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English First division/Premier League – a brief history

I The English football league is one of the oldest football leagues in
the world dating back to 1888.

I It grew rapidly with the introduction of a second division in 1892
and today consists of 4 divisions.

I There has been many changes, but perhaps the most significant has
been the introduction of the English Premier League in 1992/93.

I This heralded massive increases in revenue. The first TV deal
between the Premier League and the television companies generated
revenue of around 40 million pounds. This has increased
dramatically to 5.14 billion between 2016 and 2019.



An introduction

I Competitive balance is a desirable feature in any professional sports
league and encapsulates the notion that there is unpredictability in
the outcome of games.

I We develop a stochastic block model framework to facilitate the
probabilistic clustering so that teams within a blocks are balanced.

I A key question is assessing the uncertainty in the number of blocks
and estimation of the partition or allocation of teams to blocks.

I We apply our model to each season in the English premier league
from 1978/79 to 2020/21.

I A key finding of this analysis is evidence which suggests a structural
change from a reasonably balanced league to a two-tier league which
occurred around the early 2000’s.



Herfindahl–Hirschman index of competitive balance

I HHICB is based on assessing a measure of the spread of points share
in a given season.

I Suppose that team i scored si points over the course of a season in
a league involving n teams.

I Define pi := si/
∑n

1 si to be the proportion of points achieved by
team i .

HHICB = n
n∑

i=1
p2

i .

I It is therefore simply a measure of the spread of (p1, . . . , pn).

I When each team has an identical proportion of points so that
pi = 1/n, then HICB=1.



Relative entropy an index of competitive balance

I A natural approach to summarise the proportion of points share
among all n teams in a league, (p1, . . . , pn), is to use the concept of
entropy, eg, relative entropy:∑n

i=1 pi log(pi )
log(1/n) .

I This statistic takes a maximum value of 1 in the case where pi , the
proportion of points share for team i is 1/n.

I Lower values of relative entropy suggest a more imbalanced league.



HHICB and Relative entropy: Season 1978/79 to 2019/20.
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(a) HHICB: increasing over time and so consistent with the hypothesis
that the premier league has become more imbalanced over time.

(b) Relative entropy: High values of relative entropy correspond to more
balanced league. Again, there is evidence that the premier league
has become more imbalanced over time.



Drawbacks of HHCBI, Relative entropy and other
approaches

I Limitiations of the previous approaches: they are simply univariate
statistics which are not amenable to qualitative conclusions about
whether a season is balanced.

I Moreover, if there is evidence to suggest that a season is
imbalanced, it would be useful to give an indication of the nature of
this imbalance, eg, which teams, if any, are stronger than the rest.

I In short, these approaches do not explicitly model the relational
nature of data arising from a league.

I The network model which we propose yields information about the
quality of the leagues and the relative competitiveness.

I Generally, the method we propose is more computationally
demanding but richer in terms of results and inference we obtain
from the final output it offers.



Representing the outcome of a season as a results matrix
Season 2018/19

Home\Away ARS BOU BHA BUR CAR CHE CRY EVE FUL HUD LEI LIV MCI MUN NEW SOU TOT WAT WHU WOL
Arsenal ~ 5~1 1~1 3~1 2~1 2~0 2~3 2~0 4~1 1~0 3~1 1~1 0~2 2~0 2~0 2~0 4~2 2~0 3~1 1~1
Bournemouth 1~2 ~ 2~0 1~3 2~0 4~0 2~1 2~2 0~1 2~1 4~2 0~4 0~1 1~2 2~2 0~0 1~0 3~3 2~0 1~1
Brighton & Hove Albion 1~1 0~5 ~ 1~3 0~2 1~2 3~1 1~0 2~2 1~0 1~1 0~1 1~4 3~2 1~1 0~1 1~2 0~0 1~0 1~0
Burnley 1~3 4~0 1~0 ~ 2~0 0~4 1~3 1~5 2~1 1~1 1~2 1~3 0~1 0~2 1~2 1~1 2~1 1~3 2~0 2~0
Cardiff City 2~3 2~0 2~1 1~2 ~ 1~2 2~3 0~3 4~2 0~0 0~1 0~2 0~5 1~5 0~0 1~0 0~3 1~5 2~0 2~1
Chelsea 3~2 2~0 3~0 2~2 4~1 ~ 3~1 0~0 2~0 5~0 0~1 1~1 2~0 2~2 2~1 0~0 2~0 3~0 2~0 1~1
Crystal Palace 2~2 5~3 1~2 2~0 0~0 0~1 ~ 0~0 2~0 2~0 1~0 0~2 1~3 1~3 0~0 0~2 0~1 1~2 1~1 0~1
Everton 1~0 2~0 3~1 2~0 1~0 2~0 2~0 ~ 3~0 1~1 0~1 0~0 0~2 4~0 1~1 2~1 2~6 2~2 1~3 1~3
Fulham 1~5 0~3 4~2 4~2 1~0 1~2 0~2 2~0 ~ 1~0 1~1 1~2 0~2 0~3 0~4 3~2 1~2 1~1 0~2 1~1
Huddersfield Town 1~2 0~2 1~2 1~2 0~0 0~3 0~1 0~1 1~0 ~ 1~4 0~1 0~3 1~1 0~1 1~3 0~2 1~2 1~1 1~0
Leicester City 3~0 2~0 2~1 0~0 0~1 0~0 1~4 1~2 3~1 3~1 ~ 1~2 2~1 0~1 0~1 1~2 0~2 2~0 1~1 2~0
Liverpool 5~1 3~0 1~0 4~2 4~1 2~0 4~3 1~0 2~0 5~0 1~1 ~ 0~0 3~1 4~0 3~0 2~1 5~0 4~0 2~0
Manchester City 3~1 3~1 2~0 5~0 2~0 6~0 2~3 3~1 3~0 6~1 1~0 2~1 ~ 3~1 2~1 6~1 1~0 3~1 1~0 3~0
Manchester United 2~2 4~1 2~1 2~2 0~2 1~1 0~0 2~1 4~1 3~1 2~1 0~0 0~2 ~ 3~2 3~2 0~3 2~1 2~1 1~1
Newcastle United 1~2 2~1 0~1 2~0 3~0 1~2 0~1 3~2 0~0 2~0 0~2 2~3 2~1 0~2 ~ 3~1 1~2 1~0 0~3 1~2
Southampton 3~2 3~3 2~2 0~0 1~2 0~3 1~1 2~1 2~0 1~1 1~2 1~3 1~3 2~2 0~0 ~ 2~1 1~1 1~2 3~1
Tottenham Hotspur 1~1 5~0 1~0 1~0 1~0 3~1 2~0 2~2 3~1 4~0 3~1 1~2 0~1 0~1 1~0 3~1 ~ 2~1 0~1 1~3
Watford 0~1 0~4 2~0 0~0 3~2 1~2 2~1 1~0 4~1 3~0 2~1 0~3 1~2 1~2 1~1 1~1 2~1 ~ 1~4 1~2
West Ham United 1~0 1~2 2~2 4~2 3~1 0~0 3~2 0~2 3~1 4~3 2~2 1~1 0~4 3~1 2~0 3~0 0~1 0~2 ~ 0~1
Wolverhampton Wanderers 3~1 2~0 0~0 1~0 2~0 2~1 0~2 2~2 1~0 0~2 4~3 0~2 1~1 2~1 1~1 2~0 2~3 0~2 3~0 ~

Home/Away ARS BOU BHA BUR CAR CHE CRY EVE FUL HUD LEI LIV MCI MUN NEW SOU TOT WAT WHU WOL
Arsenal
Bournemouth
Brighton & Hove Albion
Burnley
Cardiff City
Chelsea
Crystal Palace
Everton
Fulham
Huddersfield Town
Leicester City
Liverpool
Manchester City
Manchester United
Newcastle United
Southampton
Tottenham Hotspur
Watford
West Ham United
Wolverhampton Wanderers

(a) (b)

(a) Cell entries correspond to the result when a home team (row) plays
an away team (column).

(b) The results summarised in a results matrix categorising each result
as a win, draw or loss.



Representing the outcome of a season as a results matrix

We denote the three categorical variables, "win", "draw" or "loss", by
1, 2 or 3, respectively.

This leads us to summarise the outcome from a season with a matrix y
which we term a results matrix:

y =


− y12 . . . y1j . . . y1N
y21 − . . . y2j . . . y2N
. . . . . . − . . . . . .
yi1 yi1 . . . − . . . yiN
. . . . . . . . . . . . − . . .
yN1 yN2 . . . yNj . . . −

 ,

where yij ∈ {1, 2, 3}, for i , j = 1, . . . ,N; i 6= j .



Results matrix as an adjacency matrix

I The results matrix y can be considered as an adjacency matrix of a
directed network.

I Each node represents a team and an edge from node i to node j
represents the result of the match when team i plays at home
against team j , where the edge takes a value in the set {1, 2, 3}.

I Here the network is dense and complete. This contrasts with the
usual sparsity observed in social networks, eg.

This observation is useful as it allows to appeal to statistical models in
social network analysis to find structure in the results matrix y.
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Erdös-Renyi random graph model

I A simple model for binary random graphs which assumes that
Yij ∼ Bern(p). In other words, all edges are assumed to be
independent Bernoulli random variables.

I The number of observed edges, E , is a sufficient statistic.

I The likelihood is expressed as

f (y |p) =
∏
i<j

pyij (1− p)1−yij = pE (1− p)
N(N−1)

2 −E



Stochastic block models

I The Stochastic Block Model (SBM) proposed by (Nowicki and
Snijeders, 2001) is a finite mixture model for network data.

I An SBM stochastically paritions the nodes into k blocks. Nodes
within each block are modelled as a Erdös-Renyi random graph.

I The nodes are characterised by a latent cluster membership variable.

I The probability of observing a certain edge is determined only by the
clustering variables of the two nodes.



Stochastic block models: Model specification

I The SBM assumes that the nodes are partitioned in k clusters.

I The cluster membership of each node i is denoted by
zi ∈ {1, . . . ,K} where P(zi = g) = αg , g = 1, . . . , k.

I Given zi = g and zj = h, the probability of observing an edge yij is
given by pgh ∈ [0, 1].

I The k × k matrix of block connection probabilities is denoted by
P = {pgh}.

I Given zi = g and zj = h, an edge is then drawn from a Bernoulli
distribution with probabililty pgh:

yij |(zi = g , zj = h) ∼ Bern(pgh).



An example of an SBM



One of the thing that you don’t know... is the number of
things that you don’t know!

From a statistical perspective a source of uncertainty is the number of
blocks/clusters, k!

I Statisticians are used to dealing with this issue! (Although it is
non-trivial in the case of SBMs).

I In principle, one could apply a raft of well-studied approaches:

I Expectation-Maximisation
I Reversible-jump MCMC, alá Richardson and Green (1998).
I ...



Objective of our SBM

I The aim of our stochastic block model is to partition the N teams in
a league, into K blocks in such a way that the probability of a win,
draw or loss for the home team is, broadly speaking, similar when
any two teams in the same block play against one and other.

I But equally, that the probability outcome when any team from one
block plays at home against another team from a different block also
has a similar probability of a win, draw or a loss.

I Crucially, the probability of a given outcome depends on the blocks
to which each team are assigned. One of the key objective is to infer
the most likely value of K . In particular, if we deem that K = 1 has
most support, then we have some evidence that the league is
balanced.



Stochastic block model: two main assumptions

I For a K block (or cluster) model, each node (or team), i for
i = 1, . . . ,N, belongs to one of the blocks with membership or
allocation label, zi ∈ {1, . . . ,K}.

I The distribution of y = (yij)1≤i 6=j≤N is assumed to be conditionally
independent given the latent variable of cluster memberships,
z := (z1, . . . , zN).



Multinomial likelihood model
I Suppose zi = k and zj = l .
I Let’s suppose that the probabililty of a win,draw or a loss when a

team in block k plays at home against a team in block l is

pkl = (pkl
1 , pkl

2 , pkl
3 ).

I We then model the outcome yij as a multinomial random variable,
Multi(yij ; 1, pkl ),

P(yij = ω|zi = k, zj = l , pkl ,K ) = pkl
ω , ω = 1, 2, 3.

I Eg, team i , Spurs are assigned to block 1 and play at home
against team j , Crystal Palace who are assigned to block 3.

I Suppose that p13 = (0.6, 0.3, 0.1).
I Data: Spurs 2− 0 Crystal Palace.

f (yij = 1|zi = 1, zj = 3, p13,K ) = 0.6.



Multinomial likelihood model
I Suppose zi = k and zj = l .
I Let’s suppose that the probabililty of a win,draw or a loss when a

team in block k plays at home against a team in block l is

pkl = (pkl
1 , pkl

2 , pkl
3 ).

I We then model the outcome yij as a multinomial random variable,
Multi(yij ; 1, pkl ),

P(yij = ω|zi = k, zj = l , pkl ,K ) = pkl
ω , ω = 1, 2, 3.

I Eg, team i , Spurs are assigned to block 1 and play at home
against team j , Crystal Palace who are assigned to block 3.

I Suppose that p13 = (0.6, 0.3, 0.1).
I Data: Spurs 2− 0 Crystal Palace.

f (yij = 1|zi = 1, zj = 3, p13,K ) = 0.6.



Distribution for the allocation vector z

We assume that the entries of z are independent and identically
distributed following a multinomial distribution:

zi |θ,K
iid∼ Multi(1, θ = (θ1, θ2, . . . , θK )), for i = 1, . . . ,N,

where P(zi = k|θ,K ) = θk is the probability that node i belongs to
cluster k, θk > 0, k = 1, . . . ,K and ∑K

k=1
θk =1.

Thus, the distribution of the partition of the N nodes into K clusters
conditional on θ = (θ1, θ2, . . . , θK ) is:

π(z|θ,K ) =
N∏

i=1
Multi(zi ; 1, θ) =

N∏
i=1

K∏
k=1

θ
I(zi =k)
k .



Prior for θ:

We assume a vague conjugate prior for the vector θ following a Dirichlet
distribution of dimension K with vector of concentration parameters γ:

θ|K ∼ Dir(γ = (γ1, γ2, . . . , γk , . . . , γK )).

We set all concentration parameters equal to γ0 = 1 yielding a uniform
prior.



Blocks interaction probabilities:

p =



p11 p12 . . . p1l . . . p1K

p21 p22 . . . p2l . . . p2K

...
...

. . .
...

. . .
...

pk1 pk2 . . . pkl . . . pkK

...
...

. . .
...

. . .
...

pK1 pK2 . . . pKl . . . pKK


where,

pkl = (pkl
1 , pkl

2 , pkl
3 ) and

3∑
ω=1

pkl
ω = 1,

for all k = 1, . . . ,K and l = 1, . . . ,K .

As before, pkl
1 , pkl

2 or pkl
3 is the probability that a team allocated to block

k playing at home against a team allocated to block l , wins, draws or
loses, respectively.



Distribution of the relational pattern of y:
We model the observation yij conditional on the latent allocations zi , zj
as a multinomial distribution,

f (yij |zi , zj ,p,K ) =
K∏

k=1

K∏
l=1

Multi(yij ; 1, pkl )I(zi =k)I(zj =l)

=
K∏

k=1

K∏
l=1

{ 3∏
ω=1

(
pkl
ω

)I(yij =ω)
}I(zi =k)I(zj =l)

for i , j = 1, . . . ,N, i 6= j .

Thus,

f (y|z,p,K ) =
N−1∏
i=1

N∏
j=1
j 6=i

f (yij |zi , zj ,p,K )

=
N−1∏
i=1

N∏
j=1
j 6=i

K∏
k=1

K∏
l=1

{ 3∏
ω=1

(
pkl
ω

)I(yij =ω)
}I(zi =k)I(zj =l)

. (1)



Prior for the block interaction probabilities:
We assume that the entries of p are mutually independent and that each
pkl follows a conjugate prior from a 3-dimensional Dirichlet distribution:

pkl ∼ Dir(β = (β1, β2, β3)), for k = 1, . . . ,K , and l = 1, . . . ,K .

We set all the hyperparameters β1, β2, β3 to 1 leading to a uniform
distribution.

Prior for K :
We treat the number of blocks or clusters as a random variable and
choose a probability mass function for K which is distributed as a
zero-truncated Poisson random variable with λ = 1 restricted to
1 ≤ k ≤ Kmax , where Kmax is an user specified upper limit on the
plausible number of blocks.

π(K |K > 0) = Poi(1)
1− Poi(K = 0) = 1

K !(e − 1) . (2)

Therefore this prior probability mass function is proportional to 1
K ! .



Bayesian model

We can write the joint posterior distribution as

π(z,p, θ,K |y) ∝ f (y|p, z,K )π(p|K )π(z|θ,K )π(θ|K )π(K ).

We are mainly interested in the marginal distribution of the latent
allocation vector and number of blocks:

π(z,K |y) =
∫

Θ

∫
P

f (y|p, z,K )π(p|K )π(z|θ,K )π(θ|K )π(K )dθdp

=
∫

P
f (y|p, z,K )π(p|K )dp×

∫
Θ
π(z|θ,K )π(θ|K )dθ × π(K )

= f (y|z,K )π(z|K )π(K ).

We can analytically integrate both expressions above because of
conjugacy.



Bayesian model

π(z,K |y) ∝
K∏

k=1

K∏
l=1

Γ(3)
∏3
ω=1 Γ(Nω

kl + 1)
Γ(
∑3
ω=1 (Nω

kl + 1))
·

K∏
k=1

Γ(nk +1) Γ(K )
Γ(N + K )×

1
K ! ,

where we define

Nω
kl =

N−1∑
i=1

N∑
j=1
j 6=i

I(yij = ω)I (zi = k) I (zj = l),

for ω = 1, 2, 3 and for k,= 1, . . . ,K and l ,= 1, . . . ,K . Also,

nk =
N∑

i=1
I (zi = k), k = 1, . . . ,K .

I Nω
kl counts the number of times that the outcome ω was observed

for all games involving a team allocated to block k playing at home
against a team allocated to block l .

I While nk accounts for the number of teams allocated to block k.



MCMC scheme
The algorithm is based on three move types:

MK: Metropolis move to insert or remove an empty cluster.
This move changes the current state of K but not the
allocation vector z.

M-GS: Metropolis-within-Gibbs move that updates all
components of the allocation vector z but does not change
the number of clusters.

AE: Metropolis-Hastings move to absorb or eject a cluster.
This move affects both z and K .

Label switching
I The allocation vector z is not identifiable by the model. This is

because the likelihood is invariant to permutations of the labels of z.
I We use the relabelling algorithm of Carpeneto and Toth (1980).
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Analysis of over 40 seasons of the English premier league

I Here we analyse each season in turn from 1978/79 to 2020/21.
I Our interest is to explore if the league has become more or less

competitive over this time.
I We are also interested to explore the question of whether there is

evidence of a big-six group of teams.
I To begin we explore in detail the 2018/19 season as this allows us to

present some of the salient features of the model.



Analysis of the 2018/19 season
The output of the MCMC algorithm yielded the following estimates of
the posterior probability for different values of K .

K 1 2 3 4
P(K |data) 0.0 0.97 0.02 0.01

Strong evidence that a 2 block model has most posterior support.



Analysis of the 2018/19 season
Points P(top block)

Manchester City 98 0.98
Liverpool 97 0.98
Chelsea 72 0.92

Tottenham Hotspur 71 0.81
Arsenal 70 0.90

Manchester United 66 0.85
Wolverhampton Wanderers 57 0.23

Everton 54 0.07
Leicester City 52 0.01

West Ham United 52 0.02
Watford 50 0.00

Crystal Palace 49 0.00
Bournemouth 45 0.00

Newcastle United 45 0.00
Burnley 40 0.00

Southampton 39 0.00
Brighton & Hove Albion 36 0.00

Cardiff City 34 0.00
Fulham 26 0.00

Huddersfield Town 16 0.00



Analysis of the 2018/19 season

Results table season: 1819
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ARS BOU BHA BUR CAR CHE CRY EVE FUL HUD LEI LIV MCI MUN NEW SOU TOT WAT WHU WOL

Esitimated table of season: 1819
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ARS CHE LIV MCI MUN TOT BOU BHA BUR CAR CRY EVE FUL HUD LEI NEW SOU WAT WHU WOL

(a) (b)

Figure: (a) Teams listed in alphabetical order. (b) Teams listed by most likely
block membership, a posteriori. The solid horizontal and vertical lines (which
also coincides with final league position) separates each team in their most
likely block.



Analysis of the 2018/19 season
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Did Tottenham hotspur overachieve in 2018/19?

Tottenham Arsenal Manchester United
Tottenham − 1− 1 0− 1
Arsenal 4− 2 − 2− 0
Manchester United 0− 3 2− 2 −

I This indicates that Tottenham’s record against both teams (1 Win,
1 Draw, 2 Losses) was identical to Manchester United’s but much
worse that Arsenal’s record against both teams (2 Wins, 2 Draws).

I This is also consistent with Arsenal being estimated a higher
posterior membership to the top block than Tottenham despite
having a lower overall league position.



Analysis of over 40 seasons of the Premier League

Number of clusters
Season 1 2 3 4
78/79 1.84 96.23 1.93 0.00
79/80 97.78 2.19 0.03 0.00
80/81 33.20 66.36 0.44 0.00
81/82 97.94 2.04 0.01 0.00
82/83 99.83 0.17 0.00 0.00
83/84 99.24 0.76 0.00 0.00
84/85 44.02 55.56 0.42 0.00
85/86 0.00 99.88 0.12 0.00
86/87 99.62 0.38 0.00 0.00
87/88 14.69 85.02 0.29 0.00
88/89 99.31 0.68 0.00 0.00
89/90 98.65 1.32 0.03 0.00
90/91 48.50 50.85 0.65 0.00
91/92 95.42 4.57 0.01 0.00
92/93 98.97 1.03 0.00 0.00
93/94 29.71 69.55 0.73 0.01
94/95 22.67 73.90 3.42 0.02
95/96 56.10 43.75 0.15 0.00
96/97 99.72 0.28 0.00 0.00
97/98 98.34 1.66 0.00 0.00
98/99 0.41 99.43 0.15 0.00
99/00 62.52 37.13 0.36 0.00

Number of clusters
Season 1 2 3 4
00/01 89.61 9.67 0.68 0.04
01/02 0.27 99.38 0.36 0.00
02/03 58.55 40.85 0.59 0.00
03/04 4.90 90.37 4.68 0.04
04/05 0.00 99.87 0.13 0.00
05/06 0.29 97.22 2.38 0.11
06/07 3.01 94.84 2.13 0.02
07/08 0.00 94.11 5.79 0.09
08/09 0.00 99.30 0.69 0.01
09/10 0.08 94.71 5.14 0.08
10/11 80.94 19.00 0.05 0.00
11/12 1.95 96.30 1.74 0.01
12/13 0.00 99.61 0.39 0.00
13/14 0.00 98.85 1.16 0.00
14/15 9.12 87.32 3.55 0.02
15/16 78.58 21.23 0.18 0.02
16/17 0.00 99.11 0.89 0.00
17/18 0.00 98.07 1.92 0.01
18/19 0.00 98.11 1.87 0.02
19/20 1.47 97.02 1.51 0.00
20/21 15.86 81.85 2.25 0.04



Probability of membership of each team to the top block
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I The posterior allocation probability of belonging to the strongest
group of teams over the 42 seasons under study.

I For each season the colour indicates whether the league was
partitioned into a single cluster (sand colour) or two (light blue).
Each point represents the estimated posterior probability for a team.



Posterior estimate of the size of the strongest block
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Barplot displaying the posterior estimate of the number of teams
allocated to the strongest block each season. Single and two block
seasons are coloured white and grey, respectively. This illustrates that the
size of the strongest block has generally decreased during the second half
of the study period. Last season was an exception though!



Summary of the results

I The results indicate there was most support each season, a
posteriori, for either a one block or a two block model, however the
number of seasons where a two block model has most support, a
posteriori, increases considerably over the past two decades.

I In particular, over the first half of this study period there is no
strong support for either model. In fact for some seasons there is
broadly equal posterior support for either model.

I Since around 2000 there is typically most support from a two block
model, but further that the posterior probability for a two block
model is over 0.8 for almost every season since 2003/04, providing
strong evidence that the league has become more competitively
imbalanced since then.



Evidence for the emergence of a big-six groups of teams
MAP allocation of teams to the strongest block 3or not 7 per season.

Arsenal Chelsea Liverpool Man City Man Utd Tottenham Additional teams
20/21 3 3 3 3 3 3 9 further teams
19/20 7 7 3 3 7 7
18/19 3 3 3 3 3 3
17/18 3 3 3 3 3 3
16/17 3 7 3 3 3 3
15/16
14/15 3 3 7 3 3 7
13/14 3 3 3 3 3 3 Everton
12/13 3 3 3 3 3 3 Everton
11/12 3 3 7 3 3 3 Newcastle
10/11
09/10 3 3 3 3 3 3 Everton, Aston Villa
08/09 3 3 3 7 3 7 Everton, Aston Villa
07/08 3 3 3 7 3 7 Everton
06/07 3 3 7 7 3 7
05/06 3 3 3 7 3 3 Blackburn, Newcastle
04/05 3 3 7 7 3 7
03/04 3 3 7 7 3 7
02/03
01/02 3 3 3 3 7 Leeds, Newcastle

I The composition of the strongest block of teams has been stable
since 2009/10 containing the six big teams almost each season.

I Prior to this, Man City were never allocated to the strong block,
while Tottenham Hotspur were only allocated to it in 2005/06.

I Each of the other four teams (with the exception of Liverpool for
some seasons) have been in the strongest block over this period.



Conclusions

I Our analysis of the English Premier League, our analysis has
uncovered evidence that, broadly speaking, the league was quite
balanced from around 1980 to 2000.

I However, subsequent to that, there is strong evidence that the
league has become more imbalanced since from 2003/04 we see an
emergence of league seasons where two blocks are most probable, a
posteriori.

I In addition, our analysis suggests the emergence of a so-called
big-six teams (Arsenal, Chelsea, Liverpool, Manchester City,
Manchester United, Tottenham Hospur) since around 2010 as during
this time period all six teams, with only a few exceptions have
always been present in the strongest block of teams.

I Season 2020/21 appears to be an outliers of sorts resulting in a
much larger top block than in recent seasons. It was impacted by
covid. Some games were played behind closed doors.



Possible extensions to this framework

I The SBM does not directly model for the number of goals scored by
either team.

I In fact, there is a literature which have developed statistical models
for football match data beginning with Dixon and Coles (1997),
where a Poisson GLM framework is used to model the number of
goals scored by either team.

I This has been extended by several authors, including Karlis and
Ntzoufras (2003) to the bivariate Poisson setting.

I There are many more extensions of this Poisson GLM framework.



The final whistle!

Assessing competitive balance in the English Premier League for
over forty seasons using a stochastic block model

Basini et al.
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https://github.com/basins95/Football_SBM
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