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Motivation
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Multiscale features in images

) % e R
%




Motivation

@ e.g. {Wy} is the Fourier basis

@ For functions with multiscale features, better use wavelet bases {1y}

oo 2k

u(x) = Z Z ubi(x),  u = (u, V).

k=1 [=1

e.g. 2D Haar .
I B B




Motivation

Besov Spaces

@ Functions identified with expansion coefficients (uy) € ¢, or (uy) € 47

@ Besov space of smoothness s € R, with integrability parameter g > 1

1

sy sy !

B, = {uEIR{OO BN 1T LS oo}, |ullgs, = <Zeq<d+z> 1qu> .
(=1

(=1
e g =2: B, = H® Sobolev Hilbert spaces
o g=00,5s¢N: BS = C°, Holder spaces

@ Smaller g associated with sparsity and spatial inhomogeneity



Motivation

1/2 +
a b

|l =2, Wl = /5 + 5 vl =3

@ I.M. Johnstone, Gaussian estimation: sequence and wavelet models, draft book.



Motivation

@ Randomize coefficients: uy = v/&s where & X f, vo > 0 decaying scalings

@ Choice of wavelet basis, distribution f, decay scaling

@ eg if f has finite second moments, then u € L, almost surely iff (7,) € ¢,

o B;,-Besov priors: & i Laplace(0,1) and v, =/

S
d, s smoothness parameter

N|—=

() o exp(— e

@ M. Lassas, E. Saksman and S. Siltanen, Discretization-invariant Bayesian inversion and Besov space priors, Inverse
Problems and Imaging 2009



Motivation

o LV W

Gaussian Laplace (Bi;) Kolehmainen et al. 2012

4 S. Agapiou, M. Burger, M. Dashti and T. Helin, Sparsity-promoting and edge-preserving MAP
estimators in nonparametric Bayesian inverse problems, Inverse Problems, 2018.

[4 V. Kolehmainen, M. Lassas, K. Niinimaki and S. Siltanen, Sparsity-promoting Bayesian inversion,
Inverse Prob 2012
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WNM - Minimax rates under Besov regularity

White noise model - Minimax estimation rates

@ Observe solution to

. 1
dY! = u(t)dt + \ﬁth, t € [0,1]

Yy =0, W; is a sBM
o u € L,[0,1] unknown, work in ¢,
e P! distribution of Y"

@ Interested in small noise limit n — oc



WNM - Minimax rates under Besov regularity

White noise model - Minimax estimation rates

@ Minimax risk in /»>-loss over class F C /5

i — ull3

R,(d, u) = min max Epn
g uveF OV

@ Minimax rate in /5-risk over F: fastest rate of decay of minimax risk, as n — oo

@ Linear minimax rate in ¢>-risk over JF: restrict to linear estimators



WNM - Minimax rates under Besov regularity

WNM - Minimax estimation rates under Besov regularity

Theorem (Donoho + Johnstone '98)
IntheWNI\/Ifor@>%orBZ1forq:1,

- Minimax rate in ¢>-loss over qu

__B_
mn = N 1423

- Linear minimax rate in ¢>-loss over ng

_ B/
/n = n 7,

where v =

Q N

2

@ For g < 2 (spatially inhomogeneous unknowns) linear estimators sub-optimal
@ Same result holds in Gaussian regression setting

@ D. Donoho and I. Johnstone, Minimax estimation via wavelet shrinkage, Annals of Statistics, 1998.



WNM - Minimax rates under Besov regularity

NMR data denoising

(b) | | (d) | (f)

W A~ U N N 0 O

Linear methods either oversmooth irregular part, or undersmooth regular part or both

@ I. Johnstone, Wavelets and the theory of non-parametric function estimation, Phil. tans. R. Soc. Lond. A, 1999.
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p-exponential measures

p-exponential product measure

iid _ IxP

0 &~ fy fh(x)=ce P, pel2]
@ (7¢) decaying positive scalings

@ Define p-exponential measure

M= L((ver))

@ [1 log-concave (unimodal, exponential moments, ...)



p-exponential measures

Frequentist performance of posterior

@ Prior [Ton u € /5
o Posterior IN(-|Y") on u
@ Frequentist assumption: observations Y" in WNM generated from fixed ug € /5

@ ¢, is a posterior contraction rate at ug, if AM > 0 such that as n — o©

M(u: |ju— wl|2 > Mep|Y") — 0
in P/ -probability

e Do Gaussian priors perform better for Sobolev truths?

e Do Laplace priors perform better for spatially inhomogeneous truths?




p-exponential measures

Rates of contraction - General Theory

General contraction theory — rate €, depends on

@ Prior putting a certain minimum mass on small /»-balls around wuq
@ Existence of sieve sets such that:

- capture the bulk of prior's mass

- their elements can be tested against ug with good enough type | & type Il errors

[d S. Ghosal and A. van der Vaart, Convergence rates of posterior distributions for noniid observations,
Annals of Statistics, 2007.

[4 S. Ghosal and A. van der Vaart, Fundamentals of nonparametric Bayesian inference, Cambridge Series in Statistical
and Probabilistic Mathematics, 2017.



p-exponential measures

Shift space

Proposition (A., Dashti, Helin '21)
The space of admissible shifts of 1 is the Hilbert space
Q=1{heR™:|hlg < oo},
where o 1)
[4llo = (Z—‘;)
1 Ve
For he O
N
il h)(u) = |lim folue = o) = lim eng ! (’%p_'%@'p).
dll N—o0 e fp(Ug) N— o0

El Shepp, Distinguishing a sequence of random variables from a translate of itself, Annals of Mathematical

Statistics, 1965,

A s Kakutani, On equivalence of infinite product measures, Annals of Mathematics, 1948.



p-exponential measures

Another important subspace

o Let Z={heR®: ||h||z < oo}, where

= hr N5
e (55
Il = (3012

(=1

@ Z Banach space
o Z C Q, both null sets  (e.g. [[(v&)II5 =D 021 &)

@ For Gaussian I: Z2 = O =H, H RKHS



p-exponential measures

Lower bound on probability of non-centered balls

Theorem (A., Dashti, Helin '21)

Forany he Z 1
M(eBy, + h) > e #IMIzM(eB,).

For proof:

: dn(-—h
@ Use expression for ‘E, )

@ Exploit symmetry and convexity (important that p € [1,2])



p-exponential measures

Concentration function

@ Define the concentration function for 1 a p-exponential measure at w € /5

1
)= inf =[] — logM(eB
oule) =, inf Al ~logN(cB)

@ ¢o measures probability of e-balls around 0, M(eB,,) = e~ ?o(c)

@ Last theorem + approximation:

®., controls probability of e-balls around w € /> from below

o Note that ¢, (¢) = 0, as e — 0



p-exponential measures

Talagrand's two level concentration inequality

Lemma

There exists K > 0 depending only on p, s.t. for any ¢ > 0 and any M > 0

p ]. MP
[1(eB M:2B MBz) >1— ———e .
(6 0, + M2Bg + Z) = n(eBg2)e

ERY} Talagrand, The supremum of some canonical processes, American J. of Mathematics, 1994.

For Gaussian [1, get Borell's concentration inequality

1 M2
[1(eBy, + MBy) > 1 — K
(6 0, + 7.[) = I'I(eBgz)e K

[d  C. Borell, The Brunn-Minkowski inequality in Gauss space, Inventiones Mathematicae, 1975.



p-exponential measures

Rates of contraction

@ Recall Ghosal and van der Vaart's ROC theory

- Lower bound on prior probability around truth

- Sieve set of bounded complexity, capturing most of prior mass
@ Control probability around truth using the concentration function

o Use eBy, + MgBQ + MBz as sieve set
- Captures most of prior mass (Talagrand)

- Concentration function turns out to control complexity as well
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WNM - ROC under Besov regularity

a-regular 7-scaled p-exponential priors

@ Prior 1 = L((v&0)), & < fo, P € [1,2]

1
@ yy=T102""°
@ 7 > 0 scaling parameter

@ « > 0 regularity parameter

For any g > 1, it holds M(B;,) =1 for all s < a and 11(B;,) = 0 for all s > a.




WNM - ROC under Besov regularity

a-regular 7-scaled p-exponential priors

@ Space of admissible shifts Q = Q,

50 5
o, = (z W)
/=1

@ Space determining mass-loss for noncentered ball Z = Z,

|z, = 7 (Z f’“‘”he")
/=1

1 1
@ |dentified with Besov spaces Q, = Bg;z and Z, = Bg,j”

T =

@ Concentration function

b= inf WP, — logM(cBy)
“Tp P Bpp ©

_|_
heBpp P:||h—wl|y,<e

T_p



WNM - ROC under Besov regularity

Estimating the concentration function

o Centered small ball probabilities: for any 7 >0, a > 0 and p € [1, 2]

—log M(eBy,) < (6/7')_é

1 F. Aurzada, On the lower tail probabilities of some random sequences in {,, J. Theoretical
Probability, 2007.

@ Decentering:

—p
inf A AT

1
a+5
b p BPP g

o+
heBpp P:||h—upl|¢,<e

) a+i
- hy. truncation of ypup to L, uy.; € Bpp *

- Depending on regularity of ug, for large enough L, ||h1.p — uplle, < €

- Depending on regularity of ug, get bound on || h1.(|| .+1 hence also on infimum
Bpp



WNM - ROC under Besov regularity

Rates under Sobolev regularity

Theorem (A., Dashti, Helin '21)

Assume ugy € 8252 and consider an a-regular 7-scaled p-exponential prior p € [1, 2].
Then if either

- o« = p with 7 > 0 fixed, or

-a> 0 — % and 7 = 7(n; a, 8, p) chosen optimally

: .. __B_
the posterior contracts at the minimax rate m, = n 125,




WNM - ROC under Besov regularity

Rates under Sobolev regularity - adaptation

Same rates with data driven choice of a or 7 (no a priori knowledge of 3 required)
@ Hierarchical Bayes on smoothness o, e.g. using exponential hyper-prior
@ Hierarchical Bayes on scaling 7, e.g. using inverse gamma hyper-priors
@ Empirical Bayes, estimate « or 7 using the maximum marginal likelihood estimator
@ In preparation, with A. Savva

B B. T. Szabd, A. W. van der Vaart, and J. H. van Zanten, Empirical Bayes scaling of Gaussian priors in the white
noise model, Electronic Journal of Statistics, 2013.

4 B.T. Knapik, B. Szabd, A. W. van der Vaart, and J. van Zanten, Bayes procedures for adaptive inference in
inverse problems for the white noise model, Probability Theory and Related Fields, 2016.

ElN} Rousseau, B. Szabd, Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal
likelihood estimator, The Annals of Statistics, 2017.



WNM - ROC under Besov regularity

Rates under spatially inhomogeneous truth

Theorem (A., Dashti, Helin '21)

Assume ug € ng, g <2, B>2%vi Consider an a-regular 7-scaled p-exponential

p g
prior p € [1,2], with 7, = 7,(c, 5, p, q) chosen optimally. Then the posterior
contracts at rate ¢, s.t.:

Forp=gq, a=0—

T =

€, = m,.

Forp<q,a=ﬁ—%

g—p
€, = M, |Qgpq(1+2ﬁ) n.

In all other cases

€n > M,.

For p = 2 the best achievable rate is €, = I, > m, (I, linear minimax).

Appropriately tuned Laplace priors achieve minimax rate for g < 2 (up to logs if g > 1)



WNM - ROC under Besov regularity

Suboptimality of Gaussian priors for spatial inhomogeneity

Theorem (A. and Wang '21)
Assume 3 >1/q, 1< g<2or=qg=1, andlet §, ] 0 as n — oo.
Let (1, : n € N) be mean-zero Gaussian priors supported on L, such that for all n > 0
sup P (My(u: |lu—wll2 > 8a]Yn) >n) % 0.
Uoi||U0Hng§1
Then there exists some constant ¢ > 0 such that

0, > cl,, né&N.

@ Uniform statement on contraction rate required to link to minimax

@ Tuned Laplace priors satisfy uniform contraction with ¢, = m, < /!



WNM - ROC under Besov regularity

Gaussian vs Laplace priors

@ For Sobolev truths Gaussian and Laplace priors have similar performance
@ For spatially inhomogeneous truths, tuned Laplace priors outperform Gaussians

@ Tuning, smoothness and scaling simultaneously, can be performed adaptively using
Hierarchical or Empirical Bayes approach (in preparation with A. Savva)
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Numerics

NMR data

@ Nuclear Magnetic Resonance data, available in Wavelab 850

@ Signal expanded in Symlet 6 orthonormal wavelet basis {14} truncated at k =9

60 T T T T T T T T T

50 - .

30 - T

10 | T

-10 ‘1\

-20 | | | | | | | | |



Numerics

Bayesian Denoising of NMR data

@ Model wavelet coefficients as

1 iid
| = Uy + —=2z1, 2z~ N(O,1
Yk 7 (0,1)

@ Rescaled a-regular p-exponential prior on unknown u = (uy), with p =1 or 2

Uk = 7_2_(%_'_&)1(&-/(/7 fk/ ilg f;)a P = lor?2

@ Hyperprior on prior-rescaling 7: 772 ~ Gamma(ay, b;)
@ Hyperprior on noise-precision 9: § ~ Gamma(ay, b,)

@ ay, a», b1, by chosen so that hyperpriors non-informative for 7, 0



Numerics

Bayesian Denoising of NMR data - Gaussian prior

@ Conditional conjugacy
- uklyws, 7,8 ~ N(my , cu)
- 77?|u,y ~ Gamma(a] , bj(u))
- 6|lu,y ~ Gamma(a) , by(u,y))
@ Can use simple Gibbs Sampler to sample posterior

@ Normally in high-dim 7-chain mixes poorly (u and 7 a-priori strongly dependent)

— use non-centered parametrization u = 7v, and work with v instead of u

ERES Agapiou, J. Bardsley, O. Papaspiliopoulos, A. Stuart Analysis of the Gibbs Sampler for Hierarchical Inverse
Problems, SIAM /ASA Journal on UQ, 2014.



Numerics

@ No conditional conjugacy (only for d|u, y)
@ Need to use Metropolis within Gibbs

@ pCN dimension-robust for Gaussian priors
@ Again u, 7 a-priori strongly dependent

@ Use non-centered pCN within Gibbs

- Write u = T((, 7) such that (, 7 a-priori independent and ( is Gaussian WN

- Sample iteratively C|ly, 7 (pCN) and 7|y,  (independence sampler)

ERRY Chen, M. Dunlop, O. Papaspiliopoulos, A. Stuart Dimension-Robust MCMC in Bayesian Inverse Problems,
arXiv:1803.03344.
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NMR data - Gauss vs Laplace priors




Numerics

[e]e]e]ele]e] o)

NMR data - Gauss vs Laplace priors - 7-chains
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Numerics

0000000

ata - Gauss vs Laplace priors - 0-chains
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Summary and open questions

@ Laplace priors outperform Gaussian priors over Besov regularity

o Adaptation over Besov spaces (with A. Savva)

@ ROC for Bayesian inverse problems with Besov-priors (with S. Wang)
@ Sharpness of rates, do we really need scaling and regularity tuning?
o Experimenting with heavier-tailed priors (with I. Castillo)

@ For benefit to be realized need better algorithms
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Summary and open questions

@ Laplace priors outperform Gaussian priors over Besov regularity

o Adaptation over Besov spaces (with A. Savva)

@ ROC for Bayesian inverse problems with Besov-priors (with S. Wang)
@ Sharpness of rates, do we really need scaling and regularity tuning?
o Experimenting with heavier-tailed priors (with I. Castillo)

@ For benefit to be realized need better algorithms

THANK YQOU!
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http://www.mas.ucy.ac.cy/~sagapi0l/
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