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One-dimensional Zig-Zag process
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

The Zig-Zag process is a continuous time Markov process with states
(X (t),V (t)) ∈ R× {−1,+1}.

X (t) moves in the direction V (t), so X (t) = X (0) +
∫ t

0
V (s) ds.

V (t) switches sign with switching intensity λ(X (t),V (t)), i.e. the first
switching time T has distribution

P(T ≥ t) = exp

(
−
∫ t

0

λ(X (s),V (s)) ds

)
.
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Relation between switching rate and potential
(B., Roberts, Ann. Appl. Prob. 2017, https://arxiv.org/abs/1509.00302)

• Potential U(x) = − log π(x)

• π is stationary if and only if λ(x ,+1)− λ(x ,−1) = U ′(x) for all x .

• Equivalently,

λ(x , v) = max (0, vU ′(x))︸ ︷︷ ︸
canonical switching rate

+ γ(x)︸︷︷︸
excess switching rate

, γ(x) ≥ 0.

Example: Gaussian distribution N (0, σ2)

• Density π(x) ∝ exp(−x2/(2σ2))

• Potential U(x) = x2/(2σ2)

• Derivative U ′(x) = x/σ2

• Switching rates λ(x , v) = (vx/σ2)+ + γ(x)
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Multi-dimensional Zig-Zag process
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

• Target π(x) = exp(−U(x)) on Rd .

• Set of directions v ∈ {−1,+1}d .

• Switching rates λi (x , v) = (vi∂iU(x))+ + γi (x , v), for i = 1, . . . , d .

• The excess switching rate γi (x , v) should not depend on the i-th
component of v .
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Use in Monte Carlo
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

(X (t),V (t))t≥0 has stationary distribution proportional to π(x).
If ergodic,

lim
T→∞

1

T

∫ T

0

h(X (s)) ds =

∫
Rd

h(x)π(x) dx .

Usage in computations

Two possibilities:

• Integrate 1
T

∫ T

0
h(X (s)) ds for some finite T > 0

(numerically/analytically), or

• Obtain discrete time samples (X1,X2, . . . ) by setting Xk = X (k∆) for
some ∆ > 0; use as in traditional MCMC.

Be careful : the switching locations (‘skeleton points’) are biased towards the
tail of the target distribution and cannot be used as samples
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The Bouncy Particle Sampler
(Bouchard-Côté, Vollmer, Doucet, JASA, 2017, https://arxiv.org/abs/1510.02451)

The Bouncy Particle Sampler (BPS) is a second canonical example of a
PDMP which can be used for sampling.
State space is Rd × Rd with stationary distribution π(x) dx ⊗N (0, σ2In).
The BPS bounces off at random contours of π, through specular reflection.
Additionally, the momentum gets refreshed after at rate λref .
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The Boomerang Sampler
[B., Grazzi, Kamatani, Roberts, ICML, 2020]

sample path
reflection
refreshment

• Position x ∈ Rd , velocity v ∈ Rd

• Target distribution exp(−U(x))µ0(dx)⊗ µ0(dv) with µ0 = N (0,Σ)
• Hamiltonian dynamics for µ0: ẋ = v , v̇ = −x
• Refreshment rate λrefr > 0
• Reflection rate λ(x , v) = max(0, 〈v ,∇U(x)〉)
• U relative to Gaussian, so potentially fewer reflections than BPS, ZZ.
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Sampling
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

x

dU
dx
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Sampling
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x

dU
dx

λ(x) = max
(
0, dUdx

)
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Sampling
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

x

dU
dx

λ(x) = max
(
0, dUdx

)

Λ(x)

T

draw P(T ≥ t) = exp
(
−
∫ t

0
Λ(X (s)) ds

)
accept T with probability λ(X (T )

Λ(X (T ))
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Subsampling
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

x

dU1

dx

dU2

dx

dU
dx

U = 1
2 (U1 + U2)

m(x)
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Subsampling
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

x

dU1

dx

dU2

dx

λ2(x)

λ1(x)

Λ(x)
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Subsampling
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

xT

draw P(T ≥ t) = exp
(
−
∫ t

0
Λ(X (s)) ds

)
draw I from {1, 2} uniformly

accept T with probability λI (X (T ))
Λ(X (T ))

dU2

dx

λ2(x)

dU1

dx

λ1(x)

Λ(x)
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Subsampling [B., Fearnhead, Roberts, 2016]

π(x) ∝ exp
(
−
∑n

i=1 Ui (x)
)

Improve efficiency by a factor n – without losing correctness
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Control variates
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

• U(x) = 1
n

∑n
i=1 Ui (x)

• Let x? denote (a point ‘close’ to) the mode of the posterior distribution.

• Naive subsampling: λi (x , v) = (vU ′i (x))+.

• Control variates:

λi (x , v) = (v {U ′i (x) + U ′(x?)− U ′i (x
?)})+ .

• If x is close to the mode then U ′i (x)− U ′i (x
?) is small (under

assumptions on U)

• So each λi (x , v) is close to the ‘ideal’ switching rate (vU ′(x))+.
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100 observations
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)
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Scaling in number of observations
(B., Fearnhead, Roberts, https://arxiv.org/abs/1607.03188)

Zig-Zag, Zig-Zag w/Subsampling, Zig-Zag w/Control Variates, Zig-Zag with sub-optimal bound,
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Federated learning
Federated learning (also known as collaborative learning) is a

machine learning technique that trains an algorithm across multiple
decentralized (...) servers holding local data samples, without ex-
changing them.

Source: Wikipedia

Motivation
• Privacy

• Efficiency gains by distributed computation
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Goal: Federated MCMC

Can we design a federated MCMC method?

The mth worker has access to local likelihood fm(ym | x) = exp(−Um(x))

Posterior π(x) ∝ π0(x)
∏M

m=1 exp(−Um(x)).

Wishlist
Our method should:

• Generate samples from π

• Workers do not (directly) communicate their local data (ym)

Joris Bierkens (TU Delft) Developments in Piecewise Deterministic Monte Carlo 2 December 2022 24 / 32



Tool: Piecewise Deterministic Monte Carlo

Piecewise Deterministic Monte Carlo (PDMC) is a MCMC method based on
continuous time, piecewise deterministic Markov processes.

Ingredients:

• Deterministic dynamics t 7→ φ(t; z0) from any initial position z0.

• Jumping intensity λ(z).

• Jump transition kernel Q(z , dz ′).

Example: one-dimensional Zig-Zag
• z = (x , v) ∈ R× {−1,+1}
• φ(t; z0) = (x0 + v0t, v0): linear motion in direction v0

• λ(z) = λ(x , v) satisfies λ(x ,+1)− λ(x ,−1) = U ′(x).

• Q(z , dz ′) = δx(dx ′)⊗ δ−v (dv ′): flip velocity
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The switching intensity
Write U(x) =

∑M
m=1 Um(x).

Say π(x) ∝ exp
(
−
∑M

m=1 Um(x)
)

= exp(−U(x)) (flat prior).

Switching intensity condition

λ(x ,+1)− λ(x ,−1) = U ′(x)

guarantees that the continuous time process (Xt ,Vt) has marginal stationary
density π(x) for (Xt).

Possible choices
• λstd(x , v) = max(vU ′(x), 0) = (vU ′(x))+, then

λstd(x ,+1)− λstd(x ,−1) = (U ′(x))+ − (U ′(x))− = U ′(x).

• By similar logic, may take

λfed(x , v) =
∑M

m=1 λm(x , v) =
∑M

m=1(vU ′m(x))+.
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The switching intensity
We have seen that a valid switching intensity is

λfed(x , v) =
M∑

m=1

λm(x , v)

where λm(x , v) = (vU ′m(x))+.

To simulate the first switching time τ , we have

P(τ ≥ t) = exp

(
−
∫ t

0

M∑
m=1

λm(x + vs, v) ds

)

Equivalent:

• simulate τm such that

P(τm ≥ t) = exp

(
−
∫ t

0

λm(x + vs, v) ds

)
• set τ = min{τ1, . . . , τM}.
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Federated Piecewise Deterministic Monte Carlo

Input: Initial condition (x , v) ∈ R× {−1,+1}.
Output: The sequence of skeleton points (Tk ,Xk ,Vk)∞k=0.

1: Set (T0,X0,V0) = (0, x , v).
2: for k = 0, 1, 2, . . . do
3: Every machine simulates τm such that

P(τm ≥ t) = exp

(
−
∫ t

0

λm(Xk + sVk ,Vk) ds

)
4: Set

τ = min{τ1, . . . , τM},
Tk+1 = Tk + τ,

Xk+1 = Xk + τVk ,

Vk+1 = −Vk .

5: end for

Joris Bierkens (TU Delft) Developments in Piecewise Deterministic Monte Carlo 2 December 2022 28 / 32



Efficiency
The computational efficiency of the algorithm is influenced by the switching
intensity.

Large intensity =⇒ Many switches =⇒ Large computational overhead

Consider N ‘data points’ distributed equally over M machines,

Um(x) = −
N/M∑
i=1

log f (ym,i | x)︸ ︷︷ ︸
single observation likelihood

.

For the standard rate λstd, we have

Eπλstd(x , v) = Eπ (vU ′(x)) ≤ 1
2Eπ|U

′(x)| ≤ 1

2

(
Eπ|U ′(x)|2

)1/2
= O(N1/2).

For the federated rate λfed, it turns out that ‘typically’ (Gaussian case)

Eπλfed(x , v) = O(M1/2N1/2)

Distributed over M machines! Net speed up of O(M1/2)? No
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Differential Privacy

Does the computation of switching times not give away too much
information?

Differential privacy

Consider a random algorithm with output X based on data y1, . . . , yN and
the same algorithm with ‘one datum’ yi changed, with output X̃ .
The algorithm is (ε, δ) differentially private if, for all sets S ,

P(X ∈ S) ≤ exp(ε)P(X̃ ∈ S) + δ.
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Differential Privacy

Theorem

Suppose λ(t) ≥ ρ and |λ(t)− λ̃(t)| ≤ K for t ≥ 0 and some constants
ρ > 0 and K > 1. Then for any S ⊂ [0,∞) we have

P(τ ∈ S) ≤ exp(ε)P(τ̃ ∈ S) + δ. (1)

where ε > log
(

1 + K
ρ

)
and

δ = exp

(
− ρ
K

[
ε− log

(
1 +

K

ρ

)])
.

In particular, for ε > 0 and δ > 0, if

ρ ≥ K

(
1 + log(1/δ)

ε

)
, (2)

we have that (1) holds.
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