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Optimal Transport

• Coupling: A coupling of two probability measures μ, ν, on
spaces X,Y ⊂ Rd respectively, a coupling is a joint distribution
π, with μ, ν as its marginals,∫
f(x)π(dx,dy) =

∫
f(x)μ(dx),

∫
g(y)π(dx,dy) =

∫
g(y)ν(dy).

• We write C(μ, ν) for the collection of couplings of μ, ν.
• Optimal Transport: the basic problem of Optimal Transport is
to find a coupling π ∈ C(μ, ν) that minimizes

inf
π∈C(μ,ν)

∫
π(dx,dy)c(x, y); OT(μ, ν)

where c : X× Y→ R is any cost function.
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Optimal Transport

inf
π∈C(μ,ν)

∫
π(dx,dy)c(x, y);

• this formulation goes back to Kantorovich;

• the earlier formulation due Monge focuses on mappings
y = T(x), that is π(dx,dy) = μ(dx)δT(x)(dy) and results in
non-convex optimisation.

• Brenier 1987: Assuming c(x, y) = |x− y|2, μ, ν have finite
second moments and μ gives measure 0 to all sets of
Hausdorff dimension ≤ d− 1, there exists a convex mapping
ϕ : X 7→ Y such that optimal coupling takes the form of an
optimal transport map μ(dx)δ∇ϕ(x)(dy)

• When μ is discrete, π is a proper coupling.

• For discrete measures with N atoms, worst case computational
cost is O(N5/2) for assignment problem, using Hungarian
(auction) algorithm, see e.g. Mérigot and Oudet 2016.

• This can be improved by considering the entropy regularised
version.
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Entropy Regularised Optimal Transport

• Cuturi 2013 realised that the entropy regularised problem

inf
π∈C(μ,ν)

∫
π(dx,dy)‖x− y‖2 + ϵKL (π|μ⊗ ν) ; OTϵ(μ, ν)

can be solved efficiently using the Iterative Proportional Fitting
Procedure (IPFP), aka Sinkhorn’s algorithm.

• the computational cost is roughly O(N2), see Altschuler, Weed,
and Rigollet 2017.

• Equivalent to (static) Schrödinger bridge problem

inf
π∈C(μ,ν)

KL (π|Γϵ) , Γϵ(dx,dy) = exp[−c(x, y)/ϵ]μ(dx)ν(dy).
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Recent applications of Schrödinger bridges

• Idea is to use solution π∗
ϵ of OTϵ and treat it as an

approximation to the solution π∗ of OT.
• A lot of recent progress quantifying π∗

ϵ → π∗.

• In recent applications, the Schrödinger bridge is used for its
own benefits rather than as a computationally feasible
approximation to the standard optimal transport problem.
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Differentiable Particle Filtering
• Corenflos et al. 2021 used the solution to Schrödinger bridge
to build a particle filtering scheme.

• Suppose π̂t = N−1∑N
j=1 δXtj is particle approximation of πt;

• Let

X̃t+1j ∼qt+1(·|Xtj ), j ∈ [N]; (1)

ωt+1j =
fθ(X̃

t+1
j |Xtj )gθ(Yt+1|X̃

t+1
j )

qt+1(X̃
t+1
j |Xtj )

(2)

P(It+1j = k) =
ωt+1k∑N
j=1ω

t+1
j

, (3)

Xt+1j
iid∼
N∑
k=1

ωt+1k∑N
j=1ω

t+1
j

δ
X̃t+1
k

(4)

• A standard issue is that the resampling step means any
estimators produced are not differentiable wrt θ.

• There are approximate ways to bypass this.
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Differentiable Particle Filtering

• Corenflos et al. 2021 solves the ϵ-entropy regularised OT
problem between

α
(t)
N =
1

N

N∑
i=1

δ
X̃it
, β

(t)
N =

∑
i

witδX̃it

to obtain a matrix Pϵ;
• instead of resampling we use Pϵ to produce an ensemble
transform; Xt = PϵX̃t

• the mapping ϕ 7→ Pϵ can be differentiated so we can get end
to end differentiable estimators.

• In analysing the consistency of the differentiable particle filter
we can either compare with the solution of the unregularised
OT problem,

• OR we can compare the solution of OTϵ(αN, βN) with that of
OTϵ(αN, βN) where α = limN→∞ αN, β = limN βN.
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Stability of OT

This brings us to the following question

• Question: suppose αn → α and βn → β (say weakly);

• Does the solution of OT(αn, βn) converges in some sense to
that of OT(α, β)?

• In the realm of Brenier’s theorem, we could talk about
convergence of the transport maps.

• In classical Optimal Transport there is a classical, qualitative
solution.
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Stability of OT

Theorem ( 5.20 in Villani 2009)

Let X ,Y be Polish spaces and let c : X × Y → R be a a
continuous, lower bounded cont function. Let (μk), (νk) be
sequences of probability measures on X ,Y respectively, such that
μk → μ and νk → ν weakly. For each k, let πk be an optimal
transference plan between μk and νk.
If for all k ∈ N,

∫
cdπk <+∞, then up to extraction of a

subsequence, πk converges weakly to some c-cyclically monotone
transference plan π ∈ C(μ, ν).
If moreover lim infk

∫
cdπk <∞, then the optimal transport cost

between μ, ν is finite and π is an optimal transport plan.
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Stability of OT

• If the optimal transport plan between μ and ν is unique then
there is no need to extract a subsequence.

• If plan is given by map, maps converge in probability
(Corollary 5.23 Villani 2009).

• Proof is based on compactness and characterization of optimal
transport plans in terms of c-cyclical monotonicity: a set
Γ ⊂ X× Y is called c-cyclically monotone if for all collections
(x1, y1), . . . , (xN, yN) ⊂ Γ we have

N∑
i=1

c(xi, yi) ≤
N∑
i=1

c(xi, yi+1), yN+1 := y1.

a transport plan is called c-cyclically monotone if its support is.
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Quantitative Stability of OT

• Quantitative results have recently appeared in the literature,
see Li and Nochetto 2021 and Mérigot, Delalande, and
Chazal 2020.

• Li and Nochetto 2021 proves the following: suppose μh, νh are
approximations of μ, ν respectively, γh ∈ arg minOT(μh, νh), and
T = ∇ϕ is the unique optimal transport map between μ, ν.
Then (∫

X×Y
|T(x)− y|2dγh(x, y)

)1/2
(5)

≤ 2λ1/2∆1/2h [W2(μ, ν) + ∆h]
1/2

+ (λ ∨ 1)∆h, (6)

where
∆h := W2(μ, μh) +W2(ν, νh),

and λ is the Lipschitz constant of ∇ϕ.
• Proof essentially exploits convexity.
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Quantitative Stability of OT

Mérigot, Delalande, and Chazal 2020 prove the following:

• let ρ, μ, ν be three probability measures and suppose Tμ,Tν are
Brenier maps sending ρ to μ, ν respectively.

• Then
W2(μ, ν) ≤ ‖Tμ −Tν‖L2(ρ) ≤ CWp(μ, ν)2/15,

for any p ≥ 1, where C depends on the dimension and the
sets X,Y.

• If Tμ is K-Lipschitz then the exponent can be improved to
1/2.

• They also show that the Monge embedding μ 7→ Tμ is in
general not better than 1/2-Holder.
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Stability of Regularised OT

• Until recently less was known on stability of regularised OT.

• The standard approach via compactness does not trivially
extend.

• Also until recently, there was no equivalent of cyclical
monotonicity to uniquely identify the optimal coupling.

• This was recently done in Ghosal, Nutz, and Bernton 2021
who proved the qualitative stability of Schödinger bridges (no
compactness required).
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Stability of Regularised OT
• For compact state spaces, Luise et al. 2019, prove stability of
the potentials in total variation;

• Π
μ,ν
ϵ to OTϵ(μ, ν) can be written in the form

Π
μ,ν
ϵ (dx,dy) = exp(ϕμ,νϵ (x) +ψμ,νϵ (y)− c(x, y)/ϵ)μ(dx)ν(dy),

• ϕμ,νϵ , ψ
μ,ν
ϵ are the potentials.

• Luise et al. 2019 prove that

‖ϕμ,νϵ − ϕμ
′ ,ν′

ϵ ‖∞ ≤ C(d, ϵ,X,Y) {‖μ− μ′‖TV + ‖ν− ν′‖TV} .

NOTE: TV is too strong to capture convergence of empirical
measures.

• For smooth costs, c ∈ Cs+1, s >d/2, and νn an empirical version
of ν they establish that

‖ϕμ,νϵ − ϕμ,νnϵ ‖∞ ≤ C(d, ϵ,X,Y) log(3/τ)n−1/2,

w.prob >1− τ.
• This is obtained by considering MMD type metrics which do
capture convergence in distribution, but they require
smoothness of the metric.
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Stability of Regularised OT

• We are interested in the full coupling Π
μ,ν
ϵ rather than just the

potentials.

• There the sample complexity will necessarily depend on the
dimension;

• Say μn, νn are empirical versions of μ, ν. Then trivially we have
that

W1
(
Π
μn ,νn
ϵ ,Πμ,νϵ

)
= sup

{∫
f(x, y)

[
Π
μn ,νn
ϵ − Π

μ,ν
ϵ

]
(dx,dy) : f ∈ Lip (X× Y)

}
≥ sup

{∫
f(x)

[
Π
μn ,νn
ϵ − Π

μ,ν
ϵ

]
(dx,dy) : f ∈ Lip(X)

}
=: W1 (μn, μ) ,

and we know this scales like n1/d, see e.g. Fournier and Guillin
2015.
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The Iterative Proportional Fitting Procedure (IPFP)

• Before stating our main results let us introduce the IPFP, also
known as Sinkhorn’s algorithm.

• Given two probability measures μ, ν and ϵ >0 the IPFP
iteratively learns the potentials ϕμ,νϵ , ψ

μ,ν
ϵ ;

We simply write ϕ,ψ to ease notation.

• Initialise ϕ(0), ψ(0) ≡ 0.
• Given ϕ(t), ψ(t), t ≥ 0 set

⇒ ϕ(t+1)(x) := − log

∫
exp{ψ(t)(y)− c(x, y)/ϵ}ν(dy)

⇒ ψ(t+1)(y) := − log

∫
exp{ϕ(t+1)(x)− c(x, y)/ϵ}μ(dx)

⇒ For any c ∈ R, (ϕ(t) − c, ψ(t) + c) defines the same measure;
we fix this choice following Carlier 2021, so that
μ[ϕ(t+1)] = 0.
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Main results

Theorem 1

Suppose that X,Y are compact metric spaces and c ∈ Lip(X× Y).
For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let (Pn)n∈N and (P̂n)n∈N
the IPFP sequence with marginals (π0, π1) respectively (π̂0, π̂1).
Then any n ∈ N we have

W1(Pn, P̂n) ≤ C {W1(π0, π̂0) +W1(π1, π̂1)} , (7)

with

C = e10∥c∥∞{1+ (2Lip(c) + 10)(diam(X) + diam(Y))}. (8)
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Main results (ctd)

As an immediate consequence of Theorem 1 and the fact that
the IPFP sequence converges, we obtain the quantitative stability
of Schrödinger bridge.

Corollary 2

For any π0, π̂0 ∈ P(X), π1, π̂1 ∈ P(Y) let P*, respectively P̂*, be
the Schrödinger bridge with marginals (π0, π1), respectively
(π̂0, π̂1). Then we have

W1(P*, P̂*) ≤ C {W1(π0, π̂0) +W1(π1, π̂1)} , (9)

with C as in Theorem 1.
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Background on Hilbert projective metric I

Will now sketch the main idea for the Schrödinger bridge, rather
than IPFP as it is a little clearer.

• In compact spaces we can employ the machinery of the
Birkhoff-Hopf contraction theorem;

• suppose E is a real vector space, K is a cone, that is K is
convex, K ∩ (−K) = {0} and λK ⊂ K for all λ ≥ 0.

• K induces a partial ordering on E: that is we write x ≥ y if
x− y ∈ K;

• Let C be a part of the cone, that is for any x, y ∈ C there
exist α, β ≥ 0 such that αx− y ∈ K and βy− x ∈ K, C is convex
and λC ⊂ C for all λ >0.

• For any x, y ∈ C we write

M(x, y) := inf{β ≥ 0 : βy− x ∈ K} (10)

m(x, y) := sup{α ≥ 0 : x− αy ∈ K}. (11)
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Background on Hilbert projective metric II

• The Hilbert metric is defined for any x, y ∈ C as

dH(x, y) = logM(x, y)/m(x, y).

• It is a projective metric in the sense that it measures distances
between rays {λx : λ ≥ 0} rather than points.

We are now ready to state the Birkhoff contraction theorem.
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Background on Hilbert projective metric III

Theorem (Birhoff Contraction Theorem)

Let (V, ‖ · ‖), (V′, ‖ · ‖′) be two normed real vector spaces,
K ⊂ V,K′ ⊂ V′ two cones and C′ ⊂ K′,C ⊂ K two convex parts,
and write dH,d

′
H for the Hilbert metric on C,C

′ respectively.
Let T : V→ V′ be a linear mapping such that T(C) ⊂ C′. Then

κ(T) := sup
x,y∈C

d′H (T(x),T(y))

dH(x, y)
≤ tanh(∆(T)/4), (12)

where the projective diameter ∆(T) of T is defined by

∆(T) := sup {dH (T(x),T(y)) : x, y ∈ C, ‖x‖ = ‖y‖ = 1} .

Since ∆(T) is finite κ(T) <1.
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Sketch of proof I

• In our context

C = C (X; (0,∞)), C′ = C (Y; (0,∞)).

• In this setting

M(f,g) = sup f/g, m(f,g) = inf f/g,

• so the Hilbert-Birkhoff metric measures the oscillations on the
log-scale

dH(f,g) = ‖ log(f/g)‖osc := sup log(f/g)− inf log(f/g).

• Letting μ ∈ P(X), ν ∈ P(Y) define two linear maps of interest
through

(
Eμ f

)
(y) :=

∫
f(x)K(x, y)μ(dx); Eμ : C→ C′ (13)

(Eν g) (x) :=
∫
g(y)K(x, y)ν(dy); Eν : C′ → C. (14)
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Sketch of proof II

• Let also I : f 7→ f−1, where we overload the operator to act
on both C and C′.

• As pointed out in Chen, Georgiou, and Pavon 2016 it is easy
to show that I is an isometry w.r.t. the Hilbert metric;

• Also we can bound the projective diameter of Eμ, Eν.

• In this notation the IPFP iteration that takes eϕ
(t) → eϕ(t+1) can

be written as

Sμ,ν exp[ϕ
(t)] :=

[
I ◦ Eν ◦ I ◦ Eμ

]
[expϕ(t)], (15)

S †
μ,ν exp[ψ

(t)] :=
[
I ◦ Eμ ◦ I ◦ Eν

]
exp[ψ(t)]. (16)

• The Birkhoff contraction theorem show that both of these
maps are contractions in the Hilbert metric.

• The pairs of potentials (ϕϵ, ψϵ), (ϕ̂ϵ, ψ̂ϵ) defining the
Schrödinger bridges for (μ, ν), (μ̂, ν̂) respectively will then be

fixed points of (Sμ,ν,S
†
μ,ν) and (Sμ̂,̂ν,S

†
μ̂,̂ν) resp.
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Sketch of proof:main ideas I

For h ∈ Lip(X× Y), writing

Fϵ(x, y) = exp{ϕϵ(x) +ψϵ(y)}, F̂ϵ(x, y) = exp{ϕ̂ϵ(x) + ψ̂ϵ(y)}

we want to write∫
h(x, y)

[
Π
μ,ν
ϵ (dx,dy)− Π

μ̂,̂ν
ϵ (dx,dy)

]
=

∫
h(x, y)Fϵ(x, y)Kϵ(x, y)μ(dx)ν(dy)s−

∫
h(x, y)F̂ϵ(x, y)Kϵ(x, y)μ̂(dx)̂ν(dy)

=

∫
h
[
Fϵ − F̂ϵ

]
Kϵ(x, y)μ(dx)ν(dy) +

∫
h F̂ϵKϵ(x, y) [μ⊗ ν− μ̂⊗ ν̂] .

• The second term looks like it can be controlled by
W1(μ⊗ ν, μ̂⊗ ν̂).

• Issue is that in general ϕ̂ϵ, ψ̂ϵ are only defined on the supports
of μ̂, ν̂.

• How can F̂ϵ be Lipschitz?
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Sketch of proof:main ideas II

• Here we use the fact that ϕ̂ϵ, ψ̂ϵ are fixed points of the
Sinkhorn iteration, that is

ϕ̂ϵ(x) = − log

∫
exp{ψϵ(y)− c(x, y)/ϵ}ν̂(dy) (17)

ψ̂ϵ(x) = − log

∫
exp{ϕϵ(x)− c(x, y)/ϵ}μ̂(dx). (18)

• Using the above we can extend ϕ̂ϵ, ψ̂ϵ to Lipschitz continuous
functions on all of X,Y (compactness is used heavily here), see
also Luise et al. 2019,

• So indeed∫
h(x, y)

[
Π
μ,ν
ϵ (dx,dy)− Π

μ̂,̂ν
ϵ (dx,dy)

]
≤

∫
h
[
Fϵ − F̂ϵ

]
Kϵ(x, y)μ(dx)ν(dy) +W1(μ⊗ ν, μ̂⊗ ν̂).
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Sketch of proof:main ideas I

• Next we use the fact that Fϵ, F̂ϵ are fixed points of Sinkhorn

iterations to control Fϵ − F̂ϵ.
• Idea here is

dH(Fϵ, F̂ϵ) = dH

(
Sμ,ν Fϵ,Sμ̂,̂ν F̂ϵ

)
= dH

(
Sμ,ν Fϵ,Sμ,ν F̂ϵ

)
︸ ︷︷ ︸
contraction of Sinkhorn

+dH

(
Sμ,ν F̂ϵ,Sμ̂,̂ν F̂ϵ

)
︸ ︷︷ ︸

≤W1(μ⊗ν,̂μ⊗ν̂)

= κdH

(
Fϵ, F̂ϵ

)
+ CW1(μ⊗ ν, μ̂⊗ ν̂)

dH(Fϵ, F̂ϵ) ≤
C

1− κ
W1(μ⊗ ν, μ̂⊗ ν̂).

• Final issue is that dH(Fϵ, F̂ϵ) only controls the oscillations

‖ logFϵ − log F̂ϵ‖osc rather than the supremum;
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Sketch of proof:main ideas II

• To bypass this issue notice that∫
F̂ϵ
Fϵ
FϵKϵμ⊗ ν =

∫
F̂ϵ
Fϵ
FϵKϵμ̂⊗ ν̂+ CW1(μ⊗ ν, μ̂⊗ ν̂) (19)

=

∫
F̂ϵKϵμ̂⊗ ν̂+ CW1(μ⊗ ν, μ̂⊗ ν̂) (20)

= 1+ CW1(μ⊗ ν, μ̂⊗ ν̂) (21)

(22)

• Recall FϵKϵμ⊗ ν is a probability measure;

• thus the random variable F̂ϵ/Fϵ(X,Y) with (X,Y) ∼ FϵKϵμ⊗ ν,
must either be a.s. equal to 1+ CW1(μ⊗ ν, μ̂⊗ ν̂), or must
take values both above and below 1+ CW1(μ⊗ ν, μ̂⊗ ν̂).
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Sketch of proof:main ideas III

• In either case using continuity of F̂ϵ/Fϵ we can find x0, y0 such
that

log
F̂ϵ(x0, y0)

Fϵ(x0, y0)
= log (1+ CW1(μ⊗ ν, μ̂⊗ ν̂))

and thus

sup
x,y

[
log F̂ϵ(x, y)− logFϵ(x, y)

]
≤ CW1 (μ⊗ ν, μ̂⊗ ν̂)

+ ‖ log F̂ϵ(x, y)− logFϵ(x, y)‖osc.

• We can similarly control Fϵ/F̂ϵ.
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Recent results by Eckstein and Nutz 2021

• A couple of months after our preprint appeared online,
Eckstein and Nutz 2021 posted a very nice paper with some
quantitative results for Schrödinger bridge.

• They treat the more general, non-compact case and prove
stability in the Wasserstein metric.

• They only treat the Schrödinger bridge, that is the limit of the
IPFP algorith.

• They prove that the Schrödinger bridge is Hölder continuous,
rather than Lipschitz, in the marginals, using very interesting
probabilistic techniques involving some approximate couplings.
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