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What is empirical Bayes?

• Regularization/Shrinkage estimation 


• Deconvolution 


• Inverse problem 


• Hierarchical Bayes 


• A Mixed Model with (potentially) some nonparametric components.


• Compound decision theory



FRITZ BICHSEL
1921-1999

It was on a gloriously sunny autumn day in October 1999 that Fritz Bichsel
was laid to rest in a cemetery in a small valley in Switzerland. It was the same
valley where he had grown up, and whose features and people had influenced
and impressed him in his childhood and youth. It was to this region, of
which he said the hills had just the right height, that he returned a year
before his death.

He grew up in a family of modest means. After leaving school, he did a
commercial apprenticeship. It was only later that he studied mathematics at
the University of Berne, where he accomplished his doctoral thesis in 1950.
He then worked for some smaller insurance companies before joining
Winterthur, Swiss Insurance Company, in 1967. He stayed with that
company, where he was Chief Actuary Non-life, until he retired in 1986.

Fritz Bichsel belonged to the founder and pioneer generation of ASTIN.
Already the very first volume of the ASTIN Bulletin (1960, Vol. I, Part III)
contained an article written by him on no-claims discounts in motor liability.
With his excellent knowledge of the actuarial theory available at that time,
he used the Poisson Gamma model to calculate the no-claims discounts. This
model was again to play a central role a few years later. The Swiss
supervisory authority insisted upon the insurance companies in Switzerland
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E rfahru 11gs-Tari fierung
in rler Motorfahrzeughaftpflicht-Versicherung

Kon F/ifs üt'c/ise/, Muri fcei Bern

Zusammenfassung

Es wird dargestellt, wie unter Verwendung der zusammengesetzten Poisson-
Verteilung mit der K-Funktion als Strukturfunktion die bekannte Beziehung

1 + Ml)/'/
^ ' ' 1 + w

abgeleitet werden kann, in der bedeuten

7: Schadenhäufigkeit eines Versicherungsbestandes /f;
Zukünftige Schadenhäufigkeit eines Teilbestandes von B, der die Versiehe-
rungen umfasst, die während < Jahren beobachtet wurden und die in diesen
t Jahren genau m Schäden hatten;

ö: Parameter, der mit der Heterogenität des Bestandes /? zusammenhängt.

Die sich aus dieser Beziehung ergebende Prämiendifferenzierung auf Grund der
individuellen Erfahrung jedes einzelnen Risikos wird mit dem im Herbst 1963 in
der Schweiz für die Haftpflichtversicherung von Personenwagen eingeführten
Bonus-Malus-System verglichen.

1. Vorbemerkungen

Dieser Beitrag stellt eine überarbeitete und ergänzte Fassung des
Kurzvortrages dar, den der Verfasser an der Mitgliederversammlung
der Vereinigung vom letzten Herbst gehalten hat. Er enthält nicht
Ergebnisse eigener Untersuchungen, sondern bezweckt, den Leser über
eine interessante und aktuelle Anwendung der mathematischen Sta-
tistik kurz zu orientieren. Der Beitrag ist weniger für Spezialisten der
Mathematik der Nicht-Lebensversicherung gedacht, sondern wendet
sich eher an Mitglieder, die auf anderen Gebieten tätig sind.

Experience rating (Bichsel, 1964) 
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Goal: Assign premium for the next year

as a function of .Zi(1961)
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𝔼[Zi(1962) ∣ Zi(1961) = z]

Idea: Assess expected number of 
claims in next year,



Experience rating (Bichsel, 1964) 
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iid
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Experience rating (Bichsel, 1964) 
:  policy holder,  : number of claims in year i Zi(t) t .

μi ∼ G “Structural function representing 
heterogeneity of the portfolio”

  Bichsel did not know … But had data.
G

Best guess for the number of claims in 1962 for  is:
i

𝔼[Zi(1962) ∣ Zi(1961) = z]
= 𝔼[μi ∣ Zi(1961) = z]
= θG(z)

Zi(1961), Zi(1962) ∼ Poisson(μi)
iid



Nonparametric Maximum Likelihood (NPMLE)
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What about confidence intervals?

̂θ G(3) = 𝔼 ̂G [μ ∣ Z = 3] = 0.69Estimated posterior mean:
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ABSTRACT
In view of the economic importance of motor third-party liability insurance
in developed countries the construction of optimal BMS has been given
considerable interest. However, a major drawback in the construction of
optimal BMS is that they fail to account for the variability on premium
calculations which are treated as point estimates. The present study
addresses this issue. Specifically, nonparametric mixtures of Poisson laws
are used to construct an optimal BMS with a finite number of classes. The
mixing distribution is estimated by nonparametric maximum likelihood
(NPML). The main contribution of this paper is the use of the NPML
estimator for the construction of confidence intervals for the premium rates
derived by updating the posterior mean claim frequency. Furthermore, we
advance one step further by improving the performance of the confidence
intervals based on a bootstrap procedure where the estimated mixture
is used for resampling. The construction of confidence intervals for the
individual premiums based on the asymptotic maximum likelihood theory
is beneficial for the insurance company as it can result in accurate and
effective adjustments to the premium rating policies from a practical point
of view.
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1. Introduction

Bonus-Malus Systems, BMS in short, are experience rating mechanisms which impose penalties on
policyholders responsible for one or more accidents by premium surcharges (or maluses) and reward
discounts (or bonuses) to policyholders who had a claim-free year.

Optimal BMS are financially balanced for the insurer, i.e. the total amount of bonuses must be
equal to the total amount of maluses, and fair for the policyholder, i.e. the premium paid for each
policyholder is proportional to the risk that they impose on the pool. The design of such systems is
achieved through Bayesian analysis and the form of the mixed Poisson distributions which capture
the unobserved heterogeneity of claim count data with respect to the simplistic Poisson law. Over
the years, numerous articles have been devoted to this topic as this is an area of applied statistics
that has close ties with theoretical statistics, notably Bayesian Analysis, nonparametric maximum
likelihood estimation, advanced regression models and credibility theory, which is the cornerstone
of contemporary insurance mathematics. An excellent account of BMS can be found in Lemaire
(1995). Also, references for BMS include, among others, Dionne & Vanasse (1989, 1992), Coene &
Doray (1996),Walhin& Paris (1999), Pinquet (1998), Pinquet et al. (2001), Denuit & Lambert (2001),
Brouhns et al. (2003), Denuit et al. (2007), Pitrebois et al. (2005), Boucher et al. (2008), Tzougas &
Frangos (2014) and Tzougas et al. (2014).

CONTACT Dimitris Karlis karlis@aueb.gr
© 2017 Informa UK Limited, trading as Taylor & Francis Group

θG(3) = 𝔼G[μ ∣ Z = 3] ∈ [0.55, 0.80] .



Algorithm 1: Bootstrap confidence interval for ✓G(z) = EG [h(µ) | Z = z]

1 Let bG be the NPMLE of G based on Z1, . . . , Zn.
2 for b = 1 to B do

3 Draw µ
b
i ⇠ bG, Z

b
i ⇠ p(· | µb

i ) for i = 1, . . . , n (iid).

4 Let bGb be the NPMLE of G based on Z
b
1, . . . , Z

b
n.

5 Let ✓̂b(z) = ✓ bGb(z).
6 end

7 Form a percentile bootstrap confidence interval [b✓�↵ (z), b✓+↵ (z)]
of ✓G(z) based on ✓̂

b(z), b = 1, . . . , B.

The challenge in using bootstrap intervals in the nonparametric case, however, is that,
as Ghosal writes, “no bootstrap theory seems to be known in this setup.” There is one
exception, however, in which bootstrap theory is available. Suppose p(· | µ) = Poisson (µ)
and that we seek to conduct inference for the posterior mean ✓G(z) = E [µ | Z = z]. Suppose
further that G is supported on [0,M ] for known M > 0, that is G 2 P([0,M ]) (IW-(4)),
and also assume that there exist constants d, �, " > 0 such that:

PG [µ 2 (u, u+ ⌧ ]] � d⌧
� for all u, ⌧ 2 (0, "). (3)

Then, ? prove that Algorithm 1 with bootstrap percentile intervals in Step 7 and bG the non-
parametric maximum likelihood estimator over P([0,M ]) has correct asymptotic coverage
for the posterior mean.

3 Choice of prior class

The choice of prior class G appears to have raised multiple—often polarizing—comments.
For example, in the Gaussian empirical Bayes model, we received the following comments:
Pensky argues that the classes of location mixtures of Gaussians (LN ), and scale mixtures of
Gaussians (SN ) impose very strong assumptions—that represent the “best case scenario”—
as they comprise of Lebesgue densities with Fourier transform decaying exponentially fast.
Stephen Portnoy (personal communication) referred us to work that characterizes the broad-
ness of the class of Gaussian scale mixtures [??]. Xie and Stephens argue that the assumption
of a Gaussian scale mixture is less strong than we claim in our manuscript, in so far as it
leads to reasonable conclusions for inference of practical importance in large-scale hypoth-
esis testing. On the other hand, they point out the importance of including a point mass
at 0 in multiple testing related applications. For the Poisson empirical Bayes model, Efron
suggests “betting on smoothness” and considering classes of priors with smooth densities.

We appreciate and concur with all of these views. Indeed we developed our framework
with a view towards accommodating any choice of convex class G—under the proviso that
it enables e�cient computation, e.g., through tractable discretization. For example, it is
possible to consider convex classes with a point mass at 0 as demonstrated by Xie and
Stephens (and we plan to add direct support for it in our software). In Section 5 we
demonstrate a choice of G in the Poisson problem with smoothness, as suggested by Efron.
Below we give one more example of the flexibility in specifying G.

4

Confidence intervals for θG(z) = 𝔼G[μ ∣ Z = z]



Algorithm 1: Bootstrap confidence interval for ✓G(z) = EG [h(µ) | Z = z]

1 Let bG be the NPMLE of G based on Z1, . . . , Zn.
2 for b = 1 to B do

3 Draw µ
b
i ⇠ bG, Z

b
i ⇠ p(· | µb

i ) for i = 1, . . . , n (iid).

4 Let bGb be the NPMLE of G based on Z
b
1, . . . , Z

b
n.

5 Let ✓̂b(z) = ✓ bGb(z).
6 end

7 Form a percentile bootstrap confidence interval [b✓�↵ (z), b✓+↵ (z)]
of ✓G(z) based on ✓̂

b(z), b = 1, . . . , B.

The challenge in using bootstrap intervals in the nonparametric case, however, is that,
as Ghosal writes, “no bootstrap theory seems to be known in this setup.” There is one
exception, however, in which bootstrap theory is available. Suppose p(· | µ) = Poisson (µ)
and that we seek to conduct inference for the posterior mean ✓G(z) = E [µ | Z = z]. Suppose
further that G is supported on [0,M ] for known M > 0, that is G 2 P([0,M ]) (IW-(4)),
and also assume that there exist constants d, �, " > 0 such that:

PG [µ 2 (u, u+ ⌧ ]] � d⌧
� for all u, ⌧ 2 (0, "). (3)

Then, ? prove that Algorithm 1 with bootstrap percentile intervals in Step 7 and bG the non-
parametric maximum likelihood estimator over P([0,M ]) has correct asymptotic coverage
for the posterior mean.

3 Choice of prior class

The choice of prior class G appears to have raised multiple—often polarizing—comments.
For example, in the Gaussian empirical Bayes model, we received the following comments:
Pensky argues that the classes of location mixtures of Gaussians (LN ), and scale mixtures of
Gaussians (SN ) impose very strong assumptions—that represent the “best case scenario”—
as they comprise of Lebesgue densities with Fourier transform decaying exponentially fast.
Stephen Portnoy (personal communication) referred us to work that characterizes the broad-
ness of the class of Gaussian scale mixtures [??]. Xie and Stephens argue that the assumption
of a Gaussian scale mixture is less strong than we claim in our manuscript, in so far as it
leads to reasonable conclusions for inference of practical importance in large-scale hypoth-
esis testing. On the other hand, they point out the importance of including a point mass
at 0 in multiple testing related applications. For the Poisson empirical Bayes model, Efron
suggests “betting on smoothness” and considering classes of priors with smooth densities.

We appreciate and concur with all of these views. Indeed we developed our framework
with a view towards accommodating any choice of convex class G—under the proviso that
it enables e�cient computation, e.g., through tractable discretization. For example, it is
possible to consider convex classes with a point mass at 0 as demonstrated by Xie and
Stephens (and we plan to add direct support for it in our software). In Section 5 we
demonstrate a choice of G in the Poisson problem with smoothness, as suggested by Efron.
Below we give one more example of the flexibility in specifying G.

4

Confidence intervals for θG(z) = 𝔼G[μ ∣ Z = z]

G ∈ 𝒢 = {G supported on compact interval [0,M ],

ℙG[μ ∈ (0,ε)] is sufficiently large for all ε > 0}

Theorem [Karlis, Tzougas, and Frangos (2018)]: Assume independence 

and that , , with Zi ∣ μi ∼ Poisson(μi) μi ∼ G

Then:
lim inf

n→∞ {ℙG [θG(z) ∈ [ ̂θ −
α(z), ̂θ +

α(z)]]} ≥ 1 − α .



Confidence Intervals for Nonparametric 

Empirical Bayes Analysis (with Rejoinder)

N.I., and Stefan Wager, JASA T&M (2022)



Empirical Bayes (EB)
We have noisy data  on  related units with latent parameter .

Three main ingredients to an EB analysis:

Zi n μi

Zi ∣ μi ∼ p( ⋅ ∣ μi)
 is a density w.r.t. a measure , e.g., p( ⋅ ∣ μi) λ Zi ∣ μi ∼ Poisson(μi) .

1) Known noise model: 

2) Class of priors: μi ∼ G, G ∈ 𝒢

Robbins (1956), Efron (2010)

3) Empirical Bayes estimand: θG(z) = 𝔼G[h(μi) ∣ Zi = z]
for a known function ,h( ⋅ )
e.g., for ,   is the posterior mean given h(μ) = μ θG(z) Zi = z

 is unknown.G
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for a known function ,h( ⋅ )
e.g., for ,   is the posterior mean given h(μ) = μ θG(z) Zi = z

Predominant approach: Point estimate  of .̂θG(z) θG(z)

 is unknown.G



EB confidence intervals: statistical task
Zi ∣ μi ∼ p( ⋅ ∣ μi)1) Known noise model: 

2) Class of priors: μi ∼ G, G ∈ 𝒢

3) Empirical Bayes estimand: θG(z) = 𝔼G[h(μi) ∣ Zi = z]

 is unknownG

i = 1,...,n

[ ̂θ −
α(z), ̂θ +

α(z)]CI: with pointwise frequentist coverage:


lim inf
n→∞ {ℙG [θG(z) ∈ [ ̂θ −

α(z), ̂θ +
α(z)]]} ≥ 1 − α

and also with simultaneous coverage.
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 is a pre-specified convex class of priors.𝒢

for all  G ∈ 𝒢
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Abstract
We abstract the concept of a randomized controlled trial as a triple (!, b, s), where
! is the primary efficacy parameter, b the estimate, and s the standard error
(s > 0). If the parameter ! is either a difference of means, a log odds ratio or a
log hazard ratio, then it is reasonable to assume that b is unbiased and normally
distributed. This then allows us to estimate the joint distribution of the z-value
z = b∕s and the signal-to-noise ratio SNR = !∕s from a sample of pairs (bi, si).
We have collected 23 551 such pairs from the Cochrane database. We note that
there are many statistical quantities that depend on (!, b, s) only through the
pair (z, SNR). We start by determining the estimated distribution of the achieved
power. In particular, we estimate the median achieved power to be only 13%. We
also consider the exaggeration ratio which is the factor by which the magnitude
of ! is overestimated. We find that if the estimate is just significant at the 5%
level, we would expect it to overestimate the true effect by a factor of 1.7. This
exaggeration is sometimes referred to as the winner’s curse and it is undoubt-
edly to a considerable extent responsible for disappointing replication results.
For this reason, we believe it is important to shrink the unbiased estimator,
and we propose a method for doing so. We show that our shrinkage estima-
tor successfully addresses the exaggeration. As an example, we re-analyze the
ANDROMEDA-SHOCK trial.
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1 INTRODUCTION

It is nearly three quarters of a century since what is generally regarded as the first modern randomized clinical trial, the
UK Medical Research Council study of the effectiveness of streptomycin in tuberculosis.1 Since then, tens of thousands of
randomized controlled trials (RCT) have been conducted. The purpose of this article is to study this wealth of information,
and to try to learn from it.

We have collected the results of more than 20 000 RCTs from the Cochrane Database of Systematic Reviews (CDSR),
which is the leading journal and database for systematic reviews in health care. These data allow us to determine the
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Our work 
A unified inference framework that works in the general nonparametric 
situation described.
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Nonparametric EB estimation

Binomial model, Posterior Mean: 
If we impose no restrictions on ,   is only 
partially identified  [Robbins (1956)]
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It is possible to estimate  at the quasi-parametric rate 

  [Matias and Taupin (2004)]
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log(n)3/4/ n
Gaussian model, Local False Sign Rate: 
For Sobolev , minimax rates for estimating  are 
polynomial in   [Butucea and Comte (2009), Pensky (2017)]
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Robbins (1956), Anderson (1964), Deely and Kruse (1968), Romano and Wolf (2000),

Stark (1992), Donoho and Reeves (2013), Kuusela and Stark (2017), 

Greenshtein and Itskov (2018), Brennan et al. (2020), ….

lim inf
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Choice of F-localization
DKW F-Localization:    Universal and finite-sample 

-F-Localization:         When , χ2 Zi ∣ μi ∼ Binomial(N, μi)

ℱn(α) = {F with pmf f on {0,...,N} :
N

∑
z=0

(n ̂fn(z) − nf(z))2

nf(z)
≤ χ2

N,1−α}
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Data Analyst
! e position of Data Analyst involves 
participating in data analysis activities 
in support of education-related research 
projects sponsored by ETS and external 
clients. Typical duties include:

• Preparation and quality control of 
research databases

• Developing, modifying, and document-
ing statistical analysis software

• Carrying out statistical procedures under 
the direction of senior project staff 

• Assisting with interpretation and 
presentation of analysis results

• Creating original software as well as 
working with existing ETS-developed 
modules and commercial software

• Employing Fortran, with ETS’s propri-
etary statistical system on a variety of 
platforms including mainframes, PCs 
and UNIX systems

• Using additional software on occasion 
such as SPSS, SAS, Excel/Access and 
S-Plus

Requirements
A bachelor’s degree (for entry level) or 
master’s degree (for senior level) in statistics 
or computer science, or in a related fi eld is 
required. Strong programming background 
and coursework in statistics is essential. 
Expertise in graphics and spreadsheet 
software and experience in analyzing data 
using statistical/psychometric techniques is 
highly desirable. 

“Research here doesn’t just go into a journal, 
it also goes into the fi eld – a one-of-a-

kind aspect of working at ETS that is 
gratifying and exciting.”

 — Catherine A. McClellan,   
      Director, Center for   
    Educational Survey      

 Assessment Research

Paul W. Holland
has made major contributions to 
the application of statistics to social 
science research including differential 
item functioning. His current research 
includes kernel equating methods and 
population invariance of test linking.

Martha L. Stocking
pioneered the application of item 
response theory to psychometric 
problems such as test design, assem-
bly, scoring and equating. This work 
led to the development of methods 
for administering and scoring 
computerized adaptive tests (CAT).

PORTRAITS OF INNOVATION

Research Scientist
! e successful candidate will provide 
scientifi c and technical skills in 
conceptualizing, designing, obtaining 
support for, conducting, and managing 
complex research studies or projects, 
and in disseminating the results and 
implications of research. Other duties 
include, but are not limited to: 

• Generating or contributing to new or 
modifi ed theories of educational and 
psychological processes, research meth-
odology, and analytic or interpretative 
procedures

• Developing proposals for research 
projects and obtaining fi nancial 
support for new or continuing 
research activities

• Designing and 
conducting complex 
scientifi c studies, 
functioning as an 
expert in the major 
facets of projects;

 responding as a subject matter expert 
in presenting the results of acquired 
knowledge and experience

• Consulting and collaborating on prob-
lems arising from substantive research 
and/or testing programs, or corporate 
management concerns

• Directing and/or participating in 
research projects involving a variety of 
management skills for staff  assignment 
and scheduling, monitoring of fi nancial 
performance and utilization of equip-
ment, facilities and services

• Implementing dissemination activities 
utilizing various methodologies to reach 
specifi c audiences, including through 
the publication of research papers, 
progress and technical reports, presenta-
tion of seminars, or other appropriate 
communication vehicles

R&D Opportunities

Frederic Lord’s pioneer research laid the 
foundation for much of modern test 

theory. His 1968 text, with Melvin 
Novick, Statistical Theories of 

Mental Test Scores, remains the 
definitive treatment of the 

observed score test theory 
popular until that time, 

and the official begin-
ning of modern item 

response theory.

is currently working on the kernel 
method of equating. Additional 
work includes linking and equating 
in programs like SAT®, AP®, and 
NAEP. She is also interested in 
investigating and testing causal 
hypotheses in regression models.

Alina von DavierLedyard R Tucker
is considered one of the major figures 
in the development of psychology as 
a quantitative rational science and 
was the original director of Statistical 
Analysis at ETS. His statistical practices 
in testing serve as the foundation for 
applied testing today.

PORTRAITS OF INNOVATION

Lord and Cressie (1975), Lord and Stocking (1976)



Beyond F-localization

Easy to construct


“Common sense approach’’


Simultaneous coverage


What about power? Power strong only if F-localization 
gives tight characterization of uncertainty. Not true in 
general, because of simultaneous coverage.


Conservative!


Choice of F-Localization matters.
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AMARI 

(Affine Minimax Anderson Rubin Inference)

H0 : θG(z) = c

θG(z) = 𝔼G[h(μi) ∣ Zi = z] =
∫ h(μ)p(z ∣ μ) dG(μ)

∫ p(z ∣ μ) dG(μ)
=

aG(z)
fG(z)

H0 : θG(z) = c ⟺ H0 : aG(z) − c ⋅ fG(z) = 0



AMARI 

(Affine Minimax Anderson Rubin Inference)

Jiaying Gu

Noack and Rothe (2019)

Anderson and Rubin (1949)

Fieller (1954)


H0 : θG(z) = c

θG(z) = 𝔼G[h(μi) ∣ Zi = z] =
∫ h(μ)p(z ∣ μ) dG(μ)

∫ p(z ∣ μ) dG(μ)
=

aG(z)
fG(z)

H0 : θG(z) = c ⟺ H0 : aG(z) − c ⋅ fG(z) = 0

L(G) Linear in  G
Upshot:  
Can focus on inference for linear functionals!



AMARI 

(Affine Minimax Anderson Rubin Inference)

L(G)

Seek to conduct inference for the linear functional

Ansatz: Consider affine estimators of the form


̂L = ̂L(G) =
1
n

n

∑
i=1

Qn(Zi) .

Why?

• Convenient computationally. 
• Class of estimators that includes kernel density estimators and 

minimax optimal estimators of linear functionals in the Gaussian 
deconvolution problem [Butucea and Comte (2009), Pensky (2017)]



AMARI 

(Affine Minimax Anderson Rubin Inference)

min
Q:ℝ→ℝ { max

G∈𝒢n
{BiasG[ ̂L]2} + ̂Var [ ̂L]}

How to choose ?Q = Qn̂L =
1
n

n

∑
i=1

Qn(Zi) .
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How to choose ?Q = Qn̂L =
1
n
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∑
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Qn(Zi) .

max
G∈𝒢n

{BiasG[ ̂L]2} = max
G∈𝒢n

{(𝔼G[Q(Zi)] − L(G))2}
𝒢n = {G ∈ 𝒢 : FG ∈ ℱn(αn)}, αn → 0

Bias:



AMARI 

(Affine Minimax Anderson Rubin Inference)

min
Q:ℝ→ℝ { max

G∈𝒢n
{BiasG[ ̂L]2} + ̂Var [ ̂L]}

How to choose ?Q = Qn̂L =
1
n

n

∑
i=1

Qn(Zi) .

max
G∈𝒢n

{BiasG[ ̂L]2} = max
G∈𝒢n

{(𝔼G[Q(Zi)] − L(G))2}
𝒢n = {G ∈ 𝒢 : FG ∈ ℱn(αn)}, αn → 0

Bias:

̂Var [ ̂L] =
1
n {∫ Q2(z)f̄n(z)dλ(z) − (∫ Q(z)f̄n(z)dλ(z))

2

}
                     We use a pilot estimator  of the marginal density.f̄n(z)Variance:



Minimax optimization 

The above optimization problem can be solved by building 
upon:

Sacks and Ylvisacker (1978), Ibragimov and Hasminskii  (1984), Donoho and 
Liu (1989, 1991), Low (1995), Zhao (1997), Cai and Low (2003, 2004), …

Donoho  (1994), Armstrong and Kolesár (2018, 2020, 2021, …),

min
Q:ℝ→ℝ { max

G∈𝒢n
{BiasG[ ̂L]2} + ̂Var [ ̂L]}



Bias-aware inference

Estimate  by L(G) ̂L =
n

∑
i=1

Qn(Zi) / n

̂V = ̂Var (Qn(Zi)) / n ̂B = sup
G∈𝒢n

BiasG[ ̂L]

̂L ± tα( ̂B , ̂V ) tα(B, V ) = inf{t : ℙ[ |b + V1/2W | > t] < α for all |b | ≤ B }

Armstrong and Kolesár (2018), Imbens and Manski (2004), Imbens and Wager (2018)


W ∼ 𝒩(0, 1)

Theorem (I., Wager), Informal
Suppose we choose  as piecewise constant outside . If 

 are constructed by sample splitting, then in the Binomial, 
Gaussian and Poisson empirical Bayes models, our intervals have asymptotic 
coverage .

Qn( ⋅ ) [−M, M ]
ℱn(αn), f̄n( ⋅ )

≥ 1 − α



Confidence intervals in the RCT example

= {G with Leb. density g(μ) = ∫
1
τ

φ ( μ
τ ) dΠ(τ), Π supported on [0.1, 60]}

𝒢 =̂  Scale Mixture of centered Gaussians

 RCTs
n = 23,551
Zi ∣ μi ∼ 𝒩(μi, 1)
μi ∼ G,
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Simulation
μi ∼ G

Zi ∣ μi ∼ 𝒩(μi, 1)
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Spiky

= {G with Leb. density g(μ) = ∫
1
τ

φ ( μ − u
τ ) dΠ(u), Π supported on [−3,3]}

𝒢loc =̂  Loca8on Mixture of Gaussians τ = 0.25

= {G with Leb. density g(μ) = ∫
1
τ

φ ( μ
τ ) dΠ(τ), Π supported on [0.1, 15.6]}

𝒢sc =̂  Scale Mixture of centered Gaussians
[Magder and Zeger (1996), Cordy and Thomas (1997)]



Simulation
μi ∼ G

Zi ∣ μi ∼ 𝒩(μi, 1)

n = 5000
�4 �2 0 2 4

0.0

0.2

0.4

0.6

0.8

µ

g(
µ
)

Spiky

= {G with Leb. density g(μ) = ∫
1
τ

φ ( μ − u
τ ) dΠ(u), Π supported on [−3,3]}

𝒢loc =̂  Loca8on Mixture of Gaussians τ = 0.25

= {G with Leb. density g(μ) = ∫
1
τ

φ ( μ
τ ) dΠ(τ), Π supported on [0.1, 15.6]}

𝒢sc =̂  Scale Mixture of centered Gaussians
[Magder and Zeger (1996), Cordy and Thomas (1997)]

Biostatistics (2017) 18, 2, pp. 275–294
doi:10.1093/biostatistics/kxw041
Advance Access publication on October 17, 2016

False discovery rates: a new deal
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SUMMARY

We introduce a new Empirical Bayes approach for large-scale hypothesis testing, including estimat-
ing false discovery rates (FDRs), and effect sizes. This approach has two key differences from existing
approaches to FDR analysis. First, it assumes that the distribution of the actual (unobserved) effects is
unimodal, with a mode at 0. This “unimodal assumption” (UA), although natural in many contexts, is
not usually incorporated into standard FDR analysis, and we demonstrate how incorporating it brings
many benefits. Specifically, the UA facilitates efficient and robust computation—estimating the unimodal
distribution involves solving a simple convex optimization problem—and enables more accurate infer-
ences provided that it holds. Second, the method takes as its input two numbers for each test (an effect
size estimate and corresponding standard error), rather than the one number usually used (p value or z
score). When available, using two numbers instead of one helps account for variation in measurement
precision across tests. It also facilitates estimation of effects, and unlike standard FDR methods, our
approach provides interval estimates (credible regions) for each effect in addition to measures of signifi-
cance. To provide a bridge between interval estimates and significance measures, we introduce the term
“local false sign rate” to refer to the probability of getting the sign of an effect wrong and argue that it is
a superior measure of significance than the local FDR because it is both more generally applicable and
can be more robustly estimated. Our methods are implemented in an R package ashr available from
http://github.com/stephens999/ashr.

Keywords: Empirical Bayes; False discovery rates; Multiple testing; Shrinkage; Unimodal.

1. INTRODUCTION

Since its introduction in Benjamini and Hochberg (1995), the “False Discovery Rate” (FDR) has quickly
established itself as a key concept in modern statistics, and the primary tool by which most practitioners
handle large-scale multiple testing in which the goal is to identify the non-zero “effects” among a large
number of imprecisely measured effects.

Here we consider an Empirical Bayes (EB) approach to FDR. This idea is, of course, far from new:
indeed, the notion that EB approaches could be helpful in handling multiple comparisons predates intro-
duction of the FDR (e.g. Greenland and Robins, 1991). More recently, EB approaches to the FDR have
been extensively studied by several authors, especially Efron and co-workers (Efron and others, 2001;
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“enables more accurate inferences provided that it holds”



Simulation
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Figure 4: Simulation results: Inference for the posterior mean in the Gaussian
empirical Bayes problem. a) Expected confidence intervals in the simulation with the
prior GSpiky (36). 4 di↵erent inference methods are shown, as well as the ground truth as
a function of z. b) Coverage of the above confidence intervals as a function of z. c, d)
Inference results in the simulation with the prior GNegSpiky (36).

leads to shorter intervals compared to the DKW-F -localization. Furthermore, in this case,
both F -localization intervals and AMARI have pointwise coverage close to 100%; the reason
is that the worst case bias is substantial, and so bias-aware intervals lead to conservative
inference for most G 2 G. In fact, AMARI has simultaneous coverage above 95% for
P [µ � 0 | Z = z] as z varies in Figure 5.

Gaussian scale mixture G: We next repeat our simulations with the same settings, but
using a di↵erent choice of G, namely the Gaussian scale mixture class (35) SN (0.1, 15.6, 1.1).
The scale mixture class SN (0.1, 15.6, 1.1) is strongly misspecified for GNegSpiky. This was
detected by our proposed methods, as the intersection of {FG : G 2 SN (0.1, 15.6, 1.1)} and
F -localizations Fn was empty. Thus, in Figure 6 we report the results of our simulations
only for GSpiky. We observe that the assumption that G is a scale mixture centered at 0,
instead of a location mixture, leads to substantially more precise inference, and especially
so for the local false sign rate.

Degrees of freedom for the logspline approach: One might at this point wonder
whether one can reduce the bias of the plug-in logspline approach and achieve nominal

20
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Figure 5: Simulation results: Inference for the local false sign rate in the Gaussian empirical Bayes
problem. The panels are analogous to the ones of Figure 4.

The length of the di↵erent confidence intervals is qualitatively similar to what we observed in Figure 2. The log-

spline intervals are shortest; however they do not achieve nominal coverage (since they do not account for bias),

while all other methods do. The F -localization intervals have coverage close to 1, while the AMARI intervals

have coverage closer to the nominal 0.95.

Figure 5 shows the simulation results for the local false sign rate. Most conclusions are similar to the ones we

made for the posterior mean. However, here the Gauss-F -localization leads to shorter intervals compared to the

DKW-F -localization. Furthermore, in this case, both the F -localization and AMARI intervals have coverage

close to 1; the reason is that the worst case bias is substantial, and bias-aware intervals will lead to conservative

inference for most G 2 G.

Gaussian scale mixture G: We next repeat our simulations with the same settings, but using a di↵erent

choice of G. Concretely, we replace the Gaussian location mixture class (6) by the Gaussian scale mixture class (7)
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Figure 6: Simulation results: Inference in the Gaussian empirical Bayes problem with G = SN a
Gaussian scale mixture. a,b) Inference for the posterior mean (same simulation setting as Figure 4a,b). c,d)
Inference for the local false sign rate (same simulation setting as Figure 5a,b).

Degrees of freedom for the logspline approach: One might at this point wonder whether one can

reduce the bias of the plug-in logspline approach and achieve nominal coverage by increasing the degrees

of freedom of the spline; we explore this in Figure 7 for the above simulation with the prior G
NegSpiky. In

general, coverage indeed improves as the degrees of freedom increase; however, with many degrees of freedom,

the variance can be so large that the resulting confidence intervals are longer than the intervals proposed in

this work. More importantly it is not clear a-priori, i.e., without knowing the ground truth, how to properly

undersmooth the plug-in estimation and choose a number of degrees of freedom that provides good coverage.

Efron [2016] does not suggest undersmoothing, and instead, acknowledges that using a low-dimensional

parametric family induces ‘definitional bias’ in point estimates, ‘the pay-o↵ being reduced variability’. On

the other hand, as this example highlights, if we want confidence intervals that cover the true local false sign

rate, it is important to explicitly account for bias.
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Gaussian scale mixture. a,b) Inference for the posterior mean (same simulation setting as Figure 4a,b). c,d)
Inference for the local false sign rate (same simulation setting as Figure 5a,b).

Degrees of freedom for the logspline approach: One might at this point wonder whether one can

reduce the bias of the plug-in logspline approach and achieve nominal coverage by increasing the degrees

of freedom of the spline; we explore this in Figure 7 for the above simulation with the prior G
NegSpiky. In

general, coverage indeed improves as the degrees of freedom increase; however, with many degrees of freedom,

the variance can be so large that the resulting confidence intervals are longer than the intervals proposed in

this work. More importantly it is not clear a-priori, i.e., without knowing the ground truth, how to properly

undersmooth the plug-in estimation and choose a number of degrees of freedom that provides good coverage.

Efron [2016] does not suggest undersmoothing, and instead, acknowledges that using a low-dimensional

parametric family induces ‘definitional bias’ in point estimates, ‘the pay-o↵ being reduced variability’. On

the other hand, as this example highlights, if we want confidence intervals that cover the true local false sign

rate, it is important to explicitly account for bias.
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Conclusion

Even if  is large, there may be substantial uncertainty in 
the estimation of empirical Bayes quantities.


Here we describe two approaches to conduct inference for 
empirical Bayes estimands that can accompany empirical 
Bayes point estimation in practice.


Our approaches can also be used to assess the sensitivity 
to the choice of prior class .


n

𝒢



  Thank you for your attention!



L(G)

Seek to conduct inference for the linear functional

We consider affine estimators

AMARI  
(Affine Minimax Anderson Rubin Inference)

Butucea and Comte (2009), Pensky (2017)

We choose the affine estimator by minimax optimization
Donoho  (1994), Armstrong and Kolesár (2018, 2020, 2021, …), Sacks and Ylvisacker (1978), 
Ibragimov and Hasminskii  (1984), Donoho and Liu (1989, 1991), Low (1995), Zhao (1997), Cai 
and Low (2003, 2004), …

We conduct bias-aware inference
Armstrong and Kolesár (2018), Imbens and Manski (2004), Imbens and Wager (2018) 
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