

Developments in Piecewise Deterministic Monte Carlo Athens University of Economics and Business

Joris Bierkens 2 December 2022

Acknowledgements

Collaborators

Andrew Duncan

Paul Fearnhead

Kengo Kamatani

Gareth Roberts

Outline

1 The Zig-Zag process

2 Simulation and Subsampling

3 Federated Piecewise Deterministic Monte Carlo

Next Section

1 The Zig-Zag process

2 Simulation and Subsampling

3 Federated Piecewise Deterministic Monte Carlo

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302) The Zig-Zag process is a continuous time Markov process with states $(X(t), V(t)) \in \mathbb{R} \times \{-1, +1\}.$

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302) The Zig-Zag process is a continuous time Markov process with states $(X(t), V(t)) \in \mathbb{R} \times \{-1, +1\}.$

X(t) moves in the direction V(t), so $X(t) = X(0) + \int_0^t V(s) ds$.

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302) The Zig-Zag process is a continuous time Markov process with states $(X(t), V(t)) \in \mathbb{R} \times \{-1, +1\}.$

X(t) moves in the direction V(t), so $X(t) = X(0) + \int_0^t V(s) ds$.

V(t) switches sign with switching intensity $\lambda(X(t), V(t))$, i.e. the first switching time T has distribution

$$\mathbb{P}(T \ge t) = \exp\left(-\int_0^t \lambda(X(s), V(s)) \, ds\right).$$

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302) The Zig-Zag process is a continuous time Markov process with states $(X(t), V(t)) \in \mathbb{R} \times \{-1, +1\}.$

X(t) moves in the direction V(t), so $X(t) = X(0) + \int_0^t V(s) ds$.

V(t) switches sign with switching intensity $\lambda(X(t), V(t))$, i.e. the first switching time T has distribution

$$\mathbb{P}(T \ge t) = \exp\left(-\int_0^t \lambda(X(s), V(s)) \, ds\right).$$

Joris Bierkens (TU Delft)

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

• Potential $U(x) = -\log \pi(x)$

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

- Potential $U(x) = -\log \pi(x)$
- π is stationary if and only if $\lambda(x, +1) \lambda(x, -1) = U'(x)$ for all x.

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

- Potential $U(x) = -\log \pi(x)$
- π is stationary if and only if $\lambda(x, +1) \lambda(x, -1) = U'(x)$ for all x.
- Equivalently,

$$\lambda(x,v) = \underbrace{\max(0,vU'(x))}_{+} + \underbrace{\gamma(x)}_{-}, \quad \gamma(x) \ge 0.$$

canonical switching rate excess switching rate

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

- Potential $U(x) = -\log \pi(x)$
- π is stationary if and only if $\lambda(x, +1) \lambda(x, -1) = U'(x)$ for all x.
- Equivalently,

$$\lambda(x,v) = \max_{\text{canonical switching rate}} (0,vU'(x)) + \underbrace{\gamma(x)}_{\text{excess switching rate}}, \quad \gamma(x) \ge 0.$$

Example: Gaussian distribution $\mathcal{N}(0, \sigma^2)$

- Density $\pi(x) \propto \exp(-x^2/(2\sigma^2))$
- Potential $U(x) = x^2/(2\sigma^2)$
- Derivative $U'(x) = x/\sigma^2$
- Switching rates $\lambda(x, v) = (vx/\sigma^2)_+ + \gamma(x)$

- Target $\pi(x) = \exp(-U(x))$ on \mathbb{R}^d .
- Set of directions $v \in \{-1, +1\}^d$.
- Switching rates $\lambda_i(x, v) = (v_i \partial_i U(x))_+ + \gamma_i(x, v)$, for i = 1, ..., d.

- Target $\pi(x) = \exp(-U(x))$ on \mathbb{R}^d .
- Set of directions $v \in \{-1, +1\}^d$.
- Switching rates $\lambda_i(x, v) = (v_i \partial_i U(x))_+ + \gamma_i(x, v)$, for i = 1, ..., d.
- The excess switching rate γ_i(x, v) should not depend on the *i*-th component of v.

Use in Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

 $(X(t), V(t))_{t \ge 0}$ has stationary distribution proportional to $\pi(x)$. If ergodic,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T h(X(s))\,ds=\int_{\mathbb{R}^d}h(x)\pi(x)\,dx.$$

Usage in computations

Two possibilities:

- Integrate $\frac{1}{T} \int_0^T h(X(s)) ds$ for some finite T > 0 (numerically/analytically), or
- Obtain discrete time samples (X₁, X₂,...) by setting X_k = X(kΔ) for some Δ > 0; use as in traditional MCMC.

Use in Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

 $(X(t), V(t))_{t \ge 0}$ has stationary distribution proportional to $\pi(x)$. If ergodic,

$$\lim_{T\to\infty}\frac{1}{T}\int_0^T h(X(s))\,ds=\int_{\mathbb{R}^d}h(x)\pi(x)\,dx.$$

Usage in computations

Two possibilities:

- Integrate $\frac{1}{T} \int_0^T h(X(s)) ds$ for some finite T > 0 (numerically/analytically), or
- Obtain discrete time samples (X₁, X₂,...) by setting X_k = X(kΔ) for some Δ > 0; use as in traditional MCMC.

Be careful: the switching locations ('skeleton points') are biased towards the tail of the target distribution and cannot be used as samples

The Bouncy Particle Sampler

(Bouchard-Côté, Vollmer, Doucet, JASA, 2017, https://arxiv.org/abs/1510.02451)

The Bouncy Particle Sampler (BPS) is a second canonical example of a PDMP which can be used for sampling. State space is $\mathbb{R}^d \times \mathbb{R}^d$ with stationary distribution $\pi(x) dx \otimes \mathcal{N}(0, \sigma^2 I_n)$. The BPS bounces off at random contours of π , through specular reflection. Additionally, the momentum gets refreshed after at rate λ_{ref} .

The Boomerang Sampler

[B., Grazzi, Kamatani. Roberts. ICML. 2020]

- Position $\boldsymbol{x} \in \mathbb{R}^d$, velocity $\boldsymbol{v} \in \mathbb{R}^d$
- Target distribution $\exp(-U(\mathbf{x})) \mu_0(d\mathbf{x}) \otimes \mu_0(d\mathbf{v})$ with $\mu_0 = \mathcal{N}(\mathbf{0}, \mathbf{\Sigma})$
- Hamiltonian dynamics for μ_0 : $\dot{\mathbf{x}} = \mathbf{v}$, $\dot{\mathbf{v}} = -\mathbf{x}$
- Refreshment rate λ_{refr} > 0
- Reflection rate $\lambda(\mathbf{x}, \mathbf{v}) = \max(0, \langle \mathbf{v}, \nabla U(\mathbf{x}) \rangle)$
- U relative to Gaussian, so potentially fewer reflections than BPS, ZZ.

Next Section

1 The Zig-Zag process

2 Simulation and Subsampling

3 Federated Piecewise Deterministic Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Joris Bierkens (TU Delft)

Developments in Piecewise Deterministic Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Subsampling

Subsampling

Subsampling

Subsampling $\pi(x) \propto \exp\left(-\sum_{i=1}^{n} U_i(x)\right)$

[B., Fearnhead, Roberts, 2016]

Subsampling $\pi(x) \propto \exp\left(-\sum_{i=1}^{n} U_i(x)\right)$

[B., Fearnhead, Roberts, 2016]

single observations

Improve efficiency by a factor n – without losing correctness

Joris Bierkens (TU Delft)

Developments in Piecewise Deterministic Monte Carlo

Control variates

- $U(x) = \frac{1}{n} \sum_{i=1}^{n} U_i(x)$
- Let x^* denote (a point 'close' to) the mode of the posterior distribution.
- Naive subsampling: $\lambda_i(x, v) = (vU'_i(x))_+$.
- Control variates:

$$\lambda_i(x,v) = (v \{ U'_i(x) + U'(x^*) - U'_i(x^*) \})_+.$$

- If x is close to the mode then $U'_i(x) U'_i(x^*)$ is small (under assumptions on U)
- So each $\lambda_i(x, v)$ is close to the 'ideal' switching rate $(vU'(x))_+$.

100 observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Basic Zig-Zag - 2D logistic regression

100 observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Zig-Zag w/Subsampling - 2D logistic regression

100 observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Zig-Zag w/Control Variates - 2D logistic regression

Scaling in number of observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188) Zig-Zag, Zig-Zag w/Subsampling, Zig-Zag w/Control Variates, Zig-Zag with sub-optimal bound, MALA

log(number of observations) base 2

Joris Bierkens (TU Delft)

Scaling in number of observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188) Zig-Zag, Zig-Zag w/Subsampling, Zig-Zag w/Control Variates, Zig-Zag with sub-optimal bound, MALA

log(number of observations) base 2

Joris Bierkens (TU Delft)

Next Section

1 The Zig-Zag process

2 Simulation and Subsampling

3 Federated Piecewise Deterministic Monte Carlo

Federated learning

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized (...) servers holding local data samples, without exchanging them.

Step 1	Step 2	Step 3	Step 4
	Nort-HTYP	nudri-server	Array
when when the	wither-a	netter-a netter-a netter-a	MURA MURA
Central server chooses a statistical model to be trained	Central server transmits the initial model to several nodes	Nodes train the model locally with their own data	Central server pools model results and generate one global mode without accessing any data

Source: Wikipedia

Federated learning

Federated learning (also known as collaborative learning) is a machine learning technique that trains an algorithm across multiple decentralized (...) servers holding local data samples, without exchanging them.

Step 1	Step 2	Step 3	Step 4
	Noti-HTMP Note: Type	and the server	Arrept
where where where	wither-a. wither-b. wither-c	setter-4 setter-6 sejter-c	MULT NULL NULL
Central server chooses a statistical model to be trained	Central server transmits the initial model to several nodes	Nodes train the model locally with their own data	Central server pools model results and generate one global mode without accessing any data

Source: Wikipedia

Joris Bierkens (TU Delft)

Developments in Piecewise Deterministic Monte Carlo

Goal: Federated MCMC

Can we design a federated MCMC method?

The *m*th worker has access to local likelihood $f_m(y_m \mid x) = \exp(-U_m(x))$

Posterior $\pi(x) \propto \pi_0(x) \prod_{m=1}^M \exp(-U_m(x))$.

Wishlist

Our method should:

- Generate samples from π
- Workers do not (directly) communicate their local data (y_m)

Tool: Piecewise Deterministic Monte Carlo

Piecewise Deterministic Monte Carlo (PDMC) is a MCMC method based on continuous time, piecewise deterministic Markov processes.

Ingredients:

- Deterministic dynamics $t \mapsto \phi(t; z_0)$ from any initial position z_0 .
- Jumping intensity $\lambda(z)$.
- Jump transition kernel Q(z, dz').

Example: one-dimensional Zig-Zag

- $z = (x, v) \in \mathbb{R} \times \{-1, +1\}$
- $\phi(t; z_0) = (x_0 + v_0 t, v_0)$: linear motion in direction v_0
- $\lambda(z) = \lambda(x, \nu)$ satisfies $\lambda(x, +1) \lambda(x, -1) = U'(x)$.
- $Q(z, dz') = \delta_x(dx') \otimes \delta_{-v}(dv')$: flip velocity

The switching intensity Write $U(x) = \sum_{m=1}^{M} U_m(x)$.

Say
$$\pi(x) \propto \exp\left(-\sum_{m=1}^{M} U_m(x)
ight) = \exp(-U(x))$$
 (flat prior).

Switching intensity condition

$$\lambda(x,+1)-\lambda(x,-1)=U'(x)$$

guarantees that the continuous time process (X_t, V_t) has marginal stationary density $\pi(x)$ for (X_t) .

The switching intensity Write $U(x) = \sum_{m=1}^{M} U_m(x)$.

Say
$$\pi(x) \propto \exp\left(-\sum_{m=1}^M U_m(x)
ight) = \exp(-U(x))$$
 (flat prior).

Switching intensity condition

$$\lambda(x,+1)-\lambda(x,-1)=U'(x)$$

guarantees that the continuous time process (X_t, V_t) has marginal stationary density $\pi(x)$ for (X_t) .

Possible choices

•
$$\lambda_{\mathrm{std}}(x,v) = \max(vU'(x),0) = (vU'(x))_+$$
, then

$$\lambda_{\rm std}(x,+1) - \lambda_{\rm std}(x,-1) = (U'(x))_+ - (U'(x))_- = U'(x).$$

By similar logic, may take

$$\lambda_{\text{fed}}(x,v) = \sum_{m=1}^{M} \lambda_m(x,v) = \sum_{m=1}^{M} (vU'_m(x))_+.$$

The switching intensity

We have seen that a valid switching intensity is

$$\lambda_{\mathsf{fed}}(x, v) = \sum_{m=1}^{M} \lambda_m(x, v)$$

where $\lambda_m(x, v) = (vU'_m(x))_+$.

To simulate the first switching time τ , we have

$$\mathbb{P}(\tau \geq t) = \exp\left(-\int_0^t \sum_{m=1}^M \lambda_m(x + vs, v) \, ds\right)$$

Equivalent:

• simulate τ_m such that

$$\mathbb{P}(\tau_m \geq t) = \exp\left(-\int_0^t \lambda_m(x + vs, v) \, ds\right)$$

• set $\tau = \min\{\tau_1, \ldots, \tau_M\}.$

Federated Piecewise Deterministic Monte Carlo

Input: Initial condition $(x, v) \in \mathbb{R} \times \{-1, +1\}$. **Output:** The sequence of skeleton points $(T_k, X_k, V_k)_{k=0}^{\infty}$.

1: Set
$$(T_0, X_0, V_0) = (0, x, v)$$

- 2: for $k = 0, 1, 2, \dots$ do
- 3: Every machine simulates τ_m such that

$$\mathbb{P}(\tau_m \geq t) = \exp\left(-\int_0^t \lambda_m(X_k + sV_k, V_k) ds\right)$$

$$\tau = \min\{\tau_1, \dots, \tau_M\},\$$
$$T_{k+1} = T_k + \tau,\$$
$$X_{k+1} = X_k + \tau V_k,\$$
$$V_{k+1} = -V_k.$$

5: end for

Efficiency

The computational efficiency of the algorithm is influenced by the switching intensity.

 $\mathsf{Large intensity} \Longrightarrow \mathsf{Many switches} \Longrightarrow \mathsf{Large computational overhead}$

Consider N 'data points' distributed equally over M machines,

$$U_m(x) = -\sum_{i=1}^{N/M} \log \underbrace{f(y_{m,i} \mid x)}_{\text{single observation likelihood}}$$

For the standard rate $\lambda_{\rm std},$ we have

$$\mathbb{E}_{\pi}\lambda_{\mathrm{std}}(x,v) = \mathbb{E}_{\pi}\left(vU'(x)\right) \leq \frac{1}{2}\mathbb{E}_{\pi}|U'(x)| \leq \frac{1}{2}\left(\mathbb{E}_{\pi}|U'(x)|^2\right)^{1/2} = \mathcal{O}(N^{1/2}).$$

For the federated rate λ_{fed} , it turns out that 'typically' (Gaussian case)

$$\mathbb{E}_{\pi}\lambda_{\mathsf{fed}}(x,v) = \mathcal{O}(M^{1/2}N^{1/2})$$

Efficiency

The computational efficiency of the algorithm is influenced by the switching intensity.

 $\mathsf{Large intensity} \Longrightarrow \mathsf{Many switches} \Longrightarrow \mathsf{Large computational overhead}$

Consider N 'data points' distributed equally over M machines,

$$U_m(x) = -\sum_{i=1}^{N/M} \log \underbrace{f(y_{m,i} \mid x)}_{\text{single observation likelihood}}$$

For the standard rate $\lambda_{\rm std},$ we have

$$\mathbb{E}_{\pi}\lambda_{\mathrm{std}}(x,v) = \mathbb{E}_{\pi}\left(vU'(x)\right) \leq \frac{1}{2}\mathbb{E}_{\pi}|U'(x)| \leq \frac{1}{2}\left(\mathbb{E}_{\pi}|U'(x)|^2\right)^{1/2} = \mathcal{O}(N^{1/2}).$$

For the federated rate λ_{fed} , it turns out that 'typically' (Gaussian case)

$$\mathbb{E}_{\pi}\lambda_{\mathsf{fed}}(x,v) = \mathcal{O}(M^{1/2}N^{1/2})$$

Distributed over *M* machines! Net speed up of $\mathcal{O}(M^{1/2})$?

Efficiency

The computational efficiency of the algorithm is influenced by the switching intensity.

 $\mathsf{Large intensity} \Longrightarrow \mathsf{Many switches} \Longrightarrow \mathsf{Large computational overhead}$

Consider N 'data points' distributed equally over M machines,

$$U_m(x) = -\sum_{i=1}^{N/M} \log \underbrace{f(y_{m,i} \mid x)}_{\text{single observation likelihood}}$$

For the standard rate $\lambda_{\rm std},$ we have

$$\mathbb{E}_{\pi}\lambda_{\mathsf{std}}(x,v) = \mathbb{E}_{\pi}\left(vU'(x)\right) \leq \frac{1}{2}\mathbb{E}_{\pi}|U'(x)| \leq \frac{1}{2}\left(\mathbb{E}_{\pi}|U'(x)|^2\right)^{1/2} = \mathcal{O}(N^{1/2}).$$

For the federated rate λ_{fed} , it turns out that 'typically' (Gaussian case)

$$\mathbb{E}_{\pi}\lambda_{\mathsf{fed}}(x,v) = \mathcal{O}(M^{1/2}N^{1/2})$$

Distributed over *M* machines! Net speed up of $\mathcal{O}(M^{1/2})$? No

Differential Privacy

Does the computation of switching times not give away too much information?

Differential privacy

Consider a random algorithm with output X based on data y_1, \ldots, y_N and the same algorithm with 'one datum' y_i changed, with output \tilde{X} . The algorithm is (ε, δ) differentially private if, for all sets S,

 $\mathbb{P}(X \in S) \leq \exp(\varepsilon)\mathbb{P}(\tilde{X} \in S) + \delta.$

Differential Privacy

Theorem

Suppose $\lambda(t) \ge \rho$ and $|\lambda(t) - \tilde{\lambda}(t)| \le K$ for $t \ge 0$ and some constants $\rho > 0$ and K > 1. Then for any $S \subset [0, \infty)$ we have

 $\mathbb{P}(au\in S)\leq \exp(arepsilon)\mathbb{P}(ilde{ au}\in S)+\delta.$

where $arepsilon > \log\left(1 + rac{\kappa}{
ho}
ight)$ and

$$\delta = \exp\left(-\frac{\rho}{\kappa}\left[\varepsilon - \log\left(1 + \frac{\kappa}{\rho}\right)\right]\right).$$

In particular, for $\varepsilon > 0$ and $\delta > 0$, if

$$\rho \ge K\left(\frac{1+\log(1/\delta)}{\varepsilon}\right),$$
(2)

we have that (1) holds.

(1)

References

- Bouchard-Côté, Doucet, Vollmer, The Bouncy Particle Sampler, JASA, 2017, https://arxiv.org/abs/1510.02451
- Bierkens, Fearnhead, Roberts, The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data, Annals of Statistics, 2019,https://arxiv.org/abs/1607.03188
- Bierkens, Duncan, Federated Bayesian Computation via Piecewise Deterministic Markov Processes, https://arxiv.org/abs/2210.13816

Thank you!