mu}\otimes\widehat{\nu}\right) \\ d_{H}(F_{\epsilon},\widehat{F}_{\epsilon}) &\leq \frac{C}{1-\kappa}\mathbf{W}_{1}(\mu\otimes\nu,\widehat{\mu}\otimes\widehat{\nu}). \end{split}$$

• Final issue is that $d_H(F_{\epsilon}, \widehat{F}_{\epsilon})$ only controls the oscillations $\|\log F_{\epsilon} - \log \widehat{F}_{\epsilon}\|_{\mathrm{osc}}$ rather than the supremum;

Sketch of proof:main ideas II

To bypass this issue notice that

$$\int \frac{\widehat{F}_{\epsilon}}{F_{\epsilon}} F_{\epsilon} K_{\epsilon} \mu \otimes \nu = \int \frac{\widehat{F}_{\epsilon}}{F_{\epsilon}} F_{\epsilon} K_{\epsilon} \widehat{\mu} \otimes \widehat{\nu} + C \mathbf{W}_{1} (\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu}) \qquad (19)$$

$$= \int \widehat{F}_{\epsilon} K_{\epsilon} \widehat{\mu} \otimes \widehat{\nu} + C \mathbf{W}_{1} (\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu}) \qquad (20)$$

$$= 1 + C \mathbf{W}_{1} (\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu}) \qquad (21)$$

$$(22)$$

- Recall $F_{\epsilon}K_{\epsilon}\mu\otimes\nu$ is a probability measure;
- thus the random variable $\widehat{F}_{\epsilon}/F_{\epsilon}(X,Y)$ with $(X,Y) \sim F_{\epsilon}K_{\epsilon}\mu \otimes \nu$, must either be a.s. equal to $1 + C\mathbf{W}_{1}(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu})$, or must take values both above and below $1 + C\mathbf{W}_{1}(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu})$.

Sketch of proof:main ideas III

• In either case using continuity of $\widehat{F}_{\epsilon}/F_{\epsilon}$ we can find x_0, y_0 such that

$$\log \frac{\widehat{F}_{\epsilon}(x_0, y_0)}{F_{\epsilon}(x_0, y_0)} = \log (1 + C\mathbf{W}_1(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu}))$$

and thus

$$\begin{split} \sup_{x,y} \left[\log \widehat{F}_{\epsilon}(x,y) - \log F_{\epsilon}(x,y) \right] &\leq C \mathbf{W}_{1} \left(\mu \otimes \nu, \widehat{\mu} \otimes \widehat{\nu} \right) \\ &+ \| \log \widehat{F}_{\epsilon}(x,y) - \log F_{\epsilon}(x,y) \|_{\text{osc}}. \end{split}$$

• We can similarly control $F_{\epsilon}/\widehat{F}_{\epsilon}$.

Recent results by Eckstein and Nutz 2021

- A couple of months after our preprint appeared online,
 Eckstein and Nutz 2021 posted a very nice paper with some quantitative results for Schrödinger bridge.
- They treat the more general, non-compact case and prove stability in the Wasserstein metric.
- They only treat the Schrödinger bridge, that is the limit of the IPFP algorith.
- They prove that the Schrödinger bridge is Hölder continuous, rather than Lipschitz, in the marginals, using very interesting probabilistic techniques involving some approximate couplings.

An incomplete list of references I

- Jason Altschuler, Jonathan Weed, and Philippe Rigollet. "Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration". In: Advances in Neural Information Processing Systems. 2017.
- Yann Brenier. "Polar decomposition and increasing rearrangement of vector-fields". In: COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE 305.19 (1987), pp. 805–808.
- Guillaume Carlier. "On the linear convergence of the multi-marginal Sinkhorn algorithm". In: *HAL preprint hal-03176512* (2021).
- Yongxin Chen, Tryphon Georgiou, and Michele Pavon. "Entropic and displacement interpolation: a computational approach using the Hilbert metric". In: SIAM Journal on Applied Mathematics 76.6 (2016), pp. 2375–2396.

An incomplete list of references II

- Adrien Corenflos, James Thornton, George Deligiannidis, and Arnaud Doucet. "Differentiable particle filtering via entropy-regularized optimal transport". In: *International Conference on Machine Learning*. PMLR. 2021, pp. 2100–2111.
- Marco Cuturi. "Sinkhorn distances: Lightspeed computation of optimal transport". In: Advances in Neural Information Processing Systems. 2013.
- Stephan Eckstein and Marcel Nutz. "Quantitative Stability of Regularized Optimal Transport". In: arXiv preprint arXiv:2110.06798 (2021).
- Nicolas Fournier and Arnaud Guillin. "On the rate of convergence in Wasserstein distance of the empirical measure". In: *Probability Theory and Related Fields* 162.3 (2015), pp. 707–738.

An incomplete list of references III

- Promit Ghosal, Marcel Nutz, and Espen Bernton. "Stability of Entropic Optimal Transport and Schrödinger Bridges". In: arXiv preprint arXiv:2106.03670 (2021).
- Wenbo Li and Ricardo H Nochetto. "Quantitative stability and error estimates for optimal transport plans". In: IMA Journal of Numerical Analysis 41 (3 2021), pp. 1941–1965.
- Giulia Luise, Saverio Salzo, Massimiliano Pontil, and Carlo Ciliberto. "Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm". In: Advances in Neural Information Processing Systems. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett. Vol. 32. Curran Associates, Inc., 2019. URL: https://proceedings.neurips.cc/paper/2019/file/9f96f36b7aae3b1ff847c26ac94c604e-Paper.pdf.

An incomplete list of references IV

- Quentin Mérigot, Alex Delalande, and Frédéric Chazal. "Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein space". In: International Conference on Artificial Intelligence and Statistics. PMLR. 2020, pp. 3186–3196.
- Quentin Mérigot and Edouard Oudet. "Discrete optimal transport: complexity, geometry and applications". In: Discrete & Computational Geometry 55.2 (2016), pp. 263–283.
- Cédric Villani. *Optimal transport: old and new*. Vol. 338. Springer, 2009.