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Optimal Transport

® Coupling: A coupling of two probability measures u,», on
spaces X,Y C RY respectively, a coupling is a joint distribution
m, with u,v as its marginals,

/f() m(dx, dy) = /f (dx), /g(y m(dx, dy) = /g(y v(dy).

® We write C(u,v) for the collection of couplings of u,v.

® Optimal Transport: the basic problem of Optimal Transport is
to find a coupling 1 € C(u,v) that minimizes

inf /7T(dX, dy)c(x,y); OT(u,v)

TeC(uy)

where ¢: X x Y — R is any cost function.
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Optimal Transport

inf 1 (dx, dy)c(x,y);

TeC(uUy)
® this formulation goes back to Kantorovich;

® the earlier formulation due Monge focuses on mappings
y =T(x), that is (dx,dy) = u(dx)87(x)(dy) and results in
non-convex optimisation.

® Brenier 1987: Assuming c(x,y) = |x —y|?, uv have finite
second moments and u gives measure O to all sets of
Hausdorff dimension < d — I, there exists a convex mapping
@ : X — Y such that optimal coupling takes the form of an
optimal transport map u(dx)Sve(x) (dy)

® When u is discrete, 7 is a proper coupling.

® For discrete measures with N atoms, worst case computational
cost is O(N>?) for assignment problem, using Hungarian
(auction) algorithm, see e.g. Mérigot and Oudet 201 6.

® This can be improved by considering the entropy regularised
version.



Entropy Regularised Optimal Transport

® Cuturi 2013 realised that the entropy regularised problem

i /Tr(dx,dy)||x Y|’ +eKL(mu®v);  OTe(uv)
TeC(uy)
can be solved efficiently using the Iterative Proportional Fitting

Procedure (IPFP), aka Sinkhorn's algorithm.

® the computational cost is roughly O(Nz), see Altschuler, Weed,
and Rigollet 2017.

® Equivalent to (static) Schrédinger bridge problem

inf  KL(m|l¢), Te(dx, dy) = exp[—c(x,y)/elu(dx)v(dy).
TeC(uv)
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Recent applications of Schrodinger bridges

® |dea is to use solution w} of OT. and treat it as an
approximation to the solution 7* of OT.

® A lot of recent progress quantifying m; — m*.

® In recent applications, the Schrédinger bridge is used for its
own benefits rather than as a computationally feasible
approximation to the standard optimal transport problem.
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Differentiable Particle Filtering

® Corenflos et al. 2021 used the solution to Schrédinger bridge

to build a particle filtering scheme.
® Suppose ;= N~! Zjl\il 5ng is particle approximation of ;
® et
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® A standard issue is that the resampling step means any
estimators produced are not differentiable wrt &.

® There are approximate ways to bypass this.
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Differentiable Particle Filtering

Corenflos et al. 2021 solves the e-entropy regularised OT
problem between

N
o _ | B ) _ s
ay _N;SXV By —Z:WZISX;

to obtain a matrix P.;
instead of resampling we use P. to produce an ensemble
transform; X; = P.X;

the mapping ¢ — P, can be differentiated so we can get end
to end differentiable estimators.

In analysing the consistency of the differentiable particle filter
we can either compare with the solution of the unregularised
OT problem,

OR we can compare the solution of OT.(on, By) with that of
OTe(O(N, ,BN) where a = |im/\/_)oo O’N,ﬁ = |im/\/ﬁ/\/.



Stability of OT

This brings us to the following question

Question: suppose an, — a and B, — B (say weakly);

Does the solution of OT(apn, Bn) converges in some sense to

that of OT(a,B)?

In the realm of Brenier's theorem, we could talk about
convergence of the transport maps.

In classical Optimal Transport there is a classical, qualitative
solution.
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Stability of OT

Theorem ( 5.20 in Villani 2009)

Let X,Y be Polish spaces and let c: X xY — R be a a
continuous, lower bounded cont function. Let (u), (vy) be
sequences of probability measures on X,Y respectively, such that
e — u and v, — v weakly. For each k, let m, be an optimal
transference plan between y and vy.

If for all ke N, [cdm, <+oo, then up to extraction of a
subsequence, 1, converges weakly to some c-cyclically monotone
transference plan 1w e C(u,v).

If moreover liminf, [ cdm, <oo, then the optimal transport cost
between u,v is finite and 1 is an optimal transport plan.



Stability of OT

® If the optimal transport plan between u and v is unique then
there is no need to extract a subsequence.

® If plan is given by map, maps converge in probability
(Corollary 5.23 Villani 2009).

® Proof is based on compactness and characterization of optimal
transport plans in terms of c-cyclical monotonicity: a set
Fc XxY is called c-cyclically monotone if for all collections

(x1,.¥1), -, (xn,yn) C T we have

N N
ZC(Xi’y’ ZC Xi,Yir1)s  YN+1 =Y.
i=1 i=1

a transport plan is called c-cyclically monotone if its support is.
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Quantitative Stability of OT

® Quantitative results have recently appeared in the literature,
see Li and Nochetto 2021 and Meérigot, Delalande, and
Chazal 2020.

® Li and Nochetto 2021 proves the following: suppose wup, v, are
approximations of u,v respectively, y}, € arg min OT (up, v4), and
T = Vo is the unique optimal transport map between y,v.
Then

1/2
( / |T(x)y|2dyh(x,y)) (5)
XxY
< 202A2 (Wo(uv) + 8472 + AV 1)Ay, (6)

where
Ap =W (u, ) + W (v, v4),
and A is the Lipschitz constant of Vg.

® Proof essentially exploits convexity.
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Quantitative Stability of OT

Meérigot, Delalande, and Chazal 2020 prove the following:

® let p,u,v be three probability measures and suppose T, T, are
Brenier maps sending p to u,v respectively.

® Then
Wo (i v) < T = Tollizgey < CWp (),
for any p> 1, where C depends on the dimension and the
sets X, Y.

® If T, is K-Lipschitz then the exponent can be improved to

1/2.

® They also show that the Monge embedding u+— T is in
general not better than 1/2-Holder.
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Stability of Regularised OT

® Until recently less was known on stability of regularised OT.

® The standard approach via compactness does not frivially
extend.

® Also until recently, there was no equivalent of cyclical
monotonicity to uniquely identify the optimal coupling.

® This was recently done in Ghosal, Nutz, and Bernton 2021
who proved the qualitative stability of Schédinger bridges (no
compactness required).
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Stability of Regularised OT

® For compact state spaces, Luise et al. 2019, prove stability of
the potentials in total variation;

® MY to OT.(uv) can be written in the form

ME"(dx, dy) = exp(@e” (x) + e’ (v) — c(x.y)/e)u(dx)v(dy),
* o yt” are the potentials.
® Luise et al. 2019 prove that

lpe” — ¢ lloo < C(d &, X, V) {llu— & llv + v = V/lIrv} -

NOTE: TV is too strong to capture convergence of empirical
measures.

® For smooth costs, c € C5t!, s >d/2, and v, an empirical version
of v they establish that

9" — 9"l < C(d, &, X, Y) log(3/r)n"
w.prob >1 —T.

® This is obtained by considering MMD type metrics which do
capture convergence in distribution, but they require

smoothness of the metric. s



Stability of Regularised OT

® We are interested in the full coupling Mt rather than just the
potentials.

® There the sample complexity will necessarily depend on the
dimension;

® Say un,vn are empirical versions of w,». Then trivially we have
that

W (i, )
= sup {/f(x,y) [ME" — NEY] (dx,dy) - f € Lip(X x Y)}

> sup {/f(x) (e~ — NEY] (dx,dy) : f € Lip(X)}
= W (tn, 1),

and we know this scales like n'/9, see e.g. Fournier and Guillin
2015.
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The lterative Proportional Fitting Procedure (IPFP)

® Before stating our main results let us introduce the IPFP, also
known as Sinkhorn's algorithm.

® Given two probability measures y,v and € >0 the IPFP
Hy .

iteratively learns the potentials @&, wt”;
We simply write @, to ease notation.
® |nitialise @@, =0.

® Given (p(t),q/(f), t >0 set
= 91)(x) i= ~log [ explyy) - clxyVelv(dy)

= YH(y) = —log / exp{@!""D(x) — c(x,y)/e}p(dx)

= For any c € R, (¢ — c,p® + ) defines the same measure;
we fix this choice following Carlier 2021, so that

plp®+H] = 0.
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Main results

Theorem |

Suppose that X,Y are compact metric spaces and c € Lip(X x Y).
For any o, g € 2(X), m,7 € 2(Y) let (P")new and (P")nen
the IPFP sequence with marginals (o, ) respectively (o, ).

Then any ne N we have

W, (P",P") < C{W, (1o, o) + W, (111, 71)}, (7)
with

C =e'0ldl= {1 1 (2Lip(c) + 10)(diam(X) + diam(Y))}.  (8)



Main results (ctd)

As an immediate consequence of Theorem | and the fact that
the IPFP sequence converges, we obtain the quantitative stability
of Schrédinger bridge.

Corollary 2

For any g, g € 2(X), m, 71 € 2(Y) let P, respectively P*, be
the Schrédinger bridge with marginals (g, ), respectively

(7m0, 71). Then we have

W, (P",P") < C{W, (1o, o) + W, (1, 71)}, )

with C as in Theorem |I.
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Background on Hilbert projective metric |

Will now sketch the main idea for the Schrédinger bridge, rather
than IPFP as it is a little clearer.

In compact spaces we can employ the machinery of the
Birkhoff-Hopf contraction theorem;

suppose E is a real vector space, K is a cone, that is K is
convex, KN (—K) = {0} and AK c K for all 2> 0.

K induces a partial ordering on E: that is we write x >y if
x—yek;

Let C be a part of the cone, that is for any x,y € C there
exist a, B > 0 such that ax—y € K and By —x € K, C is convex
and AC c C for all A >0.

For any x,y € C we write

M(x,y) :=inf{B >0: By — x € K} (10)
m(x,y) :==sup{a>0:x—ay € K}. (11)
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Background on Hilbert projective metric I

® The Hilbert metric is defined for any x,y € C as

du(xy) = logM(x,y)/m(x.y).

® |t is a projective metric in the sense that it measures distances
between rays {Ax: A > 0} rather than points.

We are now ready to state the Birkhoff contraction theorem.
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Background on Hilbert projective metric lll

Theorem (Birhoff Contraction Theorem)

Let (V,||-1), (V. ]|-|I') be two normed real vector spaces,

K cV,K"c V" two cones and C' c K’,C C K two convex parts,
and write dy,d}, for the Hilbert metric on C,C’ respectively.
Let T:V — V' be a linear mapping such that T(C) Cc C'. Then

k(T) := x,yepc ) < tanh(A(T)/4), )

where the projective diameter A(T) of T is defined by
A(T) == sup {d (T(x). T(y)) : xy € C Il = Iyl = T}
Since A(T) is finite x(T) < 1.
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Sketch of proof |

® |n our context
C=%(X;(0,00)), C =%(Y;(0,00)).
® |n this setting

M(f,g) = supf/g, m(f,g) = inff/g,

® so the Hilbert-Birkhoff metric measures the oscillations on the
log-scale

du(f. g) = |l log(f/9)llosc := suplog(f/g) — inflog(f/g).

® Letting ue Z2(X),ve Z(Y) define two linear maps of interest
through

/f udx); E:C=C  (13)

(69 = [ gUKEypd) &:C—C (14)



Sketch of proof Il

Let also .# : f — f~!, where we overload the operator to act
on both C and C'.

As pointed out in Chen, Georgiou, and Pavon 2016 it is easy
to show that .# is an isometry w.r.t. the Hilbert metric;

Also we can bound the projective diameter of &, &,.

In this notation the IPFP iteration that takes e? — e?*" can

be written as
Fuwexplp] =[S 0 & 0.7 0 8] [expol], (15)
5, explp] = [F 00 .7 0 &,] exply]. (16)
The Birkhoff contraction theorem show that both of these
maps are contractions in the Hilbert metric.

The pairs of potentials (@c, We), (@e, We) defining the
Schrédinger bridges for (u,v), (4, V) respectively will then be
fixed points of (7, 5’;,,) and (S5 Ygﬁ) resp.
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Sketch of proof:main ideas |
For h € Lip(X x Y), writing

Fe(xy) = ep{@(x) +wey)},  Felxy) = exp{@e(x) + @e(y)}

we want to write

/ (x.y) [M2*(dx, dy) — N2 (dlx, dy)

— [ AP ley)Kexy)u(@wley)s - [ hixy)Fo(xy)K(xyiond)
/h [F. — F] Kyt dy)+/hFK ey — Bt

® The second term looks like it can be controlled by
W (uav,uev).

® [ssue is that in general @, @. are only defined on the supports
of u,7v.

* How can F. be Lipschitz?
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Sketch of proof:main ideas Il

® Here we use the fact that @, @, are fixed points of the
Sinkhorn iteration, that is

p:(x) = —log [ explwy) ~clxyVelily)  (I7)
§(x) = ~log [ exploc(x) - cluyVelidn.  (18)

® Using the above we can extend @, @ to Lipschitz continuous
functions on all of XY (compactness is used heavily here), see
also Luise et al. 2019,

® So indeed
[ hxy) [ (dx, )~ (e )|

< / h[F. — F] Ke(oy)u(don(dy) + Wi (u@ v, G @)
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Sketch of proof:main ideas |

® Next we use the fact that FE,:EE are fixed points of Sinkhorn
iterations to control F, — F..

® |dea here is
di(Fe F) = dy (yw F., 5 F‘e)
—dy (yw Fe, S ﬁe) +dy (yw F.. %5 ?E)

contraction of Sinkhorn <W, (uQv,uQV)

— Kkdy, (FG,E) +CW, (u®v, i o)

P C % R
dy(Fe, Fe) < ﬁwl (URV,TRD).

® Final issue is that dH(FE,,ES) only controls the oscillations
| log Fe — log Fe||osc rather than the supremum;
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Sketch of proof:main ideas Il

® To bypass this issue notice that

AE i:\'e ~ ~ o~ P
/iF€K€y®uz/FFGKG[J®V+CW](,L1®V,/J®V) (19)

:/?ekemﬂcwl(y@m@m (20)
=1 +CW,(uer,ue7) (21)
(22)
® Recall F.K.u®v is a probability measure;

® thus the random variable I:"E/FG(X, Y) with (X,Y) ~F.K.u®v,
must either be a.s. equal to | + CW | (u®v,u®7V), or must
take values both above and below | +CW(u® v, u®7).



Sketch of proof:main ideas IlI

® |n either case using continuity of F./F. we can find X0,Yo such
that

IogM =log(l + CW (u@v,u®V))

(x0.Y0)

and thus
sup {Iogl?e(x,y) —logFe(xy)| <CW| (u@v,ue7v)
Xy
+ [l tog Fe(x,y) — log Fe(x,y)losc.

® We can similarly control Fe/l?e.
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Recent results by Eckstein and Nutz 2021

A couple of months after our preprint appeared online,
Eckstein and Nutz 2021 posted a very nice paper with some
quantitative results for Schrédinger bridge.

They treat the more general, non-compact case and prove
stability in the Wasserstein metric.

They only treat the Schrédinger bridge, that is the limit of the
IPFP algorith.

They prove that the Schrédinger bridge is Hélder continuous,
rather than Lipschitz, in the marginals, using very interesting
probabilistic techniques involving some approximate couplings.
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