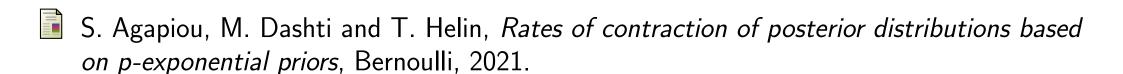
Sergios Agapiou

Department of Mathematics and Statistics, University of Cyprus

May 2022, AUEB Statistics Seminar

Joint work with



- S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in Bayesian inverse problems, arXiv:2112.05679.
- S. Agapiou and A. Savva, *Adaptive rates of contraction based on p-exponential priors*, in preparation.

Conclusion

Outline

Motivation

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

Outline

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

Multiscale features in images

Wavelet expansions

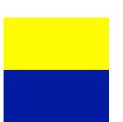
• $\{\psi_\ell\}_{\ell=1}^{\infty}$ orthonormal basis for L_2

$$u(x) = \sum_{\ell=1}^{\infty} u_{\ell} \psi_{\ell}(x), \quad u_{\ell} = \langle u, \psi_{\ell} \rangle.$$

- ullet e.g. $\{\psi_\ell\}$ is the Fourier basis
- ullet For functions with multiscale features, better use wavelet bases $\{\psi_{kl}\}$

$$u(x) = \sum_{k=1}^{\infty} \sum_{l=1}^{2^k} u_{kl} \psi_{kl}(x), \quad u_{kl} = \langle u, \psi_{kl} \rangle.$$

e.g. 2D Haar

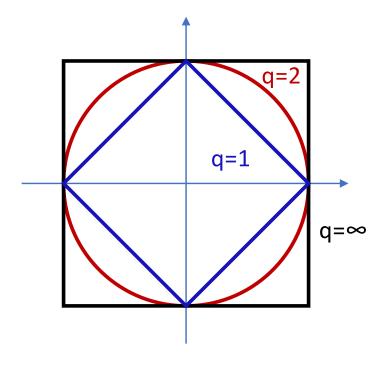


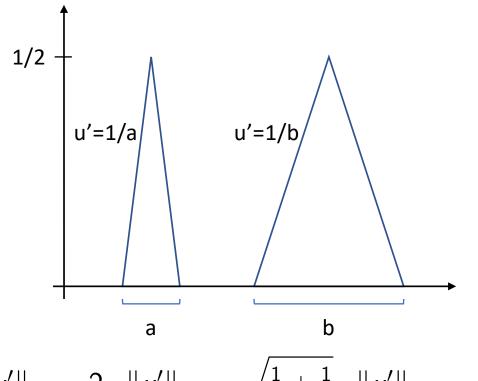
Besov Spaces

- Functions identified with expansion coefficients $(u_\ell) \in \ell_2$ or $(u_{kl}) \in \ell_2$
- Besov space of smoothness $s \in \mathbb{R}$, with integrability parameter $q \geq 1$

$$B_{qq}^{s} = \left\{ u \in \mathbb{R}^{\infty} : \sum_{\ell=1}^{\infty} \ell^{q(\frac{s}{d} + \frac{1}{2}) - 1} |u_{\ell}|^{q} < \infty \right\}, \quad \|u\|_{B_{qq}^{s}} = \left(\sum_{\ell=1}^{\infty} \ell^{q(\frac{s}{d} + \frac{1}{2}) - 1} |u_{\ell}|^{q} \right)^{\frac{1}{q}}.$$

- q = 2: $B_{22}^s = H^s$, Sobolev Hilbert spaces
- $q = \infty$, $s \notin \mathbb{N}$: $B^s_{\infty \infty} = C^s$, Hölder spaces
- Smaller q associated with sparsity and spatial inhomogeneity





$$||u'||_{L_1} = 2, ||u'||_{L_2} = \sqrt{\frac{1}{a} + \frac{1}{b}}, ||u'||_{L_{\infty}} = \frac{1}{a}$$

I.M. Johnstone, Gaussian estimation: sequence and wavelet models, draft book.

Function-space priors via random series expansions

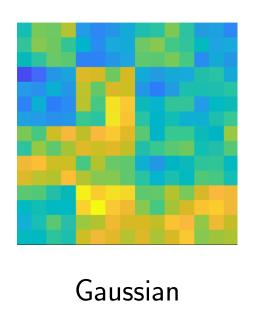
$$u(x) = \sum_{\ell=1}^{\infty} u_{\ell} \psi_{\ell}(x)$$

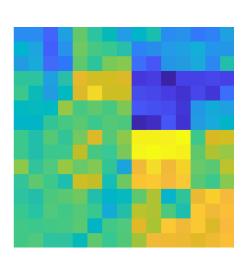
- Randomize coefficients: $u_{\ell} = \gamma_{\ell} \xi_{\ell}$ where $\xi_{\ell} \stackrel{iid}{\sim} f$, $\gamma_{\ell} > 0$ decaying scalings
- \bullet Choice of wavelet basis, distribution f, decay scaling
- ullet eg if f has finite second moments, then $u \in L_2$ almost surely iff $(\gamma_\ell) \in \ell_2$
- B_{11}^s -Besov priors: $\xi_\ell \stackrel{iid}{\sim} Laplace(0,1)$ and $\gamma_\ell = \ell^{\frac{1}{2} \frac{s}{d}}$, s smoothness parameter

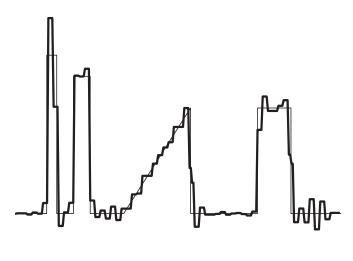
$$\pi(u) \propto \exp(-\|u\|_{B_{11}^s})$$

M. Lassas, E. Saksman and S. Siltanen, *Discretization-invariant Bayesian inversion and Besov space priors, Inverse Problems and Imaging* 2009

Priors via random series expansions - Haar wavelets







Laplace (B_{11}^s)

- Kolehmainen et al. 2012
- S. Agapiou, M. Burger, M. Dashti and T. Helin, *Sparsity-promoting and edge-preserving MAP estimators in nonparametric Bayesian inverse problems*, Inverse Problems, 2018.
- V. Kolehmainen, M. Lassas, K. Niinimaki and S. Siltanen, *Sparsity-promoting Bayesian inversion*, Inverse Prob 2012

Outline

Motivation

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- WNM ROC under Besov regularity
- 5 Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

White noise model - Minimax estimation rates

Observe solution to

$$dY_t^n = u(t)dt + \frac{1}{\sqrt{n}}dW_t, \quad t \in [0,1]$$

$$Y_0^n = 0$$
, W_t is a sBM

- $u \in L_2[0,1]$ unknown, work in ℓ_2
- P_{ii}^n distribution of Y^n
- Interested in small noise limit $n \to \infty$

White noise model - Minimax estimation rates

• Minimax risk in ℓ_2 -loss over class $\mathcal{F} \subset \ell_2$

$$R_n(\hat{u}, u) = \min_{\hat{u}} \max_{u \in \mathcal{F}} \mathbb{E}_{P_u^n} ||\hat{u} - u||_2^2$$

- Minimax rate in ℓ_2 -risk over \mathcal{F} : fastest rate of decay of minimax risk, as $n \to \infty$
- Linear minimax rate in ℓ_2 -risk over \mathcal{F} : restrict to linear estimators

WNM - Minimax estimation rates under Besov regularity

Theorem (Donoho + Johnstone '98)

In the WNM for $\beta > \frac{1}{q}$ or $\beta \geq 1$ for q = 1,

- Minimax rate in ℓ_2 -loss over B_{aa}^{β}

$$m_n = n^{-\frac{\beta}{1+2\beta}}$$

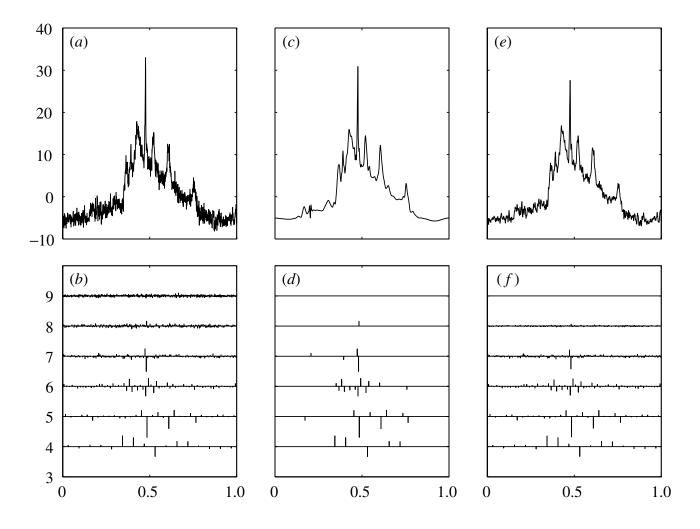
- Linear minimax rate in ℓ_2 -loss over B_{aa}^{β}

$$I_n = n^{-\frac{\beta - \gamma/2}{1 + 2\beta - \gamma}},$$

where
$$\gamma = \frac{2}{q} - \frac{2}{q \vee 2} \geq 0$$
.

- For q < 2 (spatially inhomogeneous unknowns) linear estimators sub-optimal
- Same result holds in Gaussian regression setting
- D. Donoho and I. Johnstone, *Minimax estimation via wavelet shrinkage*, Annals of Statistics, 1998.

NMR data denoising



Linear methods either oversmooth irregular part, or undersmooth regular part or both

I. Johnstone, Wavelets and the theory of non-parametric function estimation, Phil. tans. R. Soc. Lond. A, 1999.

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Outline

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- 4 WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

p-exponential product measure

•
$$\xi_{\ell} \stackrel{iid}{\sim} f_p$$
, $f_p(x) = c_p e^{-\frac{|x|^p}{p}}$, $p \in [1,2]$

- \bullet (γ_{ℓ}) decaying positive scalings
- Define *p*-exponential measure

$$\Pi = \mathcal{L}((\gamma_\ell \xi_\ell))$$

p-exponential measures

Π log-concave (unimodal, exponential moments, ...)

Frequentist performance of posterior

- Prior Π on $u \in \ell_2$
- Posterior $\Pi(\cdot|Y^n)$ on u
- ullet Frequentist assumption: observations Y^n in WNM generated from fixed $u_0 \in \ell_2$
- ϵ_n is a posterior contraction rate at u_0 , if $\exists M>0$ such that as $n\to\infty$

$$\Pi(u: ||u-u_0||_2 \geq M\epsilon_n|Y^n) \to 0$$

in $P_{u_0}^n$ -probability

- Do Gaussian priors perform better for Sobolev truths?
- Do Laplace priors perform better for spatially inhomogeneous truths?

Rates of contraction - General Theory

General contraction theory \rightarrow rate ϵ_n depends on

- Prior putting a certain minimum mass on small ℓ_2 -balls around u_0
- Existence of sieve sets such that:
 - capture the bulk of prior's mass
 - their elements can be tested against u_0 with good enough type I & type II errors
- S. Ghosal and A. van der Vaart, Convergence rates of posterior distributions for noniid observations, Annals of Statistics, 2007.
- S. Ghosal and A. van der Vaart, *Fundamentals of nonparametric Bayesian inference*, Cambridge Series in Statistical and Probabilistic Mathematics, 2017.

Conclusion

Proposition (A., Dashti, Helin '21)

The space of admissible shifts of Π is the Hilbert space

$$\mathcal{Q} = \{ h \in \mathbb{R}^{\infty} : \|h\|_{\mathcal{Q}} < \infty \},$$

where

$$\|h\|_{\mathcal{Q}} = \Big(\sum_{\ell=1}^{\infty} \frac{h_{\ell}^2}{\gamma_{\ell}^2}\Big)^{\frac{1}{2}}.$$

For $h \in \mathcal{Q}$

$$\frac{d\Pi(\cdot - h)}{d\Pi}(u) = \lim_{N \to \infty} \prod_{\ell=1}^{N} \frac{f_p(u_\ell - h_\ell)}{f_p(u_\ell)} = \lim_{N \to \infty} e^{\frac{1}{p} \sum_{\ell=1}^{N} \left(\left| \frac{u_\ell}{\gamma_\ell} \right|^p - \left| \frac{u_\ell - h_\ell}{\gamma_\ell} \right|^p \right)}.$$

- L. Shepp, Distinguishing a sequence of random variables from a translate of itself, Annals of Mathematical Statistics, 1965.
- S. Kakutani, On equivalence of infinite product measures, Annals of Mathematics, 1948.

Another important subspace

• Let $\mathcal{Z} = \{h \in \mathbb{R}^{\infty} : \|h\|_{\mathcal{Z}} < \infty\}$, where

$$\|h\|_{\mathcal{Z}} = \Big(\sum_{\ell=1}^{\infty} |rac{h_{\ell}}{\gamma_{\ell}}|^p\Big)^{rac{1}{p}}$$

- ullet ${\mathcal Z}$ Banach space
- $\mathcal{Z} \subset \mathcal{Q}$, both null sets (e.g. $\|(\gamma_{\ell}\xi_{\ell})\|_{\mathcal{Q}}^2 = \sum_{\ell=1}^{\infty} \xi_{\ell}^2$)
- For Gaussian Π : $\mathcal{Z} = \mathcal{Q} = \mathcal{H}$, \mathcal{H} RKHS

Lower bound on probability of non-centered balls

Theorem (A., Dashti, Helin '21)

For any $h \in \mathcal{Z}$

$$\Pi(\epsilon B_{\ell_2} + h) \geq e^{-\frac{1}{p}\|h\|_{\mathcal{Z}}^p} \Pi(\epsilon B_{\ell_2}).$$



For proof:

- Use expression for $\frac{d\Pi(\cdot h)}{d\Pi}$
- ullet Exploit symmetry and convexity (important that $p \in [1,2]$)

Concentration function

• Define the concentration function for Π a p-exponential measure at $w \in \ell_2$

$$\phi_w(\epsilon) = \inf_{h \in \mathcal{Z}: \|h - w\|_2 \le \epsilon} \frac{1}{p} \|h\|_{\mathcal{Z}}^p - \log \Pi(\epsilon B_{\ell_2})$$

- ϕ_0 measures probability of ϵ -balls around 0, $\Pi(\epsilon B_{\ell_2}) = e^{-\phi_0(\epsilon)}$
- Last theorem + approximation:

 ϕ_w controls probability of ϵ -balls around $w \in \ell_2$ from below

• Note that $\phi_w(\epsilon) \to 0$, as $\epsilon \to 0$

Talagrand's two level concentration inequality

Lemma

There exists K > 0 depending only on p, s.t. for any $\epsilon > 0$ and any M > 0

$$\Pi(\epsilon B_{\ell_2} + M^{rac{
ho}{2}}B_{\mathcal{Q}} + MB_{\mathcal{Z}}) \geq 1 - rac{1}{\Pi(\epsilon B_{\ell_2})}e^{-rac{M^p}{K}}.$$

M. Talagrand, The supremum of some canonical processes, American J. of Mathematics, 1994.

For Gaussian Π, get Borell's concentration inequality

$$\Pi(\epsilon B_{\ell_2} + MB_{\mathcal{H}}) \geq 1 - rac{1}{\Pi(\epsilon B_{\ell_2})} e^{-rac{M^2}{\kappa}}$$

C. Borell, The Brunn-Minkowski inequality in Gauss space, Inventiones Mathematicae, 1975.

Rates of contraction

- Recall Ghosal and van der Vaart's ROC theory
 - Lower bound on prior probability around truth
 - Sieve set of bounded complexity, capturing most of prior mass
- Control probability around truth using the concentration function
- Use $\epsilon B_{\ell_2} + M^{\frac{p}{2}}B_{\mathcal{Q}} + MB_{\mathcal{Z}}$ as sieve set
 - Captures most of prior mass (Talagrand)
 - Concentration function turns out to control complexity as well

Outline

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

lpha-regular au-scaled p-exponential priors

- Prior $\Pi = \mathcal{L}((\gamma_{\ell}\xi_{\ell}))$, $\xi_{\ell} \stackrel{\textit{iid}}{\sim} f_p, \ p \in [1,2]$
- $\bullet \ \gamma_{\ell} = \tau \ell^{-\frac{1}{2} \alpha} \quad (\gamma_{kl} = \tau 2^{-(\frac{1}{2} + \alpha)k})$
- $\tau > 0$ scaling parameter
- $\alpha > 0$ regularity parameter

Lemma

For any $q \geq 1$, it holds $\Pi(B_{qq}^s) = 1$ for all $s < \alpha$ and $\Pi(B_{qq}^s) = 0$ for all $s \geq \alpha$.

ullet Space of admissible shifts $\mathcal{Q}\coloneqq\mathcal{Q}_{lpha}$

$$\|h\|_{\mathcal{Q}_lpha} = au^{-1} \left(\sum_{\ell=1}^\infty \ell^{1+2lpha} h_\ell^2
ight)^{rac{1}{2}}$$

ullet Space determining mass-loss for noncentered ball $\mathcal{Z}\coloneqq\mathcal{Z}_lpha$

$$\|h\|_{\mathcal{Z}_lpha} = au^{-1} \left(\sum_{\ell=1}^\infty \ell^{rac{p}{2} + oldsymbol{p}lpha} |h_\ell|^{oldsymbol{p}}
ight)^{rac{1}{oldsymbol{p}}}$$

- ullet Identified with Besov spaces $\mathcal{Q}_lpha=B_{22}^{lpha+rac{1}{2}}$ and $\mathcal{Z}_lpha=B_{pp}^{lpha+rac{1}{p}}$
- Concentration function

$$\phi_{w}(\epsilon) = \inf_{h \in \mathcal{B}_{pp}^{\alpha + \frac{1}{p}}: \|h - w\|_{\ell_{2}} \leq \epsilon} \frac{\tau^{-p}}{p} \|h\|_{\mathcal{B}_{pp}^{\alpha + \frac{1}{p}}}^{p} - \log \Pi(\epsilon B_{\ell_{2}})$$

Estimating the concentration function

• Centered small ball probabilities: for any $\tau > 0$, $\alpha > 0$ and $p \in [1, 2]$

$$-\log\Pi(\epsilon B_{\ell_2})symp (\epsilon/ au)^{-rac{1}{lpha}}$$

- F. Aurzada, On the lower tail probabilities of some random sequences in ℓ_p , J. Theoretical Probability, 2007.
- Decentering:

$$\inf_{h \in \mathcal{B}_{pp}^{\alpha + \frac{1}{p}} : \|h - u_0\|_{\ell_2} \le \epsilon} \frac{\tau^{-p}}{p} \|h\|_{\mathcal{B}_{pp}^{\alpha + \frac{1}{p}}}^{p}$$

- $h_{1:L}$ truncation of u_0 up to L, $u_{1:L} \in B_{pp}^{\alpha + \frac{1}{p}}$
- Depending on regularity of u_0 , for large enough L, $||h_{1:L} u_0||_{\ell_2} \le \epsilon$
- Depending on regularity of u_0 , get bound on $\|h_{1:L}\|_{\mathcal{B}^{\alpha+\frac{1}{p}}_{pp}}$ hence also on infimum

Rates under Sobolev regularity

Theorem (A., Dashti, Helin '21)

Assume $u_0 \in B_{22}^{\beta}$ and consider an α -regular τ -scaled p-exponential prior $p \in [1,2]$. Then if either

- $\alpha = \beta$ with $\tau > 0$ fixed, or
- $\alpha > \beta \frac{1}{p}$ and $\tau = \tau(n; \alpha, \beta, p)$ chosen optimally

the posterior contracts at the minimax rate $m_n = n^{-\frac{\beta}{1+2\beta}}$.

Rates under Sobolev regularity - adaptation

Same rates with data driven choice of α or τ (no a priori knowledge of β required)

- Hierarchical Bayes on smoothness α , e.g. using exponential hyper-prior
- ullet Hierarchical Bayes on scaling au, e.g. using inverse gamma hyper-priors
- ullet Empirical Bayes, estimate lpha or au using the maximum marginal likelihood estimator
- In preparation, with A. Savva
- B. T. Szabó, A. W. van der Vaart, and J. H. van Zanten, *Empirical Bayes scaling of Gaussian priors in the white noise model*, Electronic Journal of Statistics, 2013.
- B. T. Knapik, B. Szabó, A. W. van der Vaart, and J. van Zanten, *Bayes procedures for adaptive inference in inverse problems for the white noise model,* Probability Theory and Related Fields, 2016.
- J. Rousseau, B. Szabó, Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator, The Annals of Statistics, 2017.

Conclusion

Rates under spatially inhomogeneous truth

Theorem (A., Dashti, Helin '21)

Assume $u_0 \in B_{qq}^{\beta}$, q < 2, $\beta > \frac{1}{p} \vee \frac{1}{q}$. Consider an α -regular τ -scaled p-exponential prior $p \in [1,2]$, with $\tau_n = \tau_n(\alpha,\beta,p,q)$ chosen optimally. Then the posterior contracts at rate ϵ_n s.t.:

- For
$$p = q$$
, $\alpha = \beta - \frac{1}{p}$

$$\epsilon_n = m_n$$
.

- For
$$p < q$$
, $\alpha = \beta - \frac{1}{p}$

$$\epsilon_n = m_n \log^{\frac{q-p}{pq(1+2\beta)}} n.$$

- In all other cases

$$\epsilon_n \gg m_n$$
.

- For p=2 the best achievable rate is $\epsilon_n=I_n\gg m_n$ (I_n linear minimax).

Appropriately tuned Laplace priors achieve minimax rate for q < 2 (up to logs if q > 1)

Theorem (A. and Wang '21)

Assume $\beta > 1/q$, $1 \le q < 2$ or $\beta = q = 1$, and let $\delta_n \downarrow 0$ as $n \to \infty$.

Let $(\Pi_n : n \in \mathbb{N})$ be mean-zero Gaussian priors supported on L_2 , such that for all $\eta > 0$

$$\sup_{u_0:\|u_0\|_{B_{qq}^{\beta}}\leq 1} P_{u_0}^n (\Pi_n(u:\|u-u_0\|_2 \geq \delta_n|Y_n) \geq \eta) \xrightarrow{n\to\infty} 0.$$

Then there exists some constant c > 0 such that

$$\delta_n \geq c l_n, \quad n \in \mathbb{N}.$$

- Uniform statement on contraction rate required to link to minimax
- Tuned Laplace priors satisfy uniform contraction with $\delta_n = m_n \ll l_n!$

Gaussian vs Laplace priors

- For Sobolev truths Gaussian and Laplace priors have similar performance
- For spatially inhomogeneous truths, tuned Laplace priors outperform Gaussians
- Tuning, smoothness and scaling simultaneously, can be performed adaptively using Hierarchical or Empirical Bayes approach (in preparation with A. Savva)

Outline

Motivation

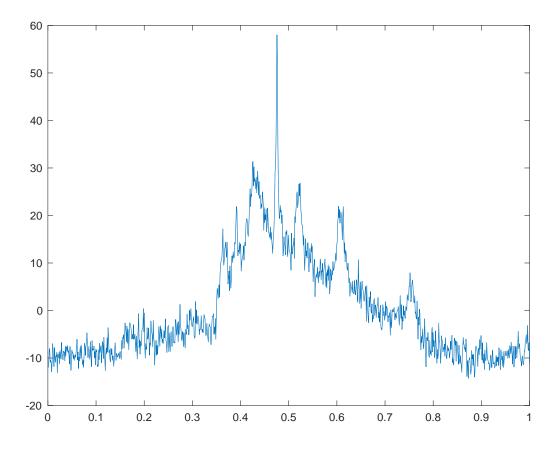
- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- 4 WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics

NMR data

- Nuclear Magnetic Resonance data, available in WaveLab 850
- ullet Signal expanded in Symlet 6 orthonormal wavelet basis $\{\psi_{kl}\}$ truncated at k=9



 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Bayesian Denoising of NMR data

Model wavelet coefficients as

$$y_{kl} = u_{kl} + rac{1}{\sqrt{\delta}} z_{kl}, \quad z_{kl} \stackrel{\mathit{iid}}{\sim} \mathcal{N}(0,1)$$

• Rescaled α -regular p-exponential prior on unknown $u=(u_{kl})$, with p=1 or 2

$$u_{kl} = \tau 2^{-(\frac{1}{2} + \alpha)k} \xi_{kl}, \quad \xi_{kl} \stackrel{iid}{\sim} f_p, \ p = 1 \text{ or } 2$$

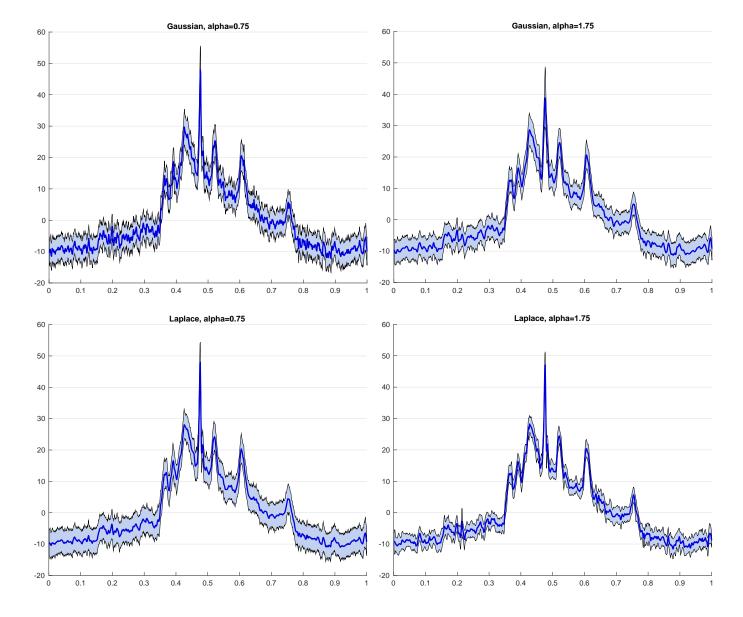
- Hyperprior on prior-rescaling τ : $\tau^{-2} \sim \operatorname{Gamma}(a_1, b_1)$
- Hyperprior on noise-precision δ : $\delta \sim \text{Gamma}(a_2, b_2)$
- a_1, a_2, b_1, b_2 chosen so that hyperpriors non-informative for τ, δ

Bayesian Denoising of NMR data - Gaussian prior

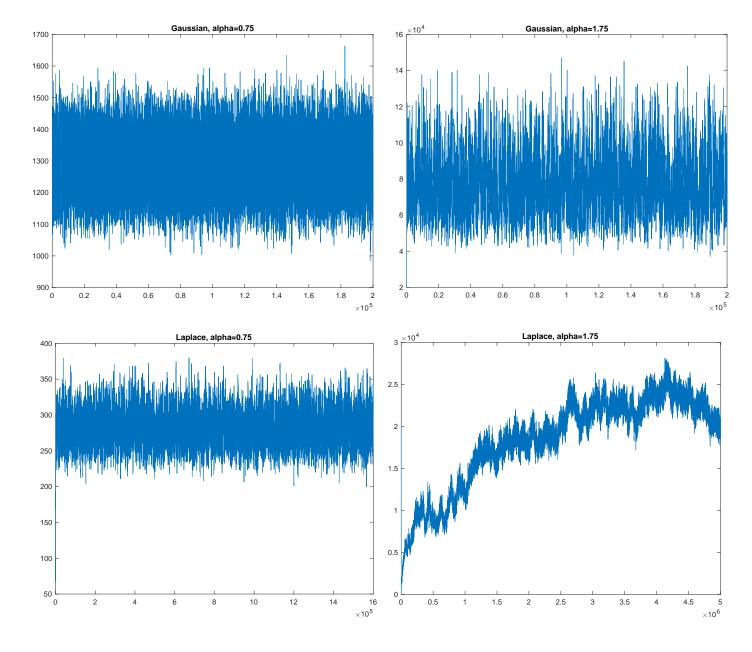
- Conditional conjugacy
 - $u_{kl}|y_{kl}, \tau, \delta \sim N(m_{kl}, c_{kl})$
 - $\tau^{-2}|u, y \sim \text{Gamma}(a'_1, b'_1(u))$
 - $\delta | u, y \sim \text{Gamma}(a_2', b_2'(u, y))$
- Can use simple Gibbs Sampler to sample posterior
- Normally in high-dim au-chain mixes poorly (u and au a-priori strongly dependent)
 - \rightarrow use non-centered parametrization $u = \tau v$, and work with v instead of u
- S. Agapiou, J. Bardsley, O. Papaspiliopoulos, A. Stuart *Analysis of the Gibbs Sampler for Hierarchical Inverse Problems*, SIAM/ASA Journal on UQ, 2014.

- No conditional conjugacy (only for $\delta | u, y$)
- Need to use Metropolis within Gibbs
- pCN dimension-robust for Gaussian priors
- Again u, τ a-priori strongly dependent
- Use non-centered pCN within Gibbs
 - Write $u = T(\zeta, \tau)$ such that ζ, τ a-priori independent and ζ is Gaussian WN
 - Sample iteratively $\zeta|y,\tau$ (pCN) and $\tau|y,\zeta$ (independence sampler)
- V. Chen, M. Dunlop, O. Papaspiliopoulos, A. Stuart *Dimension-Robust MCMC in Bayesian Inverse Problems*, arXiv:1803.03344.

NMR data - Gauss vs Laplace priors

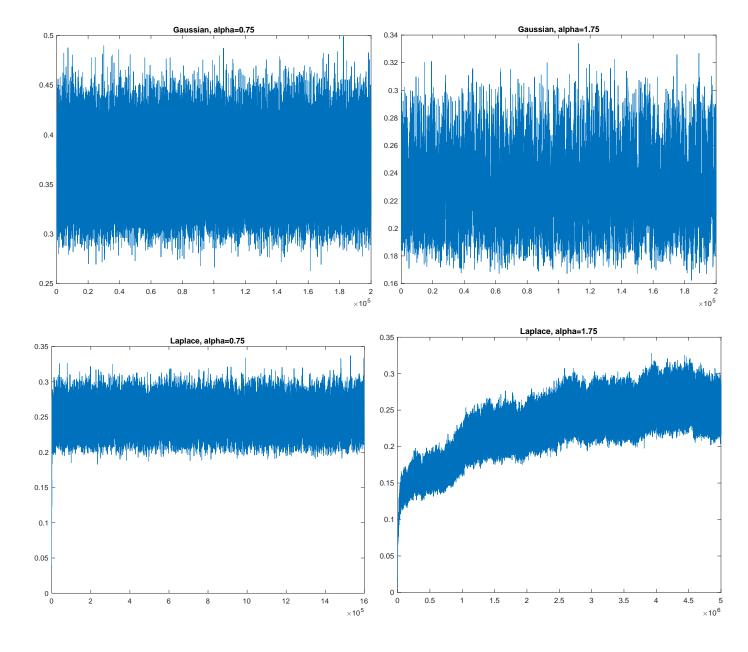


NMR data - Gauss vs Laplace priors - au-chains





NMR data - Gauss vs Laplace priors - δ -chains



 $\underset{\circ\circ\circ\circ}{\mathsf{Conclusion}}$

Numerics Conclusion

Outline

Motivation

- Motivation
- 2 WNM Minimax rates under Besov regularity
- p-exponential measures
- WNM ROC under Besov regularity
- Numerics
- 6 Conclusion

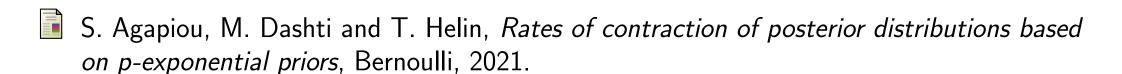
- Laplace priors outperform Gaussian priors over Besov regularity
- Adaptation over Besov spaces (with A. Savva)
- ROC for Bayesian inverse problems with Besov-priors (with S. Wang)
- Sharpness of rates, do we really need scaling and regularity tuning?
- Experimenting with heavier-tailed priors (with I. Castillo)
- For benefit to be realized need better algorithms

Numerics

- Laplace priors outperform Gaussian priors over Besov regularity
- Adaptation over Besov spaces (with A. Savva)
- ROC for Bayesian inverse problems with Besov-priors (with S. Wang)
- Sharpness of rates, do we really need scaling and regularity tuning?
- Experimenting with heavier-tailed priors (with I. Castillo)
- For benefit to be realized need better algorithms

THANK YOU!

http://www.mas.ucy.ac.cy/ \sim sagapi01/



- S. Agapiou and S. Wang, Laplace priors and spatial inhomogeneity in Bayesian inverse problems, arXiv:2112.05679.
- S. Agapiou and A. Savva, Adaptive rates of contraction based on p-exponential priors, in preparation.