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One-dimensional Zig-Zag process

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)
The Zig-Zag process is a continuous time Markov process with states
(X(t), V(t)) e R x {-1,+1}.
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One-dimensional Zig-Zag process

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)
The Zig-Zag process is a continuous time Markov process with states
(X(t), V(t)) e R x {-1,+1}.

X(t) moves in the direction V(t), so X(t) = X(0) + [ V(s) ds.
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One-dimensional Zig-Zag process

(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)
The Zig-Zag process is a continuous time Markov process with states
(X(t), V(t)) e R x {-1,+1}.

X(t) moves in the direction V/(t), so X(t) )+ Jy V(s)ds.

V/(t) switches sign with switching intensity A(X(t), V(t)), i.e. the first
switching time T has distribution

P(T >t)=exp <— /Ot)\(X(s), V(s)) ds) .
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Relation between switching rate and potential
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

¢ Potential U(x) = — log w(x)
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Relation between switching rate and potential
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

¢ Potential U(x) = — log w(x)
® 7 is stationary if and only if A(x,+1) — A(x,—1) = U'(x) for all x.
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Relation between switching rate and potential
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

¢ Potential U(x) = — log w(x)
® 7 is stationary if and only if A(x,+1) — A(x, —1) = U’(x) for all x.
® Equivalently,
A(x,v) = max(0,vU'(x)) + 7(x) . (x)>0.
—_— ~~

canonical switching rate  excess switching rate
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Relation between switching rate and potential
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

¢ Potential U(x) = — log w(x)
® 7 is stationary if and only if A(x,+1) — A(x, —1) = U’(x) for all x.
® Equivalently,

A(x,v) = max(0,vU'(x)) + l(i(-)’ . v(x)>0.

canonical switching rate  excess switching rate

Example: Gaussian distribution N(0, 02)
* Density 7(x) o exp(—x2/(202))

Potential U(x) = x?/(202)

Derivative U'(x) = x/o?

* Switching rates A\(x, v) = (vx/02); + v(x)
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

® Target 7(x) = exp(—U(x)) on RY.
® Set of directions v € {—1,+1}.
® Switching rates \i(x, v) = (v;0;U(x))+ + 7vi(x,v), fori=1,...,d.
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Target m(x) = exp(—U(x)) on R9.

Set of directions v € {—1,+1}9.

Switching rates A\i(x, v) = (v;0;U(x))+ + vi(x,v), for i =1,...,d.
The excess switching rate ;(x, v) should not depend on the i-th
component of v.
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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Use in Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

(X(t), V(t))e>0 has stationary distribution proportional to m(x).

If ergodic,
-

. 1
lim 7/, h(X(s))ds = /]Rd h(x)m(x) dx.

T—o0

Usage in computations
Two possibilities:
* Integrate + fOT h(X(s)) ds for some finite T > 0
(numerically /analytically), or

® Obtain discrete time samples (X1, Xz, ...) by setting Xx = X(kA) for
some A > 0; use as in traditional MCMC.
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Use in Monte Carlo

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

(X(t), V(t))e>0 has stationary distribution proportional to m(x).
If ergodic,

1 T
lim — h(X(s))ds = / h(x)m(x) dx.

T 0 R

T—o0

Usage in computations
Two possibilities:
* Integrate + fOT h(X(s)) ds for some finite T > 0
(numerically /analytically), or

® Obtain discrete time samples (X1, Xz, ...) by setting Xx = X(kA) for
some A > 0; use as in traditional MCMC.

Be careful: the switching locations (‘skeleton points’) are biased towards the
tail of the target distribution and cannot be used as samples

y
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The Bouncy Particle Sampler

(Bouchard-Cété, Vollmer, Doucet, JASA, 2017, https://arxiv.org/abs/1510.02451)

The Bouncy Particle Sampler (BPS) is a second canonical example of a
PDMP which can be used for sampling.

State space is R? x R? with stationary distribution 7(x) dx @ N(0, o21,).
The BPS bounces off at random contours of 7, through specular reflection.
Additionally, the momentum gets refreshed after at rate Apef.

Contour plot of the energy. U(x) = - log 7(x) Energy
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The Boomerang Sampler
[B., Grazzi, Kamatani. Roberts. ICML. 20201

sample path

O  reflection
© refreshment

Position x € RY, velocity v € RY

Target distribution exp(—U(x)) po(dx) @ po(dv) with po = N(0,X)
Hamiltonian dynamics for pg: x =v, v = —x

Refreshment rate Aerr > 0

Reflection rate A(x, v) = max(0, (v, VU(x)))

® {J relative to GaussianI SO ﬁotentialli fewer reflections than BPSI 77.
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Next Section

@ Simulation and Subsampling
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Sampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

au
dx
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Sampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

/N(x) = max (0, 2¢)

du
dx
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Sampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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du
dx
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Sampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

/‘/N(x) = max (0, 2¢)

T

accept T with probability %

Developments in Piecewise Deterministic Monte Carlo

Joris Bierkens (TU Delft)

draw P(T > t) = exp (— fot/\(X(s)) ds) %

2 December 2022
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Subsampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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Subsampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

du,

dx

dau,
dx
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Subsampling

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

v,
dx

du, T x
dx

draw P(T > t) = exp (— Iy A(X(s)) ds)
draw [ from {1,2} uniformly

accept T with probability /\(())((((TT))))

/
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Subsampling [B., Fearnhead, Roberts, 2016]
m(x) o exp (= 37y Ui(x))

Step 1 All data
Step 2 All data
Stepn All data

Joris Bierkens (TU Delft) Developments in Piecewise Deterministic Monte Carlo



Subsampling [B., Fearnhead, Roberts, 2016]
m(x) o exp (= 37y Ui(x))

single observations

Stepl |-
Step2 =
Step n

Improve efficiency by a factor n — without losing correctness
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Control variates
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

* U(x) =7 X0, Uilx)

® Let x* denote (a point ‘close’ to) the mode of the posterior distribution.
* Naive subsampling: \i(x, v) = (vU!(x))+.

® Control variates:

Ai(x, v) = (v{U (x) + U'(x") = Ui (x)}), -

* If x is close to the mode then U!(x) — U/(x*) is small (under
assumptions on U)

® So each \;(x, v) is close to the ‘ideal’ switching rate (vU’(x)).
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100 observations
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Basic Zig-Zag - 2D logistic regression

(1)
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100 observations
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Zig-Zag w/Subsampling - 2D logistic regression

B(1)
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100 observations
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Zig-Zag w/Control Variates - 2D logistic regression

B(1)
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Scaling in number of observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
Zig-Zag, Zig-Zag w/Subsampling, Zig-Zag w/Control Variates, Zig-Zag with sub-optimal bound,
MALA

log(ESS / epoch) base 2

¥ T T I
YT T T = T ES
©o _|
1
T T T T T T
6 7 8 9 10 11
log(number of rvation: 2
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Scaling in number of observations

(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
Zig-Zag, Zig-Zag w/Subsampling, Zig-Zag w/Control Variates, Zig-Zag with sub-optimal bound,
MALA

log(ESS per second) base 2
8 10 12 1.
/ 7
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Next Section

© Federated Piecewise Deterministic Monte Carlo
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Federated learning

Federated learning (also known as collaborative learning) is a
machine learning technique that trains an algorithm across multiple
decentralized (...) servers holding local data samples, without ex-

changing them.

Step 1

Central server Central server
chooses a statistical | transmits the initial
model to be trained | model to several
nodes

Nodes train the
model locally with
their own data

Central server pools
model results and
generate one global
mode without
accessing any data
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Source: Wikipedia
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Federated learning
Federated learning (also known as collaborative learning) is a
machine learning technique that trains an algorithm across multiple
decentralized (...) servers holding local data samples, without ex-
changing them.

Step 1

Central server Central server Nodes train the Central server pools

chooses a statistical | transmits the initial | model locally with model results and

model to be trained | model to several their own data generate one global
nodes mode without

accessing any data

Source: Wikipedia

® Privacy
¢ Efficiency gains by distributed computation
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Goal: Federated MCMC

Can we design a federated MCMC method?

The mth worker has access to local likelihood fi,(ym | x) = exp(—Un(x))
Posterior m(x) o< 70(x) [T_ exp(—Um(x)).

Wishlist

Our method should:

® Generate samples from 7
® Workers do not (directly) communicate their local data (y.,)




Tool: Piecewise Deterministic Monte Carlo

Piecewise Deterministic Monte Carlo (PDMC) is a MCMC method based on
continuous time, piecewise deterministic Markov processes.

Ingredients:
® Deterministic dynamics t — ¢(t; zp) from any initial position zp.
® Jumping intensity A(z).
e Jump transition kernel Q(z, dz’).

Example: one-dimensional Zig-Zag

° z=(x,v) e Rx{-1,+1}
@(t; 2z0) = (x0 + wot, vp): linear motion in direction vy
A(z) = A(x, v) satisfies A(x, +1) — A(x, —1) = U'(x).
Q(z,dz") = 0x(dx") ® 6_,(dv'): flip velocity
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The switching intensity
Write U(x) = S-M_ Un(x).

Say 7(x) o exp (— M U,,,(x)) — exp(—U(x)) (flat prior).
Switching intensity condition

A(x,+1) = M(x, —1) = U'(x)

guarantees that the continuous time process (X;, V;) has marginal stationary
density m(x) for (X;).




The switching intensity
Write U(x) = S-M | Upn(x).

m=1
Say 7(x) o exp (— M Um(x)) — exp(—U(x)) (flat prior).
Switching intensity condition
A(x,+1) = M(x, —1) = U'(x)

guarantees that the continuous time process (X;, V;) has marginal stationary
density m(x) for (X;).

® Aad(x, v) = max(vU'(x),0) = (vU'(x))+, then
Asta (X, +1) = Asua(x, =1) = (U'(x))4 — (U'(x))- = U'(x).
® By similar logic, may take

Aed (3, V) = M A, v) = S0 (VUL(x))+-




The switching intensity

We have seen that a valid switching intensity is

Ated (X, V) Z Am(x,v)

where Ay (x, v) = (VU (x))+.

To simulate the first switching time 7, we have

P(r > t) =exp (— /Ot Z Am(x + vs,v) ds)

Equivalent:

® simulate 7,, such that

P(rm > t) = exp <_ /0 (x4 v5, V) ds)

® set 7 =min{7,...,Tm}.
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Federated Piecewise Deterministic Monte Carlo

Input: Initial condition (x,v) € R x {—1,+1}.

Output: The sequence of skeleton points ( Ty, Xk, Vic)32,-
1: Set (To,Xo, Vo) = (O,X, V).
2: for k=0,1,2,... do
3:  Every machine simulates 7, such that

t
P(rm > t) = exp (—/ Am( Xk + sV, Vi) ds>
0

4: Set
T=min{r,...,7m},
Tk+1 =T+ T,
Xiy1 = Xi + 7 Vi,
Vi1 = — Vi
5: end for
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Efficiency

The computational efficiency of the algorithm is influenced by the switching
intensity.

Large intensity = Many switches = Large computational overhead

Consider N ‘data points’ distributed equally over M machines,

N/M
Un(x) = — log f(Ym,i | x
(x) ; (Ym,i | x)

single observation likelihood

For the standard rate Ay, we have
1
Ersa(x.v) = Ex (W) < 3EA| U'(0)] < 5 (B|U'()P) " = O(N).

For the federated rate Afeq, it turns out that ‘typically’ (Gaussian case)

ExAed(x, v) = O(MY/2NY/2)
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Efficiency

The computational efficiency of the algorithm is influenced by the switching
intensity.

Large intensity = Many switches = Large computational overhead

Consider N ‘data points’ distributed equally over M machines,

N/M
Un(x) = — log f(Ym,i | x
(x) ; (Ym,i | x)

single observation likelihood

For the standard rate Ay, we have

ErAeta(x, v) = Ex (VU (x)) < LE,|U/(x)| < % (EL U/ (x)2) % = O(NH12),

For the federated rate Afeq, it turns out that ‘typically’ (Gaussian case)
ErMea(x, v) = O(MY2NY/2)

Distributed over M machines! Net speed up of O(M?*/2)?
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Efficiency

The computational efficiency of the algorithm is influenced by the switching
intensity.

Large intensity = Many switches = Large computational overhead

Consider N ‘data points’ distributed equally over M machines,

N/M
Un(x) = — log f(Ym,i | x
(x) ; (Ym,i | x)

single observation likelihood

For the standard rate Ay, we have

ErAeta(x, v) = Ex (VU (x)) < LE,|U/(x)| < % (EL U/ (x)2) % = O(NH12),

For the federated rate Afeq, it turns out that ‘typically’ (Gaussian case)
ErMea(x, v) = O(MY2NY/2)

Distributed over M machines! Net speed up of O(M*/2)? No
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Differential Privacy

Does the computation of switching times not give away too much
information?

Differential privacy

Consider a random algorithm with output X based on data y1,...,yn and
the same algorithm with ‘one datum’ y; changed, with output X.
The algorithm is (e, §) differentially private if, for all sets S,

P(X € S) < exp(e)P(X € S) + 4.
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Differential Privacy

Suppose A(t) > p and [\(t) — A(t)] < K for t > 0 and some constants
p>0and K > 1. Then for any S C [0,00) we have

P(7 € S) < exp(e)P(7 € S) + 4. (1)

where € > log (1 F %) and

toen(- (o)

In particular, fore >0 and 6 > 0, if

sz(Lg(l/‘s)), 2)

&

we have that (1) holds.

v,
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Thank you!
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